]> git.ipfire.org Git - people/ms/u-boot.git/blob - lib/hashtable.c
env: Hide '.' variables in env print by default
[people/ms/u-boot.git] / lib / hashtable.c
1 /*
2 * This implementation is based on code from uClibc-0.9.30.3 but was
3 * modified and extended for use within U-Boot.
4 *
5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6 *
7 * Original license header:
8 *
9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10 * This file is part of the GNU C Library.
11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12 *
13 * The GNU C Library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
17 *
18 * The GNU C Library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with the GNU C Library; if not, write to the Free
25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 * 02111-1307 USA.
27 */
28
29 #include <errno.h>
30 #include <malloc.h>
31
32 #ifdef USE_HOSTCC /* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 # include <ctype.h>
36
37 # ifndef debug
38 # ifdef DEBUG
39 # define debug(fmt,args...) printf(fmt ,##args)
40 # else
41 # define debug(fmt,args...)
42 # endif
43 # endif
44 #else /* U-Boot build */
45 # include <common.h>
46 # include <linux/string.h>
47 # include <linux/ctype.h>
48 #endif
49
50 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
51 #define CONFIG_ENV_MIN_ENTRIES 64
52 #endif
53 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
54 #define CONFIG_ENV_MAX_ENTRIES 512
55 #endif
56
57 #include "search.h"
58
59 /*
60 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
61 * [Knuth] The Art of Computer Programming, part 3 (6.4)
62 */
63
64 /*
65 * The reentrant version has no static variables to maintain the state.
66 * Instead the interface of all functions is extended to take an argument
67 * which describes the current status.
68 */
69
70 typedef struct _ENTRY {
71 int used;
72 ENTRY entry;
73 } _ENTRY;
74
75
76 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
77 int idx);
78
79 /*
80 * hcreate()
81 */
82
83 /*
84 * For the used double hash method the table size has to be a prime. To
85 * correct the user given table size we need a prime test. This trivial
86 * algorithm is adequate because
87 * a) the code is (most probably) called a few times per program run and
88 * b) the number is small because the table must fit in the core
89 * */
90 static int isprime(unsigned int number)
91 {
92 /* no even number will be passed */
93 unsigned int div = 3;
94
95 while (div * div < number && number % div != 0)
96 div += 2;
97
98 return number % div != 0;
99 }
100
101 /*
102 * Before using the hash table we must allocate memory for it.
103 * Test for an existing table are done. We allocate one element
104 * more as the found prime number says. This is done for more effective
105 * indexing as explained in the comment for the hsearch function.
106 * The contents of the table is zeroed, especially the field used
107 * becomes zero.
108 */
109
110 int hcreate_r(size_t nel, struct hsearch_data *htab)
111 {
112 /* Test for correct arguments. */
113 if (htab == NULL) {
114 __set_errno(EINVAL);
115 return 0;
116 }
117
118 /* There is still another table active. Return with error. */
119 if (htab->table != NULL)
120 return 0;
121
122 /* Change nel to the first prime number not smaller as nel. */
123 nel |= 1; /* make odd */
124 while (!isprime(nel))
125 nel += 2;
126
127 htab->size = nel;
128 htab->filled = 0;
129
130 /* allocate memory and zero out */
131 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
132 if (htab->table == NULL)
133 return 0;
134
135 /* everything went alright */
136 return 1;
137 }
138
139
140 /*
141 * hdestroy()
142 */
143
144 /*
145 * After using the hash table it has to be destroyed. The used memory can
146 * be freed and the local static variable can be marked as not used.
147 */
148
149 void hdestroy_r(struct hsearch_data *htab)
150 {
151 int i;
152
153 /* Test for correct arguments. */
154 if (htab == NULL) {
155 __set_errno(EINVAL);
156 return;
157 }
158
159 /* free used memory */
160 for (i = 1; i <= htab->size; ++i) {
161 if (htab->table[i].used > 0) {
162 ENTRY *ep = &htab->table[i].entry;
163
164 free((void *)ep->key);
165 free(ep->data);
166 }
167 }
168 free(htab->table);
169
170 /* the sign for an existing table is an value != NULL in htable */
171 htab->table = NULL;
172 }
173
174 /*
175 * hsearch()
176 */
177
178 /*
179 * This is the search function. It uses double hashing with open addressing.
180 * The argument item.key has to be a pointer to an zero terminated, most
181 * probably strings of chars. The function for generating a number of the
182 * strings is simple but fast. It can be replaced by a more complex function
183 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
184 *
185 * We use an trick to speed up the lookup. The table is created by hcreate
186 * with one more element available. This enables us to use the index zero
187 * special. This index will never be used because we store the first hash
188 * index in the field used where zero means not used. Every other value
189 * means used. The used field can be used as a first fast comparison for
190 * equality of the stored and the parameter value. This helps to prevent
191 * unnecessary expensive calls of strcmp.
192 *
193 * This implementation differs from the standard library version of
194 * this function in a number of ways:
195 *
196 * - While the standard version does not make any assumptions about
197 * the type of the stored data objects at all, this implementation
198 * works with NUL terminated strings only.
199 * - Instead of storing just pointers to the original objects, we
200 * create local copies so the caller does not need to care about the
201 * data any more.
202 * - The standard implementation does not provide a way to update an
203 * existing entry. This version will create a new entry or update an
204 * existing one when both "action == ENTER" and "item.data != NULL".
205 * - Instead of returning 1 on success, we return the index into the
206 * internal hash table, which is also guaranteed to be positive.
207 * This allows us direct access to the found hash table slot for
208 * example for functions like hdelete().
209 */
210
211 /*
212 * hstrstr_r - return index to entry whose key and/or data contains match
213 */
214 int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
215 struct hsearch_data *htab)
216 {
217 unsigned int idx;
218
219 for (idx = last_idx + 1; idx < htab->size; ++idx) {
220 if (htab->table[idx].used <= 0)
221 continue;
222 if (strstr(htab->table[idx].entry.key, match) ||
223 strstr(htab->table[idx].entry.data, match)) {
224 *retval = &htab->table[idx].entry;
225 return idx;
226 }
227 }
228
229 __set_errno(ESRCH);
230 *retval = NULL;
231 return 0;
232 }
233
234 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
235 struct hsearch_data *htab)
236 {
237 unsigned int idx;
238 size_t key_len = strlen(match);
239
240 for (idx = last_idx + 1; idx < htab->size; ++idx) {
241 if (htab->table[idx].used <= 0)
242 continue;
243 if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
244 *retval = &htab->table[idx].entry;
245 return idx;
246 }
247 }
248
249 __set_errno(ESRCH);
250 *retval = NULL;
251 return 0;
252 }
253
254 /*
255 * Compare an existing entry with the desired key, and overwrite if the action
256 * is ENTER. This is simply a helper function for hsearch_r().
257 */
258 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
259 ENTRY **retval, struct hsearch_data *htab, int flag,
260 unsigned int hval, unsigned int idx)
261 {
262 if (htab->table[idx].used == hval
263 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
264 /* Overwrite existing value? */
265 if ((action == ENTER) && (item.data != NULL)) {
266 /* check for permission */
267 if (htab->change_ok != NULL && htab->change_ok(
268 &htab->table[idx].entry, item.data,
269 env_op_overwrite, flag)) {
270 debug("change_ok() rejected setting variable "
271 "%s, skipping it!\n", item.key);
272 __set_errno(EPERM);
273 *retval = NULL;
274 return 0;
275 }
276
277 free(htab->table[idx].entry.data);
278 htab->table[idx].entry.data = strdup(item.data);
279 if (!htab->table[idx].entry.data) {
280 __set_errno(ENOMEM);
281 *retval = NULL;
282 return 0;
283 }
284 }
285 /* return found entry */
286 *retval = &htab->table[idx].entry;
287 return idx;
288 }
289 /* keep searching */
290 return -1;
291 }
292
293 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
294 struct hsearch_data *htab, int flag)
295 {
296 unsigned int hval;
297 unsigned int count;
298 unsigned int len = strlen(item.key);
299 unsigned int idx;
300 unsigned int first_deleted = 0;
301 int ret;
302
303 /* Compute an value for the given string. Perhaps use a better method. */
304 hval = len;
305 count = len;
306 while (count-- > 0) {
307 hval <<= 4;
308 hval += item.key[count];
309 }
310
311 /*
312 * First hash function:
313 * simply take the modul but prevent zero.
314 */
315 hval %= htab->size;
316 if (hval == 0)
317 ++hval;
318
319 /* The first index tried. */
320 idx = hval;
321
322 if (htab->table[idx].used) {
323 /*
324 * Further action might be required according to the
325 * action value.
326 */
327 unsigned hval2;
328
329 if (htab->table[idx].used == -1
330 && !first_deleted)
331 first_deleted = idx;
332
333 ret = _compare_and_overwrite_entry(item, action, retval, htab,
334 flag, hval, idx);
335 if (ret != -1)
336 return ret;
337
338 /*
339 * Second hash function:
340 * as suggested in [Knuth]
341 */
342 hval2 = 1 + hval % (htab->size - 2);
343
344 do {
345 /*
346 * Because SIZE is prime this guarantees to
347 * step through all available indices.
348 */
349 if (idx <= hval2)
350 idx = htab->size + idx - hval2;
351 else
352 idx -= hval2;
353
354 /*
355 * If we visited all entries leave the loop
356 * unsuccessfully.
357 */
358 if (idx == hval)
359 break;
360
361 /* If entry is found use it. */
362 ret = _compare_and_overwrite_entry(item, action, retval,
363 htab, flag, hval, idx);
364 if (ret != -1)
365 return ret;
366 }
367 while (htab->table[idx].used);
368 }
369
370 /* An empty bucket has been found. */
371 if (action == ENTER) {
372 /*
373 * If table is full and another entry should be
374 * entered return with error.
375 */
376 if (htab->filled == htab->size) {
377 __set_errno(ENOMEM);
378 *retval = NULL;
379 return 0;
380 }
381
382 /*
383 * Create new entry;
384 * create copies of item.key and item.data
385 */
386 if (first_deleted)
387 idx = first_deleted;
388
389 htab->table[idx].used = hval;
390 htab->table[idx].entry.key = strdup(item.key);
391 htab->table[idx].entry.data = strdup(item.data);
392 if (!htab->table[idx].entry.key ||
393 !htab->table[idx].entry.data) {
394 __set_errno(ENOMEM);
395 *retval = NULL;
396 return 0;
397 }
398
399 ++htab->filled;
400
401 /* check for permission */
402 if (htab->change_ok != NULL && htab->change_ok(
403 &htab->table[idx].entry, item.data, env_op_create, flag)) {
404 debug("change_ok() rejected setting variable "
405 "%s, skipping it!\n", item.key);
406 _hdelete(item.key, htab, &htab->table[idx].entry, idx);
407 __set_errno(EPERM);
408 *retval = NULL;
409 return 0;
410 }
411
412 /* return new entry */
413 *retval = &htab->table[idx].entry;
414 return 1;
415 }
416
417 __set_errno(ESRCH);
418 *retval = NULL;
419 return 0;
420 }
421
422
423 /*
424 * hdelete()
425 */
426
427 /*
428 * The standard implementation of hsearch(3) does not provide any way
429 * to delete any entries from the hash table. We extend the code to
430 * do that.
431 */
432
433 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
434 int idx)
435 {
436 /* free used ENTRY */
437 debug("hdelete: DELETING key \"%s\"\n", key);
438 free((void *)ep->key);
439 free(ep->data);
440 htab->table[idx].used = -1;
441
442 --htab->filled;
443 }
444
445 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
446 {
447 ENTRY e, *ep;
448 int idx;
449
450 debug("hdelete: DELETE key \"%s\"\n", key);
451
452 e.key = (char *)key;
453
454 idx = hsearch_r(e, FIND, &ep, htab, 0);
455 if (idx == 0) {
456 __set_errno(ESRCH);
457 return 0; /* not found */
458 }
459
460 /* Check for permission */
461 if (htab->change_ok != NULL &&
462 htab->change_ok(ep, NULL, env_op_delete, flag)) {
463 debug("change_ok() rejected deleting variable "
464 "%s, skipping it!\n", key);
465 __set_errno(EPERM);
466 return 0;
467 }
468
469 _hdelete(key, htab, ep, idx);
470
471 return 1;
472 }
473
474 /*
475 * hexport()
476 */
477
478 #ifndef CONFIG_SPL_BUILD
479 /*
480 * Export the data stored in the hash table in linearized form.
481 *
482 * Entries are exported as "name=value" strings, separated by an
483 * arbitrary (non-NUL, of course) separator character. This allows to
484 * use this function both when formatting the U-Boot environment for
485 * external storage (using '\0' as separator), but also when using it
486 * for the "printenv" command to print all variables, simply by using
487 * as '\n" as separator. This can also be used for new features like
488 * exporting the environment data as text file, including the option
489 * for later re-import.
490 *
491 * The entries in the result list will be sorted by ascending key
492 * values.
493 *
494 * If the separator character is different from NUL, then any
495 * separator characters and backslash characters in the values will
496 * be escaped by a preceeding backslash in output. This is needed for
497 * example to enable multi-line values, especially when the output
498 * shall later be parsed (for example, for re-import).
499 *
500 * There are several options how the result buffer is handled:
501 *
502 * *resp size
503 * -----------
504 * NULL 0 A string of sufficient length will be allocated.
505 * NULL >0 A string of the size given will be
506 * allocated. An error will be returned if the size is
507 * not sufficient. Any unused bytes in the string will
508 * be '\0'-padded.
509 * !NULL 0 The user-supplied buffer will be used. No length
510 * checking will be performed, i. e. it is assumed that
511 * the buffer size will always be big enough. DANGEROUS.
512 * !NULL >0 The user-supplied buffer will be used. An error will
513 * be returned if the size is not sufficient. Any unused
514 * bytes in the string will be '\0'-padded.
515 */
516
517 static int cmpkey(const void *p1, const void *p2)
518 {
519 ENTRY *e1 = *(ENTRY **) p1;
520 ENTRY *e2 = *(ENTRY **) p2;
521
522 return (strcmp(e1->key, e2->key));
523 }
524
525 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
526 char **resp, size_t size,
527 int argc, char * const argv[])
528 {
529 ENTRY *list[htab->size];
530 char *res, *p;
531 size_t totlen;
532 int i, n;
533
534 /* Test for correct arguments. */
535 if ((resp == NULL) || (htab == NULL)) {
536 __set_errno(EINVAL);
537 return (-1);
538 }
539
540 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, "
541 "size = %zu\n", htab, htab->size, htab->filled, size);
542 /*
543 * Pass 1:
544 * search used entries,
545 * save addresses and compute total length
546 */
547 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
548
549 if (htab->table[i].used > 0) {
550 ENTRY *ep = &htab->table[i].entry;
551 int arg, found = 0;
552
553 for (arg = 0; arg < argc; ++arg) {
554 if (strcmp(argv[arg], ep->key) == 0) {
555 found = 1;
556 break;
557 }
558 }
559 if ((argc > 0) && (found == 0))
560 continue;
561
562 if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
563 continue;
564
565 list[n++] = ep;
566
567 totlen += strlen(ep->key) + 2;
568
569 if (sep == '\0') {
570 totlen += strlen(ep->data);
571 } else { /* check if escapes are needed */
572 char *s = ep->data;
573
574 while (*s) {
575 ++totlen;
576 /* add room for needed escape chars */
577 if ((*s == sep) || (*s == '\\'))
578 ++totlen;
579 ++s;
580 }
581 }
582 totlen += 2; /* for '=' and 'sep' char */
583 }
584 }
585
586 #ifdef DEBUG
587 /* Pass 1a: print unsorted list */
588 printf("Unsorted: n=%d\n", n);
589 for (i = 0; i < n; ++i) {
590 printf("\t%3d: %p ==> %-10s => %s\n",
591 i, list[i], list[i]->key, list[i]->data);
592 }
593 #endif
594
595 /* Sort list by keys */
596 qsort(list, n, sizeof(ENTRY *), cmpkey);
597
598 /* Check if the user supplied buffer size is sufficient */
599 if (size) {
600 if (size < totlen + 1) { /* provided buffer too small */
601 printf("Env export buffer too small: %zu, "
602 "but need %zu\n", size, totlen + 1);
603 __set_errno(ENOMEM);
604 return (-1);
605 }
606 } else {
607 size = totlen + 1;
608 }
609
610 /* Check if the user provided a buffer */
611 if (*resp) {
612 /* yes; clear it */
613 res = *resp;
614 memset(res, '\0', size);
615 } else {
616 /* no, allocate and clear one */
617 *resp = res = calloc(1, size);
618 if (res == NULL) {
619 __set_errno(ENOMEM);
620 return (-1);
621 }
622 }
623 /*
624 * Pass 2:
625 * export sorted list of result data
626 */
627 for (i = 0, p = res; i < n; ++i) {
628 const char *s;
629
630 s = list[i]->key;
631 while (*s)
632 *p++ = *s++;
633 *p++ = '=';
634
635 s = list[i]->data;
636
637 while (*s) {
638 if ((*s == sep) || (*s == '\\'))
639 *p++ = '\\'; /* escape */
640 *p++ = *s++;
641 }
642 *p++ = sep;
643 }
644 *p = '\0'; /* terminate result */
645
646 return size;
647 }
648 #endif
649
650
651 /*
652 * himport()
653 */
654
655 /*
656 * Check whether variable 'name' is amongst vars[],
657 * and remove all instances by setting the pointer to NULL
658 */
659 static int drop_var_from_set(const char *name, int nvars, char * vars[])
660 {
661 int i = 0;
662 int res = 0;
663
664 /* No variables specified means process all of them */
665 if (nvars == 0)
666 return 1;
667
668 for (i = 0; i < nvars; i++) {
669 if (vars[i] == NULL)
670 continue;
671 /* If we found it, delete all of them */
672 if (!strcmp(name, vars[i])) {
673 vars[i] = NULL;
674 res = 1;
675 }
676 }
677 if (!res)
678 debug("Skipping non-listed variable %s\n", name);
679
680 return res;
681 }
682
683 /*
684 * Import linearized data into hash table.
685 *
686 * This is the inverse function to hexport(): it takes a linear list
687 * of "name=value" pairs and creates hash table entries from it.
688 *
689 * Entries without "value", i. e. consisting of only "name" or
690 * "name=", will cause this entry to be deleted from the hash table.
691 *
692 * The "flag" argument can be used to control the behaviour: when the
693 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
694 * new data will be added to an existing hash table; otherwise, old
695 * data will be discarded and a new hash table will be created.
696 *
697 * The separator character for the "name=value" pairs can be selected,
698 * so we both support importing from externally stored environment
699 * data (separated by NUL characters) and from plain text files
700 * (entries separated by newline characters).
701 *
702 * To allow for nicely formatted text input, leading white space
703 * (sequences of SPACE and TAB chars) is ignored, and entries starting
704 * (after removal of any leading white space) with a '#' character are
705 * considered comments and ignored.
706 *
707 * [NOTE: this means that a variable name cannot start with a '#'
708 * character.]
709 *
710 * When using a non-NUL separator character, backslash is used as
711 * escape character in the value part, allowing for example for
712 * multi-line values.
713 *
714 * In theory, arbitrary separator characters can be used, but only
715 * '\0' and '\n' have really been tested.
716 */
717
718 int himport_r(struct hsearch_data *htab,
719 const char *env, size_t size, const char sep, int flag,
720 int nvars, char * const vars[])
721 {
722 char *data, *sp, *dp, *name, *value;
723 char *localvars[nvars];
724 int i;
725
726 /* Test for correct arguments. */
727 if (htab == NULL) {
728 __set_errno(EINVAL);
729 return 0;
730 }
731
732 /* we allocate new space to make sure we can write to the array */
733 if ((data = malloc(size)) == NULL) {
734 debug("himport_r: can't malloc %zu bytes\n", size);
735 __set_errno(ENOMEM);
736 return 0;
737 }
738 memcpy(data, env, size);
739 dp = data;
740
741 /* make a local copy of the list of variables */
742 if (nvars)
743 memcpy(localvars, vars, sizeof(vars[0]) * nvars);
744
745 if ((flag & H_NOCLEAR) == 0) {
746 /* Destroy old hash table if one exists */
747 debug("Destroy Hash Table: %p table = %p\n", htab,
748 htab->table);
749 if (htab->table)
750 hdestroy_r(htab);
751 }
752
753 /*
754 * Create new hash table (if needed). The computation of the hash
755 * table size is based on heuristics: in a sample of some 70+
756 * existing systems we found an average size of 39+ bytes per entry
757 * in the environment (for the whole key=value pair). Assuming a
758 * size of 8 per entry (= safety factor of ~5) should provide enough
759 * safety margin for any existing environment definitions and still
760 * allow for more than enough dynamic additions. Note that the
761 * "size" argument is supposed to give the maximum enviroment size
762 * (CONFIG_ENV_SIZE). This heuristics will result in
763 * unreasonably large numbers (and thus memory footprint) for
764 * big flash environments (>8,000 entries for 64 KB
765 * envrionment size), so we clip it to a reasonable value.
766 * On the other hand we need to add some more entries for free
767 * space when importing very small buffers. Both boundaries can
768 * be overwritten in the board config file if needed.
769 */
770
771 if (!htab->table) {
772 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
773
774 if (nent > CONFIG_ENV_MAX_ENTRIES)
775 nent = CONFIG_ENV_MAX_ENTRIES;
776
777 debug("Create Hash Table: N=%d\n", nent);
778
779 if (hcreate_r(nent, htab) == 0) {
780 free(data);
781 return 0;
782 }
783 }
784
785 /* Parse environment; allow for '\0' and 'sep' as separators */
786 do {
787 ENTRY e, *rv;
788
789 /* skip leading white space */
790 while (isblank(*dp))
791 ++dp;
792
793 /* skip comment lines */
794 if (*dp == '#') {
795 while (*dp && (*dp != sep))
796 ++dp;
797 ++dp;
798 continue;
799 }
800
801 /* parse name */
802 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
803 ;
804
805 /* deal with "name" and "name=" entries (delete var) */
806 if (*dp == '\0' || *(dp + 1) == '\0' ||
807 *dp == sep || *(dp + 1) == sep) {
808 if (*dp == '=')
809 *dp++ = '\0';
810 *dp++ = '\0'; /* terminate name */
811
812 debug("DELETE CANDIDATE: \"%s\"\n", name);
813 if (!drop_var_from_set(name, nvars, localvars))
814 continue;
815
816 if (hdelete_r(name, htab, flag) == 0)
817 debug("DELETE ERROR ##############################\n");
818
819 continue;
820 }
821 *dp++ = '\0'; /* terminate name */
822
823 /* parse value; deal with escapes */
824 for (value = sp = dp; *dp && (*dp != sep); ++dp) {
825 if ((*dp == '\\') && *(dp + 1))
826 ++dp;
827 *sp++ = *dp;
828 }
829 *sp++ = '\0'; /* terminate value */
830 ++dp;
831
832 /* Skip variables which are not supposed to be processed */
833 if (!drop_var_from_set(name, nvars, localvars))
834 continue;
835
836 /* enter into hash table */
837 e.key = name;
838 e.data = value;
839
840 hsearch_r(e, ENTER, &rv, htab, flag);
841 if (rv == NULL) {
842 printf("himport_r: can't insert \"%s=%s\" into hash table\n",
843 name, value);
844 return 0;
845 }
846
847 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
848 htab, htab->filled, htab->size,
849 rv, name, value);
850 } while ((dp < data + size) && *dp); /* size check needed for text */
851 /* without '\0' termination */
852 debug("INSERT: free(data = %p)\n", data);
853 free(data);
854
855 /* process variables which were not considered */
856 for (i = 0; i < nvars; i++) {
857 if (localvars[i] == NULL)
858 continue;
859 /*
860 * All variables which were not deleted from the variable list
861 * were not present in the imported env
862 * This could mean two things:
863 * a) if the variable was present in current env, we delete it
864 * b) if the variable was not present in current env, we notify
865 * it might be a typo
866 */
867 if (hdelete_r(localvars[i], htab, flag) == 0)
868 printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
869 else
870 printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
871 }
872
873 debug("INSERT: done\n");
874 return 1; /* everything OK */
875 }