]> git.ipfire.org Git - people/ms/u-boot.git/blob - lib/hashtable.c
Merge branch 'master' of /home/wd/git/u-boot/custodians
[people/ms/u-boot.git] / lib / hashtable.c
1 /*
2 * This implementation is based on code from uClibc-0.9.30.3 but was
3 * modified and extended for use within U-Boot.
4 *
5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6 *
7 * Original license header:
8 *
9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10 * This file is part of the GNU C Library.
11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12 *
13 * The GNU C Library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
17 *
18 * The GNU C Library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with the GNU C Library; if not, write to the Free
25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 * 02111-1307 USA.
27 */
28
29 #include <errno.h>
30 #include <malloc.h>
31
32 #ifdef USE_HOSTCC /* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 # include <ctype.h>
36
37 # ifndef debug
38 # ifdef DEBUG
39 # define debug(fmt,args...) printf(fmt ,##args)
40 # else
41 # define debug(fmt,args...)
42 # endif
43 # endif
44 #else /* U-Boot build */
45 # include <common.h>
46 # include <linux/string.h>
47 # include <linux/ctype.h>
48 #endif
49
50 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
51 #define CONFIG_ENV_MIN_ENTRIES 64
52 #endif
53 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
54 #define CONFIG_ENV_MAX_ENTRIES 512
55 #endif
56
57 #include "search.h"
58
59 /*
60 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
61 * [Knuth] The Art of Computer Programming, part 3 (6.4)
62 */
63
64 /*
65 * The reentrant version has no static variables to maintain the state.
66 * Instead the interface of all functions is extended to take an argument
67 * which describes the current status.
68 */
69 typedef struct _ENTRY {
70 int used;
71 ENTRY entry;
72 } _ENTRY;
73
74
75 /*
76 * hcreate()
77 */
78
79 /*
80 * For the used double hash method the table size has to be a prime. To
81 * correct the user given table size we need a prime test. This trivial
82 * algorithm is adequate because
83 * a) the code is (most probably) called a few times per program run and
84 * b) the number is small because the table must fit in the core
85 * */
86 static int isprime(unsigned int number)
87 {
88 /* no even number will be passed */
89 unsigned int div = 3;
90
91 while (div * div < number && number % div != 0)
92 div += 2;
93
94 return number % div != 0;
95 }
96
97 /*
98 * Before using the hash table we must allocate memory for it.
99 * Test for an existing table are done. We allocate one element
100 * more as the found prime number says. This is done for more effective
101 * indexing as explained in the comment for the hsearch function.
102 * The contents of the table is zeroed, especially the field used
103 * becomes zero.
104 */
105
106 int hcreate_r(size_t nel, struct hsearch_data *htab)
107 {
108 /* Test for correct arguments. */
109 if (htab == NULL) {
110 __set_errno(EINVAL);
111 return 0;
112 }
113
114 /* There is still another table active. Return with error. */
115 if (htab->table != NULL)
116 return 0;
117
118 /* Change nel to the first prime number not smaller as nel. */
119 nel |= 1; /* make odd */
120 while (!isprime(nel))
121 nel += 2;
122
123 htab->size = nel;
124 htab->filled = 0;
125
126 /* allocate memory and zero out */
127 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
128 if (htab->table == NULL)
129 return 0;
130
131 /* everything went alright */
132 return 1;
133 }
134
135
136 /*
137 * hdestroy()
138 */
139
140 /*
141 * After using the hash table it has to be destroyed. The used memory can
142 * be freed and the local static variable can be marked as not used.
143 */
144
145 void hdestroy_r(struct hsearch_data *htab)
146 {
147 int i;
148
149 /* Test for correct arguments. */
150 if (htab == NULL) {
151 __set_errno(EINVAL);
152 return;
153 }
154
155 /* free used memory */
156 for (i = 1; i <= htab->size; ++i) {
157 if (htab->table[i].used > 0) {
158 ENTRY *ep = &htab->table[i].entry;
159
160 free((void *)ep->key);
161 free(ep->data);
162 }
163 }
164 free(htab->table);
165
166 /* the sign for an existing table is an value != NULL in htable */
167 htab->table = NULL;
168 }
169
170 /*
171 * hsearch()
172 */
173
174 /*
175 * This is the search function. It uses double hashing with open addressing.
176 * The argument item.key has to be a pointer to an zero terminated, most
177 * probably strings of chars. The function for generating a number of the
178 * strings is simple but fast. It can be replaced by a more complex function
179 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
180 *
181 * We use an trick to speed up the lookup. The table is created by hcreate
182 * with one more element available. This enables us to use the index zero
183 * special. This index will never be used because we store the first hash
184 * index in the field used where zero means not used. Every other value
185 * means used. The used field can be used as a first fast comparison for
186 * equality of the stored and the parameter value. This helps to prevent
187 * unnecessary expensive calls of strcmp.
188 *
189 * This implementation differs from the standard library version of
190 * this function in a number of ways:
191 *
192 * - While the standard version does not make any assumptions about
193 * the type of the stored data objects at all, this implementation
194 * works with NUL terminated strings only.
195 * - Instead of storing just pointers to the original objects, we
196 * create local copies so the caller does not need to care about the
197 * data any more.
198 * - The standard implementation does not provide a way to update an
199 * existing entry. This version will create a new entry or update an
200 * existing one when both "action == ENTER" and "item.data != NULL".
201 * - Instead of returning 1 on success, we return the index into the
202 * internal hash table, which is also guaranteed to be positive.
203 * This allows us direct access to the found hash table slot for
204 * example for functions like hdelete().
205 */
206
207 /*
208 * hstrstr_r - return index to entry whose key and/or data contains match
209 */
210 int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
211 struct hsearch_data *htab)
212 {
213 unsigned int idx;
214
215 for (idx = last_idx + 1; idx < htab->size; ++idx) {
216 if (htab->table[idx].used <= 0)
217 continue;
218 if (strstr(htab->table[idx].entry.key, match) ||
219 strstr(htab->table[idx].entry.data, match)) {
220 *retval = &htab->table[idx].entry;
221 return idx;
222 }
223 }
224
225 __set_errno(ESRCH);
226 *retval = NULL;
227 return 0;
228 }
229
230 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
231 struct hsearch_data *htab)
232 {
233 unsigned int idx;
234 size_t key_len = strlen(match);
235
236 for (idx = last_idx + 1; idx < htab->size; ++idx) {
237 if (htab->table[idx].used <= 0)
238 continue;
239 if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
240 *retval = &htab->table[idx].entry;
241 return idx;
242 }
243 }
244
245 __set_errno(ESRCH);
246 *retval = NULL;
247 return 0;
248 }
249
250 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
251 struct hsearch_data *htab)
252 {
253 unsigned int hval;
254 unsigned int count;
255 unsigned int len = strlen(item.key);
256 unsigned int idx;
257 unsigned int first_deleted = 0;
258
259 /* Compute an value for the given string. Perhaps use a better method. */
260 hval = len;
261 count = len;
262 while (count-- > 0) {
263 hval <<= 4;
264 hval += item.key[count];
265 }
266
267 /*
268 * First hash function:
269 * simply take the modul but prevent zero.
270 */
271 hval %= htab->size;
272 if (hval == 0)
273 ++hval;
274
275 /* The first index tried. */
276 idx = hval;
277
278 if (htab->table[idx].used) {
279 /*
280 * Further action might be required according to the
281 * action value.
282 */
283 unsigned hval2;
284
285 if (htab->table[idx].used == -1
286 && !first_deleted)
287 first_deleted = idx;
288
289 if (htab->table[idx].used == hval
290 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
291 /* Overwrite existing value? */
292 if ((action == ENTER) && (item.data != NULL)) {
293 free(htab->table[idx].entry.data);
294 htab->table[idx].entry.data =
295 strdup(item.data);
296 if (!htab->table[idx].entry.data) {
297 __set_errno(ENOMEM);
298 *retval = NULL;
299 return 0;
300 }
301 }
302 /* return found entry */
303 *retval = &htab->table[idx].entry;
304 return idx;
305 }
306
307 /*
308 * Second hash function:
309 * as suggested in [Knuth]
310 */
311 hval2 = 1 + hval % (htab->size - 2);
312
313 do {
314 /*
315 * Because SIZE is prime this guarantees to
316 * step through all available indices.
317 */
318 if (idx <= hval2)
319 idx = htab->size + idx - hval2;
320 else
321 idx -= hval2;
322
323 /*
324 * If we visited all entries leave the loop
325 * unsuccessfully.
326 */
327 if (idx == hval)
328 break;
329
330 /* If entry is found use it. */
331 if ((htab->table[idx].used == hval)
332 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
333 /* Overwrite existing value? */
334 if ((action == ENTER) && (item.data != NULL)) {
335 free(htab->table[idx].entry.data);
336 htab->table[idx].entry.data =
337 strdup(item.data);
338 if (!htab->table[idx].entry.data) {
339 __set_errno(ENOMEM);
340 *retval = NULL;
341 return 0;
342 }
343 }
344 /* return found entry */
345 *retval = &htab->table[idx].entry;
346 return idx;
347 }
348 }
349 while (htab->table[idx].used);
350 }
351
352 /* An empty bucket has been found. */
353 if (action == ENTER) {
354 /*
355 * If table is full and another entry should be
356 * entered return with error.
357 */
358 if (htab->filled == htab->size) {
359 __set_errno(ENOMEM);
360 *retval = NULL;
361 return 0;
362 }
363
364 /*
365 * Create new entry;
366 * create copies of item.key and item.data
367 */
368 if (first_deleted)
369 idx = first_deleted;
370
371 htab->table[idx].used = hval;
372 htab->table[idx].entry.key = strdup(item.key);
373 htab->table[idx].entry.data = strdup(item.data);
374 if (!htab->table[idx].entry.key ||
375 !htab->table[idx].entry.data) {
376 __set_errno(ENOMEM);
377 *retval = NULL;
378 return 0;
379 }
380
381 ++htab->filled;
382
383 /* return new entry */
384 *retval = &htab->table[idx].entry;
385 return 1;
386 }
387
388 __set_errno(ESRCH);
389 *retval = NULL;
390 return 0;
391 }
392
393
394 /*
395 * hdelete()
396 */
397
398 /*
399 * The standard implementation of hsearch(3) does not provide any way
400 * to delete any entries from the hash table. We extend the code to
401 * do that.
402 */
403
404 int hdelete_r(const char *key, struct hsearch_data *htab)
405 {
406 ENTRY e, *ep;
407 int idx;
408
409 debug("hdelete: DELETE key \"%s\"\n", key);
410
411 e.key = (char *)key;
412
413 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
414 __set_errno(ESRCH);
415 return 0; /* not found */
416 }
417
418 /* free used ENTRY */
419 debug("hdelete: DELETING key \"%s\"\n", key);
420
421 free((void *)ep->key);
422 free(ep->data);
423 htab->table[idx].used = -1;
424
425 --htab->filled;
426
427 return 1;
428 }
429
430 /*
431 * hexport()
432 */
433
434 /*
435 * Export the data stored in the hash table in linearized form.
436 *
437 * Entries are exported as "name=value" strings, separated by an
438 * arbitrary (non-NUL, of course) separator character. This allows to
439 * use this function both when formatting the U-Boot environment for
440 * external storage (using '\0' as separator), but also when using it
441 * for the "printenv" command to print all variables, simply by using
442 * as '\n" as separator. This can also be used for new features like
443 * exporting the environment data as text file, including the option
444 * for later re-import.
445 *
446 * The entries in the result list will be sorted by ascending key
447 * values.
448 *
449 * If the separator character is different from NUL, then any
450 * separator characters and backslash characters in the values will
451 * be escaped by a preceeding backslash in output. This is needed for
452 * example to enable multi-line values, especially when the output
453 * shall later be parsed (for example, for re-import).
454 *
455 * There are several options how the result buffer is handled:
456 *
457 * *resp size
458 * -----------
459 * NULL 0 A string of sufficient length will be allocated.
460 * NULL >0 A string of the size given will be
461 * allocated. An error will be returned if the size is
462 * not sufficient. Any unused bytes in the string will
463 * be '\0'-padded.
464 * !NULL 0 The user-supplied buffer will be used. No length
465 * checking will be performed, i. e. it is assumed that
466 * the buffer size will always be big enough. DANGEROUS.
467 * !NULL >0 The user-supplied buffer will be used. An error will
468 * be returned if the size is not sufficient. Any unused
469 * bytes in the string will be '\0'-padded.
470 */
471
472 static int cmpkey(const void *p1, const void *p2)
473 {
474 ENTRY *e1 = *(ENTRY **) p1;
475 ENTRY *e2 = *(ENTRY **) p2;
476
477 return (strcmp(e1->key, e2->key));
478 }
479
480 ssize_t hexport_r(struct hsearch_data *htab, const char sep,
481 char **resp, size_t size,
482 int argc, char * const argv[])
483 {
484 ENTRY *list[htab->size];
485 char *res, *p;
486 size_t totlen;
487 int i, n;
488
489 /* Test for correct arguments. */
490 if ((resp == NULL) || (htab == NULL)) {
491 __set_errno(EINVAL);
492 return (-1);
493 }
494
495 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
496 htab, htab->size, htab->filled, size);
497 /*
498 * Pass 1:
499 * search used entries,
500 * save addresses and compute total length
501 */
502 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
503
504 if (htab->table[i].used > 0) {
505 ENTRY *ep = &htab->table[i].entry;
506 int arg, found = 0;
507
508 for (arg = 0; arg < argc; ++arg) {
509 if (strcmp(argv[arg], ep->key) == 0) {
510 found = 1;
511 break;
512 }
513 }
514 if ((argc > 0) && (found == 0))
515 continue;
516
517 list[n++] = ep;
518
519 totlen += strlen(ep->key) + 2;
520
521 if (sep == '\0') {
522 totlen += strlen(ep->data);
523 } else { /* check if escapes are needed */
524 char *s = ep->data;
525
526 while (*s) {
527 ++totlen;
528 /* add room for needed escape chars */
529 if ((*s == sep) || (*s == '\\'))
530 ++totlen;
531 ++s;
532 }
533 }
534 totlen += 2; /* for '=' and 'sep' char */
535 }
536 }
537
538 #ifdef DEBUG
539 /* Pass 1a: print unsorted list */
540 printf("Unsorted: n=%d\n", n);
541 for (i = 0; i < n; ++i) {
542 printf("\t%3d: %p ==> %-10s => %s\n",
543 i, list[i], list[i]->key, list[i]->data);
544 }
545 #endif
546
547 /* Sort list by keys */
548 qsort(list, n, sizeof(ENTRY *), cmpkey);
549
550 /* Check if the user supplied buffer size is sufficient */
551 if (size) {
552 if (size < totlen + 1) { /* provided buffer too small */
553 printf("Env export buffer too small: %d, but need %d\n",
554 size, totlen + 1);
555 __set_errno(ENOMEM);
556 return (-1);
557 }
558 } else {
559 size = totlen + 1;
560 }
561
562 /* Check if the user provided a buffer */
563 if (*resp) {
564 /* yes; clear it */
565 res = *resp;
566 memset(res, '\0', size);
567 } else {
568 /* no, allocate and clear one */
569 *resp = res = calloc(1, size);
570 if (res == NULL) {
571 __set_errno(ENOMEM);
572 return (-1);
573 }
574 }
575 /*
576 * Pass 2:
577 * export sorted list of result data
578 */
579 for (i = 0, p = res; i < n; ++i) {
580 const char *s;
581
582 s = list[i]->key;
583 while (*s)
584 *p++ = *s++;
585 *p++ = '=';
586
587 s = list[i]->data;
588
589 while (*s) {
590 if ((*s == sep) || (*s == '\\'))
591 *p++ = '\\'; /* escape */
592 *p++ = *s++;
593 }
594 *p++ = sep;
595 }
596 *p = '\0'; /* terminate result */
597
598 return size;
599 }
600
601
602 /*
603 * himport()
604 */
605
606 /*
607 * Import linearized data into hash table.
608 *
609 * This is the inverse function to hexport(): it takes a linear list
610 * of "name=value" pairs and creates hash table entries from it.
611 *
612 * Entries without "value", i. e. consisting of only "name" or
613 * "name=", will cause this entry to be deleted from the hash table.
614 *
615 * The "flag" argument can be used to control the behaviour: when the
616 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
617 * new data will be added to an existing hash table; otherwise, old
618 * data will be discarded and a new hash table will be created.
619 *
620 * The separator character for the "name=value" pairs can be selected,
621 * so we both support importing from externally stored environment
622 * data (separated by NUL characters) and from plain text files
623 * (entries separated by newline characters).
624 *
625 * To allow for nicely formatted text input, leading white space
626 * (sequences of SPACE and TAB chars) is ignored, and entries starting
627 * (after removal of any leading white space) with a '#' character are
628 * considered comments and ignored.
629 *
630 * [NOTE: this means that a variable name cannot start with a '#'
631 * character.]
632 *
633 * When using a non-NUL separator character, backslash is used as
634 * escape character in the value part, allowing for example for
635 * multi-line values.
636 *
637 * In theory, arbitrary separator characters can be used, but only
638 * '\0' and '\n' have really been tested.
639 */
640
641 int himport_r(struct hsearch_data *htab,
642 const char *env, size_t size, const char sep, int flag)
643 {
644 char *data, *sp, *dp, *name, *value;
645
646 /* Test for correct arguments. */
647 if (htab == NULL) {
648 __set_errno(EINVAL);
649 return 0;
650 }
651
652 /* we allocate new space to make sure we can write to the array */
653 if ((data = malloc(size)) == NULL) {
654 debug("himport_r: can't malloc %d bytes\n", size);
655 __set_errno(ENOMEM);
656 return 0;
657 }
658 memcpy(data, env, size);
659 dp = data;
660
661 if ((flag & H_NOCLEAR) == 0) {
662 /* Destroy old hash table if one exists */
663 debug("Destroy Hash Table: %p table = %p\n", htab,
664 htab->table);
665 if (htab->table)
666 hdestroy_r(htab);
667 }
668
669 /*
670 * Create new hash table (if needed). The computation of the hash
671 * table size is based on heuristics: in a sample of some 70+
672 * existing systems we found an average size of 39+ bytes per entry
673 * in the environment (for the whole key=value pair). Assuming a
674 * size of 8 per entry (= safety factor of ~5) should provide enough
675 * safety margin for any existing environment definitions and still
676 * allow for more than enough dynamic additions. Note that the
677 * "size" argument is supposed to give the maximum enviroment size
678 * (CONFIG_ENV_SIZE). This heuristics will result in
679 * unreasonably large numbers (and thus memory footprint) for
680 * big flash environments (>8,000 entries for 64 KB
681 * envrionment size), so we clip it to a reasonable value.
682 * On the other hand we need to add some more entries for free
683 * space when importing very small buffers. Both boundaries can
684 * be overwritten in the board config file if needed.
685 */
686
687 if (!htab->table) {
688 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
689
690 if (nent > CONFIG_ENV_MAX_ENTRIES)
691 nent = CONFIG_ENV_MAX_ENTRIES;
692
693 debug("Create Hash Table: N=%d\n", nent);
694
695 if (hcreate_r(nent, htab) == 0) {
696 free(data);
697 return 0;
698 }
699 }
700
701 /* Parse environment; allow for '\0' and 'sep' as separators */
702 do {
703 ENTRY e, *rv;
704
705 /* skip leading white space */
706 while (isblank(*dp))
707 ++dp;
708
709 /* skip comment lines */
710 if (*dp == '#') {
711 while (*dp && (*dp != sep))
712 ++dp;
713 ++dp;
714 continue;
715 }
716
717 /* parse name */
718 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
719 ;
720
721 /* deal with "name" and "name=" entries (delete var) */
722 if (*dp == '\0' || *(dp + 1) == '\0' ||
723 *dp == sep || *(dp + 1) == sep) {
724 if (*dp == '=')
725 *dp++ = '\0';
726 *dp++ = '\0'; /* terminate name */
727
728 debug("DELETE CANDIDATE: \"%s\"\n", name);
729
730 if (hdelete_r(name, htab) == 0)
731 debug("DELETE ERROR ##############################\n");
732
733 continue;
734 }
735 *dp++ = '\0'; /* terminate name */
736
737 /* parse value; deal with escapes */
738 for (value = sp = dp; *dp && (*dp != sep); ++dp) {
739 if ((*dp == '\\') && *(dp + 1))
740 ++dp;
741 *sp++ = *dp;
742 }
743 *sp++ = '\0'; /* terminate value */
744 ++dp;
745
746 /* enter into hash table */
747 e.key = name;
748 e.data = value;
749
750 hsearch_r(e, ENTER, &rv, htab);
751 if (rv == NULL) {
752 printf("himport_r: can't insert \"%s=%s\" into hash table\n",
753 name, value);
754 return 0;
755 }
756
757 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
758 htab, htab->filled, htab->size,
759 rv, name, value);
760 } while ((dp < data + size) && *dp); /* size check needed for text */
761 /* without '\0' termination */
762 debug("INSERT: free(data = %p)\n", data);
763 free(data);
764
765 debug("INSERT: done\n");
766 return 1; /* everything OK */
767 }