]> git.ipfire.org Git - people/ms/u-boot.git/blob - lib/rsa/rsa-sign.c
lib/rsa/rsa-sig.c: compile on OS X
[people/ms/u-boot.git] / lib / rsa / rsa-sign.c
1 /*
2 * Copyright (c) 2013, Google Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation; either version 2 of
7 * the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
17 * MA 02111-1307 USA
18 */
19
20 #include "mkimage.h"
21 #include <stdio.h>
22 #include <string.h>
23 #include <image.h>
24 #include <time.h>
25 #include <openssl/rsa.h>
26 #include <openssl/pem.h>
27 #include <openssl/err.h>
28 #include <openssl/ssl.h>
29 #include <openssl/evp.h>
30
31 #if OPENSSL_VERSION_NUMBER >= 0x10000000L
32 #define HAVE_ERR_REMOVE_THREAD_STATE
33 #endif
34
35 static int rsa_err(const char *msg)
36 {
37 unsigned long sslErr = ERR_get_error();
38
39 fprintf(stderr, "%s", msg);
40 fprintf(stderr, ": %s\n",
41 ERR_error_string(sslErr, 0));
42
43 return -1;
44 }
45
46 /**
47 * rsa_get_pub_key() - read a public key from a .crt file
48 *
49 * @keydir: Directory containins the key
50 * @name Name of key file (will have a .crt extension)
51 * @rsap Returns RSA object, or NULL on failure
52 * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
53 */
54 static int rsa_get_pub_key(const char *keydir, const char *name, RSA **rsap)
55 {
56 char path[1024];
57 EVP_PKEY *key;
58 X509 *cert;
59 RSA *rsa;
60 FILE *f;
61 int ret;
62
63 *rsap = NULL;
64 snprintf(path, sizeof(path), "%s/%s.crt", keydir, name);
65 f = fopen(path, "r");
66 if (!f) {
67 fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n",
68 path, strerror(errno));
69 return -EACCES;
70 }
71
72 /* Read the certificate */
73 cert = NULL;
74 if (!PEM_read_X509(f, &cert, NULL, NULL)) {
75 rsa_err("Couldn't read certificate");
76 ret = -EINVAL;
77 goto err_cert;
78 }
79
80 /* Get the public key from the certificate. */
81 key = X509_get_pubkey(cert);
82 if (!key) {
83 rsa_err("Couldn't read public key\n");
84 ret = -EINVAL;
85 goto err_pubkey;
86 }
87
88 /* Convert to a RSA_style key. */
89 rsa = EVP_PKEY_get1_RSA(key);
90 if (!rsa) {
91 rsa_err("Couldn't convert to a RSA style key");
92 goto err_rsa;
93 }
94 fclose(f);
95 EVP_PKEY_free(key);
96 X509_free(cert);
97 *rsap = rsa;
98
99 return 0;
100
101 err_rsa:
102 EVP_PKEY_free(key);
103 err_pubkey:
104 X509_free(cert);
105 err_cert:
106 fclose(f);
107 return ret;
108 }
109
110 /**
111 * rsa_get_priv_key() - read a private key from a .key file
112 *
113 * @keydir: Directory containins the key
114 * @name Name of key file (will have a .key extension)
115 * @rsap Returns RSA object, or NULL on failure
116 * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
117 */
118 static int rsa_get_priv_key(const char *keydir, const char *name, RSA **rsap)
119 {
120 char path[1024];
121 RSA *rsa;
122 FILE *f;
123
124 *rsap = NULL;
125 snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
126 f = fopen(path, "r");
127 if (!f) {
128 fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
129 path, strerror(errno));
130 return -ENOENT;
131 }
132
133 rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path);
134 if (!rsa) {
135 rsa_err("Failure reading private key");
136 fclose(f);
137 return -EPROTO;
138 }
139 fclose(f);
140 *rsap = rsa;
141
142 return 0;
143 }
144
145 static int rsa_init(void)
146 {
147 int ret;
148
149 ret = SSL_library_init();
150 if (!ret) {
151 fprintf(stderr, "Failure to init SSL library\n");
152 return -1;
153 }
154 SSL_load_error_strings();
155
156 OpenSSL_add_all_algorithms();
157 OpenSSL_add_all_digests();
158 OpenSSL_add_all_ciphers();
159
160 return 0;
161 }
162
163 static void rsa_remove(void)
164 {
165 CRYPTO_cleanup_all_ex_data();
166 ERR_free_strings();
167 #ifdef HAVE_ERR_REMOVE_THREAD_STATE
168 ERR_remove_thread_state(NULL);
169 #else
170 ERR_remove_state(0);
171 #endif
172 EVP_cleanup();
173 }
174
175 static int rsa_sign_with_key(RSA *rsa, const struct image_region region[],
176 int region_count, uint8_t **sigp, uint *sig_size)
177 {
178 EVP_PKEY *key;
179 EVP_MD_CTX *context;
180 int size, ret = 0;
181 uint8_t *sig;
182 int i;
183
184 key = EVP_PKEY_new();
185 if (!key)
186 return rsa_err("EVP_PKEY object creation failed");
187
188 if (!EVP_PKEY_set1_RSA(key, rsa)) {
189 ret = rsa_err("EVP key setup failed");
190 goto err_set;
191 }
192
193 size = EVP_PKEY_size(key);
194 sig = malloc(size);
195 if (!sig) {
196 fprintf(stderr, "Out of memory for signature (%d bytes)\n",
197 size);
198 ret = -ENOMEM;
199 goto err_alloc;
200 }
201
202 context = EVP_MD_CTX_create();
203 if (!context) {
204 ret = rsa_err("EVP context creation failed");
205 goto err_create;
206 }
207 EVP_MD_CTX_init(context);
208 if (!EVP_SignInit(context, EVP_sha1())) {
209 ret = rsa_err("Signer setup failed");
210 goto err_sign;
211 }
212
213 for (i = 0; i < region_count; i++) {
214 if (!EVP_SignUpdate(context, region[i].data, region[i].size)) {
215 ret = rsa_err("Signing data failed");
216 goto err_sign;
217 }
218 }
219
220 if (!EVP_SignFinal(context, sig, sig_size, key)) {
221 ret = rsa_err("Could not obtain signature");
222 goto err_sign;
223 }
224 EVP_MD_CTX_cleanup(context);
225 EVP_MD_CTX_destroy(context);
226 EVP_PKEY_free(key);
227
228 debug("Got signature: %d bytes, expected %d\n", *sig_size, size);
229 *sigp = sig;
230 *sig_size = size;
231
232 return 0;
233
234 err_sign:
235 EVP_MD_CTX_destroy(context);
236 err_create:
237 free(sig);
238 err_alloc:
239 err_set:
240 EVP_PKEY_free(key);
241 return ret;
242 }
243
244 int rsa_sign(struct image_sign_info *info,
245 const struct image_region region[], int region_count,
246 uint8_t **sigp, uint *sig_len)
247 {
248 RSA *rsa;
249 int ret;
250
251 ret = rsa_init();
252 if (ret)
253 return ret;
254
255 ret = rsa_get_priv_key(info->keydir, info->keyname, &rsa);
256 if (ret)
257 goto err_priv;
258 ret = rsa_sign_with_key(rsa, region, region_count, sigp, sig_len);
259 if (ret)
260 goto err_sign;
261
262 RSA_free(rsa);
263 rsa_remove();
264
265 return ret;
266
267 err_sign:
268 RSA_free(rsa);
269 err_priv:
270 rsa_remove();
271 return ret;
272 }
273
274 /*
275 * rsa_get_params(): - Get the important parameters of an RSA public key
276 */
277 int rsa_get_params(RSA *key, uint32_t *n0_invp, BIGNUM **modulusp,
278 BIGNUM **r_squaredp)
279 {
280 BIGNUM *big1, *big2, *big32, *big2_32;
281 BIGNUM *n, *r, *r_squared, *tmp;
282 BN_CTX *bn_ctx = BN_CTX_new();
283 int ret = 0;
284
285 /* Initialize BIGNUMs */
286 big1 = BN_new();
287 big2 = BN_new();
288 big32 = BN_new();
289 r = BN_new();
290 r_squared = BN_new();
291 tmp = BN_new();
292 big2_32 = BN_new();
293 n = BN_new();
294 if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 ||
295 !n) {
296 fprintf(stderr, "Out of memory (bignum)\n");
297 return -ENOMEM;
298 }
299
300 if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) ||
301 !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L))
302 ret = -1;
303
304 /* big2_32 = 2^32 */
305 if (!BN_exp(big2_32, big2, big32, bn_ctx))
306 ret = -1;
307
308 /* Calculate n0_inv = -1 / n[0] mod 2^32 */
309 if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) ||
310 !BN_sub(tmp, big2_32, tmp))
311 ret = -1;
312 *n0_invp = BN_get_word(tmp);
313
314 /* Calculate R = 2^(# of key bits) */
315 if (!BN_set_word(tmp, BN_num_bits(n)) ||
316 !BN_exp(r, big2, tmp, bn_ctx))
317 ret = -1;
318
319 /* Calculate r_squared = R^2 mod n */
320 if (!BN_copy(r_squared, r) ||
321 !BN_mul(tmp, r_squared, r, bn_ctx) ||
322 !BN_mod(r_squared, tmp, n, bn_ctx))
323 ret = -1;
324
325 *modulusp = n;
326 *r_squaredp = r_squared;
327
328 BN_free(big1);
329 BN_free(big2);
330 BN_free(big32);
331 BN_free(r);
332 BN_free(tmp);
333 BN_free(big2_32);
334 if (ret) {
335 fprintf(stderr, "Bignum operations failed\n");
336 return -ENOMEM;
337 }
338
339 return ret;
340 }
341
342 static int fdt_add_bignum(void *blob, int noffset, const char *prop_name,
343 BIGNUM *num, int num_bits)
344 {
345 int nwords = num_bits / 32;
346 int size;
347 uint32_t *buf, *ptr;
348 BIGNUM *tmp, *big2, *big32, *big2_32;
349 BN_CTX *ctx;
350 int ret;
351
352 tmp = BN_new();
353 big2 = BN_new();
354 big32 = BN_new();
355 big2_32 = BN_new();
356 if (!tmp || !big2 || !big32 || !big2_32) {
357 fprintf(stderr, "Out of memory (bignum)\n");
358 return -ENOMEM;
359 }
360 ctx = BN_CTX_new();
361 if (!tmp) {
362 fprintf(stderr, "Out of memory (bignum context)\n");
363 return -ENOMEM;
364 }
365 BN_set_word(big2, 2L);
366 BN_set_word(big32, 32L);
367 BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */
368
369 size = nwords * sizeof(uint32_t);
370 buf = malloc(size);
371 if (!buf) {
372 fprintf(stderr, "Out of memory (%d bytes)\n", size);
373 return -ENOMEM;
374 }
375
376 /* Write out modulus as big endian array of integers */
377 for (ptr = buf + nwords - 1; ptr >= buf; ptr--) {
378 BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */
379 *ptr = cpu_to_fdt32(BN_get_word(tmp));
380 BN_rshift(num, num, 32); /* N = N/B */
381 }
382
383 ret = fdt_setprop(blob, noffset, prop_name, buf, size);
384 if (ret) {
385 fprintf(stderr, "Failed to write public key to FIT\n");
386 return -ENOSPC;
387 }
388 free(buf);
389 BN_free(tmp);
390 BN_free(big2);
391 BN_free(big32);
392 BN_free(big2_32);
393
394 return ret;
395 }
396
397 int rsa_add_verify_data(struct image_sign_info *info, void *keydest)
398 {
399 BIGNUM *modulus, *r_squared;
400 uint32_t n0_inv;
401 int parent, node;
402 char name[100];
403 int ret;
404 int bits;
405 RSA *rsa;
406
407 debug("%s: Getting verification data\n", __func__);
408 ret = rsa_get_pub_key(info->keydir, info->keyname, &rsa);
409 if (ret)
410 return ret;
411 ret = rsa_get_params(rsa, &n0_inv, &modulus, &r_squared);
412 if (ret)
413 return ret;
414 bits = BN_num_bits(modulus);
415 parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME);
416 if (parent == -FDT_ERR_NOTFOUND) {
417 parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME);
418 if (parent < 0) {
419 fprintf(stderr, "Couldn't create signature node: %s\n",
420 fdt_strerror(parent));
421 return -EINVAL;
422 }
423 }
424
425 /* Either create or overwrite the named key node */
426 snprintf(name, sizeof(name), "key-%s", info->keyname);
427 node = fdt_subnode_offset(keydest, parent, name);
428 if (node == -FDT_ERR_NOTFOUND) {
429 node = fdt_add_subnode(keydest, parent, name);
430 if (node < 0) {
431 fprintf(stderr, "Could not create key subnode: %s\n",
432 fdt_strerror(node));
433 return -EINVAL;
434 }
435 } else if (node < 0) {
436 fprintf(stderr, "Cannot select keys parent: %s\n",
437 fdt_strerror(node));
438 return -ENOSPC;
439 }
440
441 ret = fdt_setprop_string(keydest, node, "key-name-hint",
442 info->keyname);
443 ret |= fdt_setprop_u32(keydest, node, "rsa,num-bits", bits);
444 ret |= fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv);
445 ret |= fdt_add_bignum(keydest, node, "rsa,modulus", modulus, bits);
446 ret |= fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, bits);
447 ret |= fdt_setprop_string(keydest, node, FIT_ALGO_PROP,
448 info->algo->name);
449 if (info->require_keys) {
450 fdt_setprop_string(keydest, node, "required",
451 info->require_keys);
452 }
453 BN_free(modulus);
454 BN_free(r_squared);
455 if (ret)
456 return -EIO;
457
458 return 0;
459 }