]> git.ipfire.org Git - people/ms/u-boot.git/blob - nand_spl/nand_boot.c
Merge branch 'master' of git://www.denx.de/git/u-boot-sh
[people/ms/u-boot.git] / nand_spl / nand_boot.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <nand.h>
23
24 #define CFG_NAND_READ_DELAY \
25 { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
26
27 static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
28
29 extern void board_nand_init(struct nand_chip *nand);
30
31 #if (CFG_NAND_PAGE_SIZE <= 512)
32 /*
33 * NAND command for small page NAND devices (512)
34 */
35 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
36 {
37 struct nand_chip *this = mtd->priv;
38 int page_addr = page + block * CFG_NAND_PAGE_COUNT;
39
40 if (this->dev_ready)
41 this->dev_ready(mtd);
42 else
43 CFG_NAND_READ_DELAY;
44
45 /* Begin command latch cycle */
46 this->hwcontrol(mtd, NAND_CTL_SETCLE);
47 this->write_byte(mtd, cmd);
48 /* Set ALE and clear CLE to start address cycle */
49 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
50 this->hwcontrol(mtd, NAND_CTL_SETALE);
51 /* Column address */
52 this->write_byte(mtd, offs); /* A[7:0] */
53 this->write_byte(mtd, (uchar)(page_addr & 0xff)); /* A[16:9] */
54 this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff)); /* A[24:17] */
55 #ifdef CFG_NAND_4_ADDR_CYCLE
56 /* One more address cycle for devices > 32MiB */
57 this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f)); /* A[xx:25] */
58 #endif
59 /* Latch in address */
60 this->hwcontrol(mtd, NAND_CTL_CLRALE);
61
62 /*
63 * Wait a while for the data to be ready
64 */
65 if (this->dev_ready)
66 this->dev_ready(mtd);
67 else
68 CFG_NAND_READ_DELAY;
69
70 return 0;
71 }
72 #else
73 /*
74 * NAND command for large page NAND devices (2k)
75 */
76 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
77 {
78 struct nand_chip *this = mtd->priv;
79 int page_offs = offs;
80 int page_addr = page + block * CFG_NAND_PAGE_COUNT;
81
82 if (this->dev_ready)
83 this->dev_ready(mtd);
84 else
85 CFG_NAND_READ_DELAY;
86
87 /* Emulate NAND_CMD_READOOB */
88 if (cmd == NAND_CMD_READOOB) {
89 page_offs += CFG_NAND_PAGE_SIZE;
90 cmd = NAND_CMD_READ0;
91 }
92
93 /* Begin command latch cycle */
94 this->hwcontrol(mtd, NAND_CTL_SETCLE);
95 this->write_byte(mtd, cmd);
96 /* Set ALE and clear CLE to start address cycle */
97 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
98 this->hwcontrol(mtd, NAND_CTL_SETALE);
99 /* Column address */
100 this->write_byte(mtd, page_offs & 0xff); /* A[7:0] */
101 this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff)); /* A[11:9] */
102 /* Row address */
103 this->write_byte(mtd, (uchar)(page_addr & 0xff)); /* A[19:12] */
104 this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff)); /* A[27:20] */
105 #ifdef CFG_NAND_5_ADDR_CYCLE
106 /* One more address cycle for devices > 128MiB */
107 this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f)); /* A[xx:28] */
108 #endif
109 /* Latch in address */
110 this->hwcontrol(mtd, NAND_CTL_CLRALE);
111
112 /* Begin command latch cycle */
113 this->hwcontrol(mtd, NAND_CTL_SETCLE);
114 /* Write out the start read command */
115 this->write_byte(mtd, NAND_CMD_READSTART);
116 /* End command latch cycle */
117 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
118
119 /*
120 * Wait a while for the data to be ready
121 */
122 if (this->dev_ready)
123 this->dev_ready(mtd);
124 else
125 CFG_NAND_READ_DELAY;
126
127 return 0;
128 }
129 #endif
130
131 static int nand_is_bad_block(struct mtd_info *mtd, int block)
132 {
133 struct nand_chip *this = mtd->priv;
134
135 nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
136
137 /*
138 * Read one byte
139 */
140 if (this->read_byte(mtd) != 0xff)
141 return 1;
142
143 return 0;
144 }
145
146 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
147 {
148 struct nand_chip *this = mtd->priv;
149 u_char *ecc_calc;
150 u_char *ecc_code;
151 u_char *oob_data;
152 int i;
153 int eccsize = CFG_NAND_ECCSIZE;
154 int eccbytes = CFG_NAND_ECCBYTES;
155 int eccsteps = CFG_NAND_ECCSTEPS;
156 uint8_t *p = dst;
157 int stat;
158
159 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
160
161 /* No malloc available for now, just use some temporary locations
162 * in SDRAM
163 */
164 ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
165 ecc_code = ecc_calc + 0x100;
166 oob_data = ecc_calc + 0x200;
167
168 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
169 this->enable_hwecc(mtd, NAND_ECC_READ);
170 this->read_buf(mtd, p, eccsize);
171 this->calculate_ecc(mtd, p, &ecc_calc[i]);
172 }
173 this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
174
175 /* Pick the ECC bytes out of the oob data */
176 for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
177 ecc_code[i] = oob_data[nand_ecc_pos[i]];
178
179 eccsteps = CFG_NAND_ECCSTEPS;
180 p = dst;
181
182 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
183 /* No chance to do something with the possible error message
184 * from correct_data(). We just hope that all possible errors
185 * are corrected by this routine.
186 */
187 stat = this->correct_data(mtd, p, &ecc_code[i], &ecc_calc[i]);
188 }
189
190 return 0;
191 }
192
193 static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst)
194 {
195 int block;
196 int blockcopy_count;
197 int page;
198
199 /*
200 * offs has to be aligned to a block address!
201 */
202 block = offs / CFG_NAND_BLOCK_SIZE;
203 blockcopy_count = 0;
204
205 while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) {
206 if (!nand_is_bad_block(mtd, block)) {
207 /*
208 * Skip bad blocks
209 */
210 for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) {
211 nand_read_page(mtd, block, page, dst);
212 dst += CFG_NAND_PAGE_SIZE;
213 }
214
215 blockcopy_count++;
216 }
217
218 block++;
219 }
220
221 return 0;
222 }
223
224 /*
225 * The main entry for NAND booting. It's necessary that SDRAM is already
226 * configured and available since this code loads the main U-Boot image
227 * from NAND into SDRAM and starts it from there.
228 */
229 void nand_boot(void)
230 {
231 struct nand_chip nand_chip;
232 nand_info_t nand_info;
233 int ret;
234 void (*uboot)(void);
235
236 /*
237 * Init board specific nand support
238 */
239 nand_info.priv = &nand_chip;
240 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CFG_NAND_BASE;
241 nand_chip.dev_ready = NULL; /* preset to NULL */
242 board_nand_init(&nand_chip);
243
244 /*
245 * Load U-Boot image from NAND into RAM
246 */
247 ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
248 (uchar *)CFG_NAND_U_BOOT_DST);
249
250 /*
251 * Jump to U-Boot image
252 */
253 uboot = (void (*)(void))CFG_NAND_U_BOOT_START;
254 (*uboot)();
255 }