]> git.ipfire.org Git - people/ms/u-boot.git/blob - net/net.c
net: nfs: Move some prints to debug statements
[people/ms/u-boot.git] / net / net.c
1 /*
2 * Copied from Linux Monitor (LiMon) - Networking.
3 *
4 * Copyright 1994 - 2000 Neil Russell.
5 * (See License)
6 * Copyright 2000 Roland Borde
7 * Copyright 2000 Paolo Scaffardi
8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9 * SPDX-License-Identifier: GPL-2.0
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 */
82
83
84 #include <common.h>
85 #include <command.h>
86 #include <console.h>
87 #include <environment.h>
88 #include <errno.h>
89 #include <net.h>
90 #include <net/tftp.h>
91 #if defined(CONFIG_STATUS_LED)
92 #include <miiphy.h>
93 #include <status_led.h>
94 #endif
95 #include <watchdog.h>
96 #include <linux/compiler.h>
97 #include "arp.h"
98 #include "bootp.h"
99 #include "cdp.h"
100 #if defined(CONFIG_CMD_DNS)
101 #include "dns.h"
102 #endif
103 #include "link_local.h"
104 #include "nfs.h"
105 #include "ping.h"
106 #include "rarp.h"
107 #if defined(CONFIG_CMD_SNTP)
108 #include "sntp.h"
109 #endif
110
111 DECLARE_GLOBAL_DATA_PTR;
112
113 /** BOOTP EXTENTIONS **/
114
115 /* Our subnet mask (0=unknown) */
116 struct in_addr net_netmask;
117 /* Our gateways IP address */
118 struct in_addr net_gateway;
119 /* Our DNS IP address */
120 struct in_addr net_dns_server;
121 #if defined(CONFIG_BOOTP_DNS2)
122 /* Our 2nd DNS IP address */
123 struct in_addr net_dns_server2;
124 #endif
125
126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
127 struct in_addr net_mcast_addr;
128 #endif
129
130 /** END OF BOOTP EXTENTIONS **/
131
132 /* Our ethernet address */
133 u8 net_ethaddr[6];
134 /* Boot server enet address */
135 u8 net_server_ethaddr[6];
136 /* Our IP addr (0 = unknown) */
137 struct in_addr net_ip;
138 /* Server IP addr (0 = unknown) */
139 struct in_addr net_server_ip;
140 /* Current receive packet */
141 uchar *net_rx_packet;
142 /* Current rx packet length */
143 int net_rx_packet_len;
144 /* IP packet ID */
145 static unsigned net_ip_id;
146 /* Ethernet bcast address */
147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
148 const u8 net_null_ethaddr[6];
149 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
150 void (*push_packet)(void *, int len) = 0;
151 #endif
152 /* Network loop state */
153 enum net_loop_state net_state;
154 /* Tried all network devices */
155 int net_restart_wrap;
156 /* Network loop restarted */
157 static int net_restarted;
158 /* At least one device configured */
159 static int net_dev_exists;
160
161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
162 /* default is without VLAN */
163 ushort net_our_vlan = 0xFFFF;
164 /* ditto */
165 ushort net_native_vlan = 0xFFFF;
166
167 /* Boot File name */
168 char net_boot_file_name[1024];
169 /* The actual transferred size of the bootfile (in bytes) */
170 u32 net_boot_file_size;
171 /* Boot file size in blocks as reported by the DHCP server */
172 u32 net_boot_file_expected_size_in_blocks;
173
174 #if defined(CONFIG_CMD_SNTP)
175 /* NTP server IP address */
176 struct in_addr net_ntp_server;
177 /* offset time from UTC */
178 int net_ntp_time_offset;
179 #endif
180
181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
182 /* Receive packets */
183 uchar *net_rx_packets[PKTBUFSRX];
184 /* Current UDP RX packet handler */
185 static rxhand_f *udp_packet_handler;
186 /* Current ARP RX packet handler */
187 static rxhand_f *arp_packet_handler;
188 #ifdef CONFIG_CMD_TFTPPUT
189 /* Current ICMP rx handler */
190 static rxhand_icmp_f *packet_icmp_handler;
191 #endif
192 /* Current timeout handler */
193 static thand_f *time_handler;
194 /* Time base value */
195 static ulong time_start;
196 /* Current timeout value */
197 static ulong time_delta;
198 /* THE transmit packet */
199 uchar *net_tx_packet;
200
201 static int net_check_prereq(enum proto_t protocol);
202
203 static int net_try_count;
204
205 int __maybe_unused net_busy_flag;
206
207 /**********************************************************************/
208
209 static int on_bootfile(const char *name, const char *value, enum env_op op,
210 int flags)
211 {
212 if (flags & H_PROGRAMMATIC)
213 return 0;
214
215 switch (op) {
216 case env_op_create:
217 case env_op_overwrite:
218 copy_filename(net_boot_file_name, value,
219 sizeof(net_boot_file_name));
220 break;
221 default:
222 break;
223 }
224
225 return 0;
226 }
227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
228
229 static int on_ipaddr(const char *name, const char *value, enum env_op op,
230 int flags)
231 {
232 if (flags & H_PROGRAMMATIC)
233 return 0;
234
235 net_ip = string_to_ip(value);
236
237 return 0;
238 }
239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
240
241 static int on_gatewayip(const char *name, const char *value, enum env_op op,
242 int flags)
243 {
244 if (flags & H_PROGRAMMATIC)
245 return 0;
246
247 net_gateway = string_to_ip(value);
248
249 return 0;
250 }
251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
252
253 static int on_netmask(const char *name, const char *value, enum env_op op,
254 int flags)
255 {
256 if (flags & H_PROGRAMMATIC)
257 return 0;
258
259 net_netmask = string_to_ip(value);
260
261 return 0;
262 }
263 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
264
265 static int on_serverip(const char *name, const char *value, enum env_op op,
266 int flags)
267 {
268 if (flags & H_PROGRAMMATIC)
269 return 0;
270
271 net_server_ip = string_to_ip(value);
272
273 return 0;
274 }
275 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
276
277 static int on_nvlan(const char *name, const char *value, enum env_op op,
278 int flags)
279 {
280 if (flags & H_PROGRAMMATIC)
281 return 0;
282
283 net_native_vlan = string_to_vlan(value);
284
285 return 0;
286 }
287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
288
289 static int on_vlan(const char *name, const char *value, enum env_op op,
290 int flags)
291 {
292 if (flags & H_PROGRAMMATIC)
293 return 0;
294
295 net_our_vlan = string_to_vlan(value);
296
297 return 0;
298 }
299 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
300
301 #if defined(CONFIG_CMD_DNS)
302 static int on_dnsip(const char *name, const char *value, enum env_op op,
303 int flags)
304 {
305 if (flags & H_PROGRAMMATIC)
306 return 0;
307
308 net_dns_server = string_to_ip(value);
309
310 return 0;
311 }
312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
313 #endif
314
315 /*
316 * Check if autoload is enabled. If so, use either NFS or TFTP to download
317 * the boot file.
318 */
319 void net_auto_load(void)
320 {
321 #if defined(CONFIG_CMD_NFS)
322 const char *s = getenv("autoload");
323
324 if (s != NULL && strcmp(s, "NFS") == 0) {
325 /*
326 * Use NFS to load the bootfile.
327 */
328 nfs_start();
329 return;
330 }
331 #endif
332 if (getenv_yesno("autoload") == 0) {
333 /*
334 * Just use BOOTP/RARP to configure system;
335 * Do not use TFTP to load the bootfile.
336 */
337 net_set_state(NETLOOP_SUCCESS);
338 return;
339 }
340 tftp_start(TFTPGET);
341 }
342
343 static void net_init_loop(void)
344 {
345 if (eth_get_dev())
346 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
347
348 return;
349 }
350
351 static void net_clear_handlers(void)
352 {
353 net_set_udp_handler(NULL);
354 net_set_arp_handler(NULL);
355 net_set_timeout_handler(0, NULL);
356 }
357
358 static void net_cleanup_loop(void)
359 {
360 net_clear_handlers();
361 }
362
363 void net_init(void)
364 {
365 static int first_call = 1;
366
367 if (first_call) {
368 /*
369 * Setup packet buffers, aligned correctly.
370 */
371 int i;
372
373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
375 for (i = 0; i < PKTBUFSRX; i++) {
376 net_rx_packets[i] = net_tx_packet +
377 (i + 1) * PKTSIZE_ALIGN;
378 }
379 arp_init();
380 net_clear_handlers();
381
382 /* Only need to setup buffer pointers once. */
383 first_call = 0;
384 }
385
386 net_init_loop();
387 }
388
389 /**********************************************************************/
390 /*
391 * Main network processing loop.
392 */
393
394 int net_loop(enum proto_t protocol)
395 {
396 int ret = -EINVAL;
397
398 net_restarted = 0;
399 net_dev_exists = 0;
400 net_try_count = 1;
401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
402
403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
404 net_init();
405 if (eth_is_on_demand_init() || protocol != NETCONS) {
406 eth_halt();
407 eth_set_current();
408 ret = eth_init();
409 if (ret < 0) {
410 eth_halt();
411 return ret;
412 }
413 } else {
414 eth_init_state_only();
415 }
416 restart:
417 #ifdef CONFIG_USB_KEYBOARD
418 net_busy_flag = 0;
419 #endif
420 net_set_state(NETLOOP_CONTINUE);
421
422 /*
423 * Start the ball rolling with the given start function. From
424 * here on, this code is a state machine driven by received
425 * packets and timer events.
426 */
427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
428 net_init_loop();
429
430 switch (net_check_prereq(protocol)) {
431 case 1:
432 /* network not configured */
433 eth_halt();
434 return -ENODEV;
435
436 case 2:
437 /* network device not configured */
438 break;
439
440 case 0:
441 net_dev_exists = 1;
442 net_boot_file_size = 0;
443 switch (protocol) {
444 case TFTPGET:
445 #ifdef CONFIG_CMD_TFTPPUT
446 case TFTPPUT:
447 #endif
448 /* always use ARP to get server ethernet address */
449 tftp_start(protocol);
450 break;
451 #ifdef CONFIG_CMD_TFTPSRV
452 case TFTPSRV:
453 tftp_start_server();
454 break;
455 #endif
456 #if defined(CONFIG_CMD_DHCP)
457 case DHCP:
458 bootp_reset();
459 net_ip.s_addr = 0;
460 dhcp_request(); /* Basically same as BOOTP */
461 break;
462 #endif
463
464 case BOOTP:
465 bootp_reset();
466 net_ip.s_addr = 0;
467 bootp_request();
468 break;
469
470 #if defined(CONFIG_CMD_RARP)
471 case RARP:
472 rarp_try = 0;
473 net_ip.s_addr = 0;
474 rarp_request();
475 break;
476 #endif
477 #if defined(CONFIG_CMD_PING)
478 case PING:
479 ping_start();
480 break;
481 #endif
482 #if defined(CONFIG_CMD_NFS)
483 case NFS:
484 nfs_start();
485 break;
486 #endif
487 #if defined(CONFIG_CMD_CDP)
488 case CDP:
489 cdp_start();
490 break;
491 #endif
492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
493 case NETCONS:
494 nc_start();
495 break;
496 #endif
497 #if defined(CONFIG_CMD_SNTP)
498 case SNTP:
499 sntp_start();
500 break;
501 #endif
502 #if defined(CONFIG_CMD_DNS)
503 case DNS:
504 dns_start();
505 break;
506 #endif
507 #if defined(CONFIG_CMD_LINK_LOCAL)
508 case LINKLOCAL:
509 link_local_start();
510 break;
511 #endif
512 default:
513 break;
514 }
515
516 break;
517 }
518
519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
521 defined(CONFIG_STATUS_LED) && \
522 defined(STATUS_LED_RED)
523 /*
524 * Echo the inverted link state to the fault LED.
525 */
526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
527 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
528 else
529 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
531 #endif /* CONFIG_MII, ... */
532 #ifdef CONFIG_USB_KEYBOARD
533 net_busy_flag = 1;
534 #endif
535
536 /*
537 * Main packet reception loop. Loop receiving packets until
538 * someone sets `net_state' to a state that terminates.
539 */
540 for (;;) {
541 WATCHDOG_RESET();
542 #ifdef CONFIG_SHOW_ACTIVITY
543 show_activity(1);
544 #endif
545 if (arp_timeout_check() > 0)
546 time_start = get_timer(0);
547
548 /*
549 * Check the ethernet for a new packet. The ethernet
550 * receive routine will process it.
551 * Most drivers return the most recent packet size, but not
552 * errors that may have happened.
553 */
554 eth_rx();
555
556 /*
557 * Abort if ctrl-c was pressed.
558 */
559 if (ctrlc()) {
560 /* cancel any ARP that may not have completed */
561 net_arp_wait_packet_ip.s_addr = 0;
562
563 net_cleanup_loop();
564 eth_halt();
565 /* Invalidate the last protocol */
566 eth_set_last_protocol(BOOTP);
567
568 puts("\nAbort\n");
569 /* include a debug print as well incase the debug
570 messages are directed to stderr */
571 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
572 ret = -EINTR;
573 goto done;
574 }
575
576 /*
577 * Check for a timeout, and run the timeout handler
578 * if we have one.
579 */
580 if (time_handler &&
581 ((get_timer(0) - time_start) > time_delta)) {
582 thand_f *x;
583
584 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
585 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
586 defined(CONFIG_STATUS_LED) && \
587 defined(STATUS_LED_RED)
588 /*
589 * Echo the inverted link state to the fault LED.
590 */
591 if (miiphy_link(eth_get_dev()->name,
592 CONFIG_SYS_FAULT_MII_ADDR))
593 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
594 else
595 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
596 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
597 #endif /* CONFIG_MII, ... */
598 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
599 x = time_handler;
600 time_handler = (thand_f *)0;
601 (*x)();
602 }
603
604 if (net_state == NETLOOP_FAIL)
605 ret = net_start_again();
606
607 switch (net_state) {
608 case NETLOOP_RESTART:
609 net_restarted = 1;
610 goto restart;
611
612 case NETLOOP_SUCCESS:
613 net_cleanup_loop();
614 if (net_boot_file_size > 0) {
615 printf("Bytes transferred = %d (%x hex)\n",
616 net_boot_file_size, net_boot_file_size);
617 setenv_hex("filesize", net_boot_file_size);
618 setenv_hex("fileaddr", load_addr);
619 }
620 if (protocol != NETCONS)
621 eth_halt();
622 else
623 eth_halt_state_only();
624
625 eth_set_last_protocol(protocol);
626
627 ret = net_boot_file_size;
628 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
629 goto done;
630
631 case NETLOOP_FAIL:
632 net_cleanup_loop();
633 /* Invalidate the last protocol */
634 eth_set_last_protocol(BOOTP);
635 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
636 goto done;
637
638 case NETLOOP_CONTINUE:
639 continue;
640 }
641 }
642
643 done:
644 #ifdef CONFIG_USB_KEYBOARD
645 net_busy_flag = 0;
646 #endif
647 #ifdef CONFIG_CMD_TFTPPUT
648 /* Clear out the handlers */
649 net_set_udp_handler(NULL);
650 net_set_icmp_handler(NULL);
651 #endif
652 return ret;
653 }
654
655 /**********************************************************************/
656
657 static void start_again_timeout_handler(void)
658 {
659 net_set_state(NETLOOP_RESTART);
660 }
661
662 int net_start_again(void)
663 {
664 char *nretry;
665 int retry_forever = 0;
666 unsigned long retrycnt = 0;
667 int ret;
668
669 nretry = getenv("netretry");
670 if (nretry) {
671 if (!strcmp(nretry, "yes"))
672 retry_forever = 1;
673 else if (!strcmp(nretry, "no"))
674 retrycnt = 0;
675 else if (!strcmp(nretry, "once"))
676 retrycnt = 1;
677 else
678 retrycnt = simple_strtoul(nretry, NULL, 0);
679 } else {
680 retrycnt = 0;
681 retry_forever = 0;
682 }
683
684 if ((!retry_forever) && (net_try_count >= retrycnt)) {
685 eth_halt();
686 net_set_state(NETLOOP_FAIL);
687 /*
688 * We don't provide a way for the protocol to return an error,
689 * but this is almost always the reason.
690 */
691 return -ETIMEDOUT;
692 }
693
694 net_try_count++;
695
696 eth_halt();
697 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
698 eth_try_another(!net_restarted);
699 #endif
700 ret = eth_init();
701 if (net_restart_wrap) {
702 net_restart_wrap = 0;
703 if (net_dev_exists) {
704 net_set_timeout_handler(10000UL,
705 start_again_timeout_handler);
706 net_set_udp_handler(NULL);
707 } else {
708 net_set_state(NETLOOP_FAIL);
709 }
710 } else {
711 net_set_state(NETLOOP_RESTART);
712 }
713 return ret;
714 }
715
716 /**********************************************************************/
717 /*
718 * Miscelaneous bits.
719 */
720
721 static void dummy_handler(uchar *pkt, unsigned dport,
722 struct in_addr sip, unsigned sport,
723 unsigned len)
724 {
725 }
726
727 rxhand_f *net_get_udp_handler(void)
728 {
729 return udp_packet_handler;
730 }
731
732 void net_set_udp_handler(rxhand_f *f)
733 {
734 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
735 if (f == NULL)
736 udp_packet_handler = dummy_handler;
737 else
738 udp_packet_handler = f;
739 }
740
741 rxhand_f *net_get_arp_handler(void)
742 {
743 return arp_packet_handler;
744 }
745
746 void net_set_arp_handler(rxhand_f *f)
747 {
748 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
749 if (f == NULL)
750 arp_packet_handler = dummy_handler;
751 else
752 arp_packet_handler = f;
753 }
754
755 #ifdef CONFIG_CMD_TFTPPUT
756 void net_set_icmp_handler(rxhand_icmp_f *f)
757 {
758 packet_icmp_handler = f;
759 }
760 #endif
761
762 void net_set_timeout_handler(ulong iv, thand_f *f)
763 {
764 if (iv == 0) {
765 debug_cond(DEBUG_INT_STATE,
766 "--- net_loop timeout handler cancelled\n");
767 time_handler = (thand_f *)0;
768 } else {
769 debug_cond(DEBUG_INT_STATE,
770 "--- net_loop timeout handler set (%p)\n", f);
771 time_handler = f;
772 time_start = get_timer(0);
773 time_delta = iv * CONFIG_SYS_HZ / 1000;
774 }
775 }
776
777 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
778 int payload_len)
779 {
780 uchar *pkt;
781 int eth_hdr_size;
782 int pkt_hdr_size;
783
784 /* make sure the net_tx_packet is initialized (net_init() was called) */
785 assert(net_tx_packet != NULL);
786 if (net_tx_packet == NULL)
787 return -1;
788
789 /* convert to new style broadcast */
790 if (dest.s_addr == 0)
791 dest.s_addr = 0xFFFFFFFF;
792
793 /* if broadcast, make the ether address a broadcast and don't do ARP */
794 if (dest.s_addr == 0xFFFFFFFF)
795 ether = (uchar *)net_bcast_ethaddr;
796
797 pkt = (uchar *)net_tx_packet;
798
799 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
800 pkt += eth_hdr_size;
801 net_set_udp_header(pkt, dest, dport, sport, payload_len);
802 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
803
804 /* if MAC address was not discovered yet, do an ARP request */
805 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
806 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
807
808 /* save the ip and eth addr for the packet to send after arp */
809 net_arp_wait_packet_ip = dest;
810 arp_wait_packet_ethaddr = ether;
811
812 /* size of the waiting packet */
813 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
814
815 /* and do the ARP request */
816 arp_wait_try = 1;
817 arp_wait_timer_start = get_timer(0);
818 arp_request();
819 return 1; /* waiting */
820 } else {
821 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
822 &dest, ether);
823 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
824 return 0; /* transmitted */
825 }
826 }
827
828 #ifdef CONFIG_IP_DEFRAG
829 /*
830 * This function collects fragments in a single packet, according
831 * to the algorithm in RFC815. It returns NULL or the pointer to
832 * a complete packet, in static storage
833 */
834 #ifndef CONFIG_NET_MAXDEFRAG
835 #define CONFIG_NET_MAXDEFRAG 16384
836 #endif
837 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
838
839 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
840
841 /*
842 * this is the packet being assembled, either data or frag control.
843 * Fragments go by 8 bytes, so this union must be 8 bytes long
844 */
845 struct hole {
846 /* first_byte is address of this structure */
847 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
848 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
849 u16 prev_hole; /* index of prev, 0 == none */
850 u16 unused;
851 };
852
853 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
854 {
855 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
856 static u16 first_hole, total_len;
857 struct hole *payload, *thisfrag, *h, *newh;
858 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
859 uchar *indata = (uchar *)ip;
860 int offset8, start, len, done = 0;
861 u16 ip_off = ntohs(ip->ip_off);
862
863 /* payload starts after IP header, this fragment is in there */
864 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
865 offset8 = (ip_off & IP_OFFS);
866 thisfrag = payload + offset8;
867 start = offset8 * 8;
868 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
869
870 if (start + len > IP_MAXUDP) /* fragment extends too far */
871 return NULL;
872
873 if (!total_len || localip->ip_id != ip->ip_id) {
874 /* new (or different) packet, reset structs */
875 total_len = 0xffff;
876 payload[0].last_byte = ~0;
877 payload[0].next_hole = 0;
878 payload[0].prev_hole = 0;
879 first_hole = 0;
880 /* any IP header will work, copy the first we received */
881 memcpy(localip, ip, IP_HDR_SIZE);
882 }
883
884 /*
885 * What follows is the reassembly algorithm. We use the payload
886 * array as a linked list of hole descriptors, as each hole starts
887 * at a multiple of 8 bytes. However, last byte can be whatever value,
888 * so it is represented as byte count, not as 8-byte blocks.
889 */
890
891 h = payload + first_hole;
892 while (h->last_byte < start) {
893 if (!h->next_hole) {
894 /* no hole that far away */
895 return NULL;
896 }
897 h = payload + h->next_hole;
898 }
899
900 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
901 if (offset8 + ((len + 7) / 8) <= h - payload) {
902 /* no overlap with holes (dup fragment?) */
903 return NULL;
904 }
905
906 if (!(ip_off & IP_FLAGS_MFRAG)) {
907 /* no more fragmentss: truncate this (last) hole */
908 total_len = start + len;
909 h->last_byte = start + len;
910 }
911
912 /*
913 * There is some overlap: fix the hole list. This code doesn't
914 * deal with a fragment that overlaps with two different holes
915 * (thus being a superset of a previously-received fragment).
916 */
917
918 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
919 /* complete overlap with hole: remove hole */
920 if (!h->prev_hole && !h->next_hole) {
921 /* last remaining hole */
922 done = 1;
923 } else if (!h->prev_hole) {
924 /* first hole */
925 first_hole = h->next_hole;
926 payload[h->next_hole].prev_hole = 0;
927 } else if (!h->next_hole) {
928 /* last hole */
929 payload[h->prev_hole].next_hole = 0;
930 } else {
931 /* in the middle of the list */
932 payload[h->next_hole].prev_hole = h->prev_hole;
933 payload[h->prev_hole].next_hole = h->next_hole;
934 }
935
936 } else if (h->last_byte <= start + len) {
937 /* overlaps with final part of the hole: shorten this hole */
938 h->last_byte = start;
939
940 } else if (h >= thisfrag) {
941 /* overlaps with initial part of the hole: move this hole */
942 newh = thisfrag + (len / 8);
943 *newh = *h;
944 h = newh;
945 if (h->next_hole)
946 payload[h->next_hole].prev_hole = (h - payload);
947 if (h->prev_hole)
948 payload[h->prev_hole].next_hole = (h - payload);
949 else
950 first_hole = (h - payload);
951
952 } else {
953 /* fragment sits in the middle: split the hole */
954 newh = thisfrag + (len / 8);
955 *newh = *h;
956 h->last_byte = start;
957 h->next_hole = (newh - payload);
958 newh->prev_hole = (h - payload);
959 if (newh->next_hole)
960 payload[newh->next_hole].prev_hole = (newh - payload);
961 }
962
963 /* finally copy this fragment and possibly return whole packet */
964 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
965 if (!done)
966 return NULL;
967
968 localip->ip_len = htons(total_len);
969 *lenp = total_len + IP_HDR_SIZE;
970 return localip;
971 }
972
973 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
974 int *lenp)
975 {
976 u16 ip_off = ntohs(ip->ip_off);
977 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
978 return ip; /* not a fragment */
979 return __net_defragment(ip, lenp);
980 }
981
982 #else /* !CONFIG_IP_DEFRAG */
983
984 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
985 int *lenp)
986 {
987 u16 ip_off = ntohs(ip->ip_off);
988 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
989 return ip; /* not a fragment */
990 return NULL;
991 }
992 #endif
993
994 /**
995 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
996 * drop others.
997 *
998 * @parma ip IP packet containing the ICMP
999 */
1000 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1001 struct in_addr src_ip, struct ethernet_hdr *et)
1002 {
1003 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1004
1005 switch (icmph->type) {
1006 case ICMP_REDIRECT:
1007 if (icmph->code != ICMP_REDIR_HOST)
1008 return;
1009 printf(" ICMP Host Redirect to %pI4 ",
1010 &icmph->un.gateway);
1011 break;
1012 default:
1013 #if defined(CONFIG_CMD_PING)
1014 ping_receive(et, ip, len);
1015 #endif
1016 #ifdef CONFIG_CMD_TFTPPUT
1017 if (packet_icmp_handler)
1018 packet_icmp_handler(icmph->type, icmph->code,
1019 ntohs(ip->udp_dst), src_ip,
1020 ntohs(ip->udp_src), icmph->un.data,
1021 ntohs(ip->udp_len));
1022 #endif
1023 break;
1024 }
1025 }
1026
1027 void net_process_received_packet(uchar *in_packet, int len)
1028 {
1029 struct ethernet_hdr *et;
1030 struct ip_udp_hdr *ip;
1031 struct in_addr dst_ip;
1032 struct in_addr src_ip;
1033 int eth_proto;
1034 #if defined(CONFIG_CMD_CDP)
1035 int iscdp;
1036 #endif
1037 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1038
1039 debug_cond(DEBUG_NET_PKT, "packet received\n");
1040
1041 net_rx_packet = in_packet;
1042 net_rx_packet_len = len;
1043 et = (struct ethernet_hdr *)in_packet;
1044
1045 /* too small packet? */
1046 if (len < ETHER_HDR_SIZE)
1047 return;
1048
1049 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1050 if (push_packet) {
1051 (*push_packet)(in_packet, len);
1052 return;
1053 }
1054 #endif
1055
1056 #if defined(CONFIG_CMD_CDP)
1057 /* keep track if packet is CDP */
1058 iscdp = is_cdp_packet(et->et_dest);
1059 #endif
1060
1061 myvlanid = ntohs(net_our_vlan);
1062 if (myvlanid == (ushort)-1)
1063 myvlanid = VLAN_NONE;
1064 mynvlanid = ntohs(net_native_vlan);
1065 if (mynvlanid == (ushort)-1)
1066 mynvlanid = VLAN_NONE;
1067
1068 eth_proto = ntohs(et->et_protlen);
1069
1070 if (eth_proto < 1514) {
1071 struct e802_hdr *et802 = (struct e802_hdr *)et;
1072 /*
1073 * Got a 802.2 packet. Check the other protocol field.
1074 * XXX VLAN over 802.2+SNAP not implemented!
1075 */
1076 eth_proto = ntohs(et802->et_prot);
1077
1078 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1079 len -= E802_HDR_SIZE;
1080
1081 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1082 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1083 len -= ETHER_HDR_SIZE;
1084
1085 } else { /* VLAN packet */
1086 struct vlan_ethernet_hdr *vet =
1087 (struct vlan_ethernet_hdr *)et;
1088
1089 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1090
1091 /* too small packet? */
1092 if (len < VLAN_ETHER_HDR_SIZE)
1093 return;
1094
1095 /* if no VLAN active */
1096 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1097 #if defined(CONFIG_CMD_CDP)
1098 && iscdp == 0
1099 #endif
1100 )
1101 return;
1102
1103 cti = ntohs(vet->vet_tag);
1104 vlanid = cti & VLAN_IDMASK;
1105 eth_proto = ntohs(vet->vet_type);
1106
1107 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1108 len -= VLAN_ETHER_HDR_SIZE;
1109 }
1110
1111 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1112
1113 #if defined(CONFIG_CMD_CDP)
1114 if (iscdp) {
1115 cdp_receive((uchar *)ip, len);
1116 return;
1117 }
1118 #endif
1119
1120 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1121 if (vlanid == VLAN_NONE)
1122 vlanid = (mynvlanid & VLAN_IDMASK);
1123 /* not matched? */
1124 if (vlanid != (myvlanid & VLAN_IDMASK))
1125 return;
1126 }
1127
1128 switch (eth_proto) {
1129 case PROT_ARP:
1130 arp_receive(et, ip, len);
1131 break;
1132
1133 #ifdef CONFIG_CMD_RARP
1134 case PROT_RARP:
1135 rarp_receive(ip, len);
1136 break;
1137 #endif
1138 case PROT_IP:
1139 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1140 /* Before we start poking the header, make sure it is there */
1141 if (len < IP_UDP_HDR_SIZE) {
1142 debug("len bad %d < %lu\n", len,
1143 (ulong)IP_UDP_HDR_SIZE);
1144 return;
1145 }
1146 /* Check the packet length */
1147 if (len < ntohs(ip->ip_len)) {
1148 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1149 return;
1150 }
1151 len = ntohs(ip->ip_len);
1152 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1153 len, ip->ip_hl_v & 0xff);
1154
1155 /* Can't deal with anything except IPv4 */
1156 if ((ip->ip_hl_v & 0xf0) != 0x40)
1157 return;
1158 /* Can't deal with IP options (headers != 20 bytes) */
1159 if ((ip->ip_hl_v & 0x0f) > 0x05)
1160 return;
1161 /* Check the Checksum of the header */
1162 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1163 debug("checksum bad\n");
1164 return;
1165 }
1166 /* If it is not for us, ignore it */
1167 dst_ip = net_read_ip(&ip->ip_dst);
1168 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1169 dst_ip.s_addr != 0xFFFFFFFF) {
1170 #ifdef CONFIG_MCAST_TFTP
1171 if (net_mcast_addr != dst_ip)
1172 #endif
1173 return;
1174 }
1175 /* Read source IP address for later use */
1176 src_ip = net_read_ip(&ip->ip_src);
1177 /*
1178 * The function returns the unchanged packet if it's not
1179 * a fragment, and either the complete packet or NULL if
1180 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1181 */
1182 ip = net_defragment(ip, &len);
1183 if (!ip)
1184 return;
1185 /*
1186 * watch for ICMP host redirects
1187 *
1188 * There is no real handler code (yet). We just watch
1189 * for ICMP host redirect messages. In case anybody
1190 * sees these messages: please contact me
1191 * (wd@denx.de), or - even better - send me the
1192 * necessary fixes :-)
1193 *
1194 * Note: in all cases where I have seen this so far
1195 * it was a problem with the router configuration,
1196 * for instance when a router was configured in the
1197 * BOOTP reply, but the TFTP server was on the same
1198 * subnet. So this is probably a warning that your
1199 * configuration might be wrong. But I'm not really
1200 * sure if there aren't any other situations.
1201 *
1202 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1203 * we send a tftp packet to a dead connection, or when
1204 * there is no server at the other end.
1205 */
1206 if (ip->ip_p == IPPROTO_ICMP) {
1207 receive_icmp(ip, len, src_ip, et);
1208 return;
1209 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1210 return;
1211 }
1212
1213 debug_cond(DEBUG_DEV_PKT,
1214 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1215 &dst_ip, &src_ip, len);
1216
1217 #ifdef CONFIG_UDP_CHECKSUM
1218 if (ip->udp_xsum != 0) {
1219 ulong xsum;
1220 ushort *sumptr;
1221 ushort sumlen;
1222
1223 xsum = ip->ip_p;
1224 xsum += (ntohs(ip->udp_len));
1225 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1226 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1227 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1228 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1229
1230 sumlen = ntohs(ip->udp_len);
1231 sumptr = (ushort *)&(ip->udp_src);
1232
1233 while (sumlen > 1) {
1234 ushort sumdata;
1235
1236 sumdata = *sumptr++;
1237 xsum += ntohs(sumdata);
1238 sumlen -= 2;
1239 }
1240 if (sumlen > 0) {
1241 ushort sumdata;
1242
1243 sumdata = *(unsigned char *)sumptr;
1244 sumdata = (sumdata << 8) & 0xff00;
1245 xsum += sumdata;
1246 }
1247 while ((xsum >> 16) != 0) {
1248 xsum = (xsum & 0x0000ffff) +
1249 ((xsum >> 16) & 0x0000ffff);
1250 }
1251 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1252 printf(" UDP wrong checksum %08lx %08x\n",
1253 xsum, ntohs(ip->udp_xsum));
1254 return;
1255 }
1256 }
1257 #endif
1258
1259 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
1260 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1261 src_ip,
1262 ntohs(ip->udp_dst),
1263 ntohs(ip->udp_src),
1264 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1265 #endif
1266 /*
1267 * IP header OK. Pass the packet to the current handler.
1268 */
1269 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1270 ntohs(ip->udp_dst),
1271 src_ip,
1272 ntohs(ip->udp_src),
1273 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1274 break;
1275 }
1276 }
1277
1278 /**********************************************************************/
1279
1280 static int net_check_prereq(enum proto_t protocol)
1281 {
1282 switch (protocol) {
1283 /* Fall through */
1284 #if defined(CONFIG_CMD_PING)
1285 case PING:
1286 if (net_ping_ip.s_addr == 0) {
1287 puts("*** ERROR: ping address not given\n");
1288 return 1;
1289 }
1290 goto common;
1291 #endif
1292 #if defined(CONFIG_CMD_SNTP)
1293 case SNTP:
1294 if (net_ntp_server.s_addr == 0) {
1295 puts("*** ERROR: NTP server address not given\n");
1296 return 1;
1297 }
1298 goto common;
1299 #endif
1300 #if defined(CONFIG_CMD_DNS)
1301 case DNS:
1302 if (net_dns_server.s_addr == 0) {
1303 puts("*** ERROR: DNS server address not given\n");
1304 return 1;
1305 }
1306 goto common;
1307 #endif
1308 #if defined(CONFIG_CMD_NFS)
1309 case NFS:
1310 #endif
1311 /* Fall through */
1312 case TFTPGET:
1313 case TFTPPUT:
1314 if (net_server_ip.s_addr == 0) {
1315 puts("*** ERROR: `serverip' not set\n");
1316 return 1;
1317 }
1318 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1319 defined(CONFIG_CMD_DNS)
1320 common:
1321 #endif
1322 /* Fall through */
1323
1324 case NETCONS:
1325 case TFTPSRV:
1326 if (net_ip.s_addr == 0) {
1327 puts("*** ERROR: `ipaddr' not set\n");
1328 return 1;
1329 }
1330 /* Fall through */
1331
1332 #ifdef CONFIG_CMD_RARP
1333 case RARP:
1334 #endif
1335 case BOOTP:
1336 case CDP:
1337 case DHCP:
1338 case LINKLOCAL:
1339 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1340 int num = eth_get_dev_index();
1341
1342 switch (num) {
1343 case -1:
1344 puts("*** ERROR: No ethernet found.\n");
1345 return 1;
1346 case 0:
1347 puts("*** ERROR: `ethaddr' not set\n");
1348 break;
1349 default:
1350 printf("*** ERROR: `eth%daddr' not set\n",
1351 num);
1352 break;
1353 }
1354
1355 net_start_again();
1356 return 2;
1357 }
1358 /* Fall through */
1359 default:
1360 return 0;
1361 }
1362 return 0; /* OK */
1363 }
1364 /**********************************************************************/
1365
1366 int
1367 net_eth_hdr_size(void)
1368 {
1369 ushort myvlanid;
1370
1371 myvlanid = ntohs(net_our_vlan);
1372 if (myvlanid == (ushort)-1)
1373 myvlanid = VLAN_NONE;
1374
1375 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1376 VLAN_ETHER_HDR_SIZE;
1377 }
1378
1379 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1380 {
1381 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1382 ushort myvlanid;
1383
1384 myvlanid = ntohs(net_our_vlan);
1385 if (myvlanid == (ushort)-1)
1386 myvlanid = VLAN_NONE;
1387
1388 memcpy(et->et_dest, dest_ethaddr, 6);
1389 memcpy(et->et_src, net_ethaddr, 6);
1390 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1391 et->et_protlen = htons(prot);
1392 return ETHER_HDR_SIZE;
1393 } else {
1394 struct vlan_ethernet_hdr *vet =
1395 (struct vlan_ethernet_hdr *)xet;
1396
1397 vet->vet_vlan_type = htons(PROT_VLAN);
1398 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1399 vet->vet_type = htons(prot);
1400 return VLAN_ETHER_HDR_SIZE;
1401 }
1402 }
1403
1404 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1405 {
1406 ushort protlen;
1407
1408 memcpy(et->et_dest, addr, 6);
1409 memcpy(et->et_src, net_ethaddr, 6);
1410 protlen = ntohs(et->et_protlen);
1411 if (protlen == PROT_VLAN) {
1412 struct vlan_ethernet_hdr *vet =
1413 (struct vlan_ethernet_hdr *)et;
1414 vet->vet_type = htons(prot);
1415 return VLAN_ETHER_HDR_SIZE;
1416 } else if (protlen > 1514) {
1417 et->et_protlen = htons(prot);
1418 return ETHER_HDR_SIZE;
1419 } else {
1420 /* 802.2 + SNAP */
1421 struct e802_hdr *et802 = (struct e802_hdr *)et;
1422 et802->et_prot = htons(prot);
1423 return E802_HDR_SIZE;
1424 }
1425 }
1426
1427 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1428 {
1429 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1430
1431 /*
1432 * Construct an IP header.
1433 */
1434 /* IP_HDR_SIZE / 4 (not including UDP) */
1435 ip->ip_hl_v = 0x45;
1436 ip->ip_tos = 0;
1437 ip->ip_len = htons(IP_HDR_SIZE);
1438 ip->ip_id = htons(net_ip_id++);
1439 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1440 ip->ip_ttl = 255;
1441 ip->ip_sum = 0;
1442 /* already in network byte order */
1443 net_copy_ip((void *)&ip->ip_src, &source);
1444 /* already in network byte order */
1445 net_copy_ip((void *)&ip->ip_dst, &dest);
1446 }
1447
1448 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1449 int len)
1450 {
1451 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1452
1453 /*
1454 * If the data is an odd number of bytes, zero the
1455 * byte after the last byte so that the checksum
1456 * will work.
1457 */
1458 if (len & 1)
1459 pkt[IP_UDP_HDR_SIZE + len] = 0;
1460
1461 net_set_ip_header(pkt, dest, net_ip);
1462 ip->ip_len = htons(IP_UDP_HDR_SIZE + len);
1463 ip->ip_p = IPPROTO_UDP;
1464 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1465
1466 ip->udp_src = htons(sport);
1467 ip->udp_dst = htons(dport);
1468 ip->udp_len = htons(UDP_HDR_SIZE + len);
1469 ip->udp_xsum = 0;
1470 }
1471
1472 void copy_filename(char *dst, const char *src, int size)
1473 {
1474 if (*src && (*src == '"')) {
1475 ++src;
1476 --size;
1477 }
1478
1479 while ((--size > 0) && *src && (*src != '"'))
1480 *dst++ = *src++;
1481 *dst = '\0';
1482 }
1483
1484 #if defined(CONFIG_CMD_NFS) || \
1485 defined(CONFIG_CMD_SNTP) || \
1486 defined(CONFIG_CMD_DNS)
1487 /*
1488 * make port a little random (1024-17407)
1489 * This keeps the math somewhat trivial to compute, and seems to work with
1490 * all supported protocols/clients/servers
1491 */
1492 unsigned int random_port(void)
1493 {
1494 return 1024 + (get_timer(0) % 0x4000);
1495 }
1496 #endif
1497
1498 void ip_to_string(struct in_addr x, char *s)
1499 {
1500 x.s_addr = ntohl(x.s_addr);
1501 sprintf(s, "%d.%d.%d.%d",
1502 (int) ((x.s_addr >> 24) & 0xff),
1503 (int) ((x.s_addr >> 16) & 0xff),
1504 (int) ((x.s_addr >> 8) & 0xff),
1505 (int) ((x.s_addr >> 0) & 0xff)
1506 );
1507 }
1508
1509 void vlan_to_string(ushort x, char *s)
1510 {
1511 x = ntohs(x);
1512
1513 if (x == (ushort)-1)
1514 x = VLAN_NONE;
1515
1516 if (x == VLAN_NONE)
1517 strcpy(s, "none");
1518 else
1519 sprintf(s, "%d", x & VLAN_IDMASK);
1520 }
1521
1522 ushort string_to_vlan(const char *s)
1523 {
1524 ushort id;
1525
1526 if (s == NULL)
1527 return htons(VLAN_NONE);
1528
1529 if (*s < '0' || *s > '9')
1530 id = VLAN_NONE;
1531 else
1532 id = (ushort)simple_strtoul(s, NULL, 10);
1533
1534 return htons(id);
1535 }
1536
1537 ushort getenv_vlan(char *var)
1538 {
1539 return string_to_vlan(getenv(var));
1540 }