]> git.ipfire.org Git - people/ms/u-boot.git/blob - tools/ifdtool.c
tools/imximage: set DCD pointer to NULL when its length is 0
[people/ms/u-boot.git] / tools / ifdtool.c
1 /*
2 * ifdtool - Manage Intel Firmware Descriptor information
3 *
4 * Copyright 2014 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0
7 *
8 * From Coreboot project, but it got a serious code clean-up
9 * and a few new features
10 */
11
12 #include <assert.h>
13 #include <fcntl.h>
14 #include <getopt.h>
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <string.h>
18 #include <unistd.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include <libfdt.h>
22 #include "ifdtool.h"
23
24 #undef DEBUG
25
26 #ifdef DEBUG
27 #define debug(fmt, args...) printf(fmt, ##args)
28 #else
29 #define debug(fmt, args...)
30 #endif
31
32 #define FD_SIGNATURE 0x0FF0A55A
33 #define FLREG_BASE(reg) ((reg & 0x00000fff) << 12);
34 #define FLREG_LIMIT(reg) (((reg & 0x0fff0000) >> 4) | 0xfff);
35
36 enum input_file_type_t {
37 IF_normal,
38 IF_fdt,
39 IF_uboot,
40 };
41
42 struct input_file {
43 char *fname;
44 unsigned int addr;
45 enum input_file_type_t type;
46 };
47
48 /**
49 * find_fd() - Find the flash description in the ROM image
50 *
51 * @image: Pointer to image
52 * @size: Size of image in bytes
53 * @return pointer to structure, or NULL if not found
54 */
55 static struct fdbar_t *find_fd(char *image, int size)
56 {
57 uint32_t *ptr, *end;
58
59 /* Scan for FD signature */
60 for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
61 if (*ptr == FD_SIGNATURE)
62 break;
63 }
64
65 if (ptr == end) {
66 printf("No Flash Descriptor found in this image\n");
67 return NULL;
68 }
69
70 debug("Found Flash Descriptor signature at 0x%08lx\n",
71 (char *)ptr - image);
72
73 return (struct fdbar_t *)ptr;
74 }
75
76 /**
77 * get_region() - Get information about the selected region
78 *
79 * @frba: Flash region list
80 * @region_type: Type of region (0..MAX_REGIONS-1)
81 * @region: Region information is written here
82 * @return 0 if OK, else -ve
83 */
84 static int get_region(struct frba_t *frba, int region_type,
85 struct region_t *region)
86 {
87 if (region_type >= MAX_REGIONS) {
88 fprintf(stderr, "Invalid region type.\n");
89 return -1;
90 }
91
92 region->base = FLREG_BASE(frba->flreg[region_type]);
93 region->limit = FLREG_LIMIT(frba->flreg[region_type]);
94 region->size = region->limit - region->base + 1;
95
96 return 0;
97 }
98
99 static const char *region_name(int region_type)
100 {
101 static const char *const regions[] = {
102 "Flash Descriptor",
103 "BIOS",
104 "Intel ME",
105 "GbE",
106 "Platform Data"
107 };
108
109 assert(region_type < MAX_REGIONS);
110
111 return regions[region_type];
112 }
113
114 static const char *region_filename(int region_type)
115 {
116 static const char *const region_filenames[] = {
117 "flashregion_0_flashdescriptor.bin",
118 "flashregion_1_bios.bin",
119 "flashregion_2_intel_me.bin",
120 "flashregion_3_gbe.bin",
121 "flashregion_4_platform_data.bin"
122 };
123
124 assert(region_type < MAX_REGIONS);
125
126 return region_filenames[region_type];
127 }
128
129 static int dump_region(int num, struct frba_t *frba)
130 {
131 struct region_t region;
132 int ret;
133
134 ret = get_region(frba, num, &region);
135 if (ret)
136 return ret;
137
138 printf(" Flash Region %d (%s): %08x - %08x %s\n",
139 num, region_name(num), region.base, region.limit,
140 region.size < 1 ? "(unused)" : "");
141
142 return ret;
143 }
144
145 static void dump_frba(struct frba_t *frba)
146 {
147 int i;
148
149 printf("Found Region Section\n");
150 for (i = 0; i < MAX_REGIONS; i++) {
151 printf("FLREG%d: 0x%08x\n", i, frba->flreg[i]);
152 dump_region(i, frba);
153 }
154 }
155
156 static void decode_spi_frequency(unsigned int freq)
157 {
158 switch (freq) {
159 case SPI_FREQUENCY_20MHZ:
160 printf("20MHz");
161 break;
162 case SPI_FREQUENCY_33MHZ:
163 printf("33MHz");
164 break;
165 case SPI_FREQUENCY_50MHZ:
166 printf("50MHz");
167 break;
168 default:
169 printf("unknown<%x>MHz", freq);
170 }
171 }
172
173 static void decode_component_density(unsigned int density)
174 {
175 switch (density) {
176 case COMPONENT_DENSITY_512KB:
177 printf("512KiB");
178 break;
179 case COMPONENT_DENSITY_1MB:
180 printf("1MiB");
181 break;
182 case COMPONENT_DENSITY_2MB:
183 printf("2MiB");
184 break;
185 case COMPONENT_DENSITY_4MB:
186 printf("4MiB");
187 break;
188 case COMPONENT_DENSITY_8MB:
189 printf("8MiB");
190 break;
191 case COMPONENT_DENSITY_16MB:
192 printf("16MiB");
193 break;
194 default:
195 printf("unknown<%x>MiB", density);
196 }
197 }
198
199 static void dump_fcba(struct fcba_t *fcba)
200 {
201 printf("\nFound Component Section\n");
202 printf("FLCOMP 0x%08x\n", fcba->flcomp);
203 printf(" Dual Output Fast Read Support: %ssupported\n",
204 (fcba->flcomp & (1 << 30)) ? "" : "not ");
205 printf(" Read ID/Read Status Clock Frequency: ");
206 decode_spi_frequency((fcba->flcomp >> 27) & 7);
207 printf("\n Write/Erase Clock Frequency: ");
208 decode_spi_frequency((fcba->flcomp >> 24) & 7);
209 printf("\n Fast Read Clock Frequency: ");
210 decode_spi_frequency((fcba->flcomp >> 21) & 7);
211 printf("\n Fast Read Support: %ssupported",
212 (fcba->flcomp & (1 << 20)) ? "" : "not ");
213 printf("\n Read Clock Frequency: ");
214 decode_spi_frequency((fcba->flcomp >> 17) & 7);
215 printf("\n Component 2 Density: ");
216 decode_component_density((fcba->flcomp >> 3) & 7);
217 printf("\n Component 1 Density: ");
218 decode_component_density(fcba->flcomp & 7);
219 printf("\n");
220 printf("FLILL 0x%08x\n", fcba->flill);
221 printf(" Invalid Instruction 3: 0x%02x\n",
222 (fcba->flill >> 24) & 0xff);
223 printf(" Invalid Instruction 2: 0x%02x\n",
224 (fcba->flill >> 16) & 0xff);
225 printf(" Invalid Instruction 1: 0x%02x\n",
226 (fcba->flill >> 8) & 0xff);
227 printf(" Invalid Instruction 0: 0x%02x\n",
228 fcba->flill & 0xff);
229 printf("FLPB 0x%08x\n", fcba->flpb);
230 printf(" Flash Partition Boundary Address: 0x%06x\n\n",
231 (fcba->flpb & 0xfff) << 12);
232 }
233
234 static void dump_fpsba(struct fpsba_t *fpsba)
235 {
236 int i;
237
238 printf("Found PCH Strap Section\n");
239 for (i = 0; i < MAX_STRAPS; i++)
240 printf("PCHSTRP%-2d: 0x%08x\n", i, fpsba->pchstrp[i]);
241 }
242
243 static const char *get_enabled(int flag)
244 {
245 return flag ? "enabled" : "disabled";
246 }
247
248 static void decode_flmstr(uint32_t flmstr)
249 {
250 printf(" Platform Data Region Write Access: %s\n",
251 get_enabled(flmstr & (1 << 28)));
252 printf(" GbE Region Write Access: %s\n",
253 get_enabled(flmstr & (1 << 27)));
254 printf(" Intel ME Region Write Access: %s\n",
255 get_enabled(flmstr & (1 << 26)));
256 printf(" Host CPU/BIOS Region Write Access: %s\n",
257 get_enabled(flmstr & (1 << 25)));
258 printf(" Flash Descriptor Write Access: %s\n",
259 get_enabled(flmstr & (1 << 24)));
260
261 printf(" Platform Data Region Read Access: %s\n",
262 get_enabled(flmstr & (1 << 20)));
263 printf(" GbE Region Read Access: %s\n",
264 get_enabled(flmstr & (1 << 19)));
265 printf(" Intel ME Region Read Access: %s\n",
266 get_enabled(flmstr & (1 << 18)));
267 printf(" Host CPU/BIOS Region Read Access: %s\n",
268 get_enabled(flmstr & (1 << 17)));
269 printf(" Flash Descriptor Read Access: %s\n",
270 get_enabled(flmstr & (1 << 16)));
271
272 printf(" Requester ID: 0x%04x\n\n",
273 flmstr & 0xffff);
274 }
275
276 static void dump_fmba(struct fmba_t *fmba)
277 {
278 printf("Found Master Section\n");
279 printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
280 decode_flmstr(fmba->flmstr1);
281 printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2);
282 decode_flmstr(fmba->flmstr2);
283 printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3);
284 decode_flmstr(fmba->flmstr3);
285 }
286
287 static void dump_fmsba(struct fmsba_t *fmsba)
288 {
289 int i;
290
291 printf("Found Processor Strap Section\n");
292 for (i = 0; i < 4; i++)
293 printf("????: 0x%08x\n", fmsba->data[0]);
294 }
295
296 static void dump_jid(uint32_t jid)
297 {
298 printf(" SPI Component Device ID 1: 0x%02x\n",
299 (jid >> 16) & 0xff);
300 printf(" SPI Component Device ID 0: 0x%02x\n",
301 (jid >> 8) & 0xff);
302 printf(" SPI Component Vendor ID: 0x%02x\n",
303 jid & 0xff);
304 }
305
306 static void dump_vscc(uint32_t vscc)
307 {
308 printf(" Lower Erase Opcode: 0x%02x\n",
309 vscc >> 24);
310 printf(" Lower Write Enable on Write Status: 0x%02x\n",
311 vscc & (1 << 20) ? 0x06 : 0x50);
312 printf(" Lower Write Status Required: %s\n",
313 vscc & (1 << 19) ? "Yes" : "No");
314 printf(" Lower Write Granularity: %d bytes\n",
315 vscc & (1 << 18) ? 64 : 1);
316 printf(" Lower Block / Sector Erase Size: ");
317 switch ((vscc >> 16) & 0x3) {
318 case 0:
319 printf("256 Byte\n");
320 break;
321 case 1:
322 printf("4KB\n");
323 break;
324 case 2:
325 printf("8KB\n");
326 break;
327 case 3:
328 printf("64KB\n");
329 break;
330 }
331
332 printf(" Upper Erase Opcode: 0x%02x\n",
333 (vscc >> 8) & 0xff);
334 printf(" Upper Write Enable on Write Status: 0x%02x\n",
335 vscc & (1 << 4) ? 0x06 : 0x50);
336 printf(" Upper Write Status Required: %s\n",
337 vscc & (1 << 3) ? "Yes" : "No");
338 printf(" Upper Write Granularity: %d bytes\n",
339 vscc & (1 << 2) ? 64 : 1);
340 printf(" Upper Block / Sector Erase Size: ");
341 switch (vscc & 0x3) {
342 case 0:
343 printf("256 Byte\n");
344 break;
345 case 1:
346 printf("4KB\n");
347 break;
348 case 2:
349 printf("8KB\n");
350 break;
351 case 3:
352 printf("64KB\n");
353 break;
354 }
355 }
356
357 static void dump_vtba(struct vtba_t *vtba, int vtl)
358 {
359 int i;
360 int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
361
362 printf("ME VSCC table:\n");
363 for (i = 0; i < num; i++) {
364 printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid);
365 dump_jid(vtba->entry[i].jid);
366 printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
367 dump_vscc(vtba->entry[i].vscc);
368 }
369 printf("\n");
370 }
371
372 static void dump_oem(uint8_t *oem)
373 {
374 int i, j;
375 printf("OEM Section:\n");
376 for (i = 0; i < 4; i++) {
377 printf("%02x:", i << 4);
378 for (j = 0; j < 16; j++)
379 printf(" %02x", oem[(i<<4)+j]);
380 printf("\n");
381 }
382 printf("\n");
383 }
384
385 /**
386 * dump_fd() - Display a dump of the full flash description
387 *
388 * @image: Pointer to image
389 * @size: Size of image in bytes
390 * @return 0 if OK, -1 on error
391 */
392 static int dump_fd(char *image, int size)
393 {
394 struct fdbar_t *fdb = find_fd(image, size);
395
396 if (!fdb)
397 return -1;
398
399 printf("FLMAP0: 0x%08x\n", fdb->flmap0);
400 printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7);
401 printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
402 printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
403 printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4);
404
405 printf("FLMAP1: 0x%08x\n", fdb->flmap1);
406 printf(" ISL: 0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
407 printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
408 printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3);
409 printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4);
410
411 printf("FLMAP2: 0x%08x\n", fdb->flmap2);
412 printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
413 printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4);
414
415 printf("FLUMAP1: 0x%08x\n", fdb->flumap1);
416 printf(" Intel ME VSCC Table Length (VTL): %d\n",
417 (fdb->flumap1 >> 8) & 0xff);
418 printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
419 (fdb->flumap1 & 0xff) << 4);
420 dump_vtba((struct vtba_t *)
421 (image + ((fdb->flumap1 & 0xff) << 4)),
422 (fdb->flumap1 >> 8) & 0xff);
423 dump_oem((uint8_t *)image + 0xf00);
424 dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
425 << 4)));
426 dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
427 dump_fpsba((struct fpsba_t *)
428 (image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
429 dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
430 dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
431
432 return 0;
433 }
434
435 /**
436 * write_regions() - Write each region from an image to its own file
437 *
438 * The filename to use in each case is fixed - see region_filename()
439 *
440 * @image: Pointer to image
441 * @size: Size of image in bytes
442 * @return 0 if OK, -ve on error
443 */
444 static int write_regions(char *image, int size)
445 {
446 struct fdbar_t *fdb;
447 struct frba_t *frba;
448 int ret = 0;
449 int i;
450
451 fdb = find_fd(image, size);
452 if (!fdb)
453 return -1;
454
455 frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
456
457 for (i = 0; i < MAX_REGIONS; i++) {
458 struct region_t region;
459 int region_fd;
460
461 ret = get_region(frba, i, &region);
462 if (ret)
463 return ret;
464 dump_region(i, frba);
465 if (region.size <= 0)
466 continue;
467 region_fd = open(region_filename(i),
468 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
469 S_IWUSR | S_IRGRP | S_IROTH);
470 if (write(region_fd, image + region.base, region.size) !=
471 region.size) {
472 perror("Error while writing");
473 ret = -1;
474 }
475 close(region_fd);
476 }
477
478 return ret;
479 }
480
481 static int perror_fname(const char *fmt, const char *fname)
482 {
483 char msg[strlen(fmt) + strlen(fname) + 1];
484
485 sprintf(msg, fmt, fname);
486 perror(msg);
487
488 return -1;
489 }
490
491 /**
492 * write_image() - Write the image to a file
493 *
494 * @filename: Filename to use for the image
495 * @image: Pointer to image
496 * @size: Size of image in bytes
497 * @return 0 if OK, -ve on error
498 */
499 static int write_image(char *filename, char *image, int size)
500 {
501 int new_fd;
502
503 debug("Writing new image to %s\n", filename);
504
505 new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
506 S_IWUSR | S_IRGRP | S_IROTH);
507 if (new_fd < 0)
508 return perror_fname("Could not open file '%s'", filename);
509 if (write(new_fd, image, size) != size)
510 return perror_fname("Could not write file '%s'", filename);
511 close(new_fd);
512
513 return 0;
514 }
515
516 /**
517 * set_spi_frequency() - Set the SPI frequency to use when booting
518 *
519 * Several frequencies are supported, some of which work with fast devices.
520 * For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
521 * Intel boot system uses this information somehow on boot.
522 *
523 * The image is updated with the supplied value
524 *
525 * @image: Pointer to image
526 * @size: Size of image in bytes
527 * @freq: SPI frequency to use
528 */
529 static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
530 {
531 struct fdbar_t *fdb = find_fd(image, size);
532 struct fcba_t *fcba;
533
534 fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
535
536 /* clear bits 21-29 */
537 fcba->flcomp &= ~0x3fe00000;
538 /* Read ID and Read Status Clock Frequency */
539 fcba->flcomp |= freq << 27;
540 /* Write and Erase Clock Frequency */
541 fcba->flcomp |= freq << 24;
542 /* Fast Read Clock Frequency */
543 fcba->flcomp |= freq << 21;
544 }
545
546 /**
547 * set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
548 *
549 * @image: Pointer to image
550 * @size: Size of image in bytes
551 */
552 static void set_em100_mode(char *image, int size)
553 {
554 struct fdbar_t *fdb = find_fd(image, size);
555 struct fcba_t *fcba;
556
557 fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
558 fcba->flcomp &= ~(1 << 30);
559 set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
560 }
561
562 /**
563 * lock_descriptor() - Lock the NE descriptor so it cannot be updated
564 *
565 * @image: Pointer to image
566 * @size: Size of image in bytes
567 */
568 static void lock_descriptor(char *image, int size)
569 {
570 struct fdbar_t *fdb = find_fd(image, size);
571 struct fmba_t *fmba;
572
573 /*
574 * TODO: Dynamically take Platform Data Region and GbE Region into
575 * account.
576 */
577 fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
578 fmba->flmstr1 = 0x0a0b0000;
579 fmba->flmstr2 = 0x0c0d0000;
580 fmba->flmstr3 = 0x08080118;
581 }
582
583 /**
584 * unlock_descriptor() - Lock the NE descriptor so it can be updated
585 *
586 * @image: Pointer to image
587 * @size: Size of image in bytes
588 */
589 static void unlock_descriptor(char *image, int size)
590 {
591 struct fdbar_t *fdb = find_fd(image, size);
592 struct fmba_t *fmba;
593
594 fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
595 fmba->flmstr1 = 0xffff0000;
596 fmba->flmstr2 = 0xffff0000;
597 fmba->flmstr3 = 0x08080118;
598 }
599
600 /**
601 * open_for_read() - Open a file for reading
602 *
603 * @fname: Filename to open
604 * @sizep: Returns file size in bytes
605 * @return 0 if OK, -1 on error
606 */
607 int open_for_read(const char *fname, int *sizep)
608 {
609 int fd = open(fname, O_RDONLY);
610 struct stat buf;
611
612 if (fd == -1)
613 return perror_fname("Could not open file '%s'", fname);
614 if (fstat(fd, &buf) == -1)
615 return perror_fname("Could not stat file '%s'", fname);
616 *sizep = buf.st_size;
617 debug("File %s is %d bytes\n", fname, *sizep);
618
619 return fd;
620 }
621
622 /**
623 * inject_region() - Add a file to an image region
624 *
625 * This puts a file into a particular region of the flash. Several pre-defined
626 * regions are used.
627 *
628 * @image: Pointer to image
629 * @size: Size of image in bytes
630 * @region_type: Region where the file should be added
631 * @region_fname: Filename to add to the image
632 * @return 0 if OK, -ve on error
633 */
634 int inject_region(char *image, int size, int region_type, char *region_fname)
635 {
636 struct fdbar_t *fdb = find_fd(image, size);
637 struct region_t region;
638 struct frba_t *frba;
639 int region_size;
640 int offset = 0;
641 int region_fd;
642 int ret;
643
644 if (!fdb)
645 exit(EXIT_FAILURE);
646 frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
647
648 ret = get_region(frba, region_type, &region);
649 if (ret)
650 return -1;
651 if (region.size <= 0xfff) {
652 fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
653 region_name(region_type));
654 return -1;
655 }
656
657 region_fd = open_for_read(region_fname, &region_size);
658 if (region_fd < 0)
659 return region_fd;
660
661 if ((region_size > region.size) ||
662 ((region_type != 1) && (region_size > region.size))) {
663 fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Not injecting.\n",
664 region_name(region_type), region.size,
665 region.size, region_size, region_size);
666 return -1;
667 }
668
669 if ((region_type == 1) && (region_size < region.size)) {
670 fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
671 region_name(region_type), region.size,
672 region.size, region_size, region_size);
673 offset = region.size - region_size;
674 memset(image + region.base, 0xff, offset);
675 }
676
677 if (size < region.base + offset + region_size) {
678 fprintf(stderr, "Output file is too small. (%d < %d)\n",
679 size, region.base + offset + region_size);
680 return -1;
681 }
682
683 if (read(region_fd, image + region.base + offset, region_size)
684 != region_size) {
685 perror("Could not read file");
686 return -1;
687 }
688
689 close(region_fd);
690
691 debug("Adding %s as the %s section\n", region_fname,
692 region_name(region_type));
693
694 return 0;
695 }
696
697 /**
698 * write_data() - Write some raw data into a region
699 *
700 * This puts a file into a particular place in the flash, ignoring the
701 * regions. Be careful not to overwrite something important.
702 *
703 * @image: Pointer to image
704 * @size: Size of image in bytes
705 * @addr: x86 ROM address to put file. The ROM ends at
706 * 0xffffffff so use an address relative to that. For an
707 * 8MB ROM the start address is 0xfff80000.
708 * @write_fname: Filename to add to the image
709 * @offset_uboot_top: Offset of the top of U-Boot
710 * @return number of bytes written if OK, -ve on error
711 */
712 static int write_data(char *image, int size, unsigned int addr,
713 const char *write_fname, int offset_uboot_top)
714 {
715 int write_fd, write_size;
716 int offset;
717
718 write_fd = open_for_read(write_fname, &write_size);
719 if (write_fd < 0)
720 return write_fd;
721
722 offset = (uint32_t)(addr + size);
723 if (offset_uboot_top && offset_uboot_top >= offset) {
724 fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
725 write_fname);
726 fprintf(stderr,
727 "U-Boot finishes at offset %x, file starts at %x\n",
728 offset_uboot_top, offset);
729 return -EXDEV;
730 }
731 debug("Writing %s to offset %#x\n", write_fname, offset);
732
733 if (offset < 0 || offset + write_size > size) {
734 fprintf(stderr, "Output file is too small. (%d < %d)\n",
735 size, offset + write_size);
736 return -1;
737 }
738
739 if (read(write_fd, image + offset, write_size) != write_size) {
740 perror("Could not read file");
741 return -1;
742 }
743
744 close(write_fd);
745
746 return write_size;
747 }
748
749 static int scan_ucode(const void *blob, char *ucode_base, int *countp,
750 const char **datap, int *data_sizep)
751 {
752 const char *data = NULL;
753 int node, count;
754 int data_size;
755 char *ucode;
756
757 for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) {
758 node = fdt_node_offset_by_compatible(blob, node,
759 "intel,microcode");
760 if (node < 0)
761 break;
762
763 data = fdt_getprop(blob, node, "data", &data_size);
764 if (!data) {
765 debug("Missing microcode data in FDT '%s': %s\n",
766 fdt_get_name(blob, node, NULL),
767 fdt_strerror(data_size));
768 return -ENOENT;
769 }
770
771 if (ucode_base)
772 memcpy(ucode, data, data_size);
773 ucode += data_size;
774 }
775
776 if (countp)
777 *countp = count;
778 if (datap)
779 *datap = data;
780 if (data_sizep)
781 *data_sizep = data_size;
782
783 return ucode - ucode_base;
784 }
785
786 static int remove_ucode(char *blob)
787 {
788 int node, count;
789 int ret;
790
791 /* Keep going until we find no more microcode to remove */
792 do {
793 for (node = 0, count = 0; node >= 0;) {
794 int ret;
795
796 node = fdt_node_offset_by_compatible(blob, node,
797 "intel,microcode");
798 if (node < 0)
799 break;
800
801 ret = fdt_delprop(blob, node, "data");
802
803 /*
804 * -FDT_ERR_NOTFOUND means we already removed the
805 * data for this one, so we just continue.
806 * 0 means we did remove it, so offsets may have
807 * changed and we need to restart our scan.
808 * Anything else indicates an error we should report.
809 */
810 if (ret == -FDT_ERR_NOTFOUND)
811 continue;
812 else if (!ret)
813 node = 0;
814 else
815 return ret;
816 }
817 } while (count);
818
819 /* Pack down to remove excees space */
820 ret = fdt_pack(blob);
821 if (ret)
822 return ret;
823
824 return fdt_totalsize(blob);
825 }
826
827 static int write_ucode(char *image, int size, struct input_file *fdt,
828 int fdt_size, unsigned int ucode_ptr,
829 int collate_ucode)
830 {
831 const char *data = NULL;
832 char *ucode_buf;
833 const void *blob;
834 char *ucode_base;
835 uint32_t *ptr;
836 int ucode_size;
837 int data_size;
838 int offset;
839 int count;
840 int ret;
841
842 blob = (void *)image + (uint32_t)(fdt->addr + size);
843
844 debug("DTB at %lx\n", (char *)blob - image);
845
846 /* Find out about the micrcode we have */
847 ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size);
848 if (ucode_size < 0)
849 return ucode_size;
850 if (!count) {
851 debug("No microcode found in FDT\n");
852 return -ENOENT;
853 }
854
855 if (count > 1 && !collate_ucode) {
856 fprintf(stderr,
857 "Cannot handle multiple microcode blocks - please use -C flag to collate them\n");
858 return -EMLINK;
859 }
860
861 /*
862 * Collect the microcode into a buffer, remove it from the device
863 * tree and place it immediately above the (now smaller) device tree.
864 */
865 if (collate_ucode && count > 1) {
866 ucode_buf = malloc(ucode_size);
867 if (!ucode_buf) {
868 fprintf(stderr,
869 "Out of memory for microcode (%d bytes)\n",
870 ucode_size);
871 return -ENOMEM;
872 }
873 ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL);
874 if (ret < 0)
875 return ret;
876
877 /* Remove the microcode from the device tree */
878 ret = remove_ucode((char *)blob);
879 if (ret < 0) {
880 debug("Could not remove FDT microcode: %s\n",
881 fdt_strerror(ret));
882 return -EINVAL;
883 }
884 debug("Collated %d microcode block(s)\n", count);
885 debug("Device tree reduced from %x to %x bytes\n",
886 fdt_size, ret);
887 fdt_size = ret;
888
889 /*
890 * Place microcode area immediately above the FDT, aligned
891 * to a 16-byte boundary.
892 */
893 ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) &
894 ~15);
895
896 data = ucode_base;
897 data_size = ucode_size;
898 memcpy(ucode_base, ucode_buf, ucode_size);
899 free(ucode_buf);
900 }
901
902 offset = (uint32_t)(ucode_ptr + size);
903 ptr = (void *)image + offset;
904
905 ptr[0] = (data - image) - size;
906 ptr[1] = data_size;
907 debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr,
908 ptr[0], ptr[1]);
909
910 return (collate_ucode ? data + data_size : (char *)blob + fdt_size) -
911 image;
912 }
913
914 /**
915 * write_uboot() - Write U-Boot, device tree and microcode pointer
916 *
917 * This writes U-Boot into a place in the flash, followed by its device tree.
918 * The microcode pointer is written so that U-Boot can find the microcode in
919 * the device tree very early in boot.
920 *
921 * @image: Pointer to image
922 * @size: Size of image in bytes
923 * @uboot: Input file information for u-boot.bin
924 * @fdt: Input file information for u-boot.dtb
925 * @ucode_ptr: Address in U-Boot where the microcode pointer should be placed
926 * @return 0 if OK, -ve on error
927 */
928 static int write_uboot(char *image, int size, struct input_file *uboot,
929 struct input_file *fdt, unsigned int ucode_ptr,
930 int collate_ucode)
931 {
932 const void *blob;
933 int uboot_size, fdt_size;
934
935 uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0);
936 if (uboot_size < 0)
937 return uboot_size;
938 fdt->addr = uboot->addr + uboot_size;
939 debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
940 fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0);
941 if (fdt_size < 0)
942 return fdt_size;
943 blob = (void *)image + (uint32_t)(fdt->addr + size);
944
945 if (ucode_ptr) {
946 return write_ucode(image, size, fdt, fdt_size, ucode_ptr,
947 collate_ucode);
948 }
949
950 return ((char *)blob + fdt_size) - image;
951 }
952
953 static void print_version(void)
954 {
955 printf("ifdtool v%s -- ", IFDTOOL_VERSION);
956 printf("Copyright (C) 2014 Google Inc.\n\n");
957 printf("SPDX-License-Identifier: GPL-2.0+\n");
958 }
959
960 static void print_usage(const char *name)
961 {
962 printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
963 printf("\n"
964 " -d | --dump: dump intel firmware descriptor\n"
965 " -x | --extract: extract intel fd modules\n"
966 " -i | --inject <region>:<module> inject file <module> into region <region>\n"
967 " -w | --write <addr>:<file> write file to appear at memory address <addr>\n"
968 " multiple files can be written simultaneously\n"
969 " -s | --spifreq <20|33|50> set the SPI frequency\n"
970 " -e | --em100 set SPI frequency to 20MHz and disable\n"
971 " Dual Output Fast Read Support\n"
972 " -l | --lock Lock firmware descriptor and ME region\n"
973 " -u | --unlock Unlock firmware descriptor and ME region\n"
974 " -r | --romsize Specify ROM size\n"
975 " -D | --write-descriptor <file> Write descriptor at base\n"
976 " -c | --create Create a new empty image\n"
977 " -v | --version: print the version\n"
978 " -h | --help: print this help\n\n"
979 "<region> is one of Descriptor, BIOS, ME, GbE, Platform\n"
980 "\n");
981 }
982
983 /**
984 * get_two_words() - Convert a string into two words separated by :
985 *
986 * The supplied string is split at ':', two substrings are allocated and
987 * returned.
988 *
989 * @str: String to split
990 * @firstp: Returns first string
991 * @secondp: Returns second string
992 * @return 0 if OK, -ve if @str does not have a :
993 */
994 static int get_two_words(const char *str, char **firstp, char **secondp)
995 {
996 const char *p;
997
998 p = strchr(str, ':');
999 if (!p)
1000 return -1;
1001 *firstp = strdup(str);
1002 (*firstp)[p - str] = '\0';
1003 *secondp = strdup(p + 1);
1004
1005 return 0;
1006 }
1007
1008 int main(int argc, char *argv[])
1009 {
1010 int opt, option_index = 0;
1011 int mode_dump = 0, mode_extract = 0, mode_inject = 0;
1012 int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0;
1013 int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0;
1014 int create = 0, collate_ucode = 0;
1015 char *region_type_string = NULL, *inject_fname = NULL;
1016 char *desc_fname = NULL, *addr_str = NULL;
1017 int region_type = -1, inputfreq = 0;
1018 enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ;
1019 struct input_file input_file[WRITE_MAX], *ifile, *fdt = NULL;
1020 unsigned char wr_idx, wr_num = 0;
1021 int rom_size = -1;
1022 bool write_it;
1023 char *filename;
1024 char *outfile = NULL;
1025 struct stat buf;
1026 int size = 0;
1027 unsigned int ucode_ptr = 0;
1028 bool have_uboot = false;
1029 int bios_fd;
1030 char *image;
1031 int ret;
1032 static struct option long_options[] = {
1033 {"create", 0, NULL, 'c'},
1034 {"collate-microcode", 0, NULL, 'C'},
1035 {"dump", 0, NULL, 'd'},
1036 {"descriptor", 1, NULL, 'D'},
1037 {"em100", 0, NULL, 'e'},
1038 {"extract", 0, NULL, 'x'},
1039 {"fdt", 1, NULL, 'f'},
1040 {"inject", 1, NULL, 'i'},
1041 {"lock", 0, NULL, 'l'},
1042 {"microcode", 1, NULL, 'm'},
1043 {"romsize", 1, NULL, 'r'},
1044 {"spifreq", 1, NULL, 's'},
1045 {"unlock", 0, NULL, 'u'},
1046 {"uboot", 1, NULL, 'U'},
1047 {"write", 1, NULL, 'w'},
1048 {"version", 0, NULL, 'v'},
1049 {"help", 0, NULL, 'h'},
1050 {0, 0, 0, 0}
1051 };
1052
1053 while ((opt = getopt_long(argc, argv, "cCdD:ef:hi:lm:r:s:uU:vw:x?",
1054 long_options, &option_index)) != EOF) {
1055 switch (opt) {
1056 case 'c':
1057 create = 1;
1058 break;
1059 case 'C':
1060 collate_ucode = 1;
1061 break;
1062 case 'd':
1063 mode_dump = 1;
1064 break;
1065 case 'D':
1066 mode_write_descriptor = 1;
1067 desc_fname = optarg;
1068 break;
1069 case 'e':
1070 mode_em100 = 1;
1071 break;
1072 case 'i':
1073 if (get_two_words(optarg, &region_type_string,
1074 &inject_fname)) {
1075 print_usage(argv[0]);
1076 exit(EXIT_FAILURE);
1077 }
1078 if (!strcasecmp("Descriptor", region_type_string))
1079 region_type = 0;
1080 else if (!strcasecmp("BIOS", region_type_string))
1081 region_type = 1;
1082 else if (!strcasecmp("ME", region_type_string))
1083 region_type = 2;
1084 else if (!strcasecmp("GbE", region_type_string))
1085 region_type = 3;
1086 else if (!strcasecmp("Platform", region_type_string))
1087 region_type = 4;
1088 if (region_type == -1) {
1089 fprintf(stderr, "No such region type: '%s'\n\n",
1090 region_type_string);
1091 print_usage(argv[0]);
1092 exit(EXIT_FAILURE);
1093 }
1094 mode_inject = 1;
1095 break;
1096 case 'l':
1097 mode_locked = 1;
1098 break;
1099 case 'm':
1100 ucode_ptr = strtoul(optarg, NULL, 0);
1101 break;
1102 case 'r':
1103 rom_size = strtol(optarg, NULL, 0);
1104 debug("ROM size %d\n", rom_size);
1105 break;
1106 case 's':
1107 /* Parse the requested SPI frequency */
1108 inputfreq = strtol(optarg, NULL, 0);
1109 switch (inputfreq) {
1110 case 20:
1111 spifreq = SPI_FREQUENCY_20MHZ;
1112 break;
1113 case 33:
1114 spifreq = SPI_FREQUENCY_33MHZ;
1115 break;
1116 case 50:
1117 spifreq = SPI_FREQUENCY_50MHZ;
1118 break;
1119 default:
1120 fprintf(stderr, "Invalid SPI Frequency: %d\n",
1121 inputfreq);
1122 print_usage(argv[0]);
1123 exit(EXIT_FAILURE);
1124 }
1125 mode_spifreq = 1;
1126 break;
1127 case 'u':
1128 mode_unlocked = 1;
1129 break;
1130 case 'v':
1131 print_version();
1132 exit(EXIT_SUCCESS);
1133 break;
1134 case 'w':
1135 case 'U':
1136 case 'f':
1137 ifile = &input_file[wr_num];
1138 mode_write = 1;
1139 if (wr_num < WRITE_MAX) {
1140 if (get_two_words(optarg, &addr_str,
1141 &ifile->fname)) {
1142 print_usage(argv[0]);
1143 exit(EXIT_FAILURE);
1144 }
1145 ifile->addr = strtoll(optarg, NULL, 0);
1146 ifile->type = opt == 'f' ? IF_fdt :
1147 opt == 'U' ? IF_uboot : IF_normal;
1148 if (ifile->type == IF_fdt)
1149 fdt = ifile;
1150 else if (ifile->type == IF_uboot)
1151 have_uboot = true;
1152 wr_num++;
1153 } else {
1154 fprintf(stderr,
1155 "The number of files to write simultaneously exceeds the limitation (%d)\n",
1156 WRITE_MAX);
1157 }
1158 break;
1159 case 'x':
1160 mode_extract = 1;
1161 break;
1162 case 'h':
1163 case '?':
1164 default:
1165 print_usage(argv[0]);
1166 exit(EXIT_SUCCESS);
1167 break;
1168 }
1169 }
1170
1171 if (mode_locked == 1 && mode_unlocked == 1) {
1172 fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n");
1173 exit(EXIT_FAILURE);
1174 }
1175
1176 if (mode_inject == 1 && mode_write == 1) {
1177 fprintf(stderr, "Inject/Write are mutually exclusive\n");
1178 exit(EXIT_FAILURE);
1179 }
1180
1181 if ((mode_dump + mode_extract + mode_inject +
1182 (mode_spifreq | mode_em100 | mode_unlocked |
1183 mode_locked)) > 1) {
1184 fprintf(stderr, "You may not specify more than one mode.\n\n");
1185 print_usage(argv[0]);
1186 exit(EXIT_FAILURE);
1187 }
1188
1189 if ((mode_dump + mode_extract + mode_inject + mode_spifreq +
1190 mode_em100 + mode_locked + mode_unlocked + mode_write +
1191 mode_write_descriptor) == 0 && !create) {
1192 fprintf(stderr, "You need to specify a mode.\n\n");
1193 print_usage(argv[0]);
1194 exit(EXIT_FAILURE);
1195 }
1196
1197 if (create && rom_size == -1) {
1198 fprintf(stderr, "You need to specify a rom size when creating.\n\n");
1199 exit(EXIT_FAILURE);
1200 }
1201
1202 if (optind + 1 != argc) {
1203 fprintf(stderr, "You need to specify a file.\n\n");
1204 print_usage(argv[0]);
1205 exit(EXIT_FAILURE);
1206 }
1207
1208 if (have_uboot && !fdt) {
1209 fprintf(stderr,
1210 "You must supply a device tree file for U-Boot\n\n");
1211 print_usage(argv[0]);
1212 exit(EXIT_FAILURE);
1213 }
1214
1215 filename = argv[optind];
1216 if (optind + 2 != argc)
1217 outfile = argv[optind + 1];
1218
1219 if (create)
1220 bios_fd = open(filename, O_WRONLY | O_CREAT, 0666);
1221 else
1222 bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR);
1223
1224 if (bios_fd == -1) {
1225 perror("Could not open file");
1226 exit(EXIT_FAILURE);
1227 }
1228
1229 if (!create) {
1230 if (fstat(bios_fd, &buf) == -1) {
1231 perror("Could not stat file");
1232 exit(EXIT_FAILURE);
1233 }
1234 size = buf.st_size;
1235 }
1236
1237 debug("File %s is %d bytes\n", filename, size);
1238
1239 if (rom_size == -1)
1240 rom_size = size;
1241
1242 image = malloc(rom_size);
1243 if (!image) {
1244 printf("Out of memory.\n");
1245 exit(EXIT_FAILURE);
1246 }
1247
1248 memset(image, '\xff', rom_size);
1249 if (!create && read(bios_fd, image, size) != size) {
1250 perror("Could not read file");
1251 exit(EXIT_FAILURE);
1252 }
1253 if (size != rom_size) {
1254 debug("ROM size changed to %d bytes\n", rom_size);
1255 size = rom_size;
1256 }
1257
1258 write_it = true;
1259 ret = 0;
1260 if (mode_dump) {
1261 ret = dump_fd(image, size);
1262 write_it = false;
1263 }
1264
1265 if (mode_extract) {
1266 ret = write_regions(image, size);
1267 write_it = false;
1268 }
1269
1270 if (mode_write_descriptor)
1271 ret = write_data(image, size, -size, desc_fname, 0);
1272
1273 if (mode_inject)
1274 ret = inject_region(image, size, region_type, inject_fname);
1275
1276 if (mode_write) {
1277 int offset_uboot_top = 0;
1278
1279 for (wr_idx = 0; wr_idx < wr_num; wr_idx++) {
1280 ifile = &input_file[wr_idx];
1281 if (ifile->type == IF_fdt) {
1282 continue;
1283 } else if (ifile->type == IF_uboot) {
1284 ret = write_uboot(image, size, ifile, fdt,
1285 ucode_ptr, collate_ucode);
1286 offset_uboot_top = ret;
1287 } else {
1288 ret = write_data(image, size, ifile->addr,
1289 ifile->fname, offset_uboot_top);
1290 }
1291 if (ret < 0)
1292 break;
1293 }
1294 }
1295
1296 if (mode_spifreq)
1297 set_spi_frequency(image, size, spifreq);
1298
1299 if (mode_em100)
1300 set_em100_mode(image, size);
1301
1302 if (mode_locked)
1303 lock_descriptor(image, size);
1304
1305 if (mode_unlocked)
1306 unlock_descriptor(image, size);
1307
1308 if (write_it) {
1309 if (outfile) {
1310 ret = write_image(outfile, image, size);
1311 } else {
1312 if (lseek(bios_fd, 0, SEEK_SET)) {
1313 perror("Error while seeking");
1314 ret = -1;
1315 }
1316 if (write(bios_fd, image, size) != size) {
1317 perror("Error while writing");
1318 ret = -1;
1319 }
1320 }
1321 }
1322
1323 free(image);
1324 close(bios_fd);
1325
1326 return ret < 0 ? 1 : 0;
1327 }