]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
7d23fd5d12309ea7fe4572f2dce05f6328d7ce14
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 static const char *
492 ada_get_gdb_completer_word_break_characters (void)
493 {
494 return ada_completer_word_break_characters;
495 }
496
497 /* la_watch_location_expression for Ada. */
498
499 static gdb::unique_xmalloc_ptr<char>
500 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501 {
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506 }
507
508 /* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511 #define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
514 /* Assuming VECT points to an array of *SIZE objects of size
515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
516 updating *SIZE as necessary and returning the (new) array. */
517
518 static void *
519 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
520 {
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
525 *size = min_size;
526 vect = xrealloc (vect, *size * element_size);
527 }
528 return vect;
529 }
530
531 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
532 suffix of FIELD_NAME beginning "___". */
533
534 static int
535 field_name_match (const char *field_name, const char *target)
536 {
537 int len = strlen (target);
538
539 return
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
542 || (startswith (field_name + len, "___")
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
545 }
546
547
548 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
555
556 int
557 ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559 {
560 int fieldno;
561 struct type *struct_type = check_typedef ((struct type *) type);
562
563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
565 return fieldno;
566
567 if (!maybe_missing)
568 error (_("Unable to find field %s in struct %s. Aborting"),
569 field_name, struct_type->name ());
570
571 return -1;
572 }
573
574 /* The length of the prefix of NAME prior to any "___" suffix. */
575
576 int
577 ada_name_prefix_len (const char *name)
578 {
579 if (name == NULL)
580 return 0;
581 else
582 {
583 const char *p = strstr (name, "___");
584
585 if (p == NULL)
586 return strlen (name);
587 else
588 return p - name;
589 }
590 }
591
592 /* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
595 static int
596 is_suffix (const char *str, const char *suffix)
597 {
598 int len1, len2;
599
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
605 }
606
607 /* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
609
610 static struct value *
611 coerce_unspec_val_to_type (struct value *val, struct type *type)
612 {
613 type = ada_check_typedef (type);
614 if (value_type (val) == type)
615 return val;
616 else
617 {
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
622 ada_ensure_varsize_limit (type);
623
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
631 }
632 set_value_component_location (result, val);
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
637 return result;
638 }
639 }
640
641 static const gdb_byte *
642 cond_offset_host (const gdb_byte *valaddr, long offset)
643 {
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648 }
649
650 static CORE_ADDR
651 cond_offset_target (CORE_ADDR address, long offset)
652 {
653 if (address == 0)
654 return 0;
655 else
656 return address + offset;
657 }
658
659 /* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
663
664 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
666 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
667
668 static void
669 lim_warning (const char *format, ...)
670 {
671 va_list args;
672
673 va_start (args, format);
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
676 vwarning (format, args);
677
678 va_end (args);
679 }
680
681 /* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
685 void
686 ada_ensure_varsize_limit (const struct type *type)
687 {
688 if (TYPE_LENGTH (type) > varsize_limit)
689 error (_("object size is larger than varsize-limit"));
690 }
691
692 /* Maximum value of a SIZE-byte signed integer type. */
693 static LONGEST
694 max_of_size (int size)
695 {
696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
697
698 return top_bit | (top_bit - 1);
699 }
700
701 /* Minimum value of a SIZE-byte signed integer type. */
702 static LONGEST
703 min_of_size (int size)
704 {
705 return -max_of_size (size) - 1;
706 }
707
708 /* Maximum value of a SIZE-byte unsigned integer type. */
709 static ULONGEST
710 umax_of_size (int size)
711 {
712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
713
714 return top_bit | (top_bit - 1);
715 }
716
717 /* Maximum value of integral type T, as a signed quantity. */
718 static LONGEST
719 max_of_type (struct type *t)
720 {
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725 }
726
727 /* Minimum value of integral type T, as a signed quantity. */
728 static LONGEST
729 min_of_type (struct type *t)
730 {
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
735 }
736
737 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
738 LONGEST
739 ada_discrete_type_high_bound (struct type *type)
740 {
741 type = resolve_dynamic_type (type, {}, 0);
742 switch (type->code ())
743 {
744 case TYPE_CODE_RANGE:
745 return TYPE_HIGH_BOUND (type);
746 case TYPE_CODE_ENUM:
747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
751 case TYPE_CODE_INT:
752 return max_of_type (type);
753 default:
754 error (_("Unexpected type in ada_discrete_type_high_bound."));
755 }
756 }
757
758 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
759 LONGEST
760 ada_discrete_type_low_bound (struct type *type)
761 {
762 type = resolve_dynamic_type (type, {}, 0);
763 switch (type->code ())
764 {
765 case TYPE_CODE_RANGE:
766 return TYPE_LOW_BOUND (type);
767 case TYPE_CODE_ENUM:
768 return TYPE_FIELD_ENUMVAL (type, 0);
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
772 case TYPE_CODE_INT:
773 return min_of_type (type);
774 default:
775 error (_("Unexpected type in ada_discrete_type_low_bound."));
776 }
777 }
778
779 /* The identity on non-range types. For range types, the underlying
780 non-range scalar type. */
781
782 static struct type *
783 get_base_type (struct type *type)
784 {
785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
786 {
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
792 }
793
794 /* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
796 encodings, making the resulting type a static but standard description
797 of the initial type. */
798
799 struct value *
800 ada_get_decoded_value (struct value *value)
801 {
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
806 && type->code () != TYPE_CODE_PTR))
807 {
808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817 }
818
819 /* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824 struct type *
825 ada_get_decoded_type (struct type *type)
826 {
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831 }
832
833 \f
834
835 /* Language Selection */
836
837 /* If the main program is in Ada, return language_ada, otherwise return LANG
838 (the main program is in Ada iif the adainit symbol is found). */
839
840 static enum language
841 ada_update_initial_language (enum language lang)
842 {
843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
844 return language_ada;
845
846 return lang;
847 }
848
849 /* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853 char *
854 ada_main_name (void)
855 {
856 struct bound_minimal_symbol msym;
857 static gdb::unique_xmalloc_ptr<char> main_program_name;
858
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
866 if (msym.minsym != NULL)
867 {
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
872 if (main_program_name_addr == 0)
873 error (_("Invalid address for Ada main program name."));
874
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
880 return main_program_name.get ();
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885 }
886 \f
887 /* Symbols */
888
889 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
891
892 const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
915 };
916
917 /* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
921
922 static char *
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
927 const char *p;
928 int k;
929
930 if (decoded == NULL)
931 return NULL;
932
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
935
936 k = 0;
937 for (p = decoded; *p != '\0'; p += 1)
938 {
939 if (*p == '.')
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
944 else if (*p == '"')
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
949 mapping->encoded != NULL
950 && !startswith (p, mapping->decoded); mapping += 1)
951 ;
952 if (mapping->encoded == NULL)
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
963 else
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
968 }
969
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
972 }
973
974 /* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977 char *
978 ada_encode (const char *decoded)
979 {
980 return ada_encode_1 (decoded, true);
981 }
982
983 /* Return NAME folded to lower case, or, if surrounded by single
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
987 static char *
988 ada_fold_name (gdb::string_view name)
989 {
990 static char *fold_buffer = NULL;
991 static size_t fold_buffer_size = 0;
992
993 int len = name.size ();
994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
995
996 if (name[0] == '\'')
997 {
998 strncpy (fold_buffer, name.data () + 1, len - 2);
999 fold_buffer[len - 2] = '\000';
1000 }
1001 else
1002 {
1003 int i;
1004
1005 for (i = 0; i <= len; i += 1)
1006 fold_buffer[i] = tolower (name[i]);
1007 }
1008
1009 return fold_buffer;
1010 }
1011
1012 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014 static int
1015 is_lower_alphanum (const char c)
1016 {
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018 }
1019
1020 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
1027
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032 static void
1033 ada_remove_trailing_digits (const char *encoded, int *len)
1034 {
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
1038
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1046 *len = i - 2;
1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1048 *len = i - 1;
1049 }
1050 }
1051
1052 /* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055 static void
1056 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057 {
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
1063 the 'P' suffix. The second calls the first one after handling
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072 }
1073
1074 /* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1076 replaced by ENCODED. */
1077
1078 std::string
1079 ada_decode (const char *encoded)
1080 {
1081 int i, j;
1082 int len0;
1083 const char *p;
1084 int at_start_name;
1085 std::string decoded;
1086
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
1095 if (startswith (encoded, "_ada_"))
1096 encoded += 5;
1097
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
1101 if (encoded[0] == '_' || encoded[0] == '<')
1102 goto Suppress;
1103
1104 len0 = strlen (encoded);
1105
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
1108
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
1115 {
1116 if (p[3] == 'X')
1117 len0 = p - encoded;
1118 else
1119 goto Suppress;
1120 }
1121
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1127 len0 -= 3;
1128
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1134 len0 -= 2;
1135
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1140 len0 -= 1;
1141
1142 /* Make decoded big enough for possible expansion by operator name. */
1143
1144 decoded.resize (2 * len0 + 1, 'X');
1145
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1149 {
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
1158 }
1159
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
1169 /* Is this a symbol function? */
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
1173
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
1180 {
1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
1191 at_start_name = 0;
1192
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1197 i += 2;
1198
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
1221 of subprograms created by the compiler for each entry. The first
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1286 {
1287 /* Replace '__' by '.'. */
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
1293 else
1294 {
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
1301 }
1302 decoded.resize (j);
1303
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
1307 for (i = 0; i < decoded.length(); ++i)
1308 if (isupper (decoded[i]) || decoded[i] == ' ')
1309 goto Suppress;
1310
1311 return decoded;
1312
1313 Suppress:
1314 if (encoded[0] == '<')
1315 decoded = encoded;
1316 else
1317 decoded = '<' + std::string(encoded) + '>';
1318 return decoded;
1319
1320 }
1321
1322 /* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327 static struct htab *decoded_names_store;
1328
1329 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
1334 GSYMBOL).
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
1337 when a decoded name is cached in it. */
1338
1339 const char *
1340 ada_decode_symbol (const struct general_symbol_info *arg)
1341 {
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
1344 &gsymbol->language_specific.demangled_name;
1345
1346 if (!gsymbol->ada_mangled)
1347 {
1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
1349 struct obstack *obstack = gsymbol->language_specific.obstack;
1350
1351 gsymbol->ada_mangled = 1;
1352
1353 if (obstack != NULL)
1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
1355 else
1356 {
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
1362 char **slot = (char **) htab_find_slot (decoded_names_store,
1363 decoded.c_str (), INSERT);
1364
1365 if (*slot == NULL)
1366 *slot = xstrdup (decoded.c_str ());
1367 *resultp = *slot;
1368 }
1369 }
1370
1371 return *resultp;
1372 }
1373
1374 static char *
1375 ada_la_decode (const char *encoded, int options)
1376 {
1377 return xstrdup (ada_decode (encoded).c_str ());
1378 }
1379
1380 /* Implement la_sniff_from_mangled_name for Ada. */
1381
1382 static int
1383 ada_sniff_from_mangled_name (const char *mangled, char **out)
1384 {
1385 std::string demangled = ada_decode (mangled);
1386
1387 *out = NULL;
1388
1389 if (demangled != mangled && demangled[0] != '<')
1390 {
1391 /* Set the gsymbol language to Ada, but still return 0.
1392 Two reasons for that:
1393
1394 1. For Ada, we prefer computing the symbol's decoded name
1395 on the fly rather than pre-compute it, in order to save
1396 memory (Ada projects are typically very large).
1397
1398 2. There are some areas in the definition of the GNAT
1399 encoding where, with a bit of bad luck, we might be able
1400 to decode a non-Ada symbol, generating an incorrect
1401 demangled name (Eg: names ending with "TB" for instance
1402 are identified as task bodies and so stripped from
1403 the decoded name returned).
1404
1405 Returning 1, here, but not setting *DEMANGLED, helps us get a
1406 little bit of the best of both worlds. Because we're last,
1407 we should not affect any of the other languages that were
1408 able to demangle the symbol before us; we get to correctly
1409 tag Ada symbols as such; and even if we incorrectly tagged a
1410 non-Ada symbol, which should be rare, any routing through the
1411 Ada language should be transparent (Ada tries to behave much
1412 like C/C++ with non-Ada symbols). */
1413 return 1;
1414 }
1415
1416 return 0;
1417 }
1418
1419 \f
1420
1421 /* Arrays */
1422
1423 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1424 generated by the GNAT compiler to describe the index type used
1425 for each dimension of an array, check whether it follows the latest
1426 known encoding. If not, fix it up to conform to the latest encoding.
1427 Otherwise, do nothing. This function also does nothing if
1428 INDEX_DESC_TYPE is NULL.
1429
1430 The GNAT encoding used to describe the array index type evolved a bit.
1431 Initially, the information would be provided through the name of each
1432 field of the structure type only, while the type of these fields was
1433 described as unspecified and irrelevant. The debugger was then expected
1434 to perform a global type lookup using the name of that field in order
1435 to get access to the full index type description. Because these global
1436 lookups can be very expensive, the encoding was later enhanced to make
1437 the global lookup unnecessary by defining the field type as being
1438 the full index type description.
1439
1440 The purpose of this routine is to allow us to support older versions
1441 of the compiler by detecting the use of the older encoding, and by
1442 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1443 we essentially replace each field's meaningless type by the associated
1444 index subtype). */
1445
1446 void
1447 ada_fixup_array_indexes_type (struct type *index_desc_type)
1448 {
1449 int i;
1450
1451 if (index_desc_type == NULL)
1452 return;
1453 gdb_assert (index_desc_type->num_fields () > 0);
1454
1455 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1456 to check one field only, no need to check them all). If not, return
1457 now.
1458
1459 If our INDEX_DESC_TYPE was generated using the older encoding,
1460 the field type should be a meaningless integer type whose name
1461 is not equal to the field name. */
1462 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1463 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
1464 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1465 return;
1466
1467 /* Fixup each field of INDEX_DESC_TYPE. */
1468 for (i = 0; i < index_desc_type->num_fields (); i++)
1469 {
1470 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1471 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1472
1473 if (raw_type)
1474 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1475 }
1476 }
1477
1478 /* The desc_* routines return primitive portions of array descriptors
1479 (fat pointers). */
1480
1481 /* The descriptor or array type, if any, indicated by TYPE; removes
1482 level of indirection, if needed. */
1483
1484 static struct type *
1485 desc_base_type (struct type *type)
1486 {
1487 if (type == NULL)
1488 return NULL;
1489 type = ada_check_typedef (type);
1490 if (type->code () == TYPE_CODE_TYPEDEF)
1491 type = ada_typedef_target_type (type);
1492
1493 if (type != NULL
1494 && (type->code () == TYPE_CODE_PTR
1495 || type->code () == TYPE_CODE_REF))
1496 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1497 else
1498 return type;
1499 }
1500
1501 /* True iff TYPE indicates a "thin" array pointer type. */
1502
1503 static int
1504 is_thin_pntr (struct type *type)
1505 {
1506 return
1507 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1508 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1509 }
1510
1511 /* The descriptor type for thin pointer type TYPE. */
1512
1513 static struct type *
1514 thin_descriptor_type (struct type *type)
1515 {
1516 struct type *base_type = desc_base_type (type);
1517
1518 if (base_type == NULL)
1519 return NULL;
1520 if (is_suffix (ada_type_name (base_type), "___XVE"))
1521 return base_type;
1522 else
1523 {
1524 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1525
1526 if (alt_type == NULL)
1527 return base_type;
1528 else
1529 return alt_type;
1530 }
1531 }
1532
1533 /* A pointer to the array data for thin-pointer value VAL. */
1534
1535 static struct value *
1536 thin_data_pntr (struct value *val)
1537 {
1538 struct type *type = ada_check_typedef (value_type (val));
1539 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1540
1541 data_type = lookup_pointer_type (data_type);
1542
1543 if (type->code () == TYPE_CODE_PTR)
1544 return value_cast (data_type, value_copy (val));
1545 else
1546 return value_from_longest (data_type, value_address (val));
1547 }
1548
1549 /* True iff TYPE indicates a "thick" array pointer type. */
1550
1551 static int
1552 is_thick_pntr (struct type *type)
1553 {
1554 type = desc_base_type (type);
1555 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1556 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1557 }
1558
1559 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1560 pointer to one, the type of its bounds data; otherwise, NULL. */
1561
1562 static struct type *
1563 desc_bounds_type (struct type *type)
1564 {
1565 struct type *r;
1566
1567 type = desc_base_type (type);
1568
1569 if (type == NULL)
1570 return NULL;
1571 else if (is_thin_pntr (type))
1572 {
1573 type = thin_descriptor_type (type);
1574 if (type == NULL)
1575 return NULL;
1576 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1577 if (r != NULL)
1578 return ada_check_typedef (r);
1579 }
1580 else if (type->code () == TYPE_CODE_STRUCT)
1581 {
1582 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1583 if (r != NULL)
1584 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1585 }
1586 return NULL;
1587 }
1588
1589 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1590 one, a pointer to its bounds data. Otherwise NULL. */
1591
1592 static struct value *
1593 desc_bounds (struct value *arr)
1594 {
1595 struct type *type = ada_check_typedef (value_type (arr));
1596
1597 if (is_thin_pntr (type))
1598 {
1599 struct type *bounds_type =
1600 desc_bounds_type (thin_descriptor_type (type));
1601 LONGEST addr;
1602
1603 if (bounds_type == NULL)
1604 error (_("Bad GNAT array descriptor"));
1605
1606 /* NOTE: The following calculation is not really kosher, but
1607 since desc_type is an XVE-encoded type (and shouldn't be),
1608 the correct calculation is a real pain. FIXME (and fix GCC). */
1609 if (type->code () == TYPE_CODE_PTR)
1610 addr = value_as_long (arr);
1611 else
1612 addr = value_address (arr);
1613
1614 return
1615 value_from_longest (lookup_pointer_type (bounds_type),
1616 addr - TYPE_LENGTH (bounds_type));
1617 }
1618
1619 else if (is_thick_pntr (type))
1620 {
1621 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1622 _("Bad GNAT array descriptor"));
1623 struct type *p_bounds_type = value_type (p_bounds);
1624
1625 if (p_bounds_type
1626 && p_bounds_type->code () == TYPE_CODE_PTR)
1627 {
1628 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1629
1630 if (TYPE_STUB (target_type))
1631 p_bounds = value_cast (lookup_pointer_type
1632 (ada_check_typedef (target_type)),
1633 p_bounds);
1634 }
1635 else
1636 error (_("Bad GNAT array descriptor"));
1637
1638 return p_bounds;
1639 }
1640 else
1641 return NULL;
1642 }
1643
1644 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1645 position of the field containing the address of the bounds data. */
1646
1647 static int
1648 fat_pntr_bounds_bitpos (struct type *type)
1649 {
1650 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1651 }
1652
1653 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1654 size of the field containing the address of the bounds data. */
1655
1656 static int
1657 fat_pntr_bounds_bitsize (struct type *type)
1658 {
1659 type = desc_base_type (type);
1660
1661 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1662 return TYPE_FIELD_BITSIZE (type, 1);
1663 else
1664 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its array data (a array-with-no-bounds type);
1669 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1670 data. */
1671
1672 static struct type *
1673 desc_data_target_type (struct type *type)
1674 {
1675 type = desc_base_type (type);
1676
1677 /* NOTE: The following is bogus; see comment in desc_bounds. */
1678 if (is_thin_pntr (type))
1679 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1680 else if (is_thick_pntr (type))
1681 {
1682 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1683
1684 if (data_type
1685 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1686 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1687 }
1688
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1693 its array data. */
1694
1695 static struct value *
1696 desc_data (struct value *arr)
1697 {
1698 struct type *type = value_type (arr);
1699
1700 if (is_thin_pntr (type))
1701 return thin_data_pntr (arr);
1702 else if (is_thick_pntr (type))
1703 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1704 _("Bad GNAT array descriptor"));
1705 else
1706 return NULL;
1707 }
1708
1709
1710 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1711 position of the field containing the address of the data. */
1712
1713 static int
1714 fat_pntr_data_bitpos (struct type *type)
1715 {
1716 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1717 }
1718
1719 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1720 size of the field containing the address of the data. */
1721
1722 static int
1723 fat_pntr_data_bitsize (struct type *type)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 0);
1729 else
1730 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1731 }
1732
1733 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1734 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1735 bound, if WHICH is 1. The first bound is I=1. */
1736
1737 static struct value *
1738 desc_one_bound (struct value *bounds, int i, int which)
1739 {
1740 char bound_name[20];
1741 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1742 which ? 'U' : 'L', i - 1);
1743 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1744 _("Bad GNAT array descriptor bounds"));
1745 }
1746
1747 /* If BOUNDS is an array-bounds structure type, return the bit position
1748 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1749 bound, if WHICH is 1. The first bound is I=1. */
1750
1751 static int
1752 desc_bound_bitpos (struct type *type, int i, int which)
1753 {
1754 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1755 }
1756
1757 /* If BOUNDS is an array-bounds structure type, return the bit field size
1758 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1759 bound, if WHICH is 1. The first bound is I=1. */
1760
1761 static int
1762 desc_bound_bitsize (struct type *type, int i, int which)
1763 {
1764 type = desc_base_type (type);
1765
1766 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1767 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1768 else
1769 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1770 }
1771
1772 /* If TYPE is the type of an array-bounds structure, the type of its
1773 Ith bound (numbering from 1). Otherwise, NULL. */
1774
1775 static struct type *
1776 desc_index_type (struct type *type, int i)
1777 {
1778 type = desc_base_type (type);
1779
1780 if (type->code () == TYPE_CODE_STRUCT)
1781 {
1782 char bound_name[20];
1783 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1784 return lookup_struct_elt_type (type, bound_name, 1);
1785 }
1786 else
1787 return NULL;
1788 }
1789
1790 /* The number of index positions in the array-bounds type TYPE.
1791 Return 0 if TYPE is NULL. */
1792
1793 static int
1794 desc_arity (struct type *type)
1795 {
1796 type = desc_base_type (type);
1797
1798 if (type != NULL)
1799 return type->num_fields () / 2;
1800 return 0;
1801 }
1802
1803 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1804 an array descriptor type (representing an unconstrained array
1805 type). */
1806
1807 static int
1808 ada_is_direct_array_type (struct type *type)
1809 {
1810 if (type == NULL)
1811 return 0;
1812 type = ada_check_typedef (type);
1813 return (type->code () == TYPE_CODE_ARRAY
1814 || ada_is_array_descriptor_type (type));
1815 }
1816
1817 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1818 * to one. */
1819
1820 static int
1821 ada_is_array_type (struct type *type)
1822 {
1823 while (type != NULL
1824 && (type->code () == TYPE_CODE_PTR
1825 || type->code () == TYPE_CODE_REF))
1826 type = TYPE_TARGET_TYPE (type);
1827 return ada_is_direct_array_type (type);
1828 }
1829
1830 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1831
1832 int
1833 ada_is_simple_array_type (struct type *type)
1834 {
1835 if (type == NULL)
1836 return 0;
1837 type = ada_check_typedef (type);
1838 return (type->code () == TYPE_CODE_ARRAY
1839 || (type->code () == TYPE_CODE_PTR
1840 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1841 == TYPE_CODE_ARRAY)));
1842 }
1843
1844 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1845
1846 int
1847 ada_is_array_descriptor_type (struct type *type)
1848 {
1849 struct type *data_type = desc_data_target_type (type);
1850
1851 if (type == NULL)
1852 return 0;
1853 type = ada_check_typedef (type);
1854 return (data_type != NULL
1855 && data_type->code () == TYPE_CODE_ARRAY
1856 && desc_arity (desc_bounds_type (type)) > 0);
1857 }
1858
1859 /* Non-zero iff type is a partially mal-formed GNAT array
1860 descriptor. FIXME: This is to compensate for some problems with
1861 debugging output from GNAT. Re-examine periodically to see if it
1862 is still needed. */
1863
1864 int
1865 ada_is_bogus_array_descriptor (struct type *type)
1866 {
1867 return
1868 type != NULL
1869 && type->code () == TYPE_CODE_STRUCT
1870 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1871 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1872 && !ada_is_array_descriptor_type (type);
1873 }
1874
1875
1876 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1877 (fat pointer) returns the type of the array data described---specifically,
1878 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1879 in from the descriptor; otherwise, they are left unspecified. If
1880 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1881 returns NULL. The result is simply the type of ARR if ARR is not
1882 a descriptor. */
1883
1884 static struct type *
1885 ada_type_of_array (struct value *arr, int bounds)
1886 {
1887 if (ada_is_constrained_packed_array_type (value_type (arr)))
1888 return decode_constrained_packed_array_type (value_type (arr));
1889
1890 if (!ada_is_array_descriptor_type (value_type (arr)))
1891 return value_type (arr);
1892
1893 if (!bounds)
1894 {
1895 struct type *array_type =
1896 ada_check_typedef (desc_data_target_type (value_type (arr)));
1897
1898 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1899 TYPE_FIELD_BITSIZE (array_type, 0) =
1900 decode_packed_array_bitsize (value_type (arr));
1901
1902 return array_type;
1903 }
1904 else
1905 {
1906 struct type *elt_type;
1907 int arity;
1908 struct value *descriptor;
1909
1910 elt_type = ada_array_element_type (value_type (arr), -1);
1911 arity = ada_array_arity (value_type (arr));
1912
1913 if (elt_type == NULL || arity == 0)
1914 return ada_check_typedef (value_type (arr));
1915
1916 descriptor = desc_bounds (arr);
1917 if (value_as_long (descriptor) == 0)
1918 return NULL;
1919 while (arity > 0)
1920 {
1921 struct type *range_type = alloc_type_copy (value_type (arr));
1922 struct type *array_type = alloc_type_copy (value_type (arr));
1923 struct value *low = desc_one_bound (descriptor, arity, 0);
1924 struct value *high = desc_one_bound (descriptor, arity, 1);
1925
1926 arity -= 1;
1927 create_static_range_type (range_type, value_type (low),
1928 longest_to_int (value_as_long (low)),
1929 longest_to_int (value_as_long (high)));
1930 elt_type = create_array_type (array_type, elt_type, range_type);
1931
1932 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1933 {
1934 /* We need to store the element packed bitsize, as well as
1935 recompute the array size, because it was previously
1936 computed based on the unpacked element size. */
1937 LONGEST lo = value_as_long (low);
1938 LONGEST hi = value_as_long (high);
1939
1940 TYPE_FIELD_BITSIZE (elt_type, 0) =
1941 decode_packed_array_bitsize (value_type (arr));
1942 /* If the array has no element, then the size is already
1943 zero, and does not need to be recomputed. */
1944 if (lo < hi)
1945 {
1946 int array_bitsize =
1947 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1948
1949 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1950 }
1951 }
1952 }
1953
1954 return lookup_pointer_type (elt_type);
1955 }
1956 }
1957
1958 /* If ARR does not represent an array, returns ARR unchanged.
1959 Otherwise, returns either a standard GDB array with bounds set
1960 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1961 GDB array. Returns NULL if ARR is a null fat pointer. */
1962
1963 struct value *
1964 ada_coerce_to_simple_array_ptr (struct value *arr)
1965 {
1966 if (ada_is_array_descriptor_type (value_type (arr)))
1967 {
1968 struct type *arrType = ada_type_of_array (arr, 1);
1969
1970 if (arrType == NULL)
1971 return NULL;
1972 return value_cast (arrType, value_copy (desc_data (arr)));
1973 }
1974 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1975 return decode_constrained_packed_array (arr);
1976 else
1977 return arr;
1978 }
1979
1980 /* If ARR does not represent an array, returns ARR unchanged.
1981 Otherwise, returns a standard GDB array describing ARR (which may
1982 be ARR itself if it already is in the proper form). */
1983
1984 struct value *
1985 ada_coerce_to_simple_array (struct value *arr)
1986 {
1987 if (ada_is_array_descriptor_type (value_type (arr)))
1988 {
1989 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1990
1991 if (arrVal == NULL)
1992 error (_("Bounds unavailable for null array pointer."));
1993 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1994 return value_ind (arrVal);
1995 }
1996 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1997 return decode_constrained_packed_array (arr);
1998 else
1999 return arr;
2000 }
2001
2002 /* If TYPE represents a GNAT array type, return it translated to an
2003 ordinary GDB array type (possibly with BITSIZE fields indicating
2004 packing). For other types, is the identity. */
2005
2006 struct type *
2007 ada_coerce_to_simple_array_type (struct type *type)
2008 {
2009 if (ada_is_constrained_packed_array_type (type))
2010 return decode_constrained_packed_array_type (type);
2011
2012 if (ada_is_array_descriptor_type (type))
2013 return ada_check_typedef (desc_data_target_type (type));
2014
2015 return type;
2016 }
2017
2018 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2019
2020 static int
2021 ada_is_packed_array_type (struct type *type)
2022 {
2023 if (type == NULL)
2024 return 0;
2025 type = desc_base_type (type);
2026 type = ada_check_typedef (type);
2027 return
2028 ada_type_name (type) != NULL
2029 && strstr (ada_type_name (type), "___XP") != NULL;
2030 }
2031
2032 /* Non-zero iff TYPE represents a standard GNAT constrained
2033 packed-array type. */
2034
2035 int
2036 ada_is_constrained_packed_array_type (struct type *type)
2037 {
2038 return ada_is_packed_array_type (type)
2039 && !ada_is_array_descriptor_type (type);
2040 }
2041
2042 /* Non-zero iff TYPE represents an array descriptor for a
2043 unconstrained packed-array type. */
2044
2045 static int
2046 ada_is_unconstrained_packed_array_type (struct type *type)
2047 {
2048 return ada_is_packed_array_type (type)
2049 && ada_is_array_descriptor_type (type);
2050 }
2051
2052 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2053 return the size of its elements in bits. */
2054
2055 static long
2056 decode_packed_array_bitsize (struct type *type)
2057 {
2058 const char *raw_name;
2059 const char *tail;
2060 long bits;
2061
2062 /* Access to arrays implemented as fat pointers are encoded as a typedef
2063 of the fat pointer type. We need the name of the fat pointer type
2064 to do the decoding, so strip the typedef layer. */
2065 if (type->code () == TYPE_CODE_TYPEDEF)
2066 type = ada_typedef_target_type (type);
2067
2068 raw_name = ada_type_name (ada_check_typedef (type));
2069 if (!raw_name)
2070 raw_name = ada_type_name (desc_base_type (type));
2071
2072 if (!raw_name)
2073 return 0;
2074
2075 tail = strstr (raw_name, "___XP");
2076 gdb_assert (tail != NULL);
2077
2078 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2079 {
2080 lim_warning
2081 (_("could not understand bit size information on packed array"));
2082 return 0;
2083 }
2084
2085 return bits;
2086 }
2087
2088 /* Given that TYPE is a standard GDB array type with all bounds filled
2089 in, and that the element size of its ultimate scalar constituents
2090 (that is, either its elements, or, if it is an array of arrays, its
2091 elements' elements, etc.) is *ELT_BITS, return an identical type,
2092 but with the bit sizes of its elements (and those of any
2093 constituent arrays) recorded in the BITSIZE components of its
2094 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2095 in bits.
2096
2097 Note that, for arrays whose index type has an XA encoding where
2098 a bound references a record discriminant, getting that discriminant,
2099 and therefore the actual value of that bound, is not possible
2100 because none of the given parameters gives us access to the record.
2101 This function assumes that it is OK in the context where it is being
2102 used to return an array whose bounds are still dynamic and where
2103 the length is arbitrary. */
2104
2105 static struct type *
2106 constrained_packed_array_type (struct type *type, long *elt_bits)
2107 {
2108 struct type *new_elt_type;
2109 struct type *new_type;
2110 struct type *index_type_desc;
2111 struct type *index_type;
2112 LONGEST low_bound, high_bound;
2113
2114 type = ada_check_typedef (type);
2115 if (type->code () != TYPE_CODE_ARRAY)
2116 return type;
2117
2118 index_type_desc = ada_find_parallel_type (type, "___XA");
2119 if (index_type_desc)
2120 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2121 NULL);
2122 else
2123 index_type = TYPE_INDEX_TYPE (type);
2124
2125 new_type = alloc_type_copy (type);
2126 new_elt_type =
2127 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2128 elt_bits);
2129 create_array_type (new_type, new_elt_type, index_type);
2130 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2131 new_type->set_name (ada_type_name (type));
2132
2133 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2134 && is_dynamic_type (check_typedef (index_type)))
2135 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2136 low_bound = high_bound = 0;
2137 if (high_bound < low_bound)
2138 *elt_bits = TYPE_LENGTH (new_type) = 0;
2139 else
2140 {
2141 *elt_bits *= (high_bound - low_bound + 1);
2142 TYPE_LENGTH (new_type) =
2143 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2144 }
2145
2146 TYPE_FIXED_INSTANCE (new_type) = 1;
2147 return new_type;
2148 }
2149
2150 /* The array type encoded by TYPE, where
2151 ada_is_constrained_packed_array_type (TYPE). */
2152
2153 static struct type *
2154 decode_constrained_packed_array_type (struct type *type)
2155 {
2156 const char *raw_name = ada_type_name (ada_check_typedef (type));
2157 char *name;
2158 const char *tail;
2159 struct type *shadow_type;
2160 long bits;
2161
2162 if (!raw_name)
2163 raw_name = ada_type_name (desc_base_type (type));
2164
2165 if (!raw_name)
2166 return NULL;
2167
2168 name = (char *) alloca (strlen (raw_name) + 1);
2169 tail = strstr (raw_name, "___XP");
2170 type = desc_base_type (type);
2171
2172 memcpy (name, raw_name, tail - raw_name);
2173 name[tail - raw_name] = '\000';
2174
2175 shadow_type = ada_find_parallel_type_with_name (type, name);
2176
2177 if (shadow_type == NULL)
2178 {
2179 lim_warning (_("could not find bounds information on packed array"));
2180 return NULL;
2181 }
2182 shadow_type = check_typedef (shadow_type);
2183
2184 if (shadow_type->code () != TYPE_CODE_ARRAY)
2185 {
2186 lim_warning (_("could not understand bounds "
2187 "information on packed array"));
2188 return NULL;
2189 }
2190
2191 bits = decode_packed_array_bitsize (type);
2192 return constrained_packed_array_type (shadow_type, &bits);
2193 }
2194
2195 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2196 array, returns a simple array that denotes that array. Its type is a
2197 standard GDB array type except that the BITSIZEs of the array
2198 target types are set to the number of bits in each element, and the
2199 type length is set appropriately. */
2200
2201 static struct value *
2202 decode_constrained_packed_array (struct value *arr)
2203 {
2204 struct type *type;
2205
2206 /* If our value is a pointer, then dereference it. Likewise if
2207 the value is a reference. Make sure that this operation does not
2208 cause the target type to be fixed, as this would indirectly cause
2209 this array to be decoded. The rest of the routine assumes that
2210 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2211 and "value_ind" routines to perform the dereferencing, as opposed
2212 to using "ada_coerce_ref" or "ada_value_ind". */
2213 arr = coerce_ref (arr);
2214 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2215 arr = value_ind (arr);
2216
2217 type = decode_constrained_packed_array_type (value_type (arr));
2218 if (type == NULL)
2219 {
2220 error (_("can't unpack array"));
2221 return NULL;
2222 }
2223
2224 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2225 && ada_is_modular_type (value_type (arr)))
2226 {
2227 /* This is a (right-justified) modular type representing a packed
2228 array with no wrapper. In order to interpret the value through
2229 the (left-justified) packed array type we just built, we must
2230 first left-justify it. */
2231 int bit_size, bit_pos;
2232 ULONGEST mod;
2233
2234 mod = ada_modulus (value_type (arr)) - 1;
2235 bit_size = 0;
2236 while (mod > 0)
2237 {
2238 bit_size += 1;
2239 mod >>= 1;
2240 }
2241 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2242 arr = ada_value_primitive_packed_val (arr, NULL,
2243 bit_pos / HOST_CHAR_BIT,
2244 bit_pos % HOST_CHAR_BIT,
2245 bit_size,
2246 type);
2247 }
2248
2249 return coerce_unspec_val_to_type (arr, type);
2250 }
2251
2252
2253 /* The value of the element of packed array ARR at the ARITY indices
2254 given in IND. ARR must be a simple array. */
2255
2256 static struct value *
2257 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2258 {
2259 int i;
2260 int bits, elt_off, bit_off;
2261 long elt_total_bit_offset;
2262 struct type *elt_type;
2263 struct value *v;
2264
2265 bits = 0;
2266 elt_total_bit_offset = 0;
2267 elt_type = ada_check_typedef (value_type (arr));
2268 for (i = 0; i < arity; i += 1)
2269 {
2270 if (elt_type->code () != TYPE_CODE_ARRAY
2271 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2272 error
2273 (_("attempt to do packed indexing of "
2274 "something other than a packed array"));
2275 else
2276 {
2277 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2278 LONGEST lowerbound, upperbound;
2279 LONGEST idx;
2280
2281 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2282 {
2283 lim_warning (_("don't know bounds of array"));
2284 lowerbound = upperbound = 0;
2285 }
2286
2287 idx = pos_atr (ind[i]);
2288 if (idx < lowerbound || idx > upperbound)
2289 lim_warning (_("packed array index %ld out of bounds"),
2290 (long) idx);
2291 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2292 elt_total_bit_offset += (idx - lowerbound) * bits;
2293 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2294 }
2295 }
2296 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2297 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2298
2299 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2300 bits, elt_type);
2301 return v;
2302 }
2303
2304 /* Non-zero iff TYPE includes negative integer values. */
2305
2306 static int
2307 has_negatives (struct type *type)
2308 {
2309 switch (type->code ())
2310 {
2311 default:
2312 return 0;
2313 case TYPE_CODE_INT:
2314 return !TYPE_UNSIGNED (type);
2315 case TYPE_CODE_RANGE:
2316 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2317 }
2318 }
2319
2320 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2321 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2322 the unpacked buffer.
2323
2324 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2325 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2326
2327 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2328 zero otherwise.
2329
2330 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2331
2332 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2333
2334 static void
2335 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2336 gdb_byte *unpacked, int unpacked_len,
2337 int is_big_endian, int is_signed_type,
2338 int is_scalar)
2339 {
2340 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2341 int src_idx; /* Index into the source area */
2342 int src_bytes_left; /* Number of source bytes left to process. */
2343 int srcBitsLeft; /* Number of source bits left to move */
2344 int unusedLS; /* Number of bits in next significant
2345 byte of source that are unused */
2346
2347 int unpacked_idx; /* Index into the unpacked buffer */
2348 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2349
2350 unsigned long accum; /* Staging area for bits being transferred */
2351 int accumSize; /* Number of meaningful bits in accum */
2352 unsigned char sign;
2353
2354 /* Transmit bytes from least to most significant; delta is the direction
2355 the indices move. */
2356 int delta = is_big_endian ? -1 : 1;
2357
2358 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2359 bits from SRC. .*/
2360 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2361 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2362 bit_size, unpacked_len);
2363
2364 srcBitsLeft = bit_size;
2365 src_bytes_left = src_len;
2366 unpacked_bytes_left = unpacked_len;
2367 sign = 0;
2368
2369 if (is_big_endian)
2370 {
2371 src_idx = src_len - 1;
2372 if (is_signed_type
2373 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2374 sign = ~0;
2375
2376 unusedLS =
2377 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2378 % HOST_CHAR_BIT;
2379
2380 if (is_scalar)
2381 {
2382 accumSize = 0;
2383 unpacked_idx = unpacked_len - 1;
2384 }
2385 else
2386 {
2387 /* Non-scalar values must be aligned at a byte boundary... */
2388 accumSize =
2389 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2390 /* ... And are placed at the beginning (most-significant) bytes
2391 of the target. */
2392 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2393 unpacked_bytes_left = unpacked_idx + 1;
2394 }
2395 }
2396 else
2397 {
2398 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2399
2400 src_idx = unpacked_idx = 0;
2401 unusedLS = bit_offset;
2402 accumSize = 0;
2403
2404 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2405 sign = ~0;
2406 }
2407
2408 accum = 0;
2409 while (src_bytes_left > 0)
2410 {
2411 /* Mask for removing bits of the next source byte that are not
2412 part of the value. */
2413 unsigned int unusedMSMask =
2414 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2415 1;
2416 /* Sign-extend bits for this byte. */
2417 unsigned int signMask = sign & ~unusedMSMask;
2418
2419 accum |=
2420 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2421 accumSize += HOST_CHAR_BIT - unusedLS;
2422 if (accumSize >= HOST_CHAR_BIT)
2423 {
2424 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2425 accumSize -= HOST_CHAR_BIT;
2426 accum >>= HOST_CHAR_BIT;
2427 unpacked_bytes_left -= 1;
2428 unpacked_idx += delta;
2429 }
2430 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2431 unusedLS = 0;
2432 src_bytes_left -= 1;
2433 src_idx += delta;
2434 }
2435 while (unpacked_bytes_left > 0)
2436 {
2437 accum |= sign << accumSize;
2438 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2439 accumSize -= HOST_CHAR_BIT;
2440 if (accumSize < 0)
2441 accumSize = 0;
2442 accum >>= HOST_CHAR_BIT;
2443 unpacked_bytes_left -= 1;
2444 unpacked_idx += delta;
2445 }
2446 }
2447
2448 /* Create a new value of type TYPE from the contents of OBJ starting
2449 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2450 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2451 assigning through the result will set the field fetched from.
2452 VALADDR is ignored unless OBJ is NULL, in which case,
2453 VALADDR+OFFSET must address the start of storage containing the
2454 packed value. The value returned in this case is never an lval.
2455 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2456
2457 struct value *
2458 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2459 long offset, int bit_offset, int bit_size,
2460 struct type *type)
2461 {
2462 struct value *v;
2463 const gdb_byte *src; /* First byte containing data to unpack */
2464 gdb_byte *unpacked;
2465 const int is_scalar = is_scalar_type (type);
2466 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2467 gdb::byte_vector staging;
2468
2469 type = ada_check_typedef (type);
2470
2471 if (obj == NULL)
2472 src = valaddr + offset;
2473 else
2474 src = value_contents (obj) + offset;
2475
2476 if (is_dynamic_type (type))
2477 {
2478 /* The length of TYPE might by dynamic, so we need to resolve
2479 TYPE in order to know its actual size, which we then use
2480 to create the contents buffer of the value we return.
2481 The difficulty is that the data containing our object is
2482 packed, and therefore maybe not at a byte boundary. So, what
2483 we do, is unpack the data into a byte-aligned buffer, and then
2484 use that buffer as our object's value for resolving the type. */
2485 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2486 staging.resize (staging_len);
2487
2488 ada_unpack_from_contents (src, bit_offset, bit_size,
2489 staging.data (), staging.size (),
2490 is_big_endian, has_negatives (type),
2491 is_scalar);
2492 type = resolve_dynamic_type (type, staging, 0);
2493 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2494 {
2495 /* This happens when the length of the object is dynamic,
2496 and is actually smaller than the space reserved for it.
2497 For instance, in an array of variant records, the bit_size
2498 we're given is the array stride, which is constant and
2499 normally equal to the maximum size of its element.
2500 But, in reality, each element only actually spans a portion
2501 of that stride. */
2502 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2503 }
2504 }
2505
2506 if (obj == NULL)
2507 {
2508 v = allocate_value (type);
2509 src = valaddr + offset;
2510 }
2511 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2512 {
2513 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2514 gdb_byte *buf;
2515
2516 v = value_at (type, value_address (obj) + offset);
2517 buf = (gdb_byte *) alloca (src_len);
2518 read_memory (value_address (v), buf, src_len);
2519 src = buf;
2520 }
2521 else
2522 {
2523 v = allocate_value (type);
2524 src = value_contents (obj) + offset;
2525 }
2526
2527 if (obj != NULL)
2528 {
2529 long new_offset = offset;
2530
2531 set_value_component_location (v, obj);
2532 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2533 set_value_bitsize (v, bit_size);
2534 if (value_bitpos (v) >= HOST_CHAR_BIT)
2535 {
2536 ++new_offset;
2537 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2538 }
2539 set_value_offset (v, new_offset);
2540
2541 /* Also set the parent value. This is needed when trying to
2542 assign a new value (in inferior memory). */
2543 set_value_parent (v, obj);
2544 }
2545 else
2546 set_value_bitsize (v, bit_size);
2547 unpacked = value_contents_writeable (v);
2548
2549 if (bit_size == 0)
2550 {
2551 memset (unpacked, 0, TYPE_LENGTH (type));
2552 return v;
2553 }
2554
2555 if (staging.size () == TYPE_LENGTH (type))
2556 {
2557 /* Small short-cut: If we've unpacked the data into a buffer
2558 of the same size as TYPE's length, then we can reuse that,
2559 instead of doing the unpacking again. */
2560 memcpy (unpacked, staging.data (), staging.size ());
2561 }
2562 else
2563 ada_unpack_from_contents (src, bit_offset, bit_size,
2564 unpacked, TYPE_LENGTH (type),
2565 is_big_endian, has_negatives (type), is_scalar);
2566
2567 return v;
2568 }
2569
2570 /* Store the contents of FROMVAL into the location of TOVAL.
2571 Return a new value with the location of TOVAL and contents of
2572 FROMVAL. Handles assignment into packed fields that have
2573 floating-point or non-scalar types. */
2574
2575 static struct value *
2576 ada_value_assign (struct value *toval, struct value *fromval)
2577 {
2578 struct type *type = value_type (toval);
2579 int bits = value_bitsize (toval);
2580
2581 toval = ada_coerce_ref (toval);
2582 fromval = ada_coerce_ref (fromval);
2583
2584 if (ada_is_direct_array_type (value_type (toval)))
2585 toval = ada_coerce_to_simple_array (toval);
2586 if (ada_is_direct_array_type (value_type (fromval)))
2587 fromval = ada_coerce_to_simple_array (fromval);
2588
2589 if (!deprecated_value_modifiable (toval))
2590 error (_("Left operand of assignment is not a modifiable lvalue."));
2591
2592 if (VALUE_LVAL (toval) == lval_memory
2593 && bits > 0
2594 && (type->code () == TYPE_CODE_FLT
2595 || type->code () == TYPE_CODE_STRUCT))
2596 {
2597 int len = (value_bitpos (toval)
2598 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2599 int from_size;
2600 gdb_byte *buffer = (gdb_byte *) alloca (len);
2601 struct value *val;
2602 CORE_ADDR to_addr = value_address (toval);
2603
2604 if (type->code () == TYPE_CODE_FLT)
2605 fromval = value_cast (type, fromval);
2606
2607 read_memory (to_addr, buffer, len);
2608 from_size = value_bitsize (fromval);
2609 if (from_size == 0)
2610 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2611
2612 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2613 ULONGEST from_offset = 0;
2614 if (is_big_endian && is_scalar_type (value_type (fromval)))
2615 from_offset = from_size - bits;
2616 copy_bitwise (buffer, value_bitpos (toval),
2617 value_contents (fromval), from_offset,
2618 bits, is_big_endian);
2619 write_memory_with_notification (to_addr, buffer, len);
2620
2621 val = value_copy (toval);
2622 memcpy (value_contents_raw (val), value_contents (fromval),
2623 TYPE_LENGTH (type));
2624 deprecated_set_value_type (val, type);
2625
2626 return val;
2627 }
2628
2629 return value_assign (toval, fromval);
2630 }
2631
2632
2633 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2634 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2635 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2636 COMPONENT, and not the inferior's memory. The current contents
2637 of COMPONENT are ignored.
2638
2639 Although not part of the initial design, this function also works
2640 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2641 had a null address, and COMPONENT had an address which is equal to
2642 its offset inside CONTAINER. */
2643
2644 static void
2645 value_assign_to_component (struct value *container, struct value *component,
2646 struct value *val)
2647 {
2648 LONGEST offset_in_container =
2649 (LONGEST) (value_address (component) - value_address (container));
2650 int bit_offset_in_container =
2651 value_bitpos (component) - value_bitpos (container);
2652 int bits;
2653
2654 val = value_cast (value_type (component), val);
2655
2656 if (value_bitsize (component) == 0)
2657 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2658 else
2659 bits = value_bitsize (component);
2660
2661 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2662 {
2663 int src_offset;
2664
2665 if (is_scalar_type (check_typedef (value_type (component))))
2666 src_offset
2667 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2668 else
2669 src_offset = 0;
2670 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2671 value_bitpos (container) + bit_offset_in_container,
2672 value_contents (val), src_offset, bits, 1);
2673 }
2674 else
2675 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2676 value_bitpos (container) + bit_offset_in_container,
2677 value_contents (val), 0, bits, 0);
2678 }
2679
2680 /* Determine if TYPE is an access to an unconstrained array. */
2681
2682 bool
2683 ada_is_access_to_unconstrained_array (struct type *type)
2684 {
2685 return (type->code () == TYPE_CODE_TYPEDEF
2686 && is_thick_pntr (ada_typedef_target_type (type)));
2687 }
2688
2689 /* The value of the element of array ARR at the ARITY indices given in IND.
2690 ARR may be either a simple array, GNAT array descriptor, or pointer
2691 thereto. */
2692
2693 struct value *
2694 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2695 {
2696 int k;
2697 struct value *elt;
2698 struct type *elt_type;
2699
2700 elt = ada_coerce_to_simple_array (arr);
2701
2702 elt_type = ada_check_typedef (value_type (elt));
2703 if (elt_type->code () == TYPE_CODE_ARRAY
2704 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2705 return value_subscript_packed (elt, arity, ind);
2706
2707 for (k = 0; k < arity; k += 1)
2708 {
2709 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2710
2711 if (elt_type->code () != TYPE_CODE_ARRAY)
2712 error (_("too many subscripts (%d expected)"), k);
2713
2714 elt = value_subscript (elt, pos_atr (ind[k]));
2715
2716 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2717 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2718 {
2719 /* The element is a typedef to an unconstrained array,
2720 except that the value_subscript call stripped the
2721 typedef layer. The typedef layer is GNAT's way to
2722 specify that the element is, at the source level, an
2723 access to the unconstrained array, rather than the
2724 unconstrained array. So, we need to restore that
2725 typedef layer, which we can do by forcing the element's
2726 type back to its original type. Otherwise, the returned
2727 value is going to be printed as the array, rather
2728 than as an access. Another symptom of the same issue
2729 would be that an expression trying to dereference the
2730 element would also be improperly rejected. */
2731 deprecated_set_value_type (elt, saved_elt_type);
2732 }
2733
2734 elt_type = ada_check_typedef (value_type (elt));
2735 }
2736
2737 return elt;
2738 }
2739
2740 /* Assuming ARR is a pointer to a GDB array, the value of the element
2741 of *ARR at the ARITY indices given in IND.
2742 Does not read the entire array into memory.
2743
2744 Note: Unlike what one would expect, this function is used instead of
2745 ada_value_subscript for basically all non-packed array types. The reason
2746 for this is that a side effect of doing our own pointer arithmetics instead
2747 of relying on value_subscript is that there is no implicit typedef peeling.
2748 This is important for arrays of array accesses, where it allows us to
2749 preserve the fact that the array's element is an array access, where the
2750 access part os encoded in a typedef layer. */
2751
2752 static struct value *
2753 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2754 {
2755 int k;
2756 struct value *array_ind = ada_value_ind (arr);
2757 struct type *type
2758 = check_typedef (value_enclosing_type (array_ind));
2759
2760 if (type->code () == TYPE_CODE_ARRAY
2761 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2762 return value_subscript_packed (array_ind, arity, ind);
2763
2764 for (k = 0; k < arity; k += 1)
2765 {
2766 LONGEST lwb, upb;
2767
2768 if (type->code () != TYPE_CODE_ARRAY)
2769 error (_("too many subscripts (%d expected)"), k);
2770 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2771 value_copy (arr));
2772 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2773 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2774 type = TYPE_TARGET_TYPE (type);
2775 }
2776
2777 return value_ind (arr);
2778 }
2779
2780 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2781 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2782 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2783 this array is LOW, as per Ada rules. */
2784 static struct value *
2785 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2786 int low, int high)
2787 {
2788 struct type *type0 = ada_check_typedef (type);
2789 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2790 struct type *index_type
2791 = create_static_range_type (NULL, base_index_type, low, high);
2792 struct type *slice_type = create_array_type_with_stride
2793 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2794 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2795 TYPE_FIELD_BITSIZE (type0, 0));
2796 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2797 LONGEST base_low_pos, low_pos;
2798 CORE_ADDR base;
2799
2800 if (!discrete_position (base_index_type, low, &low_pos)
2801 || !discrete_position (base_index_type, base_low, &base_low_pos))
2802 {
2803 warning (_("unable to get positions in slice, use bounds instead"));
2804 low_pos = low;
2805 base_low_pos = base_low;
2806 }
2807
2808 base = value_as_address (array_ptr)
2809 + ((low_pos - base_low_pos)
2810 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2811 return value_at_lazy (slice_type, base);
2812 }
2813
2814
2815 static struct value *
2816 ada_value_slice (struct value *array, int low, int high)
2817 {
2818 struct type *type = ada_check_typedef (value_type (array));
2819 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2820 struct type *index_type
2821 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2822 struct type *slice_type = create_array_type_with_stride
2823 (NULL, TYPE_TARGET_TYPE (type), index_type,
2824 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2825 TYPE_FIELD_BITSIZE (type, 0));
2826 LONGEST low_pos, high_pos;
2827
2828 if (!discrete_position (base_index_type, low, &low_pos)
2829 || !discrete_position (base_index_type, high, &high_pos))
2830 {
2831 warning (_("unable to get positions in slice, use bounds instead"));
2832 low_pos = low;
2833 high_pos = high;
2834 }
2835
2836 return value_cast (slice_type,
2837 value_slice (array, low, high_pos - low_pos + 1));
2838 }
2839
2840 /* If type is a record type in the form of a standard GNAT array
2841 descriptor, returns the number of dimensions for type. If arr is a
2842 simple array, returns the number of "array of"s that prefix its
2843 type designation. Otherwise, returns 0. */
2844
2845 int
2846 ada_array_arity (struct type *type)
2847 {
2848 int arity;
2849
2850 if (type == NULL)
2851 return 0;
2852
2853 type = desc_base_type (type);
2854
2855 arity = 0;
2856 if (type->code () == TYPE_CODE_STRUCT)
2857 return desc_arity (desc_bounds_type (type));
2858 else
2859 while (type->code () == TYPE_CODE_ARRAY)
2860 {
2861 arity += 1;
2862 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2863 }
2864
2865 return arity;
2866 }
2867
2868 /* If TYPE is a record type in the form of a standard GNAT array
2869 descriptor or a simple array type, returns the element type for
2870 TYPE after indexing by NINDICES indices, or by all indices if
2871 NINDICES is -1. Otherwise, returns NULL. */
2872
2873 struct type *
2874 ada_array_element_type (struct type *type, int nindices)
2875 {
2876 type = desc_base_type (type);
2877
2878 if (type->code () == TYPE_CODE_STRUCT)
2879 {
2880 int k;
2881 struct type *p_array_type;
2882
2883 p_array_type = desc_data_target_type (type);
2884
2885 k = ada_array_arity (type);
2886 if (k == 0)
2887 return NULL;
2888
2889 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2890 if (nindices >= 0 && k > nindices)
2891 k = nindices;
2892 while (k > 0 && p_array_type != NULL)
2893 {
2894 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2895 k -= 1;
2896 }
2897 return p_array_type;
2898 }
2899 else if (type->code () == TYPE_CODE_ARRAY)
2900 {
2901 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2902 {
2903 type = TYPE_TARGET_TYPE (type);
2904 nindices -= 1;
2905 }
2906 return type;
2907 }
2908
2909 return NULL;
2910 }
2911
2912 /* The type of nth index in arrays of given type (n numbering from 1).
2913 Does not examine memory. Throws an error if N is invalid or TYPE
2914 is not an array type. NAME is the name of the Ada attribute being
2915 evaluated ('range, 'first, 'last, or 'length); it is used in building
2916 the error message. */
2917
2918 static struct type *
2919 ada_index_type (struct type *type, int n, const char *name)
2920 {
2921 struct type *result_type;
2922
2923 type = desc_base_type (type);
2924
2925 if (n < 0 || n > ada_array_arity (type))
2926 error (_("invalid dimension number to '%s"), name);
2927
2928 if (ada_is_simple_array_type (type))
2929 {
2930 int i;
2931
2932 for (i = 1; i < n; i += 1)
2933 type = TYPE_TARGET_TYPE (type);
2934 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2935 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2936 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2937 perhaps stabsread.c would make more sense. */
2938 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2939 result_type = NULL;
2940 }
2941 else
2942 {
2943 result_type = desc_index_type (desc_bounds_type (type), n);
2944 if (result_type == NULL)
2945 error (_("attempt to take bound of something that is not an array"));
2946 }
2947
2948 return result_type;
2949 }
2950
2951 /* Given that arr is an array type, returns the lower bound of the
2952 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2953 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2954 array-descriptor type. It works for other arrays with bounds supplied
2955 by run-time quantities other than discriminants. */
2956
2957 static LONGEST
2958 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2959 {
2960 struct type *type, *index_type_desc, *index_type;
2961 int i;
2962
2963 gdb_assert (which == 0 || which == 1);
2964
2965 if (ada_is_constrained_packed_array_type (arr_type))
2966 arr_type = decode_constrained_packed_array_type (arr_type);
2967
2968 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2969 return (LONGEST) - which;
2970
2971 if (arr_type->code () == TYPE_CODE_PTR)
2972 type = TYPE_TARGET_TYPE (arr_type);
2973 else
2974 type = arr_type;
2975
2976 if (TYPE_FIXED_INSTANCE (type))
2977 {
2978 /* The array has already been fixed, so we do not need to
2979 check the parallel ___XA type again. That encoding has
2980 already been applied, so ignore it now. */
2981 index_type_desc = NULL;
2982 }
2983 else
2984 {
2985 index_type_desc = ada_find_parallel_type (type, "___XA");
2986 ada_fixup_array_indexes_type (index_type_desc);
2987 }
2988
2989 if (index_type_desc != NULL)
2990 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2991 NULL);
2992 else
2993 {
2994 struct type *elt_type = check_typedef (type);
2995
2996 for (i = 1; i < n; i++)
2997 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2998
2999 index_type = TYPE_INDEX_TYPE (elt_type);
3000 }
3001
3002 return
3003 (LONGEST) (which == 0
3004 ? ada_discrete_type_low_bound (index_type)
3005 : ada_discrete_type_high_bound (index_type));
3006 }
3007
3008 /* Given that arr is an array value, returns the lower bound of the
3009 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3010 WHICH is 1. This routine will also work for arrays with bounds
3011 supplied by run-time quantities other than discriminants. */
3012
3013 static LONGEST
3014 ada_array_bound (struct value *arr, int n, int which)
3015 {
3016 struct type *arr_type;
3017
3018 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3019 arr = value_ind (arr);
3020 arr_type = value_enclosing_type (arr);
3021
3022 if (ada_is_constrained_packed_array_type (arr_type))
3023 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3024 else if (ada_is_simple_array_type (arr_type))
3025 return ada_array_bound_from_type (arr_type, n, which);
3026 else
3027 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3028 }
3029
3030 /* Given that arr is an array value, returns the length of the
3031 nth index. This routine will also work for arrays with bounds
3032 supplied by run-time quantities other than discriminants.
3033 Does not work for arrays indexed by enumeration types with representation
3034 clauses at the moment. */
3035
3036 static LONGEST
3037 ada_array_length (struct value *arr, int n)
3038 {
3039 struct type *arr_type, *index_type;
3040 int low, high;
3041
3042 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3043 arr = value_ind (arr);
3044 arr_type = value_enclosing_type (arr);
3045
3046 if (ada_is_constrained_packed_array_type (arr_type))
3047 return ada_array_length (decode_constrained_packed_array (arr), n);
3048
3049 if (ada_is_simple_array_type (arr_type))
3050 {
3051 low = ada_array_bound_from_type (arr_type, n, 0);
3052 high = ada_array_bound_from_type (arr_type, n, 1);
3053 }
3054 else
3055 {
3056 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3057 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3058 }
3059
3060 arr_type = check_typedef (arr_type);
3061 index_type = ada_index_type (arr_type, n, "length");
3062 if (index_type != NULL)
3063 {
3064 struct type *base_type;
3065 if (index_type->code () == TYPE_CODE_RANGE)
3066 base_type = TYPE_TARGET_TYPE (index_type);
3067 else
3068 base_type = index_type;
3069
3070 low = pos_atr (value_from_longest (base_type, low));
3071 high = pos_atr (value_from_longest (base_type, high));
3072 }
3073 return high - low + 1;
3074 }
3075
3076 /* An array whose type is that of ARR_TYPE (an array type), with
3077 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3078 less than LOW, then LOW-1 is used. */
3079
3080 static struct value *
3081 empty_array (struct type *arr_type, int low, int high)
3082 {
3083 struct type *arr_type0 = ada_check_typedef (arr_type);
3084 struct type *index_type
3085 = create_static_range_type
3086 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3087 high < low ? low - 1 : high);
3088 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3089
3090 return allocate_value (create_array_type (NULL, elt_type, index_type));
3091 }
3092 \f
3093
3094 /* Name resolution */
3095
3096 /* The "decoded" name for the user-definable Ada operator corresponding
3097 to OP. */
3098
3099 static const char *
3100 ada_decoded_op_name (enum exp_opcode op)
3101 {
3102 int i;
3103
3104 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3105 {
3106 if (ada_opname_table[i].op == op)
3107 return ada_opname_table[i].decoded;
3108 }
3109 error (_("Could not find operator name for opcode"));
3110 }
3111
3112 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3113 in a listing of choices during disambiguation (see sort_choices, below).
3114 The idea is that overloadings of a subprogram name from the
3115 same package should sort in their source order. We settle for ordering
3116 such symbols by their trailing number (__N or $N). */
3117
3118 static int
3119 encoded_ordered_before (const char *N0, const char *N1)
3120 {
3121 if (N1 == NULL)
3122 return 0;
3123 else if (N0 == NULL)
3124 return 1;
3125 else
3126 {
3127 int k0, k1;
3128
3129 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3130 ;
3131 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3132 ;
3133 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3134 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3135 {
3136 int n0, n1;
3137
3138 n0 = k0;
3139 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3140 n0 -= 1;
3141 n1 = k1;
3142 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3143 n1 -= 1;
3144 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3145 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3146 }
3147 return (strcmp (N0, N1) < 0);
3148 }
3149 }
3150
3151 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3152 encoded names. */
3153
3154 static void
3155 sort_choices (struct block_symbol syms[], int nsyms)
3156 {
3157 int i;
3158
3159 for (i = 1; i < nsyms; i += 1)
3160 {
3161 struct block_symbol sym = syms[i];
3162 int j;
3163
3164 for (j = i - 1; j >= 0; j -= 1)
3165 {
3166 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3167 sym.symbol->linkage_name ()))
3168 break;
3169 syms[j + 1] = syms[j];
3170 }
3171 syms[j + 1] = sym;
3172 }
3173 }
3174
3175 /* Whether GDB should display formals and return types for functions in the
3176 overloads selection menu. */
3177 static bool print_signatures = true;
3178
3179 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3180 all but functions, the signature is just the name of the symbol. For
3181 functions, this is the name of the function, the list of types for formals
3182 and the return type (if any). */
3183
3184 static void
3185 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3186 const struct type_print_options *flags)
3187 {
3188 struct type *type = SYMBOL_TYPE (sym);
3189
3190 fprintf_filtered (stream, "%s", sym->print_name ());
3191 if (!print_signatures
3192 || type == NULL
3193 || type->code () != TYPE_CODE_FUNC)
3194 return;
3195
3196 if (type->num_fields () > 0)
3197 {
3198 int i;
3199
3200 fprintf_filtered (stream, " (");
3201 for (i = 0; i < type->num_fields (); ++i)
3202 {
3203 if (i > 0)
3204 fprintf_filtered (stream, "; ");
3205 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3206 flags);
3207 }
3208 fprintf_filtered (stream, ")");
3209 }
3210 if (TYPE_TARGET_TYPE (type) != NULL
3211 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3212 {
3213 fprintf_filtered (stream, " return ");
3214 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3215 }
3216 }
3217
3218 /* Read and validate a set of numeric choices from the user in the
3219 range 0 .. N_CHOICES-1. Place the results in increasing
3220 order in CHOICES[0 .. N-1], and return N.
3221
3222 The user types choices as a sequence of numbers on one line
3223 separated by blanks, encoding them as follows:
3224
3225 + A choice of 0 means to cancel the selection, throwing an error.
3226 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3227 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3228
3229 The user is not allowed to choose more than MAX_RESULTS values.
3230
3231 ANNOTATION_SUFFIX, if present, is used to annotate the input
3232 prompts (for use with the -f switch). */
3233
3234 static int
3235 get_selections (int *choices, int n_choices, int max_results,
3236 int is_all_choice, const char *annotation_suffix)
3237 {
3238 const char *args;
3239 const char *prompt;
3240 int n_chosen;
3241 int first_choice = is_all_choice ? 2 : 1;
3242
3243 prompt = getenv ("PS2");
3244 if (prompt == NULL)
3245 prompt = "> ";
3246
3247 args = command_line_input (prompt, annotation_suffix);
3248
3249 if (args == NULL)
3250 error_no_arg (_("one or more choice numbers"));
3251
3252 n_chosen = 0;
3253
3254 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3255 order, as given in args. Choices are validated. */
3256 while (1)
3257 {
3258 char *args2;
3259 int choice, j;
3260
3261 args = skip_spaces (args);
3262 if (*args == '\0' && n_chosen == 0)
3263 error_no_arg (_("one or more choice numbers"));
3264 else if (*args == '\0')
3265 break;
3266
3267 choice = strtol (args, &args2, 10);
3268 if (args == args2 || choice < 0
3269 || choice > n_choices + first_choice - 1)
3270 error (_("Argument must be choice number"));
3271 args = args2;
3272
3273 if (choice == 0)
3274 error (_("cancelled"));
3275
3276 if (choice < first_choice)
3277 {
3278 n_chosen = n_choices;
3279 for (j = 0; j < n_choices; j += 1)
3280 choices[j] = j;
3281 break;
3282 }
3283 choice -= first_choice;
3284
3285 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3286 {
3287 }
3288
3289 if (j < 0 || choice != choices[j])
3290 {
3291 int k;
3292
3293 for (k = n_chosen - 1; k > j; k -= 1)
3294 choices[k + 1] = choices[k];
3295 choices[j + 1] = choice;
3296 n_chosen += 1;
3297 }
3298 }
3299
3300 if (n_chosen > max_results)
3301 error (_("Select no more than %d of the above"), max_results);
3302
3303 return n_chosen;
3304 }
3305
3306 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3307 by asking the user (if necessary), returning the number selected,
3308 and setting the first elements of SYMS items. Error if no symbols
3309 selected. */
3310
3311 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3312 to be re-integrated one of these days. */
3313
3314 static int
3315 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3316 {
3317 int i;
3318 int *chosen = XALLOCAVEC (int , nsyms);
3319 int n_chosen;
3320 int first_choice = (max_results == 1) ? 1 : 2;
3321 const char *select_mode = multiple_symbols_select_mode ();
3322
3323 if (max_results < 1)
3324 error (_("Request to select 0 symbols!"));
3325 if (nsyms <= 1)
3326 return nsyms;
3327
3328 if (select_mode == multiple_symbols_cancel)
3329 error (_("\
3330 canceled because the command is ambiguous\n\
3331 See set/show multiple-symbol."));
3332
3333 /* If select_mode is "all", then return all possible symbols.
3334 Only do that if more than one symbol can be selected, of course.
3335 Otherwise, display the menu as usual. */
3336 if (select_mode == multiple_symbols_all && max_results > 1)
3337 return nsyms;
3338
3339 printf_filtered (_("[0] cancel\n"));
3340 if (max_results > 1)
3341 printf_filtered (_("[1] all\n"));
3342
3343 sort_choices (syms, nsyms);
3344
3345 for (i = 0; i < nsyms; i += 1)
3346 {
3347 if (syms[i].symbol == NULL)
3348 continue;
3349
3350 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3351 {
3352 struct symtab_and_line sal =
3353 find_function_start_sal (syms[i].symbol, 1);
3354
3355 printf_filtered ("[%d] ", i + first_choice);
3356 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3357 &type_print_raw_options);
3358 if (sal.symtab == NULL)
3359 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3360 metadata_style.style ().ptr (), nullptr, sal.line);
3361 else
3362 printf_filtered
3363 (_(" at %ps:%d\n"),
3364 styled_string (file_name_style.style (),
3365 symtab_to_filename_for_display (sal.symtab)),
3366 sal.line);
3367 continue;
3368 }
3369 else
3370 {
3371 int is_enumeral =
3372 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3373 && SYMBOL_TYPE (syms[i].symbol) != NULL
3374 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3375 struct symtab *symtab = NULL;
3376
3377 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3378 symtab = symbol_symtab (syms[i].symbol);
3379
3380 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3381 {
3382 printf_filtered ("[%d] ", i + first_choice);
3383 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3384 &type_print_raw_options);
3385 printf_filtered (_(" at %s:%d\n"),
3386 symtab_to_filename_for_display (symtab),
3387 SYMBOL_LINE (syms[i].symbol));
3388 }
3389 else if (is_enumeral
3390 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3391 {
3392 printf_filtered (("[%d] "), i + first_choice);
3393 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3394 gdb_stdout, -1, 0, &type_print_raw_options);
3395 printf_filtered (_("'(%s) (enumeral)\n"),
3396 syms[i].symbol->print_name ());
3397 }
3398 else
3399 {
3400 printf_filtered ("[%d] ", i + first_choice);
3401 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3402 &type_print_raw_options);
3403
3404 if (symtab != NULL)
3405 printf_filtered (is_enumeral
3406 ? _(" in %s (enumeral)\n")
3407 : _(" at %s:?\n"),
3408 symtab_to_filename_for_display (symtab));
3409 else
3410 printf_filtered (is_enumeral
3411 ? _(" (enumeral)\n")
3412 : _(" at ?\n"));
3413 }
3414 }
3415 }
3416
3417 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3418 "overload-choice");
3419
3420 for (i = 0; i < n_chosen; i += 1)
3421 syms[i] = syms[chosen[i]];
3422
3423 return n_chosen;
3424 }
3425
3426 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3427 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3428 undefined namespace) and converts operators that are
3429 user-defined into appropriate function calls. If CONTEXT_TYPE is
3430 non-null, it provides a preferred result type [at the moment, only
3431 type void has any effect---causing procedures to be preferred over
3432 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3433 return type is preferred. May change (expand) *EXP. */
3434
3435 static void
3436 resolve (expression_up *expp, int void_context_p, int parse_completion,
3437 innermost_block_tracker *tracker)
3438 {
3439 struct type *context_type = NULL;
3440 int pc = 0;
3441
3442 if (void_context_p)
3443 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3444
3445 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3446 }
3447
3448 /* Resolve the operator of the subexpression beginning at
3449 position *POS of *EXPP. "Resolving" consists of replacing
3450 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3451 with their resolutions, replacing built-in operators with
3452 function calls to user-defined operators, where appropriate, and,
3453 when DEPROCEDURE_P is non-zero, converting function-valued variables
3454 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3455 are as in ada_resolve, above. */
3456
3457 static struct value *
3458 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3459 struct type *context_type, int parse_completion,
3460 innermost_block_tracker *tracker)
3461 {
3462 int pc = *pos;
3463 int i;
3464 struct expression *exp; /* Convenience: == *expp. */
3465 enum exp_opcode op = (*expp)->elts[pc].opcode;
3466 struct value **argvec; /* Vector of operand types (alloca'ed). */
3467 int nargs; /* Number of operands. */
3468 int oplen;
3469
3470 argvec = NULL;
3471 nargs = 0;
3472 exp = expp->get ();
3473
3474 /* Pass one: resolve operands, saving their types and updating *pos,
3475 if needed. */
3476 switch (op)
3477 {
3478 case OP_FUNCALL:
3479 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3480 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3481 *pos += 7;
3482 else
3483 {
3484 *pos += 3;
3485 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3486 }
3487 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3488 break;
3489
3490 case UNOP_ADDR:
3491 *pos += 1;
3492 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3493 break;
3494
3495 case UNOP_QUAL:
3496 *pos += 3;
3497 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3498 parse_completion, tracker);
3499 break;
3500
3501 case OP_ATR_MODULUS:
3502 case OP_ATR_SIZE:
3503 case OP_ATR_TAG:
3504 case OP_ATR_FIRST:
3505 case OP_ATR_LAST:
3506 case OP_ATR_LENGTH:
3507 case OP_ATR_POS:
3508 case OP_ATR_VAL:
3509 case OP_ATR_MIN:
3510 case OP_ATR_MAX:
3511 case TERNOP_IN_RANGE:
3512 case BINOP_IN_BOUNDS:
3513 case UNOP_IN_RANGE:
3514 case OP_AGGREGATE:
3515 case OP_OTHERS:
3516 case OP_CHOICES:
3517 case OP_POSITIONAL:
3518 case OP_DISCRETE_RANGE:
3519 case OP_NAME:
3520 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3521 *pos += oplen;
3522 break;
3523
3524 case BINOP_ASSIGN:
3525 {
3526 struct value *arg1;
3527
3528 *pos += 1;
3529 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3530 if (arg1 == NULL)
3531 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3532 else
3533 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3534 tracker);
3535 break;
3536 }
3537
3538 case UNOP_CAST:
3539 *pos += 3;
3540 nargs = 1;
3541 break;
3542
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_EXP:
3550 case BINOP_CONCAT:
3551 case BINOP_LOGICAL_AND:
3552 case BINOP_LOGICAL_OR:
3553 case BINOP_BITWISE_AND:
3554 case BINOP_BITWISE_IOR:
3555 case BINOP_BITWISE_XOR:
3556
3557 case BINOP_EQUAL:
3558 case BINOP_NOTEQUAL:
3559 case BINOP_LESS:
3560 case BINOP_GTR:
3561 case BINOP_LEQ:
3562 case BINOP_GEQ:
3563
3564 case BINOP_REPEAT:
3565 case BINOP_SUBSCRIPT:
3566 case BINOP_COMMA:
3567 *pos += 1;
3568 nargs = 2;
3569 break;
3570
3571 case UNOP_NEG:
3572 case UNOP_PLUS:
3573 case UNOP_LOGICAL_NOT:
3574 case UNOP_ABS:
3575 case UNOP_IND:
3576 *pos += 1;
3577 nargs = 1;
3578 break;
3579
3580 case OP_LONG:
3581 case OP_FLOAT:
3582 case OP_VAR_VALUE:
3583 case OP_VAR_MSYM_VALUE:
3584 *pos += 4;
3585 break;
3586
3587 case OP_TYPE:
3588 case OP_BOOL:
3589 case OP_LAST:
3590 case OP_INTERNALVAR:
3591 *pos += 3;
3592 break;
3593
3594 case UNOP_MEMVAL:
3595 *pos += 3;
3596 nargs = 1;
3597 break;
3598
3599 case OP_REGISTER:
3600 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3601 break;
3602
3603 case STRUCTOP_STRUCT:
3604 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3605 nargs = 1;
3606 break;
3607
3608 case TERNOP_SLICE:
3609 *pos += 1;
3610 nargs = 3;
3611 break;
3612
3613 case OP_STRING:
3614 break;
3615
3616 default:
3617 error (_("Unexpected operator during name resolution"));
3618 }
3619
3620 argvec = XALLOCAVEC (struct value *, nargs + 1);
3621 for (i = 0; i < nargs; i += 1)
3622 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3623 tracker);
3624 argvec[i] = NULL;
3625 exp = expp->get ();
3626
3627 /* Pass two: perform any resolution on principal operator. */
3628 switch (op)
3629 {
3630 default:
3631 break;
3632
3633 case OP_VAR_VALUE:
3634 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3635 {
3636 std::vector<struct block_symbol> candidates;
3637 int n_candidates;
3638
3639 n_candidates =
3640 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3641 exp->elts[pc + 1].block, VAR_DOMAIN,
3642 &candidates);
3643
3644 if (n_candidates > 1)
3645 {
3646 /* Types tend to get re-introduced locally, so if there
3647 are any local symbols that are not types, first filter
3648 out all types. */
3649 int j;
3650 for (j = 0; j < n_candidates; j += 1)
3651 switch (SYMBOL_CLASS (candidates[j].symbol))
3652 {
3653 case LOC_REGISTER:
3654 case LOC_ARG:
3655 case LOC_REF_ARG:
3656 case LOC_REGPARM_ADDR:
3657 case LOC_LOCAL:
3658 case LOC_COMPUTED:
3659 goto FoundNonType;
3660 default:
3661 break;
3662 }
3663 FoundNonType:
3664 if (j < n_candidates)
3665 {
3666 j = 0;
3667 while (j < n_candidates)
3668 {
3669 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3670 {
3671 candidates[j] = candidates[n_candidates - 1];
3672 n_candidates -= 1;
3673 }
3674 else
3675 j += 1;
3676 }
3677 }
3678 }
3679
3680 if (n_candidates == 0)
3681 error (_("No definition found for %s"),
3682 exp->elts[pc + 2].symbol->print_name ());
3683 else if (n_candidates == 1)
3684 i = 0;
3685 else if (deprocedure_p
3686 && !is_nonfunction (candidates.data (), n_candidates))
3687 {
3688 i = ada_resolve_function
3689 (candidates.data (), n_candidates, NULL, 0,
3690 exp->elts[pc + 2].symbol->linkage_name (),
3691 context_type, parse_completion);
3692 if (i < 0)
3693 error (_("Could not find a match for %s"),
3694 exp->elts[pc + 2].symbol->print_name ());
3695 }
3696 else
3697 {
3698 printf_filtered (_("Multiple matches for %s\n"),
3699 exp->elts[pc + 2].symbol->print_name ());
3700 user_select_syms (candidates.data (), n_candidates, 1);
3701 i = 0;
3702 }
3703
3704 exp->elts[pc + 1].block = candidates[i].block;
3705 exp->elts[pc + 2].symbol = candidates[i].symbol;
3706 tracker->update (candidates[i]);
3707 }
3708
3709 if (deprocedure_p
3710 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3711 == TYPE_CODE_FUNC))
3712 {
3713 replace_operator_with_call (expp, pc, 0, 4,
3714 exp->elts[pc + 2].symbol,
3715 exp->elts[pc + 1].block);
3716 exp = expp->get ();
3717 }
3718 break;
3719
3720 case OP_FUNCALL:
3721 {
3722 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3723 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3724 {
3725 std::vector<struct block_symbol> candidates;
3726 int n_candidates;
3727
3728 n_candidates =
3729 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3730 exp->elts[pc + 4].block, VAR_DOMAIN,
3731 &candidates);
3732
3733 if (n_candidates == 1)
3734 i = 0;
3735 else
3736 {
3737 i = ada_resolve_function
3738 (candidates.data (), n_candidates,
3739 argvec, nargs,
3740 exp->elts[pc + 5].symbol->linkage_name (),
3741 context_type, parse_completion);
3742 if (i < 0)
3743 error (_("Could not find a match for %s"),
3744 exp->elts[pc + 5].symbol->print_name ());
3745 }
3746
3747 exp->elts[pc + 4].block = candidates[i].block;
3748 exp->elts[pc + 5].symbol = candidates[i].symbol;
3749 tracker->update (candidates[i]);
3750 }
3751 }
3752 break;
3753 case BINOP_ADD:
3754 case BINOP_SUB:
3755 case BINOP_MUL:
3756 case BINOP_DIV:
3757 case BINOP_REM:
3758 case BINOP_MOD:
3759 case BINOP_CONCAT:
3760 case BINOP_BITWISE_AND:
3761 case BINOP_BITWISE_IOR:
3762 case BINOP_BITWISE_XOR:
3763 case BINOP_EQUAL:
3764 case BINOP_NOTEQUAL:
3765 case BINOP_LESS:
3766 case BINOP_GTR:
3767 case BINOP_LEQ:
3768 case BINOP_GEQ:
3769 case BINOP_EXP:
3770 case UNOP_NEG:
3771 case UNOP_PLUS:
3772 case UNOP_LOGICAL_NOT:
3773 case UNOP_ABS:
3774 if (possible_user_operator_p (op, argvec))
3775 {
3776 std::vector<struct block_symbol> candidates;
3777 int n_candidates;
3778
3779 n_candidates =
3780 ada_lookup_symbol_list (ada_decoded_op_name (op),
3781 NULL, VAR_DOMAIN,
3782 &candidates);
3783
3784 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3785 nargs, ada_decoded_op_name (op), NULL,
3786 parse_completion);
3787 if (i < 0)
3788 break;
3789
3790 replace_operator_with_call (expp, pc, nargs, 1,
3791 candidates[i].symbol,
3792 candidates[i].block);
3793 exp = expp->get ();
3794 }
3795 break;
3796
3797 case OP_TYPE:
3798 case OP_REGISTER:
3799 return NULL;
3800 }
3801
3802 *pos = pc;
3803 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3804 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3805 exp->elts[pc + 1].objfile,
3806 exp->elts[pc + 2].msymbol);
3807 else
3808 return evaluate_subexp_type (exp, pos);
3809 }
3810
3811 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3812 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3813 a non-pointer. */
3814 /* The term "match" here is rather loose. The match is heuristic and
3815 liberal. */
3816
3817 static int
3818 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3819 {
3820 ftype = ada_check_typedef (ftype);
3821 atype = ada_check_typedef (atype);
3822
3823 if (ftype->code () == TYPE_CODE_REF)
3824 ftype = TYPE_TARGET_TYPE (ftype);
3825 if (atype->code () == TYPE_CODE_REF)
3826 atype = TYPE_TARGET_TYPE (atype);
3827
3828 switch (ftype->code ())
3829 {
3830 default:
3831 return ftype->code () == atype->code ();
3832 case TYPE_CODE_PTR:
3833 if (atype->code () == TYPE_CODE_PTR)
3834 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3835 TYPE_TARGET_TYPE (atype), 0);
3836 else
3837 return (may_deref
3838 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3839 case TYPE_CODE_INT:
3840 case TYPE_CODE_ENUM:
3841 case TYPE_CODE_RANGE:
3842 switch (atype->code ())
3843 {
3844 case TYPE_CODE_INT:
3845 case TYPE_CODE_ENUM:
3846 case TYPE_CODE_RANGE:
3847 return 1;
3848 default:
3849 return 0;
3850 }
3851
3852 case TYPE_CODE_ARRAY:
3853 return (atype->code () == TYPE_CODE_ARRAY
3854 || ada_is_array_descriptor_type (atype));
3855
3856 case TYPE_CODE_STRUCT:
3857 if (ada_is_array_descriptor_type (ftype))
3858 return (atype->code () == TYPE_CODE_ARRAY
3859 || ada_is_array_descriptor_type (atype));
3860 else
3861 return (atype->code () == TYPE_CODE_STRUCT
3862 && !ada_is_array_descriptor_type (atype));
3863
3864 case TYPE_CODE_UNION:
3865 case TYPE_CODE_FLT:
3866 return (atype->code () == ftype->code ());
3867 }
3868 }
3869
3870 /* Return non-zero if the formals of FUNC "sufficiently match" the
3871 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3872 may also be an enumeral, in which case it is treated as a 0-
3873 argument function. */
3874
3875 static int
3876 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3877 {
3878 int i;
3879 struct type *func_type = SYMBOL_TYPE (func);
3880
3881 if (SYMBOL_CLASS (func) == LOC_CONST
3882 && func_type->code () == TYPE_CODE_ENUM)
3883 return (n_actuals == 0);
3884 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3885 return 0;
3886
3887 if (func_type->num_fields () != n_actuals)
3888 return 0;
3889
3890 for (i = 0; i < n_actuals; i += 1)
3891 {
3892 if (actuals[i] == NULL)
3893 return 0;
3894 else
3895 {
3896 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3897 i));
3898 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3899
3900 if (!ada_type_match (ftype, atype, 1))
3901 return 0;
3902 }
3903 }
3904 return 1;
3905 }
3906
3907 /* False iff function type FUNC_TYPE definitely does not produce a value
3908 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3909 FUNC_TYPE is not a valid function type with a non-null return type
3910 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3911
3912 static int
3913 return_match (struct type *func_type, struct type *context_type)
3914 {
3915 struct type *return_type;
3916
3917 if (func_type == NULL)
3918 return 1;
3919
3920 if (func_type->code () == TYPE_CODE_FUNC)
3921 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3922 else
3923 return_type = get_base_type (func_type);
3924 if (return_type == NULL)
3925 return 1;
3926
3927 context_type = get_base_type (context_type);
3928
3929 if (return_type->code () == TYPE_CODE_ENUM)
3930 return context_type == NULL || return_type == context_type;
3931 else if (context_type == NULL)
3932 return return_type->code () != TYPE_CODE_VOID;
3933 else
3934 return return_type->code () == context_type->code ();
3935 }
3936
3937
3938 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3939 function (if any) that matches the types of the NARGS arguments in
3940 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3941 that returns that type, then eliminate matches that don't. If
3942 CONTEXT_TYPE is void and there is at least one match that does not
3943 return void, eliminate all matches that do.
3944
3945 Asks the user if there is more than one match remaining. Returns -1
3946 if there is no such symbol or none is selected. NAME is used
3947 solely for messages. May re-arrange and modify SYMS in
3948 the process; the index returned is for the modified vector. */
3949
3950 static int
3951 ada_resolve_function (struct block_symbol syms[],
3952 int nsyms, struct value **args, int nargs,
3953 const char *name, struct type *context_type,
3954 int parse_completion)
3955 {
3956 int fallback;
3957 int k;
3958 int m; /* Number of hits */
3959
3960 m = 0;
3961 /* In the first pass of the loop, we only accept functions matching
3962 context_type. If none are found, we add a second pass of the loop
3963 where every function is accepted. */
3964 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3965 {
3966 for (k = 0; k < nsyms; k += 1)
3967 {
3968 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3969
3970 if (ada_args_match (syms[k].symbol, args, nargs)
3971 && (fallback || return_match (type, context_type)))
3972 {
3973 syms[m] = syms[k];
3974 m += 1;
3975 }
3976 }
3977 }
3978
3979 /* If we got multiple matches, ask the user which one to use. Don't do this
3980 interactive thing during completion, though, as the purpose of the
3981 completion is providing a list of all possible matches. Prompting the
3982 user to filter it down would be completely unexpected in this case. */
3983 if (m == 0)
3984 return -1;
3985 else if (m > 1 && !parse_completion)
3986 {
3987 printf_filtered (_("Multiple matches for %s\n"), name);
3988 user_select_syms (syms, m, 1);
3989 return 0;
3990 }
3991 return 0;
3992 }
3993
3994 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3995 on the function identified by SYM and BLOCK, and taking NARGS
3996 arguments. Update *EXPP as needed to hold more space. */
3997
3998 static void
3999 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4000 int oplen, struct symbol *sym,
4001 const struct block *block)
4002 {
4003 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4004 symbol, -oplen for operator being replaced). */
4005 struct expression *newexp = (struct expression *)
4006 xzalloc (sizeof (struct expression)
4007 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4008 struct expression *exp = expp->get ();
4009
4010 newexp->nelts = exp->nelts + 7 - oplen;
4011 newexp->language_defn = exp->language_defn;
4012 newexp->gdbarch = exp->gdbarch;
4013 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4014 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4015 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4016
4017 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4018 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4019
4020 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4021 newexp->elts[pc + 4].block = block;
4022 newexp->elts[pc + 5].symbol = sym;
4023
4024 expp->reset (newexp);
4025 }
4026
4027 /* Type-class predicates */
4028
4029 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4030 or FLOAT). */
4031
4032 static int
4033 numeric_type_p (struct type *type)
4034 {
4035 if (type == NULL)
4036 return 0;
4037 else
4038 {
4039 switch (type->code ())
4040 {
4041 case TYPE_CODE_INT:
4042 case TYPE_CODE_FLT:
4043 return 1;
4044 case TYPE_CODE_RANGE:
4045 return (type == TYPE_TARGET_TYPE (type)
4046 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4047 default:
4048 return 0;
4049 }
4050 }
4051 }
4052
4053 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4054
4055 static int
4056 integer_type_p (struct type *type)
4057 {
4058 if (type == NULL)
4059 return 0;
4060 else
4061 {
4062 switch (type->code ())
4063 {
4064 case TYPE_CODE_INT:
4065 return 1;
4066 case TYPE_CODE_RANGE:
4067 return (type == TYPE_TARGET_TYPE (type)
4068 || integer_type_p (TYPE_TARGET_TYPE (type)));
4069 default:
4070 return 0;
4071 }
4072 }
4073 }
4074
4075 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4076
4077 static int
4078 scalar_type_p (struct type *type)
4079 {
4080 if (type == NULL)
4081 return 0;
4082 else
4083 {
4084 switch (type->code ())
4085 {
4086 case TYPE_CODE_INT:
4087 case TYPE_CODE_RANGE:
4088 case TYPE_CODE_ENUM:
4089 case TYPE_CODE_FLT:
4090 return 1;
4091 default:
4092 return 0;
4093 }
4094 }
4095 }
4096
4097 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4098
4099 static int
4100 discrete_type_p (struct type *type)
4101 {
4102 if (type == NULL)
4103 return 0;
4104 else
4105 {
4106 switch (type->code ())
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_ENUM:
4111 case TYPE_CODE_BOOL:
4112 return 1;
4113 default:
4114 return 0;
4115 }
4116 }
4117 }
4118
4119 /* Returns non-zero if OP with operands in the vector ARGS could be
4120 a user-defined function. Errs on the side of pre-defined operators
4121 (i.e., result 0). */
4122
4123 static int
4124 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4125 {
4126 struct type *type0 =
4127 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4128 struct type *type1 =
4129 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4130
4131 if (type0 == NULL)
4132 return 0;
4133
4134 switch (op)
4135 {
4136 default:
4137 return 0;
4138
4139 case BINOP_ADD:
4140 case BINOP_SUB:
4141 case BINOP_MUL:
4142 case BINOP_DIV:
4143 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4144
4145 case BINOP_REM:
4146 case BINOP_MOD:
4147 case BINOP_BITWISE_AND:
4148 case BINOP_BITWISE_IOR:
4149 case BINOP_BITWISE_XOR:
4150 return (!(integer_type_p (type0) && integer_type_p (type1)));
4151
4152 case BINOP_EQUAL:
4153 case BINOP_NOTEQUAL:
4154 case BINOP_LESS:
4155 case BINOP_GTR:
4156 case BINOP_LEQ:
4157 case BINOP_GEQ:
4158 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4159
4160 case BINOP_CONCAT:
4161 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4162
4163 case BINOP_EXP:
4164 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4165
4166 case UNOP_NEG:
4167 case UNOP_PLUS:
4168 case UNOP_LOGICAL_NOT:
4169 case UNOP_ABS:
4170 return (!numeric_type_p (type0));
4171
4172 }
4173 }
4174 \f
4175 /* Renaming */
4176
4177 /* NOTES:
4178
4179 1. In the following, we assume that a renaming type's name may
4180 have an ___XD suffix. It would be nice if this went away at some
4181 point.
4182 2. We handle both the (old) purely type-based representation of
4183 renamings and the (new) variable-based encoding. At some point,
4184 it is devoutly to be hoped that the former goes away
4185 (FIXME: hilfinger-2007-07-09).
4186 3. Subprogram renamings are not implemented, although the XRS
4187 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4188
4189 /* If SYM encodes a renaming,
4190
4191 <renaming> renames <renamed entity>,
4192
4193 sets *LEN to the length of the renamed entity's name,
4194 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4195 the string describing the subcomponent selected from the renamed
4196 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4197 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4198 are undefined). Otherwise, returns a value indicating the category
4199 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4200 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4201 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4202 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4203 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4204 may be NULL, in which case they are not assigned.
4205
4206 [Currently, however, GCC does not generate subprogram renamings.] */
4207
4208 enum ada_renaming_category
4209 ada_parse_renaming (struct symbol *sym,
4210 const char **renamed_entity, int *len,
4211 const char **renaming_expr)
4212 {
4213 enum ada_renaming_category kind;
4214 const char *info;
4215 const char *suffix;
4216
4217 if (sym == NULL)
4218 return ADA_NOT_RENAMING;
4219 switch (SYMBOL_CLASS (sym))
4220 {
4221 default:
4222 return ADA_NOT_RENAMING;
4223 case LOC_LOCAL:
4224 case LOC_STATIC:
4225 case LOC_COMPUTED:
4226 case LOC_OPTIMIZED_OUT:
4227 info = strstr (sym->linkage_name (), "___XR");
4228 if (info == NULL)
4229 return ADA_NOT_RENAMING;
4230 switch (info[5])
4231 {
4232 case '_':
4233 kind = ADA_OBJECT_RENAMING;
4234 info += 6;
4235 break;
4236 case 'E':
4237 kind = ADA_EXCEPTION_RENAMING;
4238 info += 7;
4239 break;
4240 case 'P':
4241 kind = ADA_PACKAGE_RENAMING;
4242 info += 7;
4243 break;
4244 case 'S':
4245 kind = ADA_SUBPROGRAM_RENAMING;
4246 info += 7;
4247 break;
4248 default:
4249 return ADA_NOT_RENAMING;
4250 }
4251 }
4252
4253 if (renamed_entity != NULL)
4254 *renamed_entity = info;
4255 suffix = strstr (info, "___XE");
4256 if (suffix == NULL || suffix == info)
4257 return ADA_NOT_RENAMING;
4258 if (len != NULL)
4259 *len = strlen (info) - strlen (suffix);
4260 suffix += 5;
4261 if (renaming_expr != NULL)
4262 *renaming_expr = suffix;
4263 return kind;
4264 }
4265
4266 /* Compute the value of the given RENAMING_SYM, which is expected to
4267 be a symbol encoding a renaming expression. BLOCK is the block
4268 used to evaluate the renaming. */
4269
4270 static struct value *
4271 ada_read_renaming_var_value (struct symbol *renaming_sym,
4272 const struct block *block)
4273 {
4274 const char *sym_name;
4275
4276 sym_name = renaming_sym->linkage_name ();
4277 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4278 return evaluate_expression (expr.get ());
4279 }
4280 \f
4281
4282 /* Evaluation: Function Calls */
4283
4284 /* Return an lvalue containing the value VAL. This is the identity on
4285 lvalues, and otherwise has the side-effect of allocating memory
4286 in the inferior where a copy of the value contents is copied. */
4287
4288 static struct value *
4289 ensure_lval (struct value *val)
4290 {
4291 if (VALUE_LVAL (val) == not_lval
4292 || VALUE_LVAL (val) == lval_internalvar)
4293 {
4294 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4295 const CORE_ADDR addr =
4296 value_as_long (value_allocate_space_in_inferior (len));
4297
4298 VALUE_LVAL (val) = lval_memory;
4299 set_value_address (val, addr);
4300 write_memory (addr, value_contents (val), len);
4301 }
4302
4303 return val;
4304 }
4305
4306 /* Given ARG, a value of type (pointer or reference to a)*
4307 structure/union, extract the component named NAME from the ultimate
4308 target structure/union and return it as a value with its
4309 appropriate type.
4310
4311 The routine searches for NAME among all members of the structure itself
4312 and (recursively) among all members of any wrapper members
4313 (e.g., '_parent').
4314
4315 If NO_ERR, then simply return NULL in case of error, rather than
4316 calling error. */
4317
4318 static struct value *
4319 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4320 {
4321 struct type *t, *t1;
4322 struct value *v;
4323 int check_tag;
4324
4325 v = NULL;
4326 t1 = t = ada_check_typedef (value_type (arg));
4327 if (t->code () == TYPE_CODE_REF)
4328 {
4329 t1 = TYPE_TARGET_TYPE (t);
4330 if (t1 == NULL)
4331 goto BadValue;
4332 t1 = ada_check_typedef (t1);
4333 if (t1->code () == TYPE_CODE_PTR)
4334 {
4335 arg = coerce_ref (arg);
4336 t = t1;
4337 }
4338 }
4339
4340 while (t->code () == TYPE_CODE_PTR)
4341 {
4342 t1 = TYPE_TARGET_TYPE (t);
4343 if (t1 == NULL)
4344 goto BadValue;
4345 t1 = ada_check_typedef (t1);
4346 if (t1->code () == TYPE_CODE_PTR)
4347 {
4348 arg = value_ind (arg);
4349 t = t1;
4350 }
4351 else
4352 break;
4353 }
4354
4355 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4356 goto BadValue;
4357
4358 if (t1 == t)
4359 v = ada_search_struct_field (name, arg, 0, t);
4360 else
4361 {
4362 int bit_offset, bit_size, byte_offset;
4363 struct type *field_type;
4364 CORE_ADDR address;
4365
4366 if (t->code () == TYPE_CODE_PTR)
4367 address = value_address (ada_value_ind (arg));
4368 else
4369 address = value_address (ada_coerce_ref (arg));
4370
4371 /* Check to see if this is a tagged type. We also need to handle
4372 the case where the type is a reference to a tagged type, but
4373 we have to be careful to exclude pointers to tagged types.
4374 The latter should be shown as usual (as a pointer), whereas
4375 a reference should mostly be transparent to the user. */
4376
4377 if (ada_is_tagged_type (t1, 0)
4378 || (t1->code () == TYPE_CODE_REF
4379 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4380 {
4381 /* We first try to find the searched field in the current type.
4382 If not found then let's look in the fixed type. */
4383
4384 if (!find_struct_field (name, t1, 0,
4385 &field_type, &byte_offset, &bit_offset,
4386 &bit_size, NULL))
4387 check_tag = 1;
4388 else
4389 check_tag = 0;
4390 }
4391 else
4392 check_tag = 0;
4393
4394 /* Convert to fixed type in all cases, so that we have proper
4395 offsets to each field in unconstrained record types. */
4396 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4397 address, NULL, check_tag);
4398
4399 if (find_struct_field (name, t1, 0,
4400 &field_type, &byte_offset, &bit_offset,
4401 &bit_size, NULL))
4402 {
4403 if (bit_size != 0)
4404 {
4405 if (t->code () == TYPE_CODE_REF)
4406 arg = ada_coerce_ref (arg);
4407 else
4408 arg = ada_value_ind (arg);
4409 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4410 bit_offset, bit_size,
4411 field_type);
4412 }
4413 else
4414 v = value_at_lazy (field_type, address + byte_offset);
4415 }
4416 }
4417
4418 if (v != NULL || no_err)
4419 return v;
4420 else
4421 error (_("There is no member named %s."), name);
4422
4423 BadValue:
4424 if (no_err)
4425 return NULL;
4426 else
4427 error (_("Attempt to extract a component of "
4428 "a value that is not a record."));
4429 }
4430
4431 /* Return the value ACTUAL, converted to be an appropriate value for a
4432 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4433 allocating any necessary descriptors (fat pointers), or copies of
4434 values not residing in memory, updating it as needed. */
4435
4436 struct value *
4437 ada_convert_actual (struct value *actual, struct type *formal_type0)
4438 {
4439 struct type *actual_type = ada_check_typedef (value_type (actual));
4440 struct type *formal_type = ada_check_typedef (formal_type0);
4441 struct type *formal_target =
4442 formal_type->code () == TYPE_CODE_PTR
4443 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4444 struct type *actual_target =
4445 actual_type->code () == TYPE_CODE_PTR
4446 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4447
4448 if (ada_is_array_descriptor_type (formal_target)
4449 && actual_target->code () == TYPE_CODE_ARRAY)
4450 return make_array_descriptor (formal_type, actual);
4451 else if (formal_type->code () == TYPE_CODE_PTR
4452 || formal_type->code () == TYPE_CODE_REF)
4453 {
4454 struct value *result;
4455
4456 if (formal_target->code () == TYPE_CODE_ARRAY
4457 && ada_is_array_descriptor_type (actual_target))
4458 result = desc_data (actual);
4459 else if (formal_type->code () != TYPE_CODE_PTR)
4460 {
4461 if (VALUE_LVAL (actual) != lval_memory)
4462 {
4463 struct value *val;
4464
4465 actual_type = ada_check_typedef (value_type (actual));
4466 val = allocate_value (actual_type);
4467 memcpy ((char *) value_contents_raw (val),
4468 (char *) value_contents (actual),
4469 TYPE_LENGTH (actual_type));
4470 actual = ensure_lval (val);
4471 }
4472 result = value_addr (actual);
4473 }
4474 else
4475 return actual;
4476 return value_cast_pointers (formal_type, result, 0);
4477 }
4478 else if (actual_type->code () == TYPE_CODE_PTR)
4479 return ada_value_ind (actual);
4480 else if (ada_is_aligner_type (formal_type))
4481 {
4482 /* We need to turn this parameter into an aligner type
4483 as well. */
4484 struct value *aligner = allocate_value (formal_type);
4485 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4486
4487 value_assign_to_component (aligner, component, actual);
4488 return aligner;
4489 }
4490
4491 return actual;
4492 }
4493
4494 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4495 type TYPE. This is usually an inefficient no-op except on some targets
4496 (such as AVR) where the representation of a pointer and an address
4497 differs. */
4498
4499 static CORE_ADDR
4500 value_pointer (struct value *value, struct type *type)
4501 {
4502 struct gdbarch *gdbarch = get_type_arch (type);
4503 unsigned len = TYPE_LENGTH (type);
4504 gdb_byte *buf = (gdb_byte *) alloca (len);
4505 CORE_ADDR addr;
4506
4507 addr = value_address (value);
4508 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4509 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4510 return addr;
4511 }
4512
4513
4514 /* Push a descriptor of type TYPE for array value ARR on the stack at
4515 *SP, updating *SP to reflect the new descriptor. Return either
4516 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4517 to-descriptor type rather than a descriptor type), a struct value *
4518 representing a pointer to this descriptor. */
4519
4520 static struct value *
4521 make_array_descriptor (struct type *type, struct value *arr)
4522 {
4523 struct type *bounds_type = desc_bounds_type (type);
4524 struct type *desc_type = desc_base_type (type);
4525 struct value *descriptor = allocate_value (desc_type);
4526 struct value *bounds = allocate_value (bounds_type);
4527 int i;
4528
4529 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4530 i > 0; i -= 1)
4531 {
4532 modify_field (value_type (bounds), value_contents_writeable (bounds),
4533 ada_array_bound (arr, i, 0),
4534 desc_bound_bitpos (bounds_type, i, 0),
4535 desc_bound_bitsize (bounds_type, i, 0));
4536 modify_field (value_type (bounds), value_contents_writeable (bounds),
4537 ada_array_bound (arr, i, 1),
4538 desc_bound_bitpos (bounds_type, i, 1),
4539 desc_bound_bitsize (bounds_type, i, 1));
4540 }
4541
4542 bounds = ensure_lval (bounds);
4543
4544 modify_field (value_type (descriptor),
4545 value_contents_writeable (descriptor),
4546 value_pointer (ensure_lval (arr),
4547 TYPE_FIELD_TYPE (desc_type, 0)),
4548 fat_pntr_data_bitpos (desc_type),
4549 fat_pntr_data_bitsize (desc_type));
4550
4551 modify_field (value_type (descriptor),
4552 value_contents_writeable (descriptor),
4553 value_pointer (bounds,
4554 TYPE_FIELD_TYPE (desc_type, 1)),
4555 fat_pntr_bounds_bitpos (desc_type),
4556 fat_pntr_bounds_bitsize (desc_type));
4557
4558 descriptor = ensure_lval (descriptor);
4559
4560 if (type->code () == TYPE_CODE_PTR)
4561 return value_addr (descriptor);
4562 else
4563 return descriptor;
4564 }
4565 \f
4566 /* Symbol Cache Module */
4567
4568 /* Performance measurements made as of 2010-01-15 indicate that
4569 this cache does bring some noticeable improvements. Depending
4570 on the type of entity being printed, the cache can make it as much
4571 as an order of magnitude faster than without it.
4572
4573 The descriptive type DWARF extension has significantly reduced
4574 the need for this cache, at least when DWARF is being used. However,
4575 even in this case, some expensive name-based symbol searches are still
4576 sometimes necessary - to find an XVZ variable, mostly. */
4577
4578 /* Initialize the contents of SYM_CACHE. */
4579
4580 static void
4581 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4582 {
4583 obstack_init (&sym_cache->cache_space);
4584 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4585 }
4586
4587 /* Free the memory used by SYM_CACHE. */
4588
4589 static void
4590 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4591 {
4592 obstack_free (&sym_cache->cache_space, NULL);
4593 xfree (sym_cache);
4594 }
4595
4596 /* Return the symbol cache associated to the given program space PSPACE.
4597 If not allocated for this PSPACE yet, allocate and initialize one. */
4598
4599 static struct ada_symbol_cache *
4600 ada_get_symbol_cache (struct program_space *pspace)
4601 {
4602 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4603
4604 if (pspace_data->sym_cache == NULL)
4605 {
4606 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4607 ada_init_symbol_cache (pspace_data->sym_cache);
4608 }
4609
4610 return pspace_data->sym_cache;
4611 }
4612
4613 /* Clear all entries from the symbol cache. */
4614
4615 static void
4616 ada_clear_symbol_cache (void)
4617 {
4618 struct ada_symbol_cache *sym_cache
4619 = ada_get_symbol_cache (current_program_space);
4620
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 ada_init_symbol_cache (sym_cache);
4623 }
4624
4625 /* Search our cache for an entry matching NAME and DOMAIN.
4626 Return it if found, or NULL otherwise. */
4627
4628 static struct cache_entry **
4629 find_entry (const char *name, domain_enum domain)
4630 {
4631 struct ada_symbol_cache *sym_cache
4632 = ada_get_symbol_cache (current_program_space);
4633 int h = msymbol_hash (name) % HASH_SIZE;
4634 struct cache_entry **e;
4635
4636 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4637 {
4638 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4639 return e;
4640 }
4641 return NULL;
4642 }
4643
4644 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4645 Return 1 if found, 0 otherwise.
4646
4647 If an entry was found and SYM is not NULL, set *SYM to the entry's
4648 SYM. Same principle for BLOCK if not NULL. */
4649
4650 static int
4651 lookup_cached_symbol (const char *name, domain_enum domain,
4652 struct symbol **sym, const struct block **block)
4653 {
4654 struct cache_entry **e = find_entry (name, domain);
4655
4656 if (e == NULL)
4657 return 0;
4658 if (sym != NULL)
4659 *sym = (*e)->sym;
4660 if (block != NULL)
4661 *block = (*e)->block;
4662 return 1;
4663 }
4664
4665 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4666 in domain DOMAIN, save this result in our symbol cache. */
4667
4668 static void
4669 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4670 const struct block *block)
4671 {
4672 struct ada_symbol_cache *sym_cache
4673 = ada_get_symbol_cache (current_program_space);
4674 int h;
4675 struct cache_entry *e;
4676
4677 /* Symbols for builtin types don't have a block.
4678 For now don't cache such symbols. */
4679 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4680 return;
4681
4682 /* If the symbol is a local symbol, then do not cache it, as a search
4683 for that symbol depends on the context. To determine whether
4684 the symbol is local or not, we check the block where we found it
4685 against the global and static blocks of its associated symtab. */
4686 if (sym
4687 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4688 GLOBAL_BLOCK) != block
4689 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4690 STATIC_BLOCK) != block)
4691 return;
4692
4693 h = msymbol_hash (name) % HASH_SIZE;
4694 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4695 e->next = sym_cache->root[h];
4696 sym_cache->root[h] = e;
4697 e->name = obstack_strdup (&sym_cache->cache_space, name);
4698 e->sym = sym;
4699 e->domain = domain;
4700 e->block = block;
4701 }
4702 \f
4703 /* Symbol Lookup */
4704
4705 /* Return the symbol name match type that should be used used when
4706 searching for all symbols matching LOOKUP_NAME.
4707
4708 LOOKUP_NAME is expected to be a symbol name after transformation
4709 for Ada lookups. */
4710
4711 static symbol_name_match_type
4712 name_match_type_from_name (const char *lookup_name)
4713 {
4714 return (strstr (lookup_name, "__") == NULL
4715 ? symbol_name_match_type::WILD
4716 : symbol_name_match_type::FULL);
4717 }
4718
4719 /* Return the result of a standard (literal, C-like) lookup of NAME in
4720 given DOMAIN, visible from lexical block BLOCK. */
4721
4722 static struct symbol *
4723 standard_lookup (const char *name, const struct block *block,
4724 domain_enum domain)
4725 {
4726 /* Initialize it just to avoid a GCC false warning. */
4727 struct block_symbol sym = {};
4728
4729 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4730 return sym.symbol;
4731 ada_lookup_encoded_symbol (name, block, domain, &sym);
4732 cache_symbol (name, domain, sym.symbol, sym.block);
4733 return sym.symbol;
4734 }
4735
4736
4737 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4738 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4739 since they contend in overloading in the same way. */
4740 static int
4741 is_nonfunction (struct block_symbol syms[], int n)
4742 {
4743 int i;
4744
4745 for (i = 0; i < n; i += 1)
4746 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4747 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4748 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4749 return 1;
4750
4751 return 0;
4752 }
4753
4754 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4755 struct types. Otherwise, they may not. */
4756
4757 static int
4758 equiv_types (struct type *type0, struct type *type1)
4759 {
4760 if (type0 == type1)
4761 return 1;
4762 if (type0 == NULL || type1 == NULL
4763 || type0->code () != type1->code ())
4764 return 0;
4765 if ((type0->code () == TYPE_CODE_STRUCT
4766 || type0->code () == TYPE_CODE_ENUM)
4767 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4768 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4769 return 1;
4770
4771 return 0;
4772 }
4773
4774 /* True iff SYM0 represents the same entity as SYM1, or one that is
4775 no more defined than that of SYM1. */
4776
4777 static int
4778 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4779 {
4780 if (sym0 == sym1)
4781 return 1;
4782 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4783 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4784 return 0;
4785
4786 switch (SYMBOL_CLASS (sym0))
4787 {
4788 case LOC_UNDEF:
4789 return 1;
4790 case LOC_TYPEDEF:
4791 {
4792 struct type *type0 = SYMBOL_TYPE (sym0);
4793 struct type *type1 = SYMBOL_TYPE (sym1);
4794 const char *name0 = sym0->linkage_name ();
4795 const char *name1 = sym1->linkage_name ();
4796 int len0 = strlen (name0);
4797
4798 return
4799 type0->code () == type1->code ()
4800 && (equiv_types (type0, type1)
4801 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4802 && startswith (name1 + len0, "___XV")));
4803 }
4804 case LOC_CONST:
4805 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4806 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4807
4808 case LOC_STATIC:
4809 {
4810 const char *name0 = sym0->linkage_name ();
4811 const char *name1 = sym1->linkage_name ();
4812 return (strcmp (name0, name1) == 0
4813 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4814 }
4815
4816 default:
4817 return 0;
4818 }
4819 }
4820
4821 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4822 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4823
4824 static void
4825 add_defn_to_vec (struct obstack *obstackp,
4826 struct symbol *sym,
4827 const struct block *block)
4828 {
4829 int i;
4830 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4831
4832 /* Do not try to complete stub types, as the debugger is probably
4833 already scanning all symbols matching a certain name at the
4834 time when this function is called. Trying to replace the stub
4835 type by its associated full type will cause us to restart a scan
4836 which may lead to an infinite recursion. Instead, the client
4837 collecting the matching symbols will end up collecting several
4838 matches, with at least one of them complete. It can then filter
4839 out the stub ones if needed. */
4840
4841 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4842 {
4843 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4844 return;
4845 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4846 {
4847 prevDefns[i].symbol = sym;
4848 prevDefns[i].block = block;
4849 return;
4850 }
4851 }
4852
4853 {
4854 struct block_symbol info;
4855
4856 info.symbol = sym;
4857 info.block = block;
4858 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4859 }
4860 }
4861
4862 /* Number of block_symbol structures currently collected in current vector in
4863 OBSTACKP. */
4864
4865 static int
4866 num_defns_collected (struct obstack *obstackp)
4867 {
4868 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4869 }
4870
4871 /* Vector of block_symbol structures currently collected in current vector in
4872 OBSTACKP. If FINISH, close off the vector and return its final address. */
4873
4874 static struct block_symbol *
4875 defns_collected (struct obstack *obstackp, int finish)
4876 {
4877 if (finish)
4878 return (struct block_symbol *) obstack_finish (obstackp);
4879 else
4880 return (struct block_symbol *) obstack_base (obstackp);
4881 }
4882
4883 /* Return a bound minimal symbol matching NAME according to Ada
4884 decoding rules. Returns an invalid symbol if there is no such
4885 minimal symbol. Names prefixed with "standard__" are handled
4886 specially: "standard__" is first stripped off, and only static and
4887 global symbols are searched. */
4888
4889 struct bound_minimal_symbol
4890 ada_lookup_simple_minsym (const char *name)
4891 {
4892 struct bound_minimal_symbol result;
4893
4894 memset (&result, 0, sizeof (result));
4895
4896 symbol_name_match_type match_type = name_match_type_from_name (name);
4897 lookup_name_info lookup_name (name, match_type);
4898
4899 symbol_name_matcher_ftype *match_name
4900 = ada_get_symbol_name_matcher (lookup_name);
4901
4902 for (objfile *objfile : current_program_space->objfiles ())
4903 {
4904 for (minimal_symbol *msymbol : objfile->msymbols ())
4905 {
4906 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4907 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4908 {
4909 result.minsym = msymbol;
4910 result.objfile = objfile;
4911 break;
4912 }
4913 }
4914 }
4915
4916 return result;
4917 }
4918
4919 /* For all subprograms that statically enclose the subprogram of the
4920 selected frame, add symbols matching identifier NAME in DOMAIN
4921 and their blocks to the list of data in OBSTACKP, as for
4922 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4923 with a wildcard prefix. */
4924
4925 static void
4926 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4927 const lookup_name_info &lookup_name,
4928 domain_enum domain)
4929 {
4930 }
4931
4932 /* True if TYPE is definitely an artificial type supplied to a symbol
4933 for which no debugging information was given in the symbol file. */
4934
4935 static int
4936 is_nondebugging_type (struct type *type)
4937 {
4938 const char *name = ada_type_name (type);
4939
4940 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4941 }
4942
4943 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4944 that are deemed "identical" for practical purposes.
4945
4946 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4947 types and that their number of enumerals is identical (in other
4948 words, type1->num_fields () == type2->num_fields ()). */
4949
4950 static int
4951 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4952 {
4953 int i;
4954
4955 /* The heuristic we use here is fairly conservative. We consider
4956 that 2 enumerate types are identical if they have the same
4957 number of enumerals and that all enumerals have the same
4958 underlying value and name. */
4959
4960 /* All enums in the type should have an identical underlying value. */
4961 for (i = 0; i < type1->num_fields (); i++)
4962 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4963 return 0;
4964
4965 /* All enumerals should also have the same name (modulo any numerical
4966 suffix). */
4967 for (i = 0; i < type1->num_fields (); i++)
4968 {
4969 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4970 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4971 int len_1 = strlen (name_1);
4972 int len_2 = strlen (name_2);
4973
4974 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4975 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4976 if (len_1 != len_2
4977 || strncmp (TYPE_FIELD_NAME (type1, i),
4978 TYPE_FIELD_NAME (type2, i),
4979 len_1) != 0)
4980 return 0;
4981 }
4982
4983 return 1;
4984 }
4985
4986 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4987 that are deemed "identical" for practical purposes. Sometimes,
4988 enumerals are not strictly identical, but their types are so similar
4989 that they can be considered identical.
4990
4991 For instance, consider the following code:
4992
4993 type Color is (Black, Red, Green, Blue, White);
4994 type RGB_Color is new Color range Red .. Blue;
4995
4996 Type RGB_Color is a subrange of an implicit type which is a copy
4997 of type Color. If we call that implicit type RGB_ColorB ("B" is
4998 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4999 As a result, when an expression references any of the enumeral
5000 by name (Eg. "print green"), the expression is technically
5001 ambiguous and the user should be asked to disambiguate. But
5002 doing so would only hinder the user, since it wouldn't matter
5003 what choice he makes, the outcome would always be the same.
5004 So, for practical purposes, we consider them as the same. */
5005
5006 static int
5007 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5008 {
5009 int i;
5010
5011 /* Before performing a thorough comparison check of each type,
5012 we perform a series of inexpensive checks. We expect that these
5013 checks will quickly fail in the vast majority of cases, and thus
5014 help prevent the unnecessary use of a more expensive comparison.
5015 Said comparison also expects us to make some of these checks
5016 (see ada_identical_enum_types_p). */
5017
5018 /* Quick check: All symbols should have an enum type. */
5019 for (i = 0; i < syms.size (); i++)
5020 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5021 return 0;
5022
5023 /* Quick check: They should all have the same value. */
5024 for (i = 1; i < syms.size (); i++)
5025 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5026 return 0;
5027
5028 /* Quick check: They should all have the same number of enumerals. */
5029 for (i = 1; i < syms.size (); i++)
5030 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5031 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5032 return 0;
5033
5034 /* All the sanity checks passed, so we might have a set of
5035 identical enumeration types. Perform a more complete
5036 comparison of the type of each symbol. */
5037 for (i = 1; i < syms.size (); i++)
5038 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5039 SYMBOL_TYPE (syms[0].symbol)))
5040 return 0;
5041
5042 return 1;
5043 }
5044
5045 /* Remove any non-debugging symbols in SYMS that definitely
5046 duplicate other symbols in the list (The only case I know of where
5047 this happens is when object files containing stabs-in-ecoff are
5048 linked with files containing ordinary ecoff debugging symbols (or no
5049 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5050 Returns the number of items in the modified list. */
5051
5052 static int
5053 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5054 {
5055 int i, j;
5056
5057 /* We should never be called with less than 2 symbols, as there
5058 cannot be any extra symbol in that case. But it's easy to
5059 handle, since we have nothing to do in that case. */
5060 if (syms->size () < 2)
5061 return syms->size ();
5062
5063 i = 0;
5064 while (i < syms->size ())
5065 {
5066 int remove_p = 0;
5067
5068 /* If two symbols have the same name and one of them is a stub type,
5069 the get rid of the stub. */
5070
5071 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5072 && (*syms)[i].symbol->linkage_name () != NULL)
5073 {
5074 for (j = 0; j < syms->size (); j++)
5075 {
5076 if (j != i
5077 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5078 && (*syms)[j].symbol->linkage_name () != NULL
5079 && strcmp ((*syms)[i].symbol->linkage_name (),
5080 (*syms)[j].symbol->linkage_name ()) == 0)
5081 remove_p = 1;
5082 }
5083 }
5084
5085 /* Two symbols with the same name, same class and same address
5086 should be identical. */
5087
5088 else if ((*syms)[i].symbol->linkage_name () != NULL
5089 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5090 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5091 {
5092 for (j = 0; j < syms->size (); j += 1)
5093 {
5094 if (i != j
5095 && (*syms)[j].symbol->linkage_name () != NULL
5096 && strcmp ((*syms)[i].symbol->linkage_name (),
5097 (*syms)[j].symbol->linkage_name ()) == 0
5098 && SYMBOL_CLASS ((*syms)[i].symbol)
5099 == SYMBOL_CLASS ((*syms)[j].symbol)
5100 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5101 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5102 remove_p = 1;
5103 }
5104 }
5105
5106 if (remove_p)
5107 syms->erase (syms->begin () + i);
5108
5109 i += 1;
5110 }
5111
5112 /* If all the remaining symbols are identical enumerals, then
5113 just keep the first one and discard the rest.
5114
5115 Unlike what we did previously, we do not discard any entry
5116 unless they are ALL identical. This is because the symbol
5117 comparison is not a strict comparison, but rather a practical
5118 comparison. If all symbols are considered identical, then
5119 we can just go ahead and use the first one and discard the rest.
5120 But if we cannot reduce the list to a single element, we have
5121 to ask the user to disambiguate anyways. And if we have to
5122 present a multiple-choice menu, it's less confusing if the list
5123 isn't missing some choices that were identical and yet distinct. */
5124 if (symbols_are_identical_enums (*syms))
5125 syms->resize (1);
5126
5127 return syms->size ();
5128 }
5129
5130 /* Given a type that corresponds to a renaming entity, use the type name
5131 to extract the scope (package name or function name, fully qualified,
5132 and following the GNAT encoding convention) where this renaming has been
5133 defined. */
5134
5135 static std::string
5136 xget_renaming_scope (struct type *renaming_type)
5137 {
5138 /* The renaming types adhere to the following convention:
5139 <scope>__<rename>___<XR extension>.
5140 So, to extract the scope, we search for the "___XR" extension,
5141 and then backtrack until we find the first "__". */
5142
5143 const char *name = renaming_type->name ();
5144 const char *suffix = strstr (name, "___XR");
5145 const char *last;
5146
5147 /* Now, backtrack a bit until we find the first "__". Start looking
5148 at suffix - 3, as the <rename> part is at least one character long. */
5149
5150 for (last = suffix - 3; last > name; last--)
5151 if (last[0] == '_' && last[1] == '_')
5152 break;
5153
5154 /* Make a copy of scope and return it. */
5155 return std::string (name, last);
5156 }
5157
5158 /* Return nonzero if NAME corresponds to a package name. */
5159
5160 static int
5161 is_package_name (const char *name)
5162 {
5163 /* Here, We take advantage of the fact that no symbols are generated
5164 for packages, while symbols are generated for each function.
5165 So the condition for NAME represent a package becomes equivalent
5166 to NAME not existing in our list of symbols. There is only one
5167 small complication with library-level functions (see below). */
5168
5169 /* If it is a function that has not been defined at library level,
5170 then we should be able to look it up in the symbols. */
5171 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5172 return 0;
5173
5174 /* Library-level function names start with "_ada_". See if function
5175 "_ada_" followed by NAME can be found. */
5176
5177 /* Do a quick check that NAME does not contain "__", since library-level
5178 functions names cannot contain "__" in them. */
5179 if (strstr (name, "__") != NULL)
5180 return 0;
5181
5182 std::string fun_name = string_printf ("_ada_%s", name);
5183
5184 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5185 }
5186
5187 /* Return nonzero if SYM corresponds to a renaming entity that is
5188 not visible from FUNCTION_NAME. */
5189
5190 static int
5191 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5192 {
5193 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5194 return 0;
5195
5196 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5197
5198 /* If the rename has been defined in a package, then it is visible. */
5199 if (is_package_name (scope.c_str ()))
5200 return 0;
5201
5202 /* Check that the rename is in the current function scope by checking
5203 that its name starts with SCOPE. */
5204
5205 /* If the function name starts with "_ada_", it means that it is
5206 a library-level function. Strip this prefix before doing the
5207 comparison, as the encoding for the renaming does not contain
5208 this prefix. */
5209 if (startswith (function_name, "_ada_"))
5210 function_name += 5;
5211
5212 return !startswith (function_name, scope.c_str ());
5213 }
5214
5215 /* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
5220
5221 Rationale:
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
5234
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
5251
5252 static int
5253 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5254 const struct block *current_block)
5255 {
5256 struct symbol *current_function;
5257 const char *current_function_name;
5258 int i;
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
5263 First, zero out such symbols, then compress. */
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < syms->size (); i += 1)
5266 {
5267 struct symbol *sym = (*syms)[i].symbol;
5268 const struct block *block = (*syms)[i].block;
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = sym->linkage_name ();
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5281
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < syms->size (); j += 1)
5284 if (i != j && (*syms)[j].symbol != NULL
5285 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5286 name_len) == 0
5287 && block == (*syms)[j].block)
5288 (*syms)[j].symbol = NULL;
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < syms->size (); j += 1)
5296 if ((*syms)[j].symbol != NULL)
5297 {
5298 (*syms)[k] = (*syms)[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
5306
5307 if (current_block == NULL)
5308 return syms->size ();
5309
5310 current_function = block_linkage_function (current_block);
5311 if (current_function == NULL)
5312 return syms->size ();
5313
5314 current_function_name = current_function->linkage_name ();
5315 if (current_function_name == NULL)
5316 return syms->size ();
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < syms->size ())
5324 {
5325 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5326 == ADA_OBJECT_RENAMING
5327 && old_renaming_is_invisible ((*syms)[i].symbol,
5328 current_function_name))
5329 syms->erase (syms->begin () + i);
5330 else
5331 i += 1;
5332 }
5333
5334 return syms->size ();
5335 }
5336
5337 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5338 whose name and domain match NAME and DOMAIN respectively.
5339 If no match was found, then extend the search to "enclosing"
5340 routines (in other words, if we're inside a nested function,
5341 search the symbols defined inside the enclosing functions).
5342 If WILD_MATCH_P is nonzero, perform the naming matching in
5343 "wild" mode (see function "wild_match" for more info).
5344
5345 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5346
5347 static void
5348 ada_add_local_symbols (struct obstack *obstackp,
5349 const lookup_name_info &lookup_name,
5350 const struct block *block, domain_enum domain)
5351 {
5352 int block_depth = 0;
5353
5354 while (block != NULL)
5355 {
5356 block_depth += 1;
5357 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5358
5359 /* If we found a non-function match, assume that's the one. */
5360 if (is_nonfunction (defns_collected (obstackp, 0),
5361 num_defns_collected (obstackp)))
5362 return;
5363
5364 block = BLOCK_SUPERBLOCK (block);
5365 }
5366
5367 /* If no luck so far, try to find NAME as a local symbol in some lexically
5368 enclosing subprogram. */
5369 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5370 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5371 }
5372
5373 /* An object of this type is used as the user_data argument when
5374 calling the map_matching_symbols method. */
5375
5376 struct match_data
5377 {
5378 struct objfile *objfile;
5379 struct obstack *obstackp;
5380 struct symbol *arg_sym;
5381 int found_sym;
5382 };
5383
5384 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5385 to a list of symbols. DATA is a pointer to a struct match_data *
5386 containing the obstack that collects the symbol list, the file that SYM
5387 must come from, a flag indicating whether a non-argument symbol has
5388 been found in the current block, and the last argument symbol
5389 passed in SYM within the current block (if any). When SYM is null,
5390 marking the end of a block, the argument symbol is added if no
5391 other has been found. */
5392
5393 static bool
5394 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5395 struct match_data *data)
5396 {
5397 const struct block *block = bsym->block;
5398 struct symbol *sym = bsym->symbol;
5399
5400 if (sym == NULL)
5401 {
5402 if (!data->found_sym && data->arg_sym != NULL)
5403 add_defn_to_vec (data->obstackp,
5404 fixup_symbol_section (data->arg_sym, data->objfile),
5405 block);
5406 data->found_sym = 0;
5407 data->arg_sym = NULL;
5408 }
5409 else
5410 {
5411 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5412 return true;
5413 else if (SYMBOL_IS_ARGUMENT (sym))
5414 data->arg_sym = sym;
5415 else
5416 {
5417 data->found_sym = 1;
5418 add_defn_to_vec (data->obstackp,
5419 fixup_symbol_section (sym, data->objfile),
5420 block);
5421 }
5422 }
5423 return true;
5424 }
5425
5426 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5427 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5428 symbols to OBSTACKP. Return whether we found such symbols. */
5429
5430 static int
5431 ada_add_block_renamings (struct obstack *obstackp,
5432 const struct block *block,
5433 const lookup_name_info &lookup_name,
5434 domain_enum domain)
5435 {
5436 struct using_direct *renaming;
5437 int defns_mark = num_defns_collected (obstackp);
5438
5439 symbol_name_matcher_ftype *name_match
5440 = ada_get_symbol_name_matcher (lookup_name);
5441
5442 for (renaming = block_using (block);
5443 renaming != NULL;
5444 renaming = renaming->next)
5445 {
5446 const char *r_name;
5447
5448 /* Avoid infinite recursions: skip this renaming if we are actually
5449 already traversing it.
5450
5451 Currently, symbol lookup in Ada don't use the namespace machinery from
5452 C++/Fortran support: skip namespace imports that use them. */
5453 if (renaming->searched
5454 || (renaming->import_src != NULL
5455 && renaming->import_src[0] != '\0')
5456 || (renaming->import_dest != NULL
5457 && renaming->import_dest[0] != '\0'))
5458 continue;
5459 renaming->searched = 1;
5460
5461 /* TODO: here, we perform another name-based symbol lookup, which can
5462 pull its own multiple overloads. In theory, we should be able to do
5463 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5464 not a simple name. But in order to do this, we would need to enhance
5465 the DWARF reader to associate a symbol to this renaming, instead of a
5466 name. So, for now, we do something simpler: re-use the C++/Fortran
5467 namespace machinery. */
5468 r_name = (renaming->alias != NULL
5469 ? renaming->alias
5470 : renaming->declaration);
5471 if (name_match (r_name, lookup_name, NULL))
5472 {
5473 lookup_name_info decl_lookup_name (renaming->declaration,
5474 lookup_name.match_type ());
5475 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5476 1, NULL);
5477 }
5478 renaming->searched = 0;
5479 }
5480 return num_defns_collected (obstackp) != defns_mark;
5481 }
5482
5483 /* Implements compare_names, but only applying the comparision using
5484 the given CASING. */
5485
5486 static int
5487 compare_names_with_case (const char *string1, const char *string2,
5488 enum case_sensitivity casing)
5489 {
5490 while (*string1 != '\0' && *string2 != '\0')
5491 {
5492 char c1, c2;
5493
5494 if (isspace (*string1) || isspace (*string2))
5495 return strcmp_iw_ordered (string1, string2);
5496
5497 if (casing == case_sensitive_off)
5498 {
5499 c1 = tolower (*string1);
5500 c2 = tolower (*string2);
5501 }
5502 else
5503 {
5504 c1 = *string1;
5505 c2 = *string2;
5506 }
5507 if (c1 != c2)
5508 break;
5509
5510 string1 += 1;
5511 string2 += 1;
5512 }
5513
5514 switch (*string1)
5515 {
5516 case '(':
5517 return strcmp_iw_ordered (string1, string2);
5518 case '_':
5519 if (*string2 == '\0')
5520 {
5521 if (is_name_suffix (string1))
5522 return 0;
5523 else
5524 return 1;
5525 }
5526 /* FALLTHROUGH */
5527 default:
5528 if (*string2 == '(')
5529 return strcmp_iw_ordered (string1, string2);
5530 else
5531 {
5532 if (casing == case_sensitive_off)
5533 return tolower (*string1) - tolower (*string2);
5534 else
5535 return *string1 - *string2;
5536 }
5537 }
5538 }
5539
5540 /* Compare STRING1 to STRING2, with results as for strcmp.
5541 Compatible with strcmp_iw_ordered in that...
5542
5543 strcmp_iw_ordered (STRING1, STRING2) <= 0
5544
5545 ... implies...
5546
5547 compare_names (STRING1, STRING2) <= 0
5548
5549 (they may differ as to what symbols compare equal). */
5550
5551 static int
5552 compare_names (const char *string1, const char *string2)
5553 {
5554 int result;
5555
5556 /* Similar to what strcmp_iw_ordered does, we need to perform
5557 a case-insensitive comparison first, and only resort to
5558 a second, case-sensitive, comparison if the first one was
5559 not sufficient to differentiate the two strings. */
5560
5561 result = compare_names_with_case (string1, string2, case_sensitive_off);
5562 if (result == 0)
5563 result = compare_names_with_case (string1, string2, case_sensitive_on);
5564
5565 return result;
5566 }
5567
5568 /* Convenience function to get at the Ada encoded lookup name for
5569 LOOKUP_NAME, as a C string. */
5570
5571 static const char *
5572 ada_lookup_name (const lookup_name_info &lookup_name)
5573 {
5574 return lookup_name.ada ().lookup_name ().c_str ();
5575 }
5576
5577 /* Add to OBSTACKP all non-local symbols whose name and domain match
5578 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5579 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5580 symbols otherwise. */
5581
5582 static void
5583 add_nonlocal_symbols (struct obstack *obstackp,
5584 const lookup_name_info &lookup_name,
5585 domain_enum domain, int global)
5586 {
5587 struct match_data data;
5588
5589 memset (&data, 0, sizeof data);
5590 data.obstackp = obstackp;
5591
5592 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5593
5594 auto callback = [&] (struct block_symbol *bsym)
5595 {
5596 return aux_add_nonlocal_symbols (bsym, &data);
5597 };
5598
5599 for (objfile *objfile : current_program_space->objfiles ())
5600 {
5601 data.objfile = objfile;
5602
5603 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5604 domain, global, callback,
5605 (is_wild_match
5606 ? NULL : compare_names));
5607
5608 for (compunit_symtab *cu : objfile->compunits ())
5609 {
5610 const struct block *global_block
5611 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5612
5613 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5614 domain))
5615 data.found_sym = 1;
5616 }
5617 }
5618
5619 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5620 {
5621 const char *name = ada_lookup_name (lookup_name);
5622 std::string bracket_name = std::string ("<_ada_") + name + '>';
5623 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5624
5625 for (objfile *objfile : current_program_space->objfiles ())
5626 {
5627 data.objfile = objfile;
5628 objfile->sf->qf->map_matching_symbols (objfile, name1,
5629 domain, global, callback,
5630 compare_names);
5631 }
5632 }
5633 }
5634
5635 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5636 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5637 returning the number of matches. Add these to OBSTACKP.
5638
5639 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5640 symbol match within the nest of blocks whose innermost member is BLOCK,
5641 is the one match returned (no other matches in that or
5642 enclosing blocks is returned). If there are any matches in or
5643 surrounding BLOCK, then these alone are returned.
5644
5645 Names prefixed with "standard__" are handled specially:
5646 "standard__" is first stripped off (by the lookup_name
5647 constructor), and only static and global symbols are searched.
5648
5649 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5650 to lookup global symbols. */
5651
5652 static void
5653 ada_add_all_symbols (struct obstack *obstackp,
5654 const struct block *block,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain,
5657 int full_search,
5658 int *made_global_lookup_p)
5659 {
5660 struct symbol *sym;
5661
5662 if (made_global_lookup_p)
5663 *made_global_lookup_p = 0;
5664
5665 /* Special case: If the user specifies a symbol name inside package
5666 Standard, do a non-wild matching of the symbol name without
5667 the "standard__" prefix. This was primarily introduced in order
5668 to allow the user to specifically access the standard exceptions
5669 using, for instance, Standard.Constraint_Error when Constraint_Error
5670 is ambiguous (due to the user defining its own Constraint_Error
5671 entity inside its program). */
5672 if (lookup_name.ada ().standard_p ())
5673 block = NULL;
5674
5675 /* Check the non-global symbols. If we have ANY match, then we're done. */
5676
5677 if (block != NULL)
5678 {
5679 if (full_search)
5680 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5681 else
5682 {
5683 /* In the !full_search case we're are being called by
5684 ada_iterate_over_symbols, and we don't want to search
5685 superblocks. */
5686 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5687 }
5688 if (num_defns_collected (obstackp) > 0 || !full_search)
5689 return;
5690 }
5691
5692 /* No non-global symbols found. Check our cache to see if we have
5693 already performed this search before. If we have, then return
5694 the same result. */
5695
5696 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5697 domain, &sym, &block))
5698 {
5699 if (sym != NULL)
5700 add_defn_to_vec (obstackp, sym, block);
5701 return;
5702 }
5703
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 1;
5706
5707 /* Search symbols from all global blocks. */
5708
5709 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5710
5711 /* Now add symbols from all per-file blocks if we've gotten no hits
5712 (not strictly correct, but perhaps better than an error). */
5713
5714 if (num_defns_collected (obstackp) == 0)
5715 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5716 }
5717
5718 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5719 is non-zero, enclosing scope and in global scopes, returning the number of
5720 matches.
5721 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5722 found and the blocks and symbol tables (if any) in which they were
5723 found.
5724
5725 When full_search is non-zero, any non-function/non-enumeral
5726 symbol match within the nest of blocks whose innermost member is BLOCK,
5727 is the one match returned (no other matches in that or
5728 enclosing blocks is returned). If there are any matches in or
5729 surrounding BLOCK, then these alone are returned.
5730
5731 Names prefixed with "standard__" are handled specially: "standard__"
5732 is first stripped off, and only static and global symbols are searched. */
5733
5734 static int
5735 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5736 const struct block *block,
5737 domain_enum domain,
5738 std::vector<struct block_symbol> *results,
5739 int full_search)
5740 {
5741 int syms_from_global_search;
5742 int ndefns;
5743 auto_obstack obstack;
5744
5745 ada_add_all_symbols (&obstack, block, lookup_name,
5746 domain, full_search, &syms_from_global_search);
5747
5748 ndefns = num_defns_collected (&obstack);
5749
5750 struct block_symbol *base = defns_collected (&obstack, 1);
5751 for (int i = 0; i < ndefns; ++i)
5752 results->push_back (base[i]);
5753
5754 ndefns = remove_extra_symbols (results);
5755
5756 if (ndefns == 0 && full_search && syms_from_global_search)
5757 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5758
5759 if (ndefns == 1 && full_search && syms_from_global_search)
5760 cache_symbol (ada_lookup_name (lookup_name), domain,
5761 (*results)[0].symbol, (*results)[0].block);
5762
5763 ndefns = remove_irrelevant_renamings (results, block);
5764
5765 return ndefns;
5766 }
5767
5768 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5769 in global scopes, returning the number of matches, and filling *RESULTS
5770 with (SYM,BLOCK) tuples.
5771
5772 See ada_lookup_symbol_list_worker for further details. */
5773
5774 int
5775 ada_lookup_symbol_list (const char *name, const struct block *block,
5776 domain_enum domain,
5777 std::vector<struct block_symbol> *results)
5778 {
5779 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5780 lookup_name_info lookup_name (name, name_match_type);
5781
5782 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5783 }
5784
5785 /* Implementation of the la_iterate_over_symbols method. */
5786
5787 static bool
5788 ada_iterate_over_symbols
5789 (const struct block *block, const lookup_name_info &name,
5790 domain_enum domain,
5791 gdb::function_view<symbol_found_callback_ftype> callback)
5792 {
5793 int ndefs, i;
5794 std::vector<struct block_symbol> results;
5795
5796 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5797
5798 for (i = 0; i < ndefs; ++i)
5799 {
5800 if (!callback (&results[i]))
5801 return false;
5802 }
5803
5804 return true;
5805 }
5806
5807 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5808 to 1, but choosing the first symbol found if there are multiple
5809 choices.
5810
5811 The result is stored in *INFO, which must be non-NULL.
5812 If no match is found, INFO->SYM is set to NULL. */
5813
5814 void
5815 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5816 domain_enum domain,
5817 struct block_symbol *info)
5818 {
5819 /* Since we already have an encoded name, wrap it in '<>' to force a
5820 verbatim match. Otherwise, if the name happens to not look like
5821 an encoded name (because it doesn't include a "__"),
5822 ada_lookup_name_info would re-encode/fold it again, and that
5823 would e.g., incorrectly lowercase object renaming names like
5824 "R28b" -> "r28b". */
5825 std::string verbatim = std::string ("<") + name + '>';
5826
5827 gdb_assert (info != NULL);
5828 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5829 }
5830
5831 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5832 scope and in global scopes, or NULL if none. NAME is folded and
5833 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5834 choosing the first symbol if there are multiple choices. */
5835
5836 struct block_symbol
5837 ada_lookup_symbol (const char *name, const struct block *block0,
5838 domain_enum domain)
5839 {
5840 std::vector<struct block_symbol> candidates;
5841 int n_candidates;
5842
5843 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5844
5845 if (n_candidates == 0)
5846 return {};
5847
5848 block_symbol info = candidates[0];
5849 info.symbol = fixup_symbol_section (info.symbol, NULL);
5850 return info;
5851 }
5852
5853 static struct block_symbol
5854 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5855 const char *name,
5856 const struct block *block,
5857 const domain_enum domain)
5858 {
5859 struct block_symbol sym;
5860
5861 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5862 if (sym.symbol != NULL)
5863 return sym;
5864
5865 /* If we haven't found a match at this point, try the primitive
5866 types. In other languages, this search is performed before
5867 searching for global symbols in order to short-circuit that
5868 global-symbol search if it happens that the name corresponds
5869 to a primitive type. But we cannot do the same in Ada, because
5870 it is perfectly legitimate for a program to declare a type which
5871 has the same name as a standard type. If looking up a type in
5872 that situation, we have traditionally ignored the primitive type
5873 in favor of user-defined types. This is why, unlike most other
5874 languages, we search the primitive types this late and only after
5875 having searched the global symbols without success. */
5876
5877 if (domain == VAR_DOMAIN)
5878 {
5879 struct gdbarch *gdbarch;
5880
5881 if (block == NULL)
5882 gdbarch = target_gdbarch ();
5883 else
5884 gdbarch = block_gdbarch (block);
5885 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5886 if (sym.symbol != NULL)
5887 return sym;
5888 }
5889
5890 return {};
5891 }
5892
5893
5894 /* True iff STR is a possible encoded suffix of a normal Ada name
5895 that is to be ignored for matching purposes. Suffixes of parallel
5896 names (e.g., XVE) are not included here. Currently, the possible suffixes
5897 are given by any of the regular expressions:
5898
5899 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5900 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5901 TKB [subprogram suffix for task bodies]
5902 _E[0-9]+[bs]$ [protected object entry suffixes]
5903 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5904
5905 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5906 match is performed. This sequence is used to differentiate homonyms,
5907 is an optional part of a valid name suffix. */
5908
5909 static int
5910 is_name_suffix (const char *str)
5911 {
5912 int k;
5913 const char *matching;
5914 const int len = strlen (str);
5915
5916 /* Skip optional leading __[0-9]+. */
5917
5918 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5919 {
5920 str += 3;
5921 while (isdigit (str[0]))
5922 str += 1;
5923 }
5924
5925 /* [.$][0-9]+ */
5926
5927 if (str[0] == '.' || str[0] == '$')
5928 {
5929 matching = str + 1;
5930 while (isdigit (matching[0]))
5931 matching += 1;
5932 if (matching[0] == '\0')
5933 return 1;
5934 }
5935
5936 /* ___[0-9]+ */
5937
5938 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5939 {
5940 matching = str + 3;
5941 while (isdigit (matching[0]))
5942 matching += 1;
5943 if (matching[0] == '\0')
5944 return 1;
5945 }
5946
5947 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5948
5949 if (strcmp (str, "TKB") == 0)
5950 return 1;
5951
5952 #if 0
5953 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5954 with a N at the end. Unfortunately, the compiler uses the same
5955 convention for other internal types it creates. So treating
5956 all entity names that end with an "N" as a name suffix causes
5957 some regressions. For instance, consider the case of an enumerated
5958 type. To support the 'Image attribute, it creates an array whose
5959 name ends with N.
5960 Having a single character like this as a suffix carrying some
5961 information is a bit risky. Perhaps we should change the encoding
5962 to be something like "_N" instead. In the meantime, do not do
5963 the following check. */
5964 /* Protected Object Subprograms */
5965 if (len == 1 && str [0] == 'N')
5966 return 1;
5967 #endif
5968
5969 /* _E[0-9]+[bs]$ */
5970 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5971 {
5972 matching = str + 3;
5973 while (isdigit (matching[0]))
5974 matching += 1;
5975 if ((matching[0] == 'b' || matching[0] == 's')
5976 && matching [1] == '\0')
5977 return 1;
5978 }
5979
5980 /* ??? We should not modify STR directly, as we are doing below. This
5981 is fine in this case, but may become problematic later if we find
5982 that this alternative did not work, and want to try matching
5983 another one from the begining of STR. Since we modified it, we
5984 won't be able to find the begining of the string anymore! */
5985 if (str[0] == 'X')
5986 {
5987 str += 1;
5988 while (str[0] != '_' && str[0] != '\0')
5989 {
5990 if (str[0] != 'n' && str[0] != 'b')
5991 return 0;
5992 str += 1;
5993 }
5994 }
5995
5996 if (str[0] == '\000')
5997 return 1;
5998
5999 if (str[0] == '_')
6000 {
6001 if (str[1] != '_' || str[2] == '\000')
6002 return 0;
6003 if (str[2] == '_')
6004 {
6005 if (strcmp (str + 3, "JM") == 0)
6006 return 1;
6007 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6008 the LJM suffix in favor of the JM one. But we will
6009 still accept LJM as a valid suffix for a reasonable
6010 amount of time, just to allow ourselves to debug programs
6011 compiled using an older version of GNAT. */
6012 if (strcmp (str + 3, "LJM") == 0)
6013 return 1;
6014 if (str[3] != 'X')
6015 return 0;
6016 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6017 || str[4] == 'U' || str[4] == 'P')
6018 return 1;
6019 if (str[4] == 'R' && str[5] != 'T')
6020 return 1;
6021 return 0;
6022 }
6023 if (!isdigit (str[2]))
6024 return 0;
6025 for (k = 3; str[k] != '\0'; k += 1)
6026 if (!isdigit (str[k]) && str[k] != '_')
6027 return 0;
6028 return 1;
6029 }
6030 if (str[0] == '$' && isdigit (str[1]))
6031 {
6032 for (k = 2; str[k] != '\0'; k += 1)
6033 if (!isdigit (str[k]) && str[k] != '_')
6034 return 0;
6035 return 1;
6036 }
6037 return 0;
6038 }
6039
6040 /* Return non-zero if the string starting at NAME and ending before
6041 NAME_END contains no capital letters. */
6042
6043 static int
6044 is_valid_name_for_wild_match (const char *name0)
6045 {
6046 std::string decoded_name = ada_decode (name0);
6047 int i;
6048
6049 /* If the decoded name starts with an angle bracket, it means that
6050 NAME0 does not follow the GNAT encoding format. It should then
6051 not be allowed as a possible wild match. */
6052 if (decoded_name[0] == '<')
6053 return 0;
6054
6055 for (i=0; decoded_name[i] != '\0'; i++)
6056 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6057 return 0;
6058
6059 return 1;
6060 }
6061
6062 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6063 that could start a simple name. Assumes that *NAMEP points into
6064 the string beginning at NAME0. */
6065
6066 static int
6067 advance_wild_match (const char **namep, const char *name0, int target0)
6068 {
6069 const char *name = *namep;
6070
6071 while (1)
6072 {
6073 int t0, t1;
6074
6075 t0 = *name;
6076 if (t0 == '_')
6077 {
6078 t1 = name[1];
6079 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6080 {
6081 name += 1;
6082 if (name == name0 + 5 && startswith (name0, "_ada"))
6083 break;
6084 else
6085 name += 1;
6086 }
6087 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6088 || name[2] == target0))
6089 {
6090 name += 2;
6091 break;
6092 }
6093 else
6094 return 0;
6095 }
6096 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6097 name += 1;
6098 else
6099 return 0;
6100 }
6101
6102 *namep = name;
6103 return 1;
6104 }
6105
6106 /* Return true iff NAME encodes a name of the form prefix.PATN.
6107 Ignores any informational suffixes of NAME (i.e., for which
6108 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6109 simple name. */
6110
6111 static bool
6112 wild_match (const char *name, const char *patn)
6113 {
6114 const char *p;
6115 const char *name0 = name;
6116
6117 while (1)
6118 {
6119 const char *match = name;
6120
6121 if (*name == *patn)
6122 {
6123 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6124 if (*p != *name)
6125 break;
6126 if (*p == '\0' && is_name_suffix (name))
6127 return match == name0 || is_valid_name_for_wild_match (name0);
6128
6129 if (name[-1] == '_')
6130 name -= 1;
6131 }
6132 if (!advance_wild_match (&name, name0, *patn))
6133 return false;
6134 }
6135 }
6136
6137 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6138 any trailing suffixes that encode debugging information or leading
6139 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6140 information that is ignored). */
6141
6142 static bool
6143 full_match (const char *sym_name, const char *search_name)
6144 {
6145 size_t search_name_len = strlen (search_name);
6146
6147 if (strncmp (sym_name, search_name, search_name_len) == 0
6148 && is_name_suffix (sym_name + search_name_len))
6149 return true;
6150
6151 if (startswith (sym_name, "_ada_")
6152 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6153 && is_name_suffix (sym_name + search_name_len + 5))
6154 return true;
6155
6156 return false;
6157 }
6158
6159 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6160 *defn_symbols, updating the list of symbols in OBSTACKP (if
6161 necessary). OBJFILE is the section containing BLOCK. */
6162
6163 static void
6164 ada_add_block_symbols (struct obstack *obstackp,
6165 const struct block *block,
6166 const lookup_name_info &lookup_name,
6167 domain_enum domain, struct objfile *objfile)
6168 {
6169 struct block_iterator iter;
6170 /* A matching argument symbol, if any. */
6171 struct symbol *arg_sym;
6172 /* Set true when we find a matching non-argument symbol. */
6173 int found_sym;
6174 struct symbol *sym;
6175
6176 arg_sym = NULL;
6177 found_sym = 0;
6178 for (sym = block_iter_match_first (block, lookup_name, &iter);
6179 sym != NULL;
6180 sym = block_iter_match_next (lookup_name, &iter))
6181 {
6182 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6183 {
6184 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6185 {
6186 if (SYMBOL_IS_ARGUMENT (sym))
6187 arg_sym = sym;
6188 else
6189 {
6190 found_sym = 1;
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (sym, objfile),
6193 block);
6194 }
6195 }
6196 }
6197 }
6198
6199 /* Handle renamings. */
6200
6201 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6202 found_sym = 1;
6203
6204 if (!found_sym && arg_sym != NULL)
6205 {
6206 add_defn_to_vec (obstackp,
6207 fixup_symbol_section (arg_sym, objfile),
6208 block);
6209 }
6210
6211 if (!lookup_name.ada ().wild_match_p ())
6212 {
6213 arg_sym = NULL;
6214 found_sym = 0;
6215 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6216 const char *name = ada_lookup_name.c_str ();
6217 size_t name_len = ada_lookup_name.size ();
6218
6219 ALL_BLOCK_SYMBOLS (block, iter, sym)
6220 {
6221 if (symbol_matches_domain (sym->language (),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 int cmp;
6225
6226 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6227 if (cmp == 0)
6228 {
6229 cmp = !startswith (sym->linkage_name (), "_ada_");
6230 if (cmp == 0)
6231 cmp = strncmp (name, sym->linkage_name () + 5,
6232 name_len);
6233 }
6234
6235 if (cmp == 0
6236 && is_name_suffix (sym->linkage_name () + name_len + 5))
6237 {
6238 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6239 {
6240 if (SYMBOL_IS_ARGUMENT (sym))
6241 arg_sym = sym;
6242 else
6243 {
6244 found_sym = 1;
6245 add_defn_to_vec (obstackp,
6246 fixup_symbol_section (sym, objfile),
6247 block);
6248 }
6249 }
6250 }
6251 }
6252 }
6253
6254 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6255 They aren't parameters, right? */
6256 if (!found_sym && arg_sym != NULL)
6257 {
6258 add_defn_to_vec (obstackp,
6259 fixup_symbol_section (arg_sym, objfile),
6260 block);
6261 }
6262 }
6263 }
6264 \f
6265
6266 /* Symbol Completion */
6267
6268 /* See symtab.h. */
6269
6270 bool
6271 ada_lookup_name_info::matches
6272 (const char *sym_name,
6273 symbol_name_match_type match_type,
6274 completion_match_result *comp_match_res) const
6275 {
6276 bool match = false;
6277 const char *text = m_encoded_name.c_str ();
6278 size_t text_len = m_encoded_name.size ();
6279
6280 /* First, test against the fully qualified name of the symbol. */
6281
6282 if (strncmp (sym_name, text, text_len) == 0)
6283 match = true;
6284
6285 std::string decoded_name = ada_decode (sym_name);
6286 if (match && !m_encoded_p)
6287 {
6288 /* One needed check before declaring a positive match is to verify
6289 that iff we are doing a verbatim match, the decoded version
6290 of the symbol name starts with '<'. Otherwise, this symbol name
6291 is not a suitable completion. */
6292
6293 bool has_angle_bracket = (decoded_name[0] == '<');
6294 match = (has_angle_bracket == m_verbatim_p);
6295 }
6296
6297 if (match && !m_verbatim_p)
6298 {
6299 /* When doing non-verbatim match, another check that needs to
6300 be done is to verify that the potentially matching symbol name
6301 does not include capital letters, because the ada-mode would
6302 not be able to understand these symbol names without the
6303 angle bracket notation. */
6304 const char *tmp;
6305
6306 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6307 if (*tmp != '\0')
6308 match = false;
6309 }
6310
6311 /* Second: Try wild matching... */
6312
6313 if (!match && m_wild_match_p)
6314 {
6315 /* Since we are doing wild matching, this means that TEXT
6316 may represent an unqualified symbol name. We therefore must
6317 also compare TEXT against the unqualified name of the symbol. */
6318 sym_name = ada_unqualified_name (decoded_name.c_str ());
6319
6320 if (strncmp (sym_name, text, text_len) == 0)
6321 match = true;
6322 }
6323
6324 /* Finally: If we found a match, prepare the result to return. */
6325
6326 if (!match)
6327 return false;
6328
6329 if (comp_match_res != NULL)
6330 {
6331 std::string &match_str = comp_match_res->match.storage ();
6332
6333 if (!m_encoded_p)
6334 match_str = ada_decode (sym_name);
6335 else
6336 {
6337 if (m_verbatim_p)
6338 match_str = add_angle_brackets (sym_name);
6339 else
6340 match_str = sym_name;
6341
6342 }
6343
6344 comp_match_res->set_match (match_str.c_str ());
6345 }
6346
6347 return true;
6348 }
6349
6350 /* Add the list of possible symbol names completing TEXT to TRACKER.
6351 WORD is the entire command on which completion is made. */
6352
6353 static void
6354 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6355 complete_symbol_mode mode,
6356 symbol_name_match_type name_match_type,
6357 const char *text, const char *word,
6358 enum type_code code)
6359 {
6360 struct symbol *sym;
6361 const struct block *b, *surrounding_static_block = 0;
6362 struct block_iterator iter;
6363
6364 gdb_assert (code == TYPE_CODE_UNDEF);
6365
6366 lookup_name_info lookup_name (text, name_match_type, true);
6367
6368 /* First, look at the partial symtab symbols. */
6369 expand_symtabs_matching (NULL,
6370 lookup_name,
6371 NULL,
6372 NULL,
6373 ALL_DOMAIN);
6374
6375 /* At this point scan through the misc symbol vectors and add each
6376 symbol you find to the list. Eventually we want to ignore
6377 anything that isn't a text symbol (everything else will be
6378 handled by the psymtab code above). */
6379
6380 for (objfile *objfile : current_program_space->objfiles ())
6381 {
6382 for (minimal_symbol *msymbol : objfile->msymbols ())
6383 {
6384 QUIT;
6385
6386 if (completion_skip_symbol (mode, msymbol))
6387 continue;
6388
6389 language symbol_language = msymbol->language ();
6390
6391 /* Ada minimal symbols won't have their language set to Ada. If
6392 we let completion_list_add_name compare using the
6393 default/C-like matcher, then when completing e.g., symbols in a
6394 package named "pck", we'd match internal Ada symbols like
6395 "pckS", which are invalid in an Ada expression, unless you wrap
6396 them in '<' '>' to request a verbatim match.
6397
6398 Unfortunately, some Ada encoded names successfully demangle as
6399 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6400 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6401 with the wrong language set. Paper over that issue here. */
6402 if (symbol_language == language_auto
6403 || symbol_language == language_cplus)
6404 symbol_language = language_ada;
6405
6406 completion_list_add_name (tracker,
6407 symbol_language,
6408 msymbol->linkage_name (),
6409 lookup_name, text, word);
6410 }
6411 }
6412
6413 /* Search upwards from currently selected frame (so that we can
6414 complete on local vars. */
6415
6416 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6417 {
6418 if (!BLOCK_SUPERBLOCK (b))
6419 surrounding_static_block = b; /* For elmin of dups */
6420
6421 ALL_BLOCK_SYMBOLS (b, iter, sym)
6422 {
6423 if (completion_skip_symbol (mode, sym))
6424 continue;
6425
6426 completion_list_add_name (tracker,
6427 sym->language (),
6428 sym->linkage_name (),
6429 lookup_name, text, word);
6430 }
6431 }
6432
6433 /* Go through the symtabs and check the externs and statics for
6434 symbols which match. */
6435
6436 for (objfile *objfile : current_program_space->objfiles ())
6437 {
6438 for (compunit_symtab *s : objfile->compunits ())
6439 {
6440 QUIT;
6441 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6442 ALL_BLOCK_SYMBOLS (b, iter, sym)
6443 {
6444 if (completion_skip_symbol (mode, sym))
6445 continue;
6446
6447 completion_list_add_name (tracker,
6448 sym->language (),
6449 sym->linkage_name (),
6450 lookup_name, text, word);
6451 }
6452 }
6453 }
6454
6455 for (objfile *objfile : current_program_space->objfiles ())
6456 {
6457 for (compunit_symtab *s : objfile->compunits ())
6458 {
6459 QUIT;
6460 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6461 /* Don't do this block twice. */
6462 if (b == surrounding_static_block)
6463 continue;
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
6469 completion_list_add_name (tracker,
6470 sym->language (),
6471 sym->linkage_name (),
6472 lookup_name, text, word);
6473 }
6474 }
6475 }
6476 }
6477
6478 /* Field Access */
6479
6480 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6481 for tagged types. */
6482
6483 static int
6484 ada_is_dispatch_table_ptr_type (struct type *type)
6485 {
6486 const char *name;
6487
6488 if (type->code () != TYPE_CODE_PTR)
6489 return 0;
6490
6491 name = TYPE_TARGET_TYPE (type)->name ();
6492 if (name == NULL)
6493 return 0;
6494
6495 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6496 }
6497
6498 /* Return non-zero if TYPE is an interface tag. */
6499
6500 static int
6501 ada_is_interface_tag (struct type *type)
6502 {
6503 const char *name = type->name ();
6504
6505 if (name == NULL)
6506 return 0;
6507
6508 return (strcmp (name, "ada__tags__interface_tag") == 0);
6509 }
6510
6511 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6512 to be invisible to users. */
6513
6514 int
6515 ada_is_ignored_field (struct type *type, int field_num)
6516 {
6517 if (field_num < 0 || field_num > type->num_fields ())
6518 return 1;
6519
6520 /* Check the name of that field. */
6521 {
6522 const char *name = TYPE_FIELD_NAME (type, field_num);
6523
6524 /* Anonymous field names should not be printed.
6525 brobecker/2007-02-20: I don't think this can actually happen
6526 but we don't want to print the value of anonymous fields anyway. */
6527 if (name == NULL)
6528 return 1;
6529
6530 /* Normally, fields whose name start with an underscore ("_")
6531 are fields that have been internally generated by the compiler,
6532 and thus should not be printed. The "_parent" field is special,
6533 however: This is a field internally generated by the compiler
6534 for tagged types, and it contains the components inherited from
6535 the parent type. This field should not be printed as is, but
6536 should not be ignored either. */
6537 if (name[0] == '_' && !startswith (name, "_parent"))
6538 return 1;
6539 }
6540
6541 /* If this is the dispatch table of a tagged type or an interface tag,
6542 then ignore. */
6543 if (ada_is_tagged_type (type, 1)
6544 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6545 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6546 return 1;
6547
6548 /* Not a special field, so it should not be ignored. */
6549 return 0;
6550 }
6551
6552 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6553 pointer or reference type whose ultimate target has a tag field. */
6554
6555 int
6556 ada_is_tagged_type (struct type *type, int refok)
6557 {
6558 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6559 }
6560
6561 /* True iff TYPE represents the type of X'Tag */
6562
6563 int
6564 ada_is_tag_type (struct type *type)
6565 {
6566 type = ada_check_typedef (type);
6567
6568 if (type == NULL || type->code () != TYPE_CODE_PTR)
6569 return 0;
6570 else
6571 {
6572 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6573
6574 return (name != NULL
6575 && strcmp (name, "ada__tags__dispatch_table") == 0);
6576 }
6577 }
6578
6579 /* The type of the tag on VAL. */
6580
6581 static struct type *
6582 ada_tag_type (struct value *val)
6583 {
6584 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6585 }
6586
6587 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6588 retired at Ada 05). */
6589
6590 static int
6591 is_ada95_tag (struct value *tag)
6592 {
6593 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6594 }
6595
6596 /* The value of the tag on VAL. */
6597
6598 static struct value *
6599 ada_value_tag (struct value *val)
6600 {
6601 return ada_value_struct_elt (val, "_tag", 0);
6602 }
6603
6604 /* The value of the tag on the object of type TYPE whose contents are
6605 saved at VALADDR, if it is non-null, or is at memory address
6606 ADDRESS. */
6607
6608 static struct value *
6609 value_tag_from_contents_and_address (struct type *type,
6610 const gdb_byte *valaddr,
6611 CORE_ADDR address)
6612 {
6613 int tag_byte_offset;
6614 struct type *tag_type;
6615
6616 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6617 NULL, NULL, NULL))
6618 {
6619 const gdb_byte *valaddr1 = ((valaddr == NULL)
6620 ? NULL
6621 : valaddr + tag_byte_offset);
6622 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6623
6624 return value_from_contents_and_address (tag_type, valaddr1, address1);
6625 }
6626 return NULL;
6627 }
6628
6629 static struct type *
6630 type_from_tag (struct value *tag)
6631 {
6632 const char *type_name = ada_tag_name (tag);
6633
6634 if (type_name != NULL)
6635 return ada_find_any_type (ada_encode (type_name));
6636 return NULL;
6637 }
6638
6639 /* Given a value OBJ of a tagged type, return a value of this
6640 type at the base address of the object. The base address, as
6641 defined in Ada.Tags, it is the address of the primary tag of
6642 the object, and therefore where the field values of its full
6643 view can be fetched. */
6644
6645 struct value *
6646 ada_tag_value_at_base_address (struct value *obj)
6647 {
6648 struct value *val;
6649 LONGEST offset_to_top = 0;
6650 struct type *ptr_type, *obj_type;
6651 struct value *tag;
6652 CORE_ADDR base_address;
6653
6654 obj_type = value_type (obj);
6655
6656 /* It is the responsability of the caller to deref pointers. */
6657
6658 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6659 return obj;
6660
6661 tag = ada_value_tag (obj);
6662 if (!tag)
6663 return obj;
6664
6665 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6666
6667 if (is_ada95_tag (tag))
6668 return obj;
6669
6670 ptr_type = language_lookup_primitive_type
6671 (language_def (language_ada), target_gdbarch(), "storage_offset");
6672 ptr_type = lookup_pointer_type (ptr_type);
6673 val = value_cast (ptr_type, tag);
6674 if (!val)
6675 return obj;
6676
6677 /* It is perfectly possible that an exception be raised while
6678 trying to determine the base address, just like for the tag;
6679 see ada_tag_name for more details. We do not print the error
6680 message for the same reason. */
6681
6682 try
6683 {
6684 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6685 }
6686
6687 catch (const gdb_exception_error &e)
6688 {
6689 return obj;
6690 }
6691
6692 /* If offset is null, nothing to do. */
6693
6694 if (offset_to_top == 0)
6695 return obj;
6696
6697 /* -1 is a special case in Ada.Tags; however, what should be done
6698 is not quite clear from the documentation. So do nothing for
6699 now. */
6700
6701 if (offset_to_top == -1)
6702 return obj;
6703
6704 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6705 from the base address. This was however incompatible with
6706 C++ dispatch table: C++ uses a *negative* value to *add*
6707 to the base address. Ada's convention has therefore been
6708 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6709 use the same convention. Here, we support both cases by
6710 checking the sign of OFFSET_TO_TOP. */
6711
6712 if (offset_to_top > 0)
6713 offset_to_top = -offset_to_top;
6714
6715 base_address = value_address (obj) + offset_to_top;
6716 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6717
6718 /* Make sure that we have a proper tag at the new address.
6719 Otherwise, offset_to_top is bogus (which can happen when
6720 the object is not initialized yet). */
6721
6722 if (!tag)
6723 return obj;
6724
6725 obj_type = type_from_tag (tag);
6726
6727 if (!obj_type)
6728 return obj;
6729
6730 return value_from_contents_and_address (obj_type, NULL, base_address);
6731 }
6732
6733 /* Return the "ada__tags__type_specific_data" type. */
6734
6735 static struct type *
6736 ada_get_tsd_type (struct inferior *inf)
6737 {
6738 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6739
6740 if (data->tsd_type == 0)
6741 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6742 return data->tsd_type;
6743 }
6744
6745 /* Return the TSD (type-specific data) associated to the given TAG.
6746 TAG is assumed to be the tag of a tagged-type entity.
6747
6748 May return NULL if we are unable to get the TSD. */
6749
6750 static struct value *
6751 ada_get_tsd_from_tag (struct value *tag)
6752 {
6753 struct value *val;
6754 struct type *type;
6755
6756 /* First option: The TSD is simply stored as a field of our TAG.
6757 Only older versions of GNAT would use this format, but we have
6758 to test it first, because there are no visible markers for
6759 the current approach except the absence of that field. */
6760
6761 val = ada_value_struct_elt (tag, "tsd", 1);
6762 if (val)
6763 return val;
6764
6765 /* Try the second representation for the dispatch table (in which
6766 there is no explicit 'tsd' field in the referent of the tag pointer,
6767 and instead the tsd pointer is stored just before the dispatch
6768 table. */
6769
6770 type = ada_get_tsd_type (current_inferior());
6771 if (type == NULL)
6772 return NULL;
6773 type = lookup_pointer_type (lookup_pointer_type (type));
6774 val = value_cast (type, tag);
6775 if (val == NULL)
6776 return NULL;
6777 return value_ind (value_ptradd (val, -1));
6778 }
6779
6780 /* Given the TSD of a tag (type-specific data), return a string
6781 containing the name of the associated type.
6782
6783 The returned value is good until the next call. May return NULL
6784 if we are unable to determine the tag name. */
6785
6786 static char *
6787 ada_tag_name_from_tsd (struct value *tsd)
6788 {
6789 static char name[1024];
6790 char *p;
6791 struct value *val;
6792
6793 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6794 if (val == NULL)
6795 return NULL;
6796 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6797 for (p = name; *p != '\0'; p += 1)
6798 if (isalpha (*p))
6799 *p = tolower (*p);
6800 return name;
6801 }
6802
6803 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6804 a C string.
6805
6806 Return NULL if the TAG is not an Ada tag, or if we were unable to
6807 determine the name of that tag. The result is good until the next
6808 call. */
6809
6810 const char *
6811 ada_tag_name (struct value *tag)
6812 {
6813 char *name = NULL;
6814
6815 if (!ada_is_tag_type (value_type (tag)))
6816 return NULL;
6817
6818 /* It is perfectly possible that an exception be raised while trying
6819 to determine the TAG's name, even under normal circumstances:
6820 The associated variable may be uninitialized or corrupted, for
6821 instance. We do not let any exception propagate past this point.
6822 instead we return NULL.
6823
6824 We also do not print the error message either (which often is very
6825 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6826 the caller print a more meaningful message if necessary. */
6827 try
6828 {
6829 struct value *tsd = ada_get_tsd_from_tag (tag);
6830
6831 if (tsd != NULL)
6832 name = ada_tag_name_from_tsd (tsd);
6833 }
6834 catch (const gdb_exception_error &e)
6835 {
6836 }
6837
6838 return name;
6839 }
6840
6841 /* The parent type of TYPE, or NULL if none. */
6842
6843 struct type *
6844 ada_parent_type (struct type *type)
6845 {
6846 int i;
6847
6848 type = ada_check_typedef (type);
6849
6850 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6851 return NULL;
6852
6853 for (i = 0; i < type->num_fields (); i += 1)
6854 if (ada_is_parent_field (type, i))
6855 {
6856 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6857
6858 /* If the _parent field is a pointer, then dereference it. */
6859 if (parent_type->code () == TYPE_CODE_PTR)
6860 parent_type = TYPE_TARGET_TYPE (parent_type);
6861 /* If there is a parallel XVS type, get the actual base type. */
6862 parent_type = ada_get_base_type (parent_type);
6863
6864 return ada_check_typedef (parent_type);
6865 }
6866
6867 return NULL;
6868 }
6869
6870 /* True iff field number FIELD_NUM of structure type TYPE contains the
6871 parent-type (inherited) fields of a derived type. Assumes TYPE is
6872 a structure type with at least FIELD_NUM+1 fields. */
6873
6874 int
6875 ada_is_parent_field (struct type *type, int field_num)
6876 {
6877 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6878
6879 return (name != NULL
6880 && (startswith (name, "PARENT")
6881 || startswith (name, "_parent")));
6882 }
6883
6884 /* True iff field number FIELD_NUM of structure type TYPE is a
6885 transparent wrapper field (which should be silently traversed when doing
6886 field selection and flattened when printing). Assumes TYPE is a
6887 structure type with at least FIELD_NUM+1 fields. Such fields are always
6888 structures. */
6889
6890 int
6891 ada_is_wrapper_field (struct type *type, int field_num)
6892 {
6893 const char *name = TYPE_FIELD_NAME (type, field_num);
6894
6895 if (name != NULL && strcmp (name, "RETVAL") == 0)
6896 {
6897 /* This happens in functions with "out" or "in out" parameters
6898 which are passed by copy. For such functions, GNAT describes
6899 the function's return type as being a struct where the return
6900 value is in a field called RETVAL, and where the other "out"
6901 or "in out" parameters are fields of that struct. This is not
6902 a wrapper. */
6903 return 0;
6904 }
6905
6906 return (name != NULL
6907 && (startswith (name, "PARENT")
6908 || strcmp (name, "REP") == 0
6909 || startswith (name, "_parent")
6910 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6911 }
6912
6913 /* True iff field number FIELD_NUM of structure or union type TYPE
6914 is a variant wrapper. Assumes TYPE is a structure type with at least
6915 FIELD_NUM+1 fields. */
6916
6917 int
6918 ada_is_variant_part (struct type *type, int field_num)
6919 {
6920 /* Only Ada types are eligible. */
6921 if (!ADA_TYPE_P (type))
6922 return 0;
6923
6924 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6925
6926 return (field_type->code () == TYPE_CODE_UNION
6927 || (is_dynamic_field (type, field_num)
6928 && (TYPE_TARGET_TYPE (field_type)->code ()
6929 == TYPE_CODE_UNION)));
6930 }
6931
6932 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6933 whose discriminants are contained in the record type OUTER_TYPE,
6934 returns the type of the controlling discriminant for the variant.
6935 May return NULL if the type could not be found. */
6936
6937 struct type *
6938 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6939 {
6940 const char *name = ada_variant_discrim_name (var_type);
6941
6942 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6943 }
6944
6945 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6946 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6947 represents a 'when others' clause; otherwise 0. */
6948
6949 static int
6950 ada_is_others_clause (struct type *type, int field_num)
6951 {
6952 const char *name = TYPE_FIELD_NAME (type, field_num);
6953
6954 return (name != NULL && name[0] == 'O');
6955 }
6956
6957 /* Assuming that TYPE0 is the type of the variant part of a record,
6958 returns the name of the discriminant controlling the variant.
6959 The value is valid until the next call to ada_variant_discrim_name. */
6960
6961 const char *
6962 ada_variant_discrim_name (struct type *type0)
6963 {
6964 static char *result = NULL;
6965 static size_t result_len = 0;
6966 struct type *type;
6967 const char *name;
6968 const char *discrim_end;
6969 const char *discrim_start;
6970
6971 if (type0->code () == TYPE_CODE_PTR)
6972 type = TYPE_TARGET_TYPE (type0);
6973 else
6974 type = type0;
6975
6976 name = ada_type_name (type);
6977
6978 if (name == NULL || name[0] == '\000')
6979 return "";
6980
6981 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6982 discrim_end -= 1)
6983 {
6984 if (startswith (discrim_end, "___XVN"))
6985 break;
6986 }
6987 if (discrim_end == name)
6988 return "";
6989
6990 for (discrim_start = discrim_end; discrim_start != name + 3;
6991 discrim_start -= 1)
6992 {
6993 if (discrim_start == name + 1)
6994 return "";
6995 if ((discrim_start > name + 3
6996 && startswith (discrim_start - 3, "___"))
6997 || discrim_start[-1] == '.')
6998 break;
6999 }
7000
7001 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7002 strncpy (result, discrim_start, discrim_end - discrim_start);
7003 result[discrim_end - discrim_start] = '\0';
7004 return result;
7005 }
7006
7007 /* Scan STR for a subtype-encoded number, beginning at position K.
7008 Put the position of the character just past the number scanned in
7009 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7010 Return 1 if there was a valid number at the given position, and 0
7011 otherwise. A "subtype-encoded" number consists of the absolute value
7012 in decimal, followed by the letter 'm' to indicate a negative number.
7013 Assumes 0m does not occur. */
7014
7015 int
7016 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7017 {
7018 ULONGEST RU;
7019
7020 if (!isdigit (str[k]))
7021 return 0;
7022
7023 /* Do it the hard way so as not to make any assumption about
7024 the relationship of unsigned long (%lu scan format code) and
7025 LONGEST. */
7026 RU = 0;
7027 while (isdigit (str[k]))
7028 {
7029 RU = RU * 10 + (str[k] - '0');
7030 k += 1;
7031 }
7032
7033 if (str[k] == 'm')
7034 {
7035 if (R != NULL)
7036 *R = (-(LONGEST) (RU - 1)) - 1;
7037 k += 1;
7038 }
7039 else if (R != NULL)
7040 *R = (LONGEST) RU;
7041
7042 /* NOTE on the above: Technically, C does not say what the results of
7043 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7044 number representable as a LONGEST (although either would probably work
7045 in most implementations). When RU>0, the locution in the then branch
7046 above is always equivalent to the negative of RU. */
7047
7048 if (new_k != NULL)
7049 *new_k = k;
7050 return 1;
7051 }
7052
7053 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7054 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7055 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7056
7057 static int
7058 ada_in_variant (LONGEST val, struct type *type, int field_num)
7059 {
7060 const char *name = TYPE_FIELD_NAME (type, field_num);
7061 int p;
7062
7063 p = 0;
7064 while (1)
7065 {
7066 switch (name[p])
7067 {
7068 case '\0':
7069 return 0;
7070 case 'S':
7071 {
7072 LONGEST W;
7073
7074 if (!ada_scan_number (name, p + 1, &W, &p))
7075 return 0;
7076 if (val == W)
7077 return 1;
7078 break;
7079 }
7080 case 'R':
7081 {
7082 LONGEST L, U;
7083
7084 if (!ada_scan_number (name, p + 1, &L, &p)
7085 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7086 return 0;
7087 if (val >= L && val <= U)
7088 return 1;
7089 break;
7090 }
7091 case 'O':
7092 return 1;
7093 default:
7094 return 0;
7095 }
7096 }
7097 }
7098
7099 /* FIXME: Lots of redundancy below. Try to consolidate. */
7100
7101 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7102 ARG_TYPE, extract and return the value of one of its (non-static)
7103 fields. FIELDNO says which field. Differs from value_primitive_field
7104 only in that it can handle packed values of arbitrary type. */
7105
7106 struct value *
7107 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7108 struct type *arg_type)
7109 {
7110 struct type *type;
7111
7112 arg_type = ada_check_typedef (arg_type);
7113 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7114
7115 /* Handle packed fields. It might be that the field is not packed
7116 relative to its containing structure, but the structure itself is
7117 packed; in this case we must take the bit-field path. */
7118 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7119 {
7120 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7121 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7122
7123 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7124 offset + bit_pos / 8,
7125 bit_pos % 8, bit_size, type);
7126 }
7127 else
7128 return value_primitive_field (arg1, offset, fieldno, arg_type);
7129 }
7130
7131 /* Find field with name NAME in object of type TYPE. If found,
7132 set the following for each argument that is non-null:
7133 - *FIELD_TYPE_P to the field's type;
7134 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7135 an object of that type;
7136 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7137 - *BIT_SIZE_P to its size in bits if the field is packed, and
7138 0 otherwise;
7139 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7140 fields up to but not including the desired field, or by the total
7141 number of fields if not found. A NULL value of NAME never
7142 matches; the function just counts visible fields in this case.
7143
7144 Notice that we need to handle when a tagged record hierarchy
7145 has some components with the same name, like in this scenario:
7146
7147 type Top_T is tagged record
7148 N : Integer := 1;
7149 U : Integer := 974;
7150 A : Integer := 48;
7151 end record;
7152
7153 type Middle_T is new Top.Top_T with record
7154 N : Character := 'a';
7155 C : Integer := 3;
7156 end record;
7157
7158 type Bottom_T is new Middle.Middle_T with record
7159 N : Float := 4.0;
7160 C : Character := '5';
7161 X : Integer := 6;
7162 A : Character := 'J';
7163 end record;
7164
7165 Let's say we now have a variable declared and initialized as follow:
7166
7167 TC : Top_A := new Bottom_T;
7168
7169 And then we use this variable to call this function
7170
7171 procedure Assign (Obj: in out Top_T; TV : Integer);
7172
7173 as follow:
7174
7175 Assign (Top_T (B), 12);
7176
7177 Now, we're in the debugger, and we're inside that procedure
7178 then and we want to print the value of obj.c:
7179
7180 Usually, the tagged record or one of the parent type owns the
7181 component to print and there's no issue but in this particular
7182 case, what does it mean to ask for Obj.C? Since the actual
7183 type for object is type Bottom_T, it could mean two things: type
7184 component C from the Middle_T view, but also component C from
7185 Bottom_T. So in that "undefined" case, when the component is
7186 not found in the non-resolved type (which includes all the
7187 components of the parent type), then resolve it and see if we
7188 get better luck once expanded.
7189
7190 In the case of homonyms in the derived tagged type, we don't
7191 guaranty anything, and pick the one that's easiest for us
7192 to program.
7193
7194 Returns 1 if found, 0 otherwise. */
7195
7196 static int
7197 find_struct_field (const char *name, struct type *type, int offset,
7198 struct type **field_type_p,
7199 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7200 int *index_p)
7201 {
7202 int i;
7203 int parent_offset = -1;
7204
7205 type = ada_check_typedef (type);
7206
7207 if (field_type_p != NULL)
7208 *field_type_p = NULL;
7209 if (byte_offset_p != NULL)
7210 *byte_offset_p = 0;
7211 if (bit_offset_p != NULL)
7212 *bit_offset_p = 0;
7213 if (bit_size_p != NULL)
7214 *bit_size_p = 0;
7215
7216 for (i = 0; i < type->num_fields (); i += 1)
7217 {
7218 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7219 int fld_offset = offset + bit_pos / 8;
7220 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7221
7222 if (t_field_name == NULL)
7223 continue;
7224
7225 else if (ada_is_parent_field (type, i))
7226 {
7227 /* This is a field pointing us to the parent type of a tagged
7228 type. As hinted in this function's documentation, we give
7229 preference to fields in the current record first, so what
7230 we do here is just record the index of this field before
7231 we skip it. If it turns out we couldn't find our field
7232 in the current record, then we'll get back to it and search
7233 inside it whether the field might exist in the parent. */
7234
7235 parent_offset = i;
7236 continue;
7237 }
7238
7239 else if (name != NULL && field_name_match (t_field_name, name))
7240 {
7241 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7242
7243 if (field_type_p != NULL)
7244 *field_type_p = TYPE_FIELD_TYPE (type, i);
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = fld_offset;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = bit_pos % 8;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = bit_size;
7251 return 1;
7252 }
7253 else if (ada_is_wrapper_field (type, i))
7254 {
7255 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7256 field_type_p, byte_offset_p, bit_offset_p,
7257 bit_size_p, index_p))
7258 return 1;
7259 }
7260 else if (ada_is_variant_part (type, i))
7261 {
7262 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7263 fixed type?? */
7264 int j;
7265 struct type *field_type
7266 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7267
7268 for (j = 0; j < field_type->num_fields (); j += 1)
7269 {
7270 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7271 fld_offset
7272 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7273 field_type_p, byte_offset_p,
7274 bit_offset_p, bit_size_p, index_p))
7275 return 1;
7276 }
7277 }
7278 else if (index_p != NULL)
7279 *index_p += 1;
7280 }
7281
7282 /* Field not found so far. If this is a tagged type which
7283 has a parent, try finding that field in the parent now. */
7284
7285 if (parent_offset != -1)
7286 {
7287 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7288 int fld_offset = offset + bit_pos / 8;
7289
7290 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7291 fld_offset, field_type_p, byte_offset_p,
7292 bit_offset_p, bit_size_p, index_p))
7293 return 1;
7294 }
7295
7296 return 0;
7297 }
7298
7299 /* Number of user-visible fields in record type TYPE. */
7300
7301 static int
7302 num_visible_fields (struct type *type)
7303 {
7304 int n;
7305
7306 n = 0;
7307 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7308 return n;
7309 }
7310
7311 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7312 and search in it assuming it has (class) type TYPE.
7313 If found, return value, else return NULL.
7314
7315 Searches recursively through wrapper fields (e.g., '_parent').
7316
7317 In the case of homonyms in the tagged types, please refer to the
7318 long explanation in find_struct_field's function documentation. */
7319
7320 static struct value *
7321 ada_search_struct_field (const char *name, struct value *arg, int offset,
7322 struct type *type)
7323 {
7324 int i;
7325 int parent_offset = -1;
7326
7327 type = ada_check_typedef (type);
7328 for (i = 0; i < type->num_fields (); i += 1)
7329 {
7330 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7331
7332 if (t_field_name == NULL)
7333 continue;
7334
7335 else if (ada_is_parent_field (type, i))
7336 {
7337 /* This is a field pointing us to the parent type of a tagged
7338 type. As hinted in this function's documentation, we give
7339 preference to fields in the current record first, so what
7340 we do here is just record the index of this field before
7341 we skip it. If it turns out we couldn't find our field
7342 in the current record, then we'll get back to it and search
7343 inside it whether the field might exist in the parent. */
7344
7345 parent_offset = i;
7346 continue;
7347 }
7348
7349 else if (field_name_match (t_field_name, name))
7350 return ada_value_primitive_field (arg, offset, i, type);
7351
7352 else if (ada_is_wrapper_field (type, i))
7353 {
7354 struct value *v = /* Do not let indent join lines here. */
7355 ada_search_struct_field (name, arg,
7356 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7357 TYPE_FIELD_TYPE (type, i));
7358
7359 if (v != NULL)
7360 return v;
7361 }
7362
7363 else if (ada_is_variant_part (type, i))
7364 {
7365 /* PNH: Do we ever get here? See find_struct_field. */
7366 int j;
7367 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7368 i));
7369 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7370
7371 for (j = 0; j < field_type->num_fields (); j += 1)
7372 {
7373 struct value *v = ada_search_struct_field /* Force line
7374 break. */
7375 (name, arg,
7376 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7377 TYPE_FIELD_TYPE (field_type, j));
7378
7379 if (v != NULL)
7380 return v;
7381 }
7382 }
7383 }
7384
7385 /* Field not found so far. If this is a tagged type which
7386 has a parent, try finding that field in the parent now. */
7387
7388 if (parent_offset != -1)
7389 {
7390 struct value *v = ada_search_struct_field (
7391 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7392 TYPE_FIELD_TYPE (type, parent_offset));
7393
7394 if (v != NULL)
7395 return v;
7396 }
7397
7398 return NULL;
7399 }
7400
7401 static struct value *ada_index_struct_field_1 (int *, struct value *,
7402 int, struct type *);
7403
7404
7405 /* Return field #INDEX in ARG, where the index is that returned by
7406 * find_struct_field through its INDEX_P argument. Adjust the address
7407 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7408 * If found, return value, else return NULL. */
7409
7410 static struct value *
7411 ada_index_struct_field (int index, struct value *arg, int offset,
7412 struct type *type)
7413 {
7414 return ada_index_struct_field_1 (&index, arg, offset, type);
7415 }
7416
7417
7418 /* Auxiliary function for ada_index_struct_field. Like
7419 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7420 * *INDEX_P. */
7421
7422 static struct value *
7423 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7424 struct type *type)
7425 {
7426 int i;
7427 type = ada_check_typedef (type);
7428
7429 for (i = 0; i < type->num_fields (); i += 1)
7430 {
7431 if (TYPE_FIELD_NAME (type, i) == NULL)
7432 continue;
7433 else if (ada_is_wrapper_field (type, i))
7434 {
7435 struct value *v = /* Do not let indent join lines here. */
7436 ada_index_struct_field_1 (index_p, arg,
7437 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7438 TYPE_FIELD_TYPE (type, i));
7439
7440 if (v != NULL)
7441 return v;
7442 }
7443
7444 else if (ada_is_variant_part (type, i))
7445 {
7446 /* PNH: Do we ever get here? See ada_search_struct_field,
7447 find_struct_field. */
7448 error (_("Cannot assign this kind of variant record"));
7449 }
7450 else if (*index_p == 0)
7451 return ada_value_primitive_field (arg, offset, i, type);
7452 else
7453 *index_p -= 1;
7454 }
7455 return NULL;
7456 }
7457
7458 /* Return a string representation of type TYPE. */
7459
7460 static std::string
7461 type_as_string (struct type *type)
7462 {
7463 string_file tmp_stream;
7464
7465 type_print (type, "", &tmp_stream, -1);
7466
7467 return std::move (tmp_stream.string ());
7468 }
7469
7470 /* Given a type TYPE, look up the type of the component of type named NAME.
7471 If DISPP is non-null, add its byte displacement from the beginning of a
7472 structure (pointed to by a value) of type TYPE to *DISPP (does not
7473 work for packed fields).
7474
7475 Matches any field whose name has NAME as a prefix, possibly
7476 followed by "___".
7477
7478 TYPE can be either a struct or union. If REFOK, TYPE may also
7479 be a (pointer or reference)+ to a struct or union, and the
7480 ultimate target type will be searched.
7481
7482 Looks recursively into variant clauses and parent types.
7483
7484 In the case of homonyms in the tagged types, please refer to the
7485 long explanation in find_struct_field's function documentation.
7486
7487 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7488 TYPE is not a type of the right kind. */
7489
7490 static struct type *
7491 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7492 int noerr)
7493 {
7494 int i;
7495 int parent_offset = -1;
7496
7497 if (name == NULL)
7498 goto BadName;
7499
7500 if (refok && type != NULL)
7501 while (1)
7502 {
7503 type = ada_check_typedef (type);
7504 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7505 break;
7506 type = TYPE_TARGET_TYPE (type);
7507 }
7508
7509 if (type == NULL
7510 || (type->code () != TYPE_CODE_STRUCT
7511 && type->code () != TYPE_CODE_UNION))
7512 {
7513 if (noerr)
7514 return NULL;
7515
7516 error (_("Type %s is not a structure or union type"),
7517 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7518 }
7519
7520 type = to_static_fixed_type (type);
7521
7522 for (i = 0; i < type->num_fields (); i += 1)
7523 {
7524 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7525 struct type *t;
7526
7527 if (t_field_name == NULL)
7528 continue;
7529
7530 else if (ada_is_parent_field (type, i))
7531 {
7532 /* This is a field pointing us to the parent type of a tagged
7533 type. As hinted in this function's documentation, we give
7534 preference to fields in the current record first, so what
7535 we do here is just record the index of this field before
7536 we skip it. If it turns out we couldn't find our field
7537 in the current record, then we'll get back to it and search
7538 inside it whether the field might exist in the parent. */
7539
7540 parent_offset = i;
7541 continue;
7542 }
7543
7544 else if (field_name_match (t_field_name, name))
7545 return TYPE_FIELD_TYPE (type, i);
7546
7547 else if (ada_is_wrapper_field (type, i))
7548 {
7549 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7550 0, 1);
7551 if (t != NULL)
7552 return t;
7553 }
7554
7555 else if (ada_is_variant_part (type, i))
7556 {
7557 int j;
7558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7559 i));
7560
7561 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7562 {
7563 /* FIXME pnh 2008/01/26: We check for a field that is
7564 NOT wrapped in a struct, since the compiler sometimes
7565 generates these for unchecked variant types. Revisit
7566 if the compiler changes this practice. */
7567 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7568
7569 if (v_field_name != NULL
7570 && field_name_match (v_field_name, name))
7571 t = TYPE_FIELD_TYPE (field_type, j);
7572 else
7573 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7574 j),
7575 name, 0, 1);
7576
7577 if (t != NULL)
7578 return t;
7579 }
7580 }
7581
7582 }
7583
7584 /* Field not found so far. If this is a tagged type which
7585 has a parent, try finding that field in the parent now. */
7586
7587 if (parent_offset != -1)
7588 {
7589 struct type *t;
7590
7591 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7592 name, 0, 1);
7593 if (t != NULL)
7594 return t;
7595 }
7596
7597 BadName:
7598 if (!noerr)
7599 {
7600 const char *name_str = name != NULL ? name : _("<null>");
7601
7602 error (_("Type %s has no component named %s"),
7603 type_as_string (type).c_str (), name_str);
7604 }
7605
7606 return NULL;
7607 }
7608
7609 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7610 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7611 represents an unchecked union (that is, the variant part of a
7612 record that is named in an Unchecked_Union pragma). */
7613
7614 static int
7615 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7616 {
7617 const char *discrim_name = ada_variant_discrim_name (var_type);
7618
7619 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7620 }
7621
7622
7623 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7624 within OUTER, determine which variant clause (field number in VAR_TYPE,
7625 numbering from 0) is applicable. Returns -1 if none are. */
7626
7627 int
7628 ada_which_variant_applies (struct type *var_type, struct value *outer)
7629 {
7630 int others_clause;
7631 int i;
7632 const char *discrim_name = ada_variant_discrim_name (var_type);
7633 struct value *discrim;
7634 LONGEST discrim_val;
7635
7636 /* Using plain value_from_contents_and_address here causes problems
7637 because we will end up trying to resolve a type that is currently
7638 being constructed. */
7639 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7640 if (discrim == NULL)
7641 return -1;
7642 discrim_val = value_as_long (discrim);
7643
7644 others_clause = -1;
7645 for (i = 0; i < var_type->num_fields (); i += 1)
7646 {
7647 if (ada_is_others_clause (var_type, i))
7648 others_clause = i;
7649 else if (ada_in_variant (discrim_val, var_type, i))
7650 return i;
7651 }
7652
7653 return others_clause;
7654 }
7655 \f
7656
7657
7658 /* Dynamic-Sized Records */
7659
7660 /* Strategy: The type ostensibly attached to a value with dynamic size
7661 (i.e., a size that is not statically recorded in the debugging
7662 data) does not accurately reflect the size or layout of the value.
7663 Our strategy is to convert these values to values with accurate,
7664 conventional types that are constructed on the fly. */
7665
7666 /* There is a subtle and tricky problem here. In general, we cannot
7667 determine the size of dynamic records without its data. However,
7668 the 'struct value' data structure, which GDB uses to represent
7669 quantities in the inferior process (the target), requires the size
7670 of the type at the time of its allocation in order to reserve space
7671 for GDB's internal copy of the data. That's why the
7672 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7673 rather than struct value*s.
7674
7675 However, GDB's internal history variables ($1, $2, etc.) are
7676 struct value*s containing internal copies of the data that are not, in
7677 general, the same as the data at their corresponding addresses in
7678 the target. Fortunately, the types we give to these values are all
7679 conventional, fixed-size types (as per the strategy described
7680 above), so that we don't usually have to perform the
7681 'to_fixed_xxx_type' conversions to look at their values.
7682 Unfortunately, there is one exception: if one of the internal
7683 history variables is an array whose elements are unconstrained
7684 records, then we will need to create distinct fixed types for each
7685 element selected. */
7686
7687 /* The upshot of all of this is that many routines take a (type, host
7688 address, target address) triple as arguments to represent a value.
7689 The host address, if non-null, is supposed to contain an internal
7690 copy of the relevant data; otherwise, the program is to consult the
7691 target at the target address. */
7692
7693 /* Assuming that VAL0 represents a pointer value, the result of
7694 dereferencing it. Differs from value_ind in its treatment of
7695 dynamic-sized types. */
7696
7697 struct value *
7698 ada_value_ind (struct value *val0)
7699 {
7700 struct value *val = value_ind (val0);
7701
7702 if (ada_is_tagged_type (value_type (val), 0))
7703 val = ada_tag_value_at_base_address (val);
7704
7705 return ada_to_fixed_value (val);
7706 }
7707
7708 /* The value resulting from dereferencing any "reference to"
7709 qualifiers on VAL0. */
7710
7711 static struct value *
7712 ada_coerce_ref (struct value *val0)
7713 {
7714 if (value_type (val0)->code () == TYPE_CODE_REF)
7715 {
7716 struct value *val = val0;
7717
7718 val = coerce_ref (val);
7719
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
7723 return ada_to_fixed_value (val);
7724 }
7725 else
7726 return val0;
7727 }
7728
7729 /* Return the bit alignment required for field #F of template type TYPE. */
7730
7731 static unsigned int
7732 field_alignment (struct type *type, int f)
7733 {
7734 const char *name = TYPE_FIELD_NAME (type, f);
7735 int len;
7736 int align_offset;
7737
7738 /* The field name should never be null, unless the debugging information
7739 is somehow malformed. In this case, we assume the field does not
7740 require any alignment. */
7741 if (name == NULL)
7742 return 1;
7743
7744 len = strlen (name);
7745
7746 if (!isdigit (name[len - 1]))
7747 return 1;
7748
7749 if (isdigit (name[len - 2]))
7750 align_offset = len - 2;
7751 else
7752 align_offset = len - 1;
7753
7754 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7755 return TARGET_CHAR_BIT;
7756
7757 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7758 }
7759
7760 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7761
7762 static struct symbol *
7763 ada_find_any_type_symbol (const char *name)
7764 {
7765 struct symbol *sym;
7766
7767 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7768 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7769 return sym;
7770
7771 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7772 return sym;
7773 }
7774
7775 /* Find a type named NAME. Ignores ambiguity. This routine will look
7776 solely for types defined by debug info, it will not search the GDB
7777 primitive types. */
7778
7779 static struct type *
7780 ada_find_any_type (const char *name)
7781 {
7782 struct symbol *sym = ada_find_any_type_symbol (name);
7783
7784 if (sym != NULL)
7785 return SYMBOL_TYPE (sym);
7786
7787 return NULL;
7788 }
7789
7790 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7791 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7792 symbol, in which case it is returned. Otherwise, this looks for
7793 symbols whose name is that of NAME_SYM suffixed with "___XR".
7794 Return symbol if found, and NULL otherwise. */
7795
7796 static bool
7797 ada_is_renaming_symbol (struct symbol *name_sym)
7798 {
7799 const char *name = name_sym->linkage_name ();
7800 return strstr (name, "___XR") != NULL;
7801 }
7802
7803 /* Because of GNAT encoding conventions, several GDB symbols may match a
7804 given type name. If the type denoted by TYPE0 is to be preferred to
7805 that of TYPE1 for purposes of type printing, return non-zero;
7806 otherwise return 0. */
7807
7808 int
7809 ada_prefer_type (struct type *type0, struct type *type1)
7810 {
7811 if (type1 == NULL)
7812 return 1;
7813 else if (type0 == NULL)
7814 return 0;
7815 else if (type1->code () == TYPE_CODE_VOID)
7816 return 1;
7817 else if (type0->code () == TYPE_CODE_VOID)
7818 return 0;
7819 else if (type1->name () == NULL && type0->name () != NULL)
7820 return 1;
7821 else if (ada_is_constrained_packed_array_type (type0))
7822 return 1;
7823 else if (ada_is_array_descriptor_type (type0)
7824 && !ada_is_array_descriptor_type (type1))
7825 return 1;
7826 else
7827 {
7828 const char *type0_name = type0->name ();
7829 const char *type1_name = type1->name ();
7830
7831 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7832 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7833 return 1;
7834 }
7835 return 0;
7836 }
7837
7838 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7839 null. */
7840
7841 const char *
7842 ada_type_name (struct type *type)
7843 {
7844 if (type == NULL)
7845 return NULL;
7846 return type->name ();
7847 }
7848
7849 /* Search the list of "descriptive" types associated to TYPE for a type
7850 whose name is NAME. */
7851
7852 static struct type *
7853 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7854 {
7855 struct type *result, *tmp;
7856
7857 if (ada_ignore_descriptive_types_p)
7858 return NULL;
7859
7860 /* If there no descriptive-type info, then there is no parallel type
7861 to be found. */
7862 if (!HAVE_GNAT_AUX_INFO (type))
7863 return NULL;
7864
7865 result = TYPE_DESCRIPTIVE_TYPE (type);
7866 while (result != NULL)
7867 {
7868 const char *result_name = ada_type_name (result);
7869
7870 if (result_name == NULL)
7871 {
7872 warning (_("unexpected null name on descriptive type"));
7873 return NULL;
7874 }
7875
7876 /* If the names match, stop. */
7877 if (strcmp (result_name, name) == 0)
7878 break;
7879
7880 /* Otherwise, look at the next item on the list, if any. */
7881 if (HAVE_GNAT_AUX_INFO (result))
7882 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7883 else
7884 tmp = NULL;
7885
7886 /* If not found either, try after having resolved the typedef. */
7887 if (tmp != NULL)
7888 result = tmp;
7889 else
7890 {
7891 result = check_typedef (result);
7892 if (HAVE_GNAT_AUX_INFO (result))
7893 result = TYPE_DESCRIPTIVE_TYPE (result);
7894 else
7895 result = NULL;
7896 }
7897 }
7898
7899 /* If we didn't find a match, see whether this is a packed array. With
7900 older compilers, the descriptive type information is either absent or
7901 irrelevant when it comes to packed arrays so the above lookup fails.
7902 Fall back to using a parallel lookup by name in this case. */
7903 if (result == NULL && ada_is_constrained_packed_array_type (type))
7904 return ada_find_any_type (name);
7905
7906 return result;
7907 }
7908
7909 /* Find a parallel type to TYPE with the specified NAME, using the
7910 descriptive type taken from the debugging information, if available,
7911 and otherwise using the (slower) name-based method. */
7912
7913 static struct type *
7914 ada_find_parallel_type_with_name (struct type *type, const char *name)
7915 {
7916 struct type *result = NULL;
7917
7918 if (HAVE_GNAT_AUX_INFO (type))
7919 result = find_parallel_type_by_descriptive_type (type, name);
7920 else
7921 result = ada_find_any_type (name);
7922
7923 return result;
7924 }
7925
7926 /* Same as above, but specify the name of the parallel type by appending
7927 SUFFIX to the name of TYPE. */
7928
7929 struct type *
7930 ada_find_parallel_type (struct type *type, const char *suffix)
7931 {
7932 char *name;
7933 const char *type_name = ada_type_name (type);
7934 int len;
7935
7936 if (type_name == NULL)
7937 return NULL;
7938
7939 len = strlen (type_name);
7940
7941 name = (char *) alloca (len + strlen (suffix) + 1);
7942
7943 strcpy (name, type_name);
7944 strcpy (name + len, suffix);
7945
7946 return ada_find_parallel_type_with_name (type, name);
7947 }
7948
7949 /* If TYPE is a variable-size record type, return the corresponding template
7950 type describing its fields. Otherwise, return NULL. */
7951
7952 static struct type *
7953 dynamic_template_type (struct type *type)
7954 {
7955 type = ada_check_typedef (type);
7956
7957 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7958 || ada_type_name (type) == NULL)
7959 return NULL;
7960 else
7961 {
7962 int len = strlen (ada_type_name (type));
7963
7964 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7965 return type;
7966 else
7967 return ada_find_parallel_type (type, "___XVE");
7968 }
7969 }
7970
7971 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7972 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7973
7974 static int
7975 is_dynamic_field (struct type *templ_type, int field_num)
7976 {
7977 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7978
7979 return name != NULL
7980 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
7981 && strstr (name, "___XVL") != NULL;
7982 }
7983
7984 /* The index of the variant field of TYPE, or -1 if TYPE does not
7985 represent a variant record type. */
7986
7987 static int
7988 variant_field_index (struct type *type)
7989 {
7990 int f;
7991
7992 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7993 return -1;
7994
7995 for (f = 0; f < type->num_fields (); f += 1)
7996 {
7997 if (ada_is_variant_part (type, f))
7998 return f;
7999 }
8000 return -1;
8001 }
8002
8003 /* A record type with no fields. */
8004
8005 static struct type *
8006 empty_record (struct type *templ)
8007 {
8008 struct type *type = alloc_type_copy (templ);
8009
8010 type->set_code (TYPE_CODE_STRUCT);
8011 INIT_NONE_SPECIFIC (type);
8012 type->set_name ("<empty>");
8013 TYPE_LENGTH (type) = 0;
8014 return type;
8015 }
8016
8017 /* An ordinary record type (with fixed-length fields) that describes
8018 the value of type TYPE at VALADDR or ADDRESS (see comments at
8019 the beginning of this section) VAL according to GNAT conventions.
8020 DVAL0 should describe the (portion of a) record that contains any
8021 necessary discriminants. It should be NULL if value_type (VAL) is
8022 an outer-level type (i.e., as opposed to a branch of a variant.) A
8023 variant field (unless unchecked) is replaced by a particular branch
8024 of the variant.
8025
8026 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8027 length are not statically known are discarded. As a consequence,
8028 VALADDR, ADDRESS and DVAL0 are ignored.
8029
8030 NOTE: Limitations: For now, we assume that dynamic fields and
8031 variants occupy whole numbers of bytes. However, they need not be
8032 byte-aligned. */
8033
8034 struct type *
8035 ada_template_to_fixed_record_type_1 (struct type *type,
8036 const gdb_byte *valaddr,
8037 CORE_ADDR address, struct value *dval0,
8038 int keep_dynamic_fields)
8039 {
8040 struct value *mark = value_mark ();
8041 struct value *dval;
8042 struct type *rtype;
8043 int nfields, bit_len;
8044 int variant_field;
8045 long off;
8046 int fld_bit_len;
8047 int f;
8048
8049 /* Compute the number of fields in this record type that are going
8050 to be processed: unless keep_dynamic_fields, this includes only
8051 fields whose position and length are static will be processed. */
8052 if (keep_dynamic_fields)
8053 nfields = type->num_fields ();
8054 else
8055 {
8056 nfields = 0;
8057 while (nfields < type->num_fields ()
8058 && !ada_is_variant_part (type, nfields)
8059 && !is_dynamic_field (type, nfields))
8060 nfields++;
8061 }
8062
8063 rtype = alloc_type_copy (type);
8064 rtype->set_code (TYPE_CODE_STRUCT);
8065 INIT_NONE_SPECIFIC (rtype);
8066 rtype->set_num_fields (nfields);
8067 rtype->set_fields
8068 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
8069 rtype->set_name (ada_type_name (type));
8070 TYPE_FIXED_INSTANCE (rtype) = 1;
8071
8072 off = 0;
8073 bit_len = 0;
8074 variant_field = -1;
8075
8076 for (f = 0; f < nfields; f += 1)
8077 {
8078 off = align_up (off, field_alignment (type, f))
8079 + TYPE_FIELD_BITPOS (type, f);
8080 SET_FIELD_BITPOS (rtype->field (f), off);
8081 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8082
8083 if (ada_is_variant_part (type, f))
8084 {
8085 variant_field = f;
8086 fld_bit_len = 0;
8087 }
8088 else if (is_dynamic_field (type, f))
8089 {
8090 const gdb_byte *field_valaddr = valaddr;
8091 CORE_ADDR field_address = address;
8092 struct type *field_type =
8093 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8094
8095 if (dval0 == NULL)
8096 {
8097 /* rtype's length is computed based on the run-time
8098 value of discriminants. If the discriminants are not
8099 initialized, the type size may be completely bogus and
8100 GDB may fail to allocate a value for it. So check the
8101 size first before creating the value. */
8102 ada_ensure_varsize_limit (rtype);
8103 /* Using plain value_from_contents_and_address here
8104 causes problems because we will end up trying to
8105 resolve a type that is currently being
8106 constructed. */
8107 dval = value_from_contents_and_address_unresolved (rtype,
8108 valaddr,
8109 address);
8110 rtype = value_type (dval);
8111 }
8112 else
8113 dval = dval0;
8114
8115 /* If the type referenced by this field is an aligner type, we need
8116 to unwrap that aligner type, because its size might not be set.
8117 Keeping the aligner type would cause us to compute the wrong
8118 size for this field, impacting the offset of the all the fields
8119 that follow this one. */
8120 if (ada_is_aligner_type (field_type))
8121 {
8122 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8123
8124 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8125 field_address = cond_offset_target (field_address, field_offset);
8126 field_type = ada_aligned_type (field_type);
8127 }
8128
8129 field_valaddr = cond_offset_host (field_valaddr,
8130 off / TARGET_CHAR_BIT);
8131 field_address = cond_offset_target (field_address,
8132 off / TARGET_CHAR_BIT);
8133
8134 /* Get the fixed type of the field. Note that, in this case,
8135 we do not want to get the real type out of the tag: if
8136 the current field is the parent part of a tagged record,
8137 we will get the tag of the object. Clearly wrong: the real
8138 type of the parent is not the real type of the child. We
8139 would end up in an infinite loop. */
8140 field_type = ada_get_base_type (field_type);
8141 field_type = ada_to_fixed_type (field_type, field_valaddr,
8142 field_address, dval, 0);
8143 /* If the field size is already larger than the maximum
8144 object size, then the record itself will necessarily
8145 be larger than the maximum object size. We need to make
8146 this check now, because the size might be so ridiculously
8147 large (due to an uninitialized variable in the inferior)
8148 that it would cause an overflow when adding it to the
8149 record size. */
8150 ada_ensure_varsize_limit (field_type);
8151
8152 TYPE_FIELD_TYPE (rtype, f) = field_type;
8153 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8154 /* The multiplication can potentially overflow. But because
8155 the field length has been size-checked just above, and
8156 assuming that the maximum size is a reasonable value,
8157 an overflow should not happen in practice. So rather than
8158 adding overflow recovery code to this already complex code,
8159 we just assume that it's not going to happen. */
8160 fld_bit_len =
8161 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8162 }
8163 else
8164 {
8165 /* Note: If this field's type is a typedef, it is important
8166 to preserve the typedef layer.
8167
8168 Otherwise, we might be transforming a typedef to a fat
8169 pointer (encoding a pointer to an unconstrained array),
8170 into a basic fat pointer (encoding an unconstrained
8171 array). As both types are implemented using the same
8172 structure, the typedef is the only clue which allows us
8173 to distinguish between the two options. Stripping it
8174 would prevent us from printing this field appropriately. */
8175 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8176 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8177 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8178 fld_bit_len =
8179 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8180 else
8181 {
8182 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8183
8184 /* We need to be careful of typedefs when computing
8185 the length of our field. If this is a typedef,
8186 get the length of the target type, not the length
8187 of the typedef. */
8188 if (field_type->code () == TYPE_CODE_TYPEDEF)
8189 field_type = ada_typedef_target_type (field_type);
8190
8191 fld_bit_len =
8192 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8193 }
8194 }
8195 if (off + fld_bit_len > bit_len)
8196 bit_len = off + fld_bit_len;
8197 off += fld_bit_len;
8198 TYPE_LENGTH (rtype) =
8199 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8200 }
8201
8202 /* We handle the variant part, if any, at the end because of certain
8203 odd cases in which it is re-ordered so as NOT to be the last field of
8204 the record. This can happen in the presence of representation
8205 clauses. */
8206 if (variant_field >= 0)
8207 {
8208 struct type *branch_type;
8209
8210 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8211
8212 if (dval0 == NULL)
8213 {
8214 /* Using plain value_from_contents_and_address here causes
8215 problems because we will end up trying to resolve a type
8216 that is currently being constructed. */
8217 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8218 address);
8219 rtype = value_type (dval);
8220 }
8221 else
8222 dval = dval0;
8223
8224 branch_type =
8225 to_fixed_variant_branch_type
8226 (TYPE_FIELD_TYPE (type, variant_field),
8227 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8228 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8229 if (branch_type == NULL)
8230 {
8231 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8232 rtype->field (f - 1) = rtype->field (f);
8233 rtype->set_num_fields (rtype->num_fields () - 1);
8234 }
8235 else
8236 {
8237 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8238 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8239 fld_bit_len =
8240 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8241 TARGET_CHAR_BIT;
8242 if (off + fld_bit_len > bit_len)
8243 bit_len = off + fld_bit_len;
8244 TYPE_LENGTH (rtype) =
8245 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8246 }
8247 }
8248
8249 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8250 should contain the alignment of that record, which should be a strictly
8251 positive value. If null or negative, then something is wrong, most
8252 probably in the debug info. In that case, we don't round up the size
8253 of the resulting type. If this record is not part of another structure,
8254 the current RTYPE length might be good enough for our purposes. */
8255 if (TYPE_LENGTH (type) <= 0)
8256 {
8257 if (rtype->name ())
8258 warning (_("Invalid type size for `%s' detected: %s."),
8259 rtype->name (), pulongest (TYPE_LENGTH (type)));
8260 else
8261 warning (_("Invalid type size for <unnamed> detected: %s."),
8262 pulongest (TYPE_LENGTH (type)));
8263 }
8264 else
8265 {
8266 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8267 TYPE_LENGTH (type));
8268 }
8269
8270 value_free_to_mark (mark);
8271 if (TYPE_LENGTH (rtype) > varsize_limit)
8272 error (_("record type with dynamic size is larger than varsize-limit"));
8273 return rtype;
8274 }
8275
8276 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8277 of 1. */
8278
8279 static struct type *
8280 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8281 CORE_ADDR address, struct value *dval0)
8282 {
8283 return ada_template_to_fixed_record_type_1 (type, valaddr,
8284 address, dval0, 1);
8285 }
8286
8287 /* An ordinary record type in which ___XVL-convention fields and
8288 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8289 static approximations, containing all possible fields. Uses
8290 no runtime values. Useless for use in values, but that's OK,
8291 since the results are used only for type determinations. Works on both
8292 structs and unions. Representation note: to save space, we memorize
8293 the result of this function in the TYPE_TARGET_TYPE of the
8294 template type. */
8295
8296 static struct type *
8297 template_to_static_fixed_type (struct type *type0)
8298 {
8299 struct type *type;
8300 int nfields;
8301 int f;
8302
8303 /* No need no do anything if the input type is already fixed. */
8304 if (TYPE_FIXED_INSTANCE (type0))
8305 return type0;
8306
8307 /* Likewise if we already have computed the static approximation. */
8308 if (TYPE_TARGET_TYPE (type0) != NULL)
8309 return TYPE_TARGET_TYPE (type0);
8310
8311 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8312 type = type0;
8313 nfields = type0->num_fields ();
8314
8315 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8316 recompute all over next time. */
8317 TYPE_TARGET_TYPE (type0) = type;
8318
8319 for (f = 0; f < nfields; f += 1)
8320 {
8321 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8322 struct type *new_type;
8323
8324 if (is_dynamic_field (type0, f))
8325 {
8326 field_type = ada_check_typedef (field_type);
8327 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8328 }
8329 else
8330 new_type = static_unwrap_type (field_type);
8331
8332 if (new_type != field_type)
8333 {
8334 /* Clone TYPE0 only the first time we get a new field type. */
8335 if (type == type0)
8336 {
8337 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8338 type->set_code (type0->code ());
8339 INIT_NONE_SPECIFIC (type);
8340 type->set_num_fields (nfields);
8341
8342 field *fields =
8343 ((struct field *)
8344 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8345 memcpy (fields, type0->fields (),
8346 sizeof (struct field) * nfields);
8347 type->set_fields (fields);
8348
8349 type->set_name (ada_type_name (type0));
8350 TYPE_FIXED_INSTANCE (type) = 1;
8351 TYPE_LENGTH (type) = 0;
8352 }
8353 TYPE_FIELD_TYPE (type, f) = new_type;
8354 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8355 }
8356 }
8357
8358 return type;
8359 }
8360
8361 /* Given an object of type TYPE whose contents are at VALADDR and
8362 whose address in memory is ADDRESS, returns a revision of TYPE,
8363 which should be a non-dynamic-sized record, in which the variant
8364 part, if any, is replaced with the appropriate branch. Looks
8365 for discriminant values in DVAL0, which can be NULL if the record
8366 contains the necessary discriminant values. */
8367
8368 static struct type *
8369 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8370 CORE_ADDR address, struct value *dval0)
8371 {
8372 struct value *mark = value_mark ();
8373 struct value *dval;
8374 struct type *rtype;
8375 struct type *branch_type;
8376 int nfields = type->num_fields ();
8377 int variant_field = variant_field_index (type);
8378
8379 if (variant_field == -1)
8380 return type;
8381
8382 if (dval0 == NULL)
8383 {
8384 dval = value_from_contents_and_address (type, valaddr, address);
8385 type = value_type (dval);
8386 }
8387 else
8388 dval = dval0;
8389
8390 rtype = alloc_type_copy (type);
8391 rtype->set_code (TYPE_CODE_STRUCT);
8392 INIT_NONE_SPECIFIC (rtype);
8393 rtype->set_num_fields (nfields);
8394
8395 field *fields =
8396 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8397 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8398 rtype->set_fields (fields);
8399
8400 rtype->set_name (ada_type_name (type));
8401 TYPE_FIXED_INSTANCE (rtype) = 1;
8402 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8403
8404 branch_type = to_fixed_variant_branch_type
8405 (TYPE_FIELD_TYPE (type, variant_field),
8406 cond_offset_host (valaddr,
8407 TYPE_FIELD_BITPOS (type, variant_field)
8408 / TARGET_CHAR_BIT),
8409 cond_offset_target (address,
8410 TYPE_FIELD_BITPOS (type, variant_field)
8411 / TARGET_CHAR_BIT), dval);
8412 if (branch_type == NULL)
8413 {
8414 int f;
8415
8416 for (f = variant_field + 1; f < nfields; f += 1)
8417 rtype->field (f - 1) = rtype->field (f);
8418 rtype->set_num_fields (rtype->num_fields () - 1);
8419 }
8420 else
8421 {
8422 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8423 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8424 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8425 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8426 }
8427 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8428
8429 value_free_to_mark (mark);
8430 return rtype;
8431 }
8432
8433 /* An ordinary record type (with fixed-length fields) that describes
8434 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8435 beginning of this section]. Any necessary discriminants' values
8436 should be in DVAL, a record value; it may be NULL if the object
8437 at ADDR itself contains any necessary discriminant values.
8438 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8439 values from the record are needed. Except in the case that DVAL,
8440 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8441 unchecked) is replaced by a particular branch of the variant.
8442
8443 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8444 is questionable and may be removed. It can arise during the
8445 processing of an unconstrained-array-of-record type where all the
8446 variant branches have exactly the same size. This is because in
8447 such cases, the compiler does not bother to use the XVS convention
8448 when encoding the record. I am currently dubious of this
8449 shortcut and suspect the compiler should be altered. FIXME. */
8450
8451 static struct type *
8452 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8453 CORE_ADDR address, struct value *dval)
8454 {
8455 struct type *templ_type;
8456
8457 if (TYPE_FIXED_INSTANCE (type0))
8458 return type0;
8459
8460 templ_type = dynamic_template_type (type0);
8461
8462 if (templ_type != NULL)
8463 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8464 else if (variant_field_index (type0) >= 0)
8465 {
8466 if (dval == NULL && valaddr == NULL && address == 0)
8467 return type0;
8468 return to_record_with_fixed_variant_part (type0, valaddr, address,
8469 dval);
8470 }
8471 else
8472 {
8473 TYPE_FIXED_INSTANCE (type0) = 1;
8474 return type0;
8475 }
8476
8477 }
8478
8479 /* An ordinary record type (with fixed-length fields) that describes
8480 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8481 union type. Any necessary discriminants' values should be in DVAL,
8482 a record value. That is, this routine selects the appropriate
8483 branch of the union at ADDR according to the discriminant value
8484 indicated in the union's type name. Returns VAR_TYPE0 itself if
8485 it represents a variant subject to a pragma Unchecked_Union. */
8486
8487 static struct type *
8488 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8489 CORE_ADDR address, struct value *dval)
8490 {
8491 int which;
8492 struct type *templ_type;
8493 struct type *var_type;
8494
8495 if (var_type0->code () == TYPE_CODE_PTR)
8496 var_type = TYPE_TARGET_TYPE (var_type0);
8497 else
8498 var_type = var_type0;
8499
8500 templ_type = ada_find_parallel_type (var_type, "___XVU");
8501
8502 if (templ_type != NULL)
8503 var_type = templ_type;
8504
8505 if (is_unchecked_variant (var_type, value_type (dval)))
8506 return var_type0;
8507 which = ada_which_variant_applies (var_type, dval);
8508
8509 if (which < 0)
8510 return empty_record (var_type);
8511 else if (is_dynamic_field (var_type, which))
8512 return to_fixed_record_type
8513 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8514 valaddr, address, dval);
8515 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8516 return
8517 to_fixed_record_type
8518 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8519 else
8520 return TYPE_FIELD_TYPE (var_type, which);
8521 }
8522
8523 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8524 ENCODING_TYPE, a type following the GNAT conventions for discrete
8525 type encodings, only carries redundant information. */
8526
8527 static int
8528 ada_is_redundant_range_encoding (struct type *range_type,
8529 struct type *encoding_type)
8530 {
8531 const char *bounds_str;
8532 int n;
8533 LONGEST lo, hi;
8534
8535 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8536
8537 if (get_base_type (range_type)->code ()
8538 != get_base_type (encoding_type)->code ())
8539 {
8540 /* The compiler probably used a simple base type to describe
8541 the range type instead of the range's actual base type,
8542 expecting us to get the real base type from the encoding
8543 anyway. In this situation, the encoding cannot be ignored
8544 as redundant. */
8545 return 0;
8546 }
8547
8548 if (is_dynamic_type (range_type))
8549 return 0;
8550
8551 if (encoding_type->name () == NULL)
8552 return 0;
8553
8554 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8555 if (bounds_str == NULL)
8556 return 0;
8557
8558 n = 8; /* Skip "___XDLU_". */
8559 if (!ada_scan_number (bounds_str, n, &lo, &n))
8560 return 0;
8561 if (TYPE_LOW_BOUND (range_type) != lo)
8562 return 0;
8563
8564 n += 2; /* Skip the "__" separator between the two bounds. */
8565 if (!ada_scan_number (bounds_str, n, &hi, &n))
8566 return 0;
8567 if (TYPE_HIGH_BOUND (range_type) != hi)
8568 return 0;
8569
8570 return 1;
8571 }
8572
8573 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8574 a type following the GNAT encoding for describing array type
8575 indices, only carries redundant information. */
8576
8577 static int
8578 ada_is_redundant_index_type_desc (struct type *array_type,
8579 struct type *desc_type)
8580 {
8581 struct type *this_layer = check_typedef (array_type);
8582 int i;
8583
8584 for (i = 0; i < desc_type->num_fields (); i++)
8585 {
8586 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8587 TYPE_FIELD_TYPE (desc_type, i)))
8588 return 0;
8589 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8590 }
8591
8592 return 1;
8593 }
8594
8595 /* Assuming that TYPE0 is an array type describing the type of a value
8596 at ADDR, and that DVAL describes a record containing any
8597 discriminants used in TYPE0, returns a type for the value that
8598 contains no dynamic components (that is, no components whose sizes
8599 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8600 true, gives an error message if the resulting type's size is over
8601 varsize_limit. */
8602
8603 static struct type *
8604 to_fixed_array_type (struct type *type0, struct value *dval,
8605 int ignore_too_big)
8606 {
8607 struct type *index_type_desc;
8608 struct type *result;
8609 int constrained_packed_array_p;
8610 static const char *xa_suffix = "___XA";
8611
8612 type0 = ada_check_typedef (type0);
8613 if (TYPE_FIXED_INSTANCE (type0))
8614 return type0;
8615
8616 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8617 if (constrained_packed_array_p)
8618 type0 = decode_constrained_packed_array_type (type0);
8619
8620 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8621
8622 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8623 encoding suffixed with 'P' may still be generated. If so,
8624 it should be used to find the XA type. */
8625
8626 if (index_type_desc == NULL)
8627 {
8628 const char *type_name = ada_type_name (type0);
8629
8630 if (type_name != NULL)
8631 {
8632 const int len = strlen (type_name);
8633 char *name = (char *) alloca (len + strlen (xa_suffix));
8634
8635 if (type_name[len - 1] == 'P')
8636 {
8637 strcpy (name, type_name);
8638 strcpy (name + len - 1, xa_suffix);
8639 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8640 }
8641 }
8642 }
8643
8644 ada_fixup_array_indexes_type (index_type_desc);
8645 if (index_type_desc != NULL
8646 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8647 {
8648 /* Ignore this ___XA parallel type, as it does not bring any
8649 useful information. This allows us to avoid creating fixed
8650 versions of the array's index types, which would be identical
8651 to the original ones. This, in turn, can also help avoid
8652 the creation of fixed versions of the array itself. */
8653 index_type_desc = NULL;
8654 }
8655
8656 if (index_type_desc == NULL)
8657 {
8658 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8659
8660 /* NOTE: elt_type---the fixed version of elt_type0---should never
8661 depend on the contents of the array in properly constructed
8662 debugging data. */
8663 /* Create a fixed version of the array element type.
8664 We're not providing the address of an element here,
8665 and thus the actual object value cannot be inspected to do
8666 the conversion. This should not be a problem, since arrays of
8667 unconstrained objects are not allowed. In particular, all
8668 the elements of an array of a tagged type should all be of
8669 the same type specified in the debugging info. No need to
8670 consult the object tag. */
8671 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8672
8673 /* Make sure we always create a new array type when dealing with
8674 packed array types, since we're going to fix-up the array
8675 type length and element bitsize a little further down. */
8676 if (elt_type0 == elt_type && !constrained_packed_array_p)
8677 result = type0;
8678 else
8679 result = create_array_type (alloc_type_copy (type0),
8680 elt_type, TYPE_INDEX_TYPE (type0));
8681 }
8682 else
8683 {
8684 int i;
8685 struct type *elt_type0;
8686
8687 elt_type0 = type0;
8688 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8689 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8690
8691 /* NOTE: result---the fixed version of elt_type0---should never
8692 depend on the contents of the array in properly constructed
8693 debugging data. */
8694 /* Create a fixed version of the array element type.
8695 We're not providing the address of an element here,
8696 and thus the actual object value cannot be inspected to do
8697 the conversion. This should not be a problem, since arrays of
8698 unconstrained objects are not allowed. In particular, all
8699 the elements of an array of a tagged type should all be of
8700 the same type specified in the debugging info. No need to
8701 consult the object tag. */
8702 result =
8703 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8704
8705 elt_type0 = type0;
8706 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8707 {
8708 struct type *range_type =
8709 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8710
8711 result = create_array_type (alloc_type_copy (elt_type0),
8712 result, range_type);
8713 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8714 }
8715 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8716 error (_("array type with dynamic size is larger than varsize-limit"));
8717 }
8718
8719 /* We want to preserve the type name. This can be useful when
8720 trying to get the type name of a value that has already been
8721 printed (for instance, if the user did "print VAR; whatis $". */
8722 result->set_name (type0->name ());
8723
8724 if (constrained_packed_array_p)
8725 {
8726 /* So far, the resulting type has been created as if the original
8727 type was a regular (non-packed) array type. As a result, the
8728 bitsize of the array elements needs to be set again, and the array
8729 length needs to be recomputed based on that bitsize. */
8730 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8731 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8732
8733 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8734 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8735 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8736 TYPE_LENGTH (result)++;
8737 }
8738
8739 TYPE_FIXED_INSTANCE (result) = 1;
8740 return result;
8741 }
8742
8743
8744 /* A standard type (containing no dynamically sized components)
8745 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8746 DVAL describes a record containing any discriminants used in TYPE0,
8747 and may be NULL if there are none, or if the object of type TYPE at
8748 ADDRESS or in VALADDR contains these discriminants.
8749
8750 If CHECK_TAG is not null, in the case of tagged types, this function
8751 attempts to locate the object's tag and use it to compute the actual
8752 type. However, when ADDRESS is null, we cannot use it to determine the
8753 location of the tag, and therefore compute the tagged type's actual type.
8754 So we return the tagged type without consulting the tag. */
8755
8756 static struct type *
8757 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8758 CORE_ADDR address, struct value *dval, int check_tag)
8759 {
8760 type = ada_check_typedef (type);
8761
8762 /* Only un-fixed types need to be handled here. */
8763 if (!HAVE_GNAT_AUX_INFO (type))
8764 return type;
8765
8766 switch (type->code ())
8767 {
8768 default:
8769 return type;
8770 case TYPE_CODE_STRUCT:
8771 {
8772 struct type *static_type = to_static_fixed_type (type);
8773 struct type *fixed_record_type =
8774 to_fixed_record_type (type, valaddr, address, NULL);
8775
8776 /* If STATIC_TYPE is a tagged type and we know the object's address,
8777 then we can determine its tag, and compute the object's actual
8778 type from there. Note that we have to use the fixed record
8779 type (the parent part of the record may have dynamic fields
8780 and the way the location of _tag is expressed may depend on
8781 them). */
8782
8783 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8784 {
8785 struct value *tag =
8786 value_tag_from_contents_and_address
8787 (fixed_record_type,
8788 valaddr,
8789 address);
8790 struct type *real_type = type_from_tag (tag);
8791 struct value *obj =
8792 value_from_contents_and_address (fixed_record_type,
8793 valaddr,
8794 address);
8795 fixed_record_type = value_type (obj);
8796 if (real_type != NULL)
8797 return to_fixed_record_type
8798 (real_type, NULL,
8799 value_address (ada_tag_value_at_base_address (obj)), NULL);
8800 }
8801
8802 /* Check to see if there is a parallel ___XVZ variable.
8803 If there is, then it provides the actual size of our type. */
8804 else if (ada_type_name (fixed_record_type) != NULL)
8805 {
8806 const char *name = ada_type_name (fixed_record_type);
8807 char *xvz_name
8808 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8809 bool xvz_found = false;
8810 LONGEST size;
8811
8812 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8813 try
8814 {
8815 xvz_found = get_int_var_value (xvz_name, size);
8816 }
8817 catch (const gdb_exception_error &except)
8818 {
8819 /* We found the variable, but somehow failed to read
8820 its value. Rethrow the same error, but with a little
8821 bit more information, to help the user understand
8822 what went wrong (Eg: the variable might have been
8823 optimized out). */
8824 throw_error (except.error,
8825 _("unable to read value of %s (%s)"),
8826 xvz_name, except.what ());
8827 }
8828
8829 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8830 {
8831 fixed_record_type = copy_type (fixed_record_type);
8832 TYPE_LENGTH (fixed_record_type) = size;
8833
8834 /* The FIXED_RECORD_TYPE may have be a stub. We have
8835 observed this when the debugging info is STABS, and
8836 apparently it is something that is hard to fix.
8837
8838 In practice, we don't need the actual type definition
8839 at all, because the presence of the XVZ variable allows us
8840 to assume that there must be a XVS type as well, which we
8841 should be able to use later, when we need the actual type
8842 definition.
8843
8844 In the meantime, pretend that the "fixed" type we are
8845 returning is NOT a stub, because this can cause trouble
8846 when using this type to create new types targeting it.
8847 Indeed, the associated creation routines often check
8848 whether the target type is a stub and will try to replace
8849 it, thus using a type with the wrong size. This, in turn,
8850 might cause the new type to have the wrong size too.
8851 Consider the case of an array, for instance, where the size
8852 of the array is computed from the number of elements in
8853 our array multiplied by the size of its element. */
8854 TYPE_STUB (fixed_record_type) = 0;
8855 }
8856 }
8857 return fixed_record_type;
8858 }
8859 case TYPE_CODE_ARRAY:
8860 return to_fixed_array_type (type, dval, 1);
8861 case TYPE_CODE_UNION:
8862 if (dval == NULL)
8863 return type;
8864 else
8865 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8866 }
8867 }
8868
8869 /* The same as ada_to_fixed_type_1, except that it preserves the type
8870 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8871
8872 The typedef layer needs be preserved in order to differentiate between
8873 arrays and array pointers when both types are implemented using the same
8874 fat pointer. In the array pointer case, the pointer is encoded as
8875 a typedef of the pointer type. For instance, considering:
8876
8877 type String_Access is access String;
8878 S1 : String_Access := null;
8879
8880 To the debugger, S1 is defined as a typedef of type String. But
8881 to the user, it is a pointer. So if the user tries to print S1,
8882 we should not dereference the array, but print the array address
8883 instead.
8884
8885 If we didn't preserve the typedef layer, we would lose the fact that
8886 the type is to be presented as a pointer (needs de-reference before
8887 being printed). And we would also use the source-level type name. */
8888
8889 struct type *
8890 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8891 CORE_ADDR address, struct value *dval, int check_tag)
8892
8893 {
8894 struct type *fixed_type =
8895 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8896
8897 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8898 then preserve the typedef layer.
8899
8900 Implementation note: We can only check the main-type portion of
8901 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8902 from TYPE now returns a type that has the same instance flags
8903 as TYPE. For instance, if TYPE is a "typedef const", and its
8904 target type is a "struct", then the typedef elimination will return
8905 a "const" version of the target type. See check_typedef for more
8906 details about how the typedef layer elimination is done.
8907
8908 brobecker/2010-11-19: It seems to me that the only case where it is
8909 useful to preserve the typedef layer is when dealing with fat pointers.
8910 Perhaps, we could add a check for that and preserve the typedef layer
8911 only in that situation. But this seems unnecessary so far, probably
8912 because we call check_typedef/ada_check_typedef pretty much everywhere.
8913 */
8914 if (type->code () == TYPE_CODE_TYPEDEF
8915 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8916 == TYPE_MAIN_TYPE (fixed_type)))
8917 return type;
8918
8919 return fixed_type;
8920 }
8921
8922 /* A standard (static-sized) type corresponding as well as possible to
8923 TYPE0, but based on no runtime data. */
8924
8925 static struct type *
8926 to_static_fixed_type (struct type *type0)
8927 {
8928 struct type *type;
8929
8930 if (type0 == NULL)
8931 return NULL;
8932
8933 if (TYPE_FIXED_INSTANCE (type0))
8934 return type0;
8935
8936 type0 = ada_check_typedef (type0);
8937
8938 switch (type0->code ())
8939 {
8940 default:
8941 return type0;
8942 case TYPE_CODE_STRUCT:
8943 type = dynamic_template_type (type0);
8944 if (type != NULL)
8945 return template_to_static_fixed_type (type);
8946 else
8947 return template_to_static_fixed_type (type0);
8948 case TYPE_CODE_UNION:
8949 type = ada_find_parallel_type (type0, "___XVU");
8950 if (type != NULL)
8951 return template_to_static_fixed_type (type);
8952 else
8953 return template_to_static_fixed_type (type0);
8954 }
8955 }
8956
8957 /* A static approximation of TYPE with all type wrappers removed. */
8958
8959 static struct type *
8960 static_unwrap_type (struct type *type)
8961 {
8962 if (ada_is_aligner_type (type))
8963 {
8964 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8965 if (ada_type_name (type1) == NULL)
8966 type1->set_name (ada_type_name (type));
8967
8968 return static_unwrap_type (type1);
8969 }
8970 else
8971 {
8972 struct type *raw_real_type = ada_get_base_type (type);
8973
8974 if (raw_real_type == type)
8975 return type;
8976 else
8977 return to_static_fixed_type (raw_real_type);
8978 }
8979 }
8980
8981 /* In some cases, incomplete and private types require
8982 cross-references that are not resolved as records (for example,
8983 type Foo;
8984 type FooP is access Foo;
8985 V: FooP;
8986 type Foo is array ...;
8987 ). In these cases, since there is no mechanism for producing
8988 cross-references to such types, we instead substitute for FooP a
8989 stub enumeration type that is nowhere resolved, and whose tag is
8990 the name of the actual type. Call these types "non-record stubs". */
8991
8992 /* A type equivalent to TYPE that is not a non-record stub, if one
8993 exists, otherwise TYPE. */
8994
8995 struct type *
8996 ada_check_typedef (struct type *type)
8997 {
8998 if (type == NULL)
8999 return NULL;
9000
9001 /* If our type is an access to an unconstrained array, which is encoded
9002 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9003 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9004 what allows us to distinguish between fat pointers that represent
9005 array types, and fat pointers that represent array access types
9006 (in both cases, the compiler implements them as fat pointers). */
9007 if (ada_is_access_to_unconstrained_array (type))
9008 return type;
9009
9010 type = check_typedef (type);
9011 if (type == NULL || type->code () != TYPE_CODE_ENUM
9012 || !TYPE_STUB (type)
9013 || type->name () == NULL)
9014 return type;
9015 else
9016 {
9017 const char *name = type->name ();
9018 struct type *type1 = ada_find_any_type (name);
9019
9020 if (type1 == NULL)
9021 return type;
9022
9023 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9024 stubs pointing to arrays, as we don't create symbols for array
9025 types, only for the typedef-to-array types). If that's the case,
9026 strip the typedef layer. */
9027 if (type1->code () == TYPE_CODE_TYPEDEF)
9028 type1 = ada_check_typedef (type1);
9029
9030 return type1;
9031 }
9032 }
9033
9034 /* A value representing the data at VALADDR/ADDRESS as described by
9035 type TYPE0, but with a standard (static-sized) type that correctly
9036 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9037 type, then return VAL0 [this feature is simply to avoid redundant
9038 creation of struct values]. */
9039
9040 static struct value *
9041 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9042 struct value *val0)
9043 {
9044 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9045
9046 if (type == type0 && val0 != NULL)
9047 return val0;
9048
9049 if (VALUE_LVAL (val0) != lval_memory)
9050 {
9051 /* Our value does not live in memory; it could be a convenience
9052 variable, for instance. Create a not_lval value using val0's
9053 contents. */
9054 return value_from_contents (type, value_contents (val0));
9055 }
9056
9057 return value_from_contents_and_address (type, 0, address);
9058 }
9059
9060 /* A value representing VAL, but with a standard (static-sized) type
9061 that correctly describes it. Does not necessarily create a new
9062 value. */
9063
9064 struct value *
9065 ada_to_fixed_value (struct value *val)
9066 {
9067 val = unwrap_value (val);
9068 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9069 return val;
9070 }
9071 \f
9072
9073 /* Attributes */
9074
9075 /* Table mapping attribute numbers to names.
9076 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9077
9078 static const char *attribute_names[] = {
9079 "<?>",
9080
9081 "first",
9082 "last",
9083 "length",
9084 "image",
9085 "max",
9086 "min",
9087 "modulus",
9088 "pos",
9089 "size",
9090 "tag",
9091 "val",
9092 0
9093 };
9094
9095 static const char *
9096 ada_attribute_name (enum exp_opcode n)
9097 {
9098 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9099 return attribute_names[n - OP_ATR_FIRST + 1];
9100 else
9101 return attribute_names[0];
9102 }
9103
9104 /* Evaluate the 'POS attribute applied to ARG. */
9105
9106 static LONGEST
9107 pos_atr (struct value *arg)
9108 {
9109 struct value *val = coerce_ref (arg);
9110 struct type *type = value_type (val);
9111 LONGEST result;
9112
9113 if (!discrete_type_p (type))
9114 error (_("'POS only defined on discrete types"));
9115
9116 if (!discrete_position (type, value_as_long (val), &result))
9117 error (_("enumeration value is invalid: can't find 'POS"));
9118
9119 return result;
9120 }
9121
9122 static struct value *
9123 value_pos_atr (struct type *type, struct value *arg)
9124 {
9125 return value_from_longest (type, pos_atr (arg));
9126 }
9127
9128 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9129
9130 static struct value *
9131 val_atr (struct type *type, LONGEST val)
9132 {
9133 gdb_assert (discrete_type_p (type));
9134 if (type->code () == TYPE_CODE_RANGE)
9135 type = TYPE_TARGET_TYPE (type);
9136 if (type->code () == TYPE_CODE_ENUM)
9137 {
9138 if (val < 0 || val >= type->num_fields ())
9139 error (_("argument to 'VAL out of range"));
9140 val = TYPE_FIELD_ENUMVAL (type, val);
9141 }
9142 return value_from_longest (type, val);
9143 }
9144
9145 static struct value *
9146 value_val_atr (struct type *type, struct value *arg)
9147 {
9148 if (!discrete_type_p (type))
9149 error (_("'VAL only defined on discrete types"));
9150 if (!integer_type_p (value_type (arg)))
9151 error (_("'VAL requires integral argument"));
9152
9153 return val_atr (type, value_as_long (arg));
9154 }
9155 \f
9156
9157 /* Evaluation */
9158
9159 /* True if TYPE appears to be an Ada character type.
9160 [At the moment, this is true only for Character and Wide_Character;
9161 It is a heuristic test that could stand improvement]. */
9162
9163 bool
9164 ada_is_character_type (struct type *type)
9165 {
9166 const char *name;
9167
9168 /* If the type code says it's a character, then assume it really is,
9169 and don't check any further. */
9170 if (type->code () == TYPE_CODE_CHAR)
9171 return true;
9172
9173 /* Otherwise, assume it's a character type iff it is a discrete type
9174 with a known character type name. */
9175 name = ada_type_name (type);
9176 return (name != NULL
9177 && (type->code () == TYPE_CODE_INT
9178 || type->code () == TYPE_CODE_RANGE)
9179 && (strcmp (name, "character") == 0
9180 || strcmp (name, "wide_character") == 0
9181 || strcmp (name, "wide_wide_character") == 0
9182 || strcmp (name, "unsigned char") == 0));
9183 }
9184
9185 /* True if TYPE appears to be an Ada string type. */
9186
9187 bool
9188 ada_is_string_type (struct type *type)
9189 {
9190 type = ada_check_typedef (type);
9191 if (type != NULL
9192 && type->code () != TYPE_CODE_PTR
9193 && (ada_is_simple_array_type (type)
9194 || ada_is_array_descriptor_type (type))
9195 && ada_array_arity (type) == 1)
9196 {
9197 struct type *elttype = ada_array_element_type (type, 1);
9198
9199 return ada_is_character_type (elttype);
9200 }
9201 else
9202 return false;
9203 }
9204
9205 /* The compiler sometimes provides a parallel XVS type for a given
9206 PAD type. Normally, it is safe to follow the PAD type directly,
9207 but older versions of the compiler have a bug that causes the offset
9208 of its "F" field to be wrong. Following that field in that case
9209 would lead to incorrect results, but this can be worked around
9210 by ignoring the PAD type and using the associated XVS type instead.
9211
9212 Set to True if the debugger should trust the contents of PAD types.
9213 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9214 static bool trust_pad_over_xvs = true;
9215
9216 /* True if TYPE is a struct type introduced by the compiler to force the
9217 alignment of a value. Such types have a single field with a
9218 distinctive name. */
9219
9220 int
9221 ada_is_aligner_type (struct type *type)
9222 {
9223 type = ada_check_typedef (type);
9224
9225 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9226 return 0;
9227
9228 return (type->code () == TYPE_CODE_STRUCT
9229 && type->num_fields () == 1
9230 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9231 }
9232
9233 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9234 the parallel type. */
9235
9236 struct type *
9237 ada_get_base_type (struct type *raw_type)
9238 {
9239 struct type *real_type_namer;
9240 struct type *raw_real_type;
9241
9242 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9243 return raw_type;
9244
9245 if (ada_is_aligner_type (raw_type))
9246 /* The encoding specifies that we should always use the aligner type.
9247 So, even if this aligner type has an associated XVS type, we should
9248 simply ignore it.
9249
9250 According to the compiler gurus, an XVS type parallel to an aligner
9251 type may exist because of a stabs limitation. In stabs, aligner
9252 types are empty because the field has a variable-sized type, and
9253 thus cannot actually be used as an aligner type. As a result,
9254 we need the associated parallel XVS type to decode the type.
9255 Since the policy in the compiler is to not change the internal
9256 representation based on the debugging info format, we sometimes
9257 end up having a redundant XVS type parallel to the aligner type. */
9258 return raw_type;
9259
9260 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9261 if (real_type_namer == NULL
9262 || real_type_namer->code () != TYPE_CODE_STRUCT
9263 || real_type_namer->num_fields () != 1)
9264 return raw_type;
9265
9266 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
9267 {
9268 /* This is an older encoding form where the base type needs to be
9269 looked up by name. We prefer the newer encoding because it is
9270 more efficient. */
9271 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9272 if (raw_real_type == NULL)
9273 return raw_type;
9274 else
9275 return raw_real_type;
9276 }
9277
9278 /* The field in our XVS type is a reference to the base type. */
9279 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9280 }
9281
9282 /* The type of value designated by TYPE, with all aligners removed. */
9283
9284 struct type *
9285 ada_aligned_type (struct type *type)
9286 {
9287 if (ada_is_aligner_type (type))
9288 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9289 else
9290 return ada_get_base_type (type);
9291 }
9292
9293
9294 /* The address of the aligned value in an object at address VALADDR
9295 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9296
9297 const gdb_byte *
9298 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9299 {
9300 if (ada_is_aligner_type (type))
9301 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9302 valaddr +
9303 TYPE_FIELD_BITPOS (type,
9304 0) / TARGET_CHAR_BIT);
9305 else
9306 return valaddr;
9307 }
9308
9309
9310
9311 /* The printed representation of an enumeration literal with encoded
9312 name NAME. The value is good to the next call of ada_enum_name. */
9313 const char *
9314 ada_enum_name (const char *name)
9315 {
9316 static char *result;
9317 static size_t result_len = 0;
9318 const char *tmp;
9319
9320 /* First, unqualify the enumeration name:
9321 1. Search for the last '.' character. If we find one, then skip
9322 all the preceding characters, the unqualified name starts
9323 right after that dot.
9324 2. Otherwise, we may be debugging on a target where the compiler
9325 translates dots into "__". Search forward for double underscores,
9326 but stop searching when we hit an overloading suffix, which is
9327 of the form "__" followed by digits. */
9328
9329 tmp = strrchr (name, '.');
9330 if (tmp != NULL)
9331 name = tmp + 1;
9332 else
9333 {
9334 while ((tmp = strstr (name, "__")) != NULL)
9335 {
9336 if (isdigit (tmp[2]))
9337 break;
9338 else
9339 name = tmp + 2;
9340 }
9341 }
9342
9343 if (name[0] == 'Q')
9344 {
9345 int v;
9346
9347 if (name[1] == 'U' || name[1] == 'W')
9348 {
9349 if (sscanf (name + 2, "%x", &v) != 1)
9350 return name;
9351 }
9352 else if (((name[1] >= '0' && name[1] <= '9')
9353 || (name[1] >= 'a' && name[1] <= 'z'))
9354 && name[2] == '\0')
9355 {
9356 GROW_VECT (result, result_len, 4);
9357 xsnprintf (result, result_len, "'%c'", name[1]);
9358 return result;
9359 }
9360 else
9361 return name;
9362
9363 GROW_VECT (result, result_len, 16);
9364 if (isascii (v) && isprint (v))
9365 xsnprintf (result, result_len, "'%c'", v);
9366 else if (name[1] == 'U')
9367 xsnprintf (result, result_len, "[\"%02x\"]", v);
9368 else
9369 xsnprintf (result, result_len, "[\"%04x\"]", v);
9370
9371 return result;
9372 }
9373 else
9374 {
9375 tmp = strstr (name, "__");
9376 if (tmp == NULL)
9377 tmp = strstr (name, "$");
9378 if (tmp != NULL)
9379 {
9380 GROW_VECT (result, result_len, tmp - name + 1);
9381 strncpy (result, name, tmp - name);
9382 result[tmp - name] = '\0';
9383 return result;
9384 }
9385
9386 return name;
9387 }
9388 }
9389
9390 /* Evaluate the subexpression of EXP starting at *POS as for
9391 evaluate_type, updating *POS to point just past the evaluated
9392 expression. */
9393
9394 static struct value *
9395 evaluate_subexp_type (struct expression *exp, int *pos)
9396 {
9397 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9398 }
9399
9400 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9401 value it wraps. */
9402
9403 static struct value *
9404 unwrap_value (struct value *val)
9405 {
9406 struct type *type = ada_check_typedef (value_type (val));
9407
9408 if (ada_is_aligner_type (type))
9409 {
9410 struct value *v = ada_value_struct_elt (val, "F", 0);
9411 struct type *val_type = ada_check_typedef (value_type (v));
9412
9413 if (ada_type_name (val_type) == NULL)
9414 val_type->set_name (ada_type_name (type));
9415
9416 return unwrap_value (v);
9417 }
9418 else
9419 {
9420 struct type *raw_real_type =
9421 ada_check_typedef (ada_get_base_type (type));
9422
9423 /* If there is no parallel XVS or XVE type, then the value is
9424 already unwrapped. Return it without further modification. */
9425 if ((type == raw_real_type)
9426 && ada_find_parallel_type (type, "___XVE") == NULL)
9427 return val;
9428
9429 return
9430 coerce_unspec_val_to_type
9431 (val, ada_to_fixed_type (raw_real_type, 0,
9432 value_address (val),
9433 NULL, 1));
9434 }
9435 }
9436
9437 static struct value *
9438 cast_from_fixed (struct type *type, struct value *arg)
9439 {
9440 struct value *scale = ada_scaling_factor (value_type (arg));
9441 arg = value_cast (value_type (scale), arg);
9442
9443 arg = value_binop (arg, scale, BINOP_MUL);
9444 return value_cast (type, arg);
9445 }
9446
9447 static struct value *
9448 cast_to_fixed (struct type *type, struct value *arg)
9449 {
9450 if (type == value_type (arg))
9451 return arg;
9452
9453 struct value *scale = ada_scaling_factor (type);
9454 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9455 arg = cast_from_fixed (value_type (scale), arg);
9456 else
9457 arg = value_cast (value_type (scale), arg);
9458
9459 arg = value_binop (arg, scale, BINOP_DIV);
9460 return value_cast (type, arg);
9461 }
9462
9463 /* Given two array types T1 and T2, return nonzero iff both arrays
9464 contain the same number of elements. */
9465
9466 static int
9467 ada_same_array_size_p (struct type *t1, struct type *t2)
9468 {
9469 LONGEST lo1, hi1, lo2, hi2;
9470
9471 /* Get the array bounds in order to verify that the size of
9472 the two arrays match. */
9473 if (!get_array_bounds (t1, &lo1, &hi1)
9474 || !get_array_bounds (t2, &lo2, &hi2))
9475 error (_("unable to determine array bounds"));
9476
9477 /* To make things easier for size comparison, normalize a bit
9478 the case of empty arrays by making sure that the difference
9479 between upper bound and lower bound is always -1. */
9480 if (lo1 > hi1)
9481 hi1 = lo1 - 1;
9482 if (lo2 > hi2)
9483 hi2 = lo2 - 1;
9484
9485 return (hi1 - lo1 == hi2 - lo2);
9486 }
9487
9488 /* Assuming that VAL is an array of integrals, and TYPE represents
9489 an array with the same number of elements, but with wider integral
9490 elements, return an array "casted" to TYPE. In practice, this
9491 means that the returned array is built by casting each element
9492 of the original array into TYPE's (wider) element type. */
9493
9494 static struct value *
9495 ada_promote_array_of_integrals (struct type *type, struct value *val)
9496 {
9497 struct type *elt_type = TYPE_TARGET_TYPE (type);
9498 LONGEST lo, hi;
9499 struct value *res;
9500 LONGEST i;
9501
9502 /* Verify that both val and type are arrays of scalars, and
9503 that the size of val's elements is smaller than the size
9504 of type's element. */
9505 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9506 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9507 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9508 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9509 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9510 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9511
9512 if (!get_array_bounds (type, &lo, &hi))
9513 error (_("unable to determine array bounds"));
9514
9515 res = allocate_value (type);
9516
9517 /* Promote each array element. */
9518 for (i = 0; i < hi - lo + 1; i++)
9519 {
9520 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9521
9522 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9523 value_contents_all (elt), TYPE_LENGTH (elt_type));
9524 }
9525
9526 return res;
9527 }
9528
9529 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9530 return the converted value. */
9531
9532 static struct value *
9533 coerce_for_assign (struct type *type, struct value *val)
9534 {
9535 struct type *type2 = value_type (val);
9536
9537 if (type == type2)
9538 return val;
9539
9540 type2 = ada_check_typedef (type2);
9541 type = ada_check_typedef (type);
9542
9543 if (type2->code () == TYPE_CODE_PTR
9544 && type->code () == TYPE_CODE_ARRAY)
9545 {
9546 val = ada_value_ind (val);
9547 type2 = value_type (val);
9548 }
9549
9550 if (type2->code () == TYPE_CODE_ARRAY
9551 && type->code () == TYPE_CODE_ARRAY)
9552 {
9553 if (!ada_same_array_size_p (type, type2))
9554 error (_("cannot assign arrays of different length"));
9555
9556 if (is_integral_type (TYPE_TARGET_TYPE (type))
9557 && is_integral_type (TYPE_TARGET_TYPE (type2))
9558 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9559 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9560 {
9561 /* Allow implicit promotion of the array elements to
9562 a wider type. */
9563 return ada_promote_array_of_integrals (type, val);
9564 }
9565
9566 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9567 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9568 error (_("Incompatible types in assignment"));
9569 deprecated_set_value_type (val, type);
9570 }
9571 return val;
9572 }
9573
9574 static struct value *
9575 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9576 {
9577 struct value *val;
9578 struct type *type1, *type2;
9579 LONGEST v, v1, v2;
9580
9581 arg1 = coerce_ref (arg1);
9582 arg2 = coerce_ref (arg2);
9583 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9584 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9585
9586 if (type1->code () != TYPE_CODE_INT
9587 || type2->code () != TYPE_CODE_INT)
9588 return value_binop (arg1, arg2, op);
9589
9590 switch (op)
9591 {
9592 case BINOP_MOD:
9593 case BINOP_DIV:
9594 case BINOP_REM:
9595 break;
9596 default:
9597 return value_binop (arg1, arg2, op);
9598 }
9599
9600 v2 = value_as_long (arg2);
9601 if (v2 == 0)
9602 error (_("second operand of %s must not be zero."), op_string (op));
9603
9604 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9605 return value_binop (arg1, arg2, op);
9606
9607 v1 = value_as_long (arg1);
9608 switch (op)
9609 {
9610 case BINOP_DIV:
9611 v = v1 / v2;
9612 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9613 v += v > 0 ? -1 : 1;
9614 break;
9615 case BINOP_REM:
9616 v = v1 % v2;
9617 if (v * v1 < 0)
9618 v -= v2;
9619 break;
9620 default:
9621 /* Should not reach this point. */
9622 v = 0;
9623 }
9624
9625 val = allocate_value (type1);
9626 store_unsigned_integer (value_contents_raw (val),
9627 TYPE_LENGTH (value_type (val)),
9628 type_byte_order (type1), v);
9629 return val;
9630 }
9631
9632 static int
9633 ada_value_equal (struct value *arg1, struct value *arg2)
9634 {
9635 if (ada_is_direct_array_type (value_type (arg1))
9636 || ada_is_direct_array_type (value_type (arg2)))
9637 {
9638 struct type *arg1_type, *arg2_type;
9639
9640 /* Automatically dereference any array reference before
9641 we attempt to perform the comparison. */
9642 arg1 = ada_coerce_ref (arg1);
9643 arg2 = ada_coerce_ref (arg2);
9644
9645 arg1 = ada_coerce_to_simple_array (arg1);
9646 arg2 = ada_coerce_to_simple_array (arg2);
9647
9648 arg1_type = ada_check_typedef (value_type (arg1));
9649 arg2_type = ada_check_typedef (value_type (arg2));
9650
9651 if (arg1_type->code () != TYPE_CODE_ARRAY
9652 || arg2_type->code () != TYPE_CODE_ARRAY)
9653 error (_("Attempt to compare array with non-array"));
9654 /* FIXME: The following works only for types whose
9655 representations use all bits (no padding or undefined bits)
9656 and do not have user-defined equality. */
9657 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9658 && memcmp (value_contents (arg1), value_contents (arg2),
9659 TYPE_LENGTH (arg1_type)) == 0);
9660 }
9661 return value_equal (arg1, arg2);
9662 }
9663
9664 /* Total number of component associations in the aggregate starting at
9665 index PC in EXP. Assumes that index PC is the start of an
9666 OP_AGGREGATE. */
9667
9668 static int
9669 num_component_specs (struct expression *exp, int pc)
9670 {
9671 int n, m, i;
9672
9673 m = exp->elts[pc + 1].longconst;
9674 pc += 3;
9675 n = 0;
9676 for (i = 0; i < m; i += 1)
9677 {
9678 switch (exp->elts[pc].opcode)
9679 {
9680 default:
9681 n += 1;
9682 break;
9683 case OP_CHOICES:
9684 n += exp->elts[pc + 1].longconst;
9685 break;
9686 }
9687 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9688 }
9689 return n;
9690 }
9691
9692 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9693 component of LHS (a simple array or a record), updating *POS past
9694 the expression, assuming that LHS is contained in CONTAINER. Does
9695 not modify the inferior's memory, nor does it modify LHS (unless
9696 LHS == CONTAINER). */
9697
9698 static void
9699 assign_component (struct value *container, struct value *lhs, LONGEST index,
9700 struct expression *exp, int *pos)
9701 {
9702 struct value *mark = value_mark ();
9703 struct value *elt;
9704 struct type *lhs_type = check_typedef (value_type (lhs));
9705
9706 if (lhs_type->code () == TYPE_CODE_ARRAY)
9707 {
9708 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9709 struct value *index_val = value_from_longest (index_type, index);
9710
9711 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9712 }
9713 else
9714 {
9715 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9716 elt = ada_to_fixed_value (elt);
9717 }
9718
9719 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9720 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9721 else
9722 value_assign_to_component (container, elt,
9723 ada_evaluate_subexp (NULL, exp, pos,
9724 EVAL_NORMAL));
9725
9726 value_free_to_mark (mark);
9727 }
9728
9729 /* Assuming that LHS represents an lvalue having a record or array
9730 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9731 of that aggregate's value to LHS, advancing *POS past the
9732 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9733 lvalue containing LHS (possibly LHS itself). Does not modify
9734 the inferior's memory, nor does it modify the contents of
9735 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9736
9737 static struct value *
9738 assign_aggregate (struct value *container,
9739 struct value *lhs, struct expression *exp,
9740 int *pos, enum noside noside)
9741 {
9742 struct type *lhs_type;
9743 int n = exp->elts[*pos+1].longconst;
9744 LONGEST low_index, high_index;
9745 int num_specs;
9746 LONGEST *indices;
9747 int max_indices, num_indices;
9748 int i;
9749
9750 *pos += 3;
9751 if (noside != EVAL_NORMAL)
9752 {
9753 for (i = 0; i < n; i += 1)
9754 ada_evaluate_subexp (NULL, exp, pos, noside);
9755 return container;
9756 }
9757
9758 container = ada_coerce_ref (container);
9759 if (ada_is_direct_array_type (value_type (container)))
9760 container = ada_coerce_to_simple_array (container);
9761 lhs = ada_coerce_ref (lhs);
9762 if (!deprecated_value_modifiable (lhs))
9763 error (_("Left operand of assignment is not a modifiable lvalue."));
9764
9765 lhs_type = check_typedef (value_type (lhs));
9766 if (ada_is_direct_array_type (lhs_type))
9767 {
9768 lhs = ada_coerce_to_simple_array (lhs);
9769 lhs_type = check_typedef (value_type (lhs));
9770 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9771 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9772 }
9773 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9774 {
9775 low_index = 0;
9776 high_index = num_visible_fields (lhs_type) - 1;
9777 }
9778 else
9779 error (_("Left-hand side must be array or record."));
9780
9781 num_specs = num_component_specs (exp, *pos - 3);
9782 max_indices = 4 * num_specs + 4;
9783 indices = XALLOCAVEC (LONGEST, max_indices);
9784 indices[0] = indices[1] = low_index - 1;
9785 indices[2] = indices[3] = high_index + 1;
9786 num_indices = 4;
9787
9788 for (i = 0; i < n; i += 1)
9789 {
9790 switch (exp->elts[*pos].opcode)
9791 {
9792 case OP_CHOICES:
9793 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9794 &num_indices, max_indices,
9795 low_index, high_index);
9796 break;
9797 case OP_POSITIONAL:
9798 aggregate_assign_positional (container, lhs, exp, pos, indices,
9799 &num_indices, max_indices,
9800 low_index, high_index);
9801 break;
9802 case OP_OTHERS:
9803 if (i != n-1)
9804 error (_("Misplaced 'others' clause"));
9805 aggregate_assign_others (container, lhs, exp, pos, indices,
9806 num_indices, low_index, high_index);
9807 break;
9808 default:
9809 error (_("Internal error: bad aggregate clause"));
9810 }
9811 }
9812
9813 return container;
9814 }
9815
9816 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9817 construct at *POS, updating *POS past the construct, given that
9818 the positions are relative to lower bound LOW, where HIGH is the
9819 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9820 updating *NUM_INDICES as needed. CONTAINER is as for
9821 assign_aggregate. */
9822 static void
9823 aggregate_assign_positional (struct value *container,
9824 struct value *lhs, struct expression *exp,
9825 int *pos, LONGEST *indices, int *num_indices,
9826 int max_indices, LONGEST low, LONGEST high)
9827 {
9828 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9829
9830 if (ind - 1 == high)
9831 warning (_("Extra components in aggregate ignored."));
9832 if (ind <= high)
9833 {
9834 add_component_interval (ind, ind, indices, num_indices, max_indices);
9835 *pos += 3;
9836 assign_component (container, lhs, ind, exp, pos);
9837 }
9838 else
9839 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9840 }
9841
9842 /* Assign into the components of LHS indexed by the OP_CHOICES
9843 construct at *POS, updating *POS past the construct, given that
9844 the allowable indices are LOW..HIGH. Record the indices assigned
9845 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9846 needed. CONTAINER is as for assign_aggregate. */
9847 static void
9848 aggregate_assign_from_choices (struct value *container,
9849 struct value *lhs, struct expression *exp,
9850 int *pos, LONGEST *indices, int *num_indices,
9851 int max_indices, LONGEST low, LONGEST high)
9852 {
9853 int j;
9854 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9855 int choice_pos, expr_pc;
9856 int is_array = ada_is_direct_array_type (value_type (lhs));
9857
9858 choice_pos = *pos += 3;
9859
9860 for (j = 0; j < n_choices; j += 1)
9861 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9862 expr_pc = *pos;
9863 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9864
9865 for (j = 0; j < n_choices; j += 1)
9866 {
9867 LONGEST lower, upper;
9868 enum exp_opcode op = exp->elts[choice_pos].opcode;
9869
9870 if (op == OP_DISCRETE_RANGE)
9871 {
9872 choice_pos += 1;
9873 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9874 EVAL_NORMAL));
9875 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9876 EVAL_NORMAL));
9877 }
9878 else if (is_array)
9879 {
9880 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9881 EVAL_NORMAL));
9882 upper = lower;
9883 }
9884 else
9885 {
9886 int ind;
9887 const char *name;
9888
9889 switch (op)
9890 {
9891 case OP_NAME:
9892 name = &exp->elts[choice_pos + 2].string;
9893 break;
9894 case OP_VAR_VALUE:
9895 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9896 break;
9897 default:
9898 error (_("Invalid record component association."));
9899 }
9900 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9901 ind = 0;
9902 if (! find_struct_field (name, value_type (lhs), 0,
9903 NULL, NULL, NULL, NULL, &ind))
9904 error (_("Unknown component name: %s."), name);
9905 lower = upper = ind;
9906 }
9907
9908 if (lower <= upper && (lower < low || upper > high))
9909 error (_("Index in component association out of bounds."));
9910
9911 add_component_interval (lower, upper, indices, num_indices,
9912 max_indices);
9913 while (lower <= upper)
9914 {
9915 int pos1;
9916
9917 pos1 = expr_pc;
9918 assign_component (container, lhs, lower, exp, &pos1);
9919 lower += 1;
9920 }
9921 }
9922 }
9923
9924 /* Assign the value of the expression in the OP_OTHERS construct in
9925 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9926 have not been previously assigned. The index intervals already assigned
9927 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9928 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9929 static void
9930 aggregate_assign_others (struct value *container,
9931 struct value *lhs, struct expression *exp,
9932 int *pos, LONGEST *indices, int num_indices,
9933 LONGEST low, LONGEST high)
9934 {
9935 int i;
9936 int expr_pc = *pos + 1;
9937
9938 for (i = 0; i < num_indices - 2; i += 2)
9939 {
9940 LONGEST ind;
9941
9942 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9943 {
9944 int localpos;
9945
9946 localpos = expr_pc;
9947 assign_component (container, lhs, ind, exp, &localpos);
9948 }
9949 }
9950 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9951 }
9952
9953 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9954 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9955 modifying *SIZE as needed. It is an error if *SIZE exceeds
9956 MAX_SIZE. The resulting intervals do not overlap. */
9957 static void
9958 add_component_interval (LONGEST low, LONGEST high,
9959 LONGEST* indices, int *size, int max_size)
9960 {
9961 int i, j;
9962
9963 for (i = 0; i < *size; i += 2) {
9964 if (high >= indices[i] && low <= indices[i + 1])
9965 {
9966 int kh;
9967
9968 for (kh = i + 2; kh < *size; kh += 2)
9969 if (high < indices[kh])
9970 break;
9971 if (low < indices[i])
9972 indices[i] = low;
9973 indices[i + 1] = indices[kh - 1];
9974 if (high > indices[i + 1])
9975 indices[i + 1] = high;
9976 memcpy (indices + i + 2, indices + kh, *size - kh);
9977 *size -= kh - i - 2;
9978 return;
9979 }
9980 else if (high < indices[i])
9981 break;
9982 }
9983
9984 if (*size == max_size)
9985 error (_("Internal error: miscounted aggregate components."));
9986 *size += 2;
9987 for (j = *size-1; j >= i+2; j -= 1)
9988 indices[j] = indices[j - 2];
9989 indices[i] = low;
9990 indices[i + 1] = high;
9991 }
9992
9993 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9994 is different. */
9995
9996 static struct value *
9997 ada_value_cast (struct type *type, struct value *arg2)
9998 {
9999 if (type == ada_check_typedef (value_type (arg2)))
10000 return arg2;
10001
10002 if (ada_is_gnat_encoded_fixed_point_type (type))
10003 return cast_to_fixed (type, arg2);
10004
10005 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10006 return cast_from_fixed (type, arg2);
10007
10008 return value_cast (type, arg2);
10009 }
10010
10011 /* Evaluating Ada expressions, and printing their result.
10012 ------------------------------------------------------
10013
10014 1. Introduction:
10015 ----------------
10016
10017 We usually evaluate an Ada expression in order to print its value.
10018 We also evaluate an expression in order to print its type, which
10019 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10020 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10021 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10022 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10023 similar.
10024
10025 Evaluating expressions is a little more complicated for Ada entities
10026 than it is for entities in languages such as C. The main reason for
10027 this is that Ada provides types whose definition might be dynamic.
10028 One example of such types is variant records. Or another example
10029 would be an array whose bounds can only be known at run time.
10030
10031 The following description is a general guide as to what should be
10032 done (and what should NOT be done) in order to evaluate an expression
10033 involving such types, and when. This does not cover how the semantic
10034 information is encoded by GNAT as this is covered separatly. For the
10035 document used as the reference for the GNAT encoding, see exp_dbug.ads
10036 in the GNAT sources.
10037
10038 Ideally, we should embed each part of this description next to its
10039 associated code. Unfortunately, the amount of code is so vast right
10040 now that it's hard to see whether the code handling a particular
10041 situation might be duplicated or not. One day, when the code is
10042 cleaned up, this guide might become redundant with the comments
10043 inserted in the code, and we might want to remove it.
10044
10045 2. ``Fixing'' an Entity, the Simple Case:
10046 -----------------------------------------
10047
10048 When evaluating Ada expressions, the tricky issue is that they may
10049 reference entities whose type contents and size are not statically
10050 known. Consider for instance a variant record:
10051
10052 type Rec (Empty : Boolean := True) is record
10053 case Empty is
10054 when True => null;
10055 when False => Value : Integer;
10056 end case;
10057 end record;
10058 Yes : Rec := (Empty => False, Value => 1);
10059 No : Rec := (empty => True);
10060
10061 The size and contents of that record depends on the value of the
10062 descriminant (Rec.Empty). At this point, neither the debugging
10063 information nor the associated type structure in GDB are able to
10064 express such dynamic types. So what the debugger does is to create
10065 "fixed" versions of the type that applies to the specific object.
10066 We also informally refer to this operation as "fixing" an object,
10067 which means creating its associated fixed type.
10068
10069 Example: when printing the value of variable "Yes" above, its fixed
10070 type would look like this:
10071
10072 type Rec is record
10073 Empty : Boolean;
10074 Value : Integer;
10075 end record;
10076
10077 On the other hand, if we printed the value of "No", its fixed type
10078 would become:
10079
10080 type Rec is record
10081 Empty : Boolean;
10082 end record;
10083
10084 Things become a little more complicated when trying to fix an entity
10085 with a dynamic type that directly contains another dynamic type,
10086 such as an array of variant records, for instance. There are
10087 two possible cases: Arrays, and records.
10088
10089 3. ``Fixing'' Arrays:
10090 ---------------------
10091
10092 The type structure in GDB describes an array in terms of its bounds,
10093 and the type of its elements. By design, all elements in the array
10094 have the same type and we cannot represent an array of variant elements
10095 using the current type structure in GDB. When fixing an array,
10096 we cannot fix the array element, as we would potentially need one
10097 fixed type per element of the array. As a result, the best we can do
10098 when fixing an array is to produce an array whose bounds and size
10099 are correct (allowing us to read it from memory), but without having
10100 touched its element type. Fixing each element will be done later,
10101 when (if) necessary.
10102
10103 Arrays are a little simpler to handle than records, because the same
10104 amount of memory is allocated for each element of the array, even if
10105 the amount of space actually used by each element differs from element
10106 to element. Consider for instance the following array of type Rec:
10107
10108 type Rec_Array is array (1 .. 2) of Rec;
10109
10110 The actual amount of memory occupied by each element might be different
10111 from element to element, depending on the value of their discriminant.
10112 But the amount of space reserved for each element in the array remains
10113 fixed regardless. So we simply need to compute that size using
10114 the debugging information available, from which we can then determine
10115 the array size (we multiply the number of elements of the array by
10116 the size of each element).
10117
10118 The simplest case is when we have an array of a constrained element
10119 type. For instance, consider the following type declarations:
10120
10121 type Bounded_String (Max_Size : Integer) is
10122 Length : Integer;
10123 Buffer : String (1 .. Max_Size);
10124 end record;
10125 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10126
10127 In this case, the compiler describes the array as an array of
10128 variable-size elements (identified by its XVS suffix) for which
10129 the size can be read in the parallel XVZ variable.
10130
10131 In the case of an array of an unconstrained element type, the compiler
10132 wraps the array element inside a private PAD type. This type should not
10133 be shown to the user, and must be "unwrap"'ed before printing. Note
10134 that we also use the adjective "aligner" in our code to designate
10135 these wrapper types.
10136
10137 In some cases, the size allocated for each element is statically
10138 known. In that case, the PAD type already has the correct size,
10139 and the array element should remain unfixed.
10140
10141 But there are cases when this size is not statically known.
10142 For instance, assuming that "Five" is an integer variable:
10143
10144 type Dynamic is array (1 .. Five) of Integer;
10145 type Wrapper (Has_Length : Boolean := False) is record
10146 Data : Dynamic;
10147 case Has_Length is
10148 when True => Length : Integer;
10149 when False => null;
10150 end case;
10151 end record;
10152 type Wrapper_Array is array (1 .. 2) of Wrapper;
10153
10154 Hello : Wrapper_Array := (others => (Has_Length => True,
10155 Data => (others => 17),
10156 Length => 1));
10157
10158
10159 The debugging info would describe variable Hello as being an
10160 array of a PAD type. The size of that PAD type is not statically
10161 known, but can be determined using a parallel XVZ variable.
10162 In that case, a copy of the PAD type with the correct size should
10163 be used for the fixed array.
10164
10165 3. ``Fixing'' record type objects:
10166 ----------------------------------
10167
10168 Things are slightly different from arrays in the case of dynamic
10169 record types. In this case, in order to compute the associated
10170 fixed type, we need to determine the size and offset of each of
10171 its components. This, in turn, requires us to compute the fixed
10172 type of each of these components.
10173
10174 Consider for instance the example:
10175
10176 type Bounded_String (Max_Size : Natural) is record
10177 Str : String (1 .. Max_Size);
10178 Length : Natural;
10179 end record;
10180 My_String : Bounded_String (Max_Size => 10);
10181
10182 In that case, the position of field "Length" depends on the size
10183 of field Str, which itself depends on the value of the Max_Size
10184 discriminant. In order to fix the type of variable My_String,
10185 we need to fix the type of field Str. Therefore, fixing a variant
10186 record requires us to fix each of its components.
10187
10188 However, if a component does not have a dynamic size, the component
10189 should not be fixed. In particular, fields that use a PAD type
10190 should not fixed. Here is an example where this might happen
10191 (assuming type Rec above):
10192
10193 type Container (Big : Boolean) is record
10194 First : Rec;
10195 After : Integer;
10196 case Big is
10197 when True => Another : Integer;
10198 when False => null;
10199 end case;
10200 end record;
10201 My_Container : Container := (Big => False,
10202 First => (Empty => True),
10203 After => 42);
10204
10205 In that example, the compiler creates a PAD type for component First,
10206 whose size is constant, and then positions the component After just
10207 right after it. The offset of component After is therefore constant
10208 in this case.
10209
10210 The debugger computes the position of each field based on an algorithm
10211 that uses, among other things, the actual position and size of the field
10212 preceding it. Let's now imagine that the user is trying to print
10213 the value of My_Container. If the type fixing was recursive, we would
10214 end up computing the offset of field After based on the size of the
10215 fixed version of field First. And since in our example First has
10216 only one actual field, the size of the fixed type is actually smaller
10217 than the amount of space allocated to that field, and thus we would
10218 compute the wrong offset of field After.
10219
10220 To make things more complicated, we need to watch out for dynamic
10221 components of variant records (identified by the ___XVL suffix in
10222 the component name). Even if the target type is a PAD type, the size
10223 of that type might not be statically known. So the PAD type needs
10224 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10225 we might end up with the wrong size for our component. This can be
10226 observed with the following type declarations:
10227
10228 type Octal is new Integer range 0 .. 7;
10229 type Octal_Array is array (Positive range <>) of Octal;
10230 pragma Pack (Octal_Array);
10231
10232 type Octal_Buffer (Size : Positive) is record
10233 Buffer : Octal_Array (1 .. Size);
10234 Length : Integer;
10235 end record;
10236
10237 In that case, Buffer is a PAD type whose size is unset and needs
10238 to be computed by fixing the unwrapped type.
10239
10240 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10241 ----------------------------------------------------------
10242
10243 Lastly, when should the sub-elements of an entity that remained unfixed
10244 thus far, be actually fixed?
10245
10246 The answer is: Only when referencing that element. For instance
10247 when selecting one component of a record, this specific component
10248 should be fixed at that point in time. Or when printing the value
10249 of a record, each component should be fixed before its value gets
10250 printed. Similarly for arrays, the element of the array should be
10251 fixed when printing each element of the array, or when extracting
10252 one element out of that array. On the other hand, fixing should
10253 not be performed on the elements when taking a slice of an array!
10254
10255 Note that one of the side effects of miscomputing the offset and
10256 size of each field is that we end up also miscomputing the size
10257 of the containing type. This can have adverse results when computing
10258 the value of an entity. GDB fetches the value of an entity based
10259 on the size of its type, and thus a wrong size causes GDB to fetch
10260 the wrong amount of memory. In the case where the computed size is
10261 too small, GDB fetches too little data to print the value of our
10262 entity. Results in this case are unpredictable, as we usually read
10263 past the buffer containing the data =:-o. */
10264
10265 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10266 for that subexpression cast to TO_TYPE. Advance *POS over the
10267 subexpression. */
10268
10269 static value *
10270 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10271 enum noside noside, struct type *to_type)
10272 {
10273 int pc = *pos;
10274
10275 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10276 || exp->elts[pc].opcode == OP_VAR_VALUE)
10277 {
10278 (*pos) += 4;
10279
10280 value *val;
10281 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10282 {
10283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10284 return value_zero (to_type, not_lval);
10285
10286 val = evaluate_var_msym_value (noside,
10287 exp->elts[pc + 1].objfile,
10288 exp->elts[pc + 2].msymbol);
10289 }
10290 else
10291 val = evaluate_var_value (noside,
10292 exp->elts[pc + 1].block,
10293 exp->elts[pc + 2].symbol);
10294
10295 if (noside == EVAL_SKIP)
10296 return eval_skip_value (exp);
10297
10298 val = ada_value_cast (to_type, val);
10299
10300 /* Follow the Ada language semantics that do not allow taking
10301 an address of the result of a cast (view conversion in Ada). */
10302 if (VALUE_LVAL (val) == lval_memory)
10303 {
10304 if (value_lazy (val))
10305 value_fetch_lazy (val);
10306 VALUE_LVAL (val) = not_lval;
10307 }
10308 return val;
10309 }
10310
10311 value *val = evaluate_subexp (to_type, exp, pos, noside);
10312 if (noside == EVAL_SKIP)
10313 return eval_skip_value (exp);
10314 return ada_value_cast (to_type, val);
10315 }
10316
10317 /* Implement the evaluate_exp routine in the exp_descriptor structure
10318 for the Ada language. */
10319
10320 static struct value *
10321 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10322 int *pos, enum noside noside)
10323 {
10324 enum exp_opcode op;
10325 int tem;
10326 int pc;
10327 int preeval_pos;
10328 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10329 struct type *type;
10330 int nargs, oplen;
10331 struct value **argvec;
10332
10333 pc = *pos;
10334 *pos += 1;
10335 op = exp->elts[pc].opcode;
10336
10337 switch (op)
10338 {
10339 default:
10340 *pos -= 1;
10341 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10342
10343 if (noside == EVAL_NORMAL)
10344 arg1 = unwrap_value (arg1);
10345
10346 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10347 then we need to perform the conversion manually, because
10348 evaluate_subexp_standard doesn't do it. This conversion is
10349 necessary in Ada because the different kinds of float/fixed
10350 types in Ada have different representations.
10351
10352 Similarly, we need to perform the conversion from OP_LONG
10353 ourselves. */
10354 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10355 arg1 = ada_value_cast (expect_type, arg1);
10356
10357 return arg1;
10358
10359 case OP_STRING:
10360 {
10361 struct value *result;
10362
10363 *pos -= 1;
10364 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10365 /* The result type will have code OP_STRING, bashed there from
10366 OP_ARRAY. Bash it back. */
10367 if (value_type (result)->code () == TYPE_CODE_STRING)
10368 value_type (result)->set_code (TYPE_CODE_ARRAY);
10369 return result;
10370 }
10371
10372 case UNOP_CAST:
10373 (*pos) += 2;
10374 type = exp->elts[pc + 1].type;
10375 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10376
10377 case UNOP_QUAL:
10378 (*pos) += 2;
10379 type = exp->elts[pc + 1].type;
10380 return ada_evaluate_subexp (type, exp, pos, noside);
10381
10382 case BINOP_ASSIGN:
10383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10384 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10385 {
10386 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10387 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10388 return arg1;
10389 return ada_value_assign (arg1, arg1);
10390 }
10391 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10392 except if the lhs of our assignment is a convenience variable.
10393 In the case of assigning to a convenience variable, the lhs
10394 should be exactly the result of the evaluation of the rhs. */
10395 type = value_type (arg1);
10396 if (VALUE_LVAL (arg1) == lval_internalvar)
10397 type = NULL;
10398 arg2 = evaluate_subexp (type, exp, pos, noside);
10399 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10400 return arg1;
10401 if (VALUE_LVAL (arg1) == lval_internalvar)
10402 {
10403 /* Nothing. */
10404 }
10405 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10406 arg2 = cast_to_fixed (value_type (arg1), arg2);
10407 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10408 error
10409 (_("Fixed-point values must be assigned to fixed-point variables"));
10410 else
10411 arg2 = coerce_for_assign (value_type (arg1), arg2);
10412 return ada_value_assign (arg1, arg2);
10413
10414 case BINOP_ADD:
10415 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10416 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10417 if (noside == EVAL_SKIP)
10418 goto nosideret;
10419 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10420 return (value_from_longest
10421 (value_type (arg1),
10422 value_as_long (arg1) + value_as_long (arg2)));
10423 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10424 return (value_from_longest
10425 (value_type (arg2),
10426 value_as_long (arg1) + value_as_long (arg2)));
10427 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10428 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10429 && value_type (arg1) != value_type (arg2))
10430 error (_("Operands of fixed-point addition must have the same type"));
10431 /* Do the addition, and cast the result to the type of the first
10432 argument. We cannot cast the result to a reference type, so if
10433 ARG1 is a reference type, find its underlying type. */
10434 type = value_type (arg1);
10435 while (type->code () == TYPE_CODE_REF)
10436 type = TYPE_TARGET_TYPE (type);
10437 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10438 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10439
10440 case BINOP_SUB:
10441 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10442 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10443 if (noside == EVAL_SKIP)
10444 goto nosideret;
10445 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10446 return (value_from_longest
10447 (value_type (arg1),
10448 value_as_long (arg1) - value_as_long (arg2)));
10449 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10450 return (value_from_longest
10451 (value_type (arg2),
10452 value_as_long (arg1) - value_as_long (arg2)));
10453 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10454 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10455 && value_type (arg1) != value_type (arg2))
10456 error (_("Operands of fixed-point subtraction "
10457 "must have the same type"));
10458 /* Do the substraction, and cast the result to the type of the first
10459 argument. We cannot cast the result to a reference type, so if
10460 ARG1 is a reference type, find its underlying type. */
10461 type = value_type (arg1);
10462 while (type->code () == TYPE_CODE_REF)
10463 type = TYPE_TARGET_TYPE (type);
10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10465 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10466
10467 case BINOP_MUL:
10468 case BINOP_DIV:
10469 case BINOP_REM:
10470 case BINOP_MOD:
10471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 if (noside == EVAL_SKIP)
10474 goto nosideret;
10475 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10476 {
10477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10478 return value_zero (value_type (arg1), not_lval);
10479 }
10480 else
10481 {
10482 type = builtin_type (exp->gdbarch)->builtin_double;
10483 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10484 arg1 = cast_from_fixed (type, arg1);
10485 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10486 arg2 = cast_from_fixed (type, arg2);
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10488 return ada_value_binop (arg1, arg2, op);
10489 }
10490
10491 case BINOP_EQUAL:
10492 case BINOP_NOTEQUAL:
10493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10494 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 tem = 0;
10499 else
10500 {
10501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10502 tem = ada_value_equal (arg1, arg2);
10503 }
10504 if (op == BINOP_NOTEQUAL)
10505 tem = !tem;
10506 type = language_bool_type (exp->language_defn, exp->gdbarch);
10507 return value_from_longest (type, (LONGEST) tem);
10508
10509 case UNOP_NEG:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 if (noside == EVAL_SKIP)
10512 goto nosideret;
10513 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10514 return value_cast (value_type (arg1), value_neg (arg1));
10515 else
10516 {
10517 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10518 return value_neg (arg1);
10519 }
10520
10521 case BINOP_LOGICAL_AND:
10522 case BINOP_LOGICAL_OR:
10523 case UNOP_LOGICAL_NOT:
10524 {
10525 struct value *val;
10526
10527 *pos -= 1;
10528 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10529 type = language_bool_type (exp->language_defn, exp->gdbarch);
10530 return value_cast (type, val);
10531 }
10532
10533 case BINOP_BITWISE_AND:
10534 case BINOP_BITWISE_IOR:
10535 case BINOP_BITWISE_XOR:
10536 {
10537 struct value *val;
10538
10539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10540 *pos = pc;
10541 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10542
10543 return value_cast (value_type (arg1), val);
10544 }
10545
10546 case OP_VAR_VALUE:
10547 *pos -= 1;
10548
10549 if (noside == EVAL_SKIP)
10550 {
10551 *pos += 4;
10552 goto nosideret;
10553 }
10554
10555 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10556 /* Only encountered when an unresolved symbol occurs in a
10557 context other than a function call, in which case, it is
10558 invalid. */
10559 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10560 exp->elts[pc + 2].symbol->print_name ());
10561
10562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10563 {
10564 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10565 /* Check to see if this is a tagged type. We also need to handle
10566 the case where the type is a reference to a tagged type, but
10567 we have to be careful to exclude pointers to tagged types.
10568 The latter should be shown as usual (as a pointer), whereas
10569 a reference should mostly be transparent to the user. */
10570 if (ada_is_tagged_type (type, 0)
10571 || (type->code () == TYPE_CODE_REF
10572 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10573 {
10574 /* Tagged types are a little special in the fact that the real
10575 type is dynamic and can only be determined by inspecting the
10576 object's tag. This means that we need to get the object's
10577 value first (EVAL_NORMAL) and then extract the actual object
10578 type from its tag.
10579
10580 Note that we cannot skip the final step where we extract
10581 the object type from its tag, because the EVAL_NORMAL phase
10582 results in dynamic components being resolved into fixed ones.
10583 This can cause problems when trying to print the type
10584 description of tagged types whose parent has a dynamic size:
10585 We use the type name of the "_parent" component in order
10586 to print the name of the ancestor type in the type description.
10587 If that component had a dynamic size, the resolution into
10588 a fixed type would result in the loss of that type name,
10589 thus preventing us from printing the name of the ancestor
10590 type in the type description. */
10591 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10592
10593 if (type->code () != TYPE_CODE_REF)
10594 {
10595 struct type *actual_type;
10596
10597 actual_type = type_from_tag (ada_value_tag (arg1));
10598 if (actual_type == NULL)
10599 /* If, for some reason, we were unable to determine
10600 the actual type from the tag, then use the static
10601 approximation that we just computed as a fallback.
10602 This can happen if the debugging information is
10603 incomplete, for instance. */
10604 actual_type = type;
10605 return value_zero (actual_type, not_lval);
10606 }
10607 else
10608 {
10609 /* In the case of a ref, ada_coerce_ref takes care
10610 of determining the actual type. But the evaluation
10611 should return a ref as it should be valid to ask
10612 for its address; so rebuild a ref after coerce. */
10613 arg1 = ada_coerce_ref (arg1);
10614 return value_ref (arg1, TYPE_CODE_REF);
10615 }
10616 }
10617
10618 /* Records and unions for which GNAT encodings have been
10619 generated need to be statically fixed as well.
10620 Otherwise, non-static fixing produces a type where
10621 all dynamic properties are removed, which prevents "ptype"
10622 from being able to completely describe the type.
10623 For instance, a case statement in a variant record would be
10624 replaced by the relevant components based on the actual
10625 value of the discriminants. */
10626 if ((type->code () == TYPE_CODE_STRUCT
10627 && dynamic_template_type (type) != NULL)
10628 || (type->code () == TYPE_CODE_UNION
10629 && ada_find_parallel_type (type, "___XVU") != NULL))
10630 {
10631 *pos += 4;
10632 return value_zero (to_static_fixed_type (type), not_lval);
10633 }
10634 }
10635
10636 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637 return ada_to_fixed_value (arg1);
10638
10639 case OP_FUNCALL:
10640 (*pos) += 2;
10641
10642 /* Allocate arg vector, including space for the function to be
10643 called in argvec[0] and a terminating NULL. */
10644 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10645 argvec = XALLOCAVEC (struct value *, nargs + 2);
10646
10647 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10648 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10649 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10650 exp->elts[pc + 5].symbol->print_name ());
10651 else
10652 {
10653 for (tem = 0; tem <= nargs; tem += 1)
10654 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 argvec[tem] = 0;
10656
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659 }
10660
10661 if (ada_is_constrained_packed_array_type
10662 (desc_base_type (value_type (argvec[0]))))
10663 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10664 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10665 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10666 /* This is a packed array that has already been fixed, and
10667 therefore already coerced to a simple array. Nothing further
10668 to do. */
10669 ;
10670 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10671 {
10672 /* Make sure we dereference references so that all the code below
10673 feels like it's really handling the referenced value. Wrapping
10674 types (for alignment) may be there, so make sure we strip them as
10675 well. */
10676 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10677 }
10678 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10679 && VALUE_LVAL (argvec[0]) == lval_memory)
10680 argvec[0] = value_addr (argvec[0]);
10681
10682 type = ada_check_typedef (value_type (argvec[0]));
10683
10684 /* Ada allows us to implicitly dereference arrays when subscripting
10685 them. So, if this is an array typedef (encoding use for array
10686 access types encoded as fat pointers), strip it now. */
10687 if (type->code () == TYPE_CODE_TYPEDEF)
10688 type = ada_typedef_target_type (type);
10689
10690 if (type->code () == TYPE_CODE_PTR)
10691 {
10692 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10693 {
10694 case TYPE_CODE_FUNC:
10695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10696 break;
10697 case TYPE_CODE_ARRAY:
10698 break;
10699 case TYPE_CODE_STRUCT:
10700 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10701 argvec[0] = ada_value_ind (argvec[0]);
10702 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10703 break;
10704 default:
10705 error (_("cannot subscript or call something of type `%s'"),
10706 ada_type_name (value_type (argvec[0])));
10707 break;
10708 }
10709 }
10710
10711 switch (type->code ())
10712 {
10713 case TYPE_CODE_FUNC:
10714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10715 {
10716 if (TYPE_TARGET_TYPE (type) == NULL)
10717 error_call_unknown_return_type (NULL);
10718 return allocate_value (TYPE_TARGET_TYPE (type));
10719 }
10720 return call_function_by_hand (argvec[0], NULL,
10721 gdb::make_array_view (argvec + 1,
10722 nargs));
10723 case TYPE_CODE_INTERNAL_FUNCTION:
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 /* We don't know anything about what the internal
10726 function might return, but we have to return
10727 something. */
10728 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10729 not_lval);
10730 else
10731 return call_internal_function (exp->gdbarch, exp->language_defn,
10732 argvec[0], nargs, argvec + 1);
10733
10734 case TYPE_CODE_STRUCT:
10735 {
10736 int arity;
10737
10738 arity = ada_array_arity (type);
10739 type = ada_array_element_type (type, nargs);
10740 if (type == NULL)
10741 error (_("cannot subscript or call a record"));
10742 if (arity != nargs)
10743 error (_("wrong number of subscripts; expecting %d"), arity);
10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 return value_zero (ada_aligned_type (type), lval_memory);
10746 return
10747 unwrap_value (ada_value_subscript
10748 (argvec[0], nargs, argvec + 1));
10749 }
10750 case TYPE_CODE_ARRAY:
10751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10752 {
10753 type = ada_array_element_type (type, nargs);
10754 if (type == NULL)
10755 error (_("element type of array unknown"));
10756 else
10757 return value_zero (ada_aligned_type (type), lval_memory);
10758 }
10759 return
10760 unwrap_value (ada_value_subscript
10761 (ada_coerce_to_simple_array (argvec[0]),
10762 nargs, argvec + 1));
10763 case TYPE_CODE_PTR: /* Pointer to array */
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10767 type = ada_array_element_type (type, nargs);
10768 if (type == NULL)
10769 error (_("element type of array unknown"));
10770 else
10771 return value_zero (ada_aligned_type (type), lval_memory);
10772 }
10773 return
10774 unwrap_value (ada_value_ptr_subscript (argvec[0],
10775 nargs, argvec + 1));
10776
10777 default:
10778 error (_("Attempt to index or call something other than an "
10779 "array or function"));
10780 }
10781
10782 case TERNOP_SLICE:
10783 {
10784 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10785 struct value *low_bound_val =
10786 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10787 struct value *high_bound_val =
10788 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10789 LONGEST low_bound;
10790 LONGEST high_bound;
10791
10792 low_bound_val = coerce_ref (low_bound_val);
10793 high_bound_val = coerce_ref (high_bound_val);
10794 low_bound = value_as_long (low_bound_val);
10795 high_bound = value_as_long (high_bound_val);
10796
10797 if (noside == EVAL_SKIP)
10798 goto nosideret;
10799
10800 /* If this is a reference to an aligner type, then remove all
10801 the aligners. */
10802 if (value_type (array)->code () == TYPE_CODE_REF
10803 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10804 TYPE_TARGET_TYPE (value_type (array)) =
10805 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10806
10807 if (ada_is_constrained_packed_array_type (value_type (array)))
10808 error (_("cannot slice a packed array"));
10809
10810 /* If this is a reference to an array or an array lvalue,
10811 convert to a pointer. */
10812 if (value_type (array)->code () == TYPE_CODE_REF
10813 || (value_type (array)->code () == TYPE_CODE_ARRAY
10814 && VALUE_LVAL (array) == lval_memory))
10815 array = value_addr (array);
10816
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS
10818 && ada_is_array_descriptor_type (ada_check_typedef
10819 (value_type (array))))
10820 return empty_array (ada_type_of_array (array, 0), low_bound,
10821 high_bound);
10822
10823 array = ada_coerce_to_simple_array_ptr (array);
10824
10825 /* If we have more than one level of pointer indirection,
10826 dereference the value until we get only one level. */
10827 while (value_type (array)->code () == TYPE_CODE_PTR
10828 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10829 == TYPE_CODE_PTR))
10830 array = value_ind (array);
10831
10832 /* Make sure we really do have an array type before going further,
10833 to avoid a SEGV when trying to get the index type or the target
10834 type later down the road if the debug info generated by
10835 the compiler is incorrect or incomplete. */
10836 if (!ada_is_simple_array_type (value_type (array)))
10837 error (_("cannot take slice of non-array"));
10838
10839 if (ada_check_typedef (value_type (array))->code ()
10840 == TYPE_CODE_PTR)
10841 {
10842 struct type *type0 = ada_check_typedef (value_type (array));
10843
10844 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10845 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10846 else
10847 {
10848 struct type *arr_type0 =
10849 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10850
10851 return ada_value_slice_from_ptr (array, arr_type0,
10852 longest_to_int (low_bound),
10853 longest_to_int (high_bound));
10854 }
10855 }
10856 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10857 return array;
10858 else if (high_bound < low_bound)
10859 return empty_array (value_type (array), low_bound, high_bound);
10860 else
10861 return ada_value_slice (array, longest_to_int (low_bound),
10862 longest_to_int (high_bound));
10863 }
10864
10865 case UNOP_IN_RANGE:
10866 (*pos) += 2;
10867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 type = check_typedef (exp->elts[pc + 1].type);
10869
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872
10873 switch (type->code ())
10874 {
10875 default:
10876 lim_warning (_("Membership test incompletely implemented; "
10877 "always returns true"));
10878 type = language_bool_type (exp->language_defn, exp->gdbarch);
10879 return value_from_longest (type, (LONGEST) 1);
10880
10881 case TYPE_CODE_RANGE:
10882 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10883 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10884 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10885 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10886 type = language_bool_type (exp->language_defn, exp->gdbarch);
10887 return
10888 value_from_longest (type,
10889 (value_less (arg1, arg3)
10890 || value_equal (arg1, arg3))
10891 && (value_less (arg2, arg1)
10892 || value_equal (arg2, arg1)));
10893 }
10894
10895 case BINOP_IN_BOUNDS:
10896 (*pos) += 2;
10897 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10898 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10899
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902
10903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 {
10905 type = language_bool_type (exp->language_defn, exp->gdbarch);
10906 return value_zero (type, not_lval);
10907 }
10908
10909 tem = longest_to_int (exp->elts[pc + 1].longconst);
10910
10911 type = ada_index_type (value_type (arg2), tem, "range");
10912 if (!type)
10913 type = value_type (arg1);
10914
10915 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10916 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10917
10918 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10919 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10920 type = language_bool_type (exp->language_defn, exp->gdbarch);
10921 return
10922 value_from_longest (type,
10923 (value_less (arg1, arg3)
10924 || value_equal (arg1, arg3))
10925 && (value_less (arg2, arg1)
10926 || value_equal (arg2, arg1)));
10927
10928 case TERNOP_IN_RANGE:
10929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10930 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10931 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10932
10933 if (noside == EVAL_SKIP)
10934 goto nosideret;
10935
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10938 type = language_bool_type (exp->language_defn, exp->gdbarch);
10939 return
10940 value_from_longest (type,
10941 (value_less (arg1, arg3)
10942 || value_equal (arg1, arg3))
10943 && (value_less (arg2, arg1)
10944 || value_equal (arg2, arg1)));
10945
10946 case OP_ATR_FIRST:
10947 case OP_ATR_LAST:
10948 case OP_ATR_LENGTH:
10949 {
10950 struct type *type_arg;
10951
10952 if (exp->elts[*pos].opcode == OP_TYPE)
10953 {
10954 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10955 arg1 = NULL;
10956 type_arg = check_typedef (exp->elts[pc + 2].type);
10957 }
10958 else
10959 {
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 type_arg = NULL;
10962 }
10963
10964 if (exp->elts[*pos].opcode != OP_LONG)
10965 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10966 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10967 *pos += 4;
10968
10969 if (noside == EVAL_SKIP)
10970 goto nosideret;
10971 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10972 {
10973 if (type_arg == NULL)
10974 type_arg = value_type (arg1);
10975
10976 if (ada_is_constrained_packed_array_type (type_arg))
10977 type_arg = decode_constrained_packed_array_type (type_arg);
10978
10979 if (!discrete_type_p (type_arg))
10980 {
10981 switch (op)
10982 {
10983 default: /* Should never happen. */
10984 error (_("unexpected attribute encountered"));
10985 case OP_ATR_FIRST:
10986 case OP_ATR_LAST:
10987 type_arg = ada_index_type (type_arg, tem,
10988 ada_attribute_name (op));
10989 break;
10990 case OP_ATR_LENGTH:
10991 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10992 break;
10993 }
10994 }
10995
10996 return value_zero (type_arg, not_lval);
10997 }
10998 else if (type_arg == NULL)
10999 {
11000 arg1 = ada_coerce_ref (arg1);
11001
11002 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11003 arg1 = ada_coerce_to_simple_array (arg1);
11004
11005 if (op == OP_ATR_LENGTH)
11006 type = builtin_type (exp->gdbarch)->builtin_int;
11007 else
11008 {
11009 type = ada_index_type (value_type (arg1), tem,
11010 ada_attribute_name (op));
11011 if (type == NULL)
11012 type = builtin_type (exp->gdbarch)->builtin_int;
11013 }
11014
11015 switch (op)
11016 {
11017 default: /* Should never happen. */
11018 error (_("unexpected attribute encountered"));
11019 case OP_ATR_FIRST:
11020 return value_from_longest
11021 (type, ada_array_bound (arg1, tem, 0));
11022 case OP_ATR_LAST:
11023 return value_from_longest
11024 (type, ada_array_bound (arg1, tem, 1));
11025 case OP_ATR_LENGTH:
11026 return value_from_longest
11027 (type, ada_array_length (arg1, tem));
11028 }
11029 }
11030 else if (discrete_type_p (type_arg))
11031 {
11032 struct type *range_type;
11033 const char *name = ada_type_name (type_arg);
11034
11035 range_type = NULL;
11036 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
11037 range_type = to_fixed_range_type (type_arg, NULL);
11038 if (range_type == NULL)
11039 range_type = type_arg;
11040 switch (op)
11041 {
11042 default:
11043 error (_("unexpected attribute encountered"));
11044 case OP_ATR_FIRST:
11045 return value_from_longest
11046 (range_type, ada_discrete_type_low_bound (range_type));
11047 case OP_ATR_LAST:
11048 return value_from_longest
11049 (range_type, ada_discrete_type_high_bound (range_type));
11050 case OP_ATR_LENGTH:
11051 error (_("the 'length attribute applies only to array types"));
11052 }
11053 }
11054 else if (type_arg->code () == TYPE_CODE_FLT)
11055 error (_("unimplemented type attribute"));
11056 else
11057 {
11058 LONGEST low, high;
11059
11060 if (ada_is_constrained_packed_array_type (type_arg))
11061 type_arg = decode_constrained_packed_array_type (type_arg);
11062
11063 if (op == OP_ATR_LENGTH)
11064 type = builtin_type (exp->gdbarch)->builtin_int;
11065 else
11066 {
11067 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11068 if (type == NULL)
11069 type = builtin_type (exp->gdbarch)->builtin_int;
11070 }
11071
11072 switch (op)
11073 {
11074 default:
11075 error (_("unexpected attribute encountered"));
11076 case OP_ATR_FIRST:
11077 low = ada_array_bound_from_type (type_arg, tem, 0);
11078 return value_from_longest (type, low);
11079 case OP_ATR_LAST:
11080 high = ada_array_bound_from_type (type_arg, tem, 1);
11081 return value_from_longest (type, high);
11082 case OP_ATR_LENGTH:
11083 low = ada_array_bound_from_type (type_arg, tem, 0);
11084 high = ada_array_bound_from_type (type_arg, tem, 1);
11085 return value_from_longest (type, high - low + 1);
11086 }
11087 }
11088 }
11089
11090 case OP_ATR_TAG:
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11092 if (noside == EVAL_SKIP)
11093 goto nosideret;
11094
11095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11096 return value_zero (ada_tag_type (arg1), not_lval);
11097
11098 return ada_value_tag (arg1);
11099
11100 case OP_ATR_MIN:
11101 case OP_ATR_MAX:
11102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11104 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11105 if (noside == EVAL_SKIP)
11106 goto nosideret;
11107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11108 return value_zero (value_type (arg1), not_lval);
11109 else
11110 {
11111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11112 return value_binop (arg1, arg2,
11113 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11114 }
11115
11116 case OP_ATR_MODULUS:
11117 {
11118 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11119
11120 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
11123
11124 if (!ada_is_modular_type (type_arg))
11125 error (_("'modulus must be applied to modular type"));
11126
11127 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11128 ada_modulus (type_arg));
11129 }
11130
11131
11132 case OP_ATR_POS:
11133 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
11136 goto nosideret;
11137 type = builtin_type (exp->gdbarch)->builtin_int;
11138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11139 return value_zero (type, not_lval);
11140 else
11141 return value_pos_atr (type, arg1);
11142
11143 case OP_ATR_SIZE:
11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145 type = value_type (arg1);
11146
11147 /* If the argument is a reference, then dereference its type, since
11148 the user is really asking for the size of the actual object,
11149 not the size of the pointer. */
11150 if (type->code () == TYPE_CODE_REF)
11151 type = TYPE_TARGET_TYPE (type);
11152
11153 if (noside == EVAL_SKIP)
11154 goto nosideret;
11155 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11156 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11157 else
11158 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11159 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11160
11161 case OP_ATR_VAL:
11162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 type = exp->elts[pc + 2].type;
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
11167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11168 return value_zero (type, not_lval);
11169 else
11170 return value_val_atr (type, arg1);
11171
11172 case BINOP_EXP:
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11178 return value_zero (value_type (arg1), not_lval);
11179 else
11180 {
11181 /* For integer exponentiation operations,
11182 only promote the first argument. */
11183 if (is_integral_type (value_type (arg2)))
11184 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11185 else
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11187
11188 return value_binop (arg1, arg2, op);
11189 }
11190
11191 case UNOP_PLUS:
11192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195 else
11196 return arg1;
11197
11198 case UNOP_ABS:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11203 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11204 return value_neg (arg1);
11205 else
11206 return arg1;
11207
11208 case UNOP_IND:
11209 preeval_pos = *pos;
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 if (noside == EVAL_SKIP)
11212 goto nosideret;
11213 type = ada_check_typedef (value_type (arg1));
11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 {
11216 if (ada_is_array_descriptor_type (type))
11217 /* GDB allows dereferencing GNAT array descriptors. */
11218 {
11219 struct type *arrType = ada_type_of_array (arg1, 0);
11220
11221 if (arrType == NULL)
11222 error (_("Attempt to dereference null array pointer."));
11223 return value_at_lazy (arrType, 0);
11224 }
11225 else if (type->code () == TYPE_CODE_PTR
11226 || type->code () == TYPE_CODE_REF
11227 /* In C you can dereference an array to get the 1st elt. */
11228 || type->code () == TYPE_CODE_ARRAY)
11229 {
11230 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11231 only be determined by inspecting the object's tag.
11232 This means that we need to evaluate completely the
11233 expression in order to get its type. */
11234
11235 if ((type->code () == TYPE_CODE_REF
11236 || type->code () == TYPE_CODE_PTR)
11237 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11238 {
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11240 EVAL_NORMAL);
11241 type = value_type (ada_value_ind (arg1));
11242 }
11243 else
11244 {
11245 type = to_static_fixed_type
11246 (ada_aligned_type
11247 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11248 }
11249 ada_ensure_varsize_limit (type);
11250 return value_zero (type, lval_memory);
11251 }
11252 else if (type->code () == TYPE_CODE_INT)
11253 {
11254 /* GDB allows dereferencing an int. */
11255 if (expect_type == NULL)
11256 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11257 lval_memory);
11258 else
11259 {
11260 expect_type =
11261 to_static_fixed_type (ada_aligned_type (expect_type));
11262 return value_zero (expect_type, lval_memory);
11263 }
11264 }
11265 else
11266 error (_("Attempt to take contents of a non-pointer value."));
11267 }
11268 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11269 type = ada_check_typedef (value_type (arg1));
11270
11271 if (type->code () == TYPE_CODE_INT)
11272 /* GDB allows dereferencing an int. If we were given
11273 the expect_type, then use that as the target type.
11274 Otherwise, assume that the target type is an int. */
11275 {
11276 if (expect_type != NULL)
11277 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11278 arg1));
11279 else
11280 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11281 (CORE_ADDR) value_as_address (arg1));
11282 }
11283
11284 if (ada_is_array_descriptor_type (type))
11285 /* GDB allows dereferencing GNAT array descriptors. */
11286 return ada_coerce_to_simple_array (arg1);
11287 else
11288 return ada_value_ind (arg1);
11289
11290 case STRUCTOP_STRUCT:
11291 tem = longest_to_int (exp->elts[pc + 1].longconst);
11292 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11293 preeval_pos = *pos;
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
11296 goto nosideret;
11297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11298 {
11299 struct type *type1 = value_type (arg1);
11300
11301 if (ada_is_tagged_type (type1, 1))
11302 {
11303 type = ada_lookup_struct_elt_type (type1,
11304 &exp->elts[pc + 2].string,
11305 1, 1);
11306
11307 /* If the field is not found, check if it exists in the
11308 extension of this object's type. This means that we
11309 need to evaluate completely the expression. */
11310
11311 if (type == NULL)
11312 {
11313 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11314 EVAL_NORMAL);
11315 arg1 = ada_value_struct_elt (arg1,
11316 &exp->elts[pc + 2].string,
11317 0);
11318 arg1 = unwrap_value (arg1);
11319 type = value_type (ada_to_fixed_value (arg1));
11320 }
11321 }
11322 else
11323 type =
11324 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11325 0);
11326
11327 return value_zero (ada_aligned_type (type), lval_memory);
11328 }
11329 else
11330 {
11331 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11332 arg1 = unwrap_value (arg1);
11333 return ada_to_fixed_value (arg1);
11334 }
11335
11336 case OP_TYPE:
11337 /* The value is not supposed to be used. This is here to make it
11338 easier to accommodate expressions that contain types. */
11339 (*pos) += 2;
11340 if (noside == EVAL_SKIP)
11341 goto nosideret;
11342 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return allocate_value (exp->elts[pc + 1].type);
11344 else
11345 error (_("Attempt to use a type name as an expression"));
11346
11347 case OP_AGGREGATE:
11348 case OP_CHOICES:
11349 case OP_OTHERS:
11350 case OP_DISCRETE_RANGE:
11351 case OP_POSITIONAL:
11352 case OP_NAME:
11353 if (noside == EVAL_NORMAL)
11354 switch (op)
11355 {
11356 case OP_NAME:
11357 error (_("Undefined name, ambiguous name, or renaming used in "
11358 "component association: %s."), &exp->elts[pc+2].string);
11359 case OP_AGGREGATE:
11360 error (_("Aggregates only allowed on the right of an assignment"));
11361 default:
11362 internal_error (__FILE__, __LINE__,
11363 _("aggregate apparently mangled"));
11364 }
11365
11366 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11367 *pos += oplen - 1;
11368 for (tem = 0; tem < nargs; tem += 1)
11369 ada_evaluate_subexp (NULL, exp, pos, noside);
11370 goto nosideret;
11371 }
11372
11373 nosideret:
11374 return eval_skip_value (exp);
11375 }
11376 \f
11377
11378 /* Fixed point */
11379
11380 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11381 type name that encodes the 'small and 'delta information.
11382 Otherwise, return NULL. */
11383
11384 static const char *
11385 gnat_encoded_fixed_type_info (struct type *type)
11386 {
11387 const char *name = ada_type_name (type);
11388 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11389
11390 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11391 {
11392 const char *tail = strstr (name, "___XF_");
11393
11394 if (tail == NULL)
11395 return NULL;
11396 else
11397 return tail + 5;
11398 }
11399 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11400 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11401 else
11402 return NULL;
11403 }
11404
11405 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11406
11407 int
11408 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11409 {
11410 return gnat_encoded_fixed_type_info (type) != NULL;
11411 }
11412
11413 /* Return non-zero iff TYPE represents a System.Address type. */
11414
11415 int
11416 ada_is_system_address_type (struct type *type)
11417 {
11418 return (type->name () && strcmp (type->name (), "system__address") == 0);
11419 }
11420
11421 /* Assuming that TYPE is the representation of an Ada fixed-point
11422 type, return the target floating-point type to be used to represent
11423 of this type during internal computation. */
11424
11425 static struct type *
11426 ada_scaling_type (struct type *type)
11427 {
11428 return builtin_type (get_type_arch (type))->builtin_long_double;
11429 }
11430
11431 /* Assuming that TYPE is the representation of an Ada fixed-point
11432 type, return its delta, or NULL if the type is malformed and the
11433 delta cannot be determined. */
11434
11435 struct value *
11436 gnat_encoded_fixed_point_delta (struct type *type)
11437 {
11438 const char *encoding = gnat_encoded_fixed_type_info (type);
11439 struct type *scale_type = ada_scaling_type (type);
11440
11441 long long num, den;
11442
11443 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11444 return nullptr;
11445 else
11446 return value_binop (value_from_longest (scale_type, num),
11447 value_from_longest (scale_type, den), BINOP_DIV);
11448 }
11449
11450 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11451 the scaling factor ('SMALL value) associated with the type. */
11452
11453 struct value *
11454 ada_scaling_factor (struct type *type)
11455 {
11456 const char *encoding = gnat_encoded_fixed_type_info (type);
11457 struct type *scale_type = ada_scaling_type (type);
11458
11459 long long num0, den0, num1, den1;
11460 int n;
11461
11462 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11463 &num0, &den0, &num1, &den1);
11464
11465 if (n < 2)
11466 return value_from_longest (scale_type, 1);
11467 else if (n == 4)
11468 return value_binop (value_from_longest (scale_type, num1),
11469 value_from_longest (scale_type, den1), BINOP_DIV);
11470 else
11471 return value_binop (value_from_longest (scale_type, num0),
11472 value_from_longest (scale_type, den0), BINOP_DIV);
11473 }
11474
11475 \f
11476
11477 /* Range types */
11478
11479 /* Scan STR beginning at position K for a discriminant name, and
11480 return the value of that discriminant field of DVAL in *PX. If
11481 PNEW_K is not null, put the position of the character beyond the
11482 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11483 not alter *PX and *PNEW_K if unsuccessful. */
11484
11485 static int
11486 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11487 int *pnew_k)
11488 {
11489 static char *bound_buffer = NULL;
11490 static size_t bound_buffer_len = 0;
11491 const char *pstart, *pend, *bound;
11492 struct value *bound_val;
11493
11494 if (dval == NULL || str == NULL || str[k] == '\0')
11495 return 0;
11496
11497 pstart = str + k;
11498 pend = strstr (pstart, "__");
11499 if (pend == NULL)
11500 {
11501 bound = pstart;
11502 k += strlen (bound);
11503 }
11504 else
11505 {
11506 int len = pend - pstart;
11507
11508 /* Strip __ and beyond. */
11509 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11510 strncpy (bound_buffer, pstart, len);
11511 bound_buffer[len] = '\0';
11512
11513 bound = bound_buffer;
11514 k = pend - str;
11515 }
11516
11517 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11518 if (bound_val == NULL)
11519 return 0;
11520
11521 *px = value_as_long (bound_val);
11522 if (pnew_k != NULL)
11523 *pnew_k = k;
11524 return 1;
11525 }
11526
11527 /* Value of variable named NAME in the current environment. If
11528 no such variable found, then if ERR_MSG is null, returns 0, and
11529 otherwise causes an error with message ERR_MSG. */
11530
11531 static struct value *
11532 get_var_value (const char *name, const char *err_msg)
11533 {
11534 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11535
11536 std::vector<struct block_symbol> syms;
11537 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11538 get_selected_block (0),
11539 VAR_DOMAIN, &syms, 1);
11540
11541 if (nsyms != 1)
11542 {
11543 if (err_msg == NULL)
11544 return 0;
11545 else
11546 error (("%s"), err_msg);
11547 }
11548
11549 return value_of_variable (syms[0].symbol, syms[0].block);
11550 }
11551
11552 /* Value of integer variable named NAME in the current environment.
11553 If no such variable is found, returns false. Otherwise, sets VALUE
11554 to the variable's value and returns true. */
11555
11556 bool
11557 get_int_var_value (const char *name, LONGEST &value)
11558 {
11559 struct value *var_val = get_var_value (name, 0);
11560
11561 if (var_val == 0)
11562 return false;
11563
11564 value = value_as_long (var_val);
11565 return true;
11566 }
11567
11568
11569 /* Return a range type whose base type is that of the range type named
11570 NAME in the current environment, and whose bounds are calculated
11571 from NAME according to the GNAT range encoding conventions.
11572 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11573 corresponding range type from debug information; fall back to using it
11574 if symbol lookup fails. If a new type must be created, allocate it
11575 like ORIG_TYPE was. The bounds information, in general, is encoded
11576 in NAME, the base type given in the named range type. */
11577
11578 static struct type *
11579 to_fixed_range_type (struct type *raw_type, struct value *dval)
11580 {
11581 const char *name;
11582 struct type *base_type;
11583 const char *subtype_info;
11584
11585 gdb_assert (raw_type != NULL);
11586 gdb_assert (raw_type->name () != NULL);
11587
11588 if (raw_type->code () == TYPE_CODE_RANGE)
11589 base_type = TYPE_TARGET_TYPE (raw_type);
11590 else
11591 base_type = raw_type;
11592
11593 name = raw_type->name ();
11594 subtype_info = strstr (name, "___XD");
11595 if (subtype_info == NULL)
11596 {
11597 LONGEST L = ada_discrete_type_low_bound (raw_type);
11598 LONGEST U = ada_discrete_type_high_bound (raw_type);
11599
11600 if (L < INT_MIN || U > INT_MAX)
11601 return raw_type;
11602 else
11603 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11604 L, U);
11605 }
11606 else
11607 {
11608 static char *name_buf = NULL;
11609 static size_t name_len = 0;
11610 int prefix_len = subtype_info - name;
11611 LONGEST L, U;
11612 struct type *type;
11613 const char *bounds_str;
11614 int n;
11615
11616 GROW_VECT (name_buf, name_len, prefix_len + 5);
11617 strncpy (name_buf, name, prefix_len);
11618 name_buf[prefix_len] = '\0';
11619
11620 subtype_info += 5;
11621 bounds_str = strchr (subtype_info, '_');
11622 n = 1;
11623
11624 if (*subtype_info == 'L')
11625 {
11626 if (!ada_scan_number (bounds_str, n, &L, &n)
11627 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11628 return raw_type;
11629 if (bounds_str[n] == '_')
11630 n += 2;
11631 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11632 n += 1;
11633 subtype_info += 1;
11634 }
11635 else
11636 {
11637 strcpy (name_buf + prefix_len, "___L");
11638 if (!get_int_var_value (name_buf, L))
11639 {
11640 lim_warning (_("Unknown lower bound, using 1."));
11641 L = 1;
11642 }
11643 }
11644
11645 if (*subtype_info == 'U')
11646 {
11647 if (!ada_scan_number (bounds_str, n, &U, &n)
11648 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11649 return raw_type;
11650 }
11651 else
11652 {
11653 strcpy (name_buf + prefix_len, "___U");
11654 if (!get_int_var_value (name_buf, U))
11655 {
11656 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11657 U = L;
11658 }
11659 }
11660
11661 type = create_static_range_type (alloc_type_copy (raw_type),
11662 base_type, L, U);
11663 /* create_static_range_type alters the resulting type's length
11664 to match the size of the base_type, which is not what we want.
11665 Set it back to the original range type's length. */
11666 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11667 type->set_name (name);
11668 return type;
11669 }
11670 }
11671
11672 /* True iff NAME is the name of a range type. */
11673
11674 int
11675 ada_is_range_type_name (const char *name)
11676 {
11677 return (name != NULL && strstr (name, "___XD"));
11678 }
11679 \f
11680
11681 /* Modular types */
11682
11683 /* True iff TYPE is an Ada modular type. */
11684
11685 int
11686 ada_is_modular_type (struct type *type)
11687 {
11688 struct type *subranged_type = get_base_type (type);
11689
11690 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11691 && subranged_type->code () == TYPE_CODE_INT
11692 && TYPE_UNSIGNED (subranged_type));
11693 }
11694
11695 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11696
11697 ULONGEST
11698 ada_modulus (struct type *type)
11699 {
11700 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11701 }
11702 \f
11703
11704 /* Ada exception catchpoint support:
11705 ---------------------------------
11706
11707 We support 3 kinds of exception catchpoints:
11708 . catchpoints on Ada exceptions
11709 . catchpoints on unhandled Ada exceptions
11710 . catchpoints on failed assertions
11711
11712 Exceptions raised during failed assertions, or unhandled exceptions
11713 could perfectly be caught with the general catchpoint on Ada exceptions.
11714 However, we can easily differentiate these two special cases, and having
11715 the option to distinguish these two cases from the rest can be useful
11716 to zero-in on certain situations.
11717
11718 Exception catchpoints are a specialized form of breakpoint,
11719 since they rely on inserting breakpoints inside known routines
11720 of the GNAT runtime. The implementation therefore uses a standard
11721 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11722 of breakpoint_ops.
11723
11724 Support in the runtime for exception catchpoints have been changed
11725 a few times already, and these changes affect the implementation
11726 of these catchpoints. In order to be able to support several
11727 variants of the runtime, we use a sniffer that will determine
11728 the runtime variant used by the program being debugged. */
11729
11730 /* Ada's standard exceptions.
11731
11732 The Ada 83 standard also defined Numeric_Error. But there so many
11733 situations where it was unclear from the Ada 83 Reference Manual
11734 (RM) whether Constraint_Error or Numeric_Error should be raised,
11735 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11736 Interpretation saying that anytime the RM says that Numeric_Error
11737 should be raised, the implementation may raise Constraint_Error.
11738 Ada 95 went one step further and pretty much removed Numeric_Error
11739 from the list of standard exceptions (it made it a renaming of
11740 Constraint_Error, to help preserve compatibility when compiling
11741 an Ada83 compiler). As such, we do not include Numeric_Error from
11742 this list of standard exceptions. */
11743
11744 static const char *standard_exc[] = {
11745 "constraint_error",
11746 "program_error",
11747 "storage_error",
11748 "tasking_error"
11749 };
11750
11751 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11752
11753 /* A structure that describes how to support exception catchpoints
11754 for a given executable. */
11755
11756 struct exception_support_info
11757 {
11758 /* The name of the symbol to break on in order to insert
11759 a catchpoint on exceptions. */
11760 const char *catch_exception_sym;
11761
11762 /* The name of the symbol to break on in order to insert
11763 a catchpoint on unhandled exceptions. */
11764 const char *catch_exception_unhandled_sym;
11765
11766 /* The name of the symbol to break on in order to insert
11767 a catchpoint on failed assertions. */
11768 const char *catch_assert_sym;
11769
11770 /* The name of the symbol to break on in order to insert
11771 a catchpoint on exception handling. */
11772 const char *catch_handlers_sym;
11773
11774 /* Assuming that the inferior just triggered an unhandled exception
11775 catchpoint, this function is responsible for returning the address
11776 in inferior memory where the name of that exception is stored.
11777 Return zero if the address could not be computed. */
11778 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11779 };
11780
11781 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11782 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11783
11784 /* The following exception support info structure describes how to
11785 implement exception catchpoints with the latest version of the
11786 Ada runtime (as of 2019-08-??). */
11787
11788 static const struct exception_support_info default_exception_support_info =
11789 {
11790 "__gnat_debug_raise_exception", /* catch_exception_sym */
11791 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11792 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11793 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11794 ada_unhandled_exception_name_addr
11795 };
11796
11797 /* The following exception support info structure describes how to
11798 implement exception catchpoints with an earlier version of the
11799 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11800
11801 static const struct exception_support_info exception_support_info_v0 =
11802 {
11803 "__gnat_debug_raise_exception", /* catch_exception_sym */
11804 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11805 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11806 "__gnat_begin_handler", /* catch_handlers_sym */
11807 ada_unhandled_exception_name_addr
11808 };
11809
11810 /* The following exception support info structure describes how to
11811 implement exception catchpoints with a slightly older version
11812 of the Ada runtime. */
11813
11814 static const struct exception_support_info exception_support_info_fallback =
11815 {
11816 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11817 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11818 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11819 "__gnat_begin_handler", /* catch_handlers_sym */
11820 ada_unhandled_exception_name_addr_from_raise
11821 };
11822
11823 /* Return nonzero if we can detect the exception support routines
11824 described in EINFO.
11825
11826 This function errors out if an abnormal situation is detected
11827 (for instance, if we find the exception support routines, but
11828 that support is found to be incomplete). */
11829
11830 static int
11831 ada_has_this_exception_support (const struct exception_support_info *einfo)
11832 {
11833 struct symbol *sym;
11834
11835 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11836 that should be compiled with debugging information. As a result, we
11837 expect to find that symbol in the symtabs. */
11838
11839 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11840 if (sym == NULL)
11841 {
11842 /* Perhaps we did not find our symbol because the Ada runtime was
11843 compiled without debugging info, or simply stripped of it.
11844 It happens on some GNU/Linux distributions for instance, where
11845 users have to install a separate debug package in order to get
11846 the runtime's debugging info. In that situation, let the user
11847 know why we cannot insert an Ada exception catchpoint.
11848
11849 Note: Just for the purpose of inserting our Ada exception
11850 catchpoint, we could rely purely on the associated minimal symbol.
11851 But we would be operating in degraded mode anyway, since we are
11852 still lacking the debugging info needed later on to extract
11853 the name of the exception being raised (this name is printed in
11854 the catchpoint message, and is also used when trying to catch
11855 a specific exception). We do not handle this case for now. */
11856 struct bound_minimal_symbol msym
11857 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11858
11859 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11860 error (_("Your Ada runtime appears to be missing some debugging "
11861 "information.\nCannot insert Ada exception catchpoint "
11862 "in this configuration."));
11863
11864 return 0;
11865 }
11866
11867 /* Make sure that the symbol we found corresponds to a function. */
11868
11869 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11870 {
11871 error (_("Symbol \"%s\" is not a function (class = %d)"),
11872 sym->linkage_name (), SYMBOL_CLASS (sym));
11873 return 0;
11874 }
11875
11876 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11877 if (sym == NULL)
11878 {
11879 struct bound_minimal_symbol msym
11880 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11881
11882 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11883 error (_("Your Ada runtime appears to be missing some debugging "
11884 "information.\nCannot insert Ada exception catchpoint "
11885 "in this configuration."));
11886
11887 return 0;
11888 }
11889
11890 /* Make sure that the symbol we found corresponds to a function. */
11891
11892 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11893 {
11894 error (_("Symbol \"%s\" is not a function (class = %d)"),
11895 sym->linkage_name (), SYMBOL_CLASS (sym));
11896 return 0;
11897 }
11898
11899 return 1;
11900 }
11901
11902 /* Inspect the Ada runtime and determine which exception info structure
11903 should be used to provide support for exception catchpoints.
11904
11905 This function will always set the per-inferior exception_info,
11906 or raise an error. */
11907
11908 static void
11909 ada_exception_support_info_sniffer (void)
11910 {
11911 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11912
11913 /* If the exception info is already known, then no need to recompute it. */
11914 if (data->exception_info != NULL)
11915 return;
11916
11917 /* Check the latest (default) exception support info. */
11918 if (ada_has_this_exception_support (&default_exception_support_info))
11919 {
11920 data->exception_info = &default_exception_support_info;
11921 return;
11922 }
11923
11924 /* Try the v0 exception suport info. */
11925 if (ada_has_this_exception_support (&exception_support_info_v0))
11926 {
11927 data->exception_info = &exception_support_info_v0;
11928 return;
11929 }
11930
11931 /* Try our fallback exception suport info. */
11932 if (ada_has_this_exception_support (&exception_support_info_fallback))
11933 {
11934 data->exception_info = &exception_support_info_fallback;
11935 return;
11936 }
11937
11938 /* Sometimes, it is normal for us to not be able to find the routine
11939 we are looking for. This happens when the program is linked with
11940 the shared version of the GNAT runtime, and the program has not been
11941 started yet. Inform the user of these two possible causes if
11942 applicable. */
11943
11944 if (ada_update_initial_language (language_unknown) != language_ada)
11945 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11946
11947 /* If the symbol does not exist, then check that the program is
11948 already started, to make sure that shared libraries have been
11949 loaded. If it is not started, this may mean that the symbol is
11950 in a shared library. */
11951
11952 if (inferior_ptid.pid () == 0)
11953 error (_("Unable to insert catchpoint. Try to start the program first."));
11954
11955 /* At this point, we know that we are debugging an Ada program and
11956 that the inferior has been started, but we still are not able to
11957 find the run-time symbols. That can mean that we are in
11958 configurable run time mode, or that a-except as been optimized
11959 out by the linker... In any case, at this point it is not worth
11960 supporting this feature. */
11961
11962 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11963 }
11964
11965 /* True iff FRAME is very likely to be that of a function that is
11966 part of the runtime system. This is all very heuristic, but is
11967 intended to be used as advice as to what frames are uninteresting
11968 to most users. */
11969
11970 static int
11971 is_known_support_routine (struct frame_info *frame)
11972 {
11973 enum language func_lang;
11974 int i;
11975 const char *fullname;
11976
11977 /* If this code does not have any debugging information (no symtab),
11978 This cannot be any user code. */
11979
11980 symtab_and_line sal = find_frame_sal (frame);
11981 if (sal.symtab == NULL)
11982 return 1;
11983
11984 /* If there is a symtab, but the associated source file cannot be
11985 located, then assume this is not user code: Selecting a frame
11986 for which we cannot display the code would not be very helpful
11987 for the user. This should also take care of case such as VxWorks
11988 where the kernel has some debugging info provided for a few units. */
11989
11990 fullname = symtab_to_fullname (sal.symtab);
11991 if (access (fullname, R_OK) != 0)
11992 return 1;
11993
11994 /* Check the unit filename against the Ada runtime file naming.
11995 We also check the name of the objfile against the name of some
11996 known system libraries that sometimes come with debugging info
11997 too. */
11998
11999 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12000 {
12001 re_comp (known_runtime_file_name_patterns[i]);
12002 if (re_exec (lbasename (sal.symtab->filename)))
12003 return 1;
12004 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12005 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12006 return 1;
12007 }
12008
12009 /* Check whether the function is a GNAT-generated entity. */
12010
12011 gdb::unique_xmalloc_ptr<char> func_name
12012 = find_frame_funname (frame, &func_lang, NULL);
12013 if (func_name == NULL)
12014 return 1;
12015
12016 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12017 {
12018 re_comp (known_auxiliary_function_name_patterns[i]);
12019 if (re_exec (func_name.get ()))
12020 return 1;
12021 }
12022
12023 return 0;
12024 }
12025
12026 /* Find the first frame that contains debugging information and that is not
12027 part of the Ada run-time, starting from FI and moving upward. */
12028
12029 void
12030 ada_find_printable_frame (struct frame_info *fi)
12031 {
12032 for (; fi != NULL; fi = get_prev_frame (fi))
12033 {
12034 if (!is_known_support_routine (fi))
12035 {
12036 select_frame (fi);
12037 break;
12038 }
12039 }
12040
12041 }
12042
12043 /* Assuming that the inferior just triggered an unhandled exception
12044 catchpoint, return the address in inferior memory where the name
12045 of the exception is stored.
12046
12047 Return zero if the address could not be computed. */
12048
12049 static CORE_ADDR
12050 ada_unhandled_exception_name_addr (void)
12051 {
12052 return parse_and_eval_address ("e.full_name");
12053 }
12054
12055 /* Same as ada_unhandled_exception_name_addr, except that this function
12056 should be used when the inferior uses an older version of the runtime,
12057 where the exception name needs to be extracted from a specific frame
12058 several frames up in the callstack. */
12059
12060 static CORE_ADDR
12061 ada_unhandled_exception_name_addr_from_raise (void)
12062 {
12063 int frame_level;
12064 struct frame_info *fi;
12065 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12066
12067 /* To determine the name of this exception, we need to select
12068 the frame corresponding to RAISE_SYM_NAME. This frame is
12069 at least 3 levels up, so we simply skip the first 3 frames
12070 without checking the name of their associated function. */
12071 fi = get_current_frame ();
12072 for (frame_level = 0; frame_level < 3; frame_level += 1)
12073 if (fi != NULL)
12074 fi = get_prev_frame (fi);
12075
12076 while (fi != NULL)
12077 {
12078 enum language func_lang;
12079
12080 gdb::unique_xmalloc_ptr<char> func_name
12081 = find_frame_funname (fi, &func_lang, NULL);
12082 if (func_name != NULL)
12083 {
12084 if (strcmp (func_name.get (),
12085 data->exception_info->catch_exception_sym) == 0)
12086 break; /* We found the frame we were looking for... */
12087 }
12088 fi = get_prev_frame (fi);
12089 }
12090
12091 if (fi == NULL)
12092 return 0;
12093
12094 select_frame (fi);
12095 return parse_and_eval_address ("id.full_name");
12096 }
12097
12098 /* Assuming the inferior just triggered an Ada exception catchpoint
12099 (of any type), return the address in inferior memory where the name
12100 of the exception is stored, if applicable.
12101
12102 Assumes the selected frame is the current frame.
12103
12104 Return zero if the address could not be computed, or if not relevant. */
12105
12106 static CORE_ADDR
12107 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12108 struct breakpoint *b)
12109 {
12110 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12111
12112 switch (ex)
12113 {
12114 case ada_catch_exception:
12115 return (parse_and_eval_address ("e.full_name"));
12116 break;
12117
12118 case ada_catch_exception_unhandled:
12119 return data->exception_info->unhandled_exception_name_addr ();
12120 break;
12121
12122 case ada_catch_handlers:
12123 return 0; /* The runtimes does not provide access to the exception
12124 name. */
12125 break;
12126
12127 case ada_catch_assert:
12128 return 0; /* Exception name is not relevant in this case. */
12129 break;
12130
12131 default:
12132 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12133 break;
12134 }
12135
12136 return 0; /* Should never be reached. */
12137 }
12138
12139 /* Assuming the inferior is stopped at an exception catchpoint,
12140 return the message which was associated to the exception, if
12141 available. Return NULL if the message could not be retrieved.
12142
12143 Note: The exception message can be associated to an exception
12144 either through the use of the Raise_Exception function, or
12145 more simply (Ada 2005 and later), via:
12146
12147 raise Exception_Name with "exception message";
12148
12149 */
12150
12151 static gdb::unique_xmalloc_ptr<char>
12152 ada_exception_message_1 (void)
12153 {
12154 struct value *e_msg_val;
12155 int e_msg_len;
12156
12157 /* For runtimes that support this feature, the exception message
12158 is passed as an unbounded string argument called "message". */
12159 e_msg_val = parse_and_eval ("message");
12160 if (e_msg_val == NULL)
12161 return NULL; /* Exception message not supported. */
12162
12163 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12164 gdb_assert (e_msg_val != NULL);
12165 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12166
12167 /* If the message string is empty, then treat it as if there was
12168 no exception message. */
12169 if (e_msg_len <= 0)
12170 return NULL;
12171
12172 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12173 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12174 e_msg.get ()[e_msg_len] = '\0';
12175
12176 return e_msg;
12177 }
12178
12179 /* Same as ada_exception_message_1, except that all exceptions are
12180 contained here (returning NULL instead). */
12181
12182 static gdb::unique_xmalloc_ptr<char>
12183 ada_exception_message (void)
12184 {
12185 gdb::unique_xmalloc_ptr<char> e_msg;
12186
12187 try
12188 {
12189 e_msg = ada_exception_message_1 ();
12190 }
12191 catch (const gdb_exception_error &e)
12192 {
12193 e_msg.reset (nullptr);
12194 }
12195
12196 return e_msg;
12197 }
12198
12199 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12200 any error that ada_exception_name_addr_1 might cause to be thrown.
12201 When an error is intercepted, a warning with the error message is printed,
12202 and zero is returned. */
12203
12204 static CORE_ADDR
12205 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12206 struct breakpoint *b)
12207 {
12208 CORE_ADDR result = 0;
12209
12210 try
12211 {
12212 result = ada_exception_name_addr_1 (ex, b);
12213 }
12214
12215 catch (const gdb_exception_error &e)
12216 {
12217 warning (_("failed to get exception name: %s"), e.what ());
12218 return 0;
12219 }
12220
12221 return result;
12222 }
12223
12224 static std::string ada_exception_catchpoint_cond_string
12225 (const char *excep_string,
12226 enum ada_exception_catchpoint_kind ex);
12227
12228 /* Ada catchpoints.
12229
12230 In the case of catchpoints on Ada exceptions, the catchpoint will
12231 stop the target on every exception the program throws. When a user
12232 specifies the name of a specific exception, we translate this
12233 request into a condition expression (in text form), and then parse
12234 it into an expression stored in each of the catchpoint's locations.
12235 We then use this condition to check whether the exception that was
12236 raised is the one the user is interested in. If not, then the
12237 target is resumed again. We store the name of the requested
12238 exception, in order to be able to re-set the condition expression
12239 when symbols change. */
12240
12241 /* An instance of this type is used to represent an Ada catchpoint
12242 breakpoint location. */
12243
12244 class ada_catchpoint_location : public bp_location
12245 {
12246 public:
12247 ada_catchpoint_location (breakpoint *owner)
12248 : bp_location (owner, bp_loc_software_breakpoint)
12249 {}
12250
12251 /* The condition that checks whether the exception that was raised
12252 is the specific exception the user specified on catchpoint
12253 creation. */
12254 expression_up excep_cond_expr;
12255 };
12256
12257 /* An instance of this type is used to represent an Ada catchpoint. */
12258
12259 struct ada_catchpoint : public breakpoint
12260 {
12261 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12262 : m_kind (kind)
12263 {
12264 }
12265
12266 /* The name of the specific exception the user specified. */
12267 std::string excep_string;
12268
12269 /* What kind of catchpoint this is. */
12270 enum ada_exception_catchpoint_kind m_kind;
12271 };
12272
12273 /* Parse the exception condition string in the context of each of the
12274 catchpoint's locations, and store them for later evaluation. */
12275
12276 static void
12277 create_excep_cond_exprs (struct ada_catchpoint *c,
12278 enum ada_exception_catchpoint_kind ex)
12279 {
12280 struct bp_location *bl;
12281
12282 /* Nothing to do if there's no specific exception to catch. */
12283 if (c->excep_string.empty ())
12284 return;
12285
12286 /* Same if there are no locations... */
12287 if (c->loc == NULL)
12288 return;
12289
12290 /* Compute the condition expression in text form, from the specific
12291 expection we want to catch. */
12292 std::string cond_string
12293 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12294
12295 /* Iterate over all the catchpoint's locations, and parse an
12296 expression for each. */
12297 for (bl = c->loc; bl != NULL; bl = bl->next)
12298 {
12299 struct ada_catchpoint_location *ada_loc
12300 = (struct ada_catchpoint_location *) bl;
12301 expression_up exp;
12302
12303 if (!bl->shlib_disabled)
12304 {
12305 const char *s;
12306
12307 s = cond_string.c_str ();
12308 try
12309 {
12310 exp = parse_exp_1 (&s, bl->address,
12311 block_for_pc (bl->address),
12312 0);
12313 }
12314 catch (const gdb_exception_error &e)
12315 {
12316 warning (_("failed to reevaluate internal exception condition "
12317 "for catchpoint %d: %s"),
12318 c->number, e.what ());
12319 }
12320 }
12321
12322 ada_loc->excep_cond_expr = std::move (exp);
12323 }
12324 }
12325
12326 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12327 structure for all exception catchpoint kinds. */
12328
12329 static struct bp_location *
12330 allocate_location_exception (struct breakpoint *self)
12331 {
12332 return new ada_catchpoint_location (self);
12333 }
12334
12335 /* Implement the RE_SET method in the breakpoint_ops structure for all
12336 exception catchpoint kinds. */
12337
12338 static void
12339 re_set_exception (struct breakpoint *b)
12340 {
12341 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12342
12343 /* Call the base class's method. This updates the catchpoint's
12344 locations. */
12345 bkpt_breakpoint_ops.re_set (b);
12346
12347 /* Reparse the exception conditional expressions. One for each
12348 location. */
12349 create_excep_cond_exprs (c, c->m_kind);
12350 }
12351
12352 /* Returns true if we should stop for this breakpoint hit. If the
12353 user specified a specific exception, we only want to cause a stop
12354 if the program thrown that exception. */
12355
12356 static int
12357 should_stop_exception (const struct bp_location *bl)
12358 {
12359 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12360 const struct ada_catchpoint_location *ada_loc
12361 = (const struct ada_catchpoint_location *) bl;
12362 int stop;
12363
12364 struct internalvar *var = lookup_internalvar ("_ada_exception");
12365 if (c->m_kind == ada_catch_assert)
12366 clear_internalvar (var);
12367 else
12368 {
12369 try
12370 {
12371 const char *expr;
12372
12373 if (c->m_kind == ada_catch_handlers)
12374 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12375 ".all.occurrence.id");
12376 else
12377 expr = "e";
12378
12379 struct value *exc = parse_and_eval (expr);
12380 set_internalvar (var, exc);
12381 }
12382 catch (const gdb_exception_error &ex)
12383 {
12384 clear_internalvar (var);
12385 }
12386 }
12387
12388 /* With no specific exception, should always stop. */
12389 if (c->excep_string.empty ())
12390 return 1;
12391
12392 if (ada_loc->excep_cond_expr == NULL)
12393 {
12394 /* We will have a NULL expression if back when we were creating
12395 the expressions, this location's had failed to parse. */
12396 return 1;
12397 }
12398
12399 stop = 1;
12400 try
12401 {
12402 struct value *mark;
12403
12404 mark = value_mark ();
12405 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12406 value_free_to_mark (mark);
12407 }
12408 catch (const gdb_exception &ex)
12409 {
12410 exception_fprintf (gdb_stderr, ex,
12411 _("Error in testing exception condition:\n"));
12412 }
12413
12414 return stop;
12415 }
12416
12417 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12418 for all exception catchpoint kinds. */
12419
12420 static void
12421 check_status_exception (bpstat bs)
12422 {
12423 bs->stop = should_stop_exception (bs->bp_location_at);
12424 }
12425
12426 /* Implement the PRINT_IT method in the breakpoint_ops structure
12427 for all exception catchpoint kinds. */
12428
12429 static enum print_stop_action
12430 print_it_exception (bpstat bs)
12431 {
12432 struct ui_out *uiout = current_uiout;
12433 struct breakpoint *b = bs->breakpoint_at;
12434
12435 annotate_catchpoint (b->number);
12436
12437 if (uiout->is_mi_like_p ())
12438 {
12439 uiout->field_string ("reason",
12440 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12441 uiout->field_string ("disp", bpdisp_text (b->disposition));
12442 }
12443
12444 uiout->text (b->disposition == disp_del
12445 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12446 uiout->field_signed ("bkptno", b->number);
12447 uiout->text (", ");
12448
12449 /* ada_exception_name_addr relies on the selected frame being the
12450 current frame. Need to do this here because this function may be
12451 called more than once when printing a stop, and below, we'll
12452 select the first frame past the Ada run-time (see
12453 ada_find_printable_frame). */
12454 select_frame (get_current_frame ());
12455
12456 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12457 switch (c->m_kind)
12458 {
12459 case ada_catch_exception:
12460 case ada_catch_exception_unhandled:
12461 case ada_catch_handlers:
12462 {
12463 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12464 char exception_name[256];
12465
12466 if (addr != 0)
12467 {
12468 read_memory (addr, (gdb_byte *) exception_name,
12469 sizeof (exception_name) - 1);
12470 exception_name [sizeof (exception_name) - 1] = '\0';
12471 }
12472 else
12473 {
12474 /* For some reason, we were unable to read the exception
12475 name. This could happen if the Runtime was compiled
12476 without debugging info, for instance. In that case,
12477 just replace the exception name by the generic string
12478 "exception" - it will read as "an exception" in the
12479 notification we are about to print. */
12480 memcpy (exception_name, "exception", sizeof ("exception"));
12481 }
12482 /* In the case of unhandled exception breakpoints, we print
12483 the exception name as "unhandled EXCEPTION_NAME", to make
12484 it clearer to the user which kind of catchpoint just got
12485 hit. We used ui_out_text to make sure that this extra
12486 info does not pollute the exception name in the MI case. */
12487 if (c->m_kind == ada_catch_exception_unhandled)
12488 uiout->text ("unhandled ");
12489 uiout->field_string ("exception-name", exception_name);
12490 }
12491 break;
12492 case ada_catch_assert:
12493 /* In this case, the name of the exception is not really
12494 important. Just print "failed assertion" to make it clearer
12495 that his program just hit an assertion-failure catchpoint.
12496 We used ui_out_text because this info does not belong in
12497 the MI output. */
12498 uiout->text ("failed assertion");
12499 break;
12500 }
12501
12502 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12503 if (exception_message != NULL)
12504 {
12505 uiout->text (" (");
12506 uiout->field_string ("exception-message", exception_message.get ());
12507 uiout->text (")");
12508 }
12509
12510 uiout->text (" at ");
12511 ada_find_printable_frame (get_current_frame ());
12512
12513 return PRINT_SRC_AND_LOC;
12514 }
12515
12516 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12517 for all exception catchpoint kinds. */
12518
12519 static void
12520 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12521 {
12522 struct ui_out *uiout = current_uiout;
12523 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12524 struct value_print_options opts;
12525
12526 get_user_print_options (&opts);
12527
12528 if (opts.addressprint)
12529 uiout->field_skip ("addr");
12530
12531 annotate_field (5);
12532 switch (c->m_kind)
12533 {
12534 case ada_catch_exception:
12535 if (!c->excep_string.empty ())
12536 {
12537 std::string msg = string_printf (_("`%s' Ada exception"),
12538 c->excep_string.c_str ());
12539
12540 uiout->field_string ("what", msg);
12541 }
12542 else
12543 uiout->field_string ("what", "all Ada exceptions");
12544
12545 break;
12546
12547 case ada_catch_exception_unhandled:
12548 uiout->field_string ("what", "unhandled Ada exceptions");
12549 break;
12550
12551 case ada_catch_handlers:
12552 if (!c->excep_string.empty ())
12553 {
12554 uiout->field_fmt ("what",
12555 _("`%s' Ada exception handlers"),
12556 c->excep_string.c_str ());
12557 }
12558 else
12559 uiout->field_string ("what", "all Ada exceptions handlers");
12560 break;
12561
12562 case ada_catch_assert:
12563 uiout->field_string ("what", "failed Ada assertions");
12564 break;
12565
12566 default:
12567 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12568 break;
12569 }
12570 }
12571
12572 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575 static void
12576 print_mention_exception (struct breakpoint *b)
12577 {
12578 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12579 struct ui_out *uiout = current_uiout;
12580
12581 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12582 : _("Catchpoint "));
12583 uiout->field_signed ("bkptno", b->number);
12584 uiout->text (": ");
12585
12586 switch (c->m_kind)
12587 {
12588 case ada_catch_exception:
12589 if (!c->excep_string.empty ())
12590 {
12591 std::string info = string_printf (_("`%s' Ada exception"),
12592 c->excep_string.c_str ());
12593 uiout->text (info.c_str ());
12594 }
12595 else
12596 uiout->text (_("all Ada exceptions"));
12597 break;
12598
12599 case ada_catch_exception_unhandled:
12600 uiout->text (_("unhandled Ada exceptions"));
12601 break;
12602
12603 case ada_catch_handlers:
12604 if (!c->excep_string.empty ())
12605 {
12606 std::string info
12607 = string_printf (_("`%s' Ada exception handlers"),
12608 c->excep_string.c_str ());
12609 uiout->text (info.c_str ());
12610 }
12611 else
12612 uiout->text (_("all Ada exceptions handlers"));
12613 break;
12614
12615 case ada_catch_assert:
12616 uiout->text (_("failed Ada assertions"));
12617 break;
12618
12619 default:
12620 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12621 break;
12622 }
12623 }
12624
12625 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12626 for all exception catchpoint kinds. */
12627
12628 static void
12629 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12630 {
12631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12632
12633 switch (c->m_kind)
12634 {
12635 case ada_catch_exception:
12636 fprintf_filtered (fp, "catch exception");
12637 if (!c->excep_string.empty ())
12638 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12639 break;
12640
12641 case ada_catch_exception_unhandled:
12642 fprintf_filtered (fp, "catch exception unhandled");
12643 break;
12644
12645 case ada_catch_handlers:
12646 fprintf_filtered (fp, "catch handlers");
12647 break;
12648
12649 case ada_catch_assert:
12650 fprintf_filtered (fp, "catch assert");
12651 break;
12652
12653 default:
12654 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12655 }
12656 print_recreate_thread (b, fp);
12657 }
12658
12659 /* Virtual tables for various breakpoint types. */
12660 static struct breakpoint_ops catch_exception_breakpoint_ops;
12661 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12662 static struct breakpoint_ops catch_assert_breakpoint_ops;
12663 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12664
12665 /* See ada-lang.h. */
12666
12667 bool
12668 is_ada_exception_catchpoint (breakpoint *bp)
12669 {
12670 return (bp->ops == &catch_exception_breakpoint_ops
12671 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12672 || bp->ops == &catch_assert_breakpoint_ops
12673 || bp->ops == &catch_handlers_breakpoint_ops);
12674 }
12675
12676 /* Split the arguments specified in a "catch exception" command.
12677 Set EX to the appropriate catchpoint type.
12678 Set EXCEP_STRING to the name of the specific exception if
12679 specified by the user.
12680 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12681 "catch handlers" command. False otherwise.
12682 If a condition is found at the end of the arguments, the condition
12683 expression is stored in COND_STRING (memory must be deallocated
12684 after use). Otherwise COND_STRING is set to NULL. */
12685
12686 static void
12687 catch_ada_exception_command_split (const char *args,
12688 bool is_catch_handlers_cmd,
12689 enum ada_exception_catchpoint_kind *ex,
12690 std::string *excep_string,
12691 std::string *cond_string)
12692 {
12693 std::string exception_name;
12694
12695 exception_name = extract_arg (&args);
12696 if (exception_name == "if")
12697 {
12698 /* This is not an exception name; this is the start of a condition
12699 expression for a catchpoint on all exceptions. So, "un-get"
12700 this token, and set exception_name to NULL. */
12701 exception_name.clear ();
12702 args -= 2;
12703 }
12704
12705 /* Check to see if we have a condition. */
12706
12707 args = skip_spaces (args);
12708 if (startswith (args, "if")
12709 && (isspace (args[2]) || args[2] == '\0'))
12710 {
12711 args += 2;
12712 args = skip_spaces (args);
12713
12714 if (args[0] == '\0')
12715 error (_("Condition missing after `if' keyword"));
12716 *cond_string = args;
12717
12718 args += strlen (args);
12719 }
12720
12721 /* Check that we do not have any more arguments. Anything else
12722 is unexpected. */
12723
12724 if (args[0] != '\0')
12725 error (_("Junk at end of expression"));
12726
12727 if (is_catch_handlers_cmd)
12728 {
12729 /* Catch handling of exceptions. */
12730 *ex = ada_catch_handlers;
12731 *excep_string = exception_name;
12732 }
12733 else if (exception_name.empty ())
12734 {
12735 /* Catch all exceptions. */
12736 *ex = ada_catch_exception;
12737 excep_string->clear ();
12738 }
12739 else if (exception_name == "unhandled")
12740 {
12741 /* Catch unhandled exceptions. */
12742 *ex = ada_catch_exception_unhandled;
12743 excep_string->clear ();
12744 }
12745 else
12746 {
12747 /* Catch a specific exception. */
12748 *ex = ada_catch_exception;
12749 *excep_string = exception_name;
12750 }
12751 }
12752
12753 /* Return the name of the symbol on which we should break in order to
12754 implement a catchpoint of the EX kind. */
12755
12756 static const char *
12757 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12758 {
12759 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12760
12761 gdb_assert (data->exception_info != NULL);
12762
12763 switch (ex)
12764 {
12765 case ada_catch_exception:
12766 return (data->exception_info->catch_exception_sym);
12767 break;
12768 case ada_catch_exception_unhandled:
12769 return (data->exception_info->catch_exception_unhandled_sym);
12770 break;
12771 case ada_catch_assert:
12772 return (data->exception_info->catch_assert_sym);
12773 break;
12774 case ada_catch_handlers:
12775 return (data->exception_info->catch_handlers_sym);
12776 break;
12777 default:
12778 internal_error (__FILE__, __LINE__,
12779 _("unexpected catchpoint kind (%d)"), ex);
12780 }
12781 }
12782
12783 /* Return the breakpoint ops "virtual table" used for catchpoints
12784 of the EX kind. */
12785
12786 static const struct breakpoint_ops *
12787 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12788 {
12789 switch (ex)
12790 {
12791 case ada_catch_exception:
12792 return (&catch_exception_breakpoint_ops);
12793 break;
12794 case ada_catch_exception_unhandled:
12795 return (&catch_exception_unhandled_breakpoint_ops);
12796 break;
12797 case ada_catch_assert:
12798 return (&catch_assert_breakpoint_ops);
12799 break;
12800 case ada_catch_handlers:
12801 return (&catch_handlers_breakpoint_ops);
12802 break;
12803 default:
12804 internal_error (__FILE__, __LINE__,
12805 _("unexpected catchpoint kind (%d)"), ex);
12806 }
12807 }
12808
12809 /* Return the condition that will be used to match the current exception
12810 being raised with the exception that the user wants to catch. This
12811 assumes that this condition is used when the inferior just triggered
12812 an exception catchpoint.
12813 EX: the type of catchpoints used for catching Ada exceptions. */
12814
12815 static std::string
12816 ada_exception_catchpoint_cond_string (const char *excep_string,
12817 enum ada_exception_catchpoint_kind ex)
12818 {
12819 int i;
12820 bool is_standard_exc = false;
12821 std::string result;
12822
12823 if (ex == ada_catch_handlers)
12824 {
12825 /* For exception handlers catchpoints, the condition string does
12826 not use the same parameter as for the other exceptions. */
12827 result = ("long_integer (GNAT_GCC_exception_Access"
12828 "(gcc_exception).all.occurrence.id)");
12829 }
12830 else
12831 result = "long_integer (e)";
12832
12833 /* The standard exceptions are a special case. They are defined in
12834 runtime units that have been compiled without debugging info; if
12835 EXCEP_STRING is the not-fully-qualified name of a standard
12836 exception (e.g. "constraint_error") then, during the evaluation
12837 of the condition expression, the symbol lookup on this name would
12838 *not* return this standard exception. The catchpoint condition
12839 may then be set only on user-defined exceptions which have the
12840 same not-fully-qualified name (e.g. my_package.constraint_error).
12841
12842 To avoid this unexcepted behavior, these standard exceptions are
12843 systematically prefixed by "standard". This means that "catch
12844 exception constraint_error" is rewritten into "catch exception
12845 standard.constraint_error".
12846
12847 If an exception named constraint_error is defined in another package of
12848 the inferior program, then the only way to specify this exception as a
12849 breakpoint condition is to use its fully-qualified named:
12850 e.g. my_package.constraint_error. */
12851
12852 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12853 {
12854 if (strcmp (standard_exc [i], excep_string) == 0)
12855 {
12856 is_standard_exc = true;
12857 break;
12858 }
12859 }
12860
12861 result += " = ";
12862
12863 if (is_standard_exc)
12864 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12865 else
12866 string_appendf (result, "long_integer (&%s)", excep_string);
12867
12868 return result;
12869 }
12870
12871 /* Return the symtab_and_line that should be used to insert an exception
12872 catchpoint of the TYPE kind.
12873
12874 ADDR_STRING returns the name of the function where the real
12875 breakpoint that implements the catchpoints is set, depending on the
12876 type of catchpoint we need to create. */
12877
12878 static struct symtab_and_line
12879 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12880 std::string *addr_string, const struct breakpoint_ops **ops)
12881 {
12882 const char *sym_name;
12883 struct symbol *sym;
12884
12885 /* First, find out which exception support info to use. */
12886 ada_exception_support_info_sniffer ();
12887
12888 /* Then lookup the function on which we will break in order to catch
12889 the Ada exceptions requested by the user. */
12890 sym_name = ada_exception_sym_name (ex);
12891 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12892
12893 if (sym == NULL)
12894 error (_("Catchpoint symbol not found: %s"), sym_name);
12895
12896 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12897 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12898
12899 /* Set ADDR_STRING. */
12900 *addr_string = sym_name;
12901
12902 /* Set OPS. */
12903 *ops = ada_exception_breakpoint_ops (ex);
12904
12905 return find_function_start_sal (sym, 1);
12906 }
12907
12908 /* Create an Ada exception catchpoint.
12909
12910 EX_KIND is the kind of exception catchpoint to be created.
12911
12912 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12913 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12914 of the exception to which this catchpoint applies.
12915
12916 COND_STRING, if not empty, is the catchpoint condition.
12917
12918 TEMPFLAG, if nonzero, means that the underlying breakpoint
12919 should be temporary.
12920
12921 FROM_TTY is the usual argument passed to all commands implementations. */
12922
12923 void
12924 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12925 enum ada_exception_catchpoint_kind ex_kind,
12926 const std::string &excep_string,
12927 const std::string &cond_string,
12928 int tempflag,
12929 int disabled,
12930 int from_tty)
12931 {
12932 std::string addr_string;
12933 const struct breakpoint_ops *ops = NULL;
12934 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12935
12936 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12937 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12938 ops, tempflag, disabled, from_tty);
12939 c->excep_string = excep_string;
12940 create_excep_cond_exprs (c.get (), ex_kind);
12941 if (!cond_string.empty ())
12942 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12943 install_breakpoint (0, std::move (c), 1);
12944 }
12945
12946 /* Implement the "catch exception" command. */
12947
12948 static void
12949 catch_ada_exception_command (const char *arg_entry, int from_tty,
12950 struct cmd_list_element *command)
12951 {
12952 const char *arg = arg_entry;
12953 struct gdbarch *gdbarch = get_current_arch ();
12954 int tempflag;
12955 enum ada_exception_catchpoint_kind ex_kind;
12956 std::string excep_string;
12957 std::string cond_string;
12958
12959 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12960
12961 if (!arg)
12962 arg = "";
12963 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12964 &cond_string);
12965 create_ada_exception_catchpoint (gdbarch, ex_kind,
12966 excep_string, cond_string,
12967 tempflag, 1 /* enabled */,
12968 from_tty);
12969 }
12970
12971 /* Implement the "catch handlers" command. */
12972
12973 static void
12974 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12975 struct cmd_list_element *command)
12976 {
12977 const char *arg = arg_entry;
12978 struct gdbarch *gdbarch = get_current_arch ();
12979 int tempflag;
12980 enum ada_exception_catchpoint_kind ex_kind;
12981 std::string excep_string;
12982 std::string cond_string;
12983
12984 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12985
12986 if (!arg)
12987 arg = "";
12988 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12989 &cond_string);
12990 create_ada_exception_catchpoint (gdbarch, ex_kind,
12991 excep_string, cond_string,
12992 tempflag, 1 /* enabled */,
12993 from_tty);
12994 }
12995
12996 /* Completion function for the Ada "catch" commands. */
12997
12998 static void
12999 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13000 const char *text, const char *word)
13001 {
13002 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13003
13004 for (const ada_exc_info &info : exceptions)
13005 {
13006 if (startswith (info.name, word))
13007 tracker.add_completion (make_unique_xstrdup (info.name));
13008 }
13009 }
13010
13011 /* Split the arguments specified in a "catch assert" command.
13012
13013 ARGS contains the command's arguments (or the empty string if
13014 no arguments were passed).
13015
13016 If ARGS contains a condition, set COND_STRING to that condition
13017 (the memory needs to be deallocated after use). */
13018
13019 static void
13020 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13021 {
13022 args = skip_spaces (args);
13023
13024 /* Check whether a condition was provided. */
13025 if (startswith (args, "if")
13026 && (isspace (args[2]) || args[2] == '\0'))
13027 {
13028 args += 2;
13029 args = skip_spaces (args);
13030 if (args[0] == '\0')
13031 error (_("condition missing after `if' keyword"));
13032 cond_string.assign (args);
13033 }
13034
13035 /* Otherwise, there should be no other argument at the end of
13036 the command. */
13037 else if (args[0] != '\0')
13038 error (_("Junk at end of arguments."));
13039 }
13040
13041 /* Implement the "catch assert" command. */
13042
13043 static void
13044 catch_assert_command (const char *arg_entry, int from_tty,
13045 struct cmd_list_element *command)
13046 {
13047 const char *arg = arg_entry;
13048 struct gdbarch *gdbarch = get_current_arch ();
13049 int tempflag;
13050 std::string cond_string;
13051
13052 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13053
13054 if (!arg)
13055 arg = "";
13056 catch_ada_assert_command_split (arg, cond_string);
13057 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13058 "", cond_string,
13059 tempflag, 1 /* enabled */,
13060 from_tty);
13061 }
13062
13063 /* Return non-zero if the symbol SYM is an Ada exception object. */
13064
13065 static int
13066 ada_is_exception_sym (struct symbol *sym)
13067 {
13068 const char *type_name = SYMBOL_TYPE (sym)->name ();
13069
13070 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13071 && SYMBOL_CLASS (sym) != LOC_BLOCK
13072 && SYMBOL_CLASS (sym) != LOC_CONST
13073 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13074 && type_name != NULL && strcmp (type_name, "exception") == 0);
13075 }
13076
13077 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13078 Ada exception object. This matches all exceptions except the ones
13079 defined by the Ada language. */
13080
13081 static int
13082 ada_is_non_standard_exception_sym (struct symbol *sym)
13083 {
13084 int i;
13085
13086 if (!ada_is_exception_sym (sym))
13087 return 0;
13088
13089 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13090 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13091 return 0; /* A standard exception. */
13092
13093 /* Numeric_Error is also a standard exception, so exclude it.
13094 See the STANDARD_EXC description for more details as to why
13095 this exception is not listed in that array. */
13096 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13097 return 0;
13098
13099 return 1;
13100 }
13101
13102 /* A helper function for std::sort, comparing two struct ada_exc_info
13103 objects.
13104
13105 The comparison is determined first by exception name, and then
13106 by exception address. */
13107
13108 bool
13109 ada_exc_info::operator< (const ada_exc_info &other) const
13110 {
13111 int result;
13112
13113 result = strcmp (name, other.name);
13114 if (result < 0)
13115 return true;
13116 if (result == 0 && addr < other.addr)
13117 return true;
13118 return false;
13119 }
13120
13121 bool
13122 ada_exc_info::operator== (const ada_exc_info &other) const
13123 {
13124 return addr == other.addr && strcmp (name, other.name) == 0;
13125 }
13126
13127 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13128 routine, but keeping the first SKIP elements untouched.
13129
13130 All duplicates are also removed. */
13131
13132 static void
13133 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13134 int skip)
13135 {
13136 std::sort (exceptions->begin () + skip, exceptions->end ());
13137 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13138 exceptions->end ());
13139 }
13140
13141 /* Add all exceptions defined by the Ada standard whose name match
13142 a regular expression.
13143
13144 If PREG is not NULL, then this regexp_t object is used to
13145 perform the symbol name matching. Otherwise, no name-based
13146 filtering is performed.
13147
13148 EXCEPTIONS is a vector of exceptions to which matching exceptions
13149 gets pushed. */
13150
13151 static void
13152 ada_add_standard_exceptions (compiled_regex *preg,
13153 std::vector<ada_exc_info> *exceptions)
13154 {
13155 int i;
13156
13157 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13158 {
13159 if (preg == NULL
13160 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13161 {
13162 struct bound_minimal_symbol msymbol
13163 = ada_lookup_simple_minsym (standard_exc[i]);
13164
13165 if (msymbol.minsym != NULL)
13166 {
13167 struct ada_exc_info info
13168 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13169
13170 exceptions->push_back (info);
13171 }
13172 }
13173 }
13174 }
13175
13176 /* Add all Ada exceptions defined locally and accessible from the given
13177 FRAME.
13178
13179 If PREG is not NULL, then this regexp_t object is used to
13180 perform the symbol name matching. Otherwise, no name-based
13181 filtering is performed.
13182
13183 EXCEPTIONS is a vector of exceptions to which matching exceptions
13184 gets pushed. */
13185
13186 static void
13187 ada_add_exceptions_from_frame (compiled_regex *preg,
13188 struct frame_info *frame,
13189 std::vector<ada_exc_info> *exceptions)
13190 {
13191 const struct block *block = get_frame_block (frame, 0);
13192
13193 while (block != 0)
13194 {
13195 struct block_iterator iter;
13196 struct symbol *sym;
13197
13198 ALL_BLOCK_SYMBOLS (block, iter, sym)
13199 {
13200 switch (SYMBOL_CLASS (sym))
13201 {
13202 case LOC_TYPEDEF:
13203 case LOC_BLOCK:
13204 case LOC_CONST:
13205 break;
13206 default:
13207 if (ada_is_exception_sym (sym))
13208 {
13209 struct ada_exc_info info = {sym->print_name (),
13210 SYMBOL_VALUE_ADDRESS (sym)};
13211
13212 exceptions->push_back (info);
13213 }
13214 }
13215 }
13216 if (BLOCK_FUNCTION (block) != NULL)
13217 break;
13218 block = BLOCK_SUPERBLOCK (block);
13219 }
13220 }
13221
13222 /* Return true if NAME matches PREG or if PREG is NULL. */
13223
13224 static bool
13225 name_matches_regex (const char *name, compiled_regex *preg)
13226 {
13227 return (preg == NULL
13228 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13229 }
13230
13231 /* Add all exceptions defined globally whose name name match
13232 a regular expression, excluding standard exceptions.
13233
13234 The reason we exclude standard exceptions is that they need
13235 to be handled separately: Standard exceptions are defined inside
13236 a runtime unit which is normally not compiled with debugging info,
13237 and thus usually do not show up in our symbol search. However,
13238 if the unit was in fact built with debugging info, we need to
13239 exclude them because they would duplicate the entry we found
13240 during the special loop that specifically searches for those
13241 standard exceptions.
13242
13243 If PREG is not NULL, then this regexp_t object is used to
13244 perform the symbol name matching. Otherwise, no name-based
13245 filtering is performed.
13246
13247 EXCEPTIONS is a vector of exceptions to which matching exceptions
13248 gets pushed. */
13249
13250 static void
13251 ada_add_global_exceptions (compiled_regex *preg,
13252 std::vector<ada_exc_info> *exceptions)
13253 {
13254 /* In Ada, the symbol "search name" is a linkage name, whereas the
13255 regular expression used to do the matching refers to the natural
13256 name. So match against the decoded name. */
13257 expand_symtabs_matching (NULL,
13258 lookup_name_info::match_any (),
13259 [&] (const char *search_name)
13260 {
13261 std::string decoded = ada_decode (search_name);
13262 return name_matches_regex (decoded.c_str (), preg);
13263 },
13264 NULL,
13265 VARIABLES_DOMAIN);
13266
13267 for (objfile *objfile : current_program_space->objfiles ())
13268 {
13269 for (compunit_symtab *s : objfile->compunits ())
13270 {
13271 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13272 int i;
13273
13274 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13275 {
13276 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13277 struct block_iterator iter;
13278 struct symbol *sym;
13279
13280 ALL_BLOCK_SYMBOLS (b, iter, sym)
13281 if (ada_is_non_standard_exception_sym (sym)
13282 && name_matches_regex (sym->natural_name (), preg))
13283 {
13284 struct ada_exc_info info
13285 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13286
13287 exceptions->push_back (info);
13288 }
13289 }
13290 }
13291 }
13292 }
13293
13294 /* Implements ada_exceptions_list with the regular expression passed
13295 as a regex_t, rather than a string.
13296
13297 If not NULL, PREG is used to filter out exceptions whose names
13298 do not match. Otherwise, all exceptions are listed. */
13299
13300 static std::vector<ada_exc_info>
13301 ada_exceptions_list_1 (compiled_regex *preg)
13302 {
13303 std::vector<ada_exc_info> result;
13304 int prev_len;
13305
13306 /* First, list the known standard exceptions. These exceptions
13307 need to be handled separately, as they are usually defined in
13308 runtime units that have been compiled without debugging info. */
13309
13310 ada_add_standard_exceptions (preg, &result);
13311
13312 /* Next, find all exceptions whose scope is local and accessible
13313 from the currently selected frame. */
13314
13315 if (has_stack_frames ())
13316 {
13317 prev_len = result.size ();
13318 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13319 &result);
13320 if (result.size () > prev_len)
13321 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13322 }
13323
13324 /* Add all exceptions whose scope is global. */
13325
13326 prev_len = result.size ();
13327 ada_add_global_exceptions (preg, &result);
13328 if (result.size () > prev_len)
13329 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13330
13331 return result;
13332 }
13333
13334 /* Return a vector of ada_exc_info.
13335
13336 If REGEXP is NULL, all exceptions are included in the result.
13337 Otherwise, it should contain a valid regular expression,
13338 and only the exceptions whose names match that regular expression
13339 are included in the result.
13340
13341 The exceptions are sorted in the following order:
13342 - Standard exceptions (defined by the Ada language), in
13343 alphabetical order;
13344 - Exceptions only visible from the current frame, in
13345 alphabetical order;
13346 - Exceptions whose scope is global, in alphabetical order. */
13347
13348 std::vector<ada_exc_info>
13349 ada_exceptions_list (const char *regexp)
13350 {
13351 if (regexp == NULL)
13352 return ada_exceptions_list_1 (NULL);
13353
13354 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13355 return ada_exceptions_list_1 (&reg);
13356 }
13357
13358 /* Implement the "info exceptions" command. */
13359
13360 static void
13361 info_exceptions_command (const char *regexp, int from_tty)
13362 {
13363 struct gdbarch *gdbarch = get_current_arch ();
13364
13365 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13366
13367 if (regexp != NULL)
13368 printf_filtered
13369 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13370 else
13371 printf_filtered (_("All defined Ada exceptions:\n"));
13372
13373 for (const ada_exc_info &info : exceptions)
13374 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13375 }
13376
13377 /* Operators */
13378 /* Information about operators given special treatment in functions
13379 below. */
13380 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13381
13382 #define ADA_OPERATORS \
13383 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13384 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13385 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13386 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13387 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13388 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13389 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13390 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13391 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13392 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13393 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13394 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13395 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13396 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13397 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13398 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13399 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13400 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13401 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13402
13403 static void
13404 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13405 int *argsp)
13406 {
13407 switch (exp->elts[pc - 1].opcode)
13408 {
13409 default:
13410 operator_length_standard (exp, pc, oplenp, argsp);
13411 break;
13412
13413 #define OP_DEFN(op, len, args, binop) \
13414 case op: *oplenp = len; *argsp = args; break;
13415 ADA_OPERATORS;
13416 #undef OP_DEFN
13417
13418 case OP_AGGREGATE:
13419 *oplenp = 3;
13420 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13421 break;
13422
13423 case OP_CHOICES:
13424 *oplenp = 3;
13425 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13426 break;
13427 }
13428 }
13429
13430 /* Implementation of the exp_descriptor method operator_check. */
13431
13432 static int
13433 ada_operator_check (struct expression *exp, int pos,
13434 int (*objfile_func) (struct objfile *objfile, void *data),
13435 void *data)
13436 {
13437 const union exp_element *const elts = exp->elts;
13438 struct type *type = NULL;
13439
13440 switch (elts[pos].opcode)
13441 {
13442 case UNOP_IN_RANGE:
13443 case UNOP_QUAL:
13444 type = elts[pos + 1].type;
13445 break;
13446
13447 default:
13448 return operator_check_standard (exp, pos, objfile_func, data);
13449 }
13450
13451 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13452
13453 if (type && TYPE_OBJFILE (type)
13454 && (*objfile_func) (TYPE_OBJFILE (type), data))
13455 return 1;
13456
13457 return 0;
13458 }
13459
13460 static const char *
13461 ada_op_name (enum exp_opcode opcode)
13462 {
13463 switch (opcode)
13464 {
13465 default:
13466 return op_name_standard (opcode);
13467
13468 #define OP_DEFN(op, len, args, binop) case op: return #op;
13469 ADA_OPERATORS;
13470 #undef OP_DEFN
13471
13472 case OP_AGGREGATE:
13473 return "OP_AGGREGATE";
13474 case OP_CHOICES:
13475 return "OP_CHOICES";
13476 case OP_NAME:
13477 return "OP_NAME";
13478 }
13479 }
13480
13481 /* As for operator_length, but assumes PC is pointing at the first
13482 element of the operator, and gives meaningful results only for the
13483 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13484
13485 static void
13486 ada_forward_operator_length (struct expression *exp, int pc,
13487 int *oplenp, int *argsp)
13488 {
13489 switch (exp->elts[pc].opcode)
13490 {
13491 default:
13492 *oplenp = *argsp = 0;
13493 break;
13494
13495 #define OP_DEFN(op, len, args, binop) \
13496 case op: *oplenp = len; *argsp = args; break;
13497 ADA_OPERATORS;
13498 #undef OP_DEFN
13499
13500 case OP_AGGREGATE:
13501 *oplenp = 3;
13502 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13503 break;
13504
13505 case OP_CHOICES:
13506 *oplenp = 3;
13507 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13508 break;
13509
13510 case OP_STRING:
13511 case OP_NAME:
13512 {
13513 int len = longest_to_int (exp->elts[pc + 1].longconst);
13514
13515 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13516 *argsp = 0;
13517 break;
13518 }
13519 }
13520 }
13521
13522 static int
13523 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13524 {
13525 enum exp_opcode op = exp->elts[elt].opcode;
13526 int oplen, nargs;
13527 int pc = elt;
13528 int i;
13529
13530 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13531
13532 switch (op)
13533 {
13534 /* Ada attributes ('Foo). */
13535 case OP_ATR_FIRST:
13536 case OP_ATR_LAST:
13537 case OP_ATR_LENGTH:
13538 case OP_ATR_IMAGE:
13539 case OP_ATR_MAX:
13540 case OP_ATR_MIN:
13541 case OP_ATR_MODULUS:
13542 case OP_ATR_POS:
13543 case OP_ATR_SIZE:
13544 case OP_ATR_TAG:
13545 case OP_ATR_VAL:
13546 break;
13547
13548 case UNOP_IN_RANGE:
13549 case UNOP_QUAL:
13550 /* XXX: gdb_sprint_host_address, type_sprint */
13551 fprintf_filtered (stream, _("Type @"));
13552 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13553 fprintf_filtered (stream, " (");
13554 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13555 fprintf_filtered (stream, ")");
13556 break;
13557 case BINOP_IN_BOUNDS:
13558 fprintf_filtered (stream, " (%d)",
13559 longest_to_int (exp->elts[pc + 2].longconst));
13560 break;
13561 case TERNOP_IN_RANGE:
13562 break;
13563
13564 case OP_AGGREGATE:
13565 case OP_OTHERS:
13566 case OP_DISCRETE_RANGE:
13567 case OP_POSITIONAL:
13568 case OP_CHOICES:
13569 break;
13570
13571 case OP_NAME:
13572 case OP_STRING:
13573 {
13574 char *name = &exp->elts[elt + 2].string;
13575 int len = longest_to_int (exp->elts[elt + 1].longconst);
13576
13577 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13578 break;
13579 }
13580
13581 default:
13582 return dump_subexp_body_standard (exp, stream, elt);
13583 }
13584
13585 elt += oplen;
13586 for (i = 0; i < nargs; i += 1)
13587 elt = dump_subexp (exp, stream, elt);
13588
13589 return elt;
13590 }
13591
13592 /* The Ada extension of print_subexp (q.v.). */
13593
13594 static void
13595 ada_print_subexp (struct expression *exp, int *pos,
13596 struct ui_file *stream, enum precedence prec)
13597 {
13598 int oplen, nargs, i;
13599 int pc = *pos;
13600 enum exp_opcode op = exp->elts[pc].opcode;
13601
13602 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13603
13604 *pos += oplen;
13605 switch (op)
13606 {
13607 default:
13608 *pos -= oplen;
13609 print_subexp_standard (exp, pos, stream, prec);
13610 return;
13611
13612 case OP_VAR_VALUE:
13613 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13614 return;
13615
13616 case BINOP_IN_BOUNDS:
13617 /* XXX: sprint_subexp */
13618 print_subexp (exp, pos, stream, PREC_SUFFIX);
13619 fputs_filtered (" in ", stream);
13620 print_subexp (exp, pos, stream, PREC_SUFFIX);
13621 fputs_filtered ("'range", stream);
13622 if (exp->elts[pc + 1].longconst > 1)
13623 fprintf_filtered (stream, "(%ld)",
13624 (long) exp->elts[pc + 1].longconst);
13625 return;
13626
13627 case TERNOP_IN_RANGE:
13628 if (prec >= PREC_EQUAL)
13629 fputs_filtered ("(", stream);
13630 /* XXX: sprint_subexp */
13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
13632 fputs_filtered (" in ", stream);
13633 print_subexp (exp, pos, stream, PREC_EQUAL);
13634 fputs_filtered (" .. ", stream);
13635 print_subexp (exp, pos, stream, PREC_EQUAL);
13636 if (prec >= PREC_EQUAL)
13637 fputs_filtered (")", stream);
13638 return;
13639
13640 case OP_ATR_FIRST:
13641 case OP_ATR_LAST:
13642 case OP_ATR_LENGTH:
13643 case OP_ATR_IMAGE:
13644 case OP_ATR_MAX:
13645 case OP_ATR_MIN:
13646 case OP_ATR_MODULUS:
13647 case OP_ATR_POS:
13648 case OP_ATR_SIZE:
13649 case OP_ATR_TAG:
13650 case OP_ATR_VAL:
13651 if (exp->elts[*pos].opcode == OP_TYPE)
13652 {
13653 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13654 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13655 &type_print_raw_options);
13656 *pos += 3;
13657 }
13658 else
13659 print_subexp (exp, pos, stream, PREC_SUFFIX);
13660 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13661 if (nargs > 1)
13662 {
13663 int tem;
13664
13665 for (tem = 1; tem < nargs; tem += 1)
13666 {
13667 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13668 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13669 }
13670 fputs_filtered (")", stream);
13671 }
13672 return;
13673
13674 case UNOP_QUAL:
13675 type_print (exp->elts[pc + 1].type, "", stream, 0);
13676 fputs_filtered ("'(", stream);
13677 print_subexp (exp, pos, stream, PREC_PREFIX);
13678 fputs_filtered (")", stream);
13679 return;
13680
13681 case UNOP_IN_RANGE:
13682 /* XXX: sprint_subexp */
13683 print_subexp (exp, pos, stream, PREC_SUFFIX);
13684 fputs_filtered (" in ", stream);
13685 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13686 &type_print_raw_options);
13687 return;
13688
13689 case OP_DISCRETE_RANGE:
13690 print_subexp (exp, pos, stream, PREC_SUFFIX);
13691 fputs_filtered ("..", stream);
13692 print_subexp (exp, pos, stream, PREC_SUFFIX);
13693 return;
13694
13695 case OP_OTHERS:
13696 fputs_filtered ("others => ", stream);
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 return;
13699
13700 case OP_CHOICES:
13701 for (i = 0; i < nargs-1; i += 1)
13702 {
13703 if (i > 0)
13704 fputs_filtered ("|", stream);
13705 print_subexp (exp, pos, stream, PREC_SUFFIX);
13706 }
13707 fputs_filtered (" => ", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 return;
13710
13711 case OP_POSITIONAL:
13712 print_subexp (exp, pos, stream, PREC_SUFFIX);
13713 return;
13714
13715 case OP_AGGREGATE:
13716 fputs_filtered ("(", stream);
13717 for (i = 0; i < nargs; i += 1)
13718 {
13719 if (i > 0)
13720 fputs_filtered (", ", stream);
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13722 }
13723 fputs_filtered (")", stream);
13724 return;
13725 }
13726 }
13727
13728 /* Table mapping opcodes into strings for printing operators
13729 and precedences of the operators. */
13730
13731 static const struct op_print ada_op_print_tab[] = {
13732 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13733 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13734 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13735 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13736 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13737 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13738 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13739 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13740 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13741 {">=", BINOP_GEQ, PREC_ORDER, 0},
13742 {">", BINOP_GTR, PREC_ORDER, 0},
13743 {"<", BINOP_LESS, PREC_ORDER, 0},
13744 {">>", BINOP_RSH, PREC_SHIFT, 0},
13745 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13746 {"+", BINOP_ADD, PREC_ADD, 0},
13747 {"-", BINOP_SUB, PREC_ADD, 0},
13748 {"&", BINOP_CONCAT, PREC_ADD, 0},
13749 {"*", BINOP_MUL, PREC_MUL, 0},
13750 {"/", BINOP_DIV, PREC_MUL, 0},
13751 {"rem", BINOP_REM, PREC_MUL, 0},
13752 {"mod", BINOP_MOD, PREC_MUL, 0},
13753 {"**", BINOP_EXP, PREC_REPEAT, 0},
13754 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13755 {"-", UNOP_NEG, PREC_PREFIX, 0},
13756 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13757 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13758 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13759 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13760 {".all", UNOP_IND, PREC_SUFFIX, 1},
13761 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13762 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13763 {NULL, OP_NULL, PREC_SUFFIX, 0}
13764 };
13765 \f
13766 enum ada_primitive_types {
13767 ada_primitive_type_int,
13768 ada_primitive_type_long,
13769 ada_primitive_type_short,
13770 ada_primitive_type_char,
13771 ada_primitive_type_float,
13772 ada_primitive_type_double,
13773 ada_primitive_type_void,
13774 ada_primitive_type_long_long,
13775 ada_primitive_type_long_double,
13776 ada_primitive_type_natural,
13777 ada_primitive_type_positive,
13778 ada_primitive_type_system_address,
13779 ada_primitive_type_storage_offset,
13780 nr_ada_primitive_types
13781 };
13782
13783 \f
13784 /* Language vector */
13785
13786 /* Not really used, but needed in the ada_language_defn. */
13787
13788 static void
13789 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13790 {
13791 ada_emit_char (c, type, stream, quoter, 1);
13792 }
13793
13794 static int
13795 parse (struct parser_state *ps)
13796 {
13797 warnings_issued = 0;
13798 return ada_parse (ps);
13799 }
13800
13801 static const struct exp_descriptor ada_exp_descriptor = {
13802 ada_print_subexp,
13803 ada_operator_length,
13804 ada_operator_check,
13805 ada_op_name,
13806 ada_dump_subexp_body,
13807 ada_evaluate_subexp
13808 };
13809
13810 /* symbol_name_matcher_ftype adapter for wild_match. */
13811
13812 static bool
13813 do_wild_match (const char *symbol_search_name,
13814 const lookup_name_info &lookup_name,
13815 completion_match_result *comp_match_res)
13816 {
13817 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13818 }
13819
13820 /* symbol_name_matcher_ftype adapter for full_match. */
13821
13822 static bool
13823 do_full_match (const char *symbol_search_name,
13824 const lookup_name_info &lookup_name,
13825 completion_match_result *comp_match_res)
13826 {
13827 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13828 }
13829
13830 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13831
13832 static bool
13833 do_exact_match (const char *symbol_search_name,
13834 const lookup_name_info &lookup_name,
13835 completion_match_result *comp_match_res)
13836 {
13837 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13838 }
13839
13840 /* Build the Ada lookup name for LOOKUP_NAME. */
13841
13842 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13843 {
13844 gdb::string_view user_name = lookup_name.name ();
13845
13846 if (user_name[0] == '<')
13847 {
13848 if (user_name.back () == '>')
13849 m_encoded_name
13850 = user_name.substr (1, user_name.size () - 2).to_string ();
13851 else
13852 m_encoded_name
13853 = user_name.substr (1, user_name.size () - 1).to_string ();
13854 m_encoded_p = true;
13855 m_verbatim_p = true;
13856 m_wild_match_p = false;
13857 m_standard_p = false;
13858 }
13859 else
13860 {
13861 m_verbatim_p = false;
13862
13863 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13864
13865 if (!m_encoded_p)
13866 {
13867 const char *folded = ada_fold_name (user_name);
13868 const char *encoded = ada_encode_1 (folded, false);
13869 if (encoded != NULL)
13870 m_encoded_name = encoded;
13871 else
13872 m_encoded_name = user_name.to_string ();
13873 }
13874 else
13875 m_encoded_name = user_name.to_string ();
13876
13877 /* Handle the 'package Standard' special case. See description
13878 of m_standard_p. */
13879 if (startswith (m_encoded_name.c_str (), "standard__"))
13880 {
13881 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13882 m_standard_p = true;
13883 }
13884 else
13885 m_standard_p = false;
13886
13887 /* If the name contains a ".", then the user is entering a fully
13888 qualified entity name, and the match must not be done in wild
13889 mode. Similarly, if the user wants to complete what looks
13890 like an encoded name, the match must not be done in wild
13891 mode. Also, in the standard__ special case always do
13892 non-wild matching. */
13893 m_wild_match_p
13894 = (lookup_name.match_type () != symbol_name_match_type::FULL
13895 && !m_encoded_p
13896 && !m_standard_p
13897 && user_name.find ('.') == std::string::npos);
13898 }
13899 }
13900
13901 /* symbol_name_matcher_ftype method for Ada. This only handles
13902 completion mode. */
13903
13904 static bool
13905 ada_symbol_name_matches (const char *symbol_search_name,
13906 const lookup_name_info &lookup_name,
13907 completion_match_result *comp_match_res)
13908 {
13909 return lookup_name.ada ().matches (symbol_search_name,
13910 lookup_name.match_type (),
13911 comp_match_res);
13912 }
13913
13914 /* A name matcher that matches the symbol name exactly, with
13915 strcmp. */
13916
13917 static bool
13918 literal_symbol_name_matcher (const char *symbol_search_name,
13919 const lookup_name_info &lookup_name,
13920 completion_match_result *comp_match_res)
13921 {
13922 gdb::string_view name_view = lookup_name.name ();
13923
13924 if (lookup_name.completion_mode ()
13925 ? (strncmp (symbol_search_name, name_view.data (),
13926 name_view.size ()) == 0)
13927 : symbol_search_name == name_view)
13928 {
13929 if (comp_match_res != NULL)
13930 comp_match_res->set_match (symbol_search_name);
13931 return true;
13932 }
13933 else
13934 return false;
13935 }
13936
13937 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13938 Ada. */
13939
13940 static symbol_name_matcher_ftype *
13941 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13942 {
13943 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13944 return literal_symbol_name_matcher;
13945
13946 if (lookup_name.completion_mode ())
13947 return ada_symbol_name_matches;
13948 else
13949 {
13950 if (lookup_name.ada ().wild_match_p ())
13951 return do_wild_match;
13952 else if (lookup_name.ada ().verbatim_p ())
13953 return do_exact_match;
13954 else
13955 return do_full_match;
13956 }
13957 }
13958
13959 static const char *ada_extensions[] =
13960 {
13961 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13962 };
13963
13964 /* Constant data that describes the Ada language. */
13965
13966 extern const struct language_data ada_language_data =
13967 {
13968 "ada", /* Language name */
13969 "Ada",
13970 language_ada,
13971 range_check_off,
13972 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13973 that's not quite what this means. */
13974 array_row_major,
13975 macro_expansion_no,
13976 ada_extensions,
13977 &ada_exp_descriptor,
13978 parse,
13979 resolve,
13980 ada_printchar, /* Print a character constant */
13981 ada_printstr, /* Function to print string constant */
13982 emit_char, /* Function to print single char (not used) */
13983 ada_print_type, /* Print a type using appropriate syntax */
13984 ada_print_typedef, /* Print a typedef using appropriate syntax */
13985 ada_value_print_inner, /* la_value_print_inner */
13986 ada_value_print, /* Print a top-level value */
13987 NULL, /* Language specific skip_trampoline */
13988 NULL, /* name_of_this */
13989 true, /* la_store_sym_names_in_linkage_form_p */
13990 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13991 ada_la_decode, /* Language specific symbol demangler */
13992 ada_sniff_from_mangled_name,
13993 NULL, /* Language specific
13994 class_name_from_physname */
13995 ada_op_print_tab, /* expression operators for printing */
13996 0, /* c-style arrays */
13997 1, /* String lower bound */
13998 ada_get_gdb_completer_word_break_characters,
13999 ada_collect_symbol_completion_matches,
14000 ada_watch_location_expression,
14001 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14002 ada_iterate_over_symbols,
14003 default_search_name_hash,
14004 &ada_varobj_ops,
14005 NULL,
14006 NULL,
14007 ada_is_string_type,
14008 "(...)" /* la_struct_too_deep_ellipsis */
14009 };
14010
14011 /* Class representing the Ada language. */
14012
14013 class ada_language : public language_defn
14014 {
14015 public:
14016 ada_language ()
14017 : language_defn (language_ada, ada_language_data)
14018 { /* Nothing. */ }
14019
14020 /* Print an array element index using the Ada syntax. */
14021
14022 void print_array_index (struct type *index_type,
14023 LONGEST index,
14024 struct ui_file *stream,
14025 const value_print_options *options) const override
14026 {
14027 struct value *index_value = val_atr (index_type, index);
14028
14029 LA_VALUE_PRINT (index_value, stream, options);
14030 fprintf_filtered (stream, " => ");
14031 }
14032
14033 /* Implement the "read_var_value" language_defn method for Ada. */
14034
14035 struct value *read_var_value (struct symbol *var,
14036 const struct block *var_block,
14037 struct frame_info *frame) const override
14038 {
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
14041 if (frame != nullptr)
14042 {
14043 const struct block *frame_block = get_frame_block (frame, NULL);
14044 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14045 return ada_read_renaming_var_value (var, frame_block);
14046 }
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
14050 return language_defn::read_var_value (var, var_block, frame);
14051 }
14052
14053 /* See language.h. */
14054 void language_arch_info (struct gdbarch *gdbarch,
14055 struct language_arch_info *lai) const override
14056 {
14057 const struct builtin_type *builtin = builtin_type (gdbarch);
14058
14059 lai->primitive_type_vector
14060 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14061 struct type *);
14062
14063 lai->primitive_type_vector [ada_primitive_type_int]
14064 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14065 0, "integer");
14066 lai->primitive_type_vector [ada_primitive_type_long]
14067 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14068 0, "long_integer");
14069 lai->primitive_type_vector [ada_primitive_type_short]
14070 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14071 0, "short_integer");
14072 lai->string_char_type
14073 = lai->primitive_type_vector [ada_primitive_type_char]
14074 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14075 lai->primitive_type_vector [ada_primitive_type_float]
14076 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14077 "float", gdbarch_float_format (gdbarch));
14078 lai->primitive_type_vector [ada_primitive_type_double]
14079 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14080 "long_float", gdbarch_double_format (gdbarch));
14081 lai->primitive_type_vector [ada_primitive_type_long_long]
14082 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14083 0, "long_long_integer");
14084 lai->primitive_type_vector [ada_primitive_type_long_double]
14085 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14086 "long_long_float", gdbarch_long_double_format (gdbarch));
14087 lai->primitive_type_vector [ada_primitive_type_natural]
14088 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14089 0, "natural");
14090 lai->primitive_type_vector [ada_primitive_type_positive]
14091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14092 0, "positive");
14093 lai->primitive_type_vector [ada_primitive_type_void]
14094 = builtin->builtin_void;
14095
14096 lai->primitive_type_vector [ada_primitive_type_system_address]
14097 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14098 "void"));
14099 lai->primitive_type_vector [ada_primitive_type_system_address]
14100 ->set_name ("system__address");
14101
14102 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14103 type. This is a signed integral type whose size is the same as
14104 the size of addresses. */
14105 {
14106 unsigned int addr_length = TYPE_LENGTH
14107 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14108
14109 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14110 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14111 "storage_offset");
14112 }
14113
14114 lai->bool_type_symbol = NULL;
14115 lai->bool_type_default = builtin->builtin_bool;
14116 }
14117 };
14118
14119 /* Single instance of the Ada language class. */
14120
14121 static ada_language ada_language_defn;
14122
14123 /* Command-list for the "set/show ada" prefix command. */
14124 static struct cmd_list_element *set_ada_list;
14125 static struct cmd_list_element *show_ada_list;
14126
14127 static void
14128 initialize_ada_catchpoint_ops (void)
14129 {
14130 struct breakpoint_ops *ops;
14131
14132 initialize_breakpoint_ops ();
14133
14134 ops = &catch_exception_breakpoint_ops;
14135 *ops = bkpt_breakpoint_ops;
14136 ops->allocate_location = allocate_location_exception;
14137 ops->re_set = re_set_exception;
14138 ops->check_status = check_status_exception;
14139 ops->print_it = print_it_exception;
14140 ops->print_one = print_one_exception;
14141 ops->print_mention = print_mention_exception;
14142 ops->print_recreate = print_recreate_exception;
14143
14144 ops = &catch_exception_unhandled_breakpoint_ops;
14145 *ops = bkpt_breakpoint_ops;
14146 ops->allocate_location = allocate_location_exception;
14147 ops->re_set = re_set_exception;
14148 ops->check_status = check_status_exception;
14149 ops->print_it = print_it_exception;
14150 ops->print_one = print_one_exception;
14151 ops->print_mention = print_mention_exception;
14152 ops->print_recreate = print_recreate_exception;
14153
14154 ops = &catch_assert_breakpoint_ops;
14155 *ops = bkpt_breakpoint_ops;
14156 ops->allocate_location = allocate_location_exception;
14157 ops->re_set = re_set_exception;
14158 ops->check_status = check_status_exception;
14159 ops->print_it = print_it_exception;
14160 ops->print_one = print_one_exception;
14161 ops->print_mention = print_mention_exception;
14162 ops->print_recreate = print_recreate_exception;
14163
14164 ops = &catch_handlers_breakpoint_ops;
14165 *ops = bkpt_breakpoint_ops;
14166 ops->allocate_location = allocate_location_exception;
14167 ops->re_set = re_set_exception;
14168 ops->check_status = check_status_exception;
14169 ops->print_it = print_it_exception;
14170 ops->print_one = print_one_exception;
14171 ops->print_mention = print_mention_exception;
14172 ops->print_recreate = print_recreate_exception;
14173 }
14174
14175 /* This module's 'new_objfile' observer. */
14176
14177 static void
14178 ada_new_objfile_observer (struct objfile *objfile)
14179 {
14180 ada_clear_symbol_cache ();
14181 }
14182
14183 /* This module's 'free_objfile' observer. */
14184
14185 static void
14186 ada_free_objfile_observer (struct objfile *objfile)
14187 {
14188 ada_clear_symbol_cache ();
14189 }
14190
14191 void _initialize_ada_language ();
14192 void
14193 _initialize_ada_language ()
14194 {
14195 initialize_ada_catchpoint_ops ();
14196
14197 add_basic_prefix_cmd ("ada", no_class,
14198 _("Prefix command for changing Ada-specific settings."),
14199 &set_ada_list, "set ada ", 0, &setlist);
14200
14201 add_show_prefix_cmd ("ada", no_class,
14202 _("Generic command for showing Ada-specific settings."),
14203 &show_ada_list, "show ada ", 0, &showlist);
14204
14205 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14206 &trust_pad_over_xvs, _("\
14207 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14208 Show whether an optimization trusting PAD types over XVS types is activated."),
14209 _("\
14210 This is related to the encoding used by the GNAT compiler. The debugger\n\
14211 should normally trust the contents of PAD types, but certain older versions\n\
14212 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14213 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14214 work around this bug. It is always safe to turn this option \"off\", but\n\
14215 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14216 this option to \"off\" unless necessary."),
14217 NULL, NULL, &set_ada_list, &show_ada_list);
14218
14219 add_setshow_boolean_cmd ("print-signatures", class_vars,
14220 &print_signatures, _("\
14221 Enable or disable the output of formal and return types for functions in the \
14222 overloads selection menu."), _("\
14223 Show whether the output of formal and return types for functions in the \
14224 overloads selection menu is activated."),
14225 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14226
14227 add_catch_command ("exception", _("\
14228 Catch Ada exceptions, when raised.\n\
14229 Usage: catch exception [ARG] [if CONDITION]\n\
14230 Without any argument, stop when any Ada exception is raised.\n\
14231 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14232 being raised does not have a handler (and will therefore lead to the task's\n\
14233 termination).\n\
14234 Otherwise, the catchpoint only stops when the name of the exception being\n\
14235 raised is the same as ARG.\n\
14236 CONDITION is a boolean expression that is evaluated to see whether the\n\
14237 exception should cause a stop."),
14238 catch_ada_exception_command,
14239 catch_ada_completer,
14240 CATCH_PERMANENT,
14241 CATCH_TEMPORARY);
14242
14243 add_catch_command ("handlers", _("\
14244 Catch Ada exceptions, when handled.\n\
14245 Usage: catch handlers [ARG] [if CONDITION]\n\
14246 Without any argument, stop when any Ada exception is handled.\n\
14247 With an argument, catch only exceptions with the given name.\n\
14248 CONDITION is a boolean expression that is evaluated to see whether the\n\
14249 exception should cause a stop."),
14250 catch_ada_handlers_command,
14251 catch_ada_completer,
14252 CATCH_PERMANENT,
14253 CATCH_TEMPORARY);
14254 add_catch_command ("assert", _("\
14255 Catch failed Ada assertions, when raised.\n\
14256 Usage: catch assert [if CONDITION]\n\
14257 CONDITION is a boolean expression that is evaluated to see whether the\n\
14258 exception should cause a stop."),
14259 catch_assert_command,
14260 NULL,
14261 CATCH_PERMANENT,
14262 CATCH_TEMPORARY);
14263
14264 varsize_limit = 65536;
14265 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14266 &varsize_limit, _("\
14267 Set the maximum number of bytes allowed in a variable-size object."), _("\
14268 Show the maximum number of bytes allowed in a variable-size object."), _("\
14269 Attempts to access an object whose size is not a compile-time constant\n\
14270 and exceeds this limit will cause an error."),
14271 NULL, NULL, &setlist, &showlist);
14272
14273 add_info ("exceptions", info_exceptions_command,
14274 _("\
14275 List all Ada exception names.\n\
14276 Usage: info exceptions [REGEXP]\n\
14277 If a regular expression is passed as an argument, only those matching\n\
14278 the regular expression are listed."));
14279
14280 add_basic_prefix_cmd ("ada", class_maintenance,
14281 _("Set Ada maintenance-related variables."),
14282 &maint_set_ada_cmdlist, "maintenance set ada ",
14283 0/*allow-unknown*/, &maintenance_set_cmdlist);
14284
14285 add_show_prefix_cmd ("ada", class_maintenance,
14286 _("Show Ada maintenance-related variables."),
14287 &maint_show_ada_cmdlist, "maintenance show ada ",
14288 0/*allow-unknown*/, &maintenance_show_cmdlist);
14289
14290 add_setshow_boolean_cmd
14291 ("ignore-descriptive-types", class_maintenance,
14292 &ada_ignore_descriptive_types_p,
14293 _("Set whether descriptive types generated by GNAT should be ignored."),
14294 _("Show whether descriptive types generated by GNAT should be ignored."),
14295 _("\
14296 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14297 DWARF attribute."),
14298 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14299
14300 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14301 NULL, xcalloc, xfree);
14302
14303 /* The ada-lang observers. */
14304 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14305 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14306 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14307 }