]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
5ab0e8eefa28d0569c0376e4212b12060beceb6e
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (dwarf2_per_cu_data *per_cu,
403 dwarf2_per_objfile *per_objfile);
404 ~dwarf2_cu ();
405
406 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
407
408 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
409 Create the set of symtabs used by this TU, or if this TU is sharing
410 symtabs with another TU and the symtabs have already been created
411 then restore those symtabs in the line header.
412 We don't need the pc/line-number mapping for type units. */
413 void setup_type_unit_groups (struct die_info *die);
414
415 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
416 buildsym_compunit constructor. */
417 struct compunit_symtab *start_symtab (const char *name,
418 const char *comp_dir,
419 CORE_ADDR low_pc);
420
421 /* Reset the builder. */
422 void reset_builder () { m_builder.reset (); }
423
424 /* Return a type that is a generic pointer type, the size of which
425 matches the address size given in the compilation unit header for
426 this CU. */
427 struct type *addr_type () const;
428
429 /* Find an integer type the same size as the address size given in
430 the compilation unit header for this CU. UNSIGNED_P controls if
431 the integer is unsigned or not. */
432 struct type *addr_sized_int_type (bool unsigned_p) const;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header {};
436
437 /* Base address of this compilation unit. */
438 gdb::optional<CORE_ADDR> base_address;
439
440 /* The language we are debugging. */
441 enum language language = language_unknown;
442 const struct language_defn *language_defn = nullptr;
443
444 const char *producer = nullptr;
445
446 private:
447 /* The symtab builder for this CU. This is only non-NULL when full
448 symbols are being read. */
449 std::unique_ptr<buildsym_compunit> m_builder;
450
451 public:
452 /* The generic symbol table building routines have separate lists for
453 file scope symbols and all all other scopes (local scopes). So
454 we need to select the right one to pass to add_symbol_to_list().
455 We do it by keeping a pointer to the correct list in list_in_scope.
456
457 FIXME: The original dwarf code just treated the file scope as the
458 first local scope, and all other local scopes as nested local
459 scopes, and worked fine. Check to see if we really need to
460 distinguish these in buildsym.c. */
461 struct pending **list_in_scope = nullptr;
462
463 /* Hash table holding all the loaded partial DIEs
464 with partial_die->offset.SECT_OFF as hash. */
465 htab_t partial_dies = nullptr;
466
467 /* Storage for things with the same lifetime as this read-in compilation
468 unit, including partial DIEs. */
469 auto_obstack comp_unit_obstack;
470
471 /* When multiple dwarf2_cu structures are living in memory, this field
472 chains them all together, so that they can be released efficiently.
473 We will probably also want a generation counter so that most-recently-used
474 compilation units are cached... */
475 struct dwarf2_per_cu_data *read_in_chain = nullptr;
476
477 /* Backlink to our per_cu entry. */
478 struct dwarf2_per_cu_data *per_cu;
479
480 /* The dwarf2_per_objfile that owns this. */
481 struct dwarf2_per_objfile *per_objfile;
482
483 /* How many compilation units ago was this CU last referenced? */
484 int last_used = 0;
485
486 /* A hash table of DIE cu_offset for following references with
487 die_info->offset.sect_off as hash. */
488 htab_t die_hash = nullptr;
489
490 /* Full DIEs if read in. */
491 struct die_info *dies = nullptr;
492
493 /* A set of pointers to dwarf2_per_cu_data objects for compilation
494 units referenced by this one. Only set during full symbol processing;
495 partial symbol tables do not have dependencies. */
496 htab_t dependencies = nullptr;
497
498 /* Header data from the line table, during full symbol processing. */
499 struct line_header *line_header = nullptr;
500 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
501 it's owned by dwarf2_per_bfd::line_header_hash. If non-NULL,
502 this is the DW_TAG_compile_unit die for this CU. We'll hold on
503 to the line header as long as this DIE is being processed. See
504 process_die_scope. */
505 die_info *line_header_die_owner = nullptr;
506
507 /* A list of methods which need to have physnames computed
508 after all type information has been read. */
509 std::vector<delayed_method_info> method_list;
510
511 /* To be copied to symtab->call_site_htab. */
512 htab_t call_site_htab = nullptr;
513
514 /* Non-NULL if this CU came from a DWO file.
515 There is an invariant here that is important to remember:
516 Except for attributes copied from the top level DIE in the "main"
517 (or "stub") file in preparation for reading the DWO file
518 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
519 Either there isn't a DWO file (in which case this is NULL and the point
520 is moot), or there is and either we're not going to read it (in which
521 case this is NULL) or there is and we are reading it (in which case this
522 is non-NULL). */
523 struct dwo_unit *dwo_unit = nullptr;
524
525 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
526 Note this value comes from the Fission stub CU/TU's DIE. */
527 gdb::optional<ULONGEST> addr_base;
528
529 /* The DW_AT_rnglists_base attribute if present.
530 Note this value comes from the Fission stub CU/TU's DIE.
531 Also note that the value is zero in the non-DWO case so this value can
532 be used without needing to know whether DWO files are in use or not.
533 N.B. This does not apply to DW_AT_ranges appearing in
534 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
535 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
536 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
537 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
538 ULONGEST ranges_base = 0;
539
540 /* The DW_AT_loclists_base attribute if present. */
541 ULONGEST loclist_base = 0;
542
543 /* When reading debug info generated by older versions of rustc, we
544 have to rewrite some union types to be struct types with a
545 variant part. This rewriting must be done after the CU is fully
546 read in, because otherwise at the point of rewriting some struct
547 type might not have been fully processed. So, we keep a list of
548 all such types here and process them after expansion. */
549 std::vector<struct type *> rust_unions;
550
551 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
552 files, the value is implicitly zero. For DWARF 5 version DWO files, the
553 value is often implicit and is the size of the header of
554 .debug_str_offsets section (8 or 4, depending on the address size). */
555 gdb::optional<ULONGEST> str_offsets_base;
556
557 /* Mark used when releasing cached dies. */
558 bool mark : 1;
559
560 /* This CU references .debug_loc. See the symtab->locations_valid field.
561 This test is imperfect as there may exist optimized debug code not using
562 any location list and still facing inlining issues if handled as
563 unoptimized code. For a future better test see GCC PR other/32998. */
564 bool has_loclist : 1;
565
566 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
567 if all the producer_is_* fields are valid. This information is cached
568 because profiling CU expansion showed excessive time spent in
569 producer_is_gxx_lt_4_6. */
570 bool checked_producer : 1;
571 bool producer_is_gxx_lt_4_6 : 1;
572 bool producer_is_gcc_lt_4_3 : 1;
573 bool producer_is_icc : 1;
574 bool producer_is_icc_lt_14 : 1;
575 bool producer_is_codewarrior : 1;
576
577 /* When true, the file that we're processing is known to have
578 debugging info for C++ namespaces. GCC 3.3.x did not produce
579 this information, but later versions do. */
580
581 bool processing_has_namespace_info : 1;
582
583 struct partial_die_info *find_partial_die (sect_offset sect_off);
584
585 /* If this CU was inherited by another CU (via specification,
586 abstract_origin, etc), this is the ancestor CU. */
587 dwarf2_cu *ancestor;
588
589 /* Get the buildsym_compunit for this CU. */
590 buildsym_compunit *get_builder ()
591 {
592 /* If this CU has a builder associated with it, use that. */
593 if (m_builder != nullptr)
594 return m_builder.get ();
595
596 /* Otherwise, search ancestors for a valid builder. */
597 if (ancestor != nullptr)
598 return ancestor->get_builder ();
599
600 return nullptr;
601 }
602 };
603
604 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
605 This includes type_unit_group and quick_file_names. */
606
607 struct stmt_list_hash
608 {
609 /* The DWO unit this table is from or NULL if there is none. */
610 struct dwo_unit *dwo_unit;
611
612 /* Offset in .debug_line or .debug_line.dwo. */
613 sect_offset line_sect_off;
614 };
615
616 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
617 an object of this type. */
618
619 struct type_unit_group
620 {
621 /* dwarf2read.c's main "handle" on a TU symtab.
622 To simplify things we create an artificial CU that "includes" all the
623 type units using this stmt_list so that the rest of the code still has
624 a "per_cu" handle on the symtab. */
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 std::vector<signatured_type *> *tus;
631
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
636
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
639
640 /* The symbol tables for this TU (obtained from the files listed in
641 DW_AT_stmt_list).
642 WARNING: The order of entries here must match the order of entries
643 in the line header. After the first TU using this type_unit_group, the
644 line header for the subsequent TUs is recreated from this. This is done
645 because we need to use the same symtabs for each TU using the same
646 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
647 there's no guarantee the line header doesn't have duplicate entries. */
648 struct symtab **symtabs;
649 };
650
651 /* These sections are what may appear in a (real or virtual) DWO file. */
652
653 struct dwo_sections
654 {
655 struct dwarf2_section_info abbrev;
656 struct dwarf2_section_info line;
657 struct dwarf2_section_info loc;
658 struct dwarf2_section_info loclists;
659 struct dwarf2_section_info macinfo;
660 struct dwarf2_section_info macro;
661 struct dwarf2_section_info str;
662 struct dwarf2_section_info str_offsets;
663 /* In the case of a virtual DWO file, these two are unused. */
664 struct dwarf2_section_info info;
665 std::vector<dwarf2_section_info> types;
666 };
667
668 /* CUs/TUs in DWP/DWO files. */
669
670 struct dwo_unit
671 {
672 /* Backlink to the containing struct dwo_file. */
673 struct dwo_file *dwo_file;
674
675 /* The "id" that distinguishes this CU/TU.
676 .debug_info calls this "dwo_id", .debug_types calls this "signature".
677 Since signatures came first, we stick with it for consistency. */
678 ULONGEST signature;
679
680 /* The section this CU/TU lives in, in the DWO file. */
681 struct dwarf2_section_info *section;
682
683 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
684 sect_offset sect_off;
685 unsigned int length;
686
687 /* For types, offset in the type's DIE of the type defined by this TU. */
688 cu_offset type_offset_in_tu;
689 };
690
691 /* include/dwarf2.h defines the DWP section codes.
692 It defines a max value but it doesn't define a min value, which we
693 use for error checking, so provide one. */
694
695 enum dwp_v2_section_ids
696 {
697 DW_SECT_MIN = 1
698 };
699
700 /* Data for one DWO file.
701
702 This includes virtual DWO files (a virtual DWO file is a DWO file as it
703 appears in a DWP file). DWP files don't really have DWO files per se -
704 comdat folding of types "loses" the DWO file they came from, and from
705 a high level view DWP files appear to contain a mass of random types.
706 However, to maintain consistency with the non-DWP case we pretend DWP
707 files contain virtual DWO files, and we assign each TU with one virtual
708 DWO file (generally based on the line and abbrev section offsets -
709 a heuristic that seems to work in practice). */
710
711 struct dwo_file
712 {
713 dwo_file () = default;
714 DISABLE_COPY_AND_ASSIGN (dwo_file);
715
716 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
717 For virtual DWO files the name is constructed from the section offsets
718 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
719 from related CU+TUs. */
720 const char *dwo_name = nullptr;
721
722 /* The DW_AT_comp_dir attribute. */
723 const char *comp_dir = nullptr;
724
725 /* The bfd, when the file is open. Otherwise this is NULL.
726 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
727 gdb_bfd_ref_ptr dbfd;
728
729 /* The sections that make up this DWO file.
730 Remember that for virtual DWO files in DWP V2, these are virtual
731 sections (for lack of a better name). */
732 struct dwo_sections sections {};
733
734 /* The CUs in the file.
735 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
736 an extension to handle LLVM's Link Time Optimization output (where
737 multiple source files may be compiled into a single object/dwo pair). */
738 htab_up cus;
739
740 /* Table of TUs in the file.
741 Each element is a struct dwo_unit. */
742 htab_up tus;
743 };
744
745 /* These sections are what may appear in a DWP file. */
746
747 struct dwp_sections
748 {
749 /* These are used by both DWP version 1 and 2. */
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info cu_index;
752 struct dwarf2_section_info tu_index;
753
754 /* These are only used by DWP version 2 files.
755 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
756 sections are referenced by section number, and are not recorded here.
757 In DWP version 2 there is at most one copy of all these sections, each
758 section being (effectively) comprised of the concatenation of all of the
759 individual sections that exist in the version 1 format.
760 To keep the code simple we treat each of these concatenated pieces as a
761 section itself (a virtual section?). */
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info info;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 struct dwarf2_section_info types;
770 };
771
772 /* These sections are what may appear in a virtual DWO file in DWP version 1.
773 A virtual DWO file is a DWO file as it appears in a DWP file. */
774
775 struct virtual_v1_dwo_sections
776 {
777 struct dwarf2_section_info abbrev;
778 struct dwarf2_section_info line;
779 struct dwarf2_section_info loc;
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
782 struct dwarf2_section_info str_offsets;
783 /* Each DWP hash table entry records one CU or one TU.
784 That is recorded here, and copied to dwo_unit.section. */
785 struct dwarf2_section_info info_or_types;
786 };
787
788 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
789 In version 2, the sections of the DWO files are concatenated together
790 and stored in one section of that name. Thus each ELF section contains
791 several "virtual" sections. */
792
793 struct virtual_v2_dwo_sections
794 {
795 bfd_size_type abbrev_offset;
796 bfd_size_type abbrev_size;
797
798 bfd_size_type line_offset;
799 bfd_size_type line_size;
800
801 bfd_size_type loc_offset;
802 bfd_size_type loc_size;
803
804 bfd_size_type macinfo_offset;
805 bfd_size_type macinfo_size;
806
807 bfd_size_type macro_offset;
808 bfd_size_type macro_size;
809
810 bfd_size_type str_offsets_offset;
811 bfd_size_type str_offsets_size;
812
813 /* Each DWP hash table entry records one CU or one TU.
814 That is recorded here, and copied to dwo_unit.section. */
815 bfd_size_type info_or_types_offset;
816 bfd_size_type info_or_types_size;
817 };
818
819 /* Contents of DWP hash tables. */
820
821 struct dwp_hash_table
822 {
823 uint32_t version, nr_columns;
824 uint32_t nr_units, nr_slots;
825 const gdb_byte *hash_table, *unit_table;
826 union
827 {
828 struct
829 {
830 const gdb_byte *indices;
831 } v1;
832 struct
833 {
834 /* This is indexed by column number and gives the id of the section
835 in that column. */
836 #define MAX_NR_V2_DWO_SECTIONS \
837 (1 /* .debug_info or .debug_types */ \
838 + 1 /* .debug_abbrev */ \
839 + 1 /* .debug_line */ \
840 + 1 /* .debug_loc */ \
841 + 1 /* .debug_str_offsets */ \
842 + 1 /* .debug_macro or .debug_macinfo */)
843 int section_ids[MAX_NR_V2_DWO_SECTIONS];
844 const gdb_byte *offsets;
845 const gdb_byte *sizes;
846 } v2;
847 } section_pool;
848 };
849
850 /* Data for one DWP file. */
851
852 struct dwp_file
853 {
854 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
855 : name (name_),
856 dbfd (std::move (abfd))
857 {
858 }
859
860 /* Name of the file. */
861 const char *name;
862
863 /* File format version. */
864 int version = 0;
865
866 /* The bfd. */
867 gdb_bfd_ref_ptr dbfd;
868
869 /* Section info for this file. */
870 struct dwp_sections sections {};
871
872 /* Table of CUs in the file. */
873 const struct dwp_hash_table *cus = nullptr;
874
875 /* Table of TUs in the file. */
876 const struct dwp_hash_table *tus = nullptr;
877
878 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
879 htab_up loaded_cus;
880 htab_up loaded_tus;
881
882 /* Table to map ELF section numbers to their sections.
883 This is only needed for the DWP V1 file format. */
884 unsigned int num_sections = 0;
885 asection **elf_sections = nullptr;
886 };
887
888 /* Struct used to pass misc. parameters to read_die_and_children, et
889 al. which are used for both .debug_info and .debug_types dies.
890 All parameters here are unchanging for the life of the call. This
891 struct exists to abstract away the constant parameters of die reading. */
892
893 struct die_reader_specs
894 {
895 /* The bfd of die_section. */
896 bfd* abfd;
897
898 /* The CU of the DIE we are parsing. */
899 struct dwarf2_cu *cu;
900
901 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
902 struct dwo_file *dwo_file;
903
904 /* The section the die comes from.
905 This is either .debug_info or .debug_types, or the .dwo variants. */
906 struct dwarf2_section_info *die_section;
907
908 /* die_section->buffer. */
909 const gdb_byte *buffer;
910
911 /* The end of the buffer. */
912 const gdb_byte *buffer_end;
913
914 /* The abbreviation table to use when reading the DIEs. */
915 struct abbrev_table *abbrev_table;
916 };
917
918 /* A subclass of die_reader_specs that holds storage and has complex
919 constructor and destructor behavior. */
920
921 class cutu_reader : public die_reader_specs
922 {
923 public:
924
925 cutu_reader (dwarf2_per_cu_data *this_cu,
926 dwarf2_per_objfile *per_objfile,
927 struct abbrev_table *abbrev_table,
928 int use_existing_cu,
929 bool skip_partial);
930
931 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
932 dwarf2_per_objfile *per_objfile,
933 struct dwarf2_cu *parent_cu = nullptr,
934 struct dwo_file *dwo_file = nullptr);
935
936 DISABLE_COPY_AND_ASSIGN (cutu_reader);
937
938 const gdb_byte *info_ptr = nullptr;
939 struct die_info *comp_unit_die = nullptr;
940 bool dummy_p = false;
941
942 /* Release the new CU, putting it on the chain. This cannot be done
943 for dummy CUs. */
944 void keep ();
945
946 private:
947 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
948 dwarf2_per_objfile *per_objfile,
949 int use_existing_cu);
950
951 struct dwarf2_per_cu_data *m_this_cu;
952 std::unique_ptr<dwarf2_cu> m_new_cu;
953
954 /* The ordinary abbreviation table. */
955 abbrev_table_up m_abbrev_table_holder;
956
957 /* The DWO abbreviation table. */
958 abbrev_table_up m_dwo_abbrev_table;
959 };
960
961 /* When we construct a partial symbol table entry we only
962 need this much information. */
963 struct partial_die_info : public allocate_on_obstack
964 {
965 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
966
967 /* Disable assign but still keep copy ctor, which is needed
968 load_partial_dies. */
969 partial_die_info& operator=(const partial_die_info& rhs) = delete;
970
971 /* Adjust the partial die before generating a symbol for it. This
972 function may set the is_external flag or change the DIE's
973 name. */
974 void fixup (struct dwarf2_cu *cu);
975
976 /* Read a minimal amount of information into the minimal die
977 structure. */
978 const gdb_byte *read (const struct die_reader_specs *reader,
979 const struct abbrev_info &abbrev,
980 const gdb_byte *info_ptr);
981
982 /* Offset of this DIE. */
983 const sect_offset sect_off;
984
985 /* DWARF-2 tag for this DIE. */
986 const ENUM_BITFIELD(dwarf_tag) tag : 16;
987
988 /* Assorted flags describing the data found in this DIE. */
989 const unsigned int has_children : 1;
990
991 unsigned int is_external : 1;
992 unsigned int is_declaration : 1;
993 unsigned int has_type : 1;
994 unsigned int has_specification : 1;
995 unsigned int has_pc_info : 1;
996 unsigned int may_be_inlined : 1;
997
998 /* This DIE has been marked DW_AT_main_subprogram. */
999 unsigned int main_subprogram : 1;
1000
1001 /* Flag set if the SCOPE field of this structure has been
1002 computed. */
1003 unsigned int scope_set : 1;
1004
1005 /* Flag set if the DIE has a byte_size attribute. */
1006 unsigned int has_byte_size : 1;
1007
1008 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1009 unsigned int has_const_value : 1;
1010
1011 /* Flag set if any of the DIE's children are template arguments. */
1012 unsigned int has_template_arguments : 1;
1013
1014 /* Flag set if fixup has been called on this die. */
1015 unsigned int fixup_called : 1;
1016
1017 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1018 unsigned int is_dwz : 1;
1019
1020 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1021 unsigned int spec_is_dwz : 1;
1022
1023 /* The name of this DIE. Normally the value of DW_AT_name, but
1024 sometimes a default name for unnamed DIEs. */
1025 const char *name = nullptr;
1026
1027 /* The linkage name, if present. */
1028 const char *linkage_name = nullptr;
1029
1030 /* The scope to prepend to our children. This is generally
1031 allocated on the comp_unit_obstack, so will disappear
1032 when this compilation unit leaves the cache. */
1033 const char *scope = nullptr;
1034
1035 /* Some data associated with the partial DIE. The tag determines
1036 which field is live. */
1037 union
1038 {
1039 /* The location description associated with this DIE, if any. */
1040 struct dwarf_block *locdesc;
1041 /* The offset of an import, for DW_TAG_imported_unit. */
1042 sect_offset sect_off;
1043 } d {};
1044
1045 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1046 CORE_ADDR lowpc = 0;
1047 CORE_ADDR highpc = 0;
1048
1049 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1050 DW_AT_sibling, if any. */
1051 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1052 could return DW_AT_sibling values to its caller load_partial_dies. */
1053 const gdb_byte *sibling = nullptr;
1054
1055 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1056 DW_AT_specification (or DW_AT_abstract_origin or
1057 DW_AT_extension). */
1058 sect_offset spec_offset {};
1059
1060 /* Pointers to this DIE's parent, first child, and next sibling,
1061 if any. */
1062 struct partial_die_info *die_parent = nullptr;
1063 struct partial_die_info *die_child = nullptr;
1064 struct partial_die_info *die_sibling = nullptr;
1065
1066 friend struct partial_die_info *
1067 dwarf2_cu::find_partial_die (sect_offset sect_off);
1068
1069 private:
1070 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1071 partial_die_info (sect_offset sect_off)
1072 : partial_die_info (sect_off, DW_TAG_padding, 0)
1073 {
1074 }
1075
1076 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1077 int has_children_)
1078 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1079 {
1080 is_external = 0;
1081 is_declaration = 0;
1082 has_type = 0;
1083 has_specification = 0;
1084 has_pc_info = 0;
1085 may_be_inlined = 0;
1086 main_subprogram = 0;
1087 scope_set = 0;
1088 has_byte_size = 0;
1089 has_const_value = 0;
1090 has_template_arguments = 0;
1091 fixup_called = 0;
1092 is_dwz = 0;
1093 spec_is_dwz = 0;
1094 }
1095 };
1096
1097 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1098 but this would require a corresponding change in unpack_field_as_long
1099 and friends. */
1100 static int bits_per_byte = 8;
1101
1102 struct variant_part_builder;
1103
1104 /* When reading a variant, we track a bit more information about the
1105 field, and store it in an object of this type. */
1106
1107 struct variant_field
1108 {
1109 int first_field = -1;
1110 int last_field = -1;
1111
1112 /* A variant can contain other variant parts. */
1113 std::vector<variant_part_builder> variant_parts;
1114
1115 /* If we see a DW_TAG_variant, then this will be set if this is the
1116 default branch. */
1117 bool default_branch = false;
1118 /* If we see a DW_AT_discr_value, then this will be the discriminant
1119 value. */
1120 ULONGEST discriminant_value = 0;
1121 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1122 data. */
1123 struct dwarf_block *discr_list_data = nullptr;
1124 };
1125
1126 /* This represents a DW_TAG_variant_part. */
1127
1128 struct variant_part_builder
1129 {
1130 /* The offset of the discriminant field. */
1131 sect_offset discriminant_offset {};
1132
1133 /* Variants that are direct children of this variant part. */
1134 std::vector<variant_field> variants;
1135
1136 /* True if we're currently reading a variant. */
1137 bool processing_variant = false;
1138 };
1139
1140 struct nextfield
1141 {
1142 int accessibility = 0;
1143 int virtuality = 0;
1144 /* Variant parts need to find the discriminant, which is a DIE
1145 reference. We track the section offset of each field to make
1146 this link. */
1147 sect_offset offset;
1148 struct field field {};
1149 };
1150
1151 struct fnfieldlist
1152 {
1153 const char *name = nullptr;
1154 std::vector<struct fn_field> fnfields;
1155 };
1156
1157 /* The routines that read and process dies for a C struct or C++ class
1158 pass lists of data member fields and lists of member function fields
1159 in an instance of a field_info structure, as defined below. */
1160 struct field_info
1161 {
1162 /* List of data member and baseclasses fields. */
1163 std::vector<struct nextfield> fields;
1164 std::vector<struct nextfield> baseclasses;
1165
1166 /* Set if the accessibility of one of the fields is not public. */
1167 int non_public_fields = 0;
1168
1169 /* Member function fieldlist array, contains name of possibly overloaded
1170 member function, number of overloaded member functions and a pointer
1171 to the head of the member function field chain. */
1172 std::vector<struct fnfieldlist> fnfieldlists;
1173
1174 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1175 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1176 std::vector<struct decl_field> typedef_field_list;
1177
1178 /* Nested types defined by this class and the number of elements in this
1179 list. */
1180 std::vector<struct decl_field> nested_types_list;
1181
1182 /* If non-null, this is the variant part we are currently
1183 reading. */
1184 variant_part_builder *current_variant_part = nullptr;
1185 /* This holds all the top-level variant parts attached to the type
1186 we're reading. */
1187 std::vector<variant_part_builder> variant_parts;
1188
1189 /* Return the total number of fields (including baseclasses). */
1190 int nfields () const
1191 {
1192 return fields.size () + baseclasses.size ();
1193 }
1194 };
1195
1196 /* Loaded secondary compilation units are kept in memory until they
1197 have not been referenced for the processing of this many
1198 compilation units. Set this to zero to disable caching. Cache
1199 sizes of up to at least twenty will improve startup time for
1200 typical inter-CU-reference binaries, at an obvious memory cost. */
1201 static int dwarf_max_cache_age = 5;
1202 static void
1203 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1204 struct cmd_list_element *c, const char *value)
1205 {
1206 fprintf_filtered (file, _("The upper bound on the age of cached "
1207 "DWARF compilation units is %s.\n"),
1208 value);
1209 }
1210 \f
1211 /* local function prototypes */
1212
1213 static void dwarf2_find_base_address (struct die_info *die,
1214 struct dwarf2_cu *cu);
1215
1216 static dwarf2_psymtab *create_partial_symtab
1217 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1218 const char *name);
1219
1220 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1221 const gdb_byte *info_ptr,
1222 struct die_info *type_unit_die);
1223
1224 static void dwarf2_build_psymtabs_hard
1225 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1226
1227 static void scan_partial_symbols (struct partial_die_info *,
1228 CORE_ADDR *, CORE_ADDR *,
1229 int, struct dwarf2_cu *);
1230
1231 static void add_partial_symbol (struct partial_die_info *,
1232 struct dwarf2_cu *);
1233
1234 static void add_partial_namespace (struct partial_die_info *pdi,
1235 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1236 int set_addrmap, struct dwarf2_cu *cu);
1237
1238 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1239 CORE_ADDR *highpc, int set_addrmap,
1240 struct dwarf2_cu *cu);
1241
1242 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1243 struct dwarf2_cu *cu);
1244
1245 static void add_partial_subprogram (struct partial_die_info *pdi,
1246 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1247 int need_pc, struct dwarf2_cu *cu);
1248
1249 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1250
1251 static struct partial_die_info *load_partial_dies
1252 (const struct die_reader_specs *, const gdb_byte *, int);
1253
1254 /* A pair of partial_die_info and compilation unit. */
1255 struct cu_partial_die_info
1256 {
1257 /* The compilation unit of the partial_die_info. */
1258 struct dwarf2_cu *cu;
1259 /* A partial_die_info. */
1260 struct partial_die_info *pdi;
1261
1262 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1263 : cu (cu),
1264 pdi (pdi)
1265 { /* Nothing. */ }
1266
1267 private:
1268 cu_partial_die_info () = delete;
1269 };
1270
1271 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1272 struct dwarf2_cu *);
1273
1274 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1275 struct attribute *, struct attr_abbrev *,
1276 const gdb_byte *, bool *need_reprocess);
1277
1278 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1279 struct attribute *attr);
1280
1281 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1282
1283 static sect_offset read_abbrev_offset
1284 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1285 struct dwarf2_section_info *, sect_offset);
1286
1287 static const char *read_indirect_string
1288 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1289 const struct comp_unit_head *, unsigned int *);
1290
1291 static const char *read_indirect_string_at_offset
1292 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1293
1294 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1295 const gdb_byte *,
1296 unsigned int *);
1297
1298 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1299 ULONGEST str_index);
1300
1301 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1302 ULONGEST str_index);
1303
1304 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1305
1306 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1307 struct dwarf2_cu *);
1308
1309 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1310 struct dwarf2_cu *cu);
1311
1312 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1313
1314 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1315 struct dwarf2_cu *cu);
1316
1317 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1318
1319 static struct die_info *die_specification (struct die_info *die,
1320 struct dwarf2_cu **);
1321
1322 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1323 struct dwarf2_cu *cu);
1324
1325 static void dwarf_decode_lines (struct line_header *, const char *,
1326 struct dwarf2_cu *, dwarf2_psymtab *,
1327 CORE_ADDR, int decode_mapping);
1328
1329 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1330 const char *);
1331
1332 static struct symbol *new_symbol (struct die_info *, struct type *,
1333 struct dwarf2_cu *, struct symbol * = NULL);
1334
1335 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1336 struct dwarf2_cu *);
1337
1338 static void dwarf2_const_value_attr (const struct attribute *attr,
1339 struct type *type,
1340 const char *name,
1341 struct obstack *obstack,
1342 struct dwarf2_cu *cu, LONGEST *value,
1343 const gdb_byte **bytes,
1344 struct dwarf2_locexpr_baton **baton);
1345
1346 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1347
1348 static int need_gnat_info (struct dwarf2_cu *);
1349
1350 static struct type *die_descriptive_type (struct die_info *,
1351 struct dwarf2_cu *);
1352
1353 static void set_descriptive_type (struct type *, struct die_info *,
1354 struct dwarf2_cu *);
1355
1356 static struct type *die_containing_type (struct die_info *,
1357 struct dwarf2_cu *);
1358
1359 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1360 struct dwarf2_cu *);
1361
1362 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1363
1364 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1365
1366 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1367
1368 static char *typename_concat (struct obstack *obs, const char *prefix,
1369 const char *suffix, int physname,
1370 struct dwarf2_cu *cu);
1371
1372 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1373
1374 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1375
1376 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1377
1378 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1379
1380 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1381
1382 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1383
1384 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1385 struct dwarf2_cu *, dwarf2_psymtab *);
1386
1387 /* Return the .debug_loclists section to use for cu. */
1388 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1389
1390 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1391 values. Keep the items ordered with increasing constraints compliance. */
1392 enum pc_bounds_kind
1393 {
1394 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1395 PC_BOUNDS_NOT_PRESENT,
1396
1397 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1398 were present but they do not form a valid range of PC addresses. */
1399 PC_BOUNDS_INVALID,
1400
1401 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1402 PC_BOUNDS_RANGES,
1403
1404 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1405 PC_BOUNDS_HIGH_LOW,
1406 };
1407
1408 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1409 CORE_ADDR *, CORE_ADDR *,
1410 struct dwarf2_cu *,
1411 dwarf2_psymtab *);
1412
1413 static void get_scope_pc_bounds (struct die_info *,
1414 CORE_ADDR *, CORE_ADDR *,
1415 struct dwarf2_cu *);
1416
1417 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1418 CORE_ADDR, struct dwarf2_cu *);
1419
1420 static void dwarf2_add_field (struct field_info *, struct die_info *,
1421 struct dwarf2_cu *);
1422
1423 static void dwarf2_attach_fields_to_type (struct field_info *,
1424 struct type *, struct dwarf2_cu *);
1425
1426 static void dwarf2_add_member_fn (struct field_info *,
1427 struct die_info *, struct type *,
1428 struct dwarf2_cu *);
1429
1430 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1431 struct type *,
1432 struct dwarf2_cu *);
1433
1434 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1435
1436 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1437
1438 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1439
1440 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1441
1442 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1443
1444 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1445
1446 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1447
1448 static struct type *read_module_type (struct die_info *die,
1449 struct dwarf2_cu *cu);
1450
1451 static const char *namespace_name (struct die_info *die,
1452 int *is_anonymous, struct dwarf2_cu *);
1453
1454 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1455
1456 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1457 bool * = nullptr);
1458
1459 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1460 struct dwarf2_cu *);
1461
1462 static struct die_info *read_die_and_siblings_1
1463 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1464 struct die_info *);
1465
1466 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1467 const gdb_byte *info_ptr,
1468 const gdb_byte **new_info_ptr,
1469 struct die_info *parent);
1470
1471 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1472 struct die_info **, const gdb_byte *,
1473 int);
1474
1475 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1476 struct die_info **, const gdb_byte *);
1477
1478 static void process_die (struct die_info *, struct dwarf2_cu *);
1479
1480 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1481 struct objfile *);
1482
1483 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1484
1485 static const char *dwarf2_full_name (const char *name,
1486 struct die_info *die,
1487 struct dwarf2_cu *cu);
1488
1489 static const char *dwarf2_physname (const char *name, struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
1492 static struct die_info *dwarf2_extension (struct die_info *die,
1493 struct dwarf2_cu **);
1494
1495 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1496
1497 static void dump_die_for_error (struct die_info *);
1498
1499 static void dump_die_1 (struct ui_file *, int level, int max_level,
1500 struct die_info *);
1501
1502 /*static*/ void dump_die (struct die_info *, int max_level);
1503
1504 static void store_in_ref_table (struct die_info *,
1505 struct dwarf2_cu *);
1506
1507 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1508 const struct attribute *,
1509 struct dwarf2_cu **);
1510
1511 static struct die_info *follow_die_ref (struct die_info *,
1512 const struct attribute *,
1513 struct dwarf2_cu **);
1514
1515 static struct die_info *follow_die_sig (struct die_info *,
1516 const struct attribute *,
1517 struct dwarf2_cu **);
1518
1519 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1520 struct dwarf2_cu *);
1521
1522 static struct type *get_DW_AT_signature_type (struct die_info *,
1523 const struct attribute *,
1524 struct dwarf2_cu *);
1525
1526 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1527 dwarf2_per_objfile *per_objfile);
1528
1529 static void read_signatured_type (signatured_type *sig_type,
1530 dwarf2_per_objfile *per_objfile);
1531
1532 static int attr_to_dynamic_prop (const struct attribute *attr,
1533 struct die_info *die, struct dwarf2_cu *cu,
1534 struct dynamic_prop *prop, struct type *type);
1535
1536 /* memory allocation interface */
1537
1538 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1539
1540 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1541
1542 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1543
1544 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1545 struct dwarf2_loclist_baton *baton,
1546 const struct attribute *attr);
1547
1548 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1549 struct symbol *sym,
1550 struct dwarf2_cu *cu,
1551 int is_block);
1552
1553 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1554 const gdb_byte *info_ptr,
1555 struct abbrev_info *abbrev);
1556
1557 static hashval_t partial_die_hash (const void *item);
1558
1559 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1560
1561 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1562 (sect_offset sect_off, unsigned int offset_in_dwz,
1563 struct dwarf2_per_objfile *dwarf2_per_objfile);
1564
1565 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1566 struct die_info *comp_unit_die,
1567 enum language pretend_language);
1568
1569 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1570
1571 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1572
1573 static struct type *set_die_type (struct die_info *, struct type *,
1574 struct dwarf2_cu *);
1575
1576 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1577
1578 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1579
1580 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1581 dwarf2_per_objfile *per_objfile,
1582 bool skip_partial,
1583 enum language pretend_language);
1584
1585 static void process_full_comp_unit (dwarf2_per_cu_data *per_cu,
1586 dwarf2_per_objfile *per_objfile,
1587 enum language pretend_language);
1588
1589 static void process_full_type_unit (dwarf2_per_cu_data *per_cu,
1590 dwarf2_per_objfile *per_objfile,
1591 enum language pretend_language);
1592
1593 static void dwarf2_add_dependence (struct dwarf2_cu *,
1594 struct dwarf2_per_cu_data *);
1595
1596 static void dwarf2_mark (struct dwarf2_cu *);
1597
1598 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1599
1600 static struct type *get_die_type_at_offset (sect_offset,
1601 struct dwarf2_per_cu_data *);
1602
1603 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1604
1605 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1606 enum language pretend_language);
1607
1608 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1609
1610 /* Class, the destructor of which frees all allocated queue entries. This
1611 will only have work to do if an error was thrown while processing the
1612 dwarf. If no error was thrown then the queue entries should have all
1613 been processed, and freed, as we went along. */
1614
1615 class dwarf2_queue_guard
1616 {
1617 public:
1618 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1619 : m_per_objfile (per_objfile)
1620 {
1621 }
1622
1623 /* Free any entries remaining on the queue. There should only be
1624 entries left if we hit an error while processing the dwarf. */
1625 ~dwarf2_queue_guard ()
1626 {
1627 /* Ensure that no memory is allocated by the queue. */
1628 std::queue<dwarf2_queue_item> empty;
1629 std::swap (m_per_objfile->per_bfd->queue, empty);
1630 }
1631
1632 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1633
1634 private:
1635 dwarf2_per_objfile *m_per_objfile;
1636 };
1637
1638 dwarf2_queue_item::~dwarf2_queue_item ()
1639 {
1640 /* Anything still marked queued is likely to be in an
1641 inconsistent state, so discard it. */
1642 if (per_cu->queued)
1643 {
1644 if (per_cu->cu != NULL)
1645 free_one_cached_comp_unit (per_cu);
1646 per_cu->queued = 0;
1647 }
1648 }
1649
1650 /* The return type of find_file_and_directory. Note, the enclosed
1651 string pointers are only valid while this object is valid. */
1652
1653 struct file_and_directory
1654 {
1655 /* The filename. This is never NULL. */
1656 const char *name;
1657
1658 /* The compilation directory. NULL if not known. If we needed to
1659 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1660 points directly to the DW_AT_comp_dir string attribute owned by
1661 the obstack that owns the DIE. */
1662 const char *comp_dir;
1663
1664 /* If we needed to build a new string for comp_dir, this is what
1665 owns the storage. */
1666 std::string comp_dir_storage;
1667 };
1668
1669 static file_and_directory find_file_and_directory (struct die_info *die,
1670 struct dwarf2_cu *cu);
1671
1672 static htab_up allocate_signatured_type_table ();
1673
1674 static htab_up allocate_dwo_unit_table ();
1675
1676 static struct dwo_unit *lookup_dwo_unit_in_dwp
1677 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1678 struct dwp_file *dwp_file, const char *comp_dir,
1679 ULONGEST signature, int is_debug_types);
1680
1681 static struct dwp_file *get_dwp_file
1682 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1683
1684 static struct dwo_unit *lookup_dwo_comp_unit
1685 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1686 ULONGEST signature);
1687
1688 static struct dwo_unit *lookup_dwo_type_unit
1689 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1690
1691 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1692
1693 /* A unique pointer to a dwo_file. */
1694
1695 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1696
1697 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1698
1699 static void check_producer (struct dwarf2_cu *cu);
1700
1701 static void free_line_header_voidp (void *arg);
1702 \f
1703 /* Various complaints about symbol reading that don't abort the process. */
1704
1705 static void
1706 dwarf2_debug_line_missing_file_complaint (void)
1707 {
1708 complaint (_(".debug_line section has line data without a file"));
1709 }
1710
1711 static void
1712 dwarf2_debug_line_missing_end_sequence_complaint (void)
1713 {
1714 complaint (_(".debug_line section has line "
1715 "program sequence without an end"));
1716 }
1717
1718 static void
1719 dwarf2_complex_location_expr_complaint (void)
1720 {
1721 complaint (_("location expression too complex"));
1722 }
1723
1724 static void
1725 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1726 int arg3)
1727 {
1728 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1729 arg1, arg2, arg3);
1730 }
1731
1732 static void
1733 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1734 {
1735 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1736 arg1, arg2);
1737 }
1738
1739 /* Hash function for line_header_hash. */
1740
1741 static hashval_t
1742 line_header_hash (const struct line_header *ofs)
1743 {
1744 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1745 }
1746
1747 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1748
1749 static hashval_t
1750 line_header_hash_voidp (const void *item)
1751 {
1752 const struct line_header *ofs = (const struct line_header *) item;
1753
1754 return line_header_hash (ofs);
1755 }
1756
1757 /* Equality function for line_header_hash. */
1758
1759 static int
1760 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1761 {
1762 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1763 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1764
1765 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1766 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1767 }
1768
1769 \f
1770
1771 /* See declaration. */
1772
1773 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1774 bool can_copy_)
1775 : obfd (obfd),
1776 can_copy (can_copy_)
1777 {
1778 if (names == NULL)
1779 names = &dwarf2_elf_names;
1780
1781 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1782 locate_sections (obfd, sec, *names);
1783 }
1784
1785 dwarf2_per_bfd::~dwarf2_per_bfd ()
1786 {
1787 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1788 free_cached_comp_units ();
1789
1790 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1791 per_cu->imported_symtabs_free ();
1792
1793 for (signatured_type *sig_type : all_type_units)
1794 sig_type->per_cu.imported_symtabs_free ();
1795
1796 /* Everything else should be on this->obstack. */
1797 }
1798
1799 /* See declaration. */
1800
1801 void
1802 dwarf2_per_bfd::free_cached_comp_units ()
1803 {
1804 dwarf2_per_cu_data *per_cu = read_in_chain;
1805 dwarf2_per_cu_data **last_chain = &read_in_chain;
1806 while (per_cu != NULL)
1807 {
1808 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1809
1810 delete per_cu->cu;
1811 *last_chain = next_cu;
1812 per_cu = next_cu;
1813 }
1814 }
1815
1816 /* A helper class that calls free_cached_comp_units on
1817 destruction. */
1818
1819 class free_cached_comp_units
1820 {
1821 public:
1822
1823 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1824 : m_per_objfile (per_objfile)
1825 {
1826 }
1827
1828 ~free_cached_comp_units ()
1829 {
1830 m_per_objfile->per_bfd->free_cached_comp_units ();
1831 }
1832
1833 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1834
1835 private:
1836
1837 dwarf2_per_objfile *m_per_objfile;
1838 };
1839
1840 /* See read.h. */
1841
1842 bool
1843 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1844 {
1845 gdb_assert (per_cu->index < this->m_symtabs.size ());
1846
1847 return this->m_symtabs[per_cu->index] != nullptr;
1848 }
1849
1850 /* See read.h. */
1851
1852 compunit_symtab *
1853 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1854 {
1855 gdb_assert (per_cu->index < this->m_symtabs.size ());
1856
1857 return this->m_symtabs[per_cu->index];
1858 }
1859
1860 /* See read.h. */
1861
1862 void
1863 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1864 compunit_symtab *symtab)
1865 {
1866 gdb_assert (per_cu->index < this->m_symtabs.size ());
1867 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1868
1869 this->m_symtabs[per_cu->index] = symtab;
1870 }
1871
1872 /* Try to locate the sections we need for DWARF 2 debugging
1873 information and return true if we have enough to do something.
1874 NAMES points to the dwarf2 section names, or is NULL if the standard
1875 ELF names are used. CAN_COPY is true for formats where symbol
1876 interposition is possible and so symbol values must follow copy
1877 relocation rules. */
1878
1879 int
1880 dwarf2_has_info (struct objfile *objfile,
1881 const struct dwarf2_debug_sections *names,
1882 bool can_copy)
1883 {
1884 if (objfile->flags & OBJF_READNEVER)
1885 return 0;
1886
1887 struct dwarf2_per_objfile *dwarf2_per_objfile
1888 = get_dwarf2_per_objfile (objfile);
1889
1890 if (dwarf2_per_objfile == NULL)
1891 {
1892 /* For now, each dwarf2_per_objfile owns its own dwarf2_per_bfd (no
1893 sharing yet). */
1894 dwarf2_per_bfd *per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1895
1896 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1897 }
1898
1899 return (!dwarf2_per_objfile->per_bfd->info.is_virtual
1900 && dwarf2_per_objfile->per_bfd->info.s.section != NULL
1901 && !dwarf2_per_objfile->per_bfd->abbrev.is_virtual
1902 && dwarf2_per_objfile->per_bfd->abbrev.s.section != NULL);
1903 }
1904
1905 /* When loading sections, we look either for uncompressed section or for
1906 compressed section names. */
1907
1908 static int
1909 section_is_p (const char *section_name,
1910 const struct dwarf2_section_names *names)
1911 {
1912 if (names->normal != NULL
1913 && strcmp (section_name, names->normal) == 0)
1914 return 1;
1915 if (names->compressed != NULL
1916 && strcmp (section_name, names->compressed) == 0)
1917 return 1;
1918 return 0;
1919 }
1920
1921 /* See declaration. */
1922
1923 void
1924 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1925 const dwarf2_debug_sections &names)
1926 {
1927 flagword aflag = bfd_section_flags (sectp);
1928
1929 if ((aflag & SEC_HAS_CONTENTS) == 0)
1930 {
1931 }
1932 else if (elf_section_data (sectp)->this_hdr.sh_size
1933 > bfd_get_file_size (abfd))
1934 {
1935 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1936 warning (_("Discarding section %s which has a section size (%s"
1937 ") larger than the file size [in module %s]"),
1938 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1939 bfd_get_filename (abfd));
1940 }
1941 else if (section_is_p (sectp->name, &names.info))
1942 {
1943 this->info.s.section = sectp;
1944 this->info.size = bfd_section_size (sectp);
1945 }
1946 else if (section_is_p (sectp->name, &names.abbrev))
1947 {
1948 this->abbrev.s.section = sectp;
1949 this->abbrev.size = bfd_section_size (sectp);
1950 }
1951 else if (section_is_p (sectp->name, &names.line))
1952 {
1953 this->line.s.section = sectp;
1954 this->line.size = bfd_section_size (sectp);
1955 }
1956 else if (section_is_p (sectp->name, &names.loc))
1957 {
1958 this->loc.s.section = sectp;
1959 this->loc.size = bfd_section_size (sectp);
1960 }
1961 else if (section_is_p (sectp->name, &names.loclists))
1962 {
1963 this->loclists.s.section = sectp;
1964 this->loclists.size = bfd_section_size (sectp);
1965 }
1966 else if (section_is_p (sectp->name, &names.macinfo))
1967 {
1968 this->macinfo.s.section = sectp;
1969 this->macinfo.size = bfd_section_size (sectp);
1970 }
1971 else if (section_is_p (sectp->name, &names.macro))
1972 {
1973 this->macro.s.section = sectp;
1974 this->macro.size = bfd_section_size (sectp);
1975 }
1976 else if (section_is_p (sectp->name, &names.str))
1977 {
1978 this->str.s.section = sectp;
1979 this->str.size = bfd_section_size (sectp);
1980 }
1981 else if (section_is_p (sectp->name, &names.str_offsets))
1982 {
1983 this->str_offsets.s.section = sectp;
1984 this->str_offsets.size = bfd_section_size (sectp);
1985 }
1986 else if (section_is_p (sectp->name, &names.line_str))
1987 {
1988 this->line_str.s.section = sectp;
1989 this->line_str.size = bfd_section_size (sectp);
1990 }
1991 else if (section_is_p (sectp->name, &names.addr))
1992 {
1993 this->addr.s.section = sectp;
1994 this->addr.size = bfd_section_size (sectp);
1995 }
1996 else if (section_is_p (sectp->name, &names.frame))
1997 {
1998 this->frame.s.section = sectp;
1999 this->frame.size = bfd_section_size (sectp);
2000 }
2001 else if (section_is_p (sectp->name, &names.eh_frame))
2002 {
2003 this->eh_frame.s.section = sectp;
2004 this->eh_frame.size = bfd_section_size (sectp);
2005 }
2006 else if (section_is_p (sectp->name, &names.ranges))
2007 {
2008 this->ranges.s.section = sectp;
2009 this->ranges.size = bfd_section_size (sectp);
2010 }
2011 else if (section_is_p (sectp->name, &names.rnglists))
2012 {
2013 this->rnglists.s.section = sectp;
2014 this->rnglists.size = bfd_section_size (sectp);
2015 }
2016 else if (section_is_p (sectp->name, &names.types))
2017 {
2018 struct dwarf2_section_info type_section;
2019
2020 memset (&type_section, 0, sizeof (type_section));
2021 type_section.s.section = sectp;
2022 type_section.size = bfd_section_size (sectp);
2023
2024 this->types.push_back (type_section);
2025 }
2026 else if (section_is_p (sectp->name, &names.gdb_index))
2027 {
2028 this->gdb_index.s.section = sectp;
2029 this->gdb_index.size = bfd_section_size (sectp);
2030 }
2031 else if (section_is_p (sectp->name, &names.debug_names))
2032 {
2033 this->debug_names.s.section = sectp;
2034 this->debug_names.size = bfd_section_size (sectp);
2035 }
2036 else if (section_is_p (sectp->name, &names.debug_aranges))
2037 {
2038 this->debug_aranges.s.section = sectp;
2039 this->debug_aranges.size = bfd_section_size (sectp);
2040 }
2041
2042 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2043 && bfd_section_vma (sectp) == 0)
2044 this->has_section_at_zero = true;
2045 }
2046
2047 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2048 SECTION_NAME. */
2049
2050 void
2051 dwarf2_get_section_info (struct objfile *objfile,
2052 enum dwarf2_section_enum sect,
2053 asection **sectp, const gdb_byte **bufp,
2054 bfd_size_type *sizep)
2055 {
2056 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2057 struct dwarf2_section_info *info;
2058
2059 /* We may see an objfile without any DWARF, in which case we just
2060 return nothing. */
2061 if (data == NULL)
2062 {
2063 *sectp = NULL;
2064 *bufp = NULL;
2065 *sizep = 0;
2066 return;
2067 }
2068 switch (sect)
2069 {
2070 case DWARF2_DEBUG_FRAME:
2071 info = &data->per_bfd->frame;
2072 break;
2073 case DWARF2_EH_FRAME:
2074 info = &data->per_bfd->eh_frame;
2075 break;
2076 default:
2077 gdb_assert_not_reached ("unexpected section");
2078 }
2079
2080 info->read (objfile);
2081
2082 *sectp = info->get_bfd_section ();
2083 *bufp = info->buffer;
2084 *sizep = info->size;
2085 }
2086
2087 /* A helper function to find the sections for a .dwz file. */
2088
2089 static void
2090 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2091 {
2092 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2093
2094 /* Note that we only support the standard ELF names, because .dwz
2095 is ELF-only (at the time of writing). */
2096 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2097 {
2098 dwz_file->abbrev.s.section = sectp;
2099 dwz_file->abbrev.size = bfd_section_size (sectp);
2100 }
2101 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2102 {
2103 dwz_file->info.s.section = sectp;
2104 dwz_file->info.size = bfd_section_size (sectp);
2105 }
2106 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2107 {
2108 dwz_file->str.s.section = sectp;
2109 dwz_file->str.size = bfd_section_size (sectp);
2110 }
2111 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2112 {
2113 dwz_file->line.s.section = sectp;
2114 dwz_file->line.size = bfd_section_size (sectp);
2115 }
2116 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2117 {
2118 dwz_file->macro.s.section = sectp;
2119 dwz_file->macro.size = bfd_section_size (sectp);
2120 }
2121 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2122 {
2123 dwz_file->gdb_index.s.section = sectp;
2124 dwz_file->gdb_index.size = bfd_section_size (sectp);
2125 }
2126 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2127 {
2128 dwz_file->debug_names.s.section = sectp;
2129 dwz_file->debug_names.size = bfd_section_size (sectp);
2130 }
2131 }
2132
2133 /* See dwarf2read.h. */
2134
2135 struct dwz_file *
2136 dwarf2_get_dwz_file (dwarf2_per_bfd *per_bfd)
2137 {
2138 const char *filename;
2139 bfd_size_type buildid_len_arg;
2140 size_t buildid_len;
2141 bfd_byte *buildid;
2142
2143 if (per_bfd->dwz_file != NULL)
2144 return per_bfd->dwz_file.get ();
2145
2146 bfd_set_error (bfd_error_no_error);
2147 gdb::unique_xmalloc_ptr<char> data
2148 (bfd_get_alt_debug_link_info (per_bfd->obfd,
2149 &buildid_len_arg, &buildid));
2150 if (data == NULL)
2151 {
2152 if (bfd_get_error () == bfd_error_no_error)
2153 return NULL;
2154 error (_("could not read '.gnu_debugaltlink' section: %s"),
2155 bfd_errmsg (bfd_get_error ()));
2156 }
2157
2158 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2159
2160 buildid_len = (size_t) buildid_len_arg;
2161
2162 filename = data.get ();
2163
2164 std::string abs_storage;
2165 if (!IS_ABSOLUTE_PATH (filename))
2166 {
2167 gdb::unique_xmalloc_ptr<char> abs
2168 = gdb_realpath (bfd_get_filename (per_bfd->obfd));
2169
2170 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2171 filename = abs_storage.c_str ();
2172 }
2173
2174 /* First try the file name given in the section. If that doesn't
2175 work, try to use the build-id instead. */
2176 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2177 if (dwz_bfd != NULL)
2178 {
2179 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2180 dwz_bfd.reset (nullptr);
2181 }
2182
2183 if (dwz_bfd == NULL)
2184 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2185
2186 if (dwz_bfd == nullptr)
2187 {
2188 gdb::unique_xmalloc_ptr<char> alt_filename;
2189 const char *origname = bfd_get_filename (per_bfd->obfd);
2190
2191 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2192 buildid_len,
2193 origname,
2194 &alt_filename));
2195
2196 if (fd.get () >= 0)
2197 {
2198 /* File successfully retrieved from server. */
2199 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2200
2201 if (dwz_bfd == nullptr)
2202 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2203 alt_filename.get ());
2204 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2205 dwz_bfd.reset (nullptr);
2206 }
2207 }
2208
2209 if (dwz_bfd == NULL)
2210 error (_("could not find '.gnu_debugaltlink' file for %s"),
2211 bfd_get_filename (per_bfd->obfd));
2212
2213 std::unique_ptr<struct dwz_file> result
2214 (new struct dwz_file (std::move (dwz_bfd)));
2215
2216 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2217 result.get ());
2218
2219 gdb_bfd_record_inclusion (per_bfd->obfd, result->dwz_bfd.get ());
2220 per_bfd->dwz_file = std::move (result);
2221 return per_bfd->dwz_file.get ();
2222 }
2223 \f
2224 /* DWARF quick_symbols_functions support. */
2225
2226 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2227 unique line tables, so we maintain a separate table of all .debug_line
2228 derived entries to support the sharing.
2229 All the quick functions need is the list of file names. We discard the
2230 line_header when we're done and don't need to record it here. */
2231 struct quick_file_names
2232 {
2233 /* The data used to construct the hash key. */
2234 struct stmt_list_hash hash;
2235
2236 /* The number of entries in file_names, real_names. */
2237 unsigned int num_file_names;
2238
2239 /* The file names from the line table, after being run through
2240 file_full_name. */
2241 const char **file_names;
2242
2243 /* The file names from the line table after being run through
2244 gdb_realpath. These are computed lazily. */
2245 const char **real_names;
2246 };
2247
2248 /* When using the index (and thus not using psymtabs), each CU has an
2249 object of this type. This is used to hold information needed by
2250 the various "quick" methods. */
2251 struct dwarf2_per_cu_quick_data
2252 {
2253 /* The file table. This can be NULL if there was no file table
2254 or it's currently not read in.
2255 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2256 struct quick_file_names *file_names;
2257
2258 /* A temporary mark bit used when iterating over all CUs in
2259 expand_symtabs_matching. */
2260 unsigned int mark : 1;
2261
2262 /* True if we've tried to read the file table and found there isn't one.
2263 There will be no point in trying to read it again next time. */
2264 unsigned int no_file_data : 1;
2265 };
2266
2267 /* Utility hash function for a stmt_list_hash. */
2268
2269 static hashval_t
2270 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2271 {
2272 hashval_t v = 0;
2273
2274 if (stmt_list_hash->dwo_unit != NULL)
2275 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2276 v += to_underlying (stmt_list_hash->line_sect_off);
2277 return v;
2278 }
2279
2280 /* Utility equality function for a stmt_list_hash. */
2281
2282 static int
2283 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2284 const struct stmt_list_hash *rhs)
2285 {
2286 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2287 return 0;
2288 if (lhs->dwo_unit != NULL
2289 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2290 return 0;
2291
2292 return lhs->line_sect_off == rhs->line_sect_off;
2293 }
2294
2295 /* Hash function for a quick_file_names. */
2296
2297 static hashval_t
2298 hash_file_name_entry (const void *e)
2299 {
2300 const struct quick_file_names *file_data
2301 = (const struct quick_file_names *) e;
2302
2303 return hash_stmt_list_entry (&file_data->hash);
2304 }
2305
2306 /* Equality function for a quick_file_names. */
2307
2308 static int
2309 eq_file_name_entry (const void *a, const void *b)
2310 {
2311 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2312 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2313
2314 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2315 }
2316
2317 /* Delete function for a quick_file_names. */
2318
2319 static void
2320 delete_file_name_entry (void *e)
2321 {
2322 struct quick_file_names *file_data = (struct quick_file_names *) e;
2323 int i;
2324
2325 for (i = 0; i < file_data->num_file_names; ++i)
2326 {
2327 xfree ((void*) file_data->file_names[i]);
2328 if (file_data->real_names)
2329 xfree ((void*) file_data->real_names[i]);
2330 }
2331
2332 /* The space for the struct itself lives on the obstack, so we don't
2333 free it here. */
2334 }
2335
2336 /* Create a quick_file_names hash table. */
2337
2338 static htab_up
2339 create_quick_file_names_table (unsigned int nr_initial_entries)
2340 {
2341 return htab_up (htab_create_alloc (nr_initial_entries,
2342 hash_file_name_entry, eq_file_name_entry,
2343 delete_file_name_entry, xcalloc, xfree));
2344 }
2345
2346 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2347 function is unrelated to symtabs, symtab would have to be created afterwards.
2348 You should call age_cached_comp_units after processing the CU. */
2349
2350 static void
2351 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2352 bool skip_partial)
2353 {
2354 if (per_cu->is_debug_types)
2355 load_full_type_unit (per_cu, per_objfile);
2356 else
2357 load_full_comp_unit (per_cu, per_objfile, skip_partial, language_minimal);
2358
2359 if (per_cu->cu == NULL)
2360 return; /* Dummy CU. */
2361
2362 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2363 }
2364
2365 /* Read in the symbols for PER_CU in the context of DWARF"_PER_OBJFILE. */
2366
2367 static void
2368 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2369 dwarf2_per_objfile *dwarf2_per_objfile,
2370 bool skip_partial)
2371 {
2372 /* Skip type_unit_groups, reading the type units they contain
2373 is handled elsewhere. */
2374 if (per_cu->type_unit_group_p ())
2375 return;
2376
2377 /* The destructor of dwarf2_queue_guard frees any entries left on
2378 the queue. After this point we're guaranteed to leave this function
2379 with the dwarf queue empty. */
2380 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2381
2382 if (!dwarf2_per_objfile->symtab_set_p (per_cu))
2383 {
2384 queue_comp_unit (per_cu, language_minimal);
2385 load_cu (per_cu, dwarf2_per_objfile, skip_partial);
2386
2387 /* If we just loaded a CU from a DWO, and we're working with an index
2388 that may badly handle TUs, load all the TUs in that DWO as well.
2389 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2390 if (!per_cu->is_debug_types
2391 && per_cu->cu != NULL
2392 && per_cu->cu->dwo_unit != NULL
2393 && dwarf2_per_objfile->per_bfd->index_table != NULL
2394 && dwarf2_per_objfile->per_bfd->index_table->version <= 7
2395 /* DWP files aren't supported yet. */
2396 && get_dwp_file (dwarf2_per_objfile) == NULL)
2397 queue_and_load_all_dwo_tus (per_cu);
2398 }
2399
2400 process_queue (dwarf2_per_objfile);
2401
2402 /* Age the cache, releasing compilation units that have not
2403 been used recently. */
2404 age_cached_comp_units (dwarf2_per_objfile);
2405 }
2406
2407 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2408 the per-objfile for which this symtab is instantiated.
2409
2410 Returns the resulting symbol table. */
2411
2412 static struct compunit_symtab *
2413 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2414 dwarf2_per_objfile *dwarf2_per_objfile,
2415 bool skip_partial)
2416 {
2417 gdb_assert (dwarf2_per_objfile->per_bfd->using_index);
2418
2419 if (!dwarf2_per_objfile->symtab_set_p (per_cu))
2420 {
2421 free_cached_comp_units freer (dwarf2_per_objfile);
2422 scoped_restore decrementer = increment_reading_symtab ();
2423 dw2_do_instantiate_symtab (per_cu, dwarf2_per_objfile, skip_partial);
2424 process_cu_includes (dwarf2_per_objfile);
2425 }
2426
2427 return dwarf2_per_objfile->get_symtab (per_cu);
2428 }
2429
2430 /* See declaration. */
2431
2432 dwarf2_per_cu_data *
2433 dwarf2_per_bfd::get_cutu (int index)
2434 {
2435 if (index >= this->all_comp_units.size ())
2436 {
2437 index -= this->all_comp_units.size ();
2438 gdb_assert (index < this->all_type_units.size ());
2439 return &this->all_type_units[index]->per_cu;
2440 }
2441
2442 return this->all_comp_units[index];
2443 }
2444
2445 /* See declaration. */
2446
2447 dwarf2_per_cu_data *
2448 dwarf2_per_bfd::get_cu (int index)
2449 {
2450 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2451
2452 return this->all_comp_units[index];
2453 }
2454
2455 /* See declaration. */
2456
2457 signatured_type *
2458 dwarf2_per_bfd::get_tu (int index)
2459 {
2460 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2461
2462 return this->all_type_units[index];
2463 }
2464
2465 /* See read.h. */
2466
2467 dwarf2_per_cu_data *
2468 dwarf2_per_bfd::allocate_per_cu ()
2469 {
2470 dwarf2_per_cu_data *result = OBSTACK_ZALLOC (&obstack, dwarf2_per_cu_data);
2471 result->per_bfd = this;
2472 result->index = m_num_psymtabs++;
2473 return result;
2474 }
2475
2476 /* See read.h. */
2477
2478 signatured_type *
2479 dwarf2_per_bfd::allocate_signatured_type ()
2480 {
2481 signatured_type *result = OBSTACK_ZALLOC (&obstack, signatured_type);
2482 result->per_cu.per_bfd = this;
2483 result->per_cu.index = m_num_psymtabs++;
2484 return result;
2485 }
2486
2487 /* Return a new dwarf2_per_cu_data allocated on the dwarf2_per_objfile
2488 obstack, and constructed with the specified field values. */
2489
2490 static dwarf2_per_cu_data *
2491 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2492 struct dwarf2_section_info *section,
2493 int is_dwz,
2494 sect_offset sect_off, ULONGEST length)
2495 {
2496 dwarf2_per_cu_data *the_cu = dwarf2_per_objfile->per_bfd->allocate_per_cu ();
2497 the_cu->sect_off = sect_off;
2498 the_cu->length = length;
2499 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2500 the_cu->section = section;
2501 the_cu->v.quick = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
2502 struct dwarf2_per_cu_quick_data);
2503 the_cu->is_dwz = is_dwz;
2504 return the_cu;
2505 }
2506
2507 /* A helper for create_cus_from_index that handles a given list of
2508 CUs. */
2509
2510 static void
2511 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2512 const gdb_byte *cu_list, offset_type n_elements,
2513 struct dwarf2_section_info *section,
2514 int is_dwz)
2515 {
2516 for (offset_type i = 0; i < n_elements; i += 2)
2517 {
2518 gdb_static_assert (sizeof (ULONGEST) >= 8);
2519
2520 sect_offset sect_off
2521 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2522 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2523 cu_list += 2 * 8;
2524
2525 dwarf2_per_cu_data *per_cu
2526 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2527 sect_off, length);
2528 dwarf2_per_objfile->per_bfd->all_comp_units.push_back (per_cu);
2529 }
2530 }
2531
2532 /* Read the CU list from the mapped index, and use it to create all
2533 the CU objects for this objfile. */
2534
2535 static void
2536 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2537 const gdb_byte *cu_list, offset_type cu_list_elements,
2538 const gdb_byte *dwz_list, offset_type dwz_elements)
2539 {
2540 gdb_assert (dwarf2_per_objfile->per_bfd->all_comp_units.empty ());
2541 dwarf2_per_objfile->per_bfd->all_comp_units.reserve
2542 ((cu_list_elements + dwz_elements) / 2);
2543
2544 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2545 &dwarf2_per_objfile->per_bfd->info, 0);
2546
2547 if (dwz_elements == 0)
2548 return;
2549
2550 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
2551 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2552 &dwz->info, 1);
2553 }
2554
2555 /* Create the signatured type hash table from the index. */
2556
2557 static void
2558 create_signatured_type_table_from_index
2559 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2560 struct dwarf2_section_info *section,
2561 const gdb_byte *bytes,
2562 offset_type elements)
2563 {
2564 gdb_assert (dwarf2_per_objfile->per_bfd->all_type_units.empty ());
2565 dwarf2_per_objfile->per_bfd->all_type_units.reserve (elements / 3);
2566
2567 htab_up sig_types_hash = allocate_signatured_type_table ();
2568
2569 for (offset_type i = 0; i < elements; i += 3)
2570 {
2571 struct signatured_type *sig_type;
2572 ULONGEST signature;
2573 void **slot;
2574 cu_offset type_offset_in_tu;
2575
2576 gdb_static_assert (sizeof (ULONGEST) >= 8);
2577 sect_offset sect_off
2578 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2579 type_offset_in_tu
2580 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2581 BFD_ENDIAN_LITTLE);
2582 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2583 bytes += 3 * 8;
2584
2585 sig_type = dwarf2_per_objfile->per_bfd->allocate_signatured_type ();
2586 sig_type->signature = signature;
2587 sig_type->type_offset_in_tu = type_offset_in_tu;
2588 sig_type->per_cu.is_debug_types = 1;
2589 sig_type->per_cu.section = section;
2590 sig_type->per_cu.sect_off = sect_off;
2591 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2592 sig_type->per_cu.v.quick
2593 = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
2594 struct dwarf2_per_cu_quick_data);
2595
2596 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2597 *slot = sig_type;
2598
2599 dwarf2_per_objfile->per_bfd->all_type_units.push_back (sig_type);
2600 }
2601
2602 dwarf2_per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2603 }
2604
2605 /* Create the signatured type hash table from .debug_names. */
2606
2607 static void
2608 create_signatured_type_table_from_debug_names
2609 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2610 const mapped_debug_names &map,
2611 struct dwarf2_section_info *section,
2612 struct dwarf2_section_info *abbrev_section)
2613 {
2614 struct objfile *objfile = dwarf2_per_objfile->objfile;
2615
2616 section->read (objfile);
2617 abbrev_section->read (objfile);
2618
2619 gdb_assert (dwarf2_per_objfile->per_bfd->all_type_units.empty ());
2620 dwarf2_per_objfile->per_bfd->all_type_units.reserve (map.tu_count);
2621
2622 htab_up sig_types_hash = allocate_signatured_type_table ();
2623
2624 for (uint32_t i = 0; i < map.tu_count; ++i)
2625 {
2626 struct signatured_type *sig_type;
2627 void **slot;
2628
2629 sect_offset sect_off
2630 = (sect_offset) (extract_unsigned_integer
2631 (map.tu_table_reordered + i * map.offset_size,
2632 map.offset_size,
2633 map.dwarf5_byte_order));
2634
2635 comp_unit_head cu_header;
2636 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2637 abbrev_section,
2638 section->buffer + to_underlying (sect_off),
2639 rcuh_kind::TYPE);
2640
2641 sig_type = dwarf2_per_objfile->per_bfd->allocate_signatured_type ();
2642 sig_type->signature = cu_header.signature;
2643 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2644 sig_type->per_cu.is_debug_types = 1;
2645 sig_type->per_cu.section = section;
2646 sig_type->per_cu.sect_off = sect_off;
2647 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2648 sig_type->per_cu.v.quick
2649 = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
2650 struct dwarf2_per_cu_quick_data);
2651
2652 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2653 *slot = sig_type;
2654
2655 dwarf2_per_objfile->per_bfd->all_type_units.push_back (sig_type);
2656 }
2657
2658 dwarf2_per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2659 }
2660
2661 /* Read the address map data from the mapped index, and use it to
2662 populate the objfile's psymtabs_addrmap. */
2663
2664 static void
2665 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2666 struct mapped_index *index)
2667 {
2668 struct objfile *objfile = dwarf2_per_objfile->objfile;
2669 struct gdbarch *gdbarch = objfile->arch ();
2670 const gdb_byte *iter, *end;
2671 struct addrmap *mutable_map;
2672 CORE_ADDR baseaddr;
2673
2674 auto_obstack temp_obstack;
2675
2676 mutable_map = addrmap_create_mutable (&temp_obstack);
2677
2678 iter = index->address_table.data ();
2679 end = iter + index->address_table.size ();
2680
2681 baseaddr = objfile->text_section_offset ();
2682
2683 while (iter < end)
2684 {
2685 ULONGEST hi, lo, cu_index;
2686 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2687 iter += 8;
2688 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2689 iter += 8;
2690 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2691 iter += 4;
2692
2693 if (lo > hi)
2694 {
2695 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2696 hex_string (lo), hex_string (hi));
2697 continue;
2698 }
2699
2700 if (cu_index >= dwarf2_per_objfile->per_bfd->all_comp_units.size ())
2701 {
2702 complaint (_(".gdb_index address table has invalid CU number %u"),
2703 (unsigned) cu_index);
2704 continue;
2705 }
2706
2707 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2708 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2709 addrmap_set_empty (mutable_map, lo, hi - 1,
2710 dwarf2_per_objfile->per_bfd->get_cu (cu_index));
2711 }
2712
2713 objfile->partial_symtabs->psymtabs_addrmap
2714 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2715 }
2716
2717 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2718 populate the objfile's psymtabs_addrmap. */
2719
2720 static void
2721 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2722 struct dwarf2_section_info *section)
2723 {
2724 struct objfile *objfile = dwarf2_per_objfile->objfile;
2725 bfd *abfd = objfile->obfd;
2726 struct gdbarch *gdbarch = objfile->arch ();
2727 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2728
2729 auto_obstack temp_obstack;
2730 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2731
2732 std::unordered_map<sect_offset,
2733 dwarf2_per_cu_data *,
2734 gdb::hash_enum<sect_offset>>
2735 debug_info_offset_to_per_cu;
2736 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
2737 {
2738 const auto insertpair
2739 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2740 if (!insertpair.second)
2741 {
2742 warning (_("Section .debug_aranges in %s has duplicate "
2743 "debug_info_offset %s, ignoring .debug_aranges."),
2744 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2745 return;
2746 }
2747 }
2748
2749 section->read (objfile);
2750
2751 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2752
2753 const gdb_byte *addr = section->buffer;
2754
2755 while (addr < section->buffer + section->size)
2756 {
2757 const gdb_byte *const entry_addr = addr;
2758 unsigned int bytes_read;
2759
2760 const LONGEST entry_length = read_initial_length (abfd, addr,
2761 &bytes_read);
2762 addr += bytes_read;
2763
2764 const gdb_byte *const entry_end = addr + entry_length;
2765 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2766 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2767 if (addr + entry_length > section->buffer + section->size)
2768 {
2769 warning (_("Section .debug_aranges in %s entry at offset %s "
2770 "length %s exceeds section length %s, "
2771 "ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer),
2774 plongest (bytes_read + entry_length),
2775 pulongest (section->size));
2776 return;
2777 }
2778
2779 /* The version number. */
2780 const uint16_t version = read_2_bytes (abfd, addr);
2781 addr += 2;
2782 if (version != 2)
2783 {
2784 warning (_("Section .debug_aranges in %s entry at offset %s "
2785 "has unsupported version %d, ignoring .debug_aranges."),
2786 objfile_name (objfile),
2787 plongest (entry_addr - section->buffer), version);
2788 return;
2789 }
2790
2791 const uint64_t debug_info_offset
2792 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2793 addr += offset_size;
2794 const auto per_cu_it
2795 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2796 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2797 {
2798 warning (_("Section .debug_aranges in %s entry at offset %s "
2799 "debug_info_offset %s does not exists, "
2800 "ignoring .debug_aranges."),
2801 objfile_name (objfile),
2802 plongest (entry_addr - section->buffer),
2803 pulongest (debug_info_offset));
2804 return;
2805 }
2806 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2807
2808 const uint8_t address_size = *addr++;
2809 if (address_size < 1 || address_size > 8)
2810 {
2811 warning (_("Section .debug_aranges in %s entry at offset %s "
2812 "address_size %u is invalid, ignoring .debug_aranges."),
2813 objfile_name (objfile),
2814 plongest (entry_addr - section->buffer), address_size);
2815 return;
2816 }
2817
2818 const uint8_t segment_selector_size = *addr++;
2819 if (segment_selector_size != 0)
2820 {
2821 warning (_("Section .debug_aranges in %s entry at offset %s "
2822 "segment_selector_size %u is not supported, "
2823 "ignoring .debug_aranges."),
2824 objfile_name (objfile),
2825 plongest (entry_addr - section->buffer),
2826 segment_selector_size);
2827 return;
2828 }
2829
2830 /* Must pad to an alignment boundary that is twice the address
2831 size. It is undocumented by the DWARF standard but GCC does
2832 use it. */
2833 for (size_t padding = ((-(addr - section->buffer))
2834 & (2 * address_size - 1));
2835 padding > 0; padding--)
2836 if (*addr++ != 0)
2837 {
2838 warning (_("Section .debug_aranges in %s entry at offset %s "
2839 "padding is not zero, ignoring .debug_aranges."),
2840 objfile_name (objfile),
2841 plongest (entry_addr - section->buffer));
2842 return;
2843 }
2844
2845 for (;;)
2846 {
2847 if (addr + 2 * address_size > entry_end)
2848 {
2849 warning (_("Section .debug_aranges in %s entry at offset %s "
2850 "address list is not properly terminated, "
2851 "ignoring .debug_aranges."),
2852 objfile_name (objfile),
2853 plongest (entry_addr - section->buffer));
2854 return;
2855 }
2856 ULONGEST start = extract_unsigned_integer (addr, address_size,
2857 dwarf5_byte_order);
2858 addr += address_size;
2859 ULONGEST length = extract_unsigned_integer (addr, address_size,
2860 dwarf5_byte_order);
2861 addr += address_size;
2862 if (start == 0 && length == 0)
2863 break;
2864 if (start == 0 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
2865 {
2866 /* Symbol was eliminated due to a COMDAT group. */
2867 continue;
2868 }
2869 ULONGEST end = start + length;
2870 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2871 - baseaddr);
2872 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2873 - baseaddr);
2874 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2875 }
2876 }
2877
2878 objfile->partial_symtabs->psymtabs_addrmap
2879 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2880 }
2881
2882 /* Find a slot in the mapped index INDEX for the object named NAME.
2883 If NAME is found, set *VEC_OUT to point to the CU vector in the
2884 constant pool and return true. If NAME cannot be found, return
2885 false. */
2886
2887 static bool
2888 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2889 offset_type **vec_out)
2890 {
2891 offset_type hash;
2892 offset_type slot, step;
2893 int (*cmp) (const char *, const char *);
2894
2895 gdb::unique_xmalloc_ptr<char> without_params;
2896 if (current_language->la_language == language_cplus
2897 || current_language->la_language == language_fortran
2898 || current_language->la_language == language_d)
2899 {
2900 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2901 not contain any. */
2902
2903 if (strchr (name, '(') != NULL)
2904 {
2905 without_params = cp_remove_params (name);
2906
2907 if (without_params != NULL)
2908 name = without_params.get ();
2909 }
2910 }
2911
2912 /* Index version 4 did not support case insensitive searches. But the
2913 indices for case insensitive languages are built in lowercase, therefore
2914 simulate our NAME being searched is also lowercased. */
2915 hash = mapped_index_string_hash ((index->version == 4
2916 && case_sensitivity == case_sensitive_off
2917 ? 5 : index->version),
2918 name);
2919
2920 slot = hash & (index->symbol_table.size () - 1);
2921 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2922 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2923
2924 for (;;)
2925 {
2926 const char *str;
2927
2928 const auto &bucket = index->symbol_table[slot];
2929 if (bucket.name == 0 && bucket.vec == 0)
2930 return false;
2931
2932 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2933 if (!cmp (name, str))
2934 {
2935 *vec_out = (offset_type *) (index->constant_pool
2936 + MAYBE_SWAP (bucket.vec));
2937 return true;
2938 }
2939
2940 slot = (slot + step) & (index->symbol_table.size () - 1);
2941 }
2942 }
2943
2944 /* A helper function that reads the .gdb_index from BUFFER and fills
2945 in MAP. FILENAME is the name of the file containing the data;
2946 it is used for error reporting. DEPRECATED_OK is true if it is
2947 ok to use deprecated sections.
2948
2949 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2950 out parameters that are filled in with information about the CU and
2951 TU lists in the section.
2952
2953 Returns true if all went well, false otherwise. */
2954
2955 static bool
2956 read_gdb_index_from_buffer (const char *filename,
2957 bool deprecated_ok,
2958 gdb::array_view<const gdb_byte> buffer,
2959 struct mapped_index *map,
2960 const gdb_byte **cu_list,
2961 offset_type *cu_list_elements,
2962 const gdb_byte **types_list,
2963 offset_type *types_list_elements)
2964 {
2965 const gdb_byte *addr = &buffer[0];
2966
2967 /* Version check. */
2968 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2969 /* Versions earlier than 3 emitted every copy of a psymbol. This
2970 causes the index to behave very poorly for certain requests. Version 3
2971 contained incomplete addrmap. So, it seems better to just ignore such
2972 indices. */
2973 if (version < 4)
2974 {
2975 static int warning_printed = 0;
2976 if (!warning_printed)
2977 {
2978 warning (_("Skipping obsolete .gdb_index section in %s."),
2979 filename);
2980 warning_printed = 1;
2981 }
2982 return 0;
2983 }
2984 /* Index version 4 uses a different hash function than index version
2985 5 and later.
2986
2987 Versions earlier than 6 did not emit psymbols for inlined
2988 functions. Using these files will cause GDB not to be able to
2989 set breakpoints on inlined functions by name, so we ignore these
2990 indices unless the user has done
2991 "set use-deprecated-index-sections on". */
2992 if (version < 6 && !deprecated_ok)
2993 {
2994 static int warning_printed = 0;
2995 if (!warning_printed)
2996 {
2997 warning (_("\
2998 Skipping deprecated .gdb_index section in %s.\n\
2999 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3000 to use the section anyway."),
3001 filename);
3002 warning_printed = 1;
3003 }
3004 return 0;
3005 }
3006 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3007 of the TU (for symbols coming from TUs),
3008 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3009 Plus gold-generated indices can have duplicate entries for global symbols,
3010 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3011 These are just performance bugs, and we can't distinguish gdb-generated
3012 indices from gold-generated ones, so issue no warning here. */
3013
3014 /* Indexes with higher version than the one supported by GDB may be no
3015 longer backward compatible. */
3016 if (version > 8)
3017 return 0;
3018
3019 map->version = version;
3020
3021 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3022
3023 int i = 0;
3024 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3025 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3026 / 8);
3027 ++i;
3028
3029 *types_list = addr + MAYBE_SWAP (metadata[i]);
3030 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3031 - MAYBE_SWAP (metadata[i]))
3032 / 8);
3033 ++i;
3034
3035 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3036 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3037 map->address_table
3038 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3039 ++i;
3040
3041 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3042 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3043 map->symbol_table
3044 = gdb::array_view<mapped_index::symbol_table_slot>
3045 ((mapped_index::symbol_table_slot *) symbol_table,
3046 (mapped_index::symbol_table_slot *) symbol_table_end);
3047
3048 ++i;
3049 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3050
3051 return 1;
3052 }
3053
3054 /* Callback types for dwarf2_read_gdb_index. */
3055
3056 typedef gdb::function_view
3057 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
3058 get_gdb_index_contents_ftype;
3059 typedef gdb::function_view
3060 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3061 get_gdb_index_contents_dwz_ftype;
3062
3063 /* Read .gdb_index. If everything went ok, initialize the "quick"
3064 elements of all the CUs and return 1. Otherwise, return 0. */
3065
3066 static int
3067 dwarf2_read_gdb_index
3068 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3069 get_gdb_index_contents_ftype get_gdb_index_contents,
3070 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3071 {
3072 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3073 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3074 struct dwz_file *dwz;
3075 struct objfile *objfile = dwarf2_per_objfile->objfile;
3076
3077 gdb::array_view<const gdb_byte> main_index_contents
3078 = get_gdb_index_contents (objfile, dwarf2_per_objfile->per_bfd);
3079
3080 if (main_index_contents.empty ())
3081 return 0;
3082
3083 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3084 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3085 use_deprecated_index_sections,
3086 main_index_contents, map.get (), &cu_list,
3087 &cu_list_elements, &types_list,
3088 &types_list_elements))
3089 return 0;
3090
3091 /* Don't use the index if it's empty. */
3092 if (map->symbol_table.empty ())
3093 return 0;
3094
3095 /* If there is a .dwz file, read it so we can get its CU list as
3096 well. */
3097 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
3098 if (dwz != NULL)
3099 {
3100 struct mapped_index dwz_map;
3101 const gdb_byte *dwz_types_ignore;
3102 offset_type dwz_types_elements_ignore;
3103
3104 gdb::array_view<const gdb_byte> dwz_index_content
3105 = get_gdb_index_contents_dwz (objfile, dwz);
3106
3107 if (dwz_index_content.empty ())
3108 return 0;
3109
3110 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3111 1, dwz_index_content, &dwz_map,
3112 &dwz_list, &dwz_list_elements,
3113 &dwz_types_ignore,
3114 &dwz_types_elements_ignore))
3115 {
3116 warning (_("could not read '.gdb_index' section from %s; skipping"),
3117 bfd_get_filename (dwz->dwz_bfd.get ()));
3118 return 0;
3119 }
3120 }
3121
3122 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3123 dwz_list, dwz_list_elements);
3124
3125 if (types_list_elements)
3126 {
3127 /* We can only handle a single .debug_types when we have an
3128 index. */
3129 if (dwarf2_per_objfile->per_bfd->types.size () != 1)
3130 return 0;
3131
3132 dwarf2_section_info *section = &dwarf2_per_objfile->per_bfd->types[0];
3133
3134 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3135 types_list, types_list_elements);
3136 }
3137
3138 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3139
3140 dwarf2_per_objfile->per_bfd->index_table = std::move (map);
3141 dwarf2_per_objfile->per_bfd->using_index = 1;
3142 dwarf2_per_objfile->per_bfd->quick_file_names_table =
3143 create_quick_file_names_table (dwarf2_per_objfile->per_bfd->all_comp_units.size ());
3144
3145 return 1;
3146 }
3147
3148 /* die_reader_func for dw2_get_file_names. */
3149
3150 static void
3151 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3152 const gdb_byte *info_ptr,
3153 struct die_info *comp_unit_die)
3154 {
3155 struct dwarf2_cu *cu = reader->cu;
3156 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3157 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
3158 struct dwarf2_per_cu_data *lh_cu;
3159 struct attribute *attr;
3160 void **slot;
3161 struct quick_file_names *qfn;
3162
3163 gdb_assert (! this_cu->is_debug_types);
3164
3165 /* Our callers never want to match partial units -- instead they
3166 will match the enclosing full CU. */
3167 if (comp_unit_die->tag == DW_TAG_partial_unit)
3168 {
3169 this_cu->v.quick->no_file_data = 1;
3170 return;
3171 }
3172
3173 lh_cu = this_cu;
3174 slot = NULL;
3175
3176 line_header_up lh;
3177 sect_offset line_offset {};
3178
3179 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3180 if (attr != nullptr)
3181 {
3182 struct quick_file_names find_entry;
3183
3184 line_offset = (sect_offset) DW_UNSND (attr);
3185
3186 /* We may have already read in this line header (TU line header sharing).
3187 If we have we're done. */
3188 find_entry.hash.dwo_unit = cu->dwo_unit;
3189 find_entry.hash.line_sect_off = line_offset;
3190 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->quick_file_names_table.get (),
3191 &find_entry, INSERT);
3192 if (*slot != NULL)
3193 {
3194 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3195 return;
3196 }
3197
3198 lh = dwarf_decode_line_header (line_offset, cu);
3199 }
3200 if (lh == NULL)
3201 {
3202 lh_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 qfn = XOBNEW (&dwarf2_per_objfile->per_bfd->obstack, struct quick_file_names);
3207 qfn->hash.dwo_unit = cu->dwo_unit;
3208 qfn->hash.line_sect_off = line_offset;
3209 gdb_assert (slot != NULL);
3210 *slot = qfn;
3211
3212 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3213
3214 int offset = 0;
3215 if (strcmp (fnd.name, "<unknown>") != 0)
3216 ++offset;
3217
3218 qfn->num_file_names = offset + lh->file_names_size ();
3219 qfn->file_names =
3220 XOBNEWVEC (&dwarf2_per_objfile->per_bfd->obstack, const char *,
3221 qfn->num_file_names);
3222 if (offset != 0)
3223 qfn->file_names[0] = xstrdup (fnd.name);
3224 for (int i = 0; i < lh->file_names_size (); ++i)
3225 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3226 fnd.comp_dir).release ();
3227 qfn->real_names = NULL;
3228
3229 lh_cu->v.quick->file_names = qfn;
3230 }
3231
3232 /* A helper for the "quick" functions which attempts to read the line
3233 table for THIS_CU. */
3234
3235 static struct quick_file_names *
3236 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3237 dwarf2_per_objfile *per_objfile)
3238 {
3239 /* This should never be called for TUs. */
3240 gdb_assert (! this_cu->is_debug_types);
3241 /* Nor type unit groups. */
3242 gdb_assert (! this_cu->type_unit_group_p ());
3243
3244 if (this_cu->v.quick->file_names != NULL)
3245 return this_cu->v.quick->file_names;
3246 /* If we know there is no line data, no point in looking again. */
3247 if (this_cu->v.quick->no_file_data)
3248 return NULL;
3249
3250 cutu_reader reader (this_cu, per_objfile);
3251 if (!reader.dummy_p)
3252 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3253
3254 if (this_cu->v.quick->no_file_data)
3255 return NULL;
3256 return this_cu->v.quick->file_names;
3257 }
3258
3259 /* A helper for the "quick" functions which computes and caches the
3260 real path for a given file name from the line table. */
3261
3262 static const char *
3263 dw2_get_real_path (struct dwarf2_per_objfile *dwarf2_per_objfile,
3264 struct quick_file_names *qfn, int index)
3265 {
3266 if (qfn->real_names == NULL)
3267 qfn->real_names = OBSTACK_CALLOC (&dwarf2_per_objfile->per_bfd->obstack,
3268 qfn->num_file_names, const char *);
3269
3270 if (qfn->real_names[index] == NULL)
3271 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3272
3273 return qfn->real_names[index];
3274 }
3275
3276 static struct symtab *
3277 dw2_find_last_source_symtab (struct objfile *objfile)
3278 {
3279 struct dwarf2_per_objfile *dwarf2_per_objfile
3280 = get_dwarf2_per_objfile (objfile);
3281 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->per_bfd->all_comp_units.back ();
3282 compunit_symtab *cust
3283 = dw2_instantiate_symtab (dwarf_cu, dwarf2_per_objfile, false);
3284
3285 if (cust == NULL)
3286 return NULL;
3287
3288 return compunit_primary_filetab (cust);
3289 }
3290
3291 /* Traversal function for dw2_forget_cached_source_info. */
3292
3293 static int
3294 dw2_free_cached_file_names (void **slot, void *info)
3295 {
3296 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3297
3298 if (file_data->real_names)
3299 {
3300 int i;
3301
3302 for (i = 0; i < file_data->num_file_names; ++i)
3303 {
3304 xfree ((void*) file_data->real_names[i]);
3305 file_data->real_names[i] = NULL;
3306 }
3307 }
3308
3309 return 1;
3310 }
3311
3312 static void
3313 dw2_forget_cached_source_info (struct objfile *objfile)
3314 {
3315 struct dwarf2_per_objfile *dwarf2_per_objfile
3316 = get_dwarf2_per_objfile (objfile);
3317
3318 htab_traverse_noresize (dwarf2_per_objfile->per_bfd->quick_file_names_table.get (),
3319 dw2_free_cached_file_names, NULL);
3320 }
3321
3322 /* Helper function for dw2_map_symtabs_matching_filename that expands
3323 the symtabs and calls the iterator. */
3324
3325 static int
3326 dw2_map_expand_apply (struct objfile *objfile,
3327 struct dwarf2_per_cu_data *per_cu,
3328 const char *name, const char *real_path,
3329 gdb::function_view<bool (symtab *)> callback)
3330 {
3331 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3332
3333 /* Don't visit already-expanded CUs. */
3334 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3335 if (per_objfile->symtab_set_p (per_cu))
3336 return 0;
3337
3338 /* This may expand more than one symtab, and we want to iterate over
3339 all of them. */
3340 dw2_instantiate_symtab (per_cu, per_objfile, false);
3341
3342 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3343 last_made, callback);
3344 }
3345
3346 /* Implementation of the map_symtabs_matching_filename method. */
3347
3348 static bool
3349 dw2_map_symtabs_matching_filename
3350 (struct objfile *objfile, const char *name, const char *real_path,
3351 gdb::function_view<bool (symtab *)> callback)
3352 {
3353 const char *name_basename = lbasename (name);
3354 struct dwarf2_per_objfile *dwarf2_per_objfile
3355 = get_dwarf2_per_objfile (objfile);
3356
3357 /* The rule is CUs specify all the files, including those used by
3358 any TU, so there's no need to scan TUs here. */
3359
3360 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
3361 {
3362 /* We only need to look at symtabs not already expanded. */
3363 if (dwarf2_per_objfile->symtab_set_p (per_cu))
3364 continue;
3365
3366 quick_file_names *file_data
3367 = dw2_get_file_names (per_cu, dwarf2_per_objfile);
3368 if (file_data == NULL)
3369 continue;
3370
3371 for (int j = 0; j < file_data->num_file_names; ++j)
3372 {
3373 const char *this_name = file_data->file_names[j];
3374 const char *this_real_name;
3375
3376 if (compare_filenames_for_search (this_name, name))
3377 {
3378 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3379 callback))
3380 return true;
3381 continue;
3382 }
3383
3384 /* Before we invoke realpath, which can get expensive when many
3385 files are involved, do a quick comparison of the basenames. */
3386 if (! basenames_may_differ
3387 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3388 continue;
3389
3390 this_real_name = dw2_get_real_path (dwarf2_per_objfile,
3391 file_data, j);
3392 if (compare_filenames_for_search (this_real_name, name))
3393 {
3394 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3395 callback))
3396 return true;
3397 continue;
3398 }
3399
3400 if (real_path != NULL)
3401 {
3402 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3403 gdb_assert (IS_ABSOLUTE_PATH (name));
3404 if (this_real_name != NULL
3405 && FILENAME_CMP (real_path, this_real_name) == 0)
3406 {
3407 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3408 callback))
3409 return true;
3410 continue;
3411 }
3412 }
3413 }
3414 }
3415
3416 return false;
3417 }
3418
3419 /* Struct used to manage iterating over all CUs looking for a symbol. */
3420
3421 struct dw2_symtab_iterator
3422 {
3423 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3424 struct dwarf2_per_objfile *dwarf2_per_objfile;
3425 /* If set, only look for symbols that match that block. Valid values are
3426 GLOBAL_BLOCK and STATIC_BLOCK. */
3427 gdb::optional<block_enum> block_index;
3428 /* The kind of symbol we're looking for. */
3429 domain_enum domain;
3430 /* The list of CUs from the index entry of the symbol,
3431 or NULL if not found. */
3432 offset_type *vec;
3433 /* The next element in VEC to look at. */
3434 int next;
3435 /* The number of elements in VEC, or zero if there is no match. */
3436 int length;
3437 /* Have we seen a global version of the symbol?
3438 If so we can ignore all further global instances.
3439 This is to work around gold/15646, inefficient gold-generated
3440 indices. */
3441 int global_seen;
3442 };
3443
3444 /* Initialize the index symtab iterator ITER. */
3445
3446 static void
3447 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3448 struct dwarf2_per_objfile *dwarf2_per_objfile,
3449 gdb::optional<block_enum> block_index,
3450 domain_enum domain,
3451 const char *name)
3452 {
3453 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3454 iter->block_index = block_index;
3455 iter->domain = domain;
3456 iter->next = 0;
3457 iter->global_seen = 0;
3458
3459 mapped_index *index = dwarf2_per_objfile->per_bfd->index_table.get ();
3460
3461 /* index is NULL if OBJF_READNOW. */
3462 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3463 iter->length = MAYBE_SWAP (*iter->vec);
3464 else
3465 {
3466 iter->vec = NULL;
3467 iter->length = 0;
3468 }
3469 }
3470
3471 /* Return the next matching CU or NULL if there are no more. */
3472
3473 static struct dwarf2_per_cu_data *
3474 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3475 {
3476 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3477
3478 for ( ; iter->next < iter->length; ++iter->next)
3479 {
3480 offset_type cu_index_and_attrs =
3481 MAYBE_SWAP (iter->vec[iter->next + 1]);
3482 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3483 gdb_index_symbol_kind symbol_kind =
3484 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3485 /* Only check the symbol attributes if they're present.
3486 Indices prior to version 7 don't record them,
3487 and indices >= 7 may elide them for certain symbols
3488 (gold does this). */
3489 int attrs_valid =
3490 (dwarf2_per_objfile->per_bfd->index_table->version >= 7
3491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3492
3493 /* Don't crash on bad data. */
3494 if (cu_index >= (dwarf2_per_objfile->per_bfd->all_comp_units.size ()
3495 + dwarf2_per_objfile->per_bfd->all_type_units.size ()))
3496 {
3497 complaint (_(".gdb_index entry has bad CU index"
3498 " [in module %s]"),
3499 objfile_name (dwarf2_per_objfile->objfile));
3500 continue;
3501 }
3502
3503 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->per_bfd->get_cutu (cu_index);
3504
3505 /* Skip if already read in. */
3506 if (dwarf2_per_objfile->symtab_set_p (per_cu))
3507 continue;
3508
3509 /* Check static vs global. */
3510 if (attrs_valid)
3511 {
3512 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3513
3514 if (iter->block_index.has_value ())
3515 {
3516 bool want_static = *iter->block_index == STATIC_BLOCK;
3517
3518 if (is_static != want_static)
3519 continue;
3520 }
3521
3522 /* Work around gold/15646. */
3523 if (!is_static && iter->global_seen)
3524 continue;
3525 if (!is_static)
3526 iter->global_seen = 1;
3527 }
3528
3529 /* Only check the symbol's kind if it has one. */
3530 if (attrs_valid)
3531 {
3532 switch (iter->domain)
3533 {
3534 case VAR_DOMAIN:
3535 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3536 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3537 /* Some types are also in VAR_DOMAIN. */
3538 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3539 continue;
3540 break;
3541 case STRUCT_DOMAIN:
3542 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3543 continue;
3544 break;
3545 case LABEL_DOMAIN:
3546 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3547 continue;
3548 break;
3549 case MODULE_DOMAIN:
3550 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3551 continue;
3552 break;
3553 default:
3554 break;
3555 }
3556 }
3557
3558 ++iter->next;
3559 return per_cu;
3560 }
3561
3562 return NULL;
3563 }
3564
3565 static struct compunit_symtab *
3566 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3567 const char *name, domain_enum domain)
3568 {
3569 struct compunit_symtab *stab_best = NULL;
3570 struct dwarf2_per_objfile *dwarf2_per_objfile
3571 = get_dwarf2_per_objfile (objfile);
3572
3573 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3574
3575 struct dw2_symtab_iterator iter;
3576 struct dwarf2_per_cu_data *per_cu;
3577
3578 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3579
3580 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3581 {
3582 struct symbol *sym, *with_opaque = NULL;
3583 struct compunit_symtab *stab
3584 = dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, false);
3585 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3586 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3587
3588 sym = block_find_symbol (block, name, domain,
3589 block_find_non_opaque_type_preferred,
3590 &with_opaque);
3591
3592 /* Some caution must be observed with overloaded functions
3593 and methods, since the index will not contain any overload
3594 information (but NAME might contain it). */
3595
3596 if (sym != NULL
3597 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3598 return stab;
3599 if (with_opaque != NULL
3600 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3601 stab_best = stab;
3602
3603 /* Keep looking through other CUs. */
3604 }
3605
3606 return stab_best;
3607 }
3608
3609 static void
3610 dw2_print_stats (struct objfile *objfile)
3611 {
3612 struct dwarf2_per_objfile *dwarf2_per_objfile
3613 = get_dwarf2_per_objfile (objfile);
3614 int total = (dwarf2_per_objfile->per_bfd->all_comp_units.size ()
3615 + dwarf2_per_objfile->per_bfd->all_type_units.size ());
3616 int count = 0;
3617
3618 for (int i = 0; i < total; ++i)
3619 {
3620 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->per_bfd->get_cutu (i);
3621
3622 if (!dwarf2_per_objfile->symtab_set_p (per_cu))
3623 ++count;
3624 }
3625 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3626 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3627 }
3628
3629 /* This dumps minimal information about the index.
3630 It is called via "mt print objfiles".
3631 One use is to verify .gdb_index has been loaded by the
3632 gdb.dwarf2/gdb-index.exp testcase. */
3633
3634 static void
3635 dw2_dump (struct objfile *objfile)
3636 {
3637 struct dwarf2_per_objfile *dwarf2_per_objfile
3638 = get_dwarf2_per_objfile (objfile);
3639
3640 gdb_assert (dwarf2_per_objfile->per_bfd->using_index);
3641 printf_filtered (".gdb_index:");
3642 if (dwarf2_per_objfile->per_bfd->index_table != NULL)
3643 {
3644 printf_filtered (" version %d\n",
3645 dwarf2_per_objfile->per_bfd->index_table->version);
3646 }
3647 else
3648 printf_filtered (" faked for \"readnow\"\n");
3649 printf_filtered ("\n");
3650 }
3651
3652 static void
3653 dw2_expand_symtabs_for_function (struct objfile *objfile,
3654 const char *func_name)
3655 {
3656 struct dwarf2_per_objfile *dwarf2_per_objfile
3657 = get_dwarf2_per_objfile (objfile);
3658
3659 struct dw2_symtab_iterator iter;
3660 struct dwarf2_per_cu_data *per_cu;
3661
3662 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3663
3664 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3665 dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, false);
3666
3667 }
3668
3669 static void
3670 dw2_expand_all_symtabs (struct objfile *objfile)
3671 {
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = get_dwarf2_per_objfile (objfile);
3674 int total_units = (dwarf2_per_objfile->per_bfd->all_comp_units.size ()
3675 + dwarf2_per_objfile->per_bfd->all_type_units.size ());
3676
3677 for (int i = 0; i < total_units; ++i)
3678 {
3679 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->per_bfd->get_cutu (i);
3680
3681 /* We don't want to directly expand a partial CU, because if we
3682 read it with the wrong language, then assertion failures can
3683 be triggered later on. See PR symtab/23010. So, tell
3684 dw2_instantiate_symtab to skip partial CUs -- any important
3685 partial CU will be read via DW_TAG_imported_unit anyway. */
3686 dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, true);
3687 }
3688 }
3689
3690 static void
3691 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3692 const char *fullname)
3693 {
3694 struct dwarf2_per_objfile *dwarf2_per_objfile
3695 = get_dwarf2_per_objfile (objfile);
3696
3697 /* We don't need to consider type units here.
3698 This is only called for examining code, e.g. expand_line_sal.
3699 There can be an order of magnitude (or more) more type units
3700 than comp units, and we avoid them if we can. */
3701
3702 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
3703 {
3704 /* We only need to look at symtabs not already expanded. */
3705 if (dwarf2_per_objfile->symtab_set_p (per_cu))
3706 continue;
3707
3708 quick_file_names *file_data
3709 = dw2_get_file_names (per_cu, dwarf2_per_objfile);
3710 if (file_data == NULL)
3711 continue;
3712
3713 for (int j = 0; j < file_data->num_file_names; ++j)
3714 {
3715 const char *this_fullname = file_data->file_names[j];
3716
3717 if (filename_cmp (this_fullname, fullname) == 0)
3718 {
3719 dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, false);
3720 break;
3721 }
3722 }
3723 }
3724 }
3725
3726 static void
3727 dw2_expand_symtabs_matching_symbol
3728 (mapped_index_base &index,
3729 const lookup_name_info &lookup_name_in,
3730 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3731 enum search_domain kind,
3732 gdb::function_view<bool (offset_type)> match_callback);
3733
3734 static void
3735 dw2_expand_symtabs_matching_one
3736 (dwarf2_per_cu_data *per_cu,
3737 dwarf2_per_objfile *per_objfile,
3738 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3739 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3740
3741 static void
3742 dw2_map_matching_symbols
3743 (struct objfile *objfile,
3744 const lookup_name_info &name, domain_enum domain,
3745 int global,
3746 gdb::function_view<symbol_found_callback_ftype> callback,
3747 symbol_compare_ftype *ordered_compare)
3748 {
3749 /* Used for Ada. */
3750 struct dwarf2_per_objfile *dwarf2_per_objfile
3751 = get_dwarf2_per_objfile (objfile);
3752
3753 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3754
3755 if (dwarf2_per_objfile->per_bfd->index_table != nullptr)
3756 {
3757 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3758 here though if the current language is Ada for a non-Ada objfile
3759 using GNU index. */
3760 mapped_index &index = *dwarf2_per_objfile->per_bfd->index_table;
3761
3762 const char *match_name = name.ada ().lookup_name ().c_str ();
3763 auto matcher = [&] (const char *symname)
3764 {
3765 if (ordered_compare == nullptr)
3766 return true;
3767 return ordered_compare (symname, match_name) == 0;
3768 };
3769
3770 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3771 [&] (offset_type namei)
3772 {
3773 struct dw2_symtab_iterator iter;
3774 struct dwarf2_per_cu_data *per_cu;
3775
3776 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_kind, domain,
3777 match_name);
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile, nullptr,
3780 nullptr);
3781 return true;
3782 });
3783 }
3784 else
3785 {
3786 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3787 proceed assuming all symtabs have been read in. */
3788 }
3789
3790 for (compunit_symtab *cust : objfile->compunits ())
3791 {
3792 const struct block *block;
3793
3794 if (cust == NULL)
3795 continue;
3796 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3797 if (!iterate_over_symbols_terminated (block, name,
3798 domain, callback))
3799 return;
3800 }
3801 }
3802
3803 /* Starting from a search name, return the string that finds the upper
3804 bound of all strings that start with SEARCH_NAME in a sorted name
3805 list. Returns the empty string to indicate that the upper bound is
3806 the end of the list. */
3807
3808 static std::string
3809 make_sort_after_prefix_name (const char *search_name)
3810 {
3811 /* When looking to complete "func", we find the upper bound of all
3812 symbols that start with "func" by looking for where we'd insert
3813 the closest string that would follow "func" in lexicographical
3814 order. Usually, that's "func"-with-last-character-incremented,
3815 i.e. "fund". Mind non-ASCII characters, though. Usually those
3816 will be UTF-8 multi-byte sequences, but we can't be certain.
3817 Especially mind the 0xff character, which is a valid character in
3818 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3819 rule out compilers allowing it in identifiers. Note that
3820 conveniently, strcmp/strcasecmp are specified to compare
3821 characters interpreted as unsigned char. So what we do is treat
3822 the whole string as a base 256 number composed of a sequence of
3823 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3824 to 0, and carries 1 to the following more-significant position.
3825 If the very first character in SEARCH_NAME ends up incremented
3826 and carries/overflows, then the upper bound is the end of the
3827 list. The string after the empty string is also the empty
3828 string.
3829
3830 Some examples of this operation:
3831
3832 SEARCH_NAME => "+1" RESULT
3833
3834 "abc" => "abd"
3835 "ab\xff" => "ac"
3836 "\xff" "a" "\xff" => "\xff" "b"
3837 "\xff" => ""
3838 "\xff\xff" => ""
3839 "" => ""
3840
3841 Then, with these symbols for example:
3842
3843 func
3844 func1
3845 fund
3846
3847 completing "func" looks for symbols between "func" and
3848 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3849 which finds "func" and "func1", but not "fund".
3850
3851 And with:
3852
3853 funcÿ (Latin1 'ÿ' [0xff])
3854 funcÿ1
3855 fund
3856
3857 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3858 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3859
3860 And with:
3861
3862 ÿÿ (Latin1 'ÿ' [0xff])
3863 ÿÿ1
3864
3865 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3866 the end of the list.
3867 */
3868 std::string after = search_name;
3869 while (!after.empty () && (unsigned char) after.back () == 0xff)
3870 after.pop_back ();
3871 if (!after.empty ())
3872 after.back () = (unsigned char) after.back () + 1;
3873 return after;
3874 }
3875
3876 /* See declaration. */
3877
3878 std::pair<std::vector<name_component>::const_iterator,
3879 std::vector<name_component>::const_iterator>
3880 mapped_index_base::find_name_components_bounds
3881 (const lookup_name_info &lookup_name_without_params, language lang) const
3882 {
3883 auto *name_cmp
3884 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3885
3886 const char *lang_name
3887 = lookup_name_without_params.language_lookup_name (lang);
3888
3889 /* Comparison function object for lower_bound that matches against a
3890 given symbol name. */
3891 auto lookup_compare_lower = [&] (const name_component &elem,
3892 const char *name)
3893 {
3894 const char *elem_qualified = this->symbol_name_at (elem.idx);
3895 const char *elem_name = elem_qualified + elem.name_offset;
3896 return name_cmp (elem_name, name) < 0;
3897 };
3898
3899 /* Comparison function object for upper_bound that matches against a
3900 given symbol name. */
3901 auto lookup_compare_upper = [&] (const char *name,
3902 const name_component &elem)
3903 {
3904 const char *elem_qualified = this->symbol_name_at (elem.idx);
3905 const char *elem_name = elem_qualified + elem.name_offset;
3906 return name_cmp (name, elem_name) < 0;
3907 };
3908
3909 auto begin = this->name_components.begin ();
3910 auto end = this->name_components.end ();
3911
3912 /* Find the lower bound. */
3913 auto lower = [&] ()
3914 {
3915 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3916 return begin;
3917 else
3918 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3919 } ();
3920
3921 /* Find the upper bound. */
3922 auto upper = [&] ()
3923 {
3924 if (lookup_name_without_params.completion_mode ())
3925 {
3926 /* In completion mode, we want UPPER to point past all
3927 symbols names that have the same prefix. I.e., with
3928 these symbols, and completing "func":
3929
3930 function << lower bound
3931 function1
3932 other_function << upper bound
3933
3934 We find the upper bound by looking for the insertion
3935 point of "func"-with-last-character-incremented,
3936 i.e. "fund". */
3937 std::string after = make_sort_after_prefix_name (lang_name);
3938 if (after.empty ())
3939 return end;
3940 return std::lower_bound (lower, end, after.c_str (),
3941 lookup_compare_lower);
3942 }
3943 else
3944 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3945 } ();
3946
3947 return {lower, upper};
3948 }
3949
3950 /* See declaration. */
3951
3952 void
3953 mapped_index_base::build_name_components ()
3954 {
3955 if (!this->name_components.empty ())
3956 return;
3957
3958 this->name_components_casing = case_sensitivity;
3959 auto *name_cmp
3960 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3961
3962 /* The code below only knows how to break apart components of C++
3963 symbol names (and other languages that use '::' as
3964 namespace/module separator) and Ada symbol names. */
3965 auto count = this->symbol_name_count ();
3966 for (offset_type idx = 0; idx < count; idx++)
3967 {
3968 if (this->symbol_name_slot_invalid (idx))
3969 continue;
3970
3971 const char *name = this->symbol_name_at (idx);
3972
3973 /* Add each name component to the name component table. */
3974 unsigned int previous_len = 0;
3975
3976 if (strstr (name, "::") != nullptr)
3977 {
3978 for (unsigned int current_len = cp_find_first_component (name);
3979 name[current_len] != '\0';
3980 current_len += cp_find_first_component (name + current_len))
3981 {
3982 gdb_assert (name[current_len] == ':');
3983 this->name_components.push_back ({previous_len, idx});
3984 /* Skip the '::'. */
3985 current_len += 2;
3986 previous_len = current_len;
3987 }
3988 }
3989 else
3990 {
3991 /* Handle the Ada encoded (aka mangled) form here. */
3992 for (const char *iter = strstr (name, "__");
3993 iter != nullptr;
3994 iter = strstr (iter, "__"))
3995 {
3996 this->name_components.push_back ({previous_len, idx});
3997 iter += 2;
3998 previous_len = iter - name;
3999 }
4000 }
4001
4002 this->name_components.push_back ({previous_len, idx});
4003 }
4004
4005 /* Sort name_components elements by name. */
4006 auto name_comp_compare = [&] (const name_component &left,
4007 const name_component &right)
4008 {
4009 const char *left_qualified = this->symbol_name_at (left.idx);
4010 const char *right_qualified = this->symbol_name_at (right.idx);
4011
4012 const char *left_name = left_qualified + left.name_offset;
4013 const char *right_name = right_qualified + right.name_offset;
4014
4015 return name_cmp (left_name, right_name) < 0;
4016 };
4017
4018 std::sort (this->name_components.begin (),
4019 this->name_components.end (),
4020 name_comp_compare);
4021 }
4022
4023 /* Helper for dw2_expand_symtabs_matching that works with a
4024 mapped_index_base instead of the containing objfile. This is split
4025 to a separate function in order to be able to unit test the
4026 name_components matching using a mock mapped_index_base. For each
4027 symbol name that matches, calls MATCH_CALLBACK, passing it the
4028 symbol's index in the mapped_index_base symbol table. */
4029
4030 static void
4031 dw2_expand_symtabs_matching_symbol
4032 (mapped_index_base &index,
4033 const lookup_name_info &lookup_name_in,
4034 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4035 enum search_domain kind,
4036 gdb::function_view<bool (offset_type)> match_callback)
4037 {
4038 lookup_name_info lookup_name_without_params
4039 = lookup_name_in.make_ignore_params ();
4040
4041 /* Build the symbol name component sorted vector, if we haven't
4042 yet. */
4043 index.build_name_components ();
4044
4045 /* The same symbol may appear more than once in the range though.
4046 E.g., if we're looking for symbols that complete "w", and we have
4047 a symbol named "w1::w2", we'll find the two name components for
4048 that same symbol in the range. To be sure we only call the
4049 callback once per symbol, we first collect the symbol name
4050 indexes that matched in a temporary vector and ignore
4051 duplicates. */
4052 std::vector<offset_type> matches;
4053
4054 struct name_and_matcher
4055 {
4056 symbol_name_matcher_ftype *matcher;
4057 const char *name;
4058
4059 bool operator== (const name_and_matcher &other) const
4060 {
4061 return matcher == other.matcher && strcmp (name, other.name) == 0;
4062 }
4063 };
4064
4065 /* A vector holding all the different symbol name matchers, for all
4066 languages. */
4067 std::vector<name_and_matcher> matchers;
4068
4069 for (int i = 0; i < nr_languages; i++)
4070 {
4071 enum language lang_e = (enum language) i;
4072
4073 const language_defn *lang = language_def (lang_e);
4074 symbol_name_matcher_ftype *name_matcher
4075 = get_symbol_name_matcher (lang, lookup_name_without_params);
4076
4077 name_and_matcher key {
4078 name_matcher,
4079 lookup_name_without_params.language_lookup_name (lang_e)
4080 };
4081
4082 /* Don't insert the same comparison routine more than once.
4083 Note that we do this linear walk. This is not a problem in
4084 practice because the number of supported languages is
4085 low. */
4086 if (std::find (matchers.begin (), matchers.end (), key)
4087 != matchers.end ())
4088 continue;
4089 matchers.push_back (std::move (key));
4090
4091 auto bounds
4092 = index.find_name_components_bounds (lookup_name_without_params,
4093 lang_e);
4094
4095 /* Now for each symbol name in range, check to see if we have a name
4096 match, and if so, call the MATCH_CALLBACK callback. */
4097
4098 for (; bounds.first != bounds.second; ++bounds.first)
4099 {
4100 const char *qualified = index.symbol_name_at (bounds.first->idx);
4101
4102 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4103 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4104 continue;
4105
4106 matches.push_back (bounds.first->idx);
4107 }
4108 }
4109
4110 std::sort (matches.begin (), matches.end ());
4111
4112 /* Finally call the callback, once per match. */
4113 ULONGEST prev = -1;
4114 for (offset_type idx : matches)
4115 {
4116 if (prev != idx)
4117 {
4118 if (!match_callback (idx))
4119 break;
4120 prev = idx;
4121 }
4122 }
4123
4124 /* Above we use a type wider than idx's for 'prev', since 0 and
4125 (offset_type)-1 are both possible values. */
4126 static_assert (sizeof (prev) > sizeof (offset_type), "");
4127 }
4128
4129 #if GDB_SELF_TEST
4130
4131 namespace selftests { namespace dw2_expand_symtabs_matching {
4132
4133 /* A mock .gdb_index/.debug_names-like name index table, enough to
4134 exercise dw2_expand_symtabs_matching_symbol, which works with the
4135 mapped_index_base interface. Builds an index from the symbol list
4136 passed as parameter to the constructor. */
4137 class mock_mapped_index : public mapped_index_base
4138 {
4139 public:
4140 mock_mapped_index (gdb::array_view<const char *> symbols)
4141 : m_symbol_table (symbols)
4142 {}
4143
4144 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4145
4146 /* Return the number of names in the symbol table. */
4147 size_t symbol_name_count () const override
4148 {
4149 return m_symbol_table.size ();
4150 }
4151
4152 /* Get the name of the symbol at IDX in the symbol table. */
4153 const char *symbol_name_at (offset_type idx) const override
4154 {
4155 return m_symbol_table[idx];
4156 }
4157
4158 private:
4159 gdb::array_view<const char *> m_symbol_table;
4160 };
4161
4162 /* Convenience function that converts a NULL pointer to a "<null>"
4163 string, to pass to print routines. */
4164
4165 static const char *
4166 string_or_null (const char *str)
4167 {
4168 return str != NULL ? str : "<null>";
4169 }
4170
4171 /* Check if a lookup_name_info built from
4172 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4173 index. EXPECTED_LIST is the list of expected matches, in expected
4174 matching order. If no match expected, then an empty list is
4175 specified. Returns true on success. On failure prints a warning
4176 indicating the file:line that failed, and returns false. */
4177
4178 static bool
4179 check_match (const char *file, int line,
4180 mock_mapped_index &mock_index,
4181 const char *name, symbol_name_match_type match_type,
4182 bool completion_mode,
4183 std::initializer_list<const char *> expected_list)
4184 {
4185 lookup_name_info lookup_name (name, match_type, completion_mode);
4186
4187 bool matched = true;
4188
4189 auto mismatch = [&] (const char *expected_str,
4190 const char *got)
4191 {
4192 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4193 "expected=\"%s\", got=\"%s\"\n"),
4194 file, line,
4195 (match_type == symbol_name_match_type::FULL
4196 ? "FULL" : "WILD"),
4197 name, string_or_null (expected_str), string_or_null (got));
4198 matched = false;
4199 };
4200
4201 auto expected_it = expected_list.begin ();
4202 auto expected_end = expected_list.end ();
4203
4204 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4205 NULL, ALL_DOMAIN,
4206 [&] (offset_type idx)
4207 {
4208 const char *matched_name = mock_index.symbol_name_at (idx);
4209 const char *expected_str
4210 = expected_it == expected_end ? NULL : *expected_it++;
4211
4212 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4213 mismatch (expected_str, matched_name);
4214 return true;
4215 });
4216
4217 const char *expected_str
4218 = expected_it == expected_end ? NULL : *expected_it++;
4219 if (expected_str != NULL)
4220 mismatch (expected_str, NULL);
4221
4222 return matched;
4223 }
4224
4225 /* The symbols added to the mock mapped_index for testing (in
4226 canonical form). */
4227 static const char *test_symbols[] = {
4228 "function",
4229 "std::bar",
4230 "std::zfunction",
4231 "std::zfunction2",
4232 "w1::w2",
4233 "ns::foo<char*>",
4234 "ns::foo<int>",
4235 "ns::foo<long>",
4236 "ns2::tmpl<int>::foo2",
4237 "(anonymous namespace)::A::B::C",
4238
4239 /* These are used to check that the increment-last-char in the
4240 matching algorithm for completion doesn't match "t1_fund" when
4241 completing "t1_func". */
4242 "t1_func",
4243 "t1_func1",
4244 "t1_fund",
4245 "t1_fund1",
4246
4247 /* A UTF-8 name with multi-byte sequences to make sure that
4248 cp-name-parser understands this as a single identifier ("função"
4249 is "function" in PT). */
4250 u8"u8função",
4251
4252 /* \377 (0xff) is Latin1 'ÿ'. */
4253 "yfunc\377",
4254
4255 /* \377 (0xff) is Latin1 'ÿ'. */
4256 "\377",
4257 "\377\377123",
4258
4259 /* A name with all sorts of complications. Starts with "z" to make
4260 it easier for the completion tests below. */
4261 #define Z_SYM_NAME \
4262 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4263 "::tuple<(anonymous namespace)::ui*, " \
4264 "std::default_delete<(anonymous namespace)::ui>, void>"
4265
4266 Z_SYM_NAME
4267 };
4268
4269 /* Returns true if the mapped_index_base::find_name_component_bounds
4270 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4271 in completion mode. */
4272
4273 static bool
4274 check_find_bounds_finds (mapped_index_base &index,
4275 const char *search_name,
4276 gdb::array_view<const char *> expected_syms)
4277 {
4278 lookup_name_info lookup_name (search_name,
4279 symbol_name_match_type::FULL, true);
4280
4281 auto bounds = index.find_name_components_bounds (lookup_name,
4282 language_cplus);
4283
4284 size_t distance = std::distance (bounds.first, bounds.second);
4285 if (distance != expected_syms.size ())
4286 return false;
4287
4288 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4289 {
4290 auto nc_elem = bounds.first + exp_elem;
4291 const char *qualified = index.symbol_name_at (nc_elem->idx);
4292 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4293 return false;
4294 }
4295
4296 return true;
4297 }
4298
4299 /* Test the lower-level mapped_index::find_name_component_bounds
4300 method. */
4301
4302 static void
4303 test_mapped_index_find_name_component_bounds ()
4304 {
4305 mock_mapped_index mock_index (test_symbols);
4306
4307 mock_index.build_name_components ();
4308
4309 /* Test the lower-level mapped_index::find_name_component_bounds
4310 method in completion mode. */
4311 {
4312 static const char *expected_syms[] = {
4313 "t1_func",
4314 "t1_func1",
4315 };
4316
4317 SELF_CHECK (check_find_bounds_finds (mock_index,
4318 "t1_func", expected_syms));
4319 }
4320
4321 /* Check that the increment-last-char in the name matching algorithm
4322 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4323 {
4324 static const char *expected_syms1[] = {
4325 "\377",
4326 "\377\377123",
4327 };
4328 SELF_CHECK (check_find_bounds_finds (mock_index,
4329 "\377", expected_syms1));
4330
4331 static const char *expected_syms2[] = {
4332 "\377\377123",
4333 };
4334 SELF_CHECK (check_find_bounds_finds (mock_index,
4335 "\377\377", expected_syms2));
4336 }
4337 }
4338
4339 /* Test dw2_expand_symtabs_matching_symbol. */
4340
4341 static void
4342 test_dw2_expand_symtabs_matching_symbol ()
4343 {
4344 mock_mapped_index mock_index (test_symbols);
4345
4346 /* We let all tests run until the end even if some fails, for debug
4347 convenience. */
4348 bool any_mismatch = false;
4349
4350 /* Create the expected symbols list (an initializer_list). Needed
4351 because lists have commas, and we need to pass them to CHECK,
4352 which is a macro. */
4353 #define EXPECT(...) { __VA_ARGS__ }
4354
4355 /* Wrapper for check_match that passes down the current
4356 __FILE__/__LINE__. */
4357 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4358 any_mismatch |= !check_match (__FILE__, __LINE__, \
4359 mock_index, \
4360 NAME, MATCH_TYPE, COMPLETION_MODE, \
4361 EXPECTED_LIST)
4362
4363 /* Identity checks. */
4364 for (const char *sym : test_symbols)
4365 {
4366 /* Should be able to match all existing symbols. */
4367 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4368 EXPECT (sym));
4369
4370 /* Should be able to match all existing symbols with
4371 parameters. */
4372 std::string with_params = std::string (sym) + "(int)";
4373 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4374 EXPECT (sym));
4375
4376 /* Should be able to match all existing symbols with
4377 parameters and qualifiers. */
4378 with_params = std::string (sym) + " ( int ) const";
4379 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4380 EXPECT (sym));
4381
4382 /* This should really find sym, but cp-name-parser.y doesn't
4383 know about lvalue/rvalue qualifiers yet. */
4384 with_params = std::string (sym) + " ( int ) &&";
4385 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4386 {});
4387 }
4388
4389 /* Check that the name matching algorithm for completion doesn't get
4390 confused with Latin1 'ÿ' / 0xff. */
4391 {
4392 static const char str[] = "\377";
4393 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4394 EXPECT ("\377", "\377\377123"));
4395 }
4396
4397 /* Check that the increment-last-char in the matching algorithm for
4398 completion doesn't match "t1_fund" when completing "t1_func". */
4399 {
4400 static const char str[] = "t1_func";
4401 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4402 EXPECT ("t1_func", "t1_func1"));
4403 }
4404
4405 /* Check that completion mode works at each prefix of the expected
4406 symbol name. */
4407 {
4408 static const char str[] = "function(int)";
4409 size_t len = strlen (str);
4410 std::string lookup;
4411
4412 for (size_t i = 1; i < len; i++)
4413 {
4414 lookup.assign (str, i);
4415 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4416 EXPECT ("function"));
4417 }
4418 }
4419
4420 /* While "w" is a prefix of both components, the match function
4421 should still only be called once. */
4422 {
4423 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4424 EXPECT ("w1::w2"));
4425 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4426 EXPECT ("w1::w2"));
4427 }
4428
4429 /* Same, with a "complicated" symbol. */
4430 {
4431 static const char str[] = Z_SYM_NAME;
4432 size_t len = strlen (str);
4433 std::string lookup;
4434
4435 for (size_t i = 1; i < len; i++)
4436 {
4437 lookup.assign (str, i);
4438 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4439 EXPECT (Z_SYM_NAME));
4440 }
4441 }
4442
4443 /* In FULL mode, an incomplete symbol doesn't match. */
4444 {
4445 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4446 {});
4447 }
4448
4449 /* A complete symbol with parameters matches any overload, since the
4450 index has no overload info. */
4451 {
4452 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4453 EXPECT ("std::zfunction", "std::zfunction2"));
4454 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4455 EXPECT ("std::zfunction", "std::zfunction2"));
4456 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4457 EXPECT ("std::zfunction", "std::zfunction2"));
4458 }
4459
4460 /* Check that whitespace is ignored appropriately. A symbol with a
4461 template argument list. */
4462 {
4463 static const char expected[] = "ns::foo<int>";
4464 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4465 EXPECT (expected));
4466 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4467 EXPECT (expected));
4468 }
4469
4470 /* Check that whitespace is ignored appropriately. A symbol with a
4471 template argument list that includes a pointer. */
4472 {
4473 static const char expected[] = "ns::foo<char*>";
4474 /* Try both completion and non-completion modes. */
4475 static const bool completion_mode[2] = {false, true};
4476 for (size_t i = 0; i < 2; i++)
4477 {
4478 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4479 completion_mode[i], EXPECT (expected));
4480 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4481 completion_mode[i], EXPECT (expected));
4482
4483 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4484 completion_mode[i], EXPECT (expected));
4485 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4486 completion_mode[i], EXPECT (expected));
4487 }
4488 }
4489
4490 {
4491 /* Check method qualifiers are ignored. */
4492 static const char expected[] = "ns::foo<char*>";
4493 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4494 symbol_name_match_type::FULL, true, EXPECT (expected));
4495 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4496 symbol_name_match_type::FULL, true, EXPECT (expected));
4497 CHECK_MATCH ("foo < char * > ( int ) const",
4498 symbol_name_match_type::WILD, true, EXPECT (expected));
4499 CHECK_MATCH ("foo < char * > ( int ) &&",
4500 symbol_name_match_type::WILD, true, EXPECT (expected));
4501 }
4502
4503 /* Test lookup names that don't match anything. */
4504 {
4505 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4506 {});
4507
4508 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4509 {});
4510 }
4511
4512 /* Some wild matching tests, exercising "(anonymous namespace)",
4513 which should not be confused with a parameter list. */
4514 {
4515 static const char *syms[] = {
4516 "A::B::C",
4517 "B::C",
4518 "C",
4519 "A :: B :: C ( int )",
4520 "B :: C ( int )",
4521 "C ( int )",
4522 };
4523
4524 for (const char *s : syms)
4525 {
4526 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4527 EXPECT ("(anonymous namespace)::A::B::C"));
4528 }
4529 }
4530
4531 {
4532 static const char expected[] = "ns2::tmpl<int>::foo2";
4533 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4534 EXPECT (expected));
4535 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4536 EXPECT (expected));
4537 }
4538
4539 SELF_CHECK (!any_mismatch);
4540
4541 #undef EXPECT
4542 #undef CHECK_MATCH
4543 }
4544
4545 static void
4546 run_test ()
4547 {
4548 test_mapped_index_find_name_component_bounds ();
4549 test_dw2_expand_symtabs_matching_symbol ();
4550 }
4551
4552 }} // namespace selftests::dw2_expand_symtabs_matching
4553
4554 #endif /* GDB_SELF_TEST */
4555
4556 /* If FILE_MATCHER is NULL or if PER_CU has
4557 dwarf2_per_cu_quick_data::MARK set (see
4558 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4559 EXPANSION_NOTIFY on it. */
4560
4561 static void
4562 dw2_expand_symtabs_matching_one
4563 (dwarf2_per_cu_data *per_cu,
4564 dwarf2_per_objfile *per_objfile,
4565 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4566 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4567 {
4568 if (file_matcher == NULL || per_cu->v.quick->mark)
4569 {
4570 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4571
4572 compunit_symtab *symtab
4573 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4574 gdb_assert (symtab != nullptr);
4575
4576 if (expansion_notify != NULL && symtab_was_null)
4577 expansion_notify (symtab);
4578 }
4579 }
4580
4581 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4582 matched, to expand corresponding CUs that were marked. IDX is the
4583 index of the symbol name that matched. */
4584
4585 static void
4586 dw2_expand_marked_cus
4587 (dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4588 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4589 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4590 search_domain kind)
4591 {
4592 offset_type *vec, vec_len, vec_idx;
4593 bool global_seen = false;
4594 mapped_index &index = *dwarf2_per_objfile->per_bfd->index_table;
4595
4596 vec = (offset_type *) (index.constant_pool
4597 + MAYBE_SWAP (index.symbol_table[idx].vec));
4598 vec_len = MAYBE_SWAP (vec[0]);
4599 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4600 {
4601 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4602 /* This value is only valid for index versions >= 7. */
4603 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4604 gdb_index_symbol_kind symbol_kind =
4605 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4606 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4607 /* Only check the symbol attributes if they're present.
4608 Indices prior to version 7 don't record them,
4609 and indices >= 7 may elide them for certain symbols
4610 (gold does this). */
4611 int attrs_valid =
4612 (index.version >= 7
4613 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4614
4615 /* Work around gold/15646. */
4616 if (attrs_valid)
4617 {
4618 if (!is_static && global_seen)
4619 continue;
4620 if (!is_static)
4621 global_seen = true;
4622 }
4623
4624 /* Only check the symbol's kind if it has one. */
4625 if (attrs_valid)
4626 {
4627 switch (kind)
4628 {
4629 case VARIABLES_DOMAIN:
4630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4631 continue;
4632 break;
4633 case FUNCTIONS_DOMAIN:
4634 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4635 continue;
4636 break;
4637 case TYPES_DOMAIN:
4638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4639 continue;
4640 break;
4641 case MODULES_DOMAIN:
4642 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4643 continue;
4644 break;
4645 default:
4646 break;
4647 }
4648 }
4649
4650 /* Don't crash on bad data. */
4651 if (cu_index >= (dwarf2_per_objfile->per_bfd->all_comp_units.size ()
4652 + dwarf2_per_objfile->per_bfd->all_type_units.size ()))
4653 {
4654 complaint (_(".gdb_index entry has bad CU index"
4655 " [in module %s]"),
4656 objfile_name (dwarf2_per_objfile->objfile));
4657 continue;
4658 }
4659
4660 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->per_bfd->get_cutu (cu_index);
4661 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile, file_matcher,
4662 expansion_notify);
4663 }
4664 }
4665
4666 /* If FILE_MATCHER is non-NULL, set all the
4667 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4668 that match FILE_MATCHER. */
4669
4670 static void
4671 dw_expand_symtabs_matching_file_matcher
4672 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4673 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4674 {
4675 if (file_matcher == NULL)
4676 return;
4677
4678 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4679 htab_eq_pointer,
4680 NULL, xcalloc, xfree));
4681 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4682 htab_eq_pointer,
4683 NULL, xcalloc, xfree));
4684
4685 /* The rule is CUs specify all the files, including those used by
4686 any TU, so there's no need to scan TUs here. */
4687
4688 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
4689 {
4690 QUIT;
4691
4692 per_cu->v.quick->mark = 0;
4693
4694 /* We only need to look at symtabs not already expanded. */
4695 if (dwarf2_per_objfile->symtab_set_p (per_cu))
4696 continue;
4697
4698 quick_file_names *file_data
4699 = dw2_get_file_names (per_cu, dwarf2_per_objfile);
4700 if (file_data == NULL)
4701 continue;
4702
4703 if (htab_find (visited_not_found.get (), file_data) != NULL)
4704 continue;
4705 else if (htab_find (visited_found.get (), file_data) != NULL)
4706 {
4707 per_cu->v.quick->mark = 1;
4708 continue;
4709 }
4710
4711 for (int j = 0; j < file_data->num_file_names; ++j)
4712 {
4713 const char *this_real_name;
4714
4715 if (file_matcher (file_data->file_names[j], false))
4716 {
4717 per_cu->v.quick->mark = 1;
4718 break;
4719 }
4720
4721 /* Before we invoke realpath, which can get expensive when many
4722 files are involved, do a quick comparison of the basenames. */
4723 if (!basenames_may_differ
4724 && !file_matcher (lbasename (file_data->file_names[j]),
4725 true))
4726 continue;
4727
4728 this_real_name = dw2_get_real_path (dwarf2_per_objfile,
4729 file_data, j);
4730 if (file_matcher (this_real_name, false))
4731 {
4732 per_cu->v.quick->mark = 1;
4733 break;
4734 }
4735 }
4736
4737 void **slot = htab_find_slot (per_cu->v.quick->mark
4738 ? visited_found.get ()
4739 : visited_not_found.get (),
4740 file_data, INSERT);
4741 *slot = file_data;
4742 }
4743 }
4744
4745 static void
4746 dw2_expand_symtabs_matching
4747 (struct objfile *objfile,
4748 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4749 const lookup_name_info *lookup_name,
4750 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4751 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4752 enum search_domain kind)
4753 {
4754 struct dwarf2_per_objfile *dwarf2_per_objfile
4755 = get_dwarf2_per_objfile (objfile);
4756
4757 /* index_table is NULL if OBJF_READNOW. */
4758 if (!dwarf2_per_objfile->per_bfd->index_table)
4759 return;
4760
4761 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4762
4763 if (symbol_matcher == NULL && lookup_name == NULL)
4764 {
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
4766 {
4767 QUIT;
4768
4769 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile,
4770 file_matcher, expansion_notify);
4771 }
4772 return;
4773 }
4774
4775 mapped_index &index = *dwarf2_per_objfile->per_bfd->index_table;
4776
4777 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4778 symbol_matcher,
4779 kind, [&] (offset_type idx)
4780 {
4781 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4782 expansion_notify, kind);
4783 return true;
4784 });
4785 }
4786
4787 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4788 symtab. */
4789
4790 static struct compunit_symtab *
4791 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4792 CORE_ADDR pc)
4793 {
4794 int i;
4795
4796 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4797 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4798 return cust;
4799
4800 if (cust->includes == NULL)
4801 return NULL;
4802
4803 for (i = 0; cust->includes[i]; ++i)
4804 {
4805 struct compunit_symtab *s = cust->includes[i];
4806
4807 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4808 if (s != NULL)
4809 return s;
4810 }
4811
4812 return NULL;
4813 }
4814
4815 static struct compunit_symtab *
4816 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4817 struct bound_minimal_symbol msymbol,
4818 CORE_ADDR pc,
4819 struct obj_section *section,
4820 int warn_if_readin)
4821 {
4822 struct dwarf2_per_cu_data *data;
4823 struct compunit_symtab *result;
4824
4825 if (!objfile->partial_symtabs->psymtabs_addrmap)
4826 return NULL;
4827
4828 CORE_ADDR baseaddr = objfile->text_section_offset ();
4829 data = (struct dwarf2_per_cu_data *) addrmap_find
4830 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4831 if (!data)
4832 return NULL;
4833
4834 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4835 if (warn_if_readin && per_objfile->symtab_set_p (data))
4836 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4837 paddress (objfile->arch (), pc));
4838
4839 result = recursively_find_pc_sect_compunit_symtab
4840 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4841
4842 gdb_assert (result != NULL);
4843 return result;
4844 }
4845
4846 static void
4847 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4848 void *data, int need_fullname)
4849 {
4850 struct dwarf2_per_objfile *dwarf2_per_objfile
4851 = get_dwarf2_per_objfile (objfile);
4852
4853 if (!dwarf2_per_objfile->per_bfd->filenames_cache)
4854 {
4855 dwarf2_per_objfile->per_bfd->filenames_cache.emplace ();
4856
4857 htab_up visited (htab_create_alloc (10,
4858 htab_hash_pointer, htab_eq_pointer,
4859 NULL, xcalloc, xfree));
4860
4861 /* The rule is CUs specify all the files, including those used
4862 by any TU, so there's no need to scan TUs here. We can
4863 ignore file names coming from already-expanded CUs. */
4864
4865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
4866 {
4867 if (dwarf2_per_objfile->symtab_set_p (per_cu))
4868 {
4869 void **slot = htab_find_slot (visited.get (),
4870 per_cu->v.quick->file_names,
4871 INSERT);
4872
4873 *slot = per_cu->v.quick->file_names;
4874 }
4875 }
4876
4877 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
4878 {
4879 /* We only need to look at symtabs not already expanded. */
4880 if (dwarf2_per_objfile->symtab_set_p (per_cu))
4881 continue;
4882
4883 quick_file_names *file_data
4884 = dw2_get_file_names (per_cu, dwarf2_per_objfile);
4885 if (file_data == NULL)
4886 continue;
4887
4888 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4889 if (*slot)
4890 {
4891 /* Already visited. */
4892 continue;
4893 }
4894 *slot = file_data;
4895
4896 for (int j = 0; j < file_data->num_file_names; ++j)
4897 {
4898 const char *filename = file_data->file_names[j];
4899 dwarf2_per_objfile->per_bfd->filenames_cache->seen (filename);
4900 }
4901 }
4902 }
4903
4904 dwarf2_per_objfile->per_bfd->filenames_cache->traverse ([&] (const char *filename)
4905 {
4906 gdb::unique_xmalloc_ptr<char> this_real_name;
4907
4908 if (need_fullname)
4909 this_real_name = gdb_realpath (filename);
4910 (*fun) (filename, this_real_name.get (), data);
4911 });
4912 }
4913
4914 static int
4915 dw2_has_symbols (struct objfile *objfile)
4916 {
4917 return 1;
4918 }
4919
4920 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4921 {
4922 dw2_has_symbols,
4923 dw2_find_last_source_symtab,
4924 dw2_forget_cached_source_info,
4925 dw2_map_symtabs_matching_filename,
4926 dw2_lookup_symbol,
4927 NULL,
4928 dw2_print_stats,
4929 dw2_dump,
4930 dw2_expand_symtabs_for_function,
4931 dw2_expand_all_symtabs,
4932 dw2_expand_symtabs_with_fullname,
4933 dw2_map_matching_symbols,
4934 dw2_expand_symtabs_matching,
4935 dw2_find_pc_sect_compunit_symtab,
4936 NULL,
4937 dw2_map_symbol_filenames
4938 };
4939
4940 /* DWARF-5 debug_names reader. */
4941
4942 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4943 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4944
4945 /* A helper function that reads the .debug_names section in SECTION
4946 and fills in MAP. FILENAME is the name of the file containing the
4947 section; it is used for error reporting.
4948
4949 Returns true if all went well, false otherwise. */
4950
4951 static bool
4952 read_debug_names_from_section (struct objfile *objfile,
4953 const char *filename,
4954 struct dwarf2_section_info *section,
4955 mapped_debug_names &map)
4956 {
4957 if (section->empty ())
4958 return false;
4959
4960 /* Older elfutils strip versions could keep the section in the main
4961 executable while splitting it for the separate debug info file. */
4962 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4963 return false;
4964
4965 section->read (objfile);
4966
4967 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4968
4969 const gdb_byte *addr = section->buffer;
4970
4971 bfd *const abfd = section->get_bfd_owner ();
4972
4973 unsigned int bytes_read;
4974 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4975 addr += bytes_read;
4976
4977 map.dwarf5_is_dwarf64 = bytes_read != 4;
4978 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4979 if (bytes_read + length != section->size)
4980 {
4981 /* There may be multiple per-CU indices. */
4982 warning (_("Section .debug_names in %s length %s does not match "
4983 "section length %s, ignoring .debug_names."),
4984 filename, plongest (bytes_read + length),
4985 pulongest (section->size));
4986 return false;
4987 }
4988
4989 /* The version number. */
4990 uint16_t version = read_2_bytes (abfd, addr);
4991 addr += 2;
4992 if (version != 5)
4993 {
4994 warning (_("Section .debug_names in %s has unsupported version %d, "
4995 "ignoring .debug_names."),
4996 filename, version);
4997 return false;
4998 }
4999
5000 /* Padding. */
5001 uint16_t padding = read_2_bytes (abfd, addr);
5002 addr += 2;
5003 if (padding != 0)
5004 {
5005 warning (_("Section .debug_names in %s has unsupported padding %d, "
5006 "ignoring .debug_names."),
5007 filename, padding);
5008 return false;
5009 }
5010
5011 /* comp_unit_count - The number of CUs in the CU list. */
5012 map.cu_count = read_4_bytes (abfd, addr);
5013 addr += 4;
5014
5015 /* local_type_unit_count - The number of TUs in the local TU
5016 list. */
5017 map.tu_count = read_4_bytes (abfd, addr);
5018 addr += 4;
5019
5020 /* foreign_type_unit_count - The number of TUs in the foreign TU
5021 list. */
5022 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5023 addr += 4;
5024 if (foreign_tu_count != 0)
5025 {
5026 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5027 "ignoring .debug_names."),
5028 filename, static_cast<unsigned long> (foreign_tu_count));
5029 return false;
5030 }
5031
5032 /* bucket_count - The number of hash buckets in the hash lookup
5033 table. */
5034 map.bucket_count = read_4_bytes (abfd, addr);
5035 addr += 4;
5036
5037 /* name_count - The number of unique names in the index. */
5038 map.name_count = read_4_bytes (abfd, addr);
5039 addr += 4;
5040
5041 /* abbrev_table_size - The size in bytes of the abbreviations
5042 table. */
5043 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5044 addr += 4;
5045
5046 /* augmentation_string_size - The size in bytes of the augmentation
5047 string. This value is rounded up to a multiple of 4. */
5048 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5049 addr += 4;
5050 map.augmentation_is_gdb = ((augmentation_string_size
5051 == sizeof (dwarf5_augmentation))
5052 && memcmp (addr, dwarf5_augmentation,
5053 sizeof (dwarf5_augmentation)) == 0);
5054 augmentation_string_size += (-augmentation_string_size) & 3;
5055 addr += augmentation_string_size;
5056
5057 /* List of CUs */
5058 map.cu_table_reordered = addr;
5059 addr += map.cu_count * map.offset_size;
5060
5061 /* List of Local TUs */
5062 map.tu_table_reordered = addr;
5063 addr += map.tu_count * map.offset_size;
5064
5065 /* Hash Lookup Table */
5066 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5067 addr += map.bucket_count * 4;
5068 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5069 addr += map.name_count * 4;
5070
5071 /* Name Table */
5072 map.name_table_string_offs_reordered = addr;
5073 addr += map.name_count * map.offset_size;
5074 map.name_table_entry_offs_reordered = addr;
5075 addr += map.name_count * map.offset_size;
5076
5077 const gdb_byte *abbrev_table_start = addr;
5078 for (;;)
5079 {
5080 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5081 addr += bytes_read;
5082 if (index_num == 0)
5083 break;
5084
5085 const auto insertpair
5086 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5087 if (!insertpair.second)
5088 {
5089 warning (_("Section .debug_names in %s has duplicate index %s, "
5090 "ignoring .debug_names."),
5091 filename, pulongest (index_num));
5092 return false;
5093 }
5094 mapped_debug_names::index_val &indexval = insertpair.first->second;
5095 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5096 addr += bytes_read;
5097
5098 for (;;)
5099 {
5100 mapped_debug_names::index_val::attr attr;
5101 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5102 addr += bytes_read;
5103 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5104 addr += bytes_read;
5105 if (attr.form == DW_FORM_implicit_const)
5106 {
5107 attr.implicit_const = read_signed_leb128 (abfd, addr,
5108 &bytes_read);
5109 addr += bytes_read;
5110 }
5111 if (attr.dw_idx == 0 && attr.form == 0)
5112 break;
5113 indexval.attr_vec.push_back (std::move (attr));
5114 }
5115 }
5116 if (addr != abbrev_table_start + abbrev_table_size)
5117 {
5118 warning (_("Section .debug_names in %s has abbreviation_table "
5119 "of size %s vs. written as %u, ignoring .debug_names."),
5120 filename, plongest (addr - abbrev_table_start),
5121 abbrev_table_size);
5122 return false;
5123 }
5124 map.entry_pool = addr;
5125
5126 return true;
5127 }
5128
5129 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5130 list. */
5131
5132 static void
5133 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5134 const mapped_debug_names &map,
5135 dwarf2_section_info &section,
5136 bool is_dwz)
5137 {
5138 if (!map.augmentation_is_gdb)
5139 {
5140 for (uint32_t i = 0; i < map.cu_count; ++i)
5141 {
5142 sect_offset sect_off
5143 = (sect_offset) (extract_unsigned_integer
5144 (map.cu_table_reordered + i * map.offset_size,
5145 map.offset_size,
5146 map.dwarf5_byte_order));
5147 /* We don't know the length of the CU, because the CU list in a
5148 .debug_names index can be incomplete, so we can't use the start of
5149 the next CU as end of this CU. We create the CUs here with length 0,
5150 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5151 dwarf2_per_cu_data *per_cu
5152 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5153 sect_off, 0);
5154 dwarf2_per_objfile->per_bfd->all_comp_units.push_back (per_cu);
5155 }
5156 }
5157
5158 sect_offset sect_off_prev;
5159 for (uint32_t i = 0; i <= map.cu_count; ++i)
5160 {
5161 sect_offset sect_off_next;
5162 if (i < map.cu_count)
5163 {
5164 sect_off_next
5165 = (sect_offset) (extract_unsigned_integer
5166 (map.cu_table_reordered + i * map.offset_size,
5167 map.offset_size,
5168 map.dwarf5_byte_order));
5169 }
5170 else
5171 sect_off_next = (sect_offset) section.size;
5172 if (i >= 1)
5173 {
5174 const ULONGEST length = sect_off_next - sect_off_prev;
5175 dwarf2_per_cu_data *per_cu
5176 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5177 sect_off_prev, length);
5178 dwarf2_per_objfile->per_bfd->all_comp_units.push_back (per_cu);
5179 }
5180 sect_off_prev = sect_off_next;
5181 }
5182 }
5183
5184 /* Read the CU list from the mapped index, and use it to create all
5185 the CU objects for this dwarf2_per_objfile. */
5186
5187 static void
5188 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5189 const mapped_debug_names &map,
5190 const mapped_debug_names &dwz_map)
5191 {
5192 gdb_assert (dwarf2_per_objfile->per_bfd->all_comp_units.empty ());
5193 dwarf2_per_objfile->per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5194
5195 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5196 dwarf2_per_objfile->per_bfd->info,
5197 false /* is_dwz */);
5198
5199 if (dwz_map.cu_count == 0)
5200 return;
5201
5202 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
5203 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5204 true /* is_dwz */);
5205 }
5206
5207 /* Read .debug_names. If everything went ok, initialize the "quick"
5208 elements of all the CUs and return true. Otherwise, return false. */
5209
5210 static bool
5211 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5212 {
5213 std::unique_ptr<mapped_debug_names> map
5214 (new mapped_debug_names (dwarf2_per_objfile));
5215 mapped_debug_names dwz_map (dwarf2_per_objfile);
5216 struct objfile *objfile = dwarf2_per_objfile->objfile;
5217
5218 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5219 &dwarf2_per_objfile->per_bfd->debug_names,
5220 *map))
5221 return false;
5222
5223 /* Don't use the index if it's empty. */
5224 if (map->name_count == 0)
5225 return false;
5226
5227 /* If there is a .dwz file, read it so we can get its CU list as
5228 well. */
5229 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
5230 if (dwz != NULL)
5231 {
5232 if (!read_debug_names_from_section (objfile,
5233 bfd_get_filename (dwz->dwz_bfd.get ()),
5234 &dwz->debug_names, dwz_map))
5235 {
5236 warning (_("could not read '.debug_names' section from %s; skipping"),
5237 bfd_get_filename (dwz->dwz_bfd.get ()));
5238 return false;
5239 }
5240 }
5241
5242 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5243
5244 if (map->tu_count != 0)
5245 {
5246 /* We can only handle a single .debug_types when we have an
5247 index. */
5248 if (dwarf2_per_objfile->per_bfd->types.size () != 1)
5249 return false;
5250
5251 dwarf2_section_info *section = &dwarf2_per_objfile->per_bfd->types[0];
5252
5253 create_signatured_type_table_from_debug_names
5254 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->per_bfd->abbrev);
5255 }
5256
5257 create_addrmap_from_aranges (dwarf2_per_objfile,
5258 &dwarf2_per_objfile->per_bfd->debug_aranges);
5259
5260 dwarf2_per_objfile->per_bfd->debug_names_table = std::move (map);
5261 dwarf2_per_objfile->per_bfd->using_index = 1;
5262 dwarf2_per_objfile->per_bfd->quick_file_names_table =
5263 create_quick_file_names_table (dwarf2_per_objfile->per_bfd->all_comp_units.size ());
5264
5265 return true;
5266 }
5267
5268 /* Type used to manage iterating over all CUs looking for a symbol for
5269 .debug_names. */
5270
5271 class dw2_debug_names_iterator
5272 {
5273 public:
5274 dw2_debug_names_iterator (const mapped_debug_names &map,
5275 gdb::optional<block_enum> block_index,
5276 domain_enum domain,
5277 const char *name)
5278 : m_map (map), m_block_index (block_index), m_domain (domain),
5279 m_addr (find_vec_in_debug_names (map, name))
5280 {}
5281
5282 dw2_debug_names_iterator (const mapped_debug_names &map,
5283 search_domain search, uint32_t namei)
5284 : m_map (map),
5285 m_search (search),
5286 m_addr (find_vec_in_debug_names (map, namei))
5287 {}
5288
5289 dw2_debug_names_iterator (const mapped_debug_names &map,
5290 block_enum block_index, domain_enum domain,
5291 uint32_t namei)
5292 : m_map (map), m_block_index (block_index), m_domain (domain),
5293 m_addr (find_vec_in_debug_names (map, namei))
5294 {}
5295
5296 /* Return the next matching CU or NULL if there are no more. */
5297 dwarf2_per_cu_data *next ();
5298
5299 private:
5300 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5301 const char *name);
5302 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5303 uint32_t namei);
5304
5305 /* The internalized form of .debug_names. */
5306 const mapped_debug_names &m_map;
5307
5308 /* If set, only look for symbols that match that block. Valid values are
5309 GLOBAL_BLOCK and STATIC_BLOCK. */
5310 const gdb::optional<block_enum> m_block_index;
5311
5312 /* The kind of symbol we're looking for. */
5313 const domain_enum m_domain = UNDEF_DOMAIN;
5314 const search_domain m_search = ALL_DOMAIN;
5315
5316 /* The list of CUs from the index entry of the symbol, or NULL if
5317 not found. */
5318 const gdb_byte *m_addr;
5319 };
5320
5321 const char *
5322 mapped_debug_names::namei_to_name (uint32_t namei) const
5323 {
5324 const ULONGEST namei_string_offs
5325 = extract_unsigned_integer ((name_table_string_offs_reordered
5326 + namei * offset_size),
5327 offset_size,
5328 dwarf5_byte_order);
5329 return read_indirect_string_at_offset (dwarf2_per_objfile,
5330 namei_string_offs);
5331 }
5332
5333 /* Find a slot in .debug_names for the object named NAME. If NAME is
5334 found, return pointer to its pool data. If NAME cannot be found,
5335 return NULL. */
5336
5337 const gdb_byte *
5338 dw2_debug_names_iterator::find_vec_in_debug_names
5339 (const mapped_debug_names &map, const char *name)
5340 {
5341 int (*cmp) (const char *, const char *);
5342
5343 gdb::unique_xmalloc_ptr<char> without_params;
5344 if (current_language->la_language == language_cplus
5345 || current_language->la_language == language_fortran
5346 || current_language->la_language == language_d)
5347 {
5348 /* NAME is already canonical. Drop any qualifiers as
5349 .debug_names does not contain any. */
5350
5351 if (strchr (name, '(') != NULL)
5352 {
5353 without_params = cp_remove_params (name);
5354 if (without_params != NULL)
5355 name = without_params.get ();
5356 }
5357 }
5358
5359 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5360
5361 const uint32_t full_hash = dwarf5_djb_hash (name);
5362 uint32_t namei
5363 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5364 (map.bucket_table_reordered
5365 + (full_hash % map.bucket_count)), 4,
5366 map.dwarf5_byte_order);
5367 if (namei == 0)
5368 return NULL;
5369 --namei;
5370 if (namei >= map.name_count)
5371 {
5372 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5373 "[in module %s]"),
5374 namei, map.name_count,
5375 objfile_name (map.dwarf2_per_objfile->objfile));
5376 return NULL;
5377 }
5378
5379 for (;;)
5380 {
5381 const uint32_t namei_full_hash
5382 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5383 (map.hash_table_reordered + namei), 4,
5384 map.dwarf5_byte_order);
5385 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5386 return NULL;
5387
5388 if (full_hash == namei_full_hash)
5389 {
5390 const char *const namei_string = map.namei_to_name (namei);
5391
5392 #if 0 /* An expensive sanity check. */
5393 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5394 {
5395 complaint (_("Wrong .debug_names hash for string at index %u "
5396 "[in module %s]"),
5397 namei, objfile_name (dwarf2_per_objfile->objfile));
5398 return NULL;
5399 }
5400 #endif
5401
5402 if (cmp (namei_string, name) == 0)
5403 {
5404 const ULONGEST namei_entry_offs
5405 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5406 + namei * map.offset_size),
5407 map.offset_size, map.dwarf5_byte_order);
5408 return map.entry_pool + namei_entry_offs;
5409 }
5410 }
5411
5412 ++namei;
5413 if (namei >= map.name_count)
5414 return NULL;
5415 }
5416 }
5417
5418 const gdb_byte *
5419 dw2_debug_names_iterator::find_vec_in_debug_names
5420 (const mapped_debug_names &map, uint32_t namei)
5421 {
5422 if (namei >= map.name_count)
5423 {
5424 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5425 "[in module %s]"),
5426 namei, map.name_count,
5427 objfile_name (map.dwarf2_per_objfile->objfile));
5428 return NULL;
5429 }
5430
5431 const ULONGEST namei_entry_offs
5432 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5433 + namei * map.offset_size),
5434 map.offset_size, map.dwarf5_byte_order);
5435 return map.entry_pool + namei_entry_offs;
5436 }
5437
5438 /* See dw2_debug_names_iterator. */
5439
5440 dwarf2_per_cu_data *
5441 dw2_debug_names_iterator::next ()
5442 {
5443 if (m_addr == NULL)
5444 return NULL;
5445
5446 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5447 struct objfile *objfile = dwarf2_per_objfile->objfile;
5448 bfd *const abfd = objfile->obfd;
5449
5450 again:
5451
5452 unsigned int bytes_read;
5453 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5454 m_addr += bytes_read;
5455 if (abbrev == 0)
5456 return NULL;
5457
5458 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5459 if (indexval_it == m_map.abbrev_map.cend ())
5460 {
5461 complaint (_("Wrong .debug_names undefined abbrev code %s "
5462 "[in module %s]"),
5463 pulongest (abbrev), objfile_name (objfile));
5464 return NULL;
5465 }
5466 const mapped_debug_names::index_val &indexval = indexval_it->second;
5467 enum class symbol_linkage {
5468 unknown,
5469 static_,
5470 extern_,
5471 } symbol_linkage_ = symbol_linkage::unknown;
5472 dwarf2_per_cu_data *per_cu = NULL;
5473 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5474 {
5475 ULONGEST ull;
5476 switch (attr.form)
5477 {
5478 case DW_FORM_implicit_const:
5479 ull = attr.implicit_const;
5480 break;
5481 case DW_FORM_flag_present:
5482 ull = 1;
5483 break;
5484 case DW_FORM_udata:
5485 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5486 m_addr += bytes_read;
5487 break;
5488 case DW_FORM_ref4:
5489 ull = read_4_bytes (abfd, m_addr);
5490 m_addr += 4;
5491 break;
5492 case DW_FORM_ref8:
5493 ull = read_8_bytes (abfd, m_addr);
5494 m_addr += 8;
5495 break;
5496 case DW_FORM_ref_sig8:
5497 ull = read_8_bytes (abfd, m_addr);
5498 m_addr += 8;
5499 break;
5500 default:
5501 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5502 dwarf_form_name (attr.form),
5503 objfile_name (objfile));
5504 return NULL;
5505 }
5506 switch (attr.dw_idx)
5507 {
5508 case DW_IDX_compile_unit:
5509 /* Don't crash on bad data. */
5510 if (ull >= dwarf2_per_objfile->per_bfd->all_comp_units.size ())
5511 {
5512 complaint (_(".debug_names entry has bad CU index %s"
5513 " [in module %s]"),
5514 pulongest (ull),
5515 objfile_name (dwarf2_per_objfile->objfile));
5516 continue;
5517 }
5518 per_cu = dwarf2_per_objfile->per_bfd->get_cutu (ull);
5519 break;
5520 case DW_IDX_type_unit:
5521 /* Don't crash on bad data. */
5522 if (ull >= dwarf2_per_objfile->per_bfd->all_type_units.size ())
5523 {
5524 complaint (_(".debug_names entry has bad TU index %s"
5525 " [in module %s]"),
5526 pulongest (ull),
5527 objfile_name (dwarf2_per_objfile->objfile));
5528 continue;
5529 }
5530 per_cu = &dwarf2_per_objfile->per_bfd->get_tu (ull)->per_cu;
5531 break;
5532 case DW_IDX_die_offset:
5533 /* In a per-CU index (as opposed to a per-module index), index
5534 entries without CU attribute implicitly refer to the single CU. */
5535 if (per_cu == NULL)
5536 per_cu = dwarf2_per_objfile->per_bfd->get_cu (0);
5537 break;
5538 case DW_IDX_GNU_internal:
5539 if (!m_map.augmentation_is_gdb)
5540 break;
5541 symbol_linkage_ = symbol_linkage::static_;
5542 break;
5543 case DW_IDX_GNU_external:
5544 if (!m_map.augmentation_is_gdb)
5545 break;
5546 symbol_linkage_ = symbol_linkage::extern_;
5547 break;
5548 }
5549 }
5550
5551 /* Skip if already read in. */
5552 if (dwarf2_per_objfile->symtab_set_p (per_cu))
5553 goto again;
5554
5555 /* Check static vs global. */
5556 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5557 {
5558 const bool want_static = *m_block_index == STATIC_BLOCK;
5559 const bool symbol_is_static =
5560 symbol_linkage_ == symbol_linkage::static_;
5561 if (want_static != symbol_is_static)
5562 goto again;
5563 }
5564
5565 /* Match dw2_symtab_iter_next, symbol_kind
5566 and debug_names::psymbol_tag. */
5567 switch (m_domain)
5568 {
5569 case VAR_DOMAIN:
5570 switch (indexval.dwarf_tag)
5571 {
5572 case DW_TAG_variable:
5573 case DW_TAG_subprogram:
5574 /* Some types are also in VAR_DOMAIN. */
5575 case DW_TAG_typedef:
5576 case DW_TAG_structure_type:
5577 break;
5578 default:
5579 goto again;
5580 }
5581 break;
5582 case STRUCT_DOMAIN:
5583 switch (indexval.dwarf_tag)
5584 {
5585 case DW_TAG_typedef:
5586 case DW_TAG_structure_type:
5587 break;
5588 default:
5589 goto again;
5590 }
5591 break;
5592 case LABEL_DOMAIN:
5593 switch (indexval.dwarf_tag)
5594 {
5595 case 0:
5596 case DW_TAG_variable:
5597 break;
5598 default:
5599 goto again;
5600 }
5601 break;
5602 case MODULE_DOMAIN:
5603 switch (indexval.dwarf_tag)
5604 {
5605 case DW_TAG_module:
5606 break;
5607 default:
5608 goto again;
5609 }
5610 break;
5611 default:
5612 break;
5613 }
5614
5615 /* Match dw2_expand_symtabs_matching, symbol_kind and
5616 debug_names::psymbol_tag. */
5617 switch (m_search)
5618 {
5619 case VARIABLES_DOMAIN:
5620 switch (indexval.dwarf_tag)
5621 {
5622 case DW_TAG_variable:
5623 break;
5624 default:
5625 goto again;
5626 }
5627 break;
5628 case FUNCTIONS_DOMAIN:
5629 switch (indexval.dwarf_tag)
5630 {
5631 case DW_TAG_subprogram:
5632 break;
5633 default:
5634 goto again;
5635 }
5636 break;
5637 case TYPES_DOMAIN:
5638 switch (indexval.dwarf_tag)
5639 {
5640 case DW_TAG_typedef:
5641 case DW_TAG_structure_type:
5642 break;
5643 default:
5644 goto again;
5645 }
5646 break;
5647 case MODULES_DOMAIN:
5648 switch (indexval.dwarf_tag)
5649 {
5650 case DW_TAG_module:
5651 break;
5652 default:
5653 goto again;
5654 }
5655 default:
5656 break;
5657 }
5658
5659 return per_cu;
5660 }
5661
5662 static struct compunit_symtab *
5663 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5664 const char *name, domain_enum domain)
5665 {
5666 struct dwarf2_per_objfile *dwarf2_per_objfile
5667 = get_dwarf2_per_objfile (objfile);
5668
5669 const auto &mapp = dwarf2_per_objfile->per_bfd->debug_names_table;
5670 if (!mapp)
5671 {
5672 /* index is NULL if OBJF_READNOW. */
5673 return NULL;
5674 }
5675 const auto &map = *mapp;
5676
5677 dw2_debug_names_iterator iter (map, block_index, domain, name);
5678
5679 struct compunit_symtab *stab_best = NULL;
5680 struct dwarf2_per_cu_data *per_cu;
5681 while ((per_cu = iter.next ()) != NULL)
5682 {
5683 struct symbol *sym, *with_opaque = NULL;
5684 compunit_symtab *stab
5685 = dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, false);
5686 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5687 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5688
5689 sym = block_find_symbol (block, name, domain,
5690 block_find_non_opaque_type_preferred,
5691 &with_opaque);
5692
5693 /* Some caution must be observed with overloaded functions and
5694 methods, since the index will not contain any overload
5695 information (but NAME might contain it). */
5696
5697 if (sym != NULL
5698 && strcmp_iw (sym->search_name (), name) == 0)
5699 return stab;
5700 if (with_opaque != NULL
5701 && strcmp_iw (with_opaque->search_name (), name) == 0)
5702 stab_best = stab;
5703
5704 /* Keep looking through other CUs. */
5705 }
5706
5707 return stab_best;
5708 }
5709
5710 /* This dumps minimal information about .debug_names. It is called
5711 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5712 uses this to verify that .debug_names has been loaded. */
5713
5714 static void
5715 dw2_debug_names_dump (struct objfile *objfile)
5716 {
5717 struct dwarf2_per_objfile *dwarf2_per_objfile
5718 = get_dwarf2_per_objfile (objfile);
5719
5720 gdb_assert (dwarf2_per_objfile->per_bfd->using_index);
5721 printf_filtered (".debug_names:");
5722 if (dwarf2_per_objfile->per_bfd->debug_names_table)
5723 printf_filtered (" exists\n");
5724 else
5725 printf_filtered (" faked for \"readnow\"\n");
5726 printf_filtered ("\n");
5727 }
5728
5729 static void
5730 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5731 const char *func_name)
5732 {
5733 struct dwarf2_per_objfile *dwarf2_per_objfile
5734 = get_dwarf2_per_objfile (objfile);
5735
5736 /* dwarf2_per_objfile->per_bfd->debug_names_table is NULL if OBJF_READNOW. */
5737 if (dwarf2_per_objfile->per_bfd->debug_names_table)
5738 {
5739 const mapped_debug_names &map = *dwarf2_per_objfile->per_bfd->debug_names_table;
5740
5741 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5742
5743 struct dwarf2_per_cu_data *per_cu;
5744 while ((per_cu = iter.next ()) != NULL)
5745 dw2_instantiate_symtab (per_cu, dwarf2_per_objfile, false);
5746 }
5747 }
5748
5749 static void
5750 dw2_debug_names_map_matching_symbols
5751 (struct objfile *objfile,
5752 const lookup_name_info &name, domain_enum domain,
5753 int global,
5754 gdb::function_view<symbol_found_callback_ftype> callback,
5755 symbol_compare_ftype *ordered_compare)
5756 {
5757 struct dwarf2_per_objfile *dwarf2_per_objfile
5758 = get_dwarf2_per_objfile (objfile);
5759
5760 /* debug_names_table is NULL if OBJF_READNOW. */
5761 if (!dwarf2_per_objfile->per_bfd->debug_names_table)
5762 return;
5763
5764 mapped_debug_names &map = *dwarf2_per_objfile->per_bfd->debug_names_table;
5765 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5766
5767 const char *match_name = name.ada ().lookup_name ().c_str ();
5768 auto matcher = [&] (const char *symname)
5769 {
5770 if (ordered_compare == nullptr)
5771 return true;
5772 return ordered_compare (symname, match_name) == 0;
5773 };
5774
5775 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5776 [&] (offset_type namei)
5777 {
5778 /* The name was matched, now expand corresponding CUs that were
5779 marked. */
5780 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5781
5782 struct dwarf2_per_cu_data *per_cu;
5783 while ((per_cu = iter.next ()) != NULL)
5784 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile, nullptr,
5785 nullptr);
5786 return true;
5787 });
5788
5789 /* It's a shame we couldn't do this inside the
5790 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5791 that have already been expanded. Instead, this loop matches what
5792 the psymtab code does. */
5793 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
5794 {
5795 compunit_symtab *symtab = dwarf2_per_objfile->get_symtab (per_cu);
5796 if (symtab != nullptr)
5797 {
5798 const struct block *block
5799 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5800 if (!iterate_over_symbols_terminated (block, name,
5801 domain, callback))
5802 break;
5803 }
5804 }
5805 }
5806
5807 static void
5808 dw2_debug_names_expand_symtabs_matching
5809 (struct objfile *objfile,
5810 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5811 const lookup_name_info *lookup_name,
5812 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5813 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5814 enum search_domain kind)
5815 {
5816 struct dwarf2_per_objfile *dwarf2_per_objfile
5817 = get_dwarf2_per_objfile (objfile);
5818
5819 /* debug_names_table is NULL if OBJF_READNOW. */
5820 if (!dwarf2_per_objfile->per_bfd->debug_names_table)
5821 return;
5822
5823 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5824
5825 if (symbol_matcher == NULL && lookup_name == NULL)
5826 {
5827 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
5828 {
5829 QUIT;
5830
5831 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile,
5832 file_matcher, expansion_notify);
5833 }
5834 return;
5835 }
5836
5837 mapped_debug_names &map = *dwarf2_per_objfile->per_bfd->debug_names_table;
5838
5839 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5840 symbol_matcher,
5841 kind, [&] (offset_type namei)
5842 {
5843 /* The name was matched, now expand corresponding CUs that were
5844 marked. */
5845 dw2_debug_names_iterator iter (map, kind, namei);
5846
5847 struct dwarf2_per_cu_data *per_cu;
5848 while ((per_cu = iter.next ()) != NULL)
5849 dw2_expand_symtabs_matching_one (per_cu, dwarf2_per_objfile,
5850 file_matcher, expansion_notify);
5851 return true;
5852 });
5853 }
5854
5855 const struct quick_symbol_functions dwarf2_debug_names_functions =
5856 {
5857 dw2_has_symbols,
5858 dw2_find_last_source_symtab,
5859 dw2_forget_cached_source_info,
5860 dw2_map_symtabs_matching_filename,
5861 dw2_debug_names_lookup_symbol,
5862 NULL,
5863 dw2_print_stats,
5864 dw2_debug_names_dump,
5865 dw2_debug_names_expand_symtabs_for_function,
5866 dw2_expand_all_symtabs,
5867 dw2_expand_symtabs_with_fullname,
5868 dw2_debug_names_map_matching_symbols,
5869 dw2_debug_names_expand_symtabs_matching,
5870 dw2_find_pc_sect_compunit_symtab,
5871 NULL,
5872 dw2_map_symbol_filenames
5873 };
5874
5875 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5876 to either a dwarf2_per_bfd or dwz_file object. */
5877
5878 template <typename T>
5879 static gdb::array_view<const gdb_byte>
5880 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5881 {
5882 dwarf2_section_info *section = &section_owner->gdb_index;
5883
5884 if (section->empty ())
5885 return {};
5886
5887 /* Older elfutils strip versions could keep the section in the main
5888 executable while splitting it for the separate debug info file. */
5889 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5890 return {};
5891
5892 section->read (obj);
5893
5894 /* dwarf2_section_info::size is a bfd_size_type, while
5895 gdb::array_view works with size_t. On 32-bit hosts, with
5896 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5897 is 32-bit. So we need an explicit narrowing conversion here.
5898 This is fine, because it's impossible to allocate or mmap an
5899 array/buffer larger than what size_t can represent. */
5900 return gdb::make_array_view (section->buffer, section->size);
5901 }
5902
5903 /* Lookup the index cache for the contents of the index associated to
5904 DWARF2_OBJ. */
5905
5906 static gdb::array_view<const gdb_byte>
5907 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5908 {
5909 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5910 if (build_id == nullptr)
5911 return {};
5912
5913 return global_index_cache.lookup_gdb_index (build_id,
5914 &dwarf2_per_bfd->index_cache_res);
5915 }
5916
5917 /* Same as the above, but for DWZ. */
5918
5919 static gdb::array_view<const gdb_byte>
5920 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5921 {
5922 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5923 if (build_id == nullptr)
5924 return {};
5925
5926 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5927 }
5928
5929 /* See symfile.h. */
5930
5931 bool
5932 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5933 {
5934 struct dwarf2_per_objfile *dwarf2_per_objfile
5935 = get_dwarf2_per_objfile (objfile);
5936
5937 /* If we're about to read full symbols, don't bother with the
5938 indices. In this case we also don't care if some other debug
5939 format is making psymtabs, because they are all about to be
5940 expanded anyway. */
5941 if ((objfile->flags & OBJF_READNOW))
5942 {
5943 dwarf2_per_objfile->per_bfd->using_index = 1;
5944 create_all_comp_units (dwarf2_per_objfile);
5945 create_all_type_units (dwarf2_per_objfile);
5946 dwarf2_per_objfile->per_bfd->quick_file_names_table
5947 = create_quick_file_names_table
5948 (dwarf2_per_objfile->per_bfd->all_comp_units.size ());
5949 dwarf2_per_objfile->resize_symtabs ();
5950
5951 for (int i = 0; i < (dwarf2_per_objfile->per_bfd->all_comp_units.size ()
5952 + dwarf2_per_objfile->per_bfd->all_type_units.size ()); ++i)
5953 {
5954 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->per_bfd->get_cutu (i);
5955
5956 per_cu->v.quick = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
5957 struct dwarf2_per_cu_quick_data);
5958 }
5959
5960 /* Return 1 so that gdb sees the "quick" functions. However,
5961 these functions will be no-ops because we will have expanded
5962 all symtabs. */
5963 *index_kind = dw_index_kind::GDB_INDEX;
5964 return true;
5965 }
5966
5967 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5968 {
5969 *index_kind = dw_index_kind::DEBUG_NAMES;
5970 dwarf2_per_objfile->resize_symtabs ();
5971 return true;
5972 }
5973
5974 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5975 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
5976 get_gdb_index_contents_from_section<dwz_file>))
5977 {
5978 *index_kind = dw_index_kind::GDB_INDEX;
5979 dwarf2_per_objfile->resize_symtabs ();
5980 return true;
5981 }
5982
5983 /* ... otherwise, try to find the index in the index cache. */
5984 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5985 get_gdb_index_contents_from_cache,
5986 get_gdb_index_contents_from_cache_dwz))
5987 {
5988 global_index_cache.hit ();
5989 *index_kind = dw_index_kind::GDB_INDEX;
5990 dwarf2_per_objfile->resize_symtabs ();
5991 return true;
5992 }
5993
5994 global_index_cache.miss ();
5995 return false;
5996 }
5997
5998 \f
5999
6000 /* Build a partial symbol table. */
6001
6002 void
6003 dwarf2_build_psymtabs (struct objfile *objfile)
6004 {
6005 struct dwarf2_per_objfile *dwarf2_per_objfile
6006 = get_dwarf2_per_objfile (objfile);
6007
6008 init_psymbol_list (objfile, 1024);
6009
6010 try
6011 {
6012 /* This isn't really ideal: all the data we allocate on the
6013 objfile's obstack is still uselessly kept around. However,
6014 freeing it seems unsafe. */
6015 psymtab_discarder psymtabs (objfile);
6016 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6017 psymtabs.keep ();
6018
6019 dwarf2_per_objfile->resize_symtabs ();
6020
6021 /* (maybe) store an index in the cache. */
6022 global_index_cache.store (dwarf2_per_objfile);
6023 }
6024 catch (const gdb_exception_error &except)
6025 {
6026 exception_print (gdb_stderr, except);
6027 }
6028 }
6029
6030 /* Find the base address of the compilation unit for range lists and
6031 location lists. It will normally be specified by DW_AT_low_pc.
6032 In DWARF-3 draft 4, the base address could be overridden by
6033 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6034 compilation units with discontinuous ranges. */
6035
6036 static void
6037 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6038 {
6039 struct attribute *attr;
6040
6041 cu->base_address.reset ();
6042
6043 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6044 if (attr != nullptr)
6045 cu->base_address = attr->value_as_address ();
6046 else
6047 {
6048 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6049 if (attr != nullptr)
6050 cu->base_address = attr->value_as_address ();
6051 }
6052 }
6053
6054 /* Helper function that returns the proper abbrev section for
6055 THIS_CU. */
6056
6057 static struct dwarf2_section_info *
6058 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6059 {
6060 struct dwarf2_section_info *abbrev;
6061 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
6062
6063 if (this_cu->is_dwz)
6064 abbrev = &dwarf2_get_dwz_file (per_bfd)->abbrev;
6065 else
6066 abbrev = &per_bfd->abbrev;
6067
6068 return abbrev;
6069 }
6070
6071 /* Fetch the abbreviation table offset from a comp or type unit header. */
6072
6073 static sect_offset
6074 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6075 struct dwarf2_section_info *section,
6076 sect_offset sect_off)
6077 {
6078 bfd *abfd = section->get_bfd_owner ();
6079 const gdb_byte *info_ptr;
6080 unsigned int initial_length_size, offset_size;
6081 uint16_t version;
6082
6083 section->read (dwarf2_per_objfile->objfile);
6084 info_ptr = section->buffer + to_underlying (sect_off);
6085 read_initial_length (abfd, info_ptr, &initial_length_size);
6086 offset_size = initial_length_size == 4 ? 4 : 8;
6087 info_ptr += initial_length_size;
6088
6089 version = read_2_bytes (abfd, info_ptr);
6090 info_ptr += 2;
6091 if (version >= 5)
6092 {
6093 /* Skip unit type and address size. */
6094 info_ptr += 2;
6095 }
6096
6097 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6098 }
6099
6100 /* A partial symtab that is used only for include files. */
6101 struct dwarf2_include_psymtab : public partial_symtab
6102 {
6103 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6104 : partial_symtab (filename, objfile)
6105 {
6106 }
6107
6108 void read_symtab (struct objfile *objfile) override
6109 {
6110 /* It's an include file, no symbols to read for it.
6111 Everything is in the includer symtab. */
6112
6113 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6114 expansion of the includer psymtab. We use the dependencies[0] field to
6115 model the includer. But if we go the regular route of calling
6116 expand_psymtab here, and having expand_psymtab call expand_dependencies
6117 to expand the includer, we'll only use expand_psymtab on the includer
6118 (making it a non-toplevel psymtab), while if we expand the includer via
6119 another path, we'll use read_symtab (making it a toplevel psymtab).
6120 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6121 psymtab, and trigger read_symtab on the includer here directly. */
6122 includer ()->read_symtab (objfile);
6123 }
6124
6125 void expand_psymtab (struct objfile *objfile) override
6126 {
6127 /* This is not called by read_symtab, and should not be called by any
6128 expand_dependencies. */
6129 gdb_assert (false);
6130 }
6131
6132 bool readin_p (struct objfile *objfile) const override
6133 {
6134 return includer ()->readin_p (objfile);
6135 }
6136
6137 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
6138 {
6139 return nullptr;
6140 }
6141
6142 private:
6143 partial_symtab *includer () const
6144 {
6145 /* An include psymtab has exactly one dependency: the psymtab that
6146 includes it. */
6147 gdb_assert (this->number_of_dependencies == 1);
6148 return this->dependencies[0];
6149 }
6150 };
6151
6152 /* Allocate a new partial symtab for file named NAME and mark this new
6153 partial symtab as being an include of PST. */
6154
6155 static void
6156 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6157 struct objfile *objfile)
6158 {
6159 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6160
6161 if (!IS_ABSOLUTE_PATH (subpst->filename))
6162 subpst->dirname = pst->dirname;
6163
6164 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6165 subpst->dependencies[0] = pst;
6166 subpst->number_of_dependencies = 1;
6167 }
6168
6169 /* Read the Line Number Program data and extract the list of files
6170 included by the source file represented by PST. Build an include
6171 partial symtab for each of these included files. */
6172
6173 static void
6174 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6175 struct die_info *die,
6176 dwarf2_psymtab *pst)
6177 {
6178 line_header_up lh;
6179 struct attribute *attr;
6180
6181 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6182 if (attr != nullptr)
6183 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6184 if (lh == NULL)
6185 return; /* No linetable, so no includes. */
6186
6187 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6188 that we pass in the raw text_low here; that is ok because we're
6189 only decoding the line table to make include partial symtabs, and
6190 so the addresses aren't really used. */
6191 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6192 pst->raw_text_low (), 1);
6193 }
6194
6195 static hashval_t
6196 hash_signatured_type (const void *item)
6197 {
6198 const struct signatured_type *sig_type
6199 = (const struct signatured_type *) item;
6200
6201 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6202 return sig_type->signature;
6203 }
6204
6205 static int
6206 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6207 {
6208 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6209 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6210
6211 return lhs->signature == rhs->signature;
6212 }
6213
6214 /* Allocate a hash table for signatured types. */
6215
6216 static htab_up
6217 allocate_signatured_type_table ()
6218 {
6219 return htab_up (htab_create_alloc (41,
6220 hash_signatured_type,
6221 eq_signatured_type,
6222 NULL, xcalloc, xfree));
6223 }
6224
6225 /* A helper function to add a signatured type CU to a table. */
6226
6227 static int
6228 add_signatured_type_cu_to_table (void **slot, void *datum)
6229 {
6230 struct signatured_type *sigt = (struct signatured_type *) *slot;
6231 std::vector<signatured_type *> *all_type_units
6232 = (std::vector<signatured_type *> *) datum;
6233
6234 all_type_units->push_back (sigt);
6235
6236 return 1;
6237 }
6238
6239 /* A helper for create_debug_types_hash_table. Read types from SECTION
6240 and fill them into TYPES_HTAB. It will process only type units,
6241 therefore DW_UT_type. */
6242
6243 static void
6244 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6245 struct dwo_file *dwo_file,
6246 dwarf2_section_info *section, htab_up &types_htab,
6247 rcuh_kind section_kind)
6248 {
6249 struct objfile *objfile = dwarf2_per_objfile->objfile;
6250 struct dwarf2_section_info *abbrev_section;
6251 bfd *abfd;
6252 const gdb_byte *info_ptr, *end_ptr;
6253
6254 abbrev_section = (dwo_file != NULL
6255 ? &dwo_file->sections.abbrev
6256 : &dwarf2_per_objfile->per_bfd->abbrev);
6257
6258 if (dwarf_read_debug)
6259 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6260 section->get_name (),
6261 abbrev_section->get_file_name ());
6262
6263 section->read (objfile);
6264 info_ptr = section->buffer;
6265
6266 if (info_ptr == NULL)
6267 return;
6268
6269 /* We can't set abfd until now because the section may be empty or
6270 not present, in which case the bfd is unknown. */
6271 abfd = section->get_bfd_owner ();
6272
6273 /* We don't use cutu_reader here because we don't need to read
6274 any dies: the signature is in the header. */
6275
6276 end_ptr = info_ptr + section->size;
6277 while (info_ptr < end_ptr)
6278 {
6279 struct signatured_type *sig_type;
6280 struct dwo_unit *dwo_tu;
6281 void **slot;
6282 const gdb_byte *ptr = info_ptr;
6283 struct comp_unit_head header;
6284 unsigned int length;
6285
6286 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6287
6288 /* Initialize it due to a false compiler warning. */
6289 header.signature = -1;
6290 header.type_cu_offset_in_tu = (cu_offset) -1;
6291
6292 /* We need to read the type's signature in order to build the hash
6293 table, but we don't need anything else just yet. */
6294
6295 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6296 abbrev_section, ptr, section_kind);
6297
6298 length = header.get_length ();
6299
6300 /* Skip dummy type units. */
6301 if (ptr >= info_ptr + length
6302 || peek_abbrev_code (abfd, ptr) == 0
6303 || header.unit_type != DW_UT_type)
6304 {
6305 info_ptr += length;
6306 continue;
6307 }
6308
6309 if (types_htab == NULL)
6310 {
6311 if (dwo_file)
6312 types_htab = allocate_dwo_unit_table ();
6313 else
6314 types_htab = allocate_signatured_type_table ();
6315 }
6316
6317 if (dwo_file)
6318 {
6319 sig_type = NULL;
6320 dwo_tu = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
6321 struct dwo_unit);
6322 dwo_tu->dwo_file = dwo_file;
6323 dwo_tu->signature = header.signature;
6324 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6325 dwo_tu->section = section;
6326 dwo_tu->sect_off = sect_off;
6327 dwo_tu->length = length;
6328 }
6329 else
6330 {
6331 /* N.B.: type_offset is not usable if this type uses a DWO file.
6332 The real type_offset is in the DWO file. */
6333 dwo_tu = NULL;
6334 sig_type = dwarf2_per_objfile->per_bfd->allocate_signatured_type ();
6335 sig_type->signature = header.signature;
6336 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6337 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6338 sig_type->per_cu.is_debug_types = 1;
6339 sig_type->per_cu.section = section;
6340 sig_type->per_cu.sect_off = sect_off;
6341 sig_type->per_cu.length = length;
6342 }
6343
6344 slot = htab_find_slot (types_htab.get (),
6345 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6346 INSERT);
6347 gdb_assert (slot != NULL);
6348 if (*slot != NULL)
6349 {
6350 sect_offset dup_sect_off;
6351
6352 if (dwo_file)
6353 {
6354 const struct dwo_unit *dup_tu
6355 = (const struct dwo_unit *) *slot;
6356
6357 dup_sect_off = dup_tu->sect_off;
6358 }
6359 else
6360 {
6361 const struct signatured_type *dup_tu
6362 = (const struct signatured_type *) *slot;
6363
6364 dup_sect_off = dup_tu->per_cu.sect_off;
6365 }
6366
6367 complaint (_("debug type entry at offset %s is duplicate to"
6368 " the entry at offset %s, signature %s"),
6369 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6370 hex_string (header.signature));
6371 }
6372 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6373
6374 if (dwarf_read_debug > 1)
6375 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6376 sect_offset_str (sect_off),
6377 hex_string (header.signature));
6378
6379 info_ptr += length;
6380 }
6381 }
6382
6383 /* Create the hash table of all entries in the .debug_types
6384 (or .debug_types.dwo) section(s).
6385 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6386 otherwise it is NULL.
6387
6388 The result is a pointer to the hash table or NULL if there are no types.
6389
6390 Note: This function processes DWO files only, not DWP files. */
6391
6392 static void
6393 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6394 struct dwo_file *dwo_file,
6395 gdb::array_view<dwarf2_section_info> type_sections,
6396 htab_up &types_htab)
6397 {
6398 for (dwarf2_section_info &section : type_sections)
6399 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6400 types_htab, rcuh_kind::TYPE);
6401 }
6402
6403 /* Create the hash table of all entries in the .debug_types section,
6404 and initialize all_type_units.
6405 The result is zero if there is an error (e.g. missing .debug_types section),
6406 otherwise non-zero. */
6407
6408 static int
6409 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6410 {
6411 htab_up types_htab;
6412
6413 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6414 &dwarf2_per_objfile->per_bfd->info, types_htab,
6415 rcuh_kind::COMPILE);
6416 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6417 dwarf2_per_objfile->per_bfd->types, types_htab);
6418 if (types_htab == NULL)
6419 {
6420 dwarf2_per_objfile->per_bfd->signatured_types = NULL;
6421 return 0;
6422 }
6423
6424 dwarf2_per_objfile->per_bfd->signatured_types = std::move (types_htab);
6425
6426 gdb_assert (dwarf2_per_objfile->per_bfd->all_type_units.empty ());
6427 dwarf2_per_objfile->per_bfd->all_type_units.reserve
6428 (htab_elements (dwarf2_per_objfile->per_bfd->signatured_types.get ()));
6429
6430 htab_traverse_noresize (dwarf2_per_objfile->per_bfd->signatured_types.get (),
6431 add_signatured_type_cu_to_table,
6432 &dwarf2_per_objfile->per_bfd->all_type_units);
6433
6434 return 1;
6435 }
6436
6437 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
6438 If SLOT is non-NULL, it is the entry to use in the hash table.
6439 Otherwise we find one. */
6440
6441 static struct signatured_type *
6442 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6443 void **slot)
6444 {
6445 if (dwarf2_per_objfile->per_bfd->all_type_units.size ()
6446 == dwarf2_per_objfile->per_bfd->all_type_units.capacity ())
6447 ++dwarf2_per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6448
6449 signatured_type *sig_type = dwarf2_per_objfile->per_bfd->allocate_signatured_type ();
6450
6451 dwarf2_per_objfile->resize_symtabs ();
6452
6453 dwarf2_per_objfile->per_bfd->all_type_units.push_back (sig_type);
6454 sig_type->signature = sig;
6455 sig_type->per_cu.is_debug_types = 1;
6456 if (dwarf2_per_objfile->per_bfd->using_index)
6457 {
6458 sig_type->per_cu.v.quick =
6459 OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
6460 struct dwarf2_per_cu_quick_data);
6461 }
6462
6463 if (slot == NULL)
6464 {
6465 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->signatured_types.get (),
6466 sig_type, INSERT);
6467 }
6468 gdb_assert (*slot == NULL);
6469 *slot = sig_type;
6470 /* The rest of sig_type must be filled in by the caller. */
6471 return sig_type;
6472 }
6473
6474 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6475 Fill in SIG_ENTRY with DWO_ENTRY. */
6476
6477 static void
6478 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6479 struct signatured_type *sig_entry,
6480 struct dwo_unit *dwo_entry)
6481 {
6482 dwarf2_per_bfd *per_bfd = dwarf2_per_objfile->per_bfd;
6483
6484 /* Make sure we're not clobbering something we don't expect to. */
6485 gdb_assert (! sig_entry->per_cu.queued);
6486 gdb_assert (sig_entry->per_cu.cu == NULL);
6487 if (per_bfd->using_index)
6488 {
6489 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6490 gdb_assert (!dwarf2_per_objfile->symtab_set_p (&sig_entry->per_cu));
6491 }
6492 else
6493 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6494 gdb_assert (sig_entry->signature == dwo_entry->signature);
6495 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6496 gdb_assert (sig_entry->type_unit_group == NULL);
6497 gdb_assert (sig_entry->dwo_unit == NULL);
6498
6499 sig_entry->per_cu.section = dwo_entry->section;
6500 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6501 sig_entry->per_cu.length = dwo_entry->length;
6502 sig_entry->per_cu.reading_dwo_directly = 1;
6503 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6504 sig_entry->per_cu.per_bfd = per_bfd;
6505 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6506 sig_entry->dwo_unit = dwo_entry;
6507 }
6508
6509 /* Subroutine of lookup_signatured_type.
6510 If we haven't read the TU yet, create the signatured_type data structure
6511 for a TU to be read in directly from a DWO file, bypassing the stub.
6512 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6513 using .gdb_index, then when reading a CU we want to stay in the DWO file
6514 containing that CU. Otherwise we could end up reading several other DWO
6515 files (due to comdat folding) to process the transitive closure of all the
6516 mentioned TUs, and that can be slow. The current DWO file will have every
6517 type signature that it needs.
6518 We only do this for .gdb_index because in the psymtab case we already have
6519 to read all the DWOs to build the type unit groups. */
6520
6521 static struct signatured_type *
6522 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6523 {
6524 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
6525 struct dwo_file *dwo_file;
6526 struct dwo_unit find_dwo_entry, *dwo_entry;
6527 struct signatured_type find_sig_entry, *sig_entry;
6528 void **slot;
6529
6530 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->per_bfd->using_index);
6531
6532 /* If TU skeletons have been removed then we may not have read in any
6533 TUs yet. */
6534 if (dwarf2_per_objfile->per_bfd->signatured_types == NULL)
6535 dwarf2_per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6536
6537 /* We only ever need to read in one copy of a signatured type.
6538 Use the global signatured_types array to do our own comdat-folding
6539 of types. If this is the first time we're reading this TU, and
6540 the TU has an entry in .gdb_index, replace the recorded data from
6541 .gdb_index with this TU. */
6542
6543 find_sig_entry.signature = sig;
6544 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->signatured_types.get (),
6545 &find_sig_entry, INSERT);
6546 sig_entry = (struct signatured_type *) *slot;
6547
6548 /* We can get here with the TU already read, *or* in the process of being
6549 read. Don't reassign the global entry to point to this DWO if that's
6550 the case. Also note that if the TU is already being read, it may not
6551 have come from a DWO, the program may be a mix of Fission-compiled
6552 code and non-Fission-compiled code. */
6553
6554 /* Have we already tried to read this TU?
6555 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6556 needn't exist in the global table yet). */
6557 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6558 return sig_entry;
6559
6560 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6561 dwo_unit of the TU itself. */
6562 dwo_file = cu->dwo_unit->dwo_file;
6563
6564 /* Ok, this is the first time we're reading this TU. */
6565 if (dwo_file->tus == NULL)
6566 return NULL;
6567 find_dwo_entry.signature = sig;
6568 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6569 &find_dwo_entry);
6570 if (dwo_entry == NULL)
6571 return NULL;
6572
6573 /* If the global table doesn't have an entry for this TU, add one. */
6574 if (sig_entry == NULL)
6575 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6576
6577 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6578 sig_entry->per_cu.tu_read = 1;
6579 return sig_entry;
6580 }
6581
6582 /* Subroutine of lookup_signatured_type.
6583 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6584 then try the DWP file. If the TU stub (skeleton) has been removed then
6585 it won't be in .gdb_index. */
6586
6587 static struct signatured_type *
6588 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6589 {
6590 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
6591 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6592 struct dwo_unit *dwo_entry;
6593 struct signatured_type find_sig_entry, *sig_entry;
6594 void **slot;
6595
6596 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->per_bfd->using_index);
6597 gdb_assert (dwp_file != NULL);
6598
6599 /* If TU skeletons have been removed then we may not have read in any
6600 TUs yet. */
6601 if (dwarf2_per_objfile->per_bfd->signatured_types == NULL)
6602 dwarf2_per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6603
6604 find_sig_entry.signature = sig;
6605 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->signatured_types.get (),
6606 &find_sig_entry, INSERT);
6607 sig_entry = (struct signatured_type *) *slot;
6608
6609 /* Have we already tried to read this TU?
6610 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6611 needn't exist in the global table yet). */
6612 if (sig_entry != NULL)
6613 return sig_entry;
6614
6615 if (dwp_file->tus == NULL)
6616 return NULL;
6617 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6618 sig, 1 /* is_debug_types */);
6619 if (dwo_entry == NULL)
6620 return NULL;
6621
6622 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6623 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6624
6625 return sig_entry;
6626 }
6627
6628 /* Lookup a signature based type for DW_FORM_ref_sig8.
6629 Returns NULL if signature SIG is not present in the table.
6630 It is up to the caller to complain about this. */
6631
6632 static struct signatured_type *
6633 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6634 {
6635 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
6636
6637 if (cu->dwo_unit
6638 && dwarf2_per_objfile->per_bfd->using_index)
6639 {
6640 /* We're in a DWO/DWP file, and we're using .gdb_index.
6641 These cases require special processing. */
6642 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6643 return lookup_dwo_signatured_type (cu, sig);
6644 else
6645 return lookup_dwp_signatured_type (cu, sig);
6646 }
6647 else
6648 {
6649 struct signatured_type find_entry, *entry;
6650
6651 if (dwarf2_per_objfile->per_bfd->signatured_types == NULL)
6652 return NULL;
6653 find_entry.signature = sig;
6654 entry = ((struct signatured_type *)
6655 htab_find (dwarf2_per_objfile->per_bfd->signatured_types.get (),
6656 &find_entry));
6657 return entry;
6658 }
6659 }
6660
6661 /* Low level DIE reading support. */
6662
6663 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6664
6665 static void
6666 init_cu_die_reader (struct die_reader_specs *reader,
6667 struct dwarf2_cu *cu,
6668 struct dwarf2_section_info *section,
6669 struct dwo_file *dwo_file,
6670 struct abbrev_table *abbrev_table)
6671 {
6672 gdb_assert (section->readin && section->buffer != NULL);
6673 reader->abfd = section->get_bfd_owner ();
6674 reader->cu = cu;
6675 reader->dwo_file = dwo_file;
6676 reader->die_section = section;
6677 reader->buffer = section->buffer;
6678 reader->buffer_end = section->buffer + section->size;
6679 reader->abbrev_table = abbrev_table;
6680 }
6681
6682 /* Subroutine of cutu_reader to simplify it.
6683 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6684 There's just a lot of work to do, and cutu_reader is big enough
6685 already.
6686
6687 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6688 from it to the DIE in the DWO. If NULL we are skipping the stub.
6689 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6690 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6691 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6692 STUB_COMP_DIR may be non-NULL.
6693 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6694 are filled in with the info of the DIE from the DWO file.
6695 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6696 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6697 kept around for at least as long as *RESULT_READER.
6698
6699 The result is non-zero if a valid (non-dummy) DIE was found. */
6700
6701 static int
6702 read_cutu_die_from_dwo (dwarf2_cu *cu,
6703 struct dwo_unit *dwo_unit,
6704 struct die_info *stub_comp_unit_die,
6705 const char *stub_comp_dir,
6706 struct die_reader_specs *result_reader,
6707 const gdb_byte **result_info_ptr,
6708 struct die_info **result_comp_unit_die,
6709 abbrev_table_up *result_dwo_abbrev_table)
6710 {
6711 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
6712 dwarf2_per_cu_data *per_cu = cu->per_cu;
6713 struct objfile *objfile = dwarf2_per_objfile->objfile;
6714 bfd *abfd;
6715 const gdb_byte *begin_info_ptr, *info_ptr;
6716 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6717 int i,num_extra_attrs;
6718 struct dwarf2_section_info *dwo_abbrev_section;
6719 struct die_info *comp_unit_die;
6720
6721 /* At most one of these may be provided. */
6722 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6723
6724 /* These attributes aren't processed until later:
6725 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6726 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6727 referenced later. However, these attributes are found in the stub
6728 which we won't have later. In order to not impose this complication
6729 on the rest of the code, we read them here and copy them to the
6730 DWO CU/TU die. */
6731
6732 stmt_list = NULL;
6733 low_pc = NULL;
6734 high_pc = NULL;
6735 ranges = NULL;
6736 comp_dir = NULL;
6737
6738 if (stub_comp_unit_die != NULL)
6739 {
6740 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6741 DWO file. */
6742 if (!per_cu->is_debug_types)
6743 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6744 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6745 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6746 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6747 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6748
6749 cu->addr_base = stub_comp_unit_die->addr_base ();
6750
6751 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6752 here (if needed). We need the value before we can process
6753 DW_AT_ranges. */
6754 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6755 }
6756 else if (stub_comp_dir != NULL)
6757 {
6758 /* Reconstruct the comp_dir attribute to simplify the code below. */
6759 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6760 comp_dir->name = DW_AT_comp_dir;
6761 comp_dir->form = DW_FORM_string;
6762 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6763 DW_STRING (comp_dir) = stub_comp_dir;
6764 }
6765
6766 /* Set up for reading the DWO CU/TU. */
6767 cu->dwo_unit = dwo_unit;
6768 dwarf2_section_info *section = dwo_unit->section;
6769 section->read (objfile);
6770 abfd = section->get_bfd_owner ();
6771 begin_info_ptr = info_ptr = (section->buffer
6772 + to_underlying (dwo_unit->sect_off));
6773 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6774
6775 if (per_cu->is_debug_types)
6776 {
6777 signatured_type *sig_type = (struct signatured_type *) per_cu;
6778
6779 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6780 &cu->header, section,
6781 dwo_abbrev_section,
6782 info_ptr, rcuh_kind::TYPE);
6783 /* This is not an assert because it can be caused by bad debug info. */
6784 if (sig_type->signature != cu->header.signature)
6785 {
6786 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6787 " TU at offset %s [in module %s]"),
6788 hex_string (sig_type->signature),
6789 hex_string (cu->header.signature),
6790 sect_offset_str (dwo_unit->sect_off),
6791 bfd_get_filename (abfd));
6792 }
6793 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6794 /* For DWOs coming from DWP files, we don't know the CU length
6795 nor the type's offset in the TU until now. */
6796 dwo_unit->length = cu->header.get_length ();
6797 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6798
6799 /* Establish the type offset that can be used to lookup the type.
6800 For DWO files, we don't know it until now. */
6801 sig_type->type_offset_in_section
6802 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6803 }
6804 else
6805 {
6806 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6807 &cu->header, section,
6808 dwo_abbrev_section,
6809 info_ptr, rcuh_kind::COMPILE);
6810 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6811 /* For DWOs coming from DWP files, we don't know the CU length
6812 until now. */
6813 dwo_unit->length = cu->header.get_length ();
6814 }
6815
6816 *result_dwo_abbrev_table
6817 = abbrev_table::read (objfile, dwo_abbrev_section,
6818 cu->header.abbrev_sect_off);
6819 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6820 result_dwo_abbrev_table->get ());
6821
6822 /* Read in the die, but leave space to copy over the attributes
6823 from the stub. This has the benefit of simplifying the rest of
6824 the code - all the work to maintain the illusion of a single
6825 DW_TAG_{compile,type}_unit DIE is done here. */
6826 num_extra_attrs = ((stmt_list != NULL)
6827 + (low_pc != NULL)
6828 + (high_pc != NULL)
6829 + (ranges != NULL)
6830 + (comp_dir != NULL));
6831 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6832 num_extra_attrs);
6833
6834 /* Copy over the attributes from the stub to the DIE we just read in. */
6835 comp_unit_die = *result_comp_unit_die;
6836 i = comp_unit_die->num_attrs;
6837 if (stmt_list != NULL)
6838 comp_unit_die->attrs[i++] = *stmt_list;
6839 if (low_pc != NULL)
6840 comp_unit_die->attrs[i++] = *low_pc;
6841 if (high_pc != NULL)
6842 comp_unit_die->attrs[i++] = *high_pc;
6843 if (ranges != NULL)
6844 comp_unit_die->attrs[i++] = *ranges;
6845 if (comp_dir != NULL)
6846 comp_unit_die->attrs[i++] = *comp_dir;
6847 comp_unit_die->num_attrs += num_extra_attrs;
6848
6849 if (dwarf_die_debug)
6850 {
6851 fprintf_unfiltered (gdb_stdlog,
6852 "Read die from %s@0x%x of %s:\n",
6853 section->get_name (),
6854 (unsigned) (begin_info_ptr - section->buffer),
6855 bfd_get_filename (abfd));
6856 dump_die (comp_unit_die, dwarf_die_debug);
6857 }
6858
6859 /* Skip dummy compilation units. */
6860 if (info_ptr >= begin_info_ptr + dwo_unit->length
6861 || peek_abbrev_code (abfd, info_ptr) == 0)
6862 return 0;
6863
6864 *result_info_ptr = info_ptr;
6865 return 1;
6866 }
6867
6868 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6869 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6870 signature is part of the header. */
6871 static gdb::optional<ULONGEST>
6872 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6873 {
6874 if (cu->header.version >= 5)
6875 return cu->header.signature;
6876 struct attribute *attr;
6877 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6878 if (attr == nullptr)
6879 return gdb::optional<ULONGEST> ();
6880 return DW_UNSND (attr);
6881 }
6882
6883 /* Subroutine of cutu_reader to simplify it.
6884 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6885 Returns NULL if the specified DWO unit cannot be found. */
6886
6887 static struct dwo_unit *
6888 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6889 {
6890 dwarf2_per_cu_data *per_cu = cu->per_cu;
6891 struct dwo_unit *dwo_unit;
6892 const char *comp_dir;
6893
6894 gdb_assert (cu != NULL);
6895
6896 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6897 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6898 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6899
6900 if (per_cu->is_debug_types)
6901 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
6902 else
6903 {
6904 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6905
6906 if (!signature.has_value ())
6907 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6908 " [in module %s]"),
6909 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
6910
6911 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
6912 }
6913
6914 return dwo_unit;
6915 }
6916
6917 /* Subroutine of cutu_reader to simplify it.
6918 See it for a description of the parameters.
6919 Read a TU directly from a DWO file, bypassing the stub. */
6920
6921 void
6922 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
6923 dwarf2_per_objfile *per_objfile,
6924 int use_existing_cu)
6925 {
6926 struct signatured_type *sig_type;
6927
6928 /* Verify we can do the following downcast, and that we have the
6929 data we need. */
6930 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6931 sig_type = (struct signatured_type *) this_cu;
6932 gdb_assert (sig_type->dwo_unit != NULL);
6933
6934 if (use_existing_cu && this_cu->cu != NULL)
6935 {
6936 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6937 /* There's no need to do the rereading_dwo_cu handling that
6938 cutu_reader does since we don't read the stub. */
6939 }
6940 else
6941 {
6942 /* If !use_existing_cu, this_cu->cu must be NULL. */
6943 gdb_assert (this_cu->cu == NULL);
6944 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6945 }
6946
6947 /* A future optimization, if needed, would be to use an existing
6948 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6949 could share abbrev tables. */
6950
6951 if (read_cutu_die_from_dwo (this_cu->cu, sig_type->dwo_unit,
6952 NULL /* stub_comp_unit_die */,
6953 sig_type->dwo_unit->dwo_file->comp_dir,
6954 this, &info_ptr,
6955 &comp_unit_die,
6956 &m_dwo_abbrev_table) == 0)
6957 {
6958 /* Dummy die. */
6959 dummy_p = true;
6960 }
6961 }
6962
6963 /* Initialize a CU (or TU) and read its DIEs.
6964 If the CU defers to a DWO file, read the DWO file as well.
6965
6966 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6967 Otherwise the table specified in the comp unit header is read in and used.
6968 This is an optimization for when we already have the abbrev table.
6969
6970 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6971 Otherwise, a new CU is allocated with xmalloc. */
6972
6973 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6974 dwarf2_per_objfile *dwarf2_per_objfile,
6975 struct abbrev_table *abbrev_table,
6976 int use_existing_cu,
6977 bool skip_partial)
6978 : die_reader_specs {},
6979 m_this_cu (this_cu)
6980 {
6981 struct objfile *objfile = dwarf2_per_objfile->objfile;
6982 struct dwarf2_section_info *section = this_cu->section;
6983 bfd *abfd = section->get_bfd_owner ();
6984 struct dwarf2_cu *cu;
6985 const gdb_byte *begin_info_ptr;
6986 struct signatured_type *sig_type = NULL;
6987 struct dwarf2_section_info *abbrev_section;
6988 /* Non-zero if CU currently points to a DWO file and we need to
6989 reread it. When this happens we need to reread the skeleton die
6990 before we can reread the DWO file (this only applies to CUs, not TUs). */
6991 int rereading_dwo_cu = 0;
6992
6993 if (dwarf_die_debug)
6994 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6995 this_cu->is_debug_types ? "type" : "comp",
6996 sect_offset_str (this_cu->sect_off));
6997
6998 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6999 file (instead of going through the stub), short-circuit all of this. */
7000 if (this_cu->reading_dwo_directly)
7001 {
7002 /* Narrow down the scope of possibilities to have to understand. */
7003 gdb_assert (this_cu->is_debug_types);
7004 gdb_assert (abbrev_table == NULL);
7005 init_tu_and_read_dwo_dies (this_cu, dwarf2_per_objfile, use_existing_cu);
7006 return;
7007 }
7008
7009 /* This is cheap if the section is already read in. */
7010 section->read (objfile);
7011
7012 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7013
7014 abbrev_section = get_abbrev_section_for_cu (this_cu);
7015
7016 if (use_existing_cu && this_cu->cu != NULL)
7017 {
7018 cu = this_cu->cu;
7019 /* If this CU is from a DWO file we need to start over, we need to
7020 refetch the attributes from the skeleton CU.
7021 This could be optimized by retrieving those attributes from when we
7022 were here the first time: the previous comp_unit_die was stored in
7023 comp_unit_obstack. But there's no data yet that we need this
7024 optimization. */
7025 if (cu->dwo_unit != NULL)
7026 rereading_dwo_cu = 1;
7027 }
7028 else
7029 {
7030 /* If !use_existing_cu, this_cu->cu must be NULL. */
7031 gdb_assert (this_cu->cu == NULL);
7032 m_new_cu.reset (new dwarf2_cu (this_cu, dwarf2_per_objfile));
7033 cu = m_new_cu.get ();
7034 }
7035
7036 /* Get the header. */
7037 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7038 {
7039 /* We already have the header, there's no need to read it in again. */
7040 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7041 }
7042 else
7043 {
7044 if (this_cu->is_debug_types)
7045 {
7046 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7047 &cu->header, section,
7048 abbrev_section, info_ptr,
7049 rcuh_kind::TYPE);
7050
7051 /* Since per_cu is the first member of struct signatured_type,
7052 we can go from a pointer to one to a pointer to the other. */
7053 sig_type = (struct signatured_type *) this_cu;
7054 gdb_assert (sig_type->signature == cu->header.signature);
7055 gdb_assert (sig_type->type_offset_in_tu
7056 == cu->header.type_cu_offset_in_tu);
7057 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7058
7059 /* LENGTH has not been set yet for type units if we're
7060 using .gdb_index. */
7061 this_cu->length = cu->header.get_length ();
7062
7063 /* Establish the type offset that can be used to lookup the type. */
7064 sig_type->type_offset_in_section =
7065 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7066
7067 this_cu->dwarf_version = cu->header.version;
7068 }
7069 else
7070 {
7071 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7072 &cu->header, section,
7073 abbrev_section,
7074 info_ptr,
7075 rcuh_kind::COMPILE);
7076
7077 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7078 if (this_cu->length == 0)
7079 this_cu->length = cu->header.get_length ();
7080 else
7081 gdb_assert (this_cu->length == cu->header.get_length ());
7082 this_cu->dwarf_version = cu->header.version;
7083 }
7084 }
7085
7086 /* Skip dummy compilation units. */
7087 if (info_ptr >= begin_info_ptr + this_cu->length
7088 || peek_abbrev_code (abfd, info_ptr) == 0)
7089 {
7090 dummy_p = true;
7091 return;
7092 }
7093
7094 /* If we don't have them yet, read the abbrevs for this compilation unit.
7095 And if we need to read them now, make sure they're freed when we're
7096 done. */
7097 if (abbrev_table != NULL)
7098 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7099 else
7100 {
7101 m_abbrev_table_holder
7102 = abbrev_table::read (objfile, abbrev_section,
7103 cu->header.abbrev_sect_off);
7104 abbrev_table = m_abbrev_table_holder.get ();
7105 }
7106
7107 /* Read the top level CU/TU die. */
7108 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7109 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7110
7111 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7112 {
7113 dummy_p = true;
7114 return;
7115 }
7116
7117 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7118 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7119 table from the DWO file and pass the ownership over to us. It will be
7120 referenced from READER, so we must make sure to free it after we're done
7121 with READER.
7122
7123 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7124 DWO CU, that this test will fail (the attribute will not be present). */
7125 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7126 if (dwo_name != nullptr)
7127 {
7128 struct dwo_unit *dwo_unit;
7129 struct die_info *dwo_comp_unit_die;
7130
7131 if (comp_unit_die->has_children)
7132 {
7133 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7134 " has children (offset %s) [in module %s]"),
7135 sect_offset_str (this_cu->sect_off),
7136 bfd_get_filename (abfd));
7137 }
7138 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
7139 if (dwo_unit != NULL)
7140 {
7141 if (read_cutu_die_from_dwo (cu, dwo_unit,
7142 comp_unit_die, NULL,
7143 this, &info_ptr,
7144 &dwo_comp_unit_die,
7145 &m_dwo_abbrev_table) == 0)
7146 {
7147 /* Dummy die. */
7148 dummy_p = true;
7149 return;
7150 }
7151 comp_unit_die = dwo_comp_unit_die;
7152 }
7153 else
7154 {
7155 /* Yikes, we couldn't find the rest of the DIE, we only have
7156 the stub. A complaint has already been logged. There's
7157 not much more we can do except pass on the stub DIE to
7158 die_reader_func. We don't want to throw an error on bad
7159 debug info. */
7160 }
7161 }
7162 }
7163
7164 void
7165 cutu_reader::keep ()
7166 {
7167 /* Done, clean up. */
7168 gdb_assert (!dummy_p);
7169 if (m_new_cu != NULL)
7170 {
7171 /* We know that m_this_cu->cu is set, since we are in the process of
7172 parsing the CU. */
7173 gdb_assert (m_this_cu->cu != nullptr);
7174 dwarf2_per_objfile *dwarf2_per_objfile = m_this_cu->cu->per_objfile;
7175
7176 /* Link this CU into read_in_chain. */
7177 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->per_bfd->read_in_chain;
7178 dwarf2_per_objfile->per_bfd->read_in_chain = m_this_cu;
7179 /* The chain owns it now. */
7180 m_new_cu.release ();
7181 }
7182 }
7183
7184 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7185 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7186 assumed to have already done the lookup to find the DWO file).
7187
7188 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7189 THIS_CU->is_debug_types, but nothing else.
7190
7191 We fill in THIS_CU->length.
7192
7193 THIS_CU->cu is always freed when done.
7194 This is done in order to not leave THIS_CU->cu in a state where we have
7195 to care whether it refers to the "main" CU or the DWO CU.
7196
7197 When parent_cu is passed, it is used to provide a default value for
7198 str_offsets_base and addr_base from the parent. */
7199
7200 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7201 dwarf2_per_objfile *dwarf2_per_objfile,
7202 struct dwarf2_cu *parent_cu,
7203 struct dwo_file *dwo_file)
7204 : die_reader_specs {},
7205 m_this_cu (this_cu)
7206 {
7207 struct objfile *objfile = dwarf2_per_objfile->objfile;
7208 struct dwarf2_section_info *section = this_cu->section;
7209 bfd *abfd = section->get_bfd_owner ();
7210 struct dwarf2_section_info *abbrev_section;
7211 const gdb_byte *begin_info_ptr, *info_ptr;
7212
7213 if (dwarf_die_debug)
7214 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7215 this_cu->is_debug_types ? "type" : "comp",
7216 sect_offset_str (this_cu->sect_off));
7217
7218 gdb_assert (this_cu->cu == NULL);
7219
7220 abbrev_section = (dwo_file != NULL
7221 ? &dwo_file->sections.abbrev
7222 : get_abbrev_section_for_cu (this_cu));
7223
7224 /* This is cheap if the section is already read in. */
7225 section->read (objfile);
7226
7227 m_new_cu.reset (new dwarf2_cu (this_cu, dwarf2_per_objfile));
7228
7229 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7230 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7231 &m_new_cu->header, section,
7232 abbrev_section, info_ptr,
7233 (this_cu->is_debug_types
7234 ? rcuh_kind::TYPE
7235 : rcuh_kind::COMPILE));
7236
7237 if (parent_cu != nullptr)
7238 {
7239 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7240 m_new_cu->addr_base = parent_cu->addr_base;
7241 }
7242 this_cu->length = m_new_cu->header.get_length ();
7243
7244 /* Skip dummy compilation units. */
7245 if (info_ptr >= begin_info_ptr + this_cu->length
7246 || peek_abbrev_code (abfd, info_ptr) == 0)
7247 {
7248 dummy_p = true;
7249 return;
7250 }
7251
7252 m_abbrev_table_holder
7253 = abbrev_table::read (objfile, abbrev_section,
7254 m_new_cu->header.abbrev_sect_off);
7255
7256 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7257 m_abbrev_table_holder.get ());
7258 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7259 }
7260
7261 \f
7262 /* Type Unit Groups.
7263
7264 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7265 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7266 so that all types coming from the same compilation (.o file) are grouped
7267 together. A future step could be to put the types in the same symtab as
7268 the CU the types ultimately came from. */
7269
7270 static hashval_t
7271 hash_type_unit_group (const void *item)
7272 {
7273 const struct type_unit_group *tu_group
7274 = (const struct type_unit_group *) item;
7275
7276 return hash_stmt_list_entry (&tu_group->hash);
7277 }
7278
7279 static int
7280 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7281 {
7282 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7283 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7284
7285 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7286 }
7287
7288 /* Allocate a hash table for type unit groups. */
7289
7290 static htab_up
7291 allocate_type_unit_groups_table ()
7292 {
7293 return htab_up (htab_create_alloc (3,
7294 hash_type_unit_group,
7295 eq_type_unit_group,
7296 NULL, xcalloc, xfree));
7297 }
7298
7299 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7300 partial symtabs. We combine several TUs per psymtab to not let the size
7301 of any one psymtab grow too big. */
7302 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7303 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7304
7305 /* Helper routine for get_type_unit_group.
7306 Create the type_unit_group object used to hold one or more TUs. */
7307
7308 static struct type_unit_group *
7309 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7310 {
7311 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
7312 dwarf2_per_bfd *per_bfd = dwarf2_per_objfile->per_bfd;
7313 struct dwarf2_per_cu_data *per_cu;
7314 struct type_unit_group *tu_group;
7315
7316 tu_group = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack,
7317 struct type_unit_group);
7318 per_cu = &tu_group->per_cu;
7319 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7320 per_cu->per_bfd = per_bfd;
7321
7322 if (per_bfd->using_index)
7323 {
7324 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
7325 struct dwarf2_per_cu_quick_data);
7326 }
7327 else
7328 {
7329 unsigned int line_offset = to_underlying (line_offset_struct);
7330 dwarf2_psymtab *pst;
7331 std::string name;
7332
7333 /* Give the symtab a useful name for debug purposes. */
7334 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7335 name = string_printf ("<type_units_%d>",
7336 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7337 else
7338 name = string_printf ("<type_units_at_0x%x>", line_offset);
7339
7340 pst = create_partial_symtab (per_cu, dwarf2_per_objfile, name.c_str ());
7341 pst->anonymous = true;
7342 }
7343
7344 tu_group->hash.dwo_unit = cu->dwo_unit;
7345 tu_group->hash.line_sect_off = line_offset_struct;
7346
7347 return tu_group;
7348 }
7349
7350 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7351 STMT_LIST is a DW_AT_stmt_list attribute. */
7352
7353 static struct type_unit_group *
7354 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7355 {
7356 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
7357 struct tu_stats *tu_stats = &dwarf2_per_objfile->per_bfd->tu_stats;
7358 struct type_unit_group *tu_group;
7359 void **slot;
7360 unsigned int line_offset;
7361 struct type_unit_group type_unit_group_for_lookup;
7362
7363 if (dwarf2_per_objfile->per_bfd->type_unit_groups == NULL)
7364 dwarf2_per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
7365
7366 /* Do we need to create a new group, or can we use an existing one? */
7367
7368 if (stmt_list)
7369 {
7370 line_offset = DW_UNSND (stmt_list);
7371 ++tu_stats->nr_symtab_sharers;
7372 }
7373 else
7374 {
7375 /* Ugh, no stmt_list. Rare, but we have to handle it.
7376 We can do various things here like create one group per TU or
7377 spread them over multiple groups to split up the expansion work.
7378 To avoid worst case scenarios (too many groups or too large groups)
7379 we, umm, group them in bunches. */
7380 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7381 | (tu_stats->nr_stmt_less_type_units
7382 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7383 ++tu_stats->nr_stmt_less_type_units;
7384 }
7385
7386 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7387 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7388 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->type_unit_groups.get (),
7389 &type_unit_group_for_lookup, INSERT);
7390 if (*slot != NULL)
7391 {
7392 tu_group = (struct type_unit_group *) *slot;
7393 gdb_assert (tu_group != NULL);
7394 }
7395 else
7396 {
7397 sect_offset line_offset_struct = (sect_offset) line_offset;
7398 tu_group = create_type_unit_group (cu, line_offset_struct);
7399 *slot = tu_group;
7400 ++tu_stats->nr_symtabs;
7401 }
7402
7403 return tu_group;
7404 }
7405 \f
7406 /* Partial symbol tables. */
7407
7408 /* Create a psymtab named NAME and assign it to PER_CU.
7409
7410 The caller must fill in the following details:
7411 dirname, textlow, texthigh. */
7412
7413 static dwarf2_psymtab *
7414 create_partial_symtab (dwarf2_per_cu_data *per_cu,
7415 dwarf2_per_objfile *per_objfile,
7416 const char *name)
7417 {
7418 struct objfile *objfile = per_objfile->objfile;
7419 dwarf2_psymtab *pst;
7420
7421 pst = new dwarf2_psymtab (name, objfile, per_cu);
7422
7423 pst->psymtabs_addrmap_supported = true;
7424
7425 /* This is the glue that links PST into GDB's symbol API. */
7426 per_cu->v.psymtab = pst;
7427
7428 return pst;
7429 }
7430
7431 /* DIE reader function for process_psymtab_comp_unit. */
7432
7433 static void
7434 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7435 const gdb_byte *info_ptr,
7436 struct die_info *comp_unit_die,
7437 enum language pretend_language)
7438 {
7439 struct dwarf2_cu *cu = reader->cu;
7440 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7441 struct objfile *objfile = per_objfile->objfile;
7442 struct gdbarch *gdbarch = objfile->arch ();
7443 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7444 CORE_ADDR baseaddr;
7445 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7446 dwarf2_psymtab *pst;
7447 enum pc_bounds_kind cu_bounds_kind;
7448 const char *filename;
7449
7450 gdb_assert (! per_cu->is_debug_types);
7451
7452 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7453
7454 /* Allocate a new partial symbol table structure. */
7455 gdb::unique_xmalloc_ptr<char> debug_filename;
7456 static const char artificial[] = "<artificial>";
7457 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7458 if (filename == NULL)
7459 filename = "";
7460 else if (strcmp (filename, artificial) == 0)
7461 {
7462 debug_filename.reset (concat (artificial, "@",
7463 sect_offset_str (per_cu->sect_off),
7464 (char *) NULL));
7465 filename = debug_filename.get ();
7466 }
7467
7468 pst = create_partial_symtab (per_cu, per_objfile, filename);
7469
7470 /* This must be done before calling dwarf2_build_include_psymtabs. */
7471 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7472
7473 baseaddr = objfile->text_section_offset ();
7474
7475 dwarf2_find_base_address (comp_unit_die, cu);
7476
7477 /* Possibly set the default values of LOWPC and HIGHPC from
7478 `DW_AT_ranges'. */
7479 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7480 &best_highpc, cu, pst);
7481 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7482 {
7483 CORE_ADDR low
7484 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7485 - baseaddr);
7486 CORE_ADDR high
7487 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7488 - baseaddr - 1);
7489 /* Store the contiguous range if it is not empty; it can be
7490 empty for CUs with no code. */
7491 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7492 low, high, pst);
7493 }
7494
7495 /* Check if comp unit has_children.
7496 If so, read the rest of the partial symbols from this comp unit.
7497 If not, there's no more debug_info for this comp unit. */
7498 if (comp_unit_die->has_children)
7499 {
7500 struct partial_die_info *first_die;
7501 CORE_ADDR lowpc, highpc;
7502
7503 lowpc = ((CORE_ADDR) -1);
7504 highpc = ((CORE_ADDR) 0);
7505
7506 first_die = load_partial_dies (reader, info_ptr, 1);
7507
7508 scan_partial_symbols (first_die, &lowpc, &highpc,
7509 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7510
7511 /* If we didn't find a lowpc, set it to highpc to avoid
7512 complaints from `maint check'. */
7513 if (lowpc == ((CORE_ADDR) -1))
7514 lowpc = highpc;
7515
7516 /* If the compilation unit didn't have an explicit address range,
7517 then use the information extracted from its child dies. */
7518 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7519 {
7520 best_lowpc = lowpc;
7521 best_highpc = highpc;
7522 }
7523 }
7524 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7525 best_lowpc + baseaddr)
7526 - baseaddr);
7527 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7528 best_highpc + baseaddr)
7529 - baseaddr);
7530
7531 end_psymtab_common (objfile, pst);
7532
7533 if (!cu->per_cu->imported_symtabs_empty ())
7534 {
7535 int i;
7536 int len = cu->per_cu->imported_symtabs_size ();
7537
7538 /* Fill in 'dependencies' here; we fill in 'users' in a
7539 post-pass. */
7540 pst->number_of_dependencies = len;
7541 pst->dependencies
7542 = objfile->partial_symtabs->allocate_dependencies (len);
7543 for (i = 0; i < len; ++i)
7544 {
7545 pst->dependencies[i]
7546 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7547 }
7548
7549 cu->per_cu->imported_symtabs_free ();
7550 }
7551
7552 /* Get the list of files included in the current compilation unit,
7553 and build a psymtab for each of them. */
7554 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7555
7556 if (dwarf_read_debug)
7557 fprintf_unfiltered (gdb_stdlog,
7558 "Psymtab for %s unit @%s: %s - %s"
7559 ", %d global, %d static syms\n",
7560 per_cu->is_debug_types ? "type" : "comp",
7561 sect_offset_str (per_cu->sect_off),
7562 paddress (gdbarch, pst->text_low (objfile)),
7563 paddress (gdbarch, pst->text_high (objfile)),
7564 pst->n_global_syms, pst->n_static_syms);
7565 }
7566
7567 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7568 Process compilation unit THIS_CU for a psymtab. */
7569
7570 static void
7571 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7572 dwarf2_per_objfile *per_objfile,
7573 bool want_partial_unit,
7574 enum language pretend_language)
7575 {
7576 /* If this compilation unit was already read in, free the
7577 cached copy in order to read it in again. This is
7578 necessary because we skipped some symbols when we first
7579 read in the compilation unit (see load_partial_dies).
7580 This problem could be avoided, but the benefit is unclear. */
7581 if (this_cu->cu != NULL)
7582 free_one_cached_comp_unit (this_cu);
7583
7584 cutu_reader reader (this_cu, per_objfile, NULL, 0, false);
7585
7586 switch (reader.comp_unit_die->tag)
7587 {
7588 case DW_TAG_compile_unit:
7589 this_cu->unit_type = DW_UT_compile;
7590 break;
7591 case DW_TAG_partial_unit:
7592 this_cu->unit_type = DW_UT_partial;
7593 break;
7594 default:
7595 abort ();
7596 }
7597
7598 if (reader.dummy_p)
7599 {
7600 /* Nothing. */
7601 }
7602 else if (this_cu->is_debug_types)
7603 build_type_psymtabs_reader (&reader, reader.info_ptr,
7604 reader.comp_unit_die);
7605 else if (want_partial_unit
7606 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7607 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7608 reader.comp_unit_die,
7609 pretend_language);
7610
7611 this_cu->lang = this_cu->cu->language;
7612
7613 /* Age out any secondary CUs. */
7614 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7615 }
7616
7617 /* Reader function for build_type_psymtabs. */
7618
7619 static void
7620 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7621 const gdb_byte *info_ptr,
7622 struct die_info *type_unit_die)
7623 {
7624 struct dwarf2_per_objfile *dwarf2_per_objfile = reader->cu->per_objfile;
7625 struct objfile *objfile = dwarf2_per_objfile->objfile;
7626 struct dwarf2_cu *cu = reader->cu;
7627 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7628 struct signatured_type *sig_type;
7629 struct type_unit_group *tu_group;
7630 struct attribute *attr;
7631 struct partial_die_info *first_die;
7632 CORE_ADDR lowpc, highpc;
7633 dwarf2_psymtab *pst;
7634
7635 gdb_assert (per_cu->is_debug_types);
7636 sig_type = (struct signatured_type *) per_cu;
7637
7638 if (! type_unit_die->has_children)
7639 return;
7640
7641 attr = type_unit_die->attr (DW_AT_stmt_list);
7642 tu_group = get_type_unit_group (cu, attr);
7643
7644 if (tu_group->tus == nullptr)
7645 tu_group->tus = new std::vector<signatured_type *>;
7646 tu_group->tus->push_back (sig_type);
7647
7648 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7649 pst = create_partial_symtab (per_cu, dwarf2_per_objfile, "");
7650 pst->anonymous = true;
7651
7652 first_die = load_partial_dies (reader, info_ptr, 1);
7653
7654 lowpc = (CORE_ADDR) -1;
7655 highpc = (CORE_ADDR) 0;
7656 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7657
7658 end_psymtab_common (objfile, pst);
7659 }
7660
7661 /* Struct used to sort TUs by their abbreviation table offset. */
7662
7663 struct tu_abbrev_offset
7664 {
7665 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7666 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7667 {}
7668
7669 signatured_type *sig_type;
7670 sect_offset abbrev_offset;
7671 };
7672
7673 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7674
7675 static bool
7676 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7677 const struct tu_abbrev_offset &b)
7678 {
7679 return a.abbrev_offset < b.abbrev_offset;
7680 }
7681
7682 /* Efficiently read all the type units.
7683 This does the bulk of the work for build_type_psymtabs.
7684
7685 The efficiency is because we sort TUs by the abbrev table they use and
7686 only read each abbrev table once. In one program there are 200K TUs
7687 sharing 8K abbrev tables.
7688
7689 The main purpose of this function is to support building the
7690 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7691 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7692 can collapse the search space by grouping them by stmt_list.
7693 The savings can be significant, in the same program from above the 200K TUs
7694 share 8K stmt_list tables.
7695
7696 FUNC is expected to call get_type_unit_group, which will create the
7697 struct type_unit_group if necessary and add it to
7698 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7699
7700 static void
7701 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7702 {
7703 struct tu_stats *tu_stats = &dwarf2_per_objfile->per_bfd->tu_stats;
7704 abbrev_table_up abbrev_table;
7705 sect_offset abbrev_offset;
7706
7707 /* It's up to the caller to not call us multiple times. */
7708 gdb_assert (dwarf2_per_objfile->per_bfd->type_unit_groups == NULL);
7709
7710 if (dwarf2_per_objfile->per_bfd->all_type_units.empty ())
7711 return;
7712
7713 /* TUs typically share abbrev tables, and there can be way more TUs than
7714 abbrev tables. Sort by abbrev table to reduce the number of times we
7715 read each abbrev table in.
7716 Alternatives are to punt or to maintain a cache of abbrev tables.
7717 This is simpler and efficient enough for now.
7718
7719 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7720 symtab to use). Typically TUs with the same abbrev offset have the same
7721 stmt_list value too so in practice this should work well.
7722
7723 The basic algorithm here is:
7724
7725 sort TUs by abbrev table
7726 for each TU with same abbrev table:
7727 read abbrev table if first user
7728 read TU top level DIE
7729 [IWBN if DWO skeletons had DW_AT_stmt_list]
7730 call FUNC */
7731
7732 if (dwarf_read_debug)
7733 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7734
7735 /* Sort in a separate table to maintain the order of all_type_units
7736 for .gdb_index: TU indices directly index all_type_units. */
7737 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7738 sorted_by_abbrev.reserve (dwarf2_per_objfile->per_bfd->all_type_units.size ());
7739
7740 for (signatured_type *sig_type : dwarf2_per_objfile->per_bfd->all_type_units)
7741 sorted_by_abbrev.emplace_back
7742 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7743 sig_type->per_cu.section,
7744 sig_type->per_cu.sect_off));
7745
7746 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7747 sort_tu_by_abbrev_offset);
7748
7749 abbrev_offset = (sect_offset) ~(unsigned) 0;
7750
7751 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7752 {
7753 /* Switch to the next abbrev table if necessary. */
7754 if (abbrev_table == NULL
7755 || tu.abbrev_offset != abbrev_offset)
7756 {
7757 abbrev_offset = tu.abbrev_offset;
7758 abbrev_table =
7759 abbrev_table::read (dwarf2_per_objfile->objfile,
7760 &dwarf2_per_objfile->per_bfd->abbrev,
7761 abbrev_offset);
7762 ++tu_stats->nr_uniq_abbrev_tables;
7763 }
7764
7765 cutu_reader reader (&tu.sig_type->per_cu, dwarf2_per_objfile,
7766 abbrev_table.get (), 0, false);
7767 if (!reader.dummy_p)
7768 build_type_psymtabs_reader (&reader, reader.info_ptr,
7769 reader.comp_unit_die);
7770 }
7771 }
7772
7773 /* Print collected type unit statistics. */
7774
7775 static void
7776 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7777 {
7778 struct tu_stats *tu_stats = &dwarf2_per_objfile->per_bfd->tu_stats;
7779
7780 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7781 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7782 dwarf2_per_objfile->per_bfd->all_type_units.size ());
7783 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7784 tu_stats->nr_uniq_abbrev_tables);
7785 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7786 tu_stats->nr_symtabs);
7787 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7788 tu_stats->nr_symtab_sharers);
7789 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7790 tu_stats->nr_stmt_less_type_units);
7791 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7792 tu_stats->nr_all_type_units_reallocs);
7793 }
7794
7795 /* Traversal function for build_type_psymtabs. */
7796
7797 static int
7798 build_type_psymtab_dependencies (void **slot, void *info)
7799 {
7800 struct dwarf2_per_objfile *dwarf2_per_objfile
7801 = (struct dwarf2_per_objfile *) info;
7802 struct objfile *objfile = dwarf2_per_objfile->objfile;
7803 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7804 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7805 dwarf2_psymtab *pst = per_cu->v.psymtab;
7806 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7807 int i;
7808
7809 gdb_assert (len > 0);
7810 gdb_assert (per_cu->type_unit_group_p ());
7811
7812 pst->number_of_dependencies = len;
7813 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7814 for (i = 0; i < len; ++i)
7815 {
7816 struct signatured_type *iter = tu_group->tus->at (i);
7817 gdb_assert (iter->per_cu.is_debug_types);
7818 pst->dependencies[i] = iter->per_cu.v.psymtab;
7819 iter->type_unit_group = tu_group;
7820 }
7821
7822 delete tu_group->tus;
7823 tu_group->tus = nullptr;
7824
7825 return 1;
7826 }
7827
7828 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7829 Build partial symbol tables for the .debug_types comp-units. */
7830
7831 static void
7832 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7833 {
7834 if (! create_all_type_units (dwarf2_per_objfile))
7835 return;
7836
7837 build_type_psymtabs_1 (dwarf2_per_objfile);
7838 }
7839
7840 /* Traversal function for process_skeletonless_type_unit.
7841 Read a TU in a DWO file and build partial symbols for it. */
7842
7843 static int
7844 process_skeletonless_type_unit (void **slot, void *info)
7845 {
7846 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7847 struct dwarf2_per_objfile *dwarf2_per_objfile
7848 = (struct dwarf2_per_objfile *) info;
7849 struct signatured_type find_entry, *entry;
7850
7851 /* If this TU doesn't exist in the global table, add it and read it in. */
7852
7853 if (dwarf2_per_objfile->per_bfd->signatured_types == NULL)
7854 dwarf2_per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7855
7856 find_entry.signature = dwo_unit->signature;
7857 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->signatured_types.get (),
7858 &find_entry, INSERT);
7859 /* If we've already seen this type there's nothing to do. What's happening
7860 is we're doing our own version of comdat-folding here. */
7861 if (*slot != NULL)
7862 return 1;
7863
7864 /* This does the job that create_all_type_units would have done for
7865 this TU. */
7866 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7867 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7868 *slot = entry;
7869
7870 /* This does the job that build_type_psymtabs_1 would have done. */
7871 cutu_reader reader (&entry->per_cu, dwarf2_per_objfile, NULL, 0, false);
7872 if (!reader.dummy_p)
7873 build_type_psymtabs_reader (&reader, reader.info_ptr,
7874 reader.comp_unit_die);
7875
7876 return 1;
7877 }
7878
7879 /* Traversal function for process_skeletonless_type_units. */
7880
7881 static int
7882 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7883 {
7884 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7885
7886 if (dwo_file->tus != NULL)
7887 htab_traverse_noresize (dwo_file->tus.get (),
7888 process_skeletonless_type_unit, info);
7889
7890 return 1;
7891 }
7892
7893 /* Scan all TUs of DWO files, verifying we've processed them.
7894 This is needed in case a TU was emitted without its skeleton.
7895 Note: This can't be done until we know what all the DWO files are. */
7896
7897 static void
7898 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7899 {
7900 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7901 if (get_dwp_file (dwarf2_per_objfile) == NULL
7902 && dwarf2_per_objfile->per_bfd->dwo_files != NULL)
7903 {
7904 htab_traverse_noresize (dwarf2_per_objfile->per_bfd->dwo_files.get (),
7905 process_dwo_file_for_skeletonless_type_units,
7906 dwarf2_per_objfile);
7907 }
7908 }
7909
7910 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7911
7912 static void
7913 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7914 {
7915 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
7916 {
7917 dwarf2_psymtab *pst = per_cu->v.psymtab;
7918
7919 if (pst == NULL)
7920 continue;
7921
7922 for (int j = 0; j < pst->number_of_dependencies; ++j)
7923 {
7924 /* Set the 'user' field only if it is not already set. */
7925 if (pst->dependencies[j]->user == NULL)
7926 pst->dependencies[j]->user = pst;
7927 }
7928 }
7929 }
7930
7931 /* Build the partial symbol table by doing a quick pass through the
7932 .debug_info and .debug_abbrev sections. */
7933
7934 static void
7935 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7936 {
7937 struct objfile *objfile = dwarf2_per_objfile->objfile;
7938
7939 if (dwarf_read_debug)
7940 {
7941 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7942 objfile_name (objfile));
7943 }
7944
7945 scoped_restore restore_reading_psyms
7946 = make_scoped_restore (&dwarf2_per_objfile->per_bfd->reading_partial_symbols,
7947 true);
7948
7949 dwarf2_per_objfile->per_bfd->info.read (objfile);
7950
7951 /* Any cached compilation units will be linked by the per-objfile
7952 read_in_chain. Make sure to free them when we're done. */
7953 free_cached_comp_units freer (dwarf2_per_objfile);
7954
7955 build_type_psymtabs (dwarf2_per_objfile);
7956
7957 create_all_comp_units (dwarf2_per_objfile);
7958
7959 /* Create a temporary address map on a temporary obstack. We later
7960 copy this to the final obstack. */
7961 auto_obstack temp_obstack;
7962
7963 scoped_restore save_psymtabs_addrmap
7964 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7965 addrmap_create_mutable (&temp_obstack));
7966
7967 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->per_bfd->all_comp_units)
7968 {
7969 if (per_cu->v.psymtab != NULL)
7970 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7971 continue;
7972 process_psymtab_comp_unit (per_cu, dwarf2_per_objfile, false,
7973 language_minimal);
7974 }
7975
7976 /* This has to wait until we read the CUs, we need the list of DWOs. */
7977 process_skeletonless_type_units (dwarf2_per_objfile);
7978
7979 /* Now that all TUs have been processed we can fill in the dependencies. */
7980 if (dwarf2_per_objfile->per_bfd->type_unit_groups != NULL)
7981 {
7982 htab_traverse_noresize (dwarf2_per_objfile->per_bfd->type_unit_groups.get (),
7983 build_type_psymtab_dependencies, dwarf2_per_objfile);
7984 }
7985
7986 if (dwarf_read_debug)
7987 print_tu_stats (dwarf2_per_objfile);
7988
7989 set_partial_user (dwarf2_per_objfile);
7990
7991 objfile->partial_symtabs->psymtabs_addrmap
7992 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7993 objfile->partial_symtabs->obstack ());
7994 /* At this point we want to keep the address map. */
7995 save_psymtabs_addrmap.release ();
7996
7997 if (dwarf_read_debug)
7998 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7999 objfile_name (objfile));
8000 }
8001
8002 /* Load the partial DIEs for a secondary CU into memory.
8003 This is also used when rereading a primary CU with load_all_dies. */
8004
8005 static void
8006 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
8007 dwarf2_per_objfile *per_objfile)
8008 {
8009 cutu_reader reader (this_cu, per_objfile, NULL, 1, false);
8010
8011 if (!reader.dummy_p)
8012 {
8013 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8014 language_minimal);
8015
8016 /* Check if comp unit has_children.
8017 If so, read the rest of the partial symbols from this comp unit.
8018 If not, there's no more debug_info for this comp unit. */
8019 if (reader.comp_unit_die->has_children)
8020 load_partial_dies (&reader, reader.info_ptr, 0);
8021
8022 reader.keep ();
8023 }
8024 }
8025
8026 static void
8027 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8028 struct dwarf2_section_info *section,
8029 struct dwarf2_section_info *abbrev_section,
8030 unsigned int is_dwz)
8031 {
8032 const gdb_byte *info_ptr;
8033 struct objfile *objfile = dwarf2_per_objfile->objfile;
8034
8035 if (dwarf_read_debug)
8036 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8037 section->get_name (),
8038 section->get_file_name ());
8039
8040 section->read (objfile);
8041
8042 info_ptr = section->buffer;
8043
8044 while (info_ptr < section->buffer + section->size)
8045 {
8046 struct dwarf2_per_cu_data *this_cu;
8047
8048 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8049
8050 comp_unit_head cu_header;
8051 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8052 abbrev_section, info_ptr,
8053 rcuh_kind::COMPILE);
8054
8055 /* Save the compilation unit for later lookup. */
8056 if (cu_header.unit_type != DW_UT_type)
8057 this_cu = dwarf2_per_objfile->per_bfd->allocate_per_cu ();
8058 else
8059 {
8060 auto sig_type = dwarf2_per_objfile->per_bfd->allocate_signatured_type ();
8061 sig_type->signature = cu_header.signature;
8062 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8063 this_cu = &sig_type->per_cu;
8064 }
8065 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8066 this_cu->sect_off = sect_off;
8067 this_cu->length = cu_header.length + cu_header.initial_length_size;
8068 this_cu->is_dwz = is_dwz;
8069 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8070 this_cu->section = section;
8071
8072 dwarf2_per_objfile->per_bfd->all_comp_units.push_back (this_cu);
8073
8074 info_ptr = info_ptr + this_cu->length;
8075 }
8076 }
8077
8078 /* Create a list of all compilation units in OBJFILE.
8079 This is only done for -readnow and building partial symtabs. */
8080
8081 static void
8082 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8083 {
8084 gdb_assert (dwarf2_per_objfile->per_bfd->all_comp_units.empty ());
8085 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->per_bfd->info,
8086 &dwarf2_per_objfile->per_bfd->abbrev, 0);
8087
8088 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
8089 if (dwz != NULL)
8090 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8091 1);
8092 }
8093
8094 /* Process all loaded DIEs for compilation unit CU, starting at
8095 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8096 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8097 DW_AT_ranges). See the comments of add_partial_subprogram on how
8098 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8099
8100 static void
8101 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8102 CORE_ADDR *highpc, int set_addrmap,
8103 struct dwarf2_cu *cu)
8104 {
8105 struct partial_die_info *pdi;
8106
8107 /* Now, march along the PDI's, descending into ones which have
8108 interesting children but skipping the children of the other ones,
8109 until we reach the end of the compilation unit. */
8110
8111 pdi = first_die;
8112
8113 while (pdi != NULL)
8114 {
8115 pdi->fixup (cu);
8116
8117 /* Anonymous namespaces or modules have no name but have interesting
8118 children, so we need to look at them. Ditto for anonymous
8119 enums. */
8120
8121 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8122 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8123 || pdi->tag == DW_TAG_imported_unit
8124 || pdi->tag == DW_TAG_inlined_subroutine)
8125 {
8126 switch (pdi->tag)
8127 {
8128 case DW_TAG_subprogram:
8129 case DW_TAG_inlined_subroutine:
8130 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8131 break;
8132 case DW_TAG_constant:
8133 case DW_TAG_variable:
8134 case DW_TAG_typedef:
8135 case DW_TAG_union_type:
8136 if (!pdi->is_declaration
8137 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8138 {
8139 add_partial_symbol (pdi, cu);
8140 }
8141 break;
8142 case DW_TAG_class_type:
8143 case DW_TAG_interface_type:
8144 case DW_TAG_structure_type:
8145 if (!pdi->is_declaration)
8146 {
8147 add_partial_symbol (pdi, cu);
8148 }
8149 if ((cu->language == language_rust
8150 || cu->language == language_cplus) && pdi->has_children)
8151 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8152 set_addrmap, cu);
8153 break;
8154 case DW_TAG_enumeration_type:
8155 if (!pdi->is_declaration)
8156 add_partial_enumeration (pdi, cu);
8157 break;
8158 case DW_TAG_base_type:
8159 case DW_TAG_subrange_type:
8160 /* File scope base type definitions are added to the partial
8161 symbol table. */
8162 add_partial_symbol (pdi, cu);
8163 break;
8164 case DW_TAG_namespace:
8165 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8166 break;
8167 case DW_TAG_module:
8168 if (!pdi->is_declaration)
8169 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8170 break;
8171 case DW_TAG_imported_unit:
8172 {
8173 struct dwarf2_per_cu_data *per_cu;
8174
8175 /* For now we don't handle imported units in type units. */
8176 if (cu->per_cu->is_debug_types)
8177 {
8178 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8179 " supported in type units [in module %s]"),
8180 objfile_name (cu->per_objfile->objfile));
8181 }
8182
8183 per_cu = dwarf2_find_containing_comp_unit
8184 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
8185
8186 /* Go read the partial unit, if needed. */
8187 if (per_cu->v.psymtab == NULL)
8188 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
8189 cu->language);
8190
8191 cu->per_cu->imported_symtabs_push (per_cu);
8192 }
8193 break;
8194 case DW_TAG_imported_declaration:
8195 add_partial_symbol (pdi, cu);
8196 break;
8197 default:
8198 break;
8199 }
8200 }
8201
8202 /* If the die has a sibling, skip to the sibling. */
8203
8204 pdi = pdi->die_sibling;
8205 }
8206 }
8207
8208 /* Functions used to compute the fully scoped name of a partial DIE.
8209
8210 Normally, this is simple. For C++, the parent DIE's fully scoped
8211 name is concatenated with "::" and the partial DIE's name.
8212 Enumerators are an exception; they use the scope of their parent
8213 enumeration type, i.e. the name of the enumeration type is not
8214 prepended to the enumerator.
8215
8216 There are two complexities. One is DW_AT_specification; in this
8217 case "parent" means the parent of the target of the specification,
8218 instead of the direct parent of the DIE. The other is compilers
8219 which do not emit DW_TAG_namespace; in this case we try to guess
8220 the fully qualified name of structure types from their members'
8221 linkage names. This must be done using the DIE's children rather
8222 than the children of any DW_AT_specification target. We only need
8223 to do this for structures at the top level, i.e. if the target of
8224 any DW_AT_specification (if any; otherwise the DIE itself) does not
8225 have a parent. */
8226
8227 /* Compute the scope prefix associated with PDI's parent, in
8228 compilation unit CU. The result will be allocated on CU's
8229 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8230 field. NULL is returned if no prefix is necessary. */
8231 static const char *
8232 partial_die_parent_scope (struct partial_die_info *pdi,
8233 struct dwarf2_cu *cu)
8234 {
8235 const char *grandparent_scope;
8236 struct partial_die_info *parent, *real_pdi;
8237
8238 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8239 then this means the parent of the specification DIE. */
8240
8241 real_pdi = pdi;
8242 while (real_pdi->has_specification)
8243 {
8244 auto res = find_partial_die (real_pdi->spec_offset,
8245 real_pdi->spec_is_dwz, cu);
8246 real_pdi = res.pdi;
8247 cu = res.cu;
8248 }
8249
8250 parent = real_pdi->die_parent;
8251 if (parent == NULL)
8252 return NULL;
8253
8254 if (parent->scope_set)
8255 return parent->scope;
8256
8257 parent->fixup (cu);
8258
8259 grandparent_scope = partial_die_parent_scope (parent, cu);
8260
8261 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8262 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8263 Work around this problem here. */
8264 if (cu->language == language_cplus
8265 && parent->tag == DW_TAG_namespace
8266 && strcmp (parent->name, "::") == 0
8267 && grandparent_scope == NULL)
8268 {
8269 parent->scope = NULL;
8270 parent->scope_set = 1;
8271 return NULL;
8272 }
8273
8274 /* Nested subroutines in Fortran get a prefix. */
8275 if (pdi->tag == DW_TAG_enumerator)
8276 /* Enumerators should not get the name of the enumeration as a prefix. */
8277 parent->scope = grandparent_scope;
8278 else if (parent->tag == DW_TAG_namespace
8279 || parent->tag == DW_TAG_module
8280 || parent->tag == DW_TAG_structure_type
8281 || parent->tag == DW_TAG_class_type
8282 || parent->tag == DW_TAG_interface_type
8283 || parent->tag == DW_TAG_union_type
8284 || parent->tag == DW_TAG_enumeration_type
8285 || (cu->language == language_fortran
8286 && parent->tag == DW_TAG_subprogram
8287 && pdi->tag == DW_TAG_subprogram))
8288 {
8289 if (grandparent_scope == NULL)
8290 parent->scope = parent->name;
8291 else
8292 parent->scope = typename_concat (&cu->comp_unit_obstack,
8293 grandparent_scope,
8294 parent->name, 0, cu);
8295 }
8296 else
8297 {
8298 /* FIXME drow/2004-04-01: What should we be doing with
8299 function-local names? For partial symbols, we should probably be
8300 ignoring them. */
8301 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8302 dwarf_tag_name (parent->tag),
8303 sect_offset_str (pdi->sect_off));
8304 parent->scope = grandparent_scope;
8305 }
8306
8307 parent->scope_set = 1;
8308 return parent->scope;
8309 }
8310
8311 /* Return the fully scoped name associated with PDI, from compilation unit
8312 CU. The result will be allocated with malloc. */
8313
8314 static gdb::unique_xmalloc_ptr<char>
8315 partial_die_full_name (struct partial_die_info *pdi,
8316 struct dwarf2_cu *cu)
8317 {
8318 const char *parent_scope;
8319
8320 /* If this is a template instantiation, we can not work out the
8321 template arguments from partial DIEs. So, unfortunately, we have
8322 to go through the full DIEs. At least any work we do building
8323 types here will be reused if full symbols are loaded later. */
8324 if (pdi->has_template_arguments)
8325 {
8326 pdi->fixup (cu);
8327
8328 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8329 {
8330 struct die_info *die;
8331 struct attribute attr;
8332 struct dwarf2_cu *ref_cu = cu;
8333
8334 /* DW_FORM_ref_addr is using section offset. */
8335 attr.name = (enum dwarf_attribute) 0;
8336 attr.form = DW_FORM_ref_addr;
8337 attr.u.unsnd = to_underlying (pdi->sect_off);
8338 die = follow_die_ref (NULL, &attr, &ref_cu);
8339
8340 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8341 }
8342 }
8343
8344 parent_scope = partial_die_parent_scope (pdi, cu);
8345 if (parent_scope == NULL)
8346 return NULL;
8347 else
8348 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8349 pdi->name, 0, cu));
8350 }
8351
8352 static void
8353 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8354 {
8355 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
8356 struct objfile *objfile = dwarf2_per_objfile->objfile;
8357 struct gdbarch *gdbarch = objfile->arch ();
8358 CORE_ADDR addr = 0;
8359 const char *actual_name = NULL;
8360 CORE_ADDR baseaddr;
8361
8362 baseaddr = objfile->text_section_offset ();
8363
8364 gdb::unique_xmalloc_ptr<char> built_actual_name
8365 = partial_die_full_name (pdi, cu);
8366 if (built_actual_name != NULL)
8367 actual_name = built_actual_name.get ();
8368
8369 if (actual_name == NULL)
8370 actual_name = pdi->name;
8371
8372 partial_symbol psymbol;
8373 memset (&psymbol, 0, sizeof (psymbol));
8374 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8375 psymbol.ginfo.section = -1;
8376
8377 /* The code below indicates that the psymbol should be installed by
8378 setting this. */
8379 gdb::optional<psymbol_placement> where;
8380
8381 switch (pdi->tag)
8382 {
8383 case DW_TAG_inlined_subroutine:
8384 case DW_TAG_subprogram:
8385 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8386 - baseaddr);
8387 if (pdi->is_external
8388 || cu->language == language_ada
8389 || (cu->language == language_fortran
8390 && pdi->die_parent != NULL
8391 && pdi->die_parent->tag == DW_TAG_subprogram))
8392 {
8393 /* Normally, only "external" DIEs are part of the global scope.
8394 But in Ada and Fortran, we want to be able to access nested
8395 procedures globally. So all Ada and Fortran subprograms are
8396 stored in the global scope. */
8397 where = psymbol_placement::GLOBAL;
8398 }
8399 else
8400 where = psymbol_placement::STATIC;
8401
8402 psymbol.domain = VAR_DOMAIN;
8403 psymbol.aclass = LOC_BLOCK;
8404 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8405 psymbol.ginfo.value.address = addr;
8406
8407 if (pdi->main_subprogram && actual_name != NULL)
8408 set_objfile_main_name (objfile, actual_name, cu->language);
8409 break;
8410 case DW_TAG_constant:
8411 psymbol.domain = VAR_DOMAIN;
8412 psymbol.aclass = LOC_STATIC;
8413 where = (pdi->is_external
8414 ? psymbol_placement::GLOBAL
8415 : psymbol_placement::STATIC);
8416 break;
8417 case DW_TAG_variable:
8418 if (pdi->d.locdesc)
8419 addr = decode_locdesc (pdi->d.locdesc, cu);
8420
8421 if (pdi->d.locdesc
8422 && addr == 0
8423 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
8424 {
8425 /* A global or static variable may also have been stripped
8426 out by the linker if unused, in which case its address
8427 will be nullified; do not add such variables into partial
8428 symbol table then. */
8429 }
8430 else if (pdi->is_external)
8431 {
8432 /* Global Variable.
8433 Don't enter into the minimal symbol tables as there is
8434 a minimal symbol table entry from the ELF symbols already.
8435 Enter into partial symbol table if it has a location
8436 descriptor or a type.
8437 If the location descriptor is missing, new_symbol will create
8438 a LOC_UNRESOLVED symbol, the address of the variable will then
8439 be determined from the minimal symbol table whenever the variable
8440 is referenced.
8441 The address for the partial symbol table entry is not
8442 used by GDB, but it comes in handy for debugging partial symbol
8443 table building. */
8444
8445 if (pdi->d.locdesc || pdi->has_type)
8446 {
8447 psymbol.domain = VAR_DOMAIN;
8448 psymbol.aclass = LOC_STATIC;
8449 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8450 psymbol.ginfo.value.address = addr;
8451 where = psymbol_placement::GLOBAL;
8452 }
8453 }
8454 else
8455 {
8456 int has_loc = pdi->d.locdesc != NULL;
8457
8458 /* Static Variable. Skip symbols whose value we cannot know (those
8459 without location descriptors or constant values). */
8460 if (!has_loc && !pdi->has_const_value)
8461 return;
8462
8463 psymbol.domain = VAR_DOMAIN;
8464 psymbol.aclass = LOC_STATIC;
8465 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8466 if (has_loc)
8467 psymbol.ginfo.value.address = addr;
8468 where = psymbol_placement::STATIC;
8469 }
8470 break;
8471 case DW_TAG_typedef:
8472 case DW_TAG_base_type:
8473 case DW_TAG_subrange_type:
8474 psymbol.domain = VAR_DOMAIN;
8475 psymbol.aclass = LOC_TYPEDEF;
8476 where = psymbol_placement::STATIC;
8477 break;
8478 case DW_TAG_imported_declaration:
8479 case DW_TAG_namespace:
8480 psymbol.domain = VAR_DOMAIN;
8481 psymbol.aclass = LOC_TYPEDEF;
8482 where = psymbol_placement::GLOBAL;
8483 break;
8484 case DW_TAG_module:
8485 /* With Fortran 77 there might be a "BLOCK DATA" module
8486 available without any name. If so, we skip the module as it
8487 doesn't bring any value. */
8488 if (actual_name != nullptr)
8489 {
8490 psymbol.domain = MODULE_DOMAIN;
8491 psymbol.aclass = LOC_TYPEDEF;
8492 where = psymbol_placement::GLOBAL;
8493 }
8494 break;
8495 case DW_TAG_class_type:
8496 case DW_TAG_interface_type:
8497 case DW_TAG_structure_type:
8498 case DW_TAG_union_type:
8499 case DW_TAG_enumeration_type:
8500 /* Skip external references. The DWARF standard says in the section
8501 about "Structure, Union, and Class Type Entries": "An incomplete
8502 structure, union or class type is represented by a structure,
8503 union or class entry that does not have a byte size attribute
8504 and that has a DW_AT_declaration attribute." */
8505 if (!pdi->has_byte_size && pdi->is_declaration)
8506 return;
8507
8508 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8509 static vs. global. */
8510 psymbol.domain = STRUCT_DOMAIN;
8511 psymbol.aclass = LOC_TYPEDEF;
8512 where = (cu->language == language_cplus
8513 ? psymbol_placement::GLOBAL
8514 : psymbol_placement::STATIC);
8515 break;
8516 case DW_TAG_enumerator:
8517 psymbol.domain = VAR_DOMAIN;
8518 psymbol.aclass = LOC_CONST;
8519 where = (cu->language == language_cplus
8520 ? psymbol_placement::GLOBAL
8521 : psymbol_placement::STATIC);
8522 break;
8523 default:
8524 break;
8525 }
8526
8527 if (where.has_value ())
8528 {
8529 if (built_actual_name != nullptr)
8530 actual_name = objfile->intern (actual_name);
8531 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8532 psymbol.ginfo.set_linkage_name (actual_name);
8533 else
8534 {
8535 psymbol.ginfo.set_demangled_name (actual_name,
8536 &objfile->objfile_obstack);
8537 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8538 }
8539 add_psymbol_to_list (psymbol, *where, objfile);
8540 }
8541 }
8542
8543 /* Read a partial die corresponding to a namespace; also, add a symbol
8544 corresponding to that namespace to the symbol table. NAMESPACE is
8545 the name of the enclosing namespace. */
8546
8547 static void
8548 add_partial_namespace (struct partial_die_info *pdi,
8549 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8550 int set_addrmap, struct dwarf2_cu *cu)
8551 {
8552 /* Add a symbol for the namespace. */
8553
8554 add_partial_symbol (pdi, cu);
8555
8556 /* Now scan partial symbols in that namespace. */
8557
8558 if (pdi->has_children)
8559 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8560 }
8561
8562 /* Read a partial die corresponding to a Fortran module. */
8563
8564 static void
8565 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8566 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8567 {
8568 /* Add a symbol for the namespace. */
8569
8570 add_partial_symbol (pdi, cu);
8571
8572 /* Now scan partial symbols in that module. */
8573
8574 if (pdi->has_children)
8575 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8576 }
8577
8578 /* Read a partial die corresponding to a subprogram or an inlined
8579 subprogram and create a partial symbol for that subprogram.
8580 When the CU language allows it, this routine also defines a partial
8581 symbol for each nested subprogram that this subprogram contains.
8582 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8583 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8584
8585 PDI may also be a lexical block, in which case we simply search
8586 recursively for subprograms defined inside that lexical block.
8587 Again, this is only performed when the CU language allows this
8588 type of definitions. */
8589
8590 static void
8591 add_partial_subprogram (struct partial_die_info *pdi,
8592 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8593 int set_addrmap, struct dwarf2_cu *cu)
8594 {
8595 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8596 {
8597 if (pdi->has_pc_info)
8598 {
8599 if (pdi->lowpc < *lowpc)
8600 *lowpc = pdi->lowpc;
8601 if (pdi->highpc > *highpc)
8602 *highpc = pdi->highpc;
8603 if (set_addrmap)
8604 {
8605 struct objfile *objfile = cu->per_objfile->objfile;
8606 struct gdbarch *gdbarch = objfile->arch ();
8607 CORE_ADDR baseaddr;
8608 CORE_ADDR this_highpc;
8609 CORE_ADDR this_lowpc;
8610
8611 baseaddr = objfile->text_section_offset ();
8612 this_lowpc
8613 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8614 pdi->lowpc + baseaddr)
8615 - baseaddr);
8616 this_highpc
8617 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8618 pdi->highpc + baseaddr)
8619 - baseaddr);
8620 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8621 this_lowpc, this_highpc - 1,
8622 cu->per_cu->v.psymtab);
8623 }
8624 }
8625
8626 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8627 {
8628 if (!pdi->is_declaration)
8629 /* Ignore subprogram DIEs that do not have a name, they are
8630 illegal. Do not emit a complaint at this point, we will
8631 do so when we convert this psymtab into a symtab. */
8632 if (pdi->name)
8633 add_partial_symbol (pdi, cu);
8634 }
8635 }
8636
8637 if (! pdi->has_children)
8638 return;
8639
8640 if (cu->language == language_ada || cu->language == language_fortran)
8641 {
8642 pdi = pdi->die_child;
8643 while (pdi != NULL)
8644 {
8645 pdi->fixup (cu);
8646 if (pdi->tag == DW_TAG_subprogram
8647 || pdi->tag == DW_TAG_inlined_subroutine
8648 || pdi->tag == DW_TAG_lexical_block)
8649 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8650 pdi = pdi->die_sibling;
8651 }
8652 }
8653 }
8654
8655 /* Read a partial die corresponding to an enumeration type. */
8656
8657 static void
8658 add_partial_enumeration (struct partial_die_info *enum_pdi,
8659 struct dwarf2_cu *cu)
8660 {
8661 struct partial_die_info *pdi;
8662
8663 if (enum_pdi->name != NULL)
8664 add_partial_symbol (enum_pdi, cu);
8665
8666 pdi = enum_pdi->die_child;
8667 while (pdi)
8668 {
8669 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8670 complaint (_("malformed enumerator DIE ignored"));
8671 else
8672 add_partial_symbol (pdi, cu);
8673 pdi = pdi->die_sibling;
8674 }
8675 }
8676
8677 /* Return the initial uleb128 in the die at INFO_PTR. */
8678
8679 static unsigned int
8680 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8681 {
8682 unsigned int bytes_read;
8683
8684 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8685 }
8686
8687 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8688 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8689
8690 Return the corresponding abbrev, or NULL if the number is zero (indicating
8691 an empty DIE). In either case *BYTES_READ will be set to the length of
8692 the initial number. */
8693
8694 static struct abbrev_info *
8695 peek_die_abbrev (const die_reader_specs &reader,
8696 const gdb_byte *info_ptr, unsigned int *bytes_read)
8697 {
8698 dwarf2_cu *cu = reader.cu;
8699 bfd *abfd = cu->per_objfile->objfile->obfd;
8700 unsigned int abbrev_number
8701 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8702
8703 if (abbrev_number == 0)
8704 return NULL;
8705
8706 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8707 if (!abbrev)
8708 {
8709 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8710 " at offset %s [in module %s]"),
8711 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8712 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8713 }
8714
8715 return abbrev;
8716 }
8717
8718 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8719 Returns a pointer to the end of a series of DIEs, terminated by an empty
8720 DIE. Any children of the skipped DIEs will also be skipped. */
8721
8722 static const gdb_byte *
8723 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8724 {
8725 while (1)
8726 {
8727 unsigned int bytes_read;
8728 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8729
8730 if (abbrev == NULL)
8731 return info_ptr + bytes_read;
8732 else
8733 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8734 }
8735 }
8736
8737 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8738 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8739 abbrev corresponding to that skipped uleb128 should be passed in
8740 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8741 children. */
8742
8743 static const gdb_byte *
8744 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8745 struct abbrev_info *abbrev)
8746 {
8747 unsigned int bytes_read;
8748 struct attribute attr;
8749 bfd *abfd = reader->abfd;
8750 struct dwarf2_cu *cu = reader->cu;
8751 const gdb_byte *buffer = reader->buffer;
8752 const gdb_byte *buffer_end = reader->buffer_end;
8753 unsigned int form, i;
8754
8755 for (i = 0; i < abbrev->num_attrs; i++)
8756 {
8757 /* The only abbrev we care about is DW_AT_sibling. */
8758 if (abbrev->attrs[i].name == DW_AT_sibling)
8759 {
8760 bool ignored;
8761 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8762 &ignored);
8763 if (attr.form == DW_FORM_ref_addr)
8764 complaint (_("ignoring absolute DW_AT_sibling"));
8765 else
8766 {
8767 sect_offset off = attr.get_ref_die_offset ();
8768 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8769
8770 if (sibling_ptr < info_ptr)
8771 complaint (_("DW_AT_sibling points backwards"));
8772 else if (sibling_ptr > reader->buffer_end)
8773 reader->die_section->overflow_complaint ();
8774 else
8775 return sibling_ptr;
8776 }
8777 }
8778
8779 /* If it isn't DW_AT_sibling, skip this attribute. */
8780 form = abbrev->attrs[i].form;
8781 skip_attribute:
8782 switch (form)
8783 {
8784 case DW_FORM_ref_addr:
8785 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8786 and later it is offset sized. */
8787 if (cu->header.version == 2)
8788 info_ptr += cu->header.addr_size;
8789 else
8790 info_ptr += cu->header.offset_size;
8791 break;
8792 case DW_FORM_GNU_ref_alt:
8793 info_ptr += cu->header.offset_size;
8794 break;
8795 case DW_FORM_addr:
8796 info_ptr += cu->header.addr_size;
8797 break;
8798 case DW_FORM_data1:
8799 case DW_FORM_ref1:
8800 case DW_FORM_flag:
8801 case DW_FORM_strx1:
8802 info_ptr += 1;
8803 break;
8804 case DW_FORM_flag_present:
8805 case DW_FORM_implicit_const:
8806 break;
8807 case DW_FORM_data2:
8808 case DW_FORM_ref2:
8809 case DW_FORM_strx2:
8810 info_ptr += 2;
8811 break;
8812 case DW_FORM_strx3:
8813 info_ptr += 3;
8814 break;
8815 case DW_FORM_data4:
8816 case DW_FORM_ref4:
8817 case DW_FORM_strx4:
8818 info_ptr += 4;
8819 break;
8820 case DW_FORM_data8:
8821 case DW_FORM_ref8:
8822 case DW_FORM_ref_sig8:
8823 info_ptr += 8;
8824 break;
8825 case DW_FORM_data16:
8826 info_ptr += 16;
8827 break;
8828 case DW_FORM_string:
8829 read_direct_string (abfd, info_ptr, &bytes_read);
8830 info_ptr += bytes_read;
8831 break;
8832 case DW_FORM_sec_offset:
8833 case DW_FORM_strp:
8834 case DW_FORM_GNU_strp_alt:
8835 info_ptr += cu->header.offset_size;
8836 break;
8837 case DW_FORM_exprloc:
8838 case DW_FORM_block:
8839 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8840 info_ptr += bytes_read;
8841 break;
8842 case DW_FORM_block1:
8843 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8844 break;
8845 case DW_FORM_block2:
8846 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8847 break;
8848 case DW_FORM_block4:
8849 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8850 break;
8851 case DW_FORM_addrx:
8852 case DW_FORM_strx:
8853 case DW_FORM_sdata:
8854 case DW_FORM_udata:
8855 case DW_FORM_ref_udata:
8856 case DW_FORM_GNU_addr_index:
8857 case DW_FORM_GNU_str_index:
8858 case DW_FORM_rnglistx:
8859 case DW_FORM_loclistx:
8860 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8861 break;
8862 case DW_FORM_indirect:
8863 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8864 info_ptr += bytes_read;
8865 /* We need to continue parsing from here, so just go back to
8866 the top. */
8867 goto skip_attribute;
8868
8869 default:
8870 error (_("Dwarf Error: Cannot handle %s "
8871 "in DWARF reader [in module %s]"),
8872 dwarf_form_name (form),
8873 bfd_get_filename (abfd));
8874 }
8875 }
8876
8877 if (abbrev->has_children)
8878 return skip_children (reader, info_ptr);
8879 else
8880 return info_ptr;
8881 }
8882
8883 /* Locate ORIG_PDI's sibling.
8884 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8885
8886 static const gdb_byte *
8887 locate_pdi_sibling (const struct die_reader_specs *reader,
8888 struct partial_die_info *orig_pdi,
8889 const gdb_byte *info_ptr)
8890 {
8891 /* Do we know the sibling already? */
8892
8893 if (orig_pdi->sibling)
8894 return orig_pdi->sibling;
8895
8896 /* Are there any children to deal with? */
8897
8898 if (!orig_pdi->has_children)
8899 return info_ptr;
8900
8901 /* Skip the children the long way. */
8902
8903 return skip_children (reader, info_ptr);
8904 }
8905
8906 /* Expand this partial symbol table into a full symbol table. SELF is
8907 not NULL. */
8908
8909 void
8910 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8911 {
8912 struct dwarf2_per_objfile *dwarf2_per_objfile
8913 = get_dwarf2_per_objfile (objfile);
8914
8915 gdb_assert (!dwarf2_per_objfile->symtab_set_p (per_cu_data));
8916
8917 /* If this psymtab is constructed from a debug-only objfile, the
8918 has_section_at_zero flag will not necessarily be correct. We
8919 can get the correct value for this flag by looking at the data
8920 associated with the (presumably stripped) associated objfile. */
8921 if (objfile->separate_debug_objfile_backlink)
8922 {
8923 struct dwarf2_per_objfile *dpo_backlink
8924 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8925
8926 dwarf2_per_objfile->per_bfd->has_section_at_zero
8927 = dpo_backlink->per_bfd->has_section_at_zero;
8928 }
8929
8930 expand_psymtab (objfile);
8931
8932 process_cu_includes (dwarf2_per_objfile);
8933 }
8934 \f
8935 /* Reading in full CUs. */
8936
8937 /* Add PER_CU to the queue. */
8938
8939 static void
8940 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8941 enum language pretend_language)
8942 {
8943 per_cu->queued = 1;
8944 per_cu->per_bfd->queue.emplace (per_cu, pretend_language);
8945 }
8946
8947 /* If PER_CU is not yet queued, add it to the queue.
8948 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8949 dependency.
8950 The result is non-zero if PER_CU was queued, otherwise the result is zero
8951 meaning either PER_CU is already queued or it is already loaded.
8952
8953 N.B. There is an invariant here that if a CU is queued then it is loaded.
8954 The caller is required to load PER_CU if we return non-zero. */
8955
8956 static int
8957 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8958 struct dwarf2_per_cu_data *per_cu,
8959 enum language pretend_language)
8960 {
8961 /* We may arrive here during partial symbol reading, if we need full
8962 DIEs to process an unusual case (e.g. template arguments). Do
8963 not queue PER_CU, just tell our caller to load its DIEs. */
8964 if (per_cu->per_bfd->reading_partial_symbols)
8965 {
8966 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8967 return 1;
8968 return 0;
8969 }
8970
8971 /* Mark the dependence relation so that we don't flush PER_CU
8972 too early. */
8973 if (dependent_cu != NULL)
8974 dwarf2_add_dependence (dependent_cu, per_cu);
8975
8976 /* If it's already on the queue, we have nothing to do. */
8977 if (per_cu->queued)
8978 return 0;
8979
8980 /* If the compilation unit is already loaded, just mark it as
8981 used. */
8982 if (per_cu->cu != NULL)
8983 {
8984 per_cu->cu->last_used = 0;
8985 return 0;
8986 }
8987
8988 /* Add it to the queue. */
8989 queue_comp_unit (per_cu, pretend_language);
8990
8991 return 1;
8992 }
8993
8994 /* Process the queue. */
8995
8996 static void
8997 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8998 {
8999 if (dwarf_read_debug)
9000 {
9001 fprintf_unfiltered (gdb_stdlog,
9002 "Expanding one or more symtabs of objfile %s ...\n",
9003 objfile_name (dwarf2_per_objfile->objfile));
9004 }
9005
9006 /* The queue starts out with one item, but following a DIE reference
9007 may load a new CU, adding it to the end of the queue. */
9008 while (!dwarf2_per_objfile->per_bfd->queue.empty ())
9009 {
9010 dwarf2_queue_item &item = dwarf2_per_objfile->per_bfd->queue.front ();
9011
9012 if (!dwarf2_per_objfile->symtab_set_p (item.per_cu)
9013 /* Skip dummy CUs. */
9014 && item.per_cu->cu != NULL)
9015 {
9016 struct dwarf2_per_cu_data *per_cu = item.per_cu;
9017 unsigned int debug_print_threshold;
9018 char buf[100];
9019
9020 if (per_cu->is_debug_types)
9021 {
9022 struct signatured_type *sig_type =
9023 (struct signatured_type *) per_cu;
9024
9025 sprintf (buf, "TU %s at offset %s",
9026 hex_string (sig_type->signature),
9027 sect_offset_str (per_cu->sect_off));
9028 /* There can be 100s of TUs.
9029 Only print them in verbose mode. */
9030 debug_print_threshold = 2;
9031 }
9032 else
9033 {
9034 sprintf (buf, "CU at offset %s",
9035 sect_offset_str (per_cu->sect_off));
9036 debug_print_threshold = 1;
9037 }
9038
9039 if (dwarf_read_debug >= debug_print_threshold)
9040 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9041
9042 if (per_cu->is_debug_types)
9043 process_full_type_unit (per_cu, dwarf2_per_objfile,
9044 item.pretend_language);
9045 else
9046 process_full_comp_unit (per_cu, dwarf2_per_objfile,
9047 item.pretend_language);
9048
9049 if (dwarf_read_debug >= debug_print_threshold)
9050 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9051 }
9052
9053 item.per_cu->queued = 0;
9054 dwarf2_per_objfile->per_bfd->queue.pop ();
9055 }
9056
9057 if (dwarf_read_debug)
9058 {
9059 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9060 objfile_name (dwarf2_per_objfile->objfile));
9061 }
9062 }
9063
9064 /* Read in full symbols for PST, and anything it depends on. */
9065
9066 void
9067 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9068 {
9069 gdb_assert (!readin_p (objfile));
9070
9071 expand_dependencies (objfile);
9072
9073 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9074 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
9075 gdb_assert (get_compunit_symtab (objfile) != nullptr);
9076 }
9077
9078 /* See psympriv.h. */
9079
9080 bool
9081 dwarf2_psymtab::readin_p (struct objfile *objfile) const
9082 {
9083 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9084 return per_objfile->symtab_set_p (per_cu_data);
9085 }
9086
9087 /* See psympriv.h. */
9088
9089 compunit_symtab *
9090 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
9091 {
9092 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9093 return per_objfile->get_symtab (per_cu_data);
9094 }
9095
9096 /* Trivial hash function for die_info: the hash value of a DIE
9097 is its offset in .debug_info for this objfile. */
9098
9099 static hashval_t
9100 die_hash (const void *item)
9101 {
9102 const struct die_info *die = (const struct die_info *) item;
9103
9104 return to_underlying (die->sect_off);
9105 }
9106
9107 /* Trivial comparison function for die_info structures: two DIEs
9108 are equal if they have the same offset. */
9109
9110 static int
9111 die_eq (const void *item_lhs, const void *item_rhs)
9112 {
9113 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9114 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9115
9116 return die_lhs->sect_off == die_rhs->sect_off;
9117 }
9118
9119 /* Load the DIEs associated with PER_CU into memory. */
9120
9121 static void
9122 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
9123 dwarf2_per_objfile *per_objfile,
9124 bool skip_partial,
9125 enum language pretend_language)
9126 {
9127 gdb_assert (! this_cu->is_debug_types);
9128
9129 cutu_reader reader (this_cu, per_objfile, NULL, 1, skip_partial);
9130 if (reader.dummy_p)
9131 return;
9132
9133 struct dwarf2_cu *cu = reader.cu;
9134 const gdb_byte *info_ptr = reader.info_ptr;
9135
9136 gdb_assert (cu->die_hash == NULL);
9137 cu->die_hash =
9138 htab_create_alloc_ex (cu->header.length / 12,
9139 die_hash,
9140 die_eq,
9141 NULL,
9142 &cu->comp_unit_obstack,
9143 hashtab_obstack_allocate,
9144 dummy_obstack_deallocate);
9145
9146 if (reader.comp_unit_die->has_children)
9147 reader.comp_unit_die->child
9148 = read_die_and_siblings (&reader, reader.info_ptr,
9149 &info_ptr, reader.comp_unit_die);
9150 cu->dies = reader.comp_unit_die;
9151 /* comp_unit_die is not stored in die_hash, no need. */
9152
9153 /* We try not to read any attributes in this function, because not
9154 all CUs needed for references have been loaded yet, and symbol
9155 table processing isn't initialized. But we have to set the CU language,
9156 or we won't be able to build types correctly.
9157 Similarly, if we do not read the producer, we can not apply
9158 producer-specific interpretation. */
9159 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9160
9161 reader.keep ();
9162 }
9163
9164 /* Add a DIE to the delayed physname list. */
9165
9166 static void
9167 add_to_method_list (struct type *type, int fnfield_index, int index,
9168 const char *name, struct die_info *die,
9169 struct dwarf2_cu *cu)
9170 {
9171 struct delayed_method_info mi;
9172 mi.type = type;
9173 mi.fnfield_index = fnfield_index;
9174 mi.index = index;
9175 mi.name = name;
9176 mi.die = die;
9177 cu->method_list.push_back (mi);
9178 }
9179
9180 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9181 "const" / "volatile". If so, decrements LEN by the length of the
9182 modifier and return true. Otherwise return false. */
9183
9184 template<size_t N>
9185 static bool
9186 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9187 {
9188 size_t mod_len = sizeof (mod) - 1;
9189 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9190 {
9191 len -= mod_len;
9192 return true;
9193 }
9194 return false;
9195 }
9196
9197 /* Compute the physnames of any methods on the CU's method list.
9198
9199 The computation of method physnames is delayed in order to avoid the
9200 (bad) condition that one of the method's formal parameters is of an as yet
9201 incomplete type. */
9202
9203 static void
9204 compute_delayed_physnames (struct dwarf2_cu *cu)
9205 {
9206 /* Only C++ delays computing physnames. */
9207 if (cu->method_list.empty ())
9208 return;
9209 gdb_assert (cu->language == language_cplus);
9210
9211 for (const delayed_method_info &mi : cu->method_list)
9212 {
9213 const char *physname;
9214 struct fn_fieldlist *fn_flp
9215 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9216 physname = dwarf2_physname (mi.name, mi.die, cu);
9217 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9218 = physname ? physname : "";
9219
9220 /* Since there's no tag to indicate whether a method is a
9221 const/volatile overload, extract that information out of the
9222 demangled name. */
9223 if (physname != NULL)
9224 {
9225 size_t len = strlen (physname);
9226
9227 while (1)
9228 {
9229 if (physname[len] == ')') /* shortcut */
9230 break;
9231 else if (check_modifier (physname, len, " const"))
9232 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9233 else if (check_modifier (physname, len, " volatile"))
9234 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9235 else
9236 break;
9237 }
9238 }
9239 }
9240
9241 /* The list is no longer needed. */
9242 cu->method_list.clear ();
9243 }
9244
9245 /* Go objects should be embedded in a DW_TAG_module DIE,
9246 and it's not clear if/how imported objects will appear.
9247 To keep Go support simple until that's worked out,
9248 go back through what we've read and create something usable.
9249 We could do this while processing each DIE, and feels kinda cleaner,
9250 but that way is more invasive.
9251 This is to, for example, allow the user to type "p var" or "b main"
9252 without having to specify the package name, and allow lookups
9253 of module.object to work in contexts that use the expression
9254 parser. */
9255
9256 static void
9257 fixup_go_packaging (struct dwarf2_cu *cu)
9258 {
9259 gdb::unique_xmalloc_ptr<char> package_name;
9260 struct pending *list;
9261 int i;
9262
9263 for (list = *cu->get_builder ()->get_global_symbols ();
9264 list != NULL;
9265 list = list->next)
9266 {
9267 for (i = 0; i < list->nsyms; ++i)
9268 {
9269 struct symbol *sym = list->symbol[i];
9270
9271 if (sym->language () == language_go
9272 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9273 {
9274 gdb::unique_xmalloc_ptr<char> this_package_name
9275 (go_symbol_package_name (sym));
9276
9277 if (this_package_name == NULL)
9278 continue;
9279 if (package_name == NULL)
9280 package_name = std::move (this_package_name);
9281 else
9282 {
9283 struct objfile *objfile = cu->per_objfile->objfile;
9284 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9285 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9286 (symbol_symtab (sym) != NULL
9287 ? symtab_to_filename_for_display
9288 (symbol_symtab (sym))
9289 : objfile_name (objfile)),
9290 this_package_name.get (), package_name.get ());
9291 }
9292 }
9293 }
9294 }
9295
9296 if (package_name != NULL)
9297 {
9298 struct objfile *objfile = cu->per_objfile->objfile;
9299 const char *saved_package_name = objfile->intern (package_name.get ());
9300 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9301 saved_package_name);
9302 struct symbol *sym;
9303
9304 sym = new (&objfile->objfile_obstack) symbol;
9305 sym->set_language (language_go, &objfile->objfile_obstack);
9306 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9307 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9308 e.g., "main" finds the "main" module and not C's main(). */
9309 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9310 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9311 SYMBOL_TYPE (sym) = type;
9312
9313 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9314 }
9315 }
9316
9317 /* Allocate a fully-qualified name consisting of the two parts on the
9318 obstack. */
9319
9320 static const char *
9321 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9322 {
9323 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9324 }
9325
9326 /* A helper that allocates a variant part to attach to a Rust enum
9327 type. OBSTACK is where the results should be allocated. TYPE is
9328 the type we're processing. DISCRIMINANT_INDEX is the index of the
9329 discriminant. It must be the index of one of the fields of TYPE.
9330 DEFAULT_INDEX is the index of the default field; or -1 if there is
9331 no default. RANGES is indexed by "effective" field number (the
9332 field index, but omitting the discriminant and default fields) and
9333 must hold the discriminant values used by the variants. Note that
9334 RANGES must have a lifetime at least as long as OBSTACK -- either
9335 already allocated on it, or static. */
9336
9337 static void
9338 alloc_rust_variant (struct obstack *obstack, struct type *type,
9339 int discriminant_index, int default_index,
9340 gdb::array_view<discriminant_range> ranges)
9341 {
9342 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9343 must be handled by the caller. */
9344 gdb_assert (discriminant_index >= 0
9345 && discriminant_index < type->num_fields ());
9346 gdb_assert (default_index == -1
9347 || (default_index >= 0 && default_index < type->num_fields ()));
9348
9349 /* We have one variant for each non-discriminant field. */
9350 int n_variants = type->num_fields () - 1;
9351
9352 variant *variants = new (obstack) variant[n_variants];
9353 int var_idx = 0;
9354 int range_idx = 0;
9355 for (int i = 0; i < type->num_fields (); ++i)
9356 {
9357 if (i == discriminant_index)
9358 continue;
9359
9360 variants[var_idx].first_field = i;
9361 variants[var_idx].last_field = i + 1;
9362
9363 /* The default field does not need a range, but other fields do.
9364 We skipped the discriminant above. */
9365 if (i != default_index)
9366 {
9367 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9368 ++range_idx;
9369 }
9370
9371 ++var_idx;
9372 }
9373
9374 gdb_assert (range_idx == ranges.size ());
9375 gdb_assert (var_idx == n_variants);
9376
9377 variant_part *part = new (obstack) variant_part;
9378 part->discriminant_index = discriminant_index;
9379 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9380 discriminant_index));
9381 part->variants = gdb::array_view<variant> (variants, n_variants);
9382
9383 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9384 gdb::array_view<variant_part> *prop_value
9385 = new (storage) gdb::array_view<variant_part> (part, 1);
9386
9387 struct dynamic_prop prop;
9388 prop.kind = PROP_VARIANT_PARTS;
9389 prop.data.variant_parts = prop_value;
9390
9391 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9392 }
9393
9394 /* Some versions of rustc emitted enums in an unusual way.
9395
9396 Ordinary enums were emitted as unions. The first element of each
9397 structure in the union was named "RUST$ENUM$DISR". This element
9398 held the discriminant.
9399
9400 These versions of Rust also implemented the "non-zero"
9401 optimization. When the enum had two values, and one is empty and
9402 the other holds a pointer that cannot be zero, the pointer is used
9403 as the discriminant, with a zero value meaning the empty variant.
9404 Here, the union's first member is of the form
9405 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9406 where the fieldnos are the indices of the fields that should be
9407 traversed in order to find the field (which may be several fields deep)
9408 and the variantname is the name of the variant of the case when the
9409 field is zero.
9410
9411 This function recognizes whether TYPE is of one of these forms,
9412 and, if so, smashes it to be a variant type. */
9413
9414 static void
9415 quirk_rust_enum (struct type *type, struct objfile *objfile)
9416 {
9417 gdb_assert (type->code () == TYPE_CODE_UNION);
9418
9419 /* We don't need to deal with empty enums. */
9420 if (type->num_fields () == 0)
9421 return;
9422
9423 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9424 if (type->num_fields () == 1
9425 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9426 {
9427 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9428
9429 /* Decode the field name to find the offset of the
9430 discriminant. */
9431 ULONGEST bit_offset = 0;
9432 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9433 while (name[0] >= '0' && name[0] <= '9')
9434 {
9435 char *tail;
9436 unsigned long index = strtoul (name, &tail, 10);
9437 name = tail;
9438 if (*name != '$'
9439 || index >= field_type->num_fields ()
9440 || (TYPE_FIELD_LOC_KIND (field_type, index)
9441 != FIELD_LOC_KIND_BITPOS))
9442 {
9443 complaint (_("Could not parse Rust enum encoding string \"%s\""
9444 "[in module %s]"),
9445 TYPE_FIELD_NAME (type, 0),
9446 objfile_name (objfile));
9447 return;
9448 }
9449 ++name;
9450
9451 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9452 field_type = TYPE_FIELD_TYPE (field_type, index);
9453 }
9454
9455 /* Smash this type to be a structure type. We have to do this
9456 because the type has already been recorded. */
9457 type->set_code (TYPE_CODE_STRUCT);
9458 type->set_num_fields (3);
9459 /* Save the field we care about. */
9460 struct field saved_field = type->field (0);
9461 type->set_fields
9462 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9463
9464 /* Put the discriminant at index 0. */
9465 TYPE_FIELD_TYPE (type, 0) = field_type;
9466 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9467 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9468 SET_FIELD_BITPOS (type->field (0), bit_offset);
9469
9470 /* The order of fields doesn't really matter, so put the real
9471 field at index 1 and the data-less field at index 2. */
9472 type->field (1) = saved_field;
9473 TYPE_FIELD_NAME (type, 1)
9474 = rust_last_path_segment (TYPE_FIELD_TYPE (type, 1)->name ());
9475 TYPE_FIELD_TYPE (type, 1)->set_name
9476 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9477 TYPE_FIELD_NAME (type, 1)));
9478
9479 const char *dataless_name
9480 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9481 name);
9482 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9483 dataless_name);
9484 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9485 /* NAME points into the original discriminant name, which
9486 already has the correct lifetime. */
9487 TYPE_FIELD_NAME (type, 2) = name;
9488 SET_FIELD_BITPOS (type->field (2), 0);
9489
9490 /* Indicate that this is a variant type. */
9491 static discriminant_range ranges[1] = { { 0, 0 } };
9492 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9493 }
9494 /* A union with a single anonymous field is probably an old-style
9495 univariant enum. */
9496 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9497 {
9498 /* Smash this type to be a structure type. We have to do this
9499 because the type has already been recorded. */
9500 type->set_code (TYPE_CODE_STRUCT);
9501
9502 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9503 const char *variant_name
9504 = rust_last_path_segment (field_type->name ());
9505 TYPE_FIELD_NAME (type, 0) = variant_name;
9506 field_type->set_name
9507 (rust_fully_qualify (&objfile->objfile_obstack,
9508 type->name (), variant_name));
9509 }
9510 else
9511 {
9512 struct type *disr_type = nullptr;
9513 for (int i = 0; i < type->num_fields (); ++i)
9514 {
9515 disr_type = TYPE_FIELD_TYPE (type, i);
9516
9517 if (disr_type->code () != TYPE_CODE_STRUCT)
9518 {
9519 /* All fields of a true enum will be structs. */
9520 return;
9521 }
9522 else if (disr_type->num_fields () == 0)
9523 {
9524 /* Could be data-less variant, so keep going. */
9525 disr_type = nullptr;
9526 }
9527 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9528 "RUST$ENUM$DISR") != 0)
9529 {
9530 /* Not a Rust enum. */
9531 return;
9532 }
9533 else
9534 {
9535 /* Found one. */
9536 break;
9537 }
9538 }
9539
9540 /* If we got here without a discriminant, then it's probably
9541 just a union. */
9542 if (disr_type == nullptr)
9543 return;
9544
9545 /* Smash this type to be a structure type. We have to do this
9546 because the type has already been recorded. */
9547 type->set_code (TYPE_CODE_STRUCT);
9548
9549 /* Make space for the discriminant field. */
9550 struct field *disr_field = &disr_type->field (0);
9551 field *new_fields
9552 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9553 * sizeof (struct field)));
9554 memcpy (new_fields + 1, type->fields (),
9555 type->num_fields () * sizeof (struct field));
9556 type->set_fields (new_fields);
9557 type->set_num_fields (type->num_fields () + 1);
9558
9559 /* Install the discriminant at index 0 in the union. */
9560 type->field (0) = *disr_field;
9561 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9562 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9563
9564 /* We need a way to find the correct discriminant given a
9565 variant name. For convenience we build a map here. */
9566 struct type *enum_type = FIELD_TYPE (*disr_field);
9567 std::unordered_map<std::string, ULONGEST> discriminant_map;
9568 for (int i = 0; i < enum_type->num_fields (); ++i)
9569 {
9570 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9571 {
9572 const char *name
9573 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9574 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9575 }
9576 }
9577
9578 int n_fields = type->num_fields ();
9579 /* We don't need a range entry for the discriminant, but we do
9580 need one for every other field, as there is no default
9581 variant. */
9582 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9583 discriminant_range,
9584 n_fields - 1);
9585 /* Skip the discriminant here. */
9586 for (int i = 1; i < n_fields; ++i)
9587 {
9588 /* Find the final word in the name of this variant's type.
9589 That name can be used to look up the correct
9590 discriminant. */
9591 const char *variant_name
9592 = rust_last_path_segment (TYPE_FIELD_TYPE (type, i)->name ());
9593
9594 auto iter = discriminant_map.find (variant_name);
9595 if (iter != discriminant_map.end ())
9596 {
9597 ranges[i].low = iter->second;
9598 ranges[i].high = iter->second;
9599 }
9600
9601 /* Remove the discriminant field, if it exists. */
9602 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9603 if (sub_type->num_fields () > 0)
9604 {
9605 sub_type->set_num_fields (sub_type->num_fields () - 1);
9606 sub_type->set_fields (sub_type->fields () + 1);
9607 }
9608 TYPE_FIELD_NAME (type, i) = variant_name;
9609 sub_type->set_name
9610 (rust_fully_qualify (&objfile->objfile_obstack,
9611 type->name (), variant_name));
9612 }
9613
9614 /* Indicate that this is a variant type. */
9615 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9616 gdb::array_view<discriminant_range> (ranges,
9617 n_fields - 1));
9618 }
9619 }
9620
9621 /* Rewrite some Rust unions to be structures with variants parts. */
9622
9623 static void
9624 rust_union_quirks (struct dwarf2_cu *cu)
9625 {
9626 gdb_assert (cu->language == language_rust);
9627 for (type *type_ : cu->rust_unions)
9628 quirk_rust_enum (type_, cu->per_objfile->objfile);
9629 /* We don't need this any more. */
9630 cu->rust_unions.clear ();
9631 }
9632
9633 /* A helper function for computing the list of all symbol tables
9634 included by PER_CU. */
9635
9636 static void
9637 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9638 htab_t all_children, htab_t all_type_symtabs,
9639 dwarf2_per_cu_data *per_cu,
9640 dwarf2_per_objfile *per_objfile,
9641 struct compunit_symtab *immediate_parent)
9642 {
9643 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9644 if (*slot != NULL)
9645 {
9646 /* This inclusion and its children have been processed. */
9647 return;
9648 }
9649
9650 *slot = per_cu;
9651
9652 /* Only add a CU if it has a symbol table. */
9653 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9654 if (cust != NULL)
9655 {
9656 /* If this is a type unit only add its symbol table if we haven't
9657 seen it yet (type unit per_cu's can share symtabs). */
9658 if (per_cu->is_debug_types)
9659 {
9660 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9661 if (*slot == NULL)
9662 {
9663 *slot = cust;
9664 result->push_back (cust);
9665 if (cust->user == NULL)
9666 cust->user = immediate_parent;
9667 }
9668 }
9669 else
9670 {
9671 result->push_back (cust);
9672 if (cust->user == NULL)
9673 cust->user = immediate_parent;
9674 }
9675 }
9676
9677 if (!per_cu->imported_symtabs_empty ())
9678 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9679 {
9680 recursively_compute_inclusions (result, all_children,
9681 all_type_symtabs, ptr, per_objfile,
9682 cust);
9683 }
9684 }
9685
9686 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9687 PER_CU. */
9688
9689 static void
9690 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9691 dwarf2_per_objfile *per_objfile)
9692 {
9693 gdb_assert (! per_cu->is_debug_types);
9694
9695 if (!per_cu->imported_symtabs_empty ())
9696 {
9697 int len;
9698 std::vector<compunit_symtab *> result_symtabs;
9699 htab_t all_children, all_type_symtabs;
9700 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9701
9702 /* If we don't have a symtab, we can just skip this case. */
9703 if (cust == NULL)
9704 return;
9705
9706 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9707 NULL, xcalloc, xfree);
9708 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9709 NULL, xcalloc, xfree);
9710
9711 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9712 {
9713 recursively_compute_inclusions (&result_symtabs, all_children,
9714 all_type_symtabs, ptr, per_objfile,
9715 cust);
9716 }
9717
9718 /* Now we have a transitive closure of all the included symtabs. */
9719 len = result_symtabs.size ();
9720 cust->includes
9721 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9722 struct compunit_symtab *, len + 1);
9723 memcpy (cust->includes, result_symtabs.data (),
9724 len * sizeof (compunit_symtab *));
9725 cust->includes[len] = NULL;
9726
9727 htab_delete (all_children);
9728 htab_delete (all_type_symtabs);
9729 }
9730 }
9731
9732 /* Compute the 'includes' field for the symtabs of all the CUs we just
9733 read. */
9734
9735 static void
9736 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9737 {
9738 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->per_bfd->just_read_cus)
9739 {
9740 if (! iter->is_debug_types)
9741 compute_compunit_symtab_includes (iter, dwarf2_per_objfile);
9742 }
9743
9744 dwarf2_per_objfile->per_bfd->just_read_cus.clear ();
9745 }
9746
9747 /* Generate full symbol information for PER_CU, whose DIEs have
9748 already been loaded into memory. */
9749
9750 static void
9751 process_full_comp_unit (dwarf2_per_cu_data *per_cu,
9752 dwarf2_per_objfile *dwarf2_per_objfile,
9753 enum language pretend_language)
9754 {
9755 struct dwarf2_cu *cu = per_cu->cu;
9756 struct objfile *objfile = dwarf2_per_objfile->objfile;
9757 struct gdbarch *gdbarch = objfile->arch ();
9758 CORE_ADDR lowpc, highpc;
9759 struct compunit_symtab *cust;
9760 CORE_ADDR baseaddr;
9761 struct block *static_block;
9762 CORE_ADDR addr;
9763
9764 baseaddr = objfile->text_section_offset ();
9765
9766 /* Clear the list here in case something was left over. */
9767 cu->method_list.clear ();
9768
9769 cu->language = pretend_language;
9770 cu->language_defn = language_def (cu->language);
9771
9772 /* Do line number decoding in read_file_scope () */
9773 process_die (cu->dies, cu);
9774
9775 /* For now fudge the Go package. */
9776 if (cu->language == language_go)
9777 fixup_go_packaging (cu);
9778
9779 /* Now that we have processed all the DIEs in the CU, all the types
9780 should be complete, and it should now be safe to compute all of the
9781 physnames. */
9782 compute_delayed_physnames (cu);
9783
9784 if (cu->language == language_rust)
9785 rust_union_quirks (cu);
9786
9787 /* Some compilers don't define a DW_AT_high_pc attribute for the
9788 compilation unit. If the DW_AT_high_pc is missing, synthesize
9789 it, by scanning the DIE's below the compilation unit. */
9790 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9791
9792 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9793 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9794
9795 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9796 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9797 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9798 addrmap to help ensure it has an accurate map of pc values belonging to
9799 this comp unit. */
9800 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9801
9802 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9803 SECT_OFF_TEXT (objfile),
9804 0);
9805
9806 if (cust != NULL)
9807 {
9808 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9809
9810 /* Set symtab language to language from DW_AT_language. If the
9811 compilation is from a C file generated by language preprocessors, do
9812 not set the language if it was already deduced by start_subfile. */
9813 if (!(cu->language == language_c
9814 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9815 COMPUNIT_FILETABS (cust)->language = cu->language;
9816
9817 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9818 produce DW_AT_location with location lists but it can be possibly
9819 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9820 there were bugs in prologue debug info, fixed later in GCC-4.5
9821 by "unwind info for epilogues" patch (which is not directly related).
9822
9823 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9824 needed, it would be wrong due to missing DW_AT_producer there.
9825
9826 Still one can confuse GDB by using non-standard GCC compilation
9827 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9828 */
9829 if (cu->has_loclist && gcc_4_minor >= 5)
9830 cust->locations_valid = 1;
9831
9832 if (gcc_4_minor >= 5)
9833 cust->epilogue_unwind_valid = 1;
9834
9835 cust->call_site_htab = cu->call_site_htab;
9836 }
9837
9838 dwarf2_per_objfile->set_symtab (per_cu, cust);
9839
9840 /* Push it for inclusion processing later. */
9841 dwarf2_per_objfile->per_bfd->just_read_cus.push_back (per_cu);
9842
9843 /* Not needed any more. */
9844 cu->reset_builder ();
9845 }
9846
9847 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9848 already been loaded into memory. */
9849
9850 static void
9851 process_full_type_unit (dwarf2_per_cu_data *per_cu,
9852 dwarf2_per_objfile *dwarf2_per_objfile,
9853 enum language pretend_language)
9854 {
9855 struct dwarf2_cu *cu = per_cu->cu;
9856 struct objfile *objfile = dwarf2_per_objfile->objfile;
9857 struct compunit_symtab *cust;
9858 struct signatured_type *sig_type;
9859
9860 gdb_assert (per_cu->is_debug_types);
9861 sig_type = (struct signatured_type *) per_cu;
9862
9863 /* Clear the list here in case something was left over. */
9864 cu->method_list.clear ();
9865
9866 cu->language = pretend_language;
9867 cu->language_defn = language_def (cu->language);
9868
9869 /* The symbol tables are set up in read_type_unit_scope. */
9870 process_die (cu->dies, cu);
9871
9872 /* For now fudge the Go package. */
9873 if (cu->language == language_go)
9874 fixup_go_packaging (cu);
9875
9876 /* Now that we have processed all the DIEs in the CU, all the types
9877 should be complete, and it should now be safe to compute all of the
9878 physnames. */
9879 compute_delayed_physnames (cu);
9880
9881 if (cu->language == language_rust)
9882 rust_union_quirks (cu);
9883
9884 /* TUs share symbol tables.
9885 If this is the first TU to use this symtab, complete the construction
9886 of it with end_expandable_symtab. Otherwise, complete the addition of
9887 this TU's symbols to the existing symtab. */
9888 if (sig_type->type_unit_group->compunit_symtab == NULL)
9889 {
9890 buildsym_compunit *builder = cu->get_builder ();
9891 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9892 sig_type->type_unit_group->compunit_symtab = cust;
9893
9894 if (cust != NULL)
9895 {
9896 /* Set symtab language to language from DW_AT_language. If the
9897 compilation is from a C file generated by language preprocessors,
9898 do not set the language if it was already deduced by
9899 start_subfile. */
9900 if (!(cu->language == language_c
9901 && COMPUNIT_FILETABS (cust)->language != language_c))
9902 COMPUNIT_FILETABS (cust)->language = cu->language;
9903 }
9904 }
9905 else
9906 {
9907 cu->get_builder ()->augment_type_symtab ();
9908 cust = sig_type->type_unit_group->compunit_symtab;
9909 }
9910
9911 dwarf2_per_objfile->set_symtab (per_cu, cust);
9912
9913 /* Not needed any more. */
9914 cu->reset_builder ();
9915 }
9916
9917 /* Process an imported unit DIE. */
9918
9919 static void
9920 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9921 {
9922 struct attribute *attr;
9923
9924 /* For now we don't handle imported units in type units. */
9925 if (cu->per_cu->is_debug_types)
9926 {
9927 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9928 " supported in type units [in module %s]"),
9929 objfile_name (cu->per_objfile->objfile));
9930 }
9931
9932 attr = dwarf2_attr (die, DW_AT_import, cu);
9933 if (attr != NULL)
9934 {
9935 sect_offset sect_off = attr->get_ref_die_offset ();
9936 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9937 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9938 dwarf2_per_cu_data *per_cu
9939 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
9940
9941 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9942 into another compilation unit, at root level. Regard this as a hint,
9943 and ignore it. */
9944 if (die->parent && die->parent->parent == NULL
9945 && per_cu->unit_type == DW_UT_compile
9946 && per_cu->lang == language_cplus)
9947 return;
9948
9949 /* If necessary, add it to the queue and load its DIEs. */
9950 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9951 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
9952
9953 cu->per_cu->imported_symtabs_push (per_cu);
9954 }
9955 }
9956
9957 /* RAII object that represents a process_die scope: i.e.,
9958 starts/finishes processing a DIE. */
9959 class process_die_scope
9960 {
9961 public:
9962 process_die_scope (die_info *die, dwarf2_cu *cu)
9963 : m_die (die), m_cu (cu)
9964 {
9965 /* We should only be processing DIEs not already in process. */
9966 gdb_assert (!m_die->in_process);
9967 m_die->in_process = true;
9968 }
9969
9970 ~process_die_scope ()
9971 {
9972 m_die->in_process = false;
9973
9974 /* If we're done processing the DIE for the CU that owns the line
9975 header, we don't need the line header anymore. */
9976 if (m_cu->line_header_die_owner == m_die)
9977 {
9978 delete m_cu->line_header;
9979 m_cu->line_header = NULL;
9980 m_cu->line_header_die_owner = NULL;
9981 }
9982 }
9983
9984 private:
9985 die_info *m_die;
9986 dwarf2_cu *m_cu;
9987 };
9988
9989 /* Process a die and its children. */
9990
9991 static void
9992 process_die (struct die_info *die, struct dwarf2_cu *cu)
9993 {
9994 process_die_scope scope (die, cu);
9995
9996 switch (die->tag)
9997 {
9998 case DW_TAG_padding:
9999 break;
10000 case DW_TAG_compile_unit:
10001 case DW_TAG_partial_unit:
10002 read_file_scope (die, cu);
10003 break;
10004 case DW_TAG_type_unit:
10005 read_type_unit_scope (die, cu);
10006 break;
10007 case DW_TAG_subprogram:
10008 /* Nested subprograms in Fortran get a prefix. */
10009 if (cu->language == language_fortran
10010 && die->parent != NULL
10011 && die->parent->tag == DW_TAG_subprogram)
10012 cu->processing_has_namespace_info = true;
10013 /* Fall through. */
10014 case DW_TAG_inlined_subroutine:
10015 read_func_scope (die, cu);
10016 break;
10017 case DW_TAG_lexical_block:
10018 case DW_TAG_try_block:
10019 case DW_TAG_catch_block:
10020 read_lexical_block_scope (die, cu);
10021 break;
10022 case DW_TAG_call_site:
10023 case DW_TAG_GNU_call_site:
10024 read_call_site_scope (die, cu);
10025 break;
10026 case DW_TAG_class_type:
10027 case DW_TAG_interface_type:
10028 case DW_TAG_structure_type:
10029 case DW_TAG_union_type:
10030 process_structure_scope (die, cu);
10031 break;
10032 case DW_TAG_enumeration_type:
10033 process_enumeration_scope (die, cu);
10034 break;
10035
10036 /* These dies have a type, but processing them does not create
10037 a symbol or recurse to process the children. Therefore we can
10038 read them on-demand through read_type_die. */
10039 case DW_TAG_subroutine_type:
10040 case DW_TAG_set_type:
10041 case DW_TAG_array_type:
10042 case DW_TAG_pointer_type:
10043 case DW_TAG_ptr_to_member_type:
10044 case DW_TAG_reference_type:
10045 case DW_TAG_rvalue_reference_type:
10046 case DW_TAG_string_type:
10047 break;
10048
10049 case DW_TAG_base_type:
10050 case DW_TAG_subrange_type:
10051 case DW_TAG_typedef:
10052 /* Add a typedef symbol for the type definition, if it has a
10053 DW_AT_name. */
10054 new_symbol (die, read_type_die (die, cu), cu);
10055 break;
10056 case DW_TAG_common_block:
10057 read_common_block (die, cu);
10058 break;
10059 case DW_TAG_common_inclusion:
10060 break;
10061 case DW_TAG_namespace:
10062 cu->processing_has_namespace_info = true;
10063 read_namespace (die, cu);
10064 break;
10065 case DW_TAG_module:
10066 cu->processing_has_namespace_info = true;
10067 read_module (die, cu);
10068 break;
10069 case DW_TAG_imported_declaration:
10070 cu->processing_has_namespace_info = true;
10071 if (read_namespace_alias (die, cu))
10072 break;
10073 /* The declaration is not a global namespace alias. */
10074 /* Fall through. */
10075 case DW_TAG_imported_module:
10076 cu->processing_has_namespace_info = true;
10077 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10078 || cu->language != language_fortran))
10079 complaint (_("Tag '%s' has unexpected children"),
10080 dwarf_tag_name (die->tag));
10081 read_import_statement (die, cu);
10082 break;
10083
10084 case DW_TAG_imported_unit:
10085 process_imported_unit_die (die, cu);
10086 break;
10087
10088 case DW_TAG_variable:
10089 read_variable (die, cu);
10090 break;
10091
10092 default:
10093 new_symbol (die, NULL, cu);
10094 break;
10095 }
10096 }
10097 \f
10098 /* DWARF name computation. */
10099
10100 /* A helper function for dwarf2_compute_name which determines whether DIE
10101 needs to have the name of the scope prepended to the name listed in the
10102 die. */
10103
10104 static int
10105 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10106 {
10107 struct attribute *attr;
10108
10109 switch (die->tag)
10110 {
10111 case DW_TAG_namespace:
10112 case DW_TAG_typedef:
10113 case DW_TAG_class_type:
10114 case DW_TAG_interface_type:
10115 case DW_TAG_structure_type:
10116 case DW_TAG_union_type:
10117 case DW_TAG_enumeration_type:
10118 case DW_TAG_enumerator:
10119 case DW_TAG_subprogram:
10120 case DW_TAG_inlined_subroutine:
10121 case DW_TAG_member:
10122 case DW_TAG_imported_declaration:
10123 return 1;
10124
10125 case DW_TAG_variable:
10126 case DW_TAG_constant:
10127 /* We only need to prefix "globally" visible variables. These include
10128 any variable marked with DW_AT_external or any variable that
10129 lives in a namespace. [Variables in anonymous namespaces
10130 require prefixing, but they are not DW_AT_external.] */
10131
10132 if (dwarf2_attr (die, DW_AT_specification, cu))
10133 {
10134 struct dwarf2_cu *spec_cu = cu;
10135
10136 return die_needs_namespace (die_specification (die, &spec_cu),
10137 spec_cu);
10138 }
10139
10140 attr = dwarf2_attr (die, DW_AT_external, cu);
10141 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10142 && die->parent->tag != DW_TAG_module)
10143 return 0;
10144 /* A variable in a lexical block of some kind does not need a
10145 namespace, even though in C++ such variables may be external
10146 and have a mangled name. */
10147 if (die->parent->tag == DW_TAG_lexical_block
10148 || die->parent->tag == DW_TAG_try_block
10149 || die->parent->tag == DW_TAG_catch_block
10150 || die->parent->tag == DW_TAG_subprogram)
10151 return 0;
10152 return 1;
10153
10154 default:
10155 return 0;
10156 }
10157 }
10158
10159 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10160 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10161 defined for the given DIE. */
10162
10163 static struct attribute *
10164 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10165 {
10166 struct attribute *attr;
10167
10168 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10169 if (attr == NULL)
10170 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10171
10172 return attr;
10173 }
10174
10175 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10176 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10177 defined for the given DIE. */
10178
10179 static const char *
10180 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10181 {
10182 const char *linkage_name;
10183
10184 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10185 if (linkage_name == NULL)
10186 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10187
10188 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10189 See https://github.com/rust-lang/rust/issues/32925. */
10190 if (cu->language == language_rust && linkage_name != NULL
10191 && strchr (linkage_name, '{') != NULL)
10192 linkage_name = NULL;
10193
10194 return linkage_name;
10195 }
10196
10197 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10198 compute the physname for the object, which include a method's:
10199 - formal parameters (C++),
10200 - receiver type (Go),
10201
10202 The term "physname" is a bit confusing.
10203 For C++, for example, it is the demangled name.
10204 For Go, for example, it's the mangled name.
10205
10206 For Ada, return the DIE's linkage name rather than the fully qualified
10207 name. PHYSNAME is ignored..
10208
10209 The result is allocated on the objfile->per_bfd's obstack and
10210 canonicalized. */
10211
10212 static const char *
10213 dwarf2_compute_name (const char *name,
10214 struct die_info *die, struct dwarf2_cu *cu,
10215 int physname)
10216 {
10217 struct objfile *objfile = cu->per_objfile->objfile;
10218
10219 if (name == NULL)
10220 name = dwarf2_name (die, cu);
10221
10222 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10223 but otherwise compute it by typename_concat inside GDB.
10224 FIXME: Actually this is not really true, or at least not always true.
10225 It's all very confusing. compute_and_set_names doesn't try to demangle
10226 Fortran names because there is no mangling standard. So new_symbol
10227 will set the demangled name to the result of dwarf2_full_name, and it is
10228 the demangled name that GDB uses if it exists. */
10229 if (cu->language == language_ada
10230 || (cu->language == language_fortran && physname))
10231 {
10232 /* For Ada unit, we prefer the linkage name over the name, as
10233 the former contains the exported name, which the user expects
10234 to be able to reference. Ideally, we want the user to be able
10235 to reference this entity using either natural or linkage name,
10236 but we haven't started looking at this enhancement yet. */
10237 const char *linkage_name = dw2_linkage_name (die, cu);
10238
10239 if (linkage_name != NULL)
10240 return linkage_name;
10241 }
10242
10243 /* These are the only languages we know how to qualify names in. */
10244 if (name != NULL
10245 && (cu->language == language_cplus
10246 || cu->language == language_fortran || cu->language == language_d
10247 || cu->language == language_rust))
10248 {
10249 if (die_needs_namespace (die, cu))
10250 {
10251 const char *prefix;
10252 const char *canonical_name = NULL;
10253
10254 string_file buf;
10255
10256 prefix = determine_prefix (die, cu);
10257 if (*prefix != '\0')
10258 {
10259 gdb::unique_xmalloc_ptr<char> prefixed_name
10260 (typename_concat (NULL, prefix, name, physname, cu));
10261
10262 buf.puts (prefixed_name.get ());
10263 }
10264 else
10265 buf.puts (name);
10266
10267 /* Template parameters may be specified in the DIE's DW_AT_name, or
10268 as children with DW_TAG_template_type_param or
10269 DW_TAG_value_type_param. If the latter, add them to the name
10270 here. If the name already has template parameters, then
10271 skip this step; some versions of GCC emit both, and
10272 it is more efficient to use the pre-computed name.
10273
10274 Something to keep in mind about this process: it is very
10275 unlikely, or in some cases downright impossible, to produce
10276 something that will match the mangled name of a function.
10277 If the definition of the function has the same debug info,
10278 we should be able to match up with it anyway. But fallbacks
10279 using the minimal symbol, for instance to find a method
10280 implemented in a stripped copy of libstdc++, will not work.
10281 If we do not have debug info for the definition, we will have to
10282 match them up some other way.
10283
10284 When we do name matching there is a related problem with function
10285 templates; two instantiated function templates are allowed to
10286 differ only by their return types, which we do not add here. */
10287
10288 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10289 {
10290 struct attribute *attr;
10291 struct die_info *child;
10292 int first = 1;
10293
10294 die->building_fullname = 1;
10295
10296 for (child = die->child; child != NULL; child = child->sibling)
10297 {
10298 struct type *type;
10299 LONGEST value;
10300 const gdb_byte *bytes;
10301 struct dwarf2_locexpr_baton *baton;
10302 struct value *v;
10303
10304 if (child->tag != DW_TAG_template_type_param
10305 && child->tag != DW_TAG_template_value_param)
10306 continue;
10307
10308 if (first)
10309 {
10310 buf.puts ("<");
10311 first = 0;
10312 }
10313 else
10314 buf.puts (", ");
10315
10316 attr = dwarf2_attr (child, DW_AT_type, cu);
10317 if (attr == NULL)
10318 {
10319 complaint (_("template parameter missing DW_AT_type"));
10320 buf.puts ("UNKNOWN_TYPE");
10321 continue;
10322 }
10323 type = die_type (child, cu);
10324
10325 if (child->tag == DW_TAG_template_type_param)
10326 {
10327 c_print_type (type, "", &buf, -1, 0, cu->language,
10328 &type_print_raw_options);
10329 continue;
10330 }
10331
10332 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10333 if (attr == NULL)
10334 {
10335 complaint (_("template parameter missing "
10336 "DW_AT_const_value"));
10337 buf.puts ("UNKNOWN_VALUE");
10338 continue;
10339 }
10340
10341 dwarf2_const_value_attr (attr, type, name,
10342 &cu->comp_unit_obstack, cu,
10343 &value, &bytes, &baton);
10344
10345 if (TYPE_NOSIGN (type))
10346 /* GDB prints characters as NUMBER 'CHAR'. If that's
10347 changed, this can use value_print instead. */
10348 c_printchar (value, type, &buf);
10349 else
10350 {
10351 struct value_print_options opts;
10352
10353 if (baton != NULL)
10354 v = dwarf2_evaluate_loc_desc (type, NULL,
10355 baton->data,
10356 baton->size,
10357 baton->per_cu);
10358 else if (bytes != NULL)
10359 {
10360 v = allocate_value (type);
10361 memcpy (value_contents_writeable (v), bytes,
10362 TYPE_LENGTH (type));
10363 }
10364 else
10365 v = value_from_longest (type, value);
10366
10367 /* Specify decimal so that we do not depend on
10368 the radix. */
10369 get_formatted_print_options (&opts, 'd');
10370 opts.raw = 1;
10371 value_print (v, &buf, &opts);
10372 release_value (v);
10373 }
10374 }
10375
10376 die->building_fullname = 0;
10377
10378 if (!first)
10379 {
10380 /* Close the argument list, with a space if necessary
10381 (nested templates). */
10382 if (!buf.empty () && buf.string ().back () == '>')
10383 buf.puts (" >");
10384 else
10385 buf.puts (">");
10386 }
10387 }
10388
10389 /* For C++ methods, append formal parameter type
10390 information, if PHYSNAME. */
10391
10392 if (physname && die->tag == DW_TAG_subprogram
10393 && cu->language == language_cplus)
10394 {
10395 struct type *type = read_type_die (die, cu);
10396
10397 c_type_print_args (type, &buf, 1, cu->language,
10398 &type_print_raw_options);
10399
10400 if (cu->language == language_cplus)
10401 {
10402 /* Assume that an artificial first parameter is
10403 "this", but do not crash if it is not. RealView
10404 marks unnamed (and thus unused) parameters as
10405 artificial; there is no way to differentiate
10406 the two cases. */
10407 if (type->num_fields () > 0
10408 && TYPE_FIELD_ARTIFICIAL (type, 0)
10409 && TYPE_FIELD_TYPE (type, 0)->code () == TYPE_CODE_PTR
10410 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10411 0))))
10412 buf.puts (" const");
10413 }
10414 }
10415
10416 const std::string &intermediate_name = buf.string ();
10417
10418 if (cu->language == language_cplus)
10419 canonical_name
10420 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10421 objfile);
10422
10423 /* If we only computed INTERMEDIATE_NAME, or if
10424 INTERMEDIATE_NAME is already canonical, then we need to
10425 intern it. */
10426 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10427 name = objfile->intern (intermediate_name);
10428 else
10429 name = canonical_name;
10430 }
10431 }
10432
10433 return name;
10434 }
10435
10436 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10437 If scope qualifiers are appropriate they will be added. The result
10438 will be allocated on the storage_obstack, or NULL if the DIE does
10439 not have a name. NAME may either be from a previous call to
10440 dwarf2_name or NULL.
10441
10442 The output string will be canonicalized (if C++). */
10443
10444 static const char *
10445 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10446 {
10447 return dwarf2_compute_name (name, die, cu, 0);
10448 }
10449
10450 /* Construct a physname for the given DIE in CU. NAME may either be
10451 from a previous call to dwarf2_name or NULL. The result will be
10452 allocated on the objfile_objstack or NULL if the DIE does not have a
10453 name.
10454
10455 The output string will be canonicalized (if C++). */
10456
10457 static const char *
10458 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10459 {
10460 struct objfile *objfile = cu->per_objfile->objfile;
10461 const char *retval, *mangled = NULL, *canon = NULL;
10462 int need_copy = 1;
10463
10464 /* In this case dwarf2_compute_name is just a shortcut not building anything
10465 on its own. */
10466 if (!die_needs_namespace (die, cu))
10467 return dwarf2_compute_name (name, die, cu, 1);
10468
10469 if (cu->language != language_rust)
10470 mangled = dw2_linkage_name (die, cu);
10471
10472 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10473 has computed. */
10474 gdb::unique_xmalloc_ptr<char> demangled;
10475 if (mangled != NULL)
10476 {
10477
10478 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10479 {
10480 /* Do nothing (do not demangle the symbol name). */
10481 }
10482 else if (cu->language == language_go)
10483 {
10484 /* This is a lie, but we already lie to the caller new_symbol.
10485 new_symbol assumes we return the mangled name.
10486 This just undoes that lie until things are cleaned up. */
10487 }
10488 else
10489 {
10490 /* Use DMGL_RET_DROP for C++ template functions to suppress
10491 their return type. It is easier for GDB users to search
10492 for such functions as `name(params)' than `long name(params)'.
10493 In such case the minimal symbol names do not match the full
10494 symbol names but for template functions there is never a need
10495 to look up their definition from their declaration so
10496 the only disadvantage remains the minimal symbol variant
10497 `long name(params)' does not have the proper inferior type. */
10498 demangled.reset (gdb_demangle (mangled,
10499 (DMGL_PARAMS | DMGL_ANSI
10500 | DMGL_RET_DROP)));
10501 }
10502 if (demangled)
10503 canon = demangled.get ();
10504 else
10505 {
10506 canon = mangled;
10507 need_copy = 0;
10508 }
10509 }
10510
10511 if (canon == NULL || check_physname)
10512 {
10513 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10514
10515 if (canon != NULL && strcmp (physname, canon) != 0)
10516 {
10517 /* It may not mean a bug in GDB. The compiler could also
10518 compute DW_AT_linkage_name incorrectly. But in such case
10519 GDB would need to be bug-to-bug compatible. */
10520
10521 complaint (_("Computed physname <%s> does not match demangled <%s> "
10522 "(from linkage <%s>) - DIE at %s [in module %s]"),
10523 physname, canon, mangled, sect_offset_str (die->sect_off),
10524 objfile_name (objfile));
10525
10526 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10527 is available here - over computed PHYSNAME. It is safer
10528 against both buggy GDB and buggy compilers. */
10529
10530 retval = canon;
10531 }
10532 else
10533 {
10534 retval = physname;
10535 need_copy = 0;
10536 }
10537 }
10538 else
10539 retval = canon;
10540
10541 if (need_copy)
10542 retval = objfile->intern (retval);
10543
10544 return retval;
10545 }
10546
10547 /* Inspect DIE in CU for a namespace alias. If one exists, record
10548 a new symbol for it.
10549
10550 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10551
10552 static int
10553 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10554 {
10555 struct attribute *attr;
10556
10557 /* If the die does not have a name, this is not a namespace
10558 alias. */
10559 attr = dwarf2_attr (die, DW_AT_name, cu);
10560 if (attr != NULL)
10561 {
10562 int num;
10563 struct die_info *d = die;
10564 struct dwarf2_cu *imported_cu = cu;
10565
10566 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10567 keep inspecting DIEs until we hit the underlying import. */
10568 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10569 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10570 {
10571 attr = dwarf2_attr (d, DW_AT_import, cu);
10572 if (attr == NULL)
10573 break;
10574
10575 d = follow_die_ref (d, attr, &imported_cu);
10576 if (d->tag != DW_TAG_imported_declaration)
10577 break;
10578 }
10579
10580 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10581 {
10582 complaint (_("DIE at %s has too many recursively imported "
10583 "declarations"), sect_offset_str (d->sect_off));
10584 return 0;
10585 }
10586
10587 if (attr != NULL)
10588 {
10589 struct type *type;
10590 sect_offset sect_off = attr->get_ref_die_offset ();
10591
10592 type = get_die_type_at_offset (sect_off, cu->per_cu);
10593 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10594 {
10595 /* This declaration is a global namespace alias. Add
10596 a symbol for it whose type is the aliased namespace. */
10597 new_symbol (die, type, cu);
10598 return 1;
10599 }
10600 }
10601 }
10602
10603 return 0;
10604 }
10605
10606 /* Return the using directives repository (global or local?) to use in the
10607 current context for CU.
10608
10609 For Ada, imported declarations can materialize renamings, which *may* be
10610 global. However it is impossible (for now?) in DWARF to distinguish
10611 "external" imported declarations and "static" ones. As all imported
10612 declarations seem to be static in all other languages, make them all CU-wide
10613 global only in Ada. */
10614
10615 static struct using_direct **
10616 using_directives (struct dwarf2_cu *cu)
10617 {
10618 if (cu->language == language_ada
10619 && cu->get_builder ()->outermost_context_p ())
10620 return cu->get_builder ()->get_global_using_directives ();
10621 else
10622 return cu->get_builder ()->get_local_using_directives ();
10623 }
10624
10625 /* Read the import statement specified by the given die and record it. */
10626
10627 static void
10628 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10629 {
10630 struct objfile *objfile = cu->per_objfile->objfile;
10631 struct attribute *import_attr;
10632 struct die_info *imported_die, *child_die;
10633 struct dwarf2_cu *imported_cu;
10634 const char *imported_name;
10635 const char *imported_name_prefix;
10636 const char *canonical_name;
10637 const char *import_alias;
10638 const char *imported_declaration = NULL;
10639 const char *import_prefix;
10640 std::vector<const char *> excludes;
10641
10642 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10643 if (import_attr == NULL)
10644 {
10645 complaint (_("Tag '%s' has no DW_AT_import"),
10646 dwarf_tag_name (die->tag));
10647 return;
10648 }
10649
10650 imported_cu = cu;
10651 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10652 imported_name = dwarf2_name (imported_die, imported_cu);
10653 if (imported_name == NULL)
10654 {
10655 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10656
10657 The import in the following code:
10658 namespace A
10659 {
10660 typedef int B;
10661 }
10662
10663 int main ()
10664 {
10665 using A::B;
10666 B b;
10667 return b;
10668 }
10669
10670 ...
10671 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10672 <52> DW_AT_decl_file : 1
10673 <53> DW_AT_decl_line : 6
10674 <54> DW_AT_import : <0x75>
10675 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10676 <59> DW_AT_name : B
10677 <5b> DW_AT_decl_file : 1
10678 <5c> DW_AT_decl_line : 2
10679 <5d> DW_AT_type : <0x6e>
10680 ...
10681 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10682 <76> DW_AT_byte_size : 4
10683 <77> DW_AT_encoding : 5 (signed)
10684
10685 imports the wrong die ( 0x75 instead of 0x58 ).
10686 This case will be ignored until the gcc bug is fixed. */
10687 return;
10688 }
10689
10690 /* Figure out the local name after import. */
10691 import_alias = dwarf2_name (die, cu);
10692
10693 /* Figure out where the statement is being imported to. */
10694 import_prefix = determine_prefix (die, cu);
10695
10696 /* Figure out what the scope of the imported die is and prepend it
10697 to the name of the imported die. */
10698 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10699
10700 if (imported_die->tag != DW_TAG_namespace
10701 && imported_die->tag != DW_TAG_module)
10702 {
10703 imported_declaration = imported_name;
10704 canonical_name = imported_name_prefix;
10705 }
10706 else if (strlen (imported_name_prefix) > 0)
10707 canonical_name = obconcat (&objfile->objfile_obstack,
10708 imported_name_prefix,
10709 (cu->language == language_d ? "." : "::"),
10710 imported_name, (char *) NULL);
10711 else
10712 canonical_name = imported_name;
10713
10714 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10715 for (child_die = die->child; child_die && child_die->tag;
10716 child_die = child_die->sibling)
10717 {
10718 /* DWARF-4: A Fortran use statement with a “rename list” may be
10719 represented by an imported module entry with an import attribute
10720 referring to the module and owned entries corresponding to those
10721 entities that are renamed as part of being imported. */
10722
10723 if (child_die->tag != DW_TAG_imported_declaration)
10724 {
10725 complaint (_("child DW_TAG_imported_declaration expected "
10726 "- DIE at %s [in module %s]"),
10727 sect_offset_str (child_die->sect_off),
10728 objfile_name (objfile));
10729 continue;
10730 }
10731
10732 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10733 if (import_attr == NULL)
10734 {
10735 complaint (_("Tag '%s' has no DW_AT_import"),
10736 dwarf_tag_name (child_die->tag));
10737 continue;
10738 }
10739
10740 imported_cu = cu;
10741 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10742 &imported_cu);
10743 imported_name = dwarf2_name (imported_die, imported_cu);
10744 if (imported_name == NULL)
10745 {
10746 complaint (_("child DW_TAG_imported_declaration has unknown "
10747 "imported name - DIE at %s [in module %s]"),
10748 sect_offset_str (child_die->sect_off),
10749 objfile_name (objfile));
10750 continue;
10751 }
10752
10753 excludes.push_back (imported_name);
10754
10755 process_die (child_die, cu);
10756 }
10757
10758 add_using_directive (using_directives (cu),
10759 import_prefix,
10760 canonical_name,
10761 import_alias,
10762 imported_declaration,
10763 excludes,
10764 0,
10765 &objfile->objfile_obstack);
10766 }
10767
10768 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10769 types, but gives them a size of zero. Starting with version 14,
10770 ICC is compatible with GCC. */
10771
10772 static bool
10773 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10774 {
10775 if (!cu->checked_producer)
10776 check_producer (cu);
10777
10778 return cu->producer_is_icc_lt_14;
10779 }
10780
10781 /* ICC generates a DW_AT_type for C void functions. This was observed on
10782 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10783 which says that void functions should not have a DW_AT_type. */
10784
10785 static bool
10786 producer_is_icc (struct dwarf2_cu *cu)
10787 {
10788 if (!cu->checked_producer)
10789 check_producer (cu);
10790
10791 return cu->producer_is_icc;
10792 }
10793
10794 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10795 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10796 this, it was first present in GCC release 4.3.0. */
10797
10798 static bool
10799 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10800 {
10801 if (!cu->checked_producer)
10802 check_producer (cu);
10803
10804 return cu->producer_is_gcc_lt_4_3;
10805 }
10806
10807 static file_and_directory
10808 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10809 {
10810 file_and_directory res;
10811
10812 /* Find the filename. Do not use dwarf2_name here, since the filename
10813 is not a source language identifier. */
10814 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10815 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10816
10817 if (res.comp_dir == NULL
10818 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10819 && IS_ABSOLUTE_PATH (res.name))
10820 {
10821 res.comp_dir_storage = ldirname (res.name);
10822 if (!res.comp_dir_storage.empty ())
10823 res.comp_dir = res.comp_dir_storage.c_str ();
10824 }
10825 if (res.comp_dir != NULL)
10826 {
10827 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10828 directory, get rid of it. */
10829 const char *cp = strchr (res.comp_dir, ':');
10830
10831 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10832 res.comp_dir = cp + 1;
10833 }
10834
10835 if (res.name == NULL)
10836 res.name = "<unknown>";
10837
10838 return res;
10839 }
10840
10841 /* Handle DW_AT_stmt_list for a compilation unit.
10842 DIE is the DW_TAG_compile_unit die for CU.
10843 COMP_DIR is the compilation directory. LOWPC is passed to
10844 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10845
10846 static void
10847 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10848 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10849 {
10850 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
10851 struct attribute *attr;
10852 struct line_header line_header_local;
10853 hashval_t line_header_local_hash;
10854 void **slot;
10855 int decode_mapping;
10856
10857 gdb_assert (! cu->per_cu->is_debug_types);
10858
10859 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10860 if (attr == NULL)
10861 return;
10862
10863 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10864
10865 /* The line header hash table is only created if needed (it exists to
10866 prevent redundant reading of the line table for partial_units).
10867 If we're given a partial_unit, we'll need it. If we're given a
10868 compile_unit, then use the line header hash table if it's already
10869 created, but don't create one just yet. */
10870
10871 if (dwarf2_per_objfile->per_bfd->line_header_hash == NULL
10872 && die->tag == DW_TAG_partial_unit)
10873 {
10874 dwarf2_per_objfile->per_bfd->line_header_hash
10875 .reset (htab_create_alloc (127, line_header_hash_voidp,
10876 line_header_eq_voidp,
10877 free_line_header_voidp,
10878 xcalloc, xfree));
10879 }
10880
10881 line_header_local.sect_off = line_offset;
10882 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10883 line_header_local_hash = line_header_hash (&line_header_local);
10884 if (dwarf2_per_objfile->per_bfd->line_header_hash != NULL)
10885 {
10886 slot = htab_find_slot_with_hash (dwarf2_per_objfile->per_bfd->line_header_hash.get (),
10887 &line_header_local,
10888 line_header_local_hash, NO_INSERT);
10889
10890 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10891 is not present in *SLOT (since if there is something in *SLOT then
10892 it will be for a partial_unit). */
10893 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10894 {
10895 gdb_assert (*slot != NULL);
10896 cu->line_header = (struct line_header *) *slot;
10897 return;
10898 }
10899 }
10900
10901 /* dwarf_decode_line_header does not yet provide sufficient information.
10902 We always have to call also dwarf_decode_lines for it. */
10903 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10904 if (lh == NULL)
10905 return;
10906
10907 cu->line_header = lh.release ();
10908 cu->line_header_die_owner = die;
10909
10910 if (dwarf2_per_objfile->per_bfd->line_header_hash == NULL)
10911 slot = NULL;
10912 else
10913 {
10914 slot = htab_find_slot_with_hash (dwarf2_per_objfile->per_bfd->line_header_hash.get (),
10915 &line_header_local,
10916 line_header_local_hash, INSERT);
10917 gdb_assert (slot != NULL);
10918 }
10919 if (slot != NULL && *slot == NULL)
10920 {
10921 /* This newly decoded line number information unit will be owned
10922 by line_header_hash hash table. */
10923 *slot = cu->line_header;
10924 cu->line_header_die_owner = NULL;
10925 }
10926 else
10927 {
10928 /* We cannot free any current entry in (*slot) as that struct line_header
10929 may be already used by multiple CUs. Create only temporary decoded
10930 line_header for this CU - it may happen at most once for each line
10931 number information unit. And if we're not using line_header_hash
10932 then this is what we want as well. */
10933 gdb_assert (die->tag != DW_TAG_partial_unit);
10934 }
10935 decode_mapping = (die->tag != DW_TAG_partial_unit);
10936 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10937 decode_mapping);
10938
10939 }
10940
10941 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10942
10943 static void
10944 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10945 {
10946 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
10947 struct objfile *objfile = dwarf2_per_objfile->objfile;
10948 struct gdbarch *gdbarch = objfile->arch ();
10949 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10950 CORE_ADDR highpc = ((CORE_ADDR) 0);
10951 struct attribute *attr;
10952 struct die_info *child_die;
10953 CORE_ADDR baseaddr;
10954
10955 prepare_one_comp_unit (cu, die, cu->language);
10956 baseaddr = objfile->text_section_offset ();
10957
10958 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10959
10960 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10961 from finish_block. */
10962 if (lowpc == ((CORE_ADDR) -1))
10963 lowpc = highpc;
10964 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10965
10966 file_and_directory fnd = find_file_and_directory (die, cu);
10967
10968 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10969 standardised yet. As a workaround for the language detection we fall
10970 back to the DW_AT_producer string. */
10971 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10972 cu->language = language_opencl;
10973
10974 /* Similar hack for Go. */
10975 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10976 set_cu_language (DW_LANG_Go, cu);
10977
10978 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10979
10980 /* Decode line number information if present. We do this before
10981 processing child DIEs, so that the line header table is available
10982 for DW_AT_decl_file. */
10983 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10984
10985 /* Process all dies in compilation unit. */
10986 if (die->child != NULL)
10987 {
10988 child_die = die->child;
10989 while (child_die && child_die->tag)
10990 {
10991 process_die (child_die, cu);
10992 child_die = child_die->sibling;
10993 }
10994 }
10995
10996 /* Decode macro information, if present. Dwarf 2 macro information
10997 refers to information in the line number info statement program
10998 header, so we can only read it if we've read the header
10999 successfully. */
11000 attr = dwarf2_attr (die, DW_AT_macros, cu);
11001 if (attr == NULL)
11002 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11003 if (attr && cu->line_header)
11004 {
11005 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11006 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11007
11008 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11009 }
11010 else
11011 {
11012 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11013 if (attr && cu->line_header)
11014 {
11015 unsigned int macro_offset = DW_UNSND (attr);
11016
11017 dwarf_decode_macros (cu, macro_offset, 0);
11018 }
11019 }
11020 }
11021
11022 void
11023 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11024 {
11025 struct type_unit_group *tu_group;
11026 int first_time;
11027 struct attribute *attr;
11028 unsigned int i;
11029 struct signatured_type *sig_type;
11030
11031 gdb_assert (per_cu->is_debug_types);
11032 sig_type = (struct signatured_type *) per_cu;
11033
11034 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11035
11036 /* If we're using .gdb_index (includes -readnow) then
11037 per_cu->type_unit_group may not have been set up yet. */
11038 if (sig_type->type_unit_group == NULL)
11039 sig_type->type_unit_group = get_type_unit_group (this, attr);
11040 tu_group = sig_type->type_unit_group;
11041
11042 /* If we've already processed this stmt_list there's no real need to
11043 do it again, we could fake it and just recreate the part we need
11044 (file name,index -> symtab mapping). If data shows this optimization
11045 is useful we can do it then. */
11046 first_time = tu_group->compunit_symtab == NULL;
11047
11048 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11049 debug info. */
11050 line_header_up lh;
11051 if (attr != NULL)
11052 {
11053 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11054 lh = dwarf_decode_line_header (line_offset, this);
11055 }
11056 if (lh == NULL)
11057 {
11058 if (first_time)
11059 start_symtab ("", NULL, 0);
11060 else
11061 {
11062 gdb_assert (tu_group->symtabs == NULL);
11063 gdb_assert (m_builder == nullptr);
11064 struct compunit_symtab *cust = tu_group->compunit_symtab;
11065 m_builder.reset (new struct buildsym_compunit
11066 (COMPUNIT_OBJFILE (cust), "",
11067 COMPUNIT_DIRNAME (cust),
11068 compunit_language (cust),
11069 0, cust));
11070 list_in_scope = get_builder ()->get_file_symbols ();
11071 }
11072 return;
11073 }
11074
11075 line_header = lh.release ();
11076 line_header_die_owner = die;
11077
11078 if (first_time)
11079 {
11080 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11081
11082 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11083 still initializing it, and our caller (a few levels up)
11084 process_full_type_unit still needs to know if this is the first
11085 time. */
11086
11087 tu_group->symtabs
11088 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11089 struct symtab *, line_header->file_names_size ());
11090
11091 auto &file_names = line_header->file_names ();
11092 for (i = 0; i < file_names.size (); ++i)
11093 {
11094 file_entry &fe = file_names[i];
11095 dwarf2_start_subfile (this, fe.name,
11096 fe.include_dir (line_header));
11097 buildsym_compunit *b = get_builder ();
11098 if (b->get_current_subfile ()->symtab == NULL)
11099 {
11100 /* NOTE: start_subfile will recognize when it's been
11101 passed a file it has already seen. So we can't
11102 assume there's a simple mapping from
11103 cu->line_header->file_names to subfiles, plus
11104 cu->line_header->file_names may contain dups. */
11105 b->get_current_subfile ()->symtab
11106 = allocate_symtab (cust, b->get_current_subfile ()->name);
11107 }
11108
11109 fe.symtab = b->get_current_subfile ()->symtab;
11110 tu_group->symtabs[i] = fe.symtab;
11111 }
11112 }
11113 else
11114 {
11115 gdb_assert (m_builder == nullptr);
11116 struct compunit_symtab *cust = tu_group->compunit_symtab;
11117 m_builder.reset (new struct buildsym_compunit
11118 (COMPUNIT_OBJFILE (cust), "",
11119 COMPUNIT_DIRNAME (cust),
11120 compunit_language (cust),
11121 0, cust));
11122 list_in_scope = get_builder ()->get_file_symbols ();
11123
11124 auto &file_names = line_header->file_names ();
11125 for (i = 0; i < file_names.size (); ++i)
11126 {
11127 file_entry &fe = file_names[i];
11128 fe.symtab = tu_group->symtabs[i];
11129 }
11130 }
11131
11132 /* The main symtab is allocated last. Type units don't have DW_AT_name
11133 so they don't have a "real" (so to speak) symtab anyway.
11134 There is later code that will assign the main symtab to all symbols
11135 that don't have one. We need to handle the case of a symbol with a
11136 missing symtab (DW_AT_decl_file) anyway. */
11137 }
11138
11139 /* Process DW_TAG_type_unit.
11140 For TUs we want to skip the first top level sibling if it's not the
11141 actual type being defined by this TU. In this case the first top
11142 level sibling is there to provide context only. */
11143
11144 static void
11145 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11146 {
11147 struct die_info *child_die;
11148
11149 prepare_one_comp_unit (cu, die, language_minimal);
11150
11151 /* Initialize (or reinitialize) the machinery for building symtabs.
11152 We do this before processing child DIEs, so that the line header table
11153 is available for DW_AT_decl_file. */
11154 cu->setup_type_unit_groups (die);
11155
11156 if (die->child != NULL)
11157 {
11158 child_die = die->child;
11159 while (child_die && child_die->tag)
11160 {
11161 process_die (child_die, cu);
11162 child_die = child_die->sibling;
11163 }
11164 }
11165 }
11166 \f
11167 /* DWO/DWP files.
11168
11169 http://gcc.gnu.org/wiki/DebugFission
11170 http://gcc.gnu.org/wiki/DebugFissionDWP
11171
11172 To simplify handling of both DWO files ("object" files with the DWARF info)
11173 and DWP files (a file with the DWOs packaged up into one file), we treat
11174 DWP files as having a collection of virtual DWO files. */
11175
11176 static hashval_t
11177 hash_dwo_file (const void *item)
11178 {
11179 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11180 hashval_t hash;
11181
11182 hash = htab_hash_string (dwo_file->dwo_name);
11183 if (dwo_file->comp_dir != NULL)
11184 hash += htab_hash_string (dwo_file->comp_dir);
11185 return hash;
11186 }
11187
11188 static int
11189 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11190 {
11191 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11192 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11193
11194 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11195 return 0;
11196 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11197 return lhs->comp_dir == rhs->comp_dir;
11198 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11199 }
11200
11201 /* Allocate a hash table for DWO files. */
11202
11203 static htab_up
11204 allocate_dwo_file_hash_table ()
11205 {
11206 auto delete_dwo_file = [] (void *item)
11207 {
11208 struct dwo_file *dwo_file = (struct dwo_file *) item;
11209
11210 delete dwo_file;
11211 };
11212
11213 return htab_up (htab_create_alloc (41,
11214 hash_dwo_file,
11215 eq_dwo_file,
11216 delete_dwo_file,
11217 xcalloc, xfree));
11218 }
11219
11220 /* Lookup DWO file DWO_NAME. */
11221
11222 static void **
11223 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11224 const char *dwo_name,
11225 const char *comp_dir)
11226 {
11227 struct dwo_file find_entry;
11228 void **slot;
11229
11230 if (dwarf2_per_objfile->per_bfd->dwo_files == NULL)
11231 dwarf2_per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
11232
11233 find_entry.dwo_name = dwo_name;
11234 find_entry.comp_dir = comp_dir;
11235 slot = htab_find_slot (dwarf2_per_objfile->per_bfd->dwo_files.get (), &find_entry,
11236 INSERT);
11237
11238 return slot;
11239 }
11240
11241 static hashval_t
11242 hash_dwo_unit (const void *item)
11243 {
11244 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11245
11246 /* This drops the top 32 bits of the id, but is ok for a hash. */
11247 return dwo_unit->signature;
11248 }
11249
11250 static int
11251 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11252 {
11253 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11254 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11255
11256 /* The signature is assumed to be unique within the DWO file.
11257 So while object file CU dwo_id's always have the value zero,
11258 that's OK, assuming each object file DWO file has only one CU,
11259 and that's the rule for now. */
11260 return lhs->signature == rhs->signature;
11261 }
11262
11263 /* Allocate a hash table for DWO CUs,TUs.
11264 There is one of these tables for each of CUs,TUs for each DWO file. */
11265
11266 static htab_up
11267 allocate_dwo_unit_table ()
11268 {
11269 /* Start out with a pretty small number.
11270 Generally DWO files contain only one CU and maybe some TUs. */
11271 return htab_up (htab_create_alloc (3,
11272 hash_dwo_unit,
11273 eq_dwo_unit,
11274 NULL, xcalloc, xfree));
11275 }
11276
11277 /* die_reader_func for create_dwo_cu. */
11278
11279 static void
11280 create_dwo_cu_reader (const struct die_reader_specs *reader,
11281 const gdb_byte *info_ptr,
11282 struct die_info *comp_unit_die,
11283 struct dwo_file *dwo_file,
11284 struct dwo_unit *dwo_unit)
11285 {
11286 struct dwarf2_cu *cu = reader->cu;
11287 sect_offset sect_off = cu->per_cu->sect_off;
11288 struct dwarf2_section_info *section = cu->per_cu->section;
11289
11290 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11291 if (!signature.has_value ())
11292 {
11293 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11294 " its dwo_id [in module %s]"),
11295 sect_offset_str (sect_off), dwo_file->dwo_name);
11296 return;
11297 }
11298
11299 dwo_unit->dwo_file = dwo_file;
11300 dwo_unit->signature = *signature;
11301 dwo_unit->section = section;
11302 dwo_unit->sect_off = sect_off;
11303 dwo_unit->length = cu->per_cu->length;
11304
11305 if (dwarf_read_debug)
11306 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11307 sect_offset_str (sect_off),
11308 hex_string (dwo_unit->signature));
11309 }
11310
11311 /* Create the dwo_units for the CUs in a DWO_FILE.
11312 Note: This function processes DWO files only, not DWP files. */
11313
11314 static void
11315 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11316 dwarf2_cu *cu, struct dwo_file &dwo_file,
11317 dwarf2_section_info &section, htab_up &cus_htab)
11318 {
11319 struct objfile *objfile = dwarf2_per_objfile->objfile;
11320 dwarf2_per_bfd *per_bfd = dwarf2_per_objfile->per_bfd;
11321 const gdb_byte *info_ptr, *end_ptr;
11322
11323 section.read (objfile);
11324 info_ptr = section.buffer;
11325
11326 if (info_ptr == NULL)
11327 return;
11328
11329 if (dwarf_read_debug)
11330 {
11331 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11332 section.get_name (),
11333 section.get_file_name ());
11334 }
11335
11336 end_ptr = info_ptr + section.size;
11337 while (info_ptr < end_ptr)
11338 {
11339 struct dwarf2_per_cu_data per_cu;
11340 struct dwo_unit read_unit {};
11341 struct dwo_unit *dwo_unit;
11342 void **slot;
11343 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11344
11345 memset (&per_cu, 0, sizeof (per_cu));
11346 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11347 per_cu.per_bfd = per_bfd;
11348 per_cu.is_debug_types = 0;
11349 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11350 per_cu.section = &section;
11351
11352 cutu_reader reader (&per_cu, dwarf2_per_objfile, cu, &dwo_file);
11353 if (!reader.dummy_p)
11354 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11355 &dwo_file, &read_unit);
11356 info_ptr += per_cu.length;
11357
11358 // If the unit could not be parsed, skip it.
11359 if (read_unit.dwo_file == NULL)
11360 continue;
11361
11362 if (cus_htab == NULL)
11363 cus_htab = allocate_dwo_unit_table ();
11364
11365 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11366 struct dwo_unit);
11367 *dwo_unit = read_unit;
11368 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11369 gdb_assert (slot != NULL);
11370 if (*slot != NULL)
11371 {
11372 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11373 sect_offset dup_sect_off = dup_cu->sect_off;
11374
11375 complaint (_("debug cu entry at offset %s is duplicate to"
11376 " the entry at offset %s, signature %s"),
11377 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11378 hex_string (dwo_unit->signature));
11379 }
11380 *slot = (void *)dwo_unit;
11381 }
11382 }
11383
11384 /* DWP file .debug_{cu,tu}_index section format:
11385 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11386
11387 DWP Version 1:
11388
11389 Both index sections have the same format, and serve to map a 64-bit
11390 signature to a set of section numbers. Each section begins with a header,
11391 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11392 indexes, and a pool of 32-bit section numbers. The index sections will be
11393 aligned at 8-byte boundaries in the file.
11394
11395 The index section header consists of:
11396
11397 V, 32 bit version number
11398 -, 32 bits unused
11399 N, 32 bit number of compilation units or type units in the index
11400 M, 32 bit number of slots in the hash table
11401
11402 Numbers are recorded using the byte order of the application binary.
11403
11404 The hash table begins at offset 16 in the section, and consists of an array
11405 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11406 order of the application binary). Unused slots in the hash table are 0.
11407 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11408
11409 The parallel table begins immediately after the hash table
11410 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11411 array of 32-bit indexes (using the byte order of the application binary),
11412 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11413 table contains a 32-bit index into the pool of section numbers. For unused
11414 hash table slots, the corresponding entry in the parallel table will be 0.
11415
11416 The pool of section numbers begins immediately following the hash table
11417 (at offset 16 + 12 * M from the beginning of the section). The pool of
11418 section numbers consists of an array of 32-bit words (using the byte order
11419 of the application binary). Each item in the array is indexed starting
11420 from 0. The hash table entry provides the index of the first section
11421 number in the set. Additional section numbers in the set follow, and the
11422 set is terminated by a 0 entry (section number 0 is not used in ELF).
11423
11424 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11425 section must be the first entry in the set, and the .debug_abbrev.dwo must
11426 be the second entry. Other members of the set may follow in any order.
11427
11428 ---
11429
11430 DWP Version 2:
11431
11432 DWP Version 2 combines all the .debug_info, etc. sections into one,
11433 and the entries in the index tables are now offsets into these sections.
11434 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11435 section.
11436
11437 Index Section Contents:
11438 Header
11439 Hash Table of Signatures dwp_hash_table.hash_table
11440 Parallel Table of Indices dwp_hash_table.unit_table
11441 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11442 Table of Section Sizes dwp_hash_table.v2.sizes
11443
11444 The index section header consists of:
11445
11446 V, 32 bit version number
11447 L, 32 bit number of columns in the table of section offsets
11448 N, 32 bit number of compilation units or type units in the index
11449 M, 32 bit number of slots in the hash table
11450
11451 Numbers are recorded using the byte order of the application binary.
11452
11453 The hash table has the same format as version 1.
11454 The parallel table of indices has the same format as version 1,
11455 except that the entries are origin-1 indices into the table of sections
11456 offsets and the table of section sizes.
11457
11458 The table of offsets begins immediately following the parallel table
11459 (at offset 16 + 12 * M from the beginning of the section). The table is
11460 a two-dimensional array of 32-bit words (using the byte order of the
11461 application binary), with L columns and N+1 rows, in row-major order.
11462 Each row in the array is indexed starting from 0. The first row provides
11463 a key to the remaining rows: each column in this row provides an identifier
11464 for a debug section, and the offsets in the same column of subsequent rows
11465 refer to that section. The section identifiers are:
11466
11467 DW_SECT_INFO 1 .debug_info.dwo
11468 DW_SECT_TYPES 2 .debug_types.dwo
11469 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11470 DW_SECT_LINE 4 .debug_line.dwo
11471 DW_SECT_LOC 5 .debug_loc.dwo
11472 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11473 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11474 DW_SECT_MACRO 8 .debug_macro.dwo
11475
11476 The offsets provided by the CU and TU index sections are the base offsets
11477 for the contributions made by each CU or TU to the corresponding section
11478 in the package file. Each CU and TU header contains an abbrev_offset
11479 field, used to find the abbreviations table for that CU or TU within the
11480 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11481 be interpreted as relative to the base offset given in the index section.
11482 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11483 should be interpreted as relative to the base offset for .debug_line.dwo,
11484 and offsets into other debug sections obtained from DWARF attributes should
11485 also be interpreted as relative to the corresponding base offset.
11486
11487 The table of sizes begins immediately following the table of offsets.
11488 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11489 with L columns and N rows, in row-major order. Each row in the array is
11490 indexed starting from 1 (row 0 is shared by the two tables).
11491
11492 ---
11493
11494 Hash table lookup is handled the same in version 1 and 2:
11495
11496 We assume that N and M will not exceed 2^32 - 1.
11497 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11498
11499 Given a 64-bit compilation unit signature or a type signature S, an entry
11500 in the hash table is located as follows:
11501
11502 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11503 the low-order k bits all set to 1.
11504
11505 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11506
11507 3) If the hash table entry at index H matches the signature, use that
11508 entry. If the hash table entry at index H is unused (all zeroes),
11509 terminate the search: the signature is not present in the table.
11510
11511 4) Let H = (H + H') modulo M. Repeat at Step 3.
11512
11513 Because M > N and H' and M are relatively prime, the search is guaranteed
11514 to stop at an unused slot or find the match. */
11515
11516 /* Create a hash table to map DWO IDs to their CU/TU entry in
11517 .debug_{info,types}.dwo in DWP_FILE.
11518 Returns NULL if there isn't one.
11519 Note: This function processes DWP files only, not DWO files. */
11520
11521 static struct dwp_hash_table *
11522 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11523 struct dwp_file *dwp_file, int is_debug_types)
11524 {
11525 struct objfile *objfile = dwarf2_per_objfile->objfile;
11526 bfd *dbfd = dwp_file->dbfd.get ();
11527 const gdb_byte *index_ptr, *index_end;
11528 struct dwarf2_section_info *index;
11529 uint32_t version, nr_columns, nr_units, nr_slots;
11530 struct dwp_hash_table *htab;
11531
11532 if (is_debug_types)
11533 index = &dwp_file->sections.tu_index;
11534 else
11535 index = &dwp_file->sections.cu_index;
11536
11537 if (index->empty ())
11538 return NULL;
11539 index->read (objfile);
11540
11541 index_ptr = index->buffer;
11542 index_end = index_ptr + index->size;
11543
11544 version = read_4_bytes (dbfd, index_ptr);
11545 index_ptr += 4;
11546 if (version == 2)
11547 nr_columns = read_4_bytes (dbfd, index_ptr);
11548 else
11549 nr_columns = 0;
11550 index_ptr += 4;
11551 nr_units = read_4_bytes (dbfd, index_ptr);
11552 index_ptr += 4;
11553 nr_slots = read_4_bytes (dbfd, index_ptr);
11554 index_ptr += 4;
11555
11556 if (version != 1 && version != 2)
11557 {
11558 error (_("Dwarf Error: unsupported DWP file version (%s)"
11559 " [in module %s]"),
11560 pulongest (version), dwp_file->name);
11561 }
11562 if (nr_slots != (nr_slots & -nr_slots))
11563 {
11564 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11565 " is not power of 2 [in module %s]"),
11566 pulongest (nr_slots), dwp_file->name);
11567 }
11568
11569 htab = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack, struct dwp_hash_table);
11570 htab->version = version;
11571 htab->nr_columns = nr_columns;
11572 htab->nr_units = nr_units;
11573 htab->nr_slots = nr_slots;
11574 htab->hash_table = index_ptr;
11575 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11576
11577 /* Exit early if the table is empty. */
11578 if (nr_slots == 0 || nr_units == 0
11579 || (version == 2 && nr_columns == 0))
11580 {
11581 /* All must be zero. */
11582 if (nr_slots != 0 || nr_units != 0
11583 || (version == 2 && nr_columns != 0))
11584 {
11585 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11586 " all zero [in modules %s]"),
11587 dwp_file->name);
11588 }
11589 return htab;
11590 }
11591
11592 if (version == 1)
11593 {
11594 htab->section_pool.v1.indices =
11595 htab->unit_table + sizeof (uint32_t) * nr_slots;
11596 /* It's harder to decide whether the section is too small in v1.
11597 V1 is deprecated anyway so we punt. */
11598 }
11599 else
11600 {
11601 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11602 int *ids = htab->section_pool.v2.section_ids;
11603 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11604 /* Reverse map for error checking. */
11605 int ids_seen[DW_SECT_MAX + 1];
11606 int i;
11607
11608 if (nr_columns < 2)
11609 {
11610 error (_("Dwarf Error: bad DWP hash table, too few columns"
11611 " in section table [in module %s]"),
11612 dwp_file->name);
11613 }
11614 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11615 {
11616 error (_("Dwarf Error: bad DWP hash table, too many columns"
11617 " in section table [in module %s]"),
11618 dwp_file->name);
11619 }
11620 memset (ids, 255, sizeof_ids);
11621 memset (ids_seen, 255, sizeof (ids_seen));
11622 for (i = 0; i < nr_columns; ++i)
11623 {
11624 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11625
11626 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11627 {
11628 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11629 " in section table [in module %s]"),
11630 id, dwp_file->name);
11631 }
11632 if (ids_seen[id] != -1)
11633 {
11634 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11635 " id %d in section table [in module %s]"),
11636 id, dwp_file->name);
11637 }
11638 ids_seen[id] = i;
11639 ids[i] = id;
11640 }
11641 /* Must have exactly one info or types section. */
11642 if (((ids_seen[DW_SECT_INFO] != -1)
11643 + (ids_seen[DW_SECT_TYPES] != -1))
11644 != 1)
11645 {
11646 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11647 " DWO info/types section [in module %s]"),
11648 dwp_file->name);
11649 }
11650 /* Must have an abbrev section. */
11651 if (ids_seen[DW_SECT_ABBREV] == -1)
11652 {
11653 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11654 " section [in module %s]"),
11655 dwp_file->name);
11656 }
11657 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11658 htab->section_pool.v2.sizes =
11659 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11660 * nr_units * nr_columns);
11661 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11662 * nr_units * nr_columns))
11663 > index_end)
11664 {
11665 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11666 " [in module %s]"),
11667 dwp_file->name);
11668 }
11669 }
11670
11671 return htab;
11672 }
11673
11674 /* Update SECTIONS with the data from SECTP.
11675
11676 This function is like the other "locate" section routines that are
11677 passed to bfd_map_over_sections, but in this context the sections to
11678 read comes from the DWP V1 hash table, not the full ELF section table.
11679
11680 The result is non-zero for success, or zero if an error was found. */
11681
11682 static int
11683 locate_v1_virtual_dwo_sections (asection *sectp,
11684 struct virtual_v1_dwo_sections *sections)
11685 {
11686 const struct dwop_section_names *names = &dwop_section_names;
11687
11688 if (section_is_p (sectp->name, &names->abbrev_dwo))
11689 {
11690 /* There can be only one. */
11691 if (sections->abbrev.s.section != NULL)
11692 return 0;
11693 sections->abbrev.s.section = sectp;
11694 sections->abbrev.size = bfd_section_size (sectp);
11695 }
11696 else if (section_is_p (sectp->name, &names->info_dwo)
11697 || section_is_p (sectp->name, &names->types_dwo))
11698 {
11699 /* There can be only one. */
11700 if (sections->info_or_types.s.section != NULL)
11701 return 0;
11702 sections->info_or_types.s.section = sectp;
11703 sections->info_or_types.size = bfd_section_size (sectp);
11704 }
11705 else if (section_is_p (sectp->name, &names->line_dwo))
11706 {
11707 /* There can be only one. */
11708 if (sections->line.s.section != NULL)
11709 return 0;
11710 sections->line.s.section = sectp;
11711 sections->line.size = bfd_section_size (sectp);
11712 }
11713 else if (section_is_p (sectp->name, &names->loc_dwo))
11714 {
11715 /* There can be only one. */
11716 if (sections->loc.s.section != NULL)
11717 return 0;
11718 sections->loc.s.section = sectp;
11719 sections->loc.size = bfd_section_size (sectp);
11720 }
11721 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11722 {
11723 /* There can be only one. */
11724 if (sections->macinfo.s.section != NULL)
11725 return 0;
11726 sections->macinfo.s.section = sectp;
11727 sections->macinfo.size = bfd_section_size (sectp);
11728 }
11729 else if (section_is_p (sectp->name, &names->macro_dwo))
11730 {
11731 /* There can be only one. */
11732 if (sections->macro.s.section != NULL)
11733 return 0;
11734 sections->macro.s.section = sectp;
11735 sections->macro.size = bfd_section_size (sectp);
11736 }
11737 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11738 {
11739 /* There can be only one. */
11740 if (sections->str_offsets.s.section != NULL)
11741 return 0;
11742 sections->str_offsets.s.section = sectp;
11743 sections->str_offsets.size = bfd_section_size (sectp);
11744 }
11745 else
11746 {
11747 /* No other kind of section is valid. */
11748 return 0;
11749 }
11750
11751 return 1;
11752 }
11753
11754 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11755 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11756 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11757 This is for DWP version 1 files. */
11758
11759 static struct dwo_unit *
11760 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11761 struct dwp_file *dwp_file,
11762 uint32_t unit_index,
11763 const char *comp_dir,
11764 ULONGEST signature, int is_debug_types)
11765 {
11766 const struct dwp_hash_table *dwp_htab =
11767 is_debug_types ? dwp_file->tus : dwp_file->cus;
11768 bfd *dbfd = dwp_file->dbfd.get ();
11769 const char *kind = is_debug_types ? "TU" : "CU";
11770 struct dwo_file *dwo_file;
11771 struct dwo_unit *dwo_unit;
11772 struct virtual_v1_dwo_sections sections;
11773 void **dwo_file_slot;
11774 int i;
11775
11776 gdb_assert (dwp_file->version == 1);
11777
11778 if (dwarf_read_debug)
11779 {
11780 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11781 kind,
11782 pulongest (unit_index), hex_string (signature),
11783 dwp_file->name);
11784 }
11785
11786 /* Fetch the sections of this DWO unit.
11787 Put a limit on the number of sections we look for so that bad data
11788 doesn't cause us to loop forever. */
11789
11790 #define MAX_NR_V1_DWO_SECTIONS \
11791 (1 /* .debug_info or .debug_types */ \
11792 + 1 /* .debug_abbrev */ \
11793 + 1 /* .debug_line */ \
11794 + 1 /* .debug_loc */ \
11795 + 1 /* .debug_str_offsets */ \
11796 + 1 /* .debug_macro or .debug_macinfo */ \
11797 + 1 /* trailing zero */)
11798
11799 memset (&sections, 0, sizeof (sections));
11800
11801 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11802 {
11803 asection *sectp;
11804 uint32_t section_nr =
11805 read_4_bytes (dbfd,
11806 dwp_htab->section_pool.v1.indices
11807 + (unit_index + i) * sizeof (uint32_t));
11808
11809 if (section_nr == 0)
11810 break;
11811 if (section_nr >= dwp_file->num_sections)
11812 {
11813 error (_("Dwarf Error: bad DWP hash table, section number too large"
11814 " [in module %s]"),
11815 dwp_file->name);
11816 }
11817
11818 sectp = dwp_file->elf_sections[section_nr];
11819 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11820 {
11821 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11822 " [in module %s]"),
11823 dwp_file->name);
11824 }
11825 }
11826
11827 if (i < 2
11828 || sections.info_or_types.empty ()
11829 || sections.abbrev.empty ())
11830 {
11831 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11832 " [in module %s]"),
11833 dwp_file->name);
11834 }
11835 if (i == MAX_NR_V1_DWO_SECTIONS)
11836 {
11837 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11838 " [in module %s]"),
11839 dwp_file->name);
11840 }
11841
11842 /* It's easier for the rest of the code if we fake a struct dwo_file and
11843 have dwo_unit "live" in that. At least for now.
11844
11845 The DWP file can be made up of a random collection of CUs and TUs.
11846 However, for each CU + set of TUs that came from the same original DWO
11847 file, we can combine them back into a virtual DWO file to save space
11848 (fewer struct dwo_file objects to allocate). Remember that for really
11849 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11850
11851 std::string virtual_dwo_name =
11852 string_printf ("virtual-dwo/%d-%d-%d-%d",
11853 sections.abbrev.get_id (),
11854 sections.line.get_id (),
11855 sections.loc.get_id (),
11856 sections.str_offsets.get_id ());
11857 /* Can we use an existing virtual DWO file? */
11858 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11859 virtual_dwo_name.c_str (),
11860 comp_dir);
11861 /* Create one if necessary. */
11862 if (*dwo_file_slot == NULL)
11863 {
11864 if (dwarf_read_debug)
11865 {
11866 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11867 virtual_dwo_name.c_str ());
11868 }
11869 dwo_file = new struct dwo_file;
11870 dwo_file->dwo_name = dwarf2_per_objfile->objfile->intern (virtual_dwo_name);
11871 dwo_file->comp_dir = comp_dir;
11872 dwo_file->sections.abbrev = sections.abbrev;
11873 dwo_file->sections.line = sections.line;
11874 dwo_file->sections.loc = sections.loc;
11875 dwo_file->sections.macinfo = sections.macinfo;
11876 dwo_file->sections.macro = sections.macro;
11877 dwo_file->sections.str_offsets = sections.str_offsets;
11878 /* The "str" section is global to the entire DWP file. */
11879 dwo_file->sections.str = dwp_file->sections.str;
11880 /* The info or types section is assigned below to dwo_unit,
11881 there's no need to record it in dwo_file.
11882 Also, we can't simply record type sections in dwo_file because
11883 we record a pointer into the vector in dwo_unit. As we collect more
11884 types we'll grow the vector and eventually have to reallocate space
11885 for it, invalidating all copies of pointers into the previous
11886 contents. */
11887 *dwo_file_slot = dwo_file;
11888 }
11889 else
11890 {
11891 if (dwarf_read_debug)
11892 {
11893 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11894 virtual_dwo_name.c_str ());
11895 }
11896 dwo_file = (struct dwo_file *) *dwo_file_slot;
11897 }
11898
11899 dwo_unit = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack, struct dwo_unit);
11900 dwo_unit->dwo_file = dwo_file;
11901 dwo_unit->signature = signature;
11902 dwo_unit->section =
11903 XOBNEW (&dwarf2_per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11904 *dwo_unit->section = sections.info_or_types;
11905 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11906
11907 return dwo_unit;
11908 }
11909
11910 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11911 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11912 piece within that section used by a TU/CU, return a virtual section
11913 of just that piece. */
11914
11915 static struct dwarf2_section_info
11916 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11917 struct dwarf2_section_info *section,
11918 bfd_size_type offset, bfd_size_type size)
11919 {
11920 struct dwarf2_section_info result;
11921 asection *sectp;
11922
11923 gdb_assert (section != NULL);
11924 gdb_assert (!section->is_virtual);
11925
11926 memset (&result, 0, sizeof (result));
11927 result.s.containing_section = section;
11928 result.is_virtual = true;
11929
11930 if (size == 0)
11931 return result;
11932
11933 sectp = section->get_bfd_section ();
11934
11935 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11936 bounds of the real section. This is a pretty-rare event, so just
11937 flag an error (easier) instead of a warning and trying to cope. */
11938 if (sectp == NULL
11939 || offset + size > bfd_section_size (sectp))
11940 {
11941 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11942 " in section %s [in module %s]"),
11943 sectp ? bfd_section_name (sectp) : "<unknown>",
11944 objfile_name (dwarf2_per_objfile->objfile));
11945 }
11946
11947 result.virtual_offset = offset;
11948 result.size = size;
11949 return result;
11950 }
11951
11952 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11953 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11954 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11955 This is for DWP version 2 files. */
11956
11957 static struct dwo_unit *
11958 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11959 struct dwp_file *dwp_file,
11960 uint32_t unit_index,
11961 const char *comp_dir,
11962 ULONGEST signature, int is_debug_types)
11963 {
11964 const struct dwp_hash_table *dwp_htab =
11965 is_debug_types ? dwp_file->tus : dwp_file->cus;
11966 bfd *dbfd = dwp_file->dbfd.get ();
11967 const char *kind = is_debug_types ? "TU" : "CU";
11968 struct dwo_file *dwo_file;
11969 struct dwo_unit *dwo_unit;
11970 struct virtual_v2_dwo_sections sections;
11971 void **dwo_file_slot;
11972 int i;
11973
11974 gdb_assert (dwp_file->version == 2);
11975
11976 if (dwarf_read_debug)
11977 {
11978 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11979 kind,
11980 pulongest (unit_index), hex_string (signature),
11981 dwp_file->name);
11982 }
11983
11984 /* Fetch the section offsets of this DWO unit. */
11985
11986 memset (&sections, 0, sizeof (sections));
11987
11988 for (i = 0; i < dwp_htab->nr_columns; ++i)
11989 {
11990 uint32_t offset = read_4_bytes (dbfd,
11991 dwp_htab->section_pool.v2.offsets
11992 + (((unit_index - 1) * dwp_htab->nr_columns
11993 + i)
11994 * sizeof (uint32_t)));
11995 uint32_t size = read_4_bytes (dbfd,
11996 dwp_htab->section_pool.v2.sizes
11997 + (((unit_index - 1) * dwp_htab->nr_columns
11998 + i)
11999 * sizeof (uint32_t)));
12000
12001 switch (dwp_htab->section_pool.v2.section_ids[i])
12002 {
12003 case DW_SECT_INFO:
12004 case DW_SECT_TYPES:
12005 sections.info_or_types_offset = offset;
12006 sections.info_or_types_size = size;
12007 break;
12008 case DW_SECT_ABBREV:
12009 sections.abbrev_offset = offset;
12010 sections.abbrev_size = size;
12011 break;
12012 case DW_SECT_LINE:
12013 sections.line_offset = offset;
12014 sections.line_size = size;
12015 break;
12016 case DW_SECT_LOC:
12017 sections.loc_offset = offset;
12018 sections.loc_size = size;
12019 break;
12020 case DW_SECT_STR_OFFSETS:
12021 sections.str_offsets_offset = offset;
12022 sections.str_offsets_size = size;
12023 break;
12024 case DW_SECT_MACINFO:
12025 sections.macinfo_offset = offset;
12026 sections.macinfo_size = size;
12027 break;
12028 case DW_SECT_MACRO:
12029 sections.macro_offset = offset;
12030 sections.macro_size = size;
12031 break;
12032 }
12033 }
12034
12035 /* It's easier for the rest of the code if we fake a struct dwo_file and
12036 have dwo_unit "live" in that. At least for now.
12037
12038 The DWP file can be made up of a random collection of CUs and TUs.
12039 However, for each CU + set of TUs that came from the same original DWO
12040 file, we can combine them back into a virtual DWO file to save space
12041 (fewer struct dwo_file objects to allocate). Remember that for really
12042 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12043
12044 std::string virtual_dwo_name =
12045 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12046 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12047 (long) (sections.line_size ? sections.line_offset : 0),
12048 (long) (sections.loc_size ? sections.loc_offset : 0),
12049 (long) (sections.str_offsets_size
12050 ? sections.str_offsets_offset : 0));
12051 /* Can we use an existing virtual DWO file? */
12052 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12053 virtual_dwo_name.c_str (),
12054 comp_dir);
12055 /* Create one if necessary. */
12056 if (*dwo_file_slot == NULL)
12057 {
12058 if (dwarf_read_debug)
12059 {
12060 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12061 virtual_dwo_name.c_str ());
12062 }
12063 dwo_file = new struct dwo_file;
12064 dwo_file->dwo_name = dwarf2_per_objfile->objfile->intern (virtual_dwo_name);
12065 dwo_file->comp_dir = comp_dir;
12066 dwo_file->sections.abbrev =
12067 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12068 sections.abbrev_offset, sections.abbrev_size);
12069 dwo_file->sections.line =
12070 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12071 sections.line_offset, sections.line_size);
12072 dwo_file->sections.loc =
12073 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12074 sections.loc_offset, sections.loc_size);
12075 dwo_file->sections.macinfo =
12076 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12077 sections.macinfo_offset, sections.macinfo_size);
12078 dwo_file->sections.macro =
12079 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12080 sections.macro_offset, sections.macro_size);
12081 dwo_file->sections.str_offsets =
12082 create_dwp_v2_section (dwarf2_per_objfile,
12083 &dwp_file->sections.str_offsets,
12084 sections.str_offsets_offset,
12085 sections.str_offsets_size);
12086 /* The "str" section is global to the entire DWP file. */
12087 dwo_file->sections.str = dwp_file->sections.str;
12088 /* The info or types section is assigned below to dwo_unit,
12089 there's no need to record it in dwo_file.
12090 Also, we can't simply record type sections in dwo_file because
12091 we record a pointer into the vector in dwo_unit. As we collect more
12092 types we'll grow the vector and eventually have to reallocate space
12093 for it, invalidating all copies of pointers into the previous
12094 contents. */
12095 *dwo_file_slot = dwo_file;
12096 }
12097 else
12098 {
12099 if (dwarf_read_debug)
12100 {
12101 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12102 virtual_dwo_name.c_str ());
12103 }
12104 dwo_file = (struct dwo_file *) *dwo_file_slot;
12105 }
12106
12107 dwo_unit = OBSTACK_ZALLOC (&dwarf2_per_objfile->per_bfd->obstack, struct dwo_unit);
12108 dwo_unit->dwo_file = dwo_file;
12109 dwo_unit->signature = signature;
12110 dwo_unit->section =
12111 XOBNEW (&dwarf2_per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12112 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12113 is_debug_types
12114 ? &dwp_file->sections.types
12115 : &dwp_file->sections.info,
12116 sections.info_or_types_offset,
12117 sections.info_or_types_size);
12118 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12119
12120 return dwo_unit;
12121 }
12122
12123 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12124 Returns NULL if the signature isn't found. */
12125
12126 static struct dwo_unit *
12127 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12128 struct dwp_file *dwp_file, const char *comp_dir,
12129 ULONGEST signature, int is_debug_types)
12130 {
12131 const struct dwp_hash_table *dwp_htab =
12132 is_debug_types ? dwp_file->tus : dwp_file->cus;
12133 bfd *dbfd = dwp_file->dbfd.get ();
12134 uint32_t mask = dwp_htab->nr_slots - 1;
12135 uint32_t hash = signature & mask;
12136 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12137 unsigned int i;
12138 void **slot;
12139 struct dwo_unit find_dwo_cu;
12140
12141 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12142 find_dwo_cu.signature = signature;
12143 slot = htab_find_slot (is_debug_types
12144 ? dwp_file->loaded_tus.get ()
12145 : dwp_file->loaded_cus.get (),
12146 &find_dwo_cu, INSERT);
12147
12148 if (*slot != NULL)
12149 return (struct dwo_unit *) *slot;
12150
12151 /* Use a for loop so that we don't loop forever on bad debug info. */
12152 for (i = 0; i < dwp_htab->nr_slots; ++i)
12153 {
12154 ULONGEST signature_in_table;
12155
12156 signature_in_table =
12157 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12158 if (signature_in_table == signature)
12159 {
12160 uint32_t unit_index =
12161 read_4_bytes (dbfd,
12162 dwp_htab->unit_table + hash * sizeof (uint32_t));
12163
12164 if (dwp_file->version == 1)
12165 {
12166 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12167 dwp_file, unit_index,
12168 comp_dir, signature,
12169 is_debug_types);
12170 }
12171 else
12172 {
12173 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12174 dwp_file, unit_index,
12175 comp_dir, signature,
12176 is_debug_types);
12177 }
12178 return (struct dwo_unit *) *slot;
12179 }
12180 if (signature_in_table == 0)
12181 return NULL;
12182 hash = (hash + hash2) & mask;
12183 }
12184
12185 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12186 " [in module %s]"),
12187 dwp_file->name);
12188 }
12189
12190 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12191 Open the file specified by FILE_NAME and hand it off to BFD for
12192 preliminary analysis. Return a newly initialized bfd *, which
12193 includes a canonicalized copy of FILE_NAME.
12194 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12195 SEARCH_CWD is true if the current directory is to be searched.
12196 It will be searched before debug-file-directory.
12197 If successful, the file is added to the bfd include table of the
12198 objfile's bfd (see gdb_bfd_record_inclusion).
12199 If unable to find/open the file, return NULL.
12200 NOTE: This function is derived from symfile_bfd_open. */
12201
12202 static gdb_bfd_ref_ptr
12203 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12204 const char *file_name, int is_dwp, int search_cwd)
12205 {
12206 int desc;
12207 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12208 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12209 to debug_file_directory. */
12210 const char *search_path;
12211 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12212
12213 gdb::unique_xmalloc_ptr<char> search_path_holder;
12214 if (search_cwd)
12215 {
12216 if (*debug_file_directory != '\0')
12217 {
12218 search_path_holder.reset (concat (".", dirname_separator_string,
12219 debug_file_directory,
12220 (char *) NULL));
12221 search_path = search_path_holder.get ();
12222 }
12223 else
12224 search_path = ".";
12225 }
12226 else
12227 search_path = debug_file_directory;
12228
12229 openp_flags flags = OPF_RETURN_REALPATH;
12230 if (is_dwp)
12231 flags |= OPF_SEARCH_IN_PATH;
12232
12233 gdb::unique_xmalloc_ptr<char> absolute_name;
12234 desc = openp (search_path, flags, file_name,
12235 O_RDONLY | O_BINARY, &absolute_name);
12236 if (desc < 0)
12237 return NULL;
12238
12239 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12240 gnutarget, desc));
12241 if (sym_bfd == NULL)
12242 return NULL;
12243 bfd_set_cacheable (sym_bfd.get (), 1);
12244
12245 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12246 return NULL;
12247
12248 /* Success. Record the bfd as having been included by the objfile's bfd.
12249 This is important because things like demangled_names_hash lives in the
12250 objfile's per_bfd space and may have references to things like symbol
12251 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12252 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12253
12254 return sym_bfd;
12255 }
12256
12257 /* Try to open DWO file FILE_NAME.
12258 COMP_DIR is the DW_AT_comp_dir attribute.
12259 The result is the bfd handle of the file.
12260 If there is a problem finding or opening the file, return NULL.
12261 Upon success, the canonicalized path of the file is stored in the bfd,
12262 same as symfile_bfd_open. */
12263
12264 static gdb_bfd_ref_ptr
12265 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12266 const char *file_name, const char *comp_dir)
12267 {
12268 if (IS_ABSOLUTE_PATH (file_name))
12269 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12270 0 /*is_dwp*/, 0 /*search_cwd*/);
12271
12272 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12273
12274 if (comp_dir != NULL)
12275 {
12276 gdb::unique_xmalloc_ptr<char> path_to_try
12277 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12278
12279 /* NOTE: If comp_dir is a relative path, this will also try the
12280 search path, which seems useful. */
12281 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12282 path_to_try.get (),
12283 0 /*is_dwp*/,
12284 1 /*search_cwd*/));
12285 if (abfd != NULL)
12286 return abfd;
12287 }
12288
12289 /* That didn't work, try debug-file-directory, which, despite its name,
12290 is a list of paths. */
12291
12292 if (*debug_file_directory == '\0')
12293 return NULL;
12294
12295 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12296 0 /*is_dwp*/, 1 /*search_cwd*/);
12297 }
12298
12299 /* This function is mapped across the sections and remembers the offset and
12300 size of each of the DWO debugging sections we are interested in. */
12301
12302 static void
12303 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12304 {
12305 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12306 const struct dwop_section_names *names = &dwop_section_names;
12307
12308 if (section_is_p (sectp->name, &names->abbrev_dwo))
12309 {
12310 dwo_sections->abbrev.s.section = sectp;
12311 dwo_sections->abbrev.size = bfd_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->info_dwo))
12314 {
12315 dwo_sections->info.s.section = sectp;
12316 dwo_sections->info.size = bfd_section_size (sectp);
12317 }
12318 else if (section_is_p (sectp->name, &names->line_dwo))
12319 {
12320 dwo_sections->line.s.section = sectp;
12321 dwo_sections->line.size = bfd_section_size (sectp);
12322 }
12323 else if (section_is_p (sectp->name, &names->loc_dwo))
12324 {
12325 dwo_sections->loc.s.section = sectp;
12326 dwo_sections->loc.size = bfd_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->loclists_dwo))
12329 {
12330 dwo_sections->loclists.s.section = sectp;
12331 dwo_sections->loclists.size = bfd_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12334 {
12335 dwo_sections->macinfo.s.section = sectp;
12336 dwo_sections->macinfo.size = bfd_section_size (sectp);
12337 }
12338 else if (section_is_p (sectp->name, &names->macro_dwo))
12339 {
12340 dwo_sections->macro.s.section = sectp;
12341 dwo_sections->macro.size = bfd_section_size (sectp);
12342 }
12343 else if (section_is_p (sectp->name, &names->str_dwo))
12344 {
12345 dwo_sections->str.s.section = sectp;
12346 dwo_sections->str.size = bfd_section_size (sectp);
12347 }
12348 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12349 {
12350 dwo_sections->str_offsets.s.section = sectp;
12351 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12352 }
12353 else if (section_is_p (sectp->name, &names->types_dwo))
12354 {
12355 struct dwarf2_section_info type_section;
12356
12357 memset (&type_section, 0, sizeof (type_section));
12358 type_section.s.section = sectp;
12359 type_section.size = bfd_section_size (sectp);
12360 dwo_sections->types.push_back (type_section);
12361 }
12362 }
12363
12364 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12365 by PER_CU. This is for the non-DWP case.
12366 The result is NULL if DWO_NAME can't be found. */
12367
12368 static struct dwo_file *
12369 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12370 const char *comp_dir)
12371 {
12372 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
12373
12374 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12375 if (dbfd == NULL)
12376 {
12377 if (dwarf_read_debug)
12378 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12379 return NULL;
12380 }
12381
12382 dwo_file_up dwo_file (new struct dwo_file);
12383 dwo_file->dwo_name = dwo_name;
12384 dwo_file->comp_dir = comp_dir;
12385 dwo_file->dbfd = std::move (dbfd);
12386
12387 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12388 &dwo_file->sections);
12389
12390 create_cus_hash_table (dwarf2_per_objfile, cu, *dwo_file,
12391 dwo_file->sections.info, dwo_file->cus);
12392
12393 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12394 dwo_file->sections.types, dwo_file->tus);
12395
12396 if (dwarf_read_debug)
12397 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12398
12399 return dwo_file.release ();
12400 }
12401
12402 /* This function is mapped across the sections and remembers the offset and
12403 size of each of the DWP debugging sections common to version 1 and 2 that
12404 we are interested in. */
12405
12406 static void
12407 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12408 void *dwp_file_ptr)
12409 {
12410 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12411 const struct dwop_section_names *names = &dwop_section_names;
12412 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12413
12414 /* Record the ELF section number for later lookup: this is what the
12415 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12416 gdb_assert (elf_section_nr < dwp_file->num_sections);
12417 dwp_file->elf_sections[elf_section_nr] = sectp;
12418
12419 /* Look for specific sections that we need. */
12420 if (section_is_p (sectp->name, &names->str_dwo))
12421 {
12422 dwp_file->sections.str.s.section = sectp;
12423 dwp_file->sections.str.size = bfd_section_size (sectp);
12424 }
12425 else if (section_is_p (sectp->name, &names->cu_index))
12426 {
12427 dwp_file->sections.cu_index.s.section = sectp;
12428 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12429 }
12430 else if (section_is_p (sectp->name, &names->tu_index))
12431 {
12432 dwp_file->sections.tu_index.s.section = sectp;
12433 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12434 }
12435 }
12436
12437 /* This function is mapped across the sections and remembers the offset and
12438 size of each of the DWP version 2 debugging sections that we are interested
12439 in. This is split into a separate function because we don't know if we
12440 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12441
12442 static void
12443 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12444 {
12445 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12446 const struct dwop_section_names *names = &dwop_section_names;
12447 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12448
12449 /* Record the ELF section number for later lookup: this is what the
12450 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12451 gdb_assert (elf_section_nr < dwp_file->num_sections);
12452 dwp_file->elf_sections[elf_section_nr] = sectp;
12453
12454 /* Look for specific sections that we need. */
12455 if (section_is_p (sectp->name, &names->abbrev_dwo))
12456 {
12457 dwp_file->sections.abbrev.s.section = sectp;
12458 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12459 }
12460 else if (section_is_p (sectp->name, &names->info_dwo))
12461 {
12462 dwp_file->sections.info.s.section = sectp;
12463 dwp_file->sections.info.size = bfd_section_size (sectp);
12464 }
12465 else if (section_is_p (sectp->name, &names->line_dwo))
12466 {
12467 dwp_file->sections.line.s.section = sectp;
12468 dwp_file->sections.line.size = bfd_section_size (sectp);
12469 }
12470 else if (section_is_p (sectp->name, &names->loc_dwo))
12471 {
12472 dwp_file->sections.loc.s.section = sectp;
12473 dwp_file->sections.loc.size = bfd_section_size (sectp);
12474 }
12475 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12476 {
12477 dwp_file->sections.macinfo.s.section = sectp;
12478 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12479 }
12480 else if (section_is_p (sectp->name, &names->macro_dwo))
12481 {
12482 dwp_file->sections.macro.s.section = sectp;
12483 dwp_file->sections.macro.size = bfd_section_size (sectp);
12484 }
12485 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12486 {
12487 dwp_file->sections.str_offsets.s.section = sectp;
12488 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12489 }
12490 else if (section_is_p (sectp->name, &names->types_dwo))
12491 {
12492 dwp_file->sections.types.s.section = sectp;
12493 dwp_file->sections.types.size = bfd_section_size (sectp);
12494 }
12495 }
12496
12497 /* Hash function for dwp_file loaded CUs/TUs. */
12498
12499 static hashval_t
12500 hash_dwp_loaded_cutus (const void *item)
12501 {
12502 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12503
12504 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12505 return dwo_unit->signature;
12506 }
12507
12508 /* Equality function for dwp_file loaded CUs/TUs. */
12509
12510 static int
12511 eq_dwp_loaded_cutus (const void *a, const void *b)
12512 {
12513 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12514 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12515
12516 return dua->signature == dub->signature;
12517 }
12518
12519 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12520
12521 static htab_up
12522 allocate_dwp_loaded_cutus_table ()
12523 {
12524 return htab_up (htab_create_alloc (3,
12525 hash_dwp_loaded_cutus,
12526 eq_dwp_loaded_cutus,
12527 NULL, xcalloc, xfree));
12528 }
12529
12530 /* Try to open DWP file FILE_NAME.
12531 The result is the bfd handle of the file.
12532 If there is a problem finding or opening the file, return NULL.
12533 Upon success, the canonicalized path of the file is stored in the bfd,
12534 same as symfile_bfd_open. */
12535
12536 static gdb_bfd_ref_ptr
12537 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12538 const char *file_name)
12539 {
12540 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12541 1 /*is_dwp*/,
12542 1 /*search_cwd*/));
12543 if (abfd != NULL)
12544 return abfd;
12545
12546 /* Work around upstream bug 15652.
12547 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12548 [Whether that's a "bug" is debatable, but it is getting in our way.]
12549 We have no real idea where the dwp file is, because gdb's realpath-ing
12550 of the executable's path may have discarded the needed info.
12551 [IWBN if the dwp file name was recorded in the executable, akin to
12552 .gnu_debuglink, but that doesn't exist yet.]
12553 Strip the directory from FILE_NAME and search again. */
12554 if (*debug_file_directory != '\0')
12555 {
12556 /* Don't implicitly search the current directory here.
12557 If the user wants to search "." to handle this case,
12558 it must be added to debug-file-directory. */
12559 return try_open_dwop_file (dwarf2_per_objfile,
12560 lbasename (file_name), 1 /*is_dwp*/,
12561 0 /*search_cwd*/);
12562 }
12563
12564 return NULL;
12565 }
12566
12567 /* Initialize the use of the DWP file for the current objfile.
12568 By convention the name of the DWP file is ${objfile}.dwp.
12569 The result is NULL if it can't be found. */
12570
12571 static std::unique_ptr<struct dwp_file>
12572 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12573 {
12574 struct objfile *objfile = dwarf2_per_objfile->objfile;
12575
12576 /* Try to find first .dwp for the binary file before any symbolic links
12577 resolving. */
12578
12579 /* If the objfile is a debug file, find the name of the real binary
12580 file and get the name of dwp file from there. */
12581 std::string dwp_name;
12582 if (objfile->separate_debug_objfile_backlink != NULL)
12583 {
12584 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12585 const char *backlink_basename = lbasename (backlink->original_name);
12586
12587 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12588 }
12589 else
12590 dwp_name = objfile->original_name;
12591
12592 dwp_name += ".dwp";
12593
12594 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12595 if (dbfd == NULL
12596 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12597 {
12598 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12599 dwp_name = objfile_name (objfile);
12600 dwp_name += ".dwp";
12601 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12602 }
12603
12604 if (dbfd == NULL)
12605 {
12606 if (dwarf_read_debug)
12607 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12608 return std::unique_ptr<dwp_file> ();
12609 }
12610
12611 const char *name = bfd_get_filename (dbfd.get ());
12612 std::unique_ptr<struct dwp_file> dwp_file
12613 (new struct dwp_file (name, std::move (dbfd)));
12614
12615 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12616 dwp_file->elf_sections =
12617 OBSTACK_CALLOC (&dwarf2_per_objfile->per_bfd->obstack,
12618 dwp_file->num_sections, asection *);
12619
12620 bfd_map_over_sections (dwp_file->dbfd.get (),
12621 dwarf2_locate_common_dwp_sections,
12622 dwp_file.get ());
12623
12624 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12625 0);
12626
12627 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12628 1);
12629
12630 /* The DWP file version is stored in the hash table. Oh well. */
12631 if (dwp_file->cus && dwp_file->tus
12632 && dwp_file->cus->version != dwp_file->tus->version)
12633 {
12634 /* Technically speaking, we should try to limp along, but this is
12635 pretty bizarre. We use pulongest here because that's the established
12636 portability solution (e.g, we cannot use %u for uint32_t). */
12637 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12638 " TU version %s [in DWP file %s]"),
12639 pulongest (dwp_file->cus->version),
12640 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12641 }
12642
12643 if (dwp_file->cus)
12644 dwp_file->version = dwp_file->cus->version;
12645 else if (dwp_file->tus)
12646 dwp_file->version = dwp_file->tus->version;
12647 else
12648 dwp_file->version = 2;
12649
12650 if (dwp_file->version == 2)
12651 bfd_map_over_sections (dwp_file->dbfd.get (),
12652 dwarf2_locate_v2_dwp_sections,
12653 dwp_file.get ());
12654
12655 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12656 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12657
12658 if (dwarf_read_debug)
12659 {
12660 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12661 fprintf_unfiltered (gdb_stdlog,
12662 " %s CUs, %s TUs\n",
12663 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12664 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12665 }
12666
12667 return dwp_file;
12668 }
12669
12670 /* Wrapper around open_and_init_dwp_file, only open it once. */
12671
12672 static struct dwp_file *
12673 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12674 {
12675 if (! dwarf2_per_objfile->per_bfd->dwp_checked)
12676 {
12677 dwarf2_per_objfile->per_bfd->dwp_file
12678 = open_and_init_dwp_file (dwarf2_per_objfile);
12679 dwarf2_per_objfile->per_bfd->dwp_checked = 1;
12680 }
12681 return dwarf2_per_objfile->per_bfd->dwp_file.get ();
12682 }
12683
12684 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12685 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12686 or in the DWP file for the objfile, referenced by THIS_UNIT.
12687 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12688 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12689
12690 This is called, for example, when wanting to read a variable with a
12691 complex location. Therefore we don't want to do file i/o for every call.
12692 Therefore we don't want to look for a DWO file on every call.
12693 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12694 then we check if we've already seen DWO_NAME, and only THEN do we check
12695 for a DWO file.
12696
12697 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12698 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12699
12700 static struct dwo_unit *
12701 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12702 ULONGEST signature, int is_debug_types)
12703 {
12704 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
12705 struct objfile *objfile = dwarf2_per_objfile->objfile;
12706 const char *kind = is_debug_types ? "TU" : "CU";
12707 void **dwo_file_slot;
12708 struct dwo_file *dwo_file;
12709 struct dwp_file *dwp_file;
12710
12711 /* First see if there's a DWP file.
12712 If we have a DWP file but didn't find the DWO inside it, don't
12713 look for the original DWO file. It makes gdb behave differently
12714 depending on whether one is debugging in the build tree. */
12715
12716 dwp_file = get_dwp_file (dwarf2_per_objfile);
12717 if (dwp_file != NULL)
12718 {
12719 const struct dwp_hash_table *dwp_htab =
12720 is_debug_types ? dwp_file->tus : dwp_file->cus;
12721
12722 if (dwp_htab != NULL)
12723 {
12724 struct dwo_unit *dwo_cutu =
12725 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12726 signature, is_debug_types);
12727
12728 if (dwo_cutu != NULL)
12729 {
12730 if (dwarf_read_debug)
12731 {
12732 fprintf_unfiltered (gdb_stdlog,
12733 "Virtual DWO %s %s found: @%s\n",
12734 kind, hex_string (signature),
12735 host_address_to_string (dwo_cutu));
12736 }
12737 return dwo_cutu;
12738 }
12739 }
12740 }
12741 else
12742 {
12743 /* No DWP file, look for the DWO file. */
12744
12745 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12746 dwo_name, comp_dir);
12747 if (*dwo_file_slot == NULL)
12748 {
12749 /* Read in the file and build a table of the CUs/TUs it contains. */
12750 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
12751 }
12752 /* NOTE: This will be NULL if unable to open the file. */
12753 dwo_file = (struct dwo_file *) *dwo_file_slot;
12754
12755 if (dwo_file != NULL)
12756 {
12757 struct dwo_unit *dwo_cutu = NULL;
12758
12759 if (is_debug_types && dwo_file->tus)
12760 {
12761 struct dwo_unit find_dwo_cutu;
12762
12763 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12764 find_dwo_cutu.signature = signature;
12765 dwo_cutu
12766 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12767 &find_dwo_cutu);
12768 }
12769 else if (!is_debug_types && dwo_file->cus)
12770 {
12771 struct dwo_unit find_dwo_cutu;
12772
12773 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12774 find_dwo_cutu.signature = signature;
12775 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12776 &find_dwo_cutu);
12777 }
12778
12779 if (dwo_cutu != NULL)
12780 {
12781 if (dwarf_read_debug)
12782 {
12783 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12784 kind, dwo_name, hex_string (signature),
12785 host_address_to_string (dwo_cutu));
12786 }
12787 return dwo_cutu;
12788 }
12789 }
12790 }
12791
12792 /* We didn't find it. This could mean a dwo_id mismatch, or
12793 someone deleted the DWO/DWP file, or the search path isn't set up
12794 correctly to find the file. */
12795
12796 if (dwarf_read_debug)
12797 {
12798 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12799 kind, dwo_name, hex_string (signature));
12800 }
12801
12802 /* This is a warning and not a complaint because it can be caused by
12803 pilot error (e.g., user accidentally deleting the DWO). */
12804 {
12805 /* Print the name of the DWP file if we looked there, helps the user
12806 better diagnose the problem. */
12807 std::string dwp_text;
12808
12809 if (dwp_file != NULL)
12810 dwp_text = string_printf (" [in DWP file %s]",
12811 lbasename (dwp_file->name));
12812
12813 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12814 " [in module %s]"),
12815 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
12816 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
12817 }
12818 return NULL;
12819 }
12820
12821 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12822 See lookup_dwo_cutu_unit for details. */
12823
12824 static struct dwo_unit *
12825 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12826 ULONGEST signature)
12827 {
12828 gdb_assert (!cu->per_cu->is_debug_types);
12829
12830 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
12831 }
12832
12833 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12834 See lookup_dwo_cutu_unit for details. */
12835
12836 static struct dwo_unit *
12837 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
12838 {
12839 gdb_assert (cu->per_cu->is_debug_types);
12840
12841 signatured_type *sig_type = (signatured_type *) cu->per_cu;
12842
12843 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
12844 }
12845
12846 /* Traversal function for queue_and_load_all_dwo_tus. */
12847
12848 static int
12849 queue_and_load_dwo_tu (void **slot, void *info)
12850 {
12851 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12852 dwarf2_cu *cu = (dwarf2_cu *) info;
12853 ULONGEST signature = dwo_unit->signature;
12854 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
12855
12856 if (sig_type != NULL)
12857 {
12858 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12859
12860 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12861 a real dependency of PER_CU on SIG_TYPE. That is detected later
12862 while processing PER_CU. */
12863 if (maybe_queue_comp_unit (NULL, sig_cu, cu->language))
12864 load_full_type_unit (sig_cu, cu->per_objfile);
12865 cu->per_cu->imported_symtabs_push (sig_cu);
12866 }
12867
12868 return 1;
12869 }
12870
12871 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12872 The DWO may have the only definition of the type, though it may not be
12873 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12874 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12875
12876 static void
12877 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12878 {
12879 struct dwo_unit *dwo_unit;
12880 struct dwo_file *dwo_file;
12881
12882 gdb_assert (!per_cu->is_debug_types);
12883 gdb_assert (per_cu->cu != NULL);
12884 gdb_assert (get_dwp_file (per_cu->cu->per_objfile) == NULL);
12885
12886 dwo_unit = per_cu->cu->dwo_unit;
12887 gdb_assert (dwo_unit != NULL);
12888
12889 dwo_file = dwo_unit->dwo_file;
12890 if (dwo_file->tus != NULL)
12891 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12892 per_cu->cu);
12893 }
12894
12895 /* Read in various DIEs. */
12896
12897 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12898 Inherit only the children of the DW_AT_abstract_origin DIE not being
12899 already referenced by DW_AT_abstract_origin from the children of the
12900 current DIE. */
12901
12902 static void
12903 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12904 {
12905 struct die_info *child_die;
12906 sect_offset *offsetp;
12907 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12908 struct die_info *origin_die;
12909 /* Iterator of the ORIGIN_DIE children. */
12910 struct die_info *origin_child_die;
12911 struct attribute *attr;
12912 struct dwarf2_cu *origin_cu;
12913 struct pending **origin_previous_list_in_scope;
12914
12915 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12916 if (!attr)
12917 return;
12918
12919 /* Note that following die references may follow to a die in a
12920 different cu. */
12921
12922 origin_cu = cu;
12923 origin_die = follow_die_ref (die, attr, &origin_cu);
12924
12925 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12926 symbols in. */
12927 origin_previous_list_in_scope = origin_cu->list_in_scope;
12928 origin_cu->list_in_scope = cu->list_in_scope;
12929
12930 if (die->tag != origin_die->tag
12931 && !(die->tag == DW_TAG_inlined_subroutine
12932 && origin_die->tag == DW_TAG_subprogram))
12933 complaint (_("DIE %s and its abstract origin %s have different tags"),
12934 sect_offset_str (die->sect_off),
12935 sect_offset_str (origin_die->sect_off));
12936
12937 std::vector<sect_offset> offsets;
12938
12939 for (child_die = die->child;
12940 child_die && child_die->tag;
12941 child_die = child_die->sibling)
12942 {
12943 struct die_info *child_origin_die;
12944 struct dwarf2_cu *child_origin_cu;
12945
12946 /* We are trying to process concrete instance entries:
12947 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12948 it's not relevant to our analysis here. i.e. detecting DIEs that are
12949 present in the abstract instance but not referenced in the concrete
12950 one. */
12951 if (child_die->tag == DW_TAG_call_site
12952 || child_die->tag == DW_TAG_GNU_call_site)
12953 continue;
12954
12955 /* For each CHILD_DIE, find the corresponding child of
12956 ORIGIN_DIE. If there is more than one layer of
12957 DW_AT_abstract_origin, follow them all; there shouldn't be,
12958 but GCC versions at least through 4.4 generate this (GCC PR
12959 40573). */
12960 child_origin_die = child_die;
12961 child_origin_cu = cu;
12962 while (1)
12963 {
12964 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12965 child_origin_cu);
12966 if (attr == NULL)
12967 break;
12968 child_origin_die = follow_die_ref (child_origin_die, attr,
12969 &child_origin_cu);
12970 }
12971
12972 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12973 counterpart may exist. */
12974 if (child_origin_die != child_die)
12975 {
12976 if (child_die->tag != child_origin_die->tag
12977 && !(child_die->tag == DW_TAG_inlined_subroutine
12978 && child_origin_die->tag == DW_TAG_subprogram))
12979 complaint (_("Child DIE %s and its abstract origin %s have "
12980 "different tags"),
12981 sect_offset_str (child_die->sect_off),
12982 sect_offset_str (child_origin_die->sect_off));
12983 if (child_origin_die->parent != origin_die)
12984 complaint (_("Child DIE %s and its abstract origin %s have "
12985 "different parents"),
12986 sect_offset_str (child_die->sect_off),
12987 sect_offset_str (child_origin_die->sect_off));
12988 else
12989 offsets.push_back (child_origin_die->sect_off);
12990 }
12991 }
12992 std::sort (offsets.begin (), offsets.end ());
12993 sect_offset *offsets_end = offsets.data () + offsets.size ();
12994 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12995 if (offsetp[-1] == *offsetp)
12996 complaint (_("Multiple children of DIE %s refer "
12997 "to DIE %s as their abstract origin"),
12998 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12999
13000 offsetp = offsets.data ();
13001 origin_child_die = origin_die->child;
13002 while (origin_child_die && origin_child_die->tag)
13003 {
13004 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13005 while (offsetp < offsets_end
13006 && *offsetp < origin_child_die->sect_off)
13007 offsetp++;
13008 if (offsetp >= offsets_end
13009 || *offsetp > origin_child_die->sect_off)
13010 {
13011 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13012 Check whether we're already processing ORIGIN_CHILD_DIE.
13013 This can happen with mutually referenced abstract_origins.
13014 PR 16581. */
13015 if (!origin_child_die->in_process)
13016 process_die (origin_child_die, origin_cu);
13017 }
13018 origin_child_die = origin_child_die->sibling;
13019 }
13020 origin_cu->list_in_scope = origin_previous_list_in_scope;
13021
13022 if (cu != origin_cu)
13023 compute_delayed_physnames (origin_cu);
13024 }
13025
13026 static void
13027 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13028 {
13029 struct objfile *objfile = cu->per_objfile->objfile;
13030 struct gdbarch *gdbarch = objfile->arch ();
13031 struct context_stack *newobj;
13032 CORE_ADDR lowpc;
13033 CORE_ADDR highpc;
13034 struct die_info *child_die;
13035 struct attribute *attr, *call_line, *call_file;
13036 const char *name;
13037 CORE_ADDR baseaddr;
13038 struct block *block;
13039 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13040 std::vector<struct symbol *> template_args;
13041 struct template_symbol *templ_func = NULL;
13042
13043 if (inlined_func)
13044 {
13045 /* If we do not have call site information, we can't show the
13046 caller of this inlined function. That's too confusing, so
13047 only use the scope for local variables. */
13048 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13049 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13050 if (call_line == NULL || call_file == NULL)
13051 {
13052 read_lexical_block_scope (die, cu);
13053 return;
13054 }
13055 }
13056
13057 baseaddr = objfile->text_section_offset ();
13058
13059 name = dwarf2_name (die, cu);
13060
13061 /* Ignore functions with missing or empty names. These are actually
13062 illegal according to the DWARF standard. */
13063 if (name == NULL)
13064 {
13065 complaint (_("missing name for subprogram DIE at %s"),
13066 sect_offset_str (die->sect_off));
13067 return;
13068 }
13069
13070 /* Ignore functions with missing or invalid low and high pc attributes. */
13071 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13072 <= PC_BOUNDS_INVALID)
13073 {
13074 attr = dwarf2_attr (die, DW_AT_external, cu);
13075 if (!attr || !DW_UNSND (attr))
13076 complaint (_("cannot get low and high bounds "
13077 "for subprogram DIE at %s"),
13078 sect_offset_str (die->sect_off));
13079 return;
13080 }
13081
13082 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13083 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13084
13085 /* If we have any template arguments, then we must allocate a
13086 different sort of symbol. */
13087 for (child_die = die->child; child_die; child_die = child_die->sibling)
13088 {
13089 if (child_die->tag == DW_TAG_template_type_param
13090 || child_die->tag == DW_TAG_template_value_param)
13091 {
13092 templ_func = new (&objfile->objfile_obstack) template_symbol;
13093 templ_func->subclass = SYMBOL_TEMPLATE;
13094 break;
13095 }
13096 }
13097
13098 newobj = cu->get_builder ()->push_context (0, lowpc);
13099 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13100 (struct symbol *) templ_func);
13101
13102 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13103 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13104 cu->language);
13105
13106 /* If there is a location expression for DW_AT_frame_base, record
13107 it. */
13108 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13109 if (attr != nullptr)
13110 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13111
13112 /* If there is a location for the static link, record it. */
13113 newobj->static_link = NULL;
13114 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13115 if (attr != nullptr)
13116 {
13117 newobj->static_link
13118 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13119 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13120 cu->addr_type ());
13121 }
13122
13123 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13124
13125 if (die->child != NULL)
13126 {
13127 child_die = die->child;
13128 while (child_die && child_die->tag)
13129 {
13130 if (child_die->tag == DW_TAG_template_type_param
13131 || child_die->tag == DW_TAG_template_value_param)
13132 {
13133 struct symbol *arg = new_symbol (child_die, NULL, cu);
13134
13135 if (arg != NULL)
13136 template_args.push_back (arg);
13137 }
13138 else
13139 process_die (child_die, cu);
13140 child_die = child_die->sibling;
13141 }
13142 }
13143
13144 inherit_abstract_dies (die, cu);
13145
13146 /* If we have a DW_AT_specification, we might need to import using
13147 directives from the context of the specification DIE. See the
13148 comment in determine_prefix. */
13149 if (cu->language == language_cplus
13150 && dwarf2_attr (die, DW_AT_specification, cu))
13151 {
13152 struct dwarf2_cu *spec_cu = cu;
13153 struct die_info *spec_die = die_specification (die, &spec_cu);
13154
13155 while (spec_die)
13156 {
13157 child_die = spec_die->child;
13158 while (child_die && child_die->tag)
13159 {
13160 if (child_die->tag == DW_TAG_imported_module)
13161 process_die (child_die, spec_cu);
13162 child_die = child_die->sibling;
13163 }
13164
13165 /* In some cases, GCC generates specification DIEs that
13166 themselves contain DW_AT_specification attributes. */
13167 spec_die = die_specification (spec_die, &spec_cu);
13168 }
13169 }
13170
13171 struct context_stack cstk = cu->get_builder ()->pop_context ();
13172 /* Make a block for the local symbols within. */
13173 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13174 cstk.static_link, lowpc, highpc);
13175
13176 /* For C++, set the block's scope. */
13177 if ((cu->language == language_cplus
13178 || cu->language == language_fortran
13179 || cu->language == language_d
13180 || cu->language == language_rust)
13181 && cu->processing_has_namespace_info)
13182 block_set_scope (block, determine_prefix (die, cu),
13183 &objfile->objfile_obstack);
13184
13185 /* If we have address ranges, record them. */
13186 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13187
13188 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13189
13190 /* Attach template arguments to function. */
13191 if (!template_args.empty ())
13192 {
13193 gdb_assert (templ_func != NULL);
13194
13195 templ_func->n_template_arguments = template_args.size ();
13196 templ_func->template_arguments
13197 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13198 templ_func->n_template_arguments);
13199 memcpy (templ_func->template_arguments,
13200 template_args.data (),
13201 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13202
13203 /* Make sure that the symtab is set on the new symbols. Even
13204 though they don't appear in this symtab directly, other parts
13205 of gdb assume that symbols do, and this is reasonably
13206 true. */
13207 for (symbol *sym : template_args)
13208 symbol_set_symtab (sym, symbol_symtab (templ_func));
13209 }
13210
13211 /* In C++, we can have functions nested inside functions (e.g., when
13212 a function declares a class that has methods). This means that
13213 when we finish processing a function scope, we may need to go
13214 back to building a containing block's symbol lists. */
13215 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13216 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13217
13218 /* If we've finished processing a top-level function, subsequent
13219 symbols go in the file symbol list. */
13220 if (cu->get_builder ()->outermost_context_p ())
13221 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13222 }
13223
13224 /* Process all the DIES contained within a lexical block scope. Start
13225 a new scope, process the dies, and then close the scope. */
13226
13227 static void
13228 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13229 {
13230 struct objfile *objfile = cu->per_objfile->objfile;
13231 struct gdbarch *gdbarch = objfile->arch ();
13232 CORE_ADDR lowpc, highpc;
13233 struct die_info *child_die;
13234 CORE_ADDR baseaddr;
13235
13236 baseaddr = objfile->text_section_offset ();
13237
13238 /* Ignore blocks with missing or invalid low and high pc attributes. */
13239 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13240 as multiple lexical blocks? Handling children in a sane way would
13241 be nasty. Might be easier to properly extend generic blocks to
13242 describe ranges. */
13243 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13244 {
13245 case PC_BOUNDS_NOT_PRESENT:
13246 /* DW_TAG_lexical_block has no attributes, process its children as if
13247 there was no wrapping by that DW_TAG_lexical_block.
13248 GCC does no longer produces such DWARF since GCC r224161. */
13249 for (child_die = die->child;
13250 child_die != NULL && child_die->tag;
13251 child_die = child_die->sibling)
13252 {
13253 /* We might already be processing this DIE. This can happen
13254 in an unusual circumstance -- where a subroutine A
13255 appears lexically in another subroutine B, but A actually
13256 inlines B. The recursion is broken here, rather than in
13257 inherit_abstract_dies, because it seems better to simply
13258 drop concrete children here. */
13259 if (!child_die->in_process)
13260 process_die (child_die, cu);
13261 }
13262 return;
13263 case PC_BOUNDS_INVALID:
13264 return;
13265 }
13266 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13267 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13268
13269 cu->get_builder ()->push_context (0, lowpc);
13270 if (die->child != NULL)
13271 {
13272 child_die = die->child;
13273 while (child_die && child_die->tag)
13274 {
13275 process_die (child_die, cu);
13276 child_die = child_die->sibling;
13277 }
13278 }
13279 inherit_abstract_dies (die, cu);
13280 struct context_stack cstk = cu->get_builder ()->pop_context ();
13281
13282 if (*cu->get_builder ()->get_local_symbols () != NULL
13283 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13284 {
13285 struct block *block
13286 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13287 cstk.start_addr, highpc);
13288
13289 /* Note that recording ranges after traversing children, as we
13290 do here, means that recording a parent's ranges entails
13291 walking across all its children's ranges as they appear in
13292 the address map, which is quadratic behavior.
13293
13294 It would be nicer to record the parent's ranges before
13295 traversing its children, simply overriding whatever you find
13296 there. But since we don't even decide whether to create a
13297 block until after we've traversed its children, that's hard
13298 to do. */
13299 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13300 }
13301 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13302 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13303 }
13304
13305 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13306
13307 static void
13308 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13309 {
13310 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13311 struct objfile *objfile = per_objfile->objfile;
13312 struct gdbarch *gdbarch = objfile->arch ();
13313 CORE_ADDR pc, baseaddr;
13314 struct attribute *attr;
13315 struct call_site *call_site, call_site_local;
13316 void **slot;
13317 int nparams;
13318 struct die_info *child_die;
13319
13320 baseaddr = objfile->text_section_offset ();
13321
13322 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13323 if (attr == NULL)
13324 {
13325 /* This was a pre-DWARF-5 GNU extension alias
13326 for DW_AT_call_return_pc. */
13327 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13328 }
13329 if (!attr)
13330 {
13331 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13332 "DIE %s [in module %s]"),
13333 sect_offset_str (die->sect_off), objfile_name (objfile));
13334 return;
13335 }
13336 pc = attr->value_as_address () + baseaddr;
13337 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13338
13339 if (cu->call_site_htab == NULL)
13340 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13341 NULL, &objfile->objfile_obstack,
13342 hashtab_obstack_allocate, NULL);
13343 call_site_local.pc = pc;
13344 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13345 if (*slot != NULL)
13346 {
13347 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13348 "DIE %s [in module %s]"),
13349 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13350 objfile_name (objfile));
13351 return;
13352 }
13353
13354 /* Count parameters at the caller. */
13355
13356 nparams = 0;
13357 for (child_die = die->child; child_die && child_die->tag;
13358 child_die = child_die->sibling)
13359 {
13360 if (child_die->tag != DW_TAG_call_site_parameter
13361 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13362 {
13363 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13364 "DW_TAG_call_site child DIE %s [in module %s]"),
13365 child_die->tag, sect_offset_str (child_die->sect_off),
13366 objfile_name (objfile));
13367 continue;
13368 }
13369
13370 nparams++;
13371 }
13372
13373 call_site
13374 = ((struct call_site *)
13375 obstack_alloc (&objfile->objfile_obstack,
13376 sizeof (*call_site)
13377 + (sizeof (*call_site->parameter) * (nparams - 1))));
13378 *slot = call_site;
13379 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13380 call_site->pc = pc;
13381
13382 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13383 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13384 {
13385 struct die_info *func_die;
13386
13387 /* Skip also over DW_TAG_inlined_subroutine. */
13388 for (func_die = die->parent;
13389 func_die && func_die->tag != DW_TAG_subprogram
13390 && func_die->tag != DW_TAG_subroutine_type;
13391 func_die = func_die->parent);
13392
13393 /* DW_AT_call_all_calls is a superset
13394 of DW_AT_call_all_tail_calls. */
13395 if (func_die
13396 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13397 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13398 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13399 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13400 {
13401 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13402 not complete. But keep CALL_SITE for look ups via call_site_htab,
13403 both the initial caller containing the real return address PC and
13404 the final callee containing the current PC of a chain of tail
13405 calls do not need to have the tail call list complete. But any
13406 function candidate for a virtual tail call frame searched via
13407 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13408 determined unambiguously. */
13409 }
13410 else
13411 {
13412 struct type *func_type = NULL;
13413
13414 if (func_die)
13415 func_type = get_die_type (func_die, cu);
13416 if (func_type != NULL)
13417 {
13418 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13419
13420 /* Enlist this call site to the function. */
13421 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13422 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13423 }
13424 else
13425 complaint (_("Cannot find function owning DW_TAG_call_site "
13426 "DIE %s [in module %s]"),
13427 sect_offset_str (die->sect_off), objfile_name (objfile));
13428 }
13429 }
13430
13431 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13432 if (attr == NULL)
13433 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13434 if (attr == NULL)
13435 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13436 if (attr == NULL)
13437 {
13438 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13439 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13440 }
13441 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13442 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13443 /* Keep NULL DWARF_BLOCK. */;
13444 else if (attr->form_is_block ())
13445 {
13446 struct dwarf2_locexpr_baton *dlbaton;
13447
13448 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13449 dlbaton->data = DW_BLOCK (attr)->data;
13450 dlbaton->size = DW_BLOCK (attr)->size;
13451 dlbaton->per_objfile = per_objfile;
13452 dlbaton->per_cu = cu->per_cu;
13453
13454 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13455 }
13456 else if (attr->form_is_ref ())
13457 {
13458 struct dwarf2_cu *target_cu = cu;
13459 struct die_info *target_die;
13460
13461 target_die = follow_die_ref (die, attr, &target_cu);
13462 gdb_assert (target_cu->per_objfile->objfile == objfile);
13463 if (die_is_declaration (target_die, target_cu))
13464 {
13465 const char *target_physname;
13466
13467 /* Prefer the mangled name; otherwise compute the demangled one. */
13468 target_physname = dw2_linkage_name (target_die, target_cu);
13469 if (target_physname == NULL)
13470 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13471 if (target_physname == NULL)
13472 complaint (_("DW_AT_call_target target DIE has invalid "
13473 "physname, for referencing DIE %s [in module %s]"),
13474 sect_offset_str (die->sect_off), objfile_name (objfile));
13475 else
13476 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13477 }
13478 else
13479 {
13480 CORE_ADDR lowpc;
13481
13482 /* DW_AT_entry_pc should be preferred. */
13483 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13484 <= PC_BOUNDS_INVALID)
13485 complaint (_("DW_AT_call_target target DIE has invalid "
13486 "low pc, for referencing DIE %s [in module %s]"),
13487 sect_offset_str (die->sect_off), objfile_name (objfile));
13488 else
13489 {
13490 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13491 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13492 }
13493 }
13494 }
13495 else
13496 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13497 "block nor reference, for DIE %s [in module %s]"),
13498 sect_offset_str (die->sect_off), objfile_name (objfile));
13499
13500 call_site->per_cu = cu->per_cu;
13501
13502 for (child_die = die->child;
13503 child_die && child_die->tag;
13504 child_die = child_die->sibling)
13505 {
13506 struct call_site_parameter *parameter;
13507 struct attribute *loc, *origin;
13508
13509 if (child_die->tag != DW_TAG_call_site_parameter
13510 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13511 {
13512 /* Already printed the complaint above. */
13513 continue;
13514 }
13515
13516 gdb_assert (call_site->parameter_count < nparams);
13517 parameter = &call_site->parameter[call_site->parameter_count];
13518
13519 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13520 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13521 register is contained in DW_AT_call_value. */
13522
13523 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13524 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13525 if (origin == NULL)
13526 {
13527 /* This was a pre-DWARF-5 GNU extension alias
13528 for DW_AT_call_parameter. */
13529 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13530 }
13531 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13532 {
13533 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13534
13535 sect_offset sect_off = origin->get_ref_die_offset ();
13536 if (!cu->header.offset_in_cu_p (sect_off))
13537 {
13538 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13539 binding can be done only inside one CU. Such referenced DIE
13540 therefore cannot be even moved to DW_TAG_partial_unit. */
13541 complaint (_("DW_AT_call_parameter offset is not in CU for "
13542 "DW_TAG_call_site child DIE %s [in module %s]"),
13543 sect_offset_str (child_die->sect_off),
13544 objfile_name (objfile));
13545 continue;
13546 }
13547 parameter->u.param_cu_off
13548 = (cu_offset) (sect_off - cu->header.sect_off);
13549 }
13550 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13551 {
13552 complaint (_("No DW_FORM_block* DW_AT_location for "
13553 "DW_TAG_call_site child DIE %s [in module %s]"),
13554 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13555 continue;
13556 }
13557 else
13558 {
13559 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13560 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13561 if (parameter->u.dwarf_reg != -1)
13562 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13563 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13564 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13565 &parameter->u.fb_offset))
13566 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13567 else
13568 {
13569 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13570 "for DW_FORM_block* DW_AT_location is supported for "
13571 "DW_TAG_call_site child DIE %s "
13572 "[in module %s]"),
13573 sect_offset_str (child_die->sect_off),
13574 objfile_name (objfile));
13575 continue;
13576 }
13577 }
13578
13579 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13580 if (attr == NULL)
13581 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13582 if (attr == NULL || !attr->form_is_block ())
13583 {
13584 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13585 "DW_TAG_call_site child DIE %s [in module %s]"),
13586 sect_offset_str (child_die->sect_off),
13587 objfile_name (objfile));
13588 continue;
13589 }
13590 parameter->value = DW_BLOCK (attr)->data;
13591 parameter->value_size = DW_BLOCK (attr)->size;
13592
13593 /* Parameters are not pre-cleared by memset above. */
13594 parameter->data_value = NULL;
13595 parameter->data_value_size = 0;
13596 call_site->parameter_count++;
13597
13598 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13599 if (attr == NULL)
13600 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13601 if (attr != nullptr)
13602 {
13603 if (!attr->form_is_block ())
13604 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13605 "DW_TAG_call_site child DIE %s [in module %s]"),
13606 sect_offset_str (child_die->sect_off),
13607 objfile_name (objfile));
13608 else
13609 {
13610 parameter->data_value = DW_BLOCK (attr)->data;
13611 parameter->data_value_size = DW_BLOCK (attr)->size;
13612 }
13613 }
13614 }
13615 }
13616
13617 /* Helper function for read_variable. If DIE represents a virtual
13618 table, then return the type of the concrete object that is
13619 associated with the virtual table. Otherwise, return NULL. */
13620
13621 static struct type *
13622 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13623 {
13624 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13625 if (attr == NULL)
13626 return NULL;
13627
13628 /* Find the type DIE. */
13629 struct die_info *type_die = NULL;
13630 struct dwarf2_cu *type_cu = cu;
13631
13632 if (attr->form_is_ref ())
13633 type_die = follow_die_ref (die, attr, &type_cu);
13634 if (type_die == NULL)
13635 return NULL;
13636
13637 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13638 return NULL;
13639 return die_containing_type (type_die, type_cu);
13640 }
13641
13642 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13643
13644 static void
13645 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13646 {
13647 struct rust_vtable_symbol *storage = NULL;
13648
13649 if (cu->language == language_rust)
13650 {
13651 struct type *containing_type = rust_containing_type (die, cu);
13652
13653 if (containing_type != NULL)
13654 {
13655 struct objfile *objfile = cu->per_objfile->objfile;
13656
13657 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13658 storage->concrete_type = containing_type;
13659 storage->subclass = SYMBOL_RUST_VTABLE;
13660 }
13661 }
13662
13663 struct symbol *res = new_symbol (die, NULL, cu, storage);
13664 struct attribute *abstract_origin
13665 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13666 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13667 if (res == NULL && loc && abstract_origin)
13668 {
13669 /* We have a variable without a name, but with a location and an abstract
13670 origin. This may be a concrete instance of an abstract variable
13671 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13672 later. */
13673 struct dwarf2_cu *origin_cu = cu;
13674 struct die_info *origin_die
13675 = follow_die_ref (die, abstract_origin, &origin_cu);
13676 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13677 per_objfile->per_bfd->abstract_to_concrete
13678 [origin_die->sect_off].push_back (die->sect_off);
13679 }
13680 }
13681
13682 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13683 reading .debug_rnglists.
13684 Callback's type should be:
13685 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13686 Return true if the attributes are present and valid, otherwise,
13687 return false. */
13688
13689 template <typename Callback>
13690 static bool
13691 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13692 Callback &&callback)
13693 {
13694 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
13695 struct objfile *objfile = dwarf2_per_objfile->objfile;
13696 bfd *obfd = objfile->obfd;
13697 /* Base address selection entry. */
13698 gdb::optional<CORE_ADDR> base;
13699 const gdb_byte *buffer;
13700 CORE_ADDR baseaddr;
13701 bool overflow = false;
13702
13703 base = cu->base_address;
13704
13705 dwarf2_per_objfile->per_bfd->rnglists.read (objfile);
13706 if (offset >= dwarf2_per_objfile->per_bfd->rnglists.size)
13707 {
13708 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13709 offset);
13710 return false;
13711 }
13712 buffer = dwarf2_per_objfile->per_bfd->rnglists.buffer + offset;
13713
13714 baseaddr = objfile->text_section_offset ();
13715
13716 while (1)
13717 {
13718 /* Initialize it due to a false compiler warning. */
13719 CORE_ADDR range_beginning = 0, range_end = 0;
13720 const gdb_byte *buf_end = (dwarf2_per_objfile->per_bfd->rnglists.buffer
13721 + dwarf2_per_objfile->per_bfd->rnglists.size);
13722 unsigned int bytes_read;
13723
13724 if (buffer == buf_end)
13725 {
13726 overflow = true;
13727 break;
13728 }
13729 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13730 switch (rlet)
13731 {
13732 case DW_RLE_end_of_list:
13733 break;
13734 case DW_RLE_base_address:
13735 if (buffer + cu->header.addr_size > buf_end)
13736 {
13737 overflow = true;
13738 break;
13739 }
13740 base = cu->header.read_address (obfd, buffer, &bytes_read);
13741 buffer += bytes_read;
13742 break;
13743 case DW_RLE_start_length:
13744 if (buffer + cu->header.addr_size > buf_end)
13745 {
13746 overflow = true;
13747 break;
13748 }
13749 range_beginning = cu->header.read_address (obfd, buffer,
13750 &bytes_read);
13751 buffer += bytes_read;
13752 range_end = (range_beginning
13753 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13754 buffer += bytes_read;
13755 if (buffer > buf_end)
13756 {
13757 overflow = true;
13758 break;
13759 }
13760 break;
13761 case DW_RLE_offset_pair:
13762 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13763 buffer += bytes_read;
13764 if (buffer > buf_end)
13765 {
13766 overflow = true;
13767 break;
13768 }
13769 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13770 buffer += bytes_read;
13771 if (buffer > buf_end)
13772 {
13773 overflow = true;
13774 break;
13775 }
13776 break;
13777 case DW_RLE_start_end:
13778 if (buffer + 2 * cu->header.addr_size > buf_end)
13779 {
13780 overflow = true;
13781 break;
13782 }
13783 range_beginning = cu->header.read_address (obfd, buffer,
13784 &bytes_read);
13785 buffer += bytes_read;
13786 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13787 buffer += bytes_read;
13788 break;
13789 default:
13790 complaint (_("Invalid .debug_rnglists data (no base address)"));
13791 return false;
13792 }
13793 if (rlet == DW_RLE_end_of_list || overflow)
13794 break;
13795 if (rlet == DW_RLE_base_address)
13796 continue;
13797
13798 if (!base.has_value ())
13799 {
13800 /* We have no valid base address for the ranges
13801 data. */
13802 complaint (_("Invalid .debug_rnglists data (no base address)"));
13803 return false;
13804 }
13805
13806 if (range_beginning > range_end)
13807 {
13808 /* Inverted range entries are invalid. */
13809 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13810 return false;
13811 }
13812
13813 /* Empty range entries have no effect. */
13814 if (range_beginning == range_end)
13815 continue;
13816
13817 range_beginning += *base;
13818 range_end += *base;
13819
13820 /* A not-uncommon case of bad debug info.
13821 Don't pollute the addrmap with bad data. */
13822 if (range_beginning + baseaddr == 0
13823 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
13824 {
13825 complaint (_(".debug_rnglists entry has start address of zero"
13826 " [in module %s]"), objfile_name (objfile));
13827 continue;
13828 }
13829
13830 callback (range_beginning, range_end);
13831 }
13832
13833 if (overflow)
13834 {
13835 complaint (_("Offset %d is not terminated "
13836 "for DW_AT_ranges attribute"),
13837 offset);
13838 return false;
13839 }
13840
13841 return true;
13842 }
13843
13844 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13845 Callback's type should be:
13846 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13847 Return 1 if the attributes are present and valid, otherwise, return 0. */
13848
13849 template <typename Callback>
13850 static int
13851 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13852 Callback &&callback)
13853 {
13854 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13855 struct objfile *objfile = per_objfile->objfile;
13856 struct comp_unit_head *cu_header = &cu->header;
13857 bfd *obfd = objfile->obfd;
13858 unsigned int addr_size = cu_header->addr_size;
13859 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13860 /* Base address selection entry. */
13861 gdb::optional<CORE_ADDR> base;
13862 unsigned int dummy;
13863 const gdb_byte *buffer;
13864 CORE_ADDR baseaddr;
13865
13866 if (cu_header->version >= 5)
13867 return dwarf2_rnglists_process (offset, cu, callback);
13868
13869 base = cu->base_address;
13870
13871 per_objfile->per_bfd->ranges.read (objfile);
13872 if (offset >= per_objfile->per_bfd->ranges.size)
13873 {
13874 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13875 offset);
13876 return 0;
13877 }
13878 buffer = per_objfile->per_bfd->ranges.buffer + offset;
13879
13880 baseaddr = objfile->text_section_offset ();
13881
13882 while (1)
13883 {
13884 CORE_ADDR range_beginning, range_end;
13885
13886 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13887 buffer += addr_size;
13888 range_end = cu->header.read_address (obfd, buffer, &dummy);
13889 buffer += addr_size;
13890 offset += 2 * addr_size;
13891
13892 /* An end of list marker is a pair of zero addresses. */
13893 if (range_beginning == 0 && range_end == 0)
13894 /* Found the end of list entry. */
13895 break;
13896
13897 /* Each base address selection entry is a pair of 2 values.
13898 The first is the largest possible address, the second is
13899 the base address. Check for a base address here. */
13900 if ((range_beginning & mask) == mask)
13901 {
13902 /* If we found the largest possible address, then we already
13903 have the base address in range_end. */
13904 base = range_end;
13905 continue;
13906 }
13907
13908 if (!base.has_value ())
13909 {
13910 /* We have no valid base address for the ranges
13911 data. */
13912 complaint (_("Invalid .debug_ranges data (no base address)"));
13913 return 0;
13914 }
13915
13916 if (range_beginning > range_end)
13917 {
13918 /* Inverted range entries are invalid. */
13919 complaint (_("Invalid .debug_ranges data (inverted range)"));
13920 return 0;
13921 }
13922
13923 /* Empty range entries have no effect. */
13924 if (range_beginning == range_end)
13925 continue;
13926
13927 range_beginning += *base;
13928 range_end += *base;
13929
13930 /* A not-uncommon case of bad debug info.
13931 Don't pollute the addrmap with bad data. */
13932 if (range_beginning + baseaddr == 0
13933 && !per_objfile->per_bfd->has_section_at_zero)
13934 {
13935 complaint (_(".debug_ranges entry has start address of zero"
13936 " [in module %s]"), objfile_name (objfile));
13937 continue;
13938 }
13939
13940 callback (range_beginning, range_end);
13941 }
13942
13943 return 1;
13944 }
13945
13946 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13947 Return 1 if the attributes are present and valid, otherwise, return 0.
13948 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13949
13950 static int
13951 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13952 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13953 dwarf2_psymtab *ranges_pst)
13954 {
13955 struct objfile *objfile = cu->per_objfile->objfile;
13956 struct gdbarch *gdbarch = objfile->arch ();
13957 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13958 int low_set = 0;
13959 CORE_ADDR low = 0;
13960 CORE_ADDR high = 0;
13961 int retval;
13962
13963 retval = dwarf2_ranges_process (offset, cu,
13964 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13965 {
13966 if (ranges_pst != NULL)
13967 {
13968 CORE_ADDR lowpc;
13969 CORE_ADDR highpc;
13970
13971 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13972 range_beginning + baseaddr)
13973 - baseaddr);
13974 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13975 range_end + baseaddr)
13976 - baseaddr);
13977 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13978 lowpc, highpc - 1, ranges_pst);
13979 }
13980
13981 /* FIXME: This is recording everything as a low-high
13982 segment of consecutive addresses. We should have a
13983 data structure for discontiguous block ranges
13984 instead. */
13985 if (! low_set)
13986 {
13987 low = range_beginning;
13988 high = range_end;
13989 low_set = 1;
13990 }
13991 else
13992 {
13993 if (range_beginning < low)
13994 low = range_beginning;
13995 if (range_end > high)
13996 high = range_end;
13997 }
13998 });
13999 if (!retval)
14000 return 0;
14001
14002 if (! low_set)
14003 /* If the first entry is an end-of-list marker, the range
14004 describes an empty scope, i.e. no instructions. */
14005 return 0;
14006
14007 if (low_return)
14008 *low_return = low;
14009 if (high_return)
14010 *high_return = high;
14011 return 1;
14012 }
14013
14014 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14015 definition for the return value. *LOWPC and *HIGHPC are set iff
14016 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14017
14018 static enum pc_bounds_kind
14019 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14020 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14021 dwarf2_psymtab *pst)
14022 {
14023 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
14024 struct attribute *attr;
14025 struct attribute *attr_high;
14026 CORE_ADDR low = 0;
14027 CORE_ADDR high = 0;
14028 enum pc_bounds_kind ret;
14029
14030 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14031 if (attr_high)
14032 {
14033 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14034 if (attr != nullptr)
14035 {
14036 low = attr->value_as_address ();
14037 high = attr_high->value_as_address ();
14038 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14039 high += low;
14040 }
14041 else
14042 /* Found high w/o low attribute. */
14043 return PC_BOUNDS_INVALID;
14044
14045 /* Found consecutive range of addresses. */
14046 ret = PC_BOUNDS_HIGH_LOW;
14047 }
14048 else
14049 {
14050 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14051 if (attr != NULL)
14052 {
14053 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14054 We take advantage of the fact that DW_AT_ranges does not appear
14055 in DW_TAG_compile_unit of DWO files. */
14056 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14057 unsigned int ranges_offset = (DW_UNSND (attr)
14058 + (need_ranges_base
14059 ? cu->ranges_base
14060 : 0));
14061
14062 /* Value of the DW_AT_ranges attribute is the offset in the
14063 .debug_ranges section. */
14064 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14065 return PC_BOUNDS_INVALID;
14066 /* Found discontinuous range of addresses. */
14067 ret = PC_BOUNDS_RANGES;
14068 }
14069 else
14070 return PC_BOUNDS_NOT_PRESENT;
14071 }
14072
14073 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14074 if (high <= low)
14075 return PC_BOUNDS_INVALID;
14076
14077 /* When using the GNU linker, .gnu.linkonce. sections are used to
14078 eliminate duplicate copies of functions and vtables and such.
14079 The linker will arbitrarily choose one and discard the others.
14080 The AT_*_pc values for such functions refer to local labels in
14081 these sections. If the section from that file was discarded, the
14082 labels are not in the output, so the relocs get a value of 0.
14083 If this is a discarded function, mark the pc bounds as invalid,
14084 so that GDB will ignore it. */
14085 if (low == 0 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
14086 return PC_BOUNDS_INVALID;
14087
14088 *lowpc = low;
14089 if (highpc)
14090 *highpc = high;
14091 return ret;
14092 }
14093
14094 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14095 its low and high PC addresses. Do nothing if these addresses could not
14096 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14097 and HIGHPC to the high address if greater than HIGHPC. */
14098
14099 static void
14100 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14101 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14102 struct dwarf2_cu *cu)
14103 {
14104 CORE_ADDR low, high;
14105 struct die_info *child = die->child;
14106
14107 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14108 {
14109 *lowpc = std::min (*lowpc, low);
14110 *highpc = std::max (*highpc, high);
14111 }
14112
14113 /* If the language does not allow nested subprograms (either inside
14114 subprograms or lexical blocks), we're done. */
14115 if (cu->language != language_ada)
14116 return;
14117
14118 /* Check all the children of the given DIE. If it contains nested
14119 subprograms, then check their pc bounds. Likewise, we need to
14120 check lexical blocks as well, as they may also contain subprogram
14121 definitions. */
14122 while (child && child->tag)
14123 {
14124 if (child->tag == DW_TAG_subprogram
14125 || child->tag == DW_TAG_lexical_block)
14126 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14127 child = child->sibling;
14128 }
14129 }
14130
14131 /* Get the low and high pc's represented by the scope DIE, and store
14132 them in *LOWPC and *HIGHPC. If the correct values can't be
14133 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14134
14135 static void
14136 get_scope_pc_bounds (struct die_info *die,
14137 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14138 struct dwarf2_cu *cu)
14139 {
14140 CORE_ADDR best_low = (CORE_ADDR) -1;
14141 CORE_ADDR best_high = (CORE_ADDR) 0;
14142 CORE_ADDR current_low, current_high;
14143
14144 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14145 >= PC_BOUNDS_RANGES)
14146 {
14147 best_low = current_low;
14148 best_high = current_high;
14149 }
14150 else
14151 {
14152 struct die_info *child = die->child;
14153
14154 while (child && child->tag)
14155 {
14156 switch (child->tag) {
14157 case DW_TAG_subprogram:
14158 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14159 break;
14160 case DW_TAG_namespace:
14161 case DW_TAG_module:
14162 /* FIXME: carlton/2004-01-16: Should we do this for
14163 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14164 that current GCC's always emit the DIEs corresponding
14165 to definitions of methods of classes as children of a
14166 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14167 the DIEs giving the declarations, which could be
14168 anywhere). But I don't see any reason why the
14169 standards says that they have to be there. */
14170 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14171
14172 if (current_low != ((CORE_ADDR) -1))
14173 {
14174 best_low = std::min (best_low, current_low);
14175 best_high = std::max (best_high, current_high);
14176 }
14177 break;
14178 default:
14179 /* Ignore. */
14180 break;
14181 }
14182
14183 child = child->sibling;
14184 }
14185 }
14186
14187 *lowpc = best_low;
14188 *highpc = best_high;
14189 }
14190
14191 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14192 in DIE. */
14193
14194 static void
14195 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14196 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14197 {
14198 struct objfile *objfile = cu->per_objfile->objfile;
14199 struct gdbarch *gdbarch = objfile->arch ();
14200 struct attribute *attr;
14201 struct attribute *attr_high;
14202
14203 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14204 if (attr_high)
14205 {
14206 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14207 if (attr != nullptr)
14208 {
14209 CORE_ADDR low = attr->value_as_address ();
14210 CORE_ADDR high = attr_high->value_as_address ();
14211
14212 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14213 high += low;
14214
14215 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14216 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14217 cu->get_builder ()->record_block_range (block, low, high - 1);
14218 }
14219 }
14220
14221 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14222 if (attr != nullptr)
14223 {
14224 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14225 We take advantage of the fact that DW_AT_ranges does not appear
14226 in DW_TAG_compile_unit of DWO files. */
14227 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14228
14229 /* The value of the DW_AT_ranges attribute is the offset of the
14230 address range list in the .debug_ranges section. */
14231 unsigned long offset = (DW_UNSND (attr)
14232 + (need_ranges_base ? cu->ranges_base : 0));
14233
14234 std::vector<blockrange> blockvec;
14235 dwarf2_ranges_process (offset, cu,
14236 [&] (CORE_ADDR start, CORE_ADDR end)
14237 {
14238 start += baseaddr;
14239 end += baseaddr;
14240 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14241 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14242 cu->get_builder ()->record_block_range (block, start, end - 1);
14243 blockvec.emplace_back (start, end);
14244 });
14245
14246 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14247 }
14248 }
14249
14250 /* Check whether the producer field indicates either of GCC < 4.6, or the
14251 Intel C/C++ compiler, and cache the result in CU. */
14252
14253 static void
14254 check_producer (struct dwarf2_cu *cu)
14255 {
14256 int major, minor;
14257
14258 if (cu->producer == NULL)
14259 {
14260 /* For unknown compilers expect their behavior is DWARF version
14261 compliant.
14262
14263 GCC started to support .debug_types sections by -gdwarf-4 since
14264 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14265 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14266 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14267 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14268 }
14269 else if (producer_is_gcc (cu->producer, &major, &minor))
14270 {
14271 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14272 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14273 }
14274 else if (producer_is_icc (cu->producer, &major, &minor))
14275 {
14276 cu->producer_is_icc = true;
14277 cu->producer_is_icc_lt_14 = major < 14;
14278 }
14279 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14280 cu->producer_is_codewarrior = true;
14281 else
14282 {
14283 /* For other non-GCC compilers, expect their behavior is DWARF version
14284 compliant. */
14285 }
14286
14287 cu->checked_producer = true;
14288 }
14289
14290 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14291 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14292 during 4.6.0 experimental. */
14293
14294 static bool
14295 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14296 {
14297 if (!cu->checked_producer)
14298 check_producer (cu);
14299
14300 return cu->producer_is_gxx_lt_4_6;
14301 }
14302
14303
14304 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14305 with incorrect is_stmt attributes. */
14306
14307 static bool
14308 producer_is_codewarrior (struct dwarf2_cu *cu)
14309 {
14310 if (!cu->checked_producer)
14311 check_producer (cu);
14312
14313 return cu->producer_is_codewarrior;
14314 }
14315
14316 /* Return the default accessibility type if it is not overridden by
14317 DW_AT_accessibility. */
14318
14319 static enum dwarf_access_attribute
14320 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14321 {
14322 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14323 {
14324 /* The default DWARF 2 accessibility for members is public, the default
14325 accessibility for inheritance is private. */
14326
14327 if (die->tag != DW_TAG_inheritance)
14328 return DW_ACCESS_public;
14329 else
14330 return DW_ACCESS_private;
14331 }
14332 else
14333 {
14334 /* DWARF 3+ defines the default accessibility a different way. The same
14335 rules apply now for DW_TAG_inheritance as for the members and it only
14336 depends on the container kind. */
14337
14338 if (die->parent->tag == DW_TAG_class_type)
14339 return DW_ACCESS_private;
14340 else
14341 return DW_ACCESS_public;
14342 }
14343 }
14344
14345 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14346 offset. If the attribute was not found return 0, otherwise return
14347 1. If it was found but could not properly be handled, set *OFFSET
14348 to 0. */
14349
14350 static int
14351 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14352 LONGEST *offset)
14353 {
14354 struct attribute *attr;
14355
14356 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14357 if (attr != NULL)
14358 {
14359 *offset = 0;
14360
14361 /* Note that we do not check for a section offset first here.
14362 This is because DW_AT_data_member_location is new in DWARF 4,
14363 so if we see it, we can assume that a constant form is really
14364 a constant and not a section offset. */
14365 if (attr->form_is_constant ())
14366 *offset = attr->constant_value (0);
14367 else if (attr->form_is_section_offset ())
14368 dwarf2_complex_location_expr_complaint ();
14369 else if (attr->form_is_block ())
14370 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14371 else
14372 dwarf2_complex_location_expr_complaint ();
14373
14374 return 1;
14375 }
14376
14377 return 0;
14378 }
14379
14380 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14381
14382 static void
14383 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14384 struct field *field)
14385 {
14386 struct attribute *attr;
14387
14388 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14389 if (attr != NULL)
14390 {
14391 if (attr->form_is_constant ())
14392 {
14393 LONGEST offset = attr->constant_value (0);
14394 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14395 }
14396 else if (attr->form_is_section_offset ())
14397 dwarf2_complex_location_expr_complaint ();
14398 else if (attr->form_is_block ())
14399 {
14400 bool handled;
14401 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14402 if (handled)
14403 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14404 else
14405 {
14406 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14407 struct objfile *objfile = per_objfile->objfile;
14408 struct dwarf2_locexpr_baton *dlbaton
14409 = XOBNEW (&objfile->objfile_obstack,
14410 struct dwarf2_locexpr_baton);
14411 dlbaton->data = DW_BLOCK (attr)->data;
14412 dlbaton->size = DW_BLOCK (attr)->size;
14413 /* When using this baton, we want to compute the address
14414 of the field, not the value. This is why
14415 is_reference is set to false here. */
14416 dlbaton->is_reference = false;
14417 dlbaton->per_objfile = per_objfile;
14418 dlbaton->per_cu = cu->per_cu;
14419
14420 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14421 }
14422 }
14423 else
14424 dwarf2_complex_location_expr_complaint ();
14425 }
14426 }
14427
14428 /* Add an aggregate field to the field list. */
14429
14430 static void
14431 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14432 struct dwarf2_cu *cu)
14433 {
14434 struct objfile *objfile = cu->per_objfile->objfile;
14435 struct gdbarch *gdbarch = objfile->arch ();
14436 struct nextfield *new_field;
14437 struct attribute *attr;
14438 struct field *fp;
14439 const char *fieldname = "";
14440
14441 if (die->tag == DW_TAG_inheritance)
14442 {
14443 fip->baseclasses.emplace_back ();
14444 new_field = &fip->baseclasses.back ();
14445 }
14446 else
14447 {
14448 fip->fields.emplace_back ();
14449 new_field = &fip->fields.back ();
14450 }
14451
14452 new_field->offset = die->sect_off;
14453
14454 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14455 if (attr != nullptr)
14456 new_field->accessibility = DW_UNSND (attr);
14457 else
14458 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14459 if (new_field->accessibility != DW_ACCESS_public)
14460 fip->non_public_fields = 1;
14461
14462 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14463 if (attr != nullptr)
14464 new_field->virtuality = DW_UNSND (attr);
14465 else
14466 new_field->virtuality = DW_VIRTUALITY_none;
14467
14468 fp = &new_field->field;
14469
14470 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14471 {
14472 /* Data member other than a C++ static data member. */
14473
14474 /* Get type of field. */
14475 fp->type = die_type (die, cu);
14476
14477 SET_FIELD_BITPOS (*fp, 0);
14478
14479 /* Get bit size of field (zero if none). */
14480 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14481 if (attr != nullptr)
14482 {
14483 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14484 }
14485 else
14486 {
14487 FIELD_BITSIZE (*fp) = 0;
14488 }
14489
14490 /* Get bit offset of field. */
14491 handle_data_member_location (die, cu, fp);
14492 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14493 if (attr != nullptr)
14494 {
14495 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14496 {
14497 /* For big endian bits, the DW_AT_bit_offset gives the
14498 additional bit offset from the MSB of the containing
14499 anonymous object to the MSB of the field. We don't
14500 have to do anything special since we don't need to
14501 know the size of the anonymous object. */
14502 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14503 }
14504 else
14505 {
14506 /* For little endian bits, compute the bit offset to the
14507 MSB of the anonymous object, subtract off the number of
14508 bits from the MSB of the field to the MSB of the
14509 object, and then subtract off the number of bits of
14510 the field itself. The result is the bit offset of
14511 the LSB of the field. */
14512 int anonymous_size;
14513 int bit_offset = DW_UNSND (attr);
14514
14515 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14516 if (attr != nullptr)
14517 {
14518 /* The size of the anonymous object containing
14519 the bit field is explicit, so use the
14520 indicated size (in bytes). */
14521 anonymous_size = DW_UNSND (attr);
14522 }
14523 else
14524 {
14525 /* The size of the anonymous object containing
14526 the bit field must be inferred from the type
14527 attribute of the data member containing the
14528 bit field. */
14529 anonymous_size = TYPE_LENGTH (fp->type);
14530 }
14531 SET_FIELD_BITPOS (*fp,
14532 (FIELD_BITPOS (*fp)
14533 + anonymous_size * bits_per_byte
14534 - bit_offset - FIELD_BITSIZE (*fp)));
14535 }
14536 }
14537 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14538 if (attr != NULL)
14539 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14540 + attr->constant_value (0)));
14541
14542 /* Get name of field. */
14543 fieldname = dwarf2_name (die, cu);
14544 if (fieldname == NULL)
14545 fieldname = "";
14546
14547 /* The name is already allocated along with this objfile, so we don't
14548 need to duplicate it for the type. */
14549 fp->name = fieldname;
14550
14551 /* Change accessibility for artificial fields (e.g. virtual table
14552 pointer or virtual base class pointer) to private. */
14553 if (dwarf2_attr (die, DW_AT_artificial, cu))
14554 {
14555 FIELD_ARTIFICIAL (*fp) = 1;
14556 new_field->accessibility = DW_ACCESS_private;
14557 fip->non_public_fields = 1;
14558 }
14559 }
14560 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14561 {
14562 /* C++ static member. */
14563
14564 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14565 is a declaration, but all versions of G++ as of this writing
14566 (so through at least 3.2.1) incorrectly generate
14567 DW_TAG_variable tags. */
14568
14569 const char *physname;
14570
14571 /* Get name of field. */
14572 fieldname = dwarf2_name (die, cu);
14573 if (fieldname == NULL)
14574 return;
14575
14576 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14577 if (attr
14578 /* Only create a symbol if this is an external value.
14579 new_symbol checks this and puts the value in the global symbol
14580 table, which we want. If it is not external, new_symbol
14581 will try to put the value in cu->list_in_scope which is wrong. */
14582 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14583 {
14584 /* A static const member, not much different than an enum as far as
14585 we're concerned, except that we can support more types. */
14586 new_symbol (die, NULL, cu);
14587 }
14588
14589 /* Get physical name. */
14590 physname = dwarf2_physname (fieldname, die, cu);
14591
14592 /* The name is already allocated along with this objfile, so we don't
14593 need to duplicate it for the type. */
14594 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14595 FIELD_TYPE (*fp) = die_type (die, cu);
14596 FIELD_NAME (*fp) = fieldname;
14597 }
14598 else if (die->tag == DW_TAG_inheritance)
14599 {
14600 /* C++ base class field. */
14601 handle_data_member_location (die, cu, fp);
14602 FIELD_BITSIZE (*fp) = 0;
14603 FIELD_TYPE (*fp) = die_type (die, cu);
14604 FIELD_NAME (*fp) = fp->type->name ();
14605 }
14606 else
14607 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14608 }
14609
14610 /* Can the type given by DIE define another type? */
14611
14612 static bool
14613 type_can_define_types (const struct die_info *die)
14614 {
14615 switch (die->tag)
14616 {
14617 case DW_TAG_typedef:
14618 case DW_TAG_class_type:
14619 case DW_TAG_structure_type:
14620 case DW_TAG_union_type:
14621 case DW_TAG_enumeration_type:
14622 return true;
14623
14624 default:
14625 return false;
14626 }
14627 }
14628
14629 /* Add a type definition defined in the scope of the FIP's class. */
14630
14631 static void
14632 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14633 struct dwarf2_cu *cu)
14634 {
14635 struct decl_field fp;
14636 memset (&fp, 0, sizeof (fp));
14637
14638 gdb_assert (type_can_define_types (die));
14639
14640 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14641 fp.name = dwarf2_name (die, cu);
14642 fp.type = read_type_die (die, cu);
14643
14644 /* Save accessibility. */
14645 enum dwarf_access_attribute accessibility;
14646 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14647 if (attr != NULL)
14648 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14649 else
14650 accessibility = dwarf2_default_access_attribute (die, cu);
14651 switch (accessibility)
14652 {
14653 case DW_ACCESS_public:
14654 /* The assumed value if neither private nor protected. */
14655 break;
14656 case DW_ACCESS_private:
14657 fp.is_private = 1;
14658 break;
14659 case DW_ACCESS_protected:
14660 fp.is_protected = 1;
14661 break;
14662 default:
14663 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14664 }
14665
14666 if (die->tag == DW_TAG_typedef)
14667 fip->typedef_field_list.push_back (fp);
14668 else
14669 fip->nested_types_list.push_back (fp);
14670 }
14671
14672 /* A convenience typedef that's used when finding the discriminant
14673 field for a variant part. */
14674 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14675 offset_map_type;
14676
14677 /* Compute the discriminant range for a given variant. OBSTACK is
14678 where the results will be stored. VARIANT is the variant to
14679 process. IS_UNSIGNED indicates whether the discriminant is signed
14680 or unsigned. */
14681
14682 static const gdb::array_view<discriminant_range>
14683 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14684 bool is_unsigned)
14685 {
14686 std::vector<discriminant_range> ranges;
14687
14688 if (variant.default_branch)
14689 return {};
14690
14691 if (variant.discr_list_data == nullptr)
14692 {
14693 discriminant_range r
14694 = {variant.discriminant_value, variant.discriminant_value};
14695 ranges.push_back (r);
14696 }
14697 else
14698 {
14699 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14700 variant.discr_list_data->size);
14701 while (!data.empty ())
14702 {
14703 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14704 {
14705 complaint (_("invalid discriminant marker: %d"), data[0]);
14706 break;
14707 }
14708 bool is_range = data[0] == DW_DSC_range;
14709 data = data.slice (1);
14710
14711 ULONGEST low, high;
14712 unsigned int bytes_read;
14713
14714 if (data.empty ())
14715 {
14716 complaint (_("DW_AT_discr_list missing low value"));
14717 break;
14718 }
14719 if (is_unsigned)
14720 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14721 else
14722 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14723 &bytes_read);
14724 data = data.slice (bytes_read);
14725
14726 if (is_range)
14727 {
14728 if (data.empty ())
14729 {
14730 complaint (_("DW_AT_discr_list missing high value"));
14731 break;
14732 }
14733 if (is_unsigned)
14734 high = read_unsigned_leb128 (nullptr, data.data (),
14735 &bytes_read);
14736 else
14737 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14738 &bytes_read);
14739 data = data.slice (bytes_read);
14740 }
14741 else
14742 high = low;
14743
14744 ranges.push_back ({ low, high });
14745 }
14746 }
14747
14748 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14749 ranges.size ());
14750 std::copy (ranges.begin (), ranges.end (), result);
14751 return gdb::array_view<discriminant_range> (result, ranges.size ());
14752 }
14753
14754 static const gdb::array_view<variant_part> create_variant_parts
14755 (struct obstack *obstack,
14756 const offset_map_type &offset_map,
14757 struct field_info *fi,
14758 const std::vector<variant_part_builder> &variant_parts);
14759
14760 /* Fill in a "struct variant" for a given variant field. RESULT is
14761 the variant to fill in. OBSTACK is where any needed allocations
14762 will be done. OFFSET_MAP holds the mapping from section offsets to
14763 fields for the type. FI describes the fields of the type we're
14764 processing. FIELD is the variant field we're converting. */
14765
14766 static void
14767 create_one_variant (variant &result, struct obstack *obstack,
14768 const offset_map_type &offset_map,
14769 struct field_info *fi, const variant_field &field)
14770 {
14771 result.discriminants = convert_variant_range (obstack, field, false);
14772 result.first_field = field.first_field + fi->baseclasses.size ();
14773 result.last_field = field.last_field + fi->baseclasses.size ();
14774 result.parts = create_variant_parts (obstack, offset_map, fi,
14775 field.variant_parts);
14776 }
14777
14778 /* Fill in a "struct variant_part" for a given variant part. RESULT
14779 is the variant part to fill in. OBSTACK is where any needed
14780 allocations will be done. OFFSET_MAP holds the mapping from
14781 section offsets to fields for the type. FI describes the fields of
14782 the type we're processing. BUILDER is the variant part to be
14783 converted. */
14784
14785 static void
14786 create_one_variant_part (variant_part &result,
14787 struct obstack *obstack,
14788 const offset_map_type &offset_map,
14789 struct field_info *fi,
14790 const variant_part_builder &builder)
14791 {
14792 auto iter = offset_map.find (builder.discriminant_offset);
14793 if (iter == offset_map.end ())
14794 {
14795 result.discriminant_index = -1;
14796 /* Doesn't matter. */
14797 result.is_unsigned = false;
14798 }
14799 else
14800 {
14801 result.discriminant_index = iter->second;
14802 result.is_unsigned
14803 = TYPE_UNSIGNED (FIELD_TYPE
14804 (fi->fields[result.discriminant_index].field));
14805 }
14806
14807 size_t n = builder.variants.size ();
14808 variant *output = new (obstack) variant[n];
14809 for (size_t i = 0; i < n; ++i)
14810 create_one_variant (output[i], obstack, offset_map, fi,
14811 builder.variants[i]);
14812
14813 result.variants = gdb::array_view<variant> (output, n);
14814 }
14815
14816 /* Create a vector of variant parts that can be attached to a type.
14817 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14818 holds the mapping from section offsets to fields for the type. FI
14819 describes the fields of the type we're processing. VARIANT_PARTS
14820 is the vector to convert. */
14821
14822 static const gdb::array_view<variant_part>
14823 create_variant_parts (struct obstack *obstack,
14824 const offset_map_type &offset_map,
14825 struct field_info *fi,
14826 const std::vector<variant_part_builder> &variant_parts)
14827 {
14828 if (variant_parts.empty ())
14829 return {};
14830
14831 size_t n = variant_parts.size ();
14832 variant_part *result = new (obstack) variant_part[n];
14833 for (size_t i = 0; i < n; ++i)
14834 create_one_variant_part (result[i], obstack, offset_map, fi,
14835 variant_parts[i]);
14836
14837 return gdb::array_view<variant_part> (result, n);
14838 }
14839
14840 /* Compute the variant part vector for FIP, attaching it to TYPE when
14841 done. */
14842
14843 static void
14844 add_variant_property (struct field_info *fip, struct type *type,
14845 struct dwarf2_cu *cu)
14846 {
14847 /* Map section offsets of fields to their field index. Note the
14848 field index here does not take the number of baseclasses into
14849 account. */
14850 offset_map_type offset_map;
14851 for (int i = 0; i < fip->fields.size (); ++i)
14852 offset_map[fip->fields[i].offset] = i;
14853
14854 struct objfile *objfile = cu->per_objfile->objfile;
14855 gdb::array_view<variant_part> parts
14856 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14857 fip->variant_parts);
14858
14859 struct dynamic_prop prop;
14860 prop.kind = PROP_VARIANT_PARTS;
14861 prop.data.variant_parts
14862 = ((gdb::array_view<variant_part> *)
14863 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14864
14865 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14866 }
14867
14868 /* Create the vector of fields, and attach it to the type. */
14869
14870 static void
14871 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14872 struct dwarf2_cu *cu)
14873 {
14874 int nfields = fip->nfields ();
14875
14876 /* Record the field count, allocate space for the array of fields,
14877 and create blank accessibility bitfields if necessary. */
14878 type->set_num_fields (nfields);
14879 type->set_fields
14880 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14881
14882 if (fip->non_public_fields && cu->language != language_ada)
14883 {
14884 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14885
14886 TYPE_FIELD_PRIVATE_BITS (type) =
14887 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14888 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14889
14890 TYPE_FIELD_PROTECTED_BITS (type) =
14891 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14892 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14893
14894 TYPE_FIELD_IGNORE_BITS (type) =
14895 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14896 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14897 }
14898
14899 /* If the type has baseclasses, allocate and clear a bit vector for
14900 TYPE_FIELD_VIRTUAL_BITS. */
14901 if (!fip->baseclasses.empty () && cu->language != language_ada)
14902 {
14903 int num_bytes = B_BYTES (fip->baseclasses.size ());
14904 unsigned char *pointer;
14905
14906 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14907 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14908 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14909 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14910 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14911 }
14912
14913 if (!fip->variant_parts.empty ())
14914 add_variant_property (fip, type, cu);
14915
14916 /* Copy the saved-up fields into the field vector. */
14917 for (int i = 0; i < nfields; ++i)
14918 {
14919 struct nextfield &field
14920 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14921 : fip->fields[i - fip->baseclasses.size ()]);
14922
14923 type->field (i) = field.field;
14924 switch (field.accessibility)
14925 {
14926 case DW_ACCESS_private:
14927 if (cu->language != language_ada)
14928 SET_TYPE_FIELD_PRIVATE (type, i);
14929 break;
14930
14931 case DW_ACCESS_protected:
14932 if (cu->language != language_ada)
14933 SET_TYPE_FIELD_PROTECTED (type, i);
14934 break;
14935
14936 case DW_ACCESS_public:
14937 break;
14938
14939 default:
14940 /* Unknown accessibility. Complain and treat it as public. */
14941 {
14942 complaint (_("unsupported accessibility %d"),
14943 field.accessibility);
14944 }
14945 break;
14946 }
14947 if (i < fip->baseclasses.size ())
14948 {
14949 switch (field.virtuality)
14950 {
14951 case DW_VIRTUALITY_virtual:
14952 case DW_VIRTUALITY_pure_virtual:
14953 if (cu->language == language_ada)
14954 error (_("unexpected virtuality in component of Ada type"));
14955 SET_TYPE_FIELD_VIRTUAL (type, i);
14956 break;
14957 }
14958 }
14959 }
14960 }
14961
14962 /* Return true if this member function is a constructor, false
14963 otherwise. */
14964
14965 static int
14966 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14967 {
14968 const char *fieldname;
14969 const char *type_name;
14970 int len;
14971
14972 if (die->parent == NULL)
14973 return 0;
14974
14975 if (die->parent->tag != DW_TAG_structure_type
14976 && die->parent->tag != DW_TAG_union_type
14977 && die->parent->tag != DW_TAG_class_type)
14978 return 0;
14979
14980 fieldname = dwarf2_name (die, cu);
14981 type_name = dwarf2_name (die->parent, cu);
14982 if (fieldname == NULL || type_name == NULL)
14983 return 0;
14984
14985 len = strlen (fieldname);
14986 return (strncmp (fieldname, type_name, len) == 0
14987 && (type_name[len] == '\0' || type_name[len] == '<'));
14988 }
14989
14990 /* Check if the given VALUE is a recognized enum
14991 dwarf_defaulted_attribute constant according to DWARF5 spec,
14992 Table 7.24. */
14993
14994 static bool
14995 is_valid_DW_AT_defaulted (ULONGEST value)
14996 {
14997 switch (value)
14998 {
14999 case DW_DEFAULTED_no:
15000 case DW_DEFAULTED_in_class:
15001 case DW_DEFAULTED_out_of_class:
15002 return true;
15003 }
15004
15005 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15006 return false;
15007 }
15008
15009 /* Add a member function to the proper fieldlist. */
15010
15011 static void
15012 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15013 struct type *type, struct dwarf2_cu *cu)
15014 {
15015 struct objfile *objfile = cu->per_objfile->objfile;
15016 struct attribute *attr;
15017 int i;
15018 struct fnfieldlist *flp = nullptr;
15019 struct fn_field *fnp;
15020 const char *fieldname;
15021 struct type *this_type;
15022 enum dwarf_access_attribute accessibility;
15023
15024 if (cu->language == language_ada)
15025 error (_("unexpected member function in Ada type"));
15026
15027 /* Get name of member function. */
15028 fieldname = dwarf2_name (die, cu);
15029 if (fieldname == NULL)
15030 return;
15031
15032 /* Look up member function name in fieldlist. */
15033 for (i = 0; i < fip->fnfieldlists.size (); i++)
15034 {
15035 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15036 {
15037 flp = &fip->fnfieldlists[i];
15038 break;
15039 }
15040 }
15041
15042 /* Create a new fnfieldlist if necessary. */
15043 if (flp == nullptr)
15044 {
15045 fip->fnfieldlists.emplace_back ();
15046 flp = &fip->fnfieldlists.back ();
15047 flp->name = fieldname;
15048 i = fip->fnfieldlists.size () - 1;
15049 }
15050
15051 /* Create a new member function field and add it to the vector of
15052 fnfieldlists. */
15053 flp->fnfields.emplace_back ();
15054 fnp = &flp->fnfields.back ();
15055
15056 /* Delay processing of the physname until later. */
15057 if (cu->language == language_cplus)
15058 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15059 die, cu);
15060 else
15061 {
15062 const char *physname = dwarf2_physname (fieldname, die, cu);
15063 fnp->physname = physname ? physname : "";
15064 }
15065
15066 fnp->type = alloc_type (objfile);
15067 this_type = read_type_die (die, cu);
15068 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15069 {
15070 int nparams = this_type->num_fields ();
15071
15072 /* TYPE is the domain of this method, and THIS_TYPE is the type
15073 of the method itself (TYPE_CODE_METHOD). */
15074 smash_to_method_type (fnp->type, type,
15075 TYPE_TARGET_TYPE (this_type),
15076 this_type->fields (),
15077 this_type->num_fields (),
15078 TYPE_VARARGS (this_type));
15079
15080 /* Handle static member functions.
15081 Dwarf2 has no clean way to discern C++ static and non-static
15082 member functions. G++ helps GDB by marking the first
15083 parameter for non-static member functions (which is the this
15084 pointer) as artificial. We obtain this information from
15085 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15086 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15087 fnp->voffset = VOFFSET_STATIC;
15088 }
15089 else
15090 complaint (_("member function type missing for '%s'"),
15091 dwarf2_full_name (fieldname, die, cu));
15092
15093 /* Get fcontext from DW_AT_containing_type if present. */
15094 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15095 fnp->fcontext = die_containing_type (die, cu);
15096
15097 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15098 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15099
15100 /* Get accessibility. */
15101 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15102 if (attr != nullptr)
15103 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15104 else
15105 accessibility = dwarf2_default_access_attribute (die, cu);
15106 switch (accessibility)
15107 {
15108 case DW_ACCESS_private:
15109 fnp->is_private = 1;
15110 break;
15111 case DW_ACCESS_protected:
15112 fnp->is_protected = 1;
15113 break;
15114 }
15115
15116 /* Check for artificial methods. */
15117 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15118 if (attr && DW_UNSND (attr) != 0)
15119 fnp->is_artificial = 1;
15120
15121 /* Check for defaulted methods. */
15122 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15123 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15124 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15125
15126 /* Check for deleted methods. */
15127 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15128 if (attr != nullptr && DW_UNSND (attr) != 0)
15129 fnp->is_deleted = 1;
15130
15131 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15132
15133 /* Get index in virtual function table if it is a virtual member
15134 function. For older versions of GCC, this is an offset in the
15135 appropriate virtual table, as specified by DW_AT_containing_type.
15136 For everyone else, it is an expression to be evaluated relative
15137 to the object address. */
15138
15139 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15140 if (attr != nullptr)
15141 {
15142 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15143 {
15144 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15145 {
15146 /* Old-style GCC. */
15147 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15148 }
15149 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15150 || (DW_BLOCK (attr)->size > 1
15151 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15152 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15153 {
15154 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15155 if ((fnp->voffset % cu->header.addr_size) != 0)
15156 dwarf2_complex_location_expr_complaint ();
15157 else
15158 fnp->voffset /= cu->header.addr_size;
15159 fnp->voffset += 2;
15160 }
15161 else
15162 dwarf2_complex_location_expr_complaint ();
15163
15164 if (!fnp->fcontext)
15165 {
15166 /* If there is no `this' field and no DW_AT_containing_type,
15167 we cannot actually find a base class context for the
15168 vtable! */
15169 if (this_type->num_fields () == 0
15170 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15171 {
15172 complaint (_("cannot determine context for virtual member "
15173 "function \"%s\" (offset %s)"),
15174 fieldname, sect_offset_str (die->sect_off));
15175 }
15176 else
15177 {
15178 fnp->fcontext
15179 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15180 }
15181 }
15182 }
15183 else if (attr->form_is_section_offset ())
15184 {
15185 dwarf2_complex_location_expr_complaint ();
15186 }
15187 else
15188 {
15189 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15190 fieldname);
15191 }
15192 }
15193 else
15194 {
15195 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15196 if (attr && DW_UNSND (attr))
15197 {
15198 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15199 complaint (_("Member function \"%s\" (offset %s) is virtual "
15200 "but the vtable offset is not specified"),
15201 fieldname, sect_offset_str (die->sect_off));
15202 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15203 TYPE_CPLUS_DYNAMIC (type) = 1;
15204 }
15205 }
15206 }
15207
15208 /* Create the vector of member function fields, and attach it to the type. */
15209
15210 static void
15211 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15212 struct dwarf2_cu *cu)
15213 {
15214 if (cu->language == language_ada)
15215 error (_("unexpected member functions in Ada type"));
15216
15217 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15218 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15219 TYPE_ALLOC (type,
15220 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15221
15222 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15223 {
15224 struct fnfieldlist &nf = fip->fnfieldlists[i];
15225 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15226
15227 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15228 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15229 fn_flp->fn_fields = (struct fn_field *)
15230 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15231
15232 for (int k = 0; k < nf.fnfields.size (); ++k)
15233 fn_flp->fn_fields[k] = nf.fnfields[k];
15234 }
15235
15236 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15237 }
15238
15239 /* Returns non-zero if NAME is the name of a vtable member in CU's
15240 language, zero otherwise. */
15241 static int
15242 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15243 {
15244 static const char vptr[] = "_vptr";
15245
15246 /* Look for the C++ form of the vtable. */
15247 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15248 return 1;
15249
15250 return 0;
15251 }
15252
15253 /* GCC outputs unnamed structures that are really pointers to member
15254 functions, with the ABI-specified layout. If TYPE describes
15255 such a structure, smash it into a member function type.
15256
15257 GCC shouldn't do this; it should just output pointer to member DIEs.
15258 This is GCC PR debug/28767. */
15259
15260 static void
15261 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15262 {
15263 struct type *pfn_type, *self_type, *new_type;
15264
15265 /* Check for a structure with no name and two children. */
15266 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15267 return;
15268
15269 /* Check for __pfn and __delta members. */
15270 if (TYPE_FIELD_NAME (type, 0) == NULL
15271 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15272 || TYPE_FIELD_NAME (type, 1) == NULL
15273 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15274 return;
15275
15276 /* Find the type of the method. */
15277 pfn_type = TYPE_FIELD_TYPE (type, 0);
15278 if (pfn_type == NULL
15279 || pfn_type->code () != TYPE_CODE_PTR
15280 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15281 return;
15282
15283 /* Look for the "this" argument. */
15284 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15285 if (pfn_type->num_fields () == 0
15286 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15287 || TYPE_FIELD_TYPE (pfn_type, 0)->code () != TYPE_CODE_PTR)
15288 return;
15289
15290 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15291 new_type = alloc_type (objfile);
15292 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15293 pfn_type->fields (), pfn_type->num_fields (),
15294 TYPE_VARARGS (pfn_type));
15295 smash_to_methodptr_type (type, new_type);
15296 }
15297
15298 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15299 appropriate error checking and issuing complaints if there is a
15300 problem. */
15301
15302 static ULONGEST
15303 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15304 {
15305 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15306
15307 if (attr == nullptr)
15308 return 0;
15309
15310 if (!attr->form_is_constant ())
15311 {
15312 complaint (_("DW_AT_alignment must have constant form"
15313 " - DIE at %s [in module %s]"),
15314 sect_offset_str (die->sect_off),
15315 objfile_name (cu->per_objfile->objfile));
15316 return 0;
15317 }
15318
15319 ULONGEST align;
15320 if (attr->form == DW_FORM_sdata)
15321 {
15322 LONGEST val = DW_SND (attr);
15323 if (val < 0)
15324 {
15325 complaint (_("DW_AT_alignment value must not be negative"
15326 " - DIE at %s [in module %s]"),
15327 sect_offset_str (die->sect_off),
15328 objfile_name (cu->per_objfile->objfile));
15329 return 0;
15330 }
15331 align = val;
15332 }
15333 else
15334 align = DW_UNSND (attr);
15335
15336 if (align == 0)
15337 {
15338 complaint (_("DW_AT_alignment value must not be zero"
15339 " - DIE at %s [in module %s]"),
15340 sect_offset_str (die->sect_off),
15341 objfile_name (cu->per_objfile->objfile));
15342 return 0;
15343 }
15344 if ((align & (align - 1)) != 0)
15345 {
15346 complaint (_("DW_AT_alignment value must be a power of 2"
15347 " - DIE at %s [in module %s]"),
15348 sect_offset_str (die->sect_off),
15349 objfile_name (cu->per_objfile->objfile));
15350 return 0;
15351 }
15352
15353 return align;
15354 }
15355
15356 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15357 the alignment for TYPE. */
15358
15359 static void
15360 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15361 struct type *type)
15362 {
15363 if (!set_type_align (type, get_alignment (cu, die)))
15364 complaint (_("DW_AT_alignment value too large"
15365 " - DIE at %s [in module %s]"),
15366 sect_offset_str (die->sect_off),
15367 objfile_name (cu->per_objfile->objfile));
15368 }
15369
15370 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15371 constant for a type, according to DWARF5 spec, Table 5.5. */
15372
15373 static bool
15374 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15375 {
15376 switch (value)
15377 {
15378 case DW_CC_normal:
15379 case DW_CC_pass_by_reference:
15380 case DW_CC_pass_by_value:
15381 return true;
15382
15383 default:
15384 complaint (_("unrecognized DW_AT_calling_convention value "
15385 "(%s) for a type"), pulongest (value));
15386 return false;
15387 }
15388 }
15389
15390 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15391 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15392 also according to GNU-specific values (see include/dwarf2.h). */
15393
15394 static bool
15395 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15396 {
15397 switch (value)
15398 {
15399 case DW_CC_normal:
15400 case DW_CC_program:
15401 case DW_CC_nocall:
15402 return true;
15403
15404 case DW_CC_GNU_renesas_sh:
15405 case DW_CC_GNU_borland_fastcall_i386:
15406 case DW_CC_GDB_IBM_OpenCL:
15407 return true;
15408
15409 default:
15410 complaint (_("unrecognized DW_AT_calling_convention value "
15411 "(%s) for a subroutine"), pulongest (value));
15412 return false;
15413 }
15414 }
15415
15416 /* Called when we find the DIE that starts a structure or union scope
15417 (definition) to create a type for the structure or union. Fill in
15418 the type's name and general properties; the members will not be
15419 processed until process_structure_scope. A symbol table entry for
15420 the type will also not be done until process_structure_scope (assuming
15421 the type has a name).
15422
15423 NOTE: we need to call these functions regardless of whether or not the
15424 DIE has a DW_AT_name attribute, since it might be an anonymous
15425 structure or union. This gets the type entered into our set of
15426 user defined types. */
15427
15428 static struct type *
15429 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15430 {
15431 struct objfile *objfile = cu->per_objfile->objfile;
15432 struct type *type;
15433 struct attribute *attr;
15434 const char *name;
15435
15436 /* If the definition of this type lives in .debug_types, read that type.
15437 Don't follow DW_AT_specification though, that will take us back up
15438 the chain and we want to go down. */
15439 attr = die->attr (DW_AT_signature);
15440 if (attr != nullptr)
15441 {
15442 type = get_DW_AT_signature_type (die, attr, cu);
15443
15444 /* The type's CU may not be the same as CU.
15445 Ensure TYPE is recorded with CU in die_type_hash. */
15446 return set_die_type (die, type, cu);
15447 }
15448
15449 type = alloc_type (objfile);
15450 INIT_CPLUS_SPECIFIC (type);
15451
15452 name = dwarf2_name (die, cu);
15453 if (name != NULL)
15454 {
15455 if (cu->language == language_cplus
15456 || cu->language == language_d
15457 || cu->language == language_rust)
15458 {
15459 const char *full_name = dwarf2_full_name (name, die, cu);
15460
15461 /* dwarf2_full_name might have already finished building the DIE's
15462 type. If so, there is no need to continue. */
15463 if (get_die_type (die, cu) != NULL)
15464 return get_die_type (die, cu);
15465
15466 type->set_name (full_name);
15467 }
15468 else
15469 {
15470 /* The name is already allocated along with this objfile, so
15471 we don't need to duplicate it for the type. */
15472 type->set_name (name);
15473 }
15474 }
15475
15476 if (die->tag == DW_TAG_structure_type)
15477 {
15478 type->set_code (TYPE_CODE_STRUCT);
15479 }
15480 else if (die->tag == DW_TAG_union_type)
15481 {
15482 type->set_code (TYPE_CODE_UNION);
15483 }
15484 else
15485 {
15486 type->set_code (TYPE_CODE_STRUCT);
15487 }
15488
15489 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15490 TYPE_DECLARED_CLASS (type) = 1;
15491
15492 /* Store the calling convention in the type if it's available in
15493 the die. Otherwise the calling convention remains set to
15494 the default value DW_CC_normal. */
15495 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15496 if (attr != nullptr
15497 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15498 {
15499 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15500 TYPE_CPLUS_CALLING_CONVENTION (type)
15501 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15502 }
15503
15504 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15505 if (attr != nullptr)
15506 {
15507 if (attr->form_is_constant ())
15508 TYPE_LENGTH (type) = DW_UNSND (attr);
15509 else
15510 {
15511 struct dynamic_prop prop;
15512 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
15513 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15514 TYPE_LENGTH (type) = 0;
15515 }
15516 }
15517 else
15518 {
15519 TYPE_LENGTH (type) = 0;
15520 }
15521
15522 maybe_set_alignment (cu, die, type);
15523
15524 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15525 {
15526 /* ICC<14 does not output the required DW_AT_declaration on
15527 incomplete types, but gives them a size of zero. */
15528 TYPE_STUB (type) = 1;
15529 }
15530 else
15531 TYPE_STUB_SUPPORTED (type) = 1;
15532
15533 if (die_is_declaration (die, cu))
15534 TYPE_STUB (type) = 1;
15535 else if (attr == NULL && die->child == NULL
15536 && producer_is_realview (cu->producer))
15537 /* RealView does not output the required DW_AT_declaration
15538 on incomplete types. */
15539 TYPE_STUB (type) = 1;
15540
15541 /* We need to add the type field to the die immediately so we don't
15542 infinitely recurse when dealing with pointers to the structure
15543 type within the structure itself. */
15544 set_die_type (die, type, cu);
15545
15546 /* set_die_type should be already done. */
15547 set_descriptive_type (type, die, cu);
15548
15549 return type;
15550 }
15551
15552 static void handle_struct_member_die
15553 (struct die_info *child_die,
15554 struct type *type,
15555 struct field_info *fi,
15556 std::vector<struct symbol *> *template_args,
15557 struct dwarf2_cu *cu);
15558
15559 /* A helper for handle_struct_member_die that handles
15560 DW_TAG_variant_part. */
15561
15562 static void
15563 handle_variant_part (struct die_info *die, struct type *type,
15564 struct field_info *fi,
15565 std::vector<struct symbol *> *template_args,
15566 struct dwarf2_cu *cu)
15567 {
15568 variant_part_builder *new_part;
15569 if (fi->current_variant_part == nullptr)
15570 {
15571 fi->variant_parts.emplace_back ();
15572 new_part = &fi->variant_parts.back ();
15573 }
15574 else if (!fi->current_variant_part->processing_variant)
15575 {
15576 complaint (_("nested DW_TAG_variant_part seen "
15577 "- DIE at %s [in module %s]"),
15578 sect_offset_str (die->sect_off),
15579 objfile_name (cu->per_objfile->objfile));
15580 return;
15581 }
15582 else
15583 {
15584 variant_field &current = fi->current_variant_part->variants.back ();
15585 current.variant_parts.emplace_back ();
15586 new_part = &current.variant_parts.back ();
15587 }
15588
15589 /* When we recurse, we want callees to add to this new variant
15590 part. */
15591 scoped_restore save_current_variant_part
15592 = make_scoped_restore (&fi->current_variant_part, new_part);
15593
15594 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15595 if (discr == NULL)
15596 {
15597 /* It's a univariant form, an extension we support. */
15598 }
15599 else if (discr->form_is_ref ())
15600 {
15601 struct dwarf2_cu *target_cu = cu;
15602 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15603
15604 new_part->discriminant_offset = target_die->sect_off;
15605 }
15606 else
15607 {
15608 complaint (_("DW_AT_discr does not have DIE reference form"
15609 " - DIE at %s [in module %s]"),
15610 sect_offset_str (die->sect_off),
15611 objfile_name (cu->per_objfile->objfile));
15612 }
15613
15614 for (die_info *child_die = die->child;
15615 child_die != NULL;
15616 child_die = child_die->sibling)
15617 handle_struct_member_die (child_die, type, fi, template_args, cu);
15618 }
15619
15620 /* A helper for handle_struct_member_die that handles
15621 DW_TAG_variant. */
15622
15623 static void
15624 handle_variant (struct die_info *die, struct type *type,
15625 struct field_info *fi,
15626 std::vector<struct symbol *> *template_args,
15627 struct dwarf2_cu *cu)
15628 {
15629 if (fi->current_variant_part == nullptr)
15630 {
15631 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15632 "- DIE at %s [in module %s]"),
15633 sect_offset_str (die->sect_off),
15634 objfile_name (cu->per_objfile->objfile));
15635 return;
15636 }
15637 if (fi->current_variant_part->processing_variant)
15638 {
15639 complaint (_("nested DW_TAG_variant seen "
15640 "- DIE at %s [in module %s]"),
15641 sect_offset_str (die->sect_off),
15642 objfile_name (cu->per_objfile->objfile));
15643 return;
15644 }
15645
15646 scoped_restore save_processing_variant
15647 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15648 true);
15649
15650 fi->current_variant_part->variants.emplace_back ();
15651 variant_field &variant = fi->current_variant_part->variants.back ();
15652 variant.first_field = fi->fields.size ();
15653
15654 /* In a variant we want to get the discriminant and also add a
15655 field for our sole member child. */
15656 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15657 if (discr == nullptr)
15658 {
15659 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15660 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15661 variant.default_branch = true;
15662 else
15663 variant.discr_list_data = DW_BLOCK (discr);
15664 }
15665 else
15666 variant.discriminant_value = DW_UNSND (discr);
15667
15668 for (die_info *variant_child = die->child;
15669 variant_child != NULL;
15670 variant_child = variant_child->sibling)
15671 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15672
15673 variant.last_field = fi->fields.size ();
15674 }
15675
15676 /* A helper for process_structure_scope that handles a single member
15677 DIE. */
15678
15679 static void
15680 handle_struct_member_die (struct die_info *child_die, struct type *type,
15681 struct field_info *fi,
15682 std::vector<struct symbol *> *template_args,
15683 struct dwarf2_cu *cu)
15684 {
15685 if (child_die->tag == DW_TAG_member
15686 || child_die->tag == DW_TAG_variable)
15687 {
15688 /* NOTE: carlton/2002-11-05: A C++ static data member
15689 should be a DW_TAG_member that is a declaration, but
15690 all versions of G++ as of this writing (so through at
15691 least 3.2.1) incorrectly generate DW_TAG_variable
15692 tags for them instead. */
15693 dwarf2_add_field (fi, child_die, cu);
15694 }
15695 else if (child_die->tag == DW_TAG_subprogram)
15696 {
15697 /* Rust doesn't have member functions in the C++ sense.
15698 However, it does emit ordinary functions as children
15699 of a struct DIE. */
15700 if (cu->language == language_rust)
15701 read_func_scope (child_die, cu);
15702 else
15703 {
15704 /* C++ member function. */
15705 dwarf2_add_member_fn (fi, child_die, type, cu);
15706 }
15707 }
15708 else if (child_die->tag == DW_TAG_inheritance)
15709 {
15710 /* C++ base class field. */
15711 dwarf2_add_field (fi, child_die, cu);
15712 }
15713 else if (type_can_define_types (child_die))
15714 dwarf2_add_type_defn (fi, child_die, cu);
15715 else if (child_die->tag == DW_TAG_template_type_param
15716 || child_die->tag == DW_TAG_template_value_param)
15717 {
15718 struct symbol *arg = new_symbol (child_die, NULL, cu);
15719
15720 if (arg != NULL)
15721 template_args->push_back (arg);
15722 }
15723 else if (child_die->tag == DW_TAG_variant_part)
15724 handle_variant_part (child_die, type, fi, template_args, cu);
15725 else if (child_die->tag == DW_TAG_variant)
15726 handle_variant (child_die, type, fi, template_args, cu);
15727 }
15728
15729 /* Finish creating a structure or union type, including filling in
15730 its members and creating a symbol for it. */
15731
15732 static void
15733 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15734 {
15735 struct objfile *objfile = cu->per_objfile->objfile;
15736 struct die_info *child_die;
15737 struct type *type;
15738
15739 type = get_die_type (die, cu);
15740 if (type == NULL)
15741 type = read_structure_type (die, cu);
15742
15743 bool has_template_parameters = false;
15744 if (die->child != NULL && ! die_is_declaration (die, cu))
15745 {
15746 struct field_info fi;
15747 std::vector<struct symbol *> template_args;
15748
15749 child_die = die->child;
15750
15751 while (child_die && child_die->tag)
15752 {
15753 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15754 child_die = child_die->sibling;
15755 }
15756
15757 /* Attach template arguments to type. */
15758 if (!template_args.empty ())
15759 {
15760 has_template_parameters = true;
15761 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15762 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15763 TYPE_TEMPLATE_ARGUMENTS (type)
15764 = XOBNEWVEC (&objfile->objfile_obstack,
15765 struct symbol *,
15766 TYPE_N_TEMPLATE_ARGUMENTS (type));
15767 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15768 template_args.data (),
15769 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15770 * sizeof (struct symbol *)));
15771 }
15772
15773 /* Attach fields and member functions to the type. */
15774 if (fi.nfields () > 0)
15775 dwarf2_attach_fields_to_type (&fi, type, cu);
15776 if (!fi.fnfieldlists.empty ())
15777 {
15778 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15779
15780 /* Get the type which refers to the base class (possibly this
15781 class itself) which contains the vtable pointer for the current
15782 class from the DW_AT_containing_type attribute. This use of
15783 DW_AT_containing_type is a GNU extension. */
15784
15785 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15786 {
15787 struct type *t = die_containing_type (die, cu);
15788
15789 set_type_vptr_basetype (type, t);
15790 if (type == t)
15791 {
15792 int i;
15793
15794 /* Our own class provides vtbl ptr. */
15795 for (i = t->num_fields () - 1;
15796 i >= TYPE_N_BASECLASSES (t);
15797 --i)
15798 {
15799 const char *fieldname = TYPE_FIELD_NAME (t, i);
15800
15801 if (is_vtable_name (fieldname, cu))
15802 {
15803 set_type_vptr_fieldno (type, i);
15804 break;
15805 }
15806 }
15807
15808 /* Complain if virtual function table field not found. */
15809 if (i < TYPE_N_BASECLASSES (t))
15810 complaint (_("virtual function table pointer "
15811 "not found when defining class '%s'"),
15812 type->name () ? type->name () : "");
15813 }
15814 else
15815 {
15816 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15817 }
15818 }
15819 else if (cu->producer
15820 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15821 {
15822 /* The IBM XLC compiler does not provide direct indication
15823 of the containing type, but the vtable pointer is
15824 always named __vfp. */
15825
15826 int i;
15827
15828 for (i = type->num_fields () - 1;
15829 i >= TYPE_N_BASECLASSES (type);
15830 --i)
15831 {
15832 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15833 {
15834 set_type_vptr_fieldno (type, i);
15835 set_type_vptr_basetype (type, type);
15836 break;
15837 }
15838 }
15839 }
15840 }
15841
15842 /* Copy fi.typedef_field_list linked list elements content into the
15843 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15844 if (!fi.typedef_field_list.empty ())
15845 {
15846 int count = fi.typedef_field_list.size ();
15847
15848 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15849 TYPE_TYPEDEF_FIELD_ARRAY (type)
15850 = ((struct decl_field *)
15851 TYPE_ALLOC (type,
15852 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15853 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15854
15855 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15856 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15857 }
15858
15859 /* Copy fi.nested_types_list linked list elements content into the
15860 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15861 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15862 {
15863 int count = fi.nested_types_list.size ();
15864
15865 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15866 TYPE_NESTED_TYPES_ARRAY (type)
15867 = ((struct decl_field *)
15868 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15869 TYPE_NESTED_TYPES_COUNT (type) = count;
15870
15871 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15872 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15873 }
15874 }
15875
15876 quirk_gcc_member_function_pointer (type, objfile);
15877 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15878 cu->rust_unions.push_back (type);
15879
15880 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15881 snapshots) has been known to create a die giving a declaration
15882 for a class that has, as a child, a die giving a definition for a
15883 nested class. So we have to process our children even if the
15884 current die is a declaration. Normally, of course, a declaration
15885 won't have any children at all. */
15886
15887 child_die = die->child;
15888
15889 while (child_die != NULL && child_die->tag)
15890 {
15891 if (child_die->tag == DW_TAG_member
15892 || child_die->tag == DW_TAG_variable
15893 || child_die->tag == DW_TAG_inheritance
15894 || child_die->tag == DW_TAG_template_value_param
15895 || child_die->tag == DW_TAG_template_type_param)
15896 {
15897 /* Do nothing. */
15898 }
15899 else
15900 process_die (child_die, cu);
15901
15902 child_die = child_die->sibling;
15903 }
15904
15905 /* Do not consider external references. According to the DWARF standard,
15906 these DIEs are identified by the fact that they have no byte_size
15907 attribute, and a declaration attribute. */
15908 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15909 || !die_is_declaration (die, cu)
15910 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15911 {
15912 struct symbol *sym = new_symbol (die, type, cu);
15913
15914 if (has_template_parameters)
15915 {
15916 struct symtab *symtab;
15917 if (sym != nullptr)
15918 symtab = symbol_symtab (sym);
15919 else if (cu->line_header != nullptr)
15920 {
15921 /* Any related symtab will do. */
15922 symtab
15923 = cu->line_header->file_names ()[0].symtab;
15924 }
15925 else
15926 {
15927 symtab = nullptr;
15928 complaint (_("could not find suitable "
15929 "symtab for template parameter"
15930 " - DIE at %s [in module %s]"),
15931 sect_offset_str (die->sect_off),
15932 objfile_name (objfile));
15933 }
15934
15935 if (symtab != nullptr)
15936 {
15937 /* Make sure that the symtab is set on the new symbols.
15938 Even though they don't appear in this symtab directly,
15939 other parts of gdb assume that symbols do, and this is
15940 reasonably true. */
15941 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15942 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15943 }
15944 }
15945 }
15946 }
15947
15948 /* Assuming DIE is an enumeration type, and TYPE is its associated
15949 type, update TYPE using some information only available in DIE's
15950 children. In particular, the fields are computed. */
15951
15952 static void
15953 update_enumeration_type_from_children (struct die_info *die,
15954 struct type *type,
15955 struct dwarf2_cu *cu)
15956 {
15957 struct die_info *child_die;
15958 int unsigned_enum = 1;
15959 int flag_enum = 1;
15960
15961 auto_obstack obstack;
15962 std::vector<struct field> fields;
15963
15964 for (child_die = die->child;
15965 child_die != NULL && child_die->tag;
15966 child_die = child_die->sibling)
15967 {
15968 struct attribute *attr;
15969 LONGEST value;
15970 const gdb_byte *bytes;
15971 struct dwarf2_locexpr_baton *baton;
15972 const char *name;
15973
15974 if (child_die->tag != DW_TAG_enumerator)
15975 continue;
15976
15977 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15978 if (attr == NULL)
15979 continue;
15980
15981 name = dwarf2_name (child_die, cu);
15982 if (name == NULL)
15983 name = "<anonymous enumerator>";
15984
15985 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15986 &value, &bytes, &baton);
15987 if (value < 0)
15988 {
15989 unsigned_enum = 0;
15990 flag_enum = 0;
15991 }
15992 else
15993 {
15994 if (count_one_bits_ll (value) >= 2)
15995 flag_enum = 0;
15996 }
15997
15998 fields.emplace_back ();
15999 struct field &field = fields.back ();
16000 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16001 SET_FIELD_ENUMVAL (field, value);
16002 }
16003
16004 if (!fields.empty ())
16005 {
16006 type->set_num_fields (fields.size ());
16007 type->set_fields
16008 ((struct field *)
16009 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16010 memcpy (type->fields (), fields.data (),
16011 sizeof (struct field) * fields.size ());
16012 }
16013
16014 if (unsigned_enum)
16015 TYPE_UNSIGNED (type) = 1;
16016 if (flag_enum)
16017 TYPE_FLAG_ENUM (type) = 1;
16018 }
16019
16020 /* Given a DW_AT_enumeration_type die, set its type. We do not
16021 complete the type's fields yet, or create any symbols. */
16022
16023 static struct type *
16024 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16025 {
16026 struct objfile *objfile = cu->per_objfile->objfile;
16027 struct type *type;
16028 struct attribute *attr;
16029 const char *name;
16030
16031 /* If the definition of this type lives in .debug_types, read that type.
16032 Don't follow DW_AT_specification though, that will take us back up
16033 the chain and we want to go down. */
16034 attr = die->attr (DW_AT_signature);
16035 if (attr != nullptr)
16036 {
16037 type = get_DW_AT_signature_type (die, attr, cu);
16038
16039 /* The type's CU may not be the same as CU.
16040 Ensure TYPE is recorded with CU in die_type_hash. */
16041 return set_die_type (die, type, cu);
16042 }
16043
16044 type = alloc_type (objfile);
16045
16046 type->set_code (TYPE_CODE_ENUM);
16047 name = dwarf2_full_name (NULL, die, cu);
16048 if (name != NULL)
16049 type->set_name (name);
16050
16051 attr = dwarf2_attr (die, DW_AT_type, cu);
16052 if (attr != NULL)
16053 {
16054 struct type *underlying_type = die_type (die, cu);
16055
16056 TYPE_TARGET_TYPE (type) = underlying_type;
16057 }
16058
16059 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16060 if (attr != nullptr)
16061 {
16062 TYPE_LENGTH (type) = DW_UNSND (attr);
16063 }
16064 else
16065 {
16066 TYPE_LENGTH (type) = 0;
16067 }
16068
16069 maybe_set_alignment (cu, die, type);
16070
16071 /* The enumeration DIE can be incomplete. In Ada, any type can be
16072 declared as private in the package spec, and then defined only
16073 inside the package body. Such types are known as Taft Amendment
16074 Types. When another package uses such a type, an incomplete DIE
16075 may be generated by the compiler. */
16076 if (die_is_declaration (die, cu))
16077 TYPE_STUB (type) = 1;
16078
16079 /* If this type has an underlying type that is not a stub, then we
16080 may use its attributes. We always use the "unsigned" attribute
16081 in this situation, because ordinarily we guess whether the type
16082 is unsigned -- but the guess can be wrong and the underlying type
16083 can tell us the reality. However, we defer to a local size
16084 attribute if one exists, because this lets the compiler override
16085 the underlying type if needed. */
16086 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16087 {
16088 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16089 underlying_type = check_typedef (underlying_type);
16090 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
16091 if (TYPE_LENGTH (type) == 0)
16092 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16093 if (TYPE_RAW_ALIGN (type) == 0
16094 && TYPE_RAW_ALIGN (underlying_type) != 0)
16095 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16096 }
16097
16098 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16099
16100 set_die_type (die, type, cu);
16101
16102 /* Finish the creation of this type by using the enum's children.
16103 Note that, as usual, this must come after set_die_type to avoid
16104 infinite recursion when trying to compute the names of the
16105 enumerators. */
16106 update_enumeration_type_from_children (die, type, cu);
16107
16108 return type;
16109 }
16110
16111 /* Given a pointer to a die which begins an enumeration, process all
16112 the dies that define the members of the enumeration, and create the
16113 symbol for the enumeration type.
16114
16115 NOTE: We reverse the order of the element list. */
16116
16117 static void
16118 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16119 {
16120 struct type *this_type;
16121
16122 this_type = get_die_type (die, cu);
16123 if (this_type == NULL)
16124 this_type = read_enumeration_type (die, cu);
16125
16126 if (die->child != NULL)
16127 {
16128 struct die_info *child_die;
16129 const char *name;
16130
16131 child_die = die->child;
16132 while (child_die && child_die->tag)
16133 {
16134 if (child_die->tag != DW_TAG_enumerator)
16135 {
16136 process_die (child_die, cu);
16137 }
16138 else
16139 {
16140 name = dwarf2_name (child_die, cu);
16141 if (name)
16142 new_symbol (child_die, this_type, cu);
16143 }
16144
16145 child_die = child_die->sibling;
16146 }
16147 }
16148
16149 /* If we are reading an enum from a .debug_types unit, and the enum
16150 is a declaration, and the enum is not the signatured type in the
16151 unit, then we do not want to add a symbol for it. Adding a
16152 symbol would in some cases obscure the true definition of the
16153 enum, giving users an incomplete type when the definition is
16154 actually available. Note that we do not want to do this for all
16155 enums which are just declarations, because C++0x allows forward
16156 enum declarations. */
16157 if (cu->per_cu->is_debug_types
16158 && die_is_declaration (die, cu))
16159 {
16160 struct signatured_type *sig_type;
16161
16162 sig_type = (struct signatured_type *) cu->per_cu;
16163 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16164 if (sig_type->type_offset_in_section != die->sect_off)
16165 return;
16166 }
16167
16168 new_symbol (die, this_type, cu);
16169 }
16170
16171 /* Extract all information from a DW_TAG_array_type DIE and put it in
16172 the DIE's type field. For now, this only handles one dimensional
16173 arrays. */
16174
16175 static struct type *
16176 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16177 {
16178 struct objfile *objfile = cu->per_objfile->objfile;
16179 struct die_info *child_die;
16180 struct type *type;
16181 struct type *element_type, *range_type, *index_type;
16182 struct attribute *attr;
16183 const char *name;
16184 struct dynamic_prop *byte_stride_prop = NULL;
16185 unsigned int bit_stride = 0;
16186
16187 element_type = die_type (die, cu);
16188
16189 /* The die_type call above may have already set the type for this DIE. */
16190 type = get_die_type (die, cu);
16191 if (type)
16192 return type;
16193
16194 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16195 if (attr != NULL)
16196 {
16197 int stride_ok;
16198 struct type *prop_type = cu->addr_sized_int_type (false);
16199
16200 byte_stride_prop
16201 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16202 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16203 prop_type);
16204 if (!stride_ok)
16205 {
16206 complaint (_("unable to read array DW_AT_byte_stride "
16207 " - DIE at %s [in module %s]"),
16208 sect_offset_str (die->sect_off),
16209 objfile_name (cu->per_objfile->objfile));
16210 /* Ignore this attribute. We will likely not be able to print
16211 arrays of this type correctly, but there is little we can do
16212 to help if we cannot read the attribute's value. */
16213 byte_stride_prop = NULL;
16214 }
16215 }
16216
16217 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16218 if (attr != NULL)
16219 bit_stride = DW_UNSND (attr);
16220
16221 /* Irix 6.2 native cc creates array types without children for
16222 arrays with unspecified length. */
16223 if (die->child == NULL)
16224 {
16225 index_type = objfile_type (objfile)->builtin_int;
16226 range_type = create_static_range_type (NULL, index_type, 0, -1);
16227 type = create_array_type_with_stride (NULL, element_type, range_type,
16228 byte_stride_prop, bit_stride);
16229 return set_die_type (die, type, cu);
16230 }
16231
16232 std::vector<struct type *> range_types;
16233 child_die = die->child;
16234 while (child_die && child_die->tag)
16235 {
16236 if (child_die->tag == DW_TAG_subrange_type)
16237 {
16238 struct type *child_type = read_type_die (child_die, cu);
16239
16240 if (child_type != NULL)
16241 {
16242 /* The range type was succesfully read. Save it for the
16243 array type creation. */
16244 range_types.push_back (child_type);
16245 }
16246 }
16247 child_die = child_die->sibling;
16248 }
16249
16250 /* Dwarf2 dimensions are output from left to right, create the
16251 necessary array types in backwards order. */
16252
16253 type = element_type;
16254
16255 if (read_array_order (die, cu) == DW_ORD_col_major)
16256 {
16257 int i = 0;
16258
16259 while (i < range_types.size ())
16260 type = create_array_type_with_stride (NULL, type, range_types[i++],
16261 byte_stride_prop, bit_stride);
16262 }
16263 else
16264 {
16265 size_t ndim = range_types.size ();
16266 while (ndim-- > 0)
16267 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16268 byte_stride_prop, bit_stride);
16269 }
16270
16271 /* Understand Dwarf2 support for vector types (like they occur on
16272 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16273 array type. This is not part of the Dwarf2/3 standard yet, but a
16274 custom vendor extension. The main difference between a regular
16275 array and the vector variant is that vectors are passed by value
16276 to functions. */
16277 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16278 if (attr != nullptr)
16279 make_vector_type (type);
16280
16281 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16282 implementation may choose to implement triple vectors using this
16283 attribute. */
16284 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16285 if (attr != nullptr)
16286 {
16287 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16288 TYPE_LENGTH (type) = DW_UNSND (attr);
16289 else
16290 complaint (_("DW_AT_byte_size for array type smaller "
16291 "than the total size of elements"));
16292 }
16293
16294 name = dwarf2_name (die, cu);
16295 if (name)
16296 type->set_name (name);
16297
16298 maybe_set_alignment (cu, die, type);
16299
16300 /* Install the type in the die. */
16301 set_die_type (die, type, cu);
16302
16303 /* set_die_type should be already done. */
16304 set_descriptive_type (type, die, cu);
16305
16306 return type;
16307 }
16308
16309 static enum dwarf_array_dim_ordering
16310 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16311 {
16312 struct attribute *attr;
16313
16314 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16315
16316 if (attr != nullptr)
16317 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16318
16319 /* GNU F77 is a special case, as at 08/2004 array type info is the
16320 opposite order to the dwarf2 specification, but data is still
16321 laid out as per normal fortran.
16322
16323 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16324 version checking. */
16325
16326 if (cu->language == language_fortran
16327 && cu->producer && strstr (cu->producer, "GNU F77"))
16328 {
16329 return DW_ORD_row_major;
16330 }
16331
16332 switch (cu->language_defn->la_array_ordering)
16333 {
16334 case array_column_major:
16335 return DW_ORD_col_major;
16336 case array_row_major:
16337 default:
16338 return DW_ORD_row_major;
16339 };
16340 }
16341
16342 /* Extract all information from a DW_TAG_set_type DIE and put it in
16343 the DIE's type field. */
16344
16345 static struct type *
16346 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16347 {
16348 struct type *domain_type, *set_type;
16349 struct attribute *attr;
16350
16351 domain_type = die_type (die, cu);
16352
16353 /* The die_type call above may have already set the type for this DIE. */
16354 set_type = get_die_type (die, cu);
16355 if (set_type)
16356 return set_type;
16357
16358 set_type = create_set_type (NULL, domain_type);
16359
16360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16361 if (attr != nullptr)
16362 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16363
16364 maybe_set_alignment (cu, die, set_type);
16365
16366 return set_die_type (die, set_type, cu);
16367 }
16368
16369 /* A helper for read_common_block that creates a locexpr baton.
16370 SYM is the symbol which we are marking as computed.
16371 COMMON_DIE is the DIE for the common block.
16372 COMMON_LOC is the location expression attribute for the common
16373 block itself.
16374 MEMBER_LOC is the location expression attribute for the particular
16375 member of the common block that we are processing.
16376 CU is the CU from which the above come. */
16377
16378 static void
16379 mark_common_block_symbol_computed (struct symbol *sym,
16380 struct die_info *common_die,
16381 struct attribute *common_loc,
16382 struct attribute *member_loc,
16383 struct dwarf2_cu *cu)
16384 {
16385 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16386 struct objfile *objfile = per_objfile->objfile;
16387 struct dwarf2_locexpr_baton *baton;
16388 gdb_byte *ptr;
16389 unsigned int cu_off;
16390 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16391 LONGEST offset = 0;
16392
16393 gdb_assert (common_loc && member_loc);
16394 gdb_assert (common_loc->form_is_block ());
16395 gdb_assert (member_loc->form_is_block ()
16396 || member_loc->form_is_constant ());
16397
16398 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16399 baton->per_objfile = per_objfile;
16400 baton->per_cu = cu->per_cu;
16401 gdb_assert (baton->per_cu);
16402
16403 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16404
16405 if (member_loc->form_is_constant ())
16406 {
16407 offset = member_loc->constant_value (0);
16408 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16409 }
16410 else
16411 baton->size += DW_BLOCK (member_loc)->size;
16412
16413 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16414 baton->data = ptr;
16415
16416 *ptr++ = DW_OP_call4;
16417 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16418 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16419 ptr += 4;
16420
16421 if (member_loc->form_is_constant ())
16422 {
16423 *ptr++ = DW_OP_addr;
16424 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16425 ptr += cu->header.addr_size;
16426 }
16427 else
16428 {
16429 /* We have to copy the data here, because DW_OP_call4 will only
16430 use a DW_AT_location attribute. */
16431 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16432 ptr += DW_BLOCK (member_loc)->size;
16433 }
16434
16435 *ptr++ = DW_OP_plus;
16436 gdb_assert (ptr - baton->data == baton->size);
16437
16438 SYMBOL_LOCATION_BATON (sym) = baton;
16439 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16440 }
16441
16442 /* Create appropriate locally-scoped variables for all the
16443 DW_TAG_common_block entries. Also create a struct common_block
16444 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16445 is used to separate the common blocks name namespace from regular
16446 variable names. */
16447
16448 static void
16449 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16450 {
16451 struct attribute *attr;
16452
16453 attr = dwarf2_attr (die, DW_AT_location, cu);
16454 if (attr != nullptr)
16455 {
16456 /* Support the .debug_loc offsets. */
16457 if (attr->form_is_block ())
16458 {
16459 /* Ok. */
16460 }
16461 else if (attr->form_is_section_offset ())
16462 {
16463 dwarf2_complex_location_expr_complaint ();
16464 attr = NULL;
16465 }
16466 else
16467 {
16468 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16469 "common block member");
16470 attr = NULL;
16471 }
16472 }
16473
16474 if (die->child != NULL)
16475 {
16476 struct objfile *objfile = cu->per_objfile->objfile;
16477 struct die_info *child_die;
16478 size_t n_entries = 0, size;
16479 struct common_block *common_block;
16480 struct symbol *sym;
16481
16482 for (child_die = die->child;
16483 child_die && child_die->tag;
16484 child_die = child_die->sibling)
16485 ++n_entries;
16486
16487 size = (sizeof (struct common_block)
16488 + (n_entries - 1) * sizeof (struct symbol *));
16489 common_block
16490 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16491 size);
16492 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16493 common_block->n_entries = 0;
16494
16495 for (child_die = die->child;
16496 child_die && child_die->tag;
16497 child_die = child_die->sibling)
16498 {
16499 /* Create the symbol in the DW_TAG_common_block block in the current
16500 symbol scope. */
16501 sym = new_symbol (child_die, NULL, cu);
16502 if (sym != NULL)
16503 {
16504 struct attribute *member_loc;
16505
16506 common_block->contents[common_block->n_entries++] = sym;
16507
16508 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16509 cu);
16510 if (member_loc)
16511 {
16512 /* GDB has handled this for a long time, but it is
16513 not specified by DWARF. It seems to have been
16514 emitted by gfortran at least as recently as:
16515 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16516 complaint (_("Variable in common block has "
16517 "DW_AT_data_member_location "
16518 "- DIE at %s [in module %s]"),
16519 sect_offset_str (child_die->sect_off),
16520 objfile_name (objfile));
16521
16522 if (member_loc->form_is_section_offset ())
16523 dwarf2_complex_location_expr_complaint ();
16524 else if (member_loc->form_is_constant ()
16525 || member_loc->form_is_block ())
16526 {
16527 if (attr != nullptr)
16528 mark_common_block_symbol_computed (sym, die, attr,
16529 member_loc, cu);
16530 }
16531 else
16532 dwarf2_complex_location_expr_complaint ();
16533 }
16534 }
16535 }
16536
16537 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16538 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16539 }
16540 }
16541
16542 /* Create a type for a C++ namespace. */
16543
16544 static struct type *
16545 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16546 {
16547 struct objfile *objfile = cu->per_objfile->objfile;
16548 const char *previous_prefix, *name;
16549 int is_anonymous;
16550 struct type *type;
16551
16552 /* For extensions, reuse the type of the original namespace. */
16553 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16554 {
16555 struct die_info *ext_die;
16556 struct dwarf2_cu *ext_cu = cu;
16557
16558 ext_die = dwarf2_extension (die, &ext_cu);
16559 type = read_type_die (ext_die, ext_cu);
16560
16561 /* EXT_CU may not be the same as CU.
16562 Ensure TYPE is recorded with CU in die_type_hash. */
16563 return set_die_type (die, type, cu);
16564 }
16565
16566 name = namespace_name (die, &is_anonymous, cu);
16567
16568 /* Now build the name of the current namespace. */
16569
16570 previous_prefix = determine_prefix (die, cu);
16571 if (previous_prefix[0] != '\0')
16572 name = typename_concat (&objfile->objfile_obstack,
16573 previous_prefix, name, 0, cu);
16574
16575 /* Create the type. */
16576 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16577
16578 return set_die_type (die, type, cu);
16579 }
16580
16581 /* Read a namespace scope. */
16582
16583 static void
16584 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16585 {
16586 struct objfile *objfile = cu->per_objfile->objfile;
16587 int is_anonymous;
16588
16589 /* Add a symbol associated to this if we haven't seen the namespace
16590 before. Also, add a using directive if it's an anonymous
16591 namespace. */
16592
16593 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16594 {
16595 struct type *type;
16596
16597 type = read_type_die (die, cu);
16598 new_symbol (die, type, cu);
16599
16600 namespace_name (die, &is_anonymous, cu);
16601 if (is_anonymous)
16602 {
16603 const char *previous_prefix = determine_prefix (die, cu);
16604
16605 std::vector<const char *> excludes;
16606 add_using_directive (using_directives (cu),
16607 previous_prefix, type->name (), NULL,
16608 NULL, excludes, 0, &objfile->objfile_obstack);
16609 }
16610 }
16611
16612 if (die->child != NULL)
16613 {
16614 struct die_info *child_die = die->child;
16615
16616 while (child_die && child_die->tag)
16617 {
16618 process_die (child_die, cu);
16619 child_die = child_die->sibling;
16620 }
16621 }
16622 }
16623
16624 /* Read a Fortran module as type. This DIE can be only a declaration used for
16625 imported module. Still we need that type as local Fortran "use ... only"
16626 declaration imports depend on the created type in determine_prefix. */
16627
16628 static struct type *
16629 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16630 {
16631 struct objfile *objfile = cu->per_objfile->objfile;
16632 const char *module_name;
16633 struct type *type;
16634
16635 module_name = dwarf2_name (die, cu);
16636 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16637
16638 return set_die_type (die, type, cu);
16639 }
16640
16641 /* Read a Fortran module. */
16642
16643 static void
16644 read_module (struct die_info *die, struct dwarf2_cu *cu)
16645 {
16646 struct die_info *child_die = die->child;
16647 struct type *type;
16648
16649 type = read_type_die (die, cu);
16650 new_symbol (die, type, cu);
16651
16652 while (child_die && child_die->tag)
16653 {
16654 process_die (child_die, cu);
16655 child_die = child_die->sibling;
16656 }
16657 }
16658
16659 /* Return the name of the namespace represented by DIE. Set
16660 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16661 namespace. */
16662
16663 static const char *
16664 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16665 {
16666 struct die_info *current_die;
16667 const char *name = NULL;
16668
16669 /* Loop through the extensions until we find a name. */
16670
16671 for (current_die = die;
16672 current_die != NULL;
16673 current_die = dwarf2_extension (die, &cu))
16674 {
16675 /* We don't use dwarf2_name here so that we can detect the absence
16676 of a name -> anonymous namespace. */
16677 name = dwarf2_string_attr (die, DW_AT_name, cu);
16678
16679 if (name != NULL)
16680 break;
16681 }
16682
16683 /* Is it an anonymous namespace? */
16684
16685 *is_anonymous = (name == NULL);
16686 if (*is_anonymous)
16687 name = CP_ANONYMOUS_NAMESPACE_STR;
16688
16689 return name;
16690 }
16691
16692 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16693 the user defined type vector. */
16694
16695 static struct type *
16696 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16697 {
16698 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
16699 struct comp_unit_head *cu_header = &cu->header;
16700 struct type *type;
16701 struct attribute *attr_byte_size;
16702 struct attribute *attr_address_class;
16703 int byte_size, addr_class;
16704 struct type *target_type;
16705
16706 target_type = die_type (die, cu);
16707
16708 /* The die_type call above may have already set the type for this DIE. */
16709 type = get_die_type (die, cu);
16710 if (type)
16711 return type;
16712
16713 type = lookup_pointer_type (target_type);
16714
16715 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16716 if (attr_byte_size)
16717 byte_size = DW_UNSND (attr_byte_size);
16718 else
16719 byte_size = cu_header->addr_size;
16720
16721 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16722 if (attr_address_class)
16723 addr_class = DW_UNSND (attr_address_class);
16724 else
16725 addr_class = DW_ADDR_none;
16726
16727 ULONGEST alignment = get_alignment (cu, die);
16728
16729 /* If the pointer size, alignment, or address class is different
16730 than the default, create a type variant marked as such and set
16731 the length accordingly. */
16732 if (TYPE_LENGTH (type) != byte_size
16733 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16734 && alignment != TYPE_RAW_ALIGN (type))
16735 || addr_class != DW_ADDR_none)
16736 {
16737 if (gdbarch_address_class_type_flags_p (gdbarch))
16738 {
16739 int type_flags;
16740
16741 type_flags = gdbarch_address_class_type_flags
16742 (gdbarch, byte_size, addr_class);
16743 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16744 == 0);
16745 type = make_type_with_address_space (type, type_flags);
16746 }
16747 else if (TYPE_LENGTH (type) != byte_size)
16748 {
16749 complaint (_("invalid pointer size %d"), byte_size);
16750 }
16751 else if (TYPE_RAW_ALIGN (type) != alignment)
16752 {
16753 complaint (_("Invalid DW_AT_alignment"
16754 " - DIE at %s [in module %s]"),
16755 sect_offset_str (die->sect_off),
16756 objfile_name (cu->per_objfile->objfile));
16757 }
16758 else
16759 {
16760 /* Should we also complain about unhandled address classes? */
16761 }
16762 }
16763
16764 TYPE_LENGTH (type) = byte_size;
16765 set_type_align (type, alignment);
16766 return set_die_type (die, type, cu);
16767 }
16768
16769 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16770 the user defined type vector. */
16771
16772 static struct type *
16773 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16774 {
16775 struct type *type;
16776 struct type *to_type;
16777 struct type *domain;
16778
16779 to_type = die_type (die, cu);
16780 domain = die_containing_type (die, cu);
16781
16782 /* The calls above may have already set the type for this DIE. */
16783 type = get_die_type (die, cu);
16784 if (type)
16785 return type;
16786
16787 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
16788 type = lookup_methodptr_type (to_type);
16789 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
16790 {
16791 struct type *new_type = alloc_type (cu->per_objfile->objfile);
16792
16793 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16794 to_type->fields (), to_type->num_fields (),
16795 TYPE_VARARGS (to_type));
16796 type = lookup_methodptr_type (new_type);
16797 }
16798 else
16799 type = lookup_memberptr_type (to_type, domain);
16800
16801 return set_die_type (die, type, cu);
16802 }
16803
16804 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16805 the user defined type vector. */
16806
16807 static struct type *
16808 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16809 enum type_code refcode)
16810 {
16811 struct comp_unit_head *cu_header = &cu->header;
16812 struct type *type, *target_type;
16813 struct attribute *attr;
16814
16815 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16816
16817 target_type = die_type (die, cu);
16818
16819 /* The die_type call above may have already set the type for this DIE. */
16820 type = get_die_type (die, cu);
16821 if (type)
16822 return type;
16823
16824 type = lookup_reference_type (target_type, refcode);
16825 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16826 if (attr != nullptr)
16827 {
16828 TYPE_LENGTH (type) = DW_UNSND (attr);
16829 }
16830 else
16831 {
16832 TYPE_LENGTH (type) = cu_header->addr_size;
16833 }
16834 maybe_set_alignment (cu, die, type);
16835 return set_die_type (die, type, cu);
16836 }
16837
16838 /* Add the given cv-qualifiers to the element type of the array. GCC
16839 outputs DWARF type qualifiers that apply to an array, not the
16840 element type. But GDB relies on the array element type to carry
16841 the cv-qualifiers. This mimics section 6.7.3 of the C99
16842 specification. */
16843
16844 static struct type *
16845 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16846 struct type *base_type, int cnst, int voltl)
16847 {
16848 struct type *el_type, *inner_array;
16849
16850 base_type = copy_type (base_type);
16851 inner_array = base_type;
16852
16853 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
16854 {
16855 TYPE_TARGET_TYPE (inner_array) =
16856 copy_type (TYPE_TARGET_TYPE (inner_array));
16857 inner_array = TYPE_TARGET_TYPE (inner_array);
16858 }
16859
16860 el_type = TYPE_TARGET_TYPE (inner_array);
16861 cnst |= TYPE_CONST (el_type);
16862 voltl |= TYPE_VOLATILE (el_type);
16863 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16864
16865 return set_die_type (die, base_type, cu);
16866 }
16867
16868 static struct type *
16869 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16870 {
16871 struct type *base_type, *cv_type;
16872
16873 base_type = die_type (die, cu);
16874
16875 /* The die_type call above may have already set the type for this DIE. */
16876 cv_type = get_die_type (die, cu);
16877 if (cv_type)
16878 return cv_type;
16879
16880 /* In case the const qualifier is applied to an array type, the element type
16881 is so qualified, not the array type (section 6.7.3 of C99). */
16882 if (base_type->code () == TYPE_CODE_ARRAY)
16883 return add_array_cv_type (die, cu, base_type, 1, 0);
16884
16885 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16886 return set_die_type (die, cv_type, cu);
16887 }
16888
16889 static struct type *
16890 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16891 {
16892 struct type *base_type, *cv_type;
16893
16894 base_type = die_type (die, cu);
16895
16896 /* The die_type call above may have already set the type for this DIE. */
16897 cv_type = get_die_type (die, cu);
16898 if (cv_type)
16899 return cv_type;
16900
16901 /* In case the volatile qualifier is applied to an array type, the
16902 element type is so qualified, not the array type (section 6.7.3
16903 of C99). */
16904 if (base_type->code () == TYPE_CODE_ARRAY)
16905 return add_array_cv_type (die, cu, base_type, 0, 1);
16906
16907 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16908 return set_die_type (die, cv_type, cu);
16909 }
16910
16911 /* Handle DW_TAG_restrict_type. */
16912
16913 static struct type *
16914 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16915 {
16916 struct type *base_type, *cv_type;
16917
16918 base_type = die_type (die, cu);
16919
16920 /* The die_type call above may have already set the type for this DIE. */
16921 cv_type = get_die_type (die, cu);
16922 if (cv_type)
16923 return cv_type;
16924
16925 cv_type = make_restrict_type (base_type);
16926 return set_die_type (die, cv_type, cu);
16927 }
16928
16929 /* Handle DW_TAG_atomic_type. */
16930
16931 static struct type *
16932 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16933 {
16934 struct type *base_type, *cv_type;
16935
16936 base_type = die_type (die, cu);
16937
16938 /* The die_type call above may have already set the type for this DIE. */
16939 cv_type = get_die_type (die, cu);
16940 if (cv_type)
16941 return cv_type;
16942
16943 cv_type = make_atomic_type (base_type);
16944 return set_die_type (die, cv_type, cu);
16945 }
16946
16947 /* Extract all information from a DW_TAG_string_type DIE and add to
16948 the user defined type vector. It isn't really a user defined type,
16949 but it behaves like one, with other DIE's using an AT_user_def_type
16950 attribute to reference it. */
16951
16952 static struct type *
16953 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16954 {
16955 struct objfile *objfile = cu->per_objfile->objfile;
16956 struct gdbarch *gdbarch = objfile->arch ();
16957 struct type *type, *range_type, *index_type, *char_type;
16958 struct attribute *attr;
16959 struct dynamic_prop prop;
16960 bool length_is_constant = true;
16961 LONGEST length;
16962
16963 /* There are a couple of places where bit sizes might be made use of
16964 when parsing a DW_TAG_string_type, however, no producer that we know
16965 of make use of these. Handling bit sizes that are a multiple of the
16966 byte size is easy enough, but what about other bit sizes? Lets deal
16967 with that problem when we have to. Warn about these attributes being
16968 unsupported, then parse the type and ignore them like we always
16969 have. */
16970 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16971 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16972 {
16973 static bool warning_printed = false;
16974 if (!warning_printed)
16975 {
16976 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16977 "currently supported on DW_TAG_string_type."));
16978 warning_printed = true;
16979 }
16980 }
16981
16982 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16983 if (attr != nullptr && !attr->form_is_constant ())
16984 {
16985 /* The string length describes the location at which the length of
16986 the string can be found. The size of the length field can be
16987 specified with one of the attributes below. */
16988 struct type *prop_type;
16989 struct attribute *len
16990 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16991 if (len == nullptr)
16992 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16993 if (len != nullptr && len->form_is_constant ())
16994 {
16995 /* Pass 0 as the default as we know this attribute is constant
16996 and the default value will not be returned. */
16997 LONGEST sz = len->constant_value (0);
16998 prop_type = cu->per_objfile->int_type (sz, true);
16999 }
17000 else
17001 {
17002 /* If the size is not specified then we assume it is the size of
17003 an address on this target. */
17004 prop_type = cu->addr_sized_int_type (true);
17005 }
17006
17007 /* Convert the attribute into a dynamic property. */
17008 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17009 length = 1;
17010 else
17011 length_is_constant = false;
17012 }
17013 else if (attr != nullptr)
17014 {
17015 /* This DW_AT_string_length just contains the length with no
17016 indirection. There's no need to create a dynamic property in this
17017 case. Pass 0 for the default value as we know it will not be
17018 returned in this case. */
17019 length = attr->constant_value (0);
17020 }
17021 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17022 {
17023 /* We don't currently support non-constant byte sizes for strings. */
17024 length = attr->constant_value (1);
17025 }
17026 else
17027 {
17028 /* Use 1 as a fallback length if we have nothing else. */
17029 length = 1;
17030 }
17031
17032 index_type = objfile_type (objfile)->builtin_int;
17033 if (length_is_constant)
17034 range_type = create_static_range_type (NULL, index_type, 1, length);
17035 else
17036 {
17037 struct dynamic_prop low_bound;
17038
17039 low_bound.kind = PROP_CONST;
17040 low_bound.data.const_val = 1;
17041 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17042 }
17043 char_type = language_string_char_type (cu->language_defn, gdbarch);
17044 type = create_string_type (NULL, char_type, range_type);
17045
17046 return set_die_type (die, type, cu);
17047 }
17048
17049 /* Assuming that DIE corresponds to a function, returns nonzero
17050 if the function is prototyped. */
17051
17052 static int
17053 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17054 {
17055 struct attribute *attr;
17056
17057 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17058 if (attr && (DW_UNSND (attr) != 0))
17059 return 1;
17060
17061 /* The DWARF standard implies that the DW_AT_prototyped attribute
17062 is only meaningful for C, but the concept also extends to other
17063 languages that allow unprototyped functions (Eg: Objective C).
17064 For all other languages, assume that functions are always
17065 prototyped. */
17066 if (cu->language != language_c
17067 && cu->language != language_objc
17068 && cu->language != language_opencl)
17069 return 1;
17070
17071 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17072 prototyped and unprototyped functions; default to prototyped,
17073 since that is more common in modern code (and RealView warns
17074 about unprototyped functions). */
17075 if (producer_is_realview (cu->producer))
17076 return 1;
17077
17078 return 0;
17079 }
17080
17081 /* Handle DIES due to C code like:
17082
17083 struct foo
17084 {
17085 int (*funcp)(int a, long l);
17086 int b;
17087 };
17088
17089 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17090
17091 static struct type *
17092 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17093 {
17094 struct objfile *objfile = cu->per_objfile->objfile;
17095 struct type *type; /* Type that this function returns. */
17096 struct type *ftype; /* Function that returns above type. */
17097 struct attribute *attr;
17098
17099 type = die_type (die, cu);
17100
17101 /* The die_type call above may have already set the type for this DIE. */
17102 ftype = get_die_type (die, cu);
17103 if (ftype)
17104 return ftype;
17105
17106 ftype = lookup_function_type (type);
17107
17108 if (prototyped_function_p (die, cu))
17109 TYPE_PROTOTYPED (ftype) = 1;
17110
17111 /* Store the calling convention in the type if it's available in
17112 the subroutine die. Otherwise set the calling convention to
17113 the default value DW_CC_normal. */
17114 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17115 if (attr != nullptr
17116 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17117 TYPE_CALLING_CONVENTION (ftype)
17118 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17119 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17120 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17121 else
17122 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17123
17124 /* Record whether the function returns normally to its caller or not
17125 if the DWARF producer set that information. */
17126 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17127 if (attr && (DW_UNSND (attr) != 0))
17128 TYPE_NO_RETURN (ftype) = 1;
17129
17130 /* We need to add the subroutine type to the die immediately so
17131 we don't infinitely recurse when dealing with parameters
17132 declared as the same subroutine type. */
17133 set_die_type (die, ftype, cu);
17134
17135 if (die->child != NULL)
17136 {
17137 struct type *void_type = objfile_type (objfile)->builtin_void;
17138 struct die_info *child_die;
17139 int nparams, iparams;
17140
17141 /* Count the number of parameters.
17142 FIXME: GDB currently ignores vararg functions, but knows about
17143 vararg member functions. */
17144 nparams = 0;
17145 child_die = die->child;
17146 while (child_die && child_die->tag)
17147 {
17148 if (child_die->tag == DW_TAG_formal_parameter)
17149 nparams++;
17150 else if (child_die->tag == DW_TAG_unspecified_parameters)
17151 TYPE_VARARGS (ftype) = 1;
17152 child_die = child_die->sibling;
17153 }
17154
17155 /* Allocate storage for parameters and fill them in. */
17156 ftype->set_num_fields (nparams);
17157 ftype->set_fields
17158 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17159
17160 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17161 even if we error out during the parameters reading below. */
17162 for (iparams = 0; iparams < nparams; iparams++)
17163 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17164
17165 iparams = 0;
17166 child_die = die->child;
17167 while (child_die && child_die->tag)
17168 {
17169 if (child_die->tag == DW_TAG_formal_parameter)
17170 {
17171 struct type *arg_type;
17172
17173 /* DWARF version 2 has no clean way to discern C++
17174 static and non-static member functions. G++ helps
17175 GDB by marking the first parameter for non-static
17176 member functions (which is the this pointer) as
17177 artificial. We pass this information to
17178 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17179
17180 DWARF version 3 added DW_AT_object_pointer, which GCC
17181 4.5 does not yet generate. */
17182 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17183 if (attr != nullptr)
17184 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17185 else
17186 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17187 arg_type = die_type (child_die, cu);
17188
17189 /* RealView does not mark THIS as const, which the testsuite
17190 expects. GCC marks THIS as const in method definitions,
17191 but not in the class specifications (GCC PR 43053). */
17192 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17193 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17194 {
17195 int is_this = 0;
17196 struct dwarf2_cu *arg_cu = cu;
17197 const char *name = dwarf2_name (child_die, cu);
17198
17199 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17200 if (attr != nullptr)
17201 {
17202 /* If the compiler emits this, use it. */
17203 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17204 is_this = 1;
17205 }
17206 else if (name && strcmp (name, "this") == 0)
17207 /* Function definitions will have the argument names. */
17208 is_this = 1;
17209 else if (name == NULL && iparams == 0)
17210 /* Declarations may not have the names, so like
17211 elsewhere in GDB, assume an artificial first
17212 argument is "this". */
17213 is_this = 1;
17214
17215 if (is_this)
17216 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17217 arg_type, 0);
17218 }
17219
17220 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17221 iparams++;
17222 }
17223 child_die = child_die->sibling;
17224 }
17225 }
17226
17227 return ftype;
17228 }
17229
17230 static struct type *
17231 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17232 {
17233 struct objfile *objfile = cu->per_objfile->objfile;
17234 const char *name = NULL;
17235 struct type *this_type, *target_type;
17236
17237 name = dwarf2_full_name (NULL, die, cu);
17238 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17239 TYPE_TARGET_STUB (this_type) = 1;
17240 set_die_type (die, this_type, cu);
17241 target_type = die_type (die, cu);
17242 if (target_type != this_type)
17243 TYPE_TARGET_TYPE (this_type) = target_type;
17244 else
17245 {
17246 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17247 spec and cause infinite loops in GDB. */
17248 complaint (_("Self-referential DW_TAG_typedef "
17249 "- DIE at %s [in module %s]"),
17250 sect_offset_str (die->sect_off), objfile_name (objfile));
17251 TYPE_TARGET_TYPE (this_type) = NULL;
17252 }
17253 if (name == NULL)
17254 {
17255 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17256 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17257 Handle these by just returning the target type, rather than
17258 constructing an anonymous typedef type and trying to handle this
17259 elsewhere. */
17260 set_die_type (die, target_type, cu);
17261 return target_type;
17262 }
17263 return this_type;
17264 }
17265
17266 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17267 (which may be different from NAME) to the architecture back-end to allow
17268 it to guess the correct format if necessary. */
17269
17270 static struct type *
17271 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17272 const char *name_hint, enum bfd_endian byte_order)
17273 {
17274 struct gdbarch *gdbarch = objfile->arch ();
17275 const struct floatformat **format;
17276 struct type *type;
17277
17278 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17279 if (format)
17280 type = init_float_type (objfile, bits, name, format, byte_order);
17281 else
17282 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17283
17284 return type;
17285 }
17286
17287 /* Allocate an integer type of size BITS and name NAME. */
17288
17289 static struct type *
17290 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17291 int bits, int unsigned_p, const char *name)
17292 {
17293 struct type *type;
17294
17295 /* Versions of Intel's C Compiler generate an integer type called "void"
17296 instead of using DW_TAG_unspecified_type. This has been seen on
17297 at least versions 14, 17, and 18. */
17298 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17299 && strcmp (name, "void") == 0)
17300 type = objfile_type (objfile)->builtin_void;
17301 else
17302 type = init_integer_type (objfile, bits, unsigned_p, name);
17303
17304 return type;
17305 }
17306
17307 /* Initialise and return a floating point type of size BITS suitable for
17308 use as a component of a complex number. The NAME_HINT is passed through
17309 when initialising the floating point type and is the name of the complex
17310 type.
17311
17312 As DWARF doesn't currently provide an explicit name for the components
17313 of a complex number, but it can be helpful to have these components
17314 named, we try to select a suitable name based on the size of the
17315 component. */
17316 static struct type *
17317 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17318 struct objfile *objfile,
17319 int bits, const char *name_hint,
17320 enum bfd_endian byte_order)
17321 {
17322 gdbarch *gdbarch = objfile->arch ();
17323 struct type *tt = nullptr;
17324
17325 /* Try to find a suitable floating point builtin type of size BITS.
17326 We're going to use the name of this type as the name for the complex
17327 target type that we are about to create. */
17328 switch (cu->language)
17329 {
17330 case language_fortran:
17331 switch (bits)
17332 {
17333 case 32:
17334 tt = builtin_f_type (gdbarch)->builtin_real;
17335 break;
17336 case 64:
17337 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17338 break;
17339 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17340 case 128:
17341 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17342 break;
17343 }
17344 break;
17345 default:
17346 switch (bits)
17347 {
17348 case 32:
17349 tt = builtin_type (gdbarch)->builtin_float;
17350 break;
17351 case 64:
17352 tt = builtin_type (gdbarch)->builtin_double;
17353 break;
17354 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17355 case 128:
17356 tt = builtin_type (gdbarch)->builtin_long_double;
17357 break;
17358 }
17359 break;
17360 }
17361
17362 /* If the type we found doesn't match the size we were looking for, then
17363 pretend we didn't find a type at all, the complex target type we
17364 create will then be nameless. */
17365 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17366 tt = nullptr;
17367
17368 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17369 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17370 }
17371
17372 /* Find a representation of a given base type and install
17373 it in the TYPE field of the die. */
17374
17375 static struct type *
17376 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17377 {
17378 struct objfile *objfile = cu->per_objfile->objfile;
17379 struct type *type;
17380 struct attribute *attr;
17381 int encoding = 0, bits = 0;
17382 const char *name;
17383 gdbarch *arch;
17384
17385 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17386 if (attr != nullptr)
17387 encoding = DW_UNSND (attr);
17388 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17389 if (attr != nullptr)
17390 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17391 name = dwarf2_name (die, cu);
17392 if (!name)
17393 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17394
17395 arch = objfile->arch ();
17396 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17397
17398 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17399 if (attr)
17400 {
17401 int endianity = DW_UNSND (attr);
17402
17403 switch (endianity)
17404 {
17405 case DW_END_big:
17406 byte_order = BFD_ENDIAN_BIG;
17407 break;
17408 case DW_END_little:
17409 byte_order = BFD_ENDIAN_LITTLE;
17410 break;
17411 default:
17412 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17413 break;
17414 }
17415 }
17416
17417 switch (encoding)
17418 {
17419 case DW_ATE_address:
17420 /* Turn DW_ATE_address into a void * pointer. */
17421 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17422 type = init_pointer_type (objfile, bits, name, type);
17423 break;
17424 case DW_ATE_boolean:
17425 type = init_boolean_type (objfile, bits, 1, name);
17426 break;
17427 case DW_ATE_complex_float:
17428 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17429 byte_order);
17430 if (type->code () == TYPE_CODE_ERROR)
17431 {
17432 if (name == nullptr)
17433 {
17434 struct obstack *obstack
17435 = &cu->per_objfile->objfile->objfile_obstack;
17436 name = obconcat (obstack, "_Complex ", type->name (),
17437 nullptr);
17438 }
17439 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17440 }
17441 else
17442 type = init_complex_type (name, type);
17443 break;
17444 case DW_ATE_decimal_float:
17445 type = init_decfloat_type (objfile, bits, name);
17446 break;
17447 case DW_ATE_float:
17448 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17449 break;
17450 case DW_ATE_signed:
17451 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17452 break;
17453 case DW_ATE_unsigned:
17454 if (cu->language == language_fortran
17455 && name
17456 && startswith (name, "character("))
17457 type = init_character_type (objfile, bits, 1, name);
17458 else
17459 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17460 break;
17461 case DW_ATE_signed_char:
17462 if (cu->language == language_ada || cu->language == language_m2
17463 || cu->language == language_pascal
17464 || cu->language == language_fortran)
17465 type = init_character_type (objfile, bits, 0, name);
17466 else
17467 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17468 break;
17469 case DW_ATE_unsigned_char:
17470 if (cu->language == language_ada || cu->language == language_m2
17471 || cu->language == language_pascal
17472 || cu->language == language_fortran
17473 || cu->language == language_rust)
17474 type = init_character_type (objfile, bits, 1, name);
17475 else
17476 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17477 break;
17478 case DW_ATE_UTF:
17479 {
17480 if (bits == 16)
17481 type = builtin_type (arch)->builtin_char16;
17482 else if (bits == 32)
17483 type = builtin_type (arch)->builtin_char32;
17484 else
17485 {
17486 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17487 bits);
17488 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17489 }
17490 return set_die_type (die, type, cu);
17491 }
17492 break;
17493
17494 default:
17495 complaint (_("unsupported DW_AT_encoding: '%s'"),
17496 dwarf_type_encoding_name (encoding));
17497 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17498 break;
17499 }
17500
17501 if (name && strcmp (name, "char") == 0)
17502 TYPE_NOSIGN (type) = 1;
17503
17504 maybe_set_alignment (cu, die, type);
17505
17506 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17507
17508 return set_die_type (die, type, cu);
17509 }
17510
17511 /* Parse dwarf attribute if it's a block, reference or constant and put the
17512 resulting value of the attribute into struct bound_prop.
17513 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17514
17515 static int
17516 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17517 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17518 struct type *default_type)
17519 {
17520 struct dwarf2_property_baton *baton;
17521 dwarf2_per_objfile *per_objfile = cu->per_objfile;
17522 struct objfile *objfile = per_objfile->objfile;
17523 struct obstack *obstack = &objfile->objfile_obstack;
17524
17525 gdb_assert (default_type != NULL);
17526
17527 if (attr == NULL || prop == NULL)
17528 return 0;
17529
17530 if (attr->form_is_block ())
17531 {
17532 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17533 baton->property_type = default_type;
17534 baton->locexpr.per_cu = cu->per_cu;
17535 baton->locexpr.per_objfile = per_objfile;
17536 baton->locexpr.size = DW_BLOCK (attr)->size;
17537 baton->locexpr.data = DW_BLOCK (attr)->data;
17538 switch (attr->name)
17539 {
17540 case DW_AT_string_length:
17541 baton->locexpr.is_reference = true;
17542 break;
17543 default:
17544 baton->locexpr.is_reference = false;
17545 break;
17546 }
17547 prop->data.baton = baton;
17548 prop->kind = PROP_LOCEXPR;
17549 gdb_assert (prop->data.baton != NULL);
17550 }
17551 else if (attr->form_is_ref ())
17552 {
17553 struct dwarf2_cu *target_cu = cu;
17554 struct die_info *target_die;
17555 struct attribute *target_attr;
17556
17557 target_die = follow_die_ref (die, attr, &target_cu);
17558 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17559 if (target_attr == NULL)
17560 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17561 target_cu);
17562 if (target_attr == NULL)
17563 return 0;
17564
17565 switch (target_attr->name)
17566 {
17567 case DW_AT_location:
17568 if (target_attr->form_is_section_offset ())
17569 {
17570 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17571 baton->property_type = die_type (target_die, target_cu);
17572 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17573 prop->data.baton = baton;
17574 prop->kind = PROP_LOCLIST;
17575 gdb_assert (prop->data.baton != NULL);
17576 }
17577 else if (target_attr->form_is_block ())
17578 {
17579 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17580 baton->property_type = die_type (target_die, target_cu);
17581 baton->locexpr.per_cu = cu->per_cu;
17582 baton->locexpr.per_objfile = per_objfile;
17583 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17584 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17585 baton->locexpr.is_reference = true;
17586 prop->data.baton = baton;
17587 prop->kind = PROP_LOCEXPR;
17588 gdb_assert (prop->data.baton != NULL);
17589 }
17590 else
17591 {
17592 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17593 "dynamic property");
17594 return 0;
17595 }
17596 break;
17597 case DW_AT_data_member_location:
17598 {
17599 LONGEST offset;
17600
17601 if (!handle_data_member_location (target_die, target_cu,
17602 &offset))
17603 return 0;
17604
17605 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17606 baton->property_type = read_type_die (target_die->parent,
17607 target_cu);
17608 baton->offset_info.offset = offset;
17609 baton->offset_info.type = die_type (target_die, target_cu);
17610 prop->data.baton = baton;
17611 prop->kind = PROP_ADDR_OFFSET;
17612 break;
17613 }
17614 }
17615 }
17616 else if (attr->form_is_constant ())
17617 {
17618 prop->data.const_val = attr->constant_value (0);
17619 prop->kind = PROP_CONST;
17620 }
17621 else
17622 {
17623 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17624 dwarf2_name (die, cu));
17625 return 0;
17626 }
17627
17628 return 1;
17629 }
17630
17631 /* See read.h. */
17632
17633 struct type *
17634 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
17635 {
17636 struct type *int_type;
17637
17638 /* Helper macro to examine the various builtin types. */
17639 #define TRY_TYPE(F) \
17640 int_type = (unsigned_p \
17641 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17642 : objfile_type (objfile)->builtin_ ## F); \
17643 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17644 return int_type
17645
17646 TRY_TYPE (char);
17647 TRY_TYPE (short);
17648 TRY_TYPE (int);
17649 TRY_TYPE (long);
17650 TRY_TYPE (long_long);
17651
17652 #undef TRY_TYPE
17653
17654 gdb_assert_not_reached ("unable to find suitable integer type");
17655 }
17656
17657 /* See read.h. */
17658
17659 struct type *
17660 dwarf2_cu::addr_sized_int_type (bool unsigned_p) const
17661 {
17662 int addr_size = this->per_cu->addr_size ();
17663 return this->per_objfile->int_type (addr_size, unsigned_p);
17664 }
17665
17666 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17667 present (which is valid) then compute the default type based on the
17668 compilation units address size. */
17669
17670 static struct type *
17671 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17672 {
17673 struct type *index_type = die_type (die, cu);
17674
17675 /* Dwarf-2 specifications explicitly allows to create subrange types
17676 without specifying a base type.
17677 In that case, the base type must be set to the type of
17678 the lower bound, upper bound or count, in that order, if any of these
17679 three attributes references an object that has a type.
17680 If no base type is found, the Dwarf-2 specifications say that
17681 a signed integer type of size equal to the size of an address should
17682 be used.
17683 For the following C code: `extern char gdb_int [];'
17684 GCC produces an empty range DIE.
17685 FIXME: muller/2010-05-28: Possible references to object for low bound,
17686 high bound or count are not yet handled by this code. */
17687 if (index_type->code () == TYPE_CODE_VOID)
17688 index_type = cu->addr_sized_int_type (false);
17689
17690 return index_type;
17691 }
17692
17693 /* Read the given DW_AT_subrange DIE. */
17694
17695 static struct type *
17696 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17697 {
17698 struct type *base_type, *orig_base_type;
17699 struct type *range_type;
17700 struct attribute *attr;
17701 struct dynamic_prop low, high;
17702 int low_default_is_valid;
17703 int high_bound_is_count = 0;
17704 const char *name;
17705 ULONGEST negative_mask;
17706
17707 orig_base_type = read_subrange_index_type (die, cu);
17708
17709 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17710 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17711 creating the range type, but we use the result of check_typedef
17712 when examining properties of the type. */
17713 base_type = check_typedef (orig_base_type);
17714
17715 /* The die_type call above may have already set the type for this DIE. */
17716 range_type = get_die_type (die, cu);
17717 if (range_type)
17718 return range_type;
17719
17720 low.kind = PROP_CONST;
17721 high.kind = PROP_CONST;
17722 high.data.const_val = 0;
17723
17724 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17725 omitting DW_AT_lower_bound. */
17726 switch (cu->language)
17727 {
17728 case language_c:
17729 case language_cplus:
17730 low.data.const_val = 0;
17731 low_default_is_valid = 1;
17732 break;
17733 case language_fortran:
17734 low.data.const_val = 1;
17735 low_default_is_valid = 1;
17736 break;
17737 case language_d:
17738 case language_objc:
17739 case language_rust:
17740 low.data.const_val = 0;
17741 low_default_is_valid = (cu->header.version >= 4);
17742 break;
17743 case language_ada:
17744 case language_m2:
17745 case language_pascal:
17746 low.data.const_val = 1;
17747 low_default_is_valid = (cu->header.version >= 4);
17748 break;
17749 default:
17750 low.data.const_val = 0;
17751 low_default_is_valid = 0;
17752 break;
17753 }
17754
17755 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17756 if (attr != nullptr)
17757 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17758 else if (!low_default_is_valid)
17759 complaint (_("Missing DW_AT_lower_bound "
17760 "- DIE at %s [in module %s]"),
17761 sect_offset_str (die->sect_off),
17762 objfile_name (cu->per_objfile->objfile));
17763
17764 struct attribute *attr_ub, *attr_count;
17765 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17766 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17767 {
17768 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17769 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17770 {
17771 /* If bounds are constant do the final calculation here. */
17772 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17773 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17774 else
17775 high_bound_is_count = 1;
17776 }
17777 else
17778 {
17779 if (attr_ub != NULL)
17780 complaint (_("Unresolved DW_AT_upper_bound "
17781 "- DIE at %s [in module %s]"),
17782 sect_offset_str (die->sect_off),
17783 objfile_name (cu->per_objfile->objfile));
17784 if (attr_count != NULL)
17785 complaint (_("Unresolved DW_AT_count "
17786 "- DIE at %s [in module %s]"),
17787 sect_offset_str (die->sect_off),
17788 objfile_name (cu->per_objfile->objfile));
17789 }
17790 }
17791
17792 LONGEST bias = 0;
17793 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17794 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17795 bias = bias_attr->constant_value (0);
17796
17797 /* Normally, the DWARF producers are expected to use a signed
17798 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17799 But this is unfortunately not always the case, as witnessed
17800 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17801 is used instead. To work around that ambiguity, we treat
17802 the bounds as signed, and thus sign-extend their values, when
17803 the base type is signed. */
17804 negative_mask =
17805 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17806 if (low.kind == PROP_CONST
17807 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17808 low.data.const_val |= negative_mask;
17809 if (high.kind == PROP_CONST
17810 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17811 high.data.const_val |= negative_mask;
17812
17813 /* Check for bit and byte strides. */
17814 struct dynamic_prop byte_stride_prop;
17815 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17816 if (attr_byte_stride != nullptr)
17817 {
17818 struct type *prop_type = cu->addr_sized_int_type (false);
17819 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17820 prop_type);
17821 }
17822
17823 struct dynamic_prop bit_stride_prop;
17824 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17825 if (attr_bit_stride != nullptr)
17826 {
17827 /* It only makes sense to have either a bit or byte stride. */
17828 if (attr_byte_stride != nullptr)
17829 {
17830 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17831 "- DIE at %s [in module %s]"),
17832 sect_offset_str (die->sect_off),
17833 objfile_name (cu->per_objfile->objfile));
17834 attr_bit_stride = nullptr;
17835 }
17836 else
17837 {
17838 struct type *prop_type = cu->addr_sized_int_type (false);
17839 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17840 prop_type);
17841 }
17842 }
17843
17844 if (attr_byte_stride != nullptr
17845 || attr_bit_stride != nullptr)
17846 {
17847 bool byte_stride_p = (attr_byte_stride != nullptr);
17848 struct dynamic_prop *stride
17849 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17850
17851 range_type
17852 = create_range_type_with_stride (NULL, orig_base_type, &low,
17853 &high, bias, stride, byte_stride_p);
17854 }
17855 else
17856 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17857
17858 if (high_bound_is_count)
17859 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17860
17861 /* Ada expects an empty array on no boundary attributes. */
17862 if (attr == NULL && cu->language != language_ada)
17863 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17864
17865 name = dwarf2_name (die, cu);
17866 if (name)
17867 range_type->set_name (name);
17868
17869 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17870 if (attr != nullptr)
17871 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17872
17873 maybe_set_alignment (cu, die, range_type);
17874
17875 set_die_type (die, range_type, cu);
17876
17877 /* set_die_type should be already done. */
17878 set_descriptive_type (range_type, die, cu);
17879
17880 return range_type;
17881 }
17882
17883 static struct type *
17884 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17885 {
17886 struct type *type;
17887
17888 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
17889 type->set_name (dwarf2_name (die, cu));
17890
17891 /* In Ada, an unspecified type is typically used when the description
17892 of the type is deferred to a different unit. When encountering
17893 such a type, we treat it as a stub, and try to resolve it later on,
17894 when needed. */
17895 if (cu->language == language_ada)
17896 TYPE_STUB (type) = 1;
17897
17898 return set_die_type (die, type, cu);
17899 }
17900
17901 /* Read a single die and all its descendents. Set the die's sibling
17902 field to NULL; set other fields in the die correctly, and set all
17903 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17904 location of the info_ptr after reading all of those dies. PARENT
17905 is the parent of the die in question. */
17906
17907 static struct die_info *
17908 read_die_and_children (const struct die_reader_specs *reader,
17909 const gdb_byte *info_ptr,
17910 const gdb_byte **new_info_ptr,
17911 struct die_info *parent)
17912 {
17913 struct die_info *die;
17914 const gdb_byte *cur_ptr;
17915
17916 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17917 if (die == NULL)
17918 {
17919 *new_info_ptr = cur_ptr;
17920 return NULL;
17921 }
17922 store_in_ref_table (die, reader->cu);
17923
17924 if (die->has_children)
17925 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17926 else
17927 {
17928 die->child = NULL;
17929 *new_info_ptr = cur_ptr;
17930 }
17931
17932 die->sibling = NULL;
17933 die->parent = parent;
17934 return die;
17935 }
17936
17937 /* Read a die, all of its descendents, and all of its siblings; set
17938 all of the fields of all of the dies correctly. Arguments are as
17939 in read_die_and_children. */
17940
17941 static struct die_info *
17942 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17943 const gdb_byte *info_ptr,
17944 const gdb_byte **new_info_ptr,
17945 struct die_info *parent)
17946 {
17947 struct die_info *first_die, *last_sibling;
17948 const gdb_byte *cur_ptr;
17949
17950 cur_ptr = info_ptr;
17951 first_die = last_sibling = NULL;
17952
17953 while (1)
17954 {
17955 struct die_info *die
17956 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17957
17958 if (die == NULL)
17959 {
17960 *new_info_ptr = cur_ptr;
17961 return first_die;
17962 }
17963
17964 if (!first_die)
17965 first_die = die;
17966 else
17967 last_sibling->sibling = die;
17968
17969 last_sibling = die;
17970 }
17971 }
17972
17973 /* Read a die, all of its descendents, and all of its siblings; set
17974 all of the fields of all of the dies correctly. Arguments are as
17975 in read_die_and_children.
17976 This the main entry point for reading a DIE and all its children. */
17977
17978 static struct die_info *
17979 read_die_and_siblings (const struct die_reader_specs *reader,
17980 const gdb_byte *info_ptr,
17981 const gdb_byte **new_info_ptr,
17982 struct die_info *parent)
17983 {
17984 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17985 new_info_ptr, parent);
17986
17987 if (dwarf_die_debug)
17988 {
17989 fprintf_unfiltered (gdb_stdlog,
17990 "Read die from %s@0x%x of %s:\n",
17991 reader->die_section->get_name (),
17992 (unsigned) (info_ptr - reader->die_section->buffer),
17993 bfd_get_filename (reader->abfd));
17994 dump_die (die, dwarf_die_debug);
17995 }
17996
17997 return die;
17998 }
17999
18000 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18001 attributes.
18002 The caller is responsible for filling in the extra attributes
18003 and updating (*DIEP)->num_attrs.
18004 Set DIEP to point to a newly allocated die with its information,
18005 except for its child, sibling, and parent fields. */
18006
18007 static const gdb_byte *
18008 read_full_die_1 (const struct die_reader_specs *reader,
18009 struct die_info **diep, const gdb_byte *info_ptr,
18010 int num_extra_attrs)
18011 {
18012 unsigned int abbrev_number, bytes_read, i;
18013 struct abbrev_info *abbrev;
18014 struct die_info *die;
18015 struct dwarf2_cu *cu = reader->cu;
18016 bfd *abfd = reader->abfd;
18017
18018 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18019 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18020 info_ptr += bytes_read;
18021 if (!abbrev_number)
18022 {
18023 *diep = NULL;
18024 return info_ptr;
18025 }
18026
18027 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18028 if (!abbrev)
18029 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18030 abbrev_number,
18031 bfd_get_filename (abfd));
18032
18033 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18034 die->sect_off = sect_off;
18035 die->tag = abbrev->tag;
18036 die->abbrev = abbrev_number;
18037 die->has_children = abbrev->has_children;
18038
18039 /* Make the result usable.
18040 The caller needs to update num_attrs after adding the extra
18041 attributes. */
18042 die->num_attrs = abbrev->num_attrs;
18043
18044 std::vector<int> indexes_that_need_reprocess;
18045 for (i = 0; i < abbrev->num_attrs; ++i)
18046 {
18047 bool need_reprocess;
18048 info_ptr =
18049 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18050 info_ptr, &need_reprocess);
18051 if (need_reprocess)
18052 indexes_that_need_reprocess.push_back (i);
18053 }
18054
18055 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18056 if (attr != nullptr)
18057 cu->str_offsets_base = DW_UNSND (attr);
18058
18059 attr = die->attr (DW_AT_loclists_base);
18060 if (attr != nullptr)
18061 cu->loclist_base = DW_UNSND (attr);
18062
18063 auto maybe_addr_base = die->addr_base ();
18064 if (maybe_addr_base.has_value ())
18065 cu->addr_base = *maybe_addr_base;
18066 for (int index : indexes_that_need_reprocess)
18067 read_attribute_reprocess (reader, &die->attrs[index]);
18068 *diep = die;
18069 return info_ptr;
18070 }
18071
18072 /* Read a die and all its attributes.
18073 Set DIEP to point to a newly allocated die with its information,
18074 except for its child, sibling, and parent fields. */
18075
18076 static const gdb_byte *
18077 read_full_die (const struct die_reader_specs *reader,
18078 struct die_info **diep, const gdb_byte *info_ptr)
18079 {
18080 const gdb_byte *result;
18081
18082 result = read_full_die_1 (reader, diep, info_ptr, 0);
18083
18084 if (dwarf_die_debug)
18085 {
18086 fprintf_unfiltered (gdb_stdlog,
18087 "Read die from %s@0x%x of %s:\n",
18088 reader->die_section->get_name (),
18089 (unsigned) (info_ptr - reader->die_section->buffer),
18090 bfd_get_filename (reader->abfd));
18091 dump_die (*diep, dwarf_die_debug);
18092 }
18093
18094 return result;
18095 }
18096 \f
18097
18098 /* Returns nonzero if TAG represents a type that we might generate a partial
18099 symbol for. */
18100
18101 static int
18102 is_type_tag_for_partial (int tag)
18103 {
18104 switch (tag)
18105 {
18106 #if 0
18107 /* Some types that would be reasonable to generate partial symbols for,
18108 that we don't at present. */
18109 case DW_TAG_array_type:
18110 case DW_TAG_file_type:
18111 case DW_TAG_ptr_to_member_type:
18112 case DW_TAG_set_type:
18113 case DW_TAG_string_type:
18114 case DW_TAG_subroutine_type:
18115 #endif
18116 case DW_TAG_base_type:
18117 case DW_TAG_class_type:
18118 case DW_TAG_interface_type:
18119 case DW_TAG_enumeration_type:
18120 case DW_TAG_structure_type:
18121 case DW_TAG_subrange_type:
18122 case DW_TAG_typedef:
18123 case DW_TAG_union_type:
18124 return 1;
18125 default:
18126 return 0;
18127 }
18128 }
18129
18130 /* Load all DIEs that are interesting for partial symbols into memory. */
18131
18132 static struct partial_die_info *
18133 load_partial_dies (const struct die_reader_specs *reader,
18134 const gdb_byte *info_ptr, int building_psymtab)
18135 {
18136 struct dwarf2_cu *cu = reader->cu;
18137 struct objfile *objfile = cu->per_objfile->objfile;
18138 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18139 unsigned int bytes_read;
18140 unsigned int load_all = 0;
18141 int nesting_level = 1;
18142
18143 parent_die = NULL;
18144 last_die = NULL;
18145
18146 gdb_assert (cu->per_cu != NULL);
18147 if (cu->per_cu->load_all_dies)
18148 load_all = 1;
18149
18150 cu->partial_dies
18151 = htab_create_alloc_ex (cu->header.length / 12,
18152 partial_die_hash,
18153 partial_die_eq,
18154 NULL,
18155 &cu->comp_unit_obstack,
18156 hashtab_obstack_allocate,
18157 dummy_obstack_deallocate);
18158
18159 while (1)
18160 {
18161 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18162
18163 /* A NULL abbrev means the end of a series of children. */
18164 if (abbrev == NULL)
18165 {
18166 if (--nesting_level == 0)
18167 return first_die;
18168
18169 info_ptr += bytes_read;
18170 last_die = parent_die;
18171 parent_die = parent_die->die_parent;
18172 continue;
18173 }
18174
18175 /* Check for template arguments. We never save these; if
18176 they're seen, we just mark the parent, and go on our way. */
18177 if (parent_die != NULL
18178 && cu->language == language_cplus
18179 && (abbrev->tag == DW_TAG_template_type_param
18180 || abbrev->tag == DW_TAG_template_value_param))
18181 {
18182 parent_die->has_template_arguments = 1;
18183
18184 if (!load_all)
18185 {
18186 /* We don't need a partial DIE for the template argument. */
18187 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18188 continue;
18189 }
18190 }
18191
18192 /* We only recurse into c++ subprograms looking for template arguments.
18193 Skip their other children. */
18194 if (!load_all
18195 && cu->language == language_cplus
18196 && parent_die != NULL
18197 && parent_die->tag == DW_TAG_subprogram)
18198 {
18199 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18200 continue;
18201 }
18202
18203 /* Check whether this DIE is interesting enough to save. Normally
18204 we would not be interested in members here, but there may be
18205 later variables referencing them via DW_AT_specification (for
18206 static members). */
18207 if (!load_all
18208 && !is_type_tag_for_partial (abbrev->tag)
18209 && abbrev->tag != DW_TAG_constant
18210 && abbrev->tag != DW_TAG_enumerator
18211 && abbrev->tag != DW_TAG_subprogram
18212 && abbrev->tag != DW_TAG_inlined_subroutine
18213 && abbrev->tag != DW_TAG_lexical_block
18214 && abbrev->tag != DW_TAG_variable
18215 && abbrev->tag != DW_TAG_namespace
18216 && abbrev->tag != DW_TAG_module
18217 && abbrev->tag != DW_TAG_member
18218 && abbrev->tag != DW_TAG_imported_unit
18219 && abbrev->tag != DW_TAG_imported_declaration)
18220 {
18221 /* Otherwise we skip to the next sibling, if any. */
18222 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18223 continue;
18224 }
18225
18226 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18227 abbrev);
18228
18229 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18230
18231 /* This two-pass algorithm for processing partial symbols has a
18232 high cost in cache pressure. Thus, handle some simple cases
18233 here which cover the majority of C partial symbols. DIEs
18234 which neither have specification tags in them, nor could have
18235 specification tags elsewhere pointing at them, can simply be
18236 processed and discarded.
18237
18238 This segment is also optional; scan_partial_symbols and
18239 add_partial_symbol will handle these DIEs if we chain
18240 them in normally. When compilers which do not emit large
18241 quantities of duplicate debug information are more common,
18242 this code can probably be removed. */
18243
18244 /* Any complete simple types at the top level (pretty much all
18245 of them, for a language without namespaces), can be processed
18246 directly. */
18247 if (parent_die == NULL
18248 && pdi.has_specification == 0
18249 && pdi.is_declaration == 0
18250 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18251 || pdi.tag == DW_TAG_base_type
18252 || pdi.tag == DW_TAG_subrange_type))
18253 {
18254 if (building_psymtab && pdi.name != NULL)
18255 add_psymbol_to_list (pdi.name, false,
18256 VAR_DOMAIN, LOC_TYPEDEF, -1,
18257 psymbol_placement::STATIC,
18258 0, cu->language, objfile);
18259 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18260 continue;
18261 }
18262
18263 /* The exception for DW_TAG_typedef with has_children above is
18264 a workaround of GCC PR debug/47510. In the case of this complaint
18265 type_name_or_error will error on such types later.
18266
18267 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18268 it could not find the child DIEs referenced later, this is checked
18269 above. In correct DWARF DW_TAG_typedef should have no children. */
18270
18271 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18272 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18273 "- DIE at %s [in module %s]"),
18274 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18275
18276 /* If we're at the second level, and we're an enumerator, and
18277 our parent has no specification (meaning possibly lives in a
18278 namespace elsewhere), then we can add the partial symbol now
18279 instead of queueing it. */
18280 if (pdi.tag == DW_TAG_enumerator
18281 && parent_die != NULL
18282 && parent_die->die_parent == NULL
18283 && parent_die->tag == DW_TAG_enumeration_type
18284 && parent_die->has_specification == 0)
18285 {
18286 if (pdi.name == NULL)
18287 complaint (_("malformed enumerator DIE ignored"));
18288 else if (building_psymtab)
18289 add_psymbol_to_list (pdi.name, false,
18290 VAR_DOMAIN, LOC_CONST, -1,
18291 cu->language == language_cplus
18292 ? psymbol_placement::GLOBAL
18293 : psymbol_placement::STATIC,
18294 0, cu->language, objfile);
18295
18296 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18297 continue;
18298 }
18299
18300 struct partial_die_info *part_die
18301 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18302
18303 /* We'll save this DIE so link it in. */
18304 part_die->die_parent = parent_die;
18305 part_die->die_sibling = NULL;
18306 part_die->die_child = NULL;
18307
18308 if (last_die && last_die == parent_die)
18309 last_die->die_child = part_die;
18310 else if (last_die)
18311 last_die->die_sibling = part_die;
18312
18313 last_die = part_die;
18314
18315 if (first_die == NULL)
18316 first_die = part_die;
18317
18318 /* Maybe add the DIE to the hash table. Not all DIEs that we
18319 find interesting need to be in the hash table, because we
18320 also have the parent/sibling/child chains; only those that we
18321 might refer to by offset later during partial symbol reading.
18322
18323 For now this means things that might have be the target of a
18324 DW_AT_specification, DW_AT_abstract_origin, or
18325 DW_AT_extension. DW_AT_extension will refer only to
18326 namespaces; DW_AT_abstract_origin refers to functions (and
18327 many things under the function DIE, but we do not recurse
18328 into function DIEs during partial symbol reading) and
18329 possibly variables as well; DW_AT_specification refers to
18330 declarations. Declarations ought to have the DW_AT_declaration
18331 flag. It happens that GCC forgets to put it in sometimes, but
18332 only for functions, not for types.
18333
18334 Adding more things than necessary to the hash table is harmless
18335 except for the performance cost. Adding too few will result in
18336 wasted time in find_partial_die, when we reread the compilation
18337 unit with load_all_dies set. */
18338
18339 if (load_all
18340 || abbrev->tag == DW_TAG_constant
18341 || abbrev->tag == DW_TAG_subprogram
18342 || abbrev->tag == DW_TAG_variable
18343 || abbrev->tag == DW_TAG_namespace
18344 || part_die->is_declaration)
18345 {
18346 void **slot;
18347
18348 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18349 to_underlying (part_die->sect_off),
18350 INSERT);
18351 *slot = part_die;
18352 }
18353
18354 /* For some DIEs we want to follow their children (if any). For C
18355 we have no reason to follow the children of structures; for other
18356 languages we have to, so that we can get at method physnames
18357 to infer fully qualified class names, for DW_AT_specification,
18358 and for C++ template arguments. For C++, we also look one level
18359 inside functions to find template arguments (if the name of the
18360 function does not already contain the template arguments).
18361
18362 For Ada and Fortran, we need to scan the children of subprograms
18363 and lexical blocks as well because these languages allow the
18364 definition of nested entities that could be interesting for the
18365 debugger, such as nested subprograms for instance. */
18366 if (last_die->has_children
18367 && (load_all
18368 || last_die->tag == DW_TAG_namespace
18369 || last_die->tag == DW_TAG_module
18370 || last_die->tag == DW_TAG_enumeration_type
18371 || (cu->language == language_cplus
18372 && last_die->tag == DW_TAG_subprogram
18373 && (last_die->name == NULL
18374 || strchr (last_die->name, '<') == NULL))
18375 || (cu->language != language_c
18376 && (last_die->tag == DW_TAG_class_type
18377 || last_die->tag == DW_TAG_interface_type
18378 || last_die->tag == DW_TAG_structure_type
18379 || last_die->tag == DW_TAG_union_type))
18380 || ((cu->language == language_ada
18381 || cu->language == language_fortran)
18382 && (last_die->tag == DW_TAG_subprogram
18383 || last_die->tag == DW_TAG_lexical_block))))
18384 {
18385 nesting_level++;
18386 parent_die = last_die;
18387 continue;
18388 }
18389
18390 /* Otherwise we skip to the next sibling, if any. */
18391 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18392
18393 /* Back to the top, do it again. */
18394 }
18395 }
18396
18397 partial_die_info::partial_die_info (sect_offset sect_off_,
18398 struct abbrev_info *abbrev)
18399 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18400 {
18401 }
18402
18403 /* Read a minimal amount of information into the minimal die structure.
18404 INFO_PTR should point just after the initial uleb128 of a DIE. */
18405
18406 const gdb_byte *
18407 partial_die_info::read (const struct die_reader_specs *reader,
18408 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18409 {
18410 struct dwarf2_cu *cu = reader->cu;
18411 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
18412 unsigned int i;
18413 int has_low_pc_attr = 0;
18414 int has_high_pc_attr = 0;
18415 int high_pc_relative = 0;
18416
18417 for (i = 0; i < abbrev.num_attrs; ++i)
18418 {
18419 attribute attr;
18420 bool need_reprocess;
18421 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18422 info_ptr, &need_reprocess);
18423 /* String and address offsets that need to do the reprocessing have
18424 already been read at this point, so there is no need to wait until
18425 the loop terminates to do the reprocessing. */
18426 if (need_reprocess)
18427 read_attribute_reprocess (reader, &attr);
18428 /* Store the data if it is of an attribute we want to keep in a
18429 partial symbol table. */
18430 switch (attr.name)
18431 {
18432 case DW_AT_name:
18433 switch (tag)
18434 {
18435 case DW_TAG_compile_unit:
18436 case DW_TAG_partial_unit:
18437 case DW_TAG_type_unit:
18438 /* Compilation units have a DW_AT_name that is a filename, not
18439 a source language identifier. */
18440 case DW_TAG_enumeration_type:
18441 case DW_TAG_enumerator:
18442 /* These tags always have simple identifiers already; no need
18443 to canonicalize them. */
18444 name = DW_STRING (&attr);
18445 break;
18446 default:
18447 {
18448 struct objfile *objfile = dwarf2_per_objfile->objfile;
18449
18450 name
18451 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18452 }
18453 break;
18454 }
18455 break;
18456 case DW_AT_linkage_name:
18457 case DW_AT_MIPS_linkage_name:
18458 /* Note that both forms of linkage name might appear. We
18459 assume they will be the same, and we only store the last
18460 one we see. */
18461 linkage_name = attr.value_as_string ();
18462 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18463 See https://github.com/rust-lang/rust/issues/32925. */
18464 if (cu->language == language_rust && linkage_name != NULL
18465 && strchr (linkage_name, '{') != NULL)
18466 linkage_name = NULL;
18467 break;
18468 case DW_AT_low_pc:
18469 has_low_pc_attr = 1;
18470 lowpc = attr.value_as_address ();
18471 break;
18472 case DW_AT_high_pc:
18473 has_high_pc_attr = 1;
18474 highpc = attr.value_as_address ();
18475 if (cu->header.version >= 4 && attr.form_is_constant ())
18476 high_pc_relative = 1;
18477 break;
18478 case DW_AT_location:
18479 /* Support the .debug_loc offsets. */
18480 if (attr.form_is_block ())
18481 {
18482 d.locdesc = DW_BLOCK (&attr);
18483 }
18484 else if (attr.form_is_section_offset ())
18485 {
18486 dwarf2_complex_location_expr_complaint ();
18487 }
18488 else
18489 {
18490 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18491 "partial symbol information");
18492 }
18493 break;
18494 case DW_AT_external:
18495 is_external = DW_UNSND (&attr);
18496 break;
18497 case DW_AT_declaration:
18498 is_declaration = DW_UNSND (&attr);
18499 break;
18500 case DW_AT_type:
18501 has_type = 1;
18502 break;
18503 case DW_AT_abstract_origin:
18504 case DW_AT_specification:
18505 case DW_AT_extension:
18506 has_specification = 1;
18507 spec_offset = attr.get_ref_die_offset ();
18508 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18509 || cu->per_cu->is_dwz);
18510 break;
18511 case DW_AT_sibling:
18512 /* Ignore absolute siblings, they might point outside of
18513 the current compile unit. */
18514 if (attr.form == DW_FORM_ref_addr)
18515 complaint (_("ignoring absolute DW_AT_sibling"));
18516 else
18517 {
18518 const gdb_byte *buffer = reader->buffer;
18519 sect_offset off = attr.get_ref_die_offset ();
18520 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18521
18522 if (sibling_ptr < info_ptr)
18523 complaint (_("DW_AT_sibling points backwards"));
18524 else if (sibling_ptr > reader->buffer_end)
18525 reader->die_section->overflow_complaint ();
18526 else
18527 sibling = sibling_ptr;
18528 }
18529 break;
18530 case DW_AT_byte_size:
18531 has_byte_size = 1;
18532 break;
18533 case DW_AT_const_value:
18534 has_const_value = 1;
18535 break;
18536 case DW_AT_calling_convention:
18537 /* DWARF doesn't provide a way to identify a program's source-level
18538 entry point. DW_AT_calling_convention attributes are only meant
18539 to describe functions' calling conventions.
18540
18541 However, because it's a necessary piece of information in
18542 Fortran, and before DWARF 4 DW_CC_program was the only
18543 piece of debugging information whose definition refers to
18544 a 'main program' at all, several compilers marked Fortran
18545 main programs with DW_CC_program --- even when those
18546 functions use the standard calling conventions.
18547
18548 Although DWARF now specifies a way to provide this
18549 information, we support this practice for backward
18550 compatibility. */
18551 if (DW_UNSND (&attr) == DW_CC_program
18552 && cu->language == language_fortran)
18553 main_subprogram = 1;
18554 break;
18555 case DW_AT_inline:
18556 if (DW_UNSND (&attr) == DW_INL_inlined
18557 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18558 may_be_inlined = 1;
18559 break;
18560
18561 case DW_AT_import:
18562 if (tag == DW_TAG_imported_unit)
18563 {
18564 d.sect_off = attr.get_ref_die_offset ();
18565 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18566 || cu->per_cu->is_dwz);
18567 }
18568 break;
18569
18570 case DW_AT_main_subprogram:
18571 main_subprogram = DW_UNSND (&attr);
18572 break;
18573
18574 case DW_AT_ranges:
18575 {
18576 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18577 but that requires a full DIE, so instead we just
18578 reimplement it. */
18579 int need_ranges_base = tag != DW_TAG_compile_unit;
18580 unsigned int ranges_offset = (DW_UNSND (&attr)
18581 + (need_ranges_base
18582 ? cu->ranges_base
18583 : 0));
18584
18585 /* Value of the DW_AT_ranges attribute is the offset in the
18586 .debug_ranges section. */
18587 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18588 nullptr))
18589 has_pc_info = 1;
18590 }
18591 break;
18592
18593 default:
18594 break;
18595 }
18596 }
18597
18598 /* For Ada, if both the name and the linkage name appear, we prefer
18599 the latter. This lets "catch exception" work better, regardless
18600 of the order in which the name and linkage name were emitted.
18601 Really, though, this is just a workaround for the fact that gdb
18602 doesn't store both the name and the linkage name. */
18603 if (cu->language == language_ada && linkage_name != nullptr)
18604 name = linkage_name;
18605
18606 if (high_pc_relative)
18607 highpc += lowpc;
18608
18609 if (has_low_pc_attr && has_high_pc_attr)
18610 {
18611 /* When using the GNU linker, .gnu.linkonce. sections are used to
18612 eliminate duplicate copies of functions and vtables and such.
18613 The linker will arbitrarily choose one and discard the others.
18614 The AT_*_pc values for such functions refer to local labels in
18615 these sections. If the section from that file was discarded, the
18616 labels are not in the output, so the relocs get a value of 0.
18617 If this is a discarded function, mark the pc bounds as invalid,
18618 so that GDB will ignore it. */
18619 if (lowpc == 0 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
18620 {
18621 struct objfile *objfile = dwarf2_per_objfile->objfile;
18622 struct gdbarch *gdbarch = objfile->arch ();
18623
18624 complaint (_("DW_AT_low_pc %s is zero "
18625 "for DIE at %s [in module %s]"),
18626 paddress (gdbarch, lowpc),
18627 sect_offset_str (sect_off),
18628 objfile_name (objfile));
18629 }
18630 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18631 else if (lowpc >= highpc)
18632 {
18633 struct objfile *objfile = dwarf2_per_objfile->objfile;
18634 struct gdbarch *gdbarch = objfile->arch ();
18635
18636 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18637 "for DIE at %s [in module %s]"),
18638 paddress (gdbarch, lowpc),
18639 paddress (gdbarch, highpc),
18640 sect_offset_str (sect_off),
18641 objfile_name (objfile));
18642 }
18643 else
18644 has_pc_info = 1;
18645 }
18646
18647 return info_ptr;
18648 }
18649
18650 /* Find a cached partial DIE at OFFSET in CU. */
18651
18652 struct partial_die_info *
18653 dwarf2_cu::find_partial_die (sect_offset sect_off)
18654 {
18655 struct partial_die_info *lookup_die = NULL;
18656 struct partial_die_info part_die (sect_off);
18657
18658 lookup_die = ((struct partial_die_info *)
18659 htab_find_with_hash (partial_dies, &part_die,
18660 to_underlying (sect_off)));
18661
18662 return lookup_die;
18663 }
18664
18665 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18666 except in the case of .debug_types DIEs which do not reference
18667 outside their CU (they do however referencing other types via
18668 DW_FORM_ref_sig8). */
18669
18670 static const struct cu_partial_die_info
18671 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18672 {
18673 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
18674 struct objfile *objfile = dwarf2_per_objfile->objfile;
18675 struct dwarf2_per_cu_data *per_cu = NULL;
18676 struct partial_die_info *pd = NULL;
18677
18678 if (offset_in_dwz == cu->per_cu->is_dwz
18679 && cu->header.offset_in_cu_p (sect_off))
18680 {
18681 pd = cu->find_partial_die (sect_off);
18682 if (pd != NULL)
18683 return { cu, pd };
18684 /* We missed recording what we needed.
18685 Load all dies and try again. */
18686 per_cu = cu->per_cu;
18687 }
18688 else
18689 {
18690 /* TUs don't reference other CUs/TUs (except via type signatures). */
18691 if (cu->per_cu->is_debug_types)
18692 {
18693 error (_("Dwarf Error: Type Unit at offset %s contains"
18694 " external reference to offset %s [in module %s].\n"),
18695 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18696 bfd_get_filename (objfile->obfd));
18697 }
18698 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18699 dwarf2_per_objfile);
18700
18701 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18702 load_partial_comp_unit (per_cu, cu->per_objfile);
18703
18704 per_cu->cu->last_used = 0;
18705 pd = per_cu->cu->find_partial_die (sect_off);
18706 }
18707
18708 /* If we didn't find it, and not all dies have been loaded,
18709 load them all and try again. */
18710
18711 if (pd == NULL && per_cu->load_all_dies == 0)
18712 {
18713 per_cu->load_all_dies = 1;
18714
18715 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18716 THIS_CU->cu may already be in use. So we can't just free it and
18717 replace its DIEs with the ones we read in. Instead, we leave those
18718 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18719 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18720 set. */
18721 load_partial_comp_unit (per_cu, cu->per_objfile);
18722
18723 pd = per_cu->cu->find_partial_die (sect_off);
18724 }
18725
18726 if (pd == NULL)
18727 internal_error (__FILE__, __LINE__,
18728 _("could not find partial DIE %s "
18729 "in cache [from module %s]\n"),
18730 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18731 return { per_cu->cu, pd };
18732 }
18733
18734 /* See if we can figure out if the class lives in a namespace. We do
18735 this by looking for a member function; its demangled name will
18736 contain namespace info, if there is any. */
18737
18738 static void
18739 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18740 struct dwarf2_cu *cu)
18741 {
18742 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18743 what template types look like, because the demangler
18744 frequently doesn't give the same name as the debug info. We
18745 could fix this by only using the demangled name to get the
18746 prefix (but see comment in read_structure_type). */
18747
18748 struct partial_die_info *real_pdi;
18749 struct partial_die_info *child_pdi;
18750
18751 /* If this DIE (this DIE's specification, if any) has a parent, then
18752 we should not do this. We'll prepend the parent's fully qualified
18753 name when we create the partial symbol. */
18754
18755 real_pdi = struct_pdi;
18756 while (real_pdi->has_specification)
18757 {
18758 auto res = find_partial_die (real_pdi->spec_offset,
18759 real_pdi->spec_is_dwz, cu);
18760 real_pdi = res.pdi;
18761 cu = res.cu;
18762 }
18763
18764 if (real_pdi->die_parent != NULL)
18765 return;
18766
18767 for (child_pdi = struct_pdi->die_child;
18768 child_pdi != NULL;
18769 child_pdi = child_pdi->die_sibling)
18770 {
18771 if (child_pdi->tag == DW_TAG_subprogram
18772 && child_pdi->linkage_name != NULL)
18773 {
18774 gdb::unique_xmalloc_ptr<char> actual_class_name
18775 (language_class_name_from_physname (cu->language_defn,
18776 child_pdi->linkage_name));
18777 if (actual_class_name != NULL)
18778 {
18779 struct objfile *objfile = cu->per_objfile->objfile;
18780 struct_pdi->name = objfile->intern (actual_class_name.get ());
18781 }
18782 break;
18783 }
18784 }
18785 }
18786
18787 /* Return true if a DIE with TAG may have the DW_AT_const_value
18788 attribute. */
18789
18790 static bool
18791 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18792 {
18793 switch (tag)
18794 {
18795 case DW_TAG_constant:
18796 case DW_TAG_enumerator:
18797 case DW_TAG_formal_parameter:
18798 case DW_TAG_template_value_param:
18799 case DW_TAG_variable:
18800 return true;
18801 }
18802
18803 return false;
18804 }
18805
18806 void
18807 partial_die_info::fixup (struct dwarf2_cu *cu)
18808 {
18809 /* Once we've fixed up a die, there's no point in doing so again.
18810 This also avoids a memory leak if we were to call
18811 guess_partial_die_structure_name multiple times. */
18812 if (fixup_called)
18813 return;
18814
18815 /* If we found a reference attribute and the DIE has no name, try
18816 to find a name in the referred to DIE. */
18817
18818 if (name == NULL && has_specification)
18819 {
18820 struct partial_die_info *spec_die;
18821
18822 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18823 spec_die = res.pdi;
18824 cu = res.cu;
18825
18826 spec_die->fixup (cu);
18827
18828 if (spec_die->name)
18829 {
18830 name = spec_die->name;
18831
18832 /* Copy DW_AT_external attribute if it is set. */
18833 if (spec_die->is_external)
18834 is_external = spec_die->is_external;
18835 }
18836 }
18837
18838 if (!has_const_value && has_specification
18839 && can_have_DW_AT_const_value_p (tag))
18840 {
18841 struct partial_die_info *spec_die;
18842
18843 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18844 spec_die = res.pdi;
18845 cu = res.cu;
18846
18847 spec_die->fixup (cu);
18848
18849 if (spec_die->has_const_value)
18850 {
18851 /* Copy DW_AT_const_value attribute if it is set. */
18852 has_const_value = spec_die->has_const_value;
18853 }
18854 }
18855
18856 /* Set default names for some unnamed DIEs. */
18857
18858 if (name == NULL && tag == DW_TAG_namespace)
18859 name = CP_ANONYMOUS_NAMESPACE_STR;
18860
18861 /* If there is no parent die to provide a namespace, and there are
18862 children, see if we can determine the namespace from their linkage
18863 name. */
18864 if (cu->language == language_cplus
18865 && !cu->per_objfile->per_bfd->types.empty ()
18866 && die_parent == NULL
18867 && has_children
18868 && (tag == DW_TAG_class_type
18869 || tag == DW_TAG_structure_type
18870 || tag == DW_TAG_union_type))
18871 guess_partial_die_structure_name (this, cu);
18872
18873 /* GCC might emit a nameless struct or union that has a linkage
18874 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18875 if (name == NULL
18876 && (tag == DW_TAG_class_type
18877 || tag == DW_TAG_interface_type
18878 || tag == DW_TAG_structure_type
18879 || tag == DW_TAG_union_type)
18880 && linkage_name != NULL)
18881 {
18882 gdb::unique_xmalloc_ptr<char> demangled
18883 (gdb_demangle (linkage_name, DMGL_TYPES));
18884 if (demangled != nullptr)
18885 {
18886 const char *base;
18887
18888 /* Strip any leading namespaces/classes, keep only the base name.
18889 DW_AT_name for named DIEs does not contain the prefixes. */
18890 base = strrchr (demangled.get (), ':');
18891 if (base && base > demangled.get () && base[-1] == ':')
18892 base++;
18893 else
18894 base = demangled.get ();
18895
18896 struct objfile *objfile = cu->per_objfile->objfile;
18897 name = objfile->intern (base);
18898 }
18899 }
18900
18901 fixup_called = 1;
18902 }
18903
18904 /* Read the .debug_loclists header contents from the given SECTION in the
18905 HEADER. */
18906 static void
18907 read_loclist_header (struct loclist_header *header,
18908 struct dwarf2_section_info *section)
18909 {
18910 unsigned int bytes_read;
18911 bfd *abfd = section->get_bfd_owner ();
18912 const gdb_byte *info_ptr = section->buffer;
18913 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18914 info_ptr += bytes_read;
18915 header->version = read_2_bytes (abfd, info_ptr);
18916 info_ptr += 2;
18917 header->addr_size = read_1_byte (abfd, info_ptr);
18918 info_ptr += 1;
18919 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18920 info_ptr += 1;
18921 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18922 }
18923
18924 /* Return the DW_AT_loclists_base value for the CU. */
18925 static ULONGEST
18926 lookup_loclist_base (struct dwarf2_cu *cu)
18927 {
18928 /* For the .dwo unit, the loclist_base points to the first offset following
18929 the header. The header consists of the following entities-
18930 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18931 bit format)
18932 2. version (2 bytes)
18933 3. address size (1 byte)
18934 4. segment selector size (1 byte)
18935 5. offset entry count (4 bytes)
18936 These sizes are derived as per the DWARFv5 standard. */
18937 if (cu->dwo_unit != nullptr)
18938 {
18939 if (cu->header.initial_length_size == 4)
18940 return LOCLIST_HEADER_SIZE32;
18941 return LOCLIST_HEADER_SIZE64;
18942 }
18943 return cu->loclist_base;
18944 }
18945
18946 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18947 array of offsets in the .debug_loclists section. */
18948 static CORE_ADDR
18949 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18950 {
18951 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
18952 struct objfile *objfile = dwarf2_per_objfile->objfile;
18953 bfd *abfd = objfile->obfd;
18954 ULONGEST loclist_base = lookup_loclist_base (cu);
18955 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18956
18957 section->read (objfile);
18958 if (section->buffer == NULL)
18959 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18960 "section [in module %s]"), objfile_name (objfile));
18961 struct loclist_header header;
18962 read_loclist_header (&header, section);
18963 if (loclist_index >= header.offset_entry_count)
18964 complaint (_("DW_FORM_loclistx pointing outside of "
18965 ".debug_loclists offset array [in module %s]"),
18966 objfile_name (objfile));
18967 if (loclist_base + loclist_index * cu->header.offset_size
18968 >= section->size)
18969 complaint (_("DW_FORM_loclistx pointing outside of "
18970 ".debug_loclists section [in module %s]"),
18971 objfile_name (objfile));
18972 const gdb_byte *info_ptr
18973 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18974
18975 if (cu->header.offset_size == 4)
18976 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18977 else
18978 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18979 }
18980
18981 /* Process the attributes that had to be skipped in the first round. These
18982 attributes are the ones that need str_offsets_base or addr_base attributes.
18983 They could not have been processed in the first round, because at the time
18984 the values of str_offsets_base or addr_base may not have been known. */
18985 static void
18986 read_attribute_reprocess (const struct die_reader_specs *reader,
18987 struct attribute *attr)
18988 {
18989 struct dwarf2_cu *cu = reader->cu;
18990 switch (attr->form)
18991 {
18992 case DW_FORM_addrx:
18993 case DW_FORM_GNU_addr_index:
18994 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18995 break;
18996 case DW_FORM_loclistx:
18997 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18998 break;
18999 case DW_FORM_strx:
19000 case DW_FORM_strx1:
19001 case DW_FORM_strx2:
19002 case DW_FORM_strx3:
19003 case DW_FORM_strx4:
19004 case DW_FORM_GNU_str_index:
19005 {
19006 unsigned int str_index = DW_UNSND (attr);
19007 if (reader->dwo_file != NULL)
19008 {
19009 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
19010 DW_STRING_IS_CANONICAL (attr) = 0;
19011 }
19012 else
19013 {
19014 DW_STRING (attr) = read_stub_str_index (cu, str_index);
19015 DW_STRING_IS_CANONICAL (attr) = 0;
19016 }
19017 break;
19018 }
19019 default:
19020 gdb_assert_not_reached (_("Unexpected DWARF form."));
19021 }
19022 }
19023
19024 /* Read an attribute value described by an attribute form. */
19025
19026 static const gdb_byte *
19027 read_attribute_value (const struct die_reader_specs *reader,
19028 struct attribute *attr, unsigned form,
19029 LONGEST implicit_const, const gdb_byte *info_ptr,
19030 bool *need_reprocess)
19031 {
19032 struct dwarf2_cu *cu = reader->cu;
19033 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19034 struct objfile *objfile = dwarf2_per_objfile->objfile;
19035 bfd *abfd = reader->abfd;
19036 struct comp_unit_head *cu_header = &cu->header;
19037 unsigned int bytes_read;
19038 struct dwarf_block *blk;
19039 *need_reprocess = false;
19040
19041 attr->form = (enum dwarf_form) form;
19042 switch (form)
19043 {
19044 case DW_FORM_ref_addr:
19045 if (cu->header.version == 2)
19046 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
19047 &bytes_read);
19048 else
19049 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
19050 &bytes_read);
19051 info_ptr += bytes_read;
19052 break;
19053 case DW_FORM_GNU_ref_alt:
19054 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19055 info_ptr += bytes_read;
19056 break;
19057 case DW_FORM_addr:
19058 {
19059 struct gdbarch *gdbarch = objfile->arch ();
19060 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
19061 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19062 info_ptr += bytes_read;
19063 }
19064 break;
19065 case DW_FORM_block2:
19066 blk = dwarf_alloc_block (cu);
19067 blk->size = read_2_bytes (abfd, info_ptr);
19068 info_ptr += 2;
19069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19070 info_ptr += blk->size;
19071 DW_BLOCK (attr) = blk;
19072 break;
19073 case DW_FORM_block4:
19074 blk = dwarf_alloc_block (cu);
19075 blk->size = read_4_bytes (abfd, info_ptr);
19076 info_ptr += 4;
19077 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19078 info_ptr += blk->size;
19079 DW_BLOCK (attr) = blk;
19080 break;
19081 case DW_FORM_data2:
19082 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19083 info_ptr += 2;
19084 break;
19085 case DW_FORM_data4:
19086 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19087 info_ptr += 4;
19088 break;
19089 case DW_FORM_data8:
19090 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19091 info_ptr += 8;
19092 break;
19093 case DW_FORM_data16:
19094 blk = dwarf_alloc_block (cu);
19095 blk->size = 16;
19096 blk->data = read_n_bytes (abfd, info_ptr, 16);
19097 info_ptr += 16;
19098 DW_BLOCK (attr) = blk;
19099 break;
19100 case DW_FORM_sec_offset:
19101 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19102 info_ptr += bytes_read;
19103 break;
19104 case DW_FORM_loclistx:
19105 {
19106 *need_reprocess = true;
19107 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19108 info_ptr += bytes_read;
19109 }
19110 break;
19111 case DW_FORM_string:
19112 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19113 DW_STRING_IS_CANONICAL (attr) = 0;
19114 info_ptr += bytes_read;
19115 break;
19116 case DW_FORM_strp:
19117 if (!cu->per_cu->is_dwz)
19118 {
19119 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19120 abfd, info_ptr, cu_header,
19121 &bytes_read);
19122 DW_STRING_IS_CANONICAL (attr) = 0;
19123 info_ptr += bytes_read;
19124 break;
19125 }
19126 /* FALLTHROUGH */
19127 case DW_FORM_line_strp:
19128 if (!cu->per_cu->is_dwz)
19129 {
19130 DW_STRING (attr)
19131 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
19132 &bytes_read);
19133 DW_STRING_IS_CANONICAL (attr) = 0;
19134 info_ptr += bytes_read;
19135 break;
19136 }
19137 /* FALLTHROUGH */
19138 case DW_FORM_GNU_strp_alt:
19139 {
19140 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
19141 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19142 &bytes_read);
19143
19144 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
19145 DW_STRING_IS_CANONICAL (attr) = 0;
19146 info_ptr += bytes_read;
19147 }
19148 break;
19149 case DW_FORM_exprloc:
19150 case DW_FORM_block:
19151 blk = dwarf_alloc_block (cu);
19152 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19153 info_ptr += bytes_read;
19154 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19155 info_ptr += blk->size;
19156 DW_BLOCK (attr) = blk;
19157 break;
19158 case DW_FORM_block1:
19159 blk = dwarf_alloc_block (cu);
19160 blk->size = read_1_byte (abfd, info_ptr);
19161 info_ptr += 1;
19162 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19163 info_ptr += blk->size;
19164 DW_BLOCK (attr) = blk;
19165 break;
19166 case DW_FORM_data1:
19167 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19168 info_ptr += 1;
19169 break;
19170 case DW_FORM_flag:
19171 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19172 info_ptr += 1;
19173 break;
19174 case DW_FORM_flag_present:
19175 DW_UNSND (attr) = 1;
19176 break;
19177 case DW_FORM_sdata:
19178 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19179 info_ptr += bytes_read;
19180 break;
19181 case DW_FORM_udata:
19182 case DW_FORM_rnglistx:
19183 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19184 info_ptr += bytes_read;
19185 break;
19186 case DW_FORM_ref1:
19187 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19188 + read_1_byte (abfd, info_ptr));
19189 info_ptr += 1;
19190 break;
19191 case DW_FORM_ref2:
19192 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19193 + read_2_bytes (abfd, info_ptr));
19194 info_ptr += 2;
19195 break;
19196 case DW_FORM_ref4:
19197 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19198 + read_4_bytes (abfd, info_ptr));
19199 info_ptr += 4;
19200 break;
19201 case DW_FORM_ref8:
19202 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19203 + read_8_bytes (abfd, info_ptr));
19204 info_ptr += 8;
19205 break;
19206 case DW_FORM_ref_sig8:
19207 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19208 info_ptr += 8;
19209 break;
19210 case DW_FORM_ref_udata:
19211 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19212 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19213 info_ptr += bytes_read;
19214 break;
19215 case DW_FORM_indirect:
19216 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19217 info_ptr += bytes_read;
19218 if (form == DW_FORM_implicit_const)
19219 {
19220 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19221 info_ptr += bytes_read;
19222 }
19223 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19224 info_ptr, need_reprocess);
19225 break;
19226 case DW_FORM_implicit_const:
19227 DW_SND (attr) = implicit_const;
19228 break;
19229 case DW_FORM_addrx:
19230 case DW_FORM_GNU_addr_index:
19231 *need_reprocess = true;
19232 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19233 info_ptr += bytes_read;
19234 break;
19235 case DW_FORM_strx:
19236 case DW_FORM_strx1:
19237 case DW_FORM_strx2:
19238 case DW_FORM_strx3:
19239 case DW_FORM_strx4:
19240 case DW_FORM_GNU_str_index:
19241 {
19242 ULONGEST str_index;
19243 if (form == DW_FORM_strx1)
19244 {
19245 str_index = read_1_byte (abfd, info_ptr);
19246 info_ptr += 1;
19247 }
19248 else if (form == DW_FORM_strx2)
19249 {
19250 str_index = read_2_bytes (abfd, info_ptr);
19251 info_ptr += 2;
19252 }
19253 else if (form == DW_FORM_strx3)
19254 {
19255 str_index = read_3_bytes (abfd, info_ptr);
19256 info_ptr += 3;
19257 }
19258 else if (form == DW_FORM_strx4)
19259 {
19260 str_index = read_4_bytes (abfd, info_ptr);
19261 info_ptr += 4;
19262 }
19263 else
19264 {
19265 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19266 info_ptr += bytes_read;
19267 }
19268 *need_reprocess = true;
19269 DW_UNSND (attr) = str_index;
19270 }
19271 break;
19272 default:
19273 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19274 dwarf_form_name (form),
19275 bfd_get_filename (abfd));
19276 }
19277
19278 /* Super hack. */
19279 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19280 attr->form = DW_FORM_GNU_ref_alt;
19281
19282 /* We have seen instances where the compiler tried to emit a byte
19283 size attribute of -1 which ended up being encoded as an unsigned
19284 0xffffffff. Although 0xffffffff is technically a valid size value,
19285 an object of this size seems pretty unlikely so we can relatively
19286 safely treat these cases as if the size attribute was invalid and
19287 treat them as zero by default. */
19288 if (attr->name == DW_AT_byte_size
19289 && form == DW_FORM_data4
19290 && DW_UNSND (attr) >= 0xffffffff)
19291 {
19292 complaint
19293 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19294 hex_string (DW_UNSND (attr)));
19295 DW_UNSND (attr) = 0;
19296 }
19297
19298 return info_ptr;
19299 }
19300
19301 /* Read an attribute described by an abbreviated attribute. */
19302
19303 static const gdb_byte *
19304 read_attribute (const struct die_reader_specs *reader,
19305 struct attribute *attr, struct attr_abbrev *abbrev,
19306 const gdb_byte *info_ptr, bool *need_reprocess)
19307 {
19308 attr->name = abbrev->name;
19309 return read_attribute_value (reader, attr, abbrev->form,
19310 abbrev->implicit_const, info_ptr,
19311 need_reprocess);
19312 }
19313
19314 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19315
19316 static const char *
19317 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19318 LONGEST str_offset)
19319 {
19320 return dwarf2_per_objfile->per_bfd->str.read_string
19321 (dwarf2_per_objfile->objfile, str_offset, "DW_FORM_strp");
19322 }
19323
19324 /* Return pointer to string at .debug_str offset as read from BUF.
19325 BUF is assumed to be in a compilation unit described by CU_HEADER.
19326 Return *BYTES_READ_PTR count of bytes read from BUF. */
19327
19328 static const char *
19329 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19330 const gdb_byte *buf,
19331 const struct comp_unit_head *cu_header,
19332 unsigned int *bytes_read_ptr)
19333 {
19334 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19335
19336 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19337 }
19338
19339 /* See read.h. */
19340
19341 const char *
19342 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19343 const struct comp_unit_head *cu_header,
19344 unsigned int *bytes_read_ptr)
19345 {
19346 bfd *abfd = objfile->obfd;
19347 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19348
19349 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19350 }
19351
19352 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19353 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19354 ADDR_SIZE is the size of addresses from the CU header. */
19355
19356 static CORE_ADDR
19357 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19358 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19359 int addr_size)
19360 {
19361 struct objfile *objfile = dwarf2_per_objfile->objfile;
19362 bfd *abfd = objfile->obfd;
19363 const gdb_byte *info_ptr;
19364 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19365
19366 dwarf2_per_objfile->per_bfd->addr.read (objfile);
19367 if (dwarf2_per_objfile->per_bfd->addr.buffer == NULL)
19368 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19369 objfile_name (objfile));
19370 if (addr_base_or_zero + addr_index * addr_size
19371 >= dwarf2_per_objfile->per_bfd->addr.size)
19372 error (_("DW_FORM_addr_index pointing outside of "
19373 ".debug_addr section [in module %s]"),
19374 objfile_name (objfile));
19375 info_ptr = (dwarf2_per_objfile->per_bfd->addr.buffer
19376 + addr_base_or_zero + addr_index * addr_size);
19377 if (addr_size == 4)
19378 return bfd_get_32 (abfd, info_ptr);
19379 else
19380 return bfd_get_64 (abfd, info_ptr);
19381 }
19382
19383 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19384
19385 static CORE_ADDR
19386 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19387 {
19388 return read_addr_index_1 (cu->per_objfile, addr_index,
19389 cu->addr_base, cu->header.addr_size);
19390 }
19391
19392 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19393
19394 static CORE_ADDR
19395 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19396 unsigned int *bytes_read)
19397 {
19398 bfd *abfd = cu->per_objfile->objfile->obfd;
19399 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19400
19401 return read_addr_index (cu, addr_index);
19402 }
19403
19404 /* See read.h. */
19405
19406 CORE_ADDR
19407 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19408 {
19409 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19410 struct dwarf2_cu *cu = per_cu->cu;
19411 gdb::optional<ULONGEST> addr_base;
19412 int addr_size;
19413
19414 /* We need addr_base and addr_size.
19415 If we don't have PER_CU->cu, we have to get it.
19416 Nasty, but the alternative is storing the needed info in PER_CU,
19417 which at this point doesn't seem justified: it's not clear how frequently
19418 it would get used and it would increase the size of every PER_CU.
19419 Entry points like dwarf2_per_cu_addr_size do a similar thing
19420 so we're not in uncharted territory here.
19421 Alas we need to be a bit more complicated as addr_base is contained
19422 in the DIE.
19423
19424 We don't need to read the entire CU(/TU).
19425 We just need the header and top level die.
19426
19427 IWBN to use the aging mechanism to let us lazily later discard the CU.
19428 For now we skip this optimization. */
19429
19430 if (cu != NULL)
19431 {
19432 addr_base = cu->addr_base;
19433 addr_size = cu->header.addr_size;
19434 }
19435 else
19436 {
19437 cutu_reader reader (per_cu, dwarf2_per_objfile, NULL, 0, false);
19438 addr_base = reader.cu->addr_base;
19439 addr_size = reader.cu->header.addr_size;
19440 }
19441
19442 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19443 addr_size);
19444 }
19445
19446 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19447 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19448 DWO file. */
19449
19450 static const char *
19451 read_str_index (struct dwarf2_cu *cu,
19452 struct dwarf2_section_info *str_section,
19453 struct dwarf2_section_info *str_offsets_section,
19454 ULONGEST str_offsets_base, ULONGEST str_index)
19455 {
19456 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19457 struct objfile *objfile = dwarf2_per_objfile->objfile;
19458 const char *objf_name = objfile_name (objfile);
19459 bfd *abfd = objfile->obfd;
19460 const gdb_byte *info_ptr;
19461 ULONGEST str_offset;
19462 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19463
19464 str_section->read (objfile);
19465 str_offsets_section->read (objfile);
19466 if (str_section->buffer == NULL)
19467 error (_("%s used without %s section"
19468 " in CU at offset %s [in module %s]"),
19469 form_name, str_section->get_name (),
19470 sect_offset_str (cu->header.sect_off), objf_name);
19471 if (str_offsets_section->buffer == NULL)
19472 error (_("%s used without %s section"
19473 " in CU at offset %s [in module %s]"),
19474 form_name, str_section->get_name (),
19475 sect_offset_str (cu->header.sect_off), objf_name);
19476 info_ptr = (str_offsets_section->buffer
19477 + str_offsets_base
19478 + str_index * cu->header.offset_size);
19479 if (cu->header.offset_size == 4)
19480 str_offset = bfd_get_32 (abfd, info_ptr);
19481 else
19482 str_offset = bfd_get_64 (abfd, info_ptr);
19483 if (str_offset >= str_section->size)
19484 error (_("Offset from %s pointing outside of"
19485 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19486 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19487 return (const char *) (str_section->buffer + str_offset);
19488 }
19489
19490 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19491
19492 static const char *
19493 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19494 {
19495 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19496 ? reader->cu->header.addr_size : 0;
19497 return read_str_index (reader->cu,
19498 &reader->dwo_file->sections.str,
19499 &reader->dwo_file->sections.str_offsets,
19500 str_offsets_base, str_index);
19501 }
19502
19503 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19504
19505 static const char *
19506 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19507 {
19508 struct objfile *objfile = cu->per_objfile->objfile;
19509 const char *objf_name = objfile_name (objfile);
19510 static const char form_name[] = "DW_FORM_GNU_str_index";
19511 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19512
19513 if (!cu->str_offsets_base.has_value ())
19514 error (_("%s used in Fission stub without %s"
19515 " in CU at offset 0x%lx [in module %s]"),
19516 form_name, str_offsets_attr_name,
19517 (long) cu->header.offset_size, objf_name);
19518
19519 return read_str_index (cu,
19520 &cu->per_objfile->per_bfd->str,
19521 &cu->per_objfile->per_bfd->str_offsets,
19522 *cu->str_offsets_base, str_index);
19523 }
19524
19525 /* Return the length of an LEB128 number in BUF. */
19526
19527 static int
19528 leb128_size (const gdb_byte *buf)
19529 {
19530 const gdb_byte *begin = buf;
19531 gdb_byte byte;
19532
19533 while (1)
19534 {
19535 byte = *buf++;
19536 if ((byte & 128) == 0)
19537 return buf - begin;
19538 }
19539 }
19540
19541 static void
19542 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19543 {
19544 switch (lang)
19545 {
19546 case DW_LANG_C89:
19547 case DW_LANG_C99:
19548 case DW_LANG_C11:
19549 case DW_LANG_C:
19550 case DW_LANG_UPC:
19551 cu->language = language_c;
19552 break;
19553 case DW_LANG_Java:
19554 case DW_LANG_C_plus_plus:
19555 case DW_LANG_C_plus_plus_11:
19556 case DW_LANG_C_plus_plus_14:
19557 cu->language = language_cplus;
19558 break;
19559 case DW_LANG_D:
19560 cu->language = language_d;
19561 break;
19562 case DW_LANG_Fortran77:
19563 case DW_LANG_Fortran90:
19564 case DW_LANG_Fortran95:
19565 case DW_LANG_Fortran03:
19566 case DW_LANG_Fortran08:
19567 cu->language = language_fortran;
19568 break;
19569 case DW_LANG_Go:
19570 cu->language = language_go;
19571 break;
19572 case DW_LANG_Mips_Assembler:
19573 cu->language = language_asm;
19574 break;
19575 case DW_LANG_Ada83:
19576 case DW_LANG_Ada95:
19577 cu->language = language_ada;
19578 break;
19579 case DW_LANG_Modula2:
19580 cu->language = language_m2;
19581 break;
19582 case DW_LANG_Pascal83:
19583 cu->language = language_pascal;
19584 break;
19585 case DW_LANG_ObjC:
19586 cu->language = language_objc;
19587 break;
19588 case DW_LANG_Rust:
19589 case DW_LANG_Rust_old:
19590 cu->language = language_rust;
19591 break;
19592 case DW_LANG_Cobol74:
19593 case DW_LANG_Cobol85:
19594 default:
19595 cu->language = language_minimal;
19596 break;
19597 }
19598 cu->language_defn = language_def (cu->language);
19599 }
19600
19601 /* Return the named attribute or NULL if not there. */
19602
19603 static struct attribute *
19604 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19605 {
19606 for (;;)
19607 {
19608 unsigned int i;
19609 struct attribute *spec = NULL;
19610
19611 for (i = 0; i < die->num_attrs; ++i)
19612 {
19613 if (die->attrs[i].name == name)
19614 return &die->attrs[i];
19615 if (die->attrs[i].name == DW_AT_specification
19616 || die->attrs[i].name == DW_AT_abstract_origin)
19617 spec = &die->attrs[i];
19618 }
19619
19620 if (!spec)
19621 break;
19622
19623 die = follow_die_ref (die, spec, &cu);
19624 }
19625
19626 return NULL;
19627 }
19628
19629 /* Return the string associated with a string-typed attribute, or NULL if it
19630 is either not found or is of an incorrect type. */
19631
19632 static const char *
19633 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19634 {
19635 struct attribute *attr;
19636 const char *str = NULL;
19637
19638 attr = dwarf2_attr (die, name, cu);
19639
19640 if (attr != NULL)
19641 {
19642 str = attr->value_as_string ();
19643 if (str == nullptr)
19644 complaint (_("string type expected for attribute %s for "
19645 "DIE at %s in module %s"),
19646 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19647 objfile_name (cu->per_objfile->objfile));
19648 }
19649
19650 return str;
19651 }
19652
19653 /* Return the dwo name or NULL if not present. If present, it is in either
19654 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19655 static const char *
19656 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19657 {
19658 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19659 if (dwo_name == nullptr)
19660 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19661 return dwo_name;
19662 }
19663
19664 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19665 and holds a non-zero value. This function should only be used for
19666 DW_FORM_flag or DW_FORM_flag_present attributes. */
19667
19668 static int
19669 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19670 {
19671 struct attribute *attr = dwarf2_attr (die, name, cu);
19672
19673 return (attr && DW_UNSND (attr));
19674 }
19675
19676 static int
19677 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19678 {
19679 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19680 which value is non-zero. However, we have to be careful with
19681 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19682 (via dwarf2_flag_true_p) follows this attribute. So we may
19683 end up accidently finding a declaration attribute that belongs
19684 to a different DIE referenced by the specification attribute,
19685 even though the given DIE does not have a declaration attribute. */
19686 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19687 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19688 }
19689
19690 /* Return the die giving the specification for DIE, if there is
19691 one. *SPEC_CU is the CU containing DIE on input, and the CU
19692 containing the return value on output. If there is no
19693 specification, but there is an abstract origin, that is
19694 returned. */
19695
19696 static struct die_info *
19697 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19698 {
19699 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19700 *spec_cu);
19701
19702 if (spec_attr == NULL)
19703 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19704
19705 if (spec_attr == NULL)
19706 return NULL;
19707 else
19708 return follow_die_ref (die, spec_attr, spec_cu);
19709 }
19710
19711 /* Stub for free_line_header to match void * callback types. */
19712
19713 static void
19714 free_line_header_voidp (void *arg)
19715 {
19716 struct line_header *lh = (struct line_header *) arg;
19717
19718 delete lh;
19719 }
19720
19721 /* A convenience function to find the proper .debug_line section for a CU. */
19722
19723 static struct dwarf2_section_info *
19724 get_debug_line_section (struct dwarf2_cu *cu)
19725 {
19726 struct dwarf2_section_info *section;
19727 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19728
19729 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19730 DWO file. */
19731 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19732 section = &cu->dwo_unit->dwo_file->sections.line;
19733 else if (cu->per_cu->is_dwz)
19734 {
19735 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile->per_bfd);
19736
19737 section = &dwz->line;
19738 }
19739 else
19740 section = &dwarf2_per_objfile->per_bfd->line;
19741
19742 return section;
19743 }
19744
19745 /* Read the statement program header starting at OFFSET in
19746 .debug_line, or .debug_line.dwo. Return a pointer
19747 to a struct line_header, allocated using xmalloc.
19748 Returns NULL if there is a problem reading the header, e.g., if it
19749 has a version we don't understand.
19750
19751 NOTE: the strings in the include directory and file name tables of
19752 the returned object point into the dwarf line section buffer,
19753 and must not be freed. */
19754
19755 static line_header_up
19756 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19757 {
19758 struct dwarf2_section_info *section;
19759 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19760
19761 section = get_debug_line_section (cu);
19762 section->read (dwarf2_per_objfile->objfile);
19763 if (section->buffer == NULL)
19764 {
19765 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19766 complaint (_("missing .debug_line.dwo section"));
19767 else
19768 complaint (_("missing .debug_line section"));
19769 return 0;
19770 }
19771
19772 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19773 dwarf2_per_objfile, section,
19774 &cu->header);
19775 }
19776
19777 /* Subroutine of dwarf_decode_lines to simplify it.
19778 Return the file name of the psymtab for the given file_entry.
19779 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19780 If space for the result is malloc'd, *NAME_HOLDER will be set.
19781 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19782
19783 static const char *
19784 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19785 const dwarf2_psymtab *pst,
19786 const char *comp_dir,
19787 gdb::unique_xmalloc_ptr<char> *name_holder)
19788 {
19789 const char *include_name = fe.name;
19790 const char *include_name_to_compare = include_name;
19791 const char *pst_filename;
19792 int file_is_pst;
19793
19794 const char *dir_name = fe.include_dir (lh);
19795
19796 gdb::unique_xmalloc_ptr<char> hold_compare;
19797 if (!IS_ABSOLUTE_PATH (include_name)
19798 && (dir_name != NULL || comp_dir != NULL))
19799 {
19800 /* Avoid creating a duplicate psymtab for PST.
19801 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19802 Before we do the comparison, however, we need to account
19803 for DIR_NAME and COMP_DIR.
19804 First prepend dir_name (if non-NULL). If we still don't
19805 have an absolute path prepend comp_dir (if non-NULL).
19806 However, the directory we record in the include-file's
19807 psymtab does not contain COMP_DIR (to match the
19808 corresponding symtab(s)).
19809
19810 Example:
19811
19812 bash$ cd /tmp
19813 bash$ gcc -g ./hello.c
19814 include_name = "hello.c"
19815 dir_name = "."
19816 DW_AT_comp_dir = comp_dir = "/tmp"
19817 DW_AT_name = "./hello.c"
19818
19819 */
19820
19821 if (dir_name != NULL)
19822 {
19823 name_holder->reset (concat (dir_name, SLASH_STRING,
19824 include_name, (char *) NULL));
19825 include_name = name_holder->get ();
19826 include_name_to_compare = include_name;
19827 }
19828 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19829 {
19830 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19831 include_name, (char *) NULL));
19832 include_name_to_compare = hold_compare.get ();
19833 }
19834 }
19835
19836 pst_filename = pst->filename;
19837 gdb::unique_xmalloc_ptr<char> copied_name;
19838 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19839 {
19840 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19841 pst_filename, (char *) NULL));
19842 pst_filename = copied_name.get ();
19843 }
19844
19845 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19846
19847 if (file_is_pst)
19848 return NULL;
19849 return include_name;
19850 }
19851
19852 /* State machine to track the state of the line number program. */
19853
19854 class lnp_state_machine
19855 {
19856 public:
19857 /* Initialize a machine state for the start of a line number
19858 program. */
19859 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19860 bool record_lines_p);
19861
19862 file_entry *current_file ()
19863 {
19864 /* lh->file_names is 0-based, but the file name numbers in the
19865 statement program are 1-based. */
19866 return m_line_header->file_name_at (m_file);
19867 }
19868
19869 /* Record the line in the state machine. END_SEQUENCE is true if
19870 we're processing the end of a sequence. */
19871 void record_line (bool end_sequence);
19872
19873 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19874 nop-out rest of the lines in this sequence. */
19875 void check_line_address (struct dwarf2_cu *cu,
19876 const gdb_byte *line_ptr,
19877 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19878
19879 void handle_set_discriminator (unsigned int discriminator)
19880 {
19881 m_discriminator = discriminator;
19882 m_line_has_non_zero_discriminator |= discriminator != 0;
19883 }
19884
19885 /* Handle DW_LNE_set_address. */
19886 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19887 {
19888 m_op_index = 0;
19889 address += baseaddr;
19890 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19891 }
19892
19893 /* Handle DW_LNS_advance_pc. */
19894 void handle_advance_pc (CORE_ADDR adjust);
19895
19896 /* Handle a special opcode. */
19897 void handle_special_opcode (unsigned char op_code);
19898
19899 /* Handle DW_LNS_advance_line. */
19900 void handle_advance_line (int line_delta)
19901 {
19902 advance_line (line_delta);
19903 }
19904
19905 /* Handle DW_LNS_set_file. */
19906 void handle_set_file (file_name_index file);
19907
19908 /* Handle DW_LNS_negate_stmt. */
19909 void handle_negate_stmt ()
19910 {
19911 m_is_stmt = !m_is_stmt;
19912 }
19913
19914 /* Handle DW_LNS_const_add_pc. */
19915 void handle_const_add_pc ();
19916
19917 /* Handle DW_LNS_fixed_advance_pc. */
19918 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19919 {
19920 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19921 m_op_index = 0;
19922 }
19923
19924 /* Handle DW_LNS_copy. */
19925 void handle_copy ()
19926 {
19927 record_line (false);
19928 m_discriminator = 0;
19929 }
19930
19931 /* Handle DW_LNE_end_sequence. */
19932 void handle_end_sequence ()
19933 {
19934 m_currently_recording_lines = true;
19935 }
19936
19937 private:
19938 /* Advance the line by LINE_DELTA. */
19939 void advance_line (int line_delta)
19940 {
19941 m_line += line_delta;
19942
19943 if (line_delta != 0)
19944 m_line_has_non_zero_discriminator = m_discriminator != 0;
19945 }
19946
19947 struct dwarf2_cu *m_cu;
19948
19949 gdbarch *m_gdbarch;
19950
19951 /* True if we're recording lines.
19952 Otherwise we're building partial symtabs and are just interested in
19953 finding include files mentioned by the line number program. */
19954 bool m_record_lines_p;
19955
19956 /* The line number header. */
19957 line_header *m_line_header;
19958
19959 /* These are part of the standard DWARF line number state machine,
19960 and initialized according to the DWARF spec. */
19961
19962 unsigned char m_op_index = 0;
19963 /* The line table index of the current file. */
19964 file_name_index m_file = 1;
19965 unsigned int m_line = 1;
19966
19967 /* These are initialized in the constructor. */
19968
19969 CORE_ADDR m_address;
19970 bool m_is_stmt;
19971 unsigned int m_discriminator;
19972
19973 /* Additional bits of state we need to track. */
19974
19975 /* The last file that we called dwarf2_start_subfile for.
19976 This is only used for TLLs. */
19977 unsigned int m_last_file = 0;
19978 /* The last file a line number was recorded for. */
19979 struct subfile *m_last_subfile = NULL;
19980
19981 /* When true, record the lines we decode. */
19982 bool m_currently_recording_lines = false;
19983
19984 /* The last line number that was recorded, used to coalesce
19985 consecutive entries for the same line. This can happen, for
19986 example, when discriminators are present. PR 17276. */
19987 unsigned int m_last_line = 0;
19988 bool m_line_has_non_zero_discriminator = false;
19989 };
19990
19991 void
19992 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19993 {
19994 CORE_ADDR addr_adj = (((m_op_index + adjust)
19995 / m_line_header->maximum_ops_per_instruction)
19996 * m_line_header->minimum_instruction_length);
19997 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19998 m_op_index = ((m_op_index + adjust)
19999 % m_line_header->maximum_ops_per_instruction);
20000 }
20001
20002 void
20003 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20004 {
20005 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20006 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20007 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20008 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20009 / m_line_header->maximum_ops_per_instruction)
20010 * m_line_header->minimum_instruction_length);
20011 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20012 m_op_index = ((m_op_index + adj_opcode_d)
20013 % m_line_header->maximum_ops_per_instruction);
20014
20015 int line_delta = m_line_header->line_base + adj_opcode_r;
20016 advance_line (line_delta);
20017 record_line (false);
20018 m_discriminator = 0;
20019 }
20020
20021 void
20022 lnp_state_machine::handle_set_file (file_name_index file)
20023 {
20024 m_file = file;
20025
20026 const file_entry *fe = current_file ();
20027 if (fe == NULL)
20028 dwarf2_debug_line_missing_file_complaint ();
20029 else if (m_record_lines_p)
20030 {
20031 const char *dir = fe->include_dir (m_line_header);
20032
20033 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20034 m_line_has_non_zero_discriminator = m_discriminator != 0;
20035 dwarf2_start_subfile (m_cu, fe->name, dir);
20036 }
20037 }
20038
20039 void
20040 lnp_state_machine::handle_const_add_pc ()
20041 {
20042 CORE_ADDR adjust
20043 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20044
20045 CORE_ADDR addr_adj
20046 = (((m_op_index + adjust)
20047 / m_line_header->maximum_ops_per_instruction)
20048 * m_line_header->minimum_instruction_length);
20049
20050 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20051 m_op_index = ((m_op_index + adjust)
20052 % m_line_header->maximum_ops_per_instruction);
20053 }
20054
20055 /* Return non-zero if we should add LINE to the line number table.
20056 LINE is the line to add, LAST_LINE is the last line that was added,
20057 LAST_SUBFILE is the subfile for LAST_LINE.
20058 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20059 had a non-zero discriminator.
20060
20061 We have to be careful in the presence of discriminators.
20062 E.g., for this line:
20063
20064 for (i = 0; i < 100000; i++);
20065
20066 clang can emit four line number entries for that one line,
20067 each with a different discriminator.
20068 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20069
20070 However, we want gdb to coalesce all four entries into one.
20071 Otherwise the user could stepi into the middle of the line and
20072 gdb would get confused about whether the pc really was in the
20073 middle of the line.
20074
20075 Things are further complicated by the fact that two consecutive
20076 line number entries for the same line is a heuristic used by gcc
20077 to denote the end of the prologue. So we can't just discard duplicate
20078 entries, we have to be selective about it. The heuristic we use is
20079 that we only collapse consecutive entries for the same line if at least
20080 one of those entries has a non-zero discriminator. PR 17276.
20081
20082 Note: Addresses in the line number state machine can never go backwards
20083 within one sequence, thus this coalescing is ok. */
20084
20085 static int
20086 dwarf_record_line_p (struct dwarf2_cu *cu,
20087 unsigned int line, unsigned int last_line,
20088 int line_has_non_zero_discriminator,
20089 struct subfile *last_subfile)
20090 {
20091 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20092 return 1;
20093 if (line != last_line)
20094 return 1;
20095 /* Same line for the same file that we've seen already.
20096 As a last check, for pr 17276, only record the line if the line
20097 has never had a non-zero discriminator. */
20098 if (!line_has_non_zero_discriminator)
20099 return 1;
20100 return 0;
20101 }
20102
20103 /* Use the CU's builder to record line number LINE beginning at
20104 address ADDRESS in the line table of subfile SUBFILE. */
20105
20106 static void
20107 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20108 unsigned int line, CORE_ADDR address, bool is_stmt,
20109 struct dwarf2_cu *cu)
20110 {
20111 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20112
20113 if (dwarf_line_debug)
20114 {
20115 fprintf_unfiltered (gdb_stdlog,
20116 "Recording line %u, file %s, address %s\n",
20117 line, lbasename (subfile->name),
20118 paddress (gdbarch, address));
20119 }
20120
20121 if (cu != nullptr)
20122 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20123 }
20124
20125 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20126 Mark the end of a set of line number records.
20127 The arguments are the same as for dwarf_record_line_1.
20128 If SUBFILE is NULL the request is ignored. */
20129
20130 static void
20131 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20132 CORE_ADDR address, struct dwarf2_cu *cu)
20133 {
20134 if (subfile == NULL)
20135 return;
20136
20137 if (dwarf_line_debug)
20138 {
20139 fprintf_unfiltered (gdb_stdlog,
20140 "Finishing current line, file %s, address %s\n",
20141 lbasename (subfile->name),
20142 paddress (gdbarch, address));
20143 }
20144
20145 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20146 }
20147
20148 void
20149 lnp_state_machine::record_line (bool end_sequence)
20150 {
20151 if (dwarf_line_debug)
20152 {
20153 fprintf_unfiltered (gdb_stdlog,
20154 "Processing actual line %u: file %u,"
20155 " address %s, is_stmt %u, discrim %u%s\n",
20156 m_line, m_file,
20157 paddress (m_gdbarch, m_address),
20158 m_is_stmt, m_discriminator,
20159 (end_sequence ? "\t(end sequence)" : ""));
20160 }
20161
20162 file_entry *fe = current_file ();
20163
20164 if (fe == NULL)
20165 dwarf2_debug_line_missing_file_complaint ();
20166 /* For now we ignore lines not starting on an instruction boundary.
20167 But not when processing end_sequence for compatibility with the
20168 previous version of the code. */
20169 else if (m_op_index == 0 || end_sequence)
20170 {
20171 fe->included_p = 1;
20172 if (m_record_lines_p)
20173 {
20174 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20175 || end_sequence)
20176 {
20177 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20178 m_currently_recording_lines ? m_cu : nullptr);
20179 }
20180
20181 if (!end_sequence)
20182 {
20183 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20184
20185 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20186 m_line_has_non_zero_discriminator,
20187 m_last_subfile))
20188 {
20189 buildsym_compunit *builder = m_cu->get_builder ();
20190 dwarf_record_line_1 (m_gdbarch,
20191 builder->get_current_subfile (),
20192 m_line, m_address, is_stmt,
20193 m_currently_recording_lines ? m_cu : nullptr);
20194 }
20195 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20196 m_last_line = m_line;
20197 }
20198 }
20199 }
20200 }
20201
20202 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20203 line_header *lh, bool record_lines_p)
20204 {
20205 m_cu = cu;
20206 m_gdbarch = arch;
20207 m_record_lines_p = record_lines_p;
20208 m_line_header = lh;
20209
20210 m_currently_recording_lines = true;
20211
20212 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20213 was a line entry for it so that the backend has a chance to adjust it
20214 and also record it in case it needs it. This is currently used by MIPS
20215 code, cf. `mips_adjust_dwarf2_line'. */
20216 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20217 m_is_stmt = lh->default_is_stmt;
20218 m_discriminator = 0;
20219 }
20220
20221 void
20222 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20223 const gdb_byte *line_ptr,
20224 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20225 {
20226 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20227 the pc range of the CU. However, we restrict the test to only ADDRESS
20228 values of zero to preserve GDB's previous behaviour which is to handle
20229 the specific case of a function being GC'd by the linker. */
20230
20231 if (address == 0 && address < unrelocated_lowpc)
20232 {
20233 /* This line table is for a function which has been
20234 GCd by the linker. Ignore it. PR gdb/12528 */
20235
20236 struct objfile *objfile = cu->per_objfile->objfile;
20237 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20238
20239 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20240 line_offset, objfile_name (objfile));
20241 m_currently_recording_lines = false;
20242 /* Note: m_currently_recording_lines is left as false until we see
20243 DW_LNE_end_sequence. */
20244 }
20245 }
20246
20247 /* Subroutine of dwarf_decode_lines to simplify it.
20248 Process the line number information in LH.
20249 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20250 program in order to set included_p for every referenced header. */
20251
20252 static void
20253 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20254 const int decode_for_pst_p, CORE_ADDR lowpc)
20255 {
20256 const gdb_byte *line_ptr, *extended_end;
20257 const gdb_byte *line_end;
20258 unsigned int bytes_read, extended_len;
20259 unsigned char op_code, extended_op;
20260 CORE_ADDR baseaddr;
20261 struct objfile *objfile = cu->per_objfile->objfile;
20262 bfd *abfd = objfile->obfd;
20263 struct gdbarch *gdbarch = objfile->arch ();
20264 /* True if we're recording line info (as opposed to building partial
20265 symtabs and just interested in finding include files mentioned by
20266 the line number program). */
20267 bool record_lines_p = !decode_for_pst_p;
20268
20269 baseaddr = objfile->text_section_offset ();
20270
20271 line_ptr = lh->statement_program_start;
20272 line_end = lh->statement_program_end;
20273
20274 /* Read the statement sequences until there's nothing left. */
20275 while (line_ptr < line_end)
20276 {
20277 /* The DWARF line number program state machine. Reset the state
20278 machine at the start of each sequence. */
20279 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20280 bool end_sequence = false;
20281
20282 if (record_lines_p)
20283 {
20284 /* Start a subfile for the current file of the state
20285 machine. */
20286 const file_entry *fe = state_machine.current_file ();
20287
20288 if (fe != NULL)
20289 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20290 }
20291
20292 /* Decode the table. */
20293 while (line_ptr < line_end && !end_sequence)
20294 {
20295 op_code = read_1_byte (abfd, line_ptr);
20296 line_ptr += 1;
20297
20298 if (op_code >= lh->opcode_base)
20299 {
20300 /* Special opcode. */
20301 state_machine.handle_special_opcode (op_code);
20302 }
20303 else switch (op_code)
20304 {
20305 case DW_LNS_extended_op:
20306 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20307 &bytes_read);
20308 line_ptr += bytes_read;
20309 extended_end = line_ptr + extended_len;
20310 extended_op = read_1_byte (abfd, line_ptr);
20311 line_ptr += 1;
20312 switch (extended_op)
20313 {
20314 case DW_LNE_end_sequence:
20315 state_machine.handle_end_sequence ();
20316 end_sequence = true;
20317 break;
20318 case DW_LNE_set_address:
20319 {
20320 CORE_ADDR address
20321 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20322 line_ptr += bytes_read;
20323
20324 state_machine.check_line_address (cu, line_ptr,
20325 lowpc - baseaddr, address);
20326 state_machine.handle_set_address (baseaddr, address);
20327 }
20328 break;
20329 case DW_LNE_define_file:
20330 {
20331 const char *cur_file;
20332 unsigned int mod_time, length;
20333 dir_index dindex;
20334
20335 cur_file = read_direct_string (abfd, line_ptr,
20336 &bytes_read);
20337 line_ptr += bytes_read;
20338 dindex = (dir_index)
20339 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20340 line_ptr += bytes_read;
20341 mod_time =
20342 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20343 line_ptr += bytes_read;
20344 length =
20345 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20346 line_ptr += bytes_read;
20347 lh->add_file_name (cur_file, dindex, mod_time, length);
20348 }
20349 break;
20350 case DW_LNE_set_discriminator:
20351 {
20352 /* The discriminator is not interesting to the
20353 debugger; just ignore it. We still need to
20354 check its value though:
20355 if there are consecutive entries for the same
20356 (non-prologue) line we want to coalesce them.
20357 PR 17276. */
20358 unsigned int discr
20359 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20360 line_ptr += bytes_read;
20361
20362 state_machine.handle_set_discriminator (discr);
20363 }
20364 break;
20365 default:
20366 complaint (_("mangled .debug_line section"));
20367 return;
20368 }
20369 /* Make sure that we parsed the extended op correctly. If e.g.
20370 we expected a different address size than the producer used,
20371 we may have read the wrong number of bytes. */
20372 if (line_ptr != extended_end)
20373 {
20374 complaint (_("mangled .debug_line section"));
20375 return;
20376 }
20377 break;
20378 case DW_LNS_copy:
20379 state_machine.handle_copy ();
20380 break;
20381 case DW_LNS_advance_pc:
20382 {
20383 CORE_ADDR adjust
20384 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20385 line_ptr += bytes_read;
20386
20387 state_machine.handle_advance_pc (adjust);
20388 }
20389 break;
20390 case DW_LNS_advance_line:
20391 {
20392 int line_delta
20393 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20394 line_ptr += bytes_read;
20395
20396 state_machine.handle_advance_line (line_delta);
20397 }
20398 break;
20399 case DW_LNS_set_file:
20400 {
20401 file_name_index file
20402 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20403 &bytes_read);
20404 line_ptr += bytes_read;
20405
20406 state_machine.handle_set_file (file);
20407 }
20408 break;
20409 case DW_LNS_set_column:
20410 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20411 line_ptr += bytes_read;
20412 break;
20413 case DW_LNS_negate_stmt:
20414 state_machine.handle_negate_stmt ();
20415 break;
20416 case DW_LNS_set_basic_block:
20417 break;
20418 /* Add to the address register of the state machine the
20419 address increment value corresponding to special opcode
20420 255. I.e., this value is scaled by the minimum
20421 instruction length since special opcode 255 would have
20422 scaled the increment. */
20423 case DW_LNS_const_add_pc:
20424 state_machine.handle_const_add_pc ();
20425 break;
20426 case DW_LNS_fixed_advance_pc:
20427 {
20428 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20429 line_ptr += 2;
20430
20431 state_machine.handle_fixed_advance_pc (addr_adj);
20432 }
20433 break;
20434 default:
20435 {
20436 /* Unknown standard opcode, ignore it. */
20437 int i;
20438
20439 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20440 {
20441 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20442 line_ptr += bytes_read;
20443 }
20444 }
20445 }
20446 }
20447
20448 if (!end_sequence)
20449 dwarf2_debug_line_missing_end_sequence_complaint ();
20450
20451 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20452 in which case we still finish recording the last line). */
20453 state_machine.record_line (true);
20454 }
20455 }
20456
20457 /* Decode the Line Number Program (LNP) for the given line_header
20458 structure and CU. The actual information extracted and the type
20459 of structures created from the LNP depends on the value of PST.
20460
20461 1. If PST is NULL, then this procedure uses the data from the program
20462 to create all necessary symbol tables, and their linetables.
20463
20464 2. If PST is not NULL, this procedure reads the program to determine
20465 the list of files included by the unit represented by PST, and
20466 builds all the associated partial symbol tables.
20467
20468 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20469 It is used for relative paths in the line table.
20470 NOTE: When processing partial symtabs (pst != NULL),
20471 comp_dir == pst->dirname.
20472
20473 NOTE: It is important that psymtabs have the same file name (via strcmp)
20474 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20475 symtab we don't use it in the name of the psymtabs we create.
20476 E.g. expand_line_sal requires this when finding psymtabs to expand.
20477 A good testcase for this is mb-inline.exp.
20478
20479 LOWPC is the lowest address in CU (or 0 if not known).
20480
20481 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20482 for its PC<->lines mapping information. Otherwise only the filename
20483 table is read in. */
20484
20485 static void
20486 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20487 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20488 CORE_ADDR lowpc, int decode_mapping)
20489 {
20490 struct objfile *objfile = cu->per_objfile->objfile;
20491 const int decode_for_pst_p = (pst != NULL);
20492
20493 if (decode_mapping)
20494 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20495
20496 if (decode_for_pst_p)
20497 {
20498 /* Now that we're done scanning the Line Header Program, we can
20499 create the psymtab of each included file. */
20500 for (auto &file_entry : lh->file_names ())
20501 if (file_entry.included_p == 1)
20502 {
20503 gdb::unique_xmalloc_ptr<char> name_holder;
20504 const char *include_name =
20505 psymtab_include_file_name (lh, file_entry, pst,
20506 comp_dir, &name_holder);
20507 if (include_name != NULL)
20508 dwarf2_create_include_psymtab (include_name, pst, objfile);
20509 }
20510 }
20511 else
20512 {
20513 /* Make sure a symtab is created for every file, even files
20514 which contain only variables (i.e. no code with associated
20515 line numbers). */
20516 buildsym_compunit *builder = cu->get_builder ();
20517 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20518
20519 for (auto &fe : lh->file_names ())
20520 {
20521 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20522 if (builder->get_current_subfile ()->symtab == NULL)
20523 {
20524 builder->get_current_subfile ()->symtab
20525 = allocate_symtab (cust,
20526 builder->get_current_subfile ()->name);
20527 }
20528 fe.symtab = builder->get_current_subfile ()->symtab;
20529 }
20530 }
20531 }
20532
20533 /* Start a subfile for DWARF. FILENAME is the name of the file and
20534 DIRNAME the name of the source directory which contains FILENAME
20535 or NULL if not known.
20536 This routine tries to keep line numbers from identical absolute and
20537 relative file names in a common subfile.
20538
20539 Using the `list' example from the GDB testsuite, which resides in
20540 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20541 of /srcdir/list0.c yields the following debugging information for list0.c:
20542
20543 DW_AT_name: /srcdir/list0.c
20544 DW_AT_comp_dir: /compdir
20545 files.files[0].name: list0.h
20546 files.files[0].dir: /srcdir
20547 files.files[1].name: list0.c
20548 files.files[1].dir: /srcdir
20549
20550 The line number information for list0.c has to end up in a single
20551 subfile, so that `break /srcdir/list0.c:1' works as expected.
20552 start_subfile will ensure that this happens provided that we pass the
20553 concatenation of files.files[1].dir and files.files[1].name as the
20554 subfile's name. */
20555
20556 static void
20557 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20558 const char *dirname)
20559 {
20560 gdb::unique_xmalloc_ptr<char> copy;
20561
20562 /* In order not to lose the line information directory,
20563 we concatenate it to the filename when it makes sense.
20564 Note that the Dwarf3 standard says (speaking of filenames in line
20565 information): ``The directory index is ignored for file names
20566 that represent full path names''. Thus ignoring dirname in the
20567 `else' branch below isn't an issue. */
20568
20569 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20570 {
20571 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20572 filename = copy.get ();
20573 }
20574
20575 cu->get_builder ()->start_subfile (filename);
20576 }
20577
20578 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20579 buildsym_compunit constructor. */
20580
20581 struct compunit_symtab *
20582 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20583 CORE_ADDR low_pc)
20584 {
20585 gdb_assert (m_builder == nullptr);
20586
20587 m_builder.reset (new struct buildsym_compunit
20588 (per_cu->dwarf2_per_objfile->objfile,
20589 name, comp_dir, language, low_pc));
20590
20591 list_in_scope = get_builder ()->get_file_symbols ();
20592
20593 get_builder ()->record_debugformat ("DWARF 2");
20594 get_builder ()->record_producer (producer);
20595
20596 processing_has_namespace_info = false;
20597
20598 return get_builder ()->get_compunit_symtab ();
20599 }
20600
20601 static void
20602 var_decode_location (struct attribute *attr, struct symbol *sym,
20603 struct dwarf2_cu *cu)
20604 {
20605 struct objfile *objfile = cu->per_objfile->objfile;
20606 struct comp_unit_head *cu_header = &cu->header;
20607
20608 /* NOTE drow/2003-01-30: There used to be a comment and some special
20609 code here to turn a symbol with DW_AT_external and a
20610 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20611 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20612 with some versions of binutils) where shared libraries could have
20613 relocations against symbols in their debug information - the
20614 minimal symbol would have the right address, but the debug info
20615 would not. It's no longer necessary, because we will explicitly
20616 apply relocations when we read in the debug information now. */
20617
20618 /* A DW_AT_location attribute with no contents indicates that a
20619 variable has been optimized away. */
20620 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20621 {
20622 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20623 return;
20624 }
20625
20626 /* Handle one degenerate form of location expression specially, to
20627 preserve GDB's previous behavior when section offsets are
20628 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20629 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20630
20631 if (attr->form_is_block ()
20632 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20633 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20634 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20635 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20636 && (DW_BLOCK (attr)->size
20637 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20638 {
20639 unsigned int dummy;
20640
20641 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20642 SET_SYMBOL_VALUE_ADDRESS
20643 (sym, cu->header.read_address (objfile->obfd,
20644 DW_BLOCK (attr)->data + 1,
20645 &dummy));
20646 else
20647 SET_SYMBOL_VALUE_ADDRESS
20648 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20649 &dummy));
20650 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20651 fixup_symbol_section (sym, objfile);
20652 SET_SYMBOL_VALUE_ADDRESS
20653 (sym,
20654 SYMBOL_VALUE_ADDRESS (sym)
20655 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20656 return;
20657 }
20658
20659 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20660 expression evaluator, and use LOC_COMPUTED only when necessary
20661 (i.e. when the value of a register or memory location is
20662 referenced, or a thread-local block, etc.). Then again, it might
20663 not be worthwhile. I'm assuming that it isn't unless performance
20664 or memory numbers show me otherwise. */
20665
20666 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20667
20668 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20669 cu->has_loclist = true;
20670 }
20671
20672 /* Given a pointer to a DWARF information entry, figure out if we need
20673 to make a symbol table entry for it, and if so, create a new entry
20674 and return a pointer to it.
20675 If TYPE is NULL, determine symbol type from the die, otherwise
20676 used the passed type.
20677 If SPACE is not NULL, use it to hold the new symbol. If it is
20678 NULL, allocate a new symbol on the objfile's obstack. */
20679
20680 static struct symbol *
20681 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20682 struct symbol *space)
20683 {
20684 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
20685 struct objfile *objfile = dwarf2_per_objfile->objfile;
20686 struct gdbarch *gdbarch = objfile->arch ();
20687 struct symbol *sym = NULL;
20688 const char *name;
20689 struct attribute *attr = NULL;
20690 struct attribute *attr2 = NULL;
20691 CORE_ADDR baseaddr;
20692 struct pending **list_to_add = NULL;
20693
20694 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20695
20696 baseaddr = objfile->text_section_offset ();
20697
20698 name = dwarf2_name (die, cu);
20699 if (name)
20700 {
20701 int suppress_add = 0;
20702
20703 if (space)
20704 sym = space;
20705 else
20706 sym = new (&objfile->objfile_obstack) symbol;
20707 OBJSTAT (objfile, n_syms++);
20708
20709 /* Cache this symbol's name and the name's demangled form (if any). */
20710 sym->set_language (cu->language, &objfile->objfile_obstack);
20711 /* Fortran does not have mangling standard and the mangling does differ
20712 between gfortran, iFort etc. */
20713 const char *physname
20714 = (cu->language == language_fortran
20715 ? dwarf2_full_name (name, die, cu)
20716 : dwarf2_physname (name, die, cu));
20717 const char *linkagename = dw2_linkage_name (die, cu);
20718
20719 if (linkagename == nullptr || cu->language == language_ada)
20720 sym->set_linkage_name (physname);
20721 else
20722 {
20723 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20724 sym->set_linkage_name (linkagename);
20725 }
20726
20727 /* Default assumptions.
20728 Use the passed type or decode it from the die. */
20729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20730 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20731 if (type != NULL)
20732 SYMBOL_TYPE (sym) = type;
20733 else
20734 SYMBOL_TYPE (sym) = die_type (die, cu);
20735 attr = dwarf2_attr (die,
20736 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20737 cu);
20738 if (attr != nullptr)
20739 {
20740 SYMBOL_LINE (sym) = DW_UNSND (attr);
20741 }
20742
20743 attr = dwarf2_attr (die,
20744 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20745 cu);
20746 if (attr != nullptr)
20747 {
20748 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20749 struct file_entry *fe;
20750
20751 if (cu->line_header != NULL)
20752 fe = cu->line_header->file_name_at (file_index);
20753 else
20754 fe = NULL;
20755
20756 if (fe == NULL)
20757 complaint (_("file index out of range"));
20758 else
20759 symbol_set_symtab (sym, fe->symtab);
20760 }
20761
20762 switch (die->tag)
20763 {
20764 case DW_TAG_label:
20765 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20766 if (attr != nullptr)
20767 {
20768 CORE_ADDR addr;
20769
20770 addr = attr->value_as_address ();
20771 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20772 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20773 }
20774 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20775 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20776 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20777 add_symbol_to_list (sym, cu->list_in_scope);
20778 break;
20779 case DW_TAG_subprogram:
20780 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20781 finish_block. */
20782 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20783 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20784 if ((attr2 && (DW_UNSND (attr2) != 0))
20785 || cu->language == language_ada
20786 || cu->language == language_fortran)
20787 {
20788 /* Subprograms marked external are stored as a global symbol.
20789 Ada and Fortran subprograms, whether marked external or
20790 not, are always stored as a global symbol, because we want
20791 to be able to access them globally. For instance, we want
20792 to be able to break on a nested subprogram without having
20793 to specify the context. */
20794 list_to_add = cu->get_builder ()->get_global_symbols ();
20795 }
20796 else
20797 {
20798 list_to_add = cu->list_in_scope;
20799 }
20800 break;
20801 case DW_TAG_inlined_subroutine:
20802 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20803 finish_block. */
20804 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20805 SYMBOL_INLINED (sym) = 1;
20806 list_to_add = cu->list_in_scope;
20807 break;
20808 case DW_TAG_template_value_param:
20809 suppress_add = 1;
20810 /* Fall through. */
20811 case DW_TAG_constant:
20812 case DW_TAG_variable:
20813 case DW_TAG_member:
20814 /* Compilation with minimal debug info may result in
20815 variables with missing type entries. Change the
20816 misleading `void' type to something sensible. */
20817 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
20818 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20819
20820 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20821 /* In the case of DW_TAG_member, we should only be called for
20822 static const members. */
20823 if (die->tag == DW_TAG_member)
20824 {
20825 /* dwarf2_add_field uses die_is_declaration,
20826 so we do the same. */
20827 gdb_assert (die_is_declaration (die, cu));
20828 gdb_assert (attr);
20829 }
20830 if (attr != nullptr)
20831 {
20832 dwarf2_const_value (attr, sym, cu);
20833 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20834 if (!suppress_add)
20835 {
20836 if (attr2 && (DW_UNSND (attr2) != 0))
20837 list_to_add = cu->get_builder ()->get_global_symbols ();
20838 else
20839 list_to_add = cu->list_in_scope;
20840 }
20841 break;
20842 }
20843 attr = dwarf2_attr (die, DW_AT_location, cu);
20844 if (attr != nullptr)
20845 {
20846 var_decode_location (attr, sym, cu);
20847 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20848
20849 /* Fortran explicitly imports any global symbols to the local
20850 scope by DW_TAG_common_block. */
20851 if (cu->language == language_fortran && die->parent
20852 && die->parent->tag == DW_TAG_common_block)
20853 attr2 = NULL;
20854
20855 if (SYMBOL_CLASS (sym) == LOC_STATIC
20856 && SYMBOL_VALUE_ADDRESS (sym) == 0
20857 && !dwarf2_per_objfile->per_bfd->has_section_at_zero)
20858 {
20859 /* When a static variable is eliminated by the linker,
20860 the corresponding debug information is not stripped
20861 out, but the variable address is set to null;
20862 do not add such variables into symbol table. */
20863 }
20864 else if (attr2 && (DW_UNSND (attr2) != 0))
20865 {
20866 if (SYMBOL_CLASS (sym) == LOC_STATIC
20867 && (objfile->flags & OBJF_MAINLINE) == 0
20868 && dwarf2_per_objfile->per_bfd->can_copy)
20869 {
20870 /* A global static variable might be subject to
20871 copy relocation. We first check for a local
20872 minsym, though, because maybe the symbol was
20873 marked hidden, in which case this would not
20874 apply. */
20875 bound_minimal_symbol found
20876 = (lookup_minimal_symbol_linkage
20877 (sym->linkage_name (), objfile));
20878 if (found.minsym != nullptr)
20879 sym->maybe_copied = 1;
20880 }
20881
20882 /* A variable with DW_AT_external is never static,
20883 but it may be block-scoped. */
20884 list_to_add
20885 = ((cu->list_in_scope
20886 == cu->get_builder ()->get_file_symbols ())
20887 ? cu->get_builder ()->get_global_symbols ()
20888 : cu->list_in_scope);
20889 }
20890 else
20891 list_to_add = cu->list_in_scope;
20892 }
20893 else
20894 {
20895 /* We do not know the address of this symbol.
20896 If it is an external symbol and we have type information
20897 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20898 The address of the variable will then be determined from
20899 the minimal symbol table whenever the variable is
20900 referenced. */
20901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20902
20903 /* Fortran explicitly imports any global symbols to the local
20904 scope by DW_TAG_common_block. */
20905 if (cu->language == language_fortran && die->parent
20906 && die->parent->tag == DW_TAG_common_block)
20907 {
20908 /* SYMBOL_CLASS doesn't matter here because
20909 read_common_block is going to reset it. */
20910 if (!suppress_add)
20911 list_to_add = cu->list_in_scope;
20912 }
20913 else if (attr2 && (DW_UNSND (attr2) != 0)
20914 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20915 {
20916 /* A variable with DW_AT_external is never static, but it
20917 may be block-scoped. */
20918 list_to_add
20919 = ((cu->list_in_scope
20920 == cu->get_builder ()->get_file_symbols ())
20921 ? cu->get_builder ()->get_global_symbols ()
20922 : cu->list_in_scope);
20923
20924 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20925 }
20926 else if (!die_is_declaration (die, cu))
20927 {
20928 /* Use the default LOC_OPTIMIZED_OUT class. */
20929 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20930 if (!suppress_add)
20931 list_to_add = cu->list_in_scope;
20932 }
20933 }
20934 break;
20935 case DW_TAG_formal_parameter:
20936 {
20937 /* If we are inside a function, mark this as an argument. If
20938 not, we might be looking at an argument to an inlined function
20939 when we do not have enough information to show inlined frames;
20940 pretend it's a local variable in that case so that the user can
20941 still see it. */
20942 struct context_stack *curr
20943 = cu->get_builder ()->get_current_context_stack ();
20944 if (curr != nullptr && curr->name != nullptr)
20945 SYMBOL_IS_ARGUMENT (sym) = 1;
20946 attr = dwarf2_attr (die, DW_AT_location, cu);
20947 if (attr != nullptr)
20948 {
20949 var_decode_location (attr, sym, cu);
20950 }
20951 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20952 if (attr != nullptr)
20953 {
20954 dwarf2_const_value (attr, sym, cu);
20955 }
20956
20957 list_to_add = cu->list_in_scope;
20958 }
20959 break;
20960 case DW_TAG_unspecified_parameters:
20961 /* From varargs functions; gdb doesn't seem to have any
20962 interest in this information, so just ignore it for now.
20963 (FIXME?) */
20964 break;
20965 case DW_TAG_template_type_param:
20966 suppress_add = 1;
20967 /* Fall through. */
20968 case DW_TAG_class_type:
20969 case DW_TAG_interface_type:
20970 case DW_TAG_structure_type:
20971 case DW_TAG_union_type:
20972 case DW_TAG_set_type:
20973 case DW_TAG_enumeration_type:
20974 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20975 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20976
20977 {
20978 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20979 really ever be static objects: otherwise, if you try
20980 to, say, break of a class's method and you're in a file
20981 which doesn't mention that class, it won't work unless
20982 the check for all static symbols in lookup_symbol_aux
20983 saves you. See the OtherFileClass tests in
20984 gdb.c++/namespace.exp. */
20985
20986 if (!suppress_add)
20987 {
20988 buildsym_compunit *builder = cu->get_builder ();
20989 list_to_add
20990 = (cu->list_in_scope == builder->get_file_symbols ()
20991 && cu->language == language_cplus
20992 ? builder->get_global_symbols ()
20993 : cu->list_in_scope);
20994
20995 /* The semantics of C++ state that "struct foo {
20996 ... }" also defines a typedef for "foo". */
20997 if (cu->language == language_cplus
20998 || cu->language == language_ada
20999 || cu->language == language_d
21000 || cu->language == language_rust)
21001 {
21002 /* The symbol's name is already allocated along
21003 with this objfile, so we don't need to
21004 duplicate it for the type. */
21005 if (SYMBOL_TYPE (sym)->name () == 0)
21006 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21007 }
21008 }
21009 }
21010 break;
21011 case DW_TAG_typedef:
21012 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21013 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21014 list_to_add = cu->list_in_scope;
21015 break;
21016 case DW_TAG_base_type:
21017 case DW_TAG_subrange_type:
21018 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21020 list_to_add = cu->list_in_scope;
21021 break;
21022 case DW_TAG_enumerator:
21023 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21024 if (attr != nullptr)
21025 {
21026 dwarf2_const_value (attr, sym, cu);
21027 }
21028 {
21029 /* NOTE: carlton/2003-11-10: See comment above in the
21030 DW_TAG_class_type, etc. block. */
21031
21032 list_to_add
21033 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21034 && cu->language == language_cplus
21035 ? cu->get_builder ()->get_global_symbols ()
21036 : cu->list_in_scope);
21037 }
21038 break;
21039 case DW_TAG_imported_declaration:
21040 case DW_TAG_namespace:
21041 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21042 list_to_add = cu->get_builder ()->get_global_symbols ();
21043 break;
21044 case DW_TAG_module:
21045 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21046 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21047 list_to_add = cu->get_builder ()->get_global_symbols ();
21048 break;
21049 case DW_TAG_common_block:
21050 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21051 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21052 add_symbol_to_list (sym, cu->list_in_scope);
21053 break;
21054 default:
21055 /* Not a tag we recognize. Hopefully we aren't processing
21056 trash data, but since we must specifically ignore things
21057 we don't recognize, there is nothing else we should do at
21058 this point. */
21059 complaint (_("unsupported tag: '%s'"),
21060 dwarf_tag_name (die->tag));
21061 break;
21062 }
21063
21064 if (suppress_add)
21065 {
21066 sym->hash_next = objfile->template_symbols;
21067 objfile->template_symbols = sym;
21068 list_to_add = NULL;
21069 }
21070
21071 if (list_to_add != NULL)
21072 add_symbol_to_list (sym, list_to_add);
21073
21074 /* For the benefit of old versions of GCC, check for anonymous
21075 namespaces based on the demangled name. */
21076 if (!cu->processing_has_namespace_info
21077 && cu->language == language_cplus)
21078 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21079 }
21080 return (sym);
21081 }
21082
21083 /* Given an attr with a DW_FORM_dataN value in host byte order,
21084 zero-extend it as appropriate for the symbol's type. The DWARF
21085 standard (v4) is not entirely clear about the meaning of using
21086 DW_FORM_dataN for a constant with a signed type, where the type is
21087 wider than the data. The conclusion of a discussion on the DWARF
21088 list was that this is unspecified. We choose to always zero-extend
21089 because that is the interpretation long in use by GCC. */
21090
21091 static gdb_byte *
21092 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21093 struct dwarf2_cu *cu, LONGEST *value, int bits)
21094 {
21095 struct objfile *objfile = cu->per_objfile->objfile;
21096 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21097 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21098 LONGEST l = DW_UNSND (attr);
21099
21100 if (bits < sizeof (*value) * 8)
21101 {
21102 l &= ((LONGEST) 1 << bits) - 1;
21103 *value = l;
21104 }
21105 else if (bits == sizeof (*value) * 8)
21106 *value = l;
21107 else
21108 {
21109 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21110 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21111 return bytes;
21112 }
21113
21114 return NULL;
21115 }
21116
21117 /* Read a constant value from an attribute. Either set *VALUE, or if
21118 the value does not fit in *VALUE, set *BYTES - either already
21119 allocated on the objfile obstack, or newly allocated on OBSTACK,
21120 or, set *BATON, if we translated the constant to a location
21121 expression. */
21122
21123 static void
21124 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21125 const char *name, struct obstack *obstack,
21126 struct dwarf2_cu *cu,
21127 LONGEST *value, const gdb_byte **bytes,
21128 struct dwarf2_locexpr_baton **baton)
21129 {
21130 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21131 struct objfile *objfile = per_objfile->objfile;
21132 struct comp_unit_head *cu_header = &cu->header;
21133 struct dwarf_block *blk;
21134 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21135 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21136
21137 *value = 0;
21138 *bytes = NULL;
21139 *baton = NULL;
21140
21141 switch (attr->form)
21142 {
21143 case DW_FORM_addr:
21144 case DW_FORM_addrx:
21145 case DW_FORM_GNU_addr_index:
21146 {
21147 gdb_byte *data;
21148
21149 if (TYPE_LENGTH (type) != cu_header->addr_size)
21150 dwarf2_const_value_length_mismatch_complaint (name,
21151 cu_header->addr_size,
21152 TYPE_LENGTH (type));
21153 /* Symbols of this form are reasonably rare, so we just
21154 piggyback on the existing location code rather than writing
21155 a new implementation of symbol_computed_ops. */
21156 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21157 (*baton)->per_objfile = per_objfile;
21158 (*baton)->per_cu = cu->per_cu;
21159 gdb_assert ((*baton)->per_cu);
21160
21161 (*baton)->size = 2 + cu_header->addr_size;
21162 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21163 (*baton)->data = data;
21164
21165 data[0] = DW_OP_addr;
21166 store_unsigned_integer (&data[1], cu_header->addr_size,
21167 byte_order, DW_ADDR (attr));
21168 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21169 }
21170 break;
21171 case DW_FORM_string:
21172 case DW_FORM_strp:
21173 case DW_FORM_strx:
21174 case DW_FORM_GNU_str_index:
21175 case DW_FORM_GNU_strp_alt:
21176 /* DW_STRING is already allocated on the objfile obstack, point
21177 directly to it. */
21178 *bytes = (const gdb_byte *) DW_STRING (attr);
21179 break;
21180 case DW_FORM_block1:
21181 case DW_FORM_block2:
21182 case DW_FORM_block4:
21183 case DW_FORM_block:
21184 case DW_FORM_exprloc:
21185 case DW_FORM_data16:
21186 blk = DW_BLOCK (attr);
21187 if (TYPE_LENGTH (type) != blk->size)
21188 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21189 TYPE_LENGTH (type));
21190 *bytes = blk->data;
21191 break;
21192
21193 /* The DW_AT_const_value attributes are supposed to carry the
21194 symbol's value "represented as it would be on the target
21195 architecture." By the time we get here, it's already been
21196 converted to host endianness, so we just need to sign- or
21197 zero-extend it as appropriate. */
21198 case DW_FORM_data1:
21199 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21200 break;
21201 case DW_FORM_data2:
21202 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21203 break;
21204 case DW_FORM_data4:
21205 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21206 break;
21207 case DW_FORM_data8:
21208 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21209 break;
21210
21211 case DW_FORM_sdata:
21212 case DW_FORM_implicit_const:
21213 *value = DW_SND (attr);
21214 break;
21215
21216 case DW_FORM_udata:
21217 *value = DW_UNSND (attr);
21218 break;
21219
21220 default:
21221 complaint (_("unsupported const value attribute form: '%s'"),
21222 dwarf_form_name (attr->form));
21223 *value = 0;
21224 break;
21225 }
21226 }
21227
21228
21229 /* Copy constant value from an attribute to a symbol. */
21230
21231 static void
21232 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21233 struct dwarf2_cu *cu)
21234 {
21235 struct objfile *objfile = cu->per_objfile->objfile;
21236 LONGEST value;
21237 const gdb_byte *bytes;
21238 struct dwarf2_locexpr_baton *baton;
21239
21240 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21241 sym->print_name (),
21242 &objfile->objfile_obstack, cu,
21243 &value, &bytes, &baton);
21244
21245 if (baton != NULL)
21246 {
21247 SYMBOL_LOCATION_BATON (sym) = baton;
21248 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21249 }
21250 else if (bytes != NULL)
21251 {
21252 SYMBOL_VALUE_BYTES (sym) = bytes;
21253 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21254 }
21255 else
21256 {
21257 SYMBOL_VALUE (sym) = value;
21258 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21259 }
21260 }
21261
21262 /* Return the type of the die in question using its DW_AT_type attribute. */
21263
21264 static struct type *
21265 die_type (struct die_info *die, struct dwarf2_cu *cu)
21266 {
21267 struct attribute *type_attr;
21268
21269 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21270 if (!type_attr)
21271 {
21272 struct objfile *objfile = cu->per_objfile->objfile;
21273 /* A missing DW_AT_type represents a void type. */
21274 return objfile_type (objfile)->builtin_void;
21275 }
21276
21277 return lookup_die_type (die, type_attr, cu);
21278 }
21279
21280 /* True iff CU's producer generates GNAT Ada auxiliary information
21281 that allows to find parallel types through that information instead
21282 of having to do expensive parallel lookups by type name. */
21283
21284 static int
21285 need_gnat_info (struct dwarf2_cu *cu)
21286 {
21287 /* Assume that the Ada compiler was GNAT, which always produces
21288 the auxiliary information. */
21289 return (cu->language == language_ada);
21290 }
21291
21292 /* Return the auxiliary type of the die in question using its
21293 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21294 attribute is not present. */
21295
21296 static struct type *
21297 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21298 {
21299 struct attribute *type_attr;
21300
21301 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21302 if (!type_attr)
21303 return NULL;
21304
21305 return lookup_die_type (die, type_attr, cu);
21306 }
21307
21308 /* If DIE has a descriptive_type attribute, then set the TYPE's
21309 descriptive type accordingly. */
21310
21311 static void
21312 set_descriptive_type (struct type *type, struct die_info *die,
21313 struct dwarf2_cu *cu)
21314 {
21315 struct type *descriptive_type = die_descriptive_type (die, cu);
21316
21317 if (descriptive_type)
21318 {
21319 ALLOCATE_GNAT_AUX_TYPE (type);
21320 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21321 }
21322 }
21323
21324 /* Return the containing type of the die in question using its
21325 DW_AT_containing_type attribute. */
21326
21327 static struct type *
21328 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21329 {
21330 struct attribute *type_attr;
21331 struct objfile *objfile = cu->per_objfile->objfile;
21332
21333 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21334 if (!type_attr)
21335 error (_("Dwarf Error: Problem turning containing type into gdb type "
21336 "[in module %s]"), objfile_name (objfile));
21337
21338 return lookup_die_type (die, type_attr, cu);
21339 }
21340
21341 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21342
21343 static struct type *
21344 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21345 {
21346 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
21347 struct objfile *objfile = dwarf2_per_objfile->objfile;
21348 char *saved;
21349
21350 std::string message
21351 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21352 objfile_name (objfile),
21353 sect_offset_str (cu->header.sect_off),
21354 sect_offset_str (die->sect_off));
21355 saved = obstack_strdup (&objfile->objfile_obstack, message);
21356
21357 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21358 }
21359
21360 /* Look up the type of DIE in CU using its type attribute ATTR.
21361 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21362 DW_AT_containing_type.
21363 If there is no type substitute an error marker. */
21364
21365 static struct type *
21366 lookup_die_type (struct die_info *die, const struct attribute *attr,
21367 struct dwarf2_cu *cu)
21368 {
21369 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
21370 struct objfile *objfile = dwarf2_per_objfile->objfile;
21371 struct type *this_type;
21372
21373 gdb_assert (attr->name == DW_AT_type
21374 || attr->name == DW_AT_GNAT_descriptive_type
21375 || attr->name == DW_AT_containing_type);
21376
21377 /* First see if we have it cached. */
21378
21379 if (attr->form == DW_FORM_GNU_ref_alt)
21380 {
21381 struct dwarf2_per_cu_data *per_cu;
21382 sect_offset sect_off = attr->get_ref_die_offset ();
21383
21384 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21385 dwarf2_per_objfile);
21386 this_type = get_die_type_at_offset (sect_off, per_cu);
21387 }
21388 else if (attr->form_is_ref ())
21389 {
21390 sect_offset sect_off = attr->get_ref_die_offset ();
21391
21392 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21393 }
21394 else if (attr->form == DW_FORM_ref_sig8)
21395 {
21396 ULONGEST signature = DW_SIGNATURE (attr);
21397
21398 return get_signatured_type (die, signature, cu);
21399 }
21400 else
21401 {
21402 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21403 " at %s [in module %s]"),
21404 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21405 objfile_name (objfile));
21406 return build_error_marker_type (cu, die);
21407 }
21408
21409 /* If not cached we need to read it in. */
21410
21411 if (this_type == NULL)
21412 {
21413 struct die_info *type_die = NULL;
21414 struct dwarf2_cu *type_cu = cu;
21415
21416 if (attr->form_is_ref ())
21417 type_die = follow_die_ref (die, attr, &type_cu);
21418 if (type_die == NULL)
21419 return build_error_marker_type (cu, die);
21420 /* If we find the type now, it's probably because the type came
21421 from an inter-CU reference and the type's CU got expanded before
21422 ours. */
21423 this_type = read_type_die (type_die, type_cu);
21424 }
21425
21426 /* If we still don't have a type use an error marker. */
21427
21428 if (this_type == NULL)
21429 return build_error_marker_type (cu, die);
21430
21431 return this_type;
21432 }
21433
21434 /* Return the type in DIE, CU.
21435 Returns NULL for invalid types.
21436
21437 This first does a lookup in die_type_hash,
21438 and only reads the die in if necessary.
21439
21440 NOTE: This can be called when reading in partial or full symbols. */
21441
21442 static struct type *
21443 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21444 {
21445 struct type *this_type;
21446
21447 this_type = get_die_type (die, cu);
21448 if (this_type)
21449 return this_type;
21450
21451 return read_type_die_1 (die, cu);
21452 }
21453
21454 /* Read the type in DIE, CU.
21455 Returns NULL for invalid types. */
21456
21457 static struct type *
21458 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21459 {
21460 struct type *this_type = NULL;
21461
21462 switch (die->tag)
21463 {
21464 case DW_TAG_class_type:
21465 case DW_TAG_interface_type:
21466 case DW_TAG_structure_type:
21467 case DW_TAG_union_type:
21468 this_type = read_structure_type (die, cu);
21469 break;
21470 case DW_TAG_enumeration_type:
21471 this_type = read_enumeration_type (die, cu);
21472 break;
21473 case DW_TAG_subprogram:
21474 case DW_TAG_subroutine_type:
21475 case DW_TAG_inlined_subroutine:
21476 this_type = read_subroutine_type (die, cu);
21477 break;
21478 case DW_TAG_array_type:
21479 this_type = read_array_type (die, cu);
21480 break;
21481 case DW_TAG_set_type:
21482 this_type = read_set_type (die, cu);
21483 break;
21484 case DW_TAG_pointer_type:
21485 this_type = read_tag_pointer_type (die, cu);
21486 break;
21487 case DW_TAG_ptr_to_member_type:
21488 this_type = read_tag_ptr_to_member_type (die, cu);
21489 break;
21490 case DW_TAG_reference_type:
21491 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21492 break;
21493 case DW_TAG_rvalue_reference_type:
21494 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21495 break;
21496 case DW_TAG_const_type:
21497 this_type = read_tag_const_type (die, cu);
21498 break;
21499 case DW_TAG_volatile_type:
21500 this_type = read_tag_volatile_type (die, cu);
21501 break;
21502 case DW_TAG_restrict_type:
21503 this_type = read_tag_restrict_type (die, cu);
21504 break;
21505 case DW_TAG_string_type:
21506 this_type = read_tag_string_type (die, cu);
21507 break;
21508 case DW_TAG_typedef:
21509 this_type = read_typedef (die, cu);
21510 break;
21511 case DW_TAG_subrange_type:
21512 this_type = read_subrange_type (die, cu);
21513 break;
21514 case DW_TAG_base_type:
21515 this_type = read_base_type (die, cu);
21516 break;
21517 case DW_TAG_unspecified_type:
21518 this_type = read_unspecified_type (die, cu);
21519 break;
21520 case DW_TAG_namespace:
21521 this_type = read_namespace_type (die, cu);
21522 break;
21523 case DW_TAG_module:
21524 this_type = read_module_type (die, cu);
21525 break;
21526 case DW_TAG_atomic_type:
21527 this_type = read_tag_atomic_type (die, cu);
21528 break;
21529 default:
21530 complaint (_("unexpected tag in read_type_die: '%s'"),
21531 dwarf_tag_name (die->tag));
21532 break;
21533 }
21534
21535 return this_type;
21536 }
21537
21538 /* See if we can figure out if the class lives in a namespace. We do
21539 this by looking for a member function; its demangled name will
21540 contain namespace info, if there is any.
21541 Return the computed name or NULL.
21542 Space for the result is allocated on the objfile's obstack.
21543 This is the full-die version of guess_partial_die_structure_name.
21544 In this case we know DIE has no useful parent. */
21545
21546 static const char *
21547 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21548 {
21549 struct die_info *spec_die;
21550 struct dwarf2_cu *spec_cu;
21551 struct die_info *child;
21552 struct objfile *objfile = cu->per_objfile->objfile;
21553
21554 spec_cu = cu;
21555 spec_die = die_specification (die, &spec_cu);
21556 if (spec_die != NULL)
21557 {
21558 die = spec_die;
21559 cu = spec_cu;
21560 }
21561
21562 for (child = die->child;
21563 child != NULL;
21564 child = child->sibling)
21565 {
21566 if (child->tag == DW_TAG_subprogram)
21567 {
21568 const char *linkage_name = dw2_linkage_name (child, cu);
21569
21570 if (linkage_name != NULL)
21571 {
21572 gdb::unique_xmalloc_ptr<char> actual_name
21573 (language_class_name_from_physname (cu->language_defn,
21574 linkage_name));
21575 const char *name = NULL;
21576
21577 if (actual_name != NULL)
21578 {
21579 const char *die_name = dwarf2_name (die, cu);
21580
21581 if (die_name != NULL
21582 && strcmp (die_name, actual_name.get ()) != 0)
21583 {
21584 /* Strip off the class name from the full name.
21585 We want the prefix. */
21586 int die_name_len = strlen (die_name);
21587 int actual_name_len = strlen (actual_name.get ());
21588 const char *ptr = actual_name.get ();
21589
21590 /* Test for '::' as a sanity check. */
21591 if (actual_name_len > die_name_len + 2
21592 && ptr[actual_name_len - die_name_len - 1] == ':')
21593 name = obstack_strndup (
21594 &objfile->per_bfd->storage_obstack,
21595 ptr, actual_name_len - die_name_len - 2);
21596 }
21597 }
21598 return name;
21599 }
21600 }
21601 }
21602
21603 return NULL;
21604 }
21605
21606 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21607 prefix part in such case. See
21608 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21609
21610 static const char *
21611 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21612 {
21613 struct attribute *attr;
21614 const char *base;
21615
21616 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21617 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21618 return NULL;
21619
21620 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21621 return NULL;
21622
21623 attr = dw2_linkage_name_attr (die, cu);
21624 if (attr == NULL || DW_STRING (attr) == NULL)
21625 return NULL;
21626
21627 /* dwarf2_name had to be already called. */
21628 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21629
21630 /* Strip the base name, keep any leading namespaces/classes. */
21631 base = strrchr (DW_STRING (attr), ':');
21632 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21633 return "";
21634
21635 struct objfile *objfile = cu->per_objfile->objfile;
21636 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21637 DW_STRING (attr),
21638 &base[-1] - DW_STRING (attr));
21639 }
21640
21641 /* Return the name of the namespace/class that DIE is defined within,
21642 or "" if we can't tell. The caller should not xfree the result.
21643
21644 For example, if we're within the method foo() in the following
21645 code:
21646
21647 namespace N {
21648 class C {
21649 void foo () {
21650 }
21651 };
21652 }
21653
21654 then determine_prefix on foo's die will return "N::C". */
21655
21656 static const char *
21657 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21658 {
21659 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
21660 struct die_info *parent, *spec_die;
21661 struct dwarf2_cu *spec_cu;
21662 struct type *parent_type;
21663 const char *retval;
21664
21665 if (cu->language != language_cplus
21666 && cu->language != language_fortran && cu->language != language_d
21667 && cu->language != language_rust)
21668 return "";
21669
21670 retval = anonymous_struct_prefix (die, cu);
21671 if (retval)
21672 return retval;
21673
21674 /* We have to be careful in the presence of DW_AT_specification.
21675 For example, with GCC 3.4, given the code
21676
21677 namespace N {
21678 void foo() {
21679 // Definition of N::foo.
21680 }
21681 }
21682
21683 then we'll have a tree of DIEs like this:
21684
21685 1: DW_TAG_compile_unit
21686 2: DW_TAG_namespace // N
21687 3: DW_TAG_subprogram // declaration of N::foo
21688 4: DW_TAG_subprogram // definition of N::foo
21689 DW_AT_specification // refers to die #3
21690
21691 Thus, when processing die #4, we have to pretend that we're in
21692 the context of its DW_AT_specification, namely the contex of die
21693 #3. */
21694 spec_cu = cu;
21695 spec_die = die_specification (die, &spec_cu);
21696 if (spec_die == NULL)
21697 parent = die->parent;
21698 else
21699 {
21700 parent = spec_die->parent;
21701 cu = spec_cu;
21702 }
21703
21704 if (parent == NULL)
21705 return "";
21706 else if (parent->building_fullname)
21707 {
21708 const char *name;
21709 const char *parent_name;
21710
21711 /* It has been seen on RealView 2.2 built binaries,
21712 DW_TAG_template_type_param types actually _defined_ as
21713 children of the parent class:
21714
21715 enum E {};
21716 template class <class Enum> Class{};
21717 Class<enum E> class_e;
21718
21719 1: DW_TAG_class_type (Class)
21720 2: DW_TAG_enumeration_type (E)
21721 3: DW_TAG_enumerator (enum1:0)
21722 3: DW_TAG_enumerator (enum2:1)
21723 ...
21724 2: DW_TAG_template_type_param
21725 DW_AT_type DW_FORM_ref_udata (E)
21726
21727 Besides being broken debug info, it can put GDB into an
21728 infinite loop. Consider:
21729
21730 When we're building the full name for Class<E>, we'll start
21731 at Class, and go look over its template type parameters,
21732 finding E. We'll then try to build the full name of E, and
21733 reach here. We're now trying to build the full name of E,
21734 and look over the parent DIE for containing scope. In the
21735 broken case, if we followed the parent DIE of E, we'd again
21736 find Class, and once again go look at its template type
21737 arguments, etc., etc. Simply don't consider such parent die
21738 as source-level parent of this die (it can't be, the language
21739 doesn't allow it), and break the loop here. */
21740 name = dwarf2_name (die, cu);
21741 parent_name = dwarf2_name (parent, cu);
21742 complaint (_("template param type '%s' defined within parent '%s'"),
21743 name ? name : "<unknown>",
21744 parent_name ? parent_name : "<unknown>");
21745 return "";
21746 }
21747 else
21748 switch (parent->tag)
21749 {
21750 case DW_TAG_namespace:
21751 parent_type = read_type_die (parent, cu);
21752 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21753 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21754 Work around this problem here. */
21755 if (cu->language == language_cplus
21756 && strcmp (parent_type->name (), "::") == 0)
21757 return "";
21758 /* We give a name to even anonymous namespaces. */
21759 return parent_type->name ();
21760 case DW_TAG_class_type:
21761 case DW_TAG_interface_type:
21762 case DW_TAG_structure_type:
21763 case DW_TAG_union_type:
21764 case DW_TAG_module:
21765 parent_type = read_type_die (parent, cu);
21766 if (parent_type->name () != NULL)
21767 return parent_type->name ();
21768 else
21769 /* An anonymous structure is only allowed non-static data
21770 members; no typedefs, no member functions, et cetera.
21771 So it does not need a prefix. */
21772 return "";
21773 case DW_TAG_compile_unit:
21774 case DW_TAG_partial_unit:
21775 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21776 if (cu->language == language_cplus
21777 && !dwarf2_per_objfile->per_bfd->types.empty ()
21778 && die->child != NULL
21779 && (die->tag == DW_TAG_class_type
21780 || die->tag == DW_TAG_structure_type
21781 || die->tag == DW_TAG_union_type))
21782 {
21783 const char *name = guess_full_die_structure_name (die, cu);
21784 if (name != NULL)
21785 return name;
21786 }
21787 return "";
21788 case DW_TAG_subprogram:
21789 /* Nested subroutines in Fortran get a prefix with the name
21790 of the parent's subroutine. */
21791 if (cu->language == language_fortran)
21792 {
21793 if ((die->tag == DW_TAG_subprogram)
21794 && (dwarf2_name (parent, cu) != NULL))
21795 return dwarf2_name (parent, cu);
21796 }
21797 return determine_prefix (parent, cu);
21798 case DW_TAG_enumeration_type:
21799 parent_type = read_type_die (parent, cu);
21800 if (TYPE_DECLARED_CLASS (parent_type))
21801 {
21802 if (parent_type->name () != NULL)
21803 return parent_type->name ();
21804 return "";
21805 }
21806 /* Fall through. */
21807 default:
21808 return determine_prefix (parent, cu);
21809 }
21810 }
21811
21812 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21813 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21814 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21815 an obconcat, otherwise allocate storage for the result. The CU argument is
21816 used to determine the language and hence, the appropriate separator. */
21817
21818 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21819
21820 static char *
21821 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21822 int physname, struct dwarf2_cu *cu)
21823 {
21824 const char *lead = "";
21825 const char *sep;
21826
21827 if (suffix == NULL || suffix[0] == '\0'
21828 || prefix == NULL || prefix[0] == '\0')
21829 sep = "";
21830 else if (cu->language == language_d)
21831 {
21832 /* For D, the 'main' function could be defined in any module, but it
21833 should never be prefixed. */
21834 if (strcmp (suffix, "D main") == 0)
21835 {
21836 prefix = "";
21837 sep = "";
21838 }
21839 else
21840 sep = ".";
21841 }
21842 else if (cu->language == language_fortran && physname)
21843 {
21844 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21845 DW_AT_MIPS_linkage_name is preferred and used instead. */
21846
21847 lead = "__";
21848 sep = "_MOD_";
21849 }
21850 else
21851 sep = "::";
21852
21853 if (prefix == NULL)
21854 prefix = "";
21855 if (suffix == NULL)
21856 suffix = "";
21857
21858 if (obs == NULL)
21859 {
21860 char *retval
21861 = ((char *)
21862 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21863
21864 strcpy (retval, lead);
21865 strcat (retval, prefix);
21866 strcat (retval, sep);
21867 strcat (retval, suffix);
21868 return retval;
21869 }
21870 else
21871 {
21872 /* We have an obstack. */
21873 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21874 }
21875 }
21876
21877 /* Get name of a die, return NULL if not found. */
21878
21879 static const char *
21880 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21881 struct objfile *objfile)
21882 {
21883 if (name && cu->language == language_cplus)
21884 {
21885 gdb::unique_xmalloc_ptr<char> canon_name
21886 = cp_canonicalize_string (name);
21887
21888 if (canon_name != nullptr)
21889 name = objfile->intern (canon_name.get ());
21890 }
21891
21892 return name;
21893 }
21894
21895 /* Get name of a die, return NULL if not found.
21896 Anonymous namespaces are converted to their magic string. */
21897
21898 static const char *
21899 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21900 {
21901 struct attribute *attr;
21902 struct objfile *objfile = cu->per_objfile->objfile;
21903
21904 attr = dwarf2_attr (die, DW_AT_name, cu);
21905 if ((!attr || !DW_STRING (attr))
21906 && die->tag != DW_TAG_namespace
21907 && die->tag != DW_TAG_class_type
21908 && die->tag != DW_TAG_interface_type
21909 && die->tag != DW_TAG_structure_type
21910 && die->tag != DW_TAG_union_type)
21911 return NULL;
21912
21913 switch (die->tag)
21914 {
21915 case DW_TAG_compile_unit:
21916 case DW_TAG_partial_unit:
21917 /* Compilation units have a DW_AT_name that is a filename, not
21918 a source language identifier. */
21919 case DW_TAG_enumeration_type:
21920 case DW_TAG_enumerator:
21921 /* These tags always have simple identifiers already; no need
21922 to canonicalize them. */
21923 return DW_STRING (attr);
21924
21925 case DW_TAG_namespace:
21926 if (attr != NULL && DW_STRING (attr) != NULL)
21927 return DW_STRING (attr);
21928 return CP_ANONYMOUS_NAMESPACE_STR;
21929
21930 case DW_TAG_class_type:
21931 case DW_TAG_interface_type:
21932 case DW_TAG_structure_type:
21933 case DW_TAG_union_type:
21934 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21935 structures or unions. These were of the form "._%d" in GCC 4.1,
21936 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21937 and GCC 4.4. We work around this problem by ignoring these. */
21938 if (attr && DW_STRING (attr)
21939 && (startswith (DW_STRING (attr), "._")
21940 || startswith (DW_STRING (attr), "<anonymous")))
21941 return NULL;
21942
21943 /* GCC might emit a nameless typedef that has a linkage name. See
21944 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21945 if (!attr || DW_STRING (attr) == NULL)
21946 {
21947 attr = dw2_linkage_name_attr (die, cu);
21948 if (attr == NULL || DW_STRING (attr) == NULL)
21949 return NULL;
21950
21951 /* Avoid demangling DW_STRING (attr) the second time on a second
21952 call for the same DIE. */
21953 if (!DW_STRING_IS_CANONICAL (attr))
21954 {
21955 gdb::unique_xmalloc_ptr<char> demangled
21956 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21957 if (demangled == nullptr)
21958 return nullptr;
21959
21960 DW_STRING (attr) = objfile->intern (demangled.get ());
21961 DW_STRING_IS_CANONICAL (attr) = 1;
21962 }
21963
21964 /* Strip any leading namespaces/classes, keep only the base name.
21965 DW_AT_name for named DIEs does not contain the prefixes. */
21966 const char *base = strrchr (DW_STRING (attr), ':');
21967 if (base && base > DW_STRING (attr) && base[-1] == ':')
21968 return &base[1];
21969 else
21970 return DW_STRING (attr);
21971 }
21972 break;
21973
21974 default:
21975 break;
21976 }
21977
21978 if (!DW_STRING_IS_CANONICAL (attr))
21979 {
21980 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21981 objfile);
21982 DW_STRING_IS_CANONICAL (attr) = 1;
21983 }
21984 return DW_STRING (attr);
21985 }
21986
21987 /* Return the die that this die in an extension of, or NULL if there
21988 is none. *EXT_CU is the CU containing DIE on input, and the CU
21989 containing the return value on output. */
21990
21991 static struct die_info *
21992 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21993 {
21994 struct attribute *attr;
21995
21996 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21997 if (attr == NULL)
21998 return NULL;
21999
22000 return follow_die_ref (die, attr, ext_cu);
22001 }
22002
22003 static void
22004 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22005 {
22006 unsigned int i;
22007
22008 print_spaces (indent, f);
22009 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22010 dwarf_tag_name (die->tag), die->abbrev,
22011 sect_offset_str (die->sect_off));
22012
22013 if (die->parent != NULL)
22014 {
22015 print_spaces (indent, f);
22016 fprintf_unfiltered (f, " parent at offset: %s\n",
22017 sect_offset_str (die->parent->sect_off));
22018 }
22019
22020 print_spaces (indent, f);
22021 fprintf_unfiltered (f, " has children: %s\n",
22022 dwarf_bool_name (die->child != NULL));
22023
22024 print_spaces (indent, f);
22025 fprintf_unfiltered (f, " attributes:\n");
22026
22027 for (i = 0; i < die->num_attrs; ++i)
22028 {
22029 print_spaces (indent, f);
22030 fprintf_unfiltered (f, " %s (%s) ",
22031 dwarf_attr_name (die->attrs[i].name),
22032 dwarf_form_name (die->attrs[i].form));
22033
22034 switch (die->attrs[i].form)
22035 {
22036 case DW_FORM_addr:
22037 case DW_FORM_addrx:
22038 case DW_FORM_GNU_addr_index:
22039 fprintf_unfiltered (f, "address: ");
22040 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22041 break;
22042 case DW_FORM_block2:
22043 case DW_FORM_block4:
22044 case DW_FORM_block:
22045 case DW_FORM_block1:
22046 fprintf_unfiltered (f, "block: size %s",
22047 pulongest (DW_BLOCK (&die->attrs[i])->size));
22048 break;
22049 case DW_FORM_exprloc:
22050 fprintf_unfiltered (f, "expression: size %s",
22051 pulongest (DW_BLOCK (&die->attrs[i])->size));
22052 break;
22053 case DW_FORM_data16:
22054 fprintf_unfiltered (f, "constant of 16 bytes");
22055 break;
22056 case DW_FORM_ref_addr:
22057 fprintf_unfiltered (f, "ref address: ");
22058 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22059 break;
22060 case DW_FORM_GNU_ref_alt:
22061 fprintf_unfiltered (f, "alt ref address: ");
22062 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22063 break;
22064 case DW_FORM_ref1:
22065 case DW_FORM_ref2:
22066 case DW_FORM_ref4:
22067 case DW_FORM_ref8:
22068 case DW_FORM_ref_udata:
22069 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22070 (long) (DW_UNSND (&die->attrs[i])));
22071 break;
22072 case DW_FORM_data1:
22073 case DW_FORM_data2:
22074 case DW_FORM_data4:
22075 case DW_FORM_data8:
22076 case DW_FORM_udata:
22077 case DW_FORM_sdata:
22078 fprintf_unfiltered (f, "constant: %s",
22079 pulongest (DW_UNSND (&die->attrs[i])));
22080 break;
22081 case DW_FORM_sec_offset:
22082 fprintf_unfiltered (f, "section offset: %s",
22083 pulongest (DW_UNSND (&die->attrs[i])));
22084 break;
22085 case DW_FORM_ref_sig8:
22086 fprintf_unfiltered (f, "signature: %s",
22087 hex_string (DW_SIGNATURE (&die->attrs[i])));
22088 break;
22089 case DW_FORM_string:
22090 case DW_FORM_strp:
22091 case DW_FORM_line_strp:
22092 case DW_FORM_strx:
22093 case DW_FORM_GNU_str_index:
22094 case DW_FORM_GNU_strp_alt:
22095 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22096 DW_STRING (&die->attrs[i])
22097 ? DW_STRING (&die->attrs[i]) : "",
22098 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22099 break;
22100 case DW_FORM_flag:
22101 if (DW_UNSND (&die->attrs[i]))
22102 fprintf_unfiltered (f, "flag: TRUE");
22103 else
22104 fprintf_unfiltered (f, "flag: FALSE");
22105 break;
22106 case DW_FORM_flag_present:
22107 fprintf_unfiltered (f, "flag: TRUE");
22108 break;
22109 case DW_FORM_indirect:
22110 /* The reader will have reduced the indirect form to
22111 the "base form" so this form should not occur. */
22112 fprintf_unfiltered (f,
22113 "unexpected attribute form: DW_FORM_indirect");
22114 break;
22115 case DW_FORM_implicit_const:
22116 fprintf_unfiltered (f, "constant: %s",
22117 plongest (DW_SND (&die->attrs[i])));
22118 break;
22119 default:
22120 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22121 die->attrs[i].form);
22122 break;
22123 }
22124 fprintf_unfiltered (f, "\n");
22125 }
22126 }
22127
22128 static void
22129 dump_die_for_error (struct die_info *die)
22130 {
22131 dump_die_shallow (gdb_stderr, 0, die);
22132 }
22133
22134 static void
22135 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22136 {
22137 int indent = level * 4;
22138
22139 gdb_assert (die != NULL);
22140
22141 if (level >= max_level)
22142 return;
22143
22144 dump_die_shallow (f, indent, die);
22145
22146 if (die->child != NULL)
22147 {
22148 print_spaces (indent, f);
22149 fprintf_unfiltered (f, " Children:");
22150 if (level + 1 < max_level)
22151 {
22152 fprintf_unfiltered (f, "\n");
22153 dump_die_1 (f, level + 1, max_level, die->child);
22154 }
22155 else
22156 {
22157 fprintf_unfiltered (f,
22158 " [not printed, max nesting level reached]\n");
22159 }
22160 }
22161
22162 if (die->sibling != NULL && level > 0)
22163 {
22164 dump_die_1 (f, level, max_level, die->sibling);
22165 }
22166 }
22167
22168 /* This is called from the pdie macro in gdbinit.in.
22169 It's not static so gcc will keep a copy callable from gdb. */
22170
22171 void
22172 dump_die (struct die_info *die, int max_level)
22173 {
22174 dump_die_1 (gdb_stdlog, 0, max_level, die);
22175 }
22176
22177 static void
22178 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22179 {
22180 void **slot;
22181
22182 slot = htab_find_slot_with_hash (cu->die_hash, die,
22183 to_underlying (die->sect_off),
22184 INSERT);
22185
22186 *slot = die;
22187 }
22188
22189 /* Follow reference or signature attribute ATTR of SRC_DIE.
22190 On entry *REF_CU is the CU of SRC_DIE.
22191 On exit *REF_CU is the CU of the result. */
22192
22193 static struct die_info *
22194 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22195 struct dwarf2_cu **ref_cu)
22196 {
22197 struct die_info *die;
22198
22199 if (attr->form_is_ref ())
22200 die = follow_die_ref (src_die, attr, ref_cu);
22201 else if (attr->form == DW_FORM_ref_sig8)
22202 die = follow_die_sig (src_die, attr, ref_cu);
22203 else
22204 {
22205 dump_die_for_error (src_die);
22206 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22207 objfile_name ((*ref_cu)->per_objfile->objfile));
22208 }
22209
22210 return die;
22211 }
22212
22213 /* Follow reference OFFSET.
22214 On entry *REF_CU is the CU of the source die referencing OFFSET.
22215 On exit *REF_CU is the CU of the result.
22216 Returns NULL if OFFSET is invalid. */
22217
22218 static struct die_info *
22219 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22220 struct dwarf2_cu **ref_cu)
22221 {
22222 struct die_info temp_die;
22223 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22224 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
22225
22226 gdb_assert (cu->per_cu != NULL);
22227
22228 target_cu = cu;
22229
22230 if (cu->per_cu->is_debug_types)
22231 {
22232 /* .debug_types CUs cannot reference anything outside their CU.
22233 If they need to, they have to reference a signatured type via
22234 DW_FORM_ref_sig8. */
22235 if (!cu->header.offset_in_cu_p (sect_off))
22236 return NULL;
22237 }
22238 else if (offset_in_dwz != cu->per_cu->is_dwz
22239 || !cu->header.offset_in_cu_p (sect_off))
22240 {
22241 struct dwarf2_per_cu_data *per_cu;
22242
22243 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22244 dwarf2_per_objfile);
22245
22246 /* If necessary, add it to the queue and load its DIEs. */
22247 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22248 load_full_comp_unit (per_cu, dwarf2_per_objfile, false, cu->language);
22249
22250 target_cu = per_cu->cu;
22251 }
22252 else if (cu->dies == NULL)
22253 {
22254 /* We're loading full DIEs during partial symbol reading. */
22255 gdb_assert (dwarf2_per_objfile->per_bfd->reading_partial_symbols);
22256 load_full_comp_unit (cu->per_cu, dwarf2_per_objfile, false,
22257 language_minimal);
22258 }
22259
22260 *ref_cu = target_cu;
22261 temp_die.sect_off = sect_off;
22262
22263 if (target_cu != cu)
22264 target_cu->ancestor = cu;
22265
22266 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22267 &temp_die,
22268 to_underlying (sect_off));
22269 }
22270
22271 /* Follow reference attribute ATTR of SRC_DIE.
22272 On entry *REF_CU is the CU of SRC_DIE.
22273 On exit *REF_CU is the CU of the result. */
22274
22275 static struct die_info *
22276 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22277 struct dwarf2_cu **ref_cu)
22278 {
22279 sect_offset sect_off = attr->get_ref_die_offset ();
22280 struct dwarf2_cu *cu = *ref_cu;
22281 struct die_info *die;
22282
22283 die = follow_die_offset (sect_off,
22284 (attr->form == DW_FORM_GNU_ref_alt
22285 || cu->per_cu->is_dwz),
22286 ref_cu);
22287 if (!die)
22288 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22289 "at %s [in module %s]"),
22290 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22291 objfile_name (cu->per_objfile->objfile));
22292
22293 return die;
22294 }
22295
22296 /* See read.h. */
22297
22298 struct dwarf2_locexpr_baton
22299 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22300 dwarf2_per_cu_data *per_cu,
22301 CORE_ADDR (*get_frame_pc) (void *baton),
22302 void *baton, bool resolve_abstract_p)
22303 {
22304 struct dwarf2_cu *cu;
22305 struct die_info *die;
22306 struct attribute *attr;
22307 struct dwarf2_locexpr_baton retval;
22308 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22309 struct objfile *objfile = dwarf2_per_objfile->objfile;
22310
22311 if (per_cu->cu == NULL)
22312 load_cu (per_cu, dwarf2_per_objfile, false);
22313 cu = per_cu->cu;
22314 if (cu == NULL)
22315 {
22316 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22317 Instead just throw an error, not much else we can do. */
22318 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22319 sect_offset_str (sect_off), objfile_name (objfile));
22320 }
22321
22322 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22323 if (!die)
22324 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22325 sect_offset_str (sect_off), objfile_name (objfile));
22326
22327 attr = dwarf2_attr (die, DW_AT_location, cu);
22328 if (!attr && resolve_abstract_p
22329 && (dwarf2_per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
22330 != dwarf2_per_objfile->per_bfd->abstract_to_concrete.end ()))
22331 {
22332 CORE_ADDR pc = (*get_frame_pc) (baton);
22333 CORE_ADDR baseaddr = objfile->text_section_offset ();
22334 struct gdbarch *gdbarch = objfile->arch ();
22335
22336 for (const auto &cand_off
22337 : dwarf2_per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
22338 {
22339 struct dwarf2_cu *cand_cu = cu;
22340 struct die_info *cand
22341 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22342 if (!cand
22343 || !cand->parent
22344 || cand->parent->tag != DW_TAG_subprogram)
22345 continue;
22346
22347 CORE_ADDR pc_low, pc_high;
22348 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22349 if (pc_low == ((CORE_ADDR) -1))
22350 continue;
22351 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22352 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22353 if (!(pc_low <= pc && pc < pc_high))
22354 continue;
22355
22356 die = cand;
22357 attr = dwarf2_attr (die, DW_AT_location, cu);
22358 break;
22359 }
22360 }
22361
22362 if (!attr)
22363 {
22364 /* DWARF: "If there is no such attribute, then there is no effect.".
22365 DATA is ignored if SIZE is 0. */
22366
22367 retval.data = NULL;
22368 retval.size = 0;
22369 }
22370 else if (attr->form_is_section_offset ())
22371 {
22372 struct dwarf2_loclist_baton loclist_baton;
22373 CORE_ADDR pc = (*get_frame_pc) (baton);
22374 size_t size;
22375
22376 fill_in_loclist_baton (cu, &loclist_baton, attr);
22377
22378 retval.data = dwarf2_find_location_expression (&loclist_baton,
22379 &size, pc);
22380 retval.size = size;
22381 }
22382 else
22383 {
22384 if (!attr->form_is_block ())
22385 error (_("Dwarf Error: DIE at %s referenced in module %s "
22386 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22387 sect_offset_str (sect_off), objfile_name (objfile));
22388
22389 retval.data = DW_BLOCK (attr)->data;
22390 retval.size = DW_BLOCK (attr)->size;
22391 }
22392 retval.per_objfile = dwarf2_per_objfile;
22393 retval.per_cu = cu->per_cu;
22394
22395 age_cached_comp_units (dwarf2_per_objfile);
22396
22397 return retval;
22398 }
22399
22400 /* See read.h. */
22401
22402 struct dwarf2_locexpr_baton
22403 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22404 dwarf2_per_cu_data *per_cu,
22405 CORE_ADDR (*get_frame_pc) (void *baton),
22406 void *baton)
22407 {
22408 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22409
22410 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22411 }
22412
22413 /* Write a constant of a given type as target-ordered bytes into
22414 OBSTACK. */
22415
22416 static const gdb_byte *
22417 write_constant_as_bytes (struct obstack *obstack,
22418 enum bfd_endian byte_order,
22419 struct type *type,
22420 ULONGEST value,
22421 LONGEST *len)
22422 {
22423 gdb_byte *result;
22424
22425 *len = TYPE_LENGTH (type);
22426 result = (gdb_byte *) obstack_alloc (obstack, *len);
22427 store_unsigned_integer (result, *len, byte_order, value);
22428
22429 return result;
22430 }
22431
22432 /* See read.h. */
22433
22434 const gdb_byte *
22435 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22436 dwarf2_per_cu_data *per_cu,
22437 obstack *obstack,
22438 LONGEST *len)
22439 {
22440 struct dwarf2_cu *cu;
22441 struct die_info *die;
22442 struct attribute *attr;
22443 const gdb_byte *result = NULL;
22444 struct type *type;
22445 LONGEST value;
22446 enum bfd_endian byte_order;
22447 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22448
22449 if (per_cu->cu == NULL)
22450 load_cu (per_cu, per_cu->dwarf2_per_objfile, false);
22451 cu = per_cu->cu;
22452 if (cu == NULL)
22453 {
22454 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22455 Instead just throw an error, not much else we can do. */
22456 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22457 sect_offset_str (sect_off), objfile_name (objfile));
22458 }
22459
22460 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22461 if (!die)
22462 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22463 sect_offset_str (sect_off), objfile_name (objfile));
22464
22465 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22466 if (attr == NULL)
22467 return NULL;
22468
22469 byte_order = (bfd_big_endian (objfile->obfd)
22470 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22471
22472 switch (attr->form)
22473 {
22474 case DW_FORM_addr:
22475 case DW_FORM_addrx:
22476 case DW_FORM_GNU_addr_index:
22477 {
22478 gdb_byte *tem;
22479
22480 *len = cu->header.addr_size;
22481 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22482 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22483 result = tem;
22484 }
22485 break;
22486 case DW_FORM_string:
22487 case DW_FORM_strp:
22488 case DW_FORM_strx:
22489 case DW_FORM_GNU_str_index:
22490 case DW_FORM_GNU_strp_alt:
22491 /* DW_STRING is already allocated on the objfile obstack, point
22492 directly to it. */
22493 result = (const gdb_byte *) DW_STRING (attr);
22494 *len = strlen (DW_STRING (attr));
22495 break;
22496 case DW_FORM_block1:
22497 case DW_FORM_block2:
22498 case DW_FORM_block4:
22499 case DW_FORM_block:
22500 case DW_FORM_exprloc:
22501 case DW_FORM_data16:
22502 result = DW_BLOCK (attr)->data;
22503 *len = DW_BLOCK (attr)->size;
22504 break;
22505
22506 /* The DW_AT_const_value attributes are supposed to carry the
22507 symbol's value "represented as it would be on the target
22508 architecture." By the time we get here, it's already been
22509 converted to host endianness, so we just need to sign- or
22510 zero-extend it as appropriate. */
22511 case DW_FORM_data1:
22512 type = die_type (die, cu);
22513 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22514 if (result == NULL)
22515 result = write_constant_as_bytes (obstack, byte_order,
22516 type, value, len);
22517 break;
22518 case DW_FORM_data2:
22519 type = die_type (die, cu);
22520 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22521 if (result == NULL)
22522 result = write_constant_as_bytes (obstack, byte_order,
22523 type, value, len);
22524 break;
22525 case DW_FORM_data4:
22526 type = die_type (die, cu);
22527 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22528 if (result == NULL)
22529 result = write_constant_as_bytes (obstack, byte_order,
22530 type, value, len);
22531 break;
22532 case DW_FORM_data8:
22533 type = die_type (die, cu);
22534 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22535 if (result == NULL)
22536 result = write_constant_as_bytes (obstack, byte_order,
22537 type, value, len);
22538 break;
22539
22540 case DW_FORM_sdata:
22541 case DW_FORM_implicit_const:
22542 type = die_type (die, cu);
22543 result = write_constant_as_bytes (obstack, byte_order,
22544 type, DW_SND (attr), len);
22545 break;
22546
22547 case DW_FORM_udata:
22548 type = die_type (die, cu);
22549 result = write_constant_as_bytes (obstack, byte_order,
22550 type, DW_UNSND (attr), len);
22551 break;
22552
22553 default:
22554 complaint (_("unsupported const value attribute form: '%s'"),
22555 dwarf_form_name (attr->form));
22556 break;
22557 }
22558
22559 return result;
22560 }
22561
22562 /* See read.h. */
22563
22564 struct type *
22565 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22566 dwarf2_per_cu_data *per_cu)
22567 {
22568 struct dwarf2_cu *cu;
22569 struct die_info *die;
22570
22571 if (per_cu->cu == NULL)
22572 load_cu (per_cu, per_cu->dwarf2_per_objfile, false);
22573 cu = per_cu->cu;
22574 if (!cu)
22575 return NULL;
22576
22577 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22578 if (!die)
22579 return NULL;
22580
22581 return die_type (die, cu);
22582 }
22583
22584 /* See read.h. */
22585
22586 struct type *
22587 dwarf2_get_die_type (cu_offset die_offset,
22588 struct dwarf2_per_cu_data *per_cu)
22589 {
22590 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22591 return get_die_type_at_offset (die_offset_sect, per_cu);
22592 }
22593
22594 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22595 On entry *REF_CU is the CU of SRC_DIE.
22596 On exit *REF_CU is the CU of the result.
22597 Returns NULL if the referenced DIE isn't found. */
22598
22599 static struct die_info *
22600 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22601 struct dwarf2_cu **ref_cu)
22602 {
22603 struct die_info temp_die;
22604 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22605 struct die_info *die;
22606
22607 /* While it might be nice to assert sig_type->type == NULL here,
22608 we can get here for DW_AT_imported_declaration where we need
22609 the DIE not the type. */
22610
22611 /* If necessary, add it to the queue and load its DIEs. */
22612
22613 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22614 read_signatured_type (sig_type, (*ref_cu)->per_objfile);
22615
22616 sig_cu = sig_type->per_cu.cu;
22617 gdb_assert (sig_cu != NULL);
22618 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22619 temp_die.sect_off = sig_type->type_offset_in_section;
22620 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22621 to_underlying (temp_die.sect_off));
22622 if (die)
22623 {
22624 struct dwarf2_per_objfile *dwarf2_per_objfile = (*ref_cu)->per_objfile;
22625
22626 /* For .gdb_index version 7 keep track of included TUs.
22627 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22628 if (dwarf2_per_objfile->per_bfd->index_table != NULL
22629 && dwarf2_per_objfile->per_bfd->index_table->version <= 7)
22630 {
22631 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22632 }
22633
22634 *ref_cu = sig_cu;
22635 if (sig_cu != cu)
22636 sig_cu->ancestor = cu;
22637
22638 return die;
22639 }
22640
22641 return NULL;
22642 }
22643
22644 /* Follow signatured type referenced by ATTR in SRC_DIE.
22645 On entry *REF_CU is the CU of SRC_DIE.
22646 On exit *REF_CU is the CU of the result.
22647 The result is the DIE of the type.
22648 If the referenced type cannot be found an error is thrown. */
22649
22650 static struct die_info *
22651 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22652 struct dwarf2_cu **ref_cu)
22653 {
22654 ULONGEST signature = DW_SIGNATURE (attr);
22655 struct signatured_type *sig_type;
22656 struct die_info *die;
22657
22658 gdb_assert (attr->form == DW_FORM_ref_sig8);
22659
22660 sig_type = lookup_signatured_type (*ref_cu, signature);
22661 /* sig_type will be NULL if the signatured type is missing from
22662 the debug info. */
22663 if (sig_type == NULL)
22664 {
22665 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22666 " from DIE at %s [in module %s]"),
22667 hex_string (signature), sect_offset_str (src_die->sect_off),
22668 objfile_name ((*ref_cu)->per_objfile->objfile));
22669 }
22670
22671 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22672 if (die == NULL)
22673 {
22674 dump_die_for_error (src_die);
22675 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22676 " from DIE at %s [in module %s]"),
22677 hex_string (signature), sect_offset_str (src_die->sect_off),
22678 objfile_name ((*ref_cu)->per_objfile->objfile));
22679 }
22680
22681 return die;
22682 }
22683
22684 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22685 reading in and processing the type unit if necessary. */
22686
22687 static struct type *
22688 get_signatured_type (struct die_info *die, ULONGEST signature,
22689 struct dwarf2_cu *cu)
22690 {
22691 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
22692 struct signatured_type *sig_type;
22693 struct dwarf2_cu *type_cu;
22694 struct die_info *type_die;
22695 struct type *type;
22696
22697 sig_type = lookup_signatured_type (cu, signature);
22698 /* sig_type will be NULL if the signatured type is missing from
22699 the debug info. */
22700 if (sig_type == NULL)
22701 {
22702 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22703 " from DIE at %s [in module %s]"),
22704 hex_string (signature), sect_offset_str (die->sect_off),
22705 objfile_name (dwarf2_per_objfile->objfile));
22706 return build_error_marker_type (cu, die);
22707 }
22708
22709 /* If we already know the type we're done. */
22710 if (sig_type->type != NULL)
22711 return sig_type->type;
22712
22713 type_cu = cu;
22714 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22715 if (type_die != NULL)
22716 {
22717 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22718 is created. This is important, for example, because for c++ classes
22719 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22720 type = read_type_die (type_die, type_cu);
22721 if (type == NULL)
22722 {
22723 complaint (_("Dwarf Error: Cannot build signatured type %s"
22724 " referenced from DIE at %s [in module %s]"),
22725 hex_string (signature), sect_offset_str (die->sect_off),
22726 objfile_name (dwarf2_per_objfile->objfile));
22727 type = build_error_marker_type (cu, die);
22728 }
22729 }
22730 else
22731 {
22732 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22733 " from DIE at %s [in module %s]"),
22734 hex_string (signature), sect_offset_str (die->sect_off),
22735 objfile_name (dwarf2_per_objfile->objfile));
22736 type = build_error_marker_type (cu, die);
22737 }
22738 sig_type->type = type;
22739
22740 return type;
22741 }
22742
22743 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22744 reading in and processing the type unit if necessary. */
22745
22746 static struct type *
22747 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22748 struct dwarf2_cu *cu) /* ARI: editCase function */
22749 {
22750 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22751 if (attr->form_is_ref ())
22752 {
22753 struct dwarf2_cu *type_cu = cu;
22754 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22755
22756 return read_type_die (type_die, type_cu);
22757 }
22758 else if (attr->form == DW_FORM_ref_sig8)
22759 {
22760 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22761 }
22762 else
22763 {
22764 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
22765
22766 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22767 " at %s [in module %s]"),
22768 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22769 objfile_name (dwarf2_per_objfile->objfile));
22770 return build_error_marker_type (cu, die);
22771 }
22772 }
22773
22774 /* Load the DIEs associated with type unit PER_CU into memory. */
22775
22776 static void
22777 load_full_type_unit (dwarf2_per_cu_data *per_cu,
22778 dwarf2_per_objfile *per_objfile)
22779 {
22780 struct signatured_type *sig_type;
22781
22782 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22783 gdb_assert (! per_cu->type_unit_group_p ());
22784
22785 /* We have the per_cu, but we need the signatured_type.
22786 Fortunately this is an easy translation. */
22787 gdb_assert (per_cu->is_debug_types);
22788 sig_type = (struct signatured_type *) per_cu;
22789
22790 gdb_assert (per_cu->cu == NULL);
22791
22792 read_signatured_type (sig_type, per_objfile);
22793
22794 gdb_assert (per_cu->cu != NULL);
22795 }
22796
22797 /* Read in a signatured type and build its CU and DIEs.
22798 If the type is a stub for the real type in a DWO file,
22799 read in the real type from the DWO file as well. */
22800
22801 static void
22802 read_signatured_type (signatured_type *sig_type,
22803 dwarf2_per_objfile *per_objfile)
22804 {
22805 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22806
22807 gdb_assert (per_cu->is_debug_types);
22808 gdb_assert (per_cu->cu == NULL);
22809
22810 cutu_reader reader (per_cu, per_objfile, NULL, 0, false);
22811
22812 if (!reader.dummy_p)
22813 {
22814 struct dwarf2_cu *cu = reader.cu;
22815 const gdb_byte *info_ptr = reader.info_ptr;
22816
22817 gdb_assert (cu->die_hash == NULL);
22818 cu->die_hash =
22819 htab_create_alloc_ex (cu->header.length / 12,
22820 die_hash,
22821 die_eq,
22822 NULL,
22823 &cu->comp_unit_obstack,
22824 hashtab_obstack_allocate,
22825 dummy_obstack_deallocate);
22826
22827 if (reader.comp_unit_die->has_children)
22828 reader.comp_unit_die->child
22829 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22830 reader.comp_unit_die);
22831 cu->dies = reader.comp_unit_die;
22832 /* comp_unit_die is not stored in die_hash, no need. */
22833
22834 /* We try not to read any attributes in this function, because
22835 not all CUs needed for references have been loaded yet, and
22836 symbol table processing isn't initialized. But we have to
22837 set the CU language, or we won't be able to build types
22838 correctly. Similarly, if we do not read the producer, we can
22839 not apply producer-specific interpretation. */
22840 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22841
22842 reader.keep ();
22843 }
22844
22845 sig_type->per_cu.tu_read = 1;
22846 }
22847
22848 /* Decode simple location descriptions.
22849 Given a pointer to a dwarf block that defines a location, compute
22850 the location and return the value. If COMPUTED is non-null, it is
22851 set to true to indicate that decoding was successful, and false
22852 otherwise. If COMPUTED is null, then this function may emit a
22853 complaint. */
22854
22855 static CORE_ADDR
22856 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22857 {
22858 struct objfile *objfile = cu->per_objfile->objfile;
22859 size_t i;
22860 size_t size = blk->size;
22861 const gdb_byte *data = blk->data;
22862 CORE_ADDR stack[64];
22863 int stacki;
22864 unsigned int bytes_read, unsnd;
22865 gdb_byte op;
22866
22867 if (computed != nullptr)
22868 *computed = false;
22869
22870 i = 0;
22871 stacki = 0;
22872 stack[stacki] = 0;
22873 stack[++stacki] = 0;
22874
22875 while (i < size)
22876 {
22877 op = data[i++];
22878 switch (op)
22879 {
22880 case DW_OP_lit0:
22881 case DW_OP_lit1:
22882 case DW_OP_lit2:
22883 case DW_OP_lit3:
22884 case DW_OP_lit4:
22885 case DW_OP_lit5:
22886 case DW_OP_lit6:
22887 case DW_OP_lit7:
22888 case DW_OP_lit8:
22889 case DW_OP_lit9:
22890 case DW_OP_lit10:
22891 case DW_OP_lit11:
22892 case DW_OP_lit12:
22893 case DW_OP_lit13:
22894 case DW_OP_lit14:
22895 case DW_OP_lit15:
22896 case DW_OP_lit16:
22897 case DW_OP_lit17:
22898 case DW_OP_lit18:
22899 case DW_OP_lit19:
22900 case DW_OP_lit20:
22901 case DW_OP_lit21:
22902 case DW_OP_lit22:
22903 case DW_OP_lit23:
22904 case DW_OP_lit24:
22905 case DW_OP_lit25:
22906 case DW_OP_lit26:
22907 case DW_OP_lit27:
22908 case DW_OP_lit28:
22909 case DW_OP_lit29:
22910 case DW_OP_lit30:
22911 case DW_OP_lit31:
22912 stack[++stacki] = op - DW_OP_lit0;
22913 break;
22914
22915 case DW_OP_reg0:
22916 case DW_OP_reg1:
22917 case DW_OP_reg2:
22918 case DW_OP_reg3:
22919 case DW_OP_reg4:
22920 case DW_OP_reg5:
22921 case DW_OP_reg6:
22922 case DW_OP_reg7:
22923 case DW_OP_reg8:
22924 case DW_OP_reg9:
22925 case DW_OP_reg10:
22926 case DW_OP_reg11:
22927 case DW_OP_reg12:
22928 case DW_OP_reg13:
22929 case DW_OP_reg14:
22930 case DW_OP_reg15:
22931 case DW_OP_reg16:
22932 case DW_OP_reg17:
22933 case DW_OP_reg18:
22934 case DW_OP_reg19:
22935 case DW_OP_reg20:
22936 case DW_OP_reg21:
22937 case DW_OP_reg22:
22938 case DW_OP_reg23:
22939 case DW_OP_reg24:
22940 case DW_OP_reg25:
22941 case DW_OP_reg26:
22942 case DW_OP_reg27:
22943 case DW_OP_reg28:
22944 case DW_OP_reg29:
22945 case DW_OP_reg30:
22946 case DW_OP_reg31:
22947 stack[++stacki] = op - DW_OP_reg0;
22948 if (i < size)
22949 {
22950 if (computed == nullptr)
22951 dwarf2_complex_location_expr_complaint ();
22952 else
22953 return 0;
22954 }
22955 break;
22956
22957 case DW_OP_regx:
22958 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22959 i += bytes_read;
22960 stack[++stacki] = unsnd;
22961 if (i < size)
22962 {
22963 if (computed == nullptr)
22964 dwarf2_complex_location_expr_complaint ();
22965 else
22966 return 0;
22967 }
22968 break;
22969
22970 case DW_OP_addr:
22971 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22972 &bytes_read);
22973 i += bytes_read;
22974 break;
22975
22976 case DW_OP_const1u:
22977 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22978 i += 1;
22979 break;
22980
22981 case DW_OP_const1s:
22982 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22983 i += 1;
22984 break;
22985
22986 case DW_OP_const2u:
22987 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22988 i += 2;
22989 break;
22990
22991 case DW_OP_const2s:
22992 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22993 i += 2;
22994 break;
22995
22996 case DW_OP_const4u:
22997 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22998 i += 4;
22999 break;
23000
23001 case DW_OP_const4s:
23002 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23003 i += 4;
23004 break;
23005
23006 case DW_OP_const8u:
23007 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23008 i += 8;
23009 break;
23010
23011 case DW_OP_constu:
23012 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23013 &bytes_read);
23014 i += bytes_read;
23015 break;
23016
23017 case DW_OP_consts:
23018 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23019 i += bytes_read;
23020 break;
23021
23022 case DW_OP_dup:
23023 stack[stacki + 1] = stack[stacki];
23024 stacki++;
23025 break;
23026
23027 case DW_OP_plus:
23028 stack[stacki - 1] += stack[stacki];
23029 stacki--;
23030 break;
23031
23032 case DW_OP_plus_uconst:
23033 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23034 &bytes_read);
23035 i += bytes_read;
23036 break;
23037
23038 case DW_OP_minus:
23039 stack[stacki - 1] -= stack[stacki];
23040 stacki--;
23041 break;
23042
23043 case DW_OP_deref:
23044 /* If we're not the last op, then we definitely can't encode
23045 this using GDB's address_class enum. This is valid for partial
23046 global symbols, although the variable's address will be bogus
23047 in the psymtab. */
23048 if (i < size)
23049 {
23050 if (computed == nullptr)
23051 dwarf2_complex_location_expr_complaint ();
23052 else
23053 return 0;
23054 }
23055 break;
23056
23057 case DW_OP_GNU_push_tls_address:
23058 case DW_OP_form_tls_address:
23059 /* The top of the stack has the offset from the beginning
23060 of the thread control block at which the variable is located. */
23061 /* Nothing should follow this operator, so the top of stack would
23062 be returned. */
23063 /* This is valid for partial global symbols, but the variable's
23064 address will be bogus in the psymtab. Make it always at least
23065 non-zero to not look as a variable garbage collected by linker
23066 which have DW_OP_addr 0. */
23067 if (i < size)
23068 {
23069 if (computed == nullptr)
23070 dwarf2_complex_location_expr_complaint ();
23071 else
23072 return 0;
23073 }
23074 stack[stacki]++;
23075 break;
23076
23077 case DW_OP_GNU_uninit:
23078 if (computed != nullptr)
23079 return 0;
23080 break;
23081
23082 case DW_OP_addrx:
23083 case DW_OP_GNU_addr_index:
23084 case DW_OP_GNU_const_index:
23085 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23086 &bytes_read);
23087 i += bytes_read;
23088 break;
23089
23090 default:
23091 if (computed == nullptr)
23092 {
23093 const char *name = get_DW_OP_name (op);
23094
23095 if (name)
23096 complaint (_("unsupported stack op: '%s'"),
23097 name);
23098 else
23099 complaint (_("unsupported stack op: '%02x'"),
23100 op);
23101 }
23102
23103 return (stack[stacki]);
23104 }
23105
23106 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23107 outside of the allocated space. Also enforce minimum>0. */
23108 if (stacki >= ARRAY_SIZE (stack) - 1)
23109 {
23110 if (computed == nullptr)
23111 complaint (_("location description stack overflow"));
23112 return 0;
23113 }
23114
23115 if (stacki <= 0)
23116 {
23117 if (computed == nullptr)
23118 complaint (_("location description stack underflow"));
23119 return 0;
23120 }
23121 }
23122
23123 if (computed != nullptr)
23124 *computed = true;
23125 return (stack[stacki]);
23126 }
23127
23128 /* memory allocation interface */
23129
23130 static struct dwarf_block *
23131 dwarf_alloc_block (struct dwarf2_cu *cu)
23132 {
23133 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23134 }
23135
23136 static struct die_info *
23137 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23138 {
23139 struct die_info *die;
23140 size_t size = sizeof (struct die_info);
23141
23142 if (num_attrs > 1)
23143 size += (num_attrs - 1) * sizeof (struct attribute);
23144
23145 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23146 memset (die, 0, sizeof (struct die_info));
23147 return (die);
23148 }
23149
23150 \f
23151
23152 /* Macro support. */
23153
23154 /* An overload of dwarf_decode_macros that finds the correct section
23155 and ensures it is read in before calling the other overload. */
23156
23157 static void
23158 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23159 int section_is_gnu)
23160 {
23161 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23162 struct objfile *objfile = dwarf2_per_objfile->objfile;
23163 const struct line_header *lh = cu->line_header;
23164 unsigned int offset_size = cu->header.offset_size;
23165 struct dwarf2_section_info *section;
23166 const char *section_name;
23167
23168 if (cu->dwo_unit != nullptr)
23169 {
23170 if (section_is_gnu)
23171 {
23172 section = &cu->dwo_unit->dwo_file->sections.macro;
23173 section_name = ".debug_macro.dwo";
23174 }
23175 else
23176 {
23177 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23178 section_name = ".debug_macinfo.dwo";
23179 }
23180 }
23181 else
23182 {
23183 if (section_is_gnu)
23184 {
23185 section = &dwarf2_per_objfile->per_bfd->macro;
23186 section_name = ".debug_macro";
23187 }
23188 else
23189 {
23190 section = &dwarf2_per_objfile->per_bfd->macinfo;
23191 section_name = ".debug_macinfo";
23192 }
23193 }
23194
23195 section->read (objfile);
23196 if (section->buffer == nullptr)
23197 {
23198 complaint (_("missing %s section"), section_name);
23199 return;
23200 }
23201
23202 buildsym_compunit *builder = cu->get_builder ();
23203
23204 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23205 offset_size, offset, section_is_gnu);
23206 }
23207
23208 /* Return the .debug_loc section to use for CU.
23209 For DWO files use .debug_loc.dwo. */
23210
23211 static struct dwarf2_section_info *
23212 cu_debug_loc_section (struct dwarf2_cu *cu)
23213 {
23214 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23215
23216 if (cu->dwo_unit)
23217 {
23218 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23219
23220 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23221 }
23222 return (cu->header.version >= 5 ? &dwarf2_per_objfile->per_bfd->loclists
23223 : &dwarf2_per_objfile->per_bfd->loc);
23224 }
23225
23226 /* A helper function that fills in a dwarf2_loclist_baton. */
23227
23228 static void
23229 fill_in_loclist_baton (struct dwarf2_cu *cu,
23230 struct dwarf2_loclist_baton *baton,
23231 const struct attribute *attr)
23232 {
23233 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23234 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23235
23236 section->read (dwarf2_per_objfile->objfile);
23237
23238 baton->per_objfile = dwarf2_per_objfile;
23239 baton->per_cu = cu->per_cu;
23240 gdb_assert (baton->per_cu);
23241 /* We don't know how long the location list is, but make sure we
23242 don't run off the edge of the section. */
23243 baton->size = section->size - DW_UNSND (attr);
23244 baton->data = section->buffer + DW_UNSND (attr);
23245 if (cu->base_address.has_value ())
23246 baton->base_address = *cu->base_address;
23247 else
23248 baton->base_address = 0;
23249 baton->from_dwo = cu->dwo_unit != NULL;
23250 }
23251
23252 static void
23253 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23254 struct dwarf2_cu *cu, int is_block)
23255 {
23256 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23257 struct objfile *objfile = dwarf2_per_objfile->objfile;
23258 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23259
23260 if (attr->form_is_section_offset ()
23261 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23262 the section. If so, fall through to the complaint in the
23263 other branch. */
23264 && DW_UNSND (attr) < section->get_size (objfile))
23265 {
23266 struct dwarf2_loclist_baton *baton;
23267
23268 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23269
23270 fill_in_loclist_baton (cu, baton, attr);
23271
23272 if (!cu->base_address.has_value ())
23273 complaint (_("Location list used without "
23274 "specifying the CU base address."));
23275
23276 SYMBOL_ACLASS_INDEX (sym) = (is_block
23277 ? dwarf2_loclist_block_index
23278 : dwarf2_loclist_index);
23279 SYMBOL_LOCATION_BATON (sym) = baton;
23280 }
23281 else
23282 {
23283 struct dwarf2_locexpr_baton *baton;
23284
23285 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23286 baton->per_objfile = dwarf2_per_objfile;
23287 baton->per_cu = cu->per_cu;
23288 gdb_assert (baton->per_cu);
23289
23290 if (attr->form_is_block ())
23291 {
23292 /* Note that we're just copying the block's data pointer
23293 here, not the actual data. We're still pointing into the
23294 info_buffer for SYM's objfile; right now we never release
23295 that buffer, but when we do clean up properly this may
23296 need to change. */
23297 baton->size = DW_BLOCK (attr)->size;
23298 baton->data = DW_BLOCK (attr)->data;
23299 }
23300 else
23301 {
23302 dwarf2_invalid_attrib_class_complaint ("location description",
23303 sym->natural_name ());
23304 baton->size = 0;
23305 }
23306
23307 SYMBOL_ACLASS_INDEX (sym) = (is_block
23308 ? dwarf2_locexpr_block_index
23309 : dwarf2_locexpr_index);
23310 SYMBOL_LOCATION_BATON (sym) = baton;
23311 }
23312 }
23313
23314 /* See read.h. */
23315
23316 struct objfile *
23317 dwarf2_per_cu_data::objfile () const
23318 {
23319 struct objfile *objfile = dwarf2_per_objfile->objfile;
23320
23321 /* Return the master objfile, so that we can report and look up the
23322 correct file containing this variable. */
23323 if (objfile->separate_debug_objfile_backlink)
23324 objfile = objfile->separate_debug_objfile_backlink;
23325
23326 return objfile;
23327 }
23328
23329 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23330 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23331 CU_HEADERP first. */
23332
23333 static const struct comp_unit_head *
23334 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23335 const struct dwarf2_per_cu_data *per_cu)
23336 {
23337 const gdb_byte *info_ptr;
23338
23339 if (per_cu->cu)
23340 return &per_cu->cu->header;
23341
23342 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23343
23344 memset (cu_headerp, 0, sizeof (*cu_headerp));
23345 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23346 rcuh_kind::COMPILE);
23347
23348 return cu_headerp;
23349 }
23350
23351 /* See read.h. */
23352
23353 int
23354 dwarf2_per_cu_data::addr_size () const
23355 {
23356 struct comp_unit_head cu_header_local;
23357 const struct comp_unit_head *cu_headerp;
23358
23359 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23360
23361 return cu_headerp->addr_size;
23362 }
23363
23364 /* See read.h. */
23365
23366 int
23367 dwarf2_per_cu_data::offset_size () const
23368 {
23369 struct comp_unit_head cu_header_local;
23370 const struct comp_unit_head *cu_headerp;
23371
23372 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23373
23374 return cu_headerp->offset_size;
23375 }
23376
23377 /* See read.h. */
23378
23379 int
23380 dwarf2_per_cu_data::ref_addr_size () const
23381 {
23382 struct comp_unit_head cu_header_local;
23383 const struct comp_unit_head *cu_headerp;
23384
23385 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23386
23387 if (cu_headerp->version == 2)
23388 return cu_headerp->addr_size;
23389 else
23390 return cu_headerp->offset_size;
23391 }
23392
23393 /* See read.h. */
23394
23395 CORE_ADDR
23396 dwarf2_per_cu_data::text_offset () const
23397 {
23398 struct objfile *objfile = dwarf2_per_objfile->objfile;
23399
23400 return objfile->text_section_offset ();
23401 }
23402
23403 /* See read.h. */
23404
23405 struct type *
23406 dwarf2_cu::addr_type () const
23407 {
23408 struct objfile *objfile = this->per_objfile->objfile;
23409 struct type *void_type = objfile_type (objfile)->builtin_void;
23410 struct type *addr_type = lookup_pointer_type (void_type);
23411 int addr_size = this->per_cu->addr_size ();
23412
23413 if (TYPE_LENGTH (addr_type) == addr_size)
23414 return addr_type;
23415
23416 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23417 return addr_type;
23418 }
23419
23420 /* A helper function for dwarf2_find_containing_comp_unit that returns
23421 the index of the result, and that searches a vector. It will
23422 return a result even if the offset in question does not actually
23423 occur in any CU. This is separate so that it can be unit
23424 tested. */
23425
23426 static int
23427 dwarf2_find_containing_comp_unit
23428 (sect_offset sect_off,
23429 unsigned int offset_in_dwz,
23430 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23431 {
23432 int low, high;
23433
23434 low = 0;
23435 high = all_comp_units.size () - 1;
23436 while (high > low)
23437 {
23438 struct dwarf2_per_cu_data *mid_cu;
23439 int mid = low + (high - low) / 2;
23440
23441 mid_cu = all_comp_units[mid];
23442 if (mid_cu->is_dwz > offset_in_dwz
23443 || (mid_cu->is_dwz == offset_in_dwz
23444 && mid_cu->sect_off + mid_cu->length > sect_off))
23445 high = mid;
23446 else
23447 low = mid + 1;
23448 }
23449 gdb_assert (low == high);
23450 return low;
23451 }
23452
23453 /* Locate the .debug_info compilation unit from CU's objfile which contains
23454 the DIE at OFFSET. Raises an error on failure. */
23455
23456 static struct dwarf2_per_cu_data *
23457 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23458 unsigned int offset_in_dwz,
23459 struct dwarf2_per_objfile *dwarf2_per_objfile)
23460 {
23461 int low
23462 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23463 dwarf2_per_objfile->per_bfd->all_comp_units);
23464 struct dwarf2_per_cu_data *this_cu
23465 = dwarf2_per_objfile->per_bfd->all_comp_units[low];
23466
23467 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23468 {
23469 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23470 error (_("Dwarf Error: could not find partial DIE containing "
23471 "offset %s [in module %s]"),
23472 sect_offset_str (sect_off),
23473 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23474
23475 gdb_assert (dwarf2_per_objfile->per_bfd->all_comp_units[low-1]->sect_off
23476 <= sect_off);
23477 return dwarf2_per_objfile->per_bfd->all_comp_units[low-1];
23478 }
23479 else
23480 {
23481 if (low == dwarf2_per_objfile->per_bfd->all_comp_units.size () - 1
23482 && sect_off >= this_cu->sect_off + this_cu->length)
23483 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23484 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23485 return this_cu;
23486 }
23487 }
23488
23489 #if GDB_SELF_TEST
23490
23491 namespace selftests {
23492 namespace find_containing_comp_unit {
23493
23494 static void
23495 run_test ()
23496 {
23497 struct dwarf2_per_cu_data one {};
23498 struct dwarf2_per_cu_data two {};
23499 struct dwarf2_per_cu_data three {};
23500 struct dwarf2_per_cu_data four {};
23501
23502 one.length = 5;
23503 two.sect_off = sect_offset (one.length);
23504 two.length = 7;
23505
23506 three.length = 5;
23507 three.is_dwz = 1;
23508 four.sect_off = sect_offset (three.length);
23509 four.length = 7;
23510 four.is_dwz = 1;
23511
23512 std::vector<dwarf2_per_cu_data *> units;
23513 units.push_back (&one);
23514 units.push_back (&two);
23515 units.push_back (&three);
23516 units.push_back (&four);
23517
23518 int result;
23519
23520 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23521 SELF_CHECK (units[result] == &one);
23522 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23523 SELF_CHECK (units[result] == &one);
23524 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23525 SELF_CHECK (units[result] == &two);
23526
23527 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23528 SELF_CHECK (units[result] == &three);
23529 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23530 SELF_CHECK (units[result] == &three);
23531 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23532 SELF_CHECK (units[result] == &four);
23533 }
23534
23535 }
23536 }
23537
23538 #endif /* GDB_SELF_TEST */
23539
23540 /* Initialize dwarf2_cu to read PER_CU, in the context of PER_OBJFILE. */
23541
23542 dwarf2_cu::dwarf2_cu (dwarf2_per_cu_data *per_cu,
23543 dwarf2_per_objfile *per_objfile)
23544 : per_cu (per_cu),
23545 per_objfile (per_objfile),
23546 mark (false),
23547 has_loclist (false),
23548 checked_producer (false),
23549 producer_is_gxx_lt_4_6 (false),
23550 producer_is_gcc_lt_4_3 (false),
23551 producer_is_icc (false),
23552 producer_is_icc_lt_14 (false),
23553 producer_is_codewarrior (false),
23554 processing_has_namespace_info (false)
23555 {
23556 per_cu->cu = this;
23557 }
23558
23559 /* Destroy a dwarf2_cu. */
23560
23561 dwarf2_cu::~dwarf2_cu ()
23562 {
23563 per_cu->cu = NULL;
23564 }
23565
23566 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23567
23568 static void
23569 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23570 enum language pretend_language)
23571 {
23572 struct attribute *attr;
23573
23574 /* Set the language we're debugging. */
23575 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23576 if (attr != nullptr)
23577 set_cu_language (DW_UNSND (attr), cu);
23578 else
23579 {
23580 cu->language = pretend_language;
23581 cu->language_defn = language_def (cu->language);
23582 }
23583
23584 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23585 }
23586
23587 /* Increase the age counter on each cached compilation unit, and free
23588 any that are too old. */
23589
23590 static void
23591 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23592 {
23593 struct dwarf2_per_cu_data *per_cu, **last_chain;
23594
23595 dwarf2_clear_marks (dwarf2_per_objfile->per_bfd->read_in_chain);
23596 per_cu = dwarf2_per_objfile->per_bfd->read_in_chain;
23597 while (per_cu != NULL)
23598 {
23599 per_cu->cu->last_used ++;
23600 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23601 dwarf2_mark (per_cu->cu);
23602 per_cu = per_cu->cu->read_in_chain;
23603 }
23604
23605 per_cu = dwarf2_per_objfile->per_bfd->read_in_chain;
23606 last_chain = &dwarf2_per_objfile->per_bfd->read_in_chain;
23607 while (per_cu != NULL)
23608 {
23609 struct dwarf2_per_cu_data *next_cu;
23610
23611 next_cu = per_cu->cu->read_in_chain;
23612
23613 if (!per_cu->cu->mark)
23614 {
23615 delete per_cu->cu;
23616 *last_chain = next_cu;
23617 }
23618 else
23619 last_chain = &per_cu->cu->read_in_chain;
23620
23621 per_cu = next_cu;
23622 }
23623 }
23624
23625 /* Remove a single compilation unit from the cache. */
23626
23627 static void
23628 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23629 {
23630 struct dwarf2_per_cu_data *per_cu, **last_chain;
23631 struct dwarf2_per_objfile *dwarf2_per_objfile
23632 = target_per_cu->dwarf2_per_objfile;
23633
23634 per_cu = dwarf2_per_objfile->per_bfd->read_in_chain;
23635 last_chain = &dwarf2_per_objfile->per_bfd->read_in_chain;
23636 while (per_cu != NULL)
23637 {
23638 struct dwarf2_per_cu_data *next_cu;
23639
23640 next_cu = per_cu->cu->read_in_chain;
23641
23642 if (per_cu == target_per_cu)
23643 {
23644 delete per_cu->cu;
23645 per_cu->cu = NULL;
23646 *last_chain = next_cu;
23647 break;
23648 }
23649 else
23650 last_chain = &per_cu->cu->read_in_chain;
23651
23652 per_cu = next_cu;
23653 }
23654 }
23655
23656 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23657 We store these in a hash table separate from the DIEs, and preserve them
23658 when the DIEs are flushed out of cache.
23659
23660 The CU "per_cu" pointer is needed because offset alone is not enough to
23661 uniquely identify the type. A file may have multiple .debug_types sections,
23662 or the type may come from a DWO file. Furthermore, while it's more logical
23663 to use per_cu->section+offset, with Fission the section with the data is in
23664 the DWO file but we don't know that section at the point we need it.
23665 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23666 because we can enter the lookup routine, get_die_type_at_offset, from
23667 outside this file, and thus won't necessarily have PER_CU->cu.
23668 Fortunately, PER_CU is stable for the life of the objfile. */
23669
23670 struct dwarf2_per_cu_offset_and_type
23671 {
23672 const struct dwarf2_per_cu_data *per_cu;
23673 sect_offset sect_off;
23674 struct type *type;
23675 };
23676
23677 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23678
23679 static hashval_t
23680 per_cu_offset_and_type_hash (const void *item)
23681 {
23682 const struct dwarf2_per_cu_offset_and_type *ofs
23683 = (const struct dwarf2_per_cu_offset_and_type *) item;
23684
23685 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23686 }
23687
23688 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23689
23690 static int
23691 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23692 {
23693 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23694 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23695 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23696 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23697
23698 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23699 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23700 }
23701
23702 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23703 table if necessary. For convenience, return TYPE.
23704
23705 The DIEs reading must have careful ordering to:
23706 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23707 reading current DIE.
23708 * Not trying to dereference contents of still incompletely read in types
23709 while reading in other DIEs.
23710 * Enable referencing still incompletely read in types just by a pointer to
23711 the type without accessing its fields.
23712
23713 Therefore caller should follow these rules:
23714 * Try to fetch any prerequisite types we may need to build this DIE type
23715 before building the type and calling set_die_type.
23716 * After building type call set_die_type for current DIE as soon as
23717 possible before fetching more types to complete the current type.
23718 * Make the type as complete as possible before fetching more types. */
23719
23720 static struct type *
23721 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23722 {
23723 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23724 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23725 struct objfile *objfile = dwarf2_per_objfile->objfile;
23726 struct attribute *attr;
23727 struct dynamic_prop prop;
23728
23729 /* For Ada types, make sure that the gnat-specific data is always
23730 initialized (if not already set). There are a few types where
23731 we should not be doing so, because the type-specific area is
23732 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23733 where the type-specific area is used to store the floatformat).
23734 But this is not a problem, because the gnat-specific information
23735 is actually not needed for these types. */
23736 if (need_gnat_info (cu)
23737 && type->code () != TYPE_CODE_FUNC
23738 && type->code () != TYPE_CODE_FLT
23739 && type->code () != TYPE_CODE_METHODPTR
23740 && type->code () != TYPE_CODE_MEMBERPTR
23741 && type->code () != TYPE_CODE_METHOD
23742 && !HAVE_GNAT_AUX_INFO (type))
23743 INIT_GNAT_SPECIFIC (type);
23744
23745 /* Read DW_AT_allocated and set in type. */
23746 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23747 if (attr != NULL && attr->form_is_block ())
23748 {
23749 struct type *prop_type = cu->addr_sized_int_type (false);
23750 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23751 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
23752 }
23753 else if (attr != NULL)
23754 {
23755 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23756 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23757 sect_offset_str (die->sect_off));
23758 }
23759
23760 /* Read DW_AT_associated and set in type. */
23761 attr = dwarf2_attr (die, DW_AT_associated, cu);
23762 if (attr != NULL && attr->form_is_block ())
23763 {
23764 struct type *prop_type = cu->addr_sized_int_type (false);
23765 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23766 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
23767 }
23768 else if (attr != NULL)
23769 {
23770 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23771 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23772 sect_offset_str (die->sect_off));
23773 }
23774
23775 /* Read DW_AT_data_location and set in type. */
23776 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23777 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
23778 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
23779
23780 if (dwarf2_per_objfile->die_type_hash == NULL)
23781 dwarf2_per_objfile->die_type_hash
23782 = htab_up (htab_create_alloc (127,
23783 per_cu_offset_and_type_hash,
23784 per_cu_offset_and_type_eq,
23785 NULL, xcalloc, xfree));
23786
23787 ofs.per_cu = cu->per_cu;
23788 ofs.sect_off = die->sect_off;
23789 ofs.type = type;
23790 slot = (struct dwarf2_per_cu_offset_and_type **)
23791 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23792 if (*slot)
23793 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23794 sect_offset_str (die->sect_off));
23795 *slot = XOBNEW (&objfile->objfile_obstack,
23796 struct dwarf2_per_cu_offset_and_type);
23797 **slot = ofs;
23798 return type;
23799 }
23800
23801 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23802 or return NULL if the die does not have a saved type. */
23803
23804 static struct type *
23805 get_die_type_at_offset (sect_offset sect_off,
23806 struct dwarf2_per_cu_data *per_cu)
23807 {
23808 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23809 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23810
23811 if (dwarf2_per_objfile->die_type_hash == NULL)
23812 return NULL;
23813
23814 ofs.per_cu = per_cu;
23815 ofs.sect_off = sect_off;
23816 slot = ((struct dwarf2_per_cu_offset_and_type *)
23817 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23818 if (slot)
23819 return slot->type;
23820 else
23821 return NULL;
23822 }
23823
23824 /* Look up the type for DIE in CU in die_type_hash,
23825 or return NULL if DIE does not have a saved type. */
23826
23827 static struct type *
23828 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23829 {
23830 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23831 }
23832
23833 /* Add a dependence relationship from CU to REF_PER_CU. */
23834
23835 static void
23836 dwarf2_add_dependence (struct dwarf2_cu *cu,
23837 struct dwarf2_per_cu_data *ref_per_cu)
23838 {
23839 void **slot;
23840
23841 if (cu->dependencies == NULL)
23842 cu->dependencies
23843 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23844 NULL, &cu->comp_unit_obstack,
23845 hashtab_obstack_allocate,
23846 dummy_obstack_deallocate);
23847
23848 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23849 if (*slot == NULL)
23850 *slot = ref_per_cu;
23851 }
23852
23853 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23854 Set the mark field in every compilation unit in the
23855 cache that we must keep because we are keeping CU. */
23856
23857 static int
23858 dwarf2_mark_helper (void **slot, void *data)
23859 {
23860 struct dwarf2_per_cu_data *per_cu;
23861
23862 per_cu = (struct dwarf2_per_cu_data *) *slot;
23863
23864 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23865 reading of the chain. As such dependencies remain valid it is not much
23866 useful to track and undo them during QUIT cleanups. */
23867 if (per_cu->cu == NULL)
23868 return 1;
23869
23870 if (per_cu->cu->mark)
23871 return 1;
23872 per_cu->cu->mark = true;
23873
23874 if (per_cu->cu->dependencies != NULL)
23875 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23876
23877 return 1;
23878 }
23879
23880 /* Set the mark field in CU and in every other compilation unit in the
23881 cache that we must keep because we are keeping CU. */
23882
23883 static void
23884 dwarf2_mark (struct dwarf2_cu *cu)
23885 {
23886 if (cu->mark)
23887 return;
23888 cu->mark = true;
23889 if (cu->dependencies != NULL)
23890 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23891 }
23892
23893 static void
23894 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23895 {
23896 while (per_cu)
23897 {
23898 per_cu->cu->mark = false;
23899 per_cu = per_cu->cu->read_in_chain;
23900 }
23901 }
23902
23903 /* Trivial hash function for partial_die_info: the hash value of a DIE
23904 is its offset in .debug_info for this objfile. */
23905
23906 static hashval_t
23907 partial_die_hash (const void *item)
23908 {
23909 const struct partial_die_info *part_die
23910 = (const struct partial_die_info *) item;
23911
23912 return to_underlying (part_die->sect_off);
23913 }
23914
23915 /* Trivial comparison function for partial_die_info structures: two DIEs
23916 are equal if they have the same offset. */
23917
23918 static int
23919 partial_die_eq (const void *item_lhs, const void *item_rhs)
23920 {
23921 const struct partial_die_info *part_die_lhs
23922 = (const struct partial_die_info *) item_lhs;
23923 const struct partial_die_info *part_die_rhs
23924 = (const struct partial_die_info *) item_rhs;
23925
23926 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23927 }
23928
23929 struct cmd_list_element *set_dwarf_cmdlist;
23930 struct cmd_list_element *show_dwarf_cmdlist;
23931
23932 static void
23933 show_check_physname (struct ui_file *file, int from_tty,
23934 struct cmd_list_element *c, const char *value)
23935 {
23936 fprintf_filtered (file,
23937 _("Whether to check \"physname\" is %s.\n"),
23938 value);
23939 }
23940
23941 void _initialize_dwarf2_read ();
23942 void
23943 _initialize_dwarf2_read ()
23944 {
23945 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23946 Set DWARF specific variables.\n\
23947 Configure DWARF variables such as the cache size."),
23948 &set_dwarf_cmdlist, "maintenance set dwarf ",
23949 0/*allow-unknown*/, &maintenance_set_cmdlist);
23950
23951 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23952 Show DWARF specific variables.\n\
23953 Show DWARF variables such as the cache size."),
23954 &show_dwarf_cmdlist, "maintenance show dwarf ",
23955 0/*allow-unknown*/, &maintenance_show_cmdlist);
23956
23957 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23958 &dwarf_max_cache_age, _("\
23959 Set the upper bound on the age of cached DWARF compilation units."), _("\
23960 Show the upper bound on the age of cached DWARF compilation units."), _("\
23961 A higher limit means that cached compilation units will be stored\n\
23962 in memory longer, and more total memory will be used. Zero disables\n\
23963 caching, which can slow down startup."),
23964 NULL,
23965 show_dwarf_max_cache_age,
23966 &set_dwarf_cmdlist,
23967 &show_dwarf_cmdlist);
23968
23969 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23970 Set debugging of the DWARF reader."), _("\
23971 Show debugging of the DWARF reader."), _("\
23972 When enabled (non-zero), debugging messages are printed during DWARF\n\
23973 reading and symtab expansion. A value of 1 (one) provides basic\n\
23974 information. A value greater than 1 provides more verbose information."),
23975 NULL,
23976 NULL,
23977 &setdebuglist, &showdebuglist);
23978
23979 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23980 Set debugging of the DWARF DIE reader."), _("\
23981 Show debugging of the DWARF DIE reader."), _("\
23982 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23983 The value is the maximum depth to print."),
23984 NULL,
23985 NULL,
23986 &setdebuglist, &showdebuglist);
23987
23988 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23989 Set debugging of the dwarf line reader."), _("\
23990 Show debugging of the dwarf line reader."), _("\
23991 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23992 A value of 1 (one) provides basic information.\n\
23993 A value greater than 1 provides more verbose information."),
23994 NULL,
23995 NULL,
23996 &setdebuglist, &showdebuglist);
23997
23998 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23999 Set cross-checking of \"physname\" code against demangler."), _("\
24000 Show cross-checking of \"physname\" code against demangler."), _("\
24001 When enabled, GDB's internal \"physname\" code is checked against\n\
24002 the demangler."),
24003 NULL, show_check_physname,
24004 &setdebuglist, &showdebuglist);
24005
24006 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24007 no_class, &use_deprecated_index_sections, _("\
24008 Set whether to use deprecated gdb_index sections."), _("\
24009 Show whether to use deprecated gdb_index sections."), _("\
24010 When enabled, deprecated .gdb_index sections are used anyway.\n\
24011 Normally they are ignored either because of a missing feature or\n\
24012 performance issue.\n\
24013 Warning: This option must be enabled before gdb reads the file."),
24014 NULL,
24015 NULL,
24016 &setlist, &showlist);
24017
24018 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24019 &dwarf2_locexpr_funcs);
24020 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24021 &dwarf2_loclist_funcs);
24022
24023 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24024 &dwarf2_block_frame_base_locexpr_funcs);
24025 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24026 &dwarf2_block_frame_base_loclist_funcs);
24027
24028 #if GDB_SELF_TEST
24029 selftests::register_test ("dw2_expand_symtabs_matching",
24030 selftests::dw2_expand_symtabs_matching::run_test);
24031 selftests::register_test ("dwarf2_find_containing_comp_unit",
24032 selftests::find_containing_comp_unit::run_test);
24033 #endif
24034 }