]> git.ipfire.org Git - thirdparty/bird.git/blame - filter/decl.m4
Filter: Dropped some more irrelevant whitespace from generated files
[thirdparty/bird.git] / filter / decl.m4
CommitLineData
4f082dfa
MM
1m4_divert(-1)m4_dnl
2#
3# BIRD -- Construction of per-instruction structures
4#
5# (c) 2018 Maria Matejka <mq@jmq.cz>
6#
7# Can be freely distributed and used under the terms of the GNU GPL.
8#
550a6488
MM
9# THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER.
10# KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING.
11# EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY.
4f082dfa 12#
550a6488
MM
13# But you're welcome to read and edit and debug if you aren't scared.
14#
15# Uncomment the following line to get exhaustive debug output.
16# m4_debugmode(aceflqtx)
17#
18# How it works:
19# 1) Instruction to code conversion (uses diversions 100..199)
20# 2) Code wrapping (uses diversions 1..99)
21# 3) Final preparation (uses diversions 200..299)
22# 4) Shipout
23#
24# See below for detailed description.
25#
26#
27# 1) Instruction to code conversion
28# The code provided in f-inst.c between consecutive INST() calls
29# is interleaved for many different places. It is here processed
30# and split into separate instances where split-by-instruction
31# happens. These parts are stored in temporary diversions listed:
4f082dfa 32#
ea4f55e3 33# 101 content of per-inst struct
04160812
MM
34# 102 constructor arguments
35# 103 constructor body
de12cd18 36# 104 dump line item content
550a6488
MM
37# (there may be nothing in dump-line content and
38# it must be handled specially in phase 2)
23e3b1e6 39# 105 linearize body
132529ce 40# 106 comparator body
d1039926
MM
41# 107 struct f_line_item content
42# 108 interpreter body
04160812 43#
550a6488 44# Here are macros to allow you to _divert to the right directions.
4f082dfa
MM
45m4_define(FID_STRUCT_IN, `m4_divert(101)')
46m4_define(FID_NEW_ARGS, `m4_divert(102)')
47m4_define(FID_NEW_BODY, `m4_divert(103)')
dd4d4095 48m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])')
550a6488 49m4_define(FID_LINEARIZE_BODY, `m4_divert(105)')
132529ce 50m4_define(FID_SAME_BODY, `m4_divert(106)')
ea4f55e3 51m4_define(FID_LINE_IN, `m4_divert(107)')
d1039926 52m4_define(FID_INTERPRET_BODY, `m4_divert(108)')
4f082dfa 53
550a6488
MM
54# Sometimes you want slightly different code versions in different
55# outputs.
56# Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c)
57# and put it into [[ ]] quotes if it shall contain commas.
b40c0f02
MM
58m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])')
59
550a6488 60# In interpreter code, this is quite common.
b40c0f02
MM
61m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])')
62m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])')
550a6488
MM
63
64# If the instruction is never converted to constant, the interpret
65# code is not produced at all for constructor
b40c0f02
MM
66m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])')
67m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])')
87bd7cd7 68
550a6488
MM
69# If the instruction has some attributes (here called members),
70# these are typically carried with the instruction from constructor
71# to interpreter. This yields a line of code everywhere on the path.
72# FID_MEMBER is a macro to help with this task.
4f082dfa 73m4_define(FID_MEMBER, `m4_dnl
84c58aab
MM
74FID_LINE_IN()m4_dnl
75 $1 $2;
76FID_STRUCT_IN()m4_dnl
77 $1 $2;
78FID_NEW_ARGS()m4_dnl
79 , $1 $2
263fa2c4 80FID_NEW_BODY()m4_dnl
63f49457 81whati->$2 = $2;
263fa2c4 82FID_LINEARIZE_BODY()m4_dnl
b40c0f02
MM
83item->$2 = whati->$2;
84m4_ifelse($3,,,[[
263fa2c4 85FID_SAME_BODY()m4_dnl
b40c0f02 86if ($3) return 0;
132529ce 87]])
b40c0f02 88m4_ifelse($4,,,[[
263fa2c4 89FID_DUMP_BODY()m4_dnl
b40c0f02 90debug("%s$4\n", INDENT, $5);
d1039926 91]])
263fa2c4 92FID_INTERPRET_EXEC()m4_dnl
b40c0f02 93const $1 $2 = whati->$2
550a6488 94FID_INTERPRET_BODY')
4f082dfa 95
550a6488
MM
96# Instruction arguments are needed only until linearization is done.
97# This puts the arguments into the filter line to be executed before
98# the instruction itself.
99#
100# To achieve this, ARG_ANY must be called before anything writes into
101# the instruction line as it moves the instruction pointer forward.
d1039926 102m4_define(ARG_ANY, `
84c58aab
MM
103FID_STRUCT_IN()m4_dnl
104 struct f_inst * f$1;
105FID_NEW_ARGS()m4_dnl
106 , struct f_inst * f$1
4f082dfa 107FID_NEW_BODY
63f49457 108whati->f$1 = f$1;
b40c0f02
MM
109for (const struct f_inst *child = f$1; child; child = child->next) {
110 what->size += child->size;
111FID_IFCONST([[
112 if (child->fi_code != FI_CONSTANT)
113 constargs = 0;
114]])
115}
23e3b1e6 116FID_LINEARIZE_BODY
b40c0f02 117pos = linearize(dest, whati->f$1, pos);
550a6488 118FID_INTERPRET_BODY()')
d1039926 119
550a6488 120# Some arguments need to check their type. After that, ARG_ANY is called.
d1039926 121m4_define(ARG, `ARG_ANY($1)
263fa2c4 122FID_INTERPRET_EXEC()m4_dnl
d1039926 123if (v$1.type != $2) runtime("Argument $1 of instruction %s must be of type $2, got 0x%02x", f_instruction_name(what->fi_code), v$1.type)m4_dnl
550a6488 124FID_INTERPRET_BODY()')
d1039926 125
550a6488
MM
126# Executing another filter line. This replaces the recursion
127# that was needed in the former implementation.
128m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()')
b40c0f02 129m4_define(LINEX_, `do {
1757a6fc
MM
130 fstk->estk[fstk->ecnt].pos = 0;
131 fstk->estk[fstk->ecnt].line = $1;
132 fstk->estk[fstk->ecnt].ventry = fstk->vcnt;
133 fstk->estk[fstk->ecnt].vbase = fstk->estk[fstk->ecnt-1].vbase;
134 fstk->estk[fstk->ecnt].emask = 0;
135 fstk->ecnt++;
b40c0f02 136} while (0)')
d1039926 137
ea4f55e3 138m4_define(LINE, `
84c58aab
MM
139FID_LINE_IN()m4_dnl
140 const struct f_line * fl$1;
141FID_STRUCT_IN()m4_dnl
142 struct f_inst * f$1;
143FID_NEW_ARGS()m4_dnl
144 , struct f_inst * f$1
263fa2c4 145FID_NEW_BODY()m4_dnl
63f49457 146whati->f$1 = f$1;
263fa2c4 147FID_DUMP_BODY()m4_dnl
ea4f55e3 148f_dump_line(item->fl$1, indent + 1);
263fa2c4 149FID_LINEARIZE_BODY()m4_dnl
63f49457 150item->fl$1 = f_linearize(whati->f$1);
263fa2c4 151FID_SAME_BODY()m4_dnl
ea4f55e3 152if (!f_same(f1->fl$1, f2->fl$1)) return 0;
263fa2c4 153FID_INTERPRET_EXEC()m4_dnl
d1039926 154do { if (whati->fl$1) {
b40c0f02
MM
155 LINEX_(whati->fl$1);
156} } while(0)
263fa2c4 157FID_INTERPRET_NEW()m4_dnl
b40c0f02 158return whati->f$1
550a6488 159FID_INTERPRET_BODY()')
d1039926 160
550a6488
MM
161# Some of the instructions have a result. These constructions
162# state the result and put it to the right place.
a84b8b6e 163m4_define(RESULT, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])')
b40c0f02
MM
164m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]],
165[[return fi_constant(what, $1)]])')
f74d1976 166m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])')
d1039926 167
550a6488 168# Some common filter instruction members
84c58aab 169m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym, [[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], symbol %s, item->sym->name)')
b40c0f02
MM
170m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], route table %s, item->rtc->name)')
171m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f2->sa.sa_code,,)')
172m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)')
173m4_define(ACCESS_RTE, `NEVER_CONSTANT()')
de12cd18 174
550a6488
MM
175# 2) Code wrapping
176# The code produced in 1xx temporary diversions is a raw code without
177# any auxiliary commands and syntactical structures around. When the
178# instruction is done, INST_FLUSH is called. More precisely, it is called
179# at the beginning of INST() call and at the end of file.
180#
181# INST_FLUSH picks all the temporary diversions, wraps their content
182# into appropriate headers and structures and saves them into global
183# diversions listed:
184#
185# 4 enum fi_code
186# 5 enum fi_code to string
187# 6 dump line item
188# 7 dump line item callers
189# 8 linearize
190# 9 same (filter comparator)
191# 1 union in struct f_inst
192# 3 constructors + interpreter
193#
194# These global diversions contain blocks of code that can be directly
195# put into the final file, yet it still can't be written out now as
196# every instruction writes to all of these diversions.
197
84c58aab
MM
198# Code wrapping diversion names. Here we want an explicit newline
199# after the C comment.
200m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */
201')
550a6488
MM
202m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
203m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
204m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
205m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
206m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
207m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
208m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
209m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
210m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
211
212# This macro does all the code wrapping. See inline comments.
213m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
84c58aab
MM
214FID_ENUM()m4_dnl Contents of enum fi_code { ... }
215 INST_NAME(),
216FID_ENUM_STR()m4_dnl Contents of const char * indexed by enum fi_code
217 [INST_NAME()] = "INST_NAME()",
218FID_INST()m4_dnl Anonymous structure inside struct f_inst
219 struct {
220m4_undivert(101)m4_dnl
221 } i_[[]]INST_NAME();
222FID_LINE()m4_dnl Anonymous structure inside struct f_line_item
223 struct {
224m4_undivert(107)m4_dnl
225 } i_[[]]INST_NAME();
226FID_NEW()m4_dnl Constructor and interpreter code together
550a6488 227FID_HIC(
84c58aab 228[[m4_dnl Public declaration of constructor in H file
550a6488 229struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
84c58aab 230m4_undivert(102)m4_dnl
550a6488 231);]],
84c58aab 232[[m4_dnl The one case in The Big Switch inside interpreter
550a6488
MM
233 case INST_NAME():
234 #define whati (&(what->i_]]INST_NAME()[[))
235 m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
263fa2c4 236 m4_undivert(108)m4_dnl
550a6488
MM
237 #undef whati
238 break;
239]],
84c58aab 240[[m4_dnl Constructor itself
550a6488 241struct f_inst *f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
263fa2c4 242m4_undivert(102)m4_dnl
550a6488
MM
243)
244 {
245 /* Allocate the structure */
246 struct f_inst *what = fi_new(fi_code);
247 FID_IFCONST([[uint constargs = 1;]])
248
249 /* Initialize all the members */
250 #define whati (&(what->i_]]INST_NAME()[[))
263fa2c4 251 m4_undivert(103)m4_dnl
550a6488
MM
252
253 /* If not constant, return the instruction itself */
254 FID_IFCONST([[if (!constargs)]])
255 return what;
256
257 /* Try to pre-calculate the result */
263fa2c4 258 FID_IFCONST([[m4_undivert(108)]])m4_dnl
550a6488
MM
259 #undef whati
260 }
261]])
262
84c58aab 263FID_DUMP_CALLER()m4_dnl Case in another big switch used in instruction dumping (debug)
550a6488
MM
264case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;
265
84c58aab 266FID_DUMP()m4_dnl The dumper itself
550a6488
MM
267m4_ifdef([[FID_DUMP_BODY_EXISTS]],
268[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
269[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
270m4_undefine([[FID_DUMP_BODY_EXISTS]])
271{
272#define item (&(item_->i_]]INST_NAME()[[))
263fa2c4 273m4_undivert(104)m4_dnl
550a6488
MM
274#undef item
275}
276
84c58aab 277FID_LINEARIZE()m4_dnl The linearizer
550a6488
MM
278case INST_NAME(): {
279#define whati (&(what->i_]]INST_NAME()[[))
280#define item (&(dest->items[pos].i_]]INST_NAME()[[))
263fa2c4 281 m4_undivert(105)m4_dnl
550a6488
MM
282#undef whati
283#undef item
284 dest->items[pos].fi_code = what->fi_code;
285 dest->items[pos].lineno = what->lineno;
286 break;
287}
288
84c58aab 289FID_SAME()m4_dnl This code compares two f_line"s while reconfiguring
550a6488
MM
290case INST_NAME():
291#define f1 (&(f1_->i_]]INST_NAME()[[))
292#define f2 (&(f2_->i_]]INST_NAME()[[))
263fa2c4 293m4_undivert(106)m4_dnl
550a6488
MM
294#undef f1
295#undef f2
296break;
297
84c58aab 298m4_divert(-1)FID_FLUSH(101,200)m4_dnl And finally this flushes all the unused diversions
550a6488
MM
299]])')
300
301m4_define(INST, `m4_dnl This macro is called on beginning of each instruction.
302INST_FLUSH()m4_dnl First, old data is flushed
303m4_define([[INST_NAME]], [[$1]])m4_dnl Then we store instruction name,
304m4_define([[INST_INVAL]], [[$2]])m4_dnl instruction input value count
305m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl and reset NEVER_CONSTANT trigger.
84c58aab 306FID_INTERPRET_BODY()m4_dnl By default, every code is interpreter code.
550a6488
MM
307')
308
309# 3) Final preparation
310#
311# Now we prepare all the code around the global diversions.
312# It must be here, not in m4wrap, as we want M4 to mark the code
313# by #line directives correctly, not to claim that every single line
314# is at the beginning of the m4wrap directive.
315#
316# This part is split by the final file.
317# H for inst-gen.h
318# I for inst-interpret.c
319# C for inst-gen.c
320#
321# So we in cycle:
322# A. open a diversion
323# B. send there some code
324# C. close that diversion
325# D. flush a global diversion
326# E. open another diversion and goto B.
327#
328# Final diversions
329# 200+ completed text before it is flushed to output
330
331# This is a list of output diversions
de12cd18 332m4_define(FID_WR_PUT_LIST)
550a6488
MM
333
334# This macro does the steps C to E, see before.
64bb1346 335m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)')
de12cd18 336
550a6488 337# These macros do the splitting between H/I/C
64bb1346
MM
338m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])')
339m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)')
340m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)')
4f082dfa 341
550a6488
MM
342# Here is the direct code to be put into the output files
343# together with the undiversions, being hidden under FID_WR_PUT()
344
04160812 345m4_changequote([[,]])
64bb1346 346FID_WR_DIRECT(I)
236828d0 347FID_WR_PUT(3)
64bb1346 348FID_WR_DIRECT(C)
87bd7cd7
MM
349#include "nest/bird.h"
350#include "filter/filter.h"
351#include "filter/f-inst.h"
b256f241 352
b256f241
MM
353/* Instruction codes to string */
354static const char * const f_instruction_name_str[] = {
355FID_WR_PUT(5)
356};
357
358const char *
359f_instruction_name(enum f_instruction_code fi)
360{
361 if (fi < (sizeof(f_instruction_name_str) / sizeof(f_instruction_name_str[0])))
362 return f_instruction_name_str[fi];
363 else
364 bug("Got unknown instruction code: %d", fi);
365}
366
4212c0e7
MM
367static inline struct f_inst *
368fi_new(enum f_instruction_code fi_code)
369{
370 struct f_inst *what = cfg_allocz(sizeof(struct f_inst));
371 what->lineno = ifs->lino;
372 what->size = 1;
373 what->fi_code = fi_code;
374 return what;
375}
376
b40c0f02
MM
377static inline struct f_inst *
378fi_constant(struct f_inst *what, struct f_val val)
379{
380 what->fi_code = FI_CONSTANT;
381 what->i_FI_CONSTANT.val = val;
382 return what;
383}
384
385#define v1 whati->f1->i_FI_CONSTANT.val
386#define v2 whati->f2->i_FI_CONSTANT.val
387#define v3 whati->f3->i_FI_CONSTANT.val
388#define runtime(fmt, ...) cf_error("filter preevaluation, line %d: " fmt, ifs->lino, ##__VA_ARGS__)
389#define fpool cfg_mem
390#define falloc(size) cfg_alloc(size)
de12cd18
MM
391/* Instruction constructors */
392FID_WR_PUT(3)
b40c0f02
MM
393#undef v1
394#undef v2
395#undef v3
de12cd18
MM
396
397/* Line dumpers */
398#define INDENT (((const char *) f_dump_line_indent_str) + sizeof(f_dump_line_indent_str) - (indent) - 1)
399static const char f_dump_line_indent_str[] = " ";
de12cd18
MM
400
401FID_WR_PUT(6)
402
ea4f55e3 403void f_dump_line(const struct f_line *dest, uint indent)
de12cd18
MM
404{
405 if (!dest) {
406 debug("%sNo filter line (NULL)\n", INDENT);
407 return;
408 }
409 debug("%sFilter line %p (len=%u)\n", INDENT, dest, dest->len);
410 for (uint i=0; i<dest->len; i++) {
411 const struct f_line_item *item = &dest->items[i];
412 debug("%sInstruction %s at line %u\n", INDENT, f_instruction_name(item->fi_code), item->lineno);
413 switch (item->fi_code) {
414FID_WR_PUT(7)
415 default: bug("Unknown instruction %x in f_dump_line", item->fi_code);
416 }
417 }
418 debug("%sFilter line %p dump done\n", INDENT, dest);
419}
420
23e3b1e6 421/* Linearize */
dd4d4095 422static uint
63f49457 423linearize(struct f_line *dest, const struct f_inst *what, uint pos)
dd4d4095 424{
63f49457
MM
425 for ( ; what; what = what->next) {
426 switch (what->fi_code) {
dd4d4095
MM
427FID_WR_PUT(8)
428 }
429 pos++;
430 }
431 return pos;
432}
433
434struct f_line *
23e3b1e6 435f_linearize_concat(const struct f_inst * const inst[], uint count)
dd4d4095
MM
436{
437 uint len = 0;
438 for (uint i=0; i<count; i++)
439 for (const struct f_inst *what = inst[i]; what; what = what->next)
440 len += what->size;
441
442 struct f_line *out = cfg_allocz(sizeof(struct f_line) + sizeof(struct f_line_item)*len);
443
444 for (uint i=0; i<count; i++)
23e3b1e6 445 out->len = linearize(out, inst[i], out->len);
dd4d4095
MM
446
447#if DEBUGGING
448 f_dump_line(out, 0);
449#endif
450 return out;
451}
452
132529ce
MM
453/* Filter line comparison */
454int
455f_same(const struct f_line *fl1, const struct f_line *fl2)
456{
457 if ((!fl1) && (!fl2))
458 return 1;
459 if ((!fl1) || (!fl2))
460 return 0;
461 if (fl1->len != fl2->len)
462 return 0;
463 for (uint i=0; i<fl1->len; i++) {
ea4f55e3
MM
464#define f1_ (&(fl1->items[i]))
465#define f2_ (&(fl2->items[i]))
466 if (f1_->fi_code != f2_->fi_code)
132529ce 467 return 0;
ea4f55e3 468 if (f1_->flags != f2_->flags)
132529ce
MM
469 return 0;
470
ea4f55e3 471 switch(f1_->fi_code) {
132529ce
MM
472FID_WR_PUT(9)
473 }
474 }
ea4f55e3
MM
475#undef f1_
476#undef f2_
132529ce
MM
477 return 1;
478}
479
480
64bb1346 481FID_WR_DIRECT(H)
de12cd18
MM
482/* Filter instruction codes */
483enum f_instruction_code {
84c58aab 484FID_WR_PUT(4)m4_dnl
ea4f55e3 485} PACKED;
4f082dfa 486
ea4f55e3 487/* Filter instruction structure for config */
4f082dfa 488struct f_inst {
96d757c1 489 struct f_inst *next; /* Next instruction */
4f082dfa
MM
490 enum f_instruction_code fi_code; /* Instruction code */
491 int size; /* How many instructions are underneath */
492 int lineno; /* Line number */
ea4f55e3 493 union {
84c58aab 494FID_WR_PUT(1)m4_dnl
ea4f55e3
MM
495 };
496};
497
498/* Filter line item */
499struct f_line_item {
500 enum f_instruction_code fi_code; /* What to do */
501 enum f_instruction_flags flags; /* Flags, instruction-specific */
502 uint lineno; /* Where */
4f082dfa 503 union {
84c58aab 504FID_WR_PUT(2)m4_dnl
4f082dfa
MM
505 };
506};
507
508/* Instruction constructors */
04160812
MM
509FID_WR_PUT(3)
510m4_divert(-1)
550a6488
MM
511
512# 4) Shipout
513#
514# Everything is prepared in FID_WR_PUT_LIST now. Let's go!
515
04160812
MM
516m4_changequote(`,')
517
550a6488 518# Flusher auxiliary macro
b40c0f02 519m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])')
550a6488
MM
520
521# Defining the macro used in FID_WR_PUT_LIST
64bb1346
MM
522m4_define(FID_WR_DPUT, `m4_undivert($1)')
523
550a6488 524# After the code is read and parsed, we:
b40c0f02 525m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)')
4f082dfa
MM
526
527m4_changequote([[,]])
550a6488
MM
528# And now M4 is going to parse f-inst.c, fill the diversions
529# and after the file is done, the content of m4_m4wrap (see before)
530# is executed.