]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/proto.c
7849b6042964a1d396806f2b09b69df192cf1008
[thirdparty/bird.git] / nest / proto.c
1 /*
2 * BIRD -- Protocols
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #undef LOCAL_DEBUG
10
11 #include "nest/bird.h"
12 #include "nest/protocol.h"
13 #include "lib/resource.h"
14 #include "lib/lists.h"
15 #include "lib/event.h"
16 #include "lib/timer.h"
17 #include "lib/string.h"
18 #include "conf/conf.h"
19 #include "nest/route.h"
20 #include "nest/iface.h"
21 #include "nest/cli.h"
22 #include "filter/filter.h"
23
24 pool *proto_pool;
25 list proto_list;
26
27 static list protocol_list;
28 struct protocol *class_to_protocol[PROTOCOL__MAX];
29
30 #define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)
31
32 static timer *proto_shutdown_timer;
33 static timer *gr_wait_timer;
34
35 #define GRS_NONE 0
36 #define GRS_INIT 1
37 #define GRS_ACTIVE 2
38 #define GRS_DONE 3
39
40 static int graceful_restart_state;
41 static u32 graceful_restart_locks;
42
43 static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
44 static char *c_states[] = { "DOWN", "START", "UP", "FLUSHING" };
45
46 extern struct protocol proto_unix_iface;
47
48 static void proto_shutdown_loop(timer *);
49 static void proto_rethink_goal(struct proto *p);
50 static char *proto_state_name(struct proto *p);
51 static void channel_verify_limits(struct channel *c);
52 static inline void channel_reset_limit(struct channel_limit *l);
53
54
55 static inline int proto_is_done(struct proto *p)
56 { return (p->proto_state == PS_DOWN) && (p->active_channels == 0); }
57
58 static inline int channel_is_active(struct channel *c)
59 { return (c->channel_state == CS_START) || (c->channel_state == CS_UP); }
60
61 static void
62 proto_log_state_change(struct proto *p)
63 {
64 if (p->debug & D_STATES)
65 {
66 char *name = proto_state_name(p);
67 if (name != p->last_state_name_announced)
68 {
69 p->last_state_name_announced = name;
70 PD(p, "State changed to %s", proto_state_name(p));
71 }
72 }
73 else
74 p->last_state_name_announced = NULL;
75 }
76
77
78 struct channel_config *
79 proto_cf_find_channel(struct proto_config *pc, uint net_type)
80 {
81 struct channel_config *cc;
82
83 WALK_LIST(cc, pc->channels)
84 if (cc->net_type == net_type)
85 return cc;
86
87 return NULL;
88 }
89
90 /**
91 * proto_find_channel_by_table - find channel connected to a routing table
92 * @p: protocol instance
93 * @t: routing table
94 *
95 * Returns pointer to channel or NULL
96 */
97 struct channel *
98 proto_find_channel_by_table(struct proto *p, struct rtable *t)
99 {
100 struct channel *c;
101
102 WALK_LIST(c, p->channels)
103 if (c->table == t)
104 return c;
105
106 return NULL;
107 }
108
109 /**
110 * proto_find_channel_by_name - find channel by its name
111 * @p: protocol instance
112 * @n: channel name
113 *
114 * Returns pointer to channel or NULL
115 */
116 struct channel *
117 proto_find_channel_by_name(struct proto *p, const char *n)
118 {
119 struct channel *c;
120
121 WALK_LIST(c, p->channels)
122 if (!strcmp(c->name, n))
123 return c;
124
125 return NULL;
126 }
127
128 /**
129 * proto_add_channel - connect protocol to a routing table
130 * @p: protocol instance
131 * @cf: channel configuration
132 *
133 * This function creates a channel between the protocol instance @p and the
134 * routing table specified in the configuration @cf, making the protocol hear
135 * all changes in the table and allowing the protocol to update routes in the
136 * table.
137 *
138 * The channel is linked in the protocol channel list and when active also in
139 * the table channel list. Channels are allocated from the global resource pool
140 * (@proto_pool) and they are automatically freed when the protocol is removed.
141 */
142
143 struct channel *
144 proto_add_channel(struct proto *p, struct channel_config *cf)
145 {
146 struct channel *c = mb_allocz(proto_pool, cf->channel->channel_size);
147
148 c->name = cf->name;
149 c->channel = cf->channel;
150 c->proto = p;
151 c->table = cf->table->table;
152
153 c->in_filter = cf->in_filter;
154 c->out_filter = cf->out_filter;
155 c->rx_limit = cf->rx_limit;
156 c->in_limit = cf->in_limit;
157 c->out_limit = cf->out_limit;
158
159 c->net_type = cf->net_type;
160 c->ra_mode = cf->ra_mode;
161 c->preference = cf->preference;
162 c->merge_limit = cf->merge_limit;
163 c->in_keep_filtered = cf->in_keep_filtered;
164
165 c->channel_state = CS_DOWN;
166 c->export_state = ES_DOWN;
167 c->last_state_change = current_time();
168 c->last_tx_filter_change = current_time();
169 c->reloadable = 1;
170
171 CALL(c->channel->init, c, cf);
172
173 add_tail(&p->channels, &c->n);
174
175 PD(p, "Channel %s connected to table %s", c->name, c->table->name);
176
177 return c;
178 }
179
180 void
181 proto_remove_channel(struct proto *p, struct channel *c)
182 {
183 ASSERT(c->channel_state == CS_DOWN);
184
185 PD(p, "Channel %s removed", c->name);
186
187 rem_node(&c->n);
188 mb_free(c);
189 }
190
191
192 static void
193 proto_start_channels(struct proto *p)
194 {
195 struct channel *c;
196 WALK_LIST(c, p->channels)
197 if (!c->disabled)
198 channel_set_state(c, CS_UP);
199 }
200
201 static void
202 proto_pause_channels(struct proto *p)
203 {
204 struct channel *c;
205 WALK_LIST(c, p->channels)
206 if (!c->disabled && channel_is_active(c))
207 channel_set_state(c, CS_START);
208 }
209
210 static void
211 proto_stop_channels(struct proto *p)
212 {
213 struct channel *c;
214 WALK_LIST(c, p->channels)
215 if (!c->disabled && channel_is_active(c))
216 channel_set_state(c, CS_FLUSHING);
217 }
218
219 static void
220 proto_remove_channels(struct proto *p)
221 {
222 struct channel *c;
223 WALK_LIST_FIRST(c, p->channels)
224 proto_remove_channel(p, c);
225 }
226
227 static void
228 channel_schedule_feed(struct channel *c, int initial)
229 {
230 // DBG("%s: Scheduling meal\n", p->name);
231 ASSERT(c->channel_state == CS_UP);
232
233 c->export_state = ES_FEEDING;
234 c->refeeding = !initial;
235
236 ev_schedule(c->feed_event);
237 }
238
239 static void
240 channel_feed_loop(void *ptr)
241 {
242 struct channel *c = ptr;
243
244 if (c->export_state != ES_FEEDING)
245 return;
246
247 if (!c->feed_active)
248 if (c->proto->feed_begin)
249 c->proto->feed_begin(c, !c->refeeding);
250
251 // DBG("Feeding protocol %s continued\n", p->name);
252 if (!rt_feed_channel(c))
253 {
254 ev_schedule(c->feed_event);
255 return;
256 }
257
258 // DBG("Feeding protocol %s finished\n", p->name);
259 c->export_state = ES_READY;
260 // proto_log_state_change(p);
261
262 if (c->proto->feed_end)
263 c->proto->feed_end(c);
264 }
265
266
267 static void
268 channel_start_export(struct channel *c)
269 {
270 ASSERT(c->channel_state == CS_UP);
271 ASSERT(c->export_state == ES_DOWN);
272
273 channel_schedule_feed(c, 1); /* Sets ES_FEEDING */
274 }
275
276 static void
277 channel_stop_export(struct channel *c)
278 {
279 /* Need to abort feeding */
280 if (c->export_state == ES_FEEDING)
281 rt_feed_channel_abort(c);
282
283 c->export_state = ES_DOWN;
284 c->stats.exp_routes = 0;
285 }
286
287
288 /* Called by protocol for reload from in_table */
289 void
290 channel_schedule_reload(struct channel *c)
291 {
292 ASSERT(c->channel_state == CS_UP);
293
294 rt_reload_channel_abort(c);
295 ev_schedule(c->reload_event);
296 }
297
298 static void
299 channel_reload_loop(void *ptr)
300 {
301 struct channel *c = ptr;
302
303 if (!rt_reload_channel(c))
304 {
305 ev_schedule(c->reload_event);
306 return;
307 }
308 }
309
310 static void
311 channel_reset_import(struct channel *c)
312 {
313 /* Need to abort feeding */
314 ev_postpone(c->reload_event);
315 rt_reload_channel_abort(c);
316
317 rt_prune_sync(c->in_table, 1);
318 }
319
320 /* Called by protocol to activate in_table */
321 void
322 channel_setup_in_table(struct channel *c)
323 {
324 struct rtable_config *cf = mb_allocz(c->proto->pool, sizeof(struct rtable_config));
325 cf->name = "import";
326 cf->addr_type = c->net_type;
327
328 c->in_table = mb_allocz(c->proto->pool, sizeof(struct rtable));
329 rt_setup(c->proto->pool, c->in_table, cf);
330
331 c->reload_event = ev_new_init(c->proto->pool, channel_reload_loop, c);
332 }
333
334
335 static void
336 channel_do_start(struct channel *c)
337 {
338 rt_lock_table(c->table);
339 add_tail(&c->table->channels, &c->table_node);
340 c->proto->active_channels++;
341
342 c->feed_event = ev_new_init(c->proto->pool, channel_feed_loop, c);
343
344 channel_reset_limit(&c->rx_limit);
345 channel_reset_limit(&c->in_limit);
346 channel_reset_limit(&c->out_limit);
347
348 CALL(c->channel->start, c);
349 }
350
351 static void
352 channel_do_flush(struct channel *c)
353 {
354 rt_schedule_prune(c->table);
355
356 c->gr_wait = 0;
357 if (c->gr_lock)
358 channel_graceful_restart_unlock(c);
359
360 CALL(c->channel->shutdown, c);
361 }
362
363 static void
364 channel_do_down(struct channel *c)
365 {
366 ASSERT(!c->feed_active && !c->reload_active);
367
368 rem_node(&c->table_node);
369 rt_unlock_table(c->table);
370 c->proto->active_channels--;
371
372 if ((c->stats.imp_routes + c->stats.filt_routes) != 0)
373 log(L_ERR "%s: Channel %s is down but still has some routes", c->proto->name, c->name);
374
375 memset(&c->stats, 0, sizeof(struct proto_stats));
376
377 c->in_table = NULL;
378 c->reload_event = NULL;
379
380 CALL(c->channel->cleanup, c);
381
382 /* Schedule protocol shutddown */
383 if (proto_is_done(c->proto))
384 ev_schedule(c->proto->event);
385 }
386
387 void
388 channel_set_state(struct channel *c, uint state)
389 {
390 uint cs = c->channel_state;
391 uint es = c->export_state;
392
393 DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]);
394 if (state == cs)
395 return;
396
397 c->channel_state = state;
398 c->last_state_change = current_time();
399
400 switch (state)
401 {
402 case CS_START:
403 ASSERT(cs == CS_DOWN || cs == CS_UP);
404
405 if (cs == CS_DOWN)
406 channel_do_start(c);
407
408 if (es != ES_DOWN)
409 channel_stop_export(c);
410
411 if (c->in_table && (cs == CS_UP))
412 channel_reset_import(c);
413
414 break;
415
416 case CS_UP:
417 ASSERT(cs == CS_DOWN || cs == CS_START);
418
419 if (cs == CS_DOWN)
420 channel_do_start(c);
421
422 if (!c->gr_wait && c->proto->rt_notify)
423 channel_start_export(c);
424
425 break;
426
427 case CS_FLUSHING:
428 ASSERT(cs == CS_START || cs == CS_UP);
429
430 if (es != ES_DOWN)
431 channel_stop_export(c);
432
433 if (c->in_table && (cs == CS_UP))
434 channel_reset_import(c);
435
436 channel_do_flush(c);
437 break;
438
439 case CS_DOWN:
440 ASSERT(cs == CS_FLUSHING);
441
442 channel_do_down(c);
443 break;
444
445 default:
446 ASSERT(0);
447 }
448 // XXXX proto_log_state_change(c);
449 }
450
451 /**
452 * channel_request_feeding - request feeding routes to the channel
453 * @c: given channel
454 *
455 * Sometimes it is needed to send again all routes to the channel. This is
456 * called feeding and can be requested by this function. This would cause
457 * channel export state transition to ES_FEEDING (during feeding) and when
458 * completed, it will switch back to ES_READY. This function can be called
459 * even when feeding is already running, in that case it is restarted.
460 */
461 void
462 channel_request_feeding(struct channel *c)
463 {
464 ASSERT(c->channel_state == CS_UP);
465
466 /* Do nothing if we are still waiting for feeding */
467 if (c->export_state == ES_DOWN)
468 return;
469
470 /* If we are already feeding, we want to restart it */
471 if (c->export_state == ES_FEEDING)
472 {
473 /* Unless feeding is in initial state */
474 if (!c->feed_active)
475 return;
476
477 rt_feed_channel_abort(c);
478 }
479
480 channel_reset_limit(&c->out_limit);
481
482 /* Hack: reset exp_routes during refeed, and do not decrease it later */
483 c->stats.exp_routes = 0;
484
485 channel_schedule_feed(c, 0); /* Sets ES_FEEDING */
486 // proto_log_state_change(c);
487 }
488
489 static inline int
490 channel_reloadable(struct channel *c)
491 {
492 return c->proto->reload_routes && c->reloadable;
493 }
494
495 static void
496 channel_request_reload(struct channel *c)
497 {
498 ASSERT(c->channel_state == CS_UP);
499 ASSERT(channel_reloadable(c));
500
501 c->proto->reload_routes(c);
502
503 /*
504 * Should this be done before reload_routes() hook?
505 * Perhaps, but routes are updated asynchronously.
506 */
507 channel_reset_limit(&c->rx_limit);
508 channel_reset_limit(&c->in_limit);
509 }
510
511 const struct channel_class channel_basic = {
512 .channel_size = sizeof(struct channel),
513 .config_size = sizeof(struct channel_config)
514 };
515
516 void *
517 channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
518 {
519 struct channel_config *cf = NULL;
520 struct rtable_config *tab = NULL;
521
522 if (net_type)
523 {
524 if (!net_val_match(net_type, proto->protocol->channel_mask))
525 cf_error("Unsupported channel type");
526
527 if (proto->net_type && (net_type != proto->net_type))
528 cf_error("Different channel type");
529
530 tab = new_config->def_tables[net_type];
531 }
532
533 if (!cc)
534 cc = &channel_basic;
535
536 cf = cfg_allocz(cc->config_size);
537 cf->name = name;
538 cf->channel = cc;
539 cf->parent = proto;
540 cf->table = tab;
541 cf->out_filter = FILTER_REJECT;
542
543 cf->net_type = net_type;
544 cf->ra_mode = RA_OPTIMAL;
545 cf->preference = proto->protocol->preference;
546
547 add_tail(&proto->channels, &cf->n);
548
549 return cf;
550 }
551
552 void *
553 channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
554 {
555 struct channel_config *cf;
556
557 /* We are using name as token, so no strcmp() */
558 WALK_LIST(cf, proto->channels)
559 if (cf->name == name)
560 {
561 /* Allow to redefine channel only if inherited from template */
562 if (cf->parent == proto)
563 cf_error("Multiple %s channels", name);
564
565 cf->parent = proto;
566 return cf;
567 }
568
569 return channel_config_new(cc, name, net_type, proto);
570 }
571
572 struct channel_config *
573 channel_copy_config(struct channel_config *src, struct proto_config *proto)
574 {
575 struct channel_config *dst = cfg_alloc(src->channel->config_size);
576
577 memcpy(dst, src, src->channel->config_size);
578 add_tail(&proto->channels, &dst->n);
579 CALL(src->channel->copy_config, dst, src);
580
581 return dst;
582 }
583
584
585 static int reconfigure_type; /* Hack to propagate type info to channel_reconfigure() */
586
587 int
588 channel_reconfigure(struct channel *c, struct channel_config *cf)
589 {
590 /* FIXME: better handle these changes, also handle in_keep_filtered */
591 if ((c->table != cf->table->table) || (cf->ra_mode && (c->ra_mode != cf->ra_mode)))
592 return 0;
593
594 /* Note that filter_same() requires arguments in (new, old) order */
595 int import_changed = !filter_same(cf->in_filter, c->in_filter);
596 int export_changed = !filter_same(cf->out_filter, c->out_filter);
597
598 if (c->preference != cf->preference)
599 import_changed = 1;
600
601 if (c->merge_limit != cf->merge_limit)
602 export_changed = 1;
603
604 /* Reconfigure channel fields */
605 c->in_filter = cf->in_filter;
606 c->out_filter = cf->out_filter;
607 c->rx_limit = cf->rx_limit;
608 c->in_limit = cf->in_limit;
609 c->out_limit = cf->out_limit;
610
611 // c->ra_mode = cf->ra_mode;
612 c->merge_limit = cf->merge_limit;
613 c->preference = cf->preference;
614 c->in_keep_filtered = cf->in_keep_filtered;
615
616 channel_verify_limits(c);
617
618 if (export_changed)
619 c->last_tx_filter_change = current_time();
620
621 /* Execute channel-specific reconfigure hook */
622 if (c->channel->reconfigure && !c->channel->reconfigure(c, cf))
623 return 0;
624
625 /* If the channel is not open, it has no routes and we cannot reload it anyways */
626 if (c->channel_state != CS_UP)
627 return 1;
628
629 if (reconfigure_type == RECONFIG_SOFT)
630 {
631 if (import_changed)
632 log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name);
633
634 if (export_changed)
635 log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name);
636
637 return 1;
638 }
639
640 /* Route reload may be not supported */
641 if (import_changed && !channel_reloadable(c))
642 return 0;
643
644 if (import_changed || export_changed)
645 log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name);
646
647 if (import_changed)
648 channel_request_reload(c);
649
650 if (export_changed)
651 channel_request_feeding(c);
652
653 return 1;
654 }
655
656
657 int
658 proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf)
659 {
660 struct channel *c = *pc;
661
662 if (!c && cf)
663 {
664 /* We could add the channel, but currently it would just stay in down state
665 until protocol is restarted, so it is better to force restart anyways. */
666 log(L_INFO "Cannot add channel %s.%s", p->name, cf->name);
667 return 0;
668 // *pc = proto_add_channel(p, cf);
669 }
670 else if (c && !cf)
671 {
672 if (c->channel_state != CS_DOWN)
673 {
674 log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name);
675 return 0;
676 }
677
678 proto_remove_channel(p, c);
679 *pc = NULL;
680 }
681 else if (c && cf)
682 {
683 if (!channel_reconfigure(c, cf))
684 {
685 log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name);
686 return 0;
687 }
688 }
689
690 return 1;
691 }
692
693
694 static void
695 proto_event(void *ptr)
696 {
697 struct proto *p = ptr;
698
699 if (p->do_start)
700 {
701 if_feed_baby(p);
702 p->do_start = 0;
703 }
704
705 if (p->do_stop)
706 {
707 if (p->proto == &proto_unix_iface)
708 if_flush_ifaces(p);
709 p->do_stop = 0;
710 }
711
712 if (proto_is_done(p))
713 {
714 if (p->proto->cleanup)
715 p->proto->cleanup(p);
716
717 p->active = 0;
718 proto_log_state_change(p);
719 proto_rethink_goal(p);
720 }
721 }
722
723
724 /**
725 * proto_new - create a new protocol instance
726 * @c: protocol configuration
727 *
728 * When a new configuration has been read in, the core code starts
729 * initializing all the protocol instances configured by calling their
730 * init() hooks with the corresponding instance configuration. The initialization
731 * code of the protocol is expected to create a new instance according to the
732 * configuration by calling this function and then modifying the default settings
733 * to values wanted by the protocol.
734 */
735 void *
736 proto_new(struct proto_config *cf)
737 {
738 struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size);
739
740 p->cf = cf;
741 p->debug = cf->debug;
742 p->mrtdump = cf->mrtdump;
743 p->name = cf->name;
744 p->proto = cf->protocol;
745 p->net_type = cf->net_type;
746 p->disabled = cf->disabled;
747 p->hash_key = random_u32();
748 cf->proto = p;
749
750 init_list(&p->channels);
751
752 return p;
753 }
754
755 static struct proto *
756 proto_init(struct proto_config *c, node *n)
757 {
758 struct protocol *pr = c->protocol;
759 struct proto *p = pr->init(c);
760
761 p->proto_state = PS_DOWN;
762 p->last_state_change = current_time();
763 p->vrf = c->vrf;
764 insert_node(&p->n, n);
765
766 p->event = ev_new_init(proto_pool, proto_event, p);
767
768 PD(p, "Initializing%s", p->disabled ? " [disabled]" : "");
769
770 return p;
771 }
772
773 static void
774 proto_start(struct proto *p)
775 {
776 /* Here we cannot use p->cf->name since it won't survive reconfiguration */
777 p->pool = rp_new(proto_pool, p->proto->name);
778
779 if (graceful_restart_state == GRS_INIT)
780 p->gr_recovery = 1;
781 }
782
783
784 /**
785 * proto_config_new - create a new protocol configuration
786 * @pr: protocol the configuration will belong to
787 * @class: SYM_PROTO or SYM_TEMPLATE
788 *
789 * Whenever the configuration file says that a new instance
790 * of a routing protocol should be created, the parser calls
791 * proto_config_new() to create a configuration entry for this
792 * instance (a structure staring with the &proto_config header
793 * containing all the generic items followed by protocol-specific
794 * ones). Also, the configuration entry gets added to the list
795 * of protocol instances kept in the configuration.
796 *
797 * The function is also used to create protocol templates (when class
798 * SYM_TEMPLATE is specified), the only difference is that templates
799 * are not added to the list of protocol instances and therefore not
800 * initialized during protos_commit()).
801 */
802 void *
803 proto_config_new(struct protocol *pr, int class)
804 {
805 struct proto_config *cf = cfg_allocz(pr->config_size);
806
807 if (class == SYM_PROTO)
808 add_tail(&new_config->protos, &cf->n);
809
810 cf->global = new_config;
811 cf->protocol = pr;
812 cf->name = pr->name;
813 cf->class = class;
814 cf->debug = new_config->proto_default_debug;
815 cf->mrtdump = new_config->proto_default_mrtdump;
816
817 init_list(&cf->channels);
818
819 return cf;
820 }
821
822
823 /**
824 * proto_copy_config - copy a protocol configuration
825 * @dest: destination protocol configuration
826 * @src: source protocol configuration
827 *
828 * Whenever a new instance of a routing protocol is created from the
829 * template, proto_copy_config() is called to copy a content of
830 * the source protocol configuration to the new protocol configuration.
831 * Name, class and a node in protos list of @dest are kept intact.
832 * copy_config() protocol hook is used to copy protocol-specific data.
833 */
834 void
835 proto_copy_config(struct proto_config *dest, struct proto_config *src)
836 {
837 struct channel_config *cc;
838 node old_node;
839 int old_class;
840 char *old_name;
841
842 if (dest->protocol != src->protocol)
843 cf_error("Can't copy configuration from a different protocol type");
844
845 if (dest->protocol->copy_config == NULL)
846 cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
847
848 DBG("Copying configuration from %s to %s\n", src->name, dest->name);
849
850 /*
851 * Copy struct proto_config here. Keep original node, class and name.
852 * protocol-specific config copy is handled by protocol copy_config() hook
853 */
854
855 old_node = dest->n;
856 old_class = dest->class;
857 old_name = dest->name;
858
859 memcpy(dest, src, src->protocol->config_size);
860
861 dest->n = old_node;
862 dest->class = old_class;
863 dest->name = old_name;
864 init_list(&dest->channels);
865
866 WALK_LIST(cc, src->channels)
867 channel_copy_config(cc, dest);
868
869 /* FIXME: allow for undefined copy_config */
870 dest->protocol->copy_config(dest, src);
871 }
872
873 /**
874 * protos_preconfig - pre-configuration processing
875 * @c: new configuration
876 *
877 * This function calls the preconfig() hooks of all routing
878 * protocols available to prepare them for reading of the new
879 * configuration.
880 */
881 void
882 protos_preconfig(struct config *c)
883 {
884 struct protocol *p;
885
886 init_list(&c->protos);
887 DBG("Protocol preconfig:");
888 WALK_LIST(p, protocol_list)
889 {
890 DBG(" %s", p->name);
891 p->name_counter = 0;
892 if (p->preconfig)
893 p->preconfig(p, c);
894 }
895 DBG("\n");
896 }
897
898 static int
899 proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
900 {
901 /* If the protocol is DOWN, we just restart it */
902 if (p->proto_state == PS_DOWN)
903 return 0;
904
905 /* If there is a too big change in core attributes, ... */
906 if ((nc->protocol != oc->protocol) ||
907 (nc->net_type != oc->net_type) ||
908 (nc->disabled != p->disabled) ||
909 (nc->vrf != oc->vrf))
910 return 0;
911
912 p->name = nc->name;
913 p->debug = nc->debug;
914 p->mrtdump = nc->mrtdump;
915 reconfigure_type = type;
916
917 /* Execute protocol specific reconfigure hook */
918 if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc))
919 return 0;
920
921 DBG("\t%s: same\n", oc->name);
922 PD(p, "Reconfigured");
923 p->cf = nc;
924
925 return 1;
926 }
927
928 /**
929 * protos_commit - commit new protocol configuration
930 * @new: new configuration
931 * @old: old configuration or %NULL if it's boot time config
932 * @force_reconfig: force restart of all protocols (used for example
933 * when the router ID changes)
934 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
935 *
936 * Scan differences between @old and @new configuration and adjust all
937 * protocol instances to conform to the new configuration.
938 *
939 * When a protocol exists in the new configuration, but it doesn't in the
940 * original one, it's immediately started. When a collision with the other
941 * running protocol would arise, the new protocol will be temporarily stopped
942 * by the locking mechanism.
943 *
944 * When a protocol exists in the old configuration, but it doesn't in the
945 * new one, it's shut down and deleted after the shutdown completes.
946 *
947 * When a protocol exists in both configurations, the core decides
948 * whether it's possible to reconfigure it dynamically - it checks all
949 * the core properties of the protocol (changes in filters are ignored
950 * if type is RECONFIG_SOFT) and if they match, it asks the
951 * reconfigure() hook of the protocol to see if the protocol is able
952 * to switch to the new configuration. If it isn't possible, the
953 * protocol is shut down and a new instance is started with the new
954 * configuration after the shutdown is completed.
955 */
956 void
957 protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
958 {
959 struct proto_config *oc, *nc;
960 struct symbol *sym;
961 struct proto *p;
962 node *n;
963
964
965 DBG("protos_commit:\n");
966 if (old)
967 {
968 WALK_LIST(oc, old->protos)
969 {
970 p = oc->proto;
971 sym = cf_find_symbol(new, oc->name);
972 if (sym && sym->class == SYM_PROTO && !new->shutdown)
973 {
974 /* Found match, let's check if we can smoothly switch to new configuration */
975 /* No need to check description */
976 nc = sym->def;
977 nc->proto = p;
978
979 /* We will try to reconfigure protocol p */
980 if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
981 continue;
982
983 /* Unsuccessful, we will restart it */
984 if (!p->disabled && !nc->disabled)
985 log(L_INFO "Restarting protocol %s", p->name);
986 else if (p->disabled && !nc->disabled)
987 log(L_INFO "Enabling protocol %s", p->name);
988 else if (!p->disabled && nc->disabled)
989 log(L_INFO "Disabling protocol %s", p->name);
990
991 p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
992 p->cf_new = nc;
993 }
994 else if (!new->shutdown)
995 {
996 log(L_INFO "Removing protocol %s", p->name);
997 p->down_code = PDC_CF_REMOVE;
998 p->cf_new = NULL;
999 }
1000 else /* global shutdown */
1001 {
1002 p->down_code = PDC_CMD_SHUTDOWN;
1003 p->cf_new = NULL;
1004 }
1005
1006 p->reconfiguring = 1;
1007 config_add_obstacle(old);
1008 proto_rethink_goal(p);
1009 }
1010 }
1011
1012 struct proto *first_dev_proto = NULL;
1013
1014 n = NODE &(proto_list.head);
1015 WALK_LIST(nc, new->protos)
1016 if (!nc->proto)
1017 {
1018 /* Not a first-time configuration */
1019 if (old)
1020 log(L_INFO "Adding protocol %s", nc->name);
1021
1022 p = proto_init(nc, n);
1023 n = NODE p;
1024
1025 if (p->proto == &proto_unix_iface)
1026 first_dev_proto = p;
1027 }
1028 else
1029 n = NODE nc->proto;
1030
1031 DBG("Protocol start\n");
1032
1033 /* Start device protocol first */
1034 if (first_dev_proto)
1035 proto_rethink_goal(first_dev_proto);
1036
1037 /* Determine router ID for the first time - it has to be here and not in
1038 global_commit() because it is postponed after start of device protocol */
1039 if (!config->router_id)
1040 {
1041 config->router_id = if_choose_router_id(config->router_id_from, 0);
1042 if (!config->router_id)
1043 die("Cannot determine router ID, please configure it manually");
1044 }
1045
1046 /* Start all new protocols */
1047 WALK_LIST_DELSAFE(p, n, proto_list)
1048 proto_rethink_goal(p);
1049 }
1050
1051 static void
1052 proto_rethink_goal(struct proto *p)
1053 {
1054 struct protocol *q;
1055 byte goal;
1056
1057 if (p->reconfiguring && !p->active)
1058 {
1059 struct proto_config *nc = p->cf_new;
1060 node *n = p->n.prev;
1061 DBG("%s has shut down for reconfiguration\n", p->name);
1062 p->cf->proto = NULL;
1063 config_del_obstacle(p->cf->global);
1064 proto_remove_channels(p);
1065 rem_node(&p->n);
1066 rfree(p->event);
1067 mb_free(p->message);
1068 mb_free(p);
1069 if (!nc)
1070 return;
1071 p = proto_init(nc, n);
1072 }
1073
1074 /* Determine what state we want to reach */
1075 if (p->disabled || p->reconfiguring)
1076 goal = PS_DOWN;
1077 else
1078 goal = PS_UP;
1079
1080 q = p->proto;
1081 if (goal == PS_UP)
1082 {
1083 if (!p->active)
1084 {
1085 /* Going up */
1086 DBG("Kicking %s up\n", p->name);
1087 PD(p, "Starting");
1088 proto_start(p);
1089 proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
1090 }
1091 }
1092 else
1093 {
1094 if (p->proto_state == PS_START || p->proto_state == PS_UP)
1095 {
1096 /* Going down */
1097 DBG("Kicking %s down\n", p->name);
1098 PD(p, "Shutting down");
1099 proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
1100 }
1101 }
1102 }
1103
1104
1105 /**
1106 * DOC: Graceful restart recovery
1107 *
1108 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
1109 * restarts but both the forwarding plane (e.g kernel routing table) and routing
1110 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
1111 * is maintained.
1112 *
1113 * BIRD implements graceful restart recovery by deferring export of routes to
1114 * protocols until routing tables are refilled with the expected content. After
1115 * start, protocols generate routes as usual, but routes are not propagated to
1116 * them, until protocols report that they generated all routes. After that,
1117 * graceful restart recovery is finished and the export (and the initial feed)
1118 * to protocols is enabled.
1119 *
1120 * When graceful restart recovery need is detected during initialization, then
1121 * enabled protocols are marked with @gr_recovery flag before start. Such
1122 * protocols then decide how to proceed with graceful restart, participation is
1123 * voluntary. Protocols could lock the recovery for each channel by function
1124 * channel_graceful_restart_lock() (state stored in @gr_lock flag), which means
1125 * that they want to postpone the end of the recovery until they converge and
1126 * then unlock it. They also could set @gr_wait before advancing to %PS_UP,
1127 * which means that the core should defer route export to that channel until
1128 * the end of the recovery. This should be done by protocols that expect their
1129 * neigbors to keep the proper routes (kernel table, BGP sessions with BGP
1130 * graceful restart capability).
1131 *
1132 * The graceful restart recovery is finished when either all graceful restart
1133 * locks are unlocked or when graceful restart wait timer fires.
1134 *
1135 */
1136
1137 static void graceful_restart_done(timer *t);
1138
1139 /**
1140 * graceful_restart_recovery - request initial graceful restart recovery
1141 *
1142 * Called by the platform initialization code if the need for recovery
1143 * after graceful restart is detected during boot. Have to be called
1144 * before protos_commit().
1145 */
1146 void
1147 graceful_restart_recovery(void)
1148 {
1149 graceful_restart_state = GRS_INIT;
1150 }
1151
1152 /**
1153 * graceful_restart_init - initialize graceful restart
1154 *
1155 * When graceful restart recovery was requested, the function starts an active
1156 * phase of the recovery and initializes graceful restart wait timer. The
1157 * function have to be called after protos_commit().
1158 */
1159 void
1160 graceful_restart_init(void)
1161 {
1162 if (!graceful_restart_state)
1163 return;
1164
1165 log(L_INFO "Graceful restart started");
1166
1167 if (!graceful_restart_locks)
1168 {
1169 graceful_restart_done(NULL);
1170 return;
1171 }
1172
1173 graceful_restart_state = GRS_ACTIVE;
1174 gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0);
1175 tm_start(gr_wait_timer, config->gr_wait S);
1176 }
1177
1178 /**
1179 * graceful_restart_done - finalize graceful restart
1180 * @t: unused
1181 *
1182 * When there are no locks on graceful restart, the functions finalizes the
1183 * graceful restart recovery. Protocols postponing route export until the end of
1184 * the recovery are awakened and the export to them is enabled. All other
1185 * related state is cleared. The function is also called when the graceful
1186 * restart wait timer fires (but there are still some locks).
1187 */
1188 static void
1189 graceful_restart_done(timer *t UNUSED)
1190 {
1191 log(L_INFO "Graceful restart done");
1192 graceful_restart_state = GRS_DONE;
1193
1194 struct proto *p;
1195 WALK_LIST(p, proto_list)
1196 {
1197 if (!p->gr_recovery)
1198 continue;
1199
1200 struct channel *c;
1201 WALK_LIST(c, p->channels)
1202 {
1203 /* Resume postponed export of routes */
1204 if ((c->channel_state == CS_UP) && c->gr_wait && c->proto->rt_notify)
1205 channel_start_export(c);
1206
1207 /* Cleanup */
1208 c->gr_wait = 0;
1209 c->gr_lock = 0;
1210 }
1211
1212 p->gr_recovery = 0;
1213 }
1214
1215 graceful_restart_locks = 0;
1216 }
1217
1218 void
1219 graceful_restart_show_status(void)
1220 {
1221 if (graceful_restart_state != GRS_ACTIVE)
1222 return;
1223
1224 cli_msg(-24, "Graceful restart recovery in progress");
1225 cli_msg(-24, " Waiting for %d channels to recover", graceful_restart_locks);
1226 cli_msg(-24, " Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait);
1227 }
1228
1229 /**
1230 * channel_graceful_restart_lock - lock graceful restart by channel
1231 * @p: channel instance
1232 *
1233 * This function allows a protocol to postpone the end of graceful restart
1234 * recovery until it converges. The lock is removed when the protocol calls
1235 * channel_graceful_restart_unlock() or when the channel is closed.
1236 *
1237 * The function have to be called during the initial phase of graceful restart
1238 * recovery and only for protocols that are part of graceful restart (i.e. their
1239 * @gr_recovery is set), which means it should be called from protocol start
1240 * hooks.
1241 */
1242 void
1243 channel_graceful_restart_lock(struct channel *c)
1244 {
1245 ASSERT(graceful_restart_state == GRS_INIT);
1246 ASSERT(c->proto->gr_recovery);
1247
1248 if (c->gr_lock)
1249 return;
1250
1251 c->gr_lock = 1;
1252 graceful_restart_locks++;
1253 }
1254
1255 /**
1256 * channel_graceful_restart_unlock - unlock graceful restart by channel
1257 * @p: channel instance
1258 *
1259 * This function unlocks a lock from channel_graceful_restart_lock(). It is also
1260 * automatically called when the lock holding protocol went down.
1261 */
1262 void
1263 channel_graceful_restart_unlock(struct channel *c)
1264 {
1265 if (!c->gr_lock)
1266 return;
1267
1268 c->gr_lock = 0;
1269 graceful_restart_locks--;
1270
1271 if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
1272 tm_start(gr_wait_timer, 0);
1273 }
1274
1275
1276
1277 /**
1278 * protos_dump_all - dump status of all protocols
1279 *
1280 * This function dumps status of all existing protocol instances to the
1281 * debug output. It involves printing of general status information
1282 * such as protocol states, its position on the protocol lists
1283 * and also calling of a dump() hook of the protocol to print
1284 * the internals.
1285 */
1286 void
1287 protos_dump_all(void)
1288 {
1289 debug("Protocols:\n");
1290
1291 struct proto *p;
1292 WALK_LIST(p, proto_list)
1293 {
1294 debug(" protocol %s state %s\n", p->name, p_states[p->proto_state]);
1295
1296 struct channel *c;
1297 WALK_LIST(c, p->channels)
1298 {
1299 debug("\tTABLE %s\n", c->table->name);
1300 if (c->in_filter)
1301 debug("\tInput filter: %s\n", filter_name(c->in_filter));
1302 if (c->out_filter)
1303 debug("\tOutput filter: %s\n", filter_name(c->out_filter));
1304 }
1305
1306 if (p->proto->dump && (p->proto_state != PS_DOWN))
1307 p->proto->dump(p);
1308 }
1309 }
1310
1311 /**
1312 * proto_build - make a single protocol available
1313 * @p: the protocol
1314 *
1315 * After the platform specific initialization code uses protos_build()
1316 * to add all the standard protocols, it should call proto_build() for
1317 * all platform specific protocols to inform the core that they exist.
1318 */
1319 void
1320 proto_build(struct protocol *p)
1321 {
1322 add_tail(&protocol_list, &p->n);
1323 ASSERT(p->class);
1324 ASSERT(!class_to_protocol[p->class]);
1325 class_to_protocol[p->class] = p;
1326 }
1327
1328 /* FIXME: convert this call to some protocol hook */
1329 extern void bfd_init_all(void);
1330
1331 /**
1332 * protos_build - build a protocol list
1333 *
1334 * This function is called during BIRD startup to insert
1335 * all standard protocols to the global protocol list. Insertion
1336 * of platform specific protocols (such as the kernel syncer)
1337 * is in the domain of competence of the platform dependent
1338 * startup code.
1339 */
1340 void
1341 protos_build(void)
1342 {
1343 init_list(&proto_list);
1344 init_list(&protocol_list);
1345
1346 proto_build(&proto_device);
1347 #ifdef CONFIG_RADV
1348 proto_build(&proto_radv);
1349 #endif
1350 #ifdef CONFIG_RIP
1351 proto_build(&proto_rip);
1352 #endif
1353 #ifdef CONFIG_STATIC
1354 proto_build(&proto_static);
1355 #endif
1356 #ifdef CONFIG_MRT
1357 proto_build(&proto_mrt);
1358 #endif
1359 #ifdef CONFIG_OSPF
1360 proto_build(&proto_ospf);
1361 #endif
1362 #ifdef CONFIG_PIPE
1363 proto_build(&proto_pipe);
1364 #endif
1365 #ifdef CONFIG_BGP
1366 proto_build(&proto_bgp);
1367 #endif
1368 #ifdef CONFIG_BFD
1369 proto_build(&proto_bfd);
1370 bfd_init_all();
1371 #endif
1372 #ifdef CONFIG_BABEL
1373 proto_build(&proto_babel);
1374 #endif
1375 #ifdef CONFIG_RPKI
1376 proto_build(&proto_rpki);
1377 #endif
1378
1379 proto_pool = rp_new(&root_pool, "Protocols");
1380 proto_shutdown_timer = tm_new(proto_pool);
1381 proto_shutdown_timer->hook = proto_shutdown_loop;
1382 }
1383
1384
1385 /* Temporary hack to propagate restart to BGP */
1386 int proto_restart;
1387
1388 static void
1389 proto_shutdown_loop(timer *t UNUSED)
1390 {
1391 struct proto *p, *p_next;
1392
1393 WALK_LIST_DELSAFE(p, p_next, proto_list)
1394 if (p->down_sched)
1395 {
1396 proto_restart = (p->down_sched == PDS_RESTART);
1397
1398 p->disabled = 1;
1399 proto_rethink_goal(p);
1400 if (proto_restart)
1401 {
1402 p->disabled = 0;
1403 proto_rethink_goal(p);
1404 }
1405 }
1406 }
1407
1408 static inline void
1409 proto_schedule_down(struct proto *p, byte restart, byte code)
1410 {
1411 /* Does not work for other states (even PS_START) */
1412 ASSERT(p->proto_state == PS_UP);
1413
1414 /* Scheduled restart may change to shutdown, but not otherwise */
1415 if (p->down_sched == PDS_DISABLE)
1416 return;
1417
1418 p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
1419 p->down_code = code;
1420 tm_start_max(proto_shutdown_timer, restart ? 250 MS : 0);
1421 }
1422
1423 /**
1424 * proto_set_message - set administrative message to protocol
1425 * @p: protocol
1426 * @msg: message
1427 * @len: message length (-1 for NULL-terminated string)
1428 *
1429 * The function sets administrative message (string) related to protocol state
1430 * change. It is called by the nest code for manual enable/disable/restart
1431 * commands all routes to the protocol, and by protocol-specific code when the
1432 * protocol state change is initiated by the protocol. Using NULL message clears
1433 * the last message. The message string may be either NULL-terminated or with an
1434 * explicit length.
1435 */
1436 void
1437 proto_set_message(struct proto *p, char *msg, int len)
1438 {
1439 mb_free(p->message);
1440 p->message = NULL;
1441
1442 if (!msg || !len)
1443 return;
1444
1445 if (len < 0)
1446 len = strlen(msg);
1447
1448 if (!len)
1449 return;
1450
1451 p->message = mb_alloc(proto_pool, len + 1);
1452 memcpy(p->message, msg, len);
1453 p->message[len] = 0;
1454 }
1455
1456
1457 static const char *
1458 channel_limit_name(struct channel_limit *l)
1459 {
1460 const char *actions[] = {
1461 [PLA_WARN] = "warn",
1462 [PLA_BLOCK] = "block",
1463 [PLA_RESTART] = "restart",
1464 [PLA_DISABLE] = "disable",
1465 };
1466
1467 return actions[l->action];
1468 }
1469
1470 /**
1471 * channel_notify_limit: notify about limit hit and take appropriate action
1472 * @c: channel
1473 * @l: limit being hit
1474 * @dir: limit direction (PLD_*)
1475 * @rt_count: the number of routes
1476 *
1477 * The function is called by the route processing core when limit @l
1478 * is breached. It activates the limit and tooks appropriate action
1479 * according to @l->action.
1480 */
1481 void
1482 channel_notify_limit(struct channel *c, struct channel_limit *l, int dir, u32 rt_count)
1483 {
1484 const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
1485 const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1486 struct proto *p = c->proto;
1487
1488 if (l->state == PLS_BLOCKED)
1489 return;
1490
1491 /* For warning action, we want the log message every time we hit the limit */
1492 if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1493 log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1494 p->name, dir_name[dir], l->limit, channel_limit_name(l));
1495
1496 switch (l->action)
1497 {
1498 case PLA_WARN:
1499 l->state = PLS_ACTIVE;
1500 break;
1501
1502 case PLA_BLOCK:
1503 l->state = PLS_BLOCKED;
1504 break;
1505
1506 case PLA_RESTART:
1507 case PLA_DISABLE:
1508 l->state = PLS_BLOCKED;
1509 if (p->proto_state == PS_UP)
1510 proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1511 break;
1512 }
1513 }
1514
1515 static void
1516 channel_verify_limits(struct channel *c)
1517 {
1518 struct channel_limit *l;
1519 u32 all_routes = c->stats.imp_routes + c->stats.filt_routes;
1520
1521 l = &c->rx_limit;
1522 if (l->action && (all_routes > l->limit))
1523 channel_notify_limit(c, l, PLD_RX, all_routes);
1524
1525 l = &c->in_limit;
1526 if (l->action && (c->stats.imp_routes > l->limit))
1527 channel_notify_limit(c, l, PLD_IN, c->stats.imp_routes);
1528
1529 l = &c->out_limit;
1530 if (l->action && (c->stats.exp_routes > l->limit))
1531 channel_notify_limit(c, l, PLD_OUT, c->stats.exp_routes);
1532 }
1533
1534 static inline void
1535 channel_reset_limit(struct channel_limit *l)
1536 {
1537 if (l->action)
1538 l->state = PLS_INITIAL;
1539 }
1540
1541 static inline void
1542 proto_do_start(struct proto *p)
1543 {
1544 p->active = 1;
1545 p->do_start = 1;
1546 ev_schedule(p->event);
1547 }
1548
1549 static void
1550 proto_do_up(struct proto *p)
1551 {
1552 if (!p->main_source)
1553 {
1554 p->main_source = rt_get_source(p, 0);
1555 rt_lock_source(p->main_source);
1556 }
1557
1558 proto_start_channels(p);
1559 }
1560
1561 static inline void
1562 proto_do_pause(struct proto *p)
1563 {
1564 proto_pause_channels(p);
1565 }
1566
1567 static void
1568 proto_do_stop(struct proto *p)
1569 {
1570 p->down_sched = 0;
1571 p->gr_recovery = 0;
1572
1573 p->do_stop = 1;
1574 ev_schedule(p->event);
1575
1576 if (p->main_source)
1577 {
1578 rt_unlock_source(p->main_source);
1579 p->main_source = NULL;
1580 }
1581
1582 proto_stop_channels(p);
1583 }
1584
1585 static void
1586 proto_do_down(struct proto *p)
1587 {
1588 p->down_code = 0;
1589 neigh_prune();
1590 rfree(p->pool);
1591 p->pool = NULL;
1592
1593 /* Shutdown is finished in the protocol event */
1594 if (proto_is_done(p))
1595 ev_schedule(p->event);
1596 }
1597
1598
1599
1600 /**
1601 * proto_notify_state - notify core about protocol state change
1602 * @p: protocol the state of which has changed
1603 * @ps: the new status
1604 *
1605 * Whenever a state of a protocol changes due to some event internal
1606 * to the protocol (i.e., not inside a start() or shutdown() hook),
1607 * it should immediately notify the core about the change by calling
1608 * proto_notify_state() which will write the new state to the &proto
1609 * structure and take all the actions necessary to adapt to the new
1610 * state. State change to PS_DOWN immediately frees resources of protocol
1611 * and might execute start callback of protocol; therefore,
1612 * it should be used at tail positions of protocol callbacks.
1613 */
1614 void
1615 proto_notify_state(struct proto *p, uint state)
1616 {
1617 uint ps = p->proto_state;
1618
1619 DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]);
1620 if (state == ps)
1621 return;
1622
1623 p->proto_state = state;
1624 p->last_state_change = current_time();
1625
1626 switch (state)
1627 {
1628 case PS_START:
1629 ASSERT(ps == PS_DOWN || ps == PS_UP);
1630
1631 if (ps == PS_DOWN)
1632 proto_do_start(p);
1633 else
1634 proto_do_pause(p);
1635 break;
1636
1637 case PS_UP:
1638 ASSERT(ps == PS_DOWN || ps == PS_START);
1639
1640 if (ps == PS_DOWN)
1641 proto_do_start(p);
1642
1643 proto_do_up(p);
1644 break;
1645
1646 case PS_STOP:
1647 ASSERT(ps == PS_START || ps == PS_UP);
1648
1649 proto_do_stop(p);
1650 break;
1651
1652 case PS_DOWN:
1653 if (ps != PS_STOP)
1654 proto_do_stop(p);
1655
1656 proto_do_down(p);
1657 break;
1658
1659 default:
1660 bug("%s: Invalid state %d", p->name, ps);
1661 }
1662
1663 proto_log_state_change(p);
1664 }
1665
1666 /*
1667 * CLI Commands
1668 */
1669
1670 static char *
1671 proto_state_name(struct proto *p)
1672 {
1673 switch (p->proto_state)
1674 {
1675 case PS_DOWN: return p->active ? "flush" : "down";
1676 case PS_START: return "start";
1677 case PS_UP: return "up";
1678 case PS_STOP: return "stop";
1679 default: return "???";
1680 }
1681 }
1682
1683 static void
1684 channel_show_stats(struct channel *c)
1685 {
1686 struct proto_stats *s = &c->stats;
1687
1688 if (c->in_keep_filtered)
1689 cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported",
1690 s->imp_routes, s->filt_routes, s->exp_routes);
1691 else
1692 cli_msg(-1006, " Routes: %u imported, %u exported",
1693 s->imp_routes, s->exp_routes);
1694
1695 cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted");
1696 cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u",
1697 s->imp_updates_received, s->imp_updates_invalid,
1698 s->imp_updates_filtered, s->imp_updates_ignored,
1699 s->imp_updates_accepted);
1700 cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u",
1701 s->imp_withdraws_received, s->imp_withdraws_invalid,
1702 s->imp_withdraws_ignored, s->imp_withdraws_accepted);
1703 cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u",
1704 s->exp_updates_received, s->exp_updates_rejected,
1705 s->exp_updates_filtered, s->exp_updates_accepted);
1706 cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u",
1707 s->exp_withdraws_received, s->exp_withdraws_accepted);
1708 }
1709
1710 void
1711 channel_show_limit(struct channel_limit *l, const char *dsc)
1712 {
1713 if (!l->action)
1714 return;
1715
1716 cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
1717 cli_msg(-1006, " Action: %s", channel_limit_name(l));
1718 }
1719
1720 void
1721 channel_show_info(struct channel *c)
1722 {
1723 cli_msg(-1006, " Channel %s", c->name);
1724 cli_msg(-1006, " State: %s", c_states[c->channel_state]);
1725 cli_msg(-1006, " Table: %s", c->table->name);
1726 cli_msg(-1006, " Preference: %d", c->preference);
1727 cli_msg(-1006, " Input filter: %s", filter_name(c->in_filter));
1728 cli_msg(-1006, " Output filter: %s", filter_name(c->out_filter));
1729
1730 if (graceful_restart_state == GRS_ACTIVE)
1731 cli_msg(-1006, " GR recovery: %s%s",
1732 c->gr_lock ? " pending" : "",
1733 c->gr_wait ? " waiting" : "");
1734
1735 channel_show_limit(&c->rx_limit, "Receive limit:");
1736 channel_show_limit(&c->in_limit, "Import limit:");
1737 channel_show_limit(&c->out_limit, "Export limit:");
1738
1739 if (c->channel_state != CS_DOWN)
1740 channel_show_stats(c);
1741 }
1742
1743 void
1744 proto_cmd_show(struct proto *p, uintptr_t verbose, int cnt)
1745 {
1746 byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1747
1748 /* First protocol - show header */
1749 if (!cnt)
1750 cli_msg(-2002, "%-10s %-10s %-10s %-6s %-12s %s",
1751 "Name", "Proto", "Table", "State", "Since", "Info");
1752
1753 buf[0] = 0;
1754 if (p->proto->get_status)
1755 p->proto->get_status(p, buf);
1756 tm_format_time(tbuf, &config->tf_proto, p->last_state_change);
1757 cli_msg(-1002, "%-10s %-10s %-10s %-6s %-12s %s",
1758 p->name,
1759 p->proto->name,
1760 p->main_channel ? p->main_channel->table->name : "---",
1761 proto_state_name(p),
1762 tbuf,
1763 buf);
1764
1765 if (verbose)
1766 {
1767 if (p->cf->dsc)
1768 cli_msg(-1006, " Description: %s", p->cf->dsc);
1769 if (p->message)
1770 cli_msg(-1006, " Message: %s", p->message);
1771 if (p->cf->router_id)
1772 cli_msg(-1006, " Router ID: %R", p->cf->router_id);
1773 if (p->vrf)
1774 cli_msg(-1006, " VRF: %s", p->vrf->name);
1775
1776 if (p->proto->show_proto_info)
1777 p->proto->show_proto_info(p);
1778 else
1779 {
1780 struct channel *c;
1781 WALK_LIST(c, p->channels)
1782 channel_show_info(c);
1783 }
1784
1785 cli_msg(-1006, "");
1786 }
1787 }
1788
1789 void
1790 proto_cmd_disable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1791 {
1792 if (p->disabled)
1793 {
1794 cli_msg(-8, "%s: already disabled", p->name);
1795 return;
1796 }
1797
1798 log(L_INFO "Disabling protocol %s", p->name);
1799 p->disabled = 1;
1800 p->down_code = PDC_CMD_DISABLE;
1801 proto_set_message(p, (char *) arg, -1);
1802 proto_rethink_goal(p);
1803 cli_msg(-9, "%s: disabled", p->name);
1804 }
1805
1806 void
1807 proto_cmd_enable(struct proto *p, uintptr_t arg, int cnt UNUSED)
1808 {
1809 if (!p->disabled)
1810 {
1811 cli_msg(-10, "%s: already enabled", p->name);
1812 return;
1813 }
1814
1815 log(L_INFO "Enabling protocol %s", p->name);
1816 p->disabled = 0;
1817 proto_set_message(p, (char *) arg, -1);
1818 proto_rethink_goal(p);
1819 cli_msg(-11, "%s: enabled", p->name);
1820 }
1821
1822 void
1823 proto_cmd_restart(struct proto *p, uintptr_t arg, int cnt UNUSED)
1824 {
1825 if (p->disabled)
1826 {
1827 cli_msg(-8, "%s: already disabled", p->name);
1828 return;
1829 }
1830
1831 log(L_INFO "Restarting protocol %s", p->name);
1832 p->disabled = 1;
1833 p->down_code = PDC_CMD_RESTART;
1834 proto_set_message(p, (char *) arg, -1);
1835 proto_rethink_goal(p);
1836 p->disabled = 0;
1837 proto_rethink_goal(p);
1838 cli_msg(-12, "%s: restarted", p->name);
1839 }
1840
1841 void
1842 proto_cmd_reload(struct proto *p, uintptr_t dir, int cnt UNUSED)
1843 {
1844 struct channel *c;
1845
1846 if (p->disabled)
1847 {
1848 cli_msg(-8, "%s: already disabled", p->name);
1849 return;
1850 }
1851
1852 /* If the protocol in not UP, it has no routes */
1853 if (p->proto_state != PS_UP)
1854 return;
1855
1856 /* All channels must support reload */
1857 if (dir != CMD_RELOAD_OUT)
1858 WALK_LIST(c, p->channels)
1859 if (!channel_reloadable(c))
1860 {
1861 cli_msg(-8006, "%s: reload failed", p->name);
1862 return;
1863 }
1864
1865 log(L_INFO "Reloading protocol %s", p->name);
1866
1867 /* re-importing routes */
1868 if (dir != CMD_RELOAD_OUT)
1869 WALK_LIST(c, p->channels)
1870 channel_request_reload(c);
1871
1872 /* re-exporting routes */
1873 if (dir != CMD_RELOAD_IN)
1874 WALK_LIST(c, p->channels)
1875 channel_request_feeding(c);
1876
1877 cli_msg(-15, "%s: reloading", p->name);
1878 }
1879
1880 void
1881 proto_cmd_debug(struct proto *p, uintptr_t mask, int cnt UNUSED)
1882 {
1883 p->debug = mask;
1884 }
1885
1886 void
1887 proto_cmd_mrtdump(struct proto *p, uintptr_t mask, int cnt UNUSED)
1888 {
1889 p->mrtdump = mask;
1890 }
1891
1892 static void
1893 proto_apply_cmd_symbol(struct symbol *s, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1894 {
1895 if (s->class != SYM_PROTO)
1896 {
1897 cli_msg(9002, "%s is not a protocol", s->name);
1898 return;
1899 }
1900
1901 cmd(((struct proto_config *)s->def)->proto, arg, 0);
1902 cli_msg(0, "");
1903 }
1904
1905 static void
1906 proto_apply_cmd_patt(char *patt, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
1907 {
1908 struct proto *p;
1909 int cnt = 0;
1910
1911 WALK_LIST(p, proto_list)
1912 if (!patt || patmatch(patt, p->name))
1913 cmd(p, arg, cnt++);
1914
1915 if (!cnt)
1916 cli_msg(8003, "No protocols match");
1917 else
1918 cli_msg(0, "");
1919 }
1920
1921 void
1922 proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uintptr_t, int),
1923 int restricted, uintptr_t arg)
1924 {
1925 if (restricted && cli_access_restricted())
1926 return;
1927
1928 if (ps.patt)
1929 proto_apply_cmd_patt(ps.ptr, cmd, arg);
1930 else
1931 proto_apply_cmd_symbol(ps.ptr, cmd, arg);
1932 }
1933
1934 struct proto *
1935 proto_get_named(struct symbol *sym, struct protocol *pr)
1936 {
1937 struct proto *p, *q;
1938
1939 if (sym)
1940 {
1941 if (sym->class != SYM_PROTO)
1942 cf_error("%s: Not a protocol", sym->name);
1943
1944 p = ((struct proto_config *) sym->def)->proto;
1945 if (!p || p->proto != pr)
1946 cf_error("%s: Not a %s protocol", sym->name, pr->name);
1947 }
1948 else
1949 {
1950 p = NULL;
1951 WALK_LIST(q, proto_list)
1952 if ((q->proto == pr) && (q->proto_state != PS_DOWN))
1953 {
1954 if (p)
1955 cf_error("There are multiple %s protocols running", pr->name);
1956 p = q;
1957 }
1958 if (!p)
1959 cf_error("There is no %s protocol running", pr->name);
1960 }
1961
1962 return p;
1963 }