]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/checks.adb
[Ada] Address potentially uninitialized variables and dead code
[thirdparty/gcc.git] / gcc / ada / checks.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
1d005acc 9-- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
f7ea2603 27with Casing; use Casing;
70482933
RK
28with Debug; use Debug;
29with Einfo; use Einfo;
aca670a0
AC
30with Elists; use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
70482933 33with Exp_Ch2; use Exp_Ch2;
fdfcc663 34with Exp_Ch4; use Exp_Ch4;
d8b9660d 35with Exp_Pakd; use Exp_Pakd;
70482933 36with Exp_Util; use Exp_Util;
a40ada7e 37with Expander; use Expander;
70482933 38with Freeze; use Freeze;
fbf5a39b 39with Lib; use Lib;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
fbf5a39b 43with Output; use Output;
980f237d 44with Restrict; use Restrict;
6e937c1c 45with Rident; use Rident;
70482933
RK
46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
a4100e55 48with Sem_Aux; use Sem_Aux;
5d09245e 49with Sem_Ch3; use Sem_Ch3;
fbf5a39b 50with Sem_Ch8; use Sem_Ch8;
7327f5c2 51with Sem_Disp; use Sem_Disp;
aca670a0 52with Sem_Eval; use Sem_Eval;
155f4f34 53with Sem_Mech; use Sem_Mech;
70482933
RK
54with Sem_Res; use Sem_Res;
55with Sem_Util; use Sem_Util;
56with Sem_Warn; use Sem_Warn;
57with Sinfo; use Sinfo;
fbf5a39b 58with Sinput; use Sinput;
70482933 59with Snames; use Snames;
fbf5a39b 60with Sprint; use Sprint;
70482933 61with Stand; use Stand;
baed70ac 62with Stringt; use Stringt;
07fc65c4 63with Targparm; use Targparm;
70482933
RK
64with Tbuild; use Tbuild;
65with Ttypes; use Ttypes;
70482933
RK
66with Validsw; use Validsw;
67
68package body Checks is
69
70 -- General note: many of these routines are concerned with generating
71 -- checking code to make sure that constraint error is raised at runtime.
72 -- Clearly this code is only needed if the expander is active, since
73 -- otherwise we will not be generating code or going into the runtime
74 -- execution anyway.
75
76 -- We therefore disconnect most of these checks if the expander is
77 -- inactive. This has the additional benefit that we do not need to
78 -- worry about the tree being messed up by previous errors (since errors
79 -- turn off expansion anyway).
80
81 -- There are a few exceptions to the above rule. For instance routines
82 -- such as Apply_Scalar_Range_Check that do not insert any code can be
83 -- safely called even when the Expander is inactive (but Errors_Detected
84 -- is 0). The benefit of executing this code when expansion is off, is
85 -- the ability to emit constraint error warning for static expressions
86 -- even when we are not generating code.
87
637a41a5
AC
88 -- The above is modified in gnatprove mode to ensure that proper check
89 -- flags are always placed, even if expansion is off.
90
fbf5a39b
AC
91 -------------------------------------
92 -- Suppression of Redundant Checks --
93 -------------------------------------
94
95 -- This unit implements a limited circuit for removal of redundant
96 -- checks. The processing is based on a tracing of simple sequential
97 -- flow. For any sequence of statements, we save expressions that are
98 -- marked to be checked, and then if the same expression appears later
99 -- with the same check, then under certain circumstances, the second
100 -- check can be suppressed.
101
102 -- Basically, we can suppress the check if we know for certain that
103 -- the previous expression has been elaborated (together with its
104 -- check), and we know that the exception frame is the same, and that
105 -- nothing has happened to change the result of the exception.
106
107 -- Let us examine each of these three conditions in turn to describe
108 -- how we ensure that this condition is met.
109
110 -- First, we need to know for certain that the previous expression has
308e6f3a 111 -- been executed. This is done principally by the mechanism of calling
fbf5a39b
AC
112 -- Conditional_Statements_Begin at the start of any statement sequence
113 -- and Conditional_Statements_End at the end. The End call causes all
114 -- checks remembered since the Begin call to be discarded. This does
115 -- miss a few cases, notably the case of a nested BEGIN-END block with
116 -- no exception handlers. But the important thing is to be conservative.
117 -- The other protection is that all checks are discarded if a label
118 -- is encountered, since then the assumption of sequential execution
119 -- is violated, and we don't know enough about the flow.
120
121 -- Second, we need to know that the exception frame is the same. We
122 -- do this by killing all remembered checks when we enter a new frame.
123 -- Again, that's over-conservative, but generally the cases we can help
124 -- with are pretty local anyway (like the body of a loop for example).
125
126 -- Third, we must be sure to forget any checks which are no longer valid.
127 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
128 -- used to note any changes to local variables. We only attempt to deal
129 -- with checks involving local variables, so we do not need to worry
130 -- about global variables. Second, a call to any non-global procedure
131 -- causes us to abandon all stored checks, since such a all may affect
132 -- the values of any local variables.
133
134 -- The following define the data structures used to deal with remembering
135 -- checks so that redundant checks can be eliminated as described above.
136
137 -- Right now, the only expressions that we deal with are of the form of
138 -- simple local objects (either declared locally, or IN parameters) or
139 -- such objects plus/minus a compile time known constant. We can do
140 -- more later on if it seems worthwhile, but this catches many simple
141 -- cases in practice.
142
143 -- The following record type reflects a single saved check. An entry
144 -- is made in the stack of saved checks if and only if the expression
145 -- has been elaborated with the indicated checks.
146
147 type Saved_Check is record
148 Killed : Boolean;
149 -- Set True if entry is killed by Kill_Checks
150
151 Entity : Entity_Id;
152 -- The entity involved in the expression that is checked
153
154 Offset : Uint;
155 -- A compile time value indicating the result of adding or
156 -- subtracting a compile time value. This value is to be
157 -- added to the value of the Entity. A value of zero is
158 -- used for the case of a simple entity reference.
159
160 Check_Type : Character;
161 -- This is set to 'R' for a range check (in which case Target_Type
162 -- is set to the target type for the range check) or to 'O' for an
163 -- overflow check (in which case Target_Type is set to Empty).
164
165 Target_Type : Entity_Id;
166 -- Used only if Do_Range_Check is set. Records the target type for
167 -- the check. We need this, because a check is a duplicate only if
308e6f3a 168 -- it has the same target type (or more accurately one with a
fbf5a39b
AC
169 -- range that is smaller or equal to the stored target type of a
170 -- saved check).
171 end record;
172
173 -- The following table keeps track of saved checks. Rather than use an
d1915cb8 174 -- extensible table, we just use a table of fixed size, and we discard
fbf5a39b
AC
175 -- any saved checks that do not fit. That's very unlikely to happen and
176 -- this is only an optimization in any case.
177
178 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
179 -- Array of saved checks
180
181 Num_Saved_Checks : Nat := 0;
182 -- Number of saved checks
183
184 -- The following stack keeps track of statement ranges. It is treated
185 -- as a stack. When Conditional_Statements_Begin is called, an entry
186 -- is pushed onto this stack containing the value of Num_Saved_Checks
187 -- at the time of the call. Then when Conditional_Statements_End is
188 -- called, this value is popped off and used to reset Num_Saved_Checks.
189
190 -- Note: again, this is a fixed length stack with a size that should
191 -- always be fine. If the value of the stack pointer goes above the
192 -- limit, then we just forget all saved checks.
193
194 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
195 Saved_Checks_TOS : Nat := 0;
196
197 -----------------------
198 -- Local Subprograms --
199 -----------------------
70482933 200
a7f1b24f 201 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
acad3c0a 202 -- Used to apply arithmetic overflow checks for all cases except operators
3ada950b 203 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
a7f1b24f
RD
204 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
205 -- signed integer arithmetic operator (but not an if or case expression).
206 -- It is also called for types other than signed integers.
acad3c0a
AC
207
208 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
209 -- Used to apply arithmetic overflow checks for the case where the overflow
a7f1b24f
RD
210 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
211 -- arithmetic op (which includes the case of if and case expressions). Note
212 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
213 -- we have work to do even if overflow checking is suppressed.
acad3c0a 214
a91e9ac7
AC
215 procedure Apply_Division_Check
216 (N : Node_Id;
217 Rlo : Uint;
218 Rhi : Uint;
219 ROK : Boolean);
220 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
221 -- division checks as required if the Do_Division_Check flag is set.
222 -- Rlo and Rhi give the possible range of the right operand, these values
223 -- can be referenced and trusted only if ROK is set True.
224
225 procedure Apply_Float_Conversion_Check
226 (Ck_Node : Node_Id;
227 Target_Typ : Entity_Id);
228 -- The checks on a conversion from a floating-point type to an integer
229 -- type are delicate. They have to be performed before conversion, they
230 -- have to raise an exception when the operand is a NaN, and rounding must
231 -- be taken into account to determine the safe bounds of the operand.
232
70482933
RK
233 procedure Apply_Selected_Length_Checks
234 (Ck_Node : Node_Id;
235 Target_Typ : Entity_Id;
236 Source_Typ : Entity_Id;
237 Do_Static : Boolean);
238 -- This is the subprogram that does all the work for Apply_Length_Check
239 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
240 -- described for the above routines. The Do_Static flag indicates that
241 -- only a static check is to be done.
242
243 procedure Apply_Selected_Range_Checks
244 (Ck_Node : Node_Id;
245 Target_Typ : Entity_Id;
246 Source_Typ : Entity_Id;
247 Do_Static : Boolean);
248 -- This is the subprogram that does all the work for Apply_Range_Check.
249 -- Expr, Target_Typ and Source_Typ are as described for the above
250 -- routine. The Do_Static flag indicates that only a static check is
251 -- to be done.
252
939c12d2 253 type Check_Type is new Check_Id range Access_Check .. Division_Check;
2ede092b
RD
254 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
255 -- This function is used to see if an access or division by zero check is
256 -- needed. The check is to be applied to a single variable appearing in the
257 -- source, and N is the node for the reference. If N is not of this form,
258 -- True is returned with no further processing. If N is of the right form,
259 -- then further processing determines if the given Check is needed.
260 --
261 -- The particular circuit is to see if we have the case of a check that is
262 -- not needed because it appears in the right operand of a short circuited
263 -- conditional where the left operand guards the check. For example:
264 --
265 -- if Var = 0 or else Q / Var > 12 then
266 -- ...
267 -- end if;
268 --
269 -- In this example, the division check is not required. At the same time
270 -- we can issue warnings for suspicious use of non-short-circuited forms,
271 -- such as:
272 --
273 -- if Var = 0 or Q / Var > 12 then
274 -- ...
275 -- end if;
276
fbf5a39b
AC
277 procedure Find_Check
278 (Expr : Node_Id;
279 Check_Type : Character;
280 Target_Type : Entity_Id;
281 Entry_OK : out Boolean;
282 Check_Num : out Nat;
283 Ent : out Entity_Id;
284 Ofs : out Uint);
285 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
286 -- to see if a check is of the form for optimization, and if so, to see
287 -- if it has already been performed. Expr is the expression to check,
288 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
289 -- Target_Type is the target type for a range check, and Empty for an
290 -- overflow check. If the entry is not of the form for optimization,
291 -- then Entry_OK is set to False, and the remaining out parameters
292 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
293 -- entity and offset from the expression. Check_Num is the number of
294 -- a matching saved entry in Saved_Checks, or zero if no such entry
295 -- is located.
296
70482933
RK
297 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
298 -- If a discriminal is used in constraining a prival, Return reference
299 -- to the discriminal of the protected body (which renames the parameter
300 -- of the enclosing protected operation). This clumsy transformation is
301 -- needed because privals are created too late and their actual subtypes
302 -- are not available when analysing the bodies of the protected operations.
c064e066
RD
303 -- This function is called whenever the bound is an entity and the scope
304 -- indicates a protected operation. If the bound is an in-parameter of
305 -- a protected operation that is not a prival, the function returns the
306 -- bound itself.
70482933
RK
307 -- To be cleaned up???
308
309 function Guard_Access
310 (Cond : Node_Id;
311 Loc : Source_Ptr;
6b6fcd3e 312 Ck_Node : Node_Id) return Node_Id;
70482933
RK
313 -- In the access type case, guard the test with a test to ensure
314 -- that the access value is non-null, since the checks do not
315 -- not apply to null access values.
316
317 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
318 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
319 -- Constraint_Error node.
320
acad3c0a
AC
321 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
322 -- Returns True if node N is for an arithmetic operation with signed
4b1c4f20
RD
323 -- integer operands. This includes unary and binary operators, and also
324 -- if and case expression nodes where the dependent expressions are of
325 -- a signed integer type. These are the kinds of nodes for which special
3ada950b 326 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
acad3c0a 327
c064e066
RD
328 function Range_Or_Validity_Checks_Suppressed
329 (Expr : Node_Id) return Boolean;
330 -- Returns True if either range or validity checks or both are suppressed
331 -- for the type of the given expression, or, if the expression is the name
332 -- of an entity, if these checks are suppressed for the entity.
333
70482933
RK
334 function Selected_Length_Checks
335 (Ck_Node : Node_Id;
336 Target_Typ : Entity_Id;
337 Source_Typ : Entity_Id;
6b6fcd3e 338 Warn_Node : Node_Id) return Check_Result;
70482933
RK
339 -- Like Apply_Selected_Length_Checks, except it doesn't modify
340 -- anything, just returns a list of nodes as described in the spec of
341 -- this package for the Range_Check function.
66340e0e
AC
342 -- ??? In fact it does construct the test and insert it into the tree,
343 -- and insert actions in various ways (calling Insert_Action directly
344 -- in particular) so we do not call it in GNATprove mode, contrary to
345 -- Selected_Range_Checks.
70482933
RK
346
347 function Selected_Range_Checks
348 (Ck_Node : Node_Id;
349 Target_Typ : Entity_Id;
350 Source_Typ : Entity_Id;
6b6fcd3e 351 Warn_Node : Node_Id) return Check_Result;
70482933
RK
352 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
353 -- just returns a list of nodes as described in the spec of this package
354 -- for the Range_Check function.
355
356 ------------------------------
357 -- Access_Checks_Suppressed --
358 ------------------------------
359
360 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
361 begin
fbf5a39b
AC
362 if Present (E) and then Checks_May_Be_Suppressed (E) then
363 return Is_Check_Suppressed (E, Access_Check);
364 else
3217f71e 365 return Scope_Suppress.Suppress (Access_Check);
fbf5a39b 366 end if;
70482933
RK
367 end Access_Checks_Suppressed;
368
369 -------------------------------------
370 -- Accessibility_Checks_Suppressed --
371 -------------------------------------
372
373 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
374 begin
fbf5a39b
AC
375 if Present (E) and then Checks_May_Be_Suppressed (E) then
376 return Is_Check_Suppressed (E, Accessibility_Check);
377 else
3217f71e 378 return Scope_Suppress.Suppress (Accessibility_Check);
fbf5a39b 379 end if;
70482933
RK
380 end Accessibility_Checks_Suppressed;
381
11b4899f
JM
382 -----------------------------
383 -- Activate_Division_Check --
384 -----------------------------
385
386 procedure Activate_Division_Check (N : Node_Id) is
387 begin
388 Set_Do_Division_Check (N, True);
389 Possible_Local_Raise (N, Standard_Constraint_Error);
390 end Activate_Division_Check;
391
392 -----------------------------
393 -- Activate_Overflow_Check --
394 -----------------------------
395
396 procedure Activate_Overflow_Check (N : Node_Id) is
bb304287
AC
397 Typ : constant Entity_Id := Etype (N);
398
11b4899f 399 begin
bb304287
AC
400 -- Floating-point case. If Etype is not set (this can happen when we
401 -- activate a check on a node that has not yet been analyzed), then
402 -- we assume we do not have a floating-point type (as per our spec).
403
404 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405
406 -- Ignore call if we have no automatic overflow checks on the target
407 -- and Check_Float_Overflow mode is not set. These are the cases in
408 -- which we expect to generate infinities and NaN's with no check.
409
410 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
411 return;
412
413 -- Ignore for unary operations ("+", "-", abs) since these can never
414 -- result in overflow for floating-point cases.
396eb900 415
bb304287
AC
416 elsif Nkind (N) in N_Unary_Op then
417 return;
418
419 -- Otherwise we will set the flag
420
421 else
422 null;
423 end if;
424
425 -- Discrete case
426
427 else
428 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
429 -- for zero-divide is a divide check, not an overflow check).
396eb900 430
bb304287
AC
431 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
432 return;
433 end if;
396eb900
AC
434 end if;
435
bb304287 436 -- Fall through for cases where we do set the flag
396eb900 437
a7191e01 438 Set_Do_Overflow_Check (N);
396eb900 439 Possible_Local_Raise (N, Standard_Constraint_Error);
11b4899f
JM
440 end Activate_Overflow_Check;
441
442 --------------------------
443 -- Activate_Range_Check --
444 --------------------------
445
446 procedure Activate_Range_Check (N : Node_Id) is
447 begin
68c8d72a 448 Set_Do_Range_Check (N);
11b4899f
JM
449 Possible_Local_Raise (N, Standard_Constraint_Error);
450 end Activate_Range_Check;
451
c064e066
RD
452 ---------------------------------
453 -- Alignment_Checks_Suppressed --
454 ---------------------------------
455
456 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
457 begin
458 if Present (E) and then Checks_May_Be_Suppressed (E) then
459 return Is_Check_Suppressed (E, Alignment_Check);
460 else
3217f71e 461 return Scope_Suppress.Suppress (Alignment_Check);
c064e066
RD
462 end if;
463 end Alignment_Checks_Suppressed;
464
b07b7ace
AC
465 ----------------------------------
466 -- Allocation_Checks_Suppressed --
467 ----------------------------------
468
59f4d038
RD
469 -- Note: at the current time there are no calls to this function, because
470 -- the relevant check is in the run-time, so it is not a check that the
471 -- compiler can suppress anyway, but we still have to recognize the check
472 -- name Allocation_Check since it is part of the standard.
473
b07b7ace
AC
474 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
475 begin
476 if Present (E) and then Checks_May_Be_Suppressed (E) then
477 return Is_Check_Suppressed (E, Allocation_Check);
478 else
479 return Scope_Suppress.Suppress (Allocation_Check);
480 end if;
481 end Allocation_Checks_Suppressed;
482
70482933
RK
483 -------------------------
484 -- Append_Range_Checks --
485 -------------------------
486
487 procedure Append_Range_Checks
488 (Checks : Check_Result;
489 Stmts : List_Id;
490 Suppress_Typ : Entity_Id;
491 Static_Sloc : Source_Ptr;
492 Flag_Node : Node_Id)
493 is
e0666fc6
AC
494 Checks_On : constant Boolean :=
495 not Index_Checks_Suppressed (Suppress_Typ)
496 or else
497 not Range_Checks_Suppressed (Suppress_Typ);
498
fbf5a39b
AC
499 Internal_Flag_Node : constant Node_Id := Flag_Node;
500 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501
70482933 502 begin
e0666fc6
AC
503 -- For now we just return if Checks_On is false, however this should be
504 -- enhanced to check for an always True value in the condition and to
505 -- generate a compilation warning???
70482933
RK
506
507 if not Checks_On then
508 return;
509 end if;
510
511 for J in 1 .. 2 loop
512 exit when No (Checks (J));
513
514 if Nkind (Checks (J)) = N_Raise_Constraint_Error
515 and then Present (Condition (Checks (J)))
516 then
517 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
518 Append_To (Stmts, Checks (J));
519 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
520 end if;
521
522 else
523 Append_To
07fc65c4
GB
524 (Stmts,
525 Make_Raise_Constraint_Error (Internal_Static_Sloc,
526 Reason => CE_Range_Check_Failed));
70482933
RK
527 end if;
528 end loop;
529 end Append_Range_Checks;
530
531 ------------------------
532 -- Apply_Access_Check --
533 ------------------------
534
535 procedure Apply_Access_Check (N : Node_Id) is
536 P : constant Node_Id := Prefix (N);
537
538 begin
2ede092b
RD
539 -- We do not need checks if we are not generating code (i.e. the
540 -- expander is not active). This is not just an optimization, there
541 -- are cases (e.g. with pragma Debug) where generating the checks
542 -- can cause real trouble).
6cdb2c6e 543
4460a9bc 544 if not Expander_Active then
2ede092b 545 return;
fbf5a39b 546 end if;
70482933 547
86ac5e79 548 -- No check if short circuiting makes check unnecessary
fbf5a39b 549
86ac5e79
ES
550 if not Check_Needed (P, Access_Check) then
551 return;
70482933 552 end if;
fbf5a39b 553
f2cbd970
JM
554 -- No check if accessing the Offset_To_Top component of a dispatch
555 -- table. They are safe by construction.
556
1be9633f
AC
557 if Tagged_Type_Expansion
558 and then Present (Etype (P))
f2cbd970
JM
559 and then RTU_Loaded (Ada_Tags)
560 and then RTE_Available (RE_Offset_To_Top_Ptr)
561 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
562 then
563 return;
564 end if;
565
86ac5e79 566 -- Otherwise go ahead and install the check
fbf5a39b 567
2820d220 568 Install_Null_Excluding_Check (P);
70482933
RK
569 end Apply_Access_Check;
570
571 -------------------------------
572 -- Apply_Accessibility_Check --
573 -------------------------------
574
e84e11ba
GD
575 procedure Apply_Accessibility_Check
576 (N : Node_Id;
577 Typ : Entity_Id;
578 Insert_Node : Node_Id)
579 is
29c64a0f
HK
580 Loc : constant Source_Ptr := Sloc (N);
581
ccf17305 582 Check_Cond : Node_Id;
29c64a0f 583 Param_Ent : Entity_Id := Param_Entity (N);
70482933
RK
584 Param_Level : Node_Id;
585 Type_Level : Node_Id;
586
587 begin
d15f9422
AC
588 if Ada_Version >= Ada_2012
589 and then not Present (Param_Ent)
590 and then Is_Entity_Name (N)
591 and then Ekind_In (Entity (N), E_Constant, E_Variable)
592 and then Present (Effective_Extra_Accessibility (Entity (N)))
593 then
594 Param_Ent := Entity (N);
595 while Present (Renamed_Object (Param_Ent)) loop
996c8821 596
d15f9422
AC
597 -- Renamed_Object must return an Entity_Name here
598 -- because of preceding "Present (E_E_A (...))" test.
599
600 Param_Ent := Entity (Renamed_Object (Param_Ent));
601 end loop;
602 end if;
603
70482933
RK
604 if Inside_A_Generic then
605 return;
606
d175a2fa
AC
607 -- Only apply the run-time check if the access parameter has an
608 -- associated extra access level parameter and when the level of the
609 -- type is less deep than the level of the access parameter, and
610 -- accessibility checks are not suppressed.
70482933
RK
611
612 elsif Present (Param_Ent)
613 and then Present (Extra_Accessibility (Param_Ent))
d15f9422 614 and then UI_Gt (Object_Access_Level (N),
996c8821 615 Deepest_Type_Access_Level (Typ))
70482933
RK
616 and then not Accessibility_Checks_Suppressed (Param_Ent)
617 and then not Accessibility_Checks_Suppressed (Typ)
618 then
619 Param_Level :=
620 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
621
8d21ff60
JS
622 -- Use the dynamic accessibility parameter for the function's result
623 -- when one has been created instead of statically referring to the
624 -- deepest type level so as to appropriatly handle the rules for
625 -- RM 3.10.2 (10.1/3).
626
627 if Ekind_In (Scope (Param_Ent), E_Function,
628 E_Operator,
629 E_Subprogram_Type)
630 and then Present (Extra_Accessibility_Of_Result (Scope (Param_Ent)))
631 then
632 Type_Level :=
633 New_Occurrence_Of
634 (Extra_Accessibility_Of_Result (Scope (Param_Ent)), Loc);
635 else
636 Type_Level :=
637 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
638 end if;
70482933 639
16b05213 640 -- Raise Program_Error if the accessibility level of the access
86ac5e79 641 -- parameter is deeper than the level of the target access type.
70482933 642
29c64a0f
HK
643 Check_Cond :=
644 Make_Op_Gt (Loc,
645 Left_Opnd => Param_Level,
646 Right_Opnd => Type_Level);
ccf17305 647
e84e11ba 648 Insert_Action (Insert_Node,
70482933 649 Make_Raise_Program_Error (Loc,
ccf17305
JS
650 Condition => Check_Cond,
651 Reason => PE_Accessibility_Check_Failed));
70482933
RK
652
653 Analyze_And_Resolve (N);
ccf17305
JS
654
655 -- If constant folding has happened on the condition for the
656 -- generated error, then warn about it being unconditional.
657
658 if Nkind (Check_Cond) = N_Identifier
659 and then Entity (Check_Cond) = Standard_True
660 then
661 Error_Msg_Warn := SPARK_Mode /= On;
29c64a0f
HK
662 Error_Msg_N ("accessibility check fails<<", N);
663 Error_Msg_N ("\Program_Error [<<", N);
ccf17305 664 end if;
70482933
RK
665 end if;
666 end Apply_Accessibility_Check;
667
c064e066
RD
668 --------------------------------
669 -- Apply_Address_Clause_Check --
670 --------------------------------
671
672 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
6f5c2c4b
AC
673 pragma Assert (Nkind (N) = N_Freeze_Entity);
674
80007176
AC
675 AC : constant Node_Id := Address_Clause (E);
676 Loc : constant Source_Ptr := Sloc (AC);
677 Typ : constant Entity_Id := Etype (E);
980f237d 678
980f237d 679 Expr : Node_Id;
c064e066
RD
680 -- Address expression (not necessarily the same as Aexp, for example
681 -- when Aexp is a reference to a constant, in which case Expr gets
aca670a0 682 -- reset to reference the value expression of the constant).
c064e066 683
980f237d 684 begin
f4cd2542
EB
685 -- See if alignment check needed. Note that we never need a check if the
686 -- maximum alignment is one, since the check will always succeed.
687
688 -- Note: we do not check for checks suppressed here, since that check
689 -- was done in Sem_Ch13 when the address clause was processed. We are
690 -- only called if checks were not suppressed. The reason for this is
691 -- that we have to delay the call to Apply_Alignment_Check till freeze
692 -- time (so that all types etc are elaborated), but we have to check
693 -- the status of check suppressing at the point of the address clause.
694
695 if No (AC)
696 or else not Check_Address_Alignment (AC)
697 or else Maximum_Alignment = 1
698 then
699 return;
700 end if;
701
702 -- Obtain expression from address clause
fbf5a39b 703
f26a3587 704 Expr := Address_Value (Expression (AC));
c064e066 705
f26a3587
AC
706 -- See if we know that Expr has an acceptable value at compile time. If
707 -- it hasn't or we don't know, we defer issuing the warning until the
708 -- end of the compilation to take into account back end annotations.
980f237d
GB
709
710 if Compile_Time_Known_Value (Expr)
ddda9d0f 711 and then (Known_Alignment (E) or else Known_Alignment (Typ))
980f237d 712 then
ddda9d0f
AC
713 declare
714 AL : Uint := Alignment (Typ);
715
716 begin
80007176
AC
717 -- The object alignment might be more restrictive than the type
718 -- alignment.
ddda9d0f
AC
719
720 if Known_Alignment (E) then
721 AL := Alignment (E);
722 end if;
723
f26a3587 724 if Expr_Value (Expr) mod AL = 0 then
c064e066 725 return;
ddda9d0f
AC
726 end if;
727 end;
980f237d 728
e9c12b91
AC
729 -- If the expression has the form X'Address, then we can find out if the
730 -- object X has an alignment that is compatible with the object E. If it
731 -- hasn't or we don't know, we defer issuing the warning until the end
732 -- of the compilation to take into account back end annotations.
980f237d 733
c064e066
RD
734 elsif Nkind (Expr) = N_Attribute_Reference
735 and then Attribute_Name (Expr) = Name_Address
e9c12b91
AC
736 and then
737 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
c064e066 738 then
f4cd2542 739 return;
c064e066 740 end if;
980f237d 741
308e6f3a
RW
742 -- Here we do not know if the value is acceptable. Strictly we don't
743 -- have to do anything, since if the alignment is bad, we have an
744 -- erroneous program. However we are allowed to check for erroneous
745 -- conditions and we decide to do this by default if the check is not
746 -- suppressed.
c064e066
RD
747
748 -- However, don't do the check if elaboration code is unwanted
749
750 if Restriction_Active (No_Elaboration_Code) then
751 return;
752
753 -- Generate a check to raise PE if alignment may be inappropriate
754
755 else
43018f58 756 -- If the original expression is a nonstatic constant, use the name
80007176
AC
757 -- of the constant itself rather than duplicating its initialization
758 -- expression, which was extracted above.
c064e066 759
11b4899f
JM
760 -- Note: Expr is empty if the address-clause is applied to in-mode
761 -- actuals (allowed by 13.1(22)).
762
763 if not Present (Expr)
764 or else
765 (Is_Entity_Name (Expression (AC))
766 and then Ekind (Entity (Expression (AC))) = E_Constant
80007176
AC
767 and then Nkind (Parent (Entity (Expression (AC)))) =
768 N_Object_Declaration)
c064e066
RD
769 then
770 Expr := New_Copy_Tree (Expression (AC));
771 else
772 Remove_Side_Effects (Expr);
980f237d 773 end if;
980f237d 774
6f5c2c4b
AC
775 if No (Actions (N)) then
776 Set_Actions (N, New_List);
777 end if;
778
779 Prepend_To (Actions (N),
c064e066
RD
780 Make_Raise_Program_Error (Loc,
781 Condition =>
782 Make_Op_Ne (Loc,
80007176 783 Left_Opnd =>
c064e066 784 Make_Op_Mod (Loc,
80007176 785 Left_Opnd =>
c064e066
RD
786 Unchecked_Convert_To
787 (RTE (RE_Integer_Address), Expr),
788 Right_Opnd =>
789 Make_Attribute_Reference (Loc,
6f5c2c4b 790 Prefix => New_Occurrence_Of (E, Loc),
c064e066
RD
791 Attribute_Name => Name_Alignment)),
792 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
80007176 793 Reason => PE_Misaligned_Address_Value));
aca670a0
AC
794
795 Warning_Msg := No_Error_Msg;
6f5c2c4b 796 Analyze (First (Actions (N)), Suppress => All_Checks);
3b4598a7 797
f26a3587 798 -- If the above raise action generated a warning message (for example
aca670a0
AC
799 -- from Warn_On_Non_Local_Exception mode with the active restriction
800 -- No_Exception_Propagation).
801
802 if Warning_Msg /= No_Error_Msg then
80007176 803
aca670a0
AC
804 -- If the expression has a known at compile time value, then
805 -- once we know the alignment of the type, we can check if the
806 -- exception will be raised or not, and if not, we don't need
807 -- the warning so we will kill the warning later on.
808
809 if Compile_Time_Known_Value (Expr) then
810 Alignment_Warnings.Append
5c13a04e
EB
811 ((E => E,
812 A => Expr_Value (Expr),
813 P => Empty,
814 W => Warning_Msg));
815
816 -- Likewise if the expression is of the form X'Address
817
818 elsif Nkind (Expr) = N_Attribute_Reference
819 and then Attribute_Name (Expr) = Name_Address
820 then
821 Alignment_Warnings.Append
822 ((E => E,
823 A => No_Uint,
824 P => Prefix (Expr),
825 W => Warning_Msg));
3b4598a7 826
80007176
AC
827 -- Add explanation of the warning generated by the check
828
829 else
f26a3587 830 Error_Msg_N
80007176
AC
831 ("\address value may be incompatible with alignment of "
832 & "object?X?", AC);
f26a3587 833 end if;
3b4598a7 834 end if;
6fd0a72a 835
c064e066
RD
836 return;
837 end if;
fbf5a39b
AC
838
839 exception
80007176 840
c064e066
RD
841 -- If we have some missing run time component in configurable run time
842 -- mode then just skip the check (it is not required in any case).
843
fbf5a39b
AC
844 when RE_Not_Available =>
845 return;
c064e066 846 end Apply_Address_Clause_Check;
980f237d 847
70482933
RK
848 -------------------------------------
849 -- Apply_Arithmetic_Overflow_Check --
850 -------------------------------------
851
acad3c0a
AC
852 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
853 begin
854 -- Use old routine in almost all cases (the only case we are treating
5707e389 855 -- specially is the case of a signed integer arithmetic op with the
a7f1b24f 856 -- overflow checking mode set to MINIMIZED or ELIMINATED).
acad3c0a 857
a7f1b24f 858 if Overflow_Check_Mode = Strict
acad3c0a
AC
859 or else not Is_Signed_Integer_Arithmetic_Op (N)
860 then
a7f1b24f 861 Apply_Arithmetic_Overflow_Strict (N);
acad3c0a 862
5707e389
AC
863 -- Otherwise use the new routine for the case of a signed integer
864 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
865 -- mode is MINIMIZED or ELIMINATED.
acad3c0a
AC
866
867 else
868 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
869 end if;
870 end Apply_Arithmetic_Overflow_Check;
871
a7f1b24f
RD
872 --------------------------------------
873 -- Apply_Arithmetic_Overflow_Strict --
874 --------------------------------------
acad3c0a 875
13230c68
AC
876 -- This routine is called only if the type is an integer type and an
877 -- arithmetic overflow check may be needed for op (add, subtract, or
878 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
879 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
ec2dd67a
RD
880 -- operation into a more complex sequence of tests that ensures that
881 -- overflow is properly caught.
70482933 882
a7f1b24f
RD
883 -- This is used in CHECKED modes. It is identical to the code for this
884 -- cases before the big overflow earthquake, thus ensuring that in this
885 -- modes we have compatible behavior (and reliability) to what was there
886 -- before. It is also called for types other than signed integers, and if
887 -- the Do_Overflow_Check flag is off.
acad3c0a
AC
888
889 -- Note: we also call this routine if we decide in the MINIMIZED case
890 -- to give up and just generate an overflow check without any fuss.
891
a7f1b24f 892 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
5707e389
AC
893 Loc : constant Source_Ptr := Sloc (N);
894 Typ : constant Entity_Id := Etype (N);
895 Rtyp : constant Entity_Id := Root_Type (Typ);
70482933
RK
896
897 begin
a7f1b24f
RD
898 -- Nothing to do if Do_Overflow_Check not set or overflow checks
899 -- suppressed.
900
901 if not Do_Overflow_Check (N) then
902 return;
903 end if;
904
ec2dd67a
RD
905 -- An interesting special case. If the arithmetic operation appears as
906 -- the operand of a type conversion:
907
908 -- type1 (x op y)
909
910 -- and all the following conditions apply:
911
912 -- arithmetic operation is for a signed integer type
913 -- target type type1 is a static integer subtype
914 -- range of x and y are both included in the range of type1
915 -- range of x op y is included in the range of type1
916 -- size of type1 is at least twice the result size of op
917
4404c282 918 -- then we don't do an overflow check in any case. Instead, we transform
ec2dd67a
RD
919 -- the operation so that we end up with:
920
921 -- type1 (type1 (x) op type1 (y))
922
923 -- This avoids intermediate overflow before the conversion. It is
924 -- explicitly permitted by RM 3.5.4(24):
925
926 -- For the execution of a predefined operation of a signed integer
927 -- type, the implementation need not raise Constraint_Error if the
928 -- result is outside the base range of the type, so long as the
929 -- correct result is produced.
930
931 -- It's hard to imagine that any programmer counts on the exception
932 -- being raised in this case, and in any case it's wrong coding to
933 -- have this expectation, given the RM permission. Furthermore, other
934 -- Ada compilers do allow such out of range results.
935
936 -- Note that we do this transformation even if overflow checking is
937 -- off, since this is precisely about giving the "right" result and
938 -- avoiding the need for an overflow check.
939
eaa826f8
RD
940 -- Note: this circuit is partially redundant with respect to the similar
941 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
942 -- with cases that do not come through here. We still need the following
943 -- processing even with the Exp_Ch4 code in place, since we want to be
944 -- sure not to generate the arithmetic overflow check in these cases
945 -- (Exp_Ch4 would have a hard time removing them once generated).
946
ec2dd67a
RD
947 if Is_Signed_Integer_Type (Typ)
948 and then Nkind (Parent (N)) = N_Type_Conversion
70482933 949 then
b6b5cca8 950 Conversion_Optimization : declare
ec2dd67a 951 Target_Type : constant Entity_Id :=
15f0f591 952 Base_Type (Entity (Subtype_Mark (Parent (N))));
ec2dd67a
RD
953
954 Llo, Lhi : Uint;
955 Rlo, Rhi : Uint;
956 LOK, ROK : Boolean;
957
958 Vlo : Uint;
959 Vhi : Uint;
960 VOK : Boolean;
961
962 Tlo : Uint;
963 Thi : Uint;
964
965 begin
966 if Is_Integer_Type (Target_Type)
967 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
968 then
969 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
970 Thi := Expr_Value (Type_High_Bound (Target_Type));
971
c800f862
RD
972 Determine_Range
973 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
974 Determine_Range
975 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
ec2dd67a
RD
976
977 if (LOK and ROK)
978 and then Tlo <= Llo and then Lhi <= Thi
979 and then Tlo <= Rlo and then Rhi <= Thi
980 then
c800f862 981 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
ec2dd67a
RD
982
983 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
984 Rewrite (Left_Opnd (N),
985 Make_Type_Conversion (Loc,
986 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
987 Expression => Relocate_Node (Left_Opnd (N))));
988
989 Rewrite (Right_Opnd (N),
990 Make_Type_Conversion (Loc,
991 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
992 Expression => Relocate_Node (Right_Opnd (N))));
993
4fb0b3f0
AC
994 -- Rewrite the conversion operand so that the original
995 -- node is retained, in order to avoid the warning for
996 -- redundant conversions in Resolve_Type_Conversion.
997
998 Rewrite (N, Relocate_Node (N));
999
ec2dd67a 1000 Set_Etype (N, Target_Type);
4fb0b3f0 1001
ec2dd67a
RD
1002 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
1003 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
1004
1005 -- Given that the target type is twice the size of the
1006 -- source type, overflow is now impossible, so we can
1007 -- safely kill the overflow check and return.
1008
1009 Set_Do_Overflow_Check (N, False);
1010 return;
1011 end if;
1012 end if;
1013 end if;
b6b5cca8 1014 end Conversion_Optimization;
70482933
RK
1015 end if;
1016
ec2dd67a
RD
1017 -- Now see if an overflow check is required
1018
1019 declare
1020 Siz : constant Int := UI_To_Int (Esize (Rtyp));
1021 Dsiz : constant Int := Siz * 2;
1022 Opnod : Node_Id;
1023 Ctyp : Entity_Id;
1024 Opnd : Node_Id;
1025 Cent : RE_Id;
70482933 1026
ec2dd67a
RD
1027 begin
1028 -- Skip check if back end does overflow checks, or the overflow flag
fdfcc663
AC
1029 -- is not set anyway, or we are not doing code expansion, or the
1030 -- parent node is a type conversion whose operand is an arithmetic
1031 -- operation on signed integers on which the expander can promote
0c0c6f49 1032 -- later the operands to type Integer (see Expand_N_Type_Conversion).
70482933 1033
ec2dd67a
RD
1034 if Backend_Overflow_Checks_On_Target
1035 or else not Do_Overflow_Check (N)
4460a9bc 1036 or else not Expander_Active
fdfcc663
AC
1037 or else (Present (Parent (N))
1038 and then Nkind (Parent (N)) = N_Type_Conversion
1039 and then Integer_Promotion_Possible (Parent (N)))
ec2dd67a
RD
1040 then
1041 return;
1042 end if;
70482933 1043
ec2dd67a
RD
1044 -- Otherwise, generate the full general code for front end overflow
1045 -- detection, which works by doing arithmetic in a larger type:
70482933 1046
ec2dd67a 1047 -- x op y
70482933 1048
ec2dd67a 1049 -- is expanded into
70482933 1050
ec2dd67a 1051 -- Typ (Checktyp (x) op Checktyp (y));
70482933 1052
ec2dd67a
RD
1053 -- where Typ is the type of the original expression, and Checktyp is
1054 -- an integer type of sufficient length to hold the largest possible
1055 -- result.
70482933 1056
ec2dd67a
RD
1057 -- If the size of check type exceeds the size of Long_Long_Integer,
1058 -- we use a different approach, expanding to:
70482933 1059
ec2dd67a 1060 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
70482933 1061
ec2dd67a 1062 -- where xxx is Add, Multiply or Subtract as appropriate
70482933 1063
ec2dd67a
RD
1064 -- Find check type if one exists
1065
1066 if Dsiz <= Standard_Integer_Size then
1067 Ctyp := Standard_Integer;
70482933 1068
ec2dd67a
RD
1069 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1070 Ctyp := Standard_Long_Long_Integer;
1071
ce532f42 1072 -- No check type exists, use runtime call
70482933
RK
1073
1074 else
ec2dd67a
RD
1075 if Nkind (N) = N_Op_Add then
1076 Cent := RE_Add_With_Ovflo_Check;
70482933 1077
ec2dd67a
RD
1078 elsif Nkind (N) = N_Op_Multiply then
1079 Cent := RE_Multiply_With_Ovflo_Check;
70482933 1080
ec2dd67a
RD
1081 else
1082 pragma Assert (Nkind (N) = N_Op_Subtract);
1083 Cent := RE_Subtract_With_Ovflo_Check;
1084 end if;
1085
1086 Rewrite (N,
1087 OK_Convert_To (Typ,
1088 Make_Function_Call (Loc,
e4494292 1089 Name => New_Occurrence_Of (RTE (Cent), Loc),
ec2dd67a
RD
1090 Parameter_Associations => New_List (
1091 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1092 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
70482933 1093
ec2dd67a
RD
1094 Analyze_And_Resolve (N, Typ);
1095 return;
1096 end if;
70482933 1097
ec2dd67a
RD
1098 -- If we fall through, we have the case where we do the arithmetic
1099 -- in the next higher type and get the check by conversion. In these
1100 -- cases Ctyp is set to the type to be used as the check type.
70482933 1101
ec2dd67a 1102 Opnod := Relocate_Node (N);
70482933 1103
ec2dd67a 1104 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
70482933 1105
ec2dd67a
RD
1106 Analyze (Opnd);
1107 Set_Etype (Opnd, Ctyp);
1108 Set_Analyzed (Opnd, True);
1109 Set_Left_Opnd (Opnod, Opnd);
70482933 1110
ec2dd67a 1111 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
70482933 1112
ec2dd67a
RD
1113 Analyze (Opnd);
1114 Set_Etype (Opnd, Ctyp);
1115 Set_Analyzed (Opnd, True);
1116 Set_Right_Opnd (Opnod, Opnd);
70482933 1117
ec2dd67a
RD
1118 -- The type of the operation changes to the base type of the check
1119 -- type, and we reset the overflow check indication, since clearly no
1120 -- overflow is possible now that we are using a double length type.
1121 -- We also set the Analyzed flag to avoid a recursive attempt to
1122 -- expand the node.
70482933 1123
ec2dd67a
RD
1124 Set_Etype (Opnod, Base_Type (Ctyp));
1125 Set_Do_Overflow_Check (Opnod, False);
1126 Set_Analyzed (Opnod, True);
70482933 1127
ec2dd67a 1128 -- Now build the outer conversion
70482933 1129
ec2dd67a
RD
1130 Opnd := OK_Convert_To (Typ, Opnod);
1131 Analyze (Opnd);
1132 Set_Etype (Opnd, Typ);
fbf5a39b 1133
ec2dd67a
RD
1134 -- In the discrete type case, we directly generate the range check
1135 -- for the outer operand. This range check will implement the
1136 -- required overflow check.
fbf5a39b 1137
ec2dd67a
RD
1138 if Is_Discrete_Type (Typ) then
1139 Rewrite (N, Opnd);
1140 Generate_Range_Check
1141 (Expression (N), Typ, CE_Overflow_Check_Failed);
fbf5a39b 1142
ec2dd67a
RD
1143 -- For other types, we enable overflow checking on the conversion,
1144 -- after setting the node as analyzed to prevent recursive attempts
1145 -- to expand the conversion node.
fbf5a39b 1146
ec2dd67a
RD
1147 else
1148 Set_Analyzed (Opnd, True);
1149 Enable_Overflow_Check (Opnd);
1150 Rewrite (N, Opnd);
1151 end if;
1152
1153 exception
1154 when RE_Not_Available =>
1155 return;
1156 end;
a7f1b24f 1157 end Apply_Arithmetic_Overflow_Strict;
acad3c0a
AC
1158
1159 ----------------------------------------------------
1160 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1161 ----------------------------------------------------
1162
1163 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1164 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
acad3c0a
AC
1165
1166 Loc : constant Source_Ptr := Sloc (Op);
1167 P : constant Node_Id := Parent (Op);
1168
d79059a3
AC
1169 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1170 -- Operands and results are of this type when we convert
1171
acad3c0a
AC
1172 Result_Type : constant Entity_Id := Etype (Op);
1173 -- Original result type
1174
15c94a55 1175 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
1176 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1177
1178 Lo, Hi : Uint;
1179 -- Ranges of values for result
1180
1181 begin
1182 -- Nothing to do if our parent is one of the following:
1183
4b1c4f20 1184 -- Another signed integer arithmetic op
acad3c0a
AC
1185 -- A membership operation
1186 -- A comparison operation
1187
1188 -- In all these cases, we will process at the higher level (and then
1189 -- this node will be processed during the downwards recursion that
a7f1b24f 1190 -- is part of the processing in Minimize_Eliminate_Overflows).
acad3c0a
AC
1191
1192 if Is_Signed_Integer_Arithmetic_Op (P)
71fb4dc8
AC
1193 or else Nkind (P) in N_Membership_Test
1194 or else Nkind (P) in N_Op_Compare
f6194278 1195
f6636994
AC
1196 -- This is also true for an alternative in a case expression
1197
1198 or else Nkind (P) = N_Case_Expression_Alternative
1199
1200 -- This is also true for a range operand in a membership test
f6194278 1201
71fb4dc8
AC
1202 or else (Nkind (P) = N_Range
1203 and then Nkind (Parent (P)) in N_Membership_Test)
acad3c0a 1204 then
fdc54be6
AC
1205 -- If_Expressions and Case_Expressions are treated as arithmetic
1206 -- ops, but if they appear in an assignment or similar contexts
1207 -- there is no overflow check that starts from that parent node,
1208 -- so apply check now.
1209
1210 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1211 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1212 then
1213 null;
1214 else
1215 return;
1216 end if;
acad3c0a
AC
1217 end if;
1218
4b1c4f20 1219 -- Otherwise, we have a top level arithmetic operation node, and this
5707e389
AC
1220 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1221 -- modes. This is the case where we tell the machinery not to move into
1222 -- Bignum mode at this top level (of course the top level operation
1223 -- will still be in Bignum mode if either of its operands are of type
1224 -- Bignum).
acad3c0a 1225
a7f1b24f 1226 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
acad3c0a
AC
1227
1228 -- That call may but does not necessarily change the result type of Op.
1229 -- It is the job of this routine to undo such changes, so that at the
1230 -- top level, we have the proper type. This "undoing" is a point at
1231 -- which a final overflow check may be applied.
1232
b6b5cca8
AC
1233 -- If the result type was not fiddled we are all set. We go to base
1234 -- types here because things may have been rewritten to generate the
1235 -- base type of the operand types.
acad3c0a 1236
b6b5cca8 1237 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
acad3c0a
AC
1238 return;
1239
1240 -- Bignum case
1241
d79059a3 1242 elsif Is_RTE (Etype (Op), RE_Bignum) then
acad3c0a 1243
456cbfa5 1244 -- We need a sequence that looks like:
acad3c0a
AC
1245
1246 -- Rnn : Result_Type;
1247
1248 -- declare
456cbfa5 1249 -- M : Mark_Id := SS_Mark;
acad3c0a 1250 -- begin
d79059a3 1251 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
acad3c0a
AC
1252 -- SS_Release (M);
1253 -- end;
1254
1255 -- This block is inserted (using Insert_Actions), and then the node
1256 -- is replaced with a reference to Rnn.
1257
e645cb39 1258 -- If our parent is a conversion node then there is no point in
4404c282 1259 -- generating a conversion to Result_Type. Instead, we let the parent
e645cb39
AC
1260 -- handle this. Note that this special case is not just about
1261 -- optimization. Consider
acad3c0a
AC
1262
1263 -- A,B,C : Integer;
1264 -- ...
d79059a3 1265 -- X := Long_Long_Integer'Base (A * (B ** C));
acad3c0a
AC
1266
1267 -- Now the product may fit in Long_Long_Integer but not in Integer.
5707e389
AC
1268 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1269 -- overflow exception for this intermediate value.
acad3c0a
AC
1270
1271 declare
d79059a3 1272 Blk : constant Node_Id := Make_Bignum_Block (Loc);
acad3c0a
AC
1273 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1274 RHS : Node_Id;
1275
1276 Rtype : Entity_Id;
1277
1278 begin
1279 RHS := Convert_From_Bignum (Op);
1280
1281 if Nkind (P) /= N_Type_Conversion then
d79059a3 1282 Convert_To_And_Rewrite (Result_Type, RHS);
acad3c0a
AC
1283 Rtype := Result_Type;
1284
1285 -- Interesting question, do we need a check on that conversion
1286 -- operation. Answer, not if we know the result is in range.
1287 -- At the moment we are not taking advantage of this. To be
1288 -- looked at later ???
1289
1290 else
d79059a3 1291 Rtype := LLIB;
acad3c0a
AC
1292 end if;
1293
1294 Insert_Before
1295 (First (Statements (Handled_Statement_Sequence (Blk))),
1296 Make_Assignment_Statement (Loc,
1297 Name => New_Occurrence_Of (Rnn, Loc),
1298 Expression => RHS));
1299
1300 Insert_Actions (Op, New_List (
1301 Make_Object_Declaration (Loc,
1302 Defining_Identifier => Rnn,
1303 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1304 Blk));
1305
1306 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1307 Analyze_And_Resolve (Op);
1308 end;
1309
fdc54be6 1310 -- Here we know the result is Long_Long_Integer'Base, or that it has
60b68e56 1311 -- been rewritten because the parent operation is a conversion. See
a7f1b24f 1312 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
acad3c0a
AC
1313
1314 else
b6b5cca8
AC
1315 pragma Assert
1316 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
acad3c0a
AC
1317
1318 -- All we need to do here is to convert the result to the proper
1319 -- result type. As explained above for the Bignum case, we can
1320 -- omit this if our parent is a type conversion.
1321
1322 if Nkind (P) /= N_Type_Conversion then
1323 Convert_To_And_Rewrite (Result_Type, Op);
1324 end if;
1325
1326 Analyze_And_Resolve (Op);
1327 end if;
1328 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
70482933 1329
70482933
RK
1330 ----------------------------
1331 -- Apply_Constraint_Check --
1332 ----------------------------
1333
1334 procedure Apply_Constraint_Check
1335 (N : Node_Id;
1336 Typ : Entity_Id;
1337 No_Sliding : Boolean := False)
1338 is
1339 Desig_Typ : Entity_Id;
1340
1341 begin
48f91b44
RD
1342 -- No checks inside a generic (check the instantiations)
1343
70482933
RK
1344 if Inside_A_Generic then
1345 return;
48f91b44 1346 end if;
70482933 1347
308e6f3a 1348 -- Apply required constraint checks
48f91b44
RD
1349
1350 if Is_Scalar_Type (Typ) then
70482933
RK
1351 Apply_Scalar_Range_Check (N, Typ);
1352
1353 elsif Is_Array_Type (Typ) then
1354
d8b9660d 1355 -- A useful optimization: an aggregate with only an others clause
c84700e7
ES
1356 -- always has the right bounds.
1357
1358 if Nkind (N) = N_Aggregate
1359 and then No (Expressions (N))
1360 and then Nkind
1361 (First (Choices (First (Component_Associations (N)))))
1362 = N_Others_Choice
1363 then
1364 return;
1365 end if;
1366
70482933
RK
1367 if Is_Constrained (Typ) then
1368 Apply_Length_Check (N, Typ);
1369
1370 if No_Sliding then
1371 Apply_Range_Check (N, Typ);
1372 end if;
1373 else
1374 Apply_Range_Check (N, Typ);
1375 end if;
1376
a40ada7e 1377 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
70482933
RK
1378 and then Has_Discriminants (Base_Type (Typ))
1379 and then Is_Constrained (Typ)
1380 then
1381 Apply_Discriminant_Check (N, Typ);
1382
1383 elsif Is_Access_Type (Typ) then
1384
1385 Desig_Typ := Designated_Type (Typ);
1386
1387 -- No checks necessary if expression statically null
1388
939c12d2 1389 if Known_Null (N) then
11b4899f
JM
1390 if Can_Never_Be_Null (Typ) then
1391 Install_Null_Excluding_Check (N);
1392 end if;
70482933
RK
1393
1394 -- No sliding possible on access to arrays
1395
1396 elsif Is_Array_Type (Desig_Typ) then
1397 if Is_Constrained (Desig_Typ) then
1398 Apply_Length_Check (N, Typ);
1399 end if;
1400
1401 Apply_Range_Check (N, Typ);
1402
99bba92c
AC
1403 -- Do not install a discriminant check for a constrained subtype
1404 -- created for an unconstrained nominal type because the subtype
1405 -- has the correct constraints by construction.
1406
70482933 1407 elsif Has_Discriminants (Base_Type (Desig_Typ))
99bba92c
AC
1408 and then Is_Constrained (Desig_Typ)
1409 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
70482933
RK
1410 then
1411 Apply_Discriminant_Check (N, Typ);
1412 end if;
2820d220 1413
16b05213 1414 -- Apply the 2005 Null_Excluding check. Note that we do not apply
11b4899f
JM
1415 -- this check if the constraint node is illegal, as shown by having
1416 -- an error posted. This additional guard prevents cascaded errors
1417 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1418
2820d220
AC
1419 if Can_Never_Be_Null (Typ)
1420 and then not Can_Never_Be_Null (Etype (N))
11b4899f 1421 and then not Error_Posted (N)
2820d220
AC
1422 then
1423 Install_Null_Excluding_Check (N);
1424 end if;
70482933
RK
1425 end if;
1426 end Apply_Constraint_Check;
1427
1428 ------------------------------
1429 -- Apply_Discriminant_Check --
1430 ------------------------------
1431
1432 procedure Apply_Discriminant_Check
1433 (N : Node_Id;
1434 Typ : Entity_Id;
1435 Lhs : Node_Id := Empty)
1436 is
1437 Loc : constant Source_Ptr := Sloc (N);
1438 Do_Access : constant Boolean := Is_Access_Type (Typ);
1439 S_Typ : Entity_Id := Etype (N);
1440 Cond : Node_Id;
1441 T_Typ : Entity_Id;
1442
438ff97c
ES
1443 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1444 -- A heap object with an indefinite subtype is constrained by its
1445 -- initial value, and assigning to it requires a constraint_check.
1446 -- The target may be an explicit dereference, or a renaming of one.
1447
70482933
RK
1448 function Is_Aliased_Unconstrained_Component return Boolean;
1449 -- It is possible for an aliased component to have a nominal
1450 -- unconstrained subtype (through instantiation). If this is a
1451 -- discriminated component assigned in the expansion of an aggregate
1452 -- in an initialization, the check must be suppressed. This unusual
939c12d2 1453 -- situation requires a predicate of its own.
70482933 1454
438ff97c
ES
1455 ----------------------------------
1456 -- Denotes_Explicit_Dereference --
1457 ----------------------------------
1458
1459 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1460 begin
1461 return
1462 Nkind (Obj) = N_Explicit_Dereference
1463 or else
1464 (Is_Entity_Name (Obj)
1465 and then Present (Renamed_Object (Entity (Obj)))
e074d476
AC
1466 and then Nkind (Renamed_Object (Entity (Obj))) =
1467 N_Explicit_Dereference);
438ff97c
ES
1468 end Denotes_Explicit_Dereference;
1469
70482933
RK
1470 ----------------------------------------
1471 -- Is_Aliased_Unconstrained_Component --
1472 ----------------------------------------
1473
1474 function Is_Aliased_Unconstrained_Component return Boolean is
1475 Comp : Entity_Id;
1476 Pref : Node_Id;
1477
1478 begin
1479 if Nkind (Lhs) /= N_Selected_Component then
1480 return False;
1481 else
1482 Comp := Entity (Selector_Name (Lhs));
1483 Pref := Prefix (Lhs);
1484 end if;
1485
1486 if Ekind (Comp) /= E_Component
1487 or else not Is_Aliased (Comp)
1488 then
1489 return False;
1490 end if;
1491
1492 return not Comes_From_Source (Pref)
1493 and then In_Instance
1494 and then not Is_Constrained (Etype (Comp));
1495 end Is_Aliased_Unconstrained_Component;
1496
1497 -- Start of processing for Apply_Discriminant_Check
1498
1499 begin
1500 if Do_Access then
1501 T_Typ := Designated_Type (Typ);
1502 else
1503 T_Typ := Typ;
1504 end if;
1505
6ae40af3
ES
1506 -- If the expression is a function call that returns a limited object
1507 -- it cannot be copied. It is not clear how to perform the proper
1508 -- discriminant check in this case because the discriminant value must
1509 -- be retrieved from the constructed object itself.
1510
1511 if Nkind (N) = N_Function_Call
1512 and then Is_Limited_Type (Typ)
1513 and then Is_Entity_Name (Name (N))
1514 and then Returns_By_Ref (Entity (Name (N)))
1515 then
1516 return;
1517 end if;
1518
27bb7941
AC
1519 -- Only apply checks when generating code and discriminant checks are
1520 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1521 -- still analyze the expression to possibly issue errors on SPARK code
1522 -- when a run-time error can be detected at compile time.
1523
1524 if not GNATprove_Mode then
1525 if not Expander_Active
1526 or else Discriminant_Checks_Suppressed (T_Typ)
1527 then
1528 return;
1529 end if;
70482933
RK
1530 end if;
1531
675d6070
TQ
1532 -- No discriminant checks necessary for an access when expression is
1533 -- statically Null. This is not only an optimization, it is fundamental
1534 -- because otherwise discriminant checks may be generated in init procs
1535 -- for types containing an access to a not-yet-frozen record, causing a
1536 -- deadly forward reference.
70482933 1537
675d6070
TQ
1538 -- Also, if the expression is of an access type whose designated type is
1539 -- incomplete, then the access value must be null and we suppress the
1540 -- check.
70482933 1541
939c12d2 1542 if Known_Null (N) then
70482933
RK
1543 return;
1544
1545 elsif Is_Access_Type (S_Typ) then
1546 S_Typ := Designated_Type (S_Typ);
1547
1548 if Ekind (S_Typ) = E_Incomplete_Type then
1549 return;
1550 end if;
1551 end if;
1552
c064e066
RD
1553 -- If an assignment target is present, then we need to generate the
1554 -- actual subtype if the target is a parameter or aliased object with
1555 -- an unconstrained nominal subtype.
1556
1557 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1558 -- subtype to the parameter and dereference cases, since other aliased
1559 -- objects are unconstrained (unless the nominal subtype is explicitly
438ff97c 1560 -- constrained).
70482933
RK
1561
1562 if Present (Lhs)
1563 and then (Present (Param_Entity (Lhs))
0791fbe9 1564 or else (Ada_Version < Ada_2005
c064e066 1565 and then not Is_Constrained (T_Typ)
70482933 1566 and then Is_Aliased_View (Lhs)
c064e066 1567 and then not Is_Aliased_Unconstrained_Component)
0791fbe9 1568 or else (Ada_Version >= Ada_2005
c064e066 1569 and then not Is_Constrained (T_Typ)
438ff97c 1570 and then Denotes_Explicit_Dereference (Lhs)
c064e066
RD
1571 and then Nkind (Original_Node (Lhs)) /=
1572 N_Function_Call))
70482933
RK
1573 then
1574 T_Typ := Get_Actual_Subtype (Lhs);
1575 end if;
1576
675d6070
TQ
1577 -- Nothing to do if the type is unconstrained (this is the case where
1578 -- the actual subtype in the RM sense of N is unconstrained and no check
1579 -- is required).
70482933
RK
1580
1581 if not Is_Constrained (T_Typ) then
1582 return;
d8b9660d
ES
1583
1584 -- Ada 2005: nothing to do if the type is one for which there is a
1585 -- partial view that is constrained.
1586
0791fbe9 1587 elsif Ada_Version >= Ada_2005
0fbcb11c 1588 and then Object_Type_Has_Constrained_Partial_View
414b312e
AC
1589 (Typ => Base_Type (T_Typ),
1590 Scop => Current_Scope)
d8b9660d
ES
1591 then
1592 return;
70482933
RK
1593 end if;
1594
5d09245e
AC
1595 -- Nothing to do if the type is an Unchecked_Union
1596
1597 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1598 return;
1599 end if;
1600
6b6041ec 1601 -- Suppress checks if the subtypes are the same. The check must be
675d6070
TQ
1602 -- preserved in an assignment to a formal, because the constraint is
1603 -- given by the actual.
70482933
RK
1604
1605 if Nkind (Original_Node (N)) /= N_Allocator
1606 and then (No (Lhs)
9972d439
RD
1607 or else not Is_Entity_Name (Lhs)
1608 or else No (Param_Entity (Lhs)))
70482933
RK
1609 then
1610 if (Etype (N) = Typ
1611 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1612 and then not Is_Aliased_View (Lhs)
1613 then
1614 return;
1615 end if;
1616
675d6070
TQ
1617 -- We can also eliminate checks on allocators with a subtype mark that
1618 -- coincides with the context type. The context type may be a subtype
1619 -- without a constraint (common case, a generic actual).
70482933
RK
1620
1621 elsif Nkind (Original_Node (N)) = N_Allocator
1622 and then Is_Entity_Name (Expression (Original_Node (N)))
1623 then
1624 declare
fbf5a39b 1625 Alloc_Typ : constant Entity_Id :=
15f0f591 1626 Entity (Expression (Original_Node (N)));
70482933
RK
1627
1628 begin
1629 if Alloc_Typ = T_Typ
1630 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1631 and then Is_Entity_Name (
1632 Subtype_Indication (Parent (T_Typ)))
1633 and then Alloc_Typ = Base_Type (T_Typ))
1634
1635 then
1636 return;
1637 end if;
1638 end;
1639 end if;
1640
675d6070
TQ
1641 -- See if we have a case where the types are both constrained, and all
1642 -- the constraints are constants. In this case, we can do the check
1643 -- successfully at compile time.
70482933 1644
6b6041ec 1645 -- We skip this check for the case where the node is rewritten as
c91dbd18
AC
1646 -- an allocator, because it already carries the context subtype,
1647 -- and extracting the discriminants from the aggregate is messy.
70482933
RK
1648
1649 if Is_Constrained (S_Typ)
1650 and then Nkind (Original_Node (N)) /= N_Allocator
1651 then
1652 declare
1653 DconT : Elmt_Id;
1654 Discr : Entity_Id;
1655 DconS : Elmt_Id;
1656 ItemS : Node_Id;
1657 ItemT : Node_Id;
1658
1659 begin
1660 -- S_Typ may not have discriminants in the case where it is a
675d6070 1661 -- private type completed by a default discriminated type. In that
6b6041ec 1662 -- case, we need to get the constraints from the underlying type.
675d6070
TQ
1663 -- If the underlying type is unconstrained (i.e. has no default
1664 -- discriminants) no check is needed.
70482933
RK
1665
1666 if Has_Discriminants (S_Typ) then
1667 Discr := First_Discriminant (S_Typ);
1668 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1669
1670 else
1671 Discr := First_Discriminant (Underlying_Type (S_Typ));
1672 DconS :=
1673 First_Elmt
1674 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1675
1676 if No (DconS) then
1677 return;
1678 end if;
65356e64
AC
1679
1680 -- A further optimization: if T_Typ is derived from S_Typ
1681 -- without imposing a constraint, no check is needed.
1682
1683 if Nkind (Original_Node (Parent (T_Typ))) =
1684 N_Full_Type_Declaration
1685 then
1686 declare
91b1417d 1687 Type_Def : constant Node_Id :=
15f0f591 1688 Type_Definition (Original_Node (Parent (T_Typ)));
65356e64
AC
1689 begin
1690 if Nkind (Type_Def) = N_Derived_Type_Definition
1691 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1692 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1693 then
1694 return;
1695 end if;
1696 end;
1697 end if;
70482933
RK
1698 end if;
1699
d2a6bd6b
AC
1700 -- Constraint may appear in full view of type
1701
1702 if Ekind (T_Typ) = E_Private_Subtype
1703 and then Present (Full_View (T_Typ))
1704 then
c91dbd18 1705 DconT :=
d2a6bd6b 1706 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
d2a6bd6b 1707 else
c91dbd18
AC
1708 DconT :=
1709 First_Elmt (Discriminant_Constraint (T_Typ));
d2a6bd6b 1710 end if;
70482933
RK
1711
1712 while Present (Discr) loop
1713 ItemS := Node (DconS);
1714 ItemT := Node (DconT);
1715
11b4899f
JM
1716 -- For a discriminated component type constrained by the
1717 -- current instance of an enclosing type, there is no
1718 -- applicable discriminant check.
1719
1720 if Nkind (ItemT) = N_Attribute_Reference
1721 and then Is_Access_Type (Etype (ItemT))
1722 and then Is_Entity_Name (Prefix (ItemT))
1723 and then Is_Type (Entity (Prefix (ItemT)))
1724 then
1725 return;
1726 end if;
1727
f2cbd970
JM
1728 -- If the expressions for the discriminants are identical
1729 -- and it is side-effect free (for now just an entity),
1730 -- this may be a shared constraint, e.g. from a subtype
1731 -- without a constraint introduced as a generic actual.
1732 -- Examine other discriminants if any.
1733
1734 if ItemS = ItemT
1735 and then Is_Entity_Name (ItemS)
1736 then
1737 null;
1738
1739 elsif not Is_OK_Static_Expression (ItemS)
1740 or else not Is_OK_Static_Expression (ItemT)
1741 then
1742 exit;
70482933 1743
f2cbd970 1744 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
70482933
RK
1745 if Do_Access then -- needs run-time check.
1746 exit;
1747 else
1748 Apply_Compile_Time_Constraint_Error
685bc70f 1749 (N, "incorrect value for discriminant&??",
07fc65c4 1750 CE_Discriminant_Check_Failed, Ent => Discr);
70482933
RK
1751 return;
1752 end if;
1753 end if;
1754
1755 Next_Elmt (DconS);
1756 Next_Elmt (DconT);
1757 Next_Discriminant (Discr);
1758 end loop;
1759
1760 if No (Discr) then
1761 return;
1762 end if;
1763 end;
1764 end if;
1765
27bb7941
AC
1766 -- In GNATprove mode, we do not apply the checks
1767
1768 if GNATprove_Mode then
1769 return;
1770 end if;
1771
70482933
RK
1772 -- Here we need a discriminant check. First build the expression
1773 -- for the comparisons of the discriminants:
1774
1775 -- (n.disc1 /= typ.disc1) or else
1776 -- (n.disc2 /= typ.disc2) or else
1777 -- ...
1778 -- (n.discn /= typ.discn)
1779
1780 Cond := Build_Discriminant_Checks (N, T_Typ);
1781
acad3c0a
AC
1782 -- If Lhs is set and is a parameter, then the condition is guarded by:
1783 -- lhs'constrained and then (condition built above)
70482933
RK
1784
1785 if Present (Param_Entity (Lhs)) then
1786 Cond :=
1787 Make_And_Then (Loc,
1788 Left_Opnd =>
1789 Make_Attribute_Reference (Loc,
1790 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1791 Attribute_Name => Name_Constrained),
1792 Right_Opnd => Cond);
1793 end if;
1794
1795 if Do_Access then
1796 Cond := Guard_Access (Cond, Loc, N);
1797 end if;
1798
1799 Insert_Action (N,
07fc65c4
GB
1800 Make_Raise_Constraint_Error (Loc,
1801 Condition => Cond,
1802 Reason => CE_Discriminant_Check_Failed));
70482933
RK
1803 end Apply_Discriminant_Check;
1804
a91e9ac7
AC
1805 -------------------------
1806 -- Apply_Divide_Checks --
1807 -------------------------
70482933 1808
a91e9ac7 1809 procedure Apply_Divide_Checks (N : Node_Id) is
70482933
RK
1810 Loc : constant Source_Ptr := Sloc (N);
1811 Typ : constant Entity_Id := Etype (N);
1812 Left : constant Node_Id := Left_Opnd (N);
1813 Right : constant Node_Id := Right_Opnd (N);
1814
15c94a55 1815 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
a91e9ac7
AC
1816 -- Current overflow checking mode
1817
70482933
RK
1818 LLB : Uint;
1819 Llo : Uint;
1820 Lhi : Uint;
1821 LOK : Boolean;
1822 Rlo : Uint;
1823 Rhi : Uint;
a91e9ac7 1824 ROK : Boolean;
67ce0d7e
RD
1825
1826 pragma Warnings (Off, Lhi);
1827 -- Don't actually use this value
70482933
RK
1828
1829 begin
a7f1b24f
RD
1830 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1831 -- operating on signed integer types, then the only thing this routine
1832 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1833 -- procedure will (possibly later on during recursive downward calls),
1834 -- ensure that any needed overflow/division checks are properly applied.
a91e9ac7
AC
1835
1836 if Mode in Minimized_Or_Eliminated
a91e9ac7
AC
1837 and then Is_Signed_Integer_Type (Typ)
1838 then
1839 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1840 return;
1841 end if;
1842
1843 -- Proceed here in SUPPRESSED or CHECKED modes
1844
4460a9bc 1845 if Expander_Active
2ede092b
RD
1846 and then not Backend_Divide_Checks_On_Target
1847 and then Check_Needed (Right, Division_Check)
70482933 1848 then
c800f862 1849 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
70482933 1850
a91e9ac7 1851 -- Deal with division check
70482933 1852
a91e9ac7
AC
1853 if Do_Division_Check (N)
1854 and then not Division_Checks_Suppressed (Typ)
1855 then
1856 Apply_Division_Check (N, Rlo, Rhi, ROK);
70482933
RK
1857 end if;
1858
a91e9ac7
AC
1859 -- Deal with overflow check
1860
a7f1b24f
RD
1861 if Do_Overflow_Check (N)
1862 and then not Overflow_Checks_Suppressed (Etype (N))
1863 then
b7c874a7
AC
1864 Set_Do_Overflow_Check (N, False);
1865
a91e9ac7
AC
1866 -- Test for extremely annoying case of xxx'First divided by -1
1867 -- for division of signed integer types (only overflow case).
70482933 1868
70482933
RK
1869 if Nkind (N) = N_Op_Divide
1870 and then Is_Signed_Integer_Type (Typ)
1871 then
c800f862 1872 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933
RK
1873 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1874
1875 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
a91e9ac7
AC
1876 and then
1877 ((not LOK) or else (Llo = LLB))
70482933 1878 then
a8697b27
EB
1879 -- Ensure that expressions are not evaluated twice (once
1880 -- for their runtime checks and once for their regular
1881 -- computation).
1882
1883 Force_Evaluation (Left, Mode => Strict);
1884 Force_Evaluation (Right, Mode => Strict);
1885
70482933
RK
1886 Insert_Action (N,
1887 Make_Raise_Constraint_Error (Loc,
1888 Condition =>
1889 Make_And_Then (Loc,
a91e9ac7
AC
1890 Left_Opnd =>
1891 Make_Op_Eq (Loc,
1892 Left_Opnd =>
1893 Duplicate_Subexpr_Move_Checks (Left),
1894 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
70482933 1895
a91e9ac7
AC
1896 Right_Opnd =>
1897 Make_Op_Eq (Loc,
1898 Left_Opnd => Duplicate_Subexpr (Right),
1899 Right_Opnd => Make_Integer_Literal (Loc, -1))),
70482933 1900
07fc65c4 1901 Reason => CE_Overflow_Check_Failed));
70482933
RK
1902 end if;
1903 end if;
1904 end if;
1905 end if;
a91e9ac7
AC
1906 end Apply_Divide_Checks;
1907
1908 --------------------------
1909 -- Apply_Division_Check --
1910 --------------------------
1911
1912 procedure Apply_Division_Check
1913 (N : Node_Id;
1914 Rlo : Uint;
1915 Rhi : Uint;
1916 ROK : Boolean)
1917 is
1918 pragma Assert (Do_Division_Check (N));
1919
1920 Loc : constant Source_Ptr := Sloc (N);
61770974
HK
1921 Right : constant Node_Id := Right_Opnd (N);
1922 Opnd : Node_Id;
a91e9ac7
AC
1923
1924 begin
4460a9bc 1925 if Expander_Active
a91e9ac7
AC
1926 and then not Backend_Divide_Checks_On_Target
1927 and then Check_Needed (Right, Division_Check)
a91e9ac7 1928
61770974
HK
1929 -- See if division by zero possible, and if so generate test. This
1930 -- part of the test is not controlled by the -gnato switch, since it
1931 -- is a Division_Check and not an Overflow_Check.
b7c874a7 1932
61770974
HK
1933 and then Do_Division_Check (N)
1934 then
1935 Set_Do_Division_Check (N, False);
ed170742 1936
61770974
HK
1937 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1938 if Is_Floating_Point_Type (Etype (N)) then
1939 Opnd := Make_Real_Literal (Loc, Ureal_0);
1940 else
1941 Opnd := Make_Integer_Literal (Loc, 0);
a91e9ac7 1942 end if;
61770974
HK
1943
1944 Insert_Action (N,
1945 Make_Raise_Constraint_Error (Loc,
1946 Condition =>
1947 Make_Op_Eq (Loc,
1948 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1949 Right_Opnd => Opnd),
1950 Reason => CE_Divide_By_Zero));
a91e9ac7
AC
1951 end if;
1952 end if;
1953 end Apply_Division_Check;
70482933 1954
7324bf49
AC
1955 ----------------------------------
1956 -- Apply_Float_Conversion_Check --
1957 ----------------------------------
1958
675d6070
TQ
1959 -- Let F and I be the source and target types of the conversion. The RM
1960 -- specifies that a floating-point value X is rounded to the nearest
1961 -- integer, with halfway cases being rounded away from zero. The rounded
1962 -- value of X is checked against I'Range.
1963
1964 -- The catch in the above paragraph is that there is no good way to know
1965 -- whether the round-to-integer operation resulted in overflow. A remedy is
1966 -- to perform a range check in the floating-point domain instead, however:
7324bf49 1967
7324bf49 1968 -- (1) The bounds may not be known at compile time
939c12d2 1969 -- (2) The check must take into account rounding or truncation.
7324bf49 1970 -- (3) The range of type I may not be exactly representable in F.
939c12d2
RD
1971 -- (4) For the rounding case, The end-points I'First - 0.5 and
1972 -- I'Last + 0.5 may or may not be in range, depending on the
1973 -- sign of I'First and I'Last.
7324bf49
AC
1974 -- (5) X may be a NaN, which will fail any comparison
1975
939c12d2 1976 -- The following steps correctly convert X with rounding:
675d6070 1977
7324bf49
AC
1978 -- (1) If either I'First or I'Last is not known at compile time, use
1979 -- I'Base instead of I in the next three steps and perform a
1980 -- regular range check against I'Range after conversion.
1981 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1982 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
939c12d2
RD
1983 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1984 -- In other words, take one of the closest floating-point numbers
1985 -- (which is an integer value) to I'First, and see if it is in
1986 -- range or not.
7324bf49
AC
1987 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1988 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
939c12d2 1989 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
7324bf49
AC
1990 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1991 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1992
939c12d2
RD
1993 -- For the truncating case, replace steps (2) and (3) as follows:
1994 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1995 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1996 -- Lo_OK be True.
1997 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1998 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1197ddb1 1999 -- Hi_OK be True.
939c12d2 2000
7324bf49
AC
2001 procedure Apply_Float_Conversion_Check
2002 (Ck_Node : Node_Id;
2003 Target_Typ : Entity_Id)
2004 is
675d6070
TQ
2005 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
2006 HB : constant Node_Id := Type_High_Bound (Target_Typ);
7324bf49
AC
2007 Loc : constant Source_Ptr := Sloc (Ck_Node);
2008 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
675d6070 2009 Target_Base : constant Entity_Id :=
15f0f591 2010 Implementation_Base_Type (Target_Typ);
675d6070 2011
939c12d2
RD
2012 Par : constant Node_Id := Parent (Ck_Node);
2013 pragma Assert (Nkind (Par) = N_Type_Conversion);
2014 -- Parent of check node, must be a type conversion
2015
2016 Truncate : constant Boolean := Float_Truncate (Par);
2017 Max_Bound : constant Uint :=
15f0f591
AC
2018 UI_Expon
2019 (Machine_Radix_Value (Expr_Type),
2020 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
939c12d2 2021
7324bf49
AC
2022 -- Largest bound, so bound plus or minus half is a machine number of F
2023
675d6070
TQ
2024 Ifirst, Ilast : Uint;
2025 -- Bounds of integer type
2026
2027 Lo, Hi : Ureal;
2028 -- Bounds to check in floating-point domain
7324bf49 2029
675d6070
TQ
2030 Lo_OK, Hi_OK : Boolean;
2031 -- True iff Lo resp. Hi belongs to I'Range
7324bf49 2032
675d6070
TQ
2033 Lo_Chk, Hi_Chk : Node_Id;
2034 -- Expressions that are False iff check fails
2035
2036 Reason : RT_Exception_Code;
7324bf49
AC
2037
2038 begin
b5bdffcc
AC
2039 -- We do not need checks if we are not generating code (i.e. the full
2040 -- expander is not active). In SPARK mode, we specifically don't want
2041 -- the frontend to expand these checks, which are dealt with directly
2042 -- in the formal verification backend.
2043
4460a9bc 2044 if not Expander_Active then
b5bdffcc
AC
2045 return;
2046 end if;
2047
68c8d72a
EB
2048 -- Here we will generate an explicit range check, so we don't want to
2049 -- set the Do_Range check flag, since the range check is taken care of
2050 -- by the code we will generate.
2051
2052 Set_Do_Range_Check (Ck_Node, False);
2053
7324bf49
AC
2054 if not Compile_Time_Known_Value (LB)
2055 or not Compile_Time_Known_Value (HB)
2056 then
2057 declare
675d6070
TQ
2058 -- First check that the value falls in the range of the base type,
2059 -- to prevent overflow during conversion and then perform a
2060 -- regular range check against the (dynamic) bounds.
7324bf49 2061
7324bf49 2062 pragma Assert (Target_Base /= Target_Typ);
7324bf49 2063
191fcb3a 2064 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
7324bf49
AC
2065
2066 begin
2067 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2068 Set_Etype (Temp, Target_Base);
2069
ba58b776
GD
2070 -- Note: Previously the declaration was inserted above the parent
2071 -- of the conversion, apparently as a small optimization for the
2072 -- subequent traversal in Insert_Actions. Unfortunately a similar
2073 -- optimization takes place in Insert_Actions, assuming that the
2074 -- insertion point must be above the expression that creates
2075 -- actions. This is not correct in the presence of conditional
2076 -- expressions, where the insertion must be in the list of actions
2077 -- attached to the current alternative.
90393d3c
ES
2078
2079 Insert_Action (Par,
7324bf49
AC
2080 Make_Object_Declaration (Loc,
2081 Defining_Identifier => Temp,
2082 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2083 Expression => New_Copy_Tree (Par)),
2084 Suppress => All_Checks);
2085
2086 Insert_Action (Par,
2087 Make_Raise_Constraint_Error (Loc,
2088 Condition =>
2089 Make_Not_In (Loc,
2090 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2091 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2092 Reason => CE_Range_Check_Failed));
2093 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2094
2095 return;
2096 end;
2097 end if;
2098
44114dff 2099 -- Get the (static) bounds of the target type
7324bf49
AC
2100
2101 Ifirst := Expr_Value (LB);
2102 Ilast := Expr_Value (HB);
2103
44114dff
ES
2104 -- A simple optimization: if the expression is a universal literal,
2105 -- we can do the comparison with the bounds and the conversion to
2106 -- an integer type statically. The range checks are unchanged.
2107
2108 if Nkind (Ck_Node) = N_Real_Literal
2109 and then Etype (Ck_Node) = Universal_Real
2110 and then Is_Integer_Type (Target_Typ)
44114dff
ES
2111 then
2112 declare
2113 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2114
2115 begin
2116 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2117
6f2b033b 2118 -- Conversion is safe
44114dff
ES
2119
2120 Rewrite (Parent (Ck_Node),
2121 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2122 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2123 return;
2124 end if;
2125 end;
2126 end if;
2127
7324bf49
AC
2128 -- Check against lower bound
2129
939c12d2
RD
2130 if Truncate and then Ifirst > 0 then
2131 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2132 Lo_OK := False;
2133
2134 elsif Truncate then
2135 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2136 Lo_OK := True;
2137
2138 elsif abs (Ifirst) < Max_Bound then
7324bf49
AC
2139 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2140 Lo_OK := (Ifirst > 0);
939c12d2 2141
7324bf49
AC
2142 else
2143 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2144 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2145 end if;
2146
2147 if Lo_OK then
2148
2149 -- Lo_Chk := (X >= Lo)
2150
2151 Lo_Chk := Make_Op_Ge (Loc,
2152 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2153 Right_Opnd => Make_Real_Literal (Loc, Lo));
2154
2155 else
2156 -- Lo_Chk := (X > Lo)
2157
2158 Lo_Chk := Make_Op_Gt (Loc,
2159 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2160 Right_Opnd => Make_Real_Literal (Loc, Lo));
2161 end if;
2162
2163 -- Check against higher bound
2164
939c12d2
RD
2165 if Truncate and then Ilast < 0 then
2166 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
c2db4b32 2167 Hi_OK := False;
939c12d2
RD
2168
2169 elsif Truncate then
2170 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2171 Hi_OK := True;
2172
2173 elsif abs (Ilast) < Max_Bound then
7324bf49
AC
2174 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2175 Hi_OK := (Ilast < 0);
2176 else
2177 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2178 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2179 end if;
2180
2181 if Hi_OK then
2182
2183 -- Hi_Chk := (X <= Hi)
2184
2185 Hi_Chk := Make_Op_Le (Loc,
2186 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2187 Right_Opnd => Make_Real_Literal (Loc, Hi));
2188
2189 else
2190 -- Hi_Chk := (X < Hi)
2191
2192 Hi_Chk := Make_Op_Lt (Loc,
2193 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2194 Right_Opnd => Make_Real_Literal (Loc, Hi));
2195 end if;
2196
675d6070
TQ
2197 -- If the bounds of the target type are the same as those of the base
2198 -- type, the check is an overflow check as a range check is not
2199 -- performed in these cases.
7324bf49
AC
2200
2201 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2202 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2203 then
2204 Reason := CE_Overflow_Check_Failed;
2205 else
2206 Reason := CE_Range_Check_Failed;
2207 end if;
2208
2209 -- Raise CE if either conditions does not hold
2210
2211 Insert_Action (Ck_Node,
2212 Make_Raise_Constraint_Error (Loc,
d8b9660d 2213 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
7324bf49
AC
2214 Reason => Reason));
2215 end Apply_Float_Conversion_Check;
2216
70482933
RK
2217 ------------------------
2218 -- Apply_Length_Check --
2219 ------------------------
2220
2221 procedure Apply_Length_Check
2222 (Ck_Node : Node_Id;
2223 Target_Typ : Entity_Id;
2224 Source_Typ : Entity_Id := Empty)
2225 is
2226 begin
2227 Apply_Selected_Length_Checks
2228 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2229 end Apply_Length_Check;
2230
5f49133f
AC
2231 -------------------------------------
2232 -- Apply_Parameter_Aliasing_Checks --
2233 -------------------------------------
0ea55619 2234
5f49133f
AC
2235 procedure Apply_Parameter_Aliasing_Checks
2236 (Call : Node_Id;
2237 Subp : Entity_Id)
2238 is
baed70ac
AC
2239 Loc : constant Source_Ptr := Sloc (Call);
2240
5f49133f
AC
2241 function May_Cause_Aliasing
2242 (Formal_1 : Entity_Id;
2243 Formal_2 : Entity_Id) return Boolean;
2244 -- Determine whether two formal parameters can alias each other
2245 -- depending on their modes.
2246
2247 function Original_Actual (N : Node_Id) return Node_Id;
2248 -- The expander may replace an actual with a temporary for the sake of
2249 -- side effect removal. The temporary may hide a potential aliasing as
2250 -- it does not share the address of the actual. This routine attempts
2251 -- to retrieve the original actual.
2252
baed70ac
AC
2253 procedure Overlap_Check
2254 (Actual_1 : Node_Id;
2255 Actual_2 : Node_Id;
2256 Formal_1 : Entity_Id;
2257 Formal_2 : Entity_Id;
2258 Check : in out Node_Id);
2259 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2260 -- If detailed exception messages are enabled, the check is augmented to
2261 -- provide information about the names of the corresponding formals. See
2262 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2263 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2264 -- Check contains all and-ed simple tests generated so far or remains
2265 -- unchanged in the case of detailed exception messaged.
2266
5f49133f
AC
2267 ------------------------
2268 -- May_Cause_Aliasing --
2269 ------------------------
0ea55619 2270
5f49133f 2271 function May_Cause_Aliasing
e8dde875 2272 (Formal_1 : Entity_Id;
5f49133f
AC
2273 Formal_2 : Entity_Id) return Boolean
2274 is
2275 begin
2276 -- The following combination cannot lead to aliasing
2277
2278 -- Formal 1 Formal 2
2279 -- IN IN
2280
2281 if Ekind (Formal_1) = E_In_Parameter
9a6dc470
RD
2282 and then
2283 Ekind (Formal_2) = E_In_Parameter
5f49133f
AC
2284 then
2285 return False;
2286
2287 -- The following combinations may lead to aliasing
2288
2289 -- Formal 1 Formal 2
2290 -- IN OUT
2291 -- IN IN OUT
2292 -- OUT IN
2293 -- OUT IN OUT
2294 -- OUT OUT
2295
2296 else
2297 return True;
2298 end if;
2299 end May_Cause_Aliasing;
2300
2301 ---------------------
2302 -- Original_Actual --
2303 ---------------------
2304
2305 function Original_Actual (N : Node_Id) return Node_Id is
2306 begin
2307 if Nkind (N) = N_Type_Conversion then
2308 return Expression (N);
2309
2310 -- The expander created a temporary to capture the result of a type
2311 -- conversion where the expression is the real actual.
2312
2313 elsif Nkind (N) = N_Identifier
2314 and then Present (Original_Node (N))
2315 and then Nkind (Original_Node (N)) = N_Type_Conversion
2316 then
2317 return Expression (Original_Node (N));
2318 end if;
2319
2320 return N;
2321 end Original_Actual;
2322
baed70ac
AC
2323 -------------------
2324 -- Overlap_Check --
2325 -------------------
2326
2327 procedure Overlap_Check
2328 (Actual_1 : Node_Id;
2329 Actual_2 : Node_Id;
2330 Formal_1 : Entity_Id;
2331 Formal_2 : Entity_Id;
2332 Check : in out Node_Id)
2333 is
f7ea2603
RD
2334 Cond : Node_Id;
2335 ID_Casing : constant Casing_Type :=
2336 Identifier_Casing (Source_Index (Current_Sem_Unit));
baed70ac
AC
2337
2338 begin
2339 -- Generate:
2340 -- Actual_1'Overlaps_Storage (Actual_2)
2341
2342 Cond :=
2343 Make_Attribute_Reference (Loc,
2344 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2345 Attribute_Name => Name_Overlaps_Storage,
2346 Expressions =>
2347 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2348
2349 -- Generate the following check when detailed exception messages are
2350 -- enabled:
2351
2352 -- if Actual_1'Overlaps_Storage (Actual_2) then
2353 -- raise Program_Error with <detailed message>;
2354 -- end if;
2355
2356 if Exception_Extra_Info then
2357 Start_String;
2358
2359 -- Do not generate location information for internal calls
2360
2361 if Comes_From_Source (Call) then
2362 Store_String_Chars (Build_Location_String (Loc));
2363 Store_String_Char (' ');
2364 end if;
2365
2366 Store_String_Chars ("aliased parameters, actuals for """);
f7ea2603
RD
2367
2368 Get_Name_String (Chars (Formal_1));
2369 Set_Casing (ID_Casing);
2370 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2371
baed70ac 2372 Store_String_Chars (""" and """);
f7ea2603
RD
2373
2374 Get_Name_String (Chars (Formal_2));
2375 Set_Casing (ID_Casing);
2376 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2377
baed70ac
AC
2378 Store_String_Chars (""" overlap");
2379
2380 Insert_Action (Call,
2381 Make_If_Statement (Loc,
2382 Condition => Cond,
2383 Then_Statements => New_List (
2384 Make_Raise_Statement (Loc,
2385 Name =>
e4494292 2386 New_Occurrence_Of (Standard_Program_Error, Loc),
baed70ac
AC
2387 Expression => Make_String_Literal (Loc, End_String)))));
2388
2389 -- Create a sequence of overlapping checks by and-ing them all
2390 -- together.
2391
2392 else
2393 if No (Check) then
2394 Check := Cond;
2395 else
2396 Check :=
2397 Make_And_Then (Loc,
2398 Left_Opnd => Check,
2399 Right_Opnd => Cond);
2400 end if;
2401 end if;
2402 end Overlap_Check;
2403
5f49133f
AC
2404 -- Local variables
2405
b4213ffd
AC
2406 Actual_1 : Node_Id;
2407 Actual_2 : Node_Id;
2408 Check : Node_Id;
2409 Formal_1 : Entity_Id;
2410 Formal_2 : Entity_Id;
2411 Orig_Act_1 : Node_Id;
2412 Orig_Act_2 : Node_Id;
5f49133f
AC
2413
2414 -- Start of processing for Apply_Parameter_Aliasing_Checks
2415
2416 begin
baed70ac 2417 Check := Empty;
5f49133f
AC
2418
2419 Actual_1 := First_Actual (Call);
2420 Formal_1 := First_Formal (Subp);
2421 while Present (Actual_1) and then Present (Formal_1) loop
b4213ffd 2422 Orig_Act_1 := Original_Actual (Actual_1);
5f49133f
AC
2423
2424 -- Ensure that the actual is an object that is not passed by value.
2425 -- Elementary types are always passed by value, therefore actuals of
5904016a
AC
2426 -- such types cannot lead to aliasing. An aggregate is an object in
2427 -- Ada 2012, but an actual that is an aggregate cannot overlap with
b3143037
AC
2428 -- another actual. A type that is By_Reference (such as an array of
2429 -- controlled types) is not subject to the check because any update
2430 -- will be done in place and a subsequent read will always see the
2431 -- correct value, see RM 6.2 (12/3).
5f49133f 2432
b4213ffd
AC
2433 if Nkind (Orig_Act_1) = N_Aggregate
2434 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2435 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
5904016a
AC
2436 then
2437 null;
2438
b4213ffd
AC
2439 elsif Is_Object_Reference (Orig_Act_1)
2440 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2441 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
5f49133f
AC
2442 then
2443 Actual_2 := Next_Actual (Actual_1);
2444 Formal_2 := Next_Formal (Formal_1);
2445 while Present (Actual_2) and then Present (Formal_2) loop
b4213ffd 2446 Orig_Act_2 := Original_Actual (Actual_2);
5f49133f
AC
2447
2448 -- The other actual we are testing against must also denote
2449 -- a non pass-by-value object. Generate the check only when
2450 -- the mode of the two formals may lead to aliasing.
2451
b4213ffd
AC
2452 if Is_Object_Reference (Orig_Act_2)
2453 and then not Is_Elementary_Type (Etype (Orig_Act_2))
5f49133f
AC
2454 and then May_Cause_Aliasing (Formal_1, Formal_2)
2455 then
9313a26a
AC
2456 Remove_Side_Effects (Actual_1);
2457 Remove_Side_Effects (Actual_2);
2458
baed70ac
AC
2459 Overlap_Check
2460 (Actual_1 => Actual_1,
2461 Actual_2 => Actual_2,
2462 Formal_1 => Formal_1,
2463 Formal_2 => Formal_2,
2464 Check => Check);
5f49133f
AC
2465 end if;
2466
2467 Next_Actual (Actual_2);
2468 Next_Formal (Formal_2);
2469 end loop;
2470 end if;
2471
2472 Next_Actual (Actual_1);
2473 Next_Formal (Formal_1);
2474 end loop;
2475
baed70ac 2476 -- Place a simple check right before the call
5f49133f 2477
baed70ac 2478 if Present (Check) and then not Exception_Extra_Info then
5f49133f
AC
2479 Insert_Action (Call,
2480 Make_Raise_Program_Error (Loc,
baed70ac
AC
2481 Condition => Check,
2482 Reason => PE_Aliased_Parameters));
5f49133f
AC
2483 end if;
2484 end Apply_Parameter_Aliasing_Checks;
2485
2486 -------------------------------------
2487 -- Apply_Parameter_Validity_Checks --
2488 -------------------------------------
2489
2490 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2491 Subp_Decl : Node_Id;
0ea55619 2492
e8dde875 2493 procedure Add_Validity_Check
c9d70ab1
AC
2494 (Formal : Entity_Id;
2495 Prag_Nam : Name_Id;
e8dde875 2496 For_Result : Boolean := False);
31fde973 2497 -- Add a single 'Valid[_Scalars] check which verifies the initialization
c9d70ab1 2498 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
e8dde875 2499 -- Set flag For_Result when to verify the result of a function.
0ea55619 2500
0ea55619
AC
2501 ------------------------
2502 -- Add_Validity_Check --
2503 ------------------------
2504
2505 procedure Add_Validity_Check
c9d70ab1
AC
2506 (Formal : Entity_Id;
2507 Prag_Nam : Name_Id;
0ea55619
AC
2508 For_Result : Boolean := False)
2509 is
c9d70ab1
AC
2510 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2511 -- Create a pre/postcondition pragma that tests expression Expr
2512
2513 ------------------------------
2514 -- Build_Pre_Post_Condition --
2515 ------------------------------
2516
2517 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2518 Loc : constant Source_Ptr := Sloc (Subp);
2519 Decls : List_Id;
2520 Prag : Node_Id;
2521
2522 begin
2523 Prag :=
2524 Make_Pragma (Loc,
88456bc1 2525 Chars => Prag_Nam,
c9d70ab1
AC
2526 Pragma_Argument_Associations => New_List (
2527 Make_Pragma_Argument_Association (Loc,
2528 Chars => Name_Check,
2529 Expression => Expr)));
2530
2531 -- Add a message unless exception messages are suppressed
2532
2533 if not Exception_Locations_Suppressed then
2534 Append_To (Pragma_Argument_Associations (Prag),
2535 Make_Pragma_Argument_Association (Loc,
2536 Chars => Name_Message,
2537 Expression =>
2538 Make_String_Literal (Loc,
2539 Strval => "failed "
2540 & Get_Name_String (Prag_Nam)
2541 & " from "
2542 & Build_Location_String (Loc))));
2543 end if;
2544
2545 -- Insert the pragma in the tree
2546
2547 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2548 Add_Global_Declaration (Prag);
2549 Analyze (Prag);
2550
2551 -- PPC pragmas associated with subprogram bodies must be inserted
2552 -- in the declarative part of the body.
2553
2554 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2555 Decls := Declarations (Subp_Decl);
2556
2557 if No (Decls) then
2558 Decls := New_List;
2559 Set_Declarations (Subp_Decl, Decls);
2560 end if;
2561
2562 Prepend_To (Decls, Prag);
2563 Analyze (Prag);
2564
2565 -- For subprogram declarations insert the PPC pragma right after
2566 -- the declarative node.
2567
2568 else
2569 Insert_After_And_Analyze (Subp_Decl, Prag);
2570 end if;
2571 end Build_Pre_Post_Condition;
2572
2573 -- Local variables
2574
e8dde875 2575 Loc : constant Source_Ptr := Sloc (Subp);
c9d70ab1 2576 Typ : constant Entity_Id := Etype (Formal);
0ea55619
AC
2577 Check : Node_Id;
2578 Nam : Name_Id;
2579
c9d70ab1
AC
2580 -- Start of processing for Add_Validity_Check
2581
0ea55619 2582 begin
e5c4e2bc 2583 -- For scalars, generate 'Valid test
0ea55619
AC
2584
2585 if Is_Scalar_Type (Typ) then
2586 Nam := Name_Valid;
e5c4e2bc
AC
2587
2588 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2589
2590 elsif Scalar_Part_Present (Typ) then
0ea55619 2591 Nam := Name_Valid_Scalars;
e5c4e2bc
AC
2592
2593 -- No test needed for other cases (no scalars to test)
2594
0ea55619
AC
2595 else
2596 return;
2597 end if;
2598
2599 -- Step 1: Create the expression to verify the validity of the
2600 -- context.
2601
c9d70ab1 2602 Check := New_Occurrence_Of (Formal, Loc);
0ea55619
AC
2603
2604 -- When processing a function result, use 'Result. Generate
2605 -- Context'Result
2606
2607 if For_Result then
2608 Check :=
2609 Make_Attribute_Reference (Loc,
2610 Prefix => Check,
2611 Attribute_Name => Name_Result);
2612 end if;
2613
2614 -- Generate:
2615 -- Context['Result]'Valid[_Scalars]
2616
2617 Check :=
2618 Make_Attribute_Reference (Loc,
2619 Prefix => Check,
2620 Attribute_Name => Nam);
2621
e8dde875
AC
2622 -- Step 2: Create a pre or post condition pragma
2623
c9d70ab1 2624 Build_Pre_Post_Condition (Check);
e8dde875
AC
2625 end Add_Validity_Check;
2626
e8dde875
AC
2627 -- Local variables
2628
2629 Formal : Entity_Id;
e8dde875
AC
2630 Subp_Spec : Node_Id;
2631
5f49133f 2632 -- Start of processing for Apply_Parameter_Validity_Checks
0ea55619
AC
2633
2634 begin
e8dde875 2635 -- Extract the subprogram specification and declaration nodes
0ea55619 2636
e8dde875 2637 Subp_Spec := Parent (Subp);
9a6dc470 2638
e8dde875
AC
2639 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2640 Subp_Spec := Parent (Subp_Spec);
2641 end if;
9a6dc470 2642
e8dde875 2643 Subp_Decl := Parent (Subp_Spec);
8e983d80 2644
0ea55619 2645 if not Comes_From_Source (Subp)
e8dde875
AC
2646
2647 -- Do not process formal subprograms because the corresponding actual
2648 -- will receive the proper checks when the instance is analyzed.
2649
2650 or else Is_Formal_Subprogram (Subp)
2651
e0c23ac7 2652 -- Do not process imported subprograms since pre and postconditions
9a6dc470 2653 -- are never verified on routines coming from a different language.
e8dde875 2654
0ea55619
AC
2655 or else Is_Imported (Subp)
2656 or else Is_Intrinsic_Subprogram (Subp)
e8dde875 2657
9a6dc470
RD
2658 -- The PPC pragmas generated by this routine do not correspond to
2659 -- source aspects, therefore they cannot be applied to abstract
2660 -- subprograms.
e8dde875 2661
c5a26133 2662 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
e8dde875 2663
9a6dc470
RD
2664 -- Do not consider subprogram renaminds because the renamed entity
2665 -- already has the proper PPC pragmas.
d85be3ba
AC
2666
2667 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2668
9a6dc470
RD
2669 -- Do not process null procedures because there is no benefit of
2670 -- adding the checks to a no action routine.
e8dde875
AC
2671
2672 or else (Nkind (Subp_Spec) = N_Procedure_Specification
9a6dc470 2673 and then Null_Present (Subp_Spec))
0ea55619
AC
2674 then
2675 return;
2676 end if;
2677
e8dde875
AC
2678 -- Inspect all the formals applying aliasing and scalar initialization
2679 -- checks where applicable.
0ea55619
AC
2680
2681 Formal := First_Formal (Subp);
2682 while Present (Formal) loop
e8dde875
AC
2683
2684 -- Generate the following scalar initialization checks for each
2685 -- formal parameter:
2686
2687 -- mode IN - Pre => Formal'Valid[_Scalars]
2688 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2689 -- mode OUT - Post => Formal'Valid[_Scalars]
2690
2691 if Check_Validity_Of_Parameters then
2692 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2693 Add_Validity_Check (Formal, Name_Precondition, False);
2694 end if;
2695
2696 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2697 Add_Validity_Check (Formal, Name_Postcondition, False);
2698 end if;
0ea55619
AC
2699 end if;
2700
0ea55619
AC
2701 Next_Formal (Formal);
2702 end loop;
2703
9a6dc470 2704 -- Generate following scalar initialization check for function result:
e8dde875
AC
2705
2706 -- Post => Subp'Result'Valid[_Scalars]
0ea55619 2707
9a6dc470 2708 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
e8dde875 2709 Add_Validity_Check (Subp, Name_Postcondition, True);
0ea55619 2710 end if;
5f49133f 2711 end Apply_Parameter_Validity_Checks;
0ea55619 2712
48f91b44
RD
2713 ---------------------------
2714 -- Apply_Predicate_Check --
2715 ---------------------------
2716
6eca51ce
ES
2717 procedure Apply_Predicate_Check
2718 (N : Node_Id;
2719 Typ : Entity_Id;
2720 Fun : Entity_Id := Empty)
2721 is
62db841a 2722 S : Entity_Id;
8e983d80 2723
48f91b44 2724 begin
1e60643a
AC
2725 if Predicate_Checks_Suppressed (Empty) then
2726 return;
62db841a 2727
8d4611f7
AC
2728 elsif Predicates_Ignored (Typ) then
2729 return;
2730
1e60643a 2731 elsif Present (Predicate_Function (Typ)) then
62db841a 2732 S := Current_Scope;
8e983d80 2733 while Present (S) and then not Is_Subprogram (S) loop
62db841a
AC
2734 S := Scope (S);
2735 end loop;
2736
8e1e62e3
AC
2737 -- A predicate check does not apply within internally generated
2738 -- subprograms, such as TSS functions.
2739
2740 if Within_Internal_Subprogram then
62db841a 2741 return;
0929eaeb 2742
3a0919e2
ES
2743 -- If the check appears within the predicate function itself, it
2744 -- means that the user specified a check whose formal is the
2745 -- predicated subtype itself, rather than some covering type. This
2746 -- is likely to be a common error, and thus deserves a warning.
0929eaeb 2747
155b4fcc 2748 elsif Present (S) and then S = Predicate_Function (Typ) then
6eca51ce 2749 Error_Msg_NE
e11b776b
AC
2750 ("predicate check includes a call to& that requires a "
2751 & "predicate check??", Parent (N), Fun);
3a0919e2 2752 Error_Msg_N
685bc70f 2753 ("\this will result in infinite recursion??", Parent (N));
6eca51ce
ES
2754
2755 if Is_First_Subtype (Typ) then
2756 Error_Msg_NE
e11b776b 2757 ("\use an explicit subtype of& to carry the predicate",
6eca51ce
ES
2758 Parent (N), Typ);
2759 end if;
2760
3a0919e2 2761 Insert_Action (N,
c7e152b5
AC
2762 Make_Raise_Storage_Error (Sloc (N),
2763 Reason => SE_Infinite_Recursion));
0929eaeb 2764
0d5fbf52 2765 -- Here for normal case of predicate active
804fc056 2766
c7e152b5 2767 else
db626148
ES
2768 -- If the expression is an IN parameter, the predicate will have
2769 -- been applied at the point of call. An additional check would
2770 -- be redundant, or will lead to out-of-scope references if the
2771 -- call appears within an aspect specification for a precondition.
2772
2773 -- However, if the reference is within the body of the subprogram
2774 -- that declares the formal, the predicate can safely be applied,
2775 -- which may be necessary for a nested call whose formal has a
2776 -- different predicate.
2777
2778 if Is_Entity_Name (N)
2779 and then Ekind (Entity (N)) = E_In_Parameter
2780 then
2781 declare
2782 In_Body : Boolean := False;
6d0289b1 2783 P : Node_Id := Parent (N);
db626148
ES
2784
2785 begin
2786 while Present (P) loop
2787 if Nkind (P) = N_Subprogram_Body
2788 and then Corresponding_Spec (P) = Scope (Entity (N))
2789 then
2790 In_Body := True;
2791 exit;
2792 end if;
2793
2794 P := Parent (P);
2795 end loop;
2796
2797 if not In_Body then
2798 return;
2799 end if;
2800 end;
2801 end if;
2802
fd8b8c01
AC
2803 -- If the type has a static predicate and the expression is known
2804 -- at compile time, see if the expression satisfies the predicate.
f197d2f2
AC
2805
2806 Check_Expression_Against_Static_Predicate (N, Typ);
804fc056 2807
405b907c
AC
2808 if not Expander_Active then
2809 return;
2810 end if;
2811
2812 -- For an entity of the type, generate a call to the predicate
2813 -- function, unless its type is an actual subtype, which is not
2814 -- visible outside of the enclosing subprogram.
2815
2816 if Is_Entity_Name (N)
2817 and then not Is_Actual_Subtype (Typ)
2818 then
1e60643a
AC
2819 Insert_Action (N,
2820 Make_Predicate_Check
2821 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2822
2cc2e964 2823 -- If the expression is not an entity it may have side effects,
558fbeb0
HK
2824 -- and the following call will create an object declaration for
2825 -- it. We disable checks during its analysis, to prevent an
2826 -- infinite recursion.
1e60643a 2827
4269edf0
AC
2828 -- If the prefix is an aggregate in an assignment, apply the
2829 -- check to the LHS after assignment, rather than create a
2830 -- redundant temporary. This is only necessary in rare cases
2831 -- of array types (including strings) initialized with an
2832 -- aggregate with an "others" clause, either coming from source
2833 -- or generated by an Initialize_Scalars pragma.
2834
2835 elsif Nkind (N) = N_Aggregate
2836 and then Nkind (Parent (N)) = N_Assignment_Statement
2837 then
2838 Insert_Action_After (Parent (N),
2839 Make_Predicate_Check
2840 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2841
1e60643a
AC
2842 else
2843 Insert_Action (N,
558fbeb0
HK
2844 Make_Predicate_Check
2845 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
1e60643a 2846 end if;
62db841a 2847 end if;
48f91b44
RD
2848 end if;
2849 end Apply_Predicate_Check;
2850
70482933
RK
2851 -----------------------
2852 -- Apply_Range_Check --
2853 -----------------------
2854
2855 procedure Apply_Range_Check
2856 (Ck_Node : Node_Id;
2857 Target_Typ : Entity_Id;
2858 Source_Typ : Entity_Id := Empty)
2859 is
2860 begin
2861 Apply_Selected_Range_Checks
2862 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2863 end Apply_Range_Check;
2864
2865 ------------------------------
2866 -- Apply_Scalar_Range_Check --
2867 ------------------------------
2868
675d6070
TQ
2869 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2870 -- off if it is already set on.
70482933
RK
2871
2872 procedure Apply_Scalar_Range_Check
2873 (Expr : Node_Id;
2874 Target_Typ : Entity_Id;
2875 Source_Typ : Entity_Id := Empty;
2876 Fixed_Int : Boolean := False)
2877 is
2878 Parnt : constant Node_Id := Parent (Expr);
2879 S_Typ : Entity_Id;
2880 Arr : Node_Id := Empty; -- initialize to prevent warning
2881 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
70482933
RK
2882
2883 Is_Subscr_Ref : Boolean;
2884 -- Set true if Expr is a subscript
2885
2886 Is_Unconstrained_Subscr_Ref : Boolean;
2887 -- Set true if Expr is a subscript of an unconstrained array. In this
2888 -- case we do not attempt to do an analysis of the value against the
2889 -- range of the subscript, since we don't know the actual subtype.
2890
2891 Int_Real : Boolean;
675d6070
TQ
2892 -- Set to True if Expr should be regarded as a real value even though
2893 -- the type of Expr might be discrete.
70482933 2894
520c0201
AC
2895 procedure Bad_Value (Warn : Boolean := False);
2896 -- Procedure called if value is determined to be out of range. Warn is
2897 -- True to force a warning instead of an error, even when SPARK_Mode is
2898 -- On.
70482933 2899
fbf5a39b
AC
2900 ---------------
2901 -- Bad_Value --
2902 ---------------
2903
520c0201 2904 procedure Bad_Value (Warn : Boolean := False) is
70482933
RK
2905 begin
2906 Apply_Compile_Time_Constraint_Error
685bc70f 2907 (Expr, "value not in range of}??", CE_Range_Check_Failed,
520c0201
AC
2908 Ent => Target_Typ,
2909 Typ => Target_Typ,
2910 Warn => Warn);
70482933
RK
2911 end Bad_Value;
2912
fbf5a39b
AC
2913 -- Start of processing for Apply_Scalar_Range_Check
2914
70482933 2915 begin
939c12d2 2916 -- Return if check obviously not needed
70482933 2917
939c12d2
RD
2918 if
2919 -- Not needed inside generic
70482933 2920
939c12d2
RD
2921 Inside_A_Generic
2922
2923 -- Not needed if previous error
2924
2925 or else Target_Typ = Any_Type
2926 or else Nkind (Expr) = N_Error
2927
2928 -- Not needed for non-scalar type
2929
2930 or else not Is_Scalar_Type (Target_Typ)
2931
2932 -- Not needed if we know node raises CE already
2933
2934 or else Raises_Constraint_Error (Expr)
70482933
RK
2935 then
2936 return;
2937 end if;
2938
2939 -- Now, see if checks are suppressed
2940
2941 Is_Subscr_Ref :=
2942 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2943
2944 if Is_Subscr_Ref then
2945 Arr := Prefix (Parnt);
2946 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
ba759acd 2947
f4f92d9d 2948 if Is_Access_Type (Arr_Typ) then
05c1e7d2 2949 Arr_Typ := Designated_Type (Arr_Typ);
f4f92d9d 2950 end if;
70482933
RK
2951 end if;
2952
2953 if not Do_Range_Check (Expr) then
2954
2955 -- Subscript reference. Check for Index_Checks suppressed
2956
2957 if Is_Subscr_Ref then
2958
2959 -- Check array type and its base type
2960
2961 if Index_Checks_Suppressed (Arr_Typ)
fbf5a39b 2962 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
70482933
RK
2963 then
2964 return;
2965
2966 -- Check array itself if it is an entity name
2967
2968 elsif Is_Entity_Name (Arr)
fbf5a39b 2969 and then Index_Checks_Suppressed (Entity (Arr))
70482933
RK
2970 then
2971 return;
2972
2973 -- Check expression itself if it is an entity name
2974
2975 elsif Is_Entity_Name (Expr)
fbf5a39b 2976 and then Index_Checks_Suppressed (Entity (Expr))
70482933
RK
2977 then
2978 return;
2979 end if;
2980
2981 -- All other cases, check for Range_Checks suppressed
2982
2983 else
2984 -- Check target type and its base type
2985
2986 if Range_Checks_Suppressed (Target_Typ)
fbf5a39b 2987 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
70482933
RK
2988 then
2989 return;
2990
2991 -- Check expression itself if it is an entity name
2992
2993 elsif Is_Entity_Name (Expr)
fbf5a39b 2994 and then Range_Checks_Suppressed (Entity (Expr))
70482933
RK
2995 then
2996 return;
2997
675d6070
TQ
2998 -- If Expr is part of an assignment statement, then check left
2999 -- side of assignment if it is an entity name.
70482933
RK
3000
3001 elsif Nkind (Parnt) = N_Assignment_Statement
3002 and then Is_Entity_Name (Name (Parnt))
fbf5a39b 3003 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
70482933
RK
3004 then
3005 return;
3006 end if;
3007 end if;
3008 end if;
3009
fbf5a39b
AC
3010 -- Do not set range checks if they are killed
3011
3012 if Nkind (Expr) = N_Unchecked_Type_Conversion
3013 and then Kill_Range_Check (Expr)
3014 then
3015 return;
3016 end if;
3017
3018 -- Do not set range checks for any values from System.Scalar_Values
a90bd866 3019 -- since the whole idea of such values is to avoid checking them.
fbf5a39b
AC
3020
3021 if Is_Entity_Name (Expr)
3022 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
3023 then
3024 return;
3025 end if;
3026
70482933
RK
3027 -- Now see if we need a check
3028
3029 if No (Source_Typ) then
3030 S_Typ := Etype (Expr);
3031 else
3032 S_Typ := Source_Typ;
3033 end if;
3034
3035 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
3036 return;
3037 end if;
3038
3039 Is_Unconstrained_Subscr_Ref :=
3040 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
3041
347c766a 3042 -- Special checks for floating-point type
70482933 3043
347c766a
RD
3044 if Is_Floating_Point_Type (S_Typ) then
3045
3046 -- Always do a range check if the source type includes infinities and
3047 -- the target type does not include infinities. We do not do this if
3048 -- range checks are killed.
aff557c7
AC
3049 -- If the expression is a literal and the bounds of the type are
3050 -- static constants it may be possible to optimize the check.
347c766a
RD
3051
3052 if Has_Infinities (S_Typ)
3053 and then not Has_Infinities (Target_Typ)
3054 then
aff557c7
AC
3055 -- If the expression is a literal and the bounds of the type are
3056 -- static constants it may be possible to optimize the check.
3057
3058 if Nkind (Expr) = N_Real_Literal then
3059 declare
3060 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3061 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3062
3063 begin
3064 if Compile_Time_Known_Value (Tlo)
3065 and then Compile_Time_Known_Value (Thi)
3066 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
3067 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
3068 then
3069 return;
3070 else
3071 Enable_Range_Check (Expr);
3072 end if;
3073 end;
3074
3075 else
3076 Enable_Range_Check (Expr);
3077 end if;
347c766a 3078 end if;
70482933
RK
3079 end if;
3080
675d6070
TQ
3081 -- Return if we know expression is definitely in the range of the target
3082 -- type as determined by Determine_Range. Right now we only do this for
3083 -- discrete types, and not fixed-point or floating-point types.
70482933 3084
ddda9d0f 3085 -- The additional less-precise tests below catch these cases
70482933 3086
d8ee014f
YM
3087 -- In GNATprove_Mode, also deal with the case of a conversion from
3088 -- floating-point to integer. It is only possible because analysis
3089 -- in GNATprove rules out the possibility of a NaN or infinite value.
3090
675d6070
TQ
3091 -- Note: skip this if we are given a source_typ, since the point of
3092 -- supplying a Source_Typ is to stop us looking at the expression.
3093 -- We could sharpen this test to be out parameters only ???
70482933
RK
3094
3095 if Is_Discrete_Type (Target_Typ)
d8ee014f
YM
3096 and then (Is_Discrete_Type (Etype (Expr))
3097 or else (GNATprove_Mode
3098 and then Is_Floating_Point_Type (Etype (Expr))))
70482933
RK
3099 and then not Is_Unconstrained_Subscr_Ref
3100 and then No (Source_Typ)
3101 then
3102 declare
70482933 3103 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
94295b25 3104 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
70482933
RK
3105
3106 begin
3107 if Compile_Time_Known_Value (Tlo)
3108 and then Compile_Time_Known_Value (Thi)
3109 then
fbf5a39b 3110 declare
dcd5fd67 3111 OK : Boolean := False; -- initialize to prevent warning
fbf5a39b 3112 Hiv : constant Uint := Expr_Value (Thi);
94295b25 3113 Lov : constant Uint := Expr_Value (Tlo);
dcd5fd67
PMR
3114 Hi : Uint := No_Uint;
3115 Lo : Uint := No_Uint;
70482933 3116
fbf5a39b 3117 begin
94295b25
AC
3118 -- If range is null, we for sure have a constraint error (we
3119 -- don't even need to look at the value involved, since all
3120 -- possible values will raise CE).
fbf5a39b
AC
3121
3122 if Lov > Hiv then
39f0fa29 3123
520c0201
AC
3124 -- When SPARK_Mode is On, force a warning instead of
3125 -- an error in that case, as this likely corresponds
3126 -- to deactivated code.
3127
3128 Bad_Value (Warn => SPARK_Mode = On);
3129
3130 -- In GNATprove mode, we enable the range check so that
3131 -- GNATprove will issue a message if it cannot be proved.
39f0fa29
AC
3132
3133 if GNATprove_Mode then
3134 Enable_Range_Check (Expr);
39f0fa29
AC
3135 end if;
3136
fbf5a39b
AC
3137 return;
3138 end if;
3139
3140 -- Otherwise determine range of value
3141
d8ee014f 3142 if Is_Discrete_Type (Etype (Expr)) then
94295b25
AC
3143 Determine_Range
3144 (Expr, OK, Lo, Hi, Assume_Valid => True);
d8ee014f
YM
3145
3146 -- When converting a float to an integer type, determine the
3147 -- range in real first, and then convert the bounds using
3148 -- UR_To_Uint which correctly rounds away from zero when
3149 -- half way between two integers, as required by normal
3150 -- Ada 95 rounding semantics. It is only possible because
3151 -- analysis in GNATprove rules out the possibility of a NaN
3152 -- or infinite value.
3153
3154 elsif GNATprove_Mode
3155 and then Is_Floating_Point_Type (Etype (Expr))
3156 then
3157 declare
d8ee014f 3158 Hir : Ureal;
94295b25
AC
3159 Lor : Ureal;
3160
d8ee014f 3161 begin
94295b25
AC
3162 Determine_Range_R
3163 (Expr, OK, Lor, Hir, Assume_Valid => True);
d8ee014f
YM
3164
3165 if OK then
3166 Lo := UR_To_Uint (Lor);
3167 Hi := UR_To_Uint (Hir);
3168 end if;
3169 end;
3170 end if;
fbf5a39b
AC
3171
3172 if OK then
3173
3174 -- If definitely in range, all OK
70482933 3175
70482933
RK
3176 if Lo >= Lov and then Hi <= Hiv then
3177 return;
3178
fbf5a39b
AC
3179 -- If definitely not in range, warn
3180
70482933 3181 elsif Lov > Hi or else Hiv < Lo then
0c506265 3182
88ad52c9
AC
3183 -- Ignore out of range values for System.Priority in
3184 -- CodePeer mode since the actual target compiler may
3185 -- provide a wider range.
3186
3187 if not CodePeer_Mode
3188 or else Target_Typ /= RTE (RE_Priority)
3189 then
3190 Bad_Value;
3191 end if;
3192
70482933 3193 return;
fbf5a39b
AC
3194
3195 -- Otherwise we don't know
3196
3197 else
3198 null;
70482933 3199 end if;
fbf5a39b
AC
3200 end if;
3201 end;
70482933
RK
3202 end if;
3203 end;
3204 end if;
3205
3206 Int_Real :=
3207 Is_Floating_Point_Type (S_Typ)
3208 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3209
3210 -- Check if we can determine at compile time whether Expr is in the
fbf5a39b
AC
3211 -- range of the target type. Note that if S_Typ is within the bounds
3212 -- of Target_Typ then this must be the case. This check is meaningful
3213 -- only if this is not a conversion between integer and real types.
70482933
RK
3214
3215 if not Is_Unconstrained_Subscr_Ref
347c766a 3216 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
70482933 3217 and then
c27f2f15 3218 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
6d0b56ad
AC
3219
3220 -- Also check if the expression itself is in the range of the
3221 -- target type if it is a known at compile time value. We skip
3222 -- this test if S_Typ is set since for OUT and IN OUT parameters
3223 -- the Expr itself is not relevant to the checking.
3224
70482933 3225 or else
6d0b56ad
AC
3226 (No (Source_Typ)
3227 and then Is_In_Range (Expr, Target_Typ,
3228 Assume_Valid => True,
3229 Fixed_Int => Fixed_Int,
3230 Int_Real => Int_Real)))
70482933
RK
3231 then
3232 return;
3233
c800f862
RD
3234 elsif Is_Out_Of_Range (Expr, Target_Typ,
3235 Assume_Valid => True,
3236 Fixed_Int => Fixed_Int,
3237 Int_Real => Int_Real)
3238 then
70482933
RK
3239 Bad_Value;
3240 return;
3241
347c766a 3242 -- Floating-point case
675d6070
TQ
3243 -- In the floating-point case, we only do range checks if the type is
3244 -- constrained. We definitely do NOT want range checks for unconstrained
0da343bc
AC
3245 -- types, since we want to have infinities, except when
3246 -- Check_Float_Overflow is set.
70482933 3247
fbf5a39b 3248 elsif Is_Floating_Point_Type (S_Typ) then
0da343bc 3249 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
fbf5a39b
AC
3250 Enable_Range_Check (Expr);
3251 end if;
70482933 3252
fbf5a39b 3253 -- For all other cases we enable a range check unconditionally
70482933
RK
3254
3255 else
3256 Enable_Range_Check (Expr);
3257 return;
3258 end if;
70482933
RK
3259 end Apply_Scalar_Range_Check;
3260
3261 ----------------------------------
3262 -- Apply_Selected_Length_Checks --
3263 ----------------------------------
3264
3265 procedure Apply_Selected_Length_Checks
3266 (Ck_Node : Node_Id;
3267 Target_Typ : Entity_Id;
3268 Source_Typ : Entity_Id;
3269 Do_Static : Boolean)
3270 is
e0666fc6
AC
3271 Checks_On : constant Boolean :=
3272 not Index_Checks_Suppressed (Target_Typ)
3273 or else
3274 not Length_Checks_Suppressed (Target_Typ);
3275
3276 Loc : constant Source_Ptr := Sloc (Ck_Node);
3277
70482933 3278 Cond : Node_Id;
70482933 3279 R_Cno : Node_Id;
e0666fc6 3280 R_Result : Check_Result;
70482933
RK
3281
3282 begin
66340e0e 3283 -- Only apply checks when generating code
27bb7941 3284
4a28b181 3285 -- Note: this means that we lose some useful warnings if the expander
27bb7941 3286 -- is not active.
4a28b181 3287
66340e0e 3288 if not Expander_Active then
70482933
RK
3289 return;
3290 end if;
3291
3292 R_Result :=
3293 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3294
3295 for J in 1 .. 2 loop
70482933
RK
3296 R_Cno := R_Result (J);
3297 exit when No (R_Cno);
3298
3299 -- A length check may mention an Itype which is attached to a
3300 -- subsequent node. At the top level in a package this can cause
3301 -- an order-of-elaboration problem, so we make sure that the itype
3302 -- is referenced now.
3303
3304 if Ekind (Current_Scope) = E_Package
3305 and then Is_Compilation_Unit (Current_Scope)
3306 then
3307 Ensure_Defined (Target_Typ, Ck_Node);
3308
3309 if Present (Source_Typ) then
3310 Ensure_Defined (Source_Typ, Ck_Node);
3311
3312 elsif Is_Itype (Etype (Ck_Node)) then
3313 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3314 end if;
3315 end if;
3316
675d6070
TQ
3317 -- If the item is a conditional raise of constraint error, then have
3318 -- a look at what check is being performed and ???
70482933
RK
3319
3320 if Nkind (R_Cno) = N_Raise_Constraint_Error
3321 and then Present (Condition (R_Cno))
3322 then
3323 Cond := Condition (R_Cno);
3324
c064e066 3325 -- Case where node does not now have a dynamic check
70482933 3326
c064e066
RD
3327 if not Has_Dynamic_Length_Check (Ck_Node) then
3328
3329 -- If checks are on, just insert the check
3330
3331 if Checks_On then
3332 Insert_Action (Ck_Node, R_Cno);
3333
3334 if not Do_Static then
3335 Set_Has_Dynamic_Length_Check (Ck_Node);
3336 end if;
3337
3338 -- If checks are off, then analyze the length check after
3339 -- temporarily attaching it to the tree in case the relevant
308e6f3a 3340 -- condition can be evaluated at compile time. We still want a
c064e066
RD
3341 -- compile time warning in this case.
3342
3343 else
3344 Set_Parent (R_Cno, Ck_Node);
3345 Analyze (R_Cno);
70482933 3346 end if;
70482933
RK
3347 end if;
3348
3349 -- Output a warning if the condition is known to be True
3350
3351 if Is_Entity_Name (Cond)
3352 and then Entity (Cond) = Standard_True
3353 then
3354 Apply_Compile_Time_Constraint_Error
685bc70f 3355 (Ck_Node, "wrong length for array of}??",
07fc65c4 3356 CE_Length_Check_Failed,
70482933
RK
3357 Ent => Target_Typ,
3358 Typ => Target_Typ);
3359
3360 -- If we were only doing a static check, or if checks are not
3361 -- on, then we want to delete the check, since it is not needed.
3362 -- We do this by replacing the if statement by a null statement
3363
3364 elsif Do_Static or else not Checks_On then
11b4899f 3365 Remove_Warning_Messages (R_Cno);
70482933
RK
3366 Rewrite (R_Cno, Make_Null_Statement (Loc));
3367 end if;
3368
3369 else
3370 Install_Static_Check (R_Cno, Loc);
3371 end if;
70482933 3372 end loop;
70482933
RK
3373 end Apply_Selected_Length_Checks;
3374
3375 ---------------------------------
3376 -- Apply_Selected_Range_Checks --
3377 ---------------------------------
3378
3379 procedure Apply_Selected_Range_Checks
3380 (Ck_Node : Node_Id;
3381 Target_Typ : Entity_Id;
3382 Source_Typ : Entity_Id;
3383 Do_Static : Boolean)
3384 is
70482933 3385 Checks_On : constant Boolean :=
f9966234 3386 not Index_Checks_Suppressed (Target_Typ)
6e32b1ab
AC
3387 or else
3388 not Range_Checks_Suppressed (Target_Typ);
f9966234 3389
e0666fc6
AC
3390 Loc : constant Source_Ptr := Sloc (Ck_Node);
3391
f9966234
AC
3392 Cond : Node_Id;
3393 R_Cno : Node_Id;
3394 R_Result : Check_Result;
70482933
RK
3395
3396 begin
27bb7941
AC
3397 -- Only apply checks when generating code. In GNATprove mode, we do not
3398 -- apply the checks, but we still call Selected_Range_Checks to possibly
3399 -- issue errors on SPARK code when a run-time error can be detected at
3400 -- compile time.
3401
3402 if not GNATprove_Mode then
3403 if not Expander_Active or not Checks_On then
3404 return;
3405 end if;
70482933
RK
3406 end if;
3407
3408 R_Result :=
3409 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3410
27bb7941
AC
3411 if GNATprove_Mode then
3412 return;
3413 end if;
3414
70482933 3415 for J in 1 .. 2 loop
70482933
RK
3416 R_Cno := R_Result (J);
3417 exit when No (R_Cno);
3418
f9966234
AC
3419 -- The range check requires runtime evaluation. Depending on what its
3420 -- triggering condition is, the check may be converted into a compile
3421 -- time constraint check.
70482933
RK
3422
3423 if Nkind (R_Cno) = N_Raise_Constraint_Error
3424 and then Present (Condition (R_Cno))
3425 then
3426 Cond := Condition (R_Cno);
3427
f9966234
AC
3428 -- Insert the range check before the related context. Note that
3429 -- this action analyses the triggering condition.
70482933 3430
f9966234
AC
3431 Insert_Action (Ck_Node, R_Cno);
3432
3433 -- This old code doesn't make sense, why is the context flagged as
3434 -- requiring dynamic range checks now in the middle of generating
3435 -- them ???
3436
3437 if not Do_Static then
3438 Set_Has_Dynamic_Range_Check (Ck_Node);
70482933
RK
3439 end if;
3440
f9966234
AC
3441 -- The triggering condition evaluates to True, the range check
3442 -- can be converted into a compile time constraint check.
70482933
RK
3443
3444 if Is_Entity_Name (Cond)
3445 and then Entity (Cond) = Standard_True
3446 then
675d6070
TQ
3447 -- Since an N_Range is technically not an expression, we have
3448 -- to set one of the bounds to C_E and then just flag the
3449 -- N_Range. The warning message will point to the lower bound
3450 -- and complain about a range, which seems OK.
70482933
RK
3451
3452 if Nkind (Ck_Node) = N_Range then
3453 Apply_Compile_Time_Constraint_Error
6e32b1ab
AC
3454 (Low_Bound (Ck_Node),
3455 "static range out of bounds of}??",
07fc65c4 3456 CE_Range_Check_Failed,
70482933
RK
3457 Ent => Target_Typ,
3458 Typ => Target_Typ);
3459
3460 Set_Raises_Constraint_Error (Ck_Node);
3461
3462 else
3463 Apply_Compile_Time_Constraint_Error
6e32b1ab 3464 (Ck_Node,
b785e0b8 3465 "static value out of range of}??",
07fc65c4 3466 CE_Range_Check_Failed,
70482933
RK
3467 Ent => Target_Typ,
3468 Typ => Target_Typ);
3469 end if;
3470
3471 -- If we were only doing a static check, or if checks are not
3472 -- on, then we want to delete the check, since it is not needed.
3473 -- We do this by replacing the if statement by a null statement
3474
e49de265 3475 elsif Do_Static then
11b4899f 3476 Remove_Warning_Messages (R_Cno);
70482933
RK
3477 Rewrite (R_Cno, Make_Null_Statement (Loc));
3478 end if;
3479
57d3adcd 3480 -- The range check raises Constraint_Error explicitly
f9966234 3481
70482933
RK
3482 else
3483 Install_Static_Check (R_Cno, Loc);
3484 end if;
70482933 3485 end loop;
70482933
RK
3486 end Apply_Selected_Range_Checks;
3487
3488 -------------------------------
3489 -- Apply_Static_Length_Check --
3490 -------------------------------
3491
3492 procedure Apply_Static_Length_Check
3493 (Expr : Node_Id;
3494 Target_Typ : Entity_Id;
3495 Source_Typ : Entity_Id := Empty)
3496 is
3497 begin
3498 Apply_Selected_Length_Checks
3499 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3500 end Apply_Static_Length_Check;
3501
3502 -------------------------------------
3503 -- Apply_Subscript_Validity_Checks --
3504 -------------------------------------
3505
3506 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3507 Sub : Node_Id;
3508
3509 begin
3510 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3511
3512 -- Loop through subscripts
3513
3514 Sub := First (Expressions (Expr));
3515 while Present (Sub) loop
3516
675d6070
TQ
3517 -- Check one subscript. Note that we do not worry about enumeration
3518 -- type with holes, since we will convert the value to a Pos value
3519 -- for the subscript, and that convert will do the necessary validity
3520 -- check.
70482933
RK
3521
3522 Ensure_Valid (Sub, Holes_OK => True);
3523
3524 -- Move to next subscript
3525
3526 Sub := Next (Sub);
3527 end loop;
3528 end Apply_Subscript_Validity_Checks;
3529
3530 ----------------------------------
3531 -- Apply_Type_Conversion_Checks --
3532 ----------------------------------
3533
3534 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3535 Target_Type : constant Entity_Id := Etype (N);
3536 Target_Base : constant Entity_Id := Base_Type (Target_Type);
fbf5a39b 3537 Expr : constant Node_Id := Expression (N);
2c1a2cf3
RD
3538
3539 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
1197ddb1
AC
3540 -- Note: if Etype (Expr) is a private type without discriminants, its
3541 -- full view might have discriminants with defaults, so we need the
3542 -- full view here to retrieve the constraints.
70482933
RK
3543
3544 begin
3545 if Inside_A_Generic then
3546 return;
3547
07fc65c4 3548 -- Skip these checks if serious errors detected, there are some nasty
70482933
RK
3549 -- situations of incomplete trees that blow things up.
3550
07fc65c4 3551 elsif Serious_Errors_Detected > 0 then
70482933
RK
3552 return;
3553
8e1e62e3
AC
3554 -- Never generate discriminant checks for Unchecked_Union types
3555
3556 elsif Present (Expr_Type)
3557 and then Is_Unchecked_Union (Expr_Type)
3558 then
3559 return;
3560
675d6070
TQ
3561 -- Scalar type conversions of the form Target_Type (Expr) require a
3562 -- range check if we cannot be sure that Expr is in the base type of
3563 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3564 -- are not quite the same condition from an implementation point of
3565 -- view, but clearly the second includes the first.
70482933
RK
3566
3567 elsif Is_Scalar_Type (Target_Type) then
3568 declare
3569 Conv_OK : constant Boolean := Conversion_OK (N);
675d6070 3570 -- If the Conversion_OK flag on the type conversion is set and no
8e1e62e3
AC
3571 -- floating-point type is involved in the type conversion then
3572 -- fixed-point values must be read as integral values.
70482933 3573
7324bf49 3574 Float_To_Int : constant Boolean :=
15f0f591
AC
3575 Is_Floating_Point_Type (Expr_Type)
3576 and then Is_Integer_Type (Target_Type);
7324bf49 3577
70482933 3578 begin
70482933 3579 if not Overflow_Checks_Suppressed (Target_Base)
a7f1b24f 3580 and then not Overflow_Checks_Suppressed (Target_Type)
1c7717c3 3581 and then not
c27f2f15 3582 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
7324bf49 3583 and then not Float_To_Int
70482933 3584 then
82e5c243 3585 -- A small optimization: the attribute 'Pos applied to an
0929d66b
AC
3586 -- enumeration type has a known range, even though its type is
3587 -- Universal_Integer. So in numeric conversions it is usually
3588 -- within range of the target integer type. Use the static
3589 -- bounds of the base types to check. Disable this optimization
3590 -- in case of a generic formal discrete type, because we don't
3591 -- necessarily know the upper bound yet.
f8981f19
AC
3592
3593 if Nkind (Expr) = N_Attribute_Reference
3594 and then Attribute_Name (Expr) = Name_Pos
3595 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
0929d66b 3596 and then not Is_Generic_Type (Etype (Prefix (Expr)))
f8981f19
AC
3597 and then Is_Integer_Type (Target_Type)
3598 then
3599 declare
82e5c243
AC
3600 Enum_T : constant Entity_Id :=
3601 Root_Type (Etype (Prefix (Expr)));
3602 Int_T : constant Entity_Id := Base_Type (Target_Type);
3603 Last_I : constant Uint :=
3604 Intval (High_Bound (Scalar_Range (Int_T)));
3605 Last_E : Uint;
f8981f19
AC
3606
3607 begin
82e5c243 3608 -- Character types have no explicit literals, so we use
f8981f19
AC
3609 -- the known number of characters in the type.
3610
3611 if Root_Type (Enum_T) = Standard_Character then
3612 Last_E := UI_From_Int (255);
3613
3614 elsif Enum_T = Standard_Wide_Character
3615 or else Enum_T = Standard_Wide_Wide_Character
3616 then
3617 Last_E := UI_From_Int (65535);
3618
3619 else
82e5c243
AC
3620 Last_E :=
3621 Enumeration_Pos
f8981f19
AC
3622 (Entity (High_Bound (Scalar_Range (Enum_T))));
3623 end if;
3624
3625 if Last_E <= Last_I then
3626 null;
3627
3628 else
3629 Activate_Overflow_Check (N);
3630 end if;
3631 end;
3632
3633 else
3634 Activate_Overflow_Check (N);
3635 end if;
70482933
RK
3636 end if;
3637
3638 if not Range_Checks_Suppressed (Target_Type)
3639 and then not Range_Checks_Suppressed (Expr_Type)
3640 then
d8ee014f
YM
3641 if Float_To_Int
3642 and then not GNATprove_Mode
3643 then
7324bf49 3644 Apply_Float_Conversion_Check (Expr, Target_Type);
61770974 3645
7324bf49 3646 else
241848fd
ES
3647 -- Conversions involving fixed-point types are expanded
3648 -- separately, and do not need a Range_Check flag, except
c7862167
HK
3649 -- in GNATprove_Mode, where the explicit constraint check
3650 -- will not be generated.
241848fd 3651
94a98e80 3652 if GNATprove_Mode
8113b0c7
EB
3653 or else (not Is_Fixed_Point_Type (Expr_Type)
3654 and then not Is_Fixed_Point_Type (Target_Type))
241848fd
ES
3655 then
3656 Apply_Scalar_Range_Check
3657 (Expr, Target_Type, Fixed_Int => Conv_OK);
3658
3659 else
8113b0c7 3660 Set_Do_Range_Check (Expr, False);
241848fd 3661 end if;
b2009d46
AC
3662
3663 -- If the target type has predicates, we need to indicate
8e1e62e3
AC
3664 -- the need for a check, even if Determine_Range finds that
3665 -- the value is within bounds. This may be the case e.g for
3666 -- a division with a constant denominator.
b2009d46
AC
3667
3668 if Has_Predicates (Target_Type) then
3669 Enable_Range_Check (Expr);
3670 end if;
7324bf49 3671 end if;
70482933
RK
3672 end if;
3673 end;
3674
3675 elsif Comes_From_Source (N)
ec2dd67a 3676 and then not Discriminant_Checks_Suppressed (Target_Type)
70482933
RK
3677 and then Is_Record_Type (Target_Type)
3678 and then Is_Derived_Type (Target_Type)
3679 and then not Is_Tagged_Type (Target_Type)
3680 and then not Is_Constrained (Target_Type)
fbf5a39b 3681 and then Present (Stored_Constraint (Target_Type))
70482933 3682 then
1197ddb1 3683 -- An unconstrained derived type may have inherited discriminant.
fbf5a39b 3684 -- Build an actual discriminant constraint list using the stored
70482933 3685 -- constraint, to verify that the expression of the parent type
8e1e62e3
AC
3686 -- satisfies the constraints imposed by the (unconstrained) derived
3687 -- type. This applies to value conversions, not to view conversions
3688 -- of tagged types.
70482933
RK
3689
3690 declare
fbf5a39b
AC
3691 Loc : constant Source_Ptr := Sloc (N);
3692 Cond : Node_Id;
3693 Constraint : Elmt_Id;
3694 Discr_Value : Node_Id;
3695 Discr : Entity_Id;
3696
3697 New_Constraints : constant Elist_Id := New_Elmt_List;
3698 Old_Constraints : constant Elist_Id :=
15f0f591 3699 Discriminant_Constraint (Expr_Type);
70482933
RK
3700
3701 begin
fbf5a39b 3702 Constraint := First_Elmt (Stored_Constraint (Target_Type));
70482933
RK
3703 while Present (Constraint) loop
3704 Discr_Value := Node (Constraint);
3705
3706 if Is_Entity_Name (Discr_Value)
3707 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3708 then
3709 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3710
3711 if Present (Discr)
3712 and then Scope (Discr) = Base_Type (Expr_Type)
3713 then
3714 -- Parent is constrained by new discriminant. Obtain
675d6070
TQ
3715 -- Value of original discriminant in expression. If the
3716 -- new discriminant has been used to constrain more than
3717 -- one of the stored discriminants, this will provide the
3718 -- required consistency check.
70482933 3719
7675ad4f
AC
3720 Append_Elmt
3721 (Make_Selected_Component (Loc,
3722 Prefix =>
fbf5a39b
AC
3723 Duplicate_Subexpr_No_Checks
3724 (Expr, Name_Req => True),
70482933
RK
3725 Selector_Name =>
3726 Make_Identifier (Loc, Chars (Discr))),
7675ad4f 3727 New_Constraints);
70482933
RK
3728
3729 else
3730 -- Discriminant of more remote ancestor ???
3731
3732 return;
3733 end if;
3734
675d6070
TQ
3735 -- Derived type definition has an explicit value for this
3736 -- stored discriminant.
70482933
RK
3737
3738 else
3739 Append_Elmt
fbf5a39b
AC
3740 (Duplicate_Subexpr_No_Checks (Discr_Value),
3741 New_Constraints);
70482933
RK
3742 end if;
3743
3744 Next_Elmt (Constraint);
3745 end loop;
3746
3747 -- Use the unconstrained expression type to retrieve the
3748 -- discriminants of the parent, and apply momentarily the
3749 -- discriminant constraint synthesized above.
3750
3751 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3752 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3753 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3754
3755 Insert_Action (N,
07fc65c4
GB
3756 Make_Raise_Constraint_Error (Loc,
3757 Condition => Cond,
3758 Reason => CE_Discriminant_Check_Failed));
70482933
RK
3759 end;
3760
8bfbd380
AC
3761 -- For arrays, checks are set now, but conversions are applied during
3762 -- expansion, to take into accounts changes of representation. The
3763 -- checks become range checks on the base type or length checks on the
3764 -- subtype, depending on whether the target type is unconstrained or
83851b23
AC
3765 -- constrained. Note that the range check is put on the expression of a
3766 -- type conversion, while the length check is put on the type conversion
3767 -- itself.
8bfbd380
AC
3768
3769 elsif Is_Array_Type (Target_Type) then
3770 if Is_Constrained (Target_Type) then
3771 Set_Do_Length_Check (N);
3772 else
3773 Set_Do_Range_Check (Expr);
3774 end if;
70482933 3775 end if;
70482933
RK
3776 end Apply_Type_Conversion_Checks;
3777
3778 ----------------------------------------------
3779 -- Apply_Universal_Integer_Attribute_Checks --
3780 ----------------------------------------------
3781
3782 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3783 Loc : constant Source_Ptr := Sloc (N);
3784 Typ : constant Entity_Id := Etype (N);
3785
3786 begin
3787 if Inside_A_Generic then
3788 return;
3789
3790 -- Nothing to do if checks are suppressed
3791
3792 elsif Range_Checks_Suppressed (Typ)
3793 and then Overflow_Checks_Suppressed (Typ)
3794 then
3795 return;
3796
3797 -- Nothing to do if the attribute does not come from source. The
3798 -- internal attributes we generate of this type do not need checks,
3799 -- and furthermore the attempt to check them causes some circular
3800 -- elaboration orders when dealing with packed types.
3801
3802 elsif not Comes_From_Source (N) then
3803 return;
3804
fbf5a39b
AC
3805 -- If the prefix is a selected component that depends on a discriminant
3806 -- the check may improperly expose a discriminant instead of using
3807 -- the bounds of the object itself. Set the type of the attribute to
3808 -- the base type of the context, so that a check will be imposed when
3809 -- needed (e.g. if the node appears as an index).
3810
3811 elsif Nkind (Prefix (N)) = N_Selected_Component
3812 and then Ekind (Typ) = E_Signed_Integer_Subtype
3813 and then Depends_On_Discriminant (Scalar_Range (Typ))
3814 then
3815 Set_Etype (N, Base_Type (Typ));
3816
675d6070
TQ
3817 -- Otherwise, replace the attribute node with a type conversion node
3818 -- whose expression is the attribute, retyped to universal integer, and
3819 -- whose subtype mark is the target type. The call to analyze this
3820 -- conversion will set range and overflow checks as required for proper
3821 -- detection of an out of range value.
70482933
RK
3822
3823 else
3824 Set_Etype (N, Universal_Integer);
3825 Set_Analyzed (N, True);
3826
3827 Rewrite (N,
3828 Make_Type_Conversion (Loc,
3829 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3830 Expression => Relocate_Node (N)));
3831
3832 Analyze_And_Resolve (N, Typ);
3833 return;
3834 end if;
70482933
RK
3835 end Apply_Universal_Integer_Attribute_Checks;
3836
12b4d338
AC
3837 -------------------------------------
3838 -- Atomic_Synchronization_Disabled --
3839 -------------------------------------
3840
3841 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3842 -- using a bogus check called Atomic_Synchronization. This is to make it
3843 -- more convenient to get exactly the same semantics as [Un]Suppress.
3844
3845 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3846 begin
4c318253
AC
3847 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3848 -- looks enabled, since it is never disabled.
3849
3850 if Debug_Flag_Dot_E then
3851 return False;
3852
3853 -- If debug flag d.d is set then always return True, i.e. all atomic
3854 -- sync looks disabled, since it always tests True.
3855
3856 elsif Debug_Flag_Dot_D then
3857 return True;
3858
3859 -- If entity present, then check result for that entity
3860
3861 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
12b4d338 3862 return Is_Check_Suppressed (E, Atomic_Synchronization);
4c318253
AC
3863
3864 -- Otherwise result depends on current scope setting
3865
12b4d338 3866 else
3217f71e 3867 return Scope_Suppress.Suppress (Atomic_Synchronization);
12b4d338
AC
3868 end if;
3869 end Atomic_Synchronization_Disabled;
3870
70482933
RK
3871 -------------------------------
3872 -- Build_Discriminant_Checks --
3873 -------------------------------
3874
3875 function Build_Discriminant_Checks
3876 (N : Node_Id;
6b6fcd3e 3877 T_Typ : Entity_Id) return Node_Id
70482933
RK
3878 is
3879 Loc : constant Source_Ptr := Sloc (N);
3880 Cond : Node_Id;
3881 Disc : Elmt_Id;
3882 Disc_Ent : Entity_Id;
fbf5a39b 3883 Dref : Node_Id;
70482933
RK
3884 Dval : Node_Id;
3885
86ac5e79
ES
3886 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3887
8016e567
PT
3888 --------------------------------
3889 -- Aggregate_Discriminant_Val --
3890 --------------------------------
86ac5e79
ES
3891
3892 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3893 Assoc : Node_Id;
3894
3895 begin
675d6070
TQ
3896 -- The aggregate has been normalized with named associations. We use
3897 -- the Chars field to locate the discriminant to take into account
3898 -- discriminants in derived types, which carry the same name as those
3899 -- in the parent.
86ac5e79
ES
3900
3901 Assoc := First (Component_Associations (N));
3902 while Present (Assoc) loop
3903 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3904 return Expression (Assoc);
3905 else
3906 Next (Assoc);
3907 end if;
3908 end loop;
3909
3910 -- Discriminant must have been found in the loop above
3911
3912 raise Program_Error;
3913 end Aggregate_Discriminant_Val;
3914
3915 -- Start of processing for Build_Discriminant_Checks
3916
70482933 3917 begin
86ac5e79
ES
3918 -- Loop through discriminants evolving the condition
3919
70482933
RK
3920 Cond := Empty;
3921 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3922
fbf5a39b 3923 -- For a fully private type, use the discriminants of the parent type
70482933
RK
3924
3925 if Is_Private_Type (T_Typ)
3926 and then No (Full_View (T_Typ))
3927 then
3928 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3929 else
3930 Disc_Ent := First_Discriminant (T_Typ);
3931 end if;
3932
3933 while Present (Disc) loop
70482933
RK
3934 Dval := Node (Disc);
3935
3936 if Nkind (Dval) = N_Identifier
3937 and then Ekind (Entity (Dval)) = E_Discriminant
3938 then
3939 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3940 else
fbf5a39b 3941 Dval := Duplicate_Subexpr_No_Checks (Dval);
70482933
RK
3942 end if;
3943
5d09245e
AC
3944 -- If we have an Unchecked_Union node, we can infer the discriminants
3945 -- of the node.
fbf5a39b 3946
5d09245e
AC
3947 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3948 Dref := New_Copy (
3949 Get_Discriminant_Value (
3950 First_Discriminant (T_Typ),
3951 T_Typ,
3952 Stored_Constraint (T_Typ)));
3953
86ac5e79
ES
3954 elsif Nkind (N) = N_Aggregate then
3955 Dref :=
3956 Duplicate_Subexpr_No_Checks
3957 (Aggregate_Discriminant_Val (Disc_Ent));
3958
5d09245e
AC
3959 else
3960 Dref :=
3961 Make_Selected_Component (Loc,
637a41a5 3962 Prefix =>
5d09245e 3963 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
637a41a5 3964 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
5d09245e
AC
3965
3966 Set_Is_In_Discriminant_Check (Dref);
3967 end if;
fbf5a39b 3968
70482933
RK
3969 Evolve_Or_Else (Cond,
3970 Make_Op_Ne (Loc,
637a41a5 3971 Left_Opnd => Dref,
70482933
RK
3972 Right_Opnd => Dval));
3973
3974 Next_Elmt (Disc);
3975 Next_Discriminant (Disc_Ent);
3976 end loop;
3977
3978 return Cond;
3979 end Build_Discriminant_Checks;
3980
2ede092b
RD
3981 ------------------
3982 -- Check_Needed --
3983 ------------------
3984
3985 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3986 N : Node_Id;
3987 P : Node_Id;
3988 K : Node_Kind;
3989 L : Node_Id;
3990 R : Node_Id;
3991
ef163a0a
AC
3992 function Left_Expression (Op : Node_Id) return Node_Id;
3993 -- Return the relevant expression from the left operand of the given
3994 -- short circuit form: this is LO itself, except if LO is a qualified
3995 -- expression, a type conversion, or an expression with actions, in
3996 -- which case this is Left_Expression (Expression (LO)).
3997
3998 ---------------------
3999 -- Left_Expression --
4000 ---------------------
4001
4002 function Left_Expression (Op : Node_Id) return Node_Id is
4003 LE : Node_Id := Left_Opnd (Op);
4004 begin
637a41a5
AC
4005 while Nkind_In (LE, N_Qualified_Expression,
4006 N_Type_Conversion,
4007 N_Expression_With_Actions)
ef163a0a
AC
4008 loop
4009 LE := Expression (LE);
4010 end loop;
4011
4012 return LE;
4013 end Left_Expression;
4014
4015 -- Start of processing for Check_Needed
4016
2ede092b
RD
4017 begin
4018 -- Always check if not simple entity
4019
4020 if Nkind (Nod) not in N_Has_Entity
4021 or else not Comes_From_Source (Nod)
4022 then
4023 return True;
4024 end if;
4025
4026 -- Look up tree for short circuit
4027
4028 N := Nod;
4029 loop
4030 P := Parent (N);
4031 K := Nkind (P);
4032
16a55e63
RD
4033 -- Done if out of subexpression (note that we allow generated stuff
4034 -- such as itype declarations in this context, to keep the loop going
4035 -- since we may well have generated such stuff in complex situations.
4036 -- Also done if no parent (probably an error condition, but no point
a90bd866 4037 -- in behaving nasty if we find it).
16a55e63
RD
4038
4039 if No (P)
4040 or else (K not in N_Subexpr and then Comes_From_Source (P))
4041 then
2ede092b
RD
4042 return True;
4043
16a55e63
RD
4044 -- Or/Or Else case, where test is part of the right operand, or is
4045 -- part of one of the actions associated with the right operand, and
4046 -- the left operand is an equality test.
2ede092b 4047
16a55e63 4048 elsif K = N_Op_Or then
2ede092b 4049 exit when N = Right_Opnd (P)
ef163a0a 4050 and then Nkind (Left_Expression (P)) = N_Op_Eq;
2ede092b 4051
16a55e63
RD
4052 elsif K = N_Or_Else then
4053 exit when (N = Right_Opnd (P)
4054 or else
4055 (Is_List_Member (N)
4056 and then List_Containing (N) = Actions (P)))
ef163a0a 4057 and then Nkind (Left_Expression (P)) = N_Op_Eq;
2ede092b 4058
16a55e63
RD
4059 -- Similar test for the And/And then case, where the left operand
4060 -- is an inequality test.
4061
4062 elsif K = N_Op_And then
2ede092b 4063 exit when N = Right_Opnd (P)
ef163a0a 4064 and then Nkind (Left_Expression (P)) = N_Op_Ne;
16a55e63
RD
4065
4066 elsif K = N_And_Then then
4067 exit when (N = Right_Opnd (P)
4068 or else
4069 (Is_List_Member (N)
637a41a5 4070 and then List_Containing (N) = Actions (P)))
ef163a0a 4071 and then Nkind (Left_Expression (P)) = N_Op_Ne;
2ede092b
RD
4072 end if;
4073
4074 N := P;
4075 end loop;
4076
4077 -- If we fall through the loop, then we have a conditional with an
ef163a0a
AC
4078 -- appropriate test as its left operand, so look further.
4079
4080 L := Left_Expression (P);
4081
4082 -- L is an "=" or "/=" operator: extract its operands
2ede092b 4083
2ede092b
RD
4084 R := Right_Opnd (L);
4085 L := Left_Opnd (L);
4086
4087 -- Left operand of test must match original variable
4088
637a41a5 4089 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
2ede092b
RD
4090 return True;
4091 end if;
4092
939c12d2 4093 -- Right operand of test must be key value (zero or null)
2ede092b
RD
4094
4095 case Check is
4096 when Access_Check =>
939c12d2 4097 if not Known_Null (R) then
2ede092b
RD
4098 return True;
4099 end if;
4100
4101 when Division_Check =>
4102 if not Compile_Time_Known_Value (R)
4103 or else Expr_Value (R) /= Uint_0
4104 then
4105 return True;
4106 end if;
939c12d2
RD
4107
4108 when others =>
4109 raise Program_Error;
2ede092b
RD
4110 end case;
4111
4112 -- Here we have the optimizable case, warn if not short-circuited
4113
4114 if K = N_Op_And or else K = N_Op_Or then
43417b90 4115 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181 4116
2ede092b
RD
4117 case Check is
4118 when Access_Check =>
4a28b181
AC
4119 if GNATprove_Mode then
4120 Error_Msg_N
4121 ("Constraint_Error might have been raised (access check)",
4122 Parent (Nod));
4123 else
4124 Error_Msg_N
4125 ("Constraint_Error may be raised (access check)??",
4126 Parent (Nod));
4127 end if;
4128
2ede092b 4129 when Division_Check =>
4a28b181
AC
4130 if GNATprove_Mode then
4131 Error_Msg_N
4132 ("Constraint_Error might have been raised (zero divide)",
4133 Parent (Nod));
4134 else
4135 Error_Msg_N
4136 ("Constraint_Error may be raised (zero divide)??",
4137 Parent (Nod));
4138 end if;
939c12d2
RD
4139
4140 when others =>
4141 raise Program_Error;
2ede092b
RD
4142 end case;
4143
4144 if K = N_Op_And then
19d846a0 4145 Error_Msg_N -- CODEFIX
685bc70f 4146 ("use `AND THEN` instead of AND??", P);
2ede092b 4147 else
19d846a0 4148 Error_Msg_N -- CODEFIX
685bc70f 4149 ("use `OR ELSE` instead of OR??", P);
2ede092b
RD
4150 end if;
4151
308e6f3a 4152 -- If not short-circuited, we need the check
2ede092b
RD
4153
4154 return True;
4155
4156 -- If short-circuited, we can omit the check
4157
4158 else
4159 return False;
4160 end if;
4161 end Check_Needed;
4162
70482933
RK
4163 -----------------------------------
4164 -- Check_Valid_Lvalue_Subscripts --
4165 -----------------------------------
4166
4167 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4168 begin
4169 -- Skip this if range checks are suppressed
4170
4171 if Range_Checks_Suppressed (Etype (Expr)) then
4172 return;
4173
675d6070
TQ
4174 -- Only do this check for expressions that come from source. We assume
4175 -- that expander generated assignments explicitly include any necessary
4176 -- checks. Note that this is not just an optimization, it avoids
a90bd866 4177 -- infinite recursions.
70482933
RK
4178
4179 elsif not Comes_From_Source (Expr) then
4180 return;
4181
4182 -- For a selected component, check the prefix
4183
4184 elsif Nkind (Expr) = N_Selected_Component then
4185 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4186 return;
4187
4188 -- Case of indexed component
4189
4190 elsif Nkind (Expr) = N_Indexed_Component then
4191 Apply_Subscript_Validity_Checks (Expr);
4192
675d6070
TQ
4193 -- Prefix may itself be or contain an indexed component, and these
4194 -- subscripts need checking as well.
70482933
RK
4195
4196 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4197 end if;
4198 end Check_Valid_Lvalue_Subscripts;
4199
2820d220
AC
4200 ----------------------------------
4201 -- Null_Exclusion_Static_Checks --
4202 ----------------------------------
4203
d59179b1 4204 procedure Null_Exclusion_Static_Checks
62d40a7a
AC
4205 (N : Node_Id;
4206 Comp : Node_Id := Empty;
4207 Array_Comp : Boolean := False)
d59179b1 4208 is
97ac2d62
AC
4209 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4210 Kind : constant Node_Kind := Nkind (N);
4211 Error_Nod : Node_Id;
4212 Expr : Node_Id;
4213 Typ : Entity_Id;
2820d220 4214
2ede092b 4215 begin
c064e066 4216 pragma Assert
97ac2d62
AC
4217 (Nkind_In (Kind, N_Component_Declaration,
4218 N_Discriminant_Specification,
4219 N_Function_Specification,
4220 N_Object_Declaration,
4221 N_Parameter_Specification));
c064e066 4222
97ac2d62 4223 if Kind = N_Function_Specification then
c064e066
RD
4224 Typ := Etype (Defining_Entity (N));
4225 else
4226 Typ := Etype (Defining_Identifier (N));
4227 end if;
2820d220 4228
97ac2d62 4229 case Kind is
2ede092b
RD
4230 when N_Component_Declaration =>
4231 if Present (Access_Definition (Component_Definition (N))) then
97ac2d62 4232 Error_Nod := Component_Definition (N);
2ede092b 4233 else
97ac2d62 4234 Error_Nod := Subtype_Indication (Component_Definition (N));
2ede092b 4235 end if;
7324bf49 4236
c064e066 4237 when N_Discriminant_Specification =>
97ac2d62 4238 Error_Nod := Discriminant_Type (N);
c064e066
RD
4239
4240 when N_Function_Specification =>
97ac2d62 4241 Error_Nod := Result_Definition (N);
c064e066
RD
4242
4243 when N_Object_Declaration =>
97ac2d62 4244 Error_Nod := Object_Definition (N);
c064e066
RD
4245
4246 when N_Parameter_Specification =>
97ac2d62 4247 Error_Nod := Parameter_Type (N);
c064e066 4248
2ede092b
RD
4249 when others =>
4250 raise Program_Error;
4251 end case;
7324bf49 4252
c064e066 4253 if Has_Null then
7324bf49 4254
c064e066
RD
4255 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4256 -- applied to an access [sub]type.
7324bf49 4257
c064e066 4258 if not Is_Access_Type (Typ) then
ed2233dc 4259 Error_Msg_N
97ac2d62 4260 ("`NOT NULL` allowed only for an access type", Error_Nod);
7324bf49 4261
675d6070 4262 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
c064e066
RD
4263 -- be applied to a [sub]type that does not exclude null already.
4264
97ac2d62 4265 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
ed2233dc 4266 Error_Msg_NE
11b4899f 4267 ("`NOT NULL` not allowed (& already excludes null)",
97ac2d62 4268 Error_Nod, Typ);
c064e066 4269 end if;
2ede092b 4270 end if;
7324bf49 4271
f2cbd970
JM
4272 -- Check that null-excluding objects are always initialized, except for
4273 -- deferred constants, for which the expression will appear in the full
4274 -- declaration.
2ede092b 4275
97ac2d62 4276 if Kind = N_Object_Declaration
86ac5e79 4277 and then No (Expression (N))
f2cbd970 4278 and then not Constant_Present (N)
675d6070 4279 and then not No_Initialization (N)
2ede092b 4280 then
d59179b1
AC
4281 if Present (Comp) then
4282
31e358e1 4283 -- Specialize the warning message to indicate that we are dealing
d59179b1
AC
4284 -- with an uninitialized composite object that has a defaulted
4285 -- null-excluding component.
4286
4287 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4288 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4289
62d40a7a
AC
4290 Discard_Node
4291 (Compile_Time_Constraint_Error
4292 (N => N,
4293 Msg =>
4294 "(Ada 2005) null-excluding component % of object % must "
4295 & "be initialized??",
4296 Ent => Defining_Identifier (Comp)));
4297
4298 -- This is a case of an array with null-excluding components, so
4299 -- indicate that in the warning.
4300
4301 elsif Array_Comp then
4302 Discard_Node
4303 (Compile_Time_Constraint_Error
4304 (N => N,
4305 Msg =>
4306 "(Ada 2005) null-excluding array components must "
4307 & "be initialized??",
4308 Ent => Defining_Identifier (N)));
4309
4310 -- Normal case of object of a null-excluding access type
31e358e1 4311
d59179b1 4312 else
62d40a7a
AC
4313 -- Add an expression that assigns null. This node is needed by
4314 -- Apply_Compile_Time_Constraint_Error, which will replace this
4315 -- with a Constraint_Error node.
4316
4317 Set_Expression (N, Make_Null (Sloc (N)));
4318 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4319
d59179b1
AC
4320 Apply_Compile_Time_Constraint_Error
4321 (N => Expression (N),
4322 Msg =>
4323 "(Ada 2005) null-excluding objects must be initialized??",
4324 Reason => CE_Null_Not_Allowed);
4325 end if;
2ede092b 4326 end if;
7324bf49 4327
f2cbd970
JM
4328 -- Check that a null-excluding component, formal or object is not being
4329 -- assigned a null value. Otherwise generate a warning message and
f3d0f304 4330 -- replace Expression (N) by an N_Constraint_Error node.
2ede092b 4331
97ac2d62 4332 if Kind /= N_Function_Specification then
c064e066 4333 Expr := Expression (N);
7324bf49 4334
939c12d2 4335 if Present (Expr) and then Known_Null (Expr) then
97ac2d62 4336 case Kind is
d8f43ee6
HK
4337 when N_Component_Declaration
4338 | N_Discriminant_Specification
4339 =>
82c80734 4340 Apply_Compile_Time_Constraint_Error
c064e066 4341 (N => Expr,
d8f43ee6
HK
4342 Msg =>
4343 "(Ada 2005) null not allowed in null-excluding "
4344 & "components??",
c064e066 4345 Reason => CE_Null_Not_Allowed);
7324bf49 4346
c064e066 4347 when N_Object_Declaration =>
82c80734 4348 Apply_Compile_Time_Constraint_Error
c064e066 4349 (N => Expr,
d8f43ee6
HK
4350 Msg =>
4351 "(Ada 2005) null not allowed in null-excluding "
4352 & "objects??",
c064e066 4353 Reason => CE_Null_Not_Allowed);
7324bf49 4354
c064e066 4355 when N_Parameter_Specification =>
82c80734 4356 Apply_Compile_Time_Constraint_Error
c064e066 4357 (N => Expr,
d8f43ee6
HK
4358 Msg =>
4359 "(Ada 2005) null not allowed in null-excluding "
4360 & "formals??",
c064e066 4361 Reason => CE_Null_Not_Allowed);
2ede092b
RD
4362
4363 when others =>
4364 null;
7324bf49
AC
4365 end case;
4366 end if;
c064e066 4367 end if;
2820d220
AC
4368 end Null_Exclusion_Static_Checks;
4369
fbf5a39b
AC
4370 ----------------------------------
4371 -- Conditional_Statements_Begin --
4372 ----------------------------------
4373
4374 procedure Conditional_Statements_Begin is
4375 begin
4376 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4377
675d6070
TQ
4378 -- If stack overflows, kill all checks, that way we know to simply reset
4379 -- the number of saved checks to zero on return. This should never occur
4380 -- in practice.
fbf5a39b
AC
4381
4382 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4383 Kill_All_Checks;
4384
675d6070
TQ
4385 -- In the normal case, we just make a new stack entry saving the current
4386 -- number of saved checks for a later restore.
fbf5a39b
AC
4387
4388 else
4389 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4390
4391 if Debug_Flag_CC then
4392 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4393 Num_Saved_Checks);
4394 end if;
4395 end if;
4396 end Conditional_Statements_Begin;
4397
4398 --------------------------------
4399 -- Conditional_Statements_End --
4400 --------------------------------
4401
4402 procedure Conditional_Statements_End is
4403 begin
4404 pragma Assert (Saved_Checks_TOS > 0);
4405
675d6070
TQ
4406 -- If the saved checks stack overflowed, then we killed all checks, so
4407 -- setting the number of saved checks back to zero is correct. This
4408 -- should never occur in practice.
fbf5a39b
AC
4409
4410 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4411 Num_Saved_Checks := 0;
4412
675d6070
TQ
4413 -- In the normal case, restore the number of saved checks from the top
4414 -- stack entry.
fbf5a39b
AC
4415
4416 else
4417 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
637a41a5 4418
fbf5a39b
AC
4419 if Debug_Flag_CC then
4420 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4421 Num_Saved_Checks);
4422 end if;
4423 end if;
4424
4425 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4426 end Conditional_Statements_End;
4427
acad3c0a
AC
4428 -------------------------
4429 -- Convert_From_Bignum --
4430 -------------------------
4431
4432 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4433 Loc : constant Source_Ptr := Sloc (N);
4434
4435 begin
4436 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4437
4438 -- Construct call From Bignum
4439
4440 return
4441 Make_Function_Call (Loc,
4442 Name =>
4443 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4444 Parameter_Associations => New_List (Relocate_Node (N)));
4445 end Convert_From_Bignum;
4446
4447 -----------------------
4448 -- Convert_To_Bignum --
4449 -----------------------
4450
4451 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4452 Loc : constant Source_Ptr := Sloc (N);
4453
4454 begin
4b1c4f20 4455 -- Nothing to do if Bignum already except call Relocate_Node
acad3c0a
AC
4456
4457 if Is_RTE (Etype (N), RE_Bignum) then
4458 return Relocate_Node (N);
4459
5707e389
AC
4460 -- Otherwise construct call to To_Bignum, converting the operand to the
4461 -- required Long_Long_Integer form.
acad3c0a
AC
4462
4463 else
4464 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4465 return
4466 Make_Function_Call (Loc,
4467 Name =>
4468 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4469 Parameter_Associations => New_List (
4470 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4471 end if;
4472 end Convert_To_Bignum;
4473
70482933
RK
4474 ---------------------
4475 -- Determine_Range --
4476 ---------------------
4477
c9a4817d 4478 Cache_Size : constant := 2 ** 10;
70482933 4479 type Cache_Index is range 0 .. Cache_Size - 1;
a90bd866 4480 -- Determine size of below cache (power of 2 is more efficient)
70482933 4481
6b6bce61
AC
4482 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4483 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4484 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4485 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4486 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4487 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
675d6070 4488 -- The above arrays are used to implement a small direct cache for
6b6bce61
AC
4489 -- Determine_Range and Determine_Range_R calls. Because of the way these
4490 -- subprograms recursively traces subexpressions, and because overflow
4491 -- checking calls the routine on the way up the tree, a quadratic behavior
4492 -- can otherwise be encountered in large expressions. The cache entry for
4493 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4494 -- by checking the actual node value stored there. The Range_Cache_V array
4495 -- records the setting of Assume_Valid for the cache entry.
70482933
RK
4496
4497 procedure Determine_Range
c800f862
RD
4498 (N : Node_Id;
4499 OK : out Boolean;
4500 Lo : out Uint;
4501 Hi : out Uint;
4502 Assume_Valid : Boolean := False)
70482933 4503 is
1c7717c3
AC
4504 Typ : Entity_Id := Etype (N);
4505 -- Type to use, may get reset to base type for possibly invalid entity
c1c22e7a
GB
4506
4507 Lo_Left : Uint;
4508 Hi_Left : Uint;
4509 -- Lo and Hi bounds of left operand
70482933 4510
dcd5fd67
PMR
4511 Lo_Right : Uint := No_Uint;
4512 Hi_Right : Uint := No_Uint;
c1c22e7a
GB
4513 -- Lo and Hi bounds of right (or only) operand
4514
4515 Bound : Node_Id;
4516 -- Temp variable used to hold a bound node
4517
4518 Hbound : Uint;
4519 -- High bound of base type of expression
4520
4521 Lor : Uint;
4522 Hir : Uint;
4523 -- Refined values for low and high bounds, after tightening
4524
4525 OK1 : Boolean;
4526 -- Used in lower level calls to indicate if call succeeded
4527
4528 Cindex : Cache_Index;
4529 -- Used to search cache
70482933 4530
d7a44b14
AC
4531 Btyp : Entity_Id;
4532 -- Base type
4533
70482933
RK
4534 function OK_Operands return Boolean;
4535 -- Used for binary operators. Determines the ranges of the left and
4536 -- right operands, and if they are both OK, returns True, and puts
93c3fca7 4537 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
70482933
RK
4538
4539 -----------------
4540 -- OK_Operands --
4541 -----------------
4542
4543 function OK_Operands return Boolean is
4544 begin
c800f862
RD
4545 Determine_Range
4546 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
70482933
RK
4547
4548 if not OK1 then
4549 return False;
4550 end if;
4551
c800f862
RD
4552 Determine_Range
4553 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
70482933
RK
4554 return OK1;
4555 end OK_Operands;
4556
4557 -- Start of processing for Determine_Range
4558
4559 begin
3e65bfab
AC
4560 -- Prevent junk warnings by initializing range variables
4561
4562 Lo := No_Uint;
4563 Hi := No_Uint;
4564 Lor := No_Uint;
4565 Hir := No_Uint;
4566
62be5d0a
JM
4567 -- For temporary constants internally generated to remove side effects
4568 -- we must use the corresponding expression to determine the range of
3e65bfab
AC
4569 -- the expression. But note that the expander can also generate
4570 -- constants in other cases, including deferred constants.
62be5d0a
JM
4571
4572 if Is_Entity_Name (N)
4573 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4574 and then Ekind (Entity (N)) = E_Constant
4575 and then Is_Internal_Name (Chars (Entity (N)))
4576 then
3e65bfab
AC
4577 if Present (Expression (Parent (Entity (N)))) then
4578 Determine_Range
4579 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
62be5d0a 4580
3e65bfab
AC
4581 elsif Present (Full_View (Entity (N))) then
4582 Determine_Range
4583 (Expression (Parent (Full_View (Entity (N)))),
4584 OK, Lo, Hi, Assume_Valid);
70482933 4585
3e65bfab
AC
4586 else
4587 OK := False;
4588 end if;
4589 return;
4590 end if;
70482933 4591
1abad480 4592 -- If type is not defined, we can't determine its range
70482933 4593
1abad480
AC
4594 if No (Typ)
4595
4596 -- We don't deal with anything except discrete types
4597
4598 or else not Is_Discrete_Type (Typ)
4599
f20b5ef4
JM
4600 -- Don't deal with enumerated types with non-standard representation
4601
4602 or else (Is_Enumeration_Type (Typ)
4603 and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4604
1abad480
AC
4605 -- Ignore type for which an error has been posted, since range in
4606 -- this case may well be a bogosity deriving from the error. Also
4607 -- ignore if error posted on the reference node.
4608
4609 or else Error_Posted (N) or else Error_Posted (Typ)
70482933
RK
4610 then
4611 OK := False;
4612 return;
4613 end if;
4614
4615 -- For all other cases, we can determine the range
4616
4617 OK := True;
4618
675d6070 4619 -- If value is compile time known, then the possible range is the one
a90bd866 4620 -- value that we know this expression definitely has.
70482933
RK
4621
4622 if Compile_Time_Known_Value (N) then
4623 Lo := Expr_Value (N);
4624 Hi := Lo;
4625 return;
4626 end if;
4627
4628 -- Return if already in the cache
4629
4630 Cindex := Cache_Index (N mod Cache_Size);
4631
c800f862
RD
4632 if Determine_Range_Cache_N (Cindex) = N
4633 and then
4634 Determine_Range_Cache_V (Cindex) = Assume_Valid
4635 then
70482933
RK
4636 Lo := Determine_Range_Cache_Lo (Cindex);
4637 Hi := Determine_Range_Cache_Hi (Cindex);
4638 return;
4639 end if;
4640
675d6070
TQ
4641 -- Otherwise, start by finding the bounds of the type of the expression,
4642 -- the value cannot be outside this range (if it is, then we have an
4643 -- overflow situation, which is a separate check, we are talking here
4644 -- only about the expression value).
70482933 4645
93c3fca7
AC
4646 -- First a check, never try to find the bounds of a generic type, since
4647 -- these bounds are always junk values, and it is only valid to look at
4648 -- the bounds in an instance.
4649
4650 if Is_Generic_Type (Typ) then
4651 OK := False;
4652 return;
4653 end if;
4654
c800f862 4655 -- First step, change to use base type unless we know the value is valid
1c7717c3 4656
c800f862
RD
4657 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4658 or else Assume_No_Invalid_Values
4659 or else Assume_Valid
1c7717c3 4660 then
43018f58
ES
4661 -- If this is a known valid constant with a nonstatic value, it may
4662 -- have inherited a narrower subtype from its initial value; use this
4663 -- saved subtype (see sem_ch3.adb).
4664
4665 if Is_Entity_Name (N)
4666 and then Ekind (Entity (N)) = E_Constant
4667 and then Present (Actual_Subtype (Entity (N)))
4668 then
4669 Typ := Actual_Subtype (Entity (N));
4670 end if;
4671
c800f862
RD
4672 else
4673 Typ := Underlying_Type (Base_Type (Typ));
1c7717c3
AC
4674 end if;
4675
d7a44b14
AC
4676 -- Retrieve the base type. Handle the case where the base type is a
4677 -- private enumeration type.
4678
4679 Btyp := Base_Type (Typ);
4680
4681 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4682 Btyp := Full_View (Btyp);
4683 end if;
4684
675d6070
TQ
4685 -- We use the actual bound unless it is dynamic, in which case use the
4686 -- corresponding base type bound if possible. If we can't get a bound
4687 -- then we figure we can't determine the range (a peculiar case, that
4688 -- perhaps cannot happen, but there is no point in bombing in this
4689 -- optimization circuit.
c1c22e7a
GB
4690
4691 -- First the low bound
70482933
RK
4692
4693 Bound := Type_Low_Bound (Typ);
4694
4695 if Compile_Time_Known_Value (Bound) then
4696 Lo := Expr_Value (Bound);
4697
d7a44b14
AC
4698 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4699 Lo := Expr_Value (Type_Low_Bound (Btyp));
70482933
RK
4700
4701 else
4702 OK := False;
4703 return;
4704 end if;
4705
c1c22e7a
GB
4706 -- Now the high bound
4707
70482933
RK
4708 Bound := Type_High_Bound (Typ);
4709
c1c22e7a
GB
4710 -- We need the high bound of the base type later on, and this should
4711 -- always be compile time known. Again, it is not clear that this
4712 -- can ever be false, but no point in bombing.
70482933 4713
d7a44b14
AC
4714 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4715 Hbound := Expr_Value (Type_High_Bound (Btyp));
70482933
RK
4716 Hi := Hbound;
4717
4718 else
4719 OK := False;
4720 return;
4721 end if;
4722
675d6070
TQ
4723 -- If we have a static subtype, then that may have a tighter bound so
4724 -- use the upper bound of the subtype instead in this case.
c1c22e7a
GB
4725
4726 if Compile_Time_Known_Value (Bound) then
4727 Hi := Expr_Value (Bound);
4728 end if;
4729
675d6070
TQ
4730 -- We may be able to refine this value in certain situations. If any
4731 -- refinement is possible, then Lor and Hir are set to possibly tighter
4732 -- bounds, and OK1 is set to True.
70482933
RK
4733
4734 case Nkind (N) is
4735
4736 -- For unary plus, result is limited by range of operand
4737
4738 when N_Op_Plus =>
c800f862
RD
4739 Determine_Range
4740 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
70482933
RK
4741
4742 -- For unary minus, determine range of operand, and negate it
4743
4744 when N_Op_Minus =>
c800f862
RD
4745 Determine_Range
4746 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
70482933
RK
4747
4748 if OK1 then
4749 Lor := -Hi_Right;
4750 Hir := -Lo_Right;
4751 end if;
4752
4753 -- For binary addition, get range of each operand and do the
4754 -- addition to get the result range.
4755
4756 when N_Op_Add =>
4757 if OK_Operands then
4758 Lor := Lo_Left + Lo_Right;
4759 Hir := Hi_Left + Hi_Right;
4760 end if;
4761
675d6070
TQ
4762 -- Division is tricky. The only case we consider is where the right
4763 -- operand is a positive constant, and in this case we simply divide
4764 -- the bounds of the left operand
70482933
RK
4765
4766 when N_Op_Divide =>
4767 if OK_Operands then
4768 if Lo_Right = Hi_Right
4769 and then Lo_Right > 0
4770 then
4771 Lor := Lo_Left / Lo_Right;
4772 Hir := Hi_Left / Lo_Right;
70482933
RK
4773 else
4774 OK1 := False;
4775 end if;
4776 end if;
4777
675d6070
TQ
4778 -- For binary subtraction, get range of each operand and do the worst
4779 -- case subtraction to get the result range.
70482933
RK
4780
4781 when N_Op_Subtract =>
4782 if OK_Operands then
4783 Lor := Lo_Left - Hi_Right;
4784 Hir := Hi_Left - Lo_Right;
4785 end if;
4786
675d6070
TQ
4787 -- For MOD, if right operand is a positive constant, then result must
4788 -- be in the allowable range of mod results.
70482933
RK
4789
4790 when N_Op_Mod =>
4791 if OK_Operands then
fbf5a39b
AC
4792 if Lo_Right = Hi_Right
4793 and then Lo_Right /= 0
4794 then
70482933
RK
4795 if Lo_Right > 0 then
4796 Lor := Uint_0;
4797 Hir := Lo_Right - 1;
4798
fbf5a39b 4799 else -- Lo_Right < 0
70482933
RK
4800 Lor := Lo_Right + 1;
4801 Hir := Uint_0;
4802 end if;
4803
4804 else
4805 OK1 := False;
4806 end if;
4807 end if;
4808
675d6070
TQ
4809 -- For REM, if right operand is a positive constant, then result must
4810 -- be in the allowable range of mod results.
70482933
RK
4811
4812 when N_Op_Rem =>
4813 if OK_Operands then
d8f43ee6 4814 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
70482933
RK
4815 declare
4816 Dval : constant Uint := (abs Lo_Right) - 1;
4817
4818 begin
4819 -- The sign of the result depends on the sign of the
4820 -- dividend (but not on the sign of the divisor, hence
4821 -- the abs operation above).
4822
4823 if Lo_Left < 0 then
4824 Lor := -Dval;
4825 else
4826 Lor := Uint_0;
4827 end if;
4828
4829 if Hi_Left < 0 then
4830 Hir := Uint_0;
4831 else
4832 Hir := Dval;
4833 end if;
4834 end;
4835
4836 else
4837 OK1 := False;
4838 end if;
4839 end if;
4840
4841 -- Attribute reference cases
4842
4843 when N_Attribute_Reference =>
4844 case Attribute_Name (N) is
4845
4846 -- For Pos/Val attributes, we can refine the range using the
f26d5cd3 4847 -- possible range of values of the attribute expression.
70482933 4848
d8f43ee6
HK
4849 when Name_Pos
4850 | Name_Val
4851 =>
c800f862
RD
4852 Determine_Range
4853 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
70482933
RK
4854
4855 -- For Length attribute, use the bounds of the corresponding
4856 -- index type to refine the range.
4857
4858 when Name_Length =>
4859 declare
4860 Atyp : Entity_Id := Etype (Prefix (N));
4861 Inum : Nat;
4862 Indx : Node_Id;
4863
4864 LL, LU : Uint;
4865 UL, UU : Uint;
4866
4867 begin
4868 if Is_Access_Type (Atyp) then
4869 Atyp := Designated_Type (Atyp);
4870 end if;
4871
4872 -- For string literal, we know exact value
4873
4874 if Ekind (Atyp) = E_String_Literal_Subtype then
4875 OK := True;
4876 Lo := String_Literal_Length (Atyp);
4877 Hi := String_Literal_Length (Atyp);
4878 return;
4879 end if;
4880
4881 -- Otherwise check for expression given
4882
4883 if No (Expressions (N)) then
4884 Inum := 1;
4885 else
4886 Inum :=
4887 UI_To_Int (Expr_Value (First (Expressions (N))));
4888 end if;
4889
4890 Indx := First_Index (Atyp);
4891 for J in 2 .. Inum loop
4892 Indx := Next_Index (Indx);
4893 end loop;
4894
5b599df4 4895 -- If the index type is a formal type or derived from
b4d7b435
AC
4896 -- one, the bounds are not static.
4897
4898 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4899 OK := False;
4900 return;
4901 end if;
4902
70482933 4903 Determine_Range
c800f862
RD
4904 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4905 Assume_Valid);
70482933
RK
4906
4907 if OK1 then
4908 Determine_Range
c800f862
RD
4909 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4910 Assume_Valid);
70482933
RK
4911
4912 if OK1 then
4913
4914 -- The maximum value for Length is the biggest
4915 -- possible gap between the values of the bounds.
4916 -- But of course, this value cannot be negative.
4917
c800f862 4918 Hir := UI_Max (Uint_0, UU - LL + 1);
70482933
RK
4919
4920 -- For constrained arrays, the minimum value for
4921 -- Length is taken from the actual value of the
5b599df4
AC
4922 -- bounds, since the index will be exactly of this
4923 -- subtype.
70482933
RK
4924
4925 if Is_Constrained (Atyp) then
c800f862 4926 Lor := UI_Max (Uint_0, UL - LU + 1);
70482933
RK
4927
4928 -- For an unconstrained array, the minimum value
4929 -- for length is always zero.
4930
4931 else
4932 Lor := Uint_0;
4933 end if;
4934 end if;
4935 end if;
4936 end;
4937
4938 -- No special handling for other attributes
5b599df4 4939 -- Probably more opportunities exist here???
70482933
RK
4940
4941 when others =>
4942 OK1 := False;
4943
4944 end case;
4945
70482933 4946 when N_Type_Conversion =>
d8ee014f
YM
4947
4948 -- For type conversion from one discrete type to another, we can
4949 -- refine the range using the converted value.
4950
4951 if Is_Discrete_Type (Etype (Expression (N))) then
4952 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4953
4954 -- When converting a float to an integer type, determine the range
4955 -- in real first, and then convert the bounds using UR_To_Uint
4956 -- which correctly rounds away from zero when half way between two
4957 -- integers, as required by normal Ada 95 rounding semantics. It
4958 -- is only possible because analysis in GNATprove rules out the
4959 -- possibility of a NaN or infinite value.
4960
4961 elsif GNATprove_Mode
4962 and then Is_Floating_Point_Type (Etype (Expression (N)))
4963 then
4964 declare
4965 Lor_Real, Hir_Real : Ureal;
4966 begin
4967 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4968 Assume_Valid);
4969
4970 if OK1 then
4971 Lor := UR_To_Uint (Lor_Real);
4972 Hir := UR_To_Uint (Hir_Real);
4973 end if;
4974 end;
4975
4976 else
4977 OK1 := False;
4978 end if;
70482933
RK
4979
4980 -- Nothing special to do for all other expression kinds
4981
4982 when others =>
4983 OK1 := False;
4984 Lor := No_Uint;
4985 Hir := No_Uint;
4986 end case;
4987
5b599df4
AC
4988 -- At this stage, if OK1 is true, then we know that the actual result of
4989 -- the computed expression is in the range Lor .. Hir. We can use this
4990 -- to restrict the possible range of results.
70482933
RK
4991
4992 if OK1 then
4993
5b599df4 4994 -- If the refined value of the low bound is greater than the type
6b6bce61 4995 -- low bound, then reset it to the more restrictive value. However,
5b599df4
AC
4996 -- we do NOT do this for the case of a modular type where the
4997 -- possible upper bound on the value is above the base type high
4998 -- bound, because that means the result could wrap.
70482933
RK
4999
5000 if Lor > Lo
5b599df4 5001 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
70482933
RK
5002 then
5003 Lo := Lor;
5004 end if;
5005
5b599df4
AC
5006 -- Similarly, if the refined value of the high bound is less than the
5007 -- value so far, then reset it to the more restrictive value. Again,
5008 -- we do not do this if the refined low bound is negative for a
5009 -- modular type, since this would wrap.
70482933
RK
5010
5011 if Hir < Hi
5b599df4 5012 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
70482933
RK
5013 then
5014 Hi := Hir;
5015 end if;
5016 end if;
5017
5018 -- Set cache entry for future call and we are all done
5019
5020 Determine_Range_Cache_N (Cindex) := N;
c800f862 5021 Determine_Range_Cache_V (Cindex) := Assume_Valid;
70482933
RK
5022 Determine_Range_Cache_Lo (Cindex) := Lo;
5023 Determine_Range_Cache_Hi (Cindex) := Hi;
5024 return;
5025
5b599df4
AC
5026 -- If any exception occurs, it means that we have some bug in the compiler,
5027 -- possibly triggered by a previous error, or by some unforeseen peculiar
70482933
RK
5028 -- occurrence. However, this is only an optimization attempt, so there is
5029 -- really no point in crashing the compiler. Instead we just decide, too
5030 -- bad, we can't figure out a range in this case after all.
5031
5032 exception
5033 when others =>
5034
5035 -- Debug flag K disables this behavior (useful for debugging)
5036
5037 if Debug_Flag_K then
5038 raise;
5039 else
5040 OK := False;
5041 Lo := No_Uint;
5042 Hi := No_Uint;
5043 return;
5044 end if;
70482933
RK
5045 end Determine_Range;
5046
6b6bce61
AC
5047 -----------------------
5048 -- Determine_Range_R --
5049 -----------------------
5050
5051 procedure Determine_Range_R
5052 (N : Node_Id;
5053 OK : out Boolean;
5054 Lo : out Ureal;
5055 Hi : out Ureal;
5056 Assume_Valid : Boolean := False)
5057 is
5058 Typ : Entity_Id := Etype (N);
5059 -- Type to use, may get reset to base type for possibly invalid entity
5060
5061 Lo_Left : Ureal;
5062 Hi_Left : Ureal;
5063 -- Lo and Hi bounds of left operand
5064
dcd5fd67
PMR
5065 Lo_Right : Ureal := No_Ureal;
5066 Hi_Right : Ureal := No_Ureal;
6b6bce61
AC
5067 -- Lo and Hi bounds of right (or only) operand
5068
5069 Bound : Node_Id;
5070 -- Temp variable used to hold a bound node
5071
5072 Hbound : Ureal;
5073 -- High bound of base type of expression
5074
5075 Lor : Ureal;
5076 Hir : Ureal;
5077 -- Refined values for low and high bounds, after tightening
5078
5079 OK1 : Boolean;
5080 -- Used in lower level calls to indicate if call succeeded
5081
5082 Cindex : Cache_Index;
5083 -- Used to search cache
5084
5085 Btyp : Entity_Id;
5086 -- Base type
5087
5088 function OK_Operands return Boolean;
5089 -- Used for binary operators. Determines the ranges of the left and
5090 -- right operands, and if they are both OK, returns True, and puts
5091 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
5092
5093 function Round_Machine (B : Ureal) return Ureal;
5094 -- B is a real bound. Round it using mode Round_Even.
5095
5096 -----------------
5097 -- OK_Operands --
5098 -----------------
5099
5100 function OK_Operands return Boolean is
5101 begin
5102 Determine_Range_R
5103 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5104
5105 if not OK1 then
5106 return False;
5107 end if;
5108
5109 Determine_Range_R
5110 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5111 return OK1;
5112 end OK_Operands;
5113
5114 -------------------
5115 -- Round_Machine --
5116 -------------------
5117
5118 function Round_Machine (B : Ureal) return Ureal is
5119 begin
5120 return Machine (Typ, B, Round_Even, N);
5121 end Round_Machine;
5122
5123 -- Start of processing for Determine_Range_R
5124
5125 begin
5126 -- Prevent junk warnings by initializing range variables
5127
5128 Lo := No_Ureal;
5129 Hi := No_Ureal;
5130 Lor := No_Ureal;
5131 Hir := No_Ureal;
5132
5133 -- For temporary constants internally generated to remove side effects
5134 -- we must use the corresponding expression to determine the range of
5135 -- the expression. But note that the expander can also generate
5136 -- constants in other cases, including deferred constants.
5137
5138 if Is_Entity_Name (N)
5139 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5140 and then Ekind (Entity (N)) = E_Constant
5141 and then Is_Internal_Name (Chars (Entity (N)))
5142 then
5143 if Present (Expression (Parent (Entity (N)))) then
5144 Determine_Range_R
5145 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5146
5147 elsif Present (Full_View (Entity (N))) then
5148 Determine_Range_R
5149 (Expression (Parent (Full_View (Entity (N)))),
5150 OK, Lo, Hi, Assume_Valid);
5151
5152 else
5153 OK := False;
5154 end if;
d6e8719d 5155
6b6bce61
AC
5156 return;
5157 end if;
5158
5159 -- If type is not defined, we can't determine its range
5160
5161 if No (Typ)
5162
5163 -- We don't deal with anything except IEEE floating-point types
5164
5165 or else not Is_Floating_Point_Type (Typ)
5166 or else Float_Rep (Typ) /= IEEE_Binary
5167
5168 -- Ignore type for which an error has been posted, since range in
5169 -- this case may well be a bogosity deriving from the error. Also
5170 -- ignore if error posted on the reference node.
5171
5172 or else Error_Posted (N) or else Error_Posted (Typ)
5173 then
5174 OK := False;
5175 return;
5176 end if;
5177
5178 -- For all other cases, we can determine the range
5179
5180 OK := True;
5181
5182 -- If value is compile time known, then the possible range is the one
5183 -- value that we know this expression definitely has.
5184
5185 if Compile_Time_Known_Value (N) then
5186 Lo := Expr_Value_R (N);
5187 Hi := Lo;
5188 return;
5189 end if;
5190
5191 -- Return if already in the cache
5192
5193 Cindex := Cache_Index (N mod Cache_Size);
5194
5195 if Determine_Range_Cache_N (Cindex) = N
5196 and then
5197 Determine_Range_Cache_V (Cindex) = Assume_Valid
5198 then
5199 Lo := Determine_Range_Cache_Lo_R (Cindex);
5200 Hi := Determine_Range_Cache_Hi_R (Cindex);
5201 return;
5202 end if;
5203
5204 -- Otherwise, start by finding the bounds of the type of the expression,
5205 -- the value cannot be outside this range (if it is, then we have an
5206 -- overflow situation, which is a separate check, we are talking here
5207 -- only about the expression value).
5208
5209 -- First a check, never try to find the bounds of a generic type, since
5210 -- these bounds are always junk values, and it is only valid to look at
5211 -- the bounds in an instance.
5212
5213 if Is_Generic_Type (Typ) then
5214 OK := False;
5215 return;
5216 end if;
5217
5218 -- First step, change to use base type unless we know the value is valid
5219
5220 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5221 or else Assume_No_Invalid_Values
5222 or else Assume_Valid
5223 then
5224 null;
5225 else
5226 Typ := Underlying_Type (Base_Type (Typ));
5227 end if;
5228
5229 -- Retrieve the base type. Handle the case where the base type is a
5230 -- private type.
5231
5232 Btyp := Base_Type (Typ);
5233
5234 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5235 Btyp := Full_View (Btyp);
5236 end if;
5237
5238 -- We use the actual bound unless it is dynamic, in which case use the
5239 -- corresponding base type bound if possible. If we can't get a bound
5240 -- then we figure we can't determine the range (a peculiar case, that
5241 -- perhaps cannot happen, but there is no point in bombing in this
5242 -- optimization circuit).
5243
5244 -- First the low bound
5245
5246 Bound := Type_Low_Bound (Typ);
5247
5248 if Compile_Time_Known_Value (Bound) then
5249 Lo := Expr_Value_R (Bound);
5250
5251 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5252 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5253
5254 else
5255 OK := False;
5256 return;
5257 end if;
5258
5259 -- Now the high bound
5260
5261 Bound := Type_High_Bound (Typ);
5262
5263 -- We need the high bound of the base type later on, and this should
5264 -- always be compile time known. Again, it is not clear that this
5265 -- can ever be false, but no point in bombing.
5266
5267 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5268 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5269 Hi := Hbound;
5270
5271 else
5272 OK := False;
5273 return;
5274 end if;
5275
5276 -- If we have a static subtype, then that may have a tighter bound so
5277 -- use the upper bound of the subtype instead in this case.
5278
5279 if Compile_Time_Known_Value (Bound) then
5280 Hi := Expr_Value_R (Bound);
5281 end if;
5282
5283 -- We may be able to refine this value in certain situations. If any
5284 -- refinement is possible, then Lor and Hir are set to possibly tighter
5285 -- bounds, and OK1 is set to True.
5286
5287 case Nkind (N) is
5288
5289 -- For unary plus, result is limited by range of operand
5290
5291 when N_Op_Plus =>
5292 Determine_Range_R
5293 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5294
5295 -- For unary minus, determine range of operand, and negate it
5296
5297 when N_Op_Minus =>
5298 Determine_Range_R
5299 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5300
5301 if OK1 then
5302 Lor := -Hi_Right;
5303 Hir := -Lo_Right;
5304 end if;
5305
5306 -- For binary addition, get range of each operand and do the
5307 -- addition to get the result range.
5308
5309 when N_Op_Add =>
5310 if OK_Operands then
5311 Lor := Round_Machine (Lo_Left + Lo_Right);
5312 Hir := Round_Machine (Hi_Left + Hi_Right);
5313 end if;
5314
5315 -- For binary subtraction, get range of each operand and do the worst
5316 -- case subtraction to get the result range.
5317
5318 when N_Op_Subtract =>
5319 if OK_Operands then
5320 Lor := Round_Machine (Lo_Left - Hi_Right);
5321 Hir := Round_Machine (Hi_Left - Lo_Right);
5322 end if;
5323
5324 -- For multiplication, get range of each operand and do the
5325 -- four multiplications to get the result range.
5326
5327 when N_Op_Multiply =>
5328 if OK_Operands then
5329 declare
5330 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5331 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5332 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5333 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
94295b25 5334
6b6bce61
AC
5335 begin
5336 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5337 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5338 end;
5339 end if;
5340
5341 -- For division, consider separately the cases where the right
5342 -- operand is positive or negative. Otherwise, the right operand
5343 -- can be arbitrarily close to zero, so the result is likely to
5344 -- be unbounded in one direction, do not attempt to compute it.
5345
5346 when N_Op_Divide =>
5347 if OK_Operands then
5348
5349 -- Right operand is positive
5350
5351 if Lo_Right > Ureal_0 then
5352
5353 -- If the low bound of the left operand is negative, obtain
5354 -- the overall low bound by dividing it by the smallest
5355 -- value of the right operand, and otherwise by the largest
5356 -- value of the right operand.
5357
5358 if Lo_Left < Ureal_0 then
5359 Lor := Round_Machine (Lo_Left / Lo_Right);
5360 else
5361 Lor := Round_Machine (Lo_Left / Hi_Right);
5362 end if;
5363
5364 -- If the high bound of the left operand is negative, obtain
5365 -- the overall high bound by dividing it by the largest
5366 -- value of the right operand, and otherwise by the
5367 -- smallest value of the right operand.
5368
5369 if Hi_Left < Ureal_0 then
5370 Hir := Round_Machine (Hi_Left / Hi_Right);
5371 else
5372 Hir := Round_Machine (Hi_Left / Lo_Right);
5373 end if;
5374
5375 -- Right operand is negative
5376
5377 elsif Hi_Right < Ureal_0 then
5378
5379 -- If the low bound of the left operand is negative, obtain
5380 -- the overall low bound by dividing it by the largest
5381 -- value of the right operand, and otherwise by the smallest
5382 -- value of the right operand.
5383
5384 if Lo_Left < Ureal_0 then
5385 Lor := Round_Machine (Lo_Left / Hi_Right);
5386 else
5387 Lor := Round_Machine (Lo_Left / Lo_Right);
5388 end if;
5389
5390 -- If the high bound of the left operand is negative, obtain
5391 -- the overall high bound by dividing it by the smallest
5392 -- value of the right operand, and otherwise by the
5393 -- largest value of the right operand.
5394
5395 if Hi_Left < Ureal_0 then
5396 Hir := Round_Machine (Hi_Left / Lo_Right);
5397 else
5398 Hir := Round_Machine (Hi_Left / Hi_Right);
5399 end if;
5400
5401 else
5402 OK1 := False;
5403 end if;
5404 end if;
5405
6b6bce61 5406 when N_Type_Conversion =>
3c77943e
YM
5407
5408 -- For type conversion from one floating-point type to another, we
5409 -- can refine the range using the converted value.
5410
5411 if Is_Floating_Point_Type (Etype (Expression (N))) then
5412 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5413
5414 -- When converting an integer to a floating-point type, determine
5415 -- the range in integer first, and then convert the bounds.
5416
5417 elsif Is_Discrete_Type (Etype (Expression (N))) then
5418 declare
94295b25
AC
5419 Hir_Int : Uint;
5420 Lor_Int : Uint;
5421
3c77943e 5422 begin
94295b25
AC
5423 Determine_Range
5424 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
3c77943e
YM
5425
5426 if OK1 then
5427 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5428 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5429 end if;
5430 end;
5431
5432 else
5433 OK1 := False;
5434 end if;
6b6bce61
AC
5435
5436 -- Nothing special to do for all other expression kinds
5437
5438 when others =>
5439 OK1 := False;
5440 Lor := No_Ureal;
5441 Hir := No_Ureal;
5442 end case;
5443
5444 -- At this stage, if OK1 is true, then we know that the actual result of
5445 -- the computed expression is in the range Lor .. Hir. We can use this
5446 -- to restrict the possible range of results.
5447
5448 if OK1 then
5449
5450 -- If the refined value of the low bound is greater than the type
5451 -- low bound, then reset it to the more restrictive value.
5452
5453 if Lor > Lo then
5454 Lo := Lor;
5455 end if;
5456
5457 -- Similarly, if the refined value of the high bound is less than the
5458 -- value so far, then reset it to the more restrictive value.
5459
5460 if Hir < Hi then
5461 Hi := Hir;
5462 end if;
5463 end if;
5464
5465 -- Set cache entry for future call and we are all done
5466
5467 Determine_Range_Cache_N (Cindex) := N;
5468 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5469 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5470 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5471 return;
5472
5473 -- If any exception occurs, it means that we have some bug in the compiler,
5474 -- possibly triggered by a previous error, or by some unforeseen peculiar
5475 -- occurrence. However, this is only an optimization attempt, so there is
5476 -- really no point in crashing the compiler. Instead we just decide, too
5477 -- bad, we can't figure out a range in this case after all.
5478
5479 exception
5480 when others =>
5481
5482 -- Debug flag K disables this behavior (useful for debugging)
5483
5484 if Debug_Flag_K then
5485 raise;
5486 else
5487 OK := False;
5488 Lo := No_Ureal;
5489 Hi := No_Ureal;
5490 return;
5491 end if;
5492 end Determine_Range_R;
5493
70482933
RK
5494 ------------------------------------
5495 -- Discriminant_Checks_Suppressed --
5496 ------------------------------------
5497
5498 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5499 begin
fbf5a39b
AC
5500 if Present (E) then
5501 if Is_Unchecked_Union (E) then
5502 return True;
5503 elsif Checks_May_Be_Suppressed (E) then
5504 return Is_Check_Suppressed (E, Discriminant_Check);
5505 end if;
5506 end if;
5507
3217f71e 5508 return Scope_Suppress.Suppress (Discriminant_Check);
70482933
RK
5509 end Discriminant_Checks_Suppressed;
5510
5511 --------------------------------
5512 -- Division_Checks_Suppressed --
5513 --------------------------------
5514
5515 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5516 begin
fbf5a39b
AC
5517 if Present (E) and then Checks_May_Be_Suppressed (E) then
5518 return Is_Check_Suppressed (E, Division_Check);
5519 else
3217f71e 5520 return Scope_Suppress.Suppress (Division_Check);
fbf5a39b 5521 end if;
70482933
RK
5522 end Division_Checks_Suppressed;
5523
59f4d038
RD
5524 --------------------------------------
5525 -- Duplicated_Tag_Checks_Suppressed --
5526 --------------------------------------
5527
5528 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5529 begin
5530 if Present (E) and then Checks_May_Be_Suppressed (E) then
5531 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5532 else
5533 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5534 end if;
5535 end Duplicated_Tag_Checks_Suppressed;
5536
70482933
RK
5537 -----------------------------------
5538 -- Elaboration_Checks_Suppressed --
5539 -----------------------------------
5540
5541 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5542 begin
f02b8bb8
RD
5543 -- The complication in this routine is that if we are in the dynamic
5544 -- model of elaboration, we also check All_Checks, since All_Checks
5545 -- does not set Elaboration_Check explicitly.
5546
fbf5a39b
AC
5547 if Present (E) then
5548 if Kill_Elaboration_Checks (E) then
5549 return True;
f02b8bb8 5550
fbf5a39b 5551 elsif Checks_May_Be_Suppressed (E) then
f02b8bb8
RD
5552 if Is_Check_Suppressed (E, Elaboration_Check) then
5553 return True;
90e491a7 5554
f02b8bb8
RD
5555 elsif Dynamic_Elaboration_Checks then
5556 return Is_Check_Suppressed (E, All_Checks);
90e491a7 5557
f02b8bb8
RD
5558 else
5559 return False;
5560 end if;
fbf5a39b
AC
5561 end if;
5562 end if;
5563
3217f71e 5564 if Scope_Suppress.Suppress (Elaboration_Check) then
f02b8bb8 5565 return True;
90e491a7 5566
f02b8bb8 5567 elsif Dynamic_Elaboration_Checks then
3217f71e 5568 return Scope_Suppress.Suppress (All_Checks);
90e491a7 5569
f02b8bb8
RD
5570 else
5571 return False;
5572 end if;
70482933
RK
5573 end Elaboration_Checks_Suppressed;
5574
fbf5a39b
AC
5575 ---------------------------
5576 -- Enable_Overflow_Check --
5577 ---------------------------
5578
5579 procedure Enable_Overflow_Check (N : Node_Id) is
d6e8719d 5580 Typ : constant Entity_Id := Base_Type (Etype (N));
15c94a55 5581 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
5582 Chk : Nat;
5583 OK : Boolean;
5584 Ent : Entity_Id;
5585 Ofs : Uint;
5586 Lo : Uint;
5587 Hi : Uint;
70482933 5588
b7c874a7
AC
5589 Do_Ovflow_Check : Boolean;
5590
70482933 5591 begin
fbf5a39b
AC
5592 if Debug_Flag_CC then
5593 w ("Enable_Overflow_Check for node ", Int (N));
5594 Write_Str (" Source location = ");
5595 wl (Sloc (N));
11b4899f 5596 pg (Union_Id (N));
70482933 5597 end if;
70482933 5598
3d5952be
AC
5599 -- No check if overflow checks suppressed for type of node
5600
a7f1b24f 5601 if Overflow_Checks_Suppressed (Etype (N)) then
3d5952be
AC
5602 return;
5603
991395ab
AC
5604 -- Nothing to do for unsigned integer types, which do not overflow
5605
5606 elsif Is_Modular_Integer_Type (Typ) then
5607 return;
acad3c0a
AC
5608 end if;
5609
a7f1b24f 5610 -- This is the point at which processing for STRICT mode diverges
5707e389
AC
5611 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5612 -- probably more extreme that it needs to be, but what is going on here
5613 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
a7f1b24f 5614 -- to leave the processing for STRICT mode untouched. There were
5707e389 5615 -- two reasons for this. First it avoided any incompatible change of
a7f1b24f 5616 -- behavior. Second, it guaranteed that STRICT mode continued to be
5707e389 5617 -- legacy reliable.
acad3c0a 5618
a7f1b24f 5619 -- The big difference is that in STRICT mode there is a fair amount of
acad3c0a
AC
5620 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5621 -- know that no check is needed. We skip all that in the two new modes,
5622 -- since really overflow checking happens over a whole subtree, and we
5623 -- do the corresponding optimizations later on when applying the checks.
5624
5625 if Mode in Minimized_Or_Eliminated then
a7f1b24f
RD
5626 if not (Overflow_Checks_Suppressed (Etype (N)))
5627 and then not (Is_Entity_Name (N)
5628 and then Overflow_Checks_Suppressed (Entity (N)))
5629 then
5630 Activate_Overflow_Check (N);
5631 end if;
acad3c0a
AC
5632
5633 if Debug_Flag_CC then
5634 w ("Minimized/Eliminated mode");
5635 end if;
5636
5637 return;
5638 end if;
5639
a7f1b24f 5640 -- Remainder of processing is for STRICT case, and is unchanged from
3ada950b 5641 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
991395ab 5642
675d6070
TQ
5643 -- Nothing to do if the range of the result is known OK. We skip this
5644 -- for conversions, since the caller already did the check, and in any
5645 -- case the condition for deleting the check for a type conversion is
f2cbd970 5646 -- different.
70482933 5647
acad3c0a 5648 if Nkind (N) /= N_Type_Conversion then
c800f862 5649 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
70482933 5650
f2cbd970
JM
5651 -- Note in the test below that we assume that the range is not OK
5652 -- if a bound of the range is equal to that of the type. That's not
5653 -- quite accurate but we do this for the following reasons:
70482933 5654
fbf5a39b
AC
5655 -- a) The way that Determine_Range works, it will typically report
5656 -- the bounds of the value as being equal to the bounds of the
5657 -- type, because it either can't tell anything more precise, or
5658 -- does not think it is worth the effort to be more precise.
70482933 5659
fbf5a39b
AC
5660 -- b) It is very unusual to have a situation in which this would
5661 -- generate an unnecessary overflow check (an example would be
5662 -- a subtype with a range 0 .. Integer'Last - 1 to which the
f2cbd970 5663 -- literal value one is added).
70482933 5664
fbf5a39b
AC
5665 -- c) The alternative is a lot of special casing in this routine
5666 -- which would partially duplicate Determine_Range processing.
70482933 5667
b7c874a7
AC
5668 if OK then
5669 Do_Ovflow_Check := True;
5670
5671 -- Note that the following checks are quite deliberately > and <
5672 -- rather than >= and <= as explained above.
5673
5674 if Lo > Expr_Value (Type_Low_Bound (Typ))
5675 and then
5676 Hi < Expr_Value (Type_High_Bound (Typ))
5677 then
5678 Do_Ovflow_Check := False;
5679
5680 -- Despite the comments above, it is worth dealing specially with
5681 -- division specially. The only case where integer division can
5682 -- overflow is (largest negative number) / (-1). So we will do
5683 -- an extra range analysis to see if this is possible.
5684
5685 elsif Nkind (N) = N_Op_Divide then
5686 Determine_Range
5687 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5688
5689 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5690 Do_Ovflow_Check := False;
5691
5692 else
5693 Determine_Range
5694 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5695
5696 if OK and then (Lo > Uint_Minus_1
5697 or else
5698 Hi < Uint_Minus_1)
5699 then
5700 Do_Ovflow_Check := False;
5701 end if;
5702 end if;
fbf5a39b
AC
5703 end if;
5704
b7c874a7
AC
5705 -- If no overflow check required, we are done
5706
5707 if not Do_Ovflow_Check then
5708 if Debug_Flag_CC then
5709 w ("No overflow check required");
5710 end if;
5711
5712 return;
5713 end if;
fbf5a39b
AC
5714 end if;
5715 end if;
5716
675d6070
TQ
5717 -- If not in optimizing mode, set flag and we are done. We are also done
5718 -- (and just set the flag) if the type is not a discrete type, since it
5719 -- is not worth the effort to eliminate checks for other than discrete
5720 -- types. In addition, we take this same path if we have stored the
5721 -- maximum number of checks possible already (a very unlikely situation,
a90bd866 5722 -- but we do not want to blow up).
fbf5a39b
AC
5723
5724 if Optimization_Level = 0
5725 or else not Is_Discrete_Type (Etype (N))
5726 or else Num_Saved_Checks = Saved_Checks'Last
70482933 5727 then
11b4899f 5728 Activate_Overflow_Check (N);
fbf5a39b
AC
5729
5730 if Debug_Flag_CC then
5731 w ("Optimization off");
5732 end if;
5733
70482933 5734 return;
fbf5a39b 5735 end if;
70482933 5736
fbf5a39b
AC
5737 -- Otherwise evaluate and check the expression
5738
5739 Find_Check
5740 (Expr => N,
5741 Check_Type => 'O',
5742 Target_Type => Empty,
5743 Entry_OK => OK,
5744 Check_Num => Chk,
5745 Ent => Ent,
5746 Ofs => Ofs);
5747
5748 if Debug_Flag_CC then
5749 w ("Called Find_Check");
5750 w (" OK = ", OK);
5751
5752 if OK then
5753 w (" Check_Num = ", Chk);
5754 w (" Ent = ", Int (Ent));
5755 Write_Str (" Ofs = ");
5756 pid (Ofs);
5757 end if;
5758 end if;
70482933 5759
fbf5a39b
AC
5760 -- If check is not of form to optimize, then set flag and we are done
5761
5762 if not OK then
11b4899f 5763 Activate_Overflow_Check (N);
70482933 5764 return;
fbf5a39b 5765 end if;
70482933 5766
fbf5a39b
AC
5767 -- If check is already performed, then return without setting flag
5768
5769 if Chk /= 0 then
5770 if Debug_Flag_CC then
5771 w ("Check suppressed!");
5772 end if;
70482933 5773
70482933 5774 return;
fbf5a39b 5775 end if;
70482933 5776
fbf5a39b
AC
5777 -- Here we will make a new entry for the new check
5778
11b4899f 5779 Activate_Overflow_Check (N);
fbf5a39b
AC
5780 Num_Saved_Checks := Num_Saved_Checks + 1;
5781 Saved_Checks (Num_Saved_Checks) :=
5782 (Killed => False,
5783 Entity => Ent,
5784 Offset => Ofs,
5785 Check_Type => 'O',
5786 Target_Type => Empty);
5787
5788 if Debug_Flag_CC then
5789 w ("Make new entry, check number = ", Num_Saved_Checks);
5790 w (" Entity = ", Int (Ent));
5791 Write_Str (" Offset = ");
5792 pid (Ofs);
5793 w (" Check_Type = O");
5794 w (" Target_Type = Empty");
5795 end if;
70482933 5796
675d6070 5797 -- If we get an exception, then something went wrong, probably because of
637a41a5
AC
5798 -- an error in the structure of the tree due to an incorrect program. Or
5799 -- it may be a bug in the optimization circuit. In either case the safest
675d6070 5800 -- thing is simply to set the check flag unconditionally.
fbf5a39b
AC
5801
5802 exception
5803 when others =>
11b4899f 5804 Activate_Overflow_Check (N);
fbf5a39b
AC
5805
5806 if Debug_Flag_CC then
5807 w (" exception occurred, overflow flag set");
5808 end if;
5809
5810 return;
5811 end Enable_Overflow_Check;
5812
5813 ------------------------
5814 -- Enable_Range_Check --
5815 ------------------------
5816
5817 procedure Enable_Range_Check (N : Node_Id) is
5818 Chk : Nat;
5819 OK : Boolean;
5820 Ent : Entity_Id;
5821 Ofs : Uint;
5822 Ttyp : Entity_Id;
5823 P : Node_Id;
5824
5825 begin
675d6070 5826 -- Return if unchecked type conversion with range check killed. In this
a90bd866 5827 -- case we never set the flag (that's what Kill_Range_Check is about).
fbf5a39b
AC
5828
5829 if Nkind (N) = N_Unchecked_Type_Conversion
5830 and then Kill_Range_Check (N)
70482933
RK
5831 then
5832 return;
fbf5a39b 5833 end if;
70482933 5834
c7532b2d
AC
5835 -- Do not set range check flag if parent is assignment statement or
5836 -- object declaration with Suppress_Assignment_Checks flag set
5837
5838 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5839 and then Suppress_Assignment_Checks (Parent (N))
5840 then
5841 return;
5842 end if;
5843
c064e066
RD
5844 -- Check for various cases where we should suppress the range check
5845
5846 -- No check if range checks suppressed for type of node
5847
637a41a5 5848 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
c064e066
RD
5849 return;
5850
5851 -- No check if node is an entity name, and range checks are suppressed
5852 -- for this entity, or for the type of this entity.
5853
5854 elsif Is_Entity_Name (N)
5855 and then (Range_Checks_Suppressed (Entity (N))
637a41a5 5856 or else Range_Checks_Suppressed (Etype (Entity (N))))
c064e066
RD
5857 then
5858 return;
5859
5860 -- No checks if index of array, and index checks are suppressed for
5861 -- the array object or the type of the array.
5862
5863 elsif Nkind (Parent (N)) = N_Indexed_Component then
5864 declare
5865 Pref : constant Node_Id := Prefix (Parent (N));
5866 begin
5867 if Is_Entity_Name (Pref)
5868 and then Index_Checks_Suppressed (Entity (Pref))
5869 then
5870 return;
5871 elsif Index_Checks_Suppressed (Etype (Pref)) then
5872 return;
5873 end if;
5874 end;
5875 end if;
5876
fbf5a39b 5877 -- Debug trace output
70482933 5878
fbf5a39b
AC
5879 if Debug_Flag_CC then
5880 w ("Enable_Range_Check for node ", Int (N));
5881 Write_Str (" Source location = ");
5882 wl (Sloc (N));
11b4899f 5883 pg (Union_Id (N));
fbf5a39b
AC
5884 end if;
5885
675d6070
TQ
5886 -- If not in optimizing mode, set flag and we are done. We are also done
5887 -- (and just set the flag) if the type is not a discrete type, since it
5888 -- is not worth the effort to eliminate checks for other than discrete
5889 -- types. In addition, we take this same path if we have stored the
5890 -- maximum number of checks possible already (a very unlikely situation,
a90bd866 5891 -- but we do not want to blow up).
fbf5a39b
AC
5892
5893 if Optimization_Level = 0
5894 or else No (Etype (N))
5895 or else not Is_Discrete_Type (Etype (N))
5896 or else Num_Saved_Checks = Saved_Checks'Last
70482933 5897 then
11b4899f 5898 Activate_Range_Check (N);
fbf5a39b
AC
5899
5900 if Debug_Flag_CC then
5901 w ("Optimization off");
5902 end if;
5903
70482933 5904 return;
fbf5a39b 5905 end if;
70482933 5906
fbf5a39b 5907 -- Otherwise find out the target type
70482933 5908
fbf5a39b 5909 P := Parent (N);
70482933 5910
fbf5a39b
AC
5911 -- For assignment, use left side subtype
5912
5913 if Nkind (P) = N_Assignment_Statement
5914 and then Expression (P) = N
5915 then
5916 Ttyp := Etype (Name (P));
5917
5918 -- For indexed component, use subscript subtype
5919
5920 elsif Nkind (P) = N_Indexed_Component then
5921 declare
5922 Atyp : Entity_Id;
5923 Indx : Node_Id;
5924 Subs : Node_Id;
5925
5926 begin
5927 Atyp := Etype (Prefix (P));
5928
5929 if Is_Access_Type (Atyp) then
5930 Atyp := Designated_Type (Atyp);
d935a36e
AC
5931
5932 -- If the prefix is an access to an unconstrained array,
675d6070
TQ
5933 -- perform check unconditionally: it depends on the bounds of
5934 -- an object and we cannot currently recognize whether the test
5935 -- may be redundant.
d935a36e
AC
5936
5937 if not Is_Constrained (Atyp) then
11b4899f 5938 Activate_Range_Check (N);
d935a36e
AC
5939 return;
5940 end if;
82c80734 5941
ef2c20e7
AC
5942 -- Ditto if prefix is simply an unconstrained array. We used
5943 -- to think this case was OK, if the prefix was not an explicit
5944 -- dereference, but we have now seen a case where this is not
5945 -- true, so it is safer to just suppress the optimization in this
5946 -- case. The back end is getting better at eliminating redundant
5947 -- checks in any case, so the loss won't be important.
82c80734 5948
ef2c20e7 5949 elsif Is_Array_Type (Atyp)
82c80734
RD
5950 and then not Is_Constrained (Atyp)
5951 then
11b4899f 5952 Activate_Range_Check (N);
82c80734 5953 return;
fbf5a39b
AC
5954 end if;
5955
5956 Indx := First_Index (Atyp);
5957 Subs := First (Expressions (P));
5958 loop
5959 if Subs = N then
5960 Ttyp := Etype (Indx);
5961 exit;
5962 end if;
5963
5964 Next_Index (Indx);
5965 Next (Subs);
5966 end loop;
5967 end;
5968
5969 -- For now, ignore all other cases, they are not so interesting
5970
5971 else
5972 if Debug_Flag_CC then
5973 w (" target type not found, flag set");
5974 end if;
5975
11b4899f 5976 Activate_Range_Check (N);
fbf5a39b
AC
5977 return;
5978 end if;
5979
5980 -- Evaluate and check the expression
5981
5982 Find_Check
5983 (Expr => N,
5984 Check_Type => 'R',
5985 Target_Type => Ttyp,
5986 Entry_OK => OK,
5987 Check_Num => Chk,
5988 Ent => Ent,
5989 Ofs => Ofs);
5990
5991 if Debug_Flag_CC then
5992 w ("Called Find_Check");
5993 w ("Target_Typ = ", Int (Ttyp));
5994 w (" OK = ", OK);
5995
5996 if OK then
5997 w (" Check_Num = ", Chk);
5998 w (" Ent = ", Int (Ent));
5999 Write_Str (" Ofs = ");
6000 pid (Ofs);
6001 end if;
6002 end if;
6003
6004 -- If check is not of form to optimize, then set flag and we are done
6005
6006 if not OK then
6007 if Debug_Flag_CC then
6008 w (" expression not of optimizable type, flag set");
6009 end if;
6010
11b4899f 6011 Activate_Range_Check (N);
fbf5a39b
AC
6012 return;
6013 end if;
6014
6015 -- If check is already performed, then return without setting flag
6016
6017 if Chk /= 0 then
6018 if Debug_Flag_CC then
6019 w ("Check suppressed!");
6020 end if;
6021
6022 return;
6023 end if;
6024
6025 -- Here we will make a new entry for the new check
6026
11b4899f 6027 Activate_Range_Check (N);
fbf5a39b
AC
6028 Num_Saved_Checks := Num_Saved_Checks + 1;
6029 Saved_Checks (Num_Saved_Checks) :=
6030 (Killed => False,
6031 Entity => Ent,
6032 Offset => Ofs,
6033 Check_Type => 'R',
6034 Target_Type => Ttyp);
6035
6036 if Debug_Flag_CC then
6037 w ("Make new entry, check number = ", Num_Saved_Checks);
6038 w (" Entity = ", Int (Ent));
6039 Write_Str (" Offset = ");
6040 pid (Ofs);
6041 w (" Check_Type = R");
6042 w (" Target_Type = ", Int (Ttyp));
11b4899f 6043 pg (Union_Id (Ttyp));
fbf5a39b
AC
6044 end if;
6045
675d6070
TQ
6046 -- If we get an exception, then something went wrong, probably because of
6047 -- an error in the structure of the tree due to an incorrect program. Or
6048 -- it may be a bug in the optimization circuit. In either case the safest
6049 -- thing is simply to set the check flag unconditionally.
fbf5a39b
AC
6050
6051 exception
6052 when others =>
11b4899f 6053 Activate_Range_Check (N);
fbf5a39b
AC
6054
6055 if Debug_Flag_CC then
6056 w (" exception occurred, range flag set");
6057 end if;
6058
6059 return;
6060 end Enable_Range_Check;
6061
6062 ------------------
6063 -- Ensure_Valid --
6064 ------------------
6065
2934b84a
AC
6066 procedure Ensure_Valid
6067 (Expr : Node_Id;
6068 Holes_OK : Boolean := False;
6069 Related_Id : Entity_Id := Empty;
6070 Is_Low_Bound : Boolean := False;
6071 Is_High_Bound : Boolean := False)
6072 is
fbf5a39b
AC
6073 Typ : constant Entity_Id := Etype (Expr);
6074
6075 begin
6076 -- Ignore call if we are not doing any validity checking
6077
6078 if not Validity_Checks_On then
6079 return;
6080
c064e066 6081 -- Ignore call if range or validity checks suppressed on entity or type
fbf5a39b 6082
c064e066 6083 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
fbf5a39b
AC
6084 return;
6085
675d6070
TQ
6086 -- No check required if expression is from the expander, we assume the
6087 -- expander will generate whatever checks are needed. Note that this is
a90bd866 6088 -- not just an optimization, it avoids infinite recursions.
fbf5a39b
AC
6089
6090 -- Unchecked conversions must be checked, unless they are initialized
6091 -- scalar values, as in a component assignment in an init proc.
6092
6093 -- In addition, we force a check if Force_Validity_Checks is set
6094
6095 elsif not Comes_From_Source (Expr)
2e60feb5
PMR
6096 and then not
6097 (Nkind (Expr) = N_Identifier
6098 and then Present (Renamed_Object (Entity (Expr)))
6099 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
fbf5a39b
AC
6100 and then not Force_Validity_Checks
6101 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6102 or else Kill_Range_Check (Expr))
6103 then
6104 return;
6105
6106 -- No check required if expression is known to have valid value
6107
6108 elsif Expr_Known_Valid (Expr) then
6109 return;
6110
229fa5db
AC
6111 -- No check needed within a generated predicate function. Validity
6112 -- of input value will have been checked earlier.
6113
6114 elsif Ekind (Current_Scope) = E_Function
6115 and then Is_Predicate_Function (Current_Scope)
6116 then
6117 return;
6118
675d6070
TQ
6119 -- Ignore case of enumeration with holes where the flag is set not to
6120 -- worry about holes, since no special validity check is needed
fbf5a39b
AC
6121
6122 elsif Is_Enumeration_Type (Typ)
6123 and then Has_Non_Standard_Rep (Typ)
6124 and then Holes_OK
6125 then
6126 return;
6127
ddda9d0f 6128 -- No check required on the left-hand side of an assignment
fbf5a39b
AC
6129
6130 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6131 and then Expr = Name (Parent (Expr))
6132 then
6133 return;
6134
308e6f3a 6135 -- No check on a universal real constant. The context will eventually
f02b8bb8
RD
6136 -- convert it to a machine number for some target type, or report an
6137 -- illegality.
6138
6139 elsif Nkind (Expr) = N_Real_Literal
6140 and then Etype (Expr) = Universal_Real
6141 then
6142 return;
6143
308e6f3a 6144 -- If the expression denotes a component of a packed boolean array,
c064e066
RD
6145 -- no possible check applies. We ignore the old ACATS chestnuts that
6146 -- involve Boolean range True..True.
6147
6148 -- Note: validity checks are generated for expressions that yield a
6149 -- scalar type, when it is possible to create a value that is outside of
6150 -- the type. If this is a one-bit boolean no such value exists. This is
6151 -- an optimization, and it also prevents compiler blowing up during the
6152 -- elaboration of improperly expanded packed array references.
6153
6154 elsif Nkind (Expr) = N_Indexed_Component
6155 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6156 and then Root_Type (Etype (Expr)) = Standard_Boolean
6157 then
6158 return;
6159
064f4527
TQ
6160 -- For an expression with actions, we want to insert the validity check
6161 -- on the final Expression.
6162
6163 elsif Nkind (Expr) = N_Expression_With_Actions then
6164 Ensure_Valid (Expression (Expr));
6165 return;
6166
fbf5a39b
AC
6167 -- An annoying special case. If this is an out parameter of a scalar
6168 -- type, then the value is not going to be accessed, therefore it is
155f4f34
HK
6169 -- inappropriate to do any validity check at the call site. Likewise
6170 -- if the parameter is passed by reference.
fbf5a39b
AC
6171
6172 else
6173 -- Only need to worry about scalar types
6174
6175 if Is_Scalar_Type (Typ) then
70482933
RK
6176 declare
6177 P : Node_Id;
6178 N : Node_Id;
6179 E : Entity_Id;
6180 F : Entity_Id;
6181 A : Node_Id;
6182 L : List_Id;
6183
6184 begin
6185 -- Find actual argument (which may be a parameter association)
6186 -- and the parent of the actual argument (the call statement)
6187
6188 N := Expr;
6189 P := Parent (Expr);
6190
6191 if Nkind (P) = N_Parameter_Association then
6192 N := P;
6193 P := Parent (N);
6194 end if;
6195
155f4f34
HK
6196 -- If this is an indirect or dispatching call, get signature
6197 -- from the subprogram type.
70482933 6198
155f4f34
HK
6199 if Nkind_In (P, N_Entry_Call_Statement,
6200 N_Function_Call,
6201 N_Procedure_Call_Statement)
6202 then
6203 E := Get_Called_Entity (P);
70482933 6204 L := Parameter_Associations (P);
fbf5a39b 6205
675d6070 6206 -- Only need to worry if there are indeed actuals, and if
155f4f34
HK
6207 -- this could be a subprogram call, otherwise we cannot get
6208 -- a match (either we are not an argument, or the mode of
6209 -- the formal is not OUT). This test also filters out the
675d6070 6210 -- generic case.
70482933 6211
637a41a5
AC
6212 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6213
675d6070
TQ
6214 -- This is the loop through parameters, looking for an
6215 -- OUT parameter for which we are the argument.
70482933
RK
6216
6217 F := First_Formal (E);
6218 A := First (L);
70482933 6219 while Present (F) loop
155f4f34
HK
6220 if A = N
6221 and then (Ekind (F) = E_Out_Parameter
6222 or else Mechanism (F) = By_Reference)
6223 then
70482933
RK
6224 return;
6225 end if;
6226
6227 Next_Formal (F);
6228 Next (A);
6229 end loop;
6230 end if;
6231 end if;
6232 end;
6233 end if;
6234 end if;
6235
1c218ac3 6236 -- If this is a boolean expression, only its elementary operands need
46f52a47
AC
6237 -- checking: if they are valid, a boolean or short-circuit operation
6238 -- with them will be valid as well.
38afef28
AC
6239
6240 if Base_Type (Typ) = Standard_Boolean
96d2756f 6241 and then
1c218ac3 6242 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
38afef28
AC
6243 then
6244 return;
6245 end if;
6246
c064e066 6247 -- If we fall through, a validity check is required
70482933 6248
2934b84a 6249 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
1c3340e6
RD
6250
6251 if Is_Entity_Name (Expr)
6252 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6253 then
6254 Set_Is_Known_Valid (Entity (Expr));
6255 end if;
70482933
RK
6256 end Ensure_Valid;
6257
6258 ----------------------
6259 -- Expr_Known_Valid --
6260 ----------------------
6261
6262 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6263 Typ : constant Entity_Id := Etype (Expr);
6264
6265 begin
675d6070
TQ
6266 -- Non-scalar types are always considered valid, since they never give
6267 -- rise to the issues of erroneous or bounded error behavior that are
6268 -- the concern. In formal reference manual terms the notion of validity
6269 -- only applies to scalar types. Note that even when packed arrays are
6270 -- represented using modular types, they are still arrays semantically,
6271 -- so they are also always valid (in particular, the unused bits can be
6272 -- random rubbish without affecting the validity of the array value).
70482933 6273
8ca597af 6274 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
70482933
RK
6275 return True;
6276
6277 -- If no validity checking, then everything is considered valid
6278
6279 elsif not Validity_Checks_On then
6280 return True;
6281
6282 -- Floating-point types are considered valid unless floating-point
6283 -- validity checks have been specifically turned on.
6284
6285 elsif Is_Floating_Point_Type (Typ)
6286 and then not Validity_Check_Floating_Point
6287 then
6288 return True;
6289
675d6070
TQ
6290 -- If the expression is the value of an object that is known to be
6291 -- valid, then clearly the expression value itself is valid.
70482933
RK
6292
6293 elsif Is_Entity_Name (Expr)
6294 and then Is_Known_Valid (Entity (Expr))
fba9ebfc
AC
6295
6296 -- Exclude volatile variables
6297
6298 and then not Treat_As_Volatile (Entity (Expr))
70482933
RK
6299 then
6300 return True;
6301
c064e066
RD
6302 -- References to discriminants are always considered valid. The value
6303 -- of a discriminant gets checked when the object is built. Within the
6304 -- record, we consider it valid, and it is important to do so, since
6305 -- otherwise we can try to generate bogus validity checks which
675d6070
TQ
6306 -- reference discriminants out of scope. Discriminants of concurrent
6307 -- types are excluded for the same reason.
c064e066
RD
6308
6309 elsif Is_Entity_Name (Expr)
675d6070 6310 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
c064e066
RD
6311 then
6312 return True;
6313
675d6070
TQ
6314 -- If the type is one for which all values are known valid, then we are
6315 -- sure that the value is valid except in the slightly odd case where
6316 -- the expression is a reference to a variable whose size has been
6317 -- explicitly set to a value greater than the object size.
70482933
RK
6318
6319 elsif Is_Known_Valid (Typ) then
6320 if Is_Entity_Name (Expr)
6321 and then Ekind (Entity (Expr)) = E_Variable
6322 and then Esize (Entity (Expr)) > Esize (Typ)
6323 then
6324 return False;
6325 else
6326 return True;
6327 end if;
6328
6329 -- Integer and character literals always have valid values, where
6330 -- appropriate these will be range checked in any case.
6331
637a41a5 6332 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
70482933 6333 return True;
cf427f02 6334
70482933
RK
6335 -- If we have a type conversion or a qualification of a known valid
6336 -- value, then the result will always be valid.
6337
637a41a5 6338 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
70482933
RK
6339 return Expr_Known_Valid (Expression (Expr));
6340
162c21d9
AC
6341 -- Case of expression is a non-floating-point operator. In this case we
6342 -- can assume the result is valid the generated code for the operator
6343 -- will include whatever checks are needed (e.g. range checks) to ensure
6344 -- validity. This assumption does not hold for the floating-point case,
6345 -- since floating-point operators can generate Infinite or NaN results
6346 -- which are considered invalid.
6347
6348 -- Historical note: in older versions, the exemption of floating-point
6349 -- types from this assumption was done only in cases where the parent
6350 -- was an assignment, function call or parameter association. Presumably
6351 -- the idea was that in other contexts, the result would be checked
6352 -- elsewhere, but this list of cases was missing tests (at least the
6353 -- N_Object_Declaration case, as shown by a reported missing validity
6354 -- check), and it is not clear why function calls but not procedure
6355 -- calls were tested for. It really seems more accurate and much
6356 -- safer to recognize that expressions which are the result of a
6357 -- floating-point operator can never be assumed to be valid.
6358
6359 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6360 return True;
28e4d64e 6361
675d6070
TQ
6362 -- The result of a membership test is always valid, since it is true or
6363 -- false, there are no other possibilities.
c064e066
RD
6364
6365 elsif Nkind (Expr) in N_Membership_Test then
6366 return True;
6367
70482933
RK
6368 -- For all other cases, we do not know the expression is valid
6369
6370 else
6371 return False;
6372 end if;
6373 end Expr_Known_Valid;
6374
fbf5a39b
AC
6375 ----------------
6376 -- Find_Check --
6377 ----------------
6378
6379 procedure Find_Check
6380 (Expr : Node_Id;
6381 Check_Type : Character;
6382 Target_Type : Entity_Id;
6383 Entry_OK : out Boolean;
6384 Check_Num : out Nat;
6385 Ent : out Entity_Id;
6386 Ofs : out Uint)
6387 is
6388 function Within_Range_Of
6389 (Target_Type : Entity_Id;
6b6fcd3e 6390 Check_Type : Entity_Id) return Boolean;
fbf5a39b
AC
6391 -- Given a requirement for checking a range against Target_Type, and
6392 -- and a range Check_Type against which a check has already been made,
6393 -- determines if the check against check type is sufficient to ensure
6394 -- that no check against Target_Type is required.
6395
6396 ---------------------
6397 -- Within_Range_Of --
6398 ---------------------
6399
6400 function Within_Range_Of
6401 (Target_Type : Entity_Id;
6b6fcd3e 6402 Check_Type : Entity_Id) return Boolean
fbf5a39b
AC
6403 is
6404 begin
6405 if Target_Type = Check_Type then
6406 return True;
6407
6408 else
6409 declare
6410 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6411 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6412 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6413 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6414
6415 begin
6416 if (Tlo = Clo
6417 or else (Compile_Time_Known_Value (Tlo)
6418 and then
6419 Compile_Time_Known_Value (Clo)
6420 and then
6421 Expr_Value (Clo) >= Expr_Value (Tlo)))
6422 and then
6423 (Thi = Chi
6424 or else (Compile_Time_Known_Value (Thi)
6425 and then
6426 Compile_Time_Known_Value (Chi)
6427 and then
6428 Expr_Value (Chi) <= Expr_Value (Clo)))
6429 then
6430 return True;
6431 else
6432 return False;
6433 end if;
6434 end;
6435 end if;
6436 end Within_Range_Of;
6437
6438 -- Start of processing for Find_Check
6439
6440 begin
75ba322d 6441 -- Establish default, in case no entry is found
fbf5a39b
AC
6442
6443 Check_Num := 0;
6444
6445 -- Case of expression is simple entity reference
6446
6447 if Is_Entity_Name (Expr) then
6448 Ent := Entity (Expr);
6449 Ofs := Uint_0;
6450
6451 -- Case of expression is entity + known constant
6452
6453 elsif Nkind (Expr) = N_Op_Add
6454 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6455 and then Is_Entity_Name (Left_Opnd (Expr))
6456 then
6457 Ent := Entity (Left_Opnd (Expr));
6458 Ofs := Expr_Value (Right_Opnd (Expr));
6459
6460 -- Case of expression is entity - known constant
6461
6462 elsif Nkind (Expr) = N_Op_Subtract
6463 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6464 and then Is_Entity_Name (Left_Opnd (Expr))
6465 then
6466 Ent := Entity (Left_Opnd (Expr));
6467 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6468
6469 -- Any other expression is not of the right form
6470
6471 else
6472 Ent := Empty;
6473 Ofs := Uint_0;
6474 Entry_OK := False;
6475 return;
6476 end if;
6477
675d6070
TQ
6478 -- Come here with expression of appropriate form, check if entity is an
6479 -- appropriate one for our purposes.
fbf5a39b
AC
6480
6481 if (Ekind (Ent) = E_Variable
f2cbd970 6482 or else Is_Constant_Object (Ent))
fbf5a39b
AC
6483 and then not Is_Library_Level_Entity (Ent)
6484 then
6485 Entry_OK := True;
6486 else
6487 Entry_OK := False;
6488 return;
6489 end if;
6490
6491 -- See if there is matching check already
6492
6493 for J in reverse 1 .. Num_Saved_Checks loop
6494 declare
6495 SC : Saved_Check renames Saved_Checks (J);
fbf5a39b
AC
6496 begin
6497 if SC.Killed = False
6498 and then SC.Entity = Ent
6499 and then SC.Offset = Ofs
6500 and then SC.Check_Type = Check_Type
6501 and then Within_Range_Of (Target_Type, SC.Target_Type)
6502 then
6503 Check_Num := J;
6504 return;
6505 end if;
6506 end;
6507 end loop;
6508
6509 -- If we fall through entry was not found
6510
fbf5a39b
AC
6511 return;
6512 end Find_Check;
6513
6514 ---------------------------------
6515 -- Generate_Discriminant_Check --
6516 ---------------------------------
6517
6518 -- Note: the code for this procedure is derived from the
675d6070 6519 -- Emit_Discriminant_Check Routine in trans.c.
fbf5a39b
AC
6520
6521 procedure Generate_Discriminant_Check (N : Node_Id) is
6522 Loc : constant Source_Ptr := Sloc (N);
6523 Pref : constant Node_Id := Prefix (N);
6524 Sel : constant Node_Id := Selector_Name (N);
6525
6526 Orig_Comp : constant Entity_Id :=
15f0f591 6527 Original_Record_Component (Entity (Sel));
fbf5a39b
AC
6528 -- The original component to be checked
6529
6530 Discr_Fct : constant Entity_Id :=
15f0f591 6531 Discriminant_Checking_Func (Orig_Comp);
fbf5a39b
AC
6532 -- The discriminant checking function
6533
6534 Discr : Entity_Id;
6535 -- One discriminant to be checked in the type
6536
6537 Real_Discr : Entity_Id;
6538 -- Actual discriminant in the call
6539
6540 Pref_Type : Entity_Id;
6541 -- Type of relevant prefix (ignoring private/access stuff)
6542
6543 Args : List_Id;
6544 -- List of arguments for function call
6545
6546 Formal : Entity_Id;
675d6070
TQ
6547 -- Keep track of the formal corresponding to the actual we build for
6548 -- each discriminant, in order to be able to perform the necessary type
6549 -- conversions.
fbf5a39b
AC
6550
6551 Scomp : Node_Id;
6552 -- Selected component reference for checking function argument
6553
6554 begin
6555 Pref_Type := Etype (Pref);
6556
6557 -- Force evaluation of the prefix, so that it does not get evaluated
6558 -- twice (once for the check, once for the actual reference). Such a
637a41a5
AC
6559 -- double evaluation is always a potential source of inefficiency, and
6560 -- is functionally incorrect in the volatile case, or when the prefix
2cc2e964
AC
6561 -- may have side effects. A nonvolatile entity or a component of a
6562 -- nonvolatile entity requires no evaluation.
fbf5a39b
AC
6563
6564 if Is_Entity_Name (Pref) then
6565 if Treat_As_Volatile (Entity (Pref)) then
6566 Force_Evaluation (Pref, Name_Req => True);
6567 end if;
6568
6569 elsif Treat_As_Volatile (Etype (Pref)) then
637a41a5 6570 Force_Evaluation (Pref, Name_Req => True);
fbf5a39b
AC
6571
6572 elsif Nkind (Pref) = N_Selected_Component
6573 and then Is_Entity_Name (Prefix (Pref))
6574 then
6575 null;
6576
6577 else
6578 Force_Evaluation (Pref, Name_Req => True);
6579 end if;
6580
6581 -- For a tagged type, use the scope of the original component to
6582 -- obtain the type, because ???
6583
6584 if Is_Tagged_Type (Scope (Orig_Comp)) then
6585 Pref_Type := Scope (Orig_Comp);
6586
675d6070
TQ
6587 -- For an untagged derived type, use the discriminants of the parent
6588 -- which have been renamed in the derivation, possibly by a one-to-many
1fb63e89 6589 -- discriminant constraint. For untagged type, initially get the Etype
675d6070 6590 -- of the prefix
fbf5a39b
AC
6591
6592 else
6593 if Is_Derived_Type (Pref_Type)
6594 and then Number_Discriminants (Pref_Type) /=
6595 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6596 then
6597 Pref_Type := Etype (Base_Type (Pref_Type));
6598 end if;
6599 end if;
6600
6601 -- We definitely should have a checking function, This routine should
6602 -- not be called if no discriminant checking function is present.
6603
6604 pragma Assert (Present (Discr_Fct));
6605
6606 -- Create the list of the actual parameters for the call. This list
6607 -- is the list of the discriminant fields of the record expression to
6608 -- be discriminant checked.
6609
6610 Args := New_List;
6611 Formal := First_Formal (Discr_Fct);
6612 Discr := First_Discriminant (Pref_Type);
6613 while Present (Discr) loop
6614
6615 -- If we have a corresponding discriminant field, and a parent
6616 -- subtype is present, then we want to use the corresponding
6617 -- discriminant since this is the one with the useful value.
6618
6619 if Present (Corresponding_Discriminant (Discr))
6620 and then Ekind (Pref_Type) = E_Record_Type
6621 and then Present (Parent_Subtype (Pref_Type))
6622 then
6623 Real_Discr := Corresponding_Discriminant (Discr);
6624 else
6625 Real_Discr := Discr;
6626 end if;
6627
6628 -- Construct the reference to the discriminant
6629
6630 Scomp :=
6631 Make_Selected_Component (Loc,
6632 Prefix =>
6633 Unchecked_Convert_To (Pref_Type,
6634 Duplicate_Subexpr (Pref)),
6635 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6636
6637 -- Manually analyze and resolve this selected component. We really
6638 -- want it just as it appears above, and do not want the expander
675d6070
TQ
6639 -- playing discriminal games etc with this reference. Then we append
6640 -- the argument to the list we are gathering.
fbf5a39b
AC
6641
6642 Set_Etype (Scomp, Etype (Real_Discr));
6643 Set_Analyzed (Scomp, True);
6644 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6645
6646 Next_Formal_With_Extras (Formal);
6647 Next_Discriminant (Discr);
6648 end loop;
6649
6650 -- Now build and insert the call
6651
6652 Insert_Action (N,
6653 Make_Raise_Constraint_Error (Loc,
6654 Condition =>
6655 Make_Function_Call (Loc,
637a41a5 6656 Name => New_Occurrence_Of (Discr_Fct, Loc),
fbf5a39b
AC
6657 Parameter_Associations => Args),
6658 Reason => CE_Discriminant_Check_Failed));
6659 end Generate_Discriminant_Check;
6660
15ce9ca2
AC
6661 ---------------------------
6662 -- Generate_Index_Checks --
6663 ---------------------------
fbf5a39b
AC
6664
6665 procedure Generate_Index_Checks (N : Node_Id) is
4230bdb7
AC
6666
6667 function Entity_Of_Prefix return Entity_Id;
6668 -- Returns the entity of the prefix of N (or Empty if not found)
6669
8ed68165
AC
6670 ----------------------
6671 -- Entity_Of_Prefix --
6672 ----------------------
6673
4230bdb7 6674 function Entity_Of_Prefix return Entity_Id is
0d53d36b
AC
6675 P : Node_Id;
6676
4230bdb7 6677 begin
0d53d36b 6678 P := Prefix (N);
4230bdb7
AC
6679 while not Is_Entity_Name (P) loop
6680 if not Nkind_In (P, N_Selected_Component,
6681 N_Indexed_Component)
6682 then
6683 return Empty;
6684 end if;
6685
6686 P := Prefix (P);
6687 end loop;
6688
6689 return Entity (P);
6690 end Entity_Of_Prefix;
6691
6692 -- Local variables
6693
6694 Loc : constant Source_Ptr := Sloc (N);
6695 A : constant Node_Id := Prefix (N);
6696 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6697 Sub : Node_Id;
fbf5a39b 6698
8ed68165
AC
6699 -- Start of processing for Generate_Index_Checks
6700
fbf5a39b 6701 begin
4230bdb7
AC
6702 -- Ignore call if the prefix is not an array since we have a serious
6703 -- error in the sources. Ignore it also if index checks are suppressed
6704 -- for array object or type.
c064e066 6705
4230bdb7 6706 if not Is_Array_Type (Etype (A))
637a41a5 6707 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
c064e066
RD
6708 or else Index_Checks_Suppressed (Etype (A))
6709 then
6710 return;
3a3af4c3
AC
6711
6712 -- The indexed component we are dealing with contains 'Loop_Entry in its
6713 -- prefix. This case arises when analysis has determined that constructs
6714 -- such as
6715
6716 -- Prefix'Loop_Entry (Expr)
6717 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6718
6719 -- require rewriting for error detection purposes. A side effect of this
6720 -- action is the generation of index checks that mention 'Loop_Entry.
6721 -- Delay the generation of the check until 'Loop_Entry has been properly
6722 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6723
6724 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6725 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6726 then
6727 return;
c064e066
RD
6728 end if;
6729
4230bdb7
AC
6730 -- Generate a raise of constraint error with the appropriate reason and
6731 -- a condition of the form:
6732
8ed68165 6733 -- Base_Type (Sub) not in Array'Range (Subscript)
4230bdb7
AC
6734
6735 -- Note that the reason we generate the conversion to the base type here
6736 -- is that we definitely want the range check to take place, even if it
6737 -- looks like the subtype is OK. Optimization considerations that allow
6738 -- us to omit the check have already been taken into account in the
6739 -- setting of the Do_Range_Check flag earlier on.
c064e066 6740
fbf5a39b 6741 Sub := First (Expressions (N));
4230bdb7
AC
6742
6743 -- Handle string literals
6744
6745 if Ekind (Etype (A)) = E_String_Literal_Subtype then
fbf5a39b
AC
6746 if Do_Range_Check (Sub) then
6747 Set_Do_Range_Check (Sub, False);
6748
4230bdb7
AC
6749 -- For string literals we obtain the bounds of the string from the
6750 -- associated subtype.
fbf5a39b 6751
4230bdb7 6752 Insert_Action (N,
d7a44b14
AC
6753 Make_Raise_Constraint_Error (Loc,
6754 Condition =>
6755 Make_Not_In (Loc,
6756 Left_Opnd =>
6757 Convert_To (Base_Type (Etype (Sub)),
6758 Duplicate_Subexpr_Move_Checks (Sub)),
6759 Right_Opnd =>
6760 Make_Attribute_Reference (Loc,
e4494292 6761 Prefix => New_Occurrence_Of (Etype (A), Loc),
d7a44b14
AC
6762 Attribute_Name => Name_Range)),
6763 Reason => CE_Index_Check_Failed));
4230bdb7 6764 end if;
fbf5a39b 6765
4230bdb7 6766 -- General case
fbf5a39b 6767
4230bdb7
AC
6768 else
6769 declare
6770 A_Idx : Node_Id := Empty;
6771 A_Range : Node_Id;
6772 Ind : Nat;
6773 Num : List_Id;
6774 Range_N : Node_Id;
fbf5a39b 6775
4230bdb7
AC
6776 begin
6777 A_Idx := First_Index (Etype (A));
6778 Ind := 1;
6779 while Present (Sub) loop
6780 if Do_Range_Check (Sub) then
6781 Set_Do_Range_Check (Sub, False);
fbf5a39b 6782
4230bdb7 6783 -- Force evaluation except for the case of a simple name of
2cc2e964 6784 -- a nonvolatile entity.
fbf5a39b 6785
4230bdb7
AC
6786 if not Is_Entity_Name (Sub)
6787 or else Treat_As_Volatile (Entity (Sub))
6788 then
6789 Force_Evaluation (Sub);
6790 end if;
fbf5a39b 6791
4230bdb7
AC
6792 if Nkind (A_Idx) = N_Range then
6793 A_Range := A_Idx;
6794
6795 elsif Nkind (A_Idx) = N_Identifier
6796 or else Nkind (A_Idx) = N_Expanded_Name
6797 then
6798 A_Range := Scalar_Range (Entity (A_Idx));
6799
6800 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6801 A_Range := Range_Expression (Constraint (A_Idx));
6802 end if;
6803
6804 -- For array objects with constant bounds we can generate
6805 -- the index check using the bounds of the type of the index
6806
6807 if Present (A_Ent)
6808 and then Ekind (A_Ent) = E_Variable
6809 and then Is_Constant_Bound (Low_Bound (A_Range))
6810 and then Is_Constant_Bound (High_Bound (A_Range))
6811 then
6812 Range_N :=
6813 Make_Attribute_Reference (Loc,
8ed68165 6814 Prefix =>
e4494292 6815 New_Occurrence_Of (Etype (A_Idx), Loc),
4230bdb7
AC
6816 Attribute_Name => Name_Range);
6817
6818 -- For arrays with non-constant bounds we cannot generate
6819 -- the index check using the bounds of the type of the index
6820 -- since it may reference discriminants of some enclosing
6821 -- type. We obtain the bounds directly from the prefix
6822 -- object.
6823
6824 else
6825 if Ind = 1 then
6826 Num := No_List;
6827 else
6828 Num := New_List (Make_Integer_Literal (Loc, Ind));
6829 end if;
6830
6831 Range_N :=
6832 Make_Attribute_Reference (Loc,
6833 Prefix =>
6834 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6835 Attribute_Name => Name_Range,
6836 Expressions => Num);
6837 end if;
6838
6839 Insert_Action (N,
d7a44b14
AC
6840 Make_Raise_Constraint_Error (Loc,
6841 Condition =>
6842 Make_Not_In (Loc,
6843 Left_Opnd =>
6844 Convert_To (Base_Type (Etype (Sub)),
6845 Duplicate_Subexpr_Move_Checks (Sub)),
6846 Right_Opnd => Range_N),
6847 Reason => CE_Index_Check_Failed));
4230bdb7
AC
6848 end if;
6849
6850 A_Idx := Next_Index (A_Idx);
6851 Ind := Ind + 1;
6852 Next (Sub);
6853 end loop;
6854 end;
6855 end if;
fbf5a39b
AC
6856 end Generate_Index_Checks;
6857
6858 --------------------------
6859 -- Generate_Range_Check --
6860 --------------------------
6861
6862 procedure Generate_Range_Check
6863 (N : Node_Id;
6864 Target_Type : Entity_Id;
6865 Reason : RT_Exception_Code)
6866 is
6867 Loc : constant Source_Ptr := Sloc (N);
6868 Source_Type : constant Entity_Id := Etype (N);
6869 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6870 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6871
67460d45
EB
6872 procedure Convert_And_Check_Range (Suppress : Check_Id);
6873 -- Convert N to the target base type and save the result in a temporary.
6874 -- The action is analyzed using the default checks as modified by the
6875 -- given Suppress argument. Then check the converted value against the
6876 -- range of the target subtype.
f5655e4a 6877
b6621d10
AC
6878 -----------------------------
6879 -- Convert_And_Check_Range --
6880 -----------------------------
f5655e4a 6881
67460d45
EB
6882 procedure Convert_And_Check_Range (Suppress : Check_Id) is
6883 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6884 Conv_N : Node_Id;
f5655e4a 6885
b6621d10 6886 begin
f20b5ef4
JM
6887 -- For enumeration types with non-standard representation this is a
6888 -- direct conversion from the enumeration type to the target integer
6889 -- type, which is treated by the back end as a normal integer type
6890 -- conversion, treating the enumeration type as an integer, which is
6891 -- exactly what we want. We set Conversion_OK to make sure that the
6892 -- analyzer does not complain about what otherwise might be an
6893 -- illegal conversion.
6894
6895 if Is_Enumeration_Type (Source_Base_Type)
6896 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
6897 and then Is_Integer_Type (Target_Base_Type)
6898 then
67460d45 6899 Conv_N := OK_Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
f20b5ef4 6900 else
67460d45 6901 Conv_N := Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
f20b5ef4
JM
6902 end if;
6903
67460d45
EB
6904 -- We make a temporary to hold the value of the conversion to the
6905 -- target base type, and then do the test against this temporary.
6906 -- N itself is replaced by an occurrence of Tnn and followed by
6907 -- the explicit range check.
f5655e4a 6908
b6621d10
AC
6909 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6910 -- [constraint_error when Tnn not in Target_Type]
67460d45 6911 -- Tnn
b6621d10 6912
f5655e4a
AC
6913 Insert_Actions (N, New_List (
6914 Make_Object_Declaration (Loc,
6915 Defining_Identifier => Tnn,
6916 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6917 Constant_Present => True,
67460d45 6918 Expression => Conv_N),
f5655e4a
AC
6919
6920 Make_Raise_Constraint_Error (Loc,
6921 Condition =>
6922 Make_Not_In (Loc,
6923 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6924 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6925 Reason => Reason)),
67460d45 6926 Suppress => Suppress);
f5655e4a
AC
6927
6928 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6929
6930 -- Set the type of N, because the declaration for Tnn might not
6931 -- be analyzed yet, as is the case if N appears within a record
6932 -- declaration, as a discriminant constraint or expression.
6933
6934 Set_Etype (N, Target_Base_Type);
6935 end Convert_And_Check_Range;
6936
6937 -- Start of processing for Generate_Range_Check
6938
fbf5a39b 6939 begin
675d6070
TQ
6940 -- First special case, if the source type is already within the range
6941 -- of the target type, then no check is needed (probably we should have
6942 -- stopped Do_Range_Check from being set in the first place, but better
67460d45 6943 -- late than never in preventing junk code and junk flag settings).
fbf5a39b 6944
c27f2f15 6945 if In_Subrange_Of (Source_Type, Target_Type)
347c766a
RD
6946
6947 -- We do NOT apply this if the source node is a literal, since in this
6948 -- case the literal has already been labeled as having the subtype of
6949 -- the target.
6950
fbf5a39b 6951 and then not
347c766a 6952 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
fbf5a39b 6953 or else
347c766a
RD
6954 (Is_Entity_Name (N)
6955 and then Ekind (Entity (N)) = E_Enumeration_Literal))
fbf5a39b 6956 then
edab6088 6957 Set_Do_Range_Check (N, False);
fbf5a39b
AC
6958 return;
6959 end if;
6960
edab6088
RD
6961 -- Here a check is needed. If the expander is not active, or if we are
6962 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6963 -- are done. In both these cases, we just want to see the range check
6964 -- flag set, we do not want to generate the explicit range check code.
6965
6966 if GNATprove_Mode or else not Expander_Active then
68c8d72a 6967 Set_Do_Range_Check (N);
edab6088
RD
6968 return;
6969 end if;
6970
6971 -- Here we will generate an explicit range check, so we don't want to
6972 -- set the Do_Range check flag, since the range check is taken care of
6973 -- by the code we will generate.
6974
6975 Set_Do_Range_Check (N, False);
6976
6977 -- Force evaluation of the node, so that it does not get evaluated twice
6978 -- (once for the check, once for the actual reference). Such a double
6979 -- evaluation is always a potential source of inefficiency, and is
6980 -- functionally incorrect in the volatile case.
fbf5a39b 6981
967947ed
PMR
6982 -- We skip the evaluation of attribute references because, after these
6983 -- runtime checks are generated, the expander may need to rewrite this
6984 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6985 -- Expand_N_Attribute_Reference).
6986
6987 if Nkind (N) /= N_Attribute_Reference
6988 and then (not Is_Entity_Name (N)
c581c520 6989 or else Treat_As_Volatile (Entity (N)))
967947ed
PMR
6990 then
6991 Force_Evaluation (N, Mode => Strict);
fbf5a39b
AC
6992 end if;
6993
675d6070
TQ
6994 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6995 -- the same since in this case we can simply do a direct check of the
6996 -- value of N against the bounds of Target_Type.
fbf5a39b
AC
6997
6998 -- [constraint_error when N not in Target_Type]
6999
7000 -- Note: this is by far the most common case, for example all cases of
7001 -- checks on the RHS of assignments are in this category, but not all
7002 -- cases are like this. Notably conversions can involve two types.
7003
7004 if Source_Base_Type = Target_Base_Type then
96e90ac1
RD
7005
7006 -- Insert the explicit range check. Note that we suppress checks for
7007 -- this code, since we don't want a recursive range check popping up.
7008
fbf5a39b
AC
7009 Insert_Action (N,
7010 Make_Raise_Constraint_Error (Loc,
7011 Condition =>
7012 Make_Not_In (Loc,
7013 Left_Opnd => Duplicate_Subexpr (N),
7014 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
96e90ac1
RD
7015 Reason => Reason),
7016 Suppress => All_Checks);
fbf5a39b
AC
7017
7018 -- Next test for the case where the target type is within the bounds
7019 -- of the base type of the source type, since in this case we can
7c2a44ae 7020 -- simply convert the bounds of the target type to this base type
67460d45 7021 -- to do the test.
fbf5a39b
AC
7022
7023 -- [constraint_error when N not in
7024 -- Source_Base_Type (Target_Type'First)
7025 -- ..
7026 -- Source_Base_Type(Target_Type'Last))]
7027
ddda9d0f 7028 -- The conversions will always work and need no check
fbf5a39b 7029
d79e621a
GD
7030 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
7031 -- of converting from an enumeration value to an integer type, such as
7032 -- occurs for the case of generating a range check on Enum'Val(Exp)
7033 -- (which used to be handled by gigi). This is OK, since the conversion
7034 -- itself does not require a check.
7035
c27f2f15 7036 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
96e90ac1
RD
7037
7038 -- Insert the explicit range check. Note that we suppress checks for
7039 -- this code, since we don't want a recursive range check popping up.
7040
f5655e4a
AC
7041 if Is_Discrete_Type (Source_Base_Type)
7042 and then
7043 Is_Discrete_Type (Target_Base_Type)
7044 then
7045 Insert_Action (N,
7046 Make_Raise_Constraint_Error (Loc,
7047 Condition =>
7048 Make_Not_In (Loc,
7049 Left_Opnd => Duplicate_Subexpr (N),
7050
7051 Right_Opnd =>
7052 Make_Range (Loc,
7053 Low_Bound =>
7054 Unchecked_Convert_To (Source_Base_Type,
7055 Make_Attribute_Reference (Loc,
7056 Prefix =>
7057 New_Occurrence_Of (Target_Type, Loc),
7058 Attribute_Name => Name_First)),
7059
7060 High_Bound =>
7061 Unchecked_Convert_To (Source_Base_Type,
7062 Make_Attribute_Reference (Loc,
7063 Prefix =>
7064 New_Occurrence_Of (Target_Type, Loc),
7065 Attribute_Name => Name_Last)))),
7066 Reason => Reason),
7067 Suppress => All_Checks);
fbf5a39b 7068
f5655e4a 7069 -- For conversions involving at least one type that is not discrete,
67460d45
EB
7070 -- first convert to the target base type and then generate the range
7071 -- check. This avoids problems with values that are close to a bound
7072 -- of the target type that would fail a range check when done in a
7073 -- larger source type before converting but pass if converted with
f5655e4a
AC
7074 -- rounding and then checked (such as in float-to-float conversions).
7075
67460d45
EB
7076 -- Note that overflow checks are not suppressed for this code because
7077 -- we do not know whether the source type is in range of the target
7078 -- base type (unlike in the next case below).
7079
f5655e4a 7080 else
67460d45 7081 Convert_And_Check_Range (Suppress => Range_Check);
f5655e4a 7082 end if;
fbf5a39b 7083
929d5203 7084 -- Note that at this stage we know that the Target_Base_Type is not in
675d6070
TQ
7085 -- the range of the Source_Base_Type (since even the Target_Type itself
7086 -- is not in this range). It could still be the case that Source_Type is
7087 -- in range of the target base type since we have not checked that case.
fbf5a39b 7088
675d6070 7089 -- If that is the case, we can freely convert the source to the target,
67460d45
EB
7090 -- and then test the target result against the bounds. Note that checks
7091 -- are suppressed for this code, since we don't want a recursive range
7092 -- check popping up.
fbf5a39b 7093
c27f2f15 7094 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
67460d45 7095 Convert_And_Check_Range (Suppress => All_Checks);
fbf5a39b
AC
7096
7097 -- At this stage, we know that we have two scalar types, which are
7098 -- directly convertible, and where neither scalar type has a base
7099 -- range that is in the range of the other scalar type.
7100
7101 -- The only way this can happen is with a signed and unsigned type.
7102 -- So test for these two cases:
7103
7104 else
7105 -- Case of the source is unsigned and the target is signed
7106
7107 if Is_Unsigned_Type (Source_Base_Type)
7108 and then not Is_Unsigned_Type (Target_Base_Type)
7109 then
7110 -- If the source is unsigned and the target is signed, then we
7111 -- know that the source is not shorter than the target (otherwise
7112 -- the source base type would be in the target base type range).
7113
675d6070
TQ
7114 -- In other words, the unsigned type is either the same size as
7115 -- the target, or it is larger. It cannot be smaller.
fbf5a39b
AC
7116
7117 pragma Assert
7118 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7119
7120 -- We only need to check the low bound if the low bound of the
7121 -- target type is non-negative. If the low bound of the target
7122 -- type is negative, then we know that we will fit fine.
7123
7124 -- If the high bound of the target type is negative, then we
7125 -- know we have a constraint error, since we can't possibly
7126 -- have a negative source.
7127
7128 -- With these two checks out of the way, we can do the check
7129 -- using the source type safely
7130
a90bd866 7131 -- This is definitely the most annoying case.
fbf5a39b
AC
7132
7133 -- [constraint_error
7134 -- when (Target_Type'First >= 0
7135 -- and then
7136 -- N < Source_Base_Type (Target_Type'First))
7137 -- or else Target_Type'Last < 0
7138 -- or else N > Source_Base_Type (Target_Type'Last)];
7139
7140 -- We turn off all checks since we know that the conversions
7141 -- will work fine, given the guards for negative values.
7142
7143 Insert_Action (N,
7144 Make_Raise_Constraint_Error (Loc,
7145 Condition =>
7146 Make_Or_Else (Loc,
7147 Make_Or_Else (Loc,
7148 Left_Opnd =>
7149 Make_And_Then (Loc,
7150 Left_Opnd => Make_Op_Ge (Loc,
7151 Left_Opnd =>
7152 Make_Attribute_Reference (Loc,
7153 Prefix =>
7154 New_Occurrence_Of (Target_Type, Loc),
7155 Attribute_Name => Name_First),
7156 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7157
7158 Right_Opnd =>
7159 Make_Op_Lt (Loc,
7160 Left_Opnd => Duplicate_Subexpr (N),
7161 Right_Opnd =>
7162 Convert_To (Source_Base_Type,
7163 Make_Attribute_Reference (Loc,
7164 Prefix =>
7165 New_Occurrence_Of (Target_Type, Loc),
7166 Attribute_Name => Name_First)))),
7167
7168 Right_Opnd =>
7169 Make_Op_Lt (Loc,
7170 Left_Opnd =>
7171 Make_Attribute_Reference (Loc,
7172 Prefix => New_Occurrence_Of (Target_Type, Loc),
7173 Attribute_Name => Name_Last),
7174 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7175
7176 Right_Opnd =>
7177 Make_Op_Gt (Loc,
7178 Left_Opnd => Duplicate_Subexpr (N),
7179 Right_Opnd =>
7180 Convert_To (Source_Base_Type,
7181 Make_Attribute_Reference (Loc,
7182 Prefix => New_Occurrence_Of (Target_Type, Loc),
7183 Attribute_Name => Name_Last)))),
7184
7185 Reason => Reason),
7186 Suppress => All_Checks);
7187
7188 -- Only remaining possibility is that the source is signed and
b568955d 7189 -- the target is unsigned.
fbf5a39b
AC
7190
7191 else
7192 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
637a41a5 7193 and then Is_Unsigned_Type (Target_Base_Type));
fbf5a39b 7194
675d6070
TQ
7195 -- If the source is signed and the target is unsigned, then we
7196 -- know that the target is not shorter than the source (otherwise
7197 -- the target base type would be in the source base type range).
fbf5a39b 7198
675d6070
TQ
7199 -- In other words, the unsigned type is either the same size as
7200 -- the target, or it is larger. It cannot be smaller.
fbf5a39b 7201
675d6070
TQ
7202 -- Clearly we have an error if the source value is negative since
7203 -- no unsigned type can have negative values. If the source type
7204 -- is non-negative, then the check can be done using the target
7205 -- type.
fbf5a39b
AC
7206
7207 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7208
7209 -- [constraint_error
7210 -- when N < 0 or else Tnn not in Target_Type];
7211
675d6070
TQ
7212 -- We turn off all checks for the conversion of N to the target
7213 -- base type, since we generate the explicit check to ensure that
7214 -- the value is non-negative
fbf5a39b
AC
7215
7216 declare
191fcb3a 7217 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
fbf5a39b
AC
7218
7219 begin
7220 Insert_Actions (N, New_List (
7221 Make_Object_Declaration (Loc,
7222 Defining_Identifier => Tnn,
7223 Object_Definition =>
7224 New_Occurrence_Of (Target_Base_Type, Loc),
7225 Constant_Present => True,
7226 Expression =>
d79e621a 7227 Make_Unchecked_Type_Conversion (Loc,
fbf5a39b
AC
7228 Subtype_Mark =>
7229 New_Occurrence_Of (Target_Base_Type, Loc),
7230 Expression => Duplicate_Subexpr (N))),
7231
7232 Make_Raise_Constraint_Error (Loc,
7233 Condition =>
7234 Make_Or_Else (Loc,
7235 Left_Opnd =>
7236 Make_Op_Lt (Loc,
7237 Left_Opnd => Duplicate_Subexpr (N),
7238 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7239
7240 Right_Opnd =>
7241 Make_Not_In (Loc,
7242 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7243 Right_Opnd =>
7244 New_Occurrence_Of (Target_Type, Loc))),
7245
637a41a5 7246 Reason => Reason)),
fbf5a39b
AC
7247 Suppress => All_Checks);
7248
675d6070
TQ
7249 -- Set the Etype explicitly, because Insert_Actions may have
7250 -- placed the declaration in the freeze list for an enclosing
7251 -- construct, and thus it is not analyzed yet.
fbf5a39b
AC
7252
7253 Set_Etype (Tnn, Target_Base_Type);
7254 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7255 end;
7256 end if;
7257 end if;
7258 end Generate_Range_Check;
7259
939c12d2
RD
7260 ------------------
7261 -- Get_Check_Id --
7262 ------------------
7263
7264 function Get_Check_Id (N : Name_Id) return Check_Id is
7265 begin
7266 -- For standard check name, we can do a direct computation
7267
7268 if N in First_Check_Name .. Last_Check_Name then
7269 return Check_Id (N - (First_Check_Name - 1));
7270
7271 -- For non-standard names added by pragma Check_Name, search table
7272
7273 else
7274 for J in All_Checks + 1 .. Check_Names.Last loop
7275 if Check_Names.Table (J) = N then
7276 return J;
7277 end if;
7278 end loop;
7279 end if;
7280
7281 -- No matching name found
7282
7283 return No_Check_Id;
7284 end Get_Check_Id;
7285
70482933
RK
7286 ---------------------
7287 -- Get_Discriminal --
7288 ---------------------
7289
7290 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7291 Loc : constant Source_Ptr := Sloc (E);
7292 D : Entity_Id;
7293 Sc : Entity_Id;
7294
7295 begin
c064e066
RD
7296 -- The bound can be a bona fide parameter of a protected operation,
7297 -- rather than a prival encoded as an in-parameter.
7298
7299 if No (Discriminal_Link (Entity (Bound))) then
7300 return Bound;
7301 end if;
7302
939c12d2
RD
7303 -- Climb the scope stack looking for an enclosing protected type. If
7304 -- we run out of scopes, return the bound itself.
7305
7306 Sc := Scope (E);
7307 while Present (Sc) loop
7308 if Sc = Standard_Standard then
7309 return Bound;
939c12d2
RD
7310 elsif Ekind (Sc) = E_Protected_Type then
7311 exit;
7312 end if;
7313
7314 Sc := Scope (Sc);
7315 end loop;
7316
70482933 7317 D := First_Discriminant (Sc);
939c12d2
RD
7318 while Present (D) loop
7319 if Chars (D) = Chars (Bound) then
7320 return New_Occurrence_Of (Discriminal (D), Loc);
7321 end if;
70482933 7322
70482933
RK
7323 Next_Discriminant (D);
7324 end loop;
7325
939c12d2 7326 return Bound;
70482933
RK
7327 end Get_Discriminal;
7328
939c12d2
RD
7329 ----------------------
7330 -- Get_Range_Checks --
7331 ----------------------
7332
7333 function Get_Range_Checks
7334 (Ck_Node : Node_Id;
7335 Target_Typ : Entity_Id;
7336 Source_Typ : Entity_Id := Empty;
7337 Warn_Node : Node_Id := Empty) return Check_Result
7338 is
7339 begin
637a41a5
AC
7340 return
7341 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
939c12d2
RD
7342 end Get_Range_Checks;
7343
70482933
RK
7344 ------------------
7345 -- Guard_Access --
7346 ------------------
7347
7348 function Guard_Access
7349 (Cond : Node_Id;
7350 Loc : Source_Ptr;
6b6fcd3e 7351 Ck_Node : Node_Id) return Node_Id
70482933
RK
7352 is
7353 begin
7354 if Nkind (Cond) = N_Or_Else then
7355 Set_Paren_Count (Cond, 1);
7356 end if;
7357
7358 if Nkind (Ck_Node) = N_Allocator then
7359 return Cond;
637a41a5 7360
70482933
RK
7361 else
7362 return
7363 Make_And_Then (Loc,
7364 Left_Opnd =>
7365 Make_Op_Ne (Loc,
fbf5a39b 7366 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
70482933
RK
7367 Right_Opnd => Make_Null (Loc)),
7368 Right_Opnd => Cond);
7369 end if;
7370 end Guard_Access;
7371
7372 -----------------------------
7373 -- Index_Checks_Suppressed --
7374 -----------------------------
7375
7376 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7377 begin
fbf5a39b
AC
7378 if Present (E) and then Checks_May_Be_Suppressed (E) then
7379 return Is_Check_Suppressed (E, Index_Check);
7380 else
3217f71e 7381 return Scope_Suppress.Suppress (Index_Check);
fbf5a39b 7382 end if;
70482933
RK
7383 end Index_Checks_Suppressed;
7384
7385 ----------------
7386 -- Initialize --
7387 ----------------
7388
7389 procedure Initialize is
7390 begin
7391 for J in Determine_Range_Cache_N'Range loop
7392 Determine_Range_Cache_N (J) := Empty;
7393 end loop;
939c12d2
RD
7394
7395 Check_Names.Init;
7396
7397 for J in Int range 1 .. All_Checks loop
7398 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7399 end loop;
70482933
RK
7400 end Initialize;
7401
7402 -------------------------
7403 -- Insert_Range_Checks --
7404 -------------------------
7405
7406 procedure Insert_Range_Checks
7407 (Checks : Check_Result;
7408 Node : Node_Id;
7409 Suppress_Typ : Entity_Id;
7410 Static_Sloc : Source_Ptr := No_Location;
7411 Flag_Node : Node_Id := Empty;
7412 Do_Before : Boolean := False)
7413 is
e0666fc6
AC
7414 Checks_On : constant Boolean :=
7415 not Index_Checks_Suppressed (Suppress_Typ)
7416 or else
7417 not Range_Checks_Suppressed (Suppress_Typ);
7418
7419 Check_Node : Node_Id;
70482933
RK
7420 Internal_Flag_Node : Node_Id := Flag_Node;
7421 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7422
70482933 7423 begin
675d6070
TQ
7424 -- For now we just return if Checks_On is false, however this should be
7425 -- enhanced to check for an always True value in the condition and to
7426 -- generate a compilation warning???
70482933 7427
1f0b1e48 7428 if not Expander_Active or not Checks_On then
70482933
RK
7429 return;
7430 end if;
7431
7432 if Static_Sloc = No_Location then
7433 Internal_Static_Sloc := Sloc (Node);
7434 end if;
7435
7436 if No (Flag_Node) then
7437 Internal_Flag_Node := Node;
7438 end if;
7439
7440 for J in 1 .. 2 loop
7441 exit when No (Checks (J));
7442
7443 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7444 and then Present (Condition (Checks (J)))
7445 then
7446 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7447 Check_Node := Checks (J);
7448 Mark_Rewrite_Insertion (Check_Node);
7449
7450 if Do_Before then
7451 Insert_Before_And_Analyze (Node, Check_Node);
7452 else
7453 Insert_After_And_Analyze (Node, Check_Node);
7454 end if;
7455
7456 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7457 end if;
7458
7459 else
7460 Check_Node :=
07fc65c4
GB
7461 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7462 Reason => CE_Range_Check_Failed);
70482933
RK
7463 Mark_Rewrite_Insertion (Check_Node);
7464
7465 if Do_Before then
7466 Insert_Before_And_Analyze (Node, Check_Node);
7467 else
7468 Insert_After_And_Analyze (Node, Check_Node);
7469 end if;
7470 end if;
7471 end loop;
7472 end Insert_Range_Checks;
7473
7474 ------------------------
7475 -- Insert_Valid_Check --
7476 ------------------------
7477
2934b84a
AC
7478 procedure Insert_Valid_Check
7479 (Expr : Node_Id;
7480 Related_Id : Entity_Id := Empty;
7481 Is_Low_Bound : Boolean := False;
7482 Is_High_Bound : Boolean := False)
7483 is
70482933 7484 Loc : constant Source_Ptr := Sloc (Expr);
d515aef3 7485 Typ : constant Entity_Id := Etype (Expr);
84157f51 7486 Exp : Node_Id;
70482933
RK
7487
7488 begin
2934b84a
AC
7489 -- Do not insert if checks off, or if not checking validity or if
7490 -- expression is known to be valid.
70482933 7491
c064e066
RD
7492 if not Validity_Checks_On
7493 or else Range_Or_Validity_Checks_Suppressed (Expr)
8dc2ddaf 7494 or else Expr_Known_Valid (Expr)
70482933 7495 then
84157f51 7496 return;
70482933 7497
489c6e19
AC
7498 -- Do not insert checks within a predicate function. This will arise
7499 -- if the current unit and the predicate function are being compiled
7500 -- with validity checks enabled.
d515aef3 7501
b0cd50fd 7502 elsif Present (Predicate_Function (Typ))
d515aef3
AC
7503 and then Current_Scope = Predicate_Function (Typ)
7504 then
7505 return;
d515aef3 7506
9dc30a5f
AC
7507 -- If the expression is a packed component of a modular type of the
7508 -- right size, the data is always valid.
7509
b0cd50fd 7510 elsif Nkind (Expr) = N_Selected_Component
9dc30a5f
AC
7511 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7512 and then Is_Modular_Integer_Type (Typ)
7513 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7514 then
7515 return;
b0cd50fd
AC
7516
7517 -- Do not generate a validity check when inside a generic unit as this
7518 -- is an expansion activity.
7519
7520 elsif Inside_A_Generic then
7521 return;
9dc30a5f
AC
7522 end if;
7523
6578a6bf
HK
7524 -- Entities declared in Lock_free protected types must be treated as
7525 -- volatile, and we must inhibit validity checks to prevent improper
7526 -- constant folding.
90fd73bb
ES
7527
7528 if Is_Entity_Name (Expr)
7529 and then Is_Subprogram (Scope (Entity (Expr)))
7530 and then Present (Protected_Subprogram (Scope (Entity (Expr))))
7531 and then Uses_Lock_Free
6578a6bf 7532 (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
90fd73bb
ES
7533 then
7534 return;
7535 end if;
7536
84157f51
GB
7537 -- If we have a checked conversion, then validity check applies to
7538 -- the expression inside the conversion, not the result, since if
7539 -- the expression inside is valid, then so is the conversion result.
70482933 7540
84157f51
GB
7541 Exp := Expr;
7542 while Nkind (Exp) = N_Type_Conversion loop
7543 Exp := Expression (Exp);
7544 end loop;
7545
89b6c83e
AC
7546 -- Do not generate a check for a variable which already validates the
7547 -- value of an assignable object.
7548
7549 if Is_Validation_Variable_Reference (Exp) then
7550 return;
7551 end if;
7552
c064e066 7553 declare
62e45e3e 7554 CE : Node_Id;
62e45e3e
HK
7555 PV : Node_Id;
7556 Var_Id : Entity_Id;
d8b9660d 7557
c064e066 7558 begin
89b6c83e
AC
7559 -- If the expression denotes an assignable object, capture its value
7560 -- in a variable and replace the original expression by the variable.
7561 -- This approach has several effects:
8dc2ddaf 7562
89b6c83e
AC
7563 -- 1) The evaluation of the object results in only one read in the
7564 -- case where the object is atomic or volatile.
59f4d038 7565
62e45e3e 7566 -- Var ... := Object; -- read
59f4d038 7567
89b6c83e
AC
7568 -- 2) The captured value is the one verified by attribute 'Valid.
7569 -- As a result the object is not evaluated again, which would
7570 -- result in an unwanted read in the case where the object is
7571 -- atomic or volatile.
7572
62e45e3e 7573 -- if not Var'Valid then -- OK, no read of Object
89b6c83e
AC
7574
7575 -- if not Object'Valid then -- Wrong, extra read of Object
7576
7577 -- 3) The captured value replaces the original object reference.
7578 -- As a result the object is not evaluated again, in the same
7579 -- vein as 2).
7580
62e45e3e 7581 -- ... Var ... -- OK, no read of Object
89b6c83e
AC
7582
7583 -- ... Object ... -- Wrong, extra read of Object
8dc2ddaf 7584
89b6c83e
AC
7585 -- 4) The use of a variable to capture the value of the object
7586 -- allows the propagation of any changes back to the original
7587 -- object.
7588
7589 -- procedure Call (Val : in out ...);
7590
62e45e3e
HK
7591 -- Var : ... := Object; -- read Object
7592 -- if not Var'Valid then -- validity check
7593 -- Call (Var); -- modify Var
7594 -- Object := Var; -- update Object
89b6c83e
AC
7595
7596 if Is_Variable (Exp) then
62e45e3e 7597 Var_Id := Make_Temporary (Loc, 'T', Exp);
89b6c83e 7598
683af98c
AC
7599 -- Because we could be dealing with a transient scope which would
7600 -- cause our object declaration to remain unanalyzed we must do
7601 -- some manual decoration.
7602
7603 Set_Ekind (Var_Id, E_Variable);
7604 Set_Etype (Var_Id, Typ);
7605
89b6c83e
AC
7606 Insert_Action (Exp,
7607 Make_Object_Declaration (Loc,
62e45e3e 7608 Defining_Identifier => Var_Id,
89b6c83e 7609 Object_Definition => New_Occurrence_Of (Typ, Loc),
dd89dddf
AC
7610 Expression => New_Copy_Tree (Exp)),
7611 Suppress => Validity_Check);
7612
7613 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
13931a38 7614
62e45e3e 7615 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
89b6c83e 7616
1361a4fb
EB
7617 -- Move the Do_Range_Check flag over to the new Exp so it doesn't
7618 -- get lost and doesn't leak elsewhere.
3815f967 7619
1361a4fb
EB
7620 if Do_Range_Check (Validated_Object (Var_Id)) then
7621 Set_Do_Range_Check (Exp);
7622 Set_Do_Range_Check (Validated_Object (Var_Id), False);
3815f967
AC
7623 end if;
7624
13931a38
EB
7625 PV := New_Occurrence_Of (Var_Id, Loc);
7626
89b6c83e
AC
7627 -- Otherwise the expression does not denote a variable. Force its
7628 -- evaluation by capturing its value in a constant. Generate:
7629
7630 -- Temp : constant ... := Exp;
7631
7632 else
7633 Force_Evaluation
7634 (Exp => Exp,
7635 Related_Id => Related_Id,
7636 Is_Low_Bound => Is_Low_Bound,
7637 Is_High_Bound => Is_High_Bound);
7638
7639 PV := New_Copy_Tree (Exp);
7640 end if;
c064e066 7641
e80f0cb0
RD
7642 -- A rather specialized test. If PV is an analyzed expression which
7643 -- is an indexed component of a packed array that has not been
7644 -- properly expanded, turn off its Analyzed flag to make sure it
4bd4bb7f
AC
7645 -- gets properly reexpanded. If the prefix is an access value,
7646 -- the dereference will be added later.
0e564ab4
AC
7647
7648 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7649 -- an analyze with the old parent pointer. This may point e.g. to
7650 -- a subprogram call, which deactivates this expansion.
7651
7652 if Analyzed (PV)
7653 and then Nkind (PV) = N_Indexed_Component
4bd4bb7f 7654 and then Is_Array_Type (Etype (Prefix (PV)))
8ca597af 7655 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
0e564ab4
AC
7656 then
7657 Set_Analyzed (PV, False);
7658 end if;
7659
59f4d038
RD
7660 -- Build the raise CE node to check for validity. We build a type
7661 -- qualification for the prefix, since it may not be of the form of
7662 -- a name, and we don't care in this context!
0e564ab4
AC
7663
7664 CE :=
2934b84a
AC
7665 Make_Raise_Constraint_Error (Loc,
7666 Condition =>
7667 Make_Op_Not (Loc,
7668 Right_Opnd =>
7669 Make_Attribute_Reference (Loc,
7670 Prefix => PV,
7671 Attribute_Name => Name_Valid)),
7672 Reason => CE_Invalid_Data);
0e564ab4
AC
7673
7674 -- Insert the validity check. Note that we do this with validity
7675 -- checks turned off, to avoid recursion, we do not want validity
a90bd866 7676 -- checks on the validity checking code itself.
0e564ab4
AC
7677
7678 Insert_Action (Expr, CE, Suppress => Validity_Check);
c064e066 7679
308e6f3a 7680 -- If the expression is a reference to an element of a bit-packed
c064e066
RD
7681 -- array, then it is rewritten as a renaming declaration. If the
7682 -- expression is an actual in a call, it has not been expanded,
7683 -- waiting for the proper point at which to do it. The same happens
7684 -- with renamings, so that we have to force the expansion now. This
7685 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7686 -- and exp_ch6.adb.
7687
7688 if Is_Entity_Name (Exp)
7689 and then Nkind (Parent (Entity (Exp))) =
637a41a5 7690 N_Object_Renaming_Declaration
c064e066
RD
7691 then
7692 declare
7693 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7694 begin
7695 if Nkind (Old_Exp) = N_Indexed_Component
7696 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7697 then
7698 Expand_Packed_Element_Reference (Old_Exp);
7699 end if;
7700 end;
7701 end if;
c064e066 7702 end;
70482933
RK
7703 end Insert_Valid_Check;
7704
acad3c0a
AC
7705 -------------------------------------
7706 -- Is_Signed_Integer_Arithmetic_Op --
7707 -------------------------------------
7708
7709 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7710 begin
7711 case Nkind (N) is
d8f43ee6
HK
7712 when N_Op_Abs
7713 | N_Op_Add
7714 | N_Op_Divide
7715 | N_Op_Expon
7716 | N_Op_Minus
7717 | N_Op_Mod
7718 | N_Op_Multiply
7719 | N_Op_Plus
7720 | N_Op_Rem
7721 | N_Op_Subtract
7722 =>
acad3c0a
AC
7723 return Is_Signed_Integer_Type (Etype (N));
7724
d8f43ee6
HK
7725 when N_Case_Expression
7726 | N_If_Expression
7727 =>
4b1c4f20
RD
7728 return Is_Signed_Integer_Type (Etype (N));
7729
acad3c0a
AC
7730 when others =>
7731 return False;
7732 end case;
7733 end Is_Signed_Integer_Arithmetic_Op;
7734
2820d220
AC
7735 ----------------------------------
7736 -- Install_Null_Excluding_Check --
7737 ----------------------------------
7738
7739 procedure Install_Null_Excluding_Check (N : Node_Id) is
437f8c1e 7740 Loc : constant Source_Ptr := Sloc (Parent (N));
86ac5e79
ES
7741 Typ : constant Entity_Id := Etype (N);
7742
ac7120ce
RD
7743 function Safe_To_Capture_In_Parameter_Value return Boolean;
7744 -- Determines if it is safe to capture Known_Non_Null status for an
7745 -- the entity referenced by node N. The caller ensures that N is indeed
7746 -- an entity name. It is safe to capture the non-null status for an IN
7747 -- parameter when the reference occurs within a declaration that is sure
7748 -- to be executed as part of the declarative region.
bb6e3d41 7749
86ac5e79 7750 procedure Mark_Non_Null;
bb6e3d41
HK
7751 -- After installation of check, if the node in question is an entity
7752 -- name, then mark this entity as non-null if possible.
7753
ac7120ce 7754 function Safe_To_Capture_In_Parameter_Value return Boolean is
bb6e3d41
HK
7755 E : constant Entity_Id := Entity (N);
7756 S : constant Entity_Id := Current_Scope;
7757 S_Par : Node_Id;
7758
7759 begin
ac7120ce
RD
7760 if Ekind (E) /= E_In_Parameter then
7761 return False;
7762 end if;
bb6e3d41
HK
7763
7764 -- Two initial context checks. We must be inside a subprogram body
7765 -- with declarations and reference must not appear in nested scopes.
7766
ac7120ce 7767 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
bb6e3d41
HK
7768 or else Scope (E) /= S
7769 then
7770 return False;
7771 end if;
7772
7773 S_Par := Parent (Parent (S));
7774
7775 if Nkind (S_Par) /= N_Subprogram_Body
7776 or else No (Declarations (S_Par))
7777 then
7778 return False;
7779 end if;
7780
7781 declare
7782 N_Decl : Node_Id;
7783 P : Node_Id;
7784
7785 begin
7786 -- Retrieve the declaration node of N (if any). Note that N
7787 -- may be a part of a complex initialization expression.
7788
7789 P := Parent (N);
7790 N_Decl := Empty;
7791 while Present (P) loop
7792
ac7120ce
RD
7793 -- If we have a short circuit form, and we are within the right
7794 -- hand expression, we return false, since the right hand side
7795 -- is not guaranteed to be elaborated.
7796
7797 if Nkind (P) in N_Short_Circuit
7798 and then N = Right_Opnd (P)
7799 then
7800 return False;
7801 end if;
7802
9b16cb57
RD
7803 -- Similarly, if we are in an if expression and not part of the
7804 -- condition, then we return False, since neither the THEN or
7805 -- ELSE dependent expressions will always be elaborated.
ac7120ce 7806
9b16cb57 7807 if Nkind (P) = N_If_Expression
ac7120ce
RD
7808 and then N /= First (Expressions (P))
7809 then
7810 return False;
19d846a0
RD
7811 end if;
7812
637a41a5
AC
7813 -- If within a case expression, and not part of the expression,
7814 -- then return False, since a particular dependent expression
7815 -- may not always be elaborated
19d846a0
RD
7816
7817 if Nkind (P) = N_Case_Expression
7818 and then N /= Expression (P)
7819 then
7820 return False;
ac7120ce
RD
7821 end if;
7822
637a41a5
AC
7823 -- While traversing the parent chain, if node N belongs to a
7824 -- statement, then it may never appear in a declarative region.
bb6e3d41
HK
7825
7826 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7827 or else Nkind (P) = N_Procedure_Call_Statement
7828 then
7829 return False;
7830 end if;
7831
ac7120ce
RD
7832 -- If we are at a declaration, record it and exit
7833
bb6e3d41
HK
7834 if Nkind (P) in N_Declaration
7835 and then Nkind (P) not in N_Subprogram_Specification
7836 then
7837 N_Decl := P;
7838 exit;
7839 end if;
7840
7841 P := Parent (P);
7842 end loop;
7843
7844 if No (N_Decl) then
7845 return False;
7846 end if;
7847
7848 return List_Containing (N_Decl) = Declarations (S_Par);
7849 end;
ac7120ce 7850 end Safe_To_Capture_In_Parameter_Value;
86ac5e79
ES
7851
7852 -------------------
7853 -- Mark_Non_Null --
7854 -------------------
7855
7856 procedure Mark_Non_Null is
7857 begin
bb6e3d41
HK
7858 -- Only case of interest is if node N is an entity name
7859
86ac5e79 7860 if Is_Entity_Name (N) then
bb6e3d41
HK
7861
7862 -- For sure, we want to clear an indication that this is known to
a90bd866 7863 -- be null, since if we get past this check, it definitely is not.
bb6e3d41 7864
86ac5e79
ES
7865 Set_Is_Known_Null (Entity (N), False);
7866
bb6e3d41
HK
7867 -- We can mark the entity as known to be non-null if either it is
7868 -- safe to capture the value, or in the case of an IN parameter,
7869 -- which is a constant, if the check we just installed is in the
7870 -- declarative region of the subprogram body. In this latter case,
ac7120ce
RD
7871 -- a check is decisive for the rest of the body if the expression
7872 -- is sure to be elaborated, since we know we have to elaborate
7873 -- all declarations before executing the body.
7874
7875 -- Couldn't this always be part of Safe_To_Capture_Value ???
bb6e3d41
HK
7876
7877 if Safe_To_Capture_Value (N, Entity (N))
ac7120ce 7878 or else Safe_To_Capture_In_Parameter_Value
bb6e3d41
HK
7879 then
7880 Set_Is_Known_Non_Null (Entity (N));
86ac5e79
ES
7881 end if;
7882 end if;
7883 end Mark_Non_Null;
7884
7885 -- Start of processing for Install_Null_Excluding_Check
2820d220
AC
7886
7887 begin
fcf1dd74
JM
7888 -- No need to add null-excluding checks when the tree may not be fully
7889 -- decorated.
7890
7891 if Serious_Errors_Detected > 0 then
7892 return;
7893 end if;
7894
86ac5e79 7895 pragma Assert (Is_Access_Type (Typ));
2820d220 7896
cca7f107 7897 -- No check inside a generic, check will be emitted in instance
2820d220 7898
86ac5e79 7899 if Inside_A_Generic then
2820d220 7900 return;
86ac5e79
ES
7901 end if;
7902
7903 -- No check needed if known to be non-null
7904
7905 if Known_Non_Null (N) then
d8b9660d 7906 return;
86ac5e79 7907 end if;
2820d220 7908
86ac5e79
ES
7909 -- If known to be null, here is where we generate a compile time check
7910
7911 if Known_Null (N) then
b1c11e0e 7912
637a41a5
AC
7913 -- Avoid generating warning message inside init procs. In SPARK mode
7914 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
cca7f107 7915 -- since it will be turned into an error in any case.
b1c11e0e 7916
cca7f107
AC
7917 if (not Inside_Init_Proc or else SPARK_Mode = On)
7918
1ae70618
ES
7919 -- Do not emit the warning within a conditional expression,
7920 -- where the expression might not be evaluated, and the warning
7921 -- appear as extraneous noise.
cca7f107
AC
7922
7923 and then not Within_Case_Or_If_Expression (N)
7924 then
b1c11e0e 7925 Apply_Compile_Time_Constraint_Error
4a28b181 7926 (N, "null value not allowed here??", CE_Access_Check_Failed);
cca7f107
AC
7927
7928 -- Remaining cases, where we silently insert the raise
7929
b1c11e0e
JM
7930 else
7931 Insert_Action (N,
7932 Make_Raise_Constraint_Error (Loc,
7933 Reason => CE_Access_Check_Failed));
7934 end if;
7935
86ac5e79
ES
7936 Mark_Non_Null;
7937 return;
7938 end if;
7939
7940 -- If entity is never assigned, for sure a warning is appropriate
7941
7942 if Is_Entity_Name (N) then
7943 Check_Unset_Reference (N);
2820d220 7944 end if;
86ac5e79
ES
7945
7946 -- No check needed if checks are suppressed on the range. Note that we
7947 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7948 -- so, since the program is erroneous, but we don't like to casually
7949 -- propagate such conclusions from erroneosity).
7950
7951 if Access_Checks_Suppressed (Typ) then
7952 return;
7953 end if;
7954
939c12d2
RD
7955 -- No check needed for access to concurrent record types generated by
7956 -- the expander. This is not just an optimization (though it does indeed
7957 -- remove junk checks). It also avoids generation of junk warnings.
7958
7959 if Nkind (N) in N_Has_Chars
7960 and then Chars (N) = Name_uObject
7961 and then Is_Concurrent_Record_Type
7962 (Directly_Designated_Type (Etype (N)))
7963 then
7964 return;
7965 end if;
7966
0a376301
JM
7967 -- No check needed in interface thunks since the runtime check is
7968 -- already performed at the caller side.
7969
7970 if Is_Thunk (Current_Scope) then
7971 return;
7972 end if;
7973
74cab21a
EB
7974 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7975 -- the expander within exception handlers, since we know that the value
7976 -- can never be null.
7977
7978 -- Is this really the right way to do this? Normally we generate such
7979 -- code in the expander with checks off, and that's how we suppress this
7980 -- kind of junk check ???
7981
7982 if Nkind (N) = N_Function_Call
7983 and then Nkind (Name (N)) = N_Explicit_Dereference
7984 and then Nkind (Prefix (Name (N))) = N_Identifier
7985 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7986 then
5c34f30d
YM
7987 return;
7988 end if;
7989
7990 -- In GNATprove mode, we do not apply the check
7991
7992 if GNATprove_Mode then
74cab21a
EB
7993 return;
7994 end if;
7995
86ac5e79
ES
7996 -- Otherwise install access check
7997
7998 Insert_Action (N,
7999 Make_Raise_Constraint_Error (Loc,
8000 Condition =>
8001 Make_Op_Eq (Loc,
8002 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
8003 Right_Opnd => Make_Null (Loc)),
8004 Reason => CE_Access_Check_Failed));
8005
8006 Mark_Non_Null;
2820d220
AC
8007 end Install_Null_Excluding_Check;
8008
7327f5c2
AC
8009 -----------------------------------------
8010 -- Install_Primitive_Elaboration_Check --
8011 -----------------------------------------
8012
8013 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7327f5c2
AC
8014 function Within_Compilation_Unit_Instance
8015 (Subp_Id : Entity_Id) return Boolean;
8016 -- Determine whether subprogram Subp_Id appears within an instance which
8017 -- acts as a compilation unit.
8018
8019 --------------------------------------
8020 -- Within_Compilation_Unit_Instance --
8021 --------------------------------------
8022
8023 function Within_Compilation_Unit_Instance
8024 (Subp_Id : Entity_Id) return Boolean
8025 is
8026 Pack : Entity_Id;
8027
8028 begin
8029 -- Examine the scope chain looking for a compilation-unit-level
8030 -- instance.
8031
8032 Pack := Scope (Subp_Id);
8033 while Present (Pack) and then Pack /= Standard_Standard loop
8034 if Ekind (Pack) = E_Package
8035 and then Is_Generic_Instance (Pack)
8036 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
8037 N_Compilation_Unit
8038 then
8039 return True;
8040 end if;
8041
8042 Pack := Scope (Pack);
8043 end loop;
8044
8045 return False;
8046 end Within_Compilation_Unit_Instance;
8047
8048 -- Local declarations
8049
8050 Context : constant Node_Id := Parent (Subp_Body);
8051 Loc : constant Source_Ptr := Sloc (Subp_Body);
8052 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
8053 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
8054
8dce7371
PMR
8055 Decls : List_Id;
8056 Flag_Id : Entity_Id;
8057 Set_Ins : Node_Id;
8058 Set_Stmt : Node_Id;
8059 Tag_Typ : Entity_Id;
7327f5c2
AC
8060
8061 -- Start of processing for Install_Primitive_Elaboration_Check
8062
8063 begin
8064 -- Do not generate an elaboration check in compilation modes where
8065 -- expansion is not desirable.
8066
8067 if ASIS_Mode or GNATprove_Mode then
8068 return;
8069
85be939e
AC
8070 -- Do not generate an elaboration check if all checks have been
8071 -- suppressed.
304757d2 8072
85be939e 8073 elsif Suppress_Checks then
304757d2
AC
8074 return;
8075
7327f5c2
AC
8076 -- Do not generate an elaboration check if the related subprogram is
8077 -- not subjected to accessibility checks.
8078
8079 elsif Elaboration_Checks_Suppressed (Subp_Id) then
8080 return;
85be939e
AC
8081
8082 -- Do not generate an elaboration check if such code is not desirable
8083
8084 elsif Restriction_Active (No_Elaboration_Code) then
8085 return;
7327f5c2 8086
640ad9c2
HK
8087 -- Do not generate an elaboration check if exceptions cannot be used,
8088 -- caught, or propagated.
8089
8090 elsif not Exceptions_OK then
8091 return;
8092
7327f5c2
AC
8093 -- Do not consider subprograms which act as compilation units, because
8094 -- they cannot be the target of a dispatching call.
8095
8096 elsif Nkind (Context) = N_Compilation_Unit then
8097 return;
8098
8dce7371
PMR
8099 -- Do not consider anything other than nonabstract library-level source
8100 -- primitives.
7327f5c2
AC
8101
8102 elsif not
8103 (Comes_From_Source (Subp_Id)
8104 and then Is_Library_Level_Entity (Subp_Id)
8105 and then Is_Primitive (Subp_Id)
8106 and then not Is_Abstract_Subprogram (Subp_Id))
8107 then
8108 return;
8109
8110 -- Do not consider inlined primitives, because once the body is inlined
8111 -- the reference to the elaboration flag will be out of place and will
8112 -- result in an undefined symbol.
8113
8114 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8115 return;
8116
8117 -- Do not generate a duplicate elaboration check. This happens only in
8118 -- the case of primitives completed by an expression function, as the
8119 -- corresponding body is apparently analyzed and expanded twice.
8120
8121 elsif Analyzed (Subp_Body) then
8122 return;
8123
8124 -- Do not consider primitives which occur within an instance that acts
8125 -- as a compilation unit. Such an instance defines its spec and body out
8126 -- of order (body is first) within the tree, which causes the reference
8127 -- to the elaboration flag to appear as an undefined symbol.
8128
8129 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8130 return;
8131 end if;
8132
8133 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8134
8135 -- Only tagged primitives may be the target of a dispatching call
8136
8137 if No (Tag_Typ) then
8138 return;
8139
8140 -- Do not consider finalization-related primitives, because they may
8141 -- need to be called while elaboration is taking place.
8142
8143 elsif Is_Controlled (Tag_Typ)
8144 and then Nam_In (Chars (Subp_Id), Name_Adjust,
8145 Name_Finalize,
8146 Name_Initialize)
8147 then
8148 return;
8149 end if;
8150
8151 -- Create the declaration of the elaboration flag. The name carries a
8152 -- unique counter in case of name overloading.
8153
8154 Flag_Id :=
8155 Make_Defining_Identifier (Loc,
90e491a7 8156 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7327f5c2
AC
8157 Set_Is_Frozen (Flag_Id);
8158
8159 -- Insert the declaration of the elaboration flag in front of the
8160 -- primitive spec and analyze it in the proper context.
8161
8162 Push_Scope (Scope (Subp_Id));
8163
8164 -- Generate:
90e491a7 8165 -- E : Boolean := False;
7327f5c2
AC
8166
8167 Insert_Action (Subp_Decl,
8168 Make_Object_Declaration (Loc,
8169 Defining_Identifier => Flag_Id,
8170 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8171 Expression => New_Occurrence_Of (Standard_False, Loc)));
8172 Pop_Scope;
8173
8174 -- Prevent the compiler from optimizing the elaboration check by killing
8175 -- the current value of the flag and the associated assignment.
8176
8177 Set_Current_Value (Flag_Id, Empty);
8178 Set_Last_Assignment (Flag_Id, Empty);
8179
8180 -- Add a check at the top of the body declarations to ensure that the
8181 -- elaboration flag has been set.
8182
8183 Decls := Declarations (Subp_Body);
8184
8185 if No (Decls) then
8186 Decls := New_List;
8187 Set_Declarations (Subp_Body, Decls);
8188 end if;
8189
8190 -- Generate:
8191 -- if not F then
8192 -- raise Program_Error with "access before elaboration";
8193 -- end if;
8194
8195 Prepend_To (Decls,
8196 Make_Raise_Program_Error (Loc,
8197 Condition =>
8198 Make_Op_Not (Loc,
8199 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8200 Reason => PE_Access_Before_Elaboration));
8201
8202 Analyze (First (Decls));
8203
8204 -- Set the elaboration flag once the body has been elaborated. Insert
8205 -- the statement after the subprogram stub when the primitive body is
8206 -- a subunit.
8207
8208 if Nkind (Context) = N_Subunit then
8209 Set_Ins := Corresponding_Stub (Context);
8210 else
8211 Set_Ins := Subp_Body;
8212 end if;
8213
8214 -- Generate:
90e491a7 8215 -- E := True;
7327f5c2 8216
8dce7371 8217 Set_Stmt :=
7327f5c2
AC
8218 Make_Assignment_Statement (Loc,
8219 Name => New_Occurrence_Of (Flag_Id, Loc),
8dce7371
PMR
8220 Expression => New_Occurrence_Of (Standard_True, Loc));
8221
8222 -- Mark the assignment statement as elaboration code. This allows the
8223 -- early call region mechanism (see Sem_Elab) to properly ignore such
8224 -- assignments even though they are non-preelaborable code.
8225
8226 Set_Is_Elaboration_Code (Set_Stmt);
8227
8228 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
7327f5c2
AC
8229 end Install_Primitive_Elaboration_Check;
8230
70482933
RK
8231 --------------------------
8232 -- Install_Static_Check --
8233 --------------------------
8234
8235 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
edab6088 8236 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
70482933
RK
8237 Typ : constant Entity_Id := Etype (R_Cno);
8238
8239 begin
07fc65c4
GB
8240 Rewrite (R_Cno,
8241 Make_Raise_Constraint_Error (Loc,
8242 Reason => CE_Range_Check_Failed));
70482933
RK
8243 Set_Analyzed (R_Cno);
8244 Set_Etype (R_Cno, Typ);
8245 Set_Raises_Constraint_Error (R_Cno);
8246 Set_Is_Static_Expression (R_Cno, Stat);
3f92c93b
AC
8247
8248 -- Now deal with possible local raise handling
8249
8250 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
70482933
RK
8251 end Install_Static_Check;
8252
acad3c0a
AC
8253 -------------------------
8254 -- Is_Check_Suppressed --
8255 -------------------------
8256
8257 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8258 Ptr : Suppress_Stack_Entry_Ptr;
8259
8260 begin
8261 -- First search the local entity suppress stack. We search this from the
8262 -- top of the stack down so that we get the innermost entry that applies
8263 -- to this case if there are nested entries.
8264
8265 Ptr := Local_Suppress_Stack_Top;
8266 while Ptr /= null loop
8267 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8268 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8269 then
8270 return Ptr.Suppress;
8271 end if;
8272
8273 Ptr := Ptr.Prev;
8274 end loop;
8275
8276 -- Now search the global entity suppress table for a matching entry.
8277 -- We also search this from the top down so that if there are multiple
8278 -- pragmas for the same entity, the last one applies (not clear what
8279 -- or whether the RM specifies this handling, but it seems reasonable).
8280
8281 Ptr := Global_Suppress_Stack_Top;
8282 while Ptr /= null loop
8283 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8284 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8285 then
8286 return Ptr.Suppress;
8287 end if;
8288
8289 Ptr := Ptr.Prev;
8290 end loop;
8291
8292 -- If we did not find a matching entry, then use the normal scope
8293 -- suppress value after all (actually this will be the global setting
8294 -- since it clearly was not overridden at any point). For a predefined
8295 -- check, we test the specific flag. For a user defined check, we check
8296 -- the All_Checks flag. The Overflow flag requires special handling to
90e491a7 8297 -- deal with the General vs Assertion case.
acad3c0a
AC
8298
8299 if C = Overflow_Check then
8300 return Overflow_Checks_Suppressed (Empty);
90e491a7 8301
acad3c0a
AC
8302 elsif C in Predefined_Check_Id then
8303 return Scope_Suppress.Suppress (C);
90e491a7 8304
acad3c0a
AC
8305 else
8306 return Scope_Suppress.Suppress (All_Checks);
8307 end if;
8308 end Is_Check_Suppressed;
8309
fbf5a39b
AC
8310 ---------------------
8311 -- Kill_All_Checks --
8312 ---------------------
8313
8314 procedure Kill_All_Checks is
8315 begin
8316 if Debug_Flag_CC then
8317 w ("Kill_All_Checks");
8318 end if;
8319
675d6070
TQ
8320 -- We reset the number of saved checks to zero, and also modify all
8321 -- stack entries for statement ranges to indicate that the number of
8322 -- checks at each level is now zero.
fbf5a39b
AC
8323
8324 Num_Saved_Checks := 0;
8325
67ce0d7e
RD
8326 -- Note: the Int'Min here avoids any possibility of J being out of
8327 -- range when called from e.g. Conditional_Statements_Begin.
8328
8329 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
fbf5a39b
AC
8330 Saved_Checks_Stack (J) := 0;
8331 end loop;
8332 end Kill_All_Checks;
8333
8334 -----------------
8335 -- Kill_Checks --
8336 -----------------
8337
8338 procedure Kill_Checks (V : Entity_Id) is
8339 begin
8340 if Debug_Flag_CC then
8341 w ("Kill_Checks for entity", Int (V));
8342 end if;
8343
8344 for J in 1 .. Num_Saved_Checks loop
8345 if Saved_Checks (J).Entity = V then
8346 if Debug_Flag_CC then
8347 w (" Checks killed for saved check ", J);
8348 end if;
8349
8350 Saved_Checks (J).Killed := True;
8351 end if;
8352 end loop;
8353 end Kill_Checks;
8354
70482933
RK
8355 ------------------------------
8356 -- Length_Checks_Suppressed --
8357 ------------------------------
8358
8359 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8360 begin
fbf5a39b
AC
8361 if Present (E) and then Checks_May_Be_Suppressed (E) then
8362 return Is_Check_Suppressed (E, Length_Check);
8363 else
3217f71e 8364 return Scope_Suppress.Suppress (Length_Check);
fbf5a39b 8365 end if;
70482933
RK
8366 end Length_Checks_Suppressed;
8367
acad3c0a
AC
8368 -----------------------
8369 -- Make_Bignum_Block --
8370 -----------------------
8371
8372 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8373 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
acad3c0a
AC
8374 begin
8375 return
8376 Make_Block_Statement (Loc,
8e888920
AC
8377 Declarations =>
8378 New_List (Build_SS_Mark_Call (Loc, M)),
acad3c0a
AC
8379 Handled_Statement_Sequence =>
8380 Make_Handled_Sequence_Of_Statements (Loc,
8e888920 8381 Statements => New_List (Build_SS_Release_Call (Loc, M))));
acad3c0a
AC
8382 end Make_Bignum_Block;
8383
a7f1b24f
RD
8384 ----------------------------------
8385 -- Minimize_Eliminate_Overflows --
8386 ----------------------------------
acad3c0a 8387
b6b5cca8
AC
8388 -- This is a recursive routine that is called at the top of an expression
8389 -- tree to properly process overflow checking for a whole subtree by making
8390 -- recursive calls to process operands. This processing may involve the use
8391 -- of bignum or long long integer arithmetic, which will change the types
8392 -- of operands and results. That's why we can't do this bottom up (since
5707e389 8393 -- it would interfere with semantic analysis).
b6b5cca8 8394
5707e389 8395 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
a7f1b24f
RD
8396 -- the operator expansion routines, as well as the expansion routines for
8397 -- if/case expression, do nothing (for the moment) except call the routine
8398 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8399 -- routine does nothing for non top-level nodes, so at the point where the
8400 -- call is made for the top level node, the entire expression subtree has
8401 -- not been expanded, or processed for overflow. All that has to happen as
8402 -- a result of the top level call to this routine.
b6b5cca8
AC
8403
8404 -- As noted above, the overflow processing works by making recursive calls
8405 -- for the operands, and figuring out what to do, based on the processing
8406 -- of these operands (e.g. if a bignum operand appears, the parent op has
8407 -- to be done in bignum mode), and the determined ranges of the operands.
8408
8409 -- After possible rewriting of a constituent subexpression node, a call is
a40ada7e 8410 -- made to either reexpand the node (if nothing has changed) or reanalyze
5707e389
AC
8411 -- the node (if it has been modified by the overflow check processing). The
8412 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8413 -- a recursive call into the whole overflow apparatus, an important rule
a7f1b24f
RD
8414 -- for this call is that the overflow handling mode must be temporarily set
8415 -- to STRICT.
b6b5cca8 8416
a7f1b24f 8417 procedure Minimize_Eliminate_Overflows
c7e152b5
AC
8418 (N : Node_Id;
8419 Lo : out Uint;
8420 Hi : out Uint;
8421 Top_Level : Boolean)
acad3c0a 8422 is
4b1c4f20
RD
8423 Rtyp : constant Entity_Id := Etype (N);
8424 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8425 -- Result type, must be a signed integer type
acad3c0a 8426
15c94a55 8427 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
8428 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8429
8430 Loc : constant Source_Ptr := Sloc (N);
8431
8432 Rlo, Rhi : Uint;
4b1c4f20 8433 -- Ranges of values for right operand (operator case)
acad3c0a 8434
a6d25cad
AC
8435 Llo : Uint := No_Uint; -- initialize to prevent warning
8436 Lhi : Uint := No_Uint; -- initialize to prevent warning
4b1c4f20 8437 -- Ranges of values for left operand (operator case)
acad3c0a 8438
d79059a3
AC
8439 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8440 -- Operands and results are of this type when we convert
8441
4b1c4f20
RD
8442 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8443 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
acad3c0a
AC
8444 -- Bounds of Long_Long_Integer
8445
8446 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8447 -- Indicates binary operator case
8448
8449 OK : Boolean;
8450 -- Used in call to Determine_Range
8451
c7e152b5
AC
8452 Bignum_Operands : Boolean;
8453 -- Set True if one or more operands is already of type Bignum, meaning
8454 -- that for sure (regardless of Top_Level setting) we are committed to
4b1c4f20 8455 -- doing the operation in Bignum mode (or in the case of a case or if
5707e389 8456 -- expression, converting all the dependent expressions to Bignum).
4b1c4f20
RD
8457
8458 Long_Long_Integer_Operands : Boolean;
5707e389 8459 -- Set True if one or more operands is already of type Long_Long_Integer
4b1c4f20
RD
8460 -- which means that if the result is known to be in the result type
8461 -- range, then we must convert such operands back to the result type.
a7f1b24f
RD
8462
8463 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8464 -- This is called when we have modified the node and we therefore need
8465 -- to reanalyze it. It is important that we reset the mode to STRICT for
8466 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
a90bd866 8467 -- we would reenter this routine recursively which would not be good.
a7f1b24f
RD
8468 -- The argument Suppress is set True if we also want to suppress
8469 -- overflow checking for the reexpansion (this is set when we know
8470 -- overflow is not possible). Typ is the type for the reanalysis.
8471
8472 procedure Reexpand (Suppress : Boolean := False);
8473 -- This is like Reanalyze, but does not do the Analyze step, it only
8474 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8475 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8476 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8477 -- Note that skipping reanalysis is not just an optimization, testing
8478 -- has showed up several complex cases in which reanalyzing an already
8479 -- analyzed node causes incorrect behavior.
a40ada7e 8480
4b1c4f20
RD
8481 function In_Result_Range return Boolean;
8482 -- Returns True iff Lo .. Hi are within range of the result type
c7e152b5 8483
a91e9ac7 8484 procedure Max (A : in out Uint; B : Uint);
5707e389 8485 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
a91e9ac7
AC
8486
8487 procedure Min (A : in out Uint; B : Uint);
5707e389 8488 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
a91e9ac7 8489
4b1c4f20
RD
8490 ---------------------
8491 -- In_Result_Range --
8492 ---------------------
8493
8494 function In_Result_Range return Boolean is
8495 begin
b6b5cca8
AC
8496 if Lo = No_Uint or else Hi = No_Uint then
8497 return False;
8498
edab6088 8499 elsif Is_OK_Static_Subtype (Etype (N)) then
4b1c4f20
RD
8500 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8501 and then
8502 Hi <= Expr_Value (Type_High_Bound (Rtyp));
b6b5cca8 8503
4b1c4f20
RD
8504 else
8505 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8506 and then
8507 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8508 end if;
8509 end In_Result_Range;
8510
a91e9ac7
AC
8511 ---------
8512 -- Max --
8513 ---------
8514
8515 procedure Max (A : in out Uint; B : Uint) is
8516 begin
8517 if A = No_Uint or else B > A then
8518 A := B;
8519 end if;
8520 end Max;
8521
8522 ---------
8523 -- Min --
8524 ---------
8525
8526 procedure Min (A : in out Uint; B : Uint) is
8527 begin
8528 if A = No_Uint or else B < A then
8529 A := B;
8530 end if;
8531 end Min;
8532
a7f1b24f
RD
8533 ---------------
8534 -- Reanalyze --
8535 ---------------
8536
8537 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
15c94a55
RD
8538 Svg : constant Overflow_Mode_Type :=
8539 Scope_Suppress.Overflow_Mode_General;
8540 Sva : constant Overflow_Mode_Type :=
8541 Scope_Suppress.Overflow_Mode_Assertions;
a7f1b24f
RD
8542 Svo : constant Boolean :=
8543 Scope_Suppress.Suppress (Overflow_Check);
8544
8545 begin
15c94a55
RD
8546 Scope_Suppress.Overflow_Mode_General := Strict;
8547 Scope_Suppress.Overflow_Mode_Assertions := Strict;
a7f1b24f
RD
8548
8549 if Suppress then
8550 Scope_Suppress.Suppress (Overflow_Check) := True;
8551 end if;
8552
8553 Analyze_And_Resolve (N, Typ);
8554
fed8bd87
RD
8555 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8556 Scope_Suppress.Overflow_Mode_General := Svg;
8557 Scope_Suppress.Overflow_Mode_Assertions := Sva;
a7f1b24f
RD
8558 end Reanalyze;
8559
a40ada7e
RD
8560 --------------
8561 -- Reexpand --
8562 --------------
8563
a7f1b24f 8564 procedure Reexpand (Suppress : Boolean := False) is
15c94a55
RD
8565 Svg : constant Overflow_Mode_Type :=
8566 Scope_Suppress.Overflow_Mode_General;
8567 Sva : constant Overflow_Mode_Type :=
8568 Scope_Suppress.Overflow_Mode_Assertions;
a7f1b24f
RD
8569 Svo : constant Boolean :=
8570 Scope_Suppress.Suppress (Overflow_Check);
8571
a40ada7e 8572 begin
15c94a55
RD
8573 Scope_Suppress.Overflow_Mode_General := Strict;
8574 Scope_Suppress.Overflow_Mode_Assertions := Strict;
a40ada7e 8575 Set_Analyzed (N, False);
a7f1b24f
RD
8576
8577 if Suppress then
8578 Scope_Suppress.Suppress (Overflow_Check) := True;
8579 end if;
8580
a40ada7e 8581 Expand (N);
a7f1b24f 8582
fed8bd87
RD
8583 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8584 Scope_Suppress.Overflow_Mode_General := Svg;
8585 Scope_Suppress.Overflow_Mode_Assertions := Sva;
a40ada7e
RD
8586 end Reexpand;
8587
a7f1b24f 8588 -- Start of processing for Minimize_Eliminate_Overflows
a91e9ac7 8589
acad3c0a 8590 begin
bc3fb397
AC
8591 -- Default initialize Lo and Hi since these are not guaranteed to be
8592 -- set otherwise.
8593
8594 Lo := No_Uint;
8595 Hi := No_Uint;
8596
4b1c4f20 8597 -- Case where we do not have a signed integer arithmetic operation
acad3c0a
AC
8598
8599 if not Is_Signed_Integer_Arithmetic_Op (N) then
8600
8601 -- Use the normal Determine_Range routine to get the range. We
8602 -- don't require operands to be valid, invalid values may result in
8603 -- rubbish results where the result has not been properly checked for
a90bd866 8604 -- overflow, that's fine.
acad3c0a
AC
8605
8606 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8607
5707e389 8608 -- If Determine_Range did not work (can this in fact happen? Not
acad3c0a
AC
8609 -- clear but might as well protect), use type bounds.
8610
8611 if not OK then
8612 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8613 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8614 end if;
8615
8616 -- If we don't have a binary operator, all we have to do is to set
637a41a5 8617 -- the Hi/Lo range, so we are done.
acad3c0a
AC
8618
8619 return;
8620
4b1c4f20
RD
8621 -- Processing for if expression
8622
9b16cb57 8623 elsif Nkind (N) = N_If_Expression then
4b1c4f20
RD
8624 declare
8625 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8626 Else_DE : constant Node_Id := Next (Then_DE);
8627
8628 begin
8629 Bignum_Operands := False;
8630
a7f1b24f 8631 Minimize_Eliminate_Overflows
4b1c4f20
RD
8632 (Then_DE, Lo, Hi, Top_Level => False);
8633
8634 if Lo = No_Uint then
8635 Bignum_Operands := True;
8636 end if;
8637
a7f1b24f 8638 Minimize_Eliminate_Overflows
4b1c4f20
RD
8639 (Else_DE, Rlo, Rhi, Top_Level => False);
8640
8641 if Rlo = No_Uint then
8642 Bignum_Operands := True;
8643 else
8644 Long_Long_Integer_Operands :=
8645 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8646
8647 Min (Lo, Rlo);
8648 Max (Hi, Rhi);
8649 end if;
8650
5707e389
AC
8651 -- If at least one of our operands is now Bignum, we must rebuild
8652 -- the if expression to use Bignum operands. We will analyze the
4b1c4f20 8653 -- rebuilt if expression with overflow checks off, since once we
a90bd866 8654 -- are in bignum mode, we are all done with overflow checks.
4b1c4f20
RD
8655
8656 if Bignum_Operands then
8657 Rewrite (N,
9b16cb57 8658 Make_If_Expression (Loc,
4b1c4f20
RD
8659 Expressions => New_List (
8660 Remove_Head (Expressions (N)),
8661 Convert_To_Bignum (Then_DE),
8662 Convert_To_Bignum (Else_DE)),
8663 Is_Elsif => Is_Elsif (N)));
8664
a7f1b24f 8665 Reanalyze (RTE (RE_Bignum), Suppress => True);
4b1c4f20
RD
8666
8667 -- If we have no Long_Long_Integer operands, then we are in result
8668 -- range, since it means that none of our operands felt the need
8669 -- to worry about overflow (otherwise it would have already been
a40ada7e
RD
8670 -- converted to long long integer or bignum). We reexpand to
8671 -- complete the expansion of the if expression (but we do not
8672 -- need to reanalyze).
4b1c4f20
RD
8673
8674 elsif not Long_Long_Integer_Operands then
8675 Set_Do_Overflow_Check (N, False);
a7f1b24f 8676 Reexpand;
4b1c4f20
RD
8677
8678 -- Otherwise convert us to long long integer mode. Note that we
8679 -- don't need any further overflow checking at this level.
8680
8681 else
8682 Convert_To_And_Rewrite (LLIB, Then_DE);
8683 Convert_To_And_Rewrite (LLIB, Else_DE);
8684 Set_Etype (N, LLIB);
b6b5cca8
AC
8685
8686 -- Now reanalyze with overflow checks off
8687
4b1c4f20 8688 Set_Do_Overflow_Check (N, False);
a7f1b24f 8689 Reanalyze (LLIB, Suppress => True);
4b1c4f20
RD
8690 end if;
8691 end;
8692
8693 return;
8694
8695 -- Here for case expression
8696
8697 elsif Nkind (N) = N_Case_Expression then
8698 Bignum_Operands := False;
8699 Long_Long_Integer_Operands := False;
4b1c4f20
RD
8700
8701 declare
b6b5cca8 8702 Alt : Node_Id;
4b1c4f20
RD
8703
8704 begin
8705 -- Loop through expressions applying recursive call
8706
8707 Alt := First (Alternatives (N));
8708 while Present (Alt) loop
8709 declare
8710 Aexp : constant Node_Id := Expression (Alt);
8711
8712 begin
a7f1b24f 8713 Minimize_Eliminate_Overflows
4b1c4f20
RD
8714 (Aexp, Lo, Hi, Top_Level => False);
8715
8716 if Lo = No_Uint then
8717 Bignum_Operands := True;
8718 elsif Etype (Aexp) = LLIB then
8719 Long_Long_Integer_Operands := True;
8720 end if;
8721 end;
8722
8723 Next (Alt);
8724 end loop;
8725
8726 -- If we have no bignum or long long integer operands, it means
8727 -- that none of our dependent expressions could raise overflow.
8728 -- In this case, we simply return with no changes except for
8729 -- resetting the overflow flag, since we are done with overflow
a40ada7e
RD
8730 -- checks for this node. We will reexpand to get the needed
8731 -- expansion for the case expression, but we do not need to
5707e389 8732 -- reanalyze, since nothing has changed.
4b1c4f20 8733
b6b5cca8 8734 if not (Bignum_Operands or Long_Long_Integer_Operands) then
4b1c4f20 8735 Set_Do_Overflow_Check (N, False);
a7f1b24f 8736 Reexpand (Suppress => True);
4b1c4f20
RD
8737
8738 -- Otherwise we are going to rebuild the case expression using
8739 -- either bignum or long long integer operands throughout.
8740
8741 else
b6b5cca8 8742 declare
a6b13d32 8743 Rtype : Entity_Id := Empty;
b6b5cca8
AC
8744 New_Alts : List_Id;
8745 New_Exp : Node_Id;
8746
8747 begin
8748 New_Alts := New_List;
8749 Alt := First (Alternatives (N));
8750 while Present (Alt) loop
8751 if Bignum_Operands then
8752 New_Exp := Convert_To_Bignum (Expression (Alt));
8753 Rtype := RTE (RE_Bignum);
8754 else
8755 New_Exp := Convert_To (LLIB, Expression (Alt));
8756 Rtype := LLIB;
8757 end if;
4b1c4f20 8758
b6b5cca8
AC
8759 Append_To (New_Alts,
8760 Make_Case_Expression_Alternative (Sloc (Alt),
8761 Actions => No_List,
8762 Discrete_Choices => Discrete_Choices (Alt),
8763 Expression => New_Exp));
4b1c4f20 8764
b6b5cca8
AC
8765 Next (Alt);
8766 end loop;
4b1c4f20 8767
b6b5cca8
AC
8768 Rewrite (N,
8769 Make_Case_Expression (Loc,
8770 Expression => Expression (N),
8771 Alternatives => New_Alts));
4b1c4f20 8772
a6b13d32 8773 pragma Assert (Present (Rtype));
a7f1b24f 8774 Reanalyze (Rtype, Suppress => True);
b6b5cca8 8775 end;
4b1c4f20
RD
8776 end if;
8777 end;
8778
8779 return;
8780 end if;
8781
8782 -- If we have an arithmetic operator we make recursive calls on the
acad3c0a 8783 -- operands to get the ranges (and to properly process the subtree
637a41a5 8784 -- that lies below us).
acad3c0a 8785
a7f1b24f 8786 Minimize_Eliminate_Overflows
4b1c4f20 8787 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
acad3c0a 8788
4b1c4f20 8789 if Binary then
a7f1b24f 8790 Minimize_Eliminate_Overflows
4b1c4f20 8791 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
acad3c0a
AC
8792 end if;
8793
b6b5cca8
AC
8794 -- Record if we have Long_Long_Integer operands
8795
8796 Long_Long_Integer_Operands :=
8797 Etype (Right_Opnd (N)) = LLIB
8798 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8799
8800 -- If either operand is a bignum, then result will be a bignum and we
8801 -- don't need to do any range analysis. As previously discussed we could
8802 -- do range analysis in such cases, but it could mean working with giant
8803 -- numbers at compile time for very little gain (the number of cases
5707e389 8804 -- in which we could slip back from bignum mode is small).
acad3c0a
AC
8805
8806 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8807 Lo := No_Uint;
8808 Hi := No_Uint;
c7e152b5 8809 Bignum_Operands := True;
acad3c0a
AC
8810
8811 -- Otherwise compute result range
8812
8813 else
c7e152b5
AC
8814 Bignum_Operands := False;
8815
acad3c0a
AC
8816 case Nkind (N) is
8817
8818 -- Absolute value
8819
8820 when N_Op_Abs =>
8821 Lo := Uint_0;
6cb3037c 8822 Hi := UI_Max (abs Rlo, abs Rhi);
acad3c0a
AC
8823
8824 -- Addition
8825
8826 when N_Op_Add =>
8827 Lo := Llo + Rlo;
8828 Hi := Lhi + Rhi;
8829
8830 -- Division
8831
8832 when N_Op_Divide =>
a91e9ac7 8833
967fb65e 8834 -- If the right operand can only be zero, set 0..0
a91e9ac7 8835
967fb65e
AC
8836 if Rlo = 0 and then Rhi = 0 then
8837 Lo := Uint_0;
8838 Hi := Uint_0;
a91e9ac7 8839
967fb65e
AC
8840 -- Possible bounds of division must come from dividing end
8841 -- values of the input ranges (four possibilities), provided
8842 -- zero is not included in the possible values of the right
8843 -- operand.
8844
8845 -- Otherwise, we just consider two intervals of values for
8846 -- the right operand: the interval of negative values (up to
8847 -- -1) and the interval of positive values (starting at 1).
8848 -- Since division by 1 is the identity, and division by -1
8849 -- is negation, we get all possible bounds of division in that
8850 -- case by considering:
8851 -- - all values from the division of end values of input
8852 -- ranges;
8853 -- - the end values of the left operand;
8854 -- - the negation of the end values of the left operand.
a91e9ac7 8855
967fb65e
AC
8856 else
8857 declare
8858 Mrk : constant Uintp.Save_Mark := Mark;
8859 -- Mark so we can release the RR and Ev values
a91e9ac7 8860
967fb65e
AC
8861 Ev1 : Uint;
8862 Ev2 : Uint;
8863 Ev3 : Uint;
8864 Ev4 : Uint;
a91e9ac7 8865
967fb65e
AC
8866 begin
8867 -- Discard extreme values of zero for the divisor, since
8868 -- they will simply result in an exception in any case.
a91e9ac7 8869
967fb65e
AC
8870 if Rlo = 0 then
8871 Rlo := Uint_1;
8872 elsif Rhi = 0 then
8873 Rhi := -Uint_1;
a91e9ac7 8874 end if;
a91e9ac7 8875
967fb65e
AC
8876 -- Compute possible bounds coming from dividing end
8877 -- values of the input ranges.
a91e9ac7 8878
967fb65e
AC
8879 Ev1 := Llo / Rlo;
8880 Ev2 := Llo / Rhi;
8881 Ev3 := Lhi / Rlo;
8882 Ev4 := Lhi / Rhi;
a91e9ac7 8883
967fb65e
AC
8884 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8885 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
a91e9ac7 8886
967fb65e
AC
8887 -- If the right operand can be both negative or positive,
8888 -- include the end values of the left operand in the
8889 -- extreme values, as well as their negation.
a91e9ac7 8890
967fb65e
AC
8891 if Rlo < 0 and then Rhi > 0 then
8892 Ev1 := Llo;
8893 Ev2 := -Llo;
8894 Ev3 := Lhi;
8895 Ev4 := -Lhi;
a91e9ac7 8896
967fb65e
AC
8897 Min (Lo,
8898 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8899 Max (Hi,
8900 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
a91e9ac7 8901 end if;
a91e9ac7 8902
967fb65e 8903 -- Release the RR and Ev values
a91e9ac7 8904
967fb65e
AC
8905 Release_And_Save (Mrk, Lo, Hi);
8906 end;
8907 end if;
acad3c0a
AC
8908
8909 -- Exponentiation
8910
8911 when N_Op_Expon =>
6cb3037c
AC
8912
8913 -- Discard negative values for the exponent, since they will
8914 -- simply result in an exception in any case.
8915
8916 if Rhi < 0 then
8917 Rhi := Uint_0;
8918 elsif Rlo < 0 then
8919 Rlo := Uint_0;
8920 end if;
8921
8922 -- Estimate number of bits in result before we go computing
8923 -- giant useless bounds. Basically the number of bits in the
8924 -- result is the number of bits in the base multiplied by the
8925 -- value of the exponent. If this is big enough that the result
8926 -- definitely won't fit in Long_Long_Integer, switch to bignum
8927 -- mode immediately, and avoid computing giant bounds.
8928
8929 -- The comparison here is approximate, but conservative, it
8930 -- only clicks on cases that are sure to exceed the bounds.
8931
8932 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8933 Lo := No_Uint;
8934 Hi := No_Uint;
8935
8936 -- If right operand is zero then result is 1
8937
8938 elsif Rhi = 0 then
8939 Lo := Uint_1;
8940 Hi := Uint_1;
8941
8942 else
8943 -- High bound comes either from exponentiation of largest
967fb65e
AC
8944 -- positive value to largest exponent value, or from
8945 -- the exponentiation of most negative value to an
8946 -- even exponent.
6cb3037c
AC
8947
8948 declare
8949 Hi1, Hi2 : Uint;
8950
8951 begin
967fb65e 8952 if Lhi > 0 then
6cb3037c
AC
8953 Hi1 := Lhi ** Rhi;
8954 else
8955 Hi1 := Uint_0;
8956 end if;
8957
8958 if Llo < 0 then
8959 if Rhi mod 2 = 0 then
6cb3037c 8960 Hi2 := Llo ** Rhi;
967fb65e
AC
8961 else
8962 Hi2 := Llo ** (Rhi - 1);
6cb3037c
AC
8963 end if;
8964 else
8965 Hi2 := Uint_0;
8966 end if;
8967
8968 Hi := UI_Max (Hi1, Hi2);
8969 end;
8970
8971 -- Result can only be negative if base can be negative
8972
8973 if Llo < 0 then
5707e389 8974 if Rhi mod 2 = 0 then
6cb3037c
AC
8975 Lo := Llo ** (Rhi - 1);
8976 else
8977 Lo := Llo ** Rhi;
8978 end if;
8979
5707e389 8980 -- Otherwise low bound is minimum ** minimum
6cb3037c
AC
8981
8982 else
8983 Lo := Llo ** Rlo;
8984 end if;
8985 end if;
acad3c0a
AC
8986
8987 -- Negation
8988
8989 when N_Op_Minus =>
8990 Lo := -Rhi;
8991 Hi := -Rlo;
8992
8993 -- Mod
8994
8995 when N_Op_Mod =>
a91e9ac7 8996 declare
967fb65e 8997 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
a91e9ac7
AC
8998 -- This is the maximum absolute value of the result
8999
9000 begin
9001 Lo := Uint_0;
9002 Hi := Uint_0;
9003
9004 -- The result depends only on the sign and magnitude of
9005 -- the right operand, it does not depend on the sign or
9006 -- magnitude of the left operand.
9007
9008 if Rlo < 0 then
9009 Lo := -Maxabs;
9010 end if;
9011
9012 if Rhi > 0 then
9013 Hi := Maxabs;
9014 end if;
9015 end;
acad3c0a
AC
9016
9017 -- Multiplication
9018
9019 when N_Op_Multiply =>
d79059a3
AC
9020
9021 -- Possible bounds of multiplication must come from multiplying
9022 -- end values of the input ranges (four possibilities).
9023
9024 declare
9025 Mrk : constant Uintp.Save_Mark := Mark;
9026 -- Mark so we can release the Ev values
9027
9028 Ev1 : constant Uint := Llo * Rlo;
9029 Ev2 : constant Uint := Llo * Rhi;
9030 Ev3 : constant Uint := Lhi * Rlo;
9031 Ev4 : constant Uint := Lhi * Rhi;
9032
9033 begin
9034 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
9035 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
9036
9037 -- Release the Ev values
9038
9039 Release_And_Save (Mrk, Lo, Hi);
9040 end;
acad3c0a
AC
9041
9042 -- Plus operator (affirmation)
9043
9044 when N_Op_Plus =>
9045 Lo := Rlo;
9046 Hi := Rhi;
9047
9048 -- Remainder
9049
9050 when N_Op_Rem =>
a91e9ac7 9051 declare
967fb65e 9052 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
a91e9ac7 9053 -- This is the maximum absolute value of the result. Note
967fb65e
AC
9054 -- that the result range does not depend on the sign of the
9055 -- right operand.
a91e9ac7
AC
9056
9057 begin
9058 Lo := Uint_0;
9059 Hi := Uint_0;
9060
9061 -- Case of left operand negative, which results in a range
9062 -- of -Maxabs .. 0 for those negative values. If there are
9063 -- no negative values then Lo value of result is always 0.
9064
9065 if Llo < 0 then
9066 Lo := -Maxabs;
9067 end if;
9068
9069 -- Case of left operand positive
9070
9071 if Lhi > 0 then
9072 Hi := Maxabs;
9073 end if;
9074 end;
acad3c0a
AC
9075
9076 -- Subtract
9077
9078 when N_Op_Subtract =>
9079 Lo := Llo - Rhi;
9080 Hi := Lhi - Rlo;
9081
9082 -- Nothing else should be possible
9083
9084 when others =>
9085 raise Program_Error;
acad3c0a
AC
9086 end case;
9087 end if;
9088
a40ada7e 9089 -- Here for the case where we have not rewritten anything (no bignum
5707e389
AC
9090 -- operands or long long integer operands), and we know the result.
9091 -- If we know we are in the result range, and we do not have Bignum
9092 -- operands or Long_Long_Integer operands, we can just reexpand with
9093 -- overflow checks turned off (since we know we cannot have overflow).
9094 -- As always the reexpansion is required to complete expansion of the
9095 -- operator, but we do not need to reanalyze, and we prevent recursion
9096 -- by suppressing the check.
b6b5cca8
AC
9097
9098 if not (Bignum_Operands or Long_Long_Integer_Operands)
9099 and then In_Result_Range
9100 then
9101 Set_Do_Overflow_Check (N, False);
a7f1b24f 9102 Reexpand (Suppress => True);
b6b5cca8
AC
9103 return;
9104
9105 -- Here we know that we are not in the result range, and in the general
5707e389
AC
9106 -- case we will move into either the Bignum or Long_Long_Integer domain
9107 -- to compute the result. However, there is one exception. If we are
9108 -- at the top level, and we do not have Bignum or Long_Long_Integer
9109 -- operands, we will have to immediately convert the result back to
9110 -- the result type, so there is no point in Bignum/Long_Long_Integer
9111 -- fiddling.
b6b5cca8
AC
9112
9113 elsif Top_Level
9114 and then not (Bignum_Operands or Long_Long_Integer_Operands)
2352eadb
AC
9115
9116 -- One further refinement. If we are at the top level, but our parent
9117 -- is a type conversion, then go into bignum or long long integer node
9118 -- since the result will be converted to that type directly without
9119 -- going through the result type, and we may avoid an overflow. This
9120 -- is the case for example of Long_Long_Integer (A ** 4), where A is
9121 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
9122 -- but does not fit in Integer.
9123
9124 and then Nkind (Parent (N)) /= N_Type_Conversion
b6b5cca8 9125 then
a7f1b24f 9126 -- Here keep original types, but we need to complete analysis
b6b5cca8
AC
9127
9128 -- One subtlety. We can't just go ahead and do an analyze operation
5707e389
AC
9129 -- here because it will cause recursion into the whole MINIMIZED/
9130 -- ELIMINATED overflow processing which is not what we want. Here
b6b5cca8 9131 -- we are at the top level, and we need a check against the result
a90bd866 9132 -- mode (i.e. we want to use STRICT mode). So do exactly that.
a40ada7e
RD
9133 -- Also, we have not modified the node, so this is a case where
9134 -- we need to reexpand, but not reanalyze.
b6b5cca8 9135
a7f1b24f 9136 Reexpand;
b6b5cca8
AC
9137 return;
9138
9139 -- Cases where we do the operation in Bignum mode. This happens either
acad3c0a 9140 -- because one of our operands is in Bignum mode already, or because
6cb3037c
AC
9141 -- the computed bounds are outside the bounds of Long_Long_Integer,
9142 -- which in some cases can be indicated by Hi and Lo being No_Uint.
acad3c0a
AC
9143
9144 -- Note: we could do better here and in some cases switch back from
9145 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9146 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9147 -- Failing to do this switching back is only an efficiency issue.
9148
b6b5cca8 9149 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
acad3c0a 9150
c7e152b5 9151 -- OK, we are definitely outside the range of Long_Long_Integer. The
b6b5cca8 9152 -- question is whether to move to Bignum mode, or stay in the domain
c7e152b5
AC
9153 -- of Long_Long_Integer, signalling that an overflow check is needed.
9154
9155 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9156 -- the Bignum business. In ELIMINATED mode, we will normally move
9157 -- into Bignum mode, but there is an exception if neither of our
9158 -- operands is Bignum now, and we are at the top level (Top_Level
9159 -- set True). In this case, there is no point in moving into Bignum
9160 -- mode to prevent overflow if the caller will immediately convert
9161 -- the Bignum value back to LLI with an overflow check. It's more
a7f1b24f 9162 -- efficient to stay in LLI mode with an overflow check (if needed)
c7e152b5
AC
9163
9164 if Check_Mode = Minimized
9165 or else (Top_Level and not Bignum_Operands)
9166 then
a7f1b24f
RD
9167 if Do_Overflow_Check (N) then
9168 Enable_Overflow_Check (N);
9169 end if;
acad3c0a 9170
a7f1b24f
RD
9171 -- The result now has to be in Long_Long_Integer mode, so adjust
9172 -- the possible range to reflect this. Note these calls also
9173 -- change No_Uint values from the top level case to LLI bounds.
c7e152b5
AC
9174
9175 Max (Lo, LLLo);
9176 Min (Hi, LLHi);
9177
9178 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
acad3c0a
AC
9179
9180 else
9181 pragma Assert (Check_Mode = Eliminated);
9182
9183 declare
9184 Fent : Entity_Id;
9185 Args : List_Id;
9186
9187 begin
9188 case Nkind (N) is
d8f43ee6 9189 when N_Op_Abs =>
acad3c0a
AC
9190 Fent := RTE (RE_Big_Abs);
9191
d8f43ee6 9192 when N_Op_Add =>
acad3c0a
AC
9193 Fent := RTE (RE_Big_Add);
9194
d8f43ee6 9195 when N_Op_Divide =>
acad3c0a
AC
9196 Fent := RTE (RE_Big_Div);
9197
d8f43ee6 9198 when N_Op_Expon =>
acad3c0a
AC
9199 Fent := RTE (RE_Big_Exp);
9200
d8f43ee6 9201 when N_Op_Minus =>
acad3c0a
AC
9202 Fent := RTE (RE_Big_Neg);
9203
d8f43ee6 9204 when N_Op_Mod =>
acad3c0a
AC
9205 Fent := RTE (RE_Big_Mod);
9206
9207 when N_Op_Multiply =>
9208 Fent := RTE (RE_Big_Mul);
9209
d8f43ee6 9210 when N_Op_Rem =>
acad3c0a
AC
9211 Fent := RTE (RE_Big_Rem);
9212
9213 when N_Op_Subtract =>
9214 Fent := RTE (RE_Big_Sub);
9215
9216 -- Anything else is an internal error, this includes the
9217 -- N_Op_Plus case, since how can plus cause the result
9218 -- to be out of range if the operand is in range?
9219
9220 when others =>
9221 raise Program_Error;
9222 end case;
9223
9224 -- Construct argument list for Bignum call, converting our
9225 -- operands to Bignum form if they are not already there.
9226
9227 Args := New_List;
9228
9229 if Binary then
9230 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9231 end if;
9232
9233 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9234
9235 -- Now rewrite the arithmetic operator with a call to the
9236 -- corresponding bignum function.
9237
9238 Rewrite (N,
9239 Make_Function_Call (Loc,
9240 Name => New_Occurrence_Of (Fent, Loc),
9241 Parameter_Associations => Args));
a7f1b24f 9242 Reanalyze (RTE (RE_Bignum), Suppress => True);
c7e152b5
AC
9243
9244 -- Indicate result is Bignum mode
9245
9246 Lo := No_Uint;
9247 Hi := No_Uint;
6cb3037c 9248 return;
acad3c0a
AC
9249 end;
9250 end if;
9251
9252 -- Otherwise we are in range of Long_Long_Integer, so no overflow
6cb3037c 9253 -- check is required, at least not yet.
acad3c0a
AC
9254
9255 else
6cb3037c
AC
9256 Set_Do_Overflow_Check (N, False);
9257 end if;
acad3c0a 9258
b6b5cca8
AC
9259 -- Here we are not in Bignum territory, but we may have long long
9260 -- integer operands that need special handling. First a special check:
9261 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9262 -- it means we converted it to prevent overflow, but exponentiation
9263 -- requires a Natural right operand, so convert it back to Natural.
9264 -- This conversion may raise an exception which is fine.
4b1c4f20 9265
b6b5cca8
AC
9266 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9267 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
4b1c4f20
RD
9268 end if;
9269
6cb3037c
AC
9270 -- Here we will do the operation in Long_Long_Integer. We do this even
9271 -- if we know an overflow check is required, better to do this in long
a90bd866 9272 -- long integer mode, since we are less likely to overflow.
acad3c0a 9273
6cb3037c
AC
9274 -- Convert right or only operand to Long_Long_Integer, except that
9275 -- we do not touch the exponentiation right operand.
acad3c0a 9276
6cb3037c
AC
9277 if Nkind (N) /= N_Op_Expon then
9278 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9279 end if;
acad3c0a 9280
6cb3037c 9281 -- Convert left operand to Long_Long_Integer for binary case
d79059a3 9282
6cb3037c
AC
9283 if Binary then
9284 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9285 end if;
9286
9287 -- Reset node to unanalyzed
9288
9289 Set_Analyzed (N, False);
9290 Set_Etype (N, Empty);
9291 Set_Entity (N, Empty);
9292
a91e9ac7
AC
9293 -- Now analyze this new node. This reanalysis will complete processing
9294 -- for the node. In particular we will complete the expansion of an
9295 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9296 -- we will complete any division checks (since we have not changed the
9297 -- setting of the Do_Division_Check flag).
acad3c0a 9298
a7f1b24f 9299 -- We do this reanalysis in STRICT mode to avoid recursion into the
a90bd866 9300 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
acad3c0a 9301
a7f1b24f 9302 declare
15c94a55
RD
9303 SG : constant Overflow_Mode_Type :=
9304 Scope_Suppress.Overflow_Mode_General;
9305 SA : constant Overflow_Mode_Type :=
9306 Scope_Suppress.Overflow_Mode_Assertions;
6cb3037c 9307
a7f1b24f 9308 begin
15c94a55
RD
9309 Scope_Suppress.Overflow_Mode_General := Strict;
9310 Scope_Suppress.Overflow_Mode_Assertions := Strict;
6cb3037c 9311
a7f1b24f
RD
9312 if not Do_Overflow_Check (N) then
9313 Reanalyze (LLIB, Suppress => True);
9314 else
9315 Reanalyze (LLIB);
9316 end if;
9317
15c94a55
RD
9318 Scope_Suppress.Overflow_Mode_General := SG;
9319 Scope_Suppress.Overflow_Mode_Assertions := SA;
a7f1b24f
RD
9320 end;
9321 end Minimize_Eliminate_Overflows;
acad3c0a
AC
9322
9323 -------------------------
9324 -- Overflow_Check_Mode --
9325 -------------------------
9326
15c94a55 9327 function Overflow_Check_Mode return Overflow_Mode_Type is
70482933 9328 begin
05b34c18 9329 if In_Assertion_Expr = 0 then
15c94a55 9330 return Scope_Suppress.Overflow_Mode_General;
fbf5a39b 9331 else
15c94a55 9332 return Scope_Suppress.Overflow_Mode_Assertions;
fbf5a39b 9333 end if;
acad3c0a
AC
9334 end Overflow_Check_Mode;
9335
9336 --------------------------------
9337 -- Overflow_Checks_Suppressed --
9338 --------------------------------
9339
9340 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9341 begin
a7f1b24f
RD
9342 if Present (E) and then Checks_May_Be_Suppressed (E) then
9343 return Is_Check_Suppressed (E, Overflow_Check);
9344 else
9345 return Scope_Suppress.Suppress (Overflow_Check);
9346 end if;
70482933 9347 end Overflow_Checks_Suppressed;
b568955d 9348
f1c80977
AC
9349 ---------------------------------
9350 -- Predicate_Checks_Suppressed --
9351 ---------------------------------
9352
9353 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9354 begin
9355 if Present (E) and then Checks_May_Be_Suppressed (E) then
9356 return Is_Check_Suppressed (E, Predicate_Check);
9357 else
9358 return Scope_Suppress.Suppress (Predicate_Check);
9359 end if;
9360 end Predicate_Checks_Suppressed;
9361
70482933
RK
9362 -----------------------------
9363 -- Range_Checks_Suppressed --
9364 -----------------------------
9365
9366 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9367 begin
fbf5a39b 9368 if Present (E) then
21c51f53 9369 if Kill_Range_Checks (E) then
fbf5a39b 9370 return True;
4bd4bb7f 9371
fbf5a39b
AC
9372 elsif Checks_May_Be_Suppressed (E) then
9373 return Is_Check_Suppressed (E, Range_Check);
9374 end if;
9375 end if;
70482933 9376
3217f71e 9377 return Scope_Suppress.Suppress (Range_Check);
70482933
RK
9378 end Range_Checks_Suppressed;
9379
c064e066
RD
9380 -----------------------------------------
9381 -- Range_Or_Validity_Checks_Suppressed --
9382 -----------------------------------------
9383
9384 -- Note: the coding would be simpler here if we simply made appropriate
9385 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9386 -- duplicated checks which we prefer to avoid.
9387
9388 function Range_Or_Validity_Checks_Suppressed
9389 (Expr : Node_Id) return Boolean
9390 is
9391 begin
9392 -- Immediate return if scope checks suppressed for either check
9393
3217f71e
AC
9394 if Scope_Suppress.Suppress (Range_Check)
9395 or
9396 Scope_Suppress.Suppress (Validity_Check)
9397 then
c064e066
RD
9398 return True;
9399 end if;
9400
9401 -- If no expression, that's odd, decide that checks are suppressed,
9402 -- since we don't want anyone trying to do checks in this case, which
9403 -- is most likely the result of some other error.
9404
9405 if No (Expr) then
9406 return True;
9407 end if;
9408
9409 -- Expression is present, so perform suppress checks on type
9410
9411 declare
9412 Typ : constant Entity_Id := Etype (Expr);
9413 begin
21c51f53 9414 if Checks_May_Be_Suppressed (Typ)
c064e066
RD
9415 and then (Is_Check_Suppressed (Typ, Range_Check)
9416 or else
9417 Is_Check_Suppressed (Typ, Validity_Check))
9418 then
9419 return True;
9420 end if;
9421 end;
9422
9423 -- If expression is an entity name, perform checks on this entity
9424
9425 if Is_Entity_Name (Expr) then
9426 declare
9427 Ent : constant Entity_Id := Entity (Expr);
9428 begin
9429 if Checks_May_Be_Suppressed (Ent) then
9430 return Is_Check_Suppressed (Ent, Range_Check)
9431 or else Is_Check_Suppressed (Ent, Validity_Check);
9432 end if;
9433 end;
9434 end if;
9435
9436 -- If we fall through, no checks suppressed
9437
9438 return False;
9439 end Range_Or_Validity_Checks_Suppressed;
9440
8cbb664e
MG
9441 -------------------
9442 -- Remove_Checks --
9443 -------------------
9444
9445 procedure Remove_Checks (Expr : Node_Id) is
8cbb664e
MG
9446 function Process (N : Node_Id) return Traverse_Result;
9447 -- Process a single node during the traversal
9448
10303118
BD
9449 procedure Traverse is new Traverse_Proc (Process);
9450 -- The traversal procedure itself
8cbb664e
MG
9451
9452 -------------
9453 -- Process --
9454 -------------
9455
9456 function Process (N : Node_Id) return Traverse_Result is
9457 begin
9458 if Nkind (N) not in N_Subexpr then
9459 return Skip;
9460 end if;
9461
9462 Set_Do_Range_Check (N, False);
9463
9464 case Nkind (N) is
9465 when N_And_Then =>
10303118 9466 Traverse (Left_Opnd (N));
8cbb664e
MG
9467 return Skip;
9468
9469 when N_Attribute_Reference =>
8cbb664e
MG
9470 Set_Do_Overflow_Check (N, False);
9471
8cbb664e
MG
9472 when N_Function_Call =>
9473 Set_Do_Tag_Check (N, False);
9474
8cbb664e
MG
9475 when N_Op =>
9476 Set_Do_Overflow_Check (N, False);
9477
9478 case Nkind (N) is
9479 when N_Op_Divide =>
9480 Set_Do_Division_Check (N, False);
9481
9482 when N_Op_And =>
9483 Set_Do_Length_Check (N, False);
9484
9485 when N_Op_Mod =>
9486 Set_Do_Division_Check (N, False);
9487
9488 when N_Op_Or =>
9489 Set_Do_Length_Check (N, False);
9490
9491 when N_Op_Rem =>
9492 Set_Do_Division_Check (N, False);
9493
9494 when N_Op_Xor =>
9495 Set_Do_Length_Check (N, False);
9496
9497 when others =>
9498 null;
9499 end case;
9500
9501 when N_Or_Else =>
10303118 9502 Traverse (Left_Opnd (N));
8cbb664e
MG
9503 return Skip;
9504
9505 when N_Selected_Component =>
8cbb664e
MG
9506 Set_Do_Discriminant_Check (N, False);
9507
8cbb664e 9508 when N_Type_Conversion =>
fbf5a39b
AC
9509 Set_Do_Length_Check (N, False);
9510 Set_Do_Tag_Check (N, False);
8cbb664e 9511 Set_Do_Overflow_Check (N, False);
8cbb664e
MG
9512
9513 when others =>
9514 null;
9515 end case;
9516
9517 return OK;
9518 end Process;
9519
9520 -- Start of processing for Remove_Checks
9521
9522 begin
10303118 9523 Traverse (Expr);
8cbb664e
MG
9524 end Remove_Checks;
9525
70482933
RK
9526 ----------------------------
9527 -- Selected_Length_Checks --
9528 ----------------------------
9529
9530 function Selected_Length_Checks
9531 (Ck_Node : Node_Id;
9532 Target_Typ : Entity_Id;
9533 Source_Typ : Entity_Id;
6b6fcd3e 9534 Warn_Node : Node_Id) return Check_Result
70482933
RK
9535 is
9536 Loc : constant Source_Ptr := Sloc (Ck_Node);
9537 S_Typ : Entity_Id;
9538 T_Typ : Entity_Id;
9539 Expr_Actual : Node_Id;
9540 Exptyp : Entity_Id;
9541 Cond : Node_Id := Empty;
9542 Do_Access : Boolean := False;
9543 Wnode : Node_Id := Warn_Node;
9544 Ret_Result : Check_Result := (Empty, Empty);
9545 Num_Checks : Natural := 0;
9546
9547 procedure Add_Check (N : Node_Id);
9548 -- Adds the action given to Ret_Result if N is non-Empty
9549
9550 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9551 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
6b6fcd3e 9552 -- Comments required ???
70482933
RK
9553
9554 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9555 -- True for equal literals and for nodes that denote the same constant
c84700e7 9556 -- entity, even if its value is not a static constant. This includes the
fbf5a39b 9557 -- case of a discriminal reference within an init proc. Removes some
c84700e7 9558 -- obviously superfluous checks.
70482933
RK
9559
9560 function Length_E_Cond
9561 (Exptyp : Entity_Id;
9562 Typ : Entity_Id;
6b6fcd3e 9563 Indx : Nat) return Node_Id;
70482933
RK
9564 -- Returns expression to compute:
9565 -- Typ'Length /= Exptyp'Length
9566
9567 function Length_N_Cond
9568 (Expr : Node_Id;
9569 Typ : Entity_Id;
6b6fcd3e 9570 Indx : Nat) return Node_Id;
70482933
RK
9571 -- Returns expression to compute:
9572 -- Typ'Length /= Expr'Length
9573
eb6b9c9b
GD
9574 function Length_Mismatch_Info_Message
9575 (Left_Element_Count : Uint;
9576 Right_Element_Count : Uint) return String;
9577 -- Returns a message indicating how many elements were expected
9578 -- (Left_Element_Count) and how many were found (Right_Element_Count).
9579
70482933
RK
9580 ---------------
9581 -- Add_Check --
9582 ---------------
9583
9584 procedure Add_Check (N : Node_Id) is
9585 begin
9586 if Present (N) then
9587
637a41a5
AC
9588 -- For now, ignore attempt to place more than two checks ???
9589 -- This is really worrisome, are we really discarding checks ???
70482933
RK
9590
9591 if Num_Checks = 2 then
9592 return;
9593 end if;
9594
9595 pragma Assert (Num_Checks <= 1);
9596 Num_Checks := Num_Checks + 1;
9597 Ret_Result (Num_Checks) := N;
9598 end if;
9599 end Add_Check;
9600
9601 ------------------
9602 -- Get_E_Length --
9603 ------------------
9604
9605 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
11b4899f 9606 SE : constant Entity_Id := Scope (E);
70482933
RK
9607 N : Node_Id;
9608 E1 : Entity_Id := E;
70482933
RK
9609
9610 begin
9611 if Ekind (Scope (E)) = E_Record_Type
9612 and then Has_Discriminants (Scope (E))
9613 then
9614 N := Build_Discriminal_Subtype_Of_Component (E);
9615
9616 if Present (N) then
9617 Insert_Action (Ck_Node, N);
9618 E1 := Defining_Identifier (N);
9619 end if;
9620 end if;
9621
9622 if Ekind (E1) = E_String_Literal_Subtype then
9623 return
9624 Make_Integer_Literal (Loc,
9625 Intval => String_Literal_Length (E1));
9626
11b4899f
JM
9627 elsif SE /= Standard_Standard
9628 and then Ekind (Scope (SE)) = E_Protected_Type
9629 and then Has_Discriminants (Scope (SE))
9630 and then Has_Completion (Scope (SE))
70482933
RK
9631 and then not Inside_Init_Proc
9632 then
70482933
RK
9633 -- If the type whose length is needed is a private component
9634 -- constrained by a discriminant, we must expand the 'Length
9635 -- attribute into an explicit computation, using the discriminal
9636 -- of the current protected operation. This is because the actual
9637 -- type of the prival is constructed after the protected opera-
9638 -- tion has been fully expanded.
9639
9640 declare
9641 Indx_Type : Node_Id;
9642 Lo : Node_Id;
9643 Hi : Node_Id;
9644 Do_Expand : Boolean := False;
9645
9646 begin
9647 Indx_Type := First_Index (E);
9648
9649 for J in 1 .. Indx - 1 loop
9650 Next_Index (Indx_Type);
9651 end loop;
9652
939c12d2 9653 Get_Index_Bounds (Indx_Type, Lo, Hi);
70482933
RK
9654
9655 if Nkind (Lo) = N_Identifier
9656 and then Ekind (Entity (Lo)) = E_In_Parameter
9657 then
9658 Lo := Get_Discriminal (E, Lo);
9659 Do_Expand := True;
9660 end if;
9661
9662 if Nkind (Hi) = N_Identifier
9663 and then Ekind (Entity (Hi)) = E_In_Parameter
9664 then
9665 Hi := Get_Discriminal (E, Hi);
9666 Do_Expand := True;
9667 end if;
9668
9669 if Do_Expand then
9670 if not Is_Entity_Name (Lo) then
fbf5a39b 9671 Lo := Duplicate_Subexpr_No_Checks (Lo);
70482933
RK
9672 end if;
9673
9674 if not Is_Entity_Name (Hi) then
fbf5a39b 9675 Lo := Duplicate_Subexpr_No_Checks (Hi);
70482933
RK
9676 end if;
9677
9678 N :=
9679 Make_Op_Add (Loc,
9680 Left_Opnd =>
9681 Make_Op_Subtract (Loc,
9682 Left_Opnd => Hi,
9683 Right_Opnd => Lo),
9684
9685 Right_Opnd => Make_Integer_Literal (Loc, 1));
9686 return N;
9687
9688 else
9689 N :=
9690 Make_Attribute_Reference (Loc,
9691 Attribute_Name => Name_Length,
9692 Prefix =>
9693 New_Occurrence_Of (E1, Loc));
9694
9695 if Indx > 1 then
9696 Set_Expressions (N, New_List (
9697 Make_Integer_Literal (Loc, Indx)));
9698 end if;
9699
9700 return N;
9701 end if;
9702 end;
9703
9704 else
9705 N :=
9706 Make_Attribute_Reference (Loc,
9707 Attribute_Name => Name_Length,
9708 Prefix =>
9709 New_Occurrence_Of (E1, Loc));
9710
9711 if Indx > 1 then
9712 Set_Expressions (N, New_List (
9713 Make_Integer_Literal (Loc, Indx)));
9714 end if;
9715
9716 return N;
70482933
RK
9717 end if;
9718 end Get_E_Length;
9719
9720 ------------------
9721 -- Get_N_Length --
9722 ------------------
9723
9724 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9725 begin
9726 return
9727 Make_Attribute_Reference (Loc,
9728 Attribute_Name => Name_Length,
9729 Prefix =>
fbf5a39b 9730 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
9731 Expressions => New_List (
9732 Make_Integer_Literal (Loc, Indx)));
70482933
RK
9733 end Get_N_Length;
9734
9735 -------------------
9736 -- Length_E_Cond --
9737 -------------------
9738
9739 function Length_E_Cond
9740 (Exptyp : Entity_Id;
9741 Typ : Entity_Id;
6b6fcd3e 9742 Indx : Nat) return Node_Id
70482933
RK
9743 is
9744 begin
9745 return
9746 Make_Op_Ne (Loc,
9747 Left_Opnd => Get_E_Length (Typ, Indx),
9748 Right_Opnd => Get_E_Length (Exptyp, Indx));
70482933
RK
9749 end Length_E_Cond;
9750
9751 -------------------
9752 -- Length_N_Cond --
9753 -------------------
9754
9755 function Length_N_Cond
9756 (Expr : Node_Id;
9757 Typ : Entity_Id;
6b6fcd3e 9758 Indx : Nat) return Node_Id
70482933
RK
9759 is
9760 begin
9761 return
9762 Make_Op_Ne (Loc,
9763 Left_Opnd => Get_E_Length (Typ, Indx),
9764 Right_Opnd => Get_N_Length (Expr, Indx));
70482933
RK
9765 end Length_N_Cond;
9766
eb6b9c9b
GD
9767 ----------------------------------
9768 -- Length_Mismatch_Info_Message --
9769 ----------------------------------
9770
9771 function Length_Mismatch_Info_Message
9772 (Left_Element_Count : Uint;
9773 Right_Element_Count : Uint) return String
9774 is
9775
9776 function Plural_Vs_Singular_Ending (Count : Uint) return String;
9777 -- Returns an empty string if Count is 1; otherwise returns "s"
9778
9779 function Plural_Vs_Singular_Ending (Count : Uint) return String is
9780 begin
9781 if Count = 1 then
9782 return "";
9783 else
9784 return "s";
9785 end if;
9786 end Plural_Vs_Singular_Ending;
9787
9788 begin
9789 return "expected " & UI_Image (Left_Element_Count)
9790 & " element"
9791 & Plural_Vs_Singular_Ending (Left_Element_Count)
9792 & "; found " & UI_Image (Right_Element_Count)
9793 & " element"
9794 & Plural_Vs_Singular_Ending (Right_Element_Count);
9795 end Length_Mismatch_Info_Message;
9796
675d6070
TQ
9797 -----------------
9798 -- Same_Bounds --
9799 -----------------
9800
70482933
RK
9801 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9802 begin
9803 return
9804 (Nkind (L) = N_Integer_Literal
9805 and then Nkind (R) = N_Integer_Literal
9806 and then Intval (L) = Intval (R))
9807
9808 or else
9809 (Is_Entity_Name (L)
9810 and then Ekind (Entity (L)) = E_Constant
9811 and then ((Is_Entity_Name (R)
9812 and then Entity (L) = Entity (R))
9813 or else
9814 (Nkind (R) = N_Type_Conversion
9815 and then Is_Entity_Name (Expression (R))
9816 and then Entity (L) = Entity (Expression (R)))))
9817
9818 or else
9819 (Is_Entity_Name (R)
9820 and then Ekind (Entity (R)) = E_Constant
9821 and then Nkind (L) = N_Type_Conversion
9822 and then Is_Entity_Name (Expression (L))
c84700e7
ES
9823 and then Entity (R) = Entity (Expression (L)))
9824
9825 or else
9826 (Is_Entity_Name (L)
9827 and then Is_Entity_Name (R)
9828 and then Entity (L) = Entity (R)
9829 and then Ekind (Entity (L)) = E_In_Parameter
9830 and then Inside_Init_Proc);
70482933
RK
9831 end Same_Bounds;
9832
9833 -- Start of processing for Selected_Length_Checks
9834
9835 begin
66340e0e 9836 -- Checks will be applied only when generating code
27bb7941 9837
66340e0e 9838 if not Expander_Active then
70482933
RK
9839 return Ret_Result;
9840 end if;
9841
9842 if Target_Typ = Any_Type
9843 or else Target_Typ = Any_Composite
9844 or else Raises_Constraint_Error (Ck_Node)
9845 then
9846 return Ret_Result;
9847 end if;
9848
9849 if No (Wnode) then
9850 Wnode := Ck_Node;
9851 end if;
9852
9853 T_Typ := Target_Typ;
9854
9855 if No (Source_Typ) then
9856 S_Typ := Etype (Ck_Node);
9857 else
9858 S_Typ := Source_Typ;
9859 end if;
9860
9861 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9862 return Ret_Result;
9863 end if;
9864
9865 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9866 S_Typ := Designated_Type (S_Typ);
9867 T_Typ := Designated_Type (T_Typ);
9868 Do_Access := True;
9869
939c12d2 9870 -- A simple optimization for the null case
70482933 9871
939c12d2 9872 if Known_Null (Ck_Node) then
70482933
RK
9873 return Ret_Result;
9874 end if;
9875 end if;
9876
9877 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9878 if Is_Constrained (T_Typ) then
9879
9b16cb57
RD
9880 -- The checking code to be generated will freeze the corresponding
9881 -- array type. However, we must freeze the type now, so that the
9882 -- freeze node does not appear within the generated if expression,
9883 -- but ahead of it.
70482933
RK
9884
9885 Freeze_Before (Ck_Node, T_Typ);
9886
9887 Expr_Actual := Get_Referenced_Object (Ck_Node);
86ac5e79 9888 Exptyp := Get_Actual_Subtype (Ck_Node);
70482933
RK
9889
9890 if Is_Access_Type (Exptyp) then
9891 Exptyp := Designated_Type (Exptyp);
9892 end if;
9893
9894 -- String_Literal case. This needs to be handled specially be-
9895 -- cause no index types are available for string literals. The
9896 -- condition is simply:
9897
9898 -- T_Typ'Length = string-literal-length
9899
fbf5a39b
AC
9900 if Nkind (Expr_Actual) = N_String_Literal
9901 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9902 then
70482933
RK
9903 Cond :=
9904 Make_Op_Ne (Loc,
9905 Left_Opnd => Get_E_Length (T_Typ, 1),
9906 Right_Opnd =>
9907 Make_Integer_Literal (Loc,
9908 Intval =>
9909 String_Literal_Length (Etype (Expr_Actual))));
9910
9911 -- General array case. Here we have a usable actual subtype for
9912 -- the expression, and the condition is built from the two types
9913 -- (Do_Length):
9914
9915 -- T_Typ'Length /= Exptyp'Length or else
9916 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9917 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9918 -- ...
9919
9920 elsif Is_Constrained (Exptyp) then
9921 declare
fbf5a39b
AC
9922 Ndims : constant Nat := Number_Dimensions (T_Typ);
9923
9924 L_Index : Node_Id;
9925 R_Index : Node_Id;
9926 L_Low : Node_Id;
9927 L_High : Node_Id;
9928 R_Low : Node_Id;
9929 R_High : Node_Id;
70482933
RK
9930 L_Length : Uint;
9931 R_Length : Uint;
fbf5a39b 9932 Ref_Node : Node_Id;
70482933
RK
9933
9934 begin
675d6070
TQ
9935 -- At the library level, we need to ensure that the type of
9936 -- the object is elaborated before the check itself is
9937 -- emitted. This is only done if the object is in the
9938 -- current compilation unit, otherwise the type is frozen
9939 -- and elaborated in its unit.
fbf5a39b
AC
9940
9941 if Is_Itype (Exptyp)
9942 and then
9943 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9944 and then
9945 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
891a6e79 9946 and then In_Open_Scopes (Scope (Exptyp))
fbf5a39b
AC
9947 then
9948 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9949 Set_Itype (Ref_Node, Exptyp);
9950 Insert_Action (Ck_Node, Ref_Node);
9951 end if;
9952
70482933
RK
9953 L_Index := First_Index (T_Typ);
9954 R_Index := First_Index (Exptyp);
9955
9956 for Indx in 1 .. Ndims loop
9957 if not (Nkind (L_Index) = N_Raise_Constraint_Error
07fc65c4
GB
9958 or else
9959 Nkind (R_Index) = N_Raise_Constraint_Error)
70482933
RK
9960 then
9961 Get_Index_Bounds (L_Index, L_Low, L_High);
9962 Get_Index_Bounds (R_Index, R_Low, R_High);
9963
9964 -- Deal with compile time length check. Note that we
9965 -- skip this in the access case, because the access
9966 -- value may be null, so we cannot know statically.
9967
9968 if not Do_Access
9969 and then Compile_Time_Known_Value (L_Low)
9970 and then Compile_Time_Known_Value (L_High)
9971 and then Compile_Time_Known_Value (R_Low)
9972 and then Compile_Time_Known_Value (R_High)
9973 then
9974 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9975 L_Length := Expr_Value (L_High) -
9976 Expr_Value (L_Low) + 1;
9977 else
9978 L_Length := UI_From_Int (0);
9979 end if;
9980
9981 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9982 R_Length := Expr_Value (R_High) -
9983 Expr_Value (R_Low) + 1;
9984 else
9985 R_Length := UI_From_Int (0);
9986 end if;
9987
9988 if L_Length > R_Length then
9989 Add_Check
9990 (Compile_Time_Constraint_Error
eb6b9c9b
GD
9991 (Wnode, "too few elements for}??", T_Typ,
9992 Extra_Msg => Length_Mismatch_Info_Message
9993 (L_Length, R_Length)));
70482933 9994
9fe696a3 9995 elsif L_Length < R_Length then
70482933
RK
9996 Add_Check
9997 (Compile_Time_Constraint_Error
eb6b9c9b
GD
9998 (Wnode, "too many elements for}??", T_Typ,
9999 Extra_Msg => Length_Mismatch_Info_Message
10000 (L_Length, R_Length)));
70482933
RK
10001 end if;
10002
10003 -- The comparison for an individual index subtype
10004 -- is omitted if the corresponding index subtypes
10005 -- statically match, since the result is known to
10006 -- be true. Note that this test is worth while even
10007 -- though we do static evaluation, because non-static
10008 -- subtypes can statically match.
10009
10010 elsif not
10011 Subtypes_Statically_Match
10012 (Etype (L_Index), Etype (R_Index))
10013
10014 and then not
10015 (Same_Bounds (L_Low, R_Low)
10016 and then Same_Bounds (L_High, R_High))
10017 then
10018 Evolve_Or_Else
10019 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
10020 end if;
10021
10022 Next (L_Index);
10023 Next (R_Index);
10024 end if;
10025 end loop;
10026 end;
10027
10028 -- Handle cases where we do not get a usable actual subtype that
10029 -- is constrained. This happens for example in the function call
10030 -- and explicit dereference cases. In these cases, we have to get
10031 -- the length or range from the expression itself, making sure we
10032 -- do not evaluate it more than once.
10033
10034 -- Here Ck_Node is the original expression, or more properly the
675d6070
TQ
10035 -- result of applying Duplicate_Expr to the original tree, forcing
10036 -- the result to be a name.
70482933
RK
10037
10038 else
10039 declare
fbf5a39b 10040 Ndims : constant Nat := Number_Dimensions (T_Typ);
70482933
RK
10041
10042 begin
10043 -- Build the condition for the explicit dereference case
10044
10045 for Indx in 1 .. Ndims loop
10046 Evolve_Or_Else
10047 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
10048 end loop;
10049 end;
10050 end if;
10051 end if;
10052 end if;
10053
10054 -- Construct the test and insert into the tree
10055
10056 if Present (Cond) then
10057 if Do_Access then
10058 Cond := Guard_Access (Cond, Loc, Ck_Node);
10059 end if;
10060
07fc65c4
GB
10061 Add_Check
10062 (Make_Raise_Constraint_Error (Loc,
10063 Condition => Cond,
10064 Reason => CE_Length_Check_Failed));
70482933
RK
10065 end if;
10066
10067 return Ret_Result;
70482933
RK
10068 end Selected_Length_Checks;
10069
10070 ---------------------------
10071 -- Selected_Range_Checks --
10072 ---------------------------
10073
10074 function Selected_Range_Checks
10075 (Ck_Node : Node_Id;
10076 Target_Typ : Entity_Id;
10077 Source_Typ : Entity_Id;
6b6fcd3e 10078 Warn_Node : Node_Id) return Check_Result
70482933
RK
10079 is
10080 Loc : constant Source_Ptr := Sloc (Ck_Node);
10081 S_Typ : Entity_Id;
10082 T_Typ : Entity_Id;
10083 Expr_Actual : Node_Id;
10084 Exptyp : Entity_Id;
10085 Cond : Node_Id := Empty;
10086 Do_Access : Boolean := False;
10087 Wnode : Node_Id := Warn_Node;
10088 Ret_Result : Check_Result := (Empty, Empty);
dcd5fd67 10089 Num_Checks : Natural := 0;
70482933
RK
10090
10091 procedure Add_Check (N : Node_Id);
10092 -- Adds the action given to Ret_Result if N is non-Empty
10093
10094 function Discrete_Range_Cond
10095 (Expr : Node_Id;
6b6fcd3e 10096 Typ : Entity_Id) return Node_Id;
70482933
RK
10097 -- Returns expression to compute:
10098 -- Low_Bound (Expr) < Typ'First
10099 -- or else
10100 -- High_Bound (Expr) > Typ'Last
10101
10102 function Discrete_Expr_Cond
10103 (Expr : Node_Id;
6b6fcd3e 10104 Typ : Entity_Id) return Node_Id;
70482933
RK
10105 -- Returns expression to compute:
10106 -- Expr < Typ'First
10107 -- or else
10108 -- Expr > Typ'Last
10109
10110 function Get_E_First_Or_Last
5a153b27
AC
10111 (Loc : Source_Ptr;
10112 E : Entity_Id;
70482933 10113 Indx : Nat;
6b6fcd3e 10114 Nam : Name_Id) return Node_Id;
a548f9ff 10115 -- Returns an attribute reference
70482933 10116 -- E'First or E'Last
a548f9ff 10117 -- with a source location of Loc.
6ca9ec9c 10118 --
a548f9ff
TQ
10119 -- Nam is Name_First or Name_Last, according to which attribute is
10120 -- desired. If Indx is non-zero, it is passed as a literal in the
10121 -- Expressions of the attribute reference (identifying the desired
10122 -- array dimension).
70482933
RK
10123
10124 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
10125 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
10126 -- Returns expression to compute:
fbf5a39b 10127 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
70482933
RK
10128
10129 function Range_E_Cond
10130 (Exptyp : Entity_Id;
10131 Typ : Entity_Id;
10132 Indx : Nat)
10133 return Node_Id;
10134 -- Returns expression to compute:
10135 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
10136
10137 function Range_Equal_E_Cond
10138 (Exptyp : Entity_Id;
10139 Typ : Entity_Id;
6b6fcd3e 10140 Indx : Nat) return Node_Id;
70482933
RK
10141 -- Returns expression to compute:
10142 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
10143
10144 function Range_N_Cond
10145 (Expr : Node_Id;
10146 Typ : Entity_Id;
6b6fcd3e 10147 Indx : Nat) return Node_Id;
70482933
RK
10148 -- Return expression to compute:
10149 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
10150
10151 ---------------
10152 -- Add_Check --
10153 ---------------
10154
10155 procedure Add_Check (N : Node_Id) is
10156 begin
10157 if Present (N) then
10158
10159 -- For now, ignore attempt to place more than 2 checks ???
10160
10161 if Num_Checks = 2 then
10162 return;
10163 end if;
10164
10165 pragma Assert (Num_Checks <= 1);
10166 Num_Checks := Num_Checks + 1;
10167 Ret_Result (Num_Checks) := N;
10168 end if;
10169 end Add_Check;
10170
10171 -------------------------
10172 -- Discrete_Expr_Cond --
10173 -------------------------
10174
10175 function Discrete_Expr_Cond
10176 (Expr : Node_Id;
6b6fcd3e 10177 Typ : Entity_Id) return Node_Id
70482933
RK
10178 is
10179 begin
10180 return
10181 Make_Or_Else (Loc,
10182 Left_Opnd =>
10183 Make_Op_Lt (Loc,
10184 Left_Opnd =>
fbf5a39b
AC
10185 Convert_To (Base_Type (Typ),
10186 Duplicate_Subexpr_No_Checks (Expr)),
70482933
RK
10187 Right_Opnd =>
10188 Convert_To (Base_Type (Typ),
5a153b27 10189 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
70482933
RK
10190
10191 Right_Opnd =>
10192 Make_Op_Gt (Loc,
10193 Left_Opnd =>
fbf5a39b
AC
10194 Convert_To (Base_Type (Typ),
10195 Duplicate_Subexpr_No_Checks (Expr)),
70482933
RK
10196 Right_Opnd =>
10197 Convert_To
10198 (Base_Type (Typ),
5a153b27 10199 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
70482933
RK
10200 end Discrete_Expr_Cond;
10201
10202 -------------------------
10203 -- Discrete_Range_Cond --
10204 -------------------------
10205
10206 function Discrete_Range_Cond
10207 (Expr : Node_Id;
6b6fcd3e 10208 Typ : Entity_Id) return Node_Id
70482933
RK
10209 is
10210 LB : Node_Id := Low_Bound (Expr);
10211 HB : Node_Id := High_Bound (Expr);
10212
10213 Left_Opnd : Node_Id;
10214 Right_Opnd : Node_Id;
10215
10216 begin
10217 if Nkind (LB) = N_Identifier
675d6070
TQ
10218 and then Ekind (Entity (LB)) = E_Discriminant
10219 then
70482933
RK
10220 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10221 end if;
10222
70482933
RK
10223 Left_Opnd :=
10224 Make_Op_Lt (Loc,
10225 Left_Opnd =>
10226 Convert_To
fbf5a39b 10227 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
70482933
RK
10228
10229 Right_Opnd =>
10230 Convert_To
5a153b27
AC
10231 (Base_Type (Typ),
10232 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
70482933 10233
b3f96dc1
AC
10234 if Nkind (HB) = N_Identifier
10235 and then Ekind (Entity (HB)) = E_Discriminant
70482933 10236 then
b3f96dc1 10237 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
70482933
RK
10238 end if;
10239
10240 Right_Opnd :=
10241 Make_Op_Gt (Loc,
10242 Left_Opnd =>
10243 Convert_To
fbf5a39b 10244 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
70482933
RK
10245
10246 Right_Opnd =>
10247 Convert_To
10248 (Base_Type (Typ),
5a153b27 10249 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
70482933
RK
10250
10251 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10252 end Discrete_Range_Cond;
10253
10254 -------------------------
10255 -- Get_E_First_Or_Last --
10256 -------------------------
10257
10258 function Get_E_First_Or_Last
5a153b27
AC
10259 (Loc : Source_Ptr;
10260 E : Entity_Id;
70482933 10261 Indx : Nat;
6b6fcd3e 10262 Nam : Name_Id) return Node_Id
70482933 10263 is
5a153b27 10264 Exprs : List_Id;
70482933 10265 begin
5a153b27
AC
10266 if Indx > 0 then
10267 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
70482933 10268 else
5a153b27 10269 Exprs := No_List;
70482933
RK
10270 end if;
10271
5a153b27
AC
10272 return Make_Attribute_Reference (Loc,
10273 Prefix => New_Occurrence_Of (E, Loc),
10274 Attribute_Name => Nam,
10275 Expressions => Exprs);
70482933
RK
10276 end Get_E_First_Or_Last;
10277
10278 -----------------
10279 -- Get_N_First --
10280 -----------------
10281
10282 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10283 begin
10284 return
10285 Make_Attribute_Reference (Loc,
10286 Attribute_Name => Name_First,
10287 Prefix =>
fbf5a39b 10288 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
10289 Expressions => New_List (
10290 Make_Integer_Literal (Loc, Indx)));
70482933
RK
10291 end Get_N_First;
10292
10293 ----------------
10294 -- Get_N_Last --
10295 ----------------
10296
10297 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10298 begin
10299 return
10300 Make_Attribute_Reference (Loc,
10301 Attribute_Name => Name_Last,
10302 Prefix =>
fbf5a39b 10303 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
10304 Expressions => New_List (
10305 Make_Integer_Literal (Loc, Indx)));
70482933
RK
10306 end Get_N_Last;
10307
10308 ------------------
10309 -- Range_E_Cond --
10310 ------------------
10311
10312 function Range_E_Cond
10313 (Exptyp : Entity_Id;
10314 Typ : Entity_Id;
6b6fcd3e 10315 Indx : Nat) return Node_Id
70482933
RK
10316 is
10317 begin
10318 return
10319 Make_Or_Else (Loc,
10320 Left_Opnd =>
10321 Make_Op_Lt (Loc,
5a153b27
AC
10322 Left_Opnd =>
10323 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10324 Right_Opnd =>
10325 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
70482933
RK
10326
10327 Right_Opnd =>
10328 Make_Op_Gt (Loc,
5a153b27
AC
10329 Left_Opnd =>
10330 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10331 Right_Opnd =>
10332 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10333 end Range_E_Cond;
10334
10335 ------------------------
10336 -- Range_Equal_E_Cond --
10337 ------------------------
10338
10339 function Range_Equal_E_Cond
10340 (Exptyp : Entity_Id;
10341 Typ : Entity_Id;
6b6fcd3e 10342 Indx : Nat) return Node_Id
70482933
RK
10343 is
10344 begin
10345 return
10346 Make_Or_Else (Loc,
10347 Left_Opnd =>
10348 Make_Op_Ne (Loc,
5a153b27
AC
10349 Left_Opnd =>
10350 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10351 Right_Opnd =>
10352 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10353
70482933
RK
10354 Right_Opnd =>
10355 Make_Op_Ne (Loc,
5a153b27
AC
10356 Left_Opnd =>
10357 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10358 Right_Opnd =>
10359 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10360 end Range_Equal_E_Cond;
10361
10362 ------------------
10363 -- Range_N_Cond --
10364 ------------------
10365
10366 function Range_N_Cond
10367 (Expr : Node_Id;
10368 Typ : Entity_Id;
6b6fcd3e 10369 Indx : Nat) return Node_Id
70482933
RK
10370 is
10371 begin
10372 return
10373 Make_Or_Else (Loc,
10374 Left_Opnd =>
10375 Make_Op_Lt (Loc,
5a153b27
AC
10376 Left_Opnd =>
10377 Get_N_First (Expr, Indx),
10378 Right_Opnd =>
10379 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
70482933
RK
10380
10381 Right_Opnd =>
10382 Make_Op_Gt (Loc,
5a153b27
AC
10383 Left_Opnd =>
10384 Get_N_Last (Expr, Indx),
10385 Right_Opnd =>
10386 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10387 end Range_N_Cond;
10388
10389 -- Start of processing for Selected_Range_Checks
10390
10391 begin
27bb7941
AC
10392 -- Checks will be applied only when generating code. In GNATprove mode,
10393 -- we do not apply the checks, but we still call Selected_Range_Checks
10394 -- to possibly issue errors on SPARK code when a run-time error can be
10395 -- detected at compile time.
10396
10397 if not Expander_Active and not GNATprove_Mode then
70482933
RK
10398 return Ret_Result;
10399 end if;
10400
10401 if Target_Typ = Any_Type
10402 or else Target_Typ = Any_Composite
10403 or else Raises_Constraint_Error (Ck_Node)
10404 then
10405 return Ret_Result;
10406 end if;
10407
10408 if No (Wnode) then
10409 Wnode := Ck_Node;
10410 end if;
10411
10412 T_Typ := Target_Typ;
10413
10414 if No (Source_Typ) then
10415 S_Typ := Etype (Ck_Node);
10416 else
10417 S_Typ := Source_Typ;
10418 end if;
10419
10420 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10421 return Ret_Result;
10422 end if;
10423
10424 -- The order of evaluating T_Typ before S_Typ seems to be critical
10425 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10426 -- in, and since Node can be an N_Range node, it might be invalid.
10427 -- Should there be an assert check somewhere for taking the Etype of
10428 -- an N_Range node ???
10429
10430 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10431 S_Typ := Designated_Type (S_Typ);
10432 T_Typ := Designated_Type (T_Typ);
10433 Do_Access := True;
10434
939c12d2 10435 -- A simple optimization for the null case
70482933 10436
939c12d2 10437 if Known_Null (Ck_Node) then
70482933
RK
10438 return Ret_Result;
10439 end if;
10440 end if;
10441
10442 -- For an N_Range Node, check for a null range and then if not
10443 -- null generate a range check action.
10444
10445 if Nkind (Ck_Node) = N_Range then
10446
10447 -- There's no point in checking a range against itself
10448
10449 if Ck_Node = Scalar_Range (T_Typ) then
10450 return Ret_Result;
10451 end if;
10452
10453 declare
10454 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10455 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10475800
EB
10456 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10457 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
70482933 10458
10475800
EB
10459 LB : Node_Id := Low_Bound (Ck_Node);
10460 HB : Node_Id := High_Bound (Ck_Node);
e49de265
BD
10461 Known_LB : Boolean := False;
10462 Known_HB : Boolean := False;
10475800
EB
10463
10464 Null_Range : Boolean;
70482933
RK
10465 Out_Of_Range_L : Boolean;
10466 Out_Of_Range_H : Boolean;
10467
10468 begin
10475800
EB
10469 -- Compute what is known at compile time
10470
10471 if Known_T_LB and Known_T_HB then
10472 if Compile_Time_Known_Value (LB) then
10473 Known_LB := True;
10474
10475 -- There's no point in checking that a bound is within its
10476 -- own range so pretend that it is known in this case. First
10477 -- deal with low bound.
10478
10479 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10480 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10481 then
10482 LB := T_LB;
10483 Known_LB := True;
10475800
EB
10484 end if;
10485
10486 -- Likewise for the high bound
10487
10488 if Compile_Time_Known_Value (HB) then
10489 Known_HB := True;
10490
10491 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10492 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10493 then
10494 HB := T_HB;
10495 Known_HB := True;
10475800
EB
10496 end if;
10497 end if;
10498
10499 -- Check for case where everything is static and we can do the
10500 -- check at compile time. This is skipped if we have an access
10501 -- type, since the access value may be null.
10502
10503 -- ??? This code can be improved since you only need to know that
10504 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10505 -- compile time to emit pertinent messages.
10506
10507 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10508 and not Do_Access
70482933
RK
10509 then
10510 -- Floating-point case
10511
10512 if Is_Floating_Point_Type (S_Typ) then
10513 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10514 Out_Of_Range_L :=
10515 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10475800 10516 or else
70482933
RK
10517 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10518
10519 Out_Of_Range_H :=
10520 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10475800 10521 or else
70482933
RK
10522 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10523
10524 -- Fixed or discrete type case
10525
10526 else
10527 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10528 Out_Of_Range_L :=
10529 (Expr_Value (LB) < Expr_Value (T_LB))
10475800 10530 or else
70482933
RK
10531 (Expr_Value (LB) > Expr_Value (T_HB));
10532
10533 Out_Of_Range_H :=
10534 (Expr_Value (HB) > Expr_Value (T_HB))
10475800 10535 or else
70482933
RK
10536 (Expr_Value (HB) < Expr_Value (T_LB));
10537 end if;
10538
10539 if not Null_Range then
10540 if Out_Of_Range_L then
10541 if No (Warn_Node) then
10542 Add_Check
10543 (Compile_Time_Constraint_Error
10544 (Low_Bound (Ck_Node),
685bc70f 10545 "static value out of range of}??", T_Typ));
70482933
RK
10546
10547 else
10548 Add_Check
10549 (Compile_Time_Constraint_Error
10550 (Wnode,
685bc70f 10551 "static range out of bounds of}??", T_Typ));
70482933
RK
10552 end if;
10553 end if;
10554
10555 if Out_Of_Range_H then
10556 if No (Warn_Node) then
10557 Add_Check
10558 (Compile_Time_Constraint_Error
10559 (High_Bound (Ck_Node),
685bc70f 10560 "static value out of range of}??", T_Typ));
70482933
RK
10561
10562 else
10563 Add_Check
10564 (Compile_Time_Constraint_Error
10565 (Wnode,
685bc70f 10566 "static range out of bounds of}??", T_Typ));
70482933
RK
10567 end if;
10568 end if;
70482933
RK
10569 end if;
10570
10571 else
10572 declare
10573 LB : Node_Id := Low_Bound (Ck_Node);
10574 HB : Node_Id := High_Bound (Ck_Node);
10575
10576 begin
675d6070
TQ
10577 -- If either bound is a discriminant and we are within the
10578 -- record declaration, it is a use of the discriminant in a
10579 -- constraint of a component, and nothing can be checked
10580 -- here. The check will be emitted within the init proc.
10581 -- Before then, the discriminal has no real meaning.
10582 -- Similarly, if the entity is a discriminal, there is no
10583 -- check to perform yet.
10584
10585 -- The same holds within a discriminated synchronized type,
10586 -- where the discriminant may constrain a component or an
10587 -- entry family.
70482933
RK
10588
10589 if Nkind (LB) = N_Identifier
c064e066 10590 and then Denotes_Discriminant (LB, True)
70482933 10591 then
c064e066
RD
10592 if Current_Scope = Scope (Entity (LB))
10593 or else Is_Concurrent_Type (Current_Scope)
10594 or else Ekind (Entity (LB)) /= E_Discriminant
10595 then
70482933
RK
10596 return Ret_Result;
10597 else
10598 LB :=
10599 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10600 end if;
10601 end if;
10602
10603 if Nkind (HB) = N_Identifier
c064e066 10604 and then Denotes_Discriminant (HB, True)
70482933 10605 then
c064e066
RD
10606 if Current_Scope = Scope (Entity (HB))
10607 or else Is_Concurrent_Type (Current_Scope)
10608 or else Ekind (Entity (HB)) /= E_Discriminant
10609 then
70482933
RK
10610 return Ret_Result;
10611 else
10612 HB :=
10613 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10614 end if;
10615 end if;
10616
10617 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10618 Set_Paren_Count (Cond, 1);
10619
10620 Cond :=
10621 Make_And_Then (Loc,
10622 Left_Opnd =>
10623 Make_Op_Ge (Loc,
4c51ff88
AC
10624 Left_Opnd =>
10625 Convert_To (Base_Type (Etype (HB)),
10626 Duplicate_Subexpr_No_Checks (HB)),
10627 Right_Opnd =>
10628 Convert_To (Base_Type (Etype (LB)),
10629 Duplicate_Subexpr_No_Checks (LB))),
70482933
RK
10630 Right_Opnd => Cond);
10631 end;
70482933
RK
10632 end if;
10633 end;
10634
10635 elsif Is_Scalar_Type (S_Typ) then
10636
10637 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10638 -- except the above simply sets a flag in the node and lets
10639 -- gigi generate the check base on the Etype of the expression.
10640 -- Sometimes, however we want to do a dynamic check against an
10641 -- arbitrary target type, so we do that here.
10642
10643 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10644 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10645
10646 -- For literals, we can tell if the constraint error will be
10647 -- raised at compile time, so we never need a dynamic check, but
10648 -- if the exception will be raised, then post the usual warning,
10649 -- and replace the literal with a raise constraint error
10650 -- expression. As usual, skip this for access types
10651
637a41a5 10652 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
70482933
RK
10653 declare
10654 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10655 UB : constant Node_Id := Type_High_Bound (T_Typ);
10656
10657 Out_Of_Range : Boolean;
10658 Static_Bounds : constant Boolean :=
15f0f591
AC
10659 Compile_Time_Known_Value (LB)
10660 and Compile_Time_Known_Value (UB);
70482933
RK
10661
10662 begin
10663 -- Following range tests should use Sem_Eval routine ???
10664
10665 if Static_Bounds then
10666 if Is_Floating_Point_Type (S_Typ) then
10667 Out_Of_Range :=
10668 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10669 or else
10670 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10671
10475800
EB
10672 -- Fixed or discrete type
10673
10674 else
70482933
RK
10675 Out_Of_Range :=
10676 Expr_Value (Ck_Node) < Expr_Value (LB)
10677 or else
10678 Expr_Value (Ck_Node) > Expr_Value (UB);
10679 end if;
10680
10475800
EB
10681 -- Bounds of the type are static and the literal is out of
10682 -- range so output a warning message.
70482933
RK
10683
10684 if Out_Of_Range then
10685 if No (Warn_Node) then
10686 Add_Check
10687 (Compile_Time_Constraint_Error
10688 (Ck_Node,
685bc70f 10689 "static value out of range of}??", T_Typ));
70482933
RK
10690
10691 else
10692 Add_Check
10693 (Compile_Time_Constraint_Error
10694 (Wnode,
685bc70f 10695 "static value out of range of}??", T_Typ));
70482933
RK
10696 end if;
10697 end if;
10698
10699 else
10700 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10701 end if;
10702 end;
10703
10704 -- Here for the case of a non-static expression, we need a runtime
10705 -- check unless the source type range is guaranteed to be in the
10706 -- range of the target type.
10707
10708 else
c27f2f15 10709 if not In_Subrange_Of (S_Typ, T_Typ) then
70482933
RK
10710 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10711 end if;
10712 end if;
10713 end if;
10714
10715 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10716 if Is_Constrained (T_Typ) then
10717
10718 Expr_Actual := Get_Referenced_Object (Ck_Node);
10719 Exptyp := Get_Actual_Subtype (Expr_Actual);
10720
10721 if Is_Access_Type (Exptyp) then
10722 Exptyp := Designated_Type (Exptyp);
10723 end if;
10724
10725 -- String_Literal case. This needs to be handled specially be-
10726 -- cause no index types are available for string literals. The
10727 -- condition is simply:
10728
10729 -- T_Typ'Length = string-literal-length
10730
10731 if Nkind (Expr_Actual) = N_String_Literal then
10732 null;
10733
10734 -- General array case. Here we have a usable actual subtype for
10735 -- the expression, and the condition is built from the two types
10736
10737 -- T_Typ'First < Exptyp'First or else
10738 -- T_Typ'Last > Exptyp'Last or else
10739 -- T_Typ'First(1) < Exptyp'First(1) or else
10740 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10741 -- ...
10742
10743 elsif Is_Constrained (Exptyp) then
10744 declare
fbf5a39b
AC
10745 Ndims : constant Nat := Number_Dimensions (T_Typ);
10746
70482933
RK
10747 L_Index : Node_Id;
10748 R_Index : Node_Id;
70482933
RK
10749
10750 begin
10751 L_Index := First_Index (T_Typ);
10752 R_Index := First_Index (Exptyp);
10753
10754 for Indx in 1 .. Ndims loop
10755 if not (Nkind (L_Index) = N_Raise_Constraint_Error
07fc65c4
GB
10756 or else
10757 Nkind (R_Index) = N_Raise_Constraint_Error)
70482933 10758 then
70482933
RK
10759 -- Deal with compile time length check. Note that we
10760 -- skip this in the access case, because the access
10761 -- value may be null, so we cannot know statically.
10762
10763 if not
10764 Subtypes_Statically_Match
10765 (Etype (L_Index), Etype (R_Index))
10766 then
10767 -- If the target type is constrained then we
10768 -- have to check for exact equality of bounds
10769 -- (required for qualified expressions).
10770
10771 if Is_Constrained (T_Typ) then
10772 Evolve_Or_Else
10773 (Cond,
10774 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
70482933
RK
10775 else
10776 Evolve_Or_Else
10777 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10778 end if;
10779 end if;
10780
10781 Next (L_Index);
10782 Next (R_Index);
70482933
RK
10783 end if;
10784 end loop;
10785 end;
10786
10787 -- Handle cases where we do not get a usable actual subtype that
10788 -- is constrained. This happens for example in the function call
10789 -- and explicit dereference cases. In these cases, we have to get
10790 -- the length or range from the expression itself, making sure we
10791 -- do not evaluate it more than once.
10792
10793 -- Here Ck_Node is the original expression, or more properly the
10794 -- result of applying Duplicate_Expr to the original tree,
10795 -- forcing the result to be a name.
10796
10797 else
10798 declare
fbf5a39b 10799 Ndims : constant Nat := Number_Dimensions (T_Typ);
70482933
RK
10800
10801 begin
10802 -- Build the condition for the explicit dereference case
10803
10804 for Indx in 1 .. Ndims loop
10805 Evolve_Or_Else
10806 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10807 end loop;
10808 end;
70482933
RK
10809 end if;
10810
10811 else
675d6070
TQ
10812 -- For a conversion to an unconstrained array type, generate an
10813 -- Action to check that the bounds of the source value are within
10814 -- the constraints imposed by the target type (RM 4.6(38)). No
10815 -- check is needed for a conversion to an access to unconstrained
10816 -- array type, as 4.6(24.15/2) requires the designated subtypes
10817 -- of the two access types to statically match.
10818
10819 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10820 and then not Do_Access
10821 then
70482933
RK
10822 declare
10823 Opnd_Index : Node_Id;
10824 Targ_Index : Node_Id;
11b4899f 10825 Opnd_Range : Node_Id;
70482933
RK
10826
10827 begin
675d6070 10828 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
70482933 10829 Targ_Index := First_Index (T_Typ);
11b4899f
JM
10830 while Present (Opnd_Index) loop
10831
10832 -- If the index is a range, use its bounds. If it is an
10833 -- entity (as will be the case if it is a named subtype
10834 -- or an itype created for a slice) retrieve its range.
10835
10836 if Is_Entity_Name (Opnd_Index)
10837 and then Is_Type (Entity (Opnd_Index))
10838 then
10839 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10840 else
10841 Opnd_Range := Opnd_Index;
10842 end if;
10843
10844 if Nkind (Opnd_Range) = N_Range then
c800f862
RD
10845 if Is_In_Range
10846 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10847 Assume_Valid => True)
70482933
RK
10848 and then
10849 Is_In_Range
c800f862
RD
10850 (High_Bound (Opnd_Range), Etype (Targ_Index),
10851 Assume_Valid => True)
70482933
RK
10852 then
10853 null;
10854
675d6070 10855 -- If null range, no check needed
ddda9d0f 10856
fbf5a39b 10857 elsif
11b4899f 10858 Compile_Time_Known_Value (High_Bound (Opnd_Range))
fbf5a39b 10859 and then
11b4899f 10860 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
fbf5a39b 10861 and then
11b4899f
JM
10862 Expr_Value (High_Bound (Opnd_Range)) <
10863 Expr_Value (Low_Bound (Opnd_Range))
fbf5a39b
AC
10864 then
10865 null;
10866
70482933 10867 elsif Is_Out_Of_Range
c800f862
RD
10868 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10869 Assume_Valid => True)
70482933
RK
10870 or else
10871 Is_Out_Of_Range
c800f862
RD
10872 (High_Bound (Opnd_Range), Etype (Targ_Index),
10873 Assume_Valid => True)
70482933
RK
10874 then
10875 Add_Check
10876 (Compile_Time_Constraint_Error
685bc70f 10877 (Wnode, "value out of range of}??", T_Typ));
70482933
RK
10878
10879 else
10880 Evolve_Or_Else
10881 (Cond,
10882 Discrete_Range_Cond
11b4899f 10883 (Opnd_Range, Etype (Targ_Index)));
70482933
RK
10884 end if;
10885 end if;
10886
10887 Next_Index (Opnd_Index);
10888 Next_Index (Targ_Index);
10889 end loop;
10890 end;
10891 end if;
10892 end if;
10893 end if;
10894
10895 -- Construct the test and insert into the tree
10896
10897 if Present (Cond) then
10898 if Do_Access then
10899 Cond := Guard_Access (Cond, Loc, Ck_Node);
10900 end if;
10901
07fc65c4
GB
10902 Add_Check
10903 (Make_Raise_Constraint_Error (Loc,
10475800 10904 Condition => Cond,
af6478c8 10905 Reason => CE_Range_Check_Failed));
70482933
RK
10906 end if;
10907
10908 return Ret_Result;
70482933
RK
10909 end Selected_Range_Checks;
10910
10911 -------------------------------
10912 -- Storage_Checks_Suppressed --
10913 -------------------------------
10914
10915 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10916 begin
fbf5a39b
AC
10917 if Present (E) and then Checks_May_Be_Suppressed (E) then
10918 return Is_Check_Suppressed (E, Storage_Check);
10919 else
3217f71e 10920 return Scope_Suppress.Suppress (Storage_Check);
fbf5a39b 10921 end if;
70482933
RK
10922 end Storage_Checks_Suppressed;
10923
10924 ---------------------------
10925 -- Tag_Checks_Suppressed --
10926 ---------------------------
10927
10928 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10929 begin
b98e2969
AC
10930 if Present (E)
10931 and then Checks_May_Be_Suppressed (E)
10932 then
10933 return Is_Check_Suppressed (E, Tag_Check);
637a41a5
AC
10934 else
10935 return Scope_Suppress.Suppress (Tag_Check);
fbf5a39b 10936 end if;
70482933
RK
10937 end Tag_Checks_Suppressed;
10938
aca670a0
AC
10939 ---------------------------------------
10940 -- Validate_Alignment_Check_Warnings --
10941 ---------------------------------------
10942
10943 procedure Validate_Alignment_Check_Warnings is
10944 begin
10945 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10946 declare
10947 AWR : Alignment_Warnings_Record
10948 renames Alignment_Warnings.Table (J);
10949 begin
10950 if Known_Alignment (AWR.E)
5c13a04e
EB
10951 and then ((AWR.A /= No_Uint
10952 and then AWR.A mod Alignment (AWR.E) = 0)
10953 or else (Present (AWR.P)
10954 and then Has_Compatible_Alignment
10955 (AWR.E, AWR.P, True) =
10956 Known_Compatible))
aca670a0
AC
10957 then
10958 Delete_Warning_And_Continuations (AWR.W);
10959 end if;
10960 end;
10961 end loop;
10962 end Validate_Alignment_Check_Warnings;
10963
c064e066
RD
10964 --------------------------
10965 -- Validity_Check_Range --
10966 --------------------------
10967
2934b84a
AC
10968 procedure Validity_Check_Range
10969 (N : Node_Id;
10970 Related_Id : Entity_Id := Empty)
10971 is
c064e066
RD
10972 begin
10973 if Validity_Checks_On and Validity_Check_Operands then
10974 if Nkind (N) = N_Range then
2934b84a
AC
10975 Ensure_Valid
10976 (Expr => Low_Bound (N),
10977 Related_Id => Related_Id,
10978 Is_Low_Bound => True);
10979
10980 Ensure_Valid
10981 (Expr => High_Bound (N),
10982 Related_Id => Related_Id,
10983 Is_High_Bound => True);
c064e066
RD
10984 end if;
10985 end if;
10986 end Validity_Check_Range;
10987
10988 --------------------------------
10989 -- Validity_Checks_Suppressed --
10990 --------------------------------
10991
10992 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10993 begin
10994 if Present (E) and then Checks_May_Be_Suppressed (E) then
10995 return Is_Check_Suppressed (E, Validity_Check);
10996 else
3217f71e 10997 return Scope_Suppress.Suppress (Validity_Check);
c064e066
RD
10998 end if;
10999 end Validity_Checks_Suppressed;
11000
70482933 11001end Checks;