]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_aggr.adb
slsr-19.c: Make robust against operand order changes.
[thirdparty/gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
77a40ec1 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
07fc65c4 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
58fda84d 31with Errout; use Errout;
70482933
RK
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3; use Exp_Ch3;
4a1bfefb 35with Exp_Ch6; use Exp_Ch6;
70482933 36with Exp_Ch7; use Exp_Ch7;
c45b6ae0 37with Exp_Ch9; use Exp_Ch9;
cefce34c 38with Exp_Disp; use Exp_Disp;
615cbd95 39with Exp_Tss; use Exp_Tss;
7f4c1903 40with Fname; use Fname;
70482933 41with Freeze; use Freeze;
70482933 42with Itypes; use Itypes;
07fc65c4 43with Lib; use Lib;
0f95b178 44with Namet; use Namet;
70482933
RK
45with Nmake; use Nmake;
46with Nlists; use Nlists;
c5ee5ad2 47with Opt; use Opt;
70482933 48with Restrict; use Restrict;
6e937c1c 49with Rident; use Rident;
70482933 50with Rtsfind; use Rtsfind;
07fc65c4 51with Ttypes; use Ttypes;
70482933 52with Sem; use Sem;
9f90d123 53with Sem_Aggr; use Sem_Aggr;
a4100e55 54with Sem_Aux; use Sem_Aux;
70482933
RK
55with Sem_Ch3; use Sem_Ch3;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res; use Sem_Res;
58with Sem_Util; use Sem_Util;
59with Sinfo; use Sinfo;
60with Snames; use Snames;
61with Stand; use Stand;
354c3840 62with Stringt; use Stringt;
6465b6a7 63with Targparm; use Targparm;
70482933
RK
64with Tbuild; use Tbuild;
65with Uintp; use Uintp;
66
67package body Exp_Aggr is
68
69 type Case_Bounds is record
70 Choice_Lo : Node_Id;
71 Choice_Hi : Node_Id;
72 Choice_Node : Node_Id;
73 end record;
74
75 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
76 -- Table type used by Check_Case_Choices procedure
77
4ac2bbbd
AC
78 procedure Collect_Initialization_Statements
79 (Obj : Entity_Id;
80 N : Node_Id;
81 Node_After : Node_Id);
82 -- If Obj is not frozen, collect actions inserted after N until, but not
83 -- including, Node_After, for initialization of Obj, and move them to an
84 -- expression with actions, which becomes the Initialization_Statements for
85 -- Obj.
86
df3e68b1
HK
87 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
88 -- N is an aggregate (record or array). Checks the presence of default
89 -- initialization (<>) in any component (Ada 2005: AI-287).
90
91 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
92 -- Returns true if N is an aggregate used to initialize the components
b465ef6f 93 -- of a statically allocated dispatch table.
df3e68b1 94
3cf3e5c6
AC
95 function Must_Slide
96 (Obj_Type : Entity_Id;
97 Typ : Entity_Id) return Boolean;
98 -- A static array aggregate in an object declaration can in most cases be
99 -- expanded in place. The one exception is when the aggregate is given
100 -- with component associations that specify different bounds from those of
101 -- the type definition in the object declaration. In this pathological
102 -- case the aggregate must slide, and we must introduce an intermediate
103 -- temporary to hold it.
104 --
105 -- The same holds in an assignment to one-dimensional array of arrays,
106 -- when a component may be given with bounds that differ from those of the
107 -- component type.
108
70482933
RK
109 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
110 -- Sort the Case Table using the Lower Bound of each Choice as the key.
111 -- A simple insertion sort is used since the number of choices in a case
112 -- statement of variant part will usually be small and probably in near
113 -- sorted order.
114
115 ------------------------------------------------------
116 -- Local subprograms for Record Aggregate Expansion --
117 ------------------------------------------------------
118
df3e68b1 119 function Build_Record_Aggr_Code
f7e6fc47
RD
120 (N : Node_Id;
121 Typ : Entity_Id;
122 Lhs : Node_Id) return List_Id;
df3e68b1
HK
123 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
124 -- aggregate. Target is an expression containing the location on which the
125 -- component by component assignments will take place. Returns the list of
126 -- assignments plus all other adjustments needed for tagged and controlled
203ddcea 127 -- types.
df3e68b1
HK
128
129 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
130 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
131 -- aggregate (which can only be a record type, this procedure is only used
132 -- for record types). Transform the given aggregate into a sequence of
133 -- assignments performed component by component.
134
70482933
RK
135 procedure Expand_Record_Aggregate
136 (N : Node_Id;
137 Orig_Tag : Node_Id := Empty;
138 Parent_Expr : Node_Id := Empty);
139 -- This is the top level procedure for record aggregate expansion.
140 -- Expansion for record aggregates needs expand aggregates for tagged
141 -- record types. Specifically Expand_Record_Aggregate adds the Tag
142 -- field in front of the Component_Association list that was created
143 -- during resolution by Resolve_Record_Aggregate.
144 --
145 -- N is the record aggregate node.
146 -- Orig_Tag is the value of the Tag that has to be provided for this
147 -- specific aggregate. It carries the tag corresponding to the type
148 -- of the outermost aggregate during the recursive expansion
149 -- Parent_Expr is the ancestor part of the original extension
150 -- aggregate
151
fbf5a39b 152 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
b465ef6f 153 -- Return true if one of the components is of a discriminated type with
fbf5a39b
AC
154 -- defaults. An aggregate for a type with mutable components must be
155 -- expanded into individual assignments.
156
07fc65c4
GB
157 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
158 -- If the type of the aggregate is a type extension with renamed discrimi-
159 -- nants, we must initialize the hidden discriminants of the parent.
160 -- Otherwise, the target object must not be initialized. The discriminants
161 -- are initialized by calling the initialization procedure for the type.
162 -- This is incorrect if the initialization of other components has any
163 -- side effects. We restrict this call to the case where the parent type
164 -- has a variant part, because this is the only case where the hidden
165 -- discriminants are accessed, namely when calling discriminant checking
166 -- functions of the parent type, and when applying a stream attribute to
167 -- an object of the derived type.
168
70482933 169 -----------------------------------------------------
07fc65c4 170 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
171 -----------------------------------------------------
172
58fda84d 173 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
841dd0f5
AC
174 -- Very large static aggregates present problems to the back-end, and are
175 -- transformed into assignments and loops. This function verifies that the
176 -- total number of components of an aggregate is acceptable for rewriting
74e7891f
RD
177 -- into a purely positional static form. Aggr_Size_OK must be called before
178 -- calling Flatten.
179 --
841dd0f5
AC
180 -- This function also detects and warns about one-component aggregates that
181 -- appear in a non-static context. Even if the component value is static,
182 -- such an aggregate must be expanded into an assignment.
643a0839 183
df3e68b1
HK
184 function Backend_Processing_Possible (N : Node_Id) return Boolean;
185 -- This function checks if array aggregate N can be processed directly
b465ef6f 186 -- by the backend. If this is the case, True is returned.
df3e68b1
HK
187
188 function Build_Array_Aggr_Code
189 (N : Node_Id;
190 Ctype : Entity_Id;
191 Index : Node_Id;
192 Into : Node_Id;
193 Scalar_Comp : Boolean;
194 Indexes : List_Id := No_List) return List_Id;
195 -- This recursive routine returns a list of statements containing the
196 -- loops and assignments that are needed for the expansion of the array
197 -- aggregate N.
198 --
199 -- N is the (sub-)aggregate node to be expanded into code. This node has
200 -- been fully analyzed, and its Etype is properly set.
201 --
202 -- Index is the index node corresponding to the array sub-aggregate N
203 --
204 -- Into is the target expression into which we are copying the aggregate.
205 -- Note that this node may not have been analyzed yet, and so the Etype
206 -- field may not be set.
207 --
208 -- Scalar_Comp is True if the component type of the aggregate is scalar
209 --
210 -- Indexes is the current list of expressions used to index the object we
211 -- are writing into.
212
6f639c98
ES
213 procedure Convert_Array_Aggr_In_Allocator
214 (Decl : Node_Id;
215 Aggr : Node_Id;
216 Target : Node_Id);
217 -- If the aggregate appears within an allocator and can be expanded in
218 -- place, this routine generates the individual assignments to components
219 -- of the designated object. This is an optimization over the general
220 -- case, where a temporary is first created on the stack and then used to
221 -- construct the allocated object on the heap.
222
07fc65c4
GB
223 procedure Convert_To_Positional
224 (N : Node_Id;
fbf5a39b 225 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
226 Handle_Bit_Packed : Boolean := False);
227 -- If possible, convert named notation to positional notation. This
3cf3e5c6
AC
228 -- conversion is possible only in some static cases. If the conversion is
229 -- possible, then N is rewritten with the analyzed converted aggregate.
230 -- The parameter Max_Others_Replicate controls the maximum number of
231 -- values corresponding to an others choice that will be converted to
232 -- positional notation (the default of 5 is the normal limit, and reflects
233 -- the fact that normally the loop is better than a lot of separate
234 -- assignments). Note that this limit gets overridden in any case if
235 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
236 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
237 -- not expect the back end to handle bit packed arrays, so the normal case
238 -- of conversion is pointless), but in the special case of a call from
239 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
240 -- these are cases we handle in there.
07fc65c4 241
65e78a74
AC
242 -- It would seem worthwhile to have a higher default value for Max_Others_
243 -- replicate, but aggregates in the compiler make this impossible: the
244 -- compiler bootstrap fails if Max_Others_Replicate is greater than 25.
245 -- This is unexpected ???
246
70482933
RK
247 procedure Expand_Array_Aggregate (N : Node_Id);
248 -- This is the top-level routine to perform array aggregate expansion.
249 -- N is the N_Aggregate node to be expanded.
250
dc3af7e2 251 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
dc3af7e2
AC
252 -- For two-dimensional packed aggregates with constant bounds and constant
253 -- components, it is preferable to pack the inner aggregates because the
254 -- whole matrix can then be presented to the back-end as a one-dimensional
255 -- list of literals. This is much more efficient than expanding into single
2791be24
AC
256 -- component assignments. This function determines if the type Typ is for
257 -- an array that is suitable for this optimization: it returns True if Typ
258 -- is a two dimensional bit packed array with component size 1, 2, or 4.
dc3af7e2 259
70482933
RK
260 function Late_Expansion
261 (N : Node_Id;
262 Typ : Entity_Id;
df3e68b1
HK
263 Target : Node_Id) return List_Id;
264 -- This routine implements top-down expansion of nested aggregates. In
50decc81
RD
265 -- doing so, it avoids the generation of temporaries at each level. N is
266 -- a nested record or array aggregate with the Expansion_Delayed flag.
267 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
268 -- expression that will hold the result of the aggregate expansion.
70482933
RK
269
270 function Make_OK_Assignment_Statement
271 (Sloc : Source_Ptr;
272 Name : Node_Id;
0f95b178 273 Expression : Node_Id) return Node_Id;
70482933 274 -- This is like Make_Assignment_Statement, except that Assignment_OK
50decc81
RD
275 -- is set in the left operand. All assignments built by this unit use
276 -- this routine. This is needed to deal with assignments to initialized
277 -- constants that are done in place.
70482933 278
df3e68b1
HK
279 function Number_Of_Choices (N : Node_Id) return Nat;
280 -- Returns the number of discrete choices (not including the others choice
281 -- if present) contained in (sub-)aggregate N.
282
07fc65c4
GB
283 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
284 -- Given an array aggregate, this function handles the case of a packed
285 -- array aggregate with all constant values, where the aggregate can be
286 -- evaluated at compile time. If this is possible, then N is rewritten
287 -- to be its proper compile time value with all the components properly
50decc81
RD
288 -- assembled. The expression is analyzed and resolved and True is returned.
289 -- If this transformation is not possible, N is unchanged and False is
290 -- returned.
07fc65c4 291
5eeeed5e
AC
292 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
293 -- If the type of the aggregate is a two-dimensional bit_packed array
294 -- it may be transformed into an array of bytes with constant values,
295 -- and presented to the back-end as a static value. The function returns
296 -- false if this transformation cannot be performed. THis is similar to,
297 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
298
643a0839
ES
299 ------------------
300 -- Aggr_Size_OK --
301 ------------------
302
58fda84d 303 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
643a0839
ES
304 Lo : Node_Id;
305 Hi : Node_Id;
306 Indx : Node_Id;
307 Siz : Int;
308 Lov : Uint;
309 Hiv : Uint;
310
303fbb20
AC
311 Max_Aggr_Size : Nat;
312 -- Determines the maximum size of an array aggregate produced by
313 -- converting named to positional notation (e.g. from others clauses).
314 -- This avoids running away with attempts to convert huge aggregates,
315 -- which hit memory limits in the backend.
643a0839
ES
316
317 function Component_Count (T : Entity_Id) return Int;
318 -- The limit is applied to the total number of components that the
319 -- aggregate will have, which is the number of static expressions
320 -- that will appear in the flattened array. This requires a recursive
16b05213 321 -- computation of the number of scalar components of the structure.
643a0839
ES
322
323 ---------------------
324 -- Component_Count --
325 ---------------------
326
327 function Component_Count (T : Entity_Id) return Int is
328 Res : Int := 0;
329 Comp : Entity_Id;
330
331 begin
332 if Is_Scalar_Type (T) then
333 return 1;
334
335 elsif Is_Record_Type (T) then
336 Comp := First_Component (T);
337 while Present (Comp) loop
338 Res := Res + Component_Count (Etype (Comp));
339 Next_Component (Comp);
340 end loop;
341
342 return Res;
343
344 elsif Is_Array_Type (T) then
345 declare
346 Lo : constant Node_Id :=
15f0f591 347 Type_Low_Bound (Etype (First_Index (T)));
643a0839 348 Hi : constant Node_Id :=
15f0f591 349 Type_High_Bound (Etype (First_Index (T)));
643a0839 350
50decc81 351 Siz : constant Int := Component_Count (Component_Type (T));
643a0839
ES
352
353 begin
354 if not Compile_Time_Known_Value (Lo)
355 or else not Compile_Time_Known_Value (Hi)
356 then
357 return 0;
358 else
359 return
360 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
361 end if;
362 end;
363
364 else
365 -- Can only be a null for an access type
366
367 return 1;
368 end if;
369 end Component_Count;
370
371 -- Start of processing for Aggr_Size_OK
372
373 begin
b9ec8463 374 -- The normal aggregate limit is 50000, but we increase this limit to
303fbb20
AC
375 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
376 -- Restrictions (No_Implicit_Loops) is specified, since in either case
377 -- we are at risk of declaring the program illegal because of this
378 -- limit. We also increase the limit when Static_Elaboration_Desired,
379 -- given that this means that objects are intended to be placed in data
380 -- memory.
381
382 -- We also increase the limit if the aggregate is for a packed two-
383 -- dimensional array, because if components are static it is much more
384 -- efficient to construct a one-dimensional equivalent array with static
385 -- components.
386
b9ec8463
AC
387 -- Conversely, we decrease the maximum size if none of the above
388 -- requirements apply, and if the aggregate has a single component
389 -- association, which will be more efficient if implemented with a loop.
390
303fbb20
AC
391 -- Finally, we use a small limit in CodePeer mode where we favor loops
392 -- instead of thousands of single assignments (from large aggregates).
393
b9ec8463 394 Max_Aggr_Size := 50000;
303fbb20
AC
395
396 if CodePeer_Mode then
397 Max_Aggr_Size := 100;
398
399 elsif Restriction_Active (No_Elaboration_Code)
400 or else Restriction_Active (No_Implicit_Loops)
401 or else Is_Two_Dim_Packed_Array (Typ)
36a66365
AC
402 or else (Ekind (Current_Scope) = E_Package
403 and then Static_Elaboration_Desired (Current_Scope))
303fbb20
AC
404 then
405 Max_Aggr_Size := 2 ** 24;
b9ec8463
AC
406
407 elsif No (Expressions (N))
408 and then No (Next (First (Component_Associations (N))))
409 then
410 Max_Aggr_Size := 5000;
303fbb20
AC
411 end if;
412
643a0839 413 Siz := Component_Count (Component_Type (Typ));
643a0839 414
5277cab6 415 Indx := First_Index (Typ);
643a0839
ES
416 while Present (Indx) loop
417 Lo := Type_Low_Bound (Etype (Indx));
418 Hi := Type_High_Bound (Etype (Indx));
419
420 -- Bounds need to be known at compile time
421
422 if not Compile_Time_Known_Value (Lo)
423 or else not Compile_Time_Known_Value (Hi)
424 then
425 return False;
426 end if;
427
428 Lov := Expr_Value (Lo);
429 Hiv := Expr_Value (Hi);
430
431 -- A flat array is always safe
432
433 if Hiv < Lov then
434 return True;
435 end if;
436
86038a88
RD
437 -- One-component aggregates are suspicious, and if the context type
438 -- is an object declaration with non-static bounds it will trip gcc;
439 -- such an aggregate must be expanded into a single assignment.
58fda84d 440
36a66365 441 if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
58fda84d
ES
442 declare
443 Index_Type : constant Entity_Id :=
15f0f591
AC
444 Etype
445 (First_Index (Etype (Defining_Identifier (Parent (N)))));
86038a88
RD
446 Indx : Node_Id;
447
58fda84d
ES
448 begin
449 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
36a66365
AC
450 or else not Compile_Time_Known_Value
451 (Type_High_Bound (Index_Type))
58fda84d
ES
452 then
453 if Present (Component_Associations (N)) then
454 Indx :=
455 First (Choices (First (Component_Associations (N))));
324ac540 456
58fda84d
ES
457 if Is_Entity_Name (Indx)
458 and then not Is_Type (Entity (Indx))
459 then
460 Error_Msg_N
324ac540
AC
461 ("single component aggregate in "
462 & "non-static context??", Indx);
463 Error_Msg_N ("\maybe subtype name was meant??", Indx);
58fda84d
ES
464 end if;
465 end if;
466
467 return False;
468 end if;
469 end;
470 end if;
471
643a0839
ES
472 declare
473 Rng : constant Uint := Hiv - Lov + 1;
474
475 begin
476 -- Check if size is too large
477
478 if not UI_Is_In_Int_Range (Rng) then
479 return False;
480 end if;
481
482 Siz := Siz * UI_To_Int (Rng);
483 end;
484
485 if Siz <= 0
486 or else Siz > Max_Aggr_Size
487 then
488 return False;
489 end if;
490
491 -- Bounds must be in integer range, for later array construction
492
493 if not UI_Is_In_Int_Range (Lov)
494 or else
495 not UI_Is_In_Int_Range (Hiv)
496 then
497 return False;
498 end if;
499
500 Next_Index (Indx);
501 end loop;
502
503 return True;
504 end Aggr_Size_OK;
505
70482933
RK
506 ---------------------------------
507 -- Backend_Processing_Possible --
508 ---------------------------------
509
510 -- Backend processing by Gigi/gcc is possible only if all the following
511 -- conditions are met:
512
513 -- 1. N is fully positional
514
515 -- 2. N is not a bit-packed array aggregate;
516
517 -- 3. The size of N's array type must be known at compile time. Note
518 -- that this implies that the component size is also known
519
520 -- 4. The array type of N does not follow the Fortran layout convention
521 -- or if it does it must be 1 dimensional.
522
0f95b178
JM
523 -- 5. The array component type may not be tagged (which could necessitate
524 -- reassignment of proper tags).
70482933 525
0f95b178
JM
526 -- 6. The array component type must not have unaligned bit components
527
528 -- 7. None of the components of the aggregate may be bit unaligned
529 -- components.
530
531 -- 8. There cannot be delayed components, since we do not know enough
532 -- at this stage to know if back end processing is possible.
533
534 -- 9. There cannot be any discriminated record components, since the
535 -- back end cannot handle this complex case.
91b1417d 536
7f4c1903 537 -- 10. No controlled actions need to be generated for components
a8f59a33 538
477b99b6 539 -- 11. For a VM back end, the array should have no aliased components
6465b6a7 540
70482933
RK
541 function Backend_Processing_Possible (N : Node_Id) return Boolean is
542 Typ : constant Entity_Id := Etype (N);
3cf3e5c6 543 -- Typ is the correct constrained array subtype of the aggregate
70482933 544
0f95b178
JM
545 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
546 -- This routine checks components of aggregate N, enforcing checks
547 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
548 -- performed on subaggregates. The Index value is the current index
549 -- being checked in the multi-dimensional case.
70482933 550
0f95b178
JM
551 ---------------------
552 -- Component_Check --
553 ---------------------
70482933 554
0f95b178 555 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
70482933
RK
556 Expr : Node_Id;
557
558 begin
0f95b178 559 -- Checks 1: (no component associations)
70482933
RK
560
561 if Present (Component_Associations (N)) then
562 return False;
563 end if;
564
0f95b178
JM
565 -- Checks on components
566
70482933
RK
567 -- Recurse to check subaggregates, which may appear in qualified
568 -- expressions. If delayed, the front-end will have to expand.
5277cab6
ES
569 -- If the component is a discriminated record, treat as non-static,
570 -- as the back-end cannot handle this properly.
70482933
RK
571
572 Expr := First (Expressions (N));
70482933 573 while Present (Expr) loop
0f95b178
JM
574
575 -- Checks 8: (no delayed components)
576
70482933
RK
577 if Is_Delayed_Aggregate (Expr) then
578 return False;
579 end if;
580
0f95b178
JM
581 -- Checks 9: (no discriminated records)
582
5277cab6
ES
583 if Present (Etype (Expr))
584 and then Is_Record_Type (Etype (Expr))
585 and then Has_Discriminants (Etype (Expr))
586 then
587 return False;
588 end if;
589
0f95b178
JM
590 -- Checks 7. Component must not be bit aligned component
591
592 if Possible_Bit_Aligned_Component (Expr) then
593 return False;
594 end if;
595
596 -- Recursion to following indexes for multiple dimension case
597
70482933 598 if Present (Next_Index (Index))
36a66365 599 and then not Component_Check (Expr, Next_Index (Index))
70482933
RK
600 then
601 return False;
602 end if;
603
0f95b178
JM
604 -- All checks for that component finished, on to next
605
70482933
RK
606 Next (Expr);
607 end loop;
608
609 return True;
0f95b178 610 end Component_Check;
70482933
RK
611
612 -- Start of processing for Backend_Processing_Possible
613
614 begin
a8f59a33 615 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
70482933 616
a8f59a33 617 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
70482933
RK
618 return False;
619 end if;
620
a38ff9b1
ES
621 -- If component is limited, aggregate must be expanded because each
622 -- component assignment must be built in place.
623
51245e2d 624 if Is_Limited_View (Component_Type (Typ)) then
a38ff9b1
ES
625 return False;
626 end if;
627
91b1417d 628 -- Checks 4 (array must not be multi-dimensional Fortran case)
70482933
RK
629
630 if Convention (Typ) = Convention_Fortran
631 and then Number_Dimensions (Typ) > 1
632 then
633 return False;
634 end if;
635
636 -- Checks 3 (size of array must be known at compile time)
637
638 if not Size_Known_At_Compile_Time (Typ) then
639 return False;
640 end if;
641
0f95b178 642 -- Checks on components
70482933 643
0f95b178 644 if not Component_Check (N, First_Index (Typ)) then
70482933
RK
645 return False;
646 end if;
647
0f95b178 648 -- Checks 5 (if the component type is tagged, then we may need to do
36a66365
AC
649 -- tag adjustments. Perhaps this should be refined to check for any
650 -- component associations that actually need tag adjustment, similar
651 -- to the test in Component_Not_OK_For_Backend for record aggregates
652 -- with tagged components, but not clear whether it's worthwhile ???;
653 -- in the case of the JVM, object tags are handled implicitly)
70482933 654
1f110335
AC
655 if Is_Tagged_Type (Component_Type (Typ))
656 and then Tagged_Type_Expansion
657 then
70482933
RK
658 return False;
659 end if;
660
91b1417d
AC
661 -- Checks 6 (component type must not have bit aligned components)
662
663 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
664 return False;
665 end if;
666
6465b6a7
AC
667 -- Checks 11: Array aggregates with aliased components are currently
668 -- not well supported by the VM backend; disable temporarily this
669 -- backend processing until it is definitely supported.
670
671 if VM_Target /= No_VM
672 and then Has_Aliased_Components (Base_Type (Typ))
673 then
674 return False;
675 end if;
676
70482933
RK
677 -- Backend processing is possible
678
70482933
RK
679 Set_Size_Known_At_Compile_Time (Etype (N), True);
680 return True;
681 end Backend_Processing_Possible;
682
683 ---------------------------
684 -- Build_Array_Aggr_Code --
685 ---------------------------
686
687 -- The code that we generate from a one dimensional aggregate is
688
689 -- 1. If the sub-aggregate contains discrete choices we
690
691 -- (a) Sort the discrete choices
692
693 -- (b) Otherwise for each discrete choice that specifies a range we
694 -- emit a loop. If a range specifies a maximum of three values, or
695 -- we are dealing with an expression we emit a sequence of
696 -- assignments instead of a loop.
697
3cf3e5c6 698 -- (c) Generate the remaining loops to cover the others choice if any
70482933
RK
699
700 -- 2. If the aggregate contains positional elements we
701
3cf3e5c6 702 -- (a) translate the positional elements in a series of assignments
70482933
RK
703
704 -- (b) Generate a final loop to cover the others choice if any.
705 -- Note that this final loop has to be a while loop since the case
706
707 -- L : Integer := Integer'Last;
708 -- H : Integer := Integer'Last;
709 -- A : array (L .. H) := (1, others =>0);
710
711 -- cannot be handled by a for loop. Thus for the following
712
713 -- array (L .. H) := (.. positional elements.., others =>E);
714
715 -- we always generate something like:
716
07fc65c4
GB
717 -- J : Index_Type := Index_Of_Last_Positional_Element;
718 -- while J < H loop
719 -- J := Index_Base'Succ (J)
720 -- Tmp (J) := E;
70482933
RK
721 -- end loop;
722
723 function Build_Array_Aggr_Code
724 (N : Node_Id;
c45b6ae0 725 Ctype : Entity_Id;
70482933
RK
726 Index : Node_Id;
727 Into : Node_Id;
728 Scalar_Comp : Boolean;
df3e68b1 729 Indexes : List_Id := No_List) return List_Id
70482933
RK
730 is
731 Loc : constant Source_Ptr := Sloc (N);
732 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
733 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
734 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
735
736 function Add (Val : Int; To : Node_Id) return Node_Id;
3cf3e5c6
AC
737 -- Returns an expression where Val is added to expression To, unless
738 -- To+Val is provably out of To's base type range. To must be an
739 -- already analyzed expression.
70482933
RK
740
741 function Empty_Range (L, H : Node_Id) return Boolean;
3cf3e5c6 742 -- Returns True if the range defined by L .. H is certainly empty
70482933
RK
743
744 function Equal (L, H : Node_Id) return Boolean;
3cf3e5c6 745 -- Returns True if L = H for sure
70482933
RK
746
747 function Index_Base_Name return Node_Id;
3cf3e5c6 748 -- Returns a new reference to the index type name
70482933
RK
749
750 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
fbf5a39b
AC
751 -- Ind must be a side-effect free expression. If the input aggregate
752 -- N to Build_Loop contains no sub-aggregates, then this function
753 -- returns the assignment statement:
70482933 754 --
deeb1604 755 -- Into (Indexes, Ind) := Expr;
70482933 756 --
3cf3e5c6 757 -- Otherwise we call Build_Code recursively
c45b6ae0 758 --
0ab80019
AC
759 -- Ada 2005 (AI-287): In case of default initialized component, Expr
760 -- is empty and we generate a call to the corresponding IP subprogram.
70482933
RK
761
762 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
763 -- Nodes L and H must be side-effect free expressions.
764 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
765 -- This routine returns the for loop statement
766 --
767 -- for J in Index_Base'(L) .. Index_Base'(H) loop
deeb1604 768 -- Into (Indexes, J) := Expr;
70482933
RK
769 -- end loop;
770 --
771 -- Otherwise we call Build_Code recursively.
772 -- As an optimization if the loop covers 3 or less scalar elements we
773 -- generate a sequence of assignments.
774
775 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
776 -- Nodes L and H must be side-effect free expressions.
777 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
778 -- This routine returns the while loop statement
779 --
07fc65c4
GB
780 -- J : Index_Base := L;
781 -- while J < H loop
782 -- J := Index_Base'Succ (J);
deeb1604 783 -- Into (Indexes, J) := Expr;
70482933
RK
784 -- end loop;
785 --
fbf5a39b 786 -- Otherwise we call Build_Code recursively
70482933
RK
787
788 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
789 function Local_Expr_Value (E : Node_Id) return Uint;
790 -- These two Local routines are used to replace the corresponding ones
791 -- in sem_eval because while processing the bounds of an aggregate with
792 -- discrete choices whose index type is an enumeration, we build static
793 -- expressions not recognized by Compile_Time_Known_Value as such since
794 -- they have not yet been analyzed and resolved. All the expressions in
795 -- question are things like Index_Base_Name'Val (Const) which we can
796 -- easily recognize as being constant.
797
798 ---------
799 -- Add --
800 ---------
801
802 function Add (Val : Int; To : Node_Id) return Node_Id is
803 Expr_Pos : Node_Id;
804 Expr : Node_Id;
805 To_Pos : Node_Id;
fbf5a39b
AC
806 U_To : Uint;
807 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
808
809 begin
810 -- Note: do not try to optimize the case of Val = 0, because
811 -- we need to build a new node with the proper Sloc value anyway.
812
813 -- First test if we can do constant folding
814
815 if Local_Compile_Time_Known_Value (To) then
816 U_To := Local_Expr_Value (To) + Val;
817
818 -- Determine if our constant is outside the range of the index.
819 -- If so return an Empty node. This empty node will be caught
820 -- by Empty_Range below.
821
822 if Compile_Time_Known_Value (Index_Base_L)
823 and then U_To < Expr_Value (Index_Base_L)
824 then
825 return Empty;
826
827 elsif Compile_Time_Known_Value (Index_Base_H)
828 and then U_To > Expr_Value (Index_Base_H)
829 then
830 return Empty;
831 end if;
832
833 Expr_Pos := Make_Integer_Literal (Loc, U_To);
834 Set_Is_Static_Expression (Expr_Pos);
835
836 if not Is_Enumeration_Type (Index_Base) then
837 Expr := Expr_Pos;
838
839 -- If we are dealing with enumeration return
840 -- Index_Base'Val (Expr_Pos)
841
842 else
843 Expr :=
844 Make_Attribute_Reference
845 (Loc,
846 Prefix => Index_Base_Name,
847 Attribute_Name => Name_Val,
848 Expressions => New_List (Expr_Pos));
849 end if;
850
851 return Expr;
852 end if;
853
854 -- If we are here no constant folding possible
855
856 if not Is_Enumeration_Type (Index_Base) then
857 Expr :=
858 Make_Op_Add (Loc,
47c14114
AC
859 Left_Opnd => Duplicate_Subexpr (To),
860 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
861
862 -- If we are dealing with enumeration return
863 -- Index_Base'Val (Index_Base'Pos (To) + Val)
864
865 else
866 To_Pos :=
867 Make_Attribute_Reference
868 (Loc,
869 Prefix => Index_Base_Name,
870 Attribute_Name => Name_Pos,
871 Expressions => New_List (Duplicate_Subexpr (To)));
872
873 Expr_Pos :=
874 Make_Op_Add (Loc,
47c14114
AC
875 Left_Opnd => To_Pos,
876 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
877
878 Expr :=
879 Make_Attribute_Reference
880 (Loc,
881 Prefix => Index_Base_Name,
882 Attribute_Name => Name_Val,
883 Expressions => New_List (Expr_Pos));
884 end if;
885
886 return Expr;
887 end Add;
888
889 -----------------
890 -- Empty_Range --
891 -----------------
892
893 function Empty_Range (L, H : Node_Id) return Boolean is
894 Is_Empty : Boolean := False;
895 Low : Node_Id;
896 High : Node_Id;
897
898 begin
899 -- First check if L or H were already detected as overflowing the
900 -- index base range type by function Add above. If this is so Add
901 -- returns the empty node.
902
903 if No (L) or else No (H) then
904 return True;
905 end if;
906
907 for J in 1 .. 3 loop
908 case J is
909
910 -- L > H range is empty
911
912 when 1 =>
913 Low := L;
914 High := H;
915
916 -- B_L > H range must be empty
917
918 when 2 =>
919 Low := Index_Base_L;
920 High := H;
921
922 -- L > B_H range must be empty
923
924 when 3 =>
925 Low := L;
926 High := Index_Base_H;
927 end case;
928
929 if Local_Compile_Time_Known_Value (Low)
36a66365
AC
930 and then
931 Local_Compile_Time_Known_Value (High)
70482933
RK
932 then
933 Is_Empty :=
934 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
935 end if;
936
937 exit when Is_Empty;
938 end loop;
939
940 return Is_Empty;
941 end Empty_Range;
942
943 -----------
944 -- Equal --
945 -----------
946
947 function Equal (L, H : Node_Id) return Boolean is
948 begin
949 if L = H then
950 return True;
951
952 elsif Local_Compile_Time_Known_Value (L)
36a66365
AC
953 and then
954 Local_Compile_Time_Known_Value (H)
70482933
RK
955 then
956 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
957 end if;
958
959 return False;
960 end Equal;
961
962 ----------------
963 -- Gen_Assign --
964 ----------------
965
966 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
fbf5a39b 967 L : constant List_Id := New_List;
70482933
RK
968 A : Node_Id;
969
deeb1604 970 New_Indexes : List_Id;
70482933
RK
971 Indexed_Comp : Node_Id;
972 Expr_Q : Node_Id;
973 Comp_Type : Entity_Id := Empty;
974
975 function Add_Loop_Actions (Lis : List_Id) return List_Id;
976 -- Collect insert_actions generated in the construction of a
977 -- loop, and prepend them to the sequence of assignments to
978 -- complete the eventual body of the loop.
979
980 ----------------------
981 -- Add_Loop_Actions --
982 ----------------------
983
984 function Add_Loop_Actions (Lis : List_Id) return List_Id is
985 Res : List_Id;
986
987 begin
0ab80019 988 -- Ada 2005 (AI-287): Do nothing else in case of default
6e937c1c 989 -- initialized component.
c45b6ae0 990
d8f7b976 991 if No (Expr) then
c45b6ae0
AC
992 return Lis;
993
994 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
995 and then Present (Loop_Actions (Parent (Expr)))
996 then
997 Append_List (Lis, Loop_Actions (Parent (Expr)));
998 Res := Loop_Actions (Parent (Expr));
999 Set_Loop_Actions (Parent (Expr), No_List);
1000 return Res;
1001
1002 else
1003 return Lis;
1004 end if;
1005 end Add_Loop_Actions;
1006
1007 -- Start of processing for Gen_Assign
1008
1009 begin
deeb1604
AC
1010 if No (Indexes) then
1011 New_Indexes := New_List;
70482933 1012 else
deeb1604 1013 New_Indexes := New_Copy_List_Tree (Indexes);
70482933
RK
1014 end if;
1015
deeb1604 1016 Append_To (New_Indexes, Ind);
70482933 1017
70482933
RK
1018 if Present (Next_Index (Index)) then
1019 return
1020 Add_Loop_Actions (
1021 Build_Array_Aggr_Code
c45b6ae0
AC
1022 (N => Expr,
1023 Ctype => Ctype,
1024 Index => Next_Index (Index),
1025 Into => Into,
1026 Scalar_Comp => Scalar_Comp,
df3e68b1 1027 Indexes => New_Indexes));
70482933
RK
1028 end if;
1029
1030 -- If we get here then we are at a bottom-level (sub-)aggregate
1031
fbf5a39b
AC
1032 Indexed_Comp :=
1033 Checks_Off
1034 (Make_Indexed_Component (Loc,
1035 Prefix => New_Copy_Tree (Into),
deeb1604 1036 Expressions => New_Indexes));
70482933
RK
1037
1038 Set_Assignment_OK (Indexed_Comp);
1039
0ab80019 1040 -- Ada 2005 (AI-287): In case of default initialized component, Expr
6e937c1c 1041 -- is not present (and therefore we also initialize Expr_Q to empty).
c45b6ae0 1042
d8f7b976 1043 if No (Expr) then
c45b6ae0
AC
1044 Expr_Q := Empty;
1045 elsif Nkind (Expr) = N_Qualified_Expression then
70482933
RK
1046 Expr_Q := Expression (Expr);
1047 else
1048 Expr_Q := Expr;
1049 end if;
1050
36a66365 1051 if Present (Etype (N)) and then Etype (N) /= Any_Composite then
70482933 1052 Comp_Type := Component_Type (Etype (N));
c45b6ae0 1053 pragma Assert (Comp_Type = Ctype); -- AI-287
70482933 1054
deeb1604 1055 elsif Present (Next (First (New_Indexes))) then
70482933 1056
0ab80019 1057 -- Ada 2005 (AI-287): Do nothing in case of default initialized
c45b6ae0
AC
1058 -- component because we have received the component type in
1059 -- the formal parameter Ctype.
6e937c1c
AC
1060
1061 -- ??? Some assert pragmas have been added to check if this new
36a66365 1062 -- formal can be used to replace this code in all cases.
70482933 1063
c45b6ae0 1064 if Present (Expr) then
70482933 1065
36a66365
AC
1066 -- This is a multidimensional array. Recover the component type
1067 -- from the outermost aggregate, because subaggregates do not
1068 -- have an assigned type.
70482933 1069
c45b6ae0 1070 declare
5277cab6 1071 P : Node_Id;
70482933 1072
c45b6ae0 1073 begin
5277cab6 1074 P := Parent (Expr);
c45b6ae0 1075 while Present (P) loop
c45b6ae0
AC
1076 if Nkind (P) = N_Aggregate
1077 and then Present (Etype (P))
1078 then
1079 Comp_Type := Component_Type (Etype (P));
1080 exit;
1081
1082 else
1083 P := Parent (P);
1084 end if;
1085 end loop;
6e937c1c 1086
c45b6ae0
AC
1087 pragma Assert (Comp_Type = Ctype); -- AI-287
1088 end;
1089 end if;
70482933
RK
1090 end if;
1091
0ab80019 1092 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
6e937c1c 1093 -- default initialized components (otherwise Expr_Q is not present).
c45b6ae0
AC
1094
1095 if Present (Expr_Q)
d7f94401 1096 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
70482933 1097 then
d7f94401
AC
1098 -- At this stage the Expression may not have been analyzed yet
1099 -- because the array aggregate code has not been updated to use
1100 -- the Expansion_Delayed flag and avoid analysis altogether to
1101 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1102 -- the analysis of non-array aggregates now in order to get the
1103 -- value of Expansion_Delayed flag for the inner aggregate ???
70482933
RK
1104
1105 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1106 Analyze_And_Resolve (Expr_Q, Comp_Type);
1107 end if;
1108
1109 if Is_Delayed_Aggregate (Expr_Q) then
3cf3e5c6 1110
308e6f3a 1111 -- This is either a subaggregate of a multidimensional array,
3cf3e5c6
AC
1112 -- or a component of an array type whose component type is
1113 -- also an array. In the latter case, the expression may have
1114 -- component associations that provide different bounds from
1115 -- those of the component type, and sliding must occur. Instead
1116 -- of decomposing the current aggregate assignment, force the
1117 -- re-analysis of the assignment, so that a temporary will be
1118 -- generated in the usual fashion, and sliding will take place.
1119
1120 if Nkind (Parent (N)) = N_Assignment_Statement
1121 and then Is_Array_Type (Comp_Type)
1122 and then Present (Component_Associations (Expr_Q))
1123 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1124 then
1125 Set_Expansion_Delayed (Expr_Q, False);
1126 Set_Analyzed (Expr_Q, False);
1127
1128 else
1129 return
1130 Add_Loop_Actions (
df3e68b1 1131 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
3cf3e5c6 1132 end if;
70482933
RK
1133 end if;
1134 end if;
1135
0ab80019 1136 -- Ada 2005 (AI-287): In case of default initialized component, call
6e937c1c 1137 -- the initialization subprogram associated with the component type.
3b9fa2df
ES
1138 -- If the component type is an access type, add an explicit null
1139 -- assignment, because for the back-end there is an initialization
1140 -- present for the whole aggregate, and no default initialization
1141 -- will take place.
1142
1143 -- In addition, if the component type is controlled, we must call
1144 -- its Initialize procedure explicitly, because there is no explicit
1145 -- object creation that will invoke it otherwise.
70482933 1146
d8f7b976 1147 if No (Expr) then
3b9fa2df 1148 if Present (Base_Init_Proc (Base_Type (Ctype)))
615cbd95
AC
1149 or else Has_Task (Base_Type (Ctype))
1150 then
1151 Append_List_To (L,
c45b6ae0
AC
1152 Build_Initialization_Call (Loc,
1153 Id_Ref => Indexed_Comp,
1154 Typ => Ctype,
1155 With_Default_Init => True));
3b9fa2df
ES
1156
1157 elsif Is_Access_Type (Ctype) then
1158 Append_To (L,
1159 Make_Assignment_Statement (Loc,
579847c2
AC
1160 Name => Indexed_Comp,
1161 Expression => Make_Null (Loc)));
3b9fa2df
ES
1162 end if;
1163
048e5cef 1164 if Needs_Finalization (Ctype) then
df3e68b1 1165 Append_To (L,
37368818
RD
1166 Make_Init_Call
1167 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1168 Typ => Ctype));
615cbd95 1169 end if;
70482933 1170
c45b6ae0 1171 else
70482933
RK
1172 A :=
1173 Make_OK_Assignment_Statement (Loc,
c45b6ae0
AC
1174 Name => Indexed_Comp,
1175 Expression => New_Copy_Tree (Expr));
70482933 1176
376e7d14
AC
1177 -- The target of the assignment may not have been initialized,
1178 -- so it is not possible to call Finalize as expected in normal
1179 -- controlled assignments. We must also avoid using the primitive
1180 -- _assign (which depends on a valid target, and may for example
1181 -- perform discriminant checks on it).
1182
1183 -- Both Finalize and usage of _assign are disabled by setting
1184 -- No_Ctrl_Actions on the assignment. The rest of the controlled
1185 -- actions are done manually with the proper finalization list
1186 -- coming from the context.
1187
1188 Set_No_Ctrl_Actions (A);
1189
1190 -- If this is an aggregate for an array of arrays, each
1191 -- sub-aggregate will be expanded as well, and even with
1192 -- No_Ctrl_Actions the assignments of inner components will
1193 -- require attachment in their assignments to temporaries. These
1194 -- temporaries must be finalized for each subaggregate, to prevent
1195 -- multiple attachments of the same temporary location to same
1196 -- finalization chain (and consequently circular lists). To ensure
1197 -- that finalization takes place for each subaggregate we wrap the
1198 -- assignment in a block.
1199
1200 if Present (Comp_Type)
579847c2
AC
1201 and then Needs_Finalization (Comp_Type)
1202 and then Is_Array_Type (Comp_Type)
1203 and then Present (Expr)
376e7d14 1204 then
579847c2
AC
1205 A :=
1206 Make_Block_Statement (Loc,
1207 Handled_Statement_Sequence =>
1208 Make_Handled_Sequence_Of_Statements (Loc,
1209 Statements => New_List (A)));
c45b6ae0 1210 end if;
70482933
RK
1211
1212 Append_To (L, A);
70482933 1213
c45b6ae0 1214 -- Adjust the tag if tagged (because of possible view
376e7d14
AC
1215 -- conversions), unless compiling for a VM where tags
1216 -- are implicit.
70482933 1217
c45b6ae0
AC
1218 if Present (Comp_Type)
1219 and then Is_Tagged_Type (Comp_Type)
1f110335 1220 and then Tagged_Type_Expansion
c45b6ae0 1221 then
38171f43
AC
1222 declare
1223 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1224
1225 begin
1226 A :=
1227 Make_OK_Assignment_Statement (Loc,
579847c2 1228 Name =>
38171f43 1229 Make_Selected_Component (Loc,
579847c2 1230 Prefix => New_Copy_Tree (Indexed_Comp),
38171f43 1231 Selector_Name =>
e4494292 1232 New_Occurrence_Of
38171f43
AC
1233 (First_Tag_Component (Full_Typ), Loc)),
1234
1235 Expression =>
1236 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 1237 New_Occurrence_Of
38171f43
AC
1238 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1239 Loc)));
1240
1241 Append_To (L, A);
1242 end;
c45b6ae0
AC
1243 end if;
1244
0f95b178
JM
1245 -- Adjust and attach the component to the proper final list, which
1246 -- can be the controller of the outer record object or the final
1247 -- list associated with the scope.
c45b6ae0 1248
0f95b178
JM
1249 -- If the component is itself an array of controlled types, whose
1250 -- value is given by a sub-aggregate, then the attach calls have
1251 -- been generated when individual subcomponent are assigned, and
fc534c1c
ES
1252 -- must not be done again to prevent malformed finalization chains
1253 -- (see comments above, concerning the creation of a block to hold
1254 -- inner finalization actions).
0f95b178
JM
1255
1256 if Present (Comp_Type)
048e5cef 1257 and then Needs_Finalization (Comp_Type)
3b9fa2df 1258 and then not Is_Limited_Type (Comp_Type)
32beb1f3
AC
1259 and then not
1260 (Is_Array_Type (Comp_Type)
36a66365
AC
1261 and then Is_Controlled (Component_Type (Comp_Type))
1262 and then Nkind (Expr) = N_Aggregate)
0f95b178 1263 then
df3e68b1 1264 Append_To (L,
37368818
RD
1265 Make_Adjust_Call
1266 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1267 Typ => Comp_Type));
c45b6ae0 1268 end if;
70482933
RK
1269 end if;
1270
1271 return Add_Loop_Actions (L);
1272 end Gen_Assign;
1273
1274 --------------
1275 -- Gen_Loop --
1276 --------------
1277
1278 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1279 L_J : Node_Id;
70482933 1280
240fe2a4
AC
1281 L_L : Node_Id;
1282 -- Index_Base'(L)
1283
1284 L_H : Node_Id;
1285 -- Index_Base'(H)
1286
70482933
RK
1287 L_Range : Node_Id;
1288 -- Index_Base'(L) .. Index_Base'(H)
1289
1290 L_Iteration_Scheme : Node_Id;
07fc65c4 1291 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
1292
1293 L_Body : List_Id;
1294 -- The statements to execute in the loop
1295
fbf5a39b
AC
1296 S : constant List_Id := New_List;
1297 -- List of statements
70482933
RK
1298
1299 Tcopy : Node_Id;
1300 -- Copy of expression tree, used for checking purposes
1301
1302 begin
1303 -- If loop bounds define an empty range return the null statement
1304
1305 if Empty_Range (L, H) then
1306 Append_To (S, Make_Null_Statement (Loc));
1307
0ab80019 1308 -- Ada 2005 (AI-287): Nothing else need to be done in case of
6e937c1c 1309 -- default initialized component.
70482933 1310
d8f7b976 1311 if No (Expr) then
c45b6ae0
AC
1312 null;
1313
1314 else
1315 -- The expression must be type-checked even though no component
1316 -- of the aggregate will have this value. This is done only for
1317 -- actual components of the array, not for subaggregates. Do
1318 -- the check on a copy, because the expression may be shared
1319 -- among several choices, some of which might be non-null.
1320
1321 if Present (Etype (N))
1322 and then Is_Array_Type (Etype (N))
1323 and then No (Next_Index (Index))
1324 then
1325 Expander_Mode_Save_And_Set (False);
1326 Tcopy := New_Copy_Tree (Expr);
1327 Set_Parent (Tcopy, N);
1328 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1329 Expander_Mode_Restore;
1330 end if;
70482933
RK
1331 end if;
1332
1333 return S;
1334
1335 -- If loop bounds are the same then generate an assignment
1336
1337 elsif Equal (L, H) then
1338 return Gen_Assign (New_Copy_Tree (L), Expr);
1339
3b9fa2df
ES
1340 -- If H - L <= 2 then generate a sequence of assignments when we are
1341 -- processing the bottom most aggregate and it contains scalar
1342 -- components.
70482933
RK
1343
1344 elsif No (Next_Index (Index))
1345 and then Scalar_Comp
1346 and then Local_Compile_Time_Known_Value (L)
1347 and then Local_Compile_Time_Known_Value (H)
1348 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1349 then
c45b6ae0 1350
70482933
RK
1351 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1352 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1353
1354 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1355 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1356 end if;
1357
1358 return S;
1359 end if;
1360
07fc65c4 1361 -- Otherwise construct the loop, starting with the loop index L_J
70482933 1362
191fcb3a 1363 L_J := Make_Temporary (Loc, 'J', L);
70482933 1364
240fe2a4
AC
1365 -- Construct "L .. H" in Index_Base. We use a qualified expression
1366 -- for the bound to convert to the index base, but we don't need
1367 -- to do that if we already have the base type at hand.
1368
1369 if Etype (L) = Index_Base then
1370 L_L := L;
1371 else
1372 L_L :=
1373 Make_Qualified_Expression (Loc,
1374 Subtype_Mark => Index_Base_Name,
1375 Expression => L);
1376 end if;
1377
1378 if Etype (H) = Index_Base then
1379 L_H := H;
1380 else
1381 L_H :=
1382 Make_Qualified_Expression (Loc,
1383 Subtype_Mark => Index_Base_Name,
1384 Expression => H);
1385 end if;
70482933
RK
1386
1387 L_Range :=
240fe2a4
AC
1388 Make_Range (Loc,
1389 Low_Bound => L_L,
1390 High_Bound => L_H);
70482933 1391
07fc65c4 1392 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
1393
1394 L_Iteration_Scheme :=
1395 Make_Iteration_Scheme
1396 (Loc,
1397 Loop_Parameter_Specification =>
1398 Make_Loop_Parameter_Specification
1399 (Loc,
07fc65c4 1400 Defining_Identifier => L_J,
70482933
RK
1401 Discrete_Subtype_Definition => L_Range));
1402
1403 -- Construct the statements to execute in the loop body
1404
e4494292 1405 L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
70482933
RK
1406
1407 -- Construct the final loop
1408
37368818
RD
1409 Append_To (S,
1410 Make_Implicit_Loop_Statement
1411 (Node => N,
1412 Identifier => Empty,
1413 Iteration_Scheme => L_Iteration_Scheme,
1414 Statements => L_Body));
70482933 1415
3b9fa2df
ES
1416 -- A small optimization: if the aggregate is initialized with a box
1417 -- and the component type has no initialization procedure, remove the
1418 -- useless empty loop.
0f95b178
JM
1419
1420 if Nkind (First (S)) = N_Loop_Statement
1421 and then Is_Empty_List (Statements (First (S)))
1422 then
1423 return New_List (Make_Null_Statement (Loc));
1424 else
1425 return S;
1426 end if;
70482933
RK
1427 end Gen_Loop;
1428
1429 ---------------
1430 -- Gen_While --
1431 ---------------
1432
1433 -- The code built is
1434
07fc65c4
GB
1435 -- W_J : Index_Base := L;
1436 -- while W_J < H loop
1437 -- W_J := Index_Base'Succ (W);
70482933
RK
1438 -- L_Body;
1439 -- end loop;
1440
1441 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1442 W_J : Node_Id;
70482933
RK
1443
1444 W_Decl : Node_Id;
07fc65c4 1445 -- W_J : Base_Type := L;
70482933
RK
1446
1447 W_Iteration_Scheme : Node_Id;
07fc65c4 1448 -- while W_J < H
70482933
RK
1449
1450 W_Index_Succ : Node_Id;
07fc65c4 1451 -- Index_Base'Succ (J)
70482933 1452
fbf5a39b 1453 W_Increment : Node_Id;
07fc65c4 1454 -- W_J := Index_Base'Succ (W)
70482933 1455
fbf5a39b 1456 W_Body : constant List_Id := New_List;
70482933
RK
1457 -- The statements to execute in the loop
1458
fbf5a39b 1459 S : constant List_Id := New_List;
70482933
RK
1460 -- list of statement
1461
1462 begin
1463 -- If loop bounds define an empty range or are equal return null
1464
1465 if Empty_Range (L, H) or else Equal (L, H) then
1466 Append_To (S, Make_Null_Statement (Loc));
1467 return S;
1468 end if;
1469
07fc65c4 1470 -- Build the decl of W_J
70482933 1471
191fcb3a 1472 W_J := Make_Temporary (Loc, 'J', L);
70482933
RK
1473 W_Decl :=
1474 Make_Object_Declaration
1475 (Loc,
07fc65c4 1476 Defining_Identifier => W_J,
70482933
RK
1477 Object_Definition => Index_Base_Name,
1478 Expression => L);
1479
1480 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1481 -- that in this particular case L is a fresh Expr generated by
1482 -- Add which we are the only ones to use.
1483
1484 Append_To (S, W_Decl);
1485
fbf5a39b 1486 -- Construct " while W_J < H"
70482933
RK
1487
1488 W_Iteration_Scheme :=
1489 Make_Iteration_Scheme
1490 (Loc,
1491 Condition => Make_Op_Lt
1492 (Loc,
e4494292 1493 Left_Opnd => New_Occurrence_Of (W_J, Loc),
70482933
RK
1494 Right_Opnd => New_Copy_Tree (H)));
1495
1496 -- Construct the statements to execute in the loop body
1497
1498 W_Index_Succ :=
1499 Make_Attribute_Reference
1500 (Loc,
1501 Prefix => Index_Base_Name,
1502 Attribute_Name => Name_Succ,
e4494292 1503 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
70482933
RK
1504
1505 W_Increment :=
1506 Make_OK_Assignment_Statement
1507 (Loc,
e4494292 1508 Name => New_Occurrence_Of (W_J, Loc),
70482933
RK
1509 Expression => W_Index_Succ);
1510
1511 Append_To (W_Body, W_Increment);
1512 Append_List_To (W_Body,
e4494292 1513 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
70482933
RK
1514
1515 -- Construct the final loop
1516
37368818
RD
1517 Append_To (S,
1518 Make_Implicit_Loop_Statement
1519 (Node => N,
1520 Identifier => Empty,
1521 Iteration_Scheme => W_Iteration_Scheme,
1522 Statements => W_Body));
70482933
RK
1523
1524 return S;
1525 end Gen_While;
1526
1527 ---------------------
1528 -- Index_Base_Name --
1529 ---------------------
1530
1531 function Index_Base_Name return Node_Id is
1532 begin
e4494292 1533 return New_Occurrence_Of (Index_Base, Sloc (N));
70482933
RK
1534 end Index_Base_Name;
1535
1536 ------------------------------------
1537 -- Local_Compile_Time_Known_Value --
1538 ------------------------------------
1539
1540 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1541 begin
1542 return Compile_Time_Known_Value (E)
1543 or else
1544 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1545 and then Attribute_Name (E) = Name_Val
1546 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1547 end Local_Compile_Time_Known_Value;
1548
1549 ----------------------
1550 -- Local_Expr_Value --
1551 ----------------------
1552
1553 function Local_Expr_Value (E : Node_Id) return Uint is
1554 begin
1555 if Compile_Time_Known_Value (E) then
1556 return Expr_Value (E);
1557 else
1558 return Expr_Value (First (Expressions (E)));
1559 end if;
1560 end Local_Expr_Value;
1561
1562 -- Build_Array_Aggr_Code Variables
1563
1564 Assoc : Node_Id;
1565 Choice : Node_Id;
1566 Expr : Node_Id;
fbf5a39b 1567 Typ : Entity_Id;
70482933 1568
d8f7b976
ES
1569 Others_Expr : Node_Id := Empty;
1570 Others_Box_Present : Boolean := False;
70482933
RK
1571
1572 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1573 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1574 -- The aggregate bounds of this specific sub-aggregate. Note that if
1575 -- the code generated by Build_Array_Aggr_Code is executed then these
1576 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1577
fbf5a39b
AC
1578 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1579 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
7324bf49 1580 -- After Duplicate_Subexpr these are side-effect free
70482933 1581
c45b6ae0
AC
1582 Low : Node_Id;
1583 High : Node_Id;
70482933
RK
1584
1585 Nb_Choices : Nat := 0;
1586 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1587 -- Used to sort all the different choice values
1588
1589 Nb_Elements : Int;
1590 -- Number of elements in the positional aggregate
1591
fbf5a39b 1592 New_Code : constant List_Id := New_List;
70482933
RK
1593
1594 -- Start of processing for Build_Array_Aggr_Code
1595
1596 begin
fbf5a39b
AC
1597 -- First before we start, a special case. if we have a bit packed
1598 -- array represented as a modular type, then clear the value to
1599 -- zero first, to ensure that unused bits are properly cleared.
1600
1601 Typ := Etype (N);
1602
1603 if Present (Typ)
1604 and then Is_Bit_Packed_Array (Typ)
8ca597af 1605 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
fbf5a39b
AC
1606 then
1607 Append_To (New_Code,
1608 Make_Assignment_Statement (Loc,
37368818 1609 Name => New_Copy_Tree (Into),
fbf5a39b
AC
1610 Expression =>
1611 Unchecked_Convert_To (Typ,
1612 Make_Integer_Literal (Loc, Uint_0))));
1613 end if;
1614
0e08f7ab
ES
1615 -- If the component type contains tasks, we need to build a Master
1616 -- entity in the current scope, because it will be needed if build-
1617 -- in-place functions are called in the expanded code.
1618
36a66365 1619 if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
0e08f7ab
ES
1620 Build_Master_Entity (Defining_Identifier (Parent (N)));
1621 end if;
1622
70482933 1623 -- STEP 1: Process component associations
3b9fa2df 1624
fbf5a39b
AC
1625 -- For those associations that may generate a loop, initialize
1626 -- Loop_Actions to collect inserted actions that may be crated.
70482933 1627
3b9fa2df
ES
1628 -- Skip this if no component associations
1629
70482933
RK
1630 if No (Expressions (N)) then
1631
1632 -- STEP 1 (a): Sort the discrete choices
1633
1634 Assoc := First (Component_Associations (N));
1635 while Present (Assoc) loop
70482933
RK
1636 Choice := First (Choices (Assoc));
1637 while Present (Choice) loop
70482933 1638 if Nkind (Choice) = N_Others_Choice then
fbf5a39b 1639 Set_Loop_Actions (Assoc, New_List);
c45b6ae0
AC
1640
1641 if Box_Present (Assoc) then
d8f7b976 1642 Others_Box_Present := True;
c45b6ae0
AC
1643 else
1644 Others_Expr := Expression (Assoc);
1645 end if;
70482933
RK
1646 exit;
1647 end if;
1648
1649 Get_Index_Bounds (Choice, Low, High);
1650
fbf5a39b
AC
1651 if Low /= High then
1652 Set_Loop_Actions (Assoc, New_List);
1653 end if;
1654
70482933 1655 Nb_Choices := Nb_Choices + 1;
c45b6ae0
AC
1656 if Box_Present (Assoc) then
1657 Table (Nb_Choices) := (Choice_Lo => Low,
1658 Choice_Hi => High,
1659 Choice_Node => Empty);
1660 else
1661 Table (Nb_Choices) := (Choice_Lo => Low,
1662 Choice_Hi => High,
1663 Choice_Node => Expression (Assoc));
1664 end if;
70482933
RK
1665 Next (Choice);
1666 end loop;
1667
1668 Next (Assoc);
1669 end loop;
1670
1671 -- If there is more than one set of choices these must be static
1672 -- and we can therefore sort them. Remember that Nb_Choices does not
1673 -- account for an others choice.
1674
1675 if Nb_Choices > 1 then
1676 Sort_Case_Table (Table);
1677 end if;
1678
3cf3e5c6 1679 -- STEP 1 (b): take care of the whole set of discrete choices
70482933
RK
1680
1681 for J in 1 .. Nb_Choices loop
1682 Low := Table (J).Choice_Lo;
1683 High := Table (J).Choice_Hi;
1684 Expr := Table (J).Choice_Node;
70482933
RK
1685 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1686 end loop;
1687
1688 -- STEP 1 (c): generate the remaining loops to cover others choice
1689 -- We don't need to generate loops over empty gaps, but if there is
1690 -- a single empty range we must analyze the expression for semantics
1691
d8f7b976 1692 if Present (Others_Expr) or else Others_Box_Present then
70482933
RK
1693 declare
1694 First : Boolean := True;
1695
1696 begin
1697 for J in 0 .. Nb_Choices loop
70482933
RK
1698 if J = 0 then
1699 Low := Aggr_Low;
1700 else
1701 Low := Add (1, To => Table (J).Choice_Hi);
1702 end if;
1703
1704 if J = Nb_Choices then
1705 High := Aggr_High;
1706 else
1707 High := Add (-1, To => Table (J + 1).Choice_Lo);
1708 end if;
1709
fbf5a39b 1710 -- If this is an expansion within an init proc, make
c84700e7
ES
1711 -- sure that discriminant references are replaced by
1712 -- the corresponding discriminal.
1713
1714 if Inside_Init_Proc then
1715 if Is_Entity_Name (Low)
1716 and then Ekind (Entity (Low)) = E_Discriminant
1717 then
1718 Set_Entity (Low, Discriminal (Entity (Low)));
1719 end if;
1720
1721 if Is_Entity_Name (High)
1722 and then Ekind (Entity (High)) = E_Discriminant
1723 then
1724 Set_Entity (High, Discriminal (Entity (High)));
1725 end if;
1726 end if;
1727
70482933
RK
1728 if First
1729 or else not Empty_Range (Low, High)
1730 then
1731 First := False;
1732 Append_List
1733 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1734 end if;
1735 end loop;
1736 end;
1737 end if;
1738
1739 -- STEP 2: Process positional components
1740
1741 else
1742 -- STEP 2 (a): Generate the assignments for each positional element
1743 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1744 -- Aggr_L is analyzed and Add wants an analyzed expression.
1745
1746 Expr := First (Expressions (N));
1747 Nb_Elements := -1;
70482933
RK
1748 while Present (Expr) loop
1749 Nb_Elements := Nb_Elements + 1;
1750 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1751 To => New_Code);
1752 Next (Expr);
1753 end loop;
1754
1755 -- STEP 2 (b): Generate final loop if an others choice is present
1756 -- Here Nb_Elements gives the offset of the last positional element.
1757
1758 if Present (Component_Associations (N)) then
1759 Assoc := Last (Component_Associations (N));
70482933 1760
0ab80019 1761 -- Ada 2005 (AI-287)
6e937c1c 1762
c45b6ae0
AC
1763 if Box_Present (Assoc) then
1764 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1765 Aggr_High,
1766 Empty),
1767 To => New_Code);
1768 else
1769 Expr := Expression (Assoc);
1770
1771 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1772 Aggr_High,
1773 Expr), -- AI-287
1774 To => New_Code);
1775 end if;
70482933
RK
1776 end if;
1777 end if;
1778
1779 return New_Code;
1780 end Build_Array_Aggr_Code;
1781
1782 ----------------------------
1783 -- Build_Record_Aggr_Code --
1784 ----------------------------
1785
1786 function Build_Record_Aggr_Code
f7e6fc47
RD
1787 (N : Node_Id;
1788 Typ : Entity_Id;
1789 Lhs : Node_Id) return List_Id
70482933
RK
1790 is
1791 Loc : constant Source_Ptr := Sloc (N);
1792 L : constant List_Id := New_List;
70482933
RK
1793 N_Typ : constant Entity_Id := Etype (N);
1794
1795 Comp : Node_Id;
1796 Instr : Node_Id;
1797 Ref : Node_Id;
0f95b178 1798 Target : Entity_Id;
70482933
RK
1799 Comp_Type : Entity_Id;
1800 Selector : Entity_Id;
1801 Comp_Expr : Node_Id;
70482933
RK
1802 Expr_Q : Node_Id;
1803
70482933
RK
1804 -- If this is an internal aggregate, the External_Final_List is an
1805 -- expression for the controller record of the enclosing type.
3b9fa2df 1806
70482933
RK
1807 -- If the current aggregate has several controlled components, this
1808 -- expression will appear in several calls to attach to the finali-
1809 -- zation list, and it must not be shared.
1810
70482933
RK
1811 Ancestor_Is_Expression : Boolean := False;
1812 Ancestor_Is_Subtype_Mark : Boolean := False;
1813
1814 Init_Typ : Entity_Id := Empty;
5277cab6 1815
df3e68b1
HK
1816 Finalization_Done : Boolean := False;
1817 -- True if Generate_Finalization_Actions has already been called; calls
0f95b178 1818 -- after the first do nothing.
70482933 1819
70482933 1820 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
3b9fa2df
ES
1821 -- Returns the value that the given discriminant of an ancestor type
1822 -- should receive (in the absence of a conflict with the value provided
1823 -- by an ancestor part of an extension aggregate).
70482933
RK
1824
1825 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
3b9fa2df
ES
1826 -- Check that each of the discriminant values defined by the ancestor
1827 -- part of an extension aggregate match the corresponding values
1828 -- provided by either an association of the aggregate or by the
1829 -- constraint imposed by a parent type (RM95-4.3.2(8)).
70482933 1830
d8f7b976
ES
1831 function Compatible_Int_Bounds
1832 (Agg_Bounds : Node_Id;
1833 Typ_Bounds : Node_Id) return Boolean;
1834 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1835 -- assumed that both bounds are integer ranges.
1836
df3e68b1 1837 procedure Generate_Finalization_Actions;
0f95b178
JM
1838 -- Deal with the various controlled type data structure initializations
1839 -- (but only if it hasn't been done already).
d8f7b976
ES
1840
1841 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1842 -- Returns the first discriminant association in the constraint
1843 -- associated with T, if any, otherwise returns Empty.
1844
3e582869
AC
1845 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1846 -- If Typ is derived, and constrains discriminants of the parent type,
1847 -- these discriminants are not components of the aggregate, and must be
2feb1f84
AC
1848 -- initialized. The assignments are appended to List. The same is done
1849 -- if Typ derives fron an already constrained subtype of a discriminated
1850 -- parent type.
3e582869 1851
7893514c 1852 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
aab45d22
AC
1853 -- If the ancestor part is an unconstrained type and further ancestors
1854 -- do not provide discriminants for it, check aggregate components for
1855 -- values of the discriminants.
1856
d8f7b976
ES
1857 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1858 -- Check whether Bounds is a range node and its lower and higher bounds
1859 -- are integers literals.
7b9d0d69 1860
70482933
RK
1861 ---------------------------------
1862 -- Ancestor_Discriminant_Value --
1863 ---------------------------------
1864
1865 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1866 Assoc : Node_Id;
1867 Assoc_Elmt : Elmt_Id;
1868 Aggr_Comp : Entity_Id;
1869 Corresp_Disc : Entity_Id;
1870 Current_Typ : Entity_Id := Base_Type (Typ);
1871 Parent_Typ : Entity_Id;
1872 Parent_Disc : Entity_Id;
1873 Save_Assoc : Node_Id := Empty;
1874
1875 begin
3b9fa2df
ES
1876 -- First check any discriminant associations to see if any of them
1877 -- provide a value for the discriminant.
70482933
RK
1878
1879 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1880 Assoc := First (Component_Associations (N));
1881 while Present (Assoc) loop
1882 Aggr_Comp := Entity (First (Choices (Assoc)));
1883
1884 if Ekind (Aggr_Comp) = E_Discriminant then
1885 Save_Assoc := Expression (Assoc);
1886
1887 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1888 while Present (Corresp_Disc) loop
3b9fa2df
ES
1889
1890 -- If found a corresponding discriminant then return the
1891 -- value given in the aggregate. (Note: this is not
1892 -- correct in the presence of side effects. ???)
70482933
RK
1893
1894 if Disc = Corresp_Disc then
1895 return Duplicate_Subexpr (Expression (Assoc));
1896 end if;
fbf5a39b 1897
70482933
RK
1898 Corresp_Disc :=
1899 Corresponding_Discriminant (Corresp_Disc);
1900 end loop;
1901 end if;
1902
1903 Next (Assoc);
1904 end loop;
1905 end if;
1906
1907 -- No match found in aggregate, so chain up parent types to find
1908 -- a constraint that defines the value of the discriminant.
1909
1910 Parent_Typ := Etype (Current_Typ);
1911 while Current_Typ /= Parent_Typ loop
9013065b
AC
1912 if Has_Discriminants (Parent_Typ)
1913 and then not Has_Unknown_Discriminants (Parent_Typ)
1914 then
70482933
RK
1915 Parent_Disc := First_Discriminant (Parent_Typ);
1916
1917 -- We either get the association from the subtype indication
1918 -- of the type definition itself, or from the discriminant
1919 -- constraint associated with the type entity (which is
1920 -- preferable, but it's not always present ???)
1921
1922 if Is_Empty_Elmt_List (
1923 Discriminant_Constraint (Current_Typ))
1924 then
1925 Assoc := Get_Constraint_Association (Current_Typ);
1926 Assoc_Elmt := No_Elmt;
1927 else
1928 Assoc_Elmt :=
1929 First_Elmt (Discriminant_Constraint (Current_Typ));
1930 Assoc := Node (Assoc_Elmt);
1931 end if;
1932
1933 -- Traverse the discriminants of the parent type looking
1934 -- for one that corresponds.
1935
1936 while Present (Parent_Disc) and then Present (Assoc) loop
1937 Corresp_Disc := Parent_Disc;
1938 while Present (Corresp_Disc)
1939 and then Disc /= Corresp_Disc
1940 loop
1941 Corresp_Disc :=
1942 Corresponding_Discriminant (Corresp_Disc);
1943 end loop;
1944
1945 if Disc = Corresp_Disc then
1946 if Nkind (Assoc) = N_Discriminant_Association then
1947 Assoc := Expression (Assoc);
1948 end if;
1949
e80f0cb0
RD
1950 -- If the located association directly denotes
1951 -- a discriminant, then use the value of a saved
1952 -- association of the aggregate. This is an approach
1953 -- used to handle certain cases involving multiple
1954 -- discriminants mapped to a single discriminant of
1955 -- a descendant. It's not clear how to locate the
1956 -- appropriate discriminant value for such cases. ???
70482933
RK
1957
1958 if Is_Entity_Name (Assoc)
1959 and then Ekind (Entity (Assoc)) = E_Discriminant
1960 then
1961 Assoc := Save_Assoc;
1962 end if;
1963
1964 return Duplicate_Subexpr (Assoc);
1965 end if;
1966
1967 Next_Discriminant (Parent_Disc);
1968
1969 if No (Assoc_Elmt) then
1970 Next (Assoc);
1971 else
1972 Next_Elmt (Assoc_Elmt);
1973 if Present (Assoc_Elmt) then
1974 Assoc := Node (Assoc_Elmt);
1975 else
1976 Assoc := Empty;
1977 end if;
1978 end if;
1979 end loop;
1980 end if;
1981
1982 Current_Typ := Parent_Typ;
1983 Parent_Typ := Etype (Current_Typ);
1984 end loop;
1985
1986 -- In some cases there's no ancestor value to locate (such as
1987 -- when an ancestor part given by an expression defines the
1988 -- discriminant value).
1989
1990 return Empty;
1991 end Ancestor_Discriminant_Value;
1992
1993 ----------------------------------
1994 -- Check_Ancestor_Discriminants --
1995 ----------------------------------
1996
1997 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
5277cab6 1998 Discr : Entity_Id;
70482933
RK
1999 Disc_Value : Node_Id;
2000 Cond : Node_Id;
2001
2002 begin
5277cab6 2003 Discr := First_Discriminant (Base_Type (Anc_Typ));
70482933
RK
2004 while Present (Discr) loop
2005 Disc_Value := Ancestor_Discriminant_Value (Discr);
2006
2007 if Present (Disc_Value) then
2008 Cond := Make_Op_Ne (Loc,
2009 Left_Opnd =>
2010 Make_Selected_Component (Loc,
2011 Prefix => New_Copy_Tree (Target),
2012 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2013 Right_Opnd => Disc_Value);
2014
07fc65c4
GB
2015 Append_To (L,
2016 Make_Raise_Constraint_Error (Loc,
2017 Condition => Cond,
2018 Reason => CE_Discriminant_Check_Failed));
70482933
RK
2019 end if;
2020
2021 Next_Discriminant (Discr);
2022 end loop;
2023 end Check_Ancestor_Discriminants;
2024
d8f7b976
ES
2025 ---------------------------
2026 -- Compatible_Int_Bounds --
2027 ---------------------------
2028
2029 function Compatible_Int_Bounds
2030 (Agg_Bounds : Node_Id;
2031 Typ_Bounds : Node_Id) return Boolean
2032 is
2033 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2034 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2035 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2036 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2037 begin
2038 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2039 end Compatible_Int_Bounds;
2040
70482933
RK
2041 --------------------------------
2042 -- Get_Constraint_Association --
2043 --------------------------------
2044
2045 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2c17ca0a
AC
2046 Indic : Node_Id;
2047 Typ : Entity_Id;
70482933
RK
2048
2049 begin
2c17ca0a
AC
2050 Typ := T;
2051
2052 -- Handle private types in instances
2053
2054 if In_Instance
2055 and then Is_Private_Type (Typ)
2056 and then Present (Full_View (Typ))
2057 then
2058 Typ := Full_View (Typ);
2059 end if;
2060
2061 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2062
70482933
RK
2063 -- ??? Also need to cover case of a type mark denoting a subtype
2064 -- with constraint.
2065
2066 if Nkind (Indic) = N_Subtype_Indication
2067 and then Present (Constraint (Indic))
2068 then
2069 return First (Constraints (Constraint (Indic)));
2070 end if;
2071
2072 return Empty;
2073 end Get_Constraint_Association;
2074
aab45d22
AC
2075 -------------------------------------
2076 -- Get_Explicit_Discriminant_Value --
2077 -------------------------------------
2078
7893514c
RD
2079 function Get_Explicit_Discriminant_Value
2080 (D : Entity_Id) return Node_Id
aab45d22
AC
2081 is
2082 Assoc : Node_Id;
2083 Choice : Node_Id;
2084 Val : Node_Id;
2085
2086 begin
2087 -- The aggregate has been normalized and all associations have a
2088 -- single choice.
2089
2090 Assoc := First (Component_Associations (N));
2091 while Present (Assoc) loop
2092 Choice := First (Choices (Assoc));
7893514c 2093
aab45d22
AC
2094 if Chars (Choice) = Chars (D) then
2095 Val := Expression (Assoc);
2096 Remove (Assoc);
2097 return Val;
2098 end if;
2099
2100 Next (Assoc);
2101 end loop;
2102
2103 return Empty;
2104 end Get_Explicit_Discriminant_Value;
2105
3e582869
AC
2106 -------------------------------
2107 -- Init_Hidden_Discriminants --
2108 -------------------------------
2109
2110 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2111 Btype : Entity_Id;
2112 Parent_Type : Entity_Id;
2113 Disc : Entity_Id;
2114 Discr_Val : Elmt_Id;
2115
2116 begin
7b536495
AC
2117 -- The constraints on the hidden discriminants, if present, are kept
2118 -- in the Stored_Constraint list of the type itself, or in that of
2119 -- the base type.
2feb1f84 2120
7b536495 2121 Btype := Base_Type (Typ);
3e582869 2122 while Is_Derived_Type (Btype)
2feb1f84 2123 and then (Present (Stored_Constraint (Btype))
7b536495
AC
2124 or else
2125 Present (Stored_Constraint (Typ)))
3e582869
AC
2126 loop
2127 Parent_Type := Etype (Btype);
7b536495 2128
2feb1f84
AC
2129 if not Has_Discriminants (Parent_Type) then
2130 return;
2131 end if;
3e582869
AC
2132
2133 Disc := First_Discriminant (Parent_Type);
2feb1f84 2134
bdc193ba 2135 -- We know that one of the stored-constraint lists is present
2feb1f84
AC
2136
2137 if Present (Stored_Constraint (Btype)) then
2138 Discr_Val := First_Elmt (Stored_Constraint (Btype));
bdc193ba
AC
2139
2140 -- For private extension, stored constraint may be on full view
2141
2142 elsif Is_Private_Type (Btype)
2143 and then Present (Full_View (Btype))
2144 and then Present (Stored_Constraint (Full_View (Btype)))
2145 then
2146 Discr_Val := First_Elmt (Stored_Constraint (Full_View (Btype)));
2147
2feb1f84
AC
2148 else
2149 Discr_Val := First_Elmt (Stored_Constraint (Typ));
2150 end if;
2151
3e582869
AC
2152 while Present (Discr_Val) loop
2153
2154 -- Only those discriminants of the parent that are not
2155 -- renamed by discriminants of the derived type need to
2156 -- be added explicitly.
2157
2158 if not Is_Entity_Name (Node (Discr_Val))
2159 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2160 then
2161 Comp_Expr :=
2162 Make_Selected_Component (Loc,
2163 Prefix => New_Copy_Tree (Target),
2164 Selector_Name => New_Occurrence_Of (Disc, Loc));
2165
2166 Instr :=
2167 Make_OK_Assignment_Statement (Loc,
2168 Name => Comp_Expr,
2169 Expression => New_Copy_Tree (Node (Discr_Val)));
2170
2171 Set_No_Ctrl_Actions (Instr);
2172 Append_To (List, Instr);
2173 end if;
2174
2175 Next_Discriminant (Disc);
2176 Next_Elmt (Discr_Val);
2177 end loop;
2178
2179 Btype := Base_Type (Parent_Type);
2180 end loop;
2181 end Init_Hidden_Discriminants;
2182
d8f7b976
ES
2183 -------------------------
2184 -- Is_Int_Range_Bounds --
2185 -------------------------
2186
2187 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2188 begin
2189 return Nkind (Bounds) = N_Range
2190 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2191 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2192 end Is_Int_Range_Bounds;
2193
df3e68b1
HK
2194 -----------------------------------
2195 -- Generate_Finalization_Actions --
2196 -----------------------------------
0f95b178 2197
df3e68b1 2198 procedure Generate_Finalization_Actions is
7b9d0d69 2199 begin
0f95b178
JM
2200 -- Do the work only the first time this is called
2201
df3e68b1 2202 if Finalization_Done then
5277cab6
ES
2203 return;
2204 end if;
2205
df3e68b1 2206 Finalization_Done := True;
7b9d0d69
ES
2207
2208 -- Determine the external finalization list. It is either the
bdc193ba
AC
2209 -- finalization list of the outer-scope or the one coming from an
2210 -- outer aggregate. When the target is not a temporary, the proper
2211 -- scope is the scope of the target rather than the potentially
2212 -- transient current scope.
7b9d0d69 2213
36a66365 2214 if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
df3e68b1
HK
2215 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2216 Set_Assignment_OK (Ref);
2217
2218 Append_To (L,
2219 Make_Procedure_Call_Statement (Loc,
37368818 2220 Name =>
e4494292 2221 New_Occurrence_Of
df3e68b1
HK
2222 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2223 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
7b9d0d69 2224 end if;
df3e68b1 2225 end Generate_Finalization_Actions;
7b9d0d69 2226
f2abc637 2227 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
7b4db06c
JM
2228 -- If default expression of a component mentions a discriminant of the
2229 -- type, it must be rewritten as the discriminant of the target object.
f2abc637 2230
0f95b178 2231 function Replace_Type (Expr : Node_Id) return Traverse_Result;
acf63f8c
ES
2232 -- If the aggregate contains a self-reference, traverse each expression
2233 -- to replace a possible self-reference with a reference to the proper
2234 -- component of the target of the assignment.
0f95b178 2235
f2abc637
AC
2236 --------------------------
2237 -- Rewrite_Discriminant --
2238 --------------------------
2239
2240 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2241 begin
5087048c 2242 if Is_Entity_Name (Expr)
f2abc637
AC
2243 and then Present (Entity (Expr))
2244 and then Ekind (Entity (Expr)) = E_In_Parameter
2245 and then Present (Discriminal_Link (Entity (Expr)))
36a66365
AC
2246 and then Scope (Discriminal_Link (Entity (Expr))) =
2247 Base_Type (Etype (N))
f2abc637
AC
2248 then
2249 Rewrite (Expr,
2250 Make_Selected_Component (Loc,
61441c18 2251 Prefix => New_Copy_Tree (Lhs),
f2abc637
AC
2252 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2253 end if;
b3f5eef0 2254
f2abc637
AC
2255 return OK;
2256 end Rewrite_Discriminant;
2257
0f95b178
JM
2258 ------------------
2259 -- Replace_Type --
2260 ------------------
2261
2262 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2263 begin
acf63f8c
ES
2264 -- Note regarding the Root_Type test below: Aggregate components for
2265 -- self-referential types include attribute references to the current
2266 -- instance, of the form: Typ'access, etc.. These references are
2267 -- rewritten as references to the target of the aggregate: the
2268 -- left-hand side of an assignment, the entity in a declaration,
2269 -- or a temporary. Without this test, we would improperly extended
2270 -- this rewriting to attribute references whose prefix was not the
2271 -- type of the aggregate.
2272
0f95b178 2273 if Nkind (Expr) = N_Attribute_Reference
acf63f8c 2274 and then Is_Entity_Name (Prefix (Expr))
0f95b178 2275 and then Is_Type (Entity (Prefix (Expr)))
acf63f8c 2276 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
0f95b178
JM
2277 then
2278 if Is_Entity_Name (Lhs) then
2279 Rewrite (Prefix (Expr),
2280 New_Occurrence_Of (Entity (Lhs), Loc));
2281
2282 elsif Nkind (Lhs) = N_Selected_Component then
2283 Rewrite (Expr,
2284 Make_Attribute_Reference (Loc,
2285 Attribute_Name => Name_Unrestricted_Access,
20428725 2286 Prefix => New_Copy_Tree (Lhs)));
0f95b178
JM
2287 Set_Analyzed (Parent (Expr), False);
2288
2289 else
2290 Rewrite (Expr,
2291 Make_Attribute_Reference (Loc,
2292 Attribute_Name => Name_Unrestricted_Access,
2293 Prefix => New_Copy_Tree (Lhs)));
2294 Set_Analyzed (Parent (Expr), False);
2295 end if;
2296 end if;
2297
2298 return OK;
2299 end Replace_Type;
2300
2301 procedure Replace_Self_Reference is
2302 new Traverse_Proc (Replace_Type);
2303
f2abc637
AC
2304 procedure Replace_Discriminants is
2305 new Traverse_Proc (Rewrite_Discriminant);
2306
70482933
RK
2307 -- Start of processing for Build_Record_Aggr_Code
2308
2309 begin
0f95b178
JM
2310 if Has_Self_Reference (N) then
2311 Replace_Self_Reference (N);
2312 end if;
2313
2314 -- If the target of the aggregate is class-wide, we must convert it
2315 -- to the actual type of the aggregate, so that the proper components
2316 -- are visible. We know already that the types are compatible.
2317
2318 if Present (Etype (Lhs))
26a43556 2319 and then Is_Class_Wide_Type (Etype (Lhs))
0f95b178
JM
2320 then
2321 Target := Unchecked_Convert_To (Typ, Lhs);
2322 else
2323 Target := Lhs;
2324 end if;
2325
3b9fa2df
ES
2326 -- Deal with the ancestor part of extension aggregates or with the
2327 -- discriminants of the root type.
70482933
RK
2328
2329 if Nkind (N) = N_Extension_Aggregate then
2330 declare
df3e68b1
HK
2331 Ancestor : constant Node_Id := Ancestor_Part (N);
2332 Assign : List_Id;
70482933
RK
2333
2334 begin
70482933 2335 -- If the ancestor part is a subtype mark "T", we generate
fbf5a39b 2336
df3e68b1
HK
2337 -- init-proc (T (tmp)); if T is constrained and
2338 -- init-proc (S (tmp)); where S applies an appropriate
2339 -- constraint if T is unconstrained
70482933 2340
df3e68b1
HK
2341 if Is_Entity_Name (Ancestor)
2342 and then Is_Type (Entity (Ancestor))
2343 then
70482933
RK
2344 Ancestor_Is_Subtype_Mark := True;
2345
df3e68b1
HK
2346 if Is_Constrained (Entity (Ancestor)) then
2347 Init_Typ := Entity (Ancestor);
70482933 2348
3b9fa2df
ES
2349 -- For an ancestor part given by an unconstrained type mark,
2350 -- create a subtype constrained by appropriate corresponding
2351 -- discriminant values coming from either associations of the
2352 -- aggregate or a constraint on a parent type. The subtype will
2353 -- be used to generate the correct default value for the
2354 -- ancestor part.
70482933 2355
df3e68b1 2356 elsif Has_Discriminants (Entity (Ancestor)) then
70482933 2357 declare
df3e68b1 2358 Anc_Typ : constant Entity_Id := Entity (Ancestor);
fbf5a39b
AC
2359 Anc_Constr : constant List_Id := New_List;
2360 Discrim : Entity_Id;
70482933
RK
2361 Disc_Value : Node_Id;
2362 New_Indic : Node_Id;
2363 Subt_Decl : Node_Id;
fbf5a39b 2364
70482933 2365 begin
fbf5a39b 2366 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
2367 while Present (Discrim) loop
2368 Disc_Value := Ancestor_Discriminant_Value (Discrim);
aab45d22
AC
2369
2370 -- If no usable discriminant in ancestors, check
2371 -- whether aggregate has an explicit value for it.
2372
2373 if No (Disc_Value) then
2374 Disc_Value :=
2375 Get_Explicit_Discriminant_Value (Discrim);
2376 end if;
2377
70482933
RK
2378 Append_To (Anc_Constr, Disc_Value);
2379 Next_Discriminant (Discrim);
2380 end loop;
2381
2382 New_Indic :=
2383 Make_Subtype_Indication (Loc,
2384 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2385 Constraint =>
2386 Make_Index_Or_Discriminant_Constraint (Loc,
2387 Constraints => Anc_Constr));
2388
2389 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2390
2391 Subt_Decl :=
2392 Make_Subtype_Declaration (Loc,
2393 Defining_Identifier => Init_Typ,
2394 Subtype_Indication => New_Indic);
2395
3b9fa2df
ES
2396 -- Itypes must be analyzed with checks off Declaration
2397 -- must have a parent for proper handling of subsidiary
2398 -- actions.
70482933 2399
07fc65c4 2400 Set_Parent (Subt_Decl, N);
70482933
RK
2401 Analyze (Subt_Decl, Suppress => All_Checks);
2402 end;
2403 end if;
2404
2405 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2406 Set_Assignment_OK (Ref);
2407
64425dff 2408 if not Is_Interface (Init_Typ) then
3bb3f6d6
AC
2409 Append_List_To (L,
2410 Build_Initialization_Call (Loc,
2411 Id_Ref => Ref,
2412 Typ => Init_Typ,
2413 In_Init_Proc => Within_Init_Proc,
2414 With_Default_Init => Has_Default_Init_Comps (N)
2415 or else
2416 Has_Task (Base_Type (Init_Typ))));
2417
df3e68b1
HK
2418 if Is_Constrained (Entity (Ancestor))
2419 and then Has_Discriminants (Entity (Ancestor))
3bb3f6d6 2420 then
df3e68b1 2421 Check_Ancestor_Discriminants (Entity (Ancestor));
3bb3f6d6 2422 end if;
70482933
RK
2423 end if;
2424
11795185
JM
2425 -- Handle calls to C++ constructors
2426
df3e68b1
HK
2427 elsif Is_CPP_Constructor_Call (Ancestor) then
2428 Init_Typ := Etype (Ancestor);
11795185
JM
2429 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2430 Set_Assignment_OK (Ref);
2431
2432 Append_List_To (L,
2433 Build_Initialization_Call (Loc,
2434 Id_Ref => Ref,
2435 Typ => Init_Typ,
2436 In_Init_Proc => Within_Init_Proc,
2437 With_Default_Init => Has_Default_Init_Comps (N),
df3e68b1 2438 Constructor_Ref => Ancestor));
11795185 2439
c5ee5ad2
BD
2440 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2441 -- limited type, a recursive call expands the ancestor. Note that
2442 -- in the limited case, the ancestor part must be either a
19590d70
GD
2443 -- function call (possibly qualified, or wrapped in an unchecked
2444 -- conversion) or aggregate (definitely qualified).
bdc193ba 2445
39f346aa
ES
2446 -- The ancestor part can also be a function call (that may be
2447 -- transformed into an explicit dereference) or a qualification
2448 -- of one such.
65356e64 2449
df3e68b1
HK
2450 elsif Is_Limited_Type (Etype (Ancestor))
2451 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
36a66365 2452 N_Extension_Aggregate)
c5ee5ad2 2453 then
65356e64
AC
2454 Ancestor_Is_Expression := True;
2455
3b9fa2df
ES
2456 -- Set up finalization data for enclosing record, because
2457 -- controlled subcomponents of the ancestor part will be
2458 -- attached to it.
2459
df3e68b1 2460 Generate_Finalization_Actions;
3b9fa2df 2461
7b9d0d69 2462 Append_List_To (L,
f7e6fc47
RD
2463 Build_Record_Aggr_Code
2464 (N => Unqualify (Ancestor),
2465 Typ => Etype (Unqualify (Ancestor)),
2466 Lhs => Target));
65356e64 2467
70482933 2468 -- If the ancestor part is an expression "E", we generate
3b9fa2df 2469
df3e68b1 2470 -- T (tmp) := E;
3b9fa2df 2471
c5ee5ad2
BD
2472 -- In Ada 2005, this includes the case of a (possibly qualified)
2473 -- limited function call. The assignment will turn into a
3b9fa2df 2474 -- build-in-place function call (for further details, see
c5ee5ad2 2475 -- Make_Build_In_Place_Call_In_Assignment).
70482933
RK
2476
2477 else
2478 Ancestor_Is_Expression := True;
df3e68b1 2479 Init_Typ := Etype (Ancestor);
70482933 2480
7b9d0d69
ES
2481 -- If the ancestor part is an aggregate, force its full
2482 -- expansion, which was delayed.
2483
df3e68b1
HK
2484 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2485 N_Extension_Aggregate)
7b9d0d69 2486 then
df3e68b1
HK
2487 Set_Analyzed (Ancestor, False);
2488 Set_Analyzed (Expression (Ancestor), False);
7b9d0d69
ES
2489 end if;
2490
2491 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2492 Set_Assignment_OK (Ref);
2493
376e7d14
AC
2494 -- Make the assignment without usual controlled actions, since
2495 -- we only want to Adjust afterwards, but not to Finalize
2496 -- beforehand. Add manual Adjust when necessary.
7b9d0d69
ES
2497
2498 Assign := New_List (
2499 Make_OK_Assignment_Statement (Loc,
2500 Name => Ref,
df3e68b1 2501 Expression => Ancestor));
7b9d0d69
ES
2502 Set_No_Ctrl_Actions (First (Assign));
2503
2504 -- Assign the tag now to make sure that the dispatching call in
0f95b178 2505 -- the subsequent deep_adjust works properly (unless VM_Target,
7b9d0d69 2506 -- where tags are implicit).
70482933 2507
1f110335 2508 if Tagged_Type_Expansion then
70482933
RK
2509 Instr :=
2510 Make_OK_Assignment_Statement (Loc,
2511 Name =>
2512 Make_Selected_Component (Loc,
2513 Prefix => New_Copy_Tree (Target),
a9d8907c 2514 Selector_Name =>
e4494292 2515 New_Occurrence_Of
a9d8907c 2516 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
2517
2518 Expression =>
2519 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 2520 New_Occurrence_Of
a9d8907c
JM
2521 (Node (First_Elmt
2522 (Access_Disp_Table (Base_Type (Typ)))),
2523 Loc)));
70482933
RK
2524
2525 Set_Assignment_OK (Name (Instr));
7b9d0d69 2526 Append_To (Assign, Instr);
0f95b178
JM
2527
2528 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2529 -- also initialize tags of the secondary dispatch tables.
2530
ce2b6ba5 2531 if Has_Interfaces (Base_Type (Typ)) then
0f95b178
JM
2532 Init_Secondary_Tags
2533 (Typ => Base_Type (Typ),
2534 Target => Target,
2535 Stmts_List => Assign);
2536 end if;
70482933
RK
2537 end if;
2538
7b9d0d69 2539 -- Call Adjust manually
70482933 2540
df3e68b1
HK
2541 if Needs_Finalization (Etype (Ancestor))
2542 and then not Is_Limited_Type (Etype (Ancestor))
3b9fa2df 2543 then
df3e68b1 2544 Append_To (Assign,
37368818
RD
2545 Make_Adjust_Call
2546 (Obj_Ref => New_Copy_Tree (Ref),
2547 Typ => Etype (Ancestor)));
70482933
RK
2548 end if;
2549
70482933 2550 Append_To (L,
7b9d0d69 2551 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
70482933
RK
2552
2553 if Has_Discriminants (Init_Typ) then
2554 Check_Ancestor_Discriminants (Init_Typ);
2555 end if;
2556 end if;
2557 end;
2558
376e7d14
AC
2559 -- Generate assignments of hidden discriminants. If the base type is
2560 -- an unchecked union, the discriminants are unknown to the back-end
2561 -- and absent from a value of the type, so assignments for them are
2562 -- not emitted.
3e582869
AC
2563
2564 if Has_Discriminants (Typ)
2565 and then not Is_Unchecked_Union (Base_Type (Typ))
2566 then
2567 Init_Hidden_Discriminants (Typ, L);
2568 end if;
2569
fbf5a39b
AC
2570 -- Normal case (not an extension aggregate)
2571
70482933
RK
2572 else
2573 -- Generate the discriminant expressions, component by component.
2574 -- If the base type is an unchecked union, the discriminants are
2575 -- unknown to the back-end and absent from a value of the type, so
2576 -- assignments for them are not emitted.
2577
2578 if Has_Discriminants (Typ)
2579 and then not Is_Unchecked_Union (Base_Type (Typ))
2580 then
3e582869 2581 Init_Hidden_Discriminants (Typ, L);
d8f7b976
ES
2582
2583 -- Generate discriminant init values for the visible discriminants
70482933
RK
2584
2585 declare
2586 Discriminant : Entity_Id;
2587 Discriminant_Value : Node_Id;
2588
2589 begin
fbf5a39b 2590 Discriminant := First_Stored_Discriminant (Typ);
70482933 2591 while Present (Discriminant) loop
70482933
RK
2592 Comp_Expr :=
2593 Make_Selected_Component (Loc,
2594 Prefix => New_Copy_Tree (Target),
2595 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2596
2597 Discriminant_Value :=
2598 Get_Discriminant_Value (
2599 Discriminant,
2600 N_Typ,
2601 Discriminant_Constraint (N_Typ));
2602
2603 Instr :=
2604 Make_OK_Assignment_Statement (Loc,
2605 Name => Comp_Expr,
2606 Expression => New_Copy_Tree (Discriminant_Value));
2607
2608 Set_No_Ctrl_Actions (Instr);
2609 Append_To (L, Instr);
2610
fbf5a39b 2611 Next_Stored_Discriminant (Discriminant);
70482933
RK
2612 end loop;
2613 end;
2614 end if;
2615 end if;
2616
28541488
JM
2617 -- For CPP types we generate an implicit call to the C++ default
2618 -- constructor to ensure the proper initialization of the _Tag
2619 -- component.
2620
36a66365 2621 if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
cefce34c 2622 Invoke_Constructor : declare
15f0f591 2623 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
cefce34c
JM
2624
2625 procedure Invoke_IC_Proc (T : Entity_Id);
2626 -- Recursive routine used to climb to parents. Required because
2627 -- parents must be initialized before descendants to ensure
2628 -- propagation of inherited C++ slots.
2629
2630 --------------------
2631 -- Invoke_IC_Proc --
2632 --------------------
2633
2634 procedure Invoke_IC_Proc (T : Entity_Id) is
2635 begin
2636 -- Avoid generating extra calls. Initialization required
2637 -- only for types defined from the level of derivation of
2638 -- type of the constructor and the type of the aggregate.
2639
2640 if T = CPP_Parent then
2641 return;
2642 end if;
2643
2644 Invoke_IC_Proc (Etype (T));
2645
2646 -- Generate call to the IC routine
2647
2648 if Present (CPP_Init_Proc (T)) then
2649 Append_To (L,
2650 Make_Procedure_Call_Statement (Loc,
e4494292 2651 New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
cefce34c
JM
2652 end if;
2653 end Invoke_IC_Proc;
2654
2655 -- Start of processing for Invoke_Constructor
2656
2657 begin
2658 -- Implicit invocation of the C++ constructor
2659
2660 if Nkind (N) = N_Aggregate then
2661 Append_To (L,
2662 Make_Procedure_Call_Statement (Loc,
37368818
RD
2663 Name =>
2664 New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
cefce34c
JM
2665 Parameter_Associations => New_List (
2666 Unchecked_Convert_To (CPP_Parent,
2667 New_Copy_Tree (Lhs)))));
2668 end if;
2669
2670 Invoke_IC_Proc (Typ);
2671 end Invoke_Constructor;
28541488
JM
2672 end if;
2673
70482933
RK
2674 -- Generate the assignments, component by component
2675
2676 -- tmp.comp1 := Expr1_From_Aggr;
2677 -- tmp.comp2 := Expr2_From_Aggr;
2678 -- ....
2679
2680 Comp := First (Component_Associations (N));
2681 while Present (Comp) loop
b7e429ab 2682 Selector := Entity (First (Choices (Comp)));
70482933 2683
236fecbf
JM
2684 -- C++ constructors
2685
2686 if Is_CPP_Constructor_Call (Expression (Comp)) then
2687 Append_List_To (L,
2688 Build_Initialization_Call (Loc,
37368818
RD
2689 Id_Ref =>
2690 Make_Selected_Component (Loc,
2691 Prefix => New_Copy_Tree (Target),
2692 Selector_Name => New_Occurrence_Of (Selector, Loc)),
1c612f29
RD
2693 Typ => Etype (Selector),
2694 Enclos_Type => Typ,
236fecbf 2695 With_Default_Init => True,
1c612f29 2696 Constructor_Ref => Expression (Comp)));
236fecbf 2697
3b9fa2df 2698 -- Ada 2005 (AI-287): For each default-initialized component generate
52739835 2699 -- a call to the corresponding IP subprogram if available.
65356e64 2700
236fecbf 2701 elsif Box_Present (Comp)
52739835 2702 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
65356e64 2703 then
5277cab6 2704 if Ekind (Selector) /= E_Discriminant then
df3e68b1 2705 Generate_Finalization_Actions;
5277cab6
ES
2706 end if;
2707
0ab80019
AC
2708 -- Ada 2005 (AI-287): If the component type has tasks then
2709 -- generate the activation chain and master entities (except
2710 -- in case of an allocator because in that case these entities
2711 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
c45b6ae0
AC
2712
2713 declare
91b1417d 2714 Ctype : constant Entity_Id := Etype (Selector);
1c612f29
RD
2715 Inside_Allocator : Boolean := False;
2716 P : Node_Id := Parent (N);
c45b6ae0
AC
2717
2718 begin
2719 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2720 while Present (P) loop
2721 if Nkind (P) = N_Allocator then
2722 Inside_Allocator := True;
2723 exit;
2724 end if;
2725
2726 P := Parent (P);
2727 end loop;
2728
2729 if not Inside_Init_Proc and not Inside_Allocator then
2730 Build_Activation_Chain_Entity (N);
c45b6ae0
AC
2731 end if;
2732 end if;
2733 end;
2734
65356e64
AC
2735 Append_List_To (L,
2736 Build_Initialization_Call (Loc,
1c612f29
RD
2737 Id_Ref => Make_Selected_Component (Loc,
2738 Prefix => New_Copy_Tree (Target),
2739 Selector_Name =>
2740 New_Occurrence_Of (Selector, Loc)),
2741 Typ => Etype (Selector),
2742 Enclos_Type => Typ,
c45b6ae0 2743 With_Default_Init => True));
65356e64 2744
7b9d0d69 2745 -- Prepare for component assignment
fbf5a39b 2746
236fecbf 2747 elsif Ekind (Selector) /= E_Discriminant
70482933
RK
2748 or else Nkind (N) = N_Extension_Aggregate
2749 then
7b9d0d69 2750 -- All the discriminants have now been assigned
3b9fa2df 2751
7b9d0d69
ES
2752 -- This is now a good moment to initialize and attach all the
2753 -- controllers. Their position may depend on the discriminants.
2754
5277cab6 2755 if Ekind (Selector) /= E_Discriminant then
df3e68b1 2756 Generate_Finalization_Actions;
7b9d0d69
ES
2757 end if;
2758
38171f43 2759 Comp_Type := Underlying_Type (Etype (Selector));
70482933
RK
2760 Comp_Expr :=
2761 Make_Selected_Component (Loc,
2762 Prefix => New_Copy_Tree (Target),
2763 Selector_Name => New_Occurrence_Of (Selector, Loc));
2764
2765 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2766 Expr_Q := Expression (Expression (Comp));
2767 else
2768 Expr_Q := Expression (Comp);
2769 end if;
2770
7b9d0d69
ES
2771 -- Now either create the assignment or generate the code for the
2772 -- inner aggregate top-down.
fbf5a39b 2773
70482933 2774 if Is_Delayed_Aggregate (Expr_Q) then
d8f7b976
ES
2775
2776 -- We have the following case of aggregate nesting inside
2777 -- an object declaration:
2778
2779 -- type Arr_Typ is array (Integer range <>) of ...;
3b9fa2df 2780
d8f7b976
ES
2781 -- type Rec_Typ (...) is record
2782 -- Obj_Arr_Typ : Arr_Typ (A .. B);
2783 -- end record;
3b9fa2df 2784
d8f7b976
ES
2785 -- Obj_Rec_Typ : Rec_Typ := (...,
2786 -- Obj_Arr_Typ => (X => (...), Y => (...)));
2787
2788 -- The length of the ranges of the aggregate and Obj_Add_Typ
2789 -- are equal (B - A = Y - X), but they do not coincide (X /=
2790 -- A and B /= Y). This case requires array sliding which is
2791 -- performed in the following manner:
2792
2793 -- subtype Arr_Sub is Arr_Typ (X .. Y);
2794 -- Temp : Arr_Sub;
2795 -- Temp (X) := (...);
2796 -- ...
2797 -- Temp (Y) := (...);
2798 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2799
5277cab6 2800 if Ekind (Comp_Type) = E_Array_Subtype
d8f7b976
ES
2801 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2802 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2803 and then not
5277cab6
ES
2804 Compatible_Int_Bounds
2805 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2806 Typ_Bounds => First_Index (Comp_Type))
d8f7b976 2807 then
5277cab6
ES
2808 -- Create the array subtype with bounds equal to those of
2809 -- the corresponding aggregate.
d8f7b976 2810
5277cab6 2811 declare
191fcb3a 2812 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
d8f7b976
ES
2813
2814 SubD : constant Node_Id :=
15f0f591
AC
2815 Make_Subtype_Declaration (Loc,
2816 Defining_Identifier => SubE,
2817 Subtype_Indication =>
2818 Make_Subtype_Indication (Loc,
2819 Subtype_Mark =>
e4494292 2820 New_Occurrence_Of (Etype (Comp_Type), Loc),
15f0f591
AC
2821 Constraint =>
2822 Make_Index_Or_Discriminant_Constraint
2823 (Loc,
2824 Constraints => New_List (
2825 New_Copy_Tree
2826 (Aggregate_Bounds (Expr_Q))))));
d8f7b976
ES
2827
2828 -- Create a temporary array of the above subtype which
2829 -- will be used to capture the aggregate assignments.
2830
faf387e1 2831 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
d8f7b976
ES
2832
2833 TmpD : constant Node_Id :=
15f0f591
AC
2834 Make_Object_Declaration (Loc,
2835 Defining_Identifier => TmpE,
e4494292 2836 Object_Definition => New_Occurrence_Of (SubE, Loc));
d8f7b976
ES
2837
2838 begin
2839 Set_No_Initialization (TmpD);
2840 Append_To (L, SubD);
2841 Append_To (L, TmpD);
2842
5277cab6 2843 -- Expand aggregate into assignments to the temp array
d8f7b976
ES
2844
2845 Append_List_To (L,
2846 Late_Expansion (Expr_Q, Comp_Type,
e4494292 2847 New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
2848
2849 -- Slide
2850
2851 Append_To (L,
2852 Make_Assignment_Statement (Loc,
2853 Name => New_Copy_Tree (Comp_Expr),
e4494292 2854 Expression => New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
2855 end;
2856
2857 -- Normal case (sliding not required)
2858
2859 else
2860 Append_List_To (L,
df3e68b1 2861 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
d8f7b976 2862 end if;
fbf5a39b 2863
5277cab6
ES
2864 -- Expr_Q is not delayed aggregate
2865
70482933 2866 else
f2abc637
AC
2867 if Has_Discriminants (Typ) then
2868 Replace_Discriminants (Expr_Q);
b3f5eef0
AC
2869
2870 -- If the component is an array type that depends on
2871 -- discriminants, and the expression is a single Others
2872 -- clause, create an explicit subtype for it because the
2873 -- backend has troubles recovering the actual bounds.
2874
2875 if Nkind (Expr_Q) = N_Aggregate
2876 and then Is_Array_Type (Comp_Type)
2877 and then Present (Component_Associations (Expr_Q))
2878 then
2879 declare
2880 Assoc : constant Node_Id :=
45ec05e1 2881 First (Component_Associations (Expr_Q));
b3f5eef0
AC
2882 Decl : Node_Id;
2883
2884 begin
45ec05e1 2885 if Nkind (First (Choices (Assoc))) = N_Others_Choice
b3f5eef0
AC
2886 then
2887 Decl :=
2888 Build_Actual_Subtype_Of_Component
2889 (Comp_Type, Comp_Expr);
2890
2891 -- If the component type does not in fact depend on
2892 -- discriminants, the subtype declaration is empty.
2893
2894 if Present (Decl) then
2895 Append_To (L, Decl);
2896 Set_Etype (Comp_Expr, Defining_Entity (Decl));
2897 end if;
2898 end if;
2899 end;
2900 end if;
f2abc637
AC
2901 end if;
2902
70482933
RK
2903 Instr :=
2904 Make_OK_Assignment_Statement (Loc,
2905 Name => Comp_Expr,
7b4db06c 2906 Expression => Expr_Q);
70482933
RK
2907
2908 Set_No_Ctrl_Actions (Instr);
2909 Append_To (L, Instr);
2910
2911 -- Adjust the tag if tagged (because of possible view
0f95b178
JM
2912 -- conversions), unless compiling for a VM where tags are
2913 -- implicit.
70482933
RK
2914
2915 -- tmp.comp._tag := comp_typ'tag;
2916
1f110335
AC
2917 if Is_Tagged_Type (Comp_Type)
2918 and then Tagged_Type_Expansion
2919 then
70482933
RK
2920 Instr :=
2921 Make_OK_Assignment_Statement (Loc,
2922 Name =>
2923 Make_Selected_Component (Loc,
2924 Prefix => New_Copy_Tree (Comp_Expr),
2925 Selector_Name =>
e4494292 2926 New_Occurrence_Of
a9d8907c 2927 (First_Tag_Component (Comp_Type), Loc)),
70482933
RK
2928
2929 Expression =>
2930 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 2931 New_Occurrence_Of
a9d8907c
JM
2932 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2933 Loc)));
70482933
RK
2934
2935 Append_To (L, Instr);
2936 end if;
2937
df3e68b1
HK
2938 -- Generate:
2939 -- Adjust (tmp.comp);
70482933 2940
048e5cef 2941 if Needs_Finalization (Comp_Type)
3b9fa2df
ES
2942 and then not Is_Limited_Type (Comp_Type)
2943 then
df3e68b1 2944 Append_To (L,
37368818
RD
2945 Make_Adjust_Call
2946 (Obj_Ref => New_Copy_Tree (Comp_Expr),
2947 Typ => Comp_Type));
70482933
RK
2948 end if;
2949 end if;
fbf5a39b 2950
37368818 2951 -- comment would be good here ???
fbf5a39b
AC
2952
2953 elsif Ekind (Selector) = E_Discriminant
2954 and then Nkind (N) /= N_Extension_Aggregate
2955 and then Nkind (Parent (N)) = N_Component_Association
2956 and then Is_Constrained (Typ)
2957 then
2958 -- We must check that the discriminant value imposed by the
2959 -- context is the same as the value given in the subaggregate,
2960 -- because after the expansion into assignments there is no
2961 -- record on which to perform a regular discriminant check.
2962
2963 declare
2964 D_Val : Elmt_Id;
2965 Disc : Entity_Id;
2966
2967 begin
2968 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2969 Disc := First_Discriminant (Typ);
fbf5a39b
AC
2970 while Chars (Disc) /= Chars (Selector) loop
2971 Next_Discriminant (Disc);
2972 Next_Elmt (D_Val);
2973 end loop;
2974
2975 pragma Assert (Present (D_Val));
2976
0f95b178
JM
2977 -- This check cannot performed for components that are
2978 -- constrained by a current instance, because this is not a
2979 -- value that can be compared with the actual constraint.
2980
2981 if Nkind (Node (D_Val)) /= N_Attribute_Reference
2982 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2983 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2984 then
2985 Append_To (L,
2986 Make_Raise_Constraint_Error (Loc,
2987 Condition =>
2988 Make_Op_Ne (Loc,
37368818 2989 Left_Opnd => New_Copy_Tree (Node (D_Val)),
0f95b178 2990 Right_Opnd => Expression (Comp)),
37368818 2991 Reason => CE_Discriminant_Check_Failed));
0f95b178
JM
2992
2993 else
3b9fa2df
ES
2994 -- Find self-reference in previous discriminant assignment,
2995 -- and replace with proper expression.
0f95b178
JM
2996
2997 declare
2998 Ass : Node_Id;
2999
3000 begin
3001 Ass := First (L);
3002 while Present (Ass) loop
3003 if Nkind (Ass) = N_Assignment_Statement
3004 and then Nkind (Name (Ass)) = N_Selected_Component
3005 and then Chars (Selector_Name (Name (Ass))) =
36a66365 3006 Chars (Disc)
0f95b178
JM
3007 then
3008 Set_Expression
3009 (Ass, New_Copy_Tree (Expression (Comp)));
3010 exit;
3011 end if;
3012 Next (Ass);
3013 end loop;
3014 end;
3015 end if;
fbf5a39b 3016 end;
70482933
RK
3017 end if;
3018
3019 Next (Comp);
3020 end loop;
3021
bdc193ba
AC
3022 -- If the type is tagged, the tag needs to be initialized (unless we
3023 -- are in VM-mode where tags are implicit). It is done late in the
3024 -- initialization process because in some cases, we call the init
3025 -- proc of an ancestor which will not leave out the right tag.
70482933
RK
3026
3027 if Ancestor_Is_Expression then
3028 null;
3029
28541488
JM
3030 -- For CPP types we generated a call to the C++ default constructor
3031 -- before the components have been initialized to ensure the proper
3032 -- initialization of the _Tag component (see above).
3033
3034 elsif Is_CPP_Class (Typ) then
3035 null;
3036
1f110335 3037 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
70482933
RK
3038 Instr :=
3039 Make_OK_Assignment_Statement (Loc,
3040 Name =>
3041 Make_Selected_Component (Loc,
c5ee5ad2 3042 Prefix => New_Copy_Tree (Target),
70482933 3043 Selector_Name =>
e4494292 3044 New_Occurrence_Of
a9d8907c 3045 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
3046
3047 Expression =>
3048 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 3049 New_Occurrence_Of
a9d8907c
JM
3050 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3051 Loc)));
70482933
RK
3052
3053 Append_To (L, Instr);
c5ee5ad2 3054
bdc193ba 3055 -- Ada 2005 (AI-251): If the tagged type has been derived from an
c5ee5ad2
BD
3056 -- abstract interfaces we must also initialize the tags of the
3057 -- secondary dispatch tables.
3058
ce2b6ba5 3059 if Has_Interfaces (Base_Type (Typ)) then
c5ee5ad2
BD
3060 Init_Secondary_Tags
3061 (Typ => Base_Type (Typ),
3062 Target => Target,
3063 Stmts_List => L);
3064 end if;
70482933
RK
3065 end if;
3066
7b9d0d69
ES
3067 -- If the controllers have not been initialized yet (by lack of non-
3068 -- discriminant components), let's do it now.
70482933 3069
df3e68b1 3070 Generate_Finalization_Actions;
70482933 3071
7b9d0d69 3072 return L;
70482933
RK
3073 end Build_Record_Aggr_Code;
3074
cf6956bb
AC
3075 ---------------------------------------
3076 -- Collect_Initialization_Statements --
3077 ---------------------------------------
3078
3079 procedure Collect_Initialization_Statements
3080 (Obj : Entity_Id;
3081 N : Node_Id;
3082 Node_After : Node_Id)
3083 is
3084 Loc : constant Source_Ptr := Sloc (N);
ae05cdd6 3085 Init_Actions : constant List_Id := New_List;
cf6956bb 3086 Init_Node : Node_Id;
2ffcbaa5 3087 Comp_Stmt : Node_Id;
ae05cdd6 3088
cf6956bb 3089 begin
3a3af4c3
AC
3090 -- Nothing to do if Obj is already frozen, as in this case we known we
3091 -- won't need to move the initialization statements about later on.
3092
3093 if Is_Frozen (Obj) then
3094 return;
3095 end if;
3096
cf6956bb 3097 Init_Node := N;
cf6956bb
AC
3098 while Next (Init_Node) /= Node_After loop
3099 Append_To (Init_Actions, Remove_Next (Init_Node));
3100 end loop;
3101
3102 if not Is_Empty_List (Init_Actions) then
9dc30a5f 3103 Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
2ffcbaa5
AC
3104 Insert_Action_After (Init_Node, Comp_Stmt);
3105 Set_Initialization_Statements (Obj, Comp_Stmt);
cf6956bb
AC
3106 end if;
3107 end Collect_Initialization_Statements;
3108
70482933
RK
3109 -------------------------------
3110 -- Convert_Aggr_In_Allocator --
3111 -------------------------------
3112
fa57ac97
ES
3113 procedure Convert_Aggr_In_Allocator
3114 (Alloc : Node_Id;
3115 Decl : Node_Id;
3116 Aggr : Node_Id)
3117 is
70482933
RK
3118 Loc : constant Source_Ptr := Sloc (Aggr);
3119 Typ : constant Entity_Id := Etype (Aggr);
3120 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
3121
3122 Occ : constant Node_Id :=
15f0f591 3123 Unchecked_Convert_To (Typ,
e4494292 3124 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
70482933 3125
70482933 3126 begin
6f639c98
ES
3127 if Is_Array_Type (Typ) then
3128 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3129
3130 elsif Has_Default_Init_Comps (Aggr) then
c45b6ae0
AC
3131 declare
3132 L : constant List_Id := New_List;
3133 Init_Stmts : List_Id;
3134
3135 begin
df3e68b1 3136 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
c45b6ae0 3137
0f95b178
JM
3138 if Has_Task (Typ) then
3139 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
fa57ac97 3140 Insert_Actions (Alloc, L);
0f95b178 3141 else
fa57ac97 3142 Insert_Actions (Alloc, Init_Stmts);
0f95b178 3143 end if;
c45b6ae0
AC
3144 end;
3145
3146 else
df3e68b1 3147 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
c45b6ae0 3148 end if;
70482933
RK
3149 end Convert_Aggr_In_Allocator;
3150
3151 --------------------------------
3152 -- Convert_Aggr_In_Assignment --
3153 --------------------------------
3154
3155 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3b9fa2df
ES
3156 Aggr : Node_Id := Expression (N);
3157 Typ : constant Entity_Id := Etype (Aggr);
3158 Occ : constant Node_Id := New_Copy_Tree (Name (N));
70482933
RK
3159
3160 begin
3161 if Nkind (Aggr) = N_Qualified_Expression then
3162 Aggr := Expression (Aggr);
3163 end if;
3164
df3e68b1 3165 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933
RK
3166 end Convert_Aggr_In_Assignment;
3167
3168 ---------------------------------
3169 -- Convert_Aggr_In_Object_Decl --
3170 ---------------------------------
3171
3172 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3173 Obj : constant Entity_Id := Defining_Identifier (N);
fbf5a39b 3174 Aggr : Node_Id := Expression (N);
70482933
RK
3175 Loc : constant Source_Ptr := Sloc (Aggr);
3176 Typ : constant Entity_Id := Etype (Aggr);
3177 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3178
fbf5a39b
AC
3179 function Discriminants_Ok return Boolean;
3180 -- If the object type is constrained, the discriminants in the
3181 -- aggregate must be checked against the discriminants of the subtype.
3182 -- This cannot be done using Apply_Discriminant_Checks because after
3183 -- expansion there is no aggregate left to check.
3184
3185 ----------------------
3186 -- Discriminants_Ok --
3187 ----------------------
3188
3189 function Discriminants_Ok return Boolean is
3190 Cond : Node_Id := Empty;
3191 Check : Node_Id;
3192 D : Entity_Id;
3193 Disc1 : Elmt_Id;
3194 Disc2 : Elmt_Id;
3195 Val1 : Node_Id;
3196 Val2 : Node_Id;
3197
3198 begin
3199 D := First_Discriminant (Typ);
3200 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3201 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
fbf5a39b
AC
3202 while Present (Disc1) and then Present (Disc2) loop
3203 Val1 := Node (Disc1);
3204 Val2 := Node (Disc2);
3205
3206 if not Is_OK_Static_Expression (Val1)
3207 or else not Is_OK_Static_Expression (Val2)
3208 then
3209 Check := Make_Op_Ne (Loc,
3210 Left_Opnd => Duplicate_Subexpr (Val1),
3211 Right_Opnd => Duplicate_Subexpr (Val2));
3212
3213 if No (Cond) then
3214 Cond := Check;
3215
3216 else
3217 Cond := Make_Or_Else (Loc,
3218 Left_Opnd => Cond,
3219 Right_Opnd => Check);
3220 end if;
3221
3222 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3223 Apply_Compile_Time_Constraint_Error (Aggr,
324ac540 3224 Msg => "incorrect value for discriminant&??",
fbf5a39b
AC
3225 Reason => CE_Discriminant_Check_Failed,
3226 Ent => D);
3227 return False;
3228 end if;
3229
3230 Next_Discriminant (D);
3231 Next_Elmt (Disc1);
3232 Next_Elmt (Disc2);
3233 end loop;
3234
3cf3e5c6 3235 -- If any discriminant constraint is non-static, emit a check
fbf5a39b
AC
3236
3237 if Present (Cond) then
3238 Insert_Action (N,
3239 Make_Raise_Constraint_Error (Loc,
3240 Condition => Cond,
ef1c0511 3241 Reason => CE_Discriminant_Check_Failed));
fbf5a39b
AC
3242 end if;
3243
3244 return True;
3245 end Discriminants_Ok;
3246
3247 -- Start of processing for Convert_Aggr_In_Object_Decl
3248
70482933
RK
3249 begin
3250 Set_Assignment_OK (Occ);
3251
3252 if Nkind (Aggr) = N_Qualified_Expression then
3253 Aggr := Expression (Aggr);
3254 end if;
3255
fbf5a39b
AC
3256 if Has_Discriminants (Typ)
3257 and then Typ /= Etype (Obj)
3258 and then Is_Constrained (Etype (Obj))
3259 and then not Discriminants_Ok
3260 then
3261 return;
3262 end if;
3263
0f95b178
JM
3264 -- If the context is an extended return statement, it has its own
3265 -- finalization machinery (i.e. works like a transient scope) and
3266 -- we do not want to create an additional one, because objects on
3267 -- the finalization list of the return must be moved to the caller's
3268 -- finalization list to complete the return.
3269
3b9fa2df
ES
3270 -- However, if the aggregate is limited, it is built in place, and the
3271 -- controlled components are not assigned to intermediate temporaries
3272 -- so there is no need for a transient scope in this case either.
3273
0f95b178
JM
3274 if Requires_Transient_Scope (Typ)
3275 and then Ekind (Current_Scope) /= E_Return_Statement
3b9fa2df 3276 and then not Is_Limited_Type (Typ)
0f95b178 3277 then
7e5ce5a8
JM
3278 Establish_Transient_Scope
3279 (Aggr,
3280 Sec_Stack =>
3281 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
6f5c2c4b 3282 end if;
02217452 3283
6f5c2c4b
AC
3284 declare
3285 Node_After : constant Node_Id := Next (N);
6f5c2c4b
AC
3286 begin
3287 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
cf6956bb 3288 Collect_Initialization_Statements (Obj, N, Node_After);
6f5c2c4b 3289 end;
70482933 3290 Set_No_Initialization (N);
07fc65c4 3291 Initialize_Discriminants (N, Typ);
70482933
RK
3292 end Convert_Aggr_In_Object_Decl;
3293
6f639c98 3294 -------------------------------------
3b9fa2df 3295 -- Convert_Array_Aggr_In_Allocator --
6f639c98
ES
3296 -------------------------------------
3297
3298 procedure Convert_Array_Aggr_In_Allocator
3299 (Decl : Node_Id;
3300 Aggr : Node_Id;
3301 Target : Node_Id)
3302 is
3303 Aggr_Code : List_Id;
3304 Typ : constant Entity_Id := Etype (Aggr);
3305 Ctyp : constant Entity_Id := Component_Type (Typ);
3306
3307 begin
3308 -- The target is an explicit dereference of the allocated object.
3309 -- Generate component assignments to it, as for an aggregate that
3310 -- appears on the right-hand side of an assignment statement.
3311
3312 Aggr_Code :=
3313 Build_Array_Aggr_Code (Aggr,
3314 Ctype => Ctyp,
3315 Index => First_Index (Typ),
3316 Into => Target,
3317 Scalar_Comp => Is_Scalar_Type (Ctyp));
3318
3319 Insert_Actions_After (Decl, Aggr_Code);
3320 end Convert_Array_Aggr_In_Allocator;
3321
70482933
RK
3322 ----------------------------
3323 -- Convert_To_Assignments --
3324 ----------------------------
3325
3326 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3327 Loc : constant Source_Ptr := Sloc (N);
39f346aa 3328 T : Entity_Id;
70482933
RK
3329 Temp : Entity_Id;
3330
f29afe5f 3331 Aggr_Code : List_Id;
fbf5a39b
AC
3332 Instr : Node_Id;
3333 Target_Expr : Node_Id;
3334 Parent_Kind : Node_Kind;
3335 Unc_Decl : Boolean := False;
3336 Parent_Node : Node_Id;
70482933
RK
3337
3338 begin
fa57ac97
ES
3339 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3340 pragma Assert (Is_Record_Type (Typ));
3341
70482933
RK
3342 Parent_Node := Parent (N);
3343 Parent_Kind := Nkind (Parent_Node);
3344
3345 if Parent_Kind = N_Qualified_Expression then
3346
3347 -- Check if we are in a unconstrained declaration because in this
3348 -- case the current delayed expansion mechanism doesn't work when
3349 -- the declared object size depend on the initializing expr.
3350
3351 begin
3352 Parent_Node := Parent (Parent_Node);
3353 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 3354
70482933
RK
3355 if Parent_Kind = N_Object_Declaration then
3356 Unc_Decl :=
3357 not Is_Entity_Name (Object_Definition (Parent_Node))
fbf5a39b
AC
3358 or else Has_Discriminants
3359 (Entity (Object_Definition (Parent_Node)))
3360 or else Is_Class_Wide_Type
3361 (Entity (Object_Definition (Parent_Node)));
70482933
RK
3362 end if;
3363 end;
3364 end if;
3365
3b9fa2df
ES
3366 -- Just set the Delay flag in the cases where the transformation will be
3367 -- done top down from above.
fbf5a39b 3368
fa57ac97 3369 if False
0f95b178 3370
fa57ac97 3371 -- Internal aggregate (transformed when expanding the parent)
0f95b178 3372
fa57ac97
ES
3373 or else Parent_Kind = N_Aggregate
3374 or else Parent_Kind = N_Extension_Aggregate
3375 or else Parent_Kind = N_Component_Association
0f95b178 3376
fa57ac97 3377 -- Allocator (see Convert_Aggr_In_Allocator)
70482933 3378
fa57ac97 3379 or else Parent_Kind = N_Allocator
0f95b178 3380
fa57ac97
ES
3381 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3382
3383 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3384
3385 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3386 -- assignments in init procs are taken into account.
3387
3388 or else (Parent_Kind = N_Assignment_Statement
3389 and then Inside_Init_Proc)
3390
bdc193ba
AC
3391 -- (Ada 2005) An inherently limited type in a return statement, which
3392 -- will be handled in a build-in-place fashion, and may be rewritten
3393 -- as an extended return and have its own finalization machinery.
3394 -- In the case of a simple return, the aggregate needs to be delayed
3395 -- until the scope for the return statement has been created, so
3396 -- that any finalization chain will be associated with that scope.
3397 -- For extended returns, we delay expansion to avoid the creation
3398 -- of an unwanted transient scope that could result in premature
3399 -- finalization of the return object (which is built in in place
3400 -- within the caller's scope).
fa57ac97
ES
3401
3402 or else
51245e2d 3403 (Is_Limited_View (Typ)
3b9fa2df
ES
3404 and then
3405 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
d7f94401 3406 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
70482933
RK
3407 then
3408 Set_Expansion_Delayed (N);
3409 return;
3410 end if;
3411
3412 if Requires_Transient_Scope (Typ) then
f29afe5f 3413 Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
70482933
RK
3414 end if;
3415
36c73552 3416 -- If the aggregate is non-limited, create a temporary. If it is limited
bdc193ba
AC
3417 -- and context is an assignment, this is a subaggregate for an enclosing
3418 -- aggregate being expanded. It must be built in place, so use target of
3419 -- the current assignment.
70482933 3420
3b9fa2df
ES
3421 if Is_Limited_Type (Typ)
3422 and then Nkind (Parent (N)) = N_Assignment_Statement
3423 then
3424 Target_Expr := New_Copy_Tree (Name (Parent (N)));
df3e68b1
HK
3425 Insert_Actions (Parent (N),
3426 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3b9fa2df 3427 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933 3428
3b9fa2df 3429 else
faf387e1 3430 Temp := Make_Temporary (Loc, 'A', N);
70482933 3431
39f346aa
ES
3432 -- If the type inherits unknown discriminants, use the view with
3433 -- known discriminants if available.
3434
3435 if Has_Unknown_Discriminants (Typ)
36a66365 3436 and then Present (Underlying_Record_View (Typ))
39f346aa
ES
3437 then
3438 T := Underlying_Record_View (Typ);
3439 else
3440 T := Typ;
3441 end if;
3442
3b9fa2df
ES
3443 Instr :=
3444 Make_Object_Declaration (Loc,
3445 Defining_Identifier => Temp,
39f346aa 3446 Object_Definition => New_Occurrence_Of (T, Loc));
3b9fa2df
ES
3447
3448 Set_No_Initialization (Instr);
3449 Insert_Action (N, Instr);
39f346aa 3450 Initialize_Discriminants (Instr, T);
f29afe5f 3451
3b9fa2df 3452 Target_Expr := New_Occurrence_Of (Temp, Loc);
f29afe5f
AC
3453 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
3454
3455 -- Save the last assignment statement associated with the aggregate
3456 -- when building a controlled object. This reference is utilized by
3457 -- the finalization machinery when marking an object as successfully
3458 -- initialized.
3459
3460 if Needs_Finalization (T) then
3461 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
3462 end if;
3463
3464 Insert_Actions (N, Aggr_Code);
3b9fa2df 3465 Rewrite (N, New_Occurrence_Of (Temp, Loc));
39f346aa 3466 Analyze_And_Resolve (N, T);
3b9fa2df 3467 end if;
70482933
RK
3468 end Convert_To_Assignments;
3469
07fc65c4
GB
3470 ---------------------------
3471 -- Convert_To_Positional --
3472 ---------------------------
3473
3474 procedure Convert_To_Positional
3475 (N : Node_Id;
fbf5a39b 3476 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
3477 Handle_Bit_Packed : Boolean := False)
3478 is
fbf5a39b 3479 Typ : constant Entity_Id := Etype (N);
07fc65c4 3480
0f95b178
JM
3481 Static_Components : Boolean := True;
3482
3483 procedure Check_Static_Components;
3b9fa2df
ES
3484 -- Check whether all components of the aggregate are compile-time known
3485 -- values, and can be passed as is to the back-end without further
3486 -- expansion.
0f95b178 3487
fbf5a39b 3488 function Flatten
d05ef0ab
AC
3489 (N : Node_Id;
3490 Ix : Node_Id;
3491 Ixb : Node_Id) return Boolean;
3b9fa2df
ES
3492 -- Convert the aggregate into a purely positional form if possible. On
3493 -- entry the bounds of all dimensions are known to be static, and the
3494 -- total number of components is safe enough to expand.
fbf5a39b
AC
3495
3496 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
64425dff 3497 -- Return True iff the array N is flat (which is not trivial in the case
308e6f3a 3498 -- of multidimensional aggregates).
fbf5a39b 3499
0f95b178
JM
3500 -----------------------------
3501 -- Check_Static_Components --
3502 -----------------------------
3503
bdc193ba
AC
3504 -- Could use some comments in this body ???
3505
0f95b178
JM
3506 procedure Check_Static_Components is
3507 Expr : Node_Id;
3508
3509 begin
3510 Static_Components := True;
3511
3512 if Nkind (N) = N_String_Literal then
3513 null;
3514
3515 elsif Present (Expressions (N)) then
3516 Expr := First (Expressions (N));
3517 while Present (Expr) loop
3518 if Nkind (Expr) /= N_Aggregate
3519 or else not Compile_Time_Known_Aggregate (Expr)
3520 or else Expansion_Delayed (Expr)
3521 then
3522 Static_Components := False;
3523 exit;
3524 end if;
3525
3526 Next (Expr);
3527 end loop;
3528 end if;
3529
3530 if Nkind (N) = N_Aggregate
3531 and then Present (Component_Associations (N))
3532 then
3533 Expr := First (Component_Associations (N));
3534 while Present (Expr) loop
8da337c5
AC
3535 if Nkind_In (Expression (Expr), N_Integer_Literal,
3536 N_Real_Literal)
3537 then
0f95b178
JM
3538 null;
3539
094cefda
AC
3540 elsif Is_Entity_Name (Expression (Expr))
3541 and then Present (Entity (Expression (Expr)))
3542 and then Ekind (Entity (Expression (Expr))) =
36a66365 3543 E_Enumeration_Literal
094cefda
AC
3544 then
3545 null;
3546
0f95b178 3547 elsif Nkind (Expression (Expr)) /= N_Aggregate
8da337c5 3548 or else not Compile_Time_Known_Aggregate (Expression (Expr))
0f95b178
JM
3549 or else Expansion_Delayed (Expression (Expr))
3550 then
3551 Static_Components := False;
3552 exit;
3553 end if;
3554
3555 Next (Expr);
3556 end loop;
3557 end if;
3558 end Check_Static_Components;
3559
fbf5a39b
AC
3560 -------------
3561 -- Flatten --
3562 -------------
3563
3564 function Flatten
d05ef0ab
AC
3565 (N : Node_Id;
3566 Ix : Node_Id;
3567 Ixb : Node_Id) return Boolean
fbf5a39b
AC
3568 is
3569 Loc : constant Source_Ptr := Sloc (N);
3570 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3571 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3572 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3573 Lov : Uint;
3574 Hiv : Uint;
3575
3f5a8fee
AC
3576 Others_Present : Boolean := False;
3577
6e937c1c 3578 begin
fbf5a39b
AC
3579 if Nkind (Original_Node (N)) = N_String_Literal then
3580 return True;
3581 end if;
07fc65c4 3582
0f95b178
JM
3583 if not Compile_Time_Known_Value (Lo)
3584 or else not Compile_Time_Known_Value (Hi)
3585 then
3586 return False;
3587 end if;
07fc65c4 3588
fbf5a39b
AC
3589 Lov := Expr_Value (Lo);
3590 Hiv := Expr_Value (Hi);
07fc65c4 3591
3f5a8fee
AC
3592 -- Check if there is an others choice
3593
3594 if Present (Component_Associations (N)) then
3595 declare
3596 Assoc : Node_Id;
3597 Choice : Node_Id;
3598
3599 begin
3600 Assoc := First (Component_Associations (N));
3601 while Present (Assoc) loop
9f8d1e5c
AC
3602
3603 -- If this is a box association, flattening is in general
3604 -- not possible because at this point we cannot tell if the
3605 -- default is static or even exists.
3606
3607 if Box_Present (Assoc) then
3608 return False;
3609 end if;
3610
3f5a8fee
AC
3611 Choice := First (Choices (Assoc));
3612
3613 while Present (Choice) loop
3614 if Nkind (Choice) = N_Others_Choice then
3615 Others_Present := True;
3616 end if;
3617
3618 Next (Choice);
3619 end loop;
3620
3621 Next (Assoc);
3622 end loop;
3623 end;
3624 end if;
3625
3626 -- If the low bound is not known at compile time and others is not
3627 -- present we can proceed since the bounds can be obtained from the
3628 -- aggregate.
3629
3630 -- Note: This case is required in VM platforms since their backends
3631 -- normalize array indexes in the range 0 .. N-1. Hence, if we do
3632 -- not flat an array whose bounds cannot be obtained from the type
3633 -- of the index the backend has no way to properly generate the code.
3634 -- See ACATS c460010 for an example.
3635
fbf5a39b 3636 if Hiv < Lov
36a66365 3637 or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
fbf5a39b
AC
3638 then
3639 return False;
3640 end if;
07fc65c4 3641
3b9fa2df
ES
3642 -- Determine if set of alternatives is suitable for conversion and
3643 -- build an array containing the values in sequence.
07fc65c4 3644
fbf5a39b
AC
3645 declare
3646 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3647 of Node_Id := (others => Empty);
3648 -- The values in the aggregate sorted appropriately
07fc65c4 3649
fbf5a39b
AC
3650 Vlist : List_Id;
3651 -- Same data as Vals in list form
07fc65c4 3652
fbf5a39b
AC
3653 Rep_Count : Nat;
3654 -- Used to validate Max_Others_Replicate limit
07fc65c4 3655
841dd0f5
AC
3656 Elmt : Node_Id;
3657 Num : Int := UI_To_Int (Lov);
3658 Choice_Index : Int;
3659 Choice : Node_Id;
3660 Lo, Hi : Node_Id;
07fc65c4 3661
fbf5a39b
AC
3662 begin
3663 if Present (Expressions (N)) then
3664 Elmt := First (Expressions (N));
fbf5a39b
AC
3665 while Present (Elmt) loop
3666 if Nkind (Elmt) = N_Aggregate
3667 and then Present (Next_Index (Ix))
3668 and then
d7f94401 3669 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
fbf5a39b
AC
3670 then
3671 return False;
3672 end if;
07fc65c4 3673
fbf5a39b
AC
3674 Vals (Num) := Relocate_Node (Elmt);
3675 Num := Num + 1;
07fc65c4 3676
fbf5a39b
AC
3677 Next (Elmt);
3678 end loop;
3679 end if;
07fc65c4 3680
fbf5a39b
AC
3681 if No (Component_Associations (N)) then
3682 return True;
3683 end if;
07fc65c4 3684
fbf5a39b 3685 Elmt := First (Component_Associations (N));
07fc65c4 3686
fbf5a39b
AC
3687 if Nkind (Expression (Elmt)) = N_Aggregate then
3688 if Present (Next_Index (Ix))
3689 and then
3690 not Flatten
36a66365 3691 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
fbf5a39b
AC
3692 then
3693 return False;
3694 end if;
3695 end if;
07fc65c4 3696
fbf5a39b
AC
3697 Component_Loop : while Present (Elmt) loop
3698 Choice := First (Choices (Elmt));
3699 Choice_Loop : while Present (Choice) loop
3700
3701 -- If we have an others choice, fill in the missing elements
3702 -- subject to the limit established by Max_Others_Replicate.
3703
3704 if Nkind (Choice) = N_Others_Choice then
3705 Rep_Count := 0;
3706
3707 for J in Vals'Range loop
3708 if No (Vals (J)) then
3709 Vals (J) := New_Copy_Tree (Expression (Elmt));
3710 Rep_Count := Rep_Count + 1;
3711
3712 -- Check for maximum others replication. Note that
3713 -- we skip this test if either of the restrictions
3714 -- No_Elaboration_Code or No_Implicit_Loops is
8926d369
AC
3715 -- active, if this is a preelaborable unit or
3716 -- a predefined unit, or if the unit must be
3717 -- placed in data memory. This also ensures that
d9819bbd
AC
3718 -- predefined units get the same level of constant
3719 -- folding in Ada 95 and Ada 2005, where their
3720 -- categorization has changed.
fbf5a39b
AC
3721
3722 declare
3723 P : constant Entity_Id :=
15f0f591 3724 Cunit_Entity (Current_Sem_Unit);
fbf5a39b
AC
3725
3726 begin
7f4c1903
AC
3727 -- Check if duplication OK and if so continue
3728 -- processing.
3729
6e937c1c
AC
3730 if Restriction_Active (No_Elaboration_Code)
3731 or else Restriction_Active (No_Implicit_Loops)
d9819bbd
AC
3732 or else
3733 (Ekind (Current_Scope) = E_Package
36a66365
AC
3734 and then Static_Elaboration_Desired
3735 (Current_Scope))
fbf5a39b
AC
3736 or else Is_Preelaborated (P)
3737 or else (Ekind (P) = E_Package_Body
3738 and then
3739 Is_Preelaborated (Spec_Entity (P)))
7f4c1903
AC
3740 or else
3741 Is_Predefined_File_Name
3742 (Unit_File_Name (Get_Source_Unit (P)))
fbf5a39b
AC
3743 then
3744 null;
6e937c1c 3745
7f4c1903
AC
3746 -- If duplication not OK, then we return False
3747 -- if the replication count is too high
3748
fbf5a39b
AC
3749 elsif Rep_Count > Max_Others_Replicate then
3750 return False;
7f4c1903
AC
3751
3752 -- Continue on if duplication not OK, but the
3753 -- replication count is not excessive.
3754
3755 else
3756 null;
fbf5a39b
AC
3757 end if;
3758 end;
3759 end if;
3760 end loop;
07fc65c4 3761
fbf5a39b 3762 exit Component_Loop;
07fc65c4 3763
deeb1604 3764 -- Case of a subtype mark, identifier or expanded name
07fc65c4 3765
deeb1604 3766 elsif Is_Entity_Name (Choice)
fbf5a39b
AC
3767 and then Is_Type (Entity (Choice))
3768 then
3769 Lo := Type_Low_Bound (Etype (Choice));
3770 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 3771
fbf5a39b 3772 -- Case of subtype indication
07fc65c4 3773
fbf5a39b
AC
3774 elsif Nkind (Choice) = N_Subtype_Indication then
3775 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3776 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3777
3778 -- Case of a range
3779
3780 elsif Nkind (Choice) = N_Range then
3781 Lo := Low_Bound (Choice);
3782 Hi := High_Bound (Choice);
3783
3784 -- Normal subexpression case
3785
3786 else pragma Assert (Nkind (Choice) in N_Subexpr);
3787 if not Compile_Time_Known_Value (Choice) then
3788 return False;
3789
3790 else
841dd0f5 3791 Choice_Index := UI_To_Int (Expr_Value (Choice));
bdc193ba 3792
841dd0f5
AC
3793 if Choice_Index in Vals'Range then
3794 Vals (Choice_Index) :=
3795 New_Copy_Tree (Expression (Elmt));
3796 goto Continue;
3797
bdc193ba
AC
3798 -- Choice is statically out-of-range, will be
3799 -- rewritten to raise Constraint_Error.
841dd0f5 3800
bdc193ba 3801 else
841dd0f5
AC
3802 return False;
3803 end if;
07fc65c4 3804 end if;
fbf5a39b
AC
3805 end if;
3806
64425dff 3807 -- Range cases merge with Lo,Hi set
fbf5a39b
AC
3808
3809 if not Compile_Time_Known_Value (Lo)
3810 or else
3811 not Compile_Time_Known_Value (Hi)
3812 then
3813 return False;
bdc193ba 3814
fbf5a39b
AC
3815 else
3816 for J in UI_To_Int (Expr_Value (Lo)) ..
3817 UI_To_Int (Expr_Value (Hi))
3818 loop
3819 Vals (J) := New_Copy_Tree (Expression (Elmt));
3820 end loop;
3821 end if;
07fc65c4 3822
fbf5a39b
AC
3823 <<Continue>>
3824 Next (Choice);
3825 end loop Choice_Loop;
07fc65c4 3826
fbf5a39b
AC
3827 Next (Elmt);
3828 end loop Component_Loop;
07fc65c4 3829
fbf5a39b 3830 -- If we get here the conversion is possible
07fc65c4 3831
fbf5a39b
AC
3832 Vlist := New_List;
3833 for J in Vals'Range loop
3834 Append (Vals (J), Vlist);
3835 end loop;
07fc65c4 3836
fbf5a39b
AC
3837 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3838 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3839 return True;
3840 end;
3841 end Flatten;
07fc65c4 3842
fbf5a39b
AC
3843 -------------
3844 -- Is_Flat --
3845 -------------
07fc65c4 3846
fbf5a39b
AC
3847 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3848 Elmt : Node_Id;
07fc65c4 3849
fbf5a39b
AC
3850 begin
3851 if Dims = 0 then
3852 return True;
07fc65c4 3853
fbf5a39b
AC
3854 elsif Nkind (N) = N_Aggregate then
3855 if Present (Component_Associations (N)) then
3856 return False;
07fc65c4 3857
fbf5a39b
AC
3858 else
3859 Elmt := First (Expressions (N));
fbf5a39b
AC
3860 while Present (Elmt) loop
3861 if not Is_Flat (Elmt, Dims - 1) then
3862 return False;
07fc65c4 3863 end if;
07fc65c4 3864
fbf5a39b
AC
3865 Next (Elmt);
3866 end loop;
07fc65c4 3867
fbf5a39b
AC
3868 return True;
3869 end if;
3870 else
3871 return True;
3872 end if;
3873 end Is_Flat;
07fc65c4 3874
fbf5a39b 3875 -- Start of processing for Convert_To_Positional
07fc65c4 3876
fbf5a39b 3877 begin
0ab80019 3878 -- Ada 2005 (AI-287): Do not convert in case of default initialized
c45b6ae0
AC
3879 -- components because in this case will need to call the corresponding
3880 -- IP procedure.
3881
3882 if Has_Default_Init_Comps (N) then
3883 return;
3884 end if;
3885
fbf5a39b
AC
3886 if Is_Flat (N, Number_Dimensions (Typ)) then
3887 return;
3888 end if;
3889
36a66365 3890 if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
fbf5a39b
AC
3891 return;
3892 end if;
07fc65c4 3893
3b9fa2df
ES
3894 -- Do not convert to positional if controlled components are involved
3895 -- since these require special processing
07fc65c4 3896
fbf5a39b
AC
3897 if Has_Controlled_Component (Typ) then
3898 return;
3899 end if;
07fc65c4 3900
0f95b178
JM
3901 Check_Static_Components;
3902
3903 -- If the size is known, or all the components are static, try to
3904 -- build a fully positional aggregate.
3905
3906 -- The size of the type may not be known for an aggregate with
3907 -- discriminated array components, but if the components are static
3908 -- it is still possible to verify statically that the length is
3909 -- compatible with the upper bound of the type, and therefore it is
3910 -- worth flattening such aggregates as well.
3911
3912 -- For now the back-end expands these aggregates into individual
3913 -- assignments to the target anyway, but it is conceivable that
3914 -- it will eventually be able to treat such aggregates statically???
3915
58fda84d 3916 if Aggr_Size_OK (N, Typ)
0f95b178 3917 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
643a0839 3918 then
0f95b178
JM
3919 if Static_Components then
3920 Set_Compile_Time_Known_Aggregate (N);
3921 Set_Expansion_Delayed (N, False);
3922 end if;
3923
07fc65c4 3924 Analyze_And_Resolve (N, Typ);
fbf5a39b 3925 end if;
d9819bbd 3926
e6807723
AC
3927 -- Is Static_Eaboration_Desired has been specified, diagnose aggregates
3928 -- that will still require initialization code.
3929
d9819bbd
AC
3930 if (Ekind (Current_Scope) = E_Package
3931 and then Static_Elaboration_Desired (Current_Scope))
3932 and then Nkind (Parent (N)) = N_Object_Declaration
3933 then
3934 declare
3935 Expr : Node_Id;
3936
3937 begin
e6807723 3938 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
d9819bbd
AC
3939 Expr := First (Expressions (N));
3940 while Present (Expr) loop
3941 if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
3942 or else
3943 (Is_Entity_Name (Expr)
3944 and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
3945 then
3946 null;
8926d369 3947
d9819bbd 3948 else
8926d369 3949 Error_Msg_N
324ac540 3950 ("non-static object requires elaboration code??", N);
d9819bbd
AC
3951 exit;
3952 end if;
8926d369 3953
d9819bbd
AC
3954 Next (Expr);
3955 end loop;
3956
3957 if Present (Component_Associations (N)) then
324ac540 3958 Error_Msg_N ("object requires elaboration code??", N);
d9819bbd
AC
3959 end if;
3960 end if;
3961 end;
3962 end if;
07fc65c4
GB
3963 end Convert_To_Positional;
3964
70482933
RK
3965 ----------------------------
3966 -- Expand_Array_Aggregate --
3967 ----------------------------
3968
3969 -- Array aggregate expansion proceeds as follows:
3970
3971 -- 1. If requested we generate code to perform all the array aggregate
3972 -- bound checks, specifically
3973
3974 -- (a) Check that the index range defined by aggregate bounds is
3975 -- compatible with corresponding index subtype.
3976
3977 -- (b) If an others choice is present check that no aggregate
3978 -- index is outside the bounds of the index constraint.
3979
3980 -- (c) For multidimensional arrays make sure that all subaggregates
3981 -- corresponding to the same dimension have the same bounds.
3982
fbf5a39b 3983 -- 2. Check for packed array aggregate which can be converted to a
b465ef6f 3984 -- constant so that the aggregate disappears completely.
fbf5a39b
AC
3985
3986 -- 3. Check case of nested aggregate. Generally nested aggregates are
3987 -- handled during the processing of the parent aggregate.
3988
3989 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
3990 -- case pass it as is to Gigi. Note that a necessary condition for
3991 -- static processing is that the aggregate be fully positional.
3992
fbf5a39b 3993 -- 5. If in place aggregate expansion is possible (i.e. no need to create
70482933
RK
3994 -- a temporary) then mark the aggregate as such and return. Otherwise
3995 -- create a new temporary and generate the appropriate initialization
3996 -- code.
3997
3998 procedure Expand_Array_Aggregate (N : Node_Id) is
3999 Loc : constant Source_Ptr := Sloc (N);
4000
4001 Typ : constant Entity_Id := Etype (N);
4002 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 4003 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
4004 -- Ctyp is the corresponding component type.
4005
4006 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3cf3e5c6 4007 -- Number of aggregate index dimensions
70482933
RK
4008
4009 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
4010 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3cf3e5c6 4011 -- Low and High bounds of the constraint for each aggregate index
70482933
RK
4012
4013 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3cf3e5c6 4014 -- The type of each index
70482933 4015
ac43e11e
AC
4016 In_Place_Assign_OK_For_Declaration : Boolean := False;
4017 -- True if we are to generate an in place assignment for a declaration
4018
70482933
RK
4019 Maybe_In_Place_OK : Boolean;
4020 -- If the type is neither controlled nor packed and the aggregate
4021 -- is the expression in an assignment, assignment in place may be
4022 -- possible, provided other conditions are met on the LHS.
4023
07fc65c4 4024 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
15f0f591 4025 (others => False);
07fc65c4
GB
4026 -- If Others_Present (J) is True, then there is an others choice
4027 -- in one of the sub-aggregates of N at dimension J.
70482933 4028
ac43e11e
AC
4029 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
4030 -- Returns true if an aggregate assignment can be done by the back end
4031
70482933
RK
4032 procedure Build_Constrained_Type (Positional : Boolean);
4033 -- If the subtype is not static or unconstrained, build a constrained
4034 -- type using the computable sizes of the aggregate and its sub-
4035 -- aggregates.
4036
4037 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4038 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4039 -- by Index_Bounds.
4040
4041 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
4042 -- Checks that in a multi-dimensional array aggregate all subaggregates
4043 -- corresponding to the same dimension have the same bounds.
4044 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4045 -- corresponding to the sub-aggregate.
4046
4047 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
4048 -- Computes the values of array Others_Present. Sub_Aggr is the
4049 -- array sub-aggregate we start the computation from. Dim is the
4050 -- dimension corresponding to the sub-aggregate.
4051
70482933
RK
4052 function In_Place_Assign_OK return Boolean;
4053 -- Simple predicate to determine whether an aggregate assignment can
4054 -- be done in place, because none of the new values can depend on the
4055 -- components of the target of the assignment.
4056
4057 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4058 -- Checks that if an others choice is present in any sub-aggregate no
4059 -- aggregate index is outside the bounds of the index constraint.
4060 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4061 -- corresponding to the sub-aggregate.
4062
8da337c5
AC
4063 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4064 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4065 -- built directly into the target of the assignment it must be free
4066 -- of side-effects.
4067
ac43e11e
AC
4068 ------------------------------------
4069 -- Aggr_Assignment_OK_For_Backend --
4070 ------------------------------------
4071
4072 -- Backend processing by Gigi/gcc is possible only if all the following
4073 -- conditions are met:
4074
4075 -- 1. N consists of a single OTHERS choice, possibly recursively
4076
b7c874a7 4077 -- 2. The array type is not packed
ac43e11e 4078
b7c874a7 4079 -- 3. The array type has no atomic components
ac43e11e 4080
e8cddc3b
AC
4081 -- 4. The array type has no null ranges (the purpose of this is to
4082 -- avoid a bogus warning for an out-of-range value).
e5c4e2bc 4083
e8cddc3b 4084 -- 5. The component type is discrete
b7c874a7
AC
4085
4086 -- 6. The component size is Storage_Unit or the value is of the form
41a58113
RD
4087 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4088 -- and M in 1 .. A-1. This can also be viewed as K occurrences of
4089 -- the 8-bit value M, concatenated together.
7b2888e6 4090
ac43e11e
AC
4091 -- The ultimate goal is to generate a call to a fast memset routine
4092 -- specifically optimized for the target.
4093
4094 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
4095 Ctyp : Entity_Id;
e8cddc3b 4096 Index : Entity_Id;
ac43e11e 4097 Expr : Node_Id := N;
e8cddc3b
AC
4098 Low : Node_Id;
4099 High : Node_Id;
ac43e11e
AC
4100 Remainder : Uint;
4101 Value : Uint;
4102 Nunits : Nat;
4103
4104 begin
4105 -- Recurse as far as possible to find the innermost component type
4106
4107 Ctyp := Etype (N);
4108 while Is_Array_Type (Ctyp) loop
4109 if Nkind (Expr) /= N_Aggregate
4110 or else not Is_Others_Aggregate (Expr)
4111 then
4112 return False;
4113 end if;
4114
b7c874a7
AC
4115 if Present (Packed_Array_Impl_Type (Ctyp)) then
4116 return False;
4117 end if;
4118
e5c4e2bc
AC
4119 if Has_Atomic_Components (Ctyp) then
4120 return False;
4121 end if;
4122
e8cddc3b
AC
4123 Index := First_Index (Ctyp);
4124 while Present (Index) loop
4125 Get_Index_Bounds (Index, Low, High);
4126
4127 if Is_Null_Range (Low, High) then
4128 return False;
4129 end if;
4130
4131 Next_Index (Index);
4132 end loop;
4133
ac43e11e
AC
4134 Expr := Expression (First (Component_Associations (Expr)));
4135
4136 for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
4137 if Nkind (Expr) /= N_Aggregate
4138 or else not Is_Others_Aggregate (Expr)
4139 then
4140 return False;
4141 end if;
4142
4143 Expr := Expression (First (Component_Associations (Expr)));
4144 end loop;
4145
4146 Ctyp := Component_Type (Ctyp);
7b2888e6 4147
e5c4e2bc
AC
4148 if Is_Atomic (Ctyp) then
4149 return False;
4150 end if;
ac43e11e
AC
4151 end loop;
4152
e8cddc3b 4153 if not Is_Discrete_Type (Ctyp) then
ac43e11e
AC
4154 return False;
4155 end if;
4156
4157 -- The expression needs to be analyzed if True is returned
4158
4159 Analyze_And_Resolve (Expr, Ctyp);
4160
e8cddc3b
AC
4161 -- The back end uses the Esize as the precision of the type
4162
4163 Nunits := UI_To_Int (Esize (Ctyp)) / System_Storage_Unit;
4164
ac43e11e
AC
4165 if Nunits = 1 then
4166 return True;
4167 end if;
4168
4169 if not Compile_Time_Known_Value (Expr) then
4170 return False;
4171 end if;
4172
4173 Value := Expr_Value (Expr);
4174
4175 if Has_Biased_Representation (Ctyp) then
4176 Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
4177 end if;
4178
e8cddc3b 4179 -- Values 0 and -1 immediately satisfy the last check
ac43e11e
AC
4180
4181 if Value = Uint_0 or else Value = Uint_Minus_1 then
4182 return True;
4183 end if;
4184
4185 -- We need to work with an unsigned value
4186
4187 if Value < 0 then
4188 Value := Value + 2**(System_Storage_Unit * Nunits);
4189 end if;
4190
4191 Remainder := Value rem 2**System_Storage_Unit;
bdc193ba
AC
4192
4193 for J in 1 .. Nunits - 1 loop
ac43e11e
AC
4194 Value := Value / 2**System_Storage_Unit;
4195
4196 if Value rem 2**System_Storage_Unit /= Remainder then
4197 return False;
4198 end if;
4199 end loop;
4200
4201 return True;
4202 end Aggr_Assignment_OK_For_Backend;
4203
70482933
RK
4204 ----------------------------
4205 -- Build_Constrained_Type --
4206 ----------------------------
4207
4208 procedure Build_Constrained_Type (Positional : Boolean) is
fbf5a39b 4209 Loc : constant Source_Ptr := Sloc (N);
191fcb3a 4210 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
fbf5a39b
AC
4211 Comp : Node_Id;
4212 Decl : Node_Id;
4213 Typ : constant Entity_Id := Etype (N);
deeb1604 4214 Indexes : constant List_Id := New_List;
fbf5a39b
AC
4215 Num : Int;
4216 Sub_Agg : Node_Id;
70482933
RK
4217
4218 begin
70482933
RK
4219 -- If the aggregate is purely positional, all its subaggregates
4220 -- have the same size. We collect the dimensions from the first
4221 -- subaggregate at each level.
4222
4223 if Positional then
4224 Sub_Agg := N;
4225
4226 for D in 1 .. Number_Dimensions (Typ) loop
5277cab6 4227 Sub_Agg := First (Expressions (Sub_Agg));
70482933 4228
5277cab6 4229 Comp := Sub_Agg;
70482933 4230 Num := 0;
70482933
RK
4231 while Present (Comp) loop
4232 Num := Num + 1;
4233 Next (Comp);
4234 end loop;
4235
deeb1604 4236 Append_To (Indexes,
70482933 4237 Make_Range (Loc,
37368818 4238 Low_Bound => Make_Integer_Literal (Loc, 1),
191fcb3a 4239 High_Bound => Make_Integer_Literal (Loc, Num)));
70482933
RK
4240 end loop;
4241
4242 else
3b9fa2df
ES
4243 -- We know the aggregate type is unconstrained and the aggregate
4244 -- is not processable by the back end, therefore not necessarily
4245 -- positional. Retrieve each dimension bounds (computed earlier).
70482933
RK
4246
4247 for D in 1 .. Number_Dimensions (Typ) loop
37368818 4248 Append_To (Indexes,
70482933 4249 Make_Range (Loc,
37368818
RD
4250 Low_Bound => Aggr_Low (D),
4251 High_Bound => Aggr_High (D)));
70482933
RK
4252 end loop;
4253 end if;
4254
4255 Decl :=
4256 Make_Full_Type_Declaration (Loc,
4257 Defining_Identifier => Agg_Type,
bdc193ba 4258 Type_Definition =>
70482933 4259 Make_Constrained_Array_Definition (Loc,
deeb1604
AC
4260 Discrete_Subtype_Definitions => Indexes,
4261 Component_Definition =>
a397db96 4262 Make_Component_Definition (Loc,
deeb1604 4263 Aliased_Present => False,
a397db96
AC
4264 Subtype_Indication =>
4265 New_Occurrence_Of (Component_Type (Typ), Loc))));
70482933
RK
4266
4267 Insert_Action (N, Decl);
4268 Analyze (Decl);
4269 Set_Etype (N, Agg_Type);
4270 Set_Is_Itype (Agg_Type);
4271 Freeze_Itype (Agg_Type, N);
4272 end Build_Constrained_Type;
4273
4274 ------------------
4275 -- Check_Bounds --
4276 ------------------
4277
4278 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4279 Aggr_Lo : Node_Id;
4280 Aggr_Hi : Node_Id;
4281
4282 Ind_Lo : Node_Id;
4283 Ind_Hi : Node_Id;
4284
4285 Cond : Node_Id := Empty;
4286
4287 begin
4288 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4289 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4290
4291 -- Generate the following test:
bdc193ba 4292
70482933
RK
4293 -- [constraint_error when
4294 -- Aggr_Lo <= Aggr_Hi and then
4295 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3b9fa2df 4296
641d3093 4297 -- As an optimization try to see if some tests are trivially vacuous
70482933
RK
4298 -- because we are comparing an expression against itself.
4299
4300 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4301 Cond := Empty;
4302
4303 elsif Aggr_Hi = Ind_Hi then
4304 Cond :=
4305 Make_Op_Lt (Loc,
fbf5a39b
AC
4306 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4307 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
70482933
RK
4308
4309 elsif Aggr_Lo = Ind_Lo then
4310 Cond :=
4311 Make_Op_Gt (Loc,
fbf5a39b
AC
4312 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4313 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
70482933
RK
4314
4315 else
4316 Cond :=
4317 Make_Or_Else (Loc,
4318 Left_Opnd =>
4319 Make_Op_Lt (Loc,
fbf5a39b
AC
4320 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4321 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
70482933
RK
4322
4323 Right_Opnd =>
4324 Make_Op_Gt (Loc,
4325 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4326 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4327 end if;
4328
4329 if Present (Cond) then
4330 Cond :=
4331 Make_And_Then (Loc,
4332 Left_Opnd =>
4333 Make_Op_Le (Loc,
fbf5a39b
AC
4334 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4335 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
70482933
RK
4336
4337 Right_Opnd => Cond);
4338
4339 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
4340 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4341 Insert_Action (N,
07fc65c4
GB
4342 Make_Raise_Constraint_Error (Loc,
4343 Condition => Cond,
8fdafe44 4344 Reason => CE_Range_Check_Failed));
70482933
RK
4345 end if;
4346 end Check_Bounds;
4347
4348 ----------------------------
4349 -- Check_Same_Aggr_Bounds --
4350 ----------------------------
4351
4352 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4353 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4354 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
3cf3e5c6 4355 -- The bounds of this specific sub-aggregate
70482933
RK
4356
4357 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4358 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4359 -- The bounds of the aggregate for this dimension
4360
4361 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 4362 -- The index type for this dimension.xxx
70482933 4363
fbf5a39b 4364 Cond : Node_Id := Empty;
fbf5a39b
AC
4365 Assoc : Node_Id;
4366 Expr : Node_Id;
70482933
RK
4367
4368 begin
4369 -- If index checks are on generate the test
3b9fa2df 4370
70482933
RK
4371 -- [constraint_error when
4372 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3b9fa2df 4373
70482933
RK
4374 -- As an optimization try to see if some tests are trivially vacuos
4375 -- because we are comparing an expression against itself. Also for
4376 -- the first dimension the test is trivially vacuous because there
4377 -- is just one aggregate for dimension 1.
4378
4379 if Index_Checks_Suppressed (Ind_Typ) then
4380 Cond := Empty;
4381
bdc193ba 4382 elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
70482933
RK
4383 then
4384 Cond := Empty;
4385
4386 elsif Aggr_Hi = Sub_Hi then
4387 Cond :=
4388 Make_Op_Ne (Loc,
fbf5a39b
AC
4389 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4390 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
4391
4392 elsif Aggr_Lo = Sub_Lo then
4393 Cond :=
4394 Make_Op_Ne (Loc,
fbf5a39b
AC
4395 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4396 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
4397
4398 else
4399 Cond :=
4400 Make_Or_Else (Loc,
4401 Left_Opnd =>
4402 Make_Op_Ne (Loc,
fbf5a39b
AC
4403 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4404 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
4405
4406 Right_Opnd =>
4407 Make_Op_Ne (Loc,
4408 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4409 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4410 end if;
4411
4412 if Present (Cond) then
4413 Insert_Action (N,
07fc65c4
GB
4414 Make_Raise_Constraint_Error (Loc,
4415 Condition => Cond,
4416 Reason => CE_Length_Check_Failed));
70482933
RK
4417 end if;
4418
4419 -- Now look inside the sub-aggregate to see if there is more work
4420
4421 if Dim < Aggr_Dimension then
4422
4423 -- Process positional components
4424
4425 if Present (Expressions (Sub_Aggr)) then
4426 Expr := First (Expressions (Sub_Aggr));
4427 while Present (Expr) loop
4428 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4429 Next (Expr);
4430 end loop;
4431 end if;
4432
4433 -- Process component associations
4434
4435 if Present (Component_Associations (Sub_Aggr)) then
4436 Assoc := First (Component_Associations (Sub_Aggr));
4437 while Present (Assoc) loop
4438 Expr := Expression (Assoc);
4439 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4440 Next (Assoc);
4441 end loop;
4442 end if;
4443 end if;
4444 end Check_Same_Aggr_Bounds;
4445
4446 ----------------------------
4447 -- Compute_Others_Present --
4448 ----------------------------
4449
4450 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
4451 Assoc : Node_Id;
4452 Expr : Node_Id;
70482933
RK
4453
4454 begin
4455 if Present (Component_Associations (Sub_Aggr)) then
4456 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 4457
70482933
RK
4458 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4459 Others_Present (Dim) := True;
4460 end if;
4461 end if;
4462
4463 -- Now look inside the sub-aggregate to see if there is more work
4464
4465 if Dim < Aggr_Dimension then
4466
4467 -- Process positional components
4468
4469 if Present (Expressions (Sub_Aggr)) then
4470 Expr := First (Expressions (Sub_Aggr));
4471 while Present (Expr) loop
4472 Compute_Others_Present (Expr, Dim + 1);
4473 Next (Expr);
4474 end loop;
4475 end if;
4476
4477 -- Process component associations
4478
4479 if Present (Component_Associations (Sub_Aggr)) then
4480 Assoc := First (Component_Associations (Sub_Aggr));
4481 while Present (Assoc) loop
4482 Expr := Expression (Assoc);
4483 Compute_Others_Present (Expr, Dim + 1);
4484 Next (Assoc);
4485 end loop;
4486 end if;
4487 end if;
4488 end Compute_Others_Present;
4489
70482933
RK
4490 ------------------------
4491 -- In_Place_Assign_OK --
4492 ------------------------
4493
4494 function In_Place_Assign_OK return Boolean is
4495 Aggr_In : Node_Id;
4496 Aggr_Lo : Node_Id;
4497 Aggr_Hi : Node_Id;
4498 Obj_In : Node_Id;
4499 Obj_Lo : Node_Id;
4500 Obj_Hi : Node_Id;
4501
4502 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4503 -- Check recursively that each component of a (sub)aggregate does
4504 -- not depend on the variable being assigned to.
4505
4506 function Safe_Component (Expr : Node_Id) return Boolean;
4507 -- Verify that an expression cannot depend on the variable being
4508 -- assigned to. Room for improvement here (but less than before).
4509
4510 --------------------
4511 -- Safe_Aggregate --
4512 --------------------
4513
4514 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4515 Expr : Node_Id;
4516
4517 begin
4518 if Present (Expressions (Aggr)) then
4519 Expr := First (Expressions (Aggr));
70482933
RK
4520 while Present (Expr) loop
4521 if Nkind (Expr) = N_Aggregate then
4522 if not Safe_Aggregate (Expr) then
4523 return False;
4524 end if;
4525
4526 elsif not Safe_Component (Expr) then
4527 return False;
4528 end if;
4529
4530 Next (Expr);
4531 end loop;
4532 end if;
4533
4534 if Present (Component_Associations (Aggr)) then
4535 Expr := First (Component_Associations (Aggr));
70482933
RK
4536 while Present (Expr) loop
4537 if Nkind (Expression (Expr)) = N_Aggregate then
4538 if not Safe_Aggregate (Expression (Expr)) then
4539 return False;
4540 end if;
4541
9f8d1e5c
AC
4542 -- If association has a box, no way to determine yet
4543 -- whether default can be assigned in place.
4544
4545 elsif Box_Present (Expr) then
4546 return False;
4547
70482933
RK
4548 elsif not Safe_Component (Expression (Expr)) then
4549 return False;
4550 end if;
4551
4552 Next (Expr);
4553 end loop;
4554 end if;
4555
4556 return True;
4557 end Safe_Aggregate;
4558
4559 --------------------
4560 -- Safe_Component --
4561 --------------------
4562
4563 function Safe_Component (Expr : Node_Id) return Boolean is
4564 Comp : Node_Id := Expr;
4565
4566 function Check_Component (Comp : Node_Id) return Boolean;
3cf3e5c6 4567 -- Do the recursive traversal, after copy
70482933 4568
fbf5a39b
AC
4569 ---------------------
4570 -- Check_Component --
4571 ---------------------
4572
70482933
RK
4573 function Check_Component (Comp : Node_Id) return Boolean is
4574 begin
4575 if Is_Overloaded (Comp) then
4576 return False;
4577 end if;
4578
4579 return Compile_Time_Known_Value (Comp)
4580
4581 or else (Is_Entity_Name (Comp)
36a66365 4582 and then Present (Entity (Comp))
70482933
RK
4583 and then No (Renamed_Object (Entity (Comp))))
4584
4585 or else (Nkind (Comp) = N_Attribute_Reference
4586 and then Check_Component (Prefix (Comp)))
4587
4588 or else (Nkind (Comp) in N_Binary_Op
4589 and then Check_Component (Left_Opnd (Comp))
4590 and then Check_Component (Right_Opnd (Comp)))
4591
4592 or else (Nkind (Comp) in N_Unary_Op
4593 and then Check_Component (Right_Opnd (Comp)))
4594
4595 or else (Nkind (Comp) = N_Selected_Component
6f639c98
ES
4596 and then Check_Component (Prefix (Comp)))
4597
4598 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4599 and then Check_Component (Expression (Comp)));
70482933
RK
4600 end Check_Component;
4601
fbf5a39b 4602 -- Start of processing for Safe_Component
70482933
RK
4603
4604 begin
bdc193ba
AC
4605 -- If the component appears in an association that may correspond
4606 -- to more than one element, it is not analyzed before expansion
4607 -- into assignments, to avoid side effects. We analyze, but do not
4608 -- resolve the copy, to obtain sufficient entity information for
4609 -- the checks that follow. If component is overloaded we assume
4610 -- an unsafe function call.
70482933
RK
4611
4612 if not Analyzed (Comp) then
4613 if Is_Overloaded (Expr) then
4614 return False;
07fc65c4
GB
4615
4616 elsif Nkind (Expr) = N_Aggregate
4617 and then not Is_Others_Aggregate (Expr)
4618 then
4619 return False;
4620
4621 elsif Nkind (Expr) = N_Allocator then
3cf3e5c6
AC
4622
4623 -- For now, too complex to analyze
07fc65c4
GB
4624
4625 return False;
70482933
RK
4626 end if;
4627
4628 Comp := New_Copy_Tree (Expr);
07fc65c4 4629 Set_Parent (Comp, Parent (Expr));
70482933
RK
4630 Analyze (Comp);
4631 end if;
4632
07fc65c4
GB
4633 if Nkind (Comp) = N_Aggregate then
4634 return Safe_Aggregate (Comp);
4635 else
4636 return Check_Component (Comp);
4637 end if;
70482933
RK
4638 end Safe_Component;
4639
4640 -- Start of processing for In_Place_Assign_OK
4641
4642 begin
4643 if Present (Component_Associations (N)) then
4644
4645 -- On assignment, sliding can take place, so we cannot do the
4646 -- assignment in place unless the bounds of the aggregate are
4647 -- statically equal to those of the target.
4648
bdc193ba
AC
4649 -- If the aggregate is given by an others choice, the bounds are
4650 -- derived from the left-hand side, and the assignment is safe if
4651 -- the expression is.
70482933 4652
07fc65c4 4653 if Is_Others_Aggregate (N) then
70482933
RK
4654 return
4655 Safe_Component
4656 (Expression (First (Component_Associations (N))));
4657 end if;
4658
4659 Aggr_In := First_Index (Etype (N));
6465b6a7 4660
6f639c98
ES
4661 if Nkind (Parent (N)) = N_Assignment_Statement then
4662 Obj_In := First_Index (Etype (Name (Parent (N))));
4663
4664 else
bdc193ba
AC
4665 -- Context is an allocator. Check bounds of aggregate against
4666 -- given type in qualified expression.
6f639c98
ES
4667
4668 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4669 Obj_In :=
4670 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4671 end if;
70482933
RK
4672
4673 while Present (Aggr_In) loop
4674 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4675 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4676
4677 if not Compile_Time_Known_Value (Aggr_Lo)
4678 or else not Compile_Time_Known_Value (Aggr_Hi)
4679 or else not Compile_Time_Known_Value (Obj_Lo)
4680 or else not Compile_Time_Known_Value (Obj_Hi)
4681 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4682 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4683 then
4684 return False;
4685 end if;
4686
4687 Next_Index (Aggr_In);
4688 Next_Index (Obj_In);
4689 end loop;
4690 end if;
4691
3cf3e5c6 4692 -- Now check the component values themselves
70482933
RK
4693
4694 return Safe_Aggregate (N);
4695 end In_Place_Assign_OK;
4696
4697 ------------------
4698 -- Others_Check --
4699 ------------------
4700
4701 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4702 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4703 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3cf3e5c6 4704 -- The bounds of the aggregate for this dimension
70482933
RK
4705
4706 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 4707 -- The index type for this dimension
70482933
RK
4708
4709 Need_To_Check : Boolean := False;
4710
4711 Choices_Lo : Node_Id := Empty;
4712 Choices_Hi : Node_Id := Empty;
4713 -- The lowest and highest discrete choices for a named sub-aggregate
4714
4715 Nb_Choices : Int := -1;
4716 -- The number of discrete non-others choices in this sub-aggregate
4717
4718 Nb_Elements : Uint := Uint_0;
4719 -- The number of elements in a positional aggregate
4720
4721 Cond : Node_Id := Empty;
4722
4723 Assoc : Node_Id;
4724 Choice : Node_Id;
4725 Expr : Node_Id;
4726
4727 begin
4728 -- Check if we have an others choice. If we do make sure that this
4729 -- sub-aggregate contains at least one element in addition to the
4730 -- others choice.
4731
4732 if Range_Checks_Suppressed (Ind_Typ) then
4733 Need_To_Check := False;
4734
4735 elsif Present (Expressions (Sub_Aggr))
4736 and then Present (Component_Associations (Sub_Aggr))
4737 then
4738 Need_To_Check := True;
4739
4740 elsif Present (Component_Associations (Sub_Aggr)) then
4741 Assoc := Last (Component_Associations (Sub_Aggr));
4742
4743 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4744 Need_To_Check := False;
4745
4746 else
3b9fa2df
ES
4747 -- Count the number of discrete choices. Start with -1 because
4748 -- the others choice does not count.
70482933 4749
bdc193ba
AC
4750 -- Is there some reason we do not use List_Length here ???
4751
70482933
RK
4752 Nb_Choices := -1;
4753 Assoc := First (Component_Associations (Sub_Aggr));
4754 while Present (Assoc) loop
4755 Choice := First (Choices (Assoc));
4756 while Present (Choice) loop
4757 Nb_Choices := Nb_Choices + 1;
4758 Next (Choice);
4759 end loop;
4760
4761 Next (Assoc);
4762 end loop;
4763
4764 -- If there is only an others choice nothing to do
4765
4766 Need_To_Check := (Nb_Choices > 0);
4767 end if;
4768
4769 else
4770 Need_To_Check := False;
4771 end if;
4772
3b9fa2df
ES
4773 -- If we are dealing with a positional sub-aggregate with an others
4774 -- choice then compute the number or positional elements.
70482933
RK
4775
4776 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4777 Expr := First (Expressions (Sub_Aggr));
4778 Nb_Elements := Uint_0;
4779 while Present (Expr) loop
4780 Nb_Elements := Nb_Elements + 1;
4781 Next (Expr);
4782 end loop;
4783
4784 -- If the aggregate contains discrete choices and an others choice
4785 -- compute the smallest and largest discrete choice values.
4786
4787 elsif Need_To_Check then
4788 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 4789
70482933
RK
4790 Table : Case_Table_Type (1 .. Nb_Choices);
4791 -- Used to sort all the different choice values
4792
07fc65c4 4793 J : Pos := 1;
70482933
RK
4794 Low : Node_Id;
4795 High : Node_Id;
4796
4797 begin
4798 Assoc := First (Component_Associations (Sub_Aggr));
4799 while Present (Assoc) loop
4800 Choice := First (Choices (Assoc));
4801 while Present (Choice) loop
4802 if Nkind (Choice) = N_Others_Choice then
4803 exit;
4804 end if;
4805
4806 Get_Index_Bounds (Choice, Low, High);
07fc65c4
GB
4807 Table (J).Choice_Lo := Low;
4808 Table (J).Choice_Hi := High;
70482933 4809
07fc65c4 4810 J := J + 1;
70482933
RK
4811 Next (Choice);
4812 end loop;
4813
4814 Next (Assoc);
4815 end loop;
4816
4817 -- Sort the discrete choices
4818
4819 Sort_Case_Table (Table);
4820
4821 Choices_Lo := Table (1).Choice_Lo;
4822 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4823 end Compute_Choices_Lo_And_Choices_Hi;
4824 end if;
4825
4826 -- If no others choice in this sub-aggregate, or the aggregate
4827 -- comprises only an others choice, nothing to do.
4828
4829 if not Need_To_Check then
4830 Cond := Empty;
4831
3b9fa2df
ES
4832 -- If we are dealing with an aggregate containing an others choice
4833 -- and positional components, we generate the following test:
4834
70482933
RK
4835 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4836 -- Ind_Typ'Pos (Aggr_Hi)
4837 -- then
4838 -- raise Constraint_Error;
4839 -- end if;
4840
4841 elsif Nb_Elements > Uint_0 then
4842 Cond :=
4843 Make_Op_Gt (Loc,
4844 Left_Opnd =>
4845 Make_Op_Add (Loc,
4846 Left_Opnd =>
4847 Make_Attribute_Reference (Loc,
e4494292 4848 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
70482933
RK
4849 Attribute_Name => Name_Pos,
4850 Expressions =>
fbf5a39b
AC
4851 New_List
4852 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
bdc193ba 4853 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
70482933
RK
4854
4855 Right_Opnd =>
4856 Make_Attribute_Reference (Loc,
e4494292 4857 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
70482933 4858 Attribute_Name => Name_Pos,
fbf5a39b
AC
4859 Expressions => New_List (
4860 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
70482933 4861
3b9fa2df
ES
4862 -- If we are dealing with an aggregate containing an others choice
4863 -- and discrete choices we generate the following test:
4864
70482933
RK
4865 -- [constraint_error when
4866 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4867
4868 else
4869 Cond :=
4870 Make_Or_Else (Loc,
4871 Left_Opnd =>
4872 Make_Op_Lt (Loc,
bdc193ba
AC
4873 Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
4874 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
4875
4876 Right_Opnd =>
4877 Make_Op_Gt (Loc,
bdc193ba
AC
4878 Left_Opnd => Duplicate_Subexpr (Choices_Hi),
4879 Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
4880 end if;
4881
4882 if Present (Cond) then
4883 Insert_Action (N,
07fc65c4
GB
4884 Make_Raise_Constraint_Error (Loc,
4885 Condition => Cond,
4886 Reason => CE_Length_Check_Failed));
641d3093
TQ
4887 -- Questionable reason code, shouldn't that be a
4888 -- CE_Range_Check_Failed ???
70482933
RK
4889 end if;
4890
4891 -- Now look inside the sub-aggregate to see if there is more work
4892
4893 if Dim < Aggr_Dimension then
4894
4895 -- Process positional components
4896
4897 if Present (Expressions (Sub_Aggr)) then
4898 Expr := First (Expressions (Sub_Aggr));
4899 while Present (Expr) loop
4900 Others_Check (Expr, Dim + 1);
4901 Next (Expr);
4902 end loop;
4903 end if;
4904
4905 -- Process component associations
4906
4907 if Present (Component_Associations (Sub_Aggr)) then
4908 Assoc := First (Component_Associations (Sub_Aggr));
4909 while Present (Assoc) loop
4910 Expr := Expression (Assoc);
4911 Others_Check (Expr, Dim + 1);
4912 Next (Assoc);
4913 end loop;
4914 end if;
4915 end if;
4916 end Others_Check;
4917
8da337c5
AC
4918 -------------------------
4919 -- Safe_Left_Hand_Side --
4920 -------------------------
4921
4922 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
deeb1604
AC
4923 function Is_Safe_Index (Indx : Node_Id) return Boolean;
4924 -- If the left-hand side includes an indexed component, check that
4925 -- the indexes are free of side-effect.
4926
4927 -------------------
4928 -- Is_Safe_Index --
4929 -------------------
4930
4931 function Is_Safe_Index (Indx : Node_Id) return Boolean is
4932 begin
4933 if Is_Entity_Name (Indx) then
4934 return True;
4935
4936 elsif Nkind (Indx) = N_Integer_Literal then
4937 return True;
4938
4939 elsif Nkind (Indx) = N_Function_Call
4940 and then Is_Entity_Name (Name (Indx))
36a66365 4941 and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
deeb1604
AC
4942 then
4943 return True;
4944
4945 elsif Nkind (Indx) = N_Type_Conversion
4946 and then Is_Safe_Index (Expression (Indx))
4947 then
4948 return True;
4949
4950 else
4951 return False;
4952 end if;
4953 end Is_Safe_Index;
4954
4955 -- Start of processing for Safe_Left_Hand_Side
4956
8da337c5
AC
4957 begin
4958 if Is_Entity_Name (N) then
4959 return True;
4960
4961 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4962 and then Safe_Left_Hand_Side (Prefix (N))
4963 then
4964 return True;
4965
4966 elsif Nkind (N) = N_Indexed_Component
4967 and then Safe_Left_Hand_Side (Prefix (N))
36a66365 4968 and then Is_Safe_Index (First (Expressions (N)))
8da337c5
AC
4969 then
4970 return True;
deeb1604
AC
4971
4972 elsif Nkind (N) = N_Unchecked_Type_Conversion then
4973 return Safe_Left_Hand_Side (Expression (N));
4974
8da337c5
AC
4975 else
4976 return False;
4977 end if;
4978 end Safe_Left_Hand_Side;
4979
4980 -- Local variables
70482933
RK
4981
4982 Tmp : Entity_Id;
fbf5a39b 4983 -- Holds the temporary aggregate value
70482933
RK
4984
4985 Tmp_Decl : Node_Id;
fbf5a39b 4986 -- Holds the declaration of Tmp
70482933
RK
4987
4988 Aggr_Code : List_Id;
4989 Parent_Node : Node_Id;
4990 Parent_Kind : Node_Kind;
4991
4992 -- Start of processing for Expand_Array_Aggregate
4993
4994 begin
4995 -- Do not touch the special aggregates of attributes used for Asm calls
4996
4997 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4998 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4999 then
5000 return;
4a1bfefb
AC
5001
5002 -- Do not expand an aggregate for an array type which contains tasks if
5003 -- the aggregate is associated with an unexpanded return statement of a
5004 -- build-in-place function. The aggregate is expanded when the related
5005 -- return statement (rewritten into an extended return) is processed.
5006 -- This delay ensures that any temporaries and initialization code
5007 -- generated for the aggregate appear in the proper return block and
5008 -- use the correct _chain and _master.
5009
5010 elsif Has_Task (Base_Type (Etype (N)))
5011 and then Nkind (Parent (N)) = N_Simple_Return_Statement
5012 and then Is_Build_In_Place_Function
5013 (Return_Applies_To (Return_Statement_Entity (Parent (N))))
5014 then
5015 return;
f5655e4a
AC
5016
5017 -- Do not attempt expansion if error already detected. We may reach this
5018 -- point in spite of previous errors when compiling with -gnatq, to
5019 -- force all possible errors (this is the usual ACATS mode).
5020
5021 elsif Error_Posted (N) then
5022 return;
70482933
RK
5023 end if;
5024
07fc65c4 5025 -- If the semantic analyzer has determined that aggregate N will raise
e7c0dd39 5026 -- Constraint_Error at run time, then the aggregate node has been
07fc65c4
GB
5027 -- replaced with an N_Raise_Constraint_Error node and we should
5028 -- never get here.
70482933
RK
5029
5030 pragma Assert (not Raises_Constraint_Error (N));
5031
3cf3e5c6 5032 -- STEP 1a
fbf5a39b
AC
5033
5034 -- Check that the index range defined by aggregate bounds is
5035 -- compatible with corresponding index subtype.
70482933
RK
5036
5037 Index_Compatibility_Check : declare
5038 Aggr_Index_Range : Node_Id := First_Index (Typ);
5039 -- The current aggregate index range
5040
5041 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5042 -- The corresponding index constraint against which we have to
5043 -- check the above aggregate index range.
5044
5045 begin
5046 Compute_Others_Present (N, 1);
5047
5048 for J in 1 .. Aggr_Dimension loop
bdc193ba
AC
5049 -- There is no need to emit a check if an others choice is present
5050 -- for this array aggregate dimension since in this case one of
5051 -- N's sub-aggregates has taken its bounds from the context and
5052 -- these bounds must have been checked already. In addition all
5053 -- sub-aggregates corresponding to the same dimension must all
5054 -- have the same bounds (checked in (c) below).
70482933
RK
5055
5056 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5057 and then not Others_Present (J)
5058 then
3b9fa2df
ES
5059 -- We don't use Checks.Apply_Range_Check here because it emits
5060 -- a spurious check. Namely it checks that the range defined by
5061 -- the aggregate bounds is non empty. But we know this already
5062 -- if we get here.
70482933
RK
5063
5064 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5065 end if;
5066
3b9fa2df
ES
5067 -- Save the low and high bounds of the aggregate index as well as
5068 -- the index type for later use in checks (b) and (c) below.
70482933
RK
5069
5070 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
5071 Aggr_High (J) := High_Bound (Aggr_Index_Range);
5072
5073 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5074
5075 Next_Index (Aggr_Index_Range);
5076 Next_Index (Index_Constraint);
5077 end loop;
5078 end Index_Compatibility_Check;
5079
3cf3e5c6 5080 -- STEP 1b
fbf5a39b 5081
3b9fa2df
ES
5082 -- If an others choice is present check that no aggregate index is
5083 -- outside the bounds of the index constraint.
70482933
RK
5084
5085 Others_Check (N, 1);
5086
3cf3e5c6 5087 -- STEP 1c
fbf5a39b
AC
5088
5089 -- For multidimensional arrays make sure that all subaggregates
5090 -- corresponding to the same dimension have the same bounds.
70482933
RK
5091
5092 if Aggr_Dimension > 1 then
5093 Check_Same_Aggr_Bounds (N, 1);
5094 end if;
5095
688a9b51
RD
5096 -- STEP 1d
5097
5098 -- If we have a default component value, or simple initialization is
5099 -- required for the component type, then we replace <> in component
5100 -- associations by the required default value.
5101
5102 declare
5103 Default_Val : Node_Id;
5104 Assoc : Node_Id;
5105
5106 begin
5107 if (Present (Default_Aspect_Component_Value (Typ))
5108 or else Needs_Simple_Initialization (Ctyp))
5109 and then Present (Component_Associations (N))
5110 then
5111 Assoc := First (Component_Associations (N));
5112 while Present (Assoc) loop
5113 if Nkind (Assoc) = N_Component_Association
5114 and then Box_Present (Assoc)
5115 then
5116 Set_Box_Present (Assoc, False);
5117
5118 if Present (Default_Aspect_Component_Value (Typ)) then
5119 Default_Val := Default_Aspect_Component_Value (Typ);
5120 else
5121 Default_Val := Get_Simple_Init_Val (Ctyp, N);
5122 end if;
5123
5124 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
5125 Analyze_And_Resolve (Expression (Assoc), Ctyp);
5126 end if;
5127
5128 Next (Assoc);
5129 end loop;
5130 end if;
5131 end;
5132
3cf3e5c6 5133 -- STEP 2
70482933 5134
3b9fa2df
ES
5135 -- Here we test for is packed array aggregate that we can handle at
5136 -- compile time. If so, return with transformation done. Note that we do
5137 -- this even if the aggregate is nested, because once we have done this
a90bd866 5138 -- processing, there is no more nested aggregate.
fbf5a39b
AC
5139
5140 if Packed_Array_Aggregate_Handled (N) then
5141 return;
5142 end if;
5143
5144 -- At this point we try to convert to positional form
70482933 5145
0f95b178
JM
5146 if Ekind (Current_Scope) = E_Package
5147 and then Static_Elaboration_Desired (Current_Scope)
5148 then
5149 Convert_To_Positional (N, Max_Others_Replicate => 100);
0f95b178
JM
5150 else
5151 Convert_To_Positional (N);
5152 end if;
70482933 5153
fbf5a39b
AC
5154 -- if the result is no longer an aggregate (e.g. it may be a string
5155 -- literal, or a temporary which has the needed value), then we are
5156 -- done, since there is no longer a nested aggregate.
5157
70482933
RK
5158 if Nkind (N) /= N_Aggregate then
5159 return;
5160
5eeeed5e
AC
5161 -- We are also done if the result is an analyzed aggregate, indicating
5162 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
5163 -- aggregate.
fbf5a39b 5164
36a66365 5165 elsif Analyzed (N) and then N /= Original_Node (N) then
70482933
RK
5166 return;
5167 end if;
5168
fa57ac97
ES
5169 -- If all aggregate components are compile-time known and the aggregate
5170 -- has been flattened, nothing left to do. The same occurs if the
b465ef6f 5171 -- aggregate is used to initialize the components of a statically
fa57ac97 5172 -- allocated dispatch table.
0f95b178 5173
fa57ac97
ES
5174 if Compile_Time_Known_Aggregate (N)
5175 or else Is_Static_Dispatch_Table_Aggregate (N)
5176 then
0f95b178
JM
5177 Set_Expansion_Delayed (N, False);
5178 return;
5179 end if;
5180
fbf5a39b
AC
5181 -- Now see if back end processing is possible
5182
70482933
RK
5183 if Backend_Processing_Possible (N) then
5184
5185 -- If the aggregate is static but the constraints are not, build
5186 -- a static subtype for the aggregate, so that Gigi can place it
5187 -- in static memory. Perform an unchecked_conversion to the non-
5188 -- static type imposed by the context.
5189
5190 declare
5191 Itype : constant Entity_Id := Etype (N);
5192 Index : Node_Id;
5193 Needs_Type : Boolean := False;
5194
5195 begin
5196 Index := First_Index (Itype);
70482933 5197 while Present (Index) loop
edab6088 5198 if not Is_OK_Static_Subtype (Etype (Index)) then
70482933
RK
5199 Needs_Type := True;
5200 exit;
5201 else
5202 Next_Index (Index);
5203 end if;
5204 end loop;
5205
5206 if Needs_Type then
5207 Build_Constrained_Type (Positional => True);
5208 Rewrite (N, Unchecked_Convert_To (Itype, N));
5209 Analyze (N);
5210 end if;
5211 end;
5212
5213 return;
5214 end if;
5215
3cf3e5c6 5216 -- STEP 3
fbf5a39b 5217
36c73552
AC
5218 -- Delay expansion for nested aggregates: it will be taken care of
5219 -- when the parent aggregate is expanded.
70482933
RK
5220
5221 Parent_Node := Parent (N);
5222 Parent_Kind := Nkind (Parent_Node);
5223
5224 if Parent_Kind = N_Qualified_Expression then
5225 Parent_Node := Parent (Parent_Node);
5226 Parent_Kind := Nkind (Parent_Node);
5227 end if;
5228
5229 if Parent_Kind = N_Aggregate
5230 or else Parent_Kind = N_Extension_Aggregate
5231 or else Parent_Kind = N_Component_Association
5232 or else (Parent_Kind = N_Object_Declaration
048e5cef 5233 and then Needs_Finalization (Typ))
70482933
RK
5234 or else (Parent_Kind = N_Assignment_Statement
5235 and then Inside_Init_Proc)
5236 then
0f95b178
JM
5237 if Static_Array_Aggregate (N)
5238 or else Compile_Time_Known_Aggregate (N)
5239 then
5240 Set_Expansion_Delayed (N, False);
5241 return;
5242 else
5243 Set_Expansion_Delayed (N);
5244 return;
5245 end if;
70482933
RK
5246 end if;
5247
3cf3e5c6 5248 -- STEP 4
70482933 5249
7f4c1903 5250 -- Look if in place aggregate expansion is possible
70482933
RK
5251
5252 -- For object declarations we build the aggregate in place, unless
5253 -- the array is bit-packed or the component is controlled.
5254
5255 -- For assignments we do the assignment in place if all the component
5256 -- associations have compile-time known values. For other cases we
5257 -- create a temporary. The analysis for safety of on-line assignment
5258 -- is delicate, i.e. we don't know how to do it fully yet ???
5259
6f639c98
ES
5260 -- For allocators we assign to the designated object in place if the
5261 -- aggregate meets the same conditions as other in-place assignments.
5262 -- In this case the aggregate may not come from source but was created
5263 -- for default initialization, e.g. with Initialize_Scalars.
5264
70482933
RK
5265 if Requires_Transient_Scope (Typ) then
5266 Establish_Transient_Scope
5267 (N, Sec_Stack => Has_Controlled_Component (Typ));
5268 end if;
5269
c45b6ae0
AC
5270 if Has_Default_Init_Comps (N) then
5271 Maybe_In_Place_OK := False;
6f639c98
ES
5272
5273 elsif Is_Bit_Packed_Array (Typ)
5274 or else Has_Controlled_Component (Typ)
5275 then
5276 Maybe_In_Place_OK := False;
5277
c45b6ae0
AC
5278 else
5279 Maybe_In_Place_OK :=
6f639c98 5280 (Nkind (Parent (N)) = N_Assignment_Statement
d7f94401 5281 and then In_Place_Assign_OK)
6f639c98 5282
bdc193ba
AC
5283 or else
5284 (Nkind (Parent (Parent (N))) = N_Allocator
6f639c98 5285 and then In_Place_Assign_OK);
c45b6ae0 5286 end if;
70482933 5287
36c73552
AC
5288 -- If this is an array of tasks, it will be expanded into build-in-place
5289 -- assignments. Build an activation chain for the tasks now.
a38ff9b1
ES
5290
5291 if Has_Task (Etype (N)) then
5292 Build_Activation_Chain_Entity (N);
5293 end if;
5294
cf6956bb 5295 -- Perform in-place expansion of aggregate in an object declaration.
f3d42000
AC
5296 -- Note: actions generated for the aggregate will be captured in an
5297 -- expression-with-actions statement so that they can be transferred
5298 -- to freeze actions later if there is an address clause for the
5299 -- object. (Note: we don't use a block statement because this would
5300 -- cause generated freeze nodes to be elaborated in the wrong scope).
cf6956bb 5301
a5d83d61
AC
5302 -- Should document these individual tests ???
5303
c45b6ae0 5304 if not Has_Default_Init_Comps (N)
cf6956bb
AC
5305 and then Comes_From_Source (Parent_Node)
5306 and then Parent_Kind = N_Object_Declaration
3cf3e5c6 5307 and then not
cf6956bb
AC
5308 Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5309 and then N = Expression (Parent_Node)
70482933
RK
5310 and then not Is_Bit_Packed_Array (Typ)
5311 and then not Has_Controlled_Component (Typ)
70482933 5312 then
ac43e11e 5313 In_Place_Assign_OK_For_Declaration := True;
70482933
RK
5314 Tmp := Defining_Identifier (Parent (N));
5315 Set_No_Initialization (Parent (N));
5316 Set_Expression (Parent (N), Empty);
5317
ac43e11e
AC
5318 -- Set kind and type of the entity, for use in the analysis
5319 -- of the subsequent assignments. If the nominal type is not
70482933
RK
5320 -- constrained, build a subtype from the known bounds of the
5321 -- aggregate. If the declaration has a subtype mark, use it,
5322 -- otherwise use the itype of the aggregate.
5323
ac43e11e
AC
5324 Set_Ekind (Tmp, E_Variable);
5325
70482933
RK
5326 if not Is_Constrained (Typ) then
5327 Build_Constrained_Type (Positional => False);
ac43e11e 5328
70482933
RK
5329 elsif Is_Entity_Name (Object_Definition (Parent (N)))
5330 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5331 then
5332 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
ac43e11e 5333
70482933
RK
5334 else
5335 Set_Size_Known_At_Compile_Time (Typ, False);
5336 Set_Etype (Tmp, Typ);
5337 end if;
5338
6f639c98
ES
5339 elsif Maybe_In_Place_OK
5340 and then Nkind (Parent (N)) = N_Qualified_Expression
5341 and then Nkind (Parent (Parent (N))) = N_Allocator
5342 then
5343 Set_Expansion_Delayed (N);
5344 return;
5345
5277cab6 5346 -- In the remaining cases the aggregate is the RHS of an assignment
6f639c98 5347
70482933 5348 elsif Maybe_In_Place_OK
8da337c5 5349 and then Safe_Left_Hand_Side (Name (Parent (N)))
70482933 5350 then
8da337c5 5351 Tmp := Name (Parent (N));
70482933
RK
5352
5353 if Etype (Tmp) /= Etype (N) then
5354 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
5355
5356 if Nkind (N) = N_Raise_Constraint_Error then
5357
5358 -- Static error, nothing further to expand
5359
5360 return;
5361 end if;
70482933
RK
5362 end if;
5363
36a66365
AC
5364 -- If a slice assignment has an aggregate with a single others_choice,
5365 -- the assignment can be done in place even if bounds are not static,
5366 -- by converting it into a loop over the discrete range of the slice.
5367
70482933
RK
5368 elsif Maybe_In_Place_OK
5369 and then Nkind (Name (Parent (N))) = N_Slice
36a66365 5370 and then Is_Others_Aggregate (N)
70482933 5371 then
36a66365 5372 Tmp := Name (Parent (N));
70482933 5373
36a66365
AC
5374 -- Set type of aggregate to be type of lhs in assignment, in order
5375 -- to suppress redundant length checks.
5376
5377 Set_Etype (N, Etype (Tmp));
70482933 5378
fbf5a39b
AC
5379 -- Step 5
5380
5381 -- In place aggregate expansion is not possible
5382
70482933 5383 else
07fc65c4 5384 Maybe_In_Place_OK := False;
faf387e1 5385 Tmp := Make_Temporary (Loc, 'A', N);
70482933 5386 Tmp_Decl :=
bdc193ba
AC
5387 Make_Object_Declaration (Loc,
5388 Defining_Identifier => Tmp,
5389 Object_Definition => New_Occurrence_Of (Typ, Loc));
70482933
RK
5390 Set_No_Initialization (Tmp_Decl, True);
5391
5392 -- If we are within a loop, the temporary will be pushed on the
36c73552
AC
5393 -- stack at each iteration. If the aggregate is the expression for an
5394 -- allocator, it will be immediately copied to the heap and can
70482933
RK
5395 -- be reclaimed at once. We create a transient scope around the
5396 -- aggregate for this purpose.
5397
5398 if Ekind (Current_Scope) = E_Loop
5399 and then Nkind (Parent (Parent (N))) = N_Allocator
5400 then
5401 Establish_Transient_Scope (N, False);
5402 end if;
5403
5404 Insert_Action (N, Tmp_Decl);
5405 end if;
5406
36c73552
AC
5407 -- Construct and insert the aggregate code. We can safely suppress index
5408 -- checks because this code is guaranteed not to raise CE on index
5409 -- checks. However we should *not* suppress all checks.
70482933 5410
07fc65c4
GB
5411 declare
5412 Target : Node_Id;
5413
5414 begin
5415 if Nkind (Tmp) = N_Defining_Identifier then
e4494292 5416 Target := New_Occurrence_Of (Tmp, Loc);
07fc65c4
GB
5417
5418 else
c45b6ae0
AC
5419 if Has_Default_Init_Comps (N) then
5420
0ab80019 5421 -- Ada 2005 (AI-287): This case has not been analyzed???
c45b6ae0 5422
9bc856dd 5423 raise Program_Error;
c45b6ae0
AC
5424 end if;
5425
0da2c8ac 5426 -- Name in assignment is explicit dereference
07fc65c4
GB
5427
5428 Target := New_Copy (Tmp);
5429 end if;
5430
ac43e11e
AC
5431 -- If we are to generate an in place assignment for a declaration or
5432 -- an assignment statement, and the assignment can be done directly
5433 -- by the back end, then do not expand further.
5434
5435 -- ??? We can also do that if in place expansion is not possible but
5436 -- then we could go into an infinite recursion.
5437
5438 if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
ac43e11e 5439 and then VM_Target = No_VM
6b6bce61 5440 and then not AAMP_On_Target
ac43e11e
AC
5441 and then not Generate_SCIL
5442 and then not Possible_Bit_Aligned_Component (Target)
6b6bce61 5443 and then not Is_Possibly_Unaligned_Slice (Target)
ac43e11e
AC
5444 and then Aggr_Assignment_OK_For_Backend (N)
5445 then
5446 if Maybe_In_Place_OK then
5447 return;
5448 end if;
5449
5450 Aggr_Code :=
5451 New_List (
5452 Make_Assignment_Statement (Loc,
5453 Name => Target,
5454 Expression => New_Copy (N)));
ac43e11e 5455
d6e8719d 5456 else
ac43e11e
AC
5457 Aggr_Code :=
5458 Build_Array_Aggr_Code (N,
5459 Ctype => Ctyp,
5460 Index => First_Index (Typ),
5461 Into => Target,
5462 Scalar_Comp => Is_Scalar_Type (Ctyp));
5463 end if;
4ac2bbbd
AC
5464
5465 -- Save the last assignment statement associated with the aggregate
5466 -- when building a controlled object. This reference is utilized by
5467 -- the finalization machinery when marking an object as successfully
5468 -- initialized.
5469
5470 if Needs_Finalization (Typ)
5471 and then Is_Entity_Name (Target)
5472 and then Present (Entity (Target))
5473 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
5474 then
5475 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
5476 end if;
07fc65c4 5477 end;
70482933 5478
6782b1ef
AC
5479 -- If the aggregate is the expression in a declaration, the expanded
5480 -- code must be inserted after it. The defining entity might not come
5481 -- from source if this is part of an inlined body, but the declaration
5482 -- itself will.
5483
5484 if Comes_From_Source (Tmp)
5485 or else
5486 (Nkind (Parent (N)) = N_Object_Declaration
5487 and then Comes_From_Source (Parent (N))
5488 and then Tmp = Defining_Entity (Parent (N)))
5489 then
cf6956bb
AC
5490 declare
5491 Node_After : constant Node_Id := Next (Parent_Node);
ae05cdd6 5492
cf6956bb
AC
5493 begin
5494 Insert_Actions_After (Parent_Node, Aggr_Code);
5495
5496 if Parent_Kind = N_Object_Declaration then
5497 Collect_Initialization_Statements
5498 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5499 end if;
5500 end;
70482933
RK
5501
5502 else
5503 Insert_Actions (N, Aggr_Code);
5504 end if;
5505
07fc65c4
GB
5506 -- If the aggregate has been assigned in place, remove the original
5507 -- assignment.
5508
70482933 5509 if Nkind (Parent (N)) = N_Assignment_Statement
07fc65c4 5510 and then Maybe_In_Place_OK
70482933
RK
5511 then
5512 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933
RK
5513
5514 elsif Nkind (Parent (N)) /= N_Object_Declaration
5515 or else Tmp /= Defining_Identifier (Parent (N))
5516 then
5517 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5518 Analyze_And_Resolve (N, Typ);
5519 end if;
5520 end Expand_Array_Aggregate;
5521
5522 ------------------------
5523 -- Expand_N_Aggregate --
5524 ------------------------
5525
5526 procedure Expand_N_Aggregate (N : Node_Id) is
5527 begin
354c3840
AC
5528 -- Record aggregate case
5529
70482933
RK
5530 if Is_Record_Type (Etype (N)) then
5531 Expand_Record_Aggregate (N);
354c3840
AC
5532
5533 -- Array aggregate case
5534
70482933 5535 else
354c3840
AC
5536 -- A special case, if we have a string subtype with bounds 1 .. N,
5537 -- where N is known at compile time, and the aggregate is of the
49eef89f
AC
5538 -- form (others => 'x'), with a single choice and no expressions,
5539 -- and N is less than 80 (an arbitrary limit for now), then replace
5540 -- the aggregate by the equivalent string literal (but do not mark
a90bd866 5541 -- it as static since it is not).
354c3840
AC
5542
5543 -- Note: this entire circuit is redundant with respect to code in
5544 -- Expand_Array_Aggregate that collapses others choices to positional
5545 -- form, but there are two problems with that circuit:
5546
5547 -- a) It is limited to very small cases due to ill-understood
b465ef6f 5548 -- interactions with bootstrapping. That limit is removed by
354c3840
AC
5549 -- use of the No_Implicit_Loops restriction.
5550
77a40ec1 5551 -- b) It incorrectly ends up with the resulting expressions being
354c3840
AC
5552 -- considered static when they are not. For example, the
5553 -- following test should fail:
5554
5555 -- pragma Restrictions (No_Implicit_Loops);
5556 -- package NonSOthers4 is
5557 -- B : constant String (1 .. 6) := (others => 'A');
5558 -- DH : constant String (1 .. 8) := B & "BB";
5559 -- X : Integer;
5560 -- pragma Export (C, X, Link_Name => DH);
5561 -- end;
5562
5563 -- But it succeeds (DH looks static to pragma Export)
5564
a90bd866 5565 -- To be sorted out ???
354c3840
AC
5566
5567 if Present (Component_Associations (N)) then
5568 declare
5569 CA : constant Node_Id := First (Component_Associations (N));
5570 MX : constant := 80;
5571
5572 begin
5573 if Nkind (First (Choices (CA))) = N_Others_Choice
5574 and then Nkind (Expression (CA)) = N_Character_Literal
49eef89f 5575 and then No (Expressions (N))
354c3840
AC
5576 then
5577 declare
5578 T : constant Entity_Id := Etype (N);
5579 X : constant Node_Id := First_Index (T);
5580 EC : constant Node_Id := Expression (CA);
5581 CV : constant Uint := Char_Literal_Value (EC);
5582 CC : constant Int := UI_To_Int (CV);
5583
5584 begin
5585 if Nkind (X) = N_Range
5586 and then Compile_Time_Known_Value (Low_Bound (X))
5587 and then Expr_Value (Low_Bound (X)) = 1
5588 and then Compile_Time_Known_Value (High_Bound (X))
5589 then
5590 declare
5591 Hi : constant Uint := Expr_Value (High_Bound (X));
5592
5593 begin
5594 if Hi <= MX then
5595 Start_String;
5596
5597 for J in 1 .. UI_To_Int (Hi) loop
5598 Store_String_Char (Char_Code (CC));
5599 end loop;
5600
5601 Rewrite (N,
5602 Make_String_Literal (Sloc (N),
5603 Strval => End_String));
5604
5605 if CC >= Int (2 ** 16) then
5606 Set_Has_Wide_Wide_Character (N);
5607 elsif CC >= Int (2 ** 8) then
5608 Set_Has_Wide_Character (N);
5609 end if;
5610
5611 Analyze_And_Resolve (N, T);
5612 Set_Is_Static_Expression (N, False);
5613 return;
5614 end if;
5615 end;
5616 end if;
5617 end;
5618 end if;
5619 end;
5620 end if;
5621
5622 -- Not that special case, so normal expansion of array aggregate
5623
70482933
RK
5624 Expand_Array_Aggregate (N);
5625 end if;
bdc193ba 5626
fbf5a39b
AC
5627 exception
5628 when RE_Not_Available =>
5629 return;
70482933
RK
5630 end Expand_N_Aggregate;
5631
5632 ----------------------------------
5633 -- Expand_N_Extension_Aggregate --
5634 ----------------------------------
5635
5636 -- If the ancestor part is an expression, add a component association for
5637 -- the parent field. If the type of the ancestor part is not the direct
5638 -- parent of the expected type, build recursively the needed ancestors.
5639 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5640 -- ration for a temporary of the expected type, followed by individual
5641 -- assignments to the given components.
5642
5643 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5644 Loc : constant Source_Ptr := Sloc (N);
5645 A : constant Node_Id := Ancestor_Part (N);
5646 Typ : constant Entity_Id := Etype (N);
5647
5648 begin
fbf5a39b 5649 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
5650 -- on the resulting object which thus has to be materialized in
5651 -- the front-end
5652
5653 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5654 Convert_To_Assignments (N, Typ);
5655
5656 -- The extension aggregate is transformed into a record aggregate
5657 -- of the following form (c1 and c2 are inherited components)
5658
5659 -- (Exp with c3 => a, c4 => b)
0877856b 5660 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
70482933
RK
5661
5662 else
5663 Set_Etype (N, Typ);
5664
1f110335 5665 if Tagged_Type_Expansion then
70482933 5666 Expand_Record_Aggregate (N,
a9d8907c
JM
5667 Orig_Tag =>
5668 New_Occurrence_Of
5669 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
70482933 5670 Parent_Expr => A);
5c34e9cd
AC
5671
5672 -- No tag is needed in the case of a VM
5673
0f95b178 5674 else
5c34e9cd 5675 Expand_Record_Aggregate (N, Parent_Expr => A);
70482933
RK
5676 end if;
5677 end if;
fbf5a39b
AC
5678
5679 exception
5680 when RE_Not_Available =>
5681 return;
70482933
RK
5682 end Expand_N_Extension_Aggregate;
5683
5684 -----------------------------
5685 -- Expand_Record_Aggregate --
5686 -----------------------------
5687
5688 procedure Expand_Record_Aggregate
5689 (N : Node_Id;
5690 Orig_Tag : Node_Id := Empty;
5691 Parent_Expr : Node_Id := Empty)
5692 is
fbf5a39b
AC
5693 Loc : constant Source_Ptr := Sloc (N);
5694 Comps : constant List_Id := Component_Associations (N);
5695 Typ : constant Entity_Id := Etype (N);
5696 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933 5697
0f95b178
JM
5698 Static_Components : Boolean := True;
5699 -- Flag to indicate whether all components are compile-time known,
5700 -- and the aggregate can be constructed statically and handled by
5701 -- the back-end.
70482933 5702
f6205414
AC
5703 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5704 -- Returns true if N is an expression of composite type which can be
5705 -- fully evaluated at compile time without raising constraint error.
5706 -- Such expressions can be passed as is to Gigi without any expansion.
5707 --
5708 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5709 -- set and constants whose expression is such an aggregate, recursively.
5710
0f95b178 5711 function Component_Not_OK_For_Backend return Boolean;
b465ef6f 5712 -- Check for presence of a component which makes it impossible for the
0f95b178
JM
5713 -- backend to process the aggregate, thus requiring the use of a series
5714 -- of assignment statements. Cases checked for are a nested aggregate
5715 -- needing Late_Expansion, the presence of a tagged component which may
5716 -- need tag adjustment, and a bit unaligned component reference.
4a76b687
ES
5717 --
5718 -- We also force expansion into assignments if a component is of a
5719 -- mutable type (including a private type with discriminants) because
5720 -- in that case the size of the component to be copied may be smaller
5721 -- than the side of the target, and there is no simple way for gigi
5722 -- to compute the size of the object to be copied.
5723 --
5724 -- NOTE: This is part of the ongoing work to define precisely the
5725 -- interface between front-end and back-end handling of aggregates.
5726 -- In general it is desirable to pass aggregates as they are to gigi,
5727 -- in order to minimize elaboration code. This is one case where the
5728 -- semantics of Ada complicate the analysis and lead to anomalies in
5729 -- the gcc back-end if the aggregate is not expanded into assignments.
70482933 5730
57a8057a
AC
5731 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5732 -- If any ancestor of the current type is private, the aggregate
b465ef6f 5733 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
57a8057a
AC
5734 -- because it will not be set when type and its parent are in the
5735 -- same scope, and the parent component needs expansion.
5736
5737 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5738 -- For nested aggregates return the ultimate enclosing aggregate; for
5739 -- non-nested aggregates return N.
5740
f6205414
AC
5741 ----------------------------------------
5742 -- Compile_Time_Known_Composite_Value --
5743 ----------------------------------------
5744
260359e3
AC
5745 function Compile_Time_Known_Composite_Value
5746 (N : Node_Id) return Boolean
f6205414 5747 is
f6205414
AC
5748 begin
5749 -- If we have an entity name, then see if it is the name of a
5750 -- constant and if so, test the corresponding constant value.
5751
5752 if Is_Entity_Name (N) then
5753 declare
5754 E : constant Entity_Id := Entity (N);
5755 V : Node_Id;
f6205414
AC
5756 begin
5757 if Ekind (E) /= E_Constant then
5758 return False;
260359e3
AC
5759 else
5760 V := Constant_Value (E);
5761 return Present (V)
5762 and then Compile_Time_Known_Composite_Value (V);
f6205414 5763 end if;
f6205414
AC
5764 end;
5765
5766 -- We have a value, see if it is compile time known
5767
5768 else
5769 if Nkind (N) = N_Aggregate then
5770 return Compile_Time_Known_Aggregate (N);
5771 end if;
5772
5773 -- All other types of values are not known at compile time
5774
5775 return False;
5776 end if;
5777
5778 end Compile_Time_Known_Composite_Value;
5779
0f95b178
JM
5780 ----------------------------------
5781 -- Component_Not_OK_For_Backend --
5782 ----------------------------------
5783
5784 function Component_Not_OK_For_Backend return Boolean is
fbf5a39b 5785 C : Node_Id;
70482933
RK
5786 Expr_Q : Node_Id;
5787
5788 begin
5789 if No (Comps) then
5790 return False;
5791 end if;
5792
5793 C := First (Comps);
5794 while Present (C) loop
094cefda
AC
5795
5796 -- If the component has box initialization, expansion is needed
5797 -- and component is not ready for backend.
5798
5799 if Box_Present (C) then
5800 return True;
5801 end if;
5802
70482933
RK
5803 if Nkind (Expression (C)) = N_Qualified_Expression then
5804 Expr_Q := Expression (Expression (C));
5805 else
5806 Expr_Q := Expression (C);
5807 end if;
5808
3b9fa2df
ES
5809 -- Return true if the aggregate has any associations for tagged
5810 -- components that may require tag adjustment.
5811
5812 -- These are cases where the source expression may have a tag that
5813 -- could differ from the component tag (e.g., can occur for type
5814 -- conversions and formal parameters). (Tag adjustment not needed
5815 -- if VM_Target because object tags are implicit in the machine.)
70482933
RK
5816
5817 if Is_Tagged_Type (Etype (Expr_Q))
5818 and then (Nkind (Expr_Q) = N_Type_Conversion
0f95b178 5819 or else (Is_Entity_Name (Expr_Q)
3b9fa2df
ES
5820 and then
5821 Ekind (Entity (Expr_Q)) in Formal_Kind))
1f110335 5822 and then Tagged_Type_Expansion
70482933 5823 then
0f95b178 5824 Static_Components := False;
70482933 5825 return True;
70482933 5826
0f95b178
JM
5827 elsif Is_Delayed_Aggregate (Expr_Q) then
5828 Static_Components := False;
5829 return True;
5830
5831 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5832 Static_Components := False;
70482933
RK
5833 return True;
5834 end if;
5835
f6205414 5836 if Is_Elementary_Type (Etype (Expr_Q)) then
0f95b178
JM
5837 if not Compile_Time_Known_Value (Expr_Q) then
5838 Static_Components := False;
5839 end if;
5840
f6205414 5841 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
0f95b178 5842 Static_Components := False;
4a76b687
ES
5843
5844 if Is_Private_Type (Etype (Expr_Q))
5845 and then Has_Discriminants (Etype (Expr_Q))
5846 then
5847 return True;
5848 end if;
0f95b178
JM
5849 end if;
5850
70482933
RK
5851 Next (C);
5852 end loop;
5853
5854 return False;
0f95b178 5855 end Component_Not_OK_For_Backend;
70482933 5856
7ae0d98c
AC
5857 -----------------------------------
5858 -- Has_Visible_Private_Ancestor --
5859 -----------------------------------
5860
5861 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5862 R : constant Entity_Id := Root_Type (Id);
5863 T1 : Entity_Id := Id;
57a8057a 5864
7ae0d98c
AC
5865 begin
5866 loop
5867 if Is_Private_Type (T1) then
5868 return True;
5869
5870 elsif T1 = R then
5871 return False;
5872
5873 else
5874 T1 := Etype (T1);
5875 end if;
5876 end loop;
5877 end Has_Visible_Private_Ancestor;
5878
57a8057a
AC
5879 -------------------------
5880 -- Top_Level_Aggregate --
5881 -------------------------
5882
5883 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
833eaa8a 5884 Aggr : Node_Id;
57a8057a
AC
5885
5886 begin
833eaa8a 5887 Aggr := N;
57a8057a
AC
5888 while Present (Parent (Aggr))
5889 and then Nkind_In (Parent (Aggr), N_Component_Association,
5890 N_Aggregate)
5891 loop
5892 Aggr := Parent (Aggr);
5893 end loop;
5894
5895 return Aggr;
5896 end Top_Level_Aggregate;
5897
5898 -- Local variables
5899
5900 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5901 Tag_Value : Node_Id;
5902 Comp : Entity_Id;
5903 New_Comp : Node_Id;
5904
70482933
RK
5905 -- Start of processing for Expand_Record_Aggregate
5906
5907 begin
bdc193ba
AC
5908 -- If the aggregate is to be assigned to an atomic variable, we have
5909 -- to prevent a piecemeal assignment even if the aggregate is to be
5910 -- expanded. We create a temporary for the aggregate, and assign the
5911 -- temporary instead, so that the back end can generate an atomic move
5912 -- for it.
fbf5a39b
AC
5913
5914 if Is_Atomic (Typ)
fbf5a39b 5915 and then Comes_From_Source (Parent (N))
cfb120b5 5916 and then Is_Atomic_Aggregate (N, Typ)
fbf5a39b 5917 then
fbf5a39b 5918 return;
fa57ac97
ES
5919
5920 -- No special management required for aggregates used to initialize
5921 -- statically allocated dispatch tables
5922
5923 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5924 return;
fbf5a39b
AC
5925 end if;
5926
c5ee5ad2 5927 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
094cefda 5928 -- are build-in-place function calls. The assignments will each turn
22243c12 5929 -- into a build-in-place function call. If components are all static,
094cefda
AC
5930 -- we can pass the aggregate to the backend regardless of limitedness.
5931
5932 -- Extension aggregates, aggregates in extended return statements, and
5933 -- aggregates for C++ imported types must be expanded.
c5ee5ad2 5934
51245e2d 5935 if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
8779dffa
AC
5936 if not Nkind_In (Parent (N), N_Object_Declaration,
5937 N_Component_Association)
5938 then
094cefda
AC
5939 Convert_To_Assignments (N, Typ);
5940
5941 elsif Nkind (N) = N_Extension_Aggregate
5942 or else Convention (Typ) = Convention_CPP
5943 then
5944 Convert_To_Assignments (N, Typ);
5945
5946 elsif not Size_Known_At_Compile_Time (Typ)
5947 or else Component_Not_OK_For_Backend
5948 or else not Static_Components
5949 then
5950 Convert_To_Assignments (N, Typ);
5951
5952 else
5953 Set_Compile_Time_Known_Aggregate (N);
5954 Set_Expansion_Delayed (N, False);
5955 end if;
c5ee5ad2 5956
5c34e9cd
AC
5957 -- Gigi doesn't properly handle temporaries of variable size so we
5958 -- generate it in the front-end
70482933 5959
abcd9db2
AC
5960 elsif not Size_Known_At_Compile_Time (Typ)
5961 and then Tagged_Type_Expansion
5962 then
70482933
RK
5963 Convert_To_Assignments (N, Typ);
5964
f29afe5f
AC
5965 -- An aggregate used to initialize a controlled object must be turned
5966 -- into component assignments as the components themselves may require
5967 -- finalization actions such as adjustment.
70482933 5968
f29afe5f 5969 elsif Needs_Finalization (Typ) then
70482933
RK
5970 Convert_To_Assignments (N, Typ);
5971
f29afe5f
AC
5972 -- Ada 2005 (AI-287): In case of default initialized components we
5973 -- convert the aggregate into assignments.
19f0526a 5974
65356e64
AC
5975 elsif Has_Default_Init_Comps (N) then
5976 Convert_To_Assignments (N, Typ);
5977
0f95b178
JM
5978 -- Check components
5979
5980 elsif Component_Not_OK_For_Backend then
70482933
RK
5981 Convert_To_Assignments (N, Typ);
5982
50decc81
RD
5983 -- If an ancestor is private, some components are not inherited and we
5984 -- cannot expand into a record aggregate.
70482933 5985
7ae0d98c 5986 elsif Has_Visible_Private_Ancestor (Typ) then
70482933
RK
5987 Convert_To_Assignments (N, Typ);
5988
5989 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5990 -- is not able to handle the aggregate for Late_Request.
5991
5992 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5993 Convert_To_Assignments (N, Typ);
5994
0f95b178 5995 -- If the tagged types covers interface types we need to initialize all
3b9fa2df 5996 -- hidden components containing pointers to secondary dispatch tables.
0f95b178 5997
ce2b6ba5 5998 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
0f95b178
JM
5999 Convert_To_Assignments (N, Typ);
6000
fbf5a39b 6001 -- If some components are mutable, the size of the aggregate component
4a76b687 6002 -- may be distinct from the default size of the type component, so
fbf5a39b 6003 -- we need to expand to insure that the back-end copies the proper
5c34e9cd 6004 -- size of the data. However, if the aggregate is the initial value of
f6205414
AC
6005 -- a constant, the target is immutable and might be built statically
6006 -- if components are appropriate.
fbf5a39b 6007
5c34e9cd
AC
6008 elsif Has_Mutable_Components (Typ)
6009 and then
57a8057a 6010 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
f6205414
AC
6011 or else not Constant_Present (Parent (Top_Level_Aggr))
6012 or else not Static_Components)
5c34e9cd 6013 then
fbf5a39b
AC
6014 Convert_To_Assignments (N, Typ);
6015
b465ef6f
AC
6016 -- If the type involved has bit aligned components, then we are not sure
6017 -- that the back end can handle this case correctly.
91b1417d
AC
6018
6019 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
6020 Convert_To_Assignments (N, Typ);
6021
b465ef6f 6022 -- In all other cases, build a proper aggregate to be handled by gigi
70482933
RK
6023
6024 else
0f95b178
JM
6025 if Nkind (N) = N_Aggregate then
6026
3b9fa2df
ES
6027 -- If the aggregate is static and can be handled by the back-end,
6028 -- nothing left to do.
0f95b178
JM
6029
6030 if Static_Components then
6031 Set_Compile_Time_Known_Aggregate (N);
6032 Set_Expansion_Delayed (N, False);
6033 end if;
6034 end if;
6035
07fc65c4 6036 -- If no discriminants, nothing special to do
70482933 6037
07fc65c4 6038 if not Has_Discriminants (Typ) then
70482933
RK
6039 null;
6040
07fc65c4
GB
6041 -- Case of discriminants present
6042
70482933
RK
6043 elsif Is_Derived_Type (Typ) then
6044
50decc81 6045 -- For untagged types, non-stored discriminants are replaced
fbf5a39b 6046 -- with stored discriminants, which are the ones that gigi uses
07fc65c4 6047 -- to describe the type and its components.
70482933 6048
07fc65c4 6049 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 6050 Constraints : constant List_Id := New_List;
70482933
RK
6051 First_Comp : Node_Id;
6052 Discriminant : Entity_Id;
07fc65c4
GB
6053 Decl : Node_Id;
6054 Num_Disc : Int := 0;
6055 Num_Gird : Int := 0;
6056
fbf5a39b 6057 procedure Prepend_Stored_Values (T : Entity_Id);
3b9fa2df
ES
6058 -- Scan the list of stored discriminants of the type, and add
6059 -- their values to the aggregate being built.
07fc65c4
GB
6060
6061 ---------------------------
fbf5a39b 6062 -- Prepend_Stored_Values --
07fc65c4
GB
6063 ---------------------------
6064
fbf5a39b 6065 procedure Prepend_Stored_Values (T : Entity_Id) is
07fc65c4 6066 begin
fbf5a39b 6067 Discriminant := First_Stored_Discriminant (T);
07fc65c4
GB
6068 while Present (Discriminant) loop
6069 New_Comp :=
6070 Make_Component_Association (Loc,
6071 Choices =>
6072 New_List (New_Occurrence_Of (Discriminant, Loc)),
6073
6074 Expression =>
bdc193ba
AC
6075 New_Copy_Tree
6076 (Get_Discriminant_Value
6077 (Discriminant,
07fc65c4
GB
6078 Typ,
6079 Discriminant_Constraint (Typ))));
6080
6081 if No (First_Comp) then
6082 Prepend_To (Component_Associations (N), New_Comp);
6083 else
6084 Insert_After (First_Comp, New_Comp);
6085 end if;
6086
6087 First_Comp := New_Comp;
fbf5a39b 6088 Next_Stored_Discriminant (Discriminant);
07fc65c4 6089 end loop;
fbf5a39b 6090 end Prepend_Stored_Values;
07fc65c4
GB
6091
6092 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
6093
6094 begin
3b9fa2df 6095 -- Remove the associations for the discriminant of derived type
70482933
RK
6096
6097 First_Comp := First (Component_Associations (N));
70482933
RK
6098 while Present (First_Comp) loop
6099 Comp := First_Comp;
6100 Next (First_Comp);
6101
bdc193ba 6102 if Ekind (Entity (First (Choices (Comp)))) = E_Discriminant
70482933
RK
6103 then
6104 Remove (Comp);
07fc65c4 6105 Num_Disc := Num_Disc + 1;
70482933
RK
6106 end if;
6107 end loop;
6108
fbf5a39b
AC
6109 -- Insert stored discriminant associations in the correct
6110 -- order. If there are more stored discriminants than new
3b9fa2df
ES
6111 -- discriminants, there is at least one new discriminant that
6112 -- constrains more than one of the stored discriminants. In
6113 -- this case we need to construct a proper subtype of the
6114 -- parent type, in order to supply values to all the
fbf5a39b
AC
6115 -- components. Otherwise there is one-one correspondence
6116 -- between the constraints and the stored discriminants.
70482933
RK
6117
6118 First_Comp := Empty;
70482933 6119
fbf5a39b 6120 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
07fc65c4
GB
6121 while Present (Discriminant) loop
6122 Num_Gird := Num_Gird + 1;
fbf5a39b 6123 Next_Stored_Discriminant (Discriminant);
70482933 6124 end loop;
07fc65c4 6125
fbf5a39b 6126 -- Case of more stored discriminants than new discriminants
07fc65c4
GB
6127
6128 if Num_Gird > Num_Disc then
6129
3b9fa2df
ES
6130 -- Create a proper subtype of the parent type, which is the
6131 -- proper implementation type for the aggregate, and convert
6132 -- it to the intended target type.
07fc65c4 6133
fbf5a39b 6134 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
07fc65c4
GB
6135 while Present (Discriminant) loop
6136 New_Comp :=
37368818
RD
6137 New_Copy_Tree
6138 (Get_Discriminant_Value
6139 (Discriminant,
bdc193ba
AC
6140 Typ,
6141 Discriminant_Constraint (Typ)));
07fc65c4 6142 Append (New_Comp, Constraints);
fbf5a39b 6143 Next_Stored_Discriminant (Discriminant);
07fc65c4
GB
6144 end loop;
6145
6146 Decl :=
6147 Make_Subtype_Declaration (Loc,
191fcb3a 6148 Defining_Identifier => Make_Temporary (Loc, 'T'),
bdc193ba 6149 Subtype_Indication =>
07fc65c4
GB
6150 Make_Subtype_Indication (Loc,
6151 Subtype_Mark =>
6152 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
bdc193ba 6153 Constraint =>
07fc65c4
GB
6154 Make_Index_Or_Discriminant_Constraint
6155 (Loc, Constraints)));
6156
6157 Insert_Action (N, Decl);
fbf5a39b 6158 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
6159
6160 Set_Etype (N, Defining_Identifier (Decl));
6161 Set_Analyzed (N);
6162
6163 Rewrite (N, Unchecked_Convert_To (Typ, N));
6164 Analyze (N);
6165
6166 -- Case where we do not have fewer new discriminants than
3b9fa2df
ES
6167 -- stored discriminants, so in this case we can simply use the
6168 -- stored discriminants of the subtype.
07fc65c4
GB
6169
6170 else
fbf5a39b 6171 Prepend_Stored_Values (Typ);
07fc65c4
GB
6172 end if;
6173 end Generate_Aggregate_For_Derived_Type;
70482933
RK
6174 end if;
6175
6176 if Is_Tagged_Type (Typ) then
6177
22243c12 6178 -- In the tagged case, _parent and _tag component must be created
70482933 6179
22243c12
RD
6180 -- Reset Null_Present unconditionally. Tagged records always have
6181 -- at least one field (the tag or the parent).
70482933
RK
6182
6183 Set_Null_Record_Present (N, False);
6184
6185 -- When the current aggregate comes from the expansion of an
6186 -- extension aggregate, the parent expr is replaced by an
22243c12 6187 -- aggregate formed by selected components of this expr.
70482933 6188
36a66365 6189 if Present (Parent_Expr) and then Is_Empty_List (Comps) then
5277cab6 6190 Comp := First_Component_Or_Discriminant (Typ);
70482933
RK
6191 while Present (Comp) loop
6192
70482933
RK
6193 -- Skip all expander-generated components
6194
bdc193ba 6195 if not Comes_From_Source (Original_Record_Component (Comp))
70482933
RK
6196 then
6197 null;
6198
6199 else
6200 New_Comp :=
6201 Make_Selected_Component (Loc,
bdc193ba 6202 Prefix =>
70482933
RK
6203 Unchecked_Convert_To (Typ,
6204 Duplicate_Subexpr (Parent_Expr, True)),
70482933
RK
6205 Selector_Name => New_Occurrence_Of (Comp, Loc));
6206
6207 Append_To (Comps,
6208 Make_Component_Association (Loc,
6209 Choices =>
6210 New_List (New_Occurrence_Of (Comp, Loc)),
37368818 6211 Expression => New_Comp));
70482933
RK
6212
6213 Analyze_And_Resolve (New_Comp, Etype (Comp));
6214 end if;
6215
5277cab6 6216 Next_Component_Or_Discriminant (Comp);
70482933
RK
6217 end loop;
6218 end if;
6219
6220 -- Compute the value for the Tag now, if the type is a root it
6221 -- will be included in the aggregate right away, otherwise it will
22243c12 6222 -- be propagated to the parent aggregate.
70482933
RK
6223
6224 if Present (Orig_Tag) then
6225 Tag_Value := Orig_Tag;
1f110335 6226 elsif not Tagged_Type_Expansion then
70482933
RK
6227 Tag_Value := Empty;
6228 else
a9d8907c
JM
6229 Tag_Value :=
6230 New_Occurrence_Of
6231 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
70482933
RK
6232 end if;
6233
6234 -- For a derived type, an aggregate for the parent is formed with
6235 -- all the inherited components.
6236
6237 if Is_Derived_Type (Typ) then
6238
6239 declare
6240 First_Comp : Node_Id;
6241 Parent_Comps : List_Id;
6242 Parent_Aggr : Node_Id;
6243 Parent_Name : Node_Id;
6244
6245 begin
6246 -- Remove the inherited component association from the
6247 -- aggregate and store them in the parent aggregate
6248
6249 First_Comp := First (Component_Associations (N));
6250 Parent_Comps := New_List;
70482933 6251 while Present (First_Comp)
36a66365
AC
6252 and then
6253 Scope (Original_Record_Component
6254 (Entity (First (Choices (First_Comp))))) /=
6255 Base_Typ
70482933
RK
6256 loop
6257 Comp := First_Comp;
6258 Next (First_Comp);
6259 Remove (Comp);
6260 Append (Comp, Parent_Comps);
6261 end loop;
6262
36a66365
AC
6263 Parent_Aggr :=
6264 Make_Aggregate (Loc,
6265 Component_Associations => Parent_Comps);
70482933
RK
6266 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6267
6268 -- Find the _parent component
6269
6270 Comp := First_Component (Typ);
6271 while Chars (Comp) /= Name_uParent loop
6272 Comp := Next_Component (Comp);
6273 end loop;
6274
6275 Parent_Name := New_Occurrence_Of (Comp, Loc);
6276
6277 -- Insert the parent aggregate
6278
6279 Prepend_To (Component_Associations (N),
6280 Make_Component_Association (Loc,
6281 Choices => New_List (Parent_Name),
6282 Expression => Parent_Aggr));
6283
6284 -- Expand recursively the parent propagating the right Tag
6285
22243c12
RD
6286 Expand_Record_Aggregate
6287 (Parent_Aggr, Tag_Value, Parent_Expr);
1b6897ce
AC
6288
6289 -- The ancestor part may be a nested aggregate that has
6290 -- delayed expansion: recheck now.
6291
6292 if Component_Not_OK_For_Backend then
6293 Convert_To_Assignments (N, Typ);
6294 end if;
70482933
RK
6295 end;
6296
6297 -- For a root type, the tag component is added (unless compiling
0f95b178 6298 -- for the VMs, where tags are implicit).
70482933 6299
1f110335 6300 elsif Tagged_Type_Expansion then
70482933
RK
6301 declare
6302 Tag_Name : constant Node_Id :=
15f0f591 6303 New_Occurrence_Of (First_Tag_Component (Typ), Loc);
70482933
RK
6304 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
6305 Conv_Node : constant Node_Id :=
15f0f591 6306 Unchecked_Convert_To (Typ_Tag, Tag_Value);
70482933
RK
6307
6308 begin
6309 Set_Etype (Conv_Node, Typ_Tag);
6310 Prepend_To (Component_Associations (N),
6311 Make_Component_Association (Loc,
6312 Choices => New_List (Tag_Name),
6313 Expression => Conv_Node));
6314 end;
6315 end if;
6316 end if;
6317 end if;
0f95b178 6318
70482933
RK
6319 end Expand_Record_Aggregate;
6320
65356e64
AC
6321 ----------------------------
6322 -- Has_Default_Init_Comps --
6323 ----------------------------
6324
6325 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
d05ef0ab
AC
6326 Comps : constant List_Id := Component_Associations (N);
6327 C : Node_Id;
c45b6ae0 6328 Expr : Node_Id;
bdc193ba 6329
65356e64 6330 begin
d7f94401 6331 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
c45b6ae0 6332
65356e64
AC
6333 if No (Comps) then
6334 return False;
6335 end if;
6336
c5ee5ad2
BD
6337 if Has_Self_Reference (N) then
6338 return True;
6339 end if;
6340
c45b6ae0
AC
6341 -- Check if any direct component has default initialized components
6342
65356e64
AC
6343 C := First (Comps);
6344 while Present (C) loop
6345 if Box_Present (C) then
6346 return True;
6347 end if;
6348
6349 Next (C);
6350 end loop;
c45b6ae0
AC
6351
6352 -- Recursive call in case of aggregate expression
6353
6354 C := First (Comps);
6355 while Present (C) loop
6356 Expr := Expression (C);
6357
6358 if Present (Expr)
36a66365 6359 and then Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
c45b6ae0
AC
6360 and then Has_Default_Init_Comps (Expr)
6361 then
6362 return True;
6363 end if;
6364
6365 Next (C);
6366 end loop;
6367
65356e64
AC
6368 return False;
6369 end Has_Default_Init_Comps;
6370
70482933
RK
6371 --------------------------
6372 -- Is_Delayed_Aggregate --
6373 --------------------------
6374
6375 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
fbf5a39b 6376 Node : Node_Id := N;
70482933 6377 Kind : Node_Kind := Nkind (Node);
fbf5a39b 6378
70482933
RK
6379 begin
6380 if Kind = N_Qualified_Expression then
6381 Node := Expression (Node);
6382 Kind := Nkind (Node);
6383 end if;
6384
36a66365 6385 if not Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate) then
70482933
RK
6386 return False;
6387 else
6388 return Expansion_Delayed (Node);
6389 end if;
6390 end Is_Delayed_Aggregate;
6391
fa57ac97
ES
6392 ----------------------------------------
6393 -- Is_Static_Dispatch_Table_Aggregate --
6394 ----------------------------------------
6395
6396 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6397 Typ : constant Entity_Id := Base_Type (Etype (N));
6398
6399 begin
6400 return Static_Dispatch_Tables
1f110335 6401 and then Tagged_Type_Expansion
fa57ac97
ES
6402 and then RTU_Loaded (Ada_Tags)
6403
6404 -- Avoid circularity when rebuilding the compiler
6405
6406 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6407 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6408 or else
6409 Typ = RTE (RE_Address_Array)
6410 or else
6411 Typ = RTE (RE_Type_Specific_Data)
6412 or else
6413 Typ = RTE (RE_Tag_Table)
6414 or else
6415 (RTE_Available (RE_Interface_Data)
6416 and then Typ = RTE (RE_Interface_Data))
6417 or else
6418 (RTE_Available (RE_Interfaces_Array)
6419 and then Typ = RTE (RE_Interfaces_Array))
6420 or else
6421 (RTE_Available (RE_Interface_Data_Element)
6422 and then Typ = RTE (RE_Interface_Data_Element)));
6423 end Is_Static_Dispatch_Table_Aggregate;
6424
dc3af7e2
AC
6425 -----------------------------
6426 -- Is_Two_Dim_Packed_Array --
6427 -----------------------------
6428
6429 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
6430 C : constant Int := UI_To_Int (Component_Size (Typ));
6431 begin
6432 return Number_Dimensions (Typ) = 2
6433 and then Is_Bit_Packed_Array (Typ)
2791be24 6434 and then (C = 1 or else C = 2 or else C = 4);
dc3af7e2
AC
6435 end Is_Two_Dim_Packed_Array;
6436
70482933
RK
6437 --------------------
6438 -- Late_Expansion --
6439 --------------------
6440
6441 function Late_Expansion
6442 (N : Node_Id;
6443 Typ : Entity_Id;
df3e68b1 6444 Target : Node_Id) return List_Id
9bc856dd 6445 is
f29afe5f
AC
6446 Aggr_Code : List_Id;
6447
70482933
RK
6448 begin
6449 if Is_Record_Type (Etype (N)) then
f29afe5f
AC
6450 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
6451
9bc856dd 6452 else pragma Assert (Is_Array_Type (Etype (N)));
4ac2bbbd 6453 Aggr_Code :=
70482933 6454 Build_Array_Aggr_Code
c45b6ae0
AC
6455 (N => N,
6456 Ctype => Component_Type (Etype (N)),
6457 Index => First_Index (Typ),
6458 Into => Target,
6459 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
df3e68b1 6460 Indexes => No_List);
70482933 6461 end if;
4ac2bbbd
AC
6462
6463 -- Save the last assignment statement associated with the aggregate
6464 -- when building a controlled object. This reference is utilized by
6465 -- the finalization machinery when marking an object as successfully
6466 -- initialized.
6467
6468 if Needs_Finalization (Typ)
6469 and then Is_Entity_Name (Target)
6470 and then Present (Entity (Target))
6471 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
6472 then
6473 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6474 end if;
6475
6476 return Aggr_Code;
70482933
RK
6477 end Late_Expansion;
6478
6479 ----------------------------------
6480 -- Make_OK_Assignment_Statement --
6481 ----------------------------------
6482
6483 function Make_OK_Assignment_Statement
6484 (Sloc : Source_Ptr;
6485 Name : Node_Id;
0f95b178 6486 Expression : Node_Id) return Node_Id
70482933
RK
6487 is
6488 begin
6489 Set_Assignment_OK (Name);
6490 return Make_Assignment_Statement (Sloc, Name, Expression);
6491 end Make_OK_Assignment_Statement;
6492
6493 -----------------------
6494 -- Number_Of_Choices --
6495 -----------------------
6496
6497 function Number_Of_Choices (N : Node_Id) return Nat is
6498 Assoc : Node_Id;
6499 Choice : Node_Id;
6500
6501 Nb_Choices : Nat := 0;
6502
6503 begin
6504 if Present (Expressions (N)) then
6505 return 0;
6506 end if;
6507
6508 Assoc := First (Component_Associations (N));
6509 while Present (Assoc) loop
70482933
RK
6510 Choice := First (Choices (Assoc));
6511 while Present (Choice) loop
70482933
RK
6512 if Nkind (Choice) /= N_Others_Choice then
6513 Nb_Choices := Nb_Choices + 1;
6514 end if;
6515
6516 Next (Choice);
6517 end loop;
6518
6519 Next (Assoc);
6520 end loop;
6521
6522 return Nb_Choices;
6523 end Number_Of_Choices;
6524
07fc65c4
GB
6525 ------------------------------------
6526 -- Packed_Array_Aggregate_Handled --
6527 ------------------------------------
6528
6529 -- The current version of this procedure will handle at compile time
6530 -- any array aggregate that meets these conditions:
6531
5eeeed5e 6532 -- One and two dimensional, bit packed
07fc65c4
GB
6533 -- Underlying packed type is modular type
6534 -- Bounds are within 32-bit Int range
6535 -- All bounds and values are static
6536
a39a553e
AC
6537 -- Note: for now, in the 2-D case, we only handle component sizes of
6538 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
6539
07fc65c4
GB
6540 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6541 Loc : constant Source_Ptr := Sloc (N);
6542 Typ : constant Entity_Id := Etype (N);
6543 Ctyp : constant Entity_Id := Component_Type (Typ);
6544
6545 Not_Handled : exception;
6546 -- Exception raised if this aggregate cannot be handled
6547
6548 begin
5eeeed5e 6549 -- Handle one- or two dimensional bit packed array
07fc65c4
GB
6550
6551 if not Is_Bit_Packed_Array (Typ)
5eeeed5e 6552 or else Number_Dimensions (Typ) > 2
07fc65c4
GB
6553 then
6554 return False;
6555 end if;
6556
5eeeed5e 6557 -- If two-dimensional, check whether it can be folded, and transformed
8ca597af
RD
6558 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
6559 -- the original type.
5eeeed5e
AC
6560
6561 if Number_Dimensions (Typ) = 2 then
6562 return Two_Dim_Packed_Array_Handled (N);
6563 end if;
6564
8ca597af 6565 if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
5eeeed5e
AC
6566 return False;
6567 end if;
6568
0f95b178
JM
6569 if not Is_Scalar_Type (Component_Type (Typ))
6570 and then Has_Non_Standard_Rep (Component_Type (Typ))
6571 then
6572 return False;
6573 end if;
6574
07fc65c4
GB
6575 declare
6576 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
6577
6578 Lo : Node_Id;
6579 Hi : Node_Id;
6580 -- Bounds of index type
6581
6582 Lob : Uint;
6583 Hib : Uint;
6584 -- Values of bounds if compile time known
6585
6586 function Get_Component_Val (N : Node_Id) return Uint;
3b9fa2df
ES
6587 -- Given a expression value N of the component type Ctyp, returns a
6588 -- value of Csiz (component size) bits representing this value. If
6589 -- the value is non-static or any other reason exists why the value
6590 -- cannot be returned, then Not_Handled is raised.
07fc65c4
GB
6591
6592 -----------------------
6593 -- Get_Component_Val --
6594 -----------------------
6595
6596 function Get_Component_Val (N : Node_Id) return Uint is
6597 Val : Uint;
6598
6599 begin
6600 -- We have to analyze the expression here before doing any further
6601 -- processing here. The analysis of such expressions is deferred
6602 -- till expansion to prevent some problems of premature analysis.
6603
6604 Analyze_And_Resolve (N, Ctyp);
6605
3b9fa2df
ES
6606 -- Must have a compile time value. String literals have to be
6607 -- converted into temporaries as well, because they cannot easily
6608 -- be converted into their bit representation.
07fc65c4 6609
6b6fcd3e
AC
6610 if not Compile_Time_Known_Value (N)
6611 or else Nkind (N) = N_String_Literal
6612 then
07fc65c4
GB
6613 raise Not_Handled;
6614 end if;
6615
6616 Val := Expr_Rep_Value (N);
6617
6618 -- Adjust for bias, and strip proper number of bits
6619
6620 if Has_Biased_Representation (Ctyp) then
6621 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6622 end if;
6623
6624 return Val mod Uint_2 ** Csiz;
6625 end Get_Component_Val;
6626
6627 -- Here we know we have a one dimensional bit packed array
6628
6629 begin
6630 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6631
6632 -- Cannot do anything if bounds are dynamic
6633
6634 if not Compile_Time_Known_Value (Lo)
6635 or else
6636 not Compile_Time_Known_Value (Hi)
6637 then
6638 return False;
6639 end if;
6640
6641 -- Or are silly out of range of int bounds
6642
6643 Lob := Expr_Value (Lo);
6644 Hib := Expr_Value (Hi);
6645
6646 if not UI_Is_In_Int_Range (Lob)
6647 or else
6648 not UI_Is_In_Int_Range (Hib)
6649 then
6650 return False;
6651 end if;
6652
3b9fa2df 6653 -- At this stage we have a suitable aggregate for handling at compile
fcf848c4
AC
6654 -- time. The only remaining checks are that the values of expressions
6655 -- in the aggregate are compile-time known (checks are performed by
b465ef6f 6656 -- Get_Component_Val), and that any subtypes or ranges are statically
fcf848c4 6657 -- known.
07fc65c4 6658
3b9fa2df
ES
6659 -- If the aggregate is not fully positional at this stage, then
6660 -- convert it to positional form. Either this will fail, in which
6661 -- case we can do nothing, or it will succeed, in which case we have
5eeeed5e
AC
6662 -- succeeded in handling the aggregate and transforming it into a
6663 -- modular value, or it will stay an aggregate, in which case we
6664 -- have failed to create a packed value for it.
07fc65c4
GB
6665
6666 if Present (Component_Associations (N)) then
6667 Convert_To_Positional
99ba07a3 6668 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
07fc65c4
GB
6669 return Nkind (N) /= N_Aggregate;
6670 end if;
6671
6672 -- Otherwise we are all positional, so convert to proper value
6673
6674 declare
42de0044
AC
6675 Lov : constant Int := UI_To_Int (Lob);
6676 Hiv : constant Int := UI_To_Int (Hib);
07fc65c4
GB
6677
6678 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6679 -- The length of the array (number of elements)
6680
6681 Aggregate_Val : Uint;
3b9fa2df
ES
6682 -- Value of aggregate. The value is set in the low order bits of
6683 -- this value. For the little-endian case, the values are stored
6684 -- from low-order to high-order and for the big-endian case the
6685 -- values are stored from high-order to low-order. Note that gigi
6686 -- will take care of the conversions to left justify the value in
6687 -- the big endian case (because of left justified modular type
07fc65c4
GB
6688 -- processing), so we do not have to worry about that here.
6689
6690 Lit : Node_Id;
6691 -- Integer literal for resulting constructed value
6692
6693 Shift : Nat;
6694 -- Shift count from low order for next value
6695
6696 Incr : Int;
6697 -- Shift increment for loop
6698
6699 Expr : Node_Id;
6700 -- Next expression from positional parameters of aggregate
6701
c9a6b38f
AC
6702 Left_Justified : Boolean;
6703 -- Set True if we are filling the high order bits of the target
6704 -- value (i.e. the value is left justified).
6705
07fc65c4 6706 begin
3b9fa2df
ES
6707 -- For little endian, we fill up the low order bits of the target
6708 -- value. For big endian we fill up the high order bits of the
6709 -- target value (which is a left justified modular value).
07fc65c4 6710
c9a6b38f 6711 Left_Justified := Bytes_Big_Endian;
68f640f2 6712
c9a6b38f
AC
6713 -- Switch justification if using -gnatd8
6714
6715 if Debug_Flag_8 then
6716 Left_Justified := not Left_Justified;
6717 end if;
6718
6719 -- Switch justfification if reverse storage order
6720
6721 if Reverse_Storage_Order (Base_Type (Typ)) then
6722 Left_Justified := not Left_Justified;
6723 end if;
6724
6725 if Left_Justified then
07fc65c4
GB
6726 Shift := Csiz * (Len - 1);
6727 Incr := -Csiz;
6728 else
6729 Shift := 0;
6730 Incr := +Csiz;
6731 end if;
6732
6733 -- Loop to set the values
6734
fbf5a39b
AC
6735 if Len = 0 then
6736 Aggregate_Val := Uint_0;
6737 else
6738 Expr := First (Expressions (N));
6739 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6740
6741 for J in 2 .. Len loop
6742 Shift := Shift + Incr;
6743 Next (Expr);
6744 Aggregate_Val :=
6745 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6746 end loop;
6747 end if;
07fc65c4
GB
6748
6749 -- Now we can rewrite with the proper value
6750
d9819bbd 6751 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
07fc65c4
GB
6752 Set_Print_In_Hex (Lit);
6753
6754 -- Construct the expression using this literal. Note that it is
6755 -- important to qualify the literal with its proper modular type
6756 -- since universal integer does not have the required range and
6757 -- also this is a left justified modular type, which is important
6758 -- in the big-endian case.
6759
6760 Rewrite (N,
6761 Unchecked_Convert_To (Typ,
6762 Make_Qualified_Expression (Loc,
6763 Subtype_Mark =>
8ca597af 6764 New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
07fc65c4
GB
6765 Expression => Lit)));
6766
6767 Analyze_And_Resolve (N, Typ);
6768 return True;
6769 end;
6770 end;
6771
6772 exception
6773 when Not_Handled =>
6774 return False;
6775 end Packed_Array_Aggregate_Handled;
6776
fbf5a39b
AC
6777 ----------------------------
6778 -- Has_Mutable_Components --
6779 ----------------------------
6780
6781 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6782 Comp : Entity_Id;
6783
6784 begin
6785 Comp := First_Component (Typ);
fbf5a39b
AC
6786 while Present (Comp) loop
6787 if Is_Record_Type (Etype (Comp))
6788 and then Has_Discriminants (Etype (Comp))
6789 and then not Is_Constrained (Etype (Comp))
6790 then
6791 return True;
6792 end if;
6793
6794 Next_Component (Comp);
6795 end loop;
6796
6797 return False;
6798 end Has_Mutable_Components;
6799
07fc65c4
GB
6800 ------------------------------
6801 -- Initialize_Discriminants --
6802 ------------------------------
6803
6804 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6805 Loc : constant Source_Ptr := Sloc (N);
6806 Bas : constant Entity_Id := Base_Type (Typ);
6807 Par : constant Entity_Id := Etype (Bas);
6808 Decl : constant Node_Id := Parent (Par);
6809 Ref : Node_Id;
6810
6811 begin
6812 if Is_Tagged_Type (Bas)
6813 and then Is_Derived_Type (Bas)
6814 and then Has_Discriminants (Par)
6815 and then Has_Discriminants (Bas)
6816 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6817 and then Nkind (Decl) = N_Full_Type_Declaration
6818 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
36a66365
AC
6819 and then
6820 Present (Variant_Part (Component_List (Type_Definition (Decl))))
07fc65c4
GB
6821 and then Nkind (N) /= N_Extension_Aggregate
6822 then
6823
fbf5a39b 6824 -- Call init proc to set discriminants.
07fc65c4
GB
6825 -- There should eventually be a special procedure for this ???
6826
e4494292 6827 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
07fc65c4
GB
6828 Insert_Actions_After (N,
6829 Build_Initialization_Call (Sloc (N), Ref, Typ));
6830 end if;
6831 end Initialize_Discriminants;
6832
3cf3e5c6
AC
6833 ----------------
6834 -- Must_Slide --
6835 ----------------
6836
6837 function Must_Slide
6838 (Obj_Type : Entity_Id;
6839 Typ : Entity_Id) return Boolean
6840 is
6841 L1, L2, H1, H2 : Node_Id;
36a66365 6842
3cf3e5c6 6843 begin
3b9fa2df
ES
6844 -- No sliding if the type of the object is not established yet, if it is
6845 -- an unconstrained type whose actual subtype comes from the aggregate,
6846 -- or if the two types are identical.
3cf3e5c6
AC
6847
6848 if not Is_Array_Type (Obj_Type) then
6849 return False;
6850
6851 elsif not Is_Constrained (Obj_Type) then
6852 return False;
6853
6854 elsif Typ = Obj_Type then
6855 return False;
6856
6857 else
6858 -- Sliding can only occur along the first dimension
6859
6860 Get_Index_Bounds (First_Index (Typ), L1, H1);
6861 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6862
edab6088
RD
6863 if not Is_OK_Static_Expression (L1) or else
6864 not Is_OK_Static_Expression (L2) or else
6865 not Is_OK_Static_Expression (H1) or else
6866 not Is_OK_Static_Expression (H2)
3cf3e5c6
AC
6867 then
6868 return False;
6869 else
6870 return Expr_Value (L1) /= Expr_Value (L2)
a39a553e
AC
6871 or else
6872 Expr_Value (H1) /= Expr_Value (H2);
3cf3e5c6
AC
6873 end if;
6874 end if;
6875 end Must_Slide;
6876
5eeeed5e
AC
6877 ----------------------------------
6878 -- Two_Dim_Packed_Array_Handled --
6879 ----------------------------------
6880
6881 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
6882 Loc : constant Source_Ptr := Sloc (N);
8ca597af
RD
6883 Typ : constant Entity_Id := Etype (N);
6884 Ctyp : constant Entity_Id := Component_Type (Typ);
6885 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
6886 Packed_Array : constant Entity_Id :=
6887 Packed_Array_Impl_Type (Base_Type (Typ));
5eeeed5e 6888
36a66365 6889 One_Comp : Node_Id;
5eeeed5e
AC
6890 -- Expression in original aggregate
6891
36a66365 6892 One_Dim : Node_Id;
a39a553e 6893 -- One-dimensional subaggregate
5eeeed5e
AC
6894
6895 begin
6896
a39a553e
AC
6897 -- For now, only deal with cases where an integral number of elements
6898 -- fit in a single byte. This includes the most common boolean case.
5eeeed5e 6899
a39a553e
AC
6900 if not (Comp_Size = 1 or else
6901 Comp_Size = 2 or else
6902 Comp_Size = 4)
5eeeed5e 6903 then
5eeeed5e
AC
6904 return False;
6905 end if;
6906
6907 Convert_To_Positional
6908 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6909
a39a553e 6910 -- Verify that all components are static
5eeeed5e
AC
6911
6912 if Nkind (N) = N_Aggregate
6913 and then Compile_Time_Known_Aggregate (N)
6914 then
6915 null;
6916
a39a553e 6917 -- The aggregate may have been re-analyzed and converted already
5eeeed5e
AC
6918
6919 elsif Nkind (N) /= N_Aggregate then
6920 return True;
6921
a39a553e 6922 -- If component associations remain, the aggregate is not static
5eeeed5e
AC
6923
6924 elsif Present (Component_Associations (N)) then
6925 return False;
6926
6927 else
6928 One_Dim := First (Expressions (N));
6929 while Present (One_Dim) loop
6930 if Present (Component_Associations (One_Dim)) then
6931 return False;
6932 end if;
6933
6934 One_Comp := First (Expressions (One_Dim));
6935 while Present (One_Comp) loop
6936 if not Is_OK_Static_Expression (One_Comp) then
6937 return False;
6938 end if;
6939
6940 Next (One_Comp);
6941 end loop;
6942
6943 Next (One_Dim);
6944 end loop;
6945 end if;
6946
6947 -- Two-dimensional aggregate is now fully positional so pack one
6948 -- dimension to create a static one-dimensional array, and rewrite
6949 -- as an unchecked conversion to the original type.
6950
6951 declare
6952 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
6953 -- The packed array type is a byte array
6954
6955 Packed_Num : Int;
6956 -- Number of components accumulated in current byte
6957
6958 Comps : List_Id;
6959 -- Assembled list of packed values for equivalent aggregate
6960
6961 Comp_Val : Uint;
6962 -- integer value of component
6963
a39a553e 6964 Incr : Int;
5eeeed5e
AC
6965 -- Step size for packing
6966
6967 Init_Shift : Int;
a39a553e 6968 -- Endian-dependent start position for packing
5eeeed5e
AC
6969
6970 Shift : Int;
a39a553e 6971 -- Current insertion position
5eeeed5e 6972
a39a553e
AC
6973 Val : Int;
6974 -- Component of packed array being assembled.
5eeeed5e
AC
6975
6976 begin
6977 Comps := New_List;
6978 Val := 0;
6979 Packed_Num := 0;
6980
6981 -- Account for endianness. See corresponding comment in
6982 -- Packed_Array_Aggregate_Handled concerning the following.
6983
6984 if Bytes_Big_Endian
6985 xor Debug_Flag_8
6986 xor Reverse_Storage_Order (Base_Type (Typ))
6987 then
6988 Init_Shift := Byte_Size - Comp_Size;
a39a553e 6989 Incr := -Comp_Size;
5eeeed5e
AC
6990 else
6991 Init_Shift := 0;
a39a553e 6992 Incr := +Comp_Size;
5eeeed5e
AC
6993 end if;
6994
5eeeed5e
AC
6995 -- Iterate over each subaggregate
6996
bdc193ba
AC
6997 Shift := Init_Shift;
6998 One_Dim := First (Expressions (N));
5eeeed5e
AC
6999 while Present (One_Dim) loop
7000 One_Comp := First (Expressions (One_Dim));
5eeeed5e
AC
7001 while Present (One_Comp) loop
7002 if Packed_Num = Byte_Size / Comp_Size then
7003
7004 -- Byte is complete, add to list of expressions
7005
7006 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7007 Val := 0;
7008 Shift := Init_Shift;
7009 Packed_Num := 0;
7010
7011 else
7012 Comp_Val := Expr_Rep_Value (One_Comp);
7013
7014 -- Adjust for bias, and strip proper number of bits
7015
7016 if Has_Biased_Representation (Ctyp) then
7017 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
7018 end if;
7019
7020 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
7021 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
7022 Shift := Shift + Incr;
7023 One_Comp := Next (One_Comp);
7024 Packed_Num := Packed_Num + 1;
7025 end if;
7026 end loop;
7027
7028 One_Dim := Next (One_Dim);
7029 end loop;
7030
7031 if Packed_Num > 0 then
7032
a39a553e 7033 -- Add final incomplete byte if present
5eeeed5e
AC
7034
7035 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7036 end if;
7037
7038 Rewrite (N,
7039 Unchecked_Convert_To (Typ,
7040 Make_Qualified_Expression (Loc,
7041 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
bdc193ba 7042 Expression => Make_Aggregate (Loc, Expressions => Comps))));
5eeeed5e
AC
7043 Analyze_And_Resolve (N);
7044 return True;
7045 end;
7046 end Two_Dim_Packed_Array_Handled;
7047
70482933
RK
7048 ---------------------
7049 -- Sort_Case_Table --
7050 ---------------------
7051
7052 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
7053 L : constant Int := Case_Table'First;
7054 U : constant Int := Case_Table'Last;
70482933
RK
7055 K : Int;
7056 J : Int;
7057 T : Case_Bounds;
7058
7059 begin
7060 K := L;
70482933
RK
7061 while K /= U loop
7062 T := Case_Table (K + 1);
70482933 7063
5277cab6 7064 J := K + 1;
70482933
RK
7065 while J /= L
7066 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
7067 Expr_Value (T.Choice_Lo)
7068 loop
7069 Case_Table (J) := Case_Table (J - 1);
7070 J := J - 1;
7071 end loop;
7072
7073 Case_Table (J) := T;
7074 K := K + 1;
7075 end loop;
7076 end Sort_Case_Table;
7077
0f95b178
JM
7078 ----------------------------
7079 -- Static_Array_Aggregate --
7080 ----------------------------
7081
7082 function Static_Array_Aggregate (N : Node_Id) return Boolean is
7083 Bounds : constant Node_Id := Aggregate_Bounds (N);
7084
7085 Typ : constant Entity_Id := Etype (N);
7086 Comp_Type : constant Entity_Id := Component_Type (Typ);
7087 Agg : Node_Id;
7088 Expr : Node_Id;
7089 Lo : Node_Id;
7090 Hi : Node_Id;
7091
7092 begin
7093 if Is_Tagged_Type (Typ)
7094 or else Is_Controlled (Typ)
7095 or else Is_Packed (Typ)
7096 then
7097 return False;
7098 end if;
7099
7100 if Present (Bounds)
7101 and then Nkind (Bounds) = N_Range
7102 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
7103 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
7104 then
7105 Lo := Low_Bound (Bounds);
7106 Hi := High_Bound (Bounds);
7107
7108 if No (Component_Associations (N)) then
7109
fa57ac97 7110 -- Verify that all components are static integers
0f95b178
JM
7111
7112 Expr := First (Expressions (N));
7113 while Present (Expr) loop
7114 if Nkind (Expr) /= N_Integer_Literal then
7115 return False;
7116 end if;
7117
7118 Next (Expr);
7119 end loop;
7120
7121 return True;
7122
7123 else
7124 -- We allow only a single named association, either a static
7125 -- range or an others_clause, with a static expression.
7126
7127 Expr := First (Component_Associations (N));
7128
7129 if Present (Expressions (N)) then
7130 return False;
7131
7132 elsif Present (Next (Expr)) then
7133 return False;
7134
7135 elsif Present (Next (First (Choices (Expr)))) then
7136 return False;
7137
7138 else
d7f94401
AC
7139 -- The aggregate is static if all components are literals,
7140 -- or else all its components are static aggregates for the
fc534c1c
ES
7141 -- component type. We also limit the size of a static aggregate
7142 -- to prevent runaway static expressions.
0f95b178
JM
7143
7144 if Is_Array_Type (Comp_Type)
7145 or else Is_Record_Type (Comp_Type)
7146 then
7147 if Nkind (Expression (Expr)) /= N_Aggregate
7148 or else
7149 not Compile_Time_Known_Aggregate (Expression (Expr))
7150 then
7151 return False;
7152 end if;
7153
7154 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
7155 return False;
6a2e4f0b 7156 end if;
fc534c1c 7157
6a2e4f0b 7158 if not Aggr_Size_OK (N, Typ) then
fc534c1c 7159 return False;
0f95b178
JM
7160 end if;
7161
7162 -- Create a positional aggregate with the right number of
7163 -- copies of the expression.
7164
7165 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
7166
7167 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
7168 loop
37368818 7169 Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
597d7158 7170
9b4b0a1a
GD
7171 -- The copied expression must be analyzed and resolved.
7172 -- Besides setting the type, this ensures that static
7173 -- expressions are appropriately marked as such.
597d7158 7174
9b4b0a1a
GD
7175 Analyze_And_Resolve
7176 (Last (Expressions (Agg)), Component_Type (Typ));
0f95b178
JM
7177 end loop;
7178
7179 Set_Aggregate_Bounds (Agg, Bounds);
7180 Set_Etype (Agg, Typ);
7181 Set_Analyzed (Agg);
7182 Rewrite (N, Agg);
7183 Set_Compile_Time_Known_Aggregate (N);
7184
7185 return True;
7186 end if;
7187 end if;
7188
7189 else
7190 return False;
7191 end if;
7192 end Static_Array_Aggregate;
9b4b0a1a 7193
70482933 7194end Exp_Aggr;