]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/exp_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 4 --
59262ebb 6-- --
70482933
RK
7-- B o d y --
8-- --
0580d807 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
bded454f 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Aggr; use Exp_Aggr;
0669bebe 33with Exp_Atag; use Exp_Atag;
6cce2156 34with Exp_Ch2; use Exp_Ch2;
70482933 35with Exp_Ch3; use Exp_Ch3;
20b5d666 36with Exp_Ch6; use Exp_Ch6;
70482933
RK
37with Exp_Ch7; use Exp_Ch7;
38with Exp_Ch9; use Exp_Ch9;
20b5d666 39with Exp_Disp; use Exp_Disp;
70482933 40with Exp_Fixd; use Exp_Fixd;
437f8c1e 41with Exp_Intr; use Exp_Intr;
70482933
RK
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss; use Exp_Tss;
44with Exp_Util; use Exp_Util;
45with Exp_VFpt; use Exp_VFpt;
f02b8bb8 46with Freeze; use Freeze;
70482933 47with Inline; use Inline;
df3e68b1 48with Lib; use Lib;
26bff3d9 49with Namet; use Namet;
70482933
RK
50with Nlists; use Nlists;
51with Nmake; use Nmake;
52with Opt; use Opt;
25adc5fb 53with Par_SCO; use Par_SCO;
0669bebe
GB
54with Restrict; use Restrict;
55with Rident; use Rident;
70482933
RK
56with Rtsfind; use Rtsfind;
57with Sem; use Sem;
a4100e55 58with Sem_Aux; use Sem_Aux;
70482933 59with Sem_Cat; use Sem_Cat;
5d09245e 60with Sem_Ch3; use Sem_Ch3;
11fa950b 61with Sem_Ch8; use Sem_Ch8;
70482933
RK
62with Sem_Ch13; use Sem_Ch13;
63with Sem_Eval; use Sem_Eval;
64with Sem_Res; use Sem_Res;
65with Sem_Type; use Sem_Type;
66with Sem_Util; use Sem_Util;
07fc65c4 67with Sem_Warn; use Sem_Warn;
70482933 68with Sinfo; use Sinfo;
70482933
RK
69with Snames; use Snames;
70with Stand; use Stand;
7665e4bd 71with SCIL_LL; use SCIL_LL;
07fc65c4 72with Targparm; use Targparm;
70482933
RK
73with Tbuild; use Tbuild;
74with Ttypes; use Ttypes;
75with Uintp; use Uintp;
76with Urealp; use Urealp;
77with Validsw; use Validsw;
78
79package body Exp_Ch4 is
80
15ce9ca2
AC
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
70482933
RK
84
85 procedure Binary_Op_Validity_Checks (N : Node_Id);
86 pragma Inline (Binary_Op_Validity_Checks);
87 -- Performs validity checks for a binary operator
88
fbf5a39b
AC
89 procedure Build_Boolean_Array_Proc_Call
90 (N : Node_Id;
91 Op1 : Node_Id;
92 Op2 : Node_Id);
303b4d58 93 -- If a boolean array assignment can be done in place, build call to
fbf5a39b
AC
94 -- corresponding library procedure.
95
11fa950b
AC
96 function Current_Anonymous_Master return Entity_Id;
97 -- Return the entity of the heterogeneous finalization master belonging to
98 -- the current unit (either function, package or procedure). This master
99 -- services all anonymous access-to-controlled types. If the current unit
100 -- does not have such master, create one.
df3e68b1 101
26bff3d9
JM
102 procedure Displace_Allocator_Pointer (N : Node_Id);
103 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104 -- Expand_Allocator_Expression. Allocating class-wide interface objects
105 -- this routine displaces the pointer to the allocated object to reference
106 -- the component referencing the corresponding secondary dispatch table.
107
fbf5a39b
AC
108 procedure Expand_Allocator_Expression (N : Node_Id);
109 -- Subsidiary to Expand_N_Allocator, for the case when the expression
110 -- is a qualified expression or an aggregate.
111
70482933
RK
112 procedure Expand_Array_Comparison (N : Node_Id);
113 -- This routine handles expansion of the comparison operators (N_Op_Lt,
114 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115 -- code for these operators is similar, differing only in the details of
fbf5a39b
AC
116 -- the actual comparison call that is made. Special processing (call a
117 -- run-time routine)
70482933
RK
118
119 function Expand_Array_Equality
120 (Nod : Node_Id;
70482933
RK
121 Lhs : Node_Id;
122 Rhs : Node_Id;
0da2c8ac
AC
123 Bodies : List_Id;
124 Typ : Entity_Id) return Node_Id;
70482933 125 -- Expand an array equality into a call to a function implementing this
685094bf
RD
126 -- equality, and a call to it. Loc is the location for the generated nodes.
127 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
128 -- on which to attach bodies of local functions that are created in the
129 -- process. It is the responsibility of the caller to insert those bodies
130 -- at the right place. Nod provides the Sloc value for the generated code.
131 -- Normally the types used for the generated equality routine are taken
132 -- from Lhs and Rhs. However, in some situations of generated code, the
133 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134 -- the type to be used for the formal parameters.
70482933
RK
135
136 procedure Expand_Boolean_Operator (N : Node_Id);
685094bf
RD
137 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
138 -- case of array type arguments.
70482933 139
5875f8d6
AC
140 procedure Expand_Short_Circuit_Operator (N : Node_Id);
141 -- Common expansion processing for short-circuit boolean operators
142
70482933
RK
143 function Expand_Composite_Equality
144 (Nod : Node_Id;
145 Typ : Entity_Id;
146 Lhs : Node_Id;
147 Rhs : Node_Id;
2e071734 148 Bodies : List_Id) return Node_Id;
685094bf
RD
149 -- Local recursive function used to expand equality for nested composite
150 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
151 -- to attach bodies of local functions that are created in the process.
152 -- This is the responsibility of the caller to insert those bodies at the
153 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
154 -- are the left and right sides for the comparison, and Typ is the type of
155 -- the arrays to compare.
70482933 156
fdac1f80
AC
157 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
158 -- Routine to expand concatenation of a sequence of two or more operands
159 -- (in the list Operands) and replace node Cnode with the result of the
160 -- concatenation. The operands can be of any appropriate type, and can
161 -- include both arrays and singleton elements.
70482933
RK
162
163 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
685094bf
RD
164 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
165 -- fixed. We do not have such a type at runtime, so the purpose of this
166 -- routine is to find the real type by looking up the tree. We also
167 -- determine if the operation must be rounded.
70482933 168
5d09245e
AC
169 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
170 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
171 -- discriminants if it has a constrained nominal type, unless the object
172 -- is a component of an enclosing Unchecked_Union object that is subject
173 -- to a per-object constraint and the enclosing object lacks inferable
174 -- discriminants.
175 --
176 -- An expression of an Unchecked_Union type has inferable discriminants
177 -- if it is either a name of an object with inferable discriminants or a
178 -- qualified expression whose subtype mark denotes a constrained subtype.
179
70482933 180 procedure Insert_Dereference_Action (N : Node_Id);
e6f69614
AC
181 -- N is an expression whose type is an access. When the type of the
182 -- associated storage pool is derived from Checked_Pool, generate a
183 -- call to the 'Dereference' primitive operation.
70482933
RK
184
185 function Make_Array_Comparison_Op
2e071734
AC
186 (Typ : Entity_Id;
187 Nod : Node_Id) return Node_Id;
685094bf
RD
188 -- Comparisons between arrays are expanded in line. This function produces
189 -- the body of the implementation of (a > b), where a and b are one-
190 -- dimensional arrays of some discrete type. The original node is then
191 -- expanded into the appropriate call to this function. Nod provides the
192 -- Sloc value for the generated code.
70482933
RK
193
194 function Make_Boolean_Array_Op
2e071734
AC
195 (Typ : Entity_Id;
196 N : Node_Id) return Node_Id;
685094bf
RD
197 -- Boolean operations on boolean arrays are expanded in line. This function
198 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
199 -- b). It is used only the normal case and not the packed case. The type
200 -- involved, Typ, is the Boolean array type, and the logical operations in
201 -- the body are simple boolean operations. Note that Typ is always a
202 -- constrained type (the caller has ensured this by using
203 -- Convert_To_Actual_Subtype if necessary).
70482933 204
0580d807
AC
205 procedure Optimize_Length_Comparison (N : Node_Id);
206 -- Given an expression, if it is of the form X'Length op N (or the other
207 -- way round), where N is known at compile time to be 0 or 1, and X is a
208 -- simple entity, and op is a comparison operator, optimizes it into a
209 -- comparison of First and Last.
210
70482933 211 procedure Rewrite_Comparison (N : Node_Id);
20b5d666 212 -- If N is the node for a comparison whose outcome can be determined at
d26dc4b5
AC
213 -- compile time, then the node N can be rewritten with True or False. If
214 -- the outcome cannot be determined at compile time, the call has no
215 -- effect. If N is a type conversion, then this processing is applied to
216 -- its expression. If N is neither comparison nor a type conversion, the
217 -- call has no effect.
70482933 218
82878151
AC
219 procedure Tagged_Membership
220 (N : Node_Id;
221 SCIL_Node : out Node_Id;
222 Result : out Node_Id);
70482933
RK
223 -- Construct the expression corresponding to the tagged membership test.
224 -- Deals with a second operand being (or not) a class-wide type.
225
fbf5a39b 226 function Safe_In_Place_Array_Op
2e071734
AC
227 (Lhs : Node_Id;
228 Op1 : Node_Id;
229 Op2 : Node_Id) return Boolean;
685094bf
RD
230 -- In the context of an assignment, where the right-hand side is a boolean
231 -- operation on arrays, check whether operation can be performed in place.
fbf5a39b 232
70482933
RK
233 procedure Unary_Op_Validity_Checks (N : Node_Id);
234 pragma Inline (Unary_Op_Validity_Checks);
235 -- Performs validity checks for a unary operator
236
237 -------------------------------
238 -- Binary_Op_Validity_Checks --
239 -------------------------------
240
241 procedure Binary_Op_Validity_Checks (N : Node_Id) is
242 begin
243 if Validity_Checks_On and Validity_Check_Operands then
244 Ensure_Valid (Left_Opnd (N));
245 Ensure_Valid (Right_Opnd (N));
246 end if;
247 end Binary_Op_Validity_Checks;
248
fbf5a39b
AC
249 ------------------------------------
250 -- Build_Boolean_Array_Proc_Call --
251 ------------------------------------
252
253 procedure Build_Boolean_Array_Proc_Call
254 (N : Node_Id;
255 Op1 : Node_Id;
256 Op2 : Node_Id)
257 is
258 Loc : constant Source_Ptr := Sloc (N);
259 Kind : constant Node_Kind := Nkind (Expression (N));
260 Target : constant Node_Id :=
261 Make_Attribute_Reference (Loc,
262 Prefix => Name (N),
263 Attribute_Name => Name_Address);
264
bed8af19 265 Arg1 : Node_Id := Op1;
fbf5a39b
AC
266 Arg2 : Node_Id := Op2;
267 Call_Node : Node_Id;
268 Proc_Name : Entity_Id;
269
270 begin
271 if Kind = N_Op_Not then
272 if Nkind (Op1) in N_Binary_Op then
273
5e1c00fa 274 -- Use negated version of the binary operators
fbf5a39b
AC
275
276 if Nkind (Op1) = N_Op_And then
277 Proc_Name := RTE (RE_Vector_Nand);
278
279 elsif Nkind (Op1) = N_Op_Or then
280 Proc_Name := RTE (RE_Vector_Nor);
281
282 else pragma Assert (Nkind (Op1) = N_Op_Xor);
283 Proc_Name := RTE (RE_Vector_Xor);
284 end if;
285
286 Call_Node :=
287 Make_Procedure_Call_Statement (Loc,
288 Name => New_Occurrence_Of (Proc_Name, Loc),
289
290 Parameter_Associations => New_List (
291 Target,
292 Make_Attribute_Reference (Loc,
293 Prefix => Left_Opnd (Op1),
294 Attribute_Name => Name_Address),
295
296 Make_Attribute_Reference (Loc,
297 Prefix => Right_Opnd (Op1),
298 Attribute_Name => Name_Address),
299
300 Make_Attribute_Reference (Loc,
301 Prefix => Left_Opnd (Op1),
302 Attribute_Name => Name_Length)));
303
304 else
305 Proc_Name := RTE (RE_Vector_Not);
306
307 Call_Node :=
308 Make_Procedure_Call_Statement (Loc,
309 Name => New_Occurrence_Of (Proc_Name, Loc),
310 Parameter_Associations => New_List (
311 Target,
312
313 Make_Attribute_Reference (Loc,
314 Prefix => Op1,
315 Attribute_Name => Name_Address),
316
317 Make_Attribute_Reference (Loc,
318 Prefix => Op1,
319 Attribute_Name => Name_Length)));
320 end if;
321
322 else
323 -- We use the following equivalences:
324
325 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
326 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
327 -- (not X) xor (not Y) = X xor Y
328 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
329
330 if Nkind (Op1) = N_Op_Not then
bed8af19
AC
331 Arg1 := Right_Opnd (Op1);
332 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
333 if Kind = N_Op_And then
334 Proc_Name := RTE (RE_Vector_Nor);
fbf5a39b
AC
335 elsif Kind = N_Op_Or then
336 Proc_Name := RTE (RE_Vector_Nand);
fbf5a39b
AC
337 else
338 Proc_Name := RTE (RE_Vector_Xor);
339 end if;
340
341 else
342 if Kind = N_Op_And then
343 Proc_Name := RTE (RE_Vector_And);
fbf5a39b
AC
344 elsif Kind = N_Op_Or then
345 Proc_Name := RTE (RE_Vector_Or);
fbf5a39b
AC
346 elsif Nkind (Op2) = N_Op_Not then
347 Proc_Name := RTE (RE_Vector_Nxor);
348 Arg2 := Right_Opnd (Op2);
fbf5a39b
AC
349 else
350 Proc_Name := RTE (RE_Vector_Xor);
351 end if;
352 end if;
353
354 Call_Node :=
355 Make_Procedure_Call_Statement (Loc,
356 Name => New_Occurrence_Of (Proc_Name, Loc),
357 Parameter_Associations => New_List (
358 Target,
955871d3
AC
359 Make_Attribute_Reference (Loc,
360 Prefix => Arg1,
361 Attribute_Name => Name_Address),
362 Make_Attribute_Reference (Loc,
363 Prefix => Arg2,
364 Attribute_Name => Name_Address),
365 Make_Attribute_Reference (Loc,
a8ef12e5 366 Prefix => Arg1,
955871d3 367 Attribute_Name => Name_Length)));
fbf5a39b
AC
368 end if;
369
370 Rewrite (N, Call_Node);
371 Analyze (N);
372
373 exception
374 when RE_Not_Available =>
375 return;
376 end Build_Boolean_Array_Proc_Call;
377
11fa950b
AC
378 ------------------------------
379 -- Current_Anonymous_Master --
380 ------------------------------
df3e68b1 381
11fa950b 382 function Current_Anonymous_Master return Entity_Id is
2c17ca0a
AC
383 Decls : List_Id;
384 Loc : Source_Ptr;
385 Subp_Body : Node_Id;
386 Unit_Decl : Node_Id;
387 Unit_Id : Entity_Id;
df3e68b1 388
ca5af305 389 begin
11fa950b
AC
390 Unit_Id := Cunit_Entity (Current_Sem_Unit);
391
392 -- Find the entity of the current unit
393
394 if Ekind (Unit_Id) = E_Subprogram_Body then
395
396 -- When processing subprogram bodies, the proper scope is always that
397 -- of the spec.
398
399 Subp_Body := Unit_Id;
400 while Present (Subp_Body)
401 and then Nkind (Subp_Body) /= N_Subprogram_Body
402 loop
403 Subp_Body := Parent (Subp_Body);
404 end loop;
405
406 Unit_Id := Corresponding_Spec (Subp_Body);
407 end if;
408
409 Loc := Sloc (Unit_Id);
410 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
411
412 -- Find the declarations list of the current unit
413
414 if Nkind (Unit_Decl) = N_Package_Declaration then
415 Unit_Decl := Specification (Unit_Decl);
416 Decls := Visible_Declarations (Unit_Decl);
df3e68b1 417
ca5af305 418 if No (Decls) then
11fa950b
AC
419 Decls := New_List (Make_Null_Statement (Loc));
420 Set_Visible_Declarations (Unit_Decl, Decls);
df3e68b1 421
ca5af305 422 elsif Is_Empty_List (Decls) then
11fa950b 423 Append_To (Decls, Make_Null_Statement (Loc));
df3e68b1
HK
424 end if;
425
ca5af305 426 else
11fa950b 427 Decls := Declarations (Unit_Decl);
f553e7bc 428
ca5af305 429 if No (Decls) then
11fa950b
AC
430 Decls := New_List (Make_Null_Statement (Loc));
431 Set_Declarations (Unit_Decl, Decls);
df3e68b1 432
ca5af305 433 elsif Is_Empty_List (Decls) then
11fa950b 434 Append_To (Decls, Make_Null_Statement (Loc));
ca5af305 435 end if;
df3e68b1
HK
436 end if;
437
11fa950b
AC
438 -- The current unit has an existing anonymous master, traverse its
439 -- declarations and locate the entity.
df3e68b1 440
11fa950b 441 if Has_Anonymous_Master (Unit_Id) then
2c17ca0a
AC
442 declare
443 Decl : Node_Id;
444 Fin_Mas_Id : Entity_Id;
df3e68b1 445
2c17ca0a
AC
446 begin
447 Decl := First (Decls);
448 while Present (Decl) loop
df3e68b1 449
2c17ca0a
AC
450 -- Look for the first variable in the declarations whole type
451 -- is Finalization_Master.
df3e68b1 452
2c17ca0a
AC
453 if Nkind (Decl) = N_Object_Declaration then
454 Fin_Mas_Id := Defining_Identifier (Decl);
455
456 if Ekind (Fin_Mas_Id) = E_Variable
457 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
458 then
459 return Fin_Mas_Id;
460 end if;
461 end if;
462
463 Next (Decl);
464 end loop;
465
466 -- The master was not found even though the unit was labeled as
467 -- having one.
df3e68b1 468
2c17ca0a
AC
469 raise Program_Error;
470 end;
11fa950b
AC
471
472 -- Create a new anonymous master
473
474 else
475 declare
476 First_Decl : constant Node_Id := First (Decls);
477 Action : Node_Id;
2c17ca0a 478 Fin_Mas_Id : Entity_Id;
df3e68b1 479
11fa950b
AC
480 begin
481 -- Since the master and its associated initialization is inserted
482 -- at top level, use the scope of the unit when analyzing.
483
484 Push_Scope (Unit_Id);
485
486 -- Create the finalization master
487
488 Fin_Mas_Id :=
489 Make_Defining_Identifier (Loc,
490 Chars => New_External_Name (Chars (Unit_Id), "AM"));
491
492 -- Generate:
493 -- <Fin_Mas_Id> : Finalization_Master;
494
495 Action :=
496 Make_Object_Declaration (Loc,
497 Defining_Identifier => Fin_Mas_Id,
498 Object_Definition =>
499 New_Reference_To (RTE (RE_Finalization_Master), Loc));
500
501 Insert_Before_And_Analyze (First_Decl, Action);
502
503 -- Mark the unit to prevent the generation of multiple masters
504
505 Set_Has_Anonymous_Master (Unit_Id);
506
507 -- Do not set the base pool and mode of operation on .NET/JVM
508 -- since those targets do not support pools and all VM masters
509 -- are heterogeneous by default.
510
511 if VM_Target = No_VM then
512
513 -- Generate:
514 -- Set_Base_Pool
515 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
516
517 Action :=
518 Make_Procedure_Call_Statement (Loc,
519 Name =>
520 New_Reference_To (RTE (RE_Set_Base_Pool), Loc),
521
522 Parameter_Associations => New_List (
523 New_Reference_To (Fin_Mas_Id, Loc),
524 Make_Attribute_Reference (Loc,
525 Prefix =>
526 New_Reference_To (RTE (RE_Global_Pool_Object), Loc),
527 Attribute_Name => Name_Unrestricted_Access)));
528
529 Insert_Before_And_Analyze (First_Decl, Action);
530
531 -- Generate:
532 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
533
534 Action :=
535 Make_Procedure_Call_Statement (Loc,
536 Name =>
537 New_Reference_To (RTE (RE_Set_Is_Heterogeneous), Loc),
538 Parameter_Associations => New_List (
539 New_Reference_To (Fin_Mas_Id, Loc)));
540
541 Insert_Before_And_Analyze (First_Decl, Action);
542 end if;
543
544 -- Restore the original state of the scope stack
545
546 Pop_Scope;
547
548 return Fin_Mas_Id;
549 end;
550 end if;
551 end Current_Anonymous_Master;
df3e68b1 552
26bff3d9
JM
553 --------------------------------
554 -- Displace_Allocator_Pointer --
555 --------------------------------
556
557 procedure Displace_Allocator_Pointer (N : Node_Id) is
558 Loc : constant Source_Ptr := Sloc (N);
559 Orig_Node : constant Node_Id := Original_Node (N);
560 Dtyp : Entity_Id;
561 Etyp : Entity_Id;
562 PtrT : Entity_Id;
563
564 begin
303b4d58
AC
565 -- Do nothing in case of VM targets: the virtual machine will handle
566 -- interfaces directly.
567
1f110335 568 if not Tagged_Type_Expansion then
303b4d58
AC
569 return;
570 end if;
571
26bff3d9
JM
572 pragma Assert (Nkind (N) = N_Identifier
573 and then Nkind (Orig_Node) = N_Allocator);
574
575 PtrT := Etype (Orig_Node);
d6a24cdb 576 Dtyp := Available_View (Designated_Type (PtrT));
26bff3d9
JM
577 Etyp := Etype (Expression (Orig_Node));
578
579 if Is_Class_Wide_Type (Dtyp)
580 and then Is_Interface (Dtyp)
581 then
582 -- If the type of the allocator expression is not an interface type
583 -- we can generate code to reference the record component containing
584 -- the pointer to the secondary dispatch table.
585
586 if not Is_Interface (Etyp) then
587 declare
588 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
589
590 begin
591 -- 1) Get access to the allocated object
592
593 Rewrite (N,
5972791c 594 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
26bff3d9
JM
595 Set_Etype (N, Etyp);
596 Set_Analyzed (N);
597
598 -- 2) Add the conversion to displace the pointer to reference
599 -- the secondary dispatch table.
600
601 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
602 Analyze_And_Resolve (N, Dtyp);
603
604 -- 3) The 'access to the secondary dispatch table will be used
605 -- as the value returned by the allocator.
606
607 Rewrite (N,
608 Make_Attribute_Reference (Loc,
609 Prefix => Relocate_Node (N),
610 Attribute_Name => Name_Access));
611 Set_Etype (N, Saved_Typ);
612 Set_Analyzed (N);
613 end;
614
615 -- If the type of the allocator expression is an interface type we
616 -- generate a run-time call to displace "this" to reference the
617 -- component containing the pointer to the secondary dispatch table
618 -- or else raise Constraint_Error if the actual object does not
619 -- implement the target interface. This case corresponds with the
620 -- following example:
621
8fc789c8 622 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
26bff3d9
JM
623 -- begin
624 -- return new Iface_2'Class'(Obj);
625 -- end Op;
626
627 else
628 Rewrite (N,
629 Unchecked_Convert_To (PtrT,
630 Make_Function_Call (Loc,
631 Name => New_Reference_To (RTE (RE_Displace), Loc),
632 Parameter_Associations => New_List (
633 Unchecked_Convert_To (RTE (RE_Address),
634 Relocate_Node (N)),
635
636 New_Occurrence_Of
637 (Elists.Node
638 (First_Elmt
639 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
640 Loc)))));
641 Analyze_And_Resolve (N, PtrT);
642 end if;
643 end if;
644 end Displace_Allocator_Pointer;
645
fbf5a39b
AC
646 ---------------------------------
647 -- Expand_Allocator_Expression --
648 ---------------------------------
649
650 procedure Expand_Allocator_Expression (N : Node_Id) is
f02b8bb8
RD
651 Loc : constant Source_Ptr := Sloc (N);
652 Exp : constant Node_Id := Expression (Expression (N));
f02b8bb8
RD
653 PtrT : constant Entity_Id := Etype (N);
654 DesigT : constant Entity_Id := Designated_Type (PtrT);
26bff3d9
JM
655
656 procedure Apply_Accessibility_Check
657 (Ref : Node_Id;
658 Built_In_Place : Boolean := False);
659 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
685094bf
RD
660 -- type, generate an accessibility check to verify that the level of the
661 -- type of the created object is not deeper than the level of the access
662 -- type. If the type of the qualified expression is class- wide, then
663 -- always generate the check (except in the case where it is known to be
664 -- unnecessary, see comment below). Otherwise, only generate the check
665 -- if the level of the qualified expression type is statically deeper
666 -- than the access type.
667 --
668 -- Although the static accessibility will generally have been performed
669 -- as a legality check, it won't have been done in cases where the
670 -- allocator appears in generic body, so a run-time check is needed in
671 -- general. One special case is when the access type is declared in the
672 -- same scope as the class-wide allocator, in which case the check can
673 -- never fail, so it need not be generated.
674 --
675 -- As an open issue, there seem to be cases where the static level
676 -- associated with the class-wide object's underlying type is not
677 -- sufficient to perform the proper accessibility check, such as for
678 -- allocators in nested subprograms or accept statements initialized by
679 -- class-wide formals when the actual originates outside at a deeper
680 -- static level. The nested subprogram case might require passing
681 -- accessibility levels along with class-wide parameters, and the task
682 -- case seems to be an actual gap in the language rules that needs to
683 -- be fixed by the ARG. ???
26bff3d9
JM
684
685 -------------------------------
686 -- Apply_Accessibility_Check --
687 -------------------------------
688
689 procedure Apply_Accessibility_Check
690 (Ref : Node_Id;
691 Built_In_Place : Boolean := False)
692 is
f46faa08 693 New_Node : Node_Id;
26bff3d9
JM
694
695 begin
0791fbe9 696 if Ada_Version >= Ada_2005
26bff3d9
JM
697 and then Is_Class_Wide_Type (DesigT)
698 and then not Scope_Suppress (Accessibility_Check)
699 and then
700 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
701 or else
702 (Is_Class_Wide_Type (Etype (Exp))
703 and then Scope (PtrT) /= Current_Scope))
704 then
705 -- If the allocator was built in place Ref is already a reference
706 -- to the access object initialized to the result of the allocator
707 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
708 -- it is the entity associated with the object containing the
709 -- address of the allocated object.
710
711 if Built_In_Place then
f46faa08 712 New_Node := New_Copy (Ref);
26bff3d9 713 else
f46faa08
AC
714 New_Node := New_Reference_To (Ref, Loc);
715 end if;
716
717 New_Node :=
718 Make_Attribute_Reference (Loc,
719 Prefix => New_Node,
720 Attribute_Name => Name_Tag);
721
722 if Tagged_Type_Expansion then
15d8a51d 723 New_Node := Build_Get_Access_Level (Loc, New_Node);
f46faa08
AC
724
725 elsif VM_Target /= No_VM then
726 New_Node :=
727 Make_Function_Call (Loc,
728 Name => New_Reference_To (RTE (RE_Get_Access_Level), Loc),
729 Parameter_Associations => New_List (New_Node));
730
731 -- Cannot generate the runtime check
732
733 else
734 return;
26bff3d9
JM
735 end if;
736
737 Insert_Action (N,
df3e68b1
HK
738 Make_Raise_Program_Error (Loc,
739 Condition =>
740 Make_Op_Gt (Loc,
f46faa08 741 Left_Opnd => New_Node,
df3e68b1 742 Right_Opnd =>
243cae0a 743 Make_Integer_Literal (Loc, Type_Access_Level (PtrT))),
df3e68b1 744 Reason => PE_Accessibility_Check_Failed));
26bff3d9
JM
745 end if;
746 end Apply_Accessibility_Check;
747
748 -- Local variables
749
df3e68b1
HK
750 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
751 Indic : constant Node_Id := Subtype_Mark (Expression (N));
752 T : constant Entity_Id := Entity (Indic);
753 Node : Node_Id;
754 Tag_Assign : Node_Id;
755 Temp : Entity_Id;
756 Temp_Decl : Node_Id;
fbf5a39b 757
d26dc4b5
AC
758 TagT : Entity_Id := Empty;
759 -- Type used as source for tag assignment
760
761 TagR : Node_Id := Empty;
762 -- Target reference for tag assignment
763
26bff3d9
JM
764 -- Start of processing for Expand_Allocator_Expression
765
fbf5a39b 766 begin
885c4871 767 -- In the case of an Ada 2012 allocator whose initial value comes from a
63585f75
SB
768 -- function call, pass "the accessibility level determined by the point
769 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
770 -- Expand_Call but it couldn't be done there (because the Etype of the
771 -- allocator wasn't set then) so we generate the parameter here. See
772 -- the Boolean variable Defer in (a block within) Expand_Call.
773
774 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
775 declare
776 Subp : Entity_Id;
777
778 begin
779 if Nkind (Name (Exp)) = N_Explicit_Dereference then
780 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
781 else
782 Subp := Entity (Name (Exp));
783 end if;
784
57a3fca9
AC
785 Subp := Ultimate_Alias (Subp);
786
63585f75
SB
787 if Present (Extra_Accessibility_Of_Result (Subp)) then
788 Add_Extra_Actual_To_Call
789 (Subprogram_Call => Exp,
790 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
791 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
792 end if;
793 end;
794 end if;
795
796 -- Would be nice to comment the branches of this very long if ???
797
798 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
fadcf313
AC
799 if Is_CPP_Constructor_Call (Exp) then
800
801 -- Generate:
df3e68b1
HK
802 -- Pnnn : constant ptr_T := new (T);
803 -- Init (Pnnn.all,...);
fadcf313 804
df3e68b1 805 -- Allocate the object without an expression
fadcf313
AC
806
807 Node := Relocate_Node (N);
7b4db06c 808 Set_Expression (Node, New_Reference_To (Etype (Exp), Loc));
fadcf313
AC
809
810 -- Avoid its expansion to avoid generating a call to the default
df3e68b1 811 -- C++ constructor.
fadcf313
AC
812
813 Set_Analyzed (Node);
814
e86a3a7e 815 Temp := Make_Temporary (Loc, 'P', N);
fadcf313 816
df3e68b1 817 Temp_Decl :=
fadcf313
AC
818 Make_Object_Declaration (Loc,
819 Defining_Identifier => Temp,
820 Constant_Present => True,
821 Object_Definition => New_Reference_To (PtrT, Loc),
df3e68b1
HK
822 Expression => Node);
823 Insert_Action (N, Temp_Decl);
fadcf313
AC
824
825 Apply_Accessibility_Check (Temp);
826
ffa5876f 827 -- Locate the enclosing list and insert the C++ constructor call
fadcf313
AC
828
829 declare
ffa5876f 830 P : Node_Id;
fadcf313
AC
831
832 begin
ffa5876f 833 P := Parent (Node);
fadcf313
AC
834 while not Is_List_Member (P) loop
835 P := Parent (P);
836 end loop;
837
838 Insert_List_After_And_Analyze (P,
839 Build_Initialization_Call (Loc,
63585f75 840 Id_Ref =>
ffa5876f
AC
841 Make_Explicit_Dereference (Loc,
842 Prefix => New_Reference_To (Temp, Loc)),
63585f75 843 Typ => Etype (Exp),
fadcf313
AC
844 Constructor_Ref => Exp));
845 end;
846
847 Rewrite (N, New_Reference_To (Temp, Loc));
848 Analyze_And_Resolve (N, PtrT);
fadcf313
AC
849 return;
850 end if;
851
685094bf
RD
852 -- Ada 2005 (AI-318-02): If the initialization expression is a call
853 -- to a build-in-place function, then access to the allocated object
854 -- must be passed to the function. Currently we limit such functions
855 -- to those with constrained limited result subtypes, but eventually
856 -- we plan to expand the allowed forms of functions that are treated
857 -- as build-in-place.
20b5d666 858
0791fbe9 859 if Ada_Version >= Ada_2005
20b5d666
JM
860 and then Is_Build_In_Place_Function_Call (Exp)
861 then
862 Make_Build_In_Place_Call_In_Allocator (N, Exp);
26bff3d9
JM
863 Apply_Accessibility_Check (N, Built_In_Place => True);
864 return;
20b5d666
JM
865 end if;
866
ca5af305
AC
867 -- Actions inserted before:
868 -- Temp : constant ptr_T := new T'(Expression);
869 -- Temp._tag = T'tag; -- when not class-wide
870 -- [Deep_]Adjust (Temp.all);
fbf5a39b 871
ca5af305
AC
872 -- We analyze by hand the new internal allocator to avoid any
873 -- recursion and inappropriate call to Initialize
7324bf49 874
20b5d666
JM
875 -- We don't want to remove side effects when the expression must be
876 -- built in place. In the case of a build-in-place function call,
877 -- that could lead to a duplication of the call, which was already
878 -- substituted for the allocator.
879
26bff3d9 880 if not Aggr_In_Place then
fbf5a39b
AC
881 Remove_Side_Effects (Exp);
882 end if;
883
e86a3a7e 884 Temp := Make_Temporary (Loc, 'P', N);
fbf5a39b
AC
885
886 -- For a class wide allocation generate the following code:
887
888 -- type Equiv_Record is record ... end record;
889 -- implicit subtype CW is <Class_Wide_Subytpe>;
890 -- temp : PtrT := new CW'(CW!(expr));
891
892 if Is_Class_Wide_Type (T) then
893 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
894
26bff3d9
JM
895 -- Ada 2005 (AI-251): If the expression is a class-wide interface
896 -- object we generate code to move up "this" to reference the
897 -- base of the object before allocating the new object.
898
899 -- Note that Exp'Address is recursively expanded into a call
900 -- to Base_Address (Exp.Tag)
901
902 if Is_Class_Wide_Type (Etype (Exp))
903 and then Is_Interface (Etype (Exp))
1f110335 904 and then Tagged_Type_Expansion
26bff3d9
JM
905 then
906 Set_Expression
907 (Expression (N),
908 Unchecked_Convert_To (Entity (Indic),
909 Make_Explicit_Dereference (Loc,
910 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
911 Make_Attribute_Reference (Loc,
912 Prefix => Exp,
913 Attribute_Name => Name_Address)))));
26bff3d9
JM
914 else
915 Set_Expression
916 (Expression (N),
917 Unchecked_Convert_To (Entity (Indic), Exp));
918 end if;
fbf5a39b
AC
919
920 Analyze_And_Resolve (Expression (N), Entity (Indic));
921 end if;
922
df3e68b1 923 -- Processing for allocators returning non-interface types
fbf5a39b 924
26bff3d9
JM
925 if not Is_Interface (Directly_Designated_Type (PtrT)) then
926 if Aggr_In_Place then
df3e68b1 927 Temp_Decl :=
26bff3d9
JM
928 Make_Object_Declaration (Loc,
929 Defining_Identifier => Temp,
930 Object_Definition => New_Reference_To (PtrT, Loc),
931 Expression =>
932 Make_Allocator (Loc,
df3e68b1
HK
933 Expression =>
934 New_Reference_To (Etype (Exp), Loc)));
fbf5a39b 935
fad0600d
AC
936 -- Copy the Comes_From_Source flag for the allocator we just
937 -- built, since logically this allocator is a replacement of
938 -- the original allocator node. This is for proper handling of
939 -- restriction No_Implicit_Heap_Allocations.
940
26bff3d9 941 Set_Comes_From_Source
df3e68b1 942 (Expression (Temp_Decl), Comes_From_Source (N));
fbf5a39b 943
df3e68b1
HK
944 Set_No_Initialization (Expression (Temp_Decl));
945 Insert_Action (N, Temp_Decl);
fbf5a39b 946
ca5af305 947 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 948 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fad0600d 949
d3f70b35 950 -- Attach the object to the associated finalization master.
deb8dacc
HK
951 -- This is done manually on .NET/JVM since those compilers do
952 -- no support pools and can't benefit from internally generated
953 -- Allocate / Deallocate procedures.
954
955 if VM_Target /= No_VM
956 and then Is_Controlled (DesigT)
d3f70b35 957 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
958 then
959 Insert_Action (N,
960 Make_Attach_Call (
961 Obj_Ref =>
962 New_Reference_To (Temp, Loc),
963 Ptr_Typ => PtrT));
964 end if;
965
26bff3d9
JM
966 else
967 Node := Relocate_Node (N);
968 Set_Analyzed (Node);
df3e68b1
HK
969
970 Temp_Decl :=
26bff3d9
JM
971 Make_Object_Declaration (Loc,
972 Defining_Identifier => Temp,
973 Constant_Present => True,
974 Object_Definition => New_Reference_To (PtrT, Loc),
df3e68b1
HK
975 Expression => Node);
976
977 Insert_Action (N, Temp_Decl);
ca5af305 978 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
deb8dacc 979
d3f70b35 980 -- Attach the object to the associated finalization master.
deb8dacc
HK
981 -- This is done manually on .NET/JVM since those compilers do
982 -- no support pools and can't benefit from internally generated
983 -- Allocate / Deallocate procedures.
984
985 if VM_Target /= No_VM
986 and then Is_Controlled (DesigT)
d3f70b35 987 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
988 then
989 Insert_Action (N,
990 Make_Attach_Call (
991 Obj_Ref =>
992 New_Reference_To (Temp, Loc),
993 Ptr_Typ => PtrT));
994 end if;
fbf5a39b
AC
995 end if;
996
26bff3d9
JM
997 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
998 -- interface type. In this case we use the type of the qualified
999 -- expression to allocate the object.
1000
fbf5a39b 1001 else
26bff3d9 1002 declare
191fcb3a 1003 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
26bff3d9 1004 New_Decl : Node_Id;
fbf5a39b 1005
26bff3d9
JM
1006 begin
1007 New_Decl :=
1008 Make_Full_Type_Declaration (Loc,
1009 Defining_Identifier => Def_Id,
1010 Type_Definition =>
1011 Make_Access_To_Object_Definition (Loc,
1012 All_Present => True,
1013 Null_Exclusion_Present => False,
1014 Constant_Present => False,
1015 Subtype_Indication =>
1016 New_Reference_To (Etype (Exp), Loc)));
1017
1018 Insert_Action (N, New_Decl);
1019
df3e68b1
HK
1020 -- Inherit the allocation-related attributes from the original
1021 -- access type.
26bff3d9 1022
d3f70b35 1023 Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
df3e68b1
HK
1024
1025 Set_Associated_Storage_Pool (Def_Id,
1026 Associated_Storage_Pool (PtrT));
758c442c 1027
26bff3d9
JM
1028 -- Declare the object using the previous type declaration
1029
1030 if Aggr_In_Place then
df3e68b1 1031 Temp_Decl :=
26bff3d9
JM
1032 Make_Object_Declaration (Loc,
1033 Defining_Identifier => Temp,
1034 Object_Definition => New_Reference_To (Def_Id, Loc),
1035 Expression =>
1036 Make_Allocator (Loc,
1037 New_Reference_To (Etype (Exp), Loc)));
1038
fad0600d
AC
1039 -- Copy the Comes_From_Source flag for the allocator we just
1040 -- built, since logically this allocator is a replacement of
1041 -- the original allocator node. This is for proper handling
1042 -- of restriction No_Implicit_Heap_Allocations.
1043
26bff3d9 1044 Set_Comes_From_Source
df3e68b1 1045 (Expression (Temp_Decl), Comes_From_Source (N));
26bff3d9 1046
df3e68b1
HK
1047 Set_No_Initialization (Expression (Temp_Decl));
1048 Insert_Action (N, Temp_Decl);
26bff3d9 1049
ca5af305 1050 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1051 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
26bff3d9 1052
26bff3d9
JM
1053 else
1054 Node := Relocate_Node (N);
1055 Set_Analyzed (Node);
df3e68b1
HK
1056
1057 Temp_Decl :=
26bff3d9
JM
1058 Make_Object_Declaration (Loc,
1059 Defining_Identifier => Temp,
1060 Constant_Present => True,
1061 Object_Definition => New_Reference_To (Def_Id, Loc),
df3e68b1
HK
1062 Expression => Node);
1063
1064 Insert_Action (N, Temp_Decl);
ca5af305 1065 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
26bff3d9
JM
1066 end if;
1067
1068 -- Generate an additional object containing the address of the
1069 -- returned object. The type of this second object declaration
685094bf
RD
1070 -- is the correct type required for the common processing that
1071 -- is still performed by this subprogram. The displacement of
1072 -- this pointer to reference the component associated with the
1073 -- interface type will be done at the end of common processing.
26bff3d9
JM
1074
1075 New_Decl :=
1076 Make_Object_Declaration (Loc,
243cae0a
AC
1077 Defining_Identifier => Make_Temporary (Loc, 'P'),
1078 Object_Definition => New_Reference_To (PtrT, Loc),
1079 Expression =>
df3e68b1
HK
1080 Unchecked_Convert_To (PtrT,
1081 New_Reference_To (Temp, Loc)));
26bff3d9
JM
1082
1083 Insert_Action (N, New_Decl);
1084
df3e68b1
HK
1085 Temp_Decl := New_Decl;
1086 Temp := Defining_Identifier (New_Decl);
26bff3d9 1087 end;
758c442c
GD
1088 end if;
1089
26bff3d9
JM
1090 Apply_Accessibility_Check (Temp);
1091
1092 -- Generate the tag assignment
1093
1094 -- Suppress the tag assignment when VM_Target because VM tags are
1095 -- represented implicitly in objects.
1096
1f110335 1097 if not Tagged_Type_Expansion then
26bff3d9 1098 null;
fbf5a39b 1099
26bff3d9
JM
1100 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1101 -- interface objects because in this case the tag does not change.
d26dc4b5 1102
26bff3d9
JM
1103 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1104 pragma Assert (Is_Class_Wide_Type
1105 (Directly_Designated_Type (Etype (N))));
d26dc4b5
AC
1106 null;
1107
1108 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1109 TagT := T;
1110 TagR := New_Reference_To (Temp, Loc);
1111
1112 elsif Is_Private_Type (T)
1113 and then Is_Tagged_Type (Underlying_Type (T))
fbf5a39b 1114 then
d26dc4b5 1115 TagT := Underlying_Type (T);
dfd99a80
TQ
1116 TagR :=
1117 Unchecked_Convert_To (Underlying_Type (T),
1118 Make_Explicit_Dereference (Loc,
1119 Prefix => New_Reference_To (Temp, Loc)));
d26dc4b5
AC
1120 end if;
1121
1122 if Present (TagT) then
38171f43
AC
1123 declare
1124 Full_T : constant Entity_Id := Underlying_Type (TagT);
38171f43
AC
1125 begin
1126 Tag_Assign :=
1127 Make_Assignment_Statement (Loc,
1128 Name =>
1129 Make_Selected_Component (Loc,
1130 Prefix => TagR,
1131 Selector_Name =>
1132 New_Reference_To (First_Tag_Component (Full_T), Loc)),
1133 Expression =>
1134 Unchecked_Convert_To (RTE (RE_Tag),
1135 New_Reference_To
1136 (Elists.Node
1137 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1138 end;
fbf5a39b
AC
1139
1140 -- The previous assignment has to be done in any case
1141
1142 Set_Assignment_OK (Name (Tag_Assign));
1143 Insert_Action (N, Tag_Assign);
fbf5a39b
AC
1144 end if;
1145
048e5cef
BD
1146 if Needs_Finalization (DesigT)
1147 and then Needs_Finalization (T)
fbf5a39b 1148 then
df3e68b1
HK
1149 -- Generate an Adjust call if the object will be moved. In Ada
1150 -- 2005, the object may be inherently limited, in which case
1151 -- there is no Adjust procedure, and the object is built in
1152 -- place. In Ada 95, the object can be limited but not
1153 -- inherently limited if this allocator came from a return
1154 -- statement (we're allocating the result on the secondary
1155 -- stack). In that case, the object will be moved, so we _do_
1156 -- want to Adjust.
1157
1158 if not Aggr_In_Place
1159 and then not Is_Immutably_Limited_Type (T)
1160 then
1161 Insert_Action (N,
1162 Make_Adjust_Call (
1163 Obj_Ref =>
fbf5a39b 1164
685094bf 1165 -- An unchecked conversion is needed in the classwide
df3e68b1
HK
1166 -- case because the designated type can be an ancestor
1167 -- of the subtype mark of the allocator.
fbf5a39b 1168
df3e68b1
HK
1169 Unchecked_Convert_To (T,
1170 Make_Explicit_Dereference (Loc,
1171 Prefix => New_Reference_To (Temp, Loc))),
1172 Typ => T));
1173 end if;
b254da66
AC
1174
1175 -- Generate:
1176 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1177
2bfa5484 1178 -- Do not generate this call in the following cases:
c5f5123f 1179
2bfa5484
HK
1180 -- * .NET/JVM - these targets do not support address arithmetic
1181 -- and unchecked conversion, key elements of Finalize_Address.
c5f5123f 1182
2bfa5484
HK
1183 -- * Alfa mode - the call is useless and results in unwanted
1184 -- expansion.
c5f5123f 1185
2bfa5484
HK
1186 -- * CodePeer mode - TSS primitive Finalize_Address is not
1187 -- created in this mode.
b254da66
AC
1188
1189 if VM_Target = No_VM
2bfa5484 1190 and then not Alfa_Mode
b254da66
AC
1191 and then not CodePeer_Mode
1192 and then Present (Finalization_Master (PtrT))
f7bb41af
AC
1193 and then Present (Temp_Decl)
1194 and then Nkind (Expression (Temp_Decl)) = N_Allocator
b254da66
AC
1195 then
1196 Insert_Action (N,
1197 Make_Set_Finalize_Address_Call
1198 (Loc => Loc,
1199 Typ => T,
1200 Ptr_Typ => PtrT));
1201 end if;
fbf5a39b
AC
1202 end if;
1203
1204 Rewrite (N, New_Reference_To (Temp, Loc));
1205 Analyze_And_Resolve (N, PtrT);
1206
685094bf
RD
1207 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1208 -- component containing the secondary dispatch table of the interface
1209 -- type.
26bff3d9
JM
1210
1211 if Is_Interface (Directly_Designated_Type (PtrT)) then
1212 Displace_Allocator_Pointer (N);
1213 end if;
1214
fbf5a39b 1215 elsif Aggr_In_Place then
e86a3a7e 1216 Temp := Make_Temporary (Loc, 'P', N);
df3e68b1 1217 Temp_Decl :=
fbf5a39b
AC
1218 Make_Object_Declaration (Loc,
1219 Defining_Identifier => Temp,
1220 Object_Definition => New_Reference_To (PtrT, Loc),
df3e68b1
HK
1221 Expression =>
1222 Make_Allocator (Loc,
243cae0a 1223 Expression => New_Reference_To (Etype (Exp), Loc)));
fbf5a39b 1224
fad0600d
AC
1225 -- Copy the Comes_From_Source flag for the allocator we just built,
1226 -- since logically this allocator is a replacement of the original
1227 -- allocator node. This is for proper handling of restriction
1228 -- No_Implicit_Heap_Allocations.
1229
fbf5a39b 1230 Set_Comes_From_Source
df3e68b1
HK
1231 (Expression (Temp_Decl), Comes_From_Source (N));
1232
1233 Set_No_Initialization (Expression (Temp_Decl));
1234 Insert_Action (N, Temp_Decl);
1235
ca5af305 1236 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 1237 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
fbf5a39b 1238
d3f70b35
AC
1239 -- Attach the object to the associated finalization master. Thisis
1240 -- done manually on .NET/JVM since those compilers do no support
deb8dacc
HK
1241 -- pools and cannot benefit from internally generated Allocate and
1242 -- Deallocate procedures.
1243
1244 if VM_Target /= No_VM
1245 and then Is_Controlled (DesigT)
d3f70b35 1246 and then Present (Finalization_Master (PtrT))
deb8dacc
HK
1247 then
1248 Insert_Action (N,
243cae0a
AC
1249 Make_Attach_Call
1250 (Obj_Ref => New_Reference_To (Temp, Loc),
1251 Ptr_Typ => PtrT));
deb8dacc
HK
1252 end if;
1253
fbf5a39b
AC
1254 Rewrite (N, New_Reference_To (Temp, Loc));
1255 Analyze_And_Resolve (N, PtrT);
1256
51e4c4b9
AC
1257 elsif Is_Access_Type (T)
1258 and then Can_Never_Be_Null (T)
1259 then
1260 Install_Null_Excluding_Check (Exp);
1261
f02b8bb8 1262 elsif Is_Access_Type (DesigT)
fbf5a39b
AC
1263 and then Nkind (Exp) = N_Allocator
1264 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1265 then
0da2c8ac 1266 -- Apply constraint to designated subtype indication
fbf5a39b
AC
1267
1268 Apply_Constraint_Check (Expression (Exp),
f02b8bb8 1269 Designated_Type (DesigT),
fbf5a39b
AC
1270 No_Sliding => True);
1271
1272 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1273
1274 -- Propagate constraint_error to enclosing allocator
1275
1276 Rewrite (Exp, New_Copy (Expression (Exp)));
1277 end if;
1df4f514 1278
fbf5a39b 1279 else
14f0f659
AC
1280 Build_Allocate_Deallocate_Proc (N, True);
1281
36c73552
AC
1282 -- If we have:
1283 -- type A is access T1;
1284 -- X : A := new T2'(...);
1285 -- T1 and T2 can be different subtypes, and we might need to check
1286 -- both constraints. First check against the type of the qualified
1287 -- expression.
1288
1289 Apply_Constraint_Check (Exp, T, No_Sliding => True);
fbf5a39b 1290
d79e621a
GD
1291 if Do_Range_Check (Exp) then
1292 Set_Do_Range_Check (Exp, False);
1293 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1294 end if;
1295
685094bf
RD
1296 -- A check is also needed in cases where the designated subtype is
1297 -- constrained and differs from the subtype given in the qualified
1298 -- expression. Note that the check on the qualified expression does
1299 -- not allow sliding, but this check does (a relaxation from Ada 83).
fbf5a39b 1300
f02b8bb8 1301 if Is_Constrained (DesigT)
9450205a 1302 and then not Subtypes_Statically_Match (T, DesigT)
fbf5a39b
AC
1303 then
1304 Apply_Constraint_Check
f02b8bb8 1305 (Exp, DesigT, No_Sliding => False);
d79e621a
GD
1306
1307 if Do_Range_Check (Exp) then
1308 Set_Do_Range_Check (Exp, False);
1309 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1310 end if;
f02b8bb8
RD
1311 end if;
1312
685094bf
RD
1313 -- For an access to unconstrained packed array, GIGI needs to see an
1314 -- expression with a constrained subtype in order to compute the
1315 -- proper size for the allocator.
f02b8bb8
RD
1316
1317 if Is_Array_Type (T)
1318 and then not Is_Constrained (T)
1319 and then Is_Packed (T)
1320 then
1321 declare
191fcb3a 1322 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
f02b8bb8
RD
1323 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1324 begin
1325 Insert_Action (Exp,
1326 Make_Subtype_Declaration (Loc,
1327 Defining_Identifier => ConstrT,
25ebc085
AC
1328 Subtype_Indication =>
1329 Make_Subtype_From_Expr (Internal_Exp, T)));
f02b8bb8
RD
1330 Freeze_Itype (ConstrT, Exp);
1331 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1332 end;
fbf5a39b 1333 end if;
f02b8bb8 1334
685094bf
RD
1335 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1336 -- to a build-in-place function, then access to the allocated object
1337 -- must be passed to the function. Currently we limit such functions
1338 -- to those with constrained limited result subtypes, but eventually
1339 -- we plan to expand the allowed forms of functions that are treated
1340 -- as build-in-place.
20b5d666 1341
0791fbe9 1342 if Ada_Version >= Ada_2005
20b5d666
JM
1343 and then Is_Build_In_Place_Function_Call (Exp)
1344 then
1345 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1346 end if;
fbf5a39b
AC
1347 end if;
1348
1349 exception
1350 when RE_Not_Available =>
1351 return;
1352 end Expand_Allocator_Expression;
1353
70482933
RK
1354 -----------------------------
1355 -- Expand_Array_Comparison --
1356 -----------------------------
1357
685094bf
RD
1358 -- Expansion is only required in the case of array types. For the unpacked
1359 -- case, an appropriate runtime routine is called. For packed cases, and
1360 -- also in some other cases where a runtime routine cannot be called, the
1361 -- form of the expansion is:
70482933
RK
1362
1363 -- [body for greater_nn; boolean_expression]
1364
1365 -- The body is built by Make_Array_Comparison_Op, and the form of the
1366 -- Boolean expression depends on the operator involved.
1367
1368 procedure Expand_Array_Comparison (N : Node_Id) is
1369 Loc : constant Source_Ptr := Sloc (N);
1370 Op1 : Node_Id := Left_Opnd (N);
1371 Op2 : Node_Id := Right_Opnd (N);
1372 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
fbf5a39b 1373 Ctyp : constant Entity_Id := Component_Type (Typ1);
70482933
RK
1374
1375 Expr : Node_Id;
1376 Func_Body : Node_Id;
1377 Func_Name : Entity_Id;
1378
fbf5a39b
AC
1379 Comp : RE_Id;
1380
9bc43c53
AC
1381 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1382 -- True for byte addressable target
91b1417d 1383
fbf5a39b 1384 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
685094bf
RD
1385 -- Returns True if the length of the given operand is known to be less
1386 -- than 4. Returns False if this length is known to be four or greater
1387 -- or is not known at compile time.
fbf5a39b
AC
1388
1389 ------------------------
1390 -- Length_Less_Than_4 --
1391 ------------------------
1392
1393 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1394 Otyp : constant Entity_Id := Etype (Opnd);
1395
1396 begin
1397 if Ekind (Otyp) = E_String_Literal_Subtype then
1398 return String_Literal_Length (Otyp) < 4;
1399
1400 else
1401 declare
1402 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1403 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1404 Hi : constant Node_Id := Type_High_Bound (Ityp);
1405 Lov : Uint;
1406 Hiv : Uint;
1407
1408 begin
1409 if Compile_Time_Known_Value (Lo) then
1410 Lov := Expr_Value (Lo);
1411 else
1412 return False;
1413 end if;
1414
1415 if Compile_Time_Known_Value (Hi) then
1416 Hiv := Expr_Value (Hi);
1417 else
1418 return False;
1419 end if;
1420
1421 return Hiv < Lov + 3;
1422 end;
1423 end if;
1424 end Length_Less_Than_4;
1425
1426 -- Start of processing for Expand_Array_Comparison
1427
70482933 1428 begin
fbf5a39b
AC
1429 -- Deal first with unpacked case, where we can call a runtime routine
1430 -- except that we avoid this for targets for which are not addressable
26bff3d9 1431 -- by bytes, and for the JVM/CIL, since they do not support direct
fbf5a39b
AC
1432 -- addressing of array components.
1433
1434 if not Is_Bit_Packed_Array (Typ1)
9bc43c53 1435 and then Byte_Addressable
26bff3d9 1436 and then VM_Target = No_VM
fbf5a39b
AC
1437 then
1438 -- The call we generate is:
1439
1440 -- Compare_Array_xn[_Unaligned]
1441 -- (left'address, right'address, left'length, right'length) <op> 0
1442
1443 -- x = U for unsigned, S for signed
1444 -- n = 8,16,32,64 for component size
1445 -- Add _Unaligned if length < 4 and component size is 8.
1446 -- <op> is the standard comparison operator
1447
1448 if Component_Size (Typ1) = 8 then
1449 if Length_Less_Than_4 (Op1)
1450 or else
1451 Length_Less_Than_4 (Op2)
1452 then
1453 if Is_Unsigned_Type (Ctyp) then
1454 Comp := RE_Compare_Array_U8_Unaligned;
1455 else
1456 Comp := RE_Compare_Array_S8_Unaligned;
1457 end if;
1458
1459 else
1460 if Is_Unsigned_Type (Ctyp) then
1461 Comp := RE_Compare_Array_U8;
1462 else
1463 Comp := RE_Compare_Array_S8;
1464 end if;
1465 end if;
1466
1467 elsif Component_Size (Typ1) = 16 then
1468 if Is_Unsigned_Type (Ctyp) then
1469 Comp := RE_Compare_Array_U16;
1470 else
1471 Comp := RE_Compare_Array_S16;
1472 end if;
1473
1474 elsif Component_Size (Typ1) = 32 then
1475 if Is_Unsigned_Type (Ctyp) then
1476 Comp := RE_Compare_Array_U32;
1477 else
1478 Comp := RE_Compare_Array_S32;
1479 end if;
1480
1481 else pragma Assert (Component_Size (Typ1) = 64);
1482 if Is_Unsigned_Type (Ctyp) then
1483 Comp := RE_Compare_Array_U64;
1484 else
1485 Comp := RE_Compare_Array_S64;
1486 end if;
1487 end if;
1488
1489 Remove_Side_Effects (Op1, Name_Req => True);
1490 Remove_Side_Effects (Op2, Name_Req => True);
1491
1492 Rewrite (Op1,
1493 Make_Function_Call (Sloc (Op1),
1494 Name => New_Occurrence_Of (RTE (Comp), Loc),
1495
1496 Parameter_Associations => New_List (
1497 Make_Attribute_Reference (Loc,
1498 Prefix => Relocate_Node (Op1),
1499 Attribute_Name => Name_Address),
1500
1501 Make_Attribute_Reference (Loc,
1502 Prefix => Relocate_Node (Op2),
1503 Attribute_Name => Name_Address),
1504
1505 Make_Attribute_Reference (Loc,
1506 Prefix => Relocate_Node (Op1),
1507 Attribute_Name => Name_Length),
1508
1509 Make_Attribute_Reference (Loc,
1510 Prefix => Relocate_Node (Op2),
1511 Attribute_Name => Name_Length))));
1512
1513 Rewrite (Op2,
1514 Make_Integer_Literal (Sloc (Op2),
1515 Intval => Uint_0));
1516
1517 Analyze_And_Resolve (Op1, Standard_Integer);
1518 Analyze_And_Resolve (Op2, Standard_Integer);
1519 return;
1520 end if;
1521
1522 -- Cases where we cannot make runtime call
1523
70482933
RK
1524 -- For (a <= b) we convert to not (a > b)
1525
1526 if Chars (N) = Name_Op_Le then
1527 Rewrite (N,
1528 Make_Op_Not (Loc,
1529 Right_Opnd =>
1530 Make_Op_Gt (Loc,
1531 Left_Opnd => Op1,
1532 Right_Opnd => Op2)));
1533 Analyze_And_Resolve (N, Standard_Boolean);
1534 return;
1535
1536 -- For < the Boolean expression is
1537 -- greater__nn (op2, op1)
1538
1539 elsif Chars (N) = Name_Op_Lt then
1540 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1541
1542 -- Switch operands
1543
1544 Op1 := Right_Opnd (N);
1545 Op2 := Left_Opnd (N);
1546
1547 -- For (a >= b) we convert to not (a < b)
1548
1549 elsif Chars (N) = Name_Op_Ge then
1550 Rewrite (N,
1551 Make_Op_Not (Loc,
1552 Right_Opnd =>
1553 Make_Op_Lt (Loc,
1554 Left_Opnd => Op1,
1555 Right_Opnd => Op2)));
1556 Analyze_And_Resolve (N, Standard_Boolean);
1557 return;
1558
1559 -- For > the Boolean expression is
1560 -- greater__nn (op1, op2)
1561
1562 else
1563 pragma Assert (Chars (N) = Name_Op_Gt);
1564 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1565 end if;
1566
1567 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1568 Expr :=
1569 Make_Function_Call (Loc,
1570 Name => New_Reference_To (Func_Name, Loc),
1571 Parameter_Associations => New_List (Op1, Op2));
1572
1573 Insert_Action (N, Func_Body);
1574 Rewrite (N, Expr);
1575 Analyze_And_Resolve (N, Standard_Boolean);
1576
fbf5a39b
AC
1577 exception
1578 when RE_Not_Available =>
1579 return;
70482933
RK
1580 end Expand_Array_Comparison;
1581
1582 ---------------------------
1583 -- Expand_Array_Equality --
1584 ---------------------------
1585
685094bf
RD
1586 -- Expand an equality function for multi-dimensional arrays. Here is an
1587 -- example of such a function for Nb_Dimension = 2
70482933 1588
0da2c8ac 1589 -- function Enn (A : atyp; B : btyp) return boolean is
70482933 1590 -- begin
fbf5a39b
AC
1591 -- if (A'length (1) = 0 or else A'length (2) = 0)
1592 -- and then
1593 -- (B'length (1) = 0 or else B'length (2) = 0)
1594 -- then
1595 -- return True; -- RM 4.5.2(22)
1596 -- end if;
0da2c8ac 1597
fbf5a39b
AC
1598 -- if A'length (1) /= B'length (1)
1599 -- or else
1600 -- A'length (2) /= B'length (2)
1601 -- then
1602 -- return False; -- RM 4.5.2(23)
1603 -- end if;
0da2c8ac 1604
fbf5a39b 1605 -- declare
523456db
AC
1606 -- A1 : Index_T1 := A'first (1);
1607 -- B1 : Index_T1 := B'first (1);
fbf5a39b 1608 -- begin
523456db 1609 -- loop
fbf5a39b 1610 -- declare
523456db
AC
1611 -- A2 : Index_T2 := A'first (2);
1612 -- B2 : Index_T2 := B'first (2);
fbf5a39b 1613 -- begin
523456db 1614 -- loop
fbf5a39b
AC
1615 -- if A (A1, A2) /= B (B1, B2) then
1616 -- return False;
70482933 1617 -- end if;
0da2c8ac 1618
523456db
AC
1619 -- exit when A2 = A'last (2);
1620 -- A2 := Index_T2'succ (A2);
0da2c8ac 1621 -- B2 := Index_T2'succ (B2);
70482933 1622 -- end loop;
fbf5a39b 1623 -- end;
0da2c8ac 1624
523456db
AC
1625 -- exit when A1 = A'last (1);
1626 -- A1 := Index_T1'succ (A1);
0da2c8ac 1627 -- B1 := Index_T1'succ (B1);
70482933 1628 -- end loop;
fbf5a39b 1629 -- end;
0da2c8ac 1630
70482933
RK
1631 -- return true;
1632 -- end Enn;
1633
685094bf
RD
1634 -- Note on the formal types used (atyp and btyp). If either of the arrays
1635 -- is of a private type, we use the underlying type, and do an unchecked
1636 -- conversion of the actual. If either of the arrays has a bound depending
1637 -- on a discriminant, then we use the base type since otherwise we have an
1638 -- escaped discriminant in the function.
0da2c8ac 1639
685094bf
RD
1640 -- If both arrays are constrained and have the same bounds, we can generate
1641 -- a loop with an explicit iteration scheme using a 'Range attribute over
1642 -- the first array.
523456db 1643
70482933
RK
1644 function Expand_Array_Equality
1645 (Nod : Node_Id;
70482933
RK
1646 Lhs : Node_Id;
1647 Rhs : Node_Id;
0da2c8ac
AC
1648 Bodies : List_Id;
1649 Typ : Entity_Id) return Node_Id
70482933
RK
1650 is
1651 Loc : constant Source_Ptr := Sloc (Nod);
fbf5a39b
AC
1652 Decls : constant List_Id := New_List;
1653 Index_List1 : constant List_Id := New_List;
1654 Index_List2 : constant List_Id := New_List;
1655
1656 Actuals : List_Id;
1657 Formals : List_Id;
1658 Func_Name : Entity_Id;
1659 Func_Body : Node_Id;
70482933
RK
1660
1661 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1662 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1663
0da2c8ac
AC
1664 Ltyp : Entity_Id;
1665 Rtyp : Entity_Id;
1666 -- The parameter types to be used for the formals
1667
fbf5a39b
AC
1668 function Arr_Attr
1669 (Arr : Entity_Id;
1670 Nam : Name_Id;
2e071734 1671 Num : Int) return Node_Id;
5e1c00fa 1672 -- This builds the attribute reference Arr'Nam (Expr)
fbf5a39b 1673
70482933 1674 function Component_Equality (Typ : Entity_Id) return Node_Id;
685094bf 1675 -- Create one statement to compare corresponding components, designated
3b42c566 1676 -- by a full set of indexes.
70482933 1677
0da2c8ac 1678 function Get_Arg_Type (N : Node_Id) return Entity_Id;
685094bf
RD
1679 -- Given one of the arguments, computes the appropriate type to be used
1680 -- for that argument in the corresponding function formal
0da2c8ac 1681
fbf5a39b 1682 function Handle_One_Dimension
70482933 1683 (N : Int;
2e071734 1684 Index : Node_Id) return Node_Id;
0da2c8ac 1685 -- This procedure returns the following code
fbf5a39b
AC
1686 --
1687 -- declare
523456db 1688 -- Bn : Index_T := B'First (N);
fbf5a39b 1689 -- begin
523456db 1690 -- loop
fbf5a39b 1691 -- xxx
523456db
AC
1692 -- exit when An = A'Last (N);
1693 -- An := Index_T'Succ (An)
0da2c8ac 1694 -- Bn := Index_T'Succ (Bn)
fbf5a39b
AC
1695 -- end loop;
1696 -- end;
1697 --
3b42c566 1698 -- If both indexes are constrained and identical, the procedure
523456db
AC
1699 -- returns a simpler loop:
1700 --
1701 -- for An in A'Range (N) loop
1702 -- xxx
1703 -- end loop
0da2c8ac 1704 --
523456db 1705 -- N is the dimension for which we are generating a loop. Index is the
685094bf
RD
1706 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1707 -- xxx statement is either the loop or declare for the next dimension
1708 -- or if this is the last dimension the comparison of corresponding
1709 -- components of the arrays.
fbf5a39b 1710 --
685094bf
RD
1711 -- The actual way the code works is to return the comparison of
1712 -- corresponding components for the N+1 call. That's neater!
fbf5a39b
AC
1713
1714 function Test_Empty_Arrays return Node_Id;
1715 -- This function constructs the test for both arrays being empty
1716 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1717 -- and then
1718 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1719
1720 function Test_Lengths_Correspond return Node_Id;
685094bf
RD
1721 -- This function constructs the test for arrays having different lengths
1722 -- in at least one index position, in which case the resulting code is:
fbf5a39b
AC
1723
1724 -- A'length (1) /= B'length (1)
1725 -- or else
1726 -- A'length (2) /= B'length (2)
1727 -- or else
1728 -- ...
1729
1730 --------------
1731 -- Arr_Attr --
1732 --------------
1733
1734 function Arr_Attr
1735 (Arr : Entity_Id;
1736 Nam : Name_Id;
2e071734 1737 Num : Int) return Node_Id
fbf5a39b
AC
1738 is
1739 begin
1740 return
1741 Make_Attribute_Reference (Loc,
1742 Attribute_Name => Nam,
1743 Prefix => New_Reference_To (Arr, Loc),
1744 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1745 end Arr_Attr;
70482933
RK
1746
1747 ------------------------
1748 -- Component_Equality --
1749 ------------------------
1750
1751 function Component_Equality (Typ : Entity_Id) return Node_Id is
1752 Test : Node_Id;
1753 L, R : Node_Id;
1754
1755 begin
1756 -- if a(i1...) /= b(j1...) then return false; end if;
1757
1758 L :=
1759 Make_Indexed_Component (Loc,
7675ad4f 1760 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
1761 Expressions => Index_List1);
1762
1763 R :=
1764 Make_Indexed_Component (Loc,
7675ad4f 1765 Prefix => Make_Identifier (Loc, Chars (B)),
70482933
RK
1766 Expressions => Index_List2);
1767
1768 Test := Expand_Composite_Equality
1769 (Nod, Component_Type (Typ), L, R, Decls);
1770
a9d8907c
JM
1771 -- If some (sub)component is an unchecked_union, the whole operation
1772 -- will raise program error.
8aceda64
AC
1773
1774 if Nkind (Test) = N_Raise_Program_Error then
a9d8907c
JM
1775
1776 -- This node is going to be inserted at a location where a
685094bf
RD
1777 -- statement is expected: clear its Etype so analysis will set
1778 -- it to the expected Standard_Void_Type.
a9d8907c
JM
1779
1780 Set_Etype (Test, Empty);
8aceda64
AC
1781 return Test;
1782
1783 else
1784 return
1785 Make_Implicit_If_Statement (Nod,
1786 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1787 Then_Statements => New_List (
d766cee3 1788 Make_Simple_Return_Statement (Loc,
8aceda64
AC
1789 Expression => New_Occurrence_Of (Standard_False, Loc))));
1790 end if;
70482933
RK
1791 end Component_Equality;
1792
0da2c8ac
AC
1793 ------------------
1794 -- Get_Arg_Type --
1795 ------------------
1796
1797 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1798 T : Entity_Id;
1799 X : Node_Id;
1800
1801 begin
1802 T := Etype (N);
1803
1804 if No (T) then
1805 return Typ;
1806
1807 else
1808 T := Underlying_Type (T);
1809
1810 X := First_Index (T);
1811 while Present (X) loop
1812 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1813 or else
1814 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1815 then
1816 T := Base_Type (T);
1817 exit;
1818 end if;
1819
1820 Next_Index (X);
1821 end loop;
1822
1823 return T;
1824 end if;
1825 end Get_Arg_Type;
1826
fbf5a39b
AC
1827 --------------------------
1828 -- Handle_One_Dimension --
1829 ---------------------------
70482933 1830
fbf5a39b 1831 function Handle_One_Dimension
70482933 1832 (N : Int;
2e071734 1833 Index : Node_Id) return Node_Id
70482933 1834 is
0da2c8ac
AC
1835 Need_Separate_Indexes : constant Boolean :=
1836 Ltyp /= Rtyp
1837 or else not Is_Constrained (Ltyp);
1838 -- If the index types are identical, and we are working with
685094bf
RD
1839 -- constrained types, then we can use the same index for both
1840 -- of the arrays.
0da2c8ac 1841
191fcb3a 1842 An : constant Entity_Id := Make_Temporary (Loc, 'A');
0da2c8ac
AC
1843
1844 Bn : Entity_Id;
1845 Index_T : Entity_Id;
1846 Stm_List : List_Id;
1847 Loop_Stm : Node_Id;
70482933
RK
1848
1849 begin
0da2c8ac
AC
1850 if N > Number_Dimensions (Ltyp) then
1851 return Component_Equality (Ltyp);
fbf5a39b 1852 end if;
70482933 1853
0da2c8ac
AC
1854 -- Case where we generate a loop
1855
1856 Index_T := Base_Type (Etype (Index));
1857
1858 if Need_Separate_Indexes then
191fcb3a 1859 Bn := Make_Temporary (Loc, 'B');
0da2c8ac
AC
1860 else
1861 Bn := An;
1862 end if;
70482933 1863
fbf5a39b
AC
1864 Append (New_Reference_To (An, Loc), Index_List1);
1865 Append (New_Reference_To (Bn, Loc), Index_List2);
70482933 1866
0da2c8ac
AC
1867 Stm_List := New_List (
1868 Handle_One_Dimension (N + 1, Next_Index (Index)));
70482933 1869
0da2c8ac 1870 if Need_Separate_Indexes then
a9d8907c 1871
3b42c566 1872 -- Generate guard for loop, followed by increments of indexes
523456db
AC
1873
1874 Append_To (Stm_List,
1875 Make_Exit_Statement (Loc,
1876 Condition =>
1877 Make_Op_Eq (Loc,
1878 Left_Opnd => New_Reference_To (An, Loc),
1879 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1880
1881 Append_To (Stm_List,
1882 Make_Assignment_Statement (Loc,
1883 Name => New_Reference_To (An, Loc),
1884 Expression =>
1885 Make_Attribute_Reference (Loc,
1886 Prefix => New_Reference_To (Index_T, Loc),
1887 Attribute_Name => Name_Succ,
1888 Expressions => New_List (New_Reference_To (An, Loc)))));
1889
0da2c8ac
AC
1890 Append_To (Stm_List,
1891 Make_Assignment_Statement (Loc,
1892 Name => New_Reference_To (Bn, Loc),
1893 Expression =>
1894 Make_Attribute_Reference (Loc,
1895 Prefix => New_Reference_To (Index_T, Loc),
1896 Attribute_Name => Name_Succ,
1897 Expressions => New_List (New_Reference_To (Bn, Loc)))));
1898 end if;
1899
a9d8907c
JM
1900 -- If separate indexes, we need a declare block for An and Bn, and a
1901 -- loop without an iteration scheme.
0da2c8ac
AC
1902
1903 if Need_Separate_Indexes then
523456db
AC
1904 Loop_Stm :=
1905 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1906
0da2c8ac
AC
1907 return
1908 Make_Block_Statement (Loc,
1909 Declarations => New_List (
523456db
AC
1910 Make_Object_Declaration (Loc,
1911 Defining_Identifier => An,
1912 Object_Definition => New_Reference_To (Index_T, Loc),
1913 Expression => Arr_Attr (A, Name_First, N)),
1914
0da2c8ac
AC
1915 Make_Object_Declaration (Loc,
1916 Defining_Identifier => Bn,
1917 Object_Definition => New_Reference_To (Index_T, Loc),
1918 Expression => Arr_Attr (B, Name_First, N))),
523456db 1919
0da2c8ac
AC
1920 Handled_Statement_Sequence =>
1921 Make_Handled_Sequence_Of_Statements (Loc,
1922 Statements => New_List (Loop_Stm)));
1923
523456db
AC
1924 -- If no separate indexes, return loop statement with explicit
1925 -- iteration scheme on its own
0da2c8ac
AC
1926
1927 else
523456db
AC
1928 Loop_Stm :=
1929 Make_Implicit_Loop_Statement (Nod,
1930 Statements => Stm_List,
1931 Iteration_Scheme =>
1932 Make_Iteration_Scheme (Loc,
1933 Loop_Parameter_Specification =>
1934 Make_Loop_Parameter_Specification (Loc,
1935 Defining_Identifier => An,
1936 Discrete_Subtype_Definition =>
1937 Arr_Attr (A, Name_Range, N))));
0da2c8ac
AC
1938 return Loop_Stm;
1939 end if;
fbf5a39b
AC
1940 end Handle_One_Dimension;
1941
1942 -----------------------
1943 -- Test_Empty_Arrays --
1944 -----------------------
1945
1946 function Test_Empty_Arrays return Node_Id is
1947 Alist : Node_Id;
1948 Blist : Node_Id;
1949
1950 Atest : Node_Id;
1951 Btest : Node_Id;
70482933 1952
fbf5a39b
AC
1953 begin
1954 Alist := Empty;
1955 Blist := Empty;
0da2c8ac 1956 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
1957 Atest :=
1958 Make_Op_Eq (Loc,
1959 Left_Opnd => Arr_Attr (A, Name_Length, J),
1960 Right_Opnd => Make_Integer_Literal (Loc, 0));
1961
1962 Btest :=
1963 Make_Op_Eq (Loc,
1964 Left_Opnd => Arr_Attr (B, Name_Length, J),
1965 Right_Opnd => Make_Integer_Literal (Loc, 0));
1966
1967 if No (Alist) then
1968 Alist := Atest;
1969 Blist := Btest;
70482933 1970
fbf5a39b
AC
1971 else
1972 Alist :=
1973 Make_Or_Else (Loc,
1974 Left_Opnd => Relocate_Node (Alist),
1975 Right_Opnd => Atest);
1976
1977 Blist :=
1978 Make_Or_Else (Loc,
1979 Left_Opnd => Relocate_Node (Blist),
1980 Right_Opnd => Btest);
1981 end if;
1982 end loop;
70482933 1983
fbf5a39b
AC
1984 return
1985 Make_And_Then (Loc,
1986 Left_Opnd => Alist,
1987 Right_Opnd => Blist);
1988 end Test_Empty_Arrays;
70482933 1989
fbf5a39b
AC
1990 -----------------------------
1991 -- Test_Lengths_Correspond --
1992 -----------------------------
70482933 1993
fbf5a39b
AC
1994 function Test_Lengths_Correspond return Node_Id is
1995 Result : Node_Id;
1996 Rtest : Node_Id;
1997
1998 begin
1999 Result := Empty;
0da2c8ac 2000 for J in 1 .. Number_Dimensions (Ltyp) loop
fbf5a39b
AC
2001 Rtest :=
2002 Make_Op_Ne (Loc,
2003 Left_Opnd => Arr_Attr (A, Name_Length, J),
2004 Right_Opnd => Arr_Attr (B, Name_Length, J));
2005
2006 if No (Result) then
2007 Result := Rtest;
2008 else
2009 Result :=
2010 Make_Or_Else (Loc,
2011 Left_Opnd => Relocate_Node (Result),
2012 Right_Opnd => Rtest);
2013 end if;
2014 end loop;
2015
2016 return Result;
2017 end Test_Lengths_Correspond;
70482933
RK
2018
2019 -- Start of processing for Expand_Array_Equality
2020
2021 begin
0da2c8ac
AC
2022 Ltyp := Get_Arg_Type (Lhs);
2023 Rtyp := Get_Arg_Type (Rhs);
2024
685094bf
RD
2025 -- For now, if the argument types are not the same, go to the base type,
2026 -- since the code assumes that the formals have the same type. This is
2027 -- fixable in future ???
0da2c8ac
AC
2028
2029 if Ltyp /= Rtyp then
2030 Ltyp := Base_Type (Ltyp);
2031 Rtyp := Base_Type (Rtyp);
2032 pragma Assert (Ltyp = Rtyp);
2033 end if;
2034
2035 -- Build list of formals for function
2036
70482933
RK
2037 Formals := New_List (
2038 Make_Parameter_Specification (Loc,
2039 Defining_Identifier => A,
0da2c8ac 2040 Parameter_Type => New_Reference_To (Ltyp, Loc)),
70482933
RK
2041
2042 Make_Parameter_Specification (Loc,
2043 Defining_Identifier => B,
0da2c8ac 2044 Parameter_Type => New_Reference_To (Rtyp, Loc)));
70482933 2045
191fcb3a 2046 Func_Name := Make_Temporary (Loc, 'E');
70482933 2047
fbf5a39b 2048 -- Build statement sequence for function
70482933
RK
2049
2050 Func_Body :=
2051 Make_Subprogram_Body (Loc,
2052 Specification =>
2053 Make_Function_Specification (Loc,
2054 Defining_Unit_Name => Func_Name,
2055 Parameter_Specifications => Formals,
630d30e9 2056 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
fbf5a39b
AC
2057
2058 Declarations => Decls,
2059
70482933
RK
2060 Handled_Statement_Sequence =>
2061 Make_Handled_Sequence_Of_Statements (Loc,
2062 Statements => New_List (
fbf5a39b
AC
2063
2064 Make_Implicit_If_Statement (Nod,
2065 Condition => Test_Empty_Arrays,
2066 Then_Statements => New_List (
d766cee3 2067 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2068 Expression =>
2069 New_Occurrence_Of (Standard_True, Loc)))),
2070
2071 Make_Implicit_If_Statement (Nod,
2072 Condition => Test_Lengths_Correspond,
2073 Then_Statements => New_List (
d766cee3 2074 Make_Simple_Return_Statement (Loc,
fbf5a39b
AC
2075 Expression =>
2076 New_Occurrence_Of (Standard_False, Loc)))),
2077
0da2c8ac 2078 Handle_One_Dimension (1, First_Index (Ltyp)),
fbf5a39b 2079
d766cee3 2080 Make_Simple_Return_Statement (Loc,
70482933
RK
2081 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2082
2083 Set_Has_Completion (Func_Name, True);
0da2c8ac 2084 Set_Is_Inlined (Func_Name);
70482933 2085
685094bf
RD
2086 -- If the array type is distinct from the type of the arguments, it
2087 -- is the full view of a private type. Apply an unchecked conversion
2088 -- to insure that analysis of the call succeeds.
70482933 2089
0da2c8ac
AC
2090 declare
2091 L, R : Node_Id;
2092
2093 begin
2094 L := Lhs;
2095 R := Rhs;
2096
2097 if No (Etype (Lhs))
2098 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2099 then
2100 L := OK_Convert_To (Ltyp, Lhs);
2101 end if;
2102
2103 if No (Etype (Rhs))
2104 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2105 then
2106 R := OK_Convert_To (Rtyp, Rhs);
2107 end if;
2108
2109 Actuals := New_List (L, R);
2110 end;
70482933
RK
2111
2112 Append_To (Bodies, Func_Body);
2113
2114 return
2115 Make_Function_Call (Loc,
0da2c8ac 2116 Name => New_Reference_To (Func_Name, Loc),
70482933
RK
2117 Parameter_Associations => Actuals);
2118 end Expand_Array_Equality;
2119
2120 -----------------------------
2121 -- Expand_Boolean_Operator --
2122 -----------------------------
2123
685094bf
RD
2124 -- Note that we first get the actual subtypes of the operands, since we
2125 -- always want to deal with types that have bounds.
70482933
RK
2126
2127 procedure Expand_Boolean_Operator (N : Node_Id) is
fbf5a39b 2128 Typ : constant Entity_Id := Etype (N);
70482933
RK
2129
2130 begin
685094bf
RD
2131 -- Special case of bit packed array where both operands are known to be
2132 -- properly aligned. In this case we use an efficient run time routine
2133 -- to carry out the operation (see System.Bit_Ops).
a9d8907c
JM
2134
2135 if Is_Bit_Packed_Array (Typ)
2136 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2137 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2138 then
70482933 2139 Expand_Packed_Boolean_Operator (N);
a9d8907c
JM
2140 return;
2141 end if;
70482933 2142
a9d8907c
JM
2143 -- For the normal non-packed case, the general expansion is to build
2144 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2145 -- and then inserting it into the tree. The original operator node is
2146 -- then rewritten as a call to this function. We also use this in the
2147 -- packed case if either operand is a possibly unaligned object.
70482933 2148
a9d8907c
JM
2149 declare
2150 Loc : constant Source_Ptr := Sloc (N);
2151 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2152 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2153 Func_Body : Node_Id;
2154 Func_Name : Entity_Id;
fbf5a39b 2155
a9d8907c
JM
2156 begin
2157 Convert_To_Actual_Subtype (L);
2158 Convert_To_Actual_Subtype (R);
2159 Ensure_Defined (Etype (L), N);
2160 Ensure_Defined (Etype (R), N);
2161 Apply_Length_Check (R, Etype (L));
2162
b4592168
GD
2163 if Nkind (N) = N_Op_Xor then
2164 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2165 end if;
2166
a9d8907c
JM
2167 if Nkind (Parent (N)) = N_Assignment_Statement
2168 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2169 then
2170 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
fbf5a39b 2171
a9d8907c
JM
2172 elsif Nkind (Parent (N)) = N_Op_Not
2173 and then Nkind (N) = N_Op_And
2174 and then
b4592168 2175 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
a9d8907c
JM
2176 then
2177 return;
2178 else
fbf5a39b 2179
a9d8907c
JM
2180 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2181 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2182 Insert_Action (N, Func_Body);
70482933 2183
a9d8907c 2184 -- Now rewrite the expression with a call
70482933 2185
a9d8907c
JM
2186 Rewrite (N,
2187 Make_Function_Call (Loc,
2188 Name => New_Reference_To (Func_Name, Loc),
2189 Parameter_Associations =>
2190 New_List (
2191 L,
2192 Make_Type_Conversion
2193 (Loc, New_Reference_To (Etype (L), Loc), R))));
70482933 2194
a9d8907c
JM
2195 Analyze_And_Resolve (N, Typ);
2196 end if;
2197 end;
70482933
RK
2198 end Expand_Boolean_Operator;
2199
2200 -------------------------------
2201 -- Expand_Composite_Equality --
2202 -------------------------------
2203
2204 -- This function is only called for comparing internal fields of composite
2205 -- types when these fields are themselves composites. This is a special
2206 -- case because it is not possible to respect normal Ada visibility rules.
2207
2208 function Expand_Composite_Equality
2209 (Nod : Node_Id;
2210 Typ : Entity_Id;
2211 Lhs : Node_Id;
2212 Rhs : Node_Id;
2e071734 2213 Bodies : List_Id) return Node_Id
70482933
RK
2214 is
2215 Loc : constant Source_Ptr := Sloc (Nod);
2216 Full_Type : Entity_Id;
2217 Prim : Elmt_Id;
2218 Eq_Op : Entity_Id;
2219
7efc3f2d
AC
2220 function Find_Primitive_Eq return Node_Id;
2221 -- AI05-0123: Locate primitive equality for type if it exists, and
2222 -- build the corresponding call. If operation is abstract, replace
2223 -- call with an explicit raise. Return Empty if there is no primitive.
2224
2225 -----------------------
2226 -- Find_Primitive_Eq --
2227 -----------------------
2228
2229 function Find_Primitive_Eq return Node_Id is
2230 Prim_E : Elmt_Id;
2231 Prim : Node_Id;
2232
2233 begin
2234 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2235 while Present (Prim_E) loop
2236 Prim := Node (Prim_E);
2237
2238 -- Locate primitive equality with the right signature
2239
2240 if Chars (Prim) = Name_Op_Eq
2241 and then Etype (First_Formal (Prim)) =
39ade2f9 2242 Etype (Next_Formal (First_Formal (Prim)))
7efc3f2d
AC
2243 and then Etype (Prim) = Standard_Boolean
2244 then
2245 if Is_Abstract_Subprogram (Prim) then
2246 return
2247 Make_Raise_Program_Error (Loc,
2248 Reason => PE_Explicit_Raise);
2249
2250 else
2251 return
2252 Make_Function_Call (Loc,
39ade2f9 2253 Name => New_Reference_To (Prim, Loc),
7efc3f2d
AC
2254 Parameter_Associations => New_List (Lhs, Rhs));
2255 end if;
2256 end if;
2257
2258 Next_Elmt (Prim_E);
2259 end loop;
2260
2261 -- If not found, predefined operation will be used
2262
2263 return Empty;
2264 end Find_Primitive_Eq;
2265
2266 -- Start of processing for Expand_Composite_Equality
2267
70482933
RK
2268 begin
2269 if Is_Private_Type (Typ) then
2270 Full_Type := Underlying_Type (Typ);
2271 else
2272 Full_Type := Typ;
2273 end if;
2274
685094bf
RD
2275 -- Defense against malformed private types with no completion the error
2276 -- will be diagnosed later by check_completion
70482933
RK
2277
2278 if No (Full_Type) then
2279 return New_Reference_To (Standard_False, Loc);
2280 end if;
2281
2282 Full_Type := Base_Type (Full_Type);
2283
2284 if Is_Array_Type (Full_Type) then
2285
2286 -- If the operand is an elementary type other than a floating-point
2287 -- type, then we can simply use the built-in block bitwise equality,
2288 -- since the predefined equality operators always apply and bitwise
2289 -- equality is fine for all these cases.
2290
2291 if Is_Elementary_Type (Component_Type (Full_Type))
2292 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2293 then
39ade2f9 2294 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
70482933 2295
685094bf
RD
2296 -- For composite component types, and floating-point types, use the
2297 -- expansion. This deals with tagged component types (where we use
2298 -- the applicable equality routine) and floating-point, (where we
2299 -- need to worry about negative zeroes), and also the case of any
2300 -- composite type recursively containing such fields.
70482933
RK
2301
2302 else
0da2c8ac 2303 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
70482933
RK
2304 end if;
2305
2306 elsif Is_Tagged_Type (Full_Type) then
2307
2308 -- Call the primitive operation "=" of this type
2309
2310 if Is_Class_Wide_Type (Full_Type) then
2311 Full_Type := Root_Type (Full_Type);
2312 end if;
2313
685094bf
RD
2314 -- If this is derived from an untagged private type completed with a
2315 -- tagged type, it does not have a full view, so we use the primitive
2316 -- operations of the private type. This check should no longer be
2317 -- necessary when these types receive their full views ???
70482933
RK
2318
2319 if Is_Private_Type (Typ)
2320 and then not Is_Tagged_Type (Typ)
2321 and then not Is_Controlled (Typ)
2322 and then Is_Derived_Type (Typ)
2323 and then No (Full_View (Typ))
2324 then
2325 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2326 else
2327 Prim := First_Elmt (Primitive_Operations (Full_Type));
2328 end if;
2329
2330 loop
2331 Eq_Op := Node (Prim);
2332 exit when Chars (Eq_Op) = Name_Op_Eq
2333 and then Etype (First_Formal (Eq_Op)) =
e6f69614
AC
2334 Etype (Next_Formal (First_Formal (Eq_Op)))
2335 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
70482933
RK
2336 Next_Elmt (Prim);
2337 pragma Assert (Present (Prim));
2338 end loop;
2339
2340 Eq_Op := Node (Prim);
2341
2342 return
2343 Make_Function_Call (Loc,
2344 Name => New_Reference_To (Eq_Op, Loc),
2345 Parameter_Associations =>
2346 New_List
2347 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2348 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2349
2350 elsif Is_Record_Type (Full_Type) then
fbf5a39b 2351 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
70482933
RK
2352
2353 if Present (Eq_Op) then
2354 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2355
685094bf
RD
2356 -- Inherited equality from parent type. Convert the actuals to
2357 -- match signature of operation.
70482933
RK
2358
2359 declare
fbf5a39b 2360 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
70482933
RK
2361
2362 begin
2363 return
2364 Make_Function_Call (Loc,
39ade2f9
AC
2365 Name => New_Reference_To (Eq_Op, Loc),
2366 Parameter_Associations => New_List (
2367 OK_Convert_To (T, Lhs),
2368 OK_Convert_To (T, Rhs)));
70482933
RK
2369 end;
2370
2371 else
5d09245e
AC
2372 -- Comparison between Unchecked_Union components
2373
2374 if Is_Unchecked_Union (Full_Type) then
2375 declare
2376 Lhs_Type : Node_Id := Full_Type;
2377 Rhs_Type : Node_Id := Full_Type;
2378 Lhs_Discr_Val : Node_Id;
2379 Rhs_Discr_Val : Node_Id;
2380
2381 begin
2382 -- Lhs subtype
2383
2384 if Nkind (Lhs) = N_Selected_Component then
2385 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2386 end if;
2387
2388 -- Rhs subtype
2389
2390 if Nkind (Rhs) = N_Selected_Component then
2391 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2392 end if;
2393
2394 -- Lhs of the composite equality
2395
2396 if Is_Constrained (Lhs_Type) then
2397
685094bf 2398 -- Since the enclosing record type can never be an
5d09245e
AC
2399 -- Unchecked_Union (this code is executed for records
2400 -- that do not have variants), we may reference its
2401 -- discriminant(s).
2402
2403 if Nkind (Lhs) = N_Selected_Component
2404 and then Has_Per_Object_Constraint (
2405 Entity (Selector_Name (Lhs)))
2406 then
2407 Lhs_Discr_Val :=
2408 Make_Selected_Component (Loc,
39ade2f9 2409 Prefix => Prefix (Lhs),
5d09245e 2410 Selector_Name =>
39ade2f9
AC
2411 New_Copy
2412 (Get_Discriminant_Value
2413 (First_Discriminant (Lhs_Type),
2414 Lhs_Type,
2415 Stored_Constraint (Lhs_Type))));
5d09245e
AC
2416
2417 else
39ade2f9
AC
2418 Lhs_Discr_Val :=
2419 New_Copy
2420 (Get_Discriminant_Value
2421 (First_Discriminant (Lhs_Type),
2422 Lhs_Type,
2423 Stored_Constraint (Lhs_Type)));
5d09245e
AC
2424
2425 end if;
2426 else
2427 -- It is not possible to infer the discriminant since
2428 -- the subtype is not constrained.
2429
8aceda64 2430 return
5d09245e 2431 Make_Raise_Program_Error (Loc,
8aceda64 2432 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2433 end if;
2434
2435 -- Rhs of the composite equality
2436
2437 if Is_Constrained (Rhs_Type) then
2438 if Nkind (Rhs) = N_Selected_Component
39ade2f9
AC
2439 and then Has_Per_Object_Constraint
2440 (Entity (Selector_Name (Rhs)))
5d09245e
AC
2441 then
2442 Rhs_Discr_Val :=
2443 Make_Selected_Component (Loc,
39ade2f9 2444 Prefix => Prefix (Rhs),
5d09245e 2445 Selector_Name =>
39ade2f9
AC
2446 New_Copy
2447 (Get_Discriminant_Value
2448 (First_Discriminant (Rhs_Type),
2449 Rhs_Type,
2450 Stored_Constraint (Rhs_Type))));
5d09245e
AC
2451
2452 else
39ade2f9
AC
2453 Rhs_Discr_Val :=
2454 New_Copy
2455 (Get_Discriminant_Value
2456 (First_Discriminant (Rhs_Type),
2457 Rhs_Type,
2458 Stored_Constraint (Rhs_Type)));
5d09245e
AC
2459
2460 end if;
2461 else
8aceda64 2462 return
5d09245e 2463 Make_Raise_Program_Error (Loc,
8aceda64 2464 Reason => PE_Unchecked_Union_Restriction);
5d09245e
AC
2465 end if;
2466
2467 -- Call the TSS equality function with the inferred
2468 -- discriminant values.
2469
2470 return
2471 Make_Function_Call (Loc,
2472 Name => New_Reference_To (Eq_Op, Loc),
2473 Parameter_Associations => New_List (
2474 Lhs,
2475 Rhs,
2476 Lhs_Discr_Val,
2477 Rhs_Discr_Val));
2478 end;
d151d6a3
AC
2479
2480 else
2481 return
2482 Make_Function_Call (Loc,
2483 Name => New_Reference_To (Eq_Op, Loc),
2484 Parameter_Associations => New_List (Lhs, Rhs));
5d09245e 2485 end if;
d151d6a3 2486 end if;
5d09245e 2487
dbe945f1 2488 elsif Ada_Version >= Ada_2012 then
5d09245e 2489
d151d6a3 2490 -- if no TSS has been created for the type, check whether there is
7efc3f2d 2491 -- a primitive equality declared for it.
d151d6a3
AC
2492
2493 declare
7efc3f2d 2494 Ada_2012_Op : constant Node_Id := Find_Primitive_Eq;
d151d6a3
AC
2495
2496 begin
7efc3f2d
AC
2497 if Present (Ada_2012_Op) then
2498 return Ada_2012_Op;
2499 else
72e9f2b9 2500
7efc3f2d 2501 -- Use predefined equality if no user-defined primitive exists
72e9f2b9 2502
7efc3f2d
AC
2503 return Make_Op_Eq (Loc, Lhs, Rhs);
2504 end if;
d151d6a3
AC
2505 end;
2506
70482933
RK
2507 else
2508 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2509 end if;
2510
2511 else
a3f2babd 2512 -- If not array or record type, it is predefined equality.
70482933
RK
2513
2514 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2515 end if;
2516 end Expand_Composite_Equality;
2517
fdac1f80
AC
2518 ------------------------
2519 -- Expand_Concatenate --
2520 ------------------------
70482933 2521
fdac1f80
AC
2522 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2523 Loc : constant Source_Ptr := Sloc (Cnode);
70482933 2524
fdac1f80
AC
2525 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2526 -- Result type of concatenation
70482933 2527
fdac1f80
AC
2528 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2529 -- Component type. Elements of this component type can appear as one
2530 -- of the operands of concatenation as well as arrays.
70482933 2531
ecc4ddde
AC
2532 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2533 -- Index subtype
2534
2535 Ityp : constant Entity_Id := Base_Type (Istyp);
2536 -- Index type. This is the base type of the index subtype, and is used
2537 -- for all computed bounds (which may be out of range of Istyp in the
2538 -- case of null ranges).
70482933 2539
46ff89f3 2540 Artyp : Entity_Id;
fdac1f80
AC
2541 -- This is the type we use to do arithmetic to compute the bounds and
2542 -- lengths of operands. The choice of this type is a little subtle and
2543 -- is discussed in a separate section at the start of the body code.
70482933 2544
fdac1f80
AC
2545 Concatenation_Error : exception;
2546 -- Raised if concatenation is sure to raise a CE
70482933 2547
0ac73189
AC
2548 Result_May_Be_Null : Boolean := True;
2549 -- Reset to False if at least one operand is encountered which is known
2550 -- at compile time to be non-null. Used for handling the special case
2551 -- of setting the high bound to the last operand high bound for a null
2552 -- result, thus ensuring a proper high bound in the super-flat case.
2553
df46b832 2554 N : constant Nat := List_Length (Opnds);
fdac1f80 2555 -- Number of concatenation operands including possibly null operands
df46b832
AC
2556
2557 NN : Nat := 0;
a29262fd
AC
2558 -- Number of operands excluding any known to be null, except that the
2559 -- last operand is always retained, in case it provides the bounds for
2560 -- a null result.
2561
2562 Opnd : Node_Id;
2563 -- Current operand being processed in the loop through operands. After
2564 -- this loop is complete, always contains the last operand (which is not
2565 -- the same as Operands (NN), since null operands are skipped).
df46b832
AC
2566
2567 -- Arrays describing the operands, only the first NN entries of each
2568 -- array are set (NN < N when we exclude known null operands).
2569
2570 Is_Fixed_Length : array (1 .. N) of Boolean;
2571 -- True if length of corresponding operand known at compile time
2572
2573 Operands : array (1 .. N) of Node_Id;
a29262fd
AC
2574 -- Set to the corresponding entry in the Opnds list (but note that null
2575 -- operands are excluded, so not all entries in the list are stored).
df46b832
AC
2576
2577 Fixed_Length : array (1 .. N) of Uint;
fdac1f80
AC
2578 -- Set to length of operand. Entries in this array are set only if the
2579 -- corresponding entry in Is_Fixed_Length is True.
df46b832 2580
0ac73189
AC
2581 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2582 -- Set to lower bound of operand. Either an integer literal in the case
2583 -- where the bound is known at compile time, else actual lower bound.
2584 -- The operand low bound is of type Ityp.
2585
df46b832
AC
2586 Var_Length : array (1 .. N) of Entity_Id;
2587 -- Set to an entity of type Natural that contains the length of an
2588 -- operand whose length is not known at compile time. Entries in this
2589 -- array are set only if the corresponding entry in Is_Fixed_Length
46ff89f3 2590 -- is False. The entity is of type Artyp.
df46b832
AC
2591
2592 Aggr_Length : array (0 .. N) of Node_Id;
fdac1f80
AC
2593 -- The J'th entry in an expression node that represents the total length
2594 -- of operands 1 through J. It is either an integer literal node, or a
2595 -- reference to a constant entity with the right value, so it is fine
2596 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
46ff89f3 2597 -- entry always is set to zero. The length is of type Artyp.
df46b832
AC
2598
2599 Low_Bound : Node_Id;
0ac73189
AC
2600 -- A tree node representing the low bound of the result (of type Ityp).
2601 -- This is either an integer literal node, or an identifier reference to
2602 -- a constant entity initialized to the appropriate value.
2603
a29262fd
AC
2604 Last_Opnd_High_Bound : Node_Id;
2605 -- A tree node representing the high bound of the last operand. This
2606 -- need only be set if the result could be null. It is used for the
2607 -- special case of setting the right high bound for a null result.
2608 -- This is of type Ityp.
2609
0ac73189
AC
2610 High_Bound : Node_Id;
2611 -- A tree node representing the high bound of the result (of type Ityp)
df46b832
AC
2612
2613 Result : Node_Id;
0ac73189 2614 -- Result of the concatenation (of type Ityp)
df46b832 2615
d0f8d157 2616 Actions : constant List_Id := New_List;
4c9fe6c7 2617 -- Collect actions to be inserted
d0f8d157 2618
fa969310 2619 Known_Non_Null_Operand_Seen : Boolean;
308e6f3a 2620 -- Set True during generation of the assignments of operands into
fa969310
AC
2621 -- result once an operand known to be non-null has been seen.
2622
2623 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2624 -- This function makes an N_Integer_Literal node that is returned in
2625 -- analyzed form with the type set to Artyp. Importantly this literal
2626 -- is not flagged as static, so that if we do computations with it that
2627 -- result in statically detected out of range conditions, we will not
2628 -- generate error messages but instead warning messages.
2629
46ff89f3 2630 function To_Artyp (X : Node_Id) return Node_Id;
fdac1f80 2631 -- Given a node of type Ityp, returns the corresponding value of type
76c597a1
AC
2632 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2633 -- For enum types, the Pos of the value is returned.
fdac1f80
AC
2634
2635 function To_Ityp (X : Node_Id) return Node_Id;
0ac73189 2636 -- The inverse function (uses Val in the case of enumeration types)
fdac1f80 2637
fa969310
AC
2638 ------------------------
2639 -- Make_Artyp_Literal --
2640 ------------------------
2641
2642 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2643 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2644 begin
2645 Set_Etype (Result, Artyp);
2646 Set_Analyzed (Result, True);
2647 Set_Is_Static_Expression (Result, False);
2648 return Result;
2649 end Make_Artyp_Literal;
76c597a1 2650
fdac1f80 2651 --------------
46ff89f3 2652 -- To_Artyp --
fdac1f80
AC
2653 --------------
2654
46ff89f3 2655 function To_Artyp (X : Node_Id) return Node_Id is
fdac1f80 2656 begin
46ff89f3 2657 if Ityp = Base_Type (Artyp) then
fdac1f80
AC
2658 return X;
2659
2660 elsif Is_Enumeration_Type (Ityp) then
2661 return
2662 Make_Attribute_Reference (Loc,
2663 Prefix => New_Occurrence_Of (Ityp, Loc),
2664 Attribute_Name => Name_Pos,
2665 Expressions => New_List (X));
2666
2667 else
46ff89f3 2668 return Convert_To (Artyp, X);
fdac1f80 2669 end if;
46ff89f3 2670 end To_Artyp;
fdac1f80
AC
2671
2672 -------------
2673 -- To_Ityp --
2674 -------------
2675
2676 function To_Ityp (X : Node_Id) return Node_Id is
2677 begin
2fc05e3d 2678 if Is_Enumeration_Type (Ityp) then
fdac1f80
AC
2679 return
2680 Make_Attribute_Reference (Loc,
2681 Prefix => New_Occurrence_Of (Ityp, Loc),
2682 Attribute_Name => Name_Val,
2683 Expressions => New_List (X));
2684
2685 -- Case where we will do a type conversion
2686
2687 else
76c597a1
AC
2688 if Ityp = Base_Type (Artyp) then
2689 return X;
fdac1f80 2690 else
76c597a1 2691 return Convert_To (Ityp, X);
fdac1f80
AC
2692 end if;
2693 end if;
2694 end To_Ityp;
2695
2696 -- Local Declarations
2697
0ac73189
AC
2698 Opnd_Typ : Entity_Id;
2699 Ent : Entity_Id;
2700 Len : Uint;
2701 J : Nat;
2702 Clen : Node_Id;
2703 Set : Boolean;
70482933 2704
f46faa08
AC
2705 -- Start of processing for Expand_Concatenate
2706
70482933 2707 begin
fdac1f80
AC
2708 -- Choose an appropriate computational type
2709
2710 -- We will be doing calculations of lengths and bounds in this routine
2711 -- and computing one from the other in some cases, e.g. getting the high
2712 -- bound by adding the length-1 to the low bound.
2713
2714 -- We can't just use the index type, or even its base type for this
2715 -- purpose for two reasons. First it might be an enumeration type which
308e6f3a
RW
2716 -- is not suitable for computations of any kind, and second it may
2717 -- simply not have enough range. For example if the index type is
2718 -- -128..+127 then lengths can be up to 256, which is out of range of
2719 -- the type.
fdac1f80
AC
2720
2721 -- For enumeration types, we can simply use Standard_Integer, this is
2722 -- sufficient since the actual number of enumeration literals cannot
2723 -- possibly exceed the range of integer (remember we will be doing the
0ac73189 2724 -- arithmetic with POS values, not representation values).
fdac1f80
AC
2725
2726 if Is_Enumeration_Type (Ityp) then
46ff89f3 2727 Artyp := Standard_Integer;
fdac1f80 2728
59262ebb
AC
2729 -- If index type is Positive, we use the standard unsigned type, to give
2730 -- more room on the top of the range, obviating the need for an overflow
2731 -- check when creating the upper bound. This is needed to avoid junk
2732 -- overflow checks in the common case of String types.
2733
2734 -- ??? Disabled for now
2735
2736 -- elsif Istyp = Standard_Positive then
2737 -- Artyp := Standard_Unsigned;
2738
2fc05e3d
AC
2739 -- For modular types, we use a 32-bit modular type for types whose size
2740 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2741 -- identity type, and for larger unsigned types we use 64-bits.
fdac1f80 2742
2fc05e3d 2743 elsif Is_Modular_Integer_Type (Ityp) then
ecc4ddde 2744 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
46ff89f3 2745 Artyp := Standard_Unsigned;
ecc4ddde 2746 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
46ff89f3 2747 Artyp := Ityp;
fdac1f80 2748 else
46ff89f3 2749 Artyp := RTE (RE_Long_Long_Unsigned);
fdac1f80
AC
2750 end if;
2751
2fc05e3d 2752 -- Similar treatment for signed types
fdac1f80
AC
2753
2754 else
ecc4ddde 2755 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
46ff89f3 2756 Artyp := Standard_Integer;
ecc4ddde 2757 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
46ff89f3 2758 Artyp := Ityp;
fdac1f80 2759 else
46ff89f3 2760 Artyp := Standard_Long_Long_Integer;
fdac1f80
AC
2761 end if;
2762 end if;
2763
fa969310
AC
2764 -- Supply dummy entry at start of length array
2765
2766 Aggr_Length (0) := Make_Artyp_Literal (0);
2767
fdac1f80 2768 -- Go through operands setting up the above arrays
70482933 2769
df46b832
AC
2770 J := 1;
2771 while J <= N loop
2772 Opnd := Remove_Head (Opnds);
0ac73189 2773 Opnd_Typ := Etype (Opnd);
fdac1f80
AC
2774
2775 -- The parent got messed up when we put the operands in a list,
d347f572
AC
2776 -- so now put back the proper parent for the saved operand, that
2777 -- is to say the concatenation node, to make sure that each operand
2778 -- is seen as a subexpression, e.g. if actions must be inserted.
fdac1f80 2779
d347f572 2780 Set_Parent (Opnd, Cnode);
fdac1f80
AC
2781
2782 -- Set will be True when we have setup one entry in the array
2783
df46b832
AC
2784 Set := False;
2785
fdac1f80 2786 -- Singleton element (or character literal) case
df46b832 2787
0ac73189 2788 if Base_Type (Opnd_Typ) = Ctyp then
df46b832
AC
2789 NN := NN + 1;
2790 Operands (NN) := Opnd;
2791 Is_Fixed_Length (NN) := True;
2792 Fixed_Length (NN) := Uint_1;
0ac73189 2793 Result_May_Be_Null := False;
fdac1f80 2794
a29262fd
AC
2795 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2796 -- since we know that the result cannot be null).
fdac1f80 2797
0ac73189
AC
2798 Opnd_Low_Bound (NN) :=
2799 Make_Attribute_Reference (Loc,
ecc4ddde 2800 Prefix => New_Reference_To (Istyp, Loc),
0ac73189
AC
2801 Attribute_Name => Name_First);
2802
df46b832
AC
2803 Set := True;
2804
fdac1f80 2805 -- String literal case (can only occur for strings of course)
df46b832
AC
2806
2807 elsif Nkind (Opnd) = N_String_Literal then
0ac73189 2808 Len := String_Literal_Length (Opnd_Typ);
df46b832 2809
a29262fd
AC
2810 if Len /= 0 then
2811 Result_May_Be_Null := False;
2812 end if;
2813
2814 -- Capture last operand high bound if result could be null
2815
2816 if J = N and then Result_May_Be_Null then
2817 Last_Opnd_High_Bound :=
2818 Make_Op_Add (Loc,
2819 Left_Opnd =>
2820 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
59262ebb 2821 Right_Opnd => Make_Integer_Literal (Loc, 1));
a29262fd
AC
2822 end if;
2823
2824 -- Skip null string literal
fdac1f80 2825
0ac73189 2826 if J < N and then Len = 0 then
df46b832
AC
2827 goto Continue;
2828 end if;
2829
2830 NN := NN + 1;
2831 Operands (NN) := Opnd;
2832 Is_Fixed_Length (NN) := True;
0ac73189
AC
2833
2834 -- Set length and bounds
2835
df46b832 2836 Fixed_Length (NN) := Len;
0ac73189
AC
2837
2838 Opnd_Low_Bound (NN) :=
2839 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
2840
df46b832
AC
2841 Set := True;
2842
2843 -- All other cases
2844
2845 else
2846 -- Check constrained case with known bounds
2847
0ac73189 2848 if Is_Constrained (Opnd_Typ) then
df46b832 2849 declare
df46b832
AC
2850 Index : constant Node_Id := First_Index (Opnd_Typ);
2851 Indx_Typ : constant Entity_Id := Etype (Index);
2852 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
2853 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
2854
2855 begin
fdac1f80
AC
2856 -- Fixed length constrained array type with known at compile
2857 -- time bounds is last case of fixed length operand.
df46b832
AC
2858
2859 if Compile_Time_Known_Value (Lo)
2860 and then
2861 Compile_Time_Known_Value (Hi)
2862 then
2863 declare
2864 Loval : constant Uint := Expr_Value (Lo);
2865 Hival : constant Uint := Expr_Value (Hi);
2866 Len : constant Uint :=
2867 UI_Max (Hival - Loval + 1, Uint_0);
2868
2869 begin
0ac73189
AC
2870 if Len > 0 then
2871 Result_May_Be_Null := False;
df46b832 2872 end if;
0ac73189 2873
a29262fd
AC
2874 -- Capture last operand bound if result could be null
2875
2876 if J = N and then Result_May_Be_Null then
2877 Last_Opnd_High_Bound :=
2878 Convert_To (Ityp,
39ade2f9 2879 Make_Integer_Literal (Loc, Expr_Value (Hi)));
a29262fd
AC
2880 end if;
2881
2882 -- Exclude null length case unless last operand
0ac73189 2883
a29262fd 2884 if J < N and then Len = 0 then
0ac73189
AC
2885 goto Continue;
2886 end if;
2887
2888 NN := NN + 1;
2889 Operands (NN) := Opnd;
2890 Is_Fixed_Length (NN) := True;
2891 Fixed_Length (NN) := Len;
2892
39ade2f9
AC
2893 Opnd_Low_Bound (NN) :=
2894 To_Ityp
2895 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
0ac73189 2896 Set := True;
df46b832
AC
2897 end;
2898 end if;
2899 end;
2900 end if;
2901
0ac73189
AC
2902 -- All cases where the length is not known at compile time, or the
2903 -- special case of an operand which is known to be null but has a
2904 -- lower bound other than 1 or is other than a string type.
df46b832
AC
2905
2906 if not Set then
2907 NN := NN + 1;
0ac73189
AC
2908
2909 -- Capture operand bounds
2910
2911 Opnd_Low_Bound (NN) :=
2912 Make_Attribute_Reference (Loc,
2913 Prefix =>
2914 Duplicate_Subexpr (Opnd, Name_Req => True),
2915 Attribute_Name => Name_First);
2916
a29262fd
AC
2917 if J = N and Result_May_Be_Null then
2918 Last_Opnd_High_Bound :=
2919 Convert_To (Ityp,
2920 Make_Attribute_Reference (Loc,
2921 Prefix =>
2922 Duplicate_Subexpr (Opnd, Name_Req => True),
2923 Attribute_Name => Name_Last));
2924 end if;
0ac73189
AC
2925
2926 -- Capture length of operand in entity
2927
df46b832
AC
2928 Operands (NN) := Opnd;
2929 Is_Fixed_Length (NN) := False;
2930
191fcb3a 2931 Var_Length (NN) := Make_Temporary (Loc, 'L');
df46b832 2932
d0f8d157 2933 Append_To (Actions,
df46b832
AC
2934 Make_Object_Declaration (Loc,
2935 Defining_Identifier => Var_Length (NN),
2936 Constant_Present => True,
39ade2f9 2937 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
2938 Expression =>
2939 Make_Attribute_Reference (Loc,
2940 Prefix =>
2941 Duplicate_Subexpr (Opnd, Name_Req => True),
d0f8d157 2942 Attribute_Name => Name_Length)));
df46b832
AC
2943 end if;
2944 end if;
2945
2946 -- Set next entry in aggregate length array
2947
2948 -- For first entry, make either integer literal for fixed length
0ac73189 2949 -- or a reference to the saved length for variable length.
df46b832
AC
2950
2951 if NN = 1 then
2952 if Is_Fixed_Length (1) then
39ade2f9 2953 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
df46b832 2954 else
39ade2f9 2955 Aggr_Length (1) := New_Reference_To (Var_Length (1), Loc);
df46b832
AC
2956 end if;
2957
2958 -- If entry is fixed length and only fixed lengths so far, make
2959 -- appropriate new integer literal adding new length.
2960
2961 elsif Is_Fixed_Length (NN)
2962 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
2963 then
2964 Aggr_Length (NN) :=
2965 Make_Integer_Literal (Loc,
2966 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
2967
d0f8d157
AC
2968 -- All other cases, construct an addition node for the length and
2969 -- create an entity initialized to this length.
df46b832
AC
2970
2971 else
191fcb3a 2972 Ent := Make_Temporary (Loc, 'L');
df46b832
AC
2973
2974 if Is_Fixed_Length (NN) then
2975 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
2976 else
2977 Clen := New_Reference_To (Var_Length (NN), Loc);
2978 end if;
2979
d0f8d157 2980 Append_To (Actions,
df46b832
AC
2981 Make_Object_Declaration (Loc,
2982 Defining_Identifier => Ent,
2983 Constant_Present => True,
39ade2f9 2984 Object_Definition => New_Occurrence_Of (Artyp, Loc),
df46b832
AC
2985 Expression =>
2986 Make_Op_Add (Loc,
2987 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
d0f8d157 2988 Right_Opnd => Clen)));
df46b832 2989
76c597a1 2990 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
df46b832
AC
2991 end if;
2992
2993 <<Continue>>
2994 J := J + 1;
2995 end loop;
2996
a29262fd 2997 -- If we have only skipped null operands, return the last operand
df46b832
AC
2998
2999 if NN = 0 then
a29262fd 3000 Result := Opnd;
df46b832
AC
3001 goto Done;
3002 end if;
3003
3004 -- If we have only one non-null operand, return it and we are done.
3005 -- There is one case in which this cannot be done, and that is when
fdac1f80
AC
3006 -- the sole operand is of the element type, in which case it must be
3007 -- converted to an array, and the easiest way of doing that is to go
df46b832
AC
3008 -- through the normal general circuit.
3009
3010 if NN = 1
fdac1f80 3011 and then Base_Type (Etype (Operands (1))) /= Ctyp
df46b832
AC
3012 then
3013 Result := Operands (1);
3014 goto Done;
3015 end if;
3016
3017 -- Cases where we have a real concatenation
3018
fdac1f80
AC
3019 -- Next step is to find the low bound for the result array that we
3020 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3021
3022 -- If the ultimate ancestor of the index subtype is a constrained array
3023 -- definition, then the lower bound is that of the index subtype as
3024 -- specified by (RM 4.5.3(6)).
3025
3026 -- The right test here is to go to the root type, and then the ultimate
3027 -- ancestor is the first subtype of this root type.
3028
3029 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
0ac73189 3030 Low_Bound :=
fdac1f80
AC
3031 Make_Attribute_Reference (Loc,
3032 Prefix =>
3033 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
0ac73189 3034 Attribute_Name => Name_First);
df46b832
AC
3035
3036 -- If the first operand in the list has known length we know that
3037 -- the lower bound of the result is the lower bound of this operand.
3038
fdac1f80 3039 elsif Is_Fixed_Length (1) then
0ac73189 3040 Low_Bound := Opnd_Low_Bound (1);
df46b832
AC
3041
3042 -- OK, we don't know the lower bound, we have to build a horrible
3043 -- expression actions node of the form
3044
3045 -- if Cond1'Length /= 0 then
0ac73189 3046 -- Opnd1 low bound
df46b832
AC
3047 -- else
3048 -- if Opnd2'Length /= 0 then
0ac73189 3049 -- Opnd2 low bound
df46b832
AC
3050 -- else
3051 -- ...
3052
3053 -- The nesting ends either when we hit an operand whose length is known
3054 -- at compile time, or on reaching the last operand, whose low bound we
3055 -- take unconditionally whether or not it is null. It's easiest to do
3056 -- this with a recursive procedure:
3057
3058 else
3059 declare
3060 function Get_Known_Bound (J : Nat) return Node_Id;
3061 -- Returns the lower bound determined by operands J .. NN
3062
3063 ---------------------
3064 -- Get_Known_Bound --
3065 ---------------------
3066
3067 function Get_Known_Bound (J : Nat) return Node_Id is
df46b832 3068 begin
0ac73189
AC
3069 if Is_Fixed_Length (J) or else J = NN then
3070 return New_Copy (Opnd_Low_Bound (J));
70482933
RK
3071
3072 else
df46b832
AC
3073 return
3074 Make_Conditional_Expression (Loc,
3075 Expressions => New_List (
3076
3077 Make_Op_Ne (Loc,
3078 Left_Opnd => New_Reference_To (Var_Length (J), Loc),
3079 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3080
0ac73189 3081 New_Copy (Opnd_Low_Bound (J)),
df46b832 3082 Get_Known_Bound (J + 1)));
70482933 3083 end if;
df46b832 3084 end Get_Known_Bound;
70482933 3085
df46b832 3086 begin
191fcb3a 3087 Ent := Make_Temporary (Loc, 'L');
df46b832 3088
d0f8d157 3089 Append_To (Actions,
df46b832
AC
3090 Make_Object_Declaration (Loc,
3091 Defining_Identifier => Ent,
3092 Constant_Present => True,
0ac73189 3093 Object_Definition => New_Occurrence_Of (Ityp, Loc),
d0f8d157 3094 Expression => Get_Known_Bound (1)));
df46b832
AC
3095
3096 Low_Bound := New_Reference_To (Ent, Loc);
3097 end;
3098 end if;
70482933 3099
76c597a1
AC
3100 -- Now we can safely compute the upper bound, normally
3101 -- Low_Bound + Length - 1.
0ac73189
AC
3102
3103 High_Bound :=
3104 To_Ityp (
3105 Make_Op_Add (Loc,
46ff89f3 3106 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
0ac73189
AC
3107 Right_Opnd =>
3108 Make_Op_Subtract (Loc,
3109 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3110 Right_Opnd => Make_Artyp_Literal (1))));
0ac73189 3111
59262ebb 3112 -- Note that calculation of the high bound may cause overflow in some
bded454f
RD
3113 -- very weird cases, so in the general case we need an overflow check on
3114 -- the high bound. We can avoid this for the common case of string types
3115 -- and other types whose index is Positive, since we chose a wider range
3116 -- for the arithmetic type.
76c597a1 3117
59262ebb
AC
3118 if Istyp /= Standard_Positive then
3119 Activate_Overflow_Check (High_Bound);
3120 end if;
76c597a1
AC
3121
3122 -- Handle the exceptional case where the result is null, in which case
a29262fd
AC
3123 -- case the bounds come from the last operand (so that we get the proper
3124 -- bounds if the last operand is super-flat).
3125
0ac73189
AC
3126 if Result_May_Be_Null then
3127 High_Bound :=
3128 Make_Conditional_Expression (Loc,
3129 Expressions => New_List (
3130 Make_Op_Eq (Loc,
3131 Left_Opnd => New_Copy (Aggr_Length (NN)),
fa969310 3132 Right_Opnd => Make_Artyp_Literal (0)),
a29262fd 3133 Last_Opnd_High_Bound,
0ac73189
AC
3134 High_Bound));
3135 end if;
3136
d0f8d157
AC
3137 -- Here is where we insert the saved up actions
3138
3139 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3140
602a7ec0
AC
3141 -- Now we construct an array object with appropriate bounds. We mark
3142 -- the target as internal to prevent useless initialization when
e526d0c7
AC
3143 -- Initialize_Scalars is enabled. Also since this is the actual result
3144 -- entity, we make sure we have debug information for the result.
70482933 3145
191fcb3a 3146 Ent := Make_Temporary (Loc, 'S');
008f6fd3 3147 Set_Is_Internal (Ent);
e526d0c7 3148 Set_Needs_Debug_Info (Ent);
70482933 3149
76c597a1 3150 -- If the bound is statically known to be out of range, we do not want
fa969310
AC
3151 -- to abort, we want a warning and a runtime constraint error. Note that
3152 -- we have arranged that the result will not be treated as a static
3153 -- constant, so we won't get an illegality during this insertion.
76c597a1 3154
df46b832
AC
3155 Insert_Action (Cnode,
3156 Make_Object_Declaration (Loc,
3157 Defining_Identifier => Ent,
df46b832
AC
3158 Object_Definition =>
3159 Make_Subtype_Indication (Loc,
fdac1f80 3160 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
df46b832
AC
3161 Constraint =>
3162 Make_Index_Or_Discriminant_Constraint (Loc,
3163 Constraints => New_List (
3164 Make_Range (Loc,
0ac73189
AC
3165 Low_Bound => Low_Bound,
3166 High_Bound => High_Bound))))),
df46b832
AC
3167 Suppress => All_Checks);
3168
d1f453b7
RD
3169 -- If the result of the concatenation appears as the initializing
3170 -- expression of an object declaration, we can just rename the
3171 -- result, rather than copying it.
3172
3173 Set_OK_To_Rename (Ent);
3174
76c597a1
AC
3175 -- Catch the static out of range case now
3176
3177 if Raises_Constraint_Error (High_Bound) then
3178 raise Concatenation_Error;
3179 end if;
3180
df46b832
AC
3181 -- Now we will generate the assignments to do the actual concatenation
3182
bded454f
RD
3183 -- There is one case in which we will not do this, namely when all the
3184 -- following conditions are met:
3185
3186 -- The result type is Standard.String
3187
3188 -- There are nine or fewer retained (non-null) operands
3189
ffec8e81 3190 -- The optimization level is -O0
bded454f
RD
3191
3192 -- The corresponding System.Concat_n.Str_Concat_n routine is
3193 -- available in the run time.
3194
3195 -- The debug flag gnatd.c is not set
3196
3197 -- If all these conditions are met then we generate a call to the
3198 -- relevant concatenation routine. The purpose of this is to avoid
3199 -- undesirable code bloat at -O0.
3200
3201 if Atyp = Standard_String
3202 and then NN in 2 .. 9
ffec8e81 3203 and then (Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
bded454f
RD
3204 and then not Debug_Flag_Dot_C
3205 then
3206 declare
3207 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3208 (RE_Str_Concat_2,
3209 RE_Str_Concat_3,
3210 RE_Str_Concat_4,
3211 RE_Str_Concat_5,
3212 RE_Str_Concat_6,
3213 RE_Str_Concat_7,
3214 RE_Str_Concat_8,
3215 RE_Str_Concat_9);
3216
3217 begin
3218 if RTE_Available (RR (NN)) then
3219 declare
3220 Opnds : constant List_Id :=
3221 New_List (New_Occurrence_Of (Ent, Loc));
3222
3223 begin
3224 for J in 1 .. NN loop
3225 if Is_List_Member (Operands (J)) then
3226 Remove (Operands (J));
3227 end if;
3228
3229 if Base_Type (Etype (Operands (J))) = Ctyp then
3230 Append_To (Opnds,
3231 Make_Aggregate (Loc,
3232 Component_Associations => New_List (
3233 Make_Component_Association (Loc,
3234 Choices => New_List (
3235 Make_Integer_Literal (Loc, 1)),
3236 Expression => Operands (J)))));
3237
3238 else
3239 Append_To (Opnds, Operands (J));
3240 end if;
3241 end loop;
3242
3243 Insert_Action (Cnode,
3244 Make_Procedure_Call_Statement (Loc,
3245 Name => New_Reference_To (RTE (RR (NN)), Loc),
3246 Parameter_Associations => Opnds));
3247
3248 Result := New_Reference_To (Ent, Loc);
3249 goto Done;
3250 end;
3251 end if;
3252 end;
3253 end if;
3254
3255 -- Not special case so generate the assignments
3256
76c597a1
AC
3257 Known_Non_Null_Operand_Seen := False;
3258
df46b832
AC
3259 for J in 1 .. NN loop
3260 declare
3261 Lo : constant Node_Id :=
3262 Make_Op_Add (Loc,
46ff89f3 3263 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3264 Right_Opnd => Aggr_Length (J - 1));
3265
3266 Hi : constant Node_Id :=
3267 Make_Op_Add (Loc,
46ff89f3 3268 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
df46b832
AC
3269 Right_Opnd =>
3270 Make_Op_Subtract (Loc,
3271 Left_Opnd => Aggr_Length (J),
fa969310 3272 Right_Opnd => Make_Artyp_Literal (1)));
70482933 3273
df46b832 3274 begin
fdac1f80
AC
3275 -- Singleton case, simple assignment
3276
3277 if Base_Type (Etype (Operands (J))) = Ctyp then
76c597a1 3278 Known_Non_Null_Operand_Seen := True;
df46b832
AC
3279 Insert_Action (Cnode,
3280 Make_Assignment_Statement (Loc,
3281 Name =>
3282 Make_Indexed_Component (Loc,
3283 Prefix => New_Occurrence_Of (Ent, Loc),
fdac1f80 3284 Expressions => New_List (To_Ityp (Lo))),
df46b832
AC
3285 Expression => Operands (J)),
3286 Suppress => All_Checks);
70482933 3287
76c597a1
AC
3288 -- Array case, slice assignment, skipped when argument is fixed
3289 -- length and known to be null.
fdac1f80 3290
76c597a1
AC
3291 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3292 declare
3293 Assign : Node_Id :=
3294 Make_Assignment_Statement (Loc,
3295 Name =>
3296 Make_Slice (Loc,
3297 Prefix =>
3298 New_Occurrence_Of (Ent, Loc),
3299 Discrete_Range =>
3300 Make_Range (Loc,
3301 Low_Bound => To_Ityp (Lo),
3302 High_Bound => To_Ityp (Hi))),
3303 Expression => Operands (J));
3304 begin
3305 if Is_Fixed_Length (J) then
3306 Known_Non_Null_Operand_Seen := True;
3307
3308 elsif not Known_Non_Null_Operand_Seen then
3309
3310 -- Here if operand length is not statically known and no
3311 -- operand known to be non-null has been processed yet.
3312 -- If operand length is 0, we do not need to perform the
3313 -- assignment, and we must avoid the evaluation of the
3314 -- high bound of the slice, since it may underflow if the
3315 -- low bound is Ityp'First.
3316
3317 Assign :=
3318 Make_Implicit_If_Statement (Cnode,
39ade2f9 3319 Condition =>
76c597a1 3320 Make_Op_Ne (Loc,
39ade2f9 3321 Left_Opnd =>
76c597a1
AC
3322 New_Occurrence_Of (Var_Length (J), Loc),
3323 Right_Opnd => Make_Integer_Literal (Loc, 0)),
39ade2f9 3324 Then_Statements => New_List (Assign));
76c597a1 3325 end if;
fa969310 3326
76c597a1
AC
3327 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3328 end;
df46b832
AC
3329 end if;
3330 end;
3331 end loop;
70482933 3332
0ac73189
AC
3333 -- Finally we build the result, which is a reference to the array object
3334
df46b832 3335 Result := New_Reference_To (Ent, Loc);
70482933 3336
df46b832
AC
3337 <<Done>>
3338 Rewrite (Cnode, Result);
fdac1f80
AC
3339 Analyze_And_Resolve (Cnode, Atyp);
3340
3341 exception
3342 when Concatenation_Error =>
76c597a1
AC
3343
3344 -- Kill warning generated for the declaration of the static out of
3345 -- range high bound, and instead generate a Constraint_Error with
3346 -- an appropriate specific message.
3347
3348 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3349 Apply_Compile_Time_Constraint_Error
3350 (N => Cnode,
3351 Msg => "concatenation result upper bound out of range?",
3352 Reason => CE_Range_Check_Failed);
3353 -- Set_Etype (Cnode, Atyp);
fdac1f80 3354 end Expand_Concatenate;
70482933
RK
3355
3356 ------------------------
3357 -- Expand_N_Allocator --
3358 ------------------------
3359
3360 procedure Expand_N_Allocator (N : Node_Id) is
3361 PtrT : constant Entity_Id := Etype (N);
d6a24cdb 3362 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
f82944b7 3363 Etyp : constant Entity_Id := Etype (Expression (N));
70482933 3364 Loc : constant Source_Ptr := Sloc (N);
f82944b7 3365 Desig : Entity_Id;
26bff3d9 3366 Nod : Node_Id;
ca5af305
AC
3367 Pool : Entity_Id;
3368 Temp : Entity_Id;
70482933 3369
26bff3d9
JM
3370 procedure Rewrite_Coextension (N : Node_Id);
3371 -- Static coextensions have the same lifetime as the entity they
8fc789c8 3372 -- constrain. Such occurrences can be rewritten as aliased objects
26bff3d9 3373 -- and their unrestricted access used instead of the coextension.
0669bebe 3374
8aec446b 3375 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
507ed3fd
AC
3376 -- Given a constrained array type E, returns a node representing the
3377 -- code to compute the size in storage elements for the given type.
205c14b0 3378 -- This is done without using the attribute (which malfunctions for
507ed3fd 3379 -- large sizes ???)
8aec446b 3380
26bff3d9
JM
3381 -------------------------
3382 -- Rewrite_Coextension --
3383 -------------------------
3384
3385 procedure Rewrite_Coextension (N : Node_Id) is
df3e68b1
HK
3386 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
3387 Temp_Decl : Node_Id;
3388 Insert_Nod : Node_Id;
26bff3d9 3389
df3e68b1 3390 begin
26bff3d9
JM
3391 -- Generate:
3392 -- Cnn : aliased Etyp;
3393
df3e68b1
HK
3394 Temp_Decl :=
3395 Make_Object_Declaration (Loc,
3396 Defining_Identifier => Temp_Id,
243cae0a
AC
3397 Aliased_Present => True,
3398 Object_Definition => New_Occurrence_Of (Etyp, Loc));
26bff3d9 3399
26bff3d9 3400 if Nkind (Expression (N)) = N_Qualified_Expression then
df3e68b1 3401 Set_Expression (Temp_Decl, Expression (Expression (N)));
0669bebe 3402 end if;
26bff3d9
JM
3403
3404 -- Find the proper insertion node for the declaration
3405
df3e68b1
HK
3406 Insert_Nod := Parent (N);
3407 while Present (Insert_Nod) loop
3408 exit when
3409 Nkind (Insert_Nod) in N_Statement_Other_Than_Procedure_Call
3410 or else Nkind (Insert_Nod) = N_Procedure_Call_Statement
3411 or else Nkind (Insert_Nod) in N_Declaration;
3412
3413 Insert_Nod := Parent (Insert_Nod);
26bff3d9
JM
3414 end loop;
3415
df3e68b1
HK
3416 Insert_Before (Insert_Nod, Temp_Decl);
3417 Analyze (Temp_Decl);
26bff3d9
JM
3418
3419 Rewrite (N,
3420 Make_Attribute_Reference (Loc,
243cae0a 3421 Prefix => New_Occurrence_Of (Temp_Id, Loc),
26bff3d9
JM
3422 Attribute_Name => Name_Unrestricted_Access));
3423
3424 Analyze_And_Resolve (N, PtrT);
3425 end Rewrite_Coextension;
0669bebe 3426
8aec446b
AC
3427 ------------------------------
3428 -- Size_In_Storage_Elements --
3429 ------------------------------
3430
3431 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
3432 begin
3433 -- Logically this just returns E'Max_Size_In_Storage_Elements.
3434 -- However, the reason for the existence of this function is
3435 -- to construct a test for sizes too large, which means near the
3436 -- 32-bit limit on a 32-bit machine, and precisely the trouble
3437 -- is that we get overflows when sizes are greater than 2**31.
3438
507ed3fd 3439 -- So what we end up doing for array types is to use the expression:
8aec446b
AC
3440
3441 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
3442
46202729 3443 -- which avoids this problem. All this is a bit bogus, but it does
8aec446b
AC
3444 -- mean we catch common cases of trying to allocate arrays that
3445 -- are too large, and which in the absence of a check results in
3446 -- undetected chaos ???
3447
507ed3fd
AC
3448 declare
3449 Len : Node_Id;
3450 Res : Node_Id;
8aec446b 3451
507ed3fd
AC
3452 begin
3453 for J in 1 .. Number_Dimensions (E) loop
3454 Len :=
3455 Make_Attribute_Reference (Loc,
3456 Prefix => New_Occurrence_Of (E, Loc),
3457 Attribute_Name => Name_Length,
243cae0a 3458 Expressions => New_List (Make_Integer_Literal (Loc, J)));
8aec446b 3459
507ed3fd
AC
3460 if J = 1 then
3461 Res := Len;
8aec446b 3462
507ed3fd
AC
3463 else
3464 Res :=
3465 Make_Op_Multiply (Loc,
3466 Left_Opnd => Res,
3467 Right_Opnd => Len);
3468 end if;
3469 end loop;
8aec446b 3470
8aec446b 3471 return
507ed3fd
AC
3472 Make_Op_Multiply (Loc,
3473 Left_Opnd => Len,
3474 Right_Opnd =>
3475 Make_Attribute_Reference (Loc,
3476 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
3477 Attribute_Name => Name_Max_Size_In_Storage_Elements));
3478 end;
8aec446b
AC
3479 end Size_In_Storage_Elements;
3480
0669bebe
GB
3481 -- Start of processing for Expand_N_Allocator
3482
70482933
RK
3483 begin
3484 -- RM E.2.3(22). We enforce that the expected type of an allocator
3485 -- shall not be a remote access-to-class-wide-limited-private type
3486
3487 -- Why is this being done at expansion time, seems clearly wrong ???
3488
3489 Validate_Remote_Access_To_Class_Wide_Type (N);
3490
ca5af305
AC
3491 -- Processing for anonymous access-to-controlled types. These access
3492 -- types receive a special finalization master which appears in the
3493 -- declarations of the enclosing semantic unit. This expansion is done
3494 -- now to ensure that any additional types generated by this routine
3495 -- or Expand_Allocator_Expression inherit the proper type attributes.
3496
3497 if Ekind (PtrT) = E_Anonymous_Access_Type
3498 and then Needs_Finalization (Dtyp)
3499 then
b254da66
AC
3500 -- Anonymous access-to-controlled types allocate on the global pool.
3501 -- Do not set this attribute on .NET/JVM since those targets do not
3502 -- support pools.
ca5af305 3503
b254da66
AC
3504 if No (Associated_Storage_Pool (PtrT))
3505 and then VM_Target = No_VM
3506 then
11fa950b
AC
3507 Set_Associated_Storage_Pool
3508 (PtrT, Get_Global_Pool_For_Access_Type (PtrT));
ca5af305
AC
3509 end if;
3510
3511 -- The finalization master must be inserted and analyzed as part of
2bfa5484 3512 -- the current semantic unit. This form of expansion is not carried
ad5a445d
HK
3513 -- out in Alfa mode because it is useless. Note that the master is
3514 -- updated when analysis changes current units.
ca5af305 3515
ad5a445d 3516 if not Alfa_Mode then
11fa950b 3517 Set_Finalization_Master (PtrT, Current_Anonymous_Master);
ca5af305
AC
3518 end if;
3519 end if;
3520
3521 -- Set the storage pool and find the appropriate version of Allocate to
8417f4b2
AC
3522 -- call. Do not overwrite the storage pool if it is already set, which
3523 -- can happen for build-in-place function returns (see
200b7162 3524 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
70482933 3525
200b7162
BD
3526 if No (Storage_Pool (N)) then
3527 Pool := Associated_Storage_Pool (Root_Type (PtrT));
70482933 3528
200b7162
BD
3529 if Present (Pool) then
3530 Set_Storage_Pool (N, Pool);
fbf5a39b 3531
200b7162
BD
3532 if Is_RTE (Pool, RE_SS_Pool) then
3533 if VM_Target = No_VM then
3534 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3535 end if;
fbf5a39b 3536
200b7162
BD
3537 elsif Is_Class_Wide_Type (Etype (Pool)) then
3538 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
3539
3540 else
3541 Set_Procedure_To_Call (N,
3542 Find_Prim_Op (Etype (Pool), Name_Allocate));
3543 end if;
70482933
RK
3544 end if;
3545 end if;
3546
685094bf
RD
3547 -- Under certain circumstances we can replace an allocator by an access
3548 -- to statically allocated storage. The conditions, as noted in AARM
3549 -- 3.10 (10c) are as follows:
70482933
RK
3550
3551 -- Size and initial value is known at compile time
3552 -- Access type is access-to-constant
3553
fbf5a39b
AC
3554 -- The allocator is not part of a constraint on a record component,
3555 -- because in that case the inserted actions are delayed until the
3556 -- record declaration is fully analyzed, which is too late for the
3557 -- analysis of the rewritten allocator.
3558
70482933
RK
3559 if Is_Access_Constant (PtrT)
3560 and then Nkind (Expression (N)) = N_Qualified_Expression
3561 and then Compile_Time_Known_Value (Expression (Expression (N)))
243cae0a
AC
3562 and then Size_Known_At_Compile_Time
3563 (Etype (Expression (Expression (N))))
fbf5a39b 3564 and then not Is_Record_Type (Current_Scope)
70482933
RK
3565 then
3566 -- Here we can do the optimization. For the allocator
3567
3568 -- new x'(y)
3569
3570 -- We insert an object declaration
3571
3572 -- Tnn : aliased x := y;
3573
685094bf
RD
3574 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
3575 -- marked as requiring static allocation.
70482933 3576
df3e68b1 3577 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
70482933
RK
3578 Desig := Subtype_Mark (Expression (N));
3579
3580 -- If context is constrained, use constrained subtype directly,
8fc789c8 3581 -- so that the constant is not labelled as having a nominally
70482933
RK
3582 -- unconstrained subtype.
3583
0da2c8ac
AC
3584 if Entity (Desig) = Base_Type (Dtyp) then
3585 Desig := New_Occurrence_Of (Dtyp, Loc);
70482933
RK
3586 end if;
3587
3588 Insert_Action (N,
3589 Make_Object_Declaration (Loc,
3590 Defining_Identifier => Temp,
3591 Aliased_Present => True,
3592 Constant_Present => Is_Access_Constant (PtrT),
3593 Object_Definition => Desig,
3594 Expression => Expression (Expression (N))));
3595
3596 Rewrite (N,
3597 Make_Attribute_Reference (Loc,
243cae0a 3598 Prefix => New_Occurrence_Of (Temp, Loc),
70482933
RK
3599 Attribute_Name => Name_Unrestricted_Access));
3600
3601 Analyze_And_Resolve (N, PtrT);
3602
685094bf
RD
3603 -- We set the variable as statically allocated, since we don't want
3604 -- it going on the stack of the current procedure!
70482933
RK
3605
3606 Set_Is_Statically_Allocated (Temp);
3607 return;
3608 end if;
3609
0669bebe
GB
3610 -- Same if the allocator is an access discriminant for a local object:
3611 -- instead of an allocator we create a local value and constrain the
308e6f3a 3612 -- enclosing object with the corresponding access attribute.
0669bebe 3613
26bff3d9
JM
3614 if Is_Static_Coextension (N) then
3615 Rewrite_Coextension (N);
0669bebe
GB
3616 return;
3617 end if;
3618
8aec446b
AC
3619 -- Check for size too large, we do this because the back end misses
3620 -- proper checks here and can generate rubbish allocation calls when
3621 -- we are near the limit. We only do this for the 32-bit address case
3622 -- since that is from a practical point of view where we see a problem.
3623
3624 if System_Address_Size = 32
3625 and then not Storage_Checks_Suppressed (PtrT)
3626 and then not Storage_Checks_Suppressed (Dtyp)
3627 and then not Storage_Checks_Suppressed (Etyp)
3628 then
3629 -- The check we want to generate should look like
3630
3631 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
3632 -- raise Storage_Error;
3633 -- end if;
3634
308e6f3a 3635 -- where 3.5 gigabytes is a constant large enough to accommodate any
507ed3fd
AC
3636 -- reasonable request for. But we can't do it this way because at
3637 -- least at the moment we don't compute this attribute right, and
3638 -- can silently give wrong results when the result gets large. Since
3639 -- this is all about large results, that's bad, so instead we only
205c14b0 3640 -- apply the check for constrained arrays, and manually compute the
507ed3fd 3641 -- value of the attribute ???
8aec446b 3642
507ed3fd
AC
3643 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
3644 Insert_Action (N,
3645 Make_Raise_Storage_Error (Loc,
3646 Condition =>
3647 Make_Op_Gt (Loc,
3648 Left_Opnd => Size_In_Storage_Elements (Etyp),
3649 Right_Opnd =>
243cae0a 3650 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
507ed3fd
AC
3651 Reason => SE_Object_Too_Large));
3652 end if;
8aec446b
AC
3653 end if;
3654
0da2c8ac 3655 -- Handle case of qualified expression (other than optimization above)
cac5a801
AC
3656 -- First apply constraint checks, because the bounds or discriminants
3657 -- in the aggregate might not match the subtype mark in the allocator.
0da2c8ac 3658
70482933 3659 if Nkind (Expression (N)) = N_Qualified_Expression then
cac5a801
AC
3660 Apply_Constraint_Check
3661 (Expression (Expression (N)), Etype (Expression (N)));
3662
fbf5a39b 3663 Expand_Allocator_Expression (N);
26bff3d9
JM
3664 return;
3665 end if;
fbf5a39b 3666
26bff3d9
JM
3667 -- If the allocator is for a type which requires initialization, and
3668 -- there is no initial value (i.e. operand is a subtype indication
685094bf
RD
3669 -- rather than a qualified expression), then we must generate a call to
3670 -- the initialization routine using an expressions action node:
70482933 3671
26bff3d9 3672 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
70482933 3673
26bff3d9
JM
3674 -- Here ptr_T is the pointer type for the allocator, and T is the
3675 -- subtype of the allocator. A special case arises if the designated
3676 -- type of the access type is a task or contains tasks. In this case
3677 -- the call to Init (Temp.all ...) is replaced by code that ensures
3678 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
3679 -- for details). In addition, if the type T is a task T, then the
3680 -- first argument to Init must be converted to the task record type.
70482933 3681
26bff3d9 3682 declare
df3e68b1
HK
3683 T : constant Entity_Id := Entity (Expression (N));
3684 Args : List_Id;
3685 Decls : List_Id;
3686 Decl : Node_Id;
3687 Discr : Elmt_Id;
3688 Init : Entity_Id;
3689 Init_Arg1 : Node_Id;
3690 Temp_Decl : Node_Id;
3691 Temp_Type : Entity_Id;
70482933 3692
26bff3d9
JM
3693 begin
3694 if No_Initialization (N) then
df3e68b1
HK
3695
3696 -- Even though this might be a simple allocation, create a custom
deb8dacc
HK
3697 -- Allocate if the context requires it. Since .NET/JVM compilers
3698 -- do not support pools, this step is skipped.
df3e68b1 3699
deb8dacc 3700 if VM_Target = No_VM
d3f70b35 3701 and then Present (Finalization_Master (PtrT))
deb8dacc 3702 then
df3e68b1 3703 Build_Allocate_Deallocate_Proc
ca5af305 3704 (N => N,
df3e68b1
HK
3705 Is_Allocate => True);
3706 end if;
70482933 3707
26bff3d9 3708 -- Case of no initialization procedure present
70482933 3709
26bff3d9 3710 elsif not Has_Non_Null_Base_Init_Proc (T) then
70482933 3711
26bff3d9 3712 -- Case of simple initialization required
70482933 3713
26bff3d9 3714 if Needs_Simple_Initialization (T) then
b4592168 3715 Check_Restriction (No_Default_Initialization, N);
26bff3d9
JM
3716 Rewrite (Expression (N),
3717 Make_Qualified_Expression (Loc,
3718 Subtype_Mark => New_Occurrence_Of (T, Loc),
b4592168 3719 Expression => Get_Simple_Init_Val (T, N)));
70482933 3720
26bff3d9
JM
3721 Analyze_And_Resolve (Expression (Expression (N)), T);
3722 Analyze_And_Resolve (Expression (N), T);
3723 Set_Paren_Count (Expression (Expression (N)), 1);
3724 Expand_N_Allocator (N);
70482933 3725
26bff3d9 3726 -- No initialization required
70482933
RK
3727
3728 else
26bff3d9
JM
3729 null;
3730 end if;
70482933 3731
26bff3d9 3732 -- Case of initialization procedure present, must be called
70482933 3733
26bff3d9 3734 else
b4592168 3735 Check_Restriction (No_Default_Initialization, N);
70482933 3736
b4592168
GD
3737 if not Restriction_Active (No_Default_Initialization) then
3738 Init := Base_Init_Proc (T);
3739 Nod := N;
191fcb3a 3740 Temp := Make_Temporary (Loc, 'P');
70482933 3741
b4592168 3742 -- Construct argument list for the initialization routine call
70482933 3743
df3e68b1 3744 Init_Arg1 :=
b4592168 3745 Make_Explicit_Dereference (Loc,
df3e68b1
HK
3746 Prefix =>
3747 New_Reference_To (Temp, Loc));
3748
3749 Set_Assignment_OK (Init_Arg1);
b4592168 3750 Temp_Type := PtrT;
26bff3d9 3751
b4592168
GD
3752 -- The initialization procedure expects a specific type. if the
3753 -- context is access to class wide, indicate that the object
3754 -- being allocated has the right specific type.
70482933 3755
b4592168 3756 if Is_Class_Wide_Type (Dtyp) then
df3e68b1 3757 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
b4592168 3758 end if;
70482933 3759
b4592168
GD
3760 -- If designated type is a concurrent type or if it is private
3761 -- type whose definition is a concurrent type, the first
3762 -- argument in the Init routine has to be unchecked conversion
3763 -- to the corresponding record type. If the designated type is
243cae0a 3764 -- a derived type, also convert the argument to its root type.
20b5d666 3765
b4592168 3766 if Is_Concurrent_Type (T) then
df3e68b1
HK
3767 Init_Arg1 :=
3768 Unchecked_Convert_To (
3769 Corresponding_Record_Type (T), Init_Arg1);
70482933 3770
b4592168
GD
3771 elsif Is_Private_Type (T)
3772 and then Present (Full_View (T))
3773 and then Is_Concurrent_Type (Full_View (T))
3774 then
df3e68b1 3775 Init_Arg1 :=
b4592168 3776 Unchecked_Convert_To
df3e68b1 3777 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
70482933 3778
b4592168
GD
3779 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
3780 declare
3781 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
df3e68b1 3782
b4592168 3783 begin
df3e68b1
HK
3784 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
3785 Set_Etype (Init_Arg1, Ftyp);
b4592168
GD
3786 end;
3787 end if;
70482933 3788
df3e68b1 3789 Args := New_List (Init_Arg1);
70482933 3790
b4592168
GD
3791 -- For the task case, pass the Master_Id of the access type as
3792 -- the value of the _Master parameter, and _Chain as the value
3793 -- of the _Chain parameter (_Chain will be defined as part of
3794 -- the generated code for the allocator).
70482933 3795
b4592168
GD
3796 -- In Ada 2005, the context may be a function that returns an
3797 -- anonymous access type. In that case the Master_Id has been
3798 -- created when expanding the function declaration.
70482933 3799
b4592168
GD
3800 if Has_Task (T) then
3801 if No (Master_Id (Base_Type (PtrT))) then
70482933 3802
b4592168
GD
3803 -- The designated type was an incomplete type, and the
3804 -- access type did not get expanded. Salvage it now.
70482933 3805
b941ae65
AC
3806 if not Restriction_Active (No_Task_Hierarchy) then
3807 pragma Assert (Present (Parent (Base_Type (PtrT))));
3808 Expand_N_Full_Type_Declaration
3809 (Parent (Base_Type (PtrT)));
3810 end if;
b4592168 3811 end if;
70482933 3812
b4592168
GD
3813 -- If the context of the allocator is a declaration or an
3814 -- assignment, we can generate a meaningful image for it,
3815 -- even though subsequent assignments might remove the
3816 -- connection between task and entity. We build this image
3817 -- when the left-hand side is a simple variable, a simple
3818 -- indexed assignment or a simple selected component.
3819
3820 if Nkind (Parent (N)) = N_Assignment_Statement then
3821 declare
3822 Nam : constant Node_Id := Name (Parent (N));
3823
3824 begin
3825 if Is_Entity_Name (Nam) then
3826 Decls :=
3827 Build_Task_Image_Decls
3828 (Loc,
3829 New_Occurrence_Of
3830 (Entity (Nam), Sloc (Nam)), T);
3831
243cae0a
AC
3832 elsif Nkind_In (Nam, N_Indexed_Component,
3833 N_Selected_Component)
b4592168
GD
3834 and then Is_Entity_Name (Prefix (Nam))
3835 then
3836 Decls :=
3837 Build_Task_Image_Decls
3838 (Loc, Nam, Etype (Prefix (Nam)));
3839 else
3840 Decls := Build_Task_Image_Decls (Loc, T, T);
3841 end if;
3842 end;
70482933 3843
b4592168
GD
3844 elsif Nkind (Parent (N)) = N_Object_Declaration then
3845 Decls :=
3846 Build_Task_Image_Decls
3847 (Loc, Defining_Identifier (Parent (N)), T);
70482933 3848
b4592168
GD
3849 else
3850 Decls := Build_Task_Image_Decls (Loc, T, T);
3851 end if;
26bff3d9 3852
87dc09cb 3853 if Restriction_Active (No_Task_Hierarchy) then
3c1ecd7e
AC
3854 Append_To (Args,
3855 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
87dc09cb
AC
3856 else
3857 Append_To (Args,
3858 New_Reference_To
3859 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
3860 end if;
3861
b4592168 3862 Append_To (Args, Make_Identifier (Loc, Name_uChain));
26bff3d9 3863
b4592168
GD
3864 Decl := Last (Decls);
3865 Append_To (Args,
3866 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
26bff3d9 3867
87dc09cb 3868 -- Has_Task is false, Decls not used
26bff3d9 3869
b4592168
GD
3870 else
3871 Decls := No_List;
26bff3d9
JM
3872 end if;
3873
b4592168
GD
3874 -- Add discriminants if discriminated type
3875
3876 declare
3877 Dis : Boolean := False;
3878 Typ : Entity_Id;
3879
3880 begin
3881 if Has_Discriminants (T) then
3882 Dis := True;
3883 Typ := T;
3884
3885 elsif Is_Private_Type (T)
3886 and then Present (Full_View (T))
3887 and then Has_Discriminants (Full_View (T))
20b5d666 3888 then
b4592168
GD
3889 Dis := True;
3890 Typ := Full_View (T);
20b5d666 3891 end if;
70482933 3892
b4592168 3893 if Dis then
26bff3d9 3894
b4592168 3895 -- If the allocated object will be constrained by the
685094bf
RD
3896 -- default values for discriminants, then build a subtype
3897 -- with those defaults, and change the allocated subtype
3898 -- to that. Note that this happens in fewer cases in Ada
3899 -- 2005 (AI-363).
26bff3d9 3900
b4592168
GD
3901 if not Is_Constrained (Typ)
3902 and then Present (Discriminant_Default_Value
df3e68b1 3903 (First_Discriminant (Typ)))
0791fbe9 3904 and then (Ada_Version < Ada_2005
cc96a1b8
AC
3905 or else not
3906 Effectively_Has_Constrained_Partial_View
414b312e
AC
3907 (Typ => Typ,
3908 Scop => Current_Scope))
20b5d666 3909 then
b4592168
GD
3910 Typ := Build_Default_Subtype (Typ, N);
3911 Set_Expression (N, New_Reference_To (Typ, Loc));
20b5d666
JM
3912 end if;
3913
b4592168
GD
3914 Discr := First_Elmt (Discriminant_Constraint (Typ));
3915 while Present (Discr) loop
3916 Nod := Node (Discr);
3917 Append (New_Copy_Tree (Node (Discr)), Args);
20b5d666 3918
b4592168
GD
3919 -- AI-416: when the discriminant constraint is an
3920 -- anonymous access type make sure an accessibility
3921 -- check is inserted if necessary (3.10.2(22.q/2))
20b5d666 3922
0791fbe9 3923 if Ada_Version >= Ada_2005
b4592168
GD
3924 and then
3925 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
3926 then
e84e11ba
GD
3927 Apply_Accessibility_Check
3928 (Nod, Typ, Insert_Node => Nod);
b4592168 3929 end if;
20b5d666 3930
b4592168
GD
3931 Next_Elmt (Discr);
3932 end loop;
3933 end if;
3934 end;
70482933 3935
b4592168
GD
3936 -- We set the allocator as analyzed so that when we analyze the
3937 -- expression actions node, we do not get an unwanted recursive
3938 -- expansion of the allocator expression.
70482933 3939
b4592168
GD
3940 Set_Analyzed (N, True);
3941 Nod := Relocate_Node (N);
70482933 3942
b4592168 3943 -- Here is the transformation:
ca5af305
AC
3944 -- input: new Ctrl_Typ
3945 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
3946 -- Ctrl_TypIP (Temp.all, ...);
3947 -- [Deep_]Initialize (Temp.all);
70482933 3948
ca5af305
AC
3949 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
3950 -- is the subtype of the allocator.
70482933 3951
b4592168
GD
3952 Temp_Decl :=
3953 Make_Object_Declaration (Loc,
3954 Defining_Identifier => Temp,
3955 Constant_Present => True,
3956 Object_Definition => New_Reference_To (Temp_Type, Loc),
3957 Expression => Nod);
70482933 3958
b4592168
GD
3959 Set_Assignment_OK (Temp_Decl);
3960 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
70482933 3961
ca5af305 3962 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
df3e68b1 3963
b4592168
GD
3964 -- If the designated type is a task type or contains tasks,
3965 -- create block to activate created tasks, and insert
3966 -- declaration for Task_Image variable ahead of call.
70482933 3967
b4592168
GD
3968 if Has_Task (T) then
3969 declare
3970 L : constant List_Id := New_List;
3971 Blk : Node_Id;
3972 begin
3973 Build_Task_Allocate_Block (L, Nod, Args);
3974 Blk := Last (L);
3975 Insert_List_Before (First (Declarations (Blk)), Decls);
3976 Insert_Actions (N, L);
3977 end;
70482933 3978
b4592168
GD
3979 else
3980 Insert_Action (N,
3981 Make_Procedure_Call_Statement (Loc,
243cae0a 3982 Name => New_Reference_To (Init, Loc),
b4592168
GD
3983 Parameter_Associations => Args));
3984 end if;
70482933 3985
048e5cef 3986 if Needs_Finalization (T) then
70482933 3987
df3e68b1
HK
3988 -- Generate:
3989 -- [Deep_]Initialize (Init_Arg1);
70482933 3990
df3e68b1 3991 Insert_Action (N,
243cae0a
AC
3992 Make_Init_Call
3993 (Obj_Ref => New_Copy_Tree (Init_Arg1),
3994 Typ => T));
b4592168 3995
b254da66 3996 if Present (Finalization_Master (PtrT)) then
deb8dacc 3997
b254da66
AC
3998 -- Special processing for .NET/JVM, the allocated object
3999 -- is attached to the finalization master. Generate:
deb8dacc 4000
b254da66 4001 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
deb8dacc 4002
b254da66
AC
4003 -- Types derived from [Limited_]Controlled are the only
4004 -- ones considered since they have fields Prev and Next.
4005
e0c32166
AC
4006 if VM_Target /= No_VM then
4007 if Is_Controlled (T) then
4008 Insert_Action (N,
4009 Make_Attach_Call
4010 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4011 Ptr_Typ => PtrT));
4012 end if;
b254da66
AC
4013
4014 -- Default case, generate:
4015
4016 -- Set_Finalize_Address
4017 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4018
2bfa5484
HK
4019 -- Do not generate this call in the following cases:
4020 --
4021 -- * Alfa mode - the call is useless and results in
4022 -- unwanted expansion.
4023 --
4024 -- * CodePeer mode - TSS primitive Finalize_Address is
4025 -- not created in this mode.
b254da66 4026
2bfa5484
HK
4027 elsif not Alfa_Mode
4028 and then not CodePeer_Mode
4029 then
b254da66
AC
4030 Insert_Action (N,
4031 Make_Set_Finalize_Address_Call
4032 (Loc => Loc,
4033 Typ => T,
4034 Ptr_Typ => PtrT));
4035 end if;
b4592168 4036 end if;
70482933
RK
4037 end if;
4038
b4592168
GD
4039 Rewrite (N, New_Reference_To (Temp, Loc));
4040 Analyze_And_Resolve (N, PtrT);
4041 end if;
26bff3d9
JM
4042 end if;
4043 end;
f82944b7 4044
26bff3d9
JM
4045 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4046 -- object that has been rewritten as a reference, we displace "this"
4047 -- to reference properly its secondary dispatch table.
4048
4049 if Nkind (N) = N_Identifier
f82944b7
JM
4050 and then Is_Interface (Dtyp)
4051 then
26bff3d9 4052 Displace_Allocator_Pointer (N);
f82944b7
JM
4053 end if;
4054
fbf5a39b
AC
4055 exception
4056 when RE_Not_Available =>
4057 return;
70482933
RK
4058 end Expand_N_Allocator;
4059
4060 -----------------------
4061 -- Expand_N_And_Then --
4062 -----------------------
4063
5875f8d6
AC
4064 procedure Expand_N_And_Then (N : Node_Id)
4065 renames Expand_Short_Circuit_Operator;
70482933 4066
19d846a0
RD
4067 ------------------------------
4068 -- Expand_N_Case_Expression --
4069 ------------------------------
4070
4071 procedure Expand_N_Case_Expression (N : Node_Id) is
4072 Loc : constant Source_Ptr := Sloc (N);
4073 Typ : constant Entity_Id := Etype (N);
4074 Cstmt : Node_Id;
4075 Tnn : Entity_Id;
4076 Pnn : Entity_Id;
4077 Actions : List_Id;
4078 Ttyp : Entity_Id;
4079 Alt : Node_Id;
4080 Fexp : Node_Id;
4081
4082 begin
4083 -- We expand
4084
4085 -- case X is when A => AX, when B => BX ...
4086
4087 -- to
4088
4089 -- do
4090 -- Tnn : typ;
4091 -- case X is
4092 -- when A =>
4093 -- Tnn := AX;
4094 -- when B =>
4095 -- Tnn := BX;
4096 -- ...
4097 -- end case;
4098 -- in Tnn end;
4099
4100 -- However, this expansion is wrong for limited types, and also
4101 -- wrong for unconstrained types (since the bounds may not be the
4102 -- same in all branches). Furthermore it involves an extra copy
4103 -- for large objects. So we take care of this by using the following
4104 -- modified expansion for non-scalar types:
4105
4106 -- do
4107 -- type Pnn is access all typ;
4108 -- Tnn : Pnn;
4109 -- case X is
4110 -- when A =>
4111 -- T := AX'Unrestricted_Access;
4112 -- when B =>
4113 -- T := BX'Unrestricted_Access;
4114 -- ...
4115 -- end case;
4116 -- in Tnn.all end;
4117
4118 Cstmt :=
4119 Make_Case_Statement (Loc,
4120 Expression => Expression (N),
4121 Alternatives => New_List);
4122
4123 Actions := New_List;
4124
4125 -- Scalar case
4126
4127 if Is_Scalar_Type (Typ) then
4128 Ttyp := Typ;
4129
4130 else
4131 Pnn := Make_Temporary (Loc, 'P');
4132 Append_To (Actions,
4133 Make_Full_Type_Declaration (Loc,
4134 Defining_Identifier => Pnn,
4135 Type_Definition =>
4136 Make_Access_To_Object_Definition (Loc,
4137 All_Present => True,
4138 Subtype_Indication =>
4139 New_Reference_To (Typ, Loc))));
4140 Ttyp := Pnn;
4141 end if;
4142
4143 Tnn := Make_Temporary (Loc, 'T');
4144 Append_To (Actions,
4145 Make_Object_Declaration (Loc,
4146 Defining_Identifier => Tnn,
4147 Object_Definition => New_Occurrence_Of (Ttyp, Loc)));
4148
4149 -- Now process the alternatives
4150
4151 Alt := First (Alternatives (N));
4152 while Present (Alt) loop
4153 declare
eaed0c37
AC
4154 Aexp : Node_Id := Expression (Alt);
4155 Aloc : constant Source_Ptr := Sloc (Aexp);
4156 Stats : List_Id;
19d846a0
RD
4157
4158 begin
eaed0c37
AC
4159 -- As described above, take Unrestricted_Access for case of non-
4160 -- scalar types, to avoid big copies, and special cases.
05dbd302 4161
19d846a0
RD
4162 if not Is_Scalar_Type (Typ) then
4163 Aexp :=
4164 Make_Attribute_Reference (Aloc,
4165 Prefix => Relocate_Node (Aexp),
4166 Attribute_Name => Name_Unrestricted_Access);
4167 end if;
4168
eaed0c37
AC
4169 Stats := New_List (
4170 Make_Assignment_Statement (Aloc,
4171 Name => New_Occurrence_Of (Tnn, Loc),
4172 Expression => Aexp));
4173
4174 -- Propagate declarations inserted in the node by Insert_Actions
4175 -- (for example, temporaries generated to remove side effects).
4176 -- These actions must remain attached to the alternative, given
4177 -- that they are generated by the corresponding expression.
4178
4179 if Present (Sinfo.Actions (Alt)) then
4180 Prepend_List (Sinfo.Actions (Alt), Stats);
4181 end if;
4182
19d846a0
RD
4183 Append_To
4184 (Alternatives (Cstmt),
4185 Make_Case_Statement_Alternative (Sloc (Alt),
4186 Discrete_Choices => Discrete_Choices (Alt),
eaed0c37 4187 Statements => Stats));
19d846a0
RD
4188 end;
4189
4190 Next (Alt);
4191 end loop;
4192
4193 Append_To (Actions, Cstmt);
4194
4195 -- Construct and return final expression with actions
4196
4197 if Is_Scalar_Type (Typ) then
4198 Fexp := New_Occurrence_Of (Tnn, Loc);
4199 else
4200 Fexp :=
4201 Make_Explicit_Dereference (Loc,
4202 Prefix => New_Occurrence_Of (Tnn, Loc));
4203 end if;
4204
4205 Rewrite (N,
4206 Make_Expression_With_Actions (Loc,
4207 Expression => Fexp,
4208 Actions => Actions));
4209
4210 Analyze_And_Resolve (N, Typ);
4211 end Expand_N_Case_Expression;
4212
70482933
RK
4213 -------------------------------------
4214 -- Expand_N_Conditional_Expression --
4215 -------------------------------------
4216
305caf42 4217 -- Deal with limited types and expression actions
70482933
RK
4218
4219 procedure Expand_N_Conditional_Expression (N : Node_Id) is
4220 Loc : constant Source_Ptr := Sloc (N);
4221 Cond : constant Node_Id := First (Expressions (N));
4222 Thenx : constant Node_Id := Next (Cond);
4223 Elsex : constant Node_Id := Next (Thenx);
4224 Typ : constant Entity_Id := Etype (N);
c471e2da 4225
602a7ec0
AC
4226 Cnn : Entity_Id;
4227 Decl : Node_Id;
4228 New_If : Node_Id;
4229 New_N : Node_Id;
4230 P_Decl : Node_Id;
4231 Expr : Node_Id;
4232 Actions : List_Id;
70482933
RK
4233
4234 begin
602a7ec0
AC
4235 -- Fold at compile time if condition known. We have already folded
4236 -- static conditional expressions, but it is possible to fold any
4237 -- case in which the condition is known at compile time, even though
4238 -- the result is non-static.
4239
4240 -- Note that we don't do the fold of such cases in Sem_Elab because
4241 -- it can cause infinite loops with the expander adding a conditional
4242 -- expression, and Sem_Elab circuitry removing it repeatedly.
4243
4244 if Compile_Time_Known_Value (Cond) then
4245 if Is_True (Expr_Value (Cond)) then
4246 Expr := Thenx;
4247 Actions := Then_Actions (N);
4248 else
4249 Expr := Elsex;
4250 Actions := Else_Actions (N);
4251 end if;
4252
4253 Remove (Expr);
ae77c68b
AC
4254
4255 if Present (Actions) then
4256
9d641fc0
TQ
4257 -- If we are not allowed to use Expression_With_Actions, just skip
4258 -- the optimization, it is not critical for correctness.
ae77c68b
AC
4259
4260 if not Use_Expression_With_Actions then
4261 goto Skip_Optimization;
4262 end if;
4263
4264 Rewrite (N,
4265 Make_Expression_With_Actions (Loc,
4266 Expression => Relocate_Node (Expr),
4267 Actions => Actions));
4268 Analyze_And_Resolve (N, Typ);
4269
4270 else
4271 Rewrite (N, Relocate_Node (Expr));
4272 end if;
602a7ec0
AC
4273
4274 -- Note that the result is never static (legitimate cases of static
4275 -- conditional expressions were folded in Sem_Eval).
4276
4277 Set_Is_Static_Expression (N, False);
4278 return;
4279 end if;
4280
ae77c68b
AC
4281 <<Skip_Optimization>>
4282
305caf42
AC
4283 -- If the type is limited or unconstrained, we expand as follows to
4284 -- avoid any possibility of improper copies.
70482933 4285
305caf42
AC
4286 -- Note: it may be possible to avoid this special processing if the
4287 -- back end uses its own mechanisms for handling by-reference types ???
ac7120ce 4288
c471e2da
AC
4289 -- type Ptr is access all Typ;
4290 -- Cnn : Ptr;
ac7120ce
RD
4291 -- if cond then
4292 -- <<then actions>>
4293 -- Cnn := then-expr'Unrestricted_Access;
4294 -- else
4295 -- <<else actions>>
4296 -- Cnn := else-expr'Unrestricted_Access;
4297 -- end if;
4298
308e6f3a 4299 -- and replace the conditional expression by a reference to Cnn.all.
ac7120ce 4300
305caf42
AC
4301 -- This special case can be skipped if the back end handles limited
4302 -- types properly and ensures that no incorrect copies are made.
4303
4304 if Is_By_Reference_Type (Typ)
4305 and then not Back_End_Handles_Limited_Types
4306 then
faf387e1 4307 Cnn := Make_Temporary (Loc, 'C', N);
70482933 4308
c471e2da
AC
4309 P_Decl :=
4310 Make_Full_Type_Declaration (Loc,
df3e68b1
HK
4311 Defining_Identifier =>
4312 Make_Temporary (Loc, 'A'),
c471e2da
AC
4313 Type_Definition =>
4314 Make_Access_To_Object_Definition (Loc,
243cae0a
AC
4315 All_Present => True,
4316 Subtype_Indication => New_Reference_To (Typ, Loc)));
c471e2da
AC
4317
4318 Insert_Action (N, P_Decl);
4319
4320 Decl :=
4321 Make_Object_Declaration (Loc,
4322 Defining_Identifier => Cnn,
4323 Object_Definition =>
4324 New_Occurrence_Of (Defining_Identifier (P_Decl), Loc));
4325
70482933
RK
4326 New_If :=
4327 Make_Implicit_If_Statement (N,
4328 Condition => Relocate_Node (Cond),
4329
4330 Then_Statements => New_List (
4331 Make_Assignment_Statement (Sloc (Thenx),
243cae0a 4332 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
c471e2da
AC
4333 Expression =>
4334 Make_Attribute_Reference (Loc,
4335 Attribute_Name => Name_Unrestricted_Access,
243cae0a 4336 Prefix => Relocate_Node (Thenx)))),
70482933
RK
4337
4338 Else_Statements => New_List (
4339 Make_Assignment_Statement (Sloc (Elsex),
243cae0a 4340 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
c471e2da
AC
4341 Expression =>
4342 Make_Attribute_Reference (Loc,
4343 Attribute_Name => Name_Unrestricted_Access,
243cae0a 4344 Prefix => Relocate_Node (Elsex)))));
70482933 4345
c471e2da
AC
4346 New_N :=
4347 Make_Explicit_Dereference (Loc,
4348 Prefix => New_Occurrence_Of (Cnn, Loc));
fb1949a0 4349
c471e2da
AC
4350 -- For other types, we only need to expand if there are other actions
4351 -- associated with either branch.
4352
4353 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
c471e2da 4354
305caf42
AC
4355 -- We have two approaches to handling this. If we are allowed to use
4356 -- N_Expression_With_Actions, then we can just wrap the actions into
4357 -- the appropriate expression.
4358
4359 if Use_Expression_With_Actions then
4360 if Present (Then_Actions (N)) then
4361 Rewrite (Thenx,
4362 Make_Expression_With_Actions (Sloc (Thenx),
4363 Actions => Then_Actions (N),
4364 Expression => Relocate_Node (Thenx)));
48b351d9 4365 Set_Then_Actions (N, No_List);
305caf42
AC
4366 Analyze_And_Resolve (Thenx, Typ);
4367 end if;
c471e2da 4368
305caf42
AC
4369 if Present (Else_Actions (N)) then
4370 Rewrite (Elsex,
4371 Make_Expression_With_Actions (Sloc (Elsex),
4372 Actions => Else_Actions (N),
4373 Expression => Relocate_Node (Elsex)));
48b351d9 4374 Set_Else_Actions (N, No_List);
305caf42
AC
4375 Analyze_And_Resolve (Elsex, Typ);
4376 end if;
c471e2da 4377
305caf42 4378 return;
c471e2da 4379
305caf42
AC
4380 -- if we can't use N_Expression_With_Actions nodes, then we insert
4381 -- the following sequence of actions (using Insert_Actions):
fb1949a0 4382
305caf42
AC
4383 -- Cnn : typ;
4384 -- if cond then
4385 -- <<then actions>>
4386 -- Cnn := then-expr;
4387 -- else
4388 -- <<else actions>>
4389 -- Cnn := else-expr
4390 -- end if;
fbf5a39b 4391
305caf42 4392 -- and replace the conditional expression by a reference to Cnn
70482933 4393
305caf42
AC
4394 else
4395 Cnn := Make_Temporary (Loc, 'C', N);
4396
4397 Decl :=
4398 Make_Object_Declaration (Loc,
4399 Defining_Identifier => Cnn,
4400 Object_Definition => New_Occurrence_Of (Typ, Loc));
4401
4402 New_If :=
4403 Make_Implicit_If_Statement (N,
4404 Condition => Relocate_Node (Cond),
4405
4406 Then_Statements => New_List (
4407 Make_Assignment_Statement (Sloc (Thenx),
4408 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4409 Expression => Relocate_Node (Thenx))),
4410
4411 Else_Statements => New_List (
4412 Make_Assignment_Statement (Sloc (Elsex),
4413 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4414 Expression => Relocate_Node (Elsex))));
70482933 4415
305caf42
AC
4416 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
4417 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
4418
4419 New_N := New_Occurrence_Of (Cnn, Loc);
4420 end if;
4421
4422 -- If no actions then no expansion needed, gigi will handle it using
4423 -- the same approach as a C conditional expression.
4424
4425 else
c471e2da
AC
4426 return;
4427 end if;
4428
305caf42
AC
4429 -- Fall through here for either the limited expansion, or the case of
4430 -- inserting actions for non-limited types. In both these cases, we must
4431 -- move the SLOC of the parent If statement to the newly created one and
3fc5d116
RD
4432 -- change it to the SLOC of the expression which, after expansion, will
4433 -- correspond to what is being evaluated.
c471e2da
AC
4434
4435 if Present (Parent (N))
4436 and then Nkind (Parent (N)) = N_If_Statement
4437 then
4438 Set_Sloc (New_If, Sloc (Parent (N)));
4439 Set_Sloc (Parent (N), Loc);
4440 end if;
70482933 4441
3fc5d116
RD
4442 -- Make sure Then_Actions and Else_Actions are appropriately moved
4443 -- to the new if statement.
4444
c471e2da
AC
4445 if Present (Then_Actions (N)) then
4446 Insert_List_Before
4447 (First (Then_Statements (New_If)), Then_Actions (N));
70482933 4448 end if;
c471e2da
AC
4449
4450 if Present (Else_Actions (N)) then
4451 Insert_List_Before
4452 (First (Else_Statements (New_If)), Else_Actions (N));
4453 end if;
4454
4455 Insert_Action (N, Decl);
4456 Insert_Action (N, New_If);
4457 Rewrite (N, New_N);
4458 Analyze_And_Resolve (N, Typ);
70482933
RK
4459 end Expand_N_Conditional_Expression;
4460
4461 -----------------------------------
4462 -- Expand_N_Explicit_Dereference --
4463 -----------------------------------
4464
4465 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
4466 begin
dfd99a80 4467 -- Insert explicit dereference call for the checked storage pool case
70482933
RK
4468
4469 Insert_Dereference_Action (Prefix (N));
5972791c
AC
4470
4471 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
4472 -- we set the atomic sync flag.
4473
4474 if Is_Atomic (Etype (N))
4475 and then not Atomic_Synchronization_Disabled (Etype (N))
4476 then
4c318253 4477 Activate_Atomic_Synchronization (N);
5972791c 4478 end if;
70482933
RK
4479 end Expand_N_Explicit_Dereference;
4480
35a1c212
AC
4481 --------------------------------------
4482 -- Expand_N_Expression_With_Actions --
4483 --------------------------------------
4484
4485 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
4486
4487 procedure Process_Transient_Object (Decl : Node_Id);
4488 -- Given the declaration of a controlled transient declared inside the
4489 -- Actions list of an Expression_With_Actions, generate all necessary
4490 -- types and hooks in order to properly finalize the transient. This
4491 -- mechanism works in conjunction with Build_Finalizer.
4492
4493 ------------------------------
4494 -- Process_Transient_Object --
4495 ------------------------------
4496
4497 procedure Process_Transient_Object (Decl : Node_Id) is
35a1c212 4498
fecbd779 4499 function Find_Insertion_Node return Node_Id;
db15225a
AC
4500 -- Complex conditions in if statements may be converted into nested
4501 -- EWAs. In this case, any generated code must be inserted before the
4502 -- if statement to ensure proper visibility of the hook objects. This
4503 -- routine returns the top most short circuit operator or the parent
4504 -- of the EWA if no nesting was detected.
fecbd779
AC
4505
4506 -------------------------
4507 -- Find_Insertion_Node --
4508 -------------------------
4509
4510 function Find_Insertion_Node return Node_Id is
3040dbd4 4511 Par : Node_Id;
fecbd779
AC
4512
4513 begin
db15225a 4514 -- Climb up the branches of a complex condition
fecbd779 4515
3040dbd4 4516 Par := N;
fecbd779
AC
4517 while Nkind_In (Parent (Par), N_And_Then, N_Op_Not, N_Or_Else) loop
4518 Par := Parent (Par);
4519 end loop;
4520
4521 return Par;
4522 end Find_Insertion_Node;
4523
3040dbd4
RD
4524 -- Local variables
4525
db15225a 4526 Ins_Node : constant Node_Id := Find_Insertion_Node;
35a1c212
AC
4527 Loc : constant Source_Ptr := Sloc (Decl);
4528 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4529 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
4530 Desig_Typ : Entity_Id;
4531 Expr : Node_Id;
4532 Ptr_Decl : Node_Id;
4533 Ptr_Id : Entity_Id;
4534 Temp_Decl : Node_Id;
4535 Temp_Id : Node_Id;
4536
9d641fc0
TQ
4537 -- Start of processing for Process_Transient_Object
4538
35a1c212 4539 begin
3040dbd4
RD
4540 -- Step 1: Create the access type which provides a reference to the
4541 -- transient object.
35a1c212
AC
4542
4543 if Is_Access_Type (Obj_Typ) then
4544 Desig_Typ := Directly_Designated_Type (Obj_Typ);
4545 else
4546 Desig_Typ := Obj_Typ;
4547 end if;
4548
4549 -- Generate:
4550 -- Ann : access [all] <Desig_Typ>;
4551
4552 Ptr_Id := Make_Temporary (Loc, 'A');
4553
4554 Ptr_Decl :=
4555 Make_Full_Type_Declaration (Loc,
4556 Defining_Identifier => Ptr_Id,
3040dbd4
RD
4557 Type_Definition =>
4558 Make_Access_To_Object_Definition (Loc,
4559 All_Present =>
4560 Ekind (Obj_Typ) = E_General_Access_Type,
4561 Subtype_Indication => New_Reference_To (Desig_Typ, Loc)));
35a1c212 4562
db15225a 4563 Insert_Action (Ins_Node, Ptr_Decl);
35a1c212
AC
4564 Analyze (Ptr_Decl);
4565
4566 -- Step 2: Create a temporary which acts as a hook to the transient
4567 -- object. Generate:
4568
4569 -- Temp : Ptr_Id := null;
4570
4571 Temp_Id := Make_Temporary (Loc, 'T');
4572
4573 Temp_Decl :=
4574 Make_Object_Declaration (Loc,
4575 Defining_Identifier => Temp_Id,
4576 Object_Definition => New_Reference_To (Ptr_Id, Loc));
4577
db15225a 4578 Insert_Action (Ins_Node, Temp_Decl);
35a1c212
AC
4579 Analyze (Temp_Decl);
4580
db15225a 4581 -- Mark this temporary as created for the purposes of exporting the
35a1c212
AC
4582 -- transient declaration out of the Actions list. This signals the
4583 -- machinery in Build_Finalizer to recognize this special case.
4584
4585 Set_Return_Flag_Or_Transient_Decl (Temp_Id, Decl);
4586
db15225a 4587 -- Step 3: Hook the transient object to the temporary
35a1c212
AC
4588
4589 if Is_Access_Type (Obj_Typ) then
4590 Expr := Convert_To (Ptr_Id, New_Reference_To (Obj_Id, Loc));
4591 else
4592 Expr :=
4593 Make_Attribute_Reference (Loc,
4fdebd93 4594 Prefix => New_Reference_To (Obj_Id, Loc),
35a1c212
AC
4595 Attribute_Name => Name_Unrestricted_Access);
4596 end if;
4597
4598 -- Generate:
4599 -- Temp := Ptr_Id (Obj_Id);
4600 -- <or>
4601 -- Temp := Obj_Id'Unrestricted_Access;
4602
4603 Insert_After_And_Analyze (Decl,
4604 Make_Assignment_Statement (Loc,
4605 Name => New_Reference_To (Temp_Id, Loc),
4606 Expression => Expr));
4607 end Process_Transient_Object;
4608
db15225a
AC
4609 -- Local variables
4610
35a1c212
AC
4611 Decl : Node_Id;
4612
4613 -- Start of processing for Expand_N_Expression_With_Actions
4614
4615 begin
4616 Decl := First (Actions (N));
4617 while Present (Decl) loop
4618 if Nkind (Decl) = N_Object_Declaration
4619 and then Is_Finalizable_Transient (Decl, N)
4620 then
4621 Process_Transient_Object (Decl);
4622 end if;
4623
4624 Next (Decl);
4625 end loop;
4626 end Expand_N_Expression_With_Actions;
4627
70482933
RK
4628 -----------------
4629 -- Expand_N_In --
4630 -----------------
4631
4632 procedure Expand_N_In (N : Node_Id) is
7324bf49 4633 Loc : constant Source_Ptr := Sloc (N);
4818e7b9 4634 Restyp : constant Entity_Id := Etype (N);
7324bf49
AC
4635 Lop : constant Node_Id := Left_Opnd (N);
4636 Rop : constant Node_Id := Right_Opnd (N);
4637 Static : constant Boolean := Is_OK_Static_Expression (N);
70482933 4638
4818e7b9
RD
4639 Ltyp : Entity_Id;
4640 Rtyp : Entity_Id;
4641
630d30e9
RD
4642 procedure Substitute_Valid_Check;
4643 -- Replaces node N by Lop'Valid. This is done when we have an explicit
4644 -- test for the left operand being in range of its subtype.
4645
4646 ----------------------------
4647 -- Substitute_Valid_Check --
4648 ----------------------------
4649
4650 procedure Substitute_Valid_Check is
4651 begin
c7532b2d
AC
4652 Rewrite (N,
4653 Make_Attribute_Reference (Loc,
4654 Prefix => Relocate_Node (Lop),
4655 Attribute_Name => Name_Valid));
630d30e9 4656
c7532b2d 4657 Analyze_And_Resolve (N, Restyp);
630d30e9 4658
c7532b2d
AC
4659 Error_Msg_N ("?explicit membership test may be optimized away", N);
4660 Error_Msg_N -- CODEFIX
4661 ("\?use ''Valid attribute instead", N);
4662 return;
630d30e9
RD
4663 end Substitute_Valid_Check;
4664
4665 -- Start of processing for Expand_N_In
4666
70482933 4667 begin
308e6f3a 4668 -- If set membership case, expand with separate procedure
4818e7b9 4669
197e4514 4670 if Present (Alternatives (N)) then
a3068ca6 4671 Expand_Set_Membership (N);
197e4514
AC
4672 return;
4673 end if;
4674
4818e7b9
RD
4675 -- Not set membership, proceed with expansion
4676
4677 Ltyp := Etype (Left_Opnd (N));
4678 Rtyp := Etype (Right_Opnd (N));
4679
630d30e9
RD
4680 -- Check case of explicit test for an expression in range of its
4681 -- subtype. This is suspicious usage and we replace it with a 'Valid
9a0ddeee 4682 -- test and give a warning. For floating point types however, this is a
c95e0edc 4683 -- standard way to check for finite numbers, and using 'Valid would
c7532b2d
AC
4684 -- typically be a pessimization. Also skip this test for predicated
4685 -- types, since it is perfectly reasonable to check if a value meets
4686 -- its predicate.
630d30e9 4687
4818e7b9
RD
4688 if Is_Scalar_Type (Ltyp)
4689 and then not Is_Floating_Point_Type (Ltyp)
630d30e9 4690 and then Nkind (Rop) in N_Has_Entity
4818e7b9 4691 and then Ltyp = Entity (Rop)
630d30e9 4692 and then Comes_From_Source (N)
26bff3d9 4693 and then VM_Target = No_VM
c7532b2d
AC
4694 and then not (Is_Discrete_Type (Ltyp)
4695 and then Present (Predicate_Function (Ltyp)))
630d30e9
RD
4696 then
4697 Substitute_Valid_Check;
4698 return;
4699 end if;
4700
20b5d666
JM
4701 -- Do validity check on operands
4702
4703 if Validity_Checks_On and Validity_Check_Operands then
4704 Ensure_Valid (Left_Opnd (N));
4705 Validity_Check_Range (Right_Opnd (N));
4706 end if;
4707
630d30e9 4708 -- Case of explicit range
fbf5a39b
AC
4709
4710 if Nkind (Rop) = N_Range then
4711 declare
630d30e9
RD
4712 Lo : constant Node_Id := Low_Bound (Rop);
4713 Hi : constant Node_Id := High_Bound (Rop);
4714
4715 Lo_Orig : constant Node_Id := Original_Node (Lo);
4716 Hi_Orig : constant Node_Id := Original_Node (Hi);
4717
c800f862
RD
4718 Lcheck : Compare_Result;
4719 Ucheck : Compare_Result;
fbf5a39b 4720
d766cee3
RD
4721 Warn1 : constant Boolean :=
4722 Constant_Condition_Warnings
c800f862
RD
4723 and then Comes_From_Source (N)
4724 and then not In_Instance;
d766cee3 4725 -- This must be true for any of the optimization warnings, we
9a0ddeee
AC
4726 -- clearly want to give them only for source with the flag on. We
4727 -- also skip these warnings in an instance since it may be the
4728 -- case that different instantiations have different ranges.
d766cee3
RD
4729
4730 Warn2 : constant Boolean :=
4731 Warn1
4732 and then Nkind (Original_Node (Rop)) = N_Range
4733 and then Is_Integer_Type (Etype (Lo));
4734 -- For the case where only one bound warning is elided, we also
4735 -- insist on an explicit range and an integer type. The reason is
4736 -- that the use of enumeration ranges including an end point is
9a0ddeee
AC
4737 -- common, as is the use of a subtype name, one of whose bounds is
4738 -- the same as the type of the expression.
d766cee3 4739
fbf5a39b 4740 begin
c95e0edc 4741 -- If test is explicit x'First .. x'Last, replace by valid check
630d30e9 4742
e606088a
AC
4743 -- Could use some individual comments for this complex test ???
4744
d766cee3 4745 if Is_Scalar_Type (Ltyp)
630d30e9
RD
4746 and then Nkind (Lo_Orig) = N_Attribute_Reference
4747 and then Attribute_Name (Lo_Orig) = Name_First
4748 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
d766cee3 4749 and then Entity (Prefix (Lo_Orig)) = Ltyp
630d30e9
RD
4750 and then Nkind (Hi_Orig) = N_Attribute_Reference
4751 and then Attribute_Name (Hi_Orig) = Name_Last
4752 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
d766cee3 4753 and then Entity (Prefix (Hi_Orig)) = Ltyp
630d30e9 4754 and then Comes_From_Source (N)
26bff3d9 4755 and then VM_Target = No_VM
630d30e9
RD
4756 then
4757 Substitute_Valid_Check;
4818e7b9 4758 goto Leave;
630d30e9
RD
4759 end if;
4760
d766cee3
RD
4761 -- If bounds of type are known at compile time, and the end points
4762 -- are known at compile time and identical, this is another case
4763 -- for substituting a valid test. We only do this for discrete
4764 -- types, since it won't arise in practice for float types.
4765
4766 if Comes_From_Source (N)
4767 and then Is_Discrete_Type (Ltyp)
4768 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
4769 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
4770 and then Compile_Time_Known_Value (Lo)
4771 and then Compile_Time_Known_Value (Hi)
4772 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
4773 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
94eefd2e
RD
4774
4775 -- Kill warnings in instances, since they may be cases where we
4776 -- have a test in the generic that makes sense with some types
4777 -- and not with other types.
4778
4779 and then not In_Instance
d766cee3
RD
4780 then
4781 Substitute_Valid_Check;
4818e7b9 4782 goto Leave;
d766cee3
RD
4783 end if;
4784
9a0ddeee
AC
4785 -- If we have an explicit range, do a bit of optimization based on
4786 -- range analysis (we may be able to kill one or both checks).
630d30e9 4787
c800f862
RD
4788 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
4789 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
4790
630d30e9
RD
4791 -- If either check is known to fail, replace result by False since
4792 -- the other check does not matter. Preserve the static flag for
4793 -- legality checks, because we are constant-folding beyond RM 4.9.
fbf5a39b
AC
4794
4795 if Lcheck = LT or else Ucheck = GT then
c800f862 4796 if Warn1 then
ed2233dc
AC
4797 Error_Msg_N ("?range test optimized away", N);
4798 Error_Msg_N ("\?value is known to be out of range", N);
d766cee3
RD
4799 end if;
4800
9a0ddeee 4801 Rewrite (N, New_Reference_To (Standard_False, Loc));
4818e7b9 4802 Analyze_And_Resolve (N, Restyp);
7324bf49 4803 Set_Is_Static_Expression (N, Static);
4818e7b9 4804 goto Leave;
fbf5a39b 4805
685094bf
RD
4806 -- If both checks are known to succeed, replace result by True,
4807 -- since we know we are in range.
fbf5a39b
AC
4808
4809 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
c800f862 4810 if Warn1 then
ed2233dc
AC
4811 Error_Msg_N ("?range test optimized away", N);
4812 Error_Msg_N ("\?value is known to be in range", N);
d766cee3
RD
4813 end if;
4814
9a0ddeee 4815 Rewrite (N, New_Reference_To (Standard_True, Loc));
4818e7b9 4816 Analyze_And_Resolve (N, Restyp);
7324bf49 4817 Set_Is_Static_Expression (N, Static);
4818e7b9 4818 goto Leave;
fbf5a39b 4819
d766cee3
RD
4820 -- If lower bound check succeeds and upper bound check is not
4821 -- known to succeed or fail, then replace the range check with
4822 -- a comparison against the upper bound.
fbf5a39b
AC
4823
4824 elsif Lcheck in Compare_GE then
94eefd2e 4825 if Warn2 and then not In_Instance then
ed2233dc
AC
4826 Error_Msg_N ("?lower bound test optimized away", Lo);
4827 Error_Msg_N ("\?value is known to be in range", Lo);
d766cee3
RD
4828 end if;
4829
fbf5a39b
AC
4830 Rewrite (N,
4831 Make_Op_Le (Loc,
4832 Left_Opnd => Lop,
4833 Right_Opnd => High_Bound (Rop)));
4818e7b9
RD
4834 Analyze_And_Resolve (N, Restyp);
4835 goto Leave;
fbf5a39b 4836
d766cee3
RD
4837 -- If upper bound check succeeds and lower bound check is not
4838 -- known to succeed or fail, then replace the range check with
4839 -- a comparison against the lower bound.
fbf5a39b
AC
4840
4841 elsif Ucheck in Compare_LE then
94eefd2e 4842 if Warn2 and then not In_Instance then
ed2233dc
AC
4843 Error_Msg_N ("?upper bound test optimized away", Hi);
4844 Error_Msg_N ("\?value is known to be in range", Hi);
d766cee3
RD
4845 end if;
4846
fbf5a39b
AC
4847 Rewrite (N,
4848 Make_Op_Ge (Loc,
4849 Left_Opnd => Lop,
4850 Right_Opnd => Low_Bound (Rop)));
4818e7b9
RD
4851 Analyze_And_Resolve (N, Restyp);
4852 goto Leave;
fbf5a39b 4853 end if;
c800f862
RD
4854
4855 -- We couldn't optimize away the range check, but there is one
4856 -- more issue. If we are checking constant conditionals, then we
4857 -- see if we can determine the outcome assuming everything is
4858 -- valid, and if so give an appropriate warning.
4859
4860 if Warn1 and then not Assume_No_Invalid_Values then
4861 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
4862 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
4863
4864 -- Result is out of range for valid value
4865
4866 if Lcheck = LT or else Ucheck = GT then
ed2233dc 4867 Error_Msg_N
c800f862
RD
4868 ("?value can only be in range if it is invalid", N);
4869
4870 -- Result is in range for valid value
4871
4872 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
ed2233dc 4873 Error_Msg_N
c800f862
RD
4874 ("?value can only be out of range if it is invalid", N);
4875
4876 -- Lower bound check succeeds if value is valid
4877
4878 elsif Warn2 and then Lcheck in Compare_GE then
ed2233dc 4879 Error_Msg_N
c800f862
RD
4880 ("?lower bound check only fails if it is invalid", Lo);
4881
4882 -- Upper bound check succeeds if value is valid
4883
4884 elsif Warn2 and then Ucheck in Compare_LE then
ed2233dc 4885 Error_Msg_N
c800f862
RD
4886 ("?upper bound check only fails for invalid values", Hi);
4887 end if;
4888 end if;
fbf5a39b
AC
4889 end;
4890
4891 -- For all other cases of an explicit range, nothing to be done
70482933 4892
4818e7b9 4893 goto Leave;
70482933
RK
4894
4895 -- Here right operand is a subtype mark
4896
4897 else
4898 declare
82878151
AC
4899 Typ : Entity_Id := Etype (Rop);
4900 Is_Acc : constant Boolean := Is_Access_Type (Typ);
4901 Cond : Node_Id := Empty;
4902 New_N : Node_Id;
4903 Obj : Node_Id := Lop;
4904 SCIL_Node : Node_Id;
70482933
RK
4905
4906 begin
4907 Remove_Side_Effects (Obj);
4908
4909 -- For tagged type, do tagged membership operation
4910
4911 if Is_Tagged_Type (Typ) then
fbf5a39b 4912
26bff3d9
JM
4913 -- No expansion will be performed when VM_Target, as the VM
4914 -- back-ends will handle the membership tests directly (tags
4915 -- are not explicitly represented in Java objects, so the
4916 -- normal tagged membership expansion is not what we want).
70482933 4917
1f110335 4918 if Tagged_Type_Expansion then
82878151
AC
4919 Tagged_Membership (N, SCIL_Node, New_N);
4920 Rewrite (N, New_N);
4818e7b9 4921 Analyze_And_Resolve (N, Restyp);
82878151
AC
4922
4923 -- Update decoration of relocated node referenced by the
4924 -- SCIL node.
4925
9a0ddeee 4926 if Generate_SCIL and then Present (SCIL_Node) then
7665e4bd 4927 Set_SCIL_Node (N, SCIL_Node);
82878151 4928 end if;
70482933
RK
4929 end if;
4930
4818e7b9 4931 goto Leave;
70482933 4932
c95e0edc 4933 -- If type is scalar type, rewrite as x in t'First .. t'Last.
70482933 4934 -- This reason we do this is that the bounds may have the wrong
c800f862
RD
4935 -- type if they come from the original type definition. Also this
4936 -- way we get all the processing above for an explicit range.
70482933 4937
c7532b2d
AC
4938 -- Don't do this for predicated types, since in this case we
4939 -- want to check the predicate!
c0f136cd 4940
c7532b2d
AC
4941 elsif Is_Scalar_Type (Typ) then
4942 if No (Predicate_Function (Typ)) then
4943 Rewrite (Rop,
4944 Make_Range (Loc,
4945 Low_Bound =>
4946 Make_Attribute_Reference (Loc,
4947 Attribute_Name => Name_First,
4948 Prefix => New_Reference_To (Typ, Loc)),
4949
4950 High_Bound =>
4951 Make_Attribute_Reference (Loc,
4952 Attribute_Name => Name_Last,
4953 Prefix => New_Reference_To (Typ, Loc))));
4954 Analyze_And_Resolve (N, Restyp);
4955 end if;
70482933 4956
4818e7b9 4957 goto Leave;
5d09245e
AC
4958
4959 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
4960 -- a membership test if the subtype mark denotes a constrained
4961 -- Unchecked_Union subtype and the expression lacks inferable
4962 -- discriminants.
4963
4964 elsif Is_Unchecked_Union (Base_Type (Typ))
4965 and then Is_Constrained (Typ)
4966 and then not Has_Inferable_Discriminants (Lop)
4967 then
4968 Insert_Action (N,
4969 Make_Raise_Program_Error (Loc,
4970 Reason => PE_Unchecked_Union_Restriction));
4971
9a0ddeee
AC
4972 -- Prevent Gigi from generating incorrect code by rewriting the
4973 -- test as False.
5d09245e 4974
9a0ddeee 4975 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4818e7b9 4976 goto Leave;
70482933
RK
4977 end if;
4978
fbf5a39b
AC
4979 -- Here we have a non-scalar type
4980
70482933
RK
4981 if Is_Acc then
4982 Typ := Designated_Type (Typ);
4983 end if;
4984
4985 if not Is_Constrained (Typ) then
9a0ddeee 4986 Rewrite (N, New_Reference_To (Standard_True, Loc));
4818e7b9 4987 Analyze_And_Resolve (N, Restyp);
70482933 4988
685094bf
RD
4989 -- For the constrained array case, we have to check the subscripts
4990 -- for an exact match if the lengths are non-zero (the lengths
4991 -- must match in any case).
70482933
RK
4992
4993 elsif Is_Array_Type (Typ) then
fbf5a39b 4994 Check_Subscripts : declare
9a0ddeee 4995 function Build_Attribute_Reference
2e071734
AC
4996 (E : Node_Id;
4997 Nam : Name_Id;
4998 Dim : Nat) return Node_Id;
9a0ddeee 4999 -- Build attribute reference E'Nam (Dim)
70482933 5000
9a0ddeee
AC
5001 -------------------------------
5002 -- Build_Attribute_Reference --
5003 -------------------------------
fbf5a39b 5004
9a0ddeee 5005 function Build_Attribute_Reference
2e071734
AC
5006 (E : Node_Id;
5007 Nam : Name_Id;
5008 Dim : Nat) return Node_Id
70482933
RK
5009 is
5010 begin
5011 return
5012 Make_Attribute_Reference (Loc,
9a0ddeee 5013 Prefix => E,
70482933 5014 Attribute_Name => Nam,
9a0ddeee 5015 Expressions => New_List (
70482933 5016 Make_Integer_Literal (Loc, Dim)));
9a0ddeee 5017 end Build_Attribute_Reference;
70482933 5018
fad0600d 5019 -- Start of processing for Check_Subscripts
fbf5a39b 5020
70482933
RK
5021 begin
5022 for J in 1 .. Number_Dimensions (Typ) loop
5023 Evolve_And_Then (Cond,
5024 Make_Op_Eq (Loc,
5025 Left_Opnd =>
9a0ddeee 5026 Build_Attribute_Reference
fbf5a39b
AC
5027 (Duplicate_Subexpr_No_Checks (Obj),
5028 Name_First, J),
70482933 5029 Right_Opnd =>
9a0ddeee 5030 Build_Attribute_Reference
70482933
RK
5031 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5032
5033 Evolve_And_Then (Cond,
5034 Make_Op_Eq (Loc,
5035 Left_Opnd =>
9a0ddeee 5036 Build_Attribute_Reference
fbf5a39b
AC
5037 (Duplicate_Subexpr_No_Checks (Obj),
5038 Name_Last, J),
70482933 5039 Right_Opnd =>
9a0ddeee 5040 Build_Attribute_Reference
70482933
RK
5041 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5042 end loop;
5043
5044 if Is_Acc then
fbf5a39b
AC
5045 Cond :=
5046 Make_Or_Else (Loc,
5047 Left_Opnd =>
5048 Make_Op_Eq (Loc,
5049 Left_Opnd => Obj,
5050 Right_Opnd => Make_Null (Loc)),
5051 Right_Opnd => Cond);
70482933
RK
5052 end if;
5053
5054 Rewrite (N, Cond);
4818e7b9 5055 Analyze_And_Resolve (N, Restyp);
fbf5a39b 5056 end Check_Subscripts;
70482933 5057
685094bf
RD
5058 -- These are the cases where constraint checks may be required,
5059 -- e.g. records with possible discriminants
70482933
RK
5060
5061 else
5062 -- Expand the test into a series of discriminant comparisons.
685094bf
RD
5063 -- The expression that is built is the negation of the one that
5064 -- is used for checking discriminant constraints.
70482933
RK
5065
5066 Obj := Relocate_Node (Left_Opnd (N));
5067
5068 if Has_Discriminants (Typ) then
5069 Cond := Make_Op_Not (Loc,
5070 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5071
5072 if Is_Acc then
5073 Cond := Make_Or_Else (Loc,
5074 Left_Opnd =>
5075 Make_Op_Eq (Loc,
5076 Left_Opnd => Obj,
5077 Right_Opnd => Make_Null (Loc)),
5078 Right_Opnd => Cond);
5079 end if;
5080
5081 else
5082 Cond := New_Occurrence_Of (Standard_True, Loc);
5083 end if;
5084
5085 Rewrite (N, Cond);
4818e7b9 5086 Analyze_And_Resolve (N, Restyp);
70482933 5087 end if;
6cce2156
GD
5088
5089 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5090 -- expression of an anonymous access type. This can involve an
5091 -- accessibility test and a tagged type membership test in the
5092 -- case of tagged designated types.
5093
5094 if Ada_Version >= Ada_2012
5095 and then Is_Acc
5096 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5097 then
5098 declare
5099 Expr_Entity : Entity_Id := Empty;
5100 New_N : Node_Id;
5101 Param_Level : Node_Id;
5102 Type_Level : Node_Id;
996c8821 5103
6cce2156
GD
5104 begin
5105 if Is_Entity_Name (Lop) then
5106 Expr_Entity := Param_Entity (Lop);
996c8821 5107
6cce2156
GD
5108 if not Present (Expr_Entity) then
5109 Expr_Entity := Entity (Lop);
5110 end if;
5111 end if;
5112
5113 -- If a conversion of the anonymous access value to the
5114 -- tested type would be illegal, then the result is False.
5115
5116 if not Valid_Conversion
5117 (Lop, Rtyp, Lop, Report_Errs => False)
5118 then
5119 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5120 Analyze_And_Resolve (N, Restyp);
5121
5122 -- Apply an accessibility check if the access object has an
5123 -- associated access level and when the level of the type is
5124 -- less deep than the level of the access parameter. This
5125 -- only occur for access parameters and stand-alone objects
5126 -- of an anonymous access type.
5127
5128 else
5129 if Present (Expr_Entity)
996c8821
RD
5130 and then
5131 Present
5132 (Effective_Extra_Accessibility (Expr_Entity))
5133 and then UI_Gt (Object_Access_Level (Lop),
5134 Type_Access_Level (Rtyp))
6cce2156
GD
5135 then
5136 Param_Level :=
5137 New_Occurrence_Of
d15f9422 5138 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6cce2156
GD
5139
5140 Type_Level :=
5141 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
5142
5143 -- Return True only if the accessibility level of the
5144 -- expression entity is not deeper than the level of
5145 -- the tested access type.
5146
5147 Rewrite (N,
5148 Make_And_Then (Loc,
5149 Left_Opnd => Relocate_Node (N),
5150 Right_Opnd => Make_Op_Le (Loc,
5151 Left_Opnd => Param_Level,
5152 Right_Opnd => Type_Level)));
5153
5154 Analyze_And_Resolve (N);
5155 end if;
5156
5157 -- If the designated type is tagged, do tagged membership
5158 -- operation.
5159
5160 -- *** NOTE: we have to check not null before doing the
5161 -- tagged membership test (but maybe that can be done
5162 -- inside Tagged_Membership?).
5163
5164 if Is_Tagged_Type (Typ) then
5165 Rewrite (N,
5166 Make_And_Then (Loc,
5167 Left_Opnd => Relocate_Node (N),
5168 Right_Opnd =>
5169 Make_Op_Ne (Loc,
5170 Left_Opnd => Obj,
5171 Right_Opnd => Make_Null (Loc))));
5172
5173 -- No expansion will be performed when VM_Target, as
5174 -- the VM back-ends will handle the membership tests
5175 -- directly (tags are not explicitly represented in
5176 -- Java objects, so the normal tagged membership
5177 -- expansion is not what we want).
5178
5179 if Tagged_Type_Expansion then
5180
5181 -- Note that we have to pass Original_Node, because
5182 -- the membership test might already have been
5183 -- rewritten by earlier parts of membership test.
5184
5185 Tagged_Membership
5186 (Original_Node (N), SCIL_Node, New_N);
5187
5188 -- Update decoration of relocated node referenced
5189 -- by the SCIL node.
5190
5191 if Generate_SCIL and then Present (SCIL_Node) then
5192 Set_SCIL_Node (New_N, SCIL_Node);
5193 end if;
5194
5195 Rewrite (N,
5196 Make_And_Then (Loc,
5197 Left_Opnd => Relocate_Node (N),
5198 Right_Opnd => New_N));
5199
5200 Analyze_And_Resolve (N, Restyp);
5201 end if;
5202 end if;
5203 end if;
5204 end;
5205 end if;
70482933
RK
5206 end;
5207 end if;
4818e7b9
RD
5208
5209 -- At this point, we have done the processing required for the basic
5210 -- membership test, but not yet dealt with the predicate.
5211
5212 <<Leave>>
5213
c7532b2d
AC
5214 -- If a predicate is present, then we do the predicate test, but we
5215 -- most certainly want to omit this if we are within the predicate
5216 -- function itself, since otherwise we have an infinite recursion!
4818e7b9 5217
c7532b2d
AC
5218 declare
5219 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
4818e7b9 5220
c7532b2d
AC
5221 begin
5222 if Present (PFunc)
5223 and then Current_Scope /= PFunc
5224 then
5225 Rewrite (N,
5226 Make_And_Then (Loc,
5227 Left_Opnd => Relocate_Node (N),
5228 Right_Opnd => Make_Predicate_Call (Rtyp, Lop)));
4818e7b9 5229
c7532b2d
AC
5230 -- Analyze new expression, mark left operand as analyzed to
5231 -- avoid infinite recursion adding predicate calls.
4818e7b9 5232
c7532b2d
AC
5233 Set_Analyzed (Left_Opnd (N));
5234 Analyze_And_Resolve (N, Standard_Boolean);
4818e7b9 5235
c7532b2d
AC
5236 -- All done, skip attempt at compile time determination of result
5237
5238 return;
5239 end if;
5240 end;
70482933
RK
5241 end Expand_N_In;
5242
5243 --------------------------------
5244 -- Expand_N_Indexed_Component --
5245 --------------------------------
5246
5247 procedure Expand_N_Indexed_Component (N : Node_Id) is
5248 Loc : constant Source_Ptr := Sloc (N);
5249 Typ : constant Entity_Id := Etype (N);
5250 P : constant Node_Id := Prefix (N);
5251 T : constant Entity_Id := Etype (P);
5972791c 5252 Atp : Entity_Id;
70482933
RK
5253
5254 begin
685094bf
RD
5255 -- A special optimization, if we have an indexed component that is
5256 -- selecting from a slice, then we can eliminate the slice, since, for
5257 -- example, x (i .. j)(k) is identical to x(k). The only difference is
5258 -- the range check required by the slice. The range check for the slice
5259 -- itself has already been generated. The range check for the
5260 -- subscripting operation is ensured by converting the subject to
5261 -- the subtype of the slice.
5262
5263 -- This optimization not only generates better code, avoiding slice
5264 -- messing especially in the packed case, but more importantly bypasses
5265 -- some problems in handling this peculiar case, for example, the issue
5266 -- of dealing specially with object renamings.
70482933
RK
5267
5268 if Nkind (P) = N_Slice then
5269 Rewrite (N,
5270 Make_Indexed_Component (Loc,
5271 Prefix => Prefix (P),
5272 Expressions => New_List (
5273 Convert_To
5274 (Etype (First_Index (Etype (P))),
5275 First (Expressions (N))))));
5276 Analyze_And_Resolve (N, Typ);
5277 return;
5278 end if;
5279
b4592168
GD
5280 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
5281 -- function, then additional actuals must be passed.
5282
0791fbe9 5283 if Ada_Version >= Ada_2005
b4592168
GD
5284 and then Is_Build_In_Place_Function_Call (P)
5285 then
5286 Make_Build_In_Place_Call_In_Anonymous_Context (P);
5287 end if;
5288
685094bf 5289 -- If the prefix is an access type, then we unconditionally rewrite if
09494c32 5290 -- as an explicit dereference. This simplifies processing for several
685094bf
RD
5291 -- cases, including packed array cases and certain cases in which checks
5292 -- must be generated. We used to try to do this only when it was
5293 -- necessary, but it cleans up the code to do it all the time.
70482933
RK
5294
5295 if Is_Access_Type (T) then
2717634d 5296 Insert_Explicit_Dereference (P);
70482933 5297 Analyze_And_Resolve (P, Designated_Type (T));
5972791c
AC
5298 Atp := Designated_Type (T);
5299 else
5300 Atp := T;
70482933
RK
5301 end if;
5302
fbf5a39b
AC
5303 -- Generate index and validity checks
5304
5305 Generate_Index_Checks (N);
5306
70482933
RK
5307 if Validity_Checks_On and then Validity_Check_Subscripts then
5308 Apply_Subscript_Validity_Checks (N);
5309 end if;
5310
5972791c
AC
5311 -- If selecting from an array with atomic components, and atomic sync
5312 -- is not suppressed for this array type, set atomic sync flag.
5313
5314 if (Has_Atomic_Components (Atp)
5315 and then not Atomic_Synchronization_Disabled (Atp))
5316 or else (Is_Atomic (Typ)
5317 and then not Atomic_Synchronization_Disabled (Typ))
5318 then
4c318253 5319 Activate_Atomic_Synchronization (N);
5972791c
AC
5320 end if;
5321
70482933
RK
5322 -- All done for the non-packed case
5323
5324 if not Is_Packed (Etype (Prefix (N))) then
5325 return;
5326 end if;
5327
5328 -- For packed arrays that are not bit-packed (i.e. the case of an array
8fc789c8 5329 -- with one or more index types with a non-contiguous enumeration type),
70482933
RK
5330 -- we can always use the normal packed element get circuit.
5331
5332 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
5333 Expand_Packed_Element_Reference (N);
5334 return;
5335 end if;
5336
5337 -- For a reference to a component of a bit packed array, we have to
5338 -- convert it to a reference to the corresponding Packed_Array_Type.
5339 -- We only want to do this for simple references, and not for:
5340
685094bf
RD
5341 -- Left side of assignment, or prefix of left side of assignment, or
5342 -- prefix of the prefix, to handle packed arrays of packed arrays,
70482933
RK
5343 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
5344
5345 -- Renaming objects in renaming associations
5346 -- This case is handled when a use of the renamed variable occurs
5347
5348 -- Actual parameters for a procedure call
5349 -- This case is handled in Exp_Ch6.Expand_Actuals
5350
5351 -- The second expression in a 'Read attribute reference
5352
47d3b920 5353 -- The prefix of an address or bit or size attribute reference
70482933
RK
5354
5355 -- The following circuit detects these exceptions
5356
5357 declare
5358 Child : Node_Id := N;
5359 Parnt : Node_Id := Parent (N);
5360
5361 begin
5362 loop
5363 if Nkind (Parnt) = N_Unchecked_Expression then
5364 null;
5365
303b4d58
AC
5366 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
5367 N_Procedure_Call_Statement)
70482933
RK
5368 or else (Nkind (Parnt) = N_Parameter_Association
5369 and then
5370 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
5371 then
5372 return;
5373
5374 elsif Nkind (Parnt) = N_Attribute_Reference
5375 and then (Attribute_Name (Parnt) = Name_Address
5376 or else
47d3b920
AC
5377 Attribute_Name (Parnt) = Name_Bit
5378 or else
70482933
RK
5379 Attribute_Name (Parnt) = Name_Size)
5380 and then Prefix (Parnt) = Child
5381 then
5382 return;
5383
5384 elsif Nkind (Parnt) = N_Assignment_Statement
5385 and then Name (Parnt) = Child
5386 then
5387 return;
5388
685094bf
RD
5389 -- If the expression is an index of an indexed component, it must
5390 -- be expanded regardless of context.
fbf5a39b
AC
5391
5392 elsif Nkind (Parnt) = N_Indexed_Component
5393 and then Child /= Prefix (Parnt)
5394 then
5395 Expand_Packed_Element_Reference (N);
5396 return;
5397
5398 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
5399 and then Name (Parent (Parnt)) = Parnt
5400 then
5401 return;
5402
70482933
RK
5403 elsif Nkind (Parnt) = N_Attribute_Reference
5404 and then Attribute_Name (Parnt) = Name_Read
5405 and then Next (First (Expressions (Parnt))) = Child
5406 then
5407 return;
5408
303b4d58 5409 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
70482933
RK
5410 and then Prefix (Parnt) = Child
5411 then
5412 null;
5413
5414 else
5415 Expand_Packed_Element_Reference (N);
5416 return;
5417 end if;
5418
685094bf
RD
5419 -- Keep looking up tree for unchecked expression, or if we are the
5420 -- prefix of a possible assignment left side.
70482933
RK
5421
5422 Child := Parnt;
5423 Parnt := Parent (Child);
5424 end loop;
5425 end;
70482933
RK
5426 end Expand_N_Indexed_Component;
5427
5428 ---------------------
5429 -- Expand_N_Not_In --
5430 ---------------------
5431
5432 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
5433 -- can be done. This avoids needing to duplicate this expansion code.
5434
5435 procedure Expand_N_Not_In (N : Node_Id) is
630d30e9
RD
5436 Loc : constant Source_Ptr := Sloc (N);
5437 Typ : constant Entity_Id := Etype (N);
5438 Cfs : constant Boolean := Comes_From_Source (N);
70482933
RK
5439
5440 begin
5441 Rewrite (N,
5442 Make_Op_Not (Loc,
5443 Right_Opnd =>
5444 Make_In (Loc,
5445 Left_Opnd => Left_Opnd (N),
d766cee3 5446 Right_Opnd => Right_Opnd (N))));
630d30e9 5447
197e4514
AC
5448 -- If this is a set membership, preserve list of alternatives
5449
5450 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
5451
d766cee3 5452 -- We want this to appear as coming from source if original does (see
8fc789c8 5453 -- transformations in Expand_N_In).
630d30e9
RD
5454
5455 Set_Comes_From_Source (N, Cfs);
5456 Set_Comes_From_Source (Right_Opnd (N), Cfs);
5457
8fc789c8 5458 -- Now analyze transformed node
630d30e9 5459
70482933
RK
5460 Analyze_And_Resolve (N, Typ);
5461 end Expand_N_Not_In;
5462
5463 -------------------
5464 -- Expand_N_Null --
5465 -------------------
5466
a3f2babd
AC
5467 -- The only replacement required is for the case of a null of a type that
5468 -- is an access to protected subprogram, or a subtype thereof. We represent
5469 -- such access values as a record, and so we must replace the occurrence of
5470 -- null by the equivalent record (with a null address and a null pointer in
5471 -- it), so that the backend creates the proper value.
70482933
RK
5472
5473 procedure Expand_N_Null (N : Node_Id) is
5474 Loc : constant Source_Ptr := Sloc (N);
a3f2babd 5475 Typ : constant Entity_Id := Base_Type (Etype (N));
70482933
RK
5476 Agg : Node_Id;
5477
5478 begin
26bff3d9 5479 if Is_Access_Protected_Subprogram_Type (Typ) then
70482933
RK
5480 Agg :=
5481 Make_Aggregate (Loc,
5482 Expressions => New_List (
5483 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
5484 Make_Null (Loc)));
5485
5486 Rewrite (N, Agg);
5487 Analyze_And_Resolve (N, Equivalent_Type (Typ));
5488
685094bf
RD
5489 -- For subsequent semantic analysis, the node must retain its type.
5490 -- Gigi in any case replaces this type by the corresponding record
5491 -- type before processing the node.
70482933
RK
5492
5493 Set_Etype (N, Typ);
5494 end if;
fbf5a39b
AC
5495
5496 exception
5497 when RE_Not_Available =>
5498 return;
70482933
RK
5499 end Expand_N_Null;
5500
5501 ---------------------
5502 -- Expand_N_Op_Abs --
5503 ---------------------
5504
5505 procedure Expand_N_Op_Abs (N : Node_Id) is
5506 Loc : constant Source_Ptr := Sloc (N);
5507 Expr : constant Node_Id := Right_Opnd (N);
5508
5509 begin
5510 Unary_Op_Validity_Checks (N);
5511
5512 -- Deal with software overflow checking
5513
07fc65c4 5514 if not Backend_Overflow_Checks_On_Target
70482933
RK
5515 and then Is_Signed_Integer_Type (Etype (N))
5516 and then Do_Overflow_Check (N)
5517 then
685094bf
RD
5518 -- The only case to worry about is when the argument is equal to the
5519 -- largest negative number, so what we do is to insert the check:
70482933 5520
fbf5a39b 5521 -- [constraint_error when Expr = typ'Base'First]
70482933
RK
5522
5523 -- with the usual Duplicate_Subexpr use coding for expr
5524
fbf5a39b
AC
5525 Insert_Action (N,
5526 Make_Raise_Constraint_Error (Loc,
5527 Condition =>
5528 Make_Op_Eq (Loc,
70482933 5529 Left_Opnd => Duplicate_Subexpr (Expr),
fbf5a39b
AC
5530 Right_Opnd =>
5531 Make_Attribute_Reference (Loc,
5532 Prefix =>
5533 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
5534 Attribute_Name => Name_First)),
5535 Reason => CE_Overflow_Check_Failed));
5536 end if;
70482933
RK
5537
5538 -- Vax floating-point types case
5539
fbf5a39b 5540 if Vax_Float (Etype (N)) then
70482933
RK
5541 Expand_Vax_Arith (N);
5542 end if;
5543 end Expand_N_Op_Abs;
5544
5545 ---------------------
5546 -- Expand_N_Op_Add --
5547 ---------------------
5548
5549 procedure Expand_N_Op_Add (N : Node_Id) is
5550 Typ : constant Entity_Id := Etype (N);
5551
5552 begin
5553 Binary_Op_Validity_Checks (N);
5554
5555 -- N + 0 = 0 + N = N for integer types
5556
5557 if Is_Integer_Type (Typ) then
5558 if Compile_Time_Known_Value (Right_Opnd (N))
5559 and then Expr_Value (Right_Opnd (N)) = Uint_0
5560 then
5561 Rewrite (N, Left_Opnd (N));
5562 return;
5563
5564 elsif Compile_Time_Known_Value (Left_Opnd (N))
5565 and then Expr_Value (Left_Opnd (N)) = Uint_0
5566 then
5567 Rewrite (N, Right_Opnd (N));
5568 return;
5569 end if;
5570 end if;
5571
fbf5a39b 5572 -- Arithmetic overflow checks for signed integer/fixed point types
70482933
RK
5573
5574 if Is_Signed_Integer_Type (Typ)
5575 or else Is_Fixed_Point_Type (Typ)
5576 then
5577 Apply_Arithmetic_Overflow_Check (N);
5578 return;
5579
5580 -- Vax floating-point types case
5581
5582 elsif Vax_Float (Typ) then
5583 Expand_Vax_Arith (N);
5584 end if;
5585 end Expand_N_Op_Add;
5586
5587 ---------------------
5588 -- Expand_N_Op_And --
5589 ---------------------
5590
5591 procedure Expand_N_Op_And (N : Node_Id) is
5592 Typ : constant Entity_Id := Etype (N);
5593
5594 begin
5595 Binary_Op_Validity_Checks (N);
5596
5597 if Is_Array_Type (Etype (N)) then
5598 Expand_Boolean_Operator (N);
5599
5600 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
5601 Adjust_Condition (Left_Opnd (N));
5602 Adjust_Condition (Right_Opnd (N));
5603 Set_Etype (N, Standard_Boolean);
5604 Adjust_Result_Type (N, Typ);
437f8c1e
AC
5605
5606 elsif Is_Intrinsic_Subprogram (Entity (N)) then
5607 Expand_Intrinsic_Call (N, Entity (N));
5608
70482933
RK
5609 end if;
5610 end Expand_N_Op_And;
5611
5612 ------------------------
5613 -- Expand_N_Op_Concat --
5614 ------------------------
5615
5616 procedure Expand_N_Op_Concat (N : Node_Id) is
70482933
RK
5617 Opnds : List_Id;
5618 -- List of operands to be concatenated
5619
70482933 5620 Cnode : Node_Id;
685094bf
RD
5621 -- Node which is to be replaced by the result of concatenating the nodes
5622 -- in the list Opnds.
70482933 5623
70482933 5624 begin
fbf5a39b
AC
5625 -- Ensure validity of both operands
5626
70482933
RK
5627 Binary_Op_Validity_Checks (N);
5628
685094bf
RD
5629 -- If we are the left operand of a concatenation higher up the tree,
5630 -- then do nothing for now, since we want to deal with a series of
5631 -- concatenations as a unit.
70482933
RK
5632
5633 if Nkind (Parent (N)) = N_Op_Concat
5634 and then N = Left_Opnd (Parent (N))
5635 then
5636 return;
5637 end if;
5638
5639 -- We get here with a concatenation whose left operand may be a
5640 -- concatenation itself with a consistent type. We need to process
5641 -- these concatenation operands from left to right, which means
5642 -- from the deepest node in the tree to the highest node.
5643
5644 Cnode := N;
5645 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
5646 Cnode := Left_Opnd (Cnode);
5647 end loop;
5648
64425dff
BD
5649 -- Now Cnode is the deepest concatenation, and its parents are the
5650 -- concatenation nodes above, so now we process bottom up, doing the
5651 -- operations. We gather a string that is as long as possible up to five
5652 -- operands.
70482933 5653
df46b832
AC
5654 -- The outer loop runs more than once if more than one concatenation
5655 -- type is involved.
70482933
RK
5656
5657 Outer : loop
5658 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
5659 Set_Parent (Opnds, N);
5660
df46b832 5661 -- The inner loop gathers concatenation operands
70482933
RK
5662
5663 Inner : while Cnode /= N
70482933
RK
5664 and then Base_Type (Etype (Cnode)) =
5665 Base_Type (Etype (Parent (Cnode)))
5666 loop
5667 Cnode := Parent (Cnode);
5668 Append (Right_Opnd (Cnode), Opnds);
5669 end loop Inner;
5670
fdac1f80 5671 Expand_Concatenate (Cnode, Opnds);
70482933
RK
5672
5673 exit Outer when Cnode = N;
5674 Cnode := Parent (Cnode);
5675 end loop Outer;
5676 end Expand_N_Op_Concat;
5677
5678 ------------------------
5679 -- Expand_N_Op_Divide --
5680 ------------------------
5681
5682 procedure Expand_N_Op_Divide (N : Node_Id) is
f82944b7
JM
5683 Loc : constant Source_Ptr := Sloc (N);
5684 Lopnd : constant Node_Id := Left_Opnd (N);
5685 Ropnd : constant Node_Id := Right_Opnd (N);
5686 Ltyp : constant Entity_Id := Etype (Lopnd);
5687 Rtyp : constant Entity_Id := Etype (Ropnd);
5688 Typ : Entity_Id := Etype (N);
5689 Rknow : constant Boolean := Is_Integer_Type (Typ)
5690 and then
5691 Compile_Time_Known_Value (Ropnd);
5692 Rval : Uint;
70482933
RK
5693
5694 begin
5695 Binary_Op_Validity_Checks (N);
5696
f82944b7
JM
5697 if Rknow then
5698 Rval := Expr_Value (Ropnd);
5699 end if;
5700
70482933
RK
5701 -- N / 1 = N for integer types
5702
f82944b7
JM
5703 if Rknow and then Rval = Uint_1 then
5704 Rewrite (N, Lopnd);
70482933
RK
5705 return;
5706 end if;
5707
5708 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
5709 -- Is_Power_Of_2_For_Shift is set means that we know that our left
5710 -- operand is an unsigned integer, as required for this to work.
5711
f82944b7
JM
5712 if Nkind (Ropnd) = N_Op_Expon
5713 and then Is_Power_Of_2_For_Shift (Ropnd)
fbf5a39b
AC
5714
5715 -- We cannot do this transformation in configurable run time mode if we
51bf9bdf 5716 -- have 64-bit integers and long shifts are not available.
fbf5a39b
AC
5717
5718 and then
5719 (Esize (Ltyp) <= 32
5720 or else Support_Long_Shifts_On_Target)
70482933
RK
5721 then
5722 Rewrite (N,
5723 Make_Op_Shift_Right (Loc,
f82944b7 5724 Left_Opnd => Lopnd,
70482933 5725 Right_Opnd =>
f82944b7 5726 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
70482933
RK
5727 Analyze_And_Resolve (N, Typ);
5728 return;
5729 end if;
5730
5731 -- Do required fixup of universal fixed operation
5732
5733 if Typ = Universal_Fixed then
5734 Fixup_Universal_Fixed_Operation (N);
5735 Typ := Etype (N);
5736 end if;
5737
5738 -- Divisions with fixed-point results
5739
5740 if Is_Fixed_Point_Type (Typ) then
5741
685094bf
RD
5742 -- No special processing if Treat_Fixed_As_Integer is set, since
5743 -- from a semantic point of view such operations are simply integer
5744 -- operations and will be treated that way.
70482933
RK
5745
5746 if not Treat_Fixed_As_Integer (N) then
5747 if Is_Integer_Type (Rtyp) then
5748 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
5749 else
5750 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
5751 end if;
5752 end if;
5753
685094bf
RD
5754 -- Other cases of division of fixed-point operands. Again we exclude the
5755 -- case where Treat_Fixed_As_Integer is set.
70482933
RK
5756
5757 elsif (Is_Fixed_Point_Type (Ltyp) or else
5758 Is_Fixed_Point_Type (Rtyp))
5759 and then not Treat_Fixed_As_Integer (N)
5760 then
5761 if Is_Integer_Type (Typ) then
5762 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
5763 else
5764 pragma Assert (Is_Floating_Point_Type (Typ));
5765 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
5766 end if;
5767
685094bf
RD
5768 -- Mixed-mode operations can appear in a non-static universal context,
5769 -- in which case the integer argument must be converted explicitly.
70482933
RK
5770
5771 elsif Typ = Universal_Real
5772 and then Is_Integer_Type (Rtyp)
5773 then
f82944b7
JM
5774 Rewrite (Ropnd,
5775 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
70482933 5776
f82944b7 5777 Analyze_And_Resolve (Ropnd, Universal_Real);
70482933
RK
5778
5779 elsif Typ = Universal_Real
5780 and then Is_Integer_Type (Ltyp)
5781 then
f82944b7
JM
5782 Rewrite (Lopnd,
5783 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
70482933 5784
f82944b7 5785 Analyze_And_Resolve (Lopnd, Universal_Real);
70482933 5786
f02b8bb8 5787 -- Non-fixed point cases, do integer zero divide and overflow checks
70482933
RK
5788
5789 elsif Is_Integer_Type (Typ) then
5790 Apply_Divide_Check (N);
fbf5a39b 5791
f02b8bb8
RD
5792 -- Deal with Vax_Float
5793
5794 elsif Vax_Float (Typ) then
5795 Expand_Vax_Arith (N);
5796 return;
70482933
RK
5797 end if;
5798 end Expand_N_Op_Divide;
5799
5800 --------------------
5801 -- Expand_N_Op_Eq --
5802 --------------------
5803
5804 procedure Expand_N_Op_Eq (N : Node_Id) is
fbf5a39b
AC
5805 Loc : constant Source_Ptr := Sloc (N);
5806 Typ : constant Entity_Id := Etype (N);
5807 Lhs : constant Node_Id := Left_Opnd (N);
5808 Rhs : constant Node_Id := Right_Opnd (N);
5809 Bodies : constant List_Id := New_List;
5810 A_Typ : constant Entity_Id := Etype (Lhs);
5811
70482933
RK
5812 Typl : Entity_Id := A_Typ;
5813 Op_Name : Entity_Id;
5814 Prim : Elmt_Id;
70482933
RK
5815
5816 procedure Build_Equality_Call (Eq : Entity_Id);
5817 -- If a constructed equality exists for the type or for its parent,
5818 -- build and analyze call, adding conversions if the operation is
5819 -- inherited.
5820
5d09245e 5821 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
8fc789c8 5822 -- Determines whether a type has a subcomponent of an unconstrained
5d09245e
AC
5823 -- Unchecked_Union subtype. Typ is a record type.
5824
70482933
RK
5825 -------------------------
5826 -- Build_Equality_Call --
5827 -------------------------
5828
5829 procedure Build_Equality_Call (Eq : Entity_Id) is
5830 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
5831 L_Exp : Node_Id := Relocate_Node (Lhs);
5832 R_Exp : Node_Id := Relocate_Node (Rhs);
5833
5834 begin
5835 if Base_Type (Op_Type) /= Base_Type (A_Typ)
5836 and then not Is_Class_Wide_Type (A_Typ)
5837 then
5838 L_Exp := OK_Convert_To (Op_Type, L_Exp);
5839 R_Exp := OK_Convert_To (Op_Type, R_Exp);
5840 end if;
5841
5d09245e
AC
5842 -- If we have an Unchecked_Union, we need to add the inferred
5843 -- discriminant values as actuals in the function call. At this
5844 -- point, the expansion has determined that both operands have
5845 -- inferable discriminants.
5846
5847 if Is_Unchecked_Union (Op_Type) then
5848 declare
5849 Lhs_Type : constant Node_Id := Etype (L_Exp);
5850 Rhs_Type : constant Node_Id := Etype (R_Exp);
5851 Lhs_Discr_Val : Node_Id;
5852 Rhs_Discr_Val : Node_Id;
5853
5854 begin
5855 -- Per-object constrained selected components require special
5856 -- attention. If the enclosing scope of the component is an
f02b8bb8 5857 -- Unchecked_Union, we cannot reference its discriminants
5d09245e
AC
5858 -- directly. This is why we use the two extra parameters of
5859 -- the equality function of the enclosing Unchecked_Union.
5860
5861 -- type UU_Type (Discr : Integer := 0) is
5862 -- . . .
5863 -- end record;
5864 -- pragma Unchecked_Union (UU_Type);
5865
5866 -- 1. Unchecked_Union enclosing record:
5867
5868 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
5869 -- . . .
5870 -- Comp : UU_Type (Discr);
5871 -- . . .
5872 -- end Enclosing_UU_Type;
5873 -- pragma Unchecked_Union (Enclosing_UU_Type);
5874
5875 -- Obj1 : Enclosing_UU_Type;
5876 -- Obj2 : Enclosing_UU_Type (1);
5877
2717634d 5878 -- [. . .] Obj1 = Obj2 [. . .]
5d09245e
AC
5879
5880 -- Generated code:
5881
5882 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
5883
5884 -- A and B are the formal parameters of the equality function
5885 -- of Enclosing_UU_Type. The function always has two extra
5886 -- formals to capture the inferred discriminant values.
5887
5888 -- 2. Non-Unchecked_Union enclosing record:
5889
5890 -- type
5891 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
5892 -- is record
5893 -- . . .
5894 -- Comp : UU_Type (Discr);
5895 -- . . .
5896 -- end Enclosing_Non_UU_Type;
5897
5898 -- Obj1 : Enclosing_Non_UU_Type;
5899 -- Obj2 : Enclosing_Non_UU_Type (1);
5900
630d30e9 5901 -- ... Obj1 = Obj2 ...
5d09245e
AC
5902
5903 -- Generated code:
5904
5905 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
5906 -- obj1.discr, obj2.discr)) then
5907
5908 -- In this case we can directly reference the discriminants of
5909 -- the enclosing record.
5910
5911 -- Lhs of equality
5912
5913 if Nkind (Lhs) = N_Selected_Component
5e1c00fa
RD
5914 and then Has_Per_Object_Constraint
5915 (Entity (Selector_Name (Lhs)))
5d09245e
AC
5916 then
5917 -- Enclosing record is an Unchecked_Union, use formal A
5918
7675ad4f
AC
5919 if Is_Unchecked_Union
5920 (Scope (Entity (Selector_Name (Lhs))))
5d09245e 5921 then
7675ad4f 5922 Lhs_Discr_Val := Make_Identifier (Loc, Name_A);
5d09245e
AC
5923
5924 -- Enclosing record is of a non-Unchecked_Union type, it is
5925 -- possible to reference the discriminant.
5926
5927 else
5928 Lhs_Discr_Val :=
5929 Make_Selected_Component (Loc,
5930 Prefix => Prefix (Lhs),
5931 Selector_Name =>
5e1c00fa
RD
5932 New_Copy
5933 (Get_Discriminant_Value
5934 (First_Discriminant (Lhs_Type),
5935 Lhs_Type,
5936 Stored_Constraint (Lhs_Type))));
5d09245e
AC
5937 end if;
5938
5939 -- Comment needed here ???
5940
5941 else
5942 -- Infer the discriminant value
5943
5944 Lhs_Discr_Val :=
5e1c00fa
RD
5945 New_Copy
5946 (Get_Discriminant_Value
5947 (First_Discriminant (Lhs_Type),
5948 Lhs_Type,
5949 Stored_Constraint (Lhs_Type)));
5d09245e
AC
5950 end if;
5951
5952 -- Rhs of equality
5953
5954 if Nkind (Rhs) = N_Selected_Component
5e1c00fa
RD
5955 and then Has_Per_Object_Constraint
5956 (Entity (Selector_Name (Rhs)))
5d09245e 5957 then
5e1c00fa
RD
5958 if Is_Unchecked_Union
5959 (Scope (Entity (Selector_Name (Rhs))))
5d09245e 5960 then
7675ad4f 5961 Rhs_Discr_Val := Make_Identifier (Loc, Name_B);
5d09245e
AC
5962
5963 else
5964 Rhs_Discr_Val :=
5965 Make_Selected_Component (Loc,
5966 Prefix => Prefix (Rhs),
5967 Selector_Name =>
5968 New_Copy (Get_Discriminant_Value (
5969 First_Discriminant (Rhs_Type),
5970 Rhs_Type,
5971 Stored_Constraint (Rhs_Type))));
5972
5973 end if;
5974 else
5975 Rhs_Discr_Val :=
5976 New_Copy (Get_Discriminant_Value (
5977 First_Discriminant (Rhs_Type),
5978 Rhs_Type,
5979 Stored_Constraint (Rhs_Type)));
5980
5981 end if;
5982
5983 Rewrite (N,
5984 Make_Function_Call (Loc,
5985 Name => New_Reference_To (Eq, Loc),
5986 Parameter_Associations => New_List (
5987 L_Exp,
5988 R_Exp,
5989 Lhs_Discr_Val,
5990 Rhs_Discr_Val)));
5991 end;
5992
5993 -- Normal case, not an unchecked union
5994
5995 else
5996 Rewrite (N,
5997 Make_Function_Call (Loc,
5998 Name => New_Reference_To (Eq, Loc),
5999 Parameter_Associations => New_List (L_Exp, R_Exp)));
6000 end if;
70482933
RK
6001
6002 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6003 end Build_Equality_Call;
6004
5d09245e
AC
6005 ------------------------------------
6006 -- Has_Unconstrained_UU_Component --
6007 ------------------------------------
6008
6009 function Has_Unconstrained_UU_Component
6010 (Typ : Node_Id) return Boolean
6011 is
6012 Tdef : constant Node_Id :=
57848bf7 6013 Type_Definition (Declaration_Node (Base_Type (Typ)));
5d09245e
AC
6014 Clist : Node_Id;
6015 Vpart : Node_Id;
6016
6017 function Component_Is_Unconstrained_UU
6018 (Comp : Node_Id) return Boolean;
6019 -- Determines whether the subtype of the component is an
6020 -- unconstrained Unchecked_Union.
6021
6022 function Variant_Is_Unconstrained_UU
6023 (Variant : Node_Id) return Boolean;
6024 -- Determines whether a component of the variant has an unconstrained
6025 -- Unchecked_Union subtype.
6026
6027 -----------------------------------
6028 -- Component_Is_Unconstrained_UU --
6029 -----------------------------------
6030
6031 function Component_Is_Unconstrained_UU
6032 (Comp : Node_Id) return Boolean
6033 is
6034 begin
6035 if Nkind (Comp) /= N_Component_Declaration then
6036 return False;
6037 end if;
6038
6039 declare
6040 Sindic : constant Node_Id :=
6041 Subtype_Indication (Component_Definition (Comp));
6042
6043 begin
6044 -- Unconstrained nominal type. In the case of a constraint
6045 -- present, the node kind would have been N_Subtype_Indication.
6046
6047 if Nkind (Sindic) = N_Identifier then
6048 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
6049 end if;
6050
6051 return False;
6052 end;
6053 end Component_Is_Unconstrained_UU;
6054
6055 ---------------------------------
6056 -- Variant_Is_Unconstrained_UU --
6057 ---------------------------------
6058
6059 function Variant_Is_Unconstrained_UU
6060 (Variant : Node_Id) return Boolean
6061 is
6062 Clist : constant Node_Id := Component_List (Variant);
6063
6064 begin
6065 if Is_Empty_List (Component_Items (Clist)) then
6066 return False;
6067 end if;
6068
f02b8bb8
RD
6069 -- We only need to test one component
6070
5d09245e
AC
6071 declare
6072 Comp : Node_Id := First (Component_Items (Clist));
6073
6074 begin
6075 while Present (Comp) loop
5d09245e
AC
6076 if Component_Is_Unconstrained_UU (Comp) then
6077 return True;
6078 end if;
6079
6080 Next (Comp);
6081 end loop;
6082 end;
6083
6084 -- None of the components withing the variant were of
6085 -- unconstrained Unchecked_Union type.
6086
6087 return False;
6088 end Variant_Is_Unconstrained_UU;
6089
6090 -- Start of processing for Has_Unconstrained_UU_Component
6091
6092 begin
6093 if Null_Present (Tdef) then
6094 return False;
6095 end if;
6096
6097 Clist := Component_List (Tdef);
6098 Vpart := Variant_Part (Clist);
6099
6100 -- Inspect available components
6101
6102 if Present (Component_Items (Clist)) then
6103 declare
6104 Comp : Node_Id := First (Component_Items (Clist));
6105
6106 begin
6107 while Present (Comp) loop
6108
8fc789c8 6109 -- One component is sufficient
5d09245e
AC
6110
6111 if Component_Is_Unconstrained_UU (Comp) then
6112 return True;
6113 end if;
6114
6115 Next (Comp);
6116 end loop;
6117 end;
6118 end if;
6119
6120 -- Inspect available components withing variants
6121
6122 if Present (Vpart) then
6123 declare
6124 Variant : Node_Id := First (Variants (Vpart));
6125
6126 begin
6127 while Present (Variant) loop
6128
8fc789c8 6129 -- One component within a variant is sufficient
5d09245e
AC
6130
6131 if Variant_Is_Unconstrained_UU (Variant) then
6132 return True;
6133 end if;
6134
6135 Next (Variant);
6136 end loop;
6137 end;
6138 end if;
6139
6140 -- Neither the available components, nor the components inside the
6141 -- variant parts were of an unconstrained Unchecked_Union subtype.
6142
6143 return False;
6144 end Has_Unconstrained_UU_Component;
6145
70482933
RK
6146 -- Start of processing for Expand_N_Op_Eq
6147
6148 begin
6149 Binary_Op_Validity_Checks (N);
6150
6151 if Ekind (Typl) = E_Private_Type then
6152 Typl := Underlying_Type (Typl);
70482933
RK
6153 elsif Ekind (Typl) = E_Private_Subtype then
6154 Typl := Underlying_Type (Base_Type (Typl));
f02b8bb8
RD
6155 else
6156 null;
70482933
RK
6157 end if;
6158
6159 -- It may happen in error situations that the underlying type is not
6160 -- set. The error will be detected later, here we just defend the
6161 -- expander code.
6162
6163 if No (Typl) then
6164 return;
6165 end if;
6166
6167 Typl := Base_Type (Typl);
6168
70482933
RK
6169 -- Boolean types (requiring handling of non-standard case)
6170
f02b8bb8 6171 if Is_Boolean_Type (Typl) then
70482933
RK
6172 Adjust_Condition (Left_Opnd (N));
6173 Adjust_Condition (Right_Opnd (N));
6174 Set_Etype (N, Standard_Boolean);
6175 Adjust_Result_Type (N, Typ);
6176
6177 -- Array types
6178
6179 elsif Is_Array_Type (Typl) then
6180
1033834f
RD
6181 -- If we are doing full validity checking, and it is possible for the
6182 -- array elements to be invalid then expand out array comparisons to
6183 -- make sure that we check the array elements.
fbf5a39b 6184
1033834f
RD
6185 if Validity_Check_Operands
6186 and then not Is_Known_Valid (Component_Type (Typl))
6187 then
fbf5a39b
AC
6188 declare
6189 Save_Force_Validity_Checks : constant Boolean :=
6190 Force_Validity_Checks;
6191 begin
6192 Force_Validity_Checks := True;
6193 Rewrite (N,
0da2c8ac
AC
6194 Expand_Array_Equality
6195 (N,
6196 Relocate_Node (Lhs),
6197 Relocate_Node (Rhs),
6198 Bodies,
6199 Typl));
6200 Insert_Actions (N, Bodies);
fbf5a39b
AC
6201 Analyze_And_Resolve (N, Standard_Boolean);
6202 Force_Validity_Checks := Save_Force_Validity_Checks;
6203 end;
6204
a9d8907c 6205 -- Packed case where both operands are known aligned
70482933 6206
a9d8907c
JM
6207 elsif Is_Bit_Packed_Array (Typl)
6208 and then not Is_Possibly_Unaligned_Object (Lhs)
6209 and then not Is_Possibly_Unaligned_Object (Rhs)
6210 then
70482933
RK
6211 Expand_Packed_Eq (N);
6212
5e1c00fa
RD
6213 -- Where the component type is elementary we can use a block bit
6214 -- comparison (if supported on the target) exception in the case
6215 -- of floating-point (negative zero issues require element by
6216 -- element comparison), and atomic types (where we must be sure
a9d8907c 6217 -- to load elements independently) and possibly unaligned arrays.
70482933 6218
70482933
RK
6219 elsif Is_Elementary_Type (Component_Type (Typl))
6220 and then not Is_Floating_Point_Type (Component_Type (Typl))
5e1c00fa 6221 and then not Is_Atomic (Component_Type (Typl))
a9d8907c
JM
6222 and then not Is_Possibly_Unaligned_Object (Lhs)
6223 and then not Is_Possibly_Unaligned_Object (Rhs)
fbf5a39b 6224 and then Support_Composite_Compare_On_Target
70482933
RK
6225 then
6226 null;
6227
685094bf
RD
6228 -- For composite and floating-point cases, expand equality loop to
6229 -- make sure of using proper comparisons for tagged types, and
6230 -- correctly handling the floating-point case.
70482933
RK
6231
6232 else
6233 Rewrite (N,
0da2c8ac
AC
6234 Expand_Array_Equality
6235 (N,
6236 Relocate_Node (Lhs),
6237 Relocate_Node (Rhs),
6238 Bodies,
6239 Typl));
70482933
RK
6240 Insert_Actions (N, Bodies, Suppress => All_Checks);
6241 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6242 end if;
6243
6244 -- Record Types
6245
6246 elsif Is_Record_Type (Typl) then
6247
6248 -- For tagged types, use the primitive "="
6249
6250 if Is_Tagged_Type (Typl) then
6251
0669bebe
GB
6252 -- No need to do anything else compiling under restriction
6253 -- No_Dispatching_Calls. During the semantic analysis we
6254 -- already notified such violation.
6255
6256 if Restriction_Active (No_Dispatching_Calls) then
6257 return;
6258 end if;
6259
685094bf
RD
6260 -- If this is derived from an untagged private type completed with
6261 -- a tagged type, it does not have a full view, so we use the
6262 -- primitive operations of the private type. This check should no
6263 -- longer be necessary when these types get their full views???
70482933
RK
6264
6265 if Is_Private_Type (A_Typ)
6266 and then not Is_Tagged_Type (A_Typ)
6267 and then Is_Derived_Type (A_Typ)
6268 and then No (Full_View (A_Typ))
6269 then
685094bf
RD
6270 -- Search for equality operation, checking that the operands
6271 -- have the same type. Note that we must find a matching entry,
6272 -- or something is very wrong!
2e071734 6273
70482933
RK
6274 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
6275
2e071734
AC
6276 while Present (Prim) loop
6277 exit when Chars (Node (Prim)) = Name_Op_Eq
6278 and then Etype (First_Formal (Node (Prim))) =
6279 Etype (Next_Formal (First_Formal (Node (Prim))))
6280 and then
6281 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
6282
70482933 6283 Next_Elmt (Prim);
70482933
RK
6284 end loop;
6285
2e071734 6286 pragma Assert (Present (Prim));
70482933 6287 Op_Name := Node (Prim);
fbf5a39b
AC
6288
6289 -- Find the type's predefined equality or an overriding
685094bf 6290 -- user- defined equality. The reason for not simply calling
fbf5a39b 6291 -- Find_Prim_Op here is that there may be a user-defined
685094bf
RD
6292 -- overloaded equality op that precedes the equality that we want,
6293 -- so we have to explicitly search (e.g., there could be an
6294 -- equality with two different parameter types).
fbf5a39b 6295
70482933 6296 else
fbf5a39b
AC
6297 if Is_Class_Wide_Type (Typl) then
6298 Typl := Root_Type (Typl);
6299 end if;
6300
6301 Prim := First_Elmt (Primitive_Operations (Typl));
fbf5a39b
AC
6302 while Present (Prim) loop
6303 exit when Chars (Node (Prim)) = Name_Op_Eq
6304 and then Etype (First_Formal (Node (Prim))) =
6305 Etype (Next_Formal (First_Formal (Node (Prim))))
12e0c41c
AC
6306 and then
6307 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
fbf5a39b
AC
6308
6309 Next_Elmt (Prim);
fbf5a39b
AC
6310 end loop;
6311
2e071734 6312 pragma Assert (Present (Prim));
fbf5a39b 6313 Op_Name := Node (Prim);
70482933
RK
6314 end if;
6315
6316 Build_Equality_Call (Op_Name);
6317
5d09245e
AC
6318 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
6319 -- predefined equality operator for a type which has a subcomponent
6320 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
6321
6322 elsif Has_Unconstrained_UU_Component (Typl) then
6323 Insert_Action (N,
6324 Make_Raise_Program_Error (Loc,
6325 Reason => PE_Unchecked_Union_Restriction));
6326
6327 -- Prevent Gigi from generating incorrect code by rewriting the
6328 -- equality as a standard False.
6329
6330 Rewrite (N,
6331 New_Occurrence_Of (Standard_False, Loc));
6332
6333 elsif Is_Unchecked_Union (Typl) then
6334
6335 -- If we can infer the discriminants of the operands, we make a
6336 -- call to the TSS equality function.
6337
6338 if Has_Inferable_Discriminants (Lhs)
6339 and then
6340 Has_Inferable_Discriminants (Rhs)
6341 then
6342 Build_Equality_Call
6343 (TSS (Root_Type (Typl), TSS_Composite_Equality));
6344
6345 else
6346 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6347 -- the predefined equality operator for an Unchecked_Union type
6348 -- if either of the operands lack inferable discriminants.
6349
6350 Insert_Action (N,
6351 Make_Raise_Program_Error (Loc,
6352 Reason => PE_Unchecked_Union_Restriction));
6353
6354 -- Prevent Gigi from generating incorrect code by rewriting
6355 -- the equality as a standard False.
6356
6357 Rewrite (N,
6358 New_Occurrence_Of (Standard_False, Loc));
6359
6360 end if;
6361
70482933
RK
6362 -- If a type support function is present (for complex cases), use it
6363
fbf5a39b
AC
6364 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
6365 Build_Equality_Call
6366 (TSS (Root_Type (Typl), TSS_Composite_Equality));
70482933
RK
6367
6368 -- Otherwise expand the component by component equality. Note that
8fc789c8 6369 -- we never use block-bit comparisons for records, because of the
70482933
RK
6370 -- problems with gaps. The backend will often be able to recombine
6371 -- the separate comparisons that we generate here.
6372
6373 else
6374 Remove_Side_Effects (Lhs);
6375 Remove_Side_Effects (Rhs);
6376 Rewrite (N,
6377 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
6378
6379 Insert_Actions (N, Bodies, Suppress => All_Checks);
6380 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6381 end if;
6382 end if;
6383
d26dc4b5 6384 -- Test if result is known at compile time
70482933 6385
d26dc4b5 6386 Rewrite_Comparison (N);
f02b8bb8
RD
6387
6388 -- If we still have comparison for Vax_Float, process it
6389
6390 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
6391 Expand_Vax_Comparison (N);
6392 return;
6393 end if;
0580d807
AC
6394
6395 Optimize_Length_Comparison (N);
70482933
RK
6396 end Expand_N_Op_Eq;
6397
6398 -----------------------
6399 -- Expand_N_Op_Expon --
6400 -----------------------
6401
6402 procedure Expand_N_Op_Expon (N : Node_Id) is
6403 Loc : constant Source_Ptr := Sloc (N);
6404 Typ : constant Entity_Id := Etype (N);
6405 Rtyp : constant Entity_Id := Root_Type (Typ);
6406 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
07fc65c4 6407 Bastyp : constant Node_Id := Etype (Base);
70482933
RK
6408 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
6409 Exptyp : constant Entity_Id := Etype (Exp);
6410 Ovflo : constant Boolean := Do_Overflow_Check (N);
6411 Expv : Uint;
6412 Xnode : Node_Id;
6413 Temp : Node_Id;
6414 Rent : RE_Id;
6415 Ent : Entity_Id;
fbf5a39b 6416 Etyp : Entity_Id;
70482933
RK
6417
6418 begin
6419 Binary_Op_Validity_Checks (N);
6420
8f66cda7
AC
6421 -- CodePeer and GNATprove want to see the unexpanded N_Op_Expon node
6422
56812278 6423 if CodePeer_Mode or Alfa_Mode then
8f66cda7
AC
6424 return;
6425 end if;
6426
685094bf
RD
6427 -- If either operand is of a private type, then we have the use of an
6428 -- intrinsic operator, and we get rid of the privateness, by using root
6429 -- types of underlying types for the actual operation. Otherwise the
6430 -- private types will cause trouble if we expand multiplications or
6431 -- shifts etc. We also do this transformation if the result type is
6432 -- different from the base type.
07fc65c4
GB
6433
6434 if Is_Private_Type (Etype (Base))
8f66cda7
AC
6435 or else Is_Private_Type (Typ)
6436 or else Is_Private_Type (Exptyp)
6437 or else Rtyp /= Root_Type (Bastyp)
07fc65c4
GB
6438 then
6439 declare
6440 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
6441 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
6442
6443 begin
6444 Rewrite (N,
6445 Unchecked_Convert_To (Typ,
6446 Make_Op_Expon (Loc,
6447 Left_Opnd => Unchecked_Convert_To (Bt, Base),
6448 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
6449 Analyze_And_Resolve (N, Typ);
6450 return;
6451 end;
6452 end if;
6453
fbf5a39b 6454 -- Test for case of known right argument
70482933
RK
6455
6456 if Compile_Time_Known_Value (Exp) then
6457 Expv := Expr_Value (Exp);
6458
6459 -- We only fold small non-negative exponents. You might think we
6460 -- could fold small negative exponents for the real case, but we
6461 -- can't because we are required to raise Constraint_Error for
6462 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
6463 -- See ACVC test C4A012B.
6464
6465 if Expv >= 0 and then Expv <= 4 then
6466
6467 -- X ** 0 = 1 (or 1.0)
6468
6469 if Expv = 0 then
abcbd24c
ST
6470
6471 -- Call Remove_Side_Effects to ensure that any side effects
6472 -- in the ignored left operand (in particular function calls
6473 -- to user defined functions) are properly executed.
6474
6475 Remove_Side_Effects (Base);
6476
70482933
RK
6477 if Ekind (Typ) in Integer_Kind then
6478 Xnode := Make_Integer_Literal (Loc, Intval => 1);
6479 else
6480 Xnode := Make_Real_Literal (Loc, Ureal_1);
6481 end if;
6482
6483 -- X ** 1 = X
6484
6485 elsif Expv = 1 then
6486 Xnode := Base;
6487
6488 -- X ** 2 = X * X
6489
6490 elsif Expv = 2 then
6491 Xnode :=
6492 Make_Op_Multiply (Loc,
6493 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 6494 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
6495
6496 -- X ** 3 = X * X * X
6497
6498 elsif Expv = 3 then
6499 Xnode :=
6500 Make_Op_Multiply (Loc,
6501 Left_Opnd =>
6502 Make_Op_Multiply (Loc,
6503 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b
AC
6504 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
6505 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
70482933
RK
6506
6507 -- X ** 4 ->
6508 -- En : constant base'type := base * base;
6509 -- ...
6510 -- En * En
6511
6512 else -- Expv = 4
191fcb3a 6513 Temp := Make_Temporary (Loc, 'E', Base);
70482933
RK
6514
6515 Insert_Actions (N, New_List (
6516 Make_Object_Declaration (Loc,
6517 Defining_Identifier => Temp,
6518 Constant_Present => True,
6519 Object_Definition => New_Reference_To (Typ, Loc),
6520 Expression =>
6521 Make_Op_Multiply (Loc,
6522 Left_Opnd => Duplicate_Subexpr (Base),
fbf5a39b 6523 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
70482933
RK
6524
6525 Xnode :=
6526 Make_Op_Multiply (Loc,
6527 Left_Opnd => New_Reference_To (Temp, Loc),
6528 Right_Opnd => New_Reference_To (Temp, Loc));
6529 end if;
6530
6531 Rewrite (N, Xnode);
6532 Analyze_And_Resolve (N, Typ);
6533 return;
6534 end if;
6535 end if;
6536
6537 -- Case of (2 ** expression) appearing as an argument of an integer
6538 -- multiplication, or as the right argument of a division of a non-
fbf5a39b 6539 -- negative integer. In such cases we leave the node untouched, setting
70482933
RK
6540 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
6541 -- of the higher level node converts it into a shift.
6542
51bf9bdf
AC
6543 -- Another case is 2 ** N in any other context. We simply convert
6544 -- this to 1 * 2 ** N, and then the above transformation applies.
6545
685094bf
RD
6546 -- Note: this transformation is not applicable for a modular type with
6547 -- a non-binary modulus in the multiplication case, since we get a wrong
6548 -- result if the shift causes an overflow before the modular reduction.
6549
70482933
RK
6550 if Nkind (Base) = N_Integer_Literal
6551 and then Intval (Base) = 2
6552 and then Is_Integer_Type (Root_Type (Exptyp))
6553 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
6554 and then Is_Unsigned_Type (Exptyp)
6555 and then not Ovflo
70482933 6556 then
51bf9bdf 6557 -- First the multiply and divide cases
70482933 6558
51bf9bdf
AC
6559 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
6560 declare
6561 P : constant Node_Id := Parent (N);
6562 L : constant Node_Id := Left_Opnd (P);
6563 R : constant Node_Id := Right_Opnd (P);
6564
6565 begin
6566 if (Nkind (P) = N_Op_Multiply
6567 and then not Non_Binary_Modulus (Typ)
6568 and then
6569 ((Is_Integer_Type (Etype (L)) and then R = N)
6570 or else
6571 (Is_Integer_Type (Etype (R)) and then L = N))
6572 and then not Do_Overflow_Check (P))
6573 or else
6574 (Nkind (P) = N_Op_Divide
6575 and then Is_Integer_Type (Etype (L))
6576 and then Is_Unsigned_Type (Etype (L))
6577 and then R = N
6578 and then not Do_Overflow_Check (P))
6579 then
6580 Set_Is_Power_Of_2_For_Shift (N);
6581 return;
6582 end if;
6583 end;
6584
6585 -- Now the other cases
6586
6587 elsif not Non_Binary_Modulus (Typ) then
6588 Rewrite (N,
6589 Make_Op_Multiply (Loc,
6590 Left_Opnd => Make_Integer_Literal (Loc, 1),
6591 Right_Opnd => Relocate_Node (N)));
6592 Analyze_And_Resolve (N, Typ);
6593 return;
6594 end if;
70482933
RK
6595 end if;
6596
07fc65c4
GB
6597 -- Fall through if exponentiation must be done using a runtime routine
6598
07fc65c4 6599 -- First deal with modular case
70482933
RK
6600
6601 if Is_Modular_Integer_Type (Rtyp) then
6602
6603 -- Non-binary case, we call the special exponentiation routine for
6604 -- the non-binary case, converting the argument to Long_Long_Integer
6605 -- and passing the modulus value. Then the result is converted back
6606 -- to the base type.
6607
6608 if Non_Binary_Modulus (Rtyp) then
70482933
RK
6609 Rewrite (N,
6610 Convert_To (Typ,
6611 Make_Function_Call (Loc,
6612 Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
6613 Parameter_Associations => New_List (
6614 Convert_To (Standard_Integer, Base),
6615 Make_Integer_Literal (Loc, Modulus (Rtyp)),
6616 Exp))));
6617
685094bf
RD
6618 -- Binary case, in this case, we call one of two routines, either the
6619 -- unsigned integer case, or the unsigned long long integer case,
6620 -- with a final "and" operation to do the required mod.
70482933
RK
6621
6622 else
6623 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
6624 Ent := RTE (RE_Exp_Unsigned);
6625 else
6626 Ent := RTE (RE_Exp_Long_Long_Unsigned);
6627 end if;
6628
6629 Rewrite (N,
6630 Convert_To (Typ,
6631 Make_Op_And (Loc,
6632 Left_Opnd =>
6633 Make_Function_Call (Loc,
6634 Name => New_Reference_To (Ent, Loc),
6635 Parameter_Associations => New_List (
6636 Convert_To (Etype (First_Formal (Ent)), Base),
6637 Exp)),
6638 Right_Opnd =>
6639 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
6640
6641 end if;
6642
6643 -- Common exit point for modular type case
6644
6645 Analyze_And_Resolve (N, Typ);
6646 return;
6647
fbf5a39b
AC
6648 -- Signed integer cases, done using either Integer or Long_Long_Integer.
6649 -- It is not worth having routines for Short_[Short_]Integer, since for
6650 -- most machines it would not help, and it would generate more code that
dfd99a80 6651 -- might need certification when a certified run time is required.
70482933 6652
fbf5a39b 6653 -- In the integer cases, we have two routines, one for when overflow
dfd99a80
TQ
6654 -- checks are required, and one when they are not required, since there
6655 -- is a real gain in omitting checks on many machines.
70482933 6656
fbf5a39b
AC
6657 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
6658 or else (Rtyp = Base_Type (Standard_Long_Integer)
6659 and then
6660 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
6661 or else (Rtyp = Universal_Integer)
70482933 6662 then
fbf5a39b
AC
6663 Etyp := Standard_Long_Long_Integer;
6664
70482933
RK
6665 if Ovflo then
6666 Rent := RE_Exp_Long_Long_Integer;
6667 else
6668 Rent := RE_Exn_Long_Long_Integer;
6669 end if;
6670
fbf5a39b
AC
6671 elsif Is_Signed_Integer_Type (Rtyp) then
6672 Etyp := Standard_Integer;
70482933
RK
6673
6674 if Ovflo then
fbf5a39b 6675 Rent := RE_Exp_Integer;
70482933 6676 else
fbf5a39b 6677 Rent := RE_Exn_Integer;
70482933 6678 end if;
fbf5a39b
AC
6679
6680 -- Floating-point cases, always done using Long_Long_Float. We do not
6681 -- need separate routines for the overflow case here, since in the case
6682 -- of floating-point, we generate infinities anyway as a rule (either
6683 -- that or we automatically trap overflow), and if there is an infinity
6684 -- generated and a range check is required, the check will fail anyway.
6685
6686 else
6687 pragma Assert (Is_Floating_Point_Type (Rtyp));
6688 Etyp := Standard_Long_Long_Float;
6689 Rent := RE_Exn_Long_Long_Float;
70482933
RK
6690 end if;
6691
6692 -- Common processing for integer cases and floating-point cases.
fbf5a39b 6693 -- If we are in the right type, we can call runtime routine directly
70482933 6694
fbf5a39b 6695 if Typ = Etyp
70482933
RK
6696 and then Rtyp /= Universal_Integer
6697 and then Rtyp /= Universal_Real
6698 then
6699 Rewrite (N,
6700 Make_Function_Call (Loc,
6701 Name => New_Reference_To (RTE (Rent), Loc),
6702 Parameter_Associations => New_List (Base, Exp)));
6703
6704 -- Otherwise we have to introduce conversions (conversions are also
fbf5a39b 6705 -- required in the universal cases, since the runtime routine is
1147c704 6706 -- typed using one of the standard types).
70482933
RK
6707
6708 else
6709 Rewrite (N,
6710 Convert_To (Typ,
6711 Make_Function_Call (Loc,
6712 Name => New_Reference_To (RTE (Rent), Loc),
6713 Parameter_Associations => New_List (
fbf5a39b 6714 Convert_To (Etyp, Base),
70482933
RK
6715 Exp))));
6716 end if;
6717
6718 Analyze_And_Resolve (N, Typ);
6719 return;
6720
fbf5a39b
AC
6721 exception
6722 when RE_Not_Available =>
6723 return;
70482933
RK
6724 end Expand_N_Op_Expon;
6725
6726 --------------------
6727 -- Expand_N_Op_Ge --
6728 --------------------
6729
6730 procedure Expand_N_Op_Ge (N : Node_Id) is
6731 Typ : constant Entity_Id := Etype (N);
6732 Op1 : constant Node_Id := Left_Opnd (N);
6733 Op2 : constant Node_Id := Right_Opnd (N);
6734 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6735
6736 begin
6737 Binary_Op_Validity_Checks (N);
6738
f02b8bb8 6739 if Is_Array_Type (Typ1) then
70482933
RK
6740 Expand_Array_Comparison (N);
6741 return;
6742 end if;
6743
6744 if Is_Boolean_Type (Typ1) then
6745 Adjust_Condition (Op1);
6746 Adjust_Condition (Op2);
6747 Set_Etype (N, Standard_Boolean);
6748 Adjust_Result_Type (N, Typ);
6749 end if;
6750
6751 Rewrite_Comparison (N);
f02b8bb8
RD
6752
6753 -- If we still have comparison, and Vax_Float type, process it
6754
6755 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6756 Expand_Vax_Comparison (N);
6757 return;
6758 end if;
0580d807
AC
6759
6760 Optimize_Length_Comparison (N);
70482933
RK
6761 end Expand_N_Op_Ge;
6762
6763 --------------------
6764 -- Expand_N_Op_Gt --
6765 --------------------
6766
6767 procedure Expand_N_Op_Gt (N : Node_Id) is
6768 Typ : constant Entity_Id := Etype (N);
6769 Op1 : constant Node_Id := Left_Opnd (N);
6770 Op2 : constant Node_Id := Right_Opnd (N);
6771 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6772
6773 begin
6774 Binary_Op_Validity_Checks (N);
6775
f02b8bb8 6776 if Is_Array_Type (Typ1) then
70482933
RK
6777 Expand_Array_Comparison (N);
6778 return;
6779 end if;
6780
6781 if Is_Boolean_Type (Typ1) then
6782 Adjust_Condition (Op1);
6783 Adjust_Condition (Op2);
6784 Set_Etype (N, Standard_Boolean);
6785 Adjust_Result_Type (N, Typ);
6786 end if;
6787
6788 Rewrite_Comparison (N);
f02b8bb8
RD
6789
6790 -- If we still have comparison, and Vax_Float type, process it
6791
6792 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6793 Expand_Vax_Comparison (N);
6794 return;
6795 end if;
0580d807
AC
6796
6797 Optimize_Length_Comparison (N);
70482933
RK
6798 end Expand_N_Op_Gt;
6799
6800 --------------------
6801 -- Expand_N_Op_Le --
6802 --------------------
6803
6804 procedure Expand_N_Op_Le (N : Node_Id) is
6805 Typ : constant Entity_Id := Etype (N);
6806 Op1 : constant Node_Id := Left_Opnd (N);
6807 Op2 : constant Node_Id := Right_Opnd (N);
6808 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6809
6810 begin
6811 Binary_Op_Validity_Checks (N);
6812
f02b8bb8 6813 if Is_Array_Type (Typ1) then
70482933
RK
6814 Expand_Array_Comparison (N);
6815 return;
6816 end if;
6817
6818 if Is_Boolean_Type (Typ1) then
6819 Adjust_Condition (Op1);
6820 Adjust_Condition (Op2);
6821 Set_Etype (N, Standard_Boolean);
6822 Adjust_Result_Type (N, Typ);
6823 end if;
6824
6825 Rewrite_Comparison (N);
f02b8bb8
RD
6826
6827 -- If we still have comparison, and Vax_Float type, process it
6828
6829 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6830 Expand_Vax_Comparison (N);
6831 return;
6832 end if;
0580d807
AC
6833
6834 Optimize_Length_Comparison (N);
70482933
RK
6835 end Expand_N_Op_Le;
6836
6837 --------------------
6838 -- Expand_N_Op_Lt --
6839 --------------------
6840
6841 procedure Expand_N_Op_Lt (N : Node_Id) is
6842 Typ : constant Entity_Id := Etype (N);
6843 Op1 : constant Node_Id := Left_Opnd (N);
6844 Op2 : constant Node_Id := Right_Opnd (N);
6845 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6846
6847 begin
6848 Binary_Op_Validity_Checks (N);
6849
f02b8bb8 6850 if Is_Array_Type (Typ1) then
70482933
RK
6851 Expand_Array_Comparison (N);
6852 return;
6853 end if;
6854
6855 if Is_Boolean_Type (Typ1) then
6856 Adjust_Condition (Op1);
6857 Adjust_Condition (Op2);
6858 Set_Etype (N, Standard_Boolean);
6859 Adjust_Result_Type (N, Typ);
6860 end if;
6861
6862 Rewrite_Comparison (N);
f02b8bb8
RD
6863
6864 -- If we still have comparison, and Vax_Float type, process it
6865
6866 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6867 Expand_Vax_Comparison (N);
6868 return;
6869 end if;
0580d807
AC
6870
6871 Optimize_Length_Comparison (N);
70482933
RK
6872 end Expand_N_Op_Lt;
6873
6874 -----------------------
6875 -- Expand_N_Op_Minus --
6876 -----------------------
6877
6878 procedure Expand_N_Op_Minus (N : Node_Id) is
6879 Loc : constant Source_Ptr := Sloc (N);
6880 Typ : constant Entity_Id := Etype (N);
6881
6882 begin
6883 Unary_Op_Validity_Checks (N);
6884
07fc65c4 6885 if not Backend_Overflow_Checks_On_Target
70482933
RK
6886 and then Is_Signed_Integer_Type (Etype (N))
6887 and then Do_Overflow_Check (N)
6888 then
6889 -- Software overflow checking expands -expr into (0 - expr)
6890
6891 Rewrite (N,
6892 Make_Op_Subtract (Loc,
6893 Left_Opnd => Make_Integer_Literal (Loc, 0),
6894 Right_Opnd => Right_Opnd (N)));
6895
6896 Analyze_And_Resolve (N, Typ);
6897
6898 -- Vax floating-point types case
6899
6900 elsif Vax_Float (Etype (N)) then
6901 Expand_Vax_Arith (N);
6902 end if;
6903 end Expand_N_Op_Minus;
6904
6905 ---------------------
6906 -- Expand_N_Op_Mod --
6907 ---------------------
6908
6909 procedure Expand_N_Op_Mod (N : Node_Id) is
6910 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 6911 Typ : constant Entity_Id := Etype (N);
70482933
RK
6912 Left : constant Node_Id := Left_Opnd (N);
6913 Right : constant Node_Id := Right_Opnd (N);
6914 DOC : constant Boolean := Do_Overflow_Check (N);
6915 DDC : constant Boolean := Do_Division_Check (N);
6916
6917 LLB : Uint;
6918 Llo : Uint;
6919 Lhi : Uint;
6920 LOK : Boolean;
6921 Rlo : Uint;
6922 Rhi : Uint;
6923 ROK : Boolean;
6924
1033834f
RD
6925 pragma Warnings (Off, Lhi);
6926
70482933
RK
6927 begin
6928 Binary_Op_Validity_Checks (N);
6929
5d5e9775
AC
6930 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
6931 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933
RK
6932
6933 -- Convert mod to rem if operands are known non-negative. We do this
6934 -- since it is quite likely that this will improve the quality of code,
6935 -- (the operation now corresponds to the hardware remainder), and it
6936 -- does not seem likely that it could be harmful.
6937
6938 if LOK and then Llo >= 0
6939 and then
6940 ROK and then Rlo >= 0
6941 then
6942 Rewrite (N,
6943 Make_Op_Rem (Sloc (N),
6944 Left_Opnd => Left_Opnd (N),
6945 Right_Opnd => Right_Opnd (N)));
6946
685094bf
RD
6947 -- Instead of reanalyzing the node we do the analysis manually. This
6948 -- avoids anomalies when the replacement is done in an instance and
6949 -- is epsilon more efficient.
70482933
RK
6950
6951 Set_Entity (N, Standard_Entity (S_Op_Rem));
fbf5a39b 6952 Set_Etype (N, Typ);
70482933
RK
6953 Set_Do_Overflow_Check (N, DOC);
6954 Set_Do_Division_Check (N, DDC);
6955 Expand_N_Op_Rem (N);
6956 Set_Analyzed (N);
6957
6958 -- Otherwise, normal mod processing
6959
6960 else
6961 if Is_Integer_Type (Etype (N)) then
6962 Apply_Divide_Check (N);
6963 end if;
6964
fbf5a39b
AC
6965 -- Apply optimization x mod 1 = 0. We don't really need that with
6966 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
6967 -- certainly harmless.
6968
6969 if Is_Integer_Type (Etype (N))
6970 and then Compile_Time_Known_Value (Right)
6971 and then Expr_Value (Right) = Uint_1
6972 then
abcbd24c
ST
6973 -- Call Remove_Side_Effects to ensure that any side effects in
6974 -- the ignored left operand (in particular function calls to
6975 -- user defined functions) are properly executed.
6976
6977 Remove_Side_Effects (Left);
6978
fbf5a39b
AC
6979 Rewrite (N, Make_Integer_Literal (Loc, 0));
6980 Analyze_And_Resolve (N, Typ);
6981 return;
6982 end if;
6983
70482933
RK
6984 -- Deal with annoying case of largest negative number remainder
6985 -- minus one. Gigi does not handle this case correctly, because
6986 -- it generates a divide instruction which may trap in this case.
6987
685094bf
RD
6988 -- In fact the check is quite easy, if the right operand is -1, then
6989 -- the mod value is always 0, and we can just ignore the left operand
6990 -- completely in this case.
70482933 6991
30783513 6992 -- The operand type may be private (e.g. in the expansion of an
685094bf
RD
6993 -- intrinsic operation) so we must use the underlying type to get the
6994 -- bounds, and convert the literals explicitly.
fbf5a39b
AC
6995
6996 LLB :=
6997 Expr_Value
6998 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
70482933
RK
6999
7000 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
7001 and then
7002 ((not LOK) or else (Llo = LLB))
7003 then
7004 Rewrite (N,
7005 Make_Conditional_Expression (Loc,
7006 Expressions => New_List (
7007 Make_Op_Eq (Loc,
7008 Left_Opnd => Duplicate_Subexpr (Right),
7009 Right_Opnd =>
fbf5a39b
AC
7010 Unchecked_Convert_To (Typ,
7011 Make_Integer_Literal (Loc, -1))),
7012 Unchecked_Convert_To (Typ,
7013 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
7014 Relocate_Node (N))));
7015
7016 Set_Analyzed (Next (Next (First (Expressions (N)))));
fbf5a39b 7017 Analyze_And_Resolve (N, Typ);
70482933
RK
7018 end if;
7019 end if;
7020 end Expand_N_Op_Mod;
7021
7022 --------------------------
7023 -- Expand_N_Op_Multiply --
7024 --------------------------
7025
7026 procedure Expand_N_Op_Multiply (N : Node_Id) is
abcbd24c
ST
7027 Loc : constant Source_Ptr := Sloc (N);
7028 Lop : constant Node_Id := Left_Opnd (N);
7029 Rop : constant Node_Id := Right_Opnd (N);
fbf5a39b 7030
abcbd24c
ST
7031 Lp2 : constant Boolean :=
7032 Nkind (Lop) = N_Op_Expon
7033 and then Is_Power_Of_2_For_Shift (Lop);
fbf5a39b 7034
abcbd24c
ST
7035 Rp2 : constant Boolean :=
7036 Nkind (Rop) = N_Op_Expon
7037 and then Is_Power_Of_2_For_Shift (Rop);
fbf5a39b 7038
70482933
RK
7039 Ltyp : constant Entity_Id := Etype (Lop);
7040 Rtyp : constant Entity_Id := Etype (Rop);
7041 Typ : Entity_Id := Etype (N);
7042
7043 begin
7044 Binary_Op_Validity_Checks (N);
7045
7046 -- Special optimizations for integer types
7047
7048 if Is_Integer_Type (Typ) then
7049
abcbd24c 7050 -- N * 0 = 0 for integer types
70482933 7051
abcbd24c
ST
7052 if Compile_Time_Known_Value (Rop)
7053 and then Expr_Value (Rop) = Uint_0
70482933 7054 then
abcbd24c
ST
7055 -- Call Remove_Side_Effects to ensure that any side effects in
7056 -- the ignored left operand (in particular function calls to
7057 -- user defined functions) are properly executed.
7058
7059 Remove_Side_Effects (Lop);
7060
7061 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
7062 Analyze_And_Resolve (N, Typ);
7063 return;
7064 end if;
7065
7066 -- Similar handling for 0 * N = 0
7067
7068 if Compile_Time_Known_Value (Lop)
7069 and then Expr_Value (Lop) = Uint_0
7070 then
7071 Remove_Side_Effects (Rop);
70482933
RK
7072 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
7073 Analyze_And_Resolve (N, Typ);
7074 return;
7075 end if;
7076
7077 -- N * 1 = 1 * N = N for integer types
7078
fbf5a39b
AC
7079 -- This optimisation is not done if we are going to
7080 -- rewrite the product 1 * 2 ** N to a shift.
7081
7082 if Compile_Time_Known_Value (Rop)
7083 and then Expr_Value (Rop) = Uint_1
7084 and then not Lp2
70482933 7085 then
fbf5a39b 7086 Rewrite (N, Lop);
70482933
RK
7087 return;
7088
fbf5a39b
AC
7089 elsif Compile_Time_Known_Value (Lop)
7090 and then Expr_Value (Lop) = Uint_1
7091 and then not Rp2
70482933 7092 then
fbf5a39b 7093 Rewrite (N, Rop);
70482933
RK
7094 return;
7095 end if;
7096 end if;
7097
70482933
RK
7098 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
7099 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7100 -- operand is an integer, as required for this to work.
7101
fbf5a39b
AC
7102 if Rp2 then
7103 if Lp2 then
70482933 7104
fbf5a39b 7105 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
70482933
RK
7106
7107 Rewrite (N,
7108 Make_Op_Expon (Loc,
7109 Left_Opnd => Make_Integer_Literal (Loc, 2),
7110 Right_Opnd =>
7111 Make_Op_Add (Loc,
7112 Left_Opnd => Right_Opnd (Lop),
7113 Right_Opnd => Right_Opnd (Rop))));
7114 Analyze_And_Resolve (N, Typ);
7115 return;
7116
7117 else
7118 Rewrite (N,
7119 Make_Op_Shift_Left (Loc,
7120 Left_Opnd => Lop,
7121 Right_Opnd =>
7122 Convert_To (Standard_Natural, Right_Opnd (Rop))));
7123 Analyze_And_Resolve (N, Typ);
7124 return;
7125 end if;
7126
7127 -- Same processing for the operands the other way round
7128
fbf5a39b 7129 elsif Lp2 then
70482933
RK
7130 Rewrite (N,
7131 Make_Op_Shift_Left (Loc,
7132 Left_Opnd => Rop,
7133 Right_Opnd =>
7134 Convert_To (Standard_Natural, Right_Opnd (Lop))));
7135 Analyze_And_Resolve (N, Typ);
7136 return;
7137 end if;
7138
7139 -- Do required fixup of universal fixed operation
7140
7141 if Typ = Universal_Fixed then
7142 Fixup_Universal_Fixed_Operation (N);
7143 Typ := Etype (N);
7144 end if;
7145
7146 -- Multiplications with fixed-point results
7147
7148 if Is_Fixed_Point_Type (Typ) then
7149
685094bf
RD
7150 -- No special processing if Treat_Fixed_As_Integer is set, since from
7151 -- a semantic point of view such operations are simply integer
7152 -- operations and will be treated that way.
70482933
RK
7153
7154 if not Treat_Fixed_As_Integer (N) then
7155
7156 -- Case of fixed * integer => fixed
7157
7158 if Is_Integer_Type (Rtyp) then
7159 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
7160
7161 -- Case of integer * fixed => fixed
7162
7163 elsif Is_Integer_Type (Ltyp) then
7164 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
7165
7166 -- Case of fixed * fixed => fixed
7167
7168 else
7169 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
7170 end if;
7171 end if;
7172
685094bf
RD
7173 -- Other cases of multiplication of fixed-point operands. Again we
7174 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
70482933
RK
7175
7176 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
7177 and then not Treat_Fixed_As_Integer (N)
7178 then
7179 if Is_Integer_Type (Typ) then
7180 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
7181 else
7182 pragma Assert (Is_Floating_Point_Type (Typ));
7183 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
7184 end if;
7185
685094bf
RD
7186 -- Mixed-mode operations can appear in a non-static universal context,
7187 -- in which case the integer argument must be converted explicitly.
70482933
RK
7188
7189 elsif Typ = Universal_Real
7190 and then Is_Integer_Type (Rtyp)
7191 then
7192 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
7193
7194 Analyze_And_Resolve (Rop, Universal_Real);
7195
7196 elsif Typ = Universal_Real
7197 and then Is_Integer_Type (Ltyp)
7198 then
7199 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
7200
7201 Analyze_And_Resolve (Lop, Universal_Real);
7202
7203 -- Non-fixed point cases, check software overflow checking required
7204
7205 elsif Is_Signed_Integer_Type (Etype (N)) then
7206 Apply_Arithmetic_Overflow_Check (N);
f02b8bb8
RD
7207
7208 -- Deal with VAX float case
7209
7210 elsif Vax_Float (Typ) then
7211 Expand_Vax_Arith (N);
7212 return;
70482933
RK
7213 end if;
7214 end Expand_N_Op_Multiply;
7215
7216 --------------------
7217 -- Expand_N_Op_Ne --
7218 --------------------
7219
70482933 7220 procedure Expand_N_Op_Ne (N : Node_Id) is
f02b8bb8 7221 Typ : constant Entity_Id := Etype (Left_Opnd (N));
70482933
RK
7222
7223 begin
f02b8bb8 7224 -- Case of elementary type with standard operator
70482933 7225
f02b8bb8
RD
7226 if Is_Elementary_Type (Typ)
7227 and then Sloc (Entity (N)) = Standard_Location
7228 then
7229 Binary_Op_Validity_Checks (N);
70482933 7230
f02b8bb8 7231 -- Boolean types (requiring handling of non-standard case)
70482933 7232
f02b8bb8
RD
7233 if Is_Boolean_Type (Typ) then
7234 Adjust_Condition (Left_Opnd (N));
7235 Adjust_Condition (Right_Opnd (N));
7236 Set_Etype (N, Standard_Boolean);
7237 Adjust_Result_Type (N, Typ);
7238 end if;
fbf5a39b 7239
f02b8bb8
RD
7240 Rewrite_Comparison (N);
7241
7242 -- If we still have comparison for Vax_Float, process it
7243
7244 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
7245 Expand_Vax_Comparison (N);
7246 return;
7247 end if;
7248
7249 -- For all cases other than elementary types, we rewrite node as the
7250 -- negation of an equality operation, and reanalyze. The equality to be
7251 -- used is defined in the same scope and has the same signature. This
7252 -- signature must be set explicitly since in an instance it may not have
7253 -- the same visibility as in the generic unit. This avoids duplicating
7254 -- or factoring the complex code for record/array equality tests etc.
7255
7256 else
7257 declare
7258 Loc : constant Source_Ptr := Sloc (N);
7259 Neg : Node_Id;
7260 Ne : constant Entity_Id := Entity (N);
7261
7262 begin
7263 Binary_Op_Validity_Checks (N);
7264
7265 Neg :=
7266 Make_Op_Not (Loc,
7267 Right_Opnd =>
7268 Make_Op_Eq (Loc,
7269 Left_Opnd => Left_Opnd (N),
7270 Right_Opnd => Right_Opnd (N)));
7271 Set_Paren_Count (Right_Opnd (Neg), 1);
7272
7273 if Scope (Ne) /= Standard_Standard then
7274 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
7275 end if;
7276
4637729f 7277 -- For navigation purposes, we want to treat the inequality as an
f02b8bb8 7278 -- implicit reference to the corresponding equality. Preserve the
4637729f 7279 -- Comes_From_ source flag to generate proper Xref entries.
f02b8bb8
RD
7280
7281 Preserve_Comes_From_Source (Neg, N);
7282 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
7283 Rewrite (N, Neg);
7284 Analyze_And_Resolve (N, Standard_Boolean);
7285 end;
7286 end if;
0580d807
AC
7287
7288 Optimize_Length_Comparison (N);
70482933
RK
7289 end Expand_N_Op_Ne;
7290
7291 ---------------------
7292 -- Expand_N_Op_Not --
7293 ---------------------
7294
685094bf 7295 -- If the argument is other than a Boolean array type, there is no special
c77599d5 7296 -- expansion required, except for VMS operations on signed integers.
70482933
RK
7297
7298 -- For the packed case, we call the special routine in Exp_Pakd, except
7299 -- that if the component size is greater than one, we use the standard
7300 -- routine generating a gruesome loop (it is so peculiar to have packed
685094bf
RD
7301 -- arrays with non-standard Boolean representations anyway, so it does not
7302 -- matter that we do not handle this case efficiently).
70482933 7303
685094bf
RD
7304 -- For the unpacked case (and for the special packed case where we have non
7305 -- standard Booleans, as discussed above), we generate and insert into the
7306 -- tree the following function definition:
70482933
RK
7307
7308 -- function Nnnn (A : arr) is
7309 -- B : arr;
7310 -- begin
7311 -- for J in a'range loop
7312 -- B (J) := not A (J);
7313 -- end loop;
7314 -- return B;
7315 -- end Nnnn;
7316
7317 -- Here arr is the actual subtype of the parameter (and hence always
7318 -- constrained). Then we replace the not with a call to this function.
7319
7320 procedure Expand_N_Op_Not (N : Node_Id) is
7321 Loc : constant Source_Ptr := Sloc (N);
7322 Typ : constant Entity_Id := Etype (N);
7323 Opnd : Node_Id;
7324 Arr : Entity_Id;
7325 A : Entity_Id;
7326 B : Entity_Id;
7327 J : Entity_Id;
7328 A_J : Node_Id;
7329 B_J : Node_Id;
7330
7331 Func_Name : Entity_Id;
7332 Loop_Statement : Node_Id;
7333
7334 begin
7335 Unary_Op_Validity_Checks (N);
7336
7337 -- For boolean operand, deal with non-standard booleans
7338
7339 if Is_Boolean_Type (Typ) then
7340 Adjust_Condition (Right_Opnd (N));
7341 Set_Etype (N, Standard_Boolean);
7342 Adjust_Result_Type (N, Typ);
7343 return;
7344 end if;
7345
880dabb5
AC
7346 -- For the VMS "not" on signed integer types, use conversion to and from
7347 -- a predefined modular type.
c77599d5
AC
7348
7349 if Is_VMS_Operator (Entity (N)) then
7350 declare
9bebf0e9
AC
7351 Rtyp : Entity_Id;
7352 Utyp : Entity_Id;
7353
c77599d5 7354 begin
9bebf0e9
AC
7355 -- If this is a derived type, retrieve original VMS type so that
7356 -- the proper sized type is used for intermediate values.
7357
7358 if Is_Derived_Type (Typ) then
7359 Rtyp := First_Subtype (Etype (Typ));
7360 else
7361 Rtyp := Typ;
7362 end if;
7363
0d901290
AC
7364 -- The proper unsigned type must have a size compatible with the
7365 -- operand, to prevent misalignment.
9bebf0e9
AC
7366
7367 if RM_Size (Rtyp) <= 8 then
7368 Utyp := RTE (RE_Unsigned_8);
7369
7370 elsif RM_Size (Rtyp) <= 16 then
7371 Utyp := RTE (RE_Unsigned_16);
7372
7373 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
bc20523f 7374 Utyp := RTE (RE_Unsigned_32);
9bebf0e9
AC
7375
7376 else
7377 Utyp := RTE (RE_Long_Long_Unsigned);
7378 end if;
7379
c77599d5
AC
7380 Rewrite (N,
7381 Unchecked_Convert_To (Typ,
9bebf0e9
AC
7382 Make_Op_Not (Loc,
7383 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
c77599d5
AC
7384 Analyze_And_Resolve (N, Typ);
7385 return;
7386 end;
7387 end if;
7388
da94696d 7389 -- Only array types need any other processing
70482933 7390
da94696d 7391 if not Is_Array_Type (Typ) then
70482933
RK
7392 return;
7393 end if;
7394
a9d8907c
JM
7395 -- Case of array operand. If bit packed with a component size of 1,
7396 -- handle it in Exp_Pakd if the operand is known to be aligned.
70482933 7397
a9d8907c
JM
7398 if Is_Bit_Packed_Array (Typ)
7399 and then Component_Size (Typ) = 1
7400 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
7401 then
70482933
RK
7402 Expand_Packed_Not (N);
7403 return;
7404 end if;
7405
fbf5a39b
AC
7406 -- Case of array operand which is not bit-packed. If the context is
7407 -- a safe assignment, call in-place operation, If context is a larger
7408 -- boolean expression in the context of a safe assignment, expansion is
7409 -- done by enclosing operation.
70482933
RK
7410
7411 Opnd := Relocate_Node (Right_Opnd (N));
7412 Convert_To_Actual_Subtype (Opnd);
7413 Arr := Etype (Opnd);
7414 Ensure_Defined (Arr, N);
b4592168 7415 Silly_Boolean_Array_Not_Test (N, Arr);
70482933 7416
fbf5a39b
AC
7417 if Nkind (Parent (N)) = N_Assignment_Statement then
7418 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
7419 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
7420 return;
7421
5e1c00fa 7422 -- Special case the negation of a binary operation
fbf5a39b 7423
303b4d58 7424 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
fbf5a39b 7425 and then Safe_In_Place_Array_Op
303b4d58 7426 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
fbf5a39b
AC
7427 then
7428 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
7429 return;
7430 end if;
7431
7432 elsif Nkind (Parent (N)) in N_Binary_Op
7433 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
7434 then
7435 declare
7436 Op1 : constant Node_Id := Left_Opnd (Parent (N));
7437 Op2 : constant Node_Id := Right_Opnd (Parent (N));
7438 Lhs : constant Node_Id := Name (Parent (Parent (N)));
7439
7440 begin
7441 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
fbf5a39b 7442
aa9a7dd7
AC
7443 -- (not A) op (not B) can be reduced to a single call
7444
7445 if N = Op1 and then Nkind (Op2) = N_Op_Not then
fbf5a39b
AC
7446 return;
7447
bed8af19
AC
7448 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
7449 return;
7450
aa9a7dd7 7451 -- A xor (not B) can also be special-cased
fbf5a39b 7452
aa9a7dd7 7453 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
fbf5a39b
AC
7454 return;
7455 end if;
7456 end if;
7457 end;
7458 end if;
7459
70482933
RK
7460 A := Make_Defining_Identifier (Loc, Name_uA);
7461 B := Make_Defining_Identifier (Loc, Name_uB);
7462 J := Make_Defining_Identifier (Loc, Name_uJ);
7463
7464 A_J :=
7465 Make_Indexed_Component (Loc,
7466 Prefix => New_Reference_To (A, Loc),
7467 Expressions => New_List (New_Reference_To (J, Loc)));
7468
7469 B_J :=
7470 Make_Indexed_Component (Loc,
7471 Prefix => New_Reference_To (B, Loc),
7472 Expressions => New_List (New_Reference_To (J, Loc)));
7473
7474 Loop_Statement :=
7475 Make_Implicit_Loop_Statement (N,
7476 Identifier => Empty,
7477
7478 Iteration_Scheme =>
7479 Make_Iteration_Scheme (Loc,
7480 Loop_Parameter_Specification =>
7481 Make_Loop_Parameter_Specification (Loc,
0d901290 7482 Defining_Identifier => J,
70482933
RK
7483 Discrete_Subtype_Definition =>
7484 Make_Attribute_Reference (Loc,
0d901290 7485 Prefix => Make_Identifier (Loc, Chars (A)),
70482933
RK
7486 Attribute_Name => Name_Range))),
7487
7488 Statements => New_List (
7489 Make_Assignment_Statement (Loc,
7490 Name => B_J,
7491 Expression => Make_Op_Not (Loc, A_J))));
7492
191fcb3a 7493 Func_Name := Make_Temporary (Loc, 'N');
70482933
RK
7494 Set_Is_Inlined (Func_Name);
7495
7496 Insert_Action (N,
7497 Make_Subprogram_Body (Loc,
7498 Specification =>
7499 Make_Function_Specification (Loc,
7500 Defining_Unit_Name => Func_Name,
7501 Parameter_Specifications => New_List (
7502 Make_Parameter_Specification (Loc,
7503 Defining_Identifier => A,
7504 Parameter_Type => New_Reference_To (Typ, Loc))),
630d30e9 7505 Result_Definition => New_Reference_To (Typ, Loc)),
70482933
RK
7506
7507 Declarations => New_List (
7508 Make_Object_Declaration (Loc,
7509 Defining_Identifier => B,
7510 Object_Definition => New_Reference_To (Arr, Loc))),
7511
7512 Handled_Statement_Sequence =>
7513 Make_Handled_Sequence_Of_Statements (Loc,
7514 Statements => New_List (
7515 Loop_Statement,
d766cee3 7516 Make_Simple_Return_Statement (Loc,
0d901290 7517 Expression => Make_Identifier (Loc, Chars (B)))))));
70482933
RK
7518
7519 Rewrite (N,
7520 Make_Function_Call (Loc,
0d901290 7521 Name => New_Reference_To (Func_Name, Loc),
70482933
RK
7522 Parameter_Associations => New_List (Opnd)));
7523
7524 Analyze_And_Resolve (N, Typ);
7525 end Expand_N_Op_Not;
7526
7527 --------------------
7528 -- Expand_N_Op_Or --
7529 --------------------
7530
7531 procedure Expand_N_Op_Or (N : Node_Id) is
7532 Typ : constant Entity_Id := Etype (N);
7533
7534 begin
7535 Binary_Op_Validity_Checks (N);
7536
7537 if Is_Array_Type (Etype (N)) then
7538 Expand_Boolean_Operator (N);
7539
7540 elsif Is_Boolean_Type (Etype (N)) then
f2d10a02
AC
7541 Adjust_Condition (Left_Opnd (N));
7542 Adjust_Condition (Right_Opnd (N));
7543 Set_Etype (N, Standard_Boolean);
7544 Adjust_Result_Type (N, Typ);
437f8c1e
AC
7545
7546 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7547 Expand_Intrinsic_Call (N, Entity (N));
7548
70482933
RK
7549 end if;
7550 end Expand_N_Op_Or;
7551
7552 ----------------------
7553 -- Expand_N_Op_Plus --
7554 ----------------------
7555
7556 procedure Expand_N_Op_Plus (N : Node_Id) is
7557 begin
7558 Unary_Op_Validity_Checks (N);
7559 end Expand_N_Op_Plus;
7560
7561 ---------------------
7562 -- Expand_N_Op_Rem --
7563 ---------------------
7564
7565 procedure Expand_N_Op_Rem (N : Node_Id) is
7566 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 7567 Typ : constant Entity_Id := Etype (N);
70482933
RK
7568
7569 Left : constant Node_Id := Left_Opnd (N);
7570 Right : constant Node_Id := Right_Opnd (N);
7571
5d5e9775
AC
7572 Lo : Uint;
7573 Hi : Uint;
7574 OK : Boolean;
70482933 7575
5d5e9775
AC
7576 Lneg : Boolean;
7577 Rneg : Boolean;
7578 -- Set if corresponding operand can be negative
7579
7580 pragma Unreferenced (Hi);
1033834f 7581
70482933
RK
7582 begin
7583 Binary_Op_Validity_Checks (N);
7584
7585 if Is_Integer_Type (Etype (N)) then
7586 Apply_Divide_Check (N);
7587 end if;
7588
685094bf
RD
7589 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
7590 -- but it is useful with other back ends (e.g. AAMP), and is certainly
7591 -- harmless.
fbf5a39b
AC
7592
7593 if Is_Integer_Type (Etype (N))
7594 and then Compile_Time_Known_Value (Right)
7595 and then Expr_Value (Right) = Uint_1
7596 then
abcbd24c
ST
7597 -- Call Remove_Side_Effects to ensure that any side effects in the
7598 -- ignored left operand (in particular function calls to user defined
7599 -- functions) are properly executed.
7600
7601 Remove_Side_Effects (Left);
7602
fbf5a39b
AC
7603 Rewrite (N, Make_Integer_Literal (Loc, 0));
7604 Analyze_And_Resolve (N, Typ);
7605 return;
7606 end if;
7607
685094bf
RD
7608 -- Deal with annoying case of largest negative number remainder minus
7609 -- one. Gigi does not handle this case correctly, because it generates
7610 -- a divide instruction which may trap in this case.
70482933 7611
685094bf
RD
7612 -- In fact the check is quite easy, if the right operand is -1, then
7613 -- the remainder is always 0, and we can just ignore the left operand
7614 -- completely in this case.
70482933 7615
5d5e9775
AC
7616 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
7617 Lneg := (not OK) or else Lo < 0;
fbf5a39b 7618
5d5e9775
AC
7619 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
7620 Rneg := (not OK) or else Lo < 0;
fbf5a39b 7621
5d5e9775
AC
7622 -- We won't mess with trying to find out if the left operand can really
7623 -- be the largest negative number (that's a pain in the case of private
7624 -- types and this is really marginal). We will just assume that we need
7625 -- the test if the left operand can be negative at all.
fbf5a39b 7626
5d5e9775 7627 if Lneg and Rneg then
70482933
RK
7628 Rewrite (N,
7629 Make_Conditional_Expression (Loc,
7630 Expressions => New_List (
7631 Make_Op_Eq (Loc,
0d901290 7632 Left_Opnd => Duplicate_Subexpr (Right),
70482933 7633 Right_Opnd =>
0d901290 7634 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
70482933 7635
fbf5a39b
AC
7636 Unchecked_Convert_To (Typ,
7637 Make_Integer_Literal (Loc, Uint_0)),
70482933
RK
7638
7639 Relocate_Node (N))));
7640
7641 Set_Analyzed (Next (Next (First (Expressions (N)))));
7642 Analyze_And_Resolve (N, Typ);
7643 end if;
7644 end Expand_N_Op_Rem;
7645
7646 -----------------------------
7647 -- Expand_N_Op_Rotate_Left --
7648 -----------------------------
7649
7650 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
7651 begin
7652 Binary_Op_Validity_Checks (N);
7653 end Expand_N_Op_Rotate_Left;
7654
7655 ------------------------------
7656 -- Expand_N_Op_Rotate_Right --
7657 ------------------------------
7658
7659 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
7660 begin
7661 Binary_Op_Validity_Checks (N);
7662 end Expand_N_Op_Rotate_Right;
7663
7664 ----------------------------
7665 -- Expand_N_Op_Shift_Left --
7666 ----------------------------
7667
7668 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
7669 begin
7670 Binary_Op_Validity_Checks (N);
7671 end Expand_N_Op_Shift_Left;
7672
7673 -----------------------------
7674 -- Expand_N_Op_Shift_Right --
7675 -----------------------------
7676
7677 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
7678 begin
7679 Binary_Op_Validity_Checks (N);
7680 end Expand_N_Op_Shift_Right;
7681
7682 ----------------------------------------
7683 -- Expand_N_Op_Shift_Right_Arithmetic --
7684 ----------------------------------------
7685
7686 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
7687 begin
7688 Binary_Op_Validity_Checks (N);
7689 end Expand_N_Op_Shift_Right_Arithmetic;
7690
7691 --------------------------
7692 -- Expand_N_Op_Subtract --
7693 --------------------------
7694
7695 procedure Expand_N_Op_Subtract (N : Node_Id) is
7696 Typ : constant Entity_Id := Etype (N);
7697
7698 begin
7699 Binary_Op_Validity_Checks (N);
7700
7701 -- N - 0 = N for integer types
7702
7703 if Is_Integer_Type (Typ)
7704 and then Compile_Time_Known_Value (Right_Opnd (N))
7705 and then Expr_Value (Right_Opnd (N)) = 0
7706 then
7707 Rewrite (N, Left_Opnd (N));
7708 return;
7709 end if;
7710
8fc789c8 7711 -- Arithmetic overflow checks for signed integer/fixed point types
70482933 7712
aa9a7dd7
AC
7713 if Is_Signed_Integer_Type (Typ)
7714 or else
7715 Is_Fixed_Point_Type (Typ)
7716 then
70482933
RK
7717 Apply_Arithmetic_Overflow_Check (N);
7718
0d901290 7719 -- VAX floating-point types case
70482933
RK
7720
7721 elsif Vax_Float (Typ) then
7722 Expand_Vax_Arith (N);
7723 end if;
7724 end Expand_N_Op_Subtract;
7725
7726 ---------------------
7727 -- Expand_N_Op_Xor --
7728 ---------------------
7729
7730 procedure Expand_N_Op_Xor (N : Node_Id) is
7731 Typ : constant Entity_Id := Etype (N);
7732
7733 begin
7734 Binary_Op_Validity_Checks (N);
7735
7736 if Is_Array_Type (Etype (N)) then
7737 Expand_Boolean_Operator (N);
7738
7739 elsif Is_Boolean_Type (Etype (N)) then
7740 Adjust_Condition (Left_Opnd (N));
7741 Adjust_Condition (Right_Opnd (N));
7742 Set_Etype (N, Standard_Boolean);
7743 Adjust_Result_Type (N, Typ);
437f8c1e
AC
7744
7745 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7746 Expand_Intrinsic_Call (N, Entity (N));
7747
70482933
RK
7748 end if;
7749 end Expand_N_Op_Xor;
7750
7751 ----------------------
7752 -- Expand_N_Or_Else --
7753 ----------------------
7754
5875f8d6
AC
7755 procedure Expand_N_Or_Else (N : Node_Id)
7756 renames Expand_Short_Circuit_Operator;
70482933
RK
7757
7758 -----------------------------------
7759 -- Expand_N_Qualified_Expression --
7760 -----------------------------------
7761
7762 procedure Expand_N_Qualified_Expression (N : Node_Id) is
7763 Operand : constant Node_Id := Expression (N);
7764 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
7765
7766 begin
f82944b7
JM
7767 -- Do validity check if validity checking operands
7768
7769 if Validity_Checks_On
7770 and then Validity_Check_Operands
7771 then
7772 Ensure_Valid (Operand);
7773 end if;
7774
7775 -- Apply possible constraint check
7776
70482933 7777 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
d79e621a
GD
7778
7779 if Do_Range_Check (Operand) then
7780 Set_Do_Range_Check (Operand, False);
7781 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
7782 end if;
70482933
RK
7783 end Expand_N_Qualified_Expression;
7784
a961aa79
AC
7785 ------------------------------------
7786 -- Expand_N_Quantified_Expression --
7787 ------------------------------------
7788
c0f136cd
AC
7789 -- We expand:
7790
7791 -- for all X in range => Cond
a961aa79 7792
c0f136cd 7793 -- into:
a961aa79 7794
c0f136cd
AC
7795 -- T := True;
7796 -- for X in range loop
7797 -- if not Cond then
7798 -- T := False;
7799 -- exit;
7800 -- end if;
7801 -- end loop;
90c63b09 7802
c0f136cd 7803 -- Conversely, an existentially quantified expression:
90c63b09 7804
c0f136cd 7805 -- for some X in range => Cond
90c63b09 7806
c0f136cd 7807 -- becomes:
90c63b09 7808
c0f136cd
AC
7809 -- T := False;
7810 -- for X in range loop
7811 -- if Cond then
7812 -- T := True;
7813 -- exit;
7814 -- end if;
7815 -- end loop;
90c63b09 7816
c0f136cd
AC
7817 -- In both cases, the iteration may be over a container in which case it is
7818 -- given by an iterator specification, not a loop parameter specification.
a961aa79 7819
c0f136cd
AC
7820 procedure Expand_N_Quantified_Expression (N : Node_Id) is
7821 Loc : constant Source_Ptr := Sloc (N);
7822 Is_Universal : constant Boolean := All_Present (N);
7823 Actions : constant List_Id := New_List;
7824 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7825 Cond : Node_Id;
7826 Decl : Node_Id;
7827 I_Scheme : Node_Id;
7828 Test : Node_Id;
c56a9ba4 7829
a961aa79 7830 begin
90c63b09
AC
7831 Decl :=
7832 Make_Object_Declaration (Loc,
7833 Defining_Identifier => Tnn,
c0f136cd
AC
7834 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
7835 Expression =>
7836 New_Occurrence_Of (Boolean_Literals (Is_Universal), Loc));
a961aa79
AC
7837 Append_To (Actions, Decl);
7838
c0f136cd 7839 Cond := Relocate_Node (Condition (N));
a961aa79 7840
62be5d0a
JM
7841 -- Reset flag analyzed in the condition to force its analysis. Required
7842 -- since the previous analysis was done with expansion disabled (see
7843 -- Resolve_Quantified_Expression) and hence checks were not inserted
7844 -- and record comparisons have not been expanded.
7845
7846 Reset_Analyzed_Flags (Cond);
7847
c0f136cd
AC
7848 if Is_Universal then
7849 Cond := Make_Op_Not (Loc, Cond);
a961aa79
AC
7850 end if;
7851
c0f136cd
AC
7852 Test :=
7853 Make_Implicit_If_Statement (N,
7854 Condition => Cond,
7855 Then_Statements => New_List (
7856 Make_Assignment_Statement (Loc,
7857 Name => New_Occurrence_Of (Tnn, Loc),
7858 Expression =>
7859 New_Occurrence_Of (Boolean_Literals (not Is_Universal), Loc)),
7860 Make_Exit_Statement (Loc)));
7861
c56a9ba4
AC
7862 if Present (Loop_Parameter_Specification (N)) then
7863 I_Scheme :=
7864 Make_Iteration_Scheme (Loc,
7865 Loop_Parameter_Specification =>
7866 Loop_Parameter_Specification (N));
7867 else
7868 I_Scheme :=
7869 Make_Iteration_Scheme (Loc,
7870 Iterator_Specification => Iterator_Specification (N));
7871 end if;
7872
a961aa79
AC
7873 Append_To (Actions,
7874 Make_Loop_Statement (Loc,
c56a9ba4 7875 Iteration_Scheme => I_Scheme,
c0f136cd
AC
7876 Statements => New_List (Test),
7877 End_Label => Empty));
a961aa79
AC
7878
7879 Rewrite (N,
7880 Make_Expression_With_Actions (Loc,
7881 Expression => New_Occurrence_Of (Tnn, Loc),
7882 Actions => Actions));
7883
7884 Analyze_And_Resolve (N, Standard_Boolean);
7885 end Expand_N_Quantified_Expression;
7886
70482933
RK
7887 ---------------------------------
7888 -- Expand_N_Selected_Component --
7889 ---------------------------------
7890
70482933
RK
7891 procedure Expand_N_Selected_Component (N : Node_Id) is
7892 Loc : constant Source_Ptr := Sloc (N);
7893 Par : constant Node_Id := Parent (N);
7894 P : constant Node_Id := Prefix (N);
fbf5a39b 7895 Ptyp : Entity_Id := Underlying_Type (Etype (P));
70482933 7896 Disc : Entity_Id;
70482933 7897 New_N : Node_Id;
fbf5a39b 7898 Dcon : Elmt_Id;
d606f1df 7899 Dval : Node_Id;
70482933
RK
7900
7901 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
7902 -- Gigi needs a temporary for prefixes that depend on a discriminant,
7903 -- unless the context of an assignment can provide size information.
fbf5a39b
AC
7904 -- Don't we have a general routine that does this???
7905
53f29d4f
AC
7906 function Is_Subtype_Declaration return Boolean;
7907 -- The replacement of a discriminant reference by its value is required
4317e442
AC
7908 -- if this is part of the initialization of an temporary generated by a
7909 -- change of representation. This shows up as the construction of a
53f29d4f 7910 -- discriminant constraint for a subtype declared at the same point as
4317e442
AC
7911 -- the entity in the prefix of the selected component. We recognize this
7912 -- case when the context of the reference is:
7913 -- subtype ST is T(Obj.D);
7914 -- where the entity for Obj comes from source, and ST has the same sloc.
53f29d4f 7915
fbf5a39b
AC
7916 -----------------------
7917 -- In_Left_Hand_Side --
7918 -----------------------
70482933
RK
7919
7920 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
7921 begin
fbf5a39b 7922 return (Nkind (Parent (Comp)) = N_Assignment_Statement
90c63b09 7923 and then Comp = Name (Parent (Comp)))
fbf5a39b 7924 or else (Present (Parent (Comp))
90c63b09
AC
7925 and then Nkind (Parent (Comp)) in N_Subexpr
7926 and then In_Left_Hand_Side (Parent (Comp)));
70482933
RK
7927 end In_Left_Hand_Side;
7928
53f29d4f
AC
7929 -----------------------------
7930 -- Is_Subtype_Declaration --
7931 -----------------------------
7932
7933 function Is_Subtype_Declaration return Boolean is
7934 Par : constant Node_Id := Parent (N);
53f29d4f
AC
7935 begin
7936 return
7937 Nkind (Par) = N_Index_Or_Discriminant_Constraint
7938 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
7939 and then Comes_From_Source (Entity (Prefix (N)))
7940 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
7941 end Is_Subtype_Declaration;
7942
fbf5a39b
AC
7943 -- Start of processing for Expand_N_Selected_Component
7944
70482933 7945 begin
fbf5a39b
AC
7946 -- Insert explicit dereference if required
7947
7948 if Is_Access_Type (Ptyp) then
702d2020
AC
7949
7950 -- First set prefix type to proper access type, in case it currently
7951 -- has a private (non-access) view of this type.
7952
7953 Set_Etype (P, Ptyp);
7954
fbf5a39b 7955 Insert_Explicit_Dereference (P);
e6f69614 7956 Analyze_And_Resolve (P, Designated_Type (Ptyp));
fbf5a39b
AC
7957
7958 if Ekind (Etype (P)) = E_Private_Subtype
7959 and then Is_For_Access_Subtype (Etype (P))
7960 then
7961 Set_Etype (P, Base_Type (Etype (P)));
7962 end if;
7963
7964 Ptyp := Etype (P);
7965 end if;
7966
7967 -- Deal with discriminant check required
7968
70482933
RK
7969 if Do_Discriminant_Check (N) then
7970
685094bf
RD
7971 -- Present the discriminant checking function to the backend, so that
7972 -- it can inline the call to the function.
70482933
RK
7973
7974 Add_Inlined_Body
7975 (Discriminant_Checking_Func
7976 (Original_Record_Component (Entity (Selector_Name (N)))));
70482933 7977
fbf5a39b 7978 -- Now reset the flag and generate the call
70482933 7979
fbf5a39b
AC
7980 Set_Do_Discriminant_Check (N, False);
7981 Generate_Discriminant_Check (N);
70482933
RK
7982 end if;
7983
b4592168
GD
7984 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7985 -- function, then additional actuals must be passed.
7986
0791fbe9 7987 if Ada_Version >= Ada_2005
b4592168
GD
7988 and then Is_Build_In_Place_Function_Call (P)
7989 then
7990 Make_Build_In_Place_Call_In_Anonymous_Context (P);
7991 end if;
7992
fbf5a39b
AC
7993 -- Gigi cannot handle unchecked conversions that are the prefix of a
7994 -- selected component with discriminants. This must be checked during
7995 -- expansion, because during analysis the type of the selector is not
7996 -- known at the point the prefix is analyzed. If the conversion is the
7997 -- target of an assignment, then we cannot force the evaluation.
70482933
RK
7998
7999 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
8000 and then Has_Discriminants (Etype (N))
8001 and then not In_Left_Hand_Side (N)
8002 then
8003 Force_Evaluation (Prefix (N));
8004 end if;
8005
8006 -- Remaining processing applies only if selector is a discriminant
8007
8008 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
8009
8010 -- If the selector is a discriminant of a constrained record type,
fbf5a39b
AC
8011 -- we may be able to rewrite the expression with the actual value
8012 -- of the discriminant, a useful optimization in some cases.
70482933
RK
8013
8014 if Is_Record_Type (Ptyp)
8015 and then Has_Discriminants (Ptyp)
8016 and then Is_Constrained (Ptyp)
70482933 8017 then
fbf5a39b
AC
8018 -- Do this optimization for discrete types only, and not for
8019 -- access types (access discriminants get us into trouble!)
70482933 8020
fbf5a39b
AC
8021 if not Is_Discrete_Type (Etype (N)) then
8022 null;
8023
8024 -- Don't do this on the left hand of an assignment statement.
0d901290
AC
8025 -- Normally one would think that references like this would not
8026 -- occur, but they do in generated code, and mean that we really
8027 -- do want to assign the discriminant!
fbf5a39b
AC
8028
8029 elsif Nkind (Par) = N_Assignment_Statement
8030 and then Name (Par) = N
8031 then
8032 null;
8033
685094bf 8034 -- Don't do this optimization for the prefix of an attribute or
e2534738 8035 -- the name of an object renaming declaration since these are
685094bf 8036 -- contexts where we do not want the value anyway.
fbf5a39b
AC
8037
8038 elsif (Nkind (Par) = N_Attribute_Reference
8039 and then Prefix (Par) = N)
8040 or else Is_Renamed_Object (N)
8041 then
8042 null;
8043
8044 -- Don't do this optimization if we are within the code for a
8045 -- discriminant check, since the whole point of such a check may
8046 -- be to verify the condition on which the code below depends!
8047
8048 elsif Is_In_Discriminant_Check (N) then
8049 null;
8050
8051 -- Green light to see if we can do the optimization. There is
685094bf
RD
8052 -- still one condition that inhibits the optimization below but
8053 -- now is the time to check the particular discriminant.
fbf5a39b
AC
8054
8055 else
685094bf
RD
8056 -- Loop through discriminants to find the matching discriminant
8057 -- constraint to see if we can copy it.
fbf5a39b
AC
8058
8059 Disc := First_Discriminant (Ptyp);
8060 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
8061 Discr_Loop : while Present (Dcon) loop
d606f1df 8062 Dval := Node (Dcon);
fbf5a39b 8063
bd949ee2
RD
8064 -- Check if this is the matching discriminant and if the
8065 -- discriminant value is simple enough to make sense to
8066 -- copy. We don't want to copy complex expressions, and
8067 -- indeed to do so can cause trouble (before we put in
8068 -- this guard, a discriminant expression containing an
e7d897b8 8069 -- AND THEN was copied, causing problems for coverage
c228a069 8070 -- analysis tools).
bd949ee2 8071
53f29d4f
AC
8072 -- However, if the reference is part of the initialization
8073 -- code generated for an object declaration, we must use
8074 -- the discriminant value from the subtype constraint,
8075 -- because the selected component may be a reference to the
8076 -- object being initialized, whose discriminant is not yet
8077 -- set. This only happens in complex cases involving changes
8078 -- or representation.
8079
bd949ee2
RD
8080 if Disc = Entity (Selector_Name (N))
8081 and then (Is_Entity_Name (Dval)
170b2989
AC
8082 or else Compile_Time_Known_Value (Dval)
8083 or else Is_Subtype_Declaration)
bd949ee2 8084 then
fbf5a39b
AC
8085 -- Here we have the matching discriminant. Check for
8086 -- the case of a discriminant of a component that is
8087 -- constrained by an outer discriminant, which cannot
8088 -- be optimized away.
8089
d606f1df
AC
8090 if Denotes_Discriminant
8091 (Dval, Check_Concurrent => True)
8092 then
8093 exit Discr_Loop;
8094
8095 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
8096 and then
8097 Denotes_Discriminant
8098 (Selector_Name (Original_Node (Dval)), True)
8099 then
8100 exit Discr_Loop;
8101
8102 -- Do not retrieve value if constraint is not static. It
8103 -- is generally not useful, and the constraint may be a
8104 -- rewritten outer discriminant in which case it is in
8105 -- fact incorrect.
8106
8107 elsif Is_Entity_Name (Dval)
e7d897b8
AC
8108 and then Nkind (Parent (Entity (Dval))) =
8109 N_Object_Declaration
d606f1df
AC
8110 and then Present (Expression (Parent (Entity (Dval))))
8111 and then
8112 not Is_Static_Expression
8113 (Expression (Parent (Entity (Dval))))
fbf5a39b
AC
8114 then
8115 exit Discr_Loop;
70482933 8116
685094bf
RD
8117 -- In the context of a case statement, the expression may
8118 -- have the base type of the discriminant, and we need to
8119 -- preserve the constraint to avoid spurious errors on
8120 -- missing cases.
70482933 8121
fbf5a39b 8122 elsif Nkind (Parent (N)) = N_Case_Statement
d606f1df 8123 and then Etype (Dval) /= Etype (Disc)
70482933
RK
8124 then
8125 Rewrite (N,
8126 Make_Qualified_Expression (Loc,
fbf5a39b
AC
8127 Subtype_Mark =>
8128 New_Occurrence_Of (Etype (Disc), Loc),
8129 Expression =>
d606f1df 8130 New_Copy_Tree (Dval)));
ffe9aba8 8131 Analyze_And_Resolve (N, Etype (Disc));
fbf5a39b
AC
8132
8133 -- In case that comes out as a static expression,
8134 -- reset it (a selected component is never static).
8135
8136 Set_Is_Static_Expression (N, False);
8137 return;
8138
8139 -- Otherwise we can just copy the constraint, but the
ffe9aba8
AC
8140 -- result is certainly not static! In some cases the
8141 -- discriminant constraint has been analyzed in the
8142 -- context of the original subtype indication, but for
8143 -- itypes the constraint might not have been analyzed
8144 -- yet, and this must be done now.
fbf5a39b 8145
70482933 8146 else
d606f1df 8147 Rewrite (N, New_Copy_Tree (Dval));
ffe9aba8 8148 Analyze_And_Resolve (N);
fbf5a39b
AC
8149 Set_Is_Static_Expression (N, False);
8150 return;
70482933 8151 end if;
70482933
RK
8152 end if;
8153
fbf5a39b
AC
8154 Next_Elmt (Dcon);
8155 Next_Discriminant (Disc);
8156 end loop Discr_Loop;
70482933 8157
fbf5a39b
AC
8158 -- Note: the above loop should always find a matching
8159 -- discriminant, but if it does not, we just missed an
c228a069
AC
8160 -- optimization due to some glitch (perhaps a previous
8161 -- error), so ignore.
fbf5a39b
AC
8162
8163 end if;
70482933
RK
8164 end if;
8165
8166 -- The only remaining processing is in the case of a discriminant of
8167 -- a concurrent object, where we rewrite the prefix to denote the
8168 -- corresponding record type. If the type is derived and has renamed
8169 -- discriminants, use corresponding discriminant, which is the one
8170 -- that appears in the corresponding record.
8171
8172 if not Is_Concurrent_Type (Ptyp) then
8173 return;
8174 end if;
8175
8176 Disc := Entity (Selector_Name (N));
8177
8178 if Is_Derived_Type (Ptyp)
8179 and then Present (Corresponding_Discriminant (Disc))
8180 then
8181 Disc := Corresponding_Discriminant (Disc);
8182 end if;
8183
8184 New_N :=
8185 Make_Selected_Component (Loc,
8186 Prefix =>
8187 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
8188 New_Copy_Tree (P)),
8189 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
8190
8191 Rewrite (N, New_N);
8192 Analyze (N);
8193 end if;
5972791c 8194
73fe1679 8195 -- Set Atomic_Sync_Required if necessary for atomic component
5972791c 8196
73fe1679
AC
8197 if Nkind (N) = N_Selected_Component then
8198 declare
8199 E : constant Entity_Id := Entity (Selector_Name (N));
8200 Set : Boolean;
8201
8202 begin
8203 -- If component is atomic, but type is not, setting depends on
8204 -- disable/enable state for the component.
8205
8206 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
8207 Set := not Atomic_Synchronization_Disabled (E);
8208
8209 -- If component is not atomic, but its type is atomic, setting
8210 -- depends on disable/enable state for the type.
8211
8212 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
8213 Set := not Atomic_Synchronization_Disabled (Etype (E));
8214
8215 -- If both component and type are atomic, we disable if either
8216 -- component or its type have sync disabled.
8217
8218 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
8219 Set := (not Atomic_Synchronization_Disabled (E))
8220 and then
8221 (not Atomic_Synchronization_Disabled (Etype (E)));
8222
8223 else
8224 Set := False;
8225 end if;
8226
8227 -- Set flag if required
8228
8229 if Set then
8230 Activate_Atomic_Synchronization (N);
8231 end if;
8232 end;
5972791c 8233 end if;
70482933
RK
8234 end Expand_N_Selected_Component;
8235
8236 --------------------
8237 -- Expand_N_Slice --
8238 --------------------
8239
8240 procedure Expand_N_Slice (N : Node_Id) is
8241 Loc : constant Source_Ptr := Sloc (N);
8242 Typ : constant Entity_Id := Etype (N);
8243 Pfx : constant Node_Id := Prefix (N);
8244 Ptp : Entity_Id := Etype (Pfx);
fbf5a39b 8245
81a5b587 8246 function Is_Procedure_Actual (N : Node_Id) return Boolean;
685094bf
RD
8247 -- Check whether the argument is an actual for a procedure call, in
8248 -- which case the expansion of a bit-packed slice is deferred until the
8249 -- call itself is expanded. The reason this is required is that we might
8250 -- have an IN OUT or OUT parameter, and the copy out is essential, and
8251 -- that copy out would be missed if we created a temporary here in
8252 -- Expand_N_Slice. Note that we don't bother to test specifically for an
8253 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
8254 -- is harmless to defer expansion in the IN case, since the call
8255 -- processing will still generate the appropriate copy in operation,
8256 -- which will take care of the slice.
81a5b587 8257
b01bf852 8258 procedure Make_Temporary_For_Slice;
685094bf
RD
8259 -- Create a named variable for the value of the slice, in cases where
8260 -- the back-end cannot handle it properly, e.g. when packed types or
8261 -- unaligned slices are involved.
fbf5a39b 8262
81a5b587
AC
8263 -------------------------
8264 -- Is_Procedure_Actual --
8265 -------------------------
8266
8267 function Is_Procedure_Actual (N : Node_Id) return Boolean is
8268 Par : Node_Id := Parent (N);
08aa9a4a 8269
81a5b587 8270 begin
81a5b587 8271 loop
c6a60aa1
RD
8272 -- If our parent is a procedure call we can return
8273
81a5b587
AC
8274 if Nkind (Par) = N_Procedure_Call_Statement then
8275 return True;
6b6fcd3e 8276
685094bf
RD
8277 -- If our parent is a type conversion, keep climbing the tree,
8278 -- since a type conversion can be a procedure actual. Also keep
8279 -- climbing if parameter association or a qualified expression,
8280 -- since these are additional cases that do can appear on
8281 -- procedure actuals.
6b6fcd3e 8282
303b4d58
AC
8283 elsif Nkind_In (Par, N_Type_Conversion,
8284 N_Parameter_Association,
8285 N_Qualified_Expression)
c6a60aa1 8286 then
81a5b587 8287 Par := Parent (Par);
c6a60aa1
RD
8288
8289 -- Any other case is not what we are looking for
8290
8291 else
8292 return False;
81a5b587
AC
8293 end if;
8294 end loop;
81a5b587
AC
8295 end Is_Procedure_Actual;
8296
b01bf852
AC
8297 ------------------------------
8298 -- Make_Temporary_For_Slice --
8299 ------------------------------
fbf5a39b 8300
b01bf852 8301 procedure Make_Temporary_For_Slice is
fbf5a39b 8302 Decl : Node_Id;
b01bf852 8303 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
13d923cc 8304
fbf5a39b
AC
8305 begin
8306 Decl :=
8307 Make_Object_Declaration (Loc,
8308 Defining_Identifier => Ent,
8309 Object_Definition => New_Occurrence_Of (Typ, Loc));
8310
8311 Set_No_Initialization (Decl);
8312
8313 Insert_Actions (N, New_List (
8314 Decl,
8315 Make_Assignment_Statement (Loc,
8316 Name => New_Occurrence_Of (Ent, Loc),
8317 Expression => Relocate_Node (N))));
8318
8319 Rewrite (N, New_Occurrence_Of (Ent, Loc));
8320 Analyze_And_Resolve (N, Typ);
b01bf852 8321 end Make_Temporary_For_Slice;
fbf5a39b
AC
8322
8323 -- Start of processing for Expand_N_Slice
70482933
RK
8324
8325 begin
8326 -- Special handling for access types
8327
8328 if Is_Access_Type (Ptp) then
8329
70482933
RK
8330 Ptp := Designated_Type (Ptp);
8331
e6f69614
AC
8332 Rewrite (Pfx,
8333 Make_Explicit_Dereference (Sloc (N),
8334 Prefix => Relocate_Node (Pfx)));
70482933 8335
e6f69614 8336 Analyze_And_Resolve (Pfx, Ptp);
70482933
RK
8337 end if;
8338
b4592168
GD
8339 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
8340 -- function, then additional actuals must be passed.
8341
0791fbe9 8342 if Ada_Version >= Ada_2005
b4592168
GD
8343 and then Is_Build_In_Place_Function_Call (Pfx)
8344 then
8345 Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
8346 end if;
8347
70482933
RK
8348 -- The remaining case to be handled is packed slices. We can leave
8349 -- packed slices as they are in the following situations:
8350
8351 -- 1. Right or left side of an assignment (we can handle this
8352 -- situation correctly in the assignment statement expansion).
8353
685094bf
RD
8354 -- 2. Prefix of indexed component (the slide is optimized away in this
8355 -- case, see the start of Expand_N_Slice.)
70482933 8356
685094bf
RD
8357 -- 3. Object renaming declaration, since we want the name of the
8358 -- slice, not the value.
70482933 8359
685094bf
RD
8360 -- 4. Argument to procedure call, since copy-in/copy-out handling may
8361 -- be required, and this is handled in the expansion of call
8362 -- itself.
70482933 8363
685094bf
RD
8364 -- 5. Prefix of an address attribute (this is an error which is caught
8365 -- elsewhere, and the expansion would interfere with generating the
8366 -- error message).
70482933 8367
81a5b587 8368 if not Is_Packed (Typ) then
08aa9a4a 8369
685094bf
RD
8370 -- Apply transformation for actuals of a function call, where
8371 -- Expand_Actuals is not used.
81a5b587
AC
8372
8373 if Nkind (Parent (N)) = N_Function_Call
8374 and then Is_Possibly_Unaligned_Slice (N)
8375 then
b01bf852 8376 Make_Temporary_For_Slice;
81a5b587
AC
8377 end if;
8378
8379 elsif Nkind (Parent (N)) = N_Assignment_Statement
8380 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
8381 and then Parent (N) = Name (Parent (Parent (N))))
70482933 8382 then
81a5b587 8383 return;
70482933 8384
81a5b587
AC
8385 elsif Nkind (Parent (N)) = N_Indexed_Component
8386 or else Is_Renamed_Object (N)
8387 or else Is_Procedure_Actual (N)
8388 then
8389 return;
70482933 8390
91b1417d
AC
8391 elsif Nkind (Parent (N)) = N_Attribute_Reference
8392 and then Attribute_Name (Parent (N)) = Name_Address
fbf5a39b 8393 then
81a5b587
AC
8394 return;
8395
8396 else
b01bf852 8397 Make_Temporary_For_Slice;
70482933
RK
8398 end if;
8399 end Expand_N_Slice;
8400
8401 ------------------------------
8402 -- Expand_N_Type_Conversion --
8403 ------------------------------
8404
8405 procedure Expand_N_Type_Conversion (N : Node_Id) is
8406 Loc : constant Source_Ptr := Sloc (N);
8407 Operand : constant Node_Id := Expression (N);
8408 Target_Type : constant Entity_Id := Etype (N);
8409 Operand_Type : Entity_Id := Etype (Operand);
8410
8411 procedure Handle_Changed_Representation;
685094bf
RD
8412 -- This is called in the case of record and array type conversions to
8413 -- see if there is a change of representation to be handled. Change of
8414 -- representation is actually handled at the assignment statement level,
8415 -- and what this procedure does is rewrite node N conversion as an
8416 -- assignment to temporary. If there is no change of representation,
8417 -- then the conversion node is unchanged.
70482933 8418
426908f8
RD
8419 procedure Raise_Accessibility_Error;
8420 -- Called when we know that an accessibility check will fail. Rewrites
8421 -- node N to an appropriate raise statement and outputs warning msgs.
8422 -- The Etype of the raise node is set to Target_Type.
8423
70482933
RK
8424 procedure Real_Range_Check;
8425 -- Handles generation of range check for real target value
8426
d15f9422
AC
8427 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
8428 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
8429 -- evaluates to True.
8430
70482933
RK
8431 -----------------------------------
8432 -- Handle_Changed_Representation --
8433 -----------------------------------
8434
8435 procedure Handle_Changed_Representation is
8436 Temp : Entity_Id;
8437 Decl : Node_Id;
8438 Odef : Node_Id;
8439 Disc : Node_Id;
8440 N_Ix : Node_Id;
8441 Cons : List_Id;
8442
8443 begin
f82944b7 8444 -- Nothing else to do if no change of representation
70482933
RK
8445
8446 if Same_Representation (Operand_Type, Target_Type) then
8447 return;
8448
8449 -- The real change of representation work is done by the assignment
8450 -- statement processing. So if this type conversion is appearing as
8451 -- the expression of an assignment statement, nothing needs to be
8452 -- done to the conversion.
8453
8454 elsif Nkind (Parent (N)) = N_Assignment_Statement then
8455 return;
8456
8457 -- Otherwise we need to generate a temporary variable, and do the
8458 -- change of representation assignment into that temporary variable.
8459 -- The conversion is then replaced by a reference to this variable.
8460
8461 else
8462 Cons := No_List;
8463
685094bf
RD
8464 -- If type is unconstrained we have to add a constraint, copied
8465 -- from the actual value of the left hand side.
70482933
RK
8466
8467 if not Is_Constrained (Target_Type) then
8468 if Has_Discriminants (Operand_Type) then
8469 Disc := First_Discriminant (Operand_Type);
fbf5a39b
AC
8470
8471 if Disc /= First_Stored_Discriminant (Operand_Type) then
8472 Disc := First_Stored_Discriminant (Operand_Type);
8473 end if;
8474
70482933
RK
8475 Cons := New_List;
8476 while Present (Disc) loop
8477 Append_To (Cons,
8478 Make_Selected_Component (Loc,
7675ad4f
AC
8479 Prefix =>
8480 Duplicate_Subexpr_Move_Checks (Operand),
70482933
RK
8481 Selector_Name =>
8482 Make_Identifier (Loc, Chars (Disc))));
8483 Next_Discriminant (Disc);
8484 end loop;
8485
8486 elsif Is_Array_Type (Operand_Type) then
8487 N_Ix := First_Index (Target_Type);
8488 Cons := New_List;
8489
8490 for J in 1 .. Number_Dimensions (Operand_Type) loop
8491
8492 -- We convert the bounds explicitly. We use an unchecked
8493 -- conversion because bounds checks are done elsewhere.
8494
8495 Append_To (Cons,
8496 Make_Range (Loc,
8497 Low_Bound =>
8498 Unchecked_Convert_To (Etype (N_Ix),
8499 Make_Attribute_Reference (Loc,
8500 Prefix =>
fbf5a39b 8501 Duplicate_Subexpr_No_Checks
70482933
RK
8502 (Operand, Name_Req => True),
8503 Attribute_Name => Name_First,
8504 Expressions => New_List (
8505 Make_Integer_Literal (Loc, J)))),
8506
8507 High_Bound =>
8508 Unchecked_Convert_To (Etype (N_Ix),
8509 Make_Attribute_Reference (Loc,
8510 Prefix =>
fbf5a39b 8511 Duplicate_Subexpr_No_Checks
70482933
RK
8512 (Operand, Name_Req => True),
8513 Attribute_Name => Name_Last,
8514 Expressions => New_List (
8515 Make_Integer_Literal (Loc, J))))));
8516
8517 Next_Index (N_Ix);
8518 end loop;
8519 end if;
8520 end if;
8521
8522 Odef := New_Occurrence_Of (Target_Type, Loc);
8523
8524 if Present (Cons) then
8525 Odef :=
8526 Make_Subtype_Indication (Loc,
8527 Subtype_Mark => Odef,
8528 Constraint =>
8529 Make_Index_Or_Discriminant_Constraint (Loc,
8530 Constraints => Cons));
8531 end if;
8532
191fcb3a 8533 Temp := Make_Temporary (Loc, 'C');
70482933
RK
8534 Decl :=
8535 Make_Object_Declaration (Loc,
8536 Defining_Identifier => Temp,
8537 Object_Definition => Odef);
8538
8539 Set_No_Initialization (Decl, True);
8540
8541 -- Insert required actions. It is essential to suppress checks
8542 -- since we have suppressed default initialization, which means
8543 -- that the variable we create may have no discriminants.
8544
8545 Insert_Actions (N,
8546 New_List (
8547 Decl,
8548 Make_Assignment_Statement (Loc,
8549 Name => New_Occurrence_Of (Temp, Loc),
8550 Expression => Relocate_Node (N))),
8551 Suppress => All_Checks);
8552
8553 Rewrite (N, New_Occurrence_Of (Temp, Loc));
8554 return;
8555 end if;
8556 end Handle_Changed_Representation;
8557
426908f8
RD
8558 -------------------------------
8559 -- Raise_Accessibility_Error --
8560 -------------------------------
8561
8562 procedure Raise_Accessibility_Error is
8563 begin
8564 Rewrite (N,
8565 Make_Raise_Program_Error (Sloc (N),
8566 Reason => PE_Accessibility_Check_Failed));
8567 Set_Etype (N, Target_Type);
8568
8569 Error_Msg_N ("?accessibility check failure", N);
8570 Error_Msg_NE
8571 ("\?& will be raised at run time", N, Standard_Program_Error);
8572 end Raise_Accessibility_Error;
8573
70482933
RK
8574 ----------------------
8575 -- Real_Range_Check --
8576 ----------------------
8577
685094bf
RD
8578 -- Case of conversions to floating-point or fixed-point. If range checks
8579 -- are enabled and the target type has a range constraint, we convert:
70482933
RK
8580
8581 -- typ (x)
8582
8583 -- to
8584
8585 -- Tnn : typ'Base := typ'Base (x);
8586 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
8587 -- Tnn
8588
685094bf
RD
8589 -- This is necessary when there is a conversion of integer to float or
8590 -- to fixed-point to ensure that the correct checks are made. It is not
8591 -- necessary for float to float where it is enough to simply set the
8592 -- Do_Range_Check flag.
fbf5a39b 8593
70482933
RK
8594 procedure Real_Range_Check is
8595 Btyp : constant Entity_Id := Base_Type (Target_Type);
8596 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
8597 Hi : constant Node_Id := Type_High_Bound (Target_Type);
fbf5a39b 8598 Xtyp : constant Entity_Id := Etype (Operand);
70482933
RK
8599 Conv : Node_Id;
8600 Tnn : Entity_Id;
8601
8602 begin
8603 -- Nothing to do if conversion was rewritten
8604
8605 if Nkind (N) /= N_Type_Conversion then
8606 return;
8607 end if;
8608
685094bf
RD
8609 -- Nothing to do if range checks suppressed, or target has the same
8610 -- range as the base type (or is the base type).
70482933
RK
8611
8612 if Range_Checks_Suppressed (Target_Type)
8613 or else (Lo = Type_Low_Bound (Btyp)
8614 and then
8615 Hi = Type_High_Bound (Btyp))
8616 then
8617 return;
8618 end if;
8619
685094bf
RD
8620 -- Nothing to do if expression is an entity on which checks have been
8621 -- suppressed.
70482933 8622
fbf5a39b
AC
8623 if Is_Entity_Name (Operand)
8624 and then Range_Checks_Suppressed (Entity (Operand))
8625 then
8626 return;
8627 end if;
8628
685094bf
RD
8629 -- Nothing to do if bounds are all static and we can tell that the
8630 -- expression is within the bounds of the target. Note that if the
8631 -- operand is of an unconstrained floating-point type, then we do
8632 -- not trust it to be in range (might be infinite)
fbf5a39b
AC
8633
8634 declare
f02b8bb8
RD
8635 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
8636 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
fbf5a39b
AC
8637
8638 begin
8639 if (not Is_Floating_Point_Type (Xtyp)
8640 or else Is_Constrained (Xtyp))
8641 and then Compile_Time_Known_Value (S_Lo)
8642 and then Compile_Time_Known_Value (S_Hi)
8643 and then Compile_Time_Known_Value (Hi)
8644 and then Compile_Time_Known_Value (Lo)
8645 then
8646 declare
8647 D_Lov : constant Ureal := Expr_Value_R (Lo);
8648 D_Hiv : constant Ureal := Expr_Value_R (Hi);
8649 S_Lov : Ureal;
8650 S_Hiv : Ureal;
8651
8652 begin
8653 if Is_Real_Type (Xtyp) then
8654 S_Lov := Expr_Value_R (S_Lo);
8655 S_Hiv := Expr_Value_R (S_Hi);
8656 else
8657 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
8658 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
8659 end if;
8660
8661 if D_Hiv > D_Lov
8662 and then S_Lov >= D_Lov
8663 and then S_Hiv <= D_Hiv
8664 then
8665 Set_Do_Range_Check (Operand, False);
8666 return;
8667 end if;
8668 end;
8669 end if;
8670 end;
8671
8672 -- For float to float conversions, we are done
8673
8674 if Is_Floating_Point_Type (Xtyp)
8675 and then
8676 Is_Floating_Point_Type (Btyp)
70482933
RK
8677 then
8678 return;
8679 end if;
8680
fbf5a39b 8681 -- Otherwise rewrite the conversion as described above
70482933
RK
8682
8683 Conv := Relocate_Node (N);
eaa826f8 8684 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
70482933
RK
8685 Set_Etype (Conv, Btyp);
8686
f02b8bb8
RD
8687 -- Enable overflow except for case of integer to float conversions,
8688 -- where it is never required, since we can never have overflow in
8689 -- this case.
70482933 8690
fbf5a39b
AC
8691 if not Is_Integer_Type (Etype (Operand)) then
8692 Enable_Overflow_Check (Conv);
70482933
RK
8693 end if;
8694
191fcb3a 8695 Tnn := Make_Temporary (Loc, 'T', Conv);
70482933
RK
8696
8697 Insert_Actions (N, New_List (
8698 Make_Object_Declaration (Loc,
8699 Defining_Identifier => Tnn,
8700 Object_Definition => New_Occurrence_Of (Btyp, Loc),
0ac2a660
AC
8701 Constant_Present => True,
8702 Expression => Conv),
70482933
RK
8703
8704 Make_Raise_Constraint_Error (Loc,
07fc65c4
GB
8705 Condition =>
8706 Make_Or_Else (Loc,
8707 Left_Opnd =>
8708 Make_Op_Lt (Loc,
8709 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8710 Right_Opnd =>
8711 Make_Attribute_Reference (Loc,
8712 Attribute_Name => Name_First,
8713 Prefix =>
8714 New_Occurrence_Of (Target_Type, Loc))),
70482933 8715
07fc65c4
GB
8716 Right_Opnd =>
8717 Make_Op_Gt (Loc,
8718 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8719 Right_Opnd =>
8720 Make_Attribute_Reference (Loc,
8721 Attribute_Name => Name_Last,
8722 Prefix =>
8723 New_Occurrence_Of (Target_Type, Loc)))),
8724 Reason => CE_Range_Check_Failed)));
70482933
RK
8725
8726 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
8727 Analyze_And_Resolve (N, Btyp);
8728 end Real_Range_Check;
8729
d15f9422
AC
8730 -----------------------------
8731 -- Has_Extra_Accessibility --
8732 -----------------------------
8733
8734 -- Returns true for a formal of an anonymous access type or for
8735 -- an Ada 2012-style stand-alone object of an anonymous access type.
8736
8737 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
8738 begin
8739 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
8740 return Present (Effective_Extra_Accessibility (Id));
8741 else
8742 return False;
8743 end if;
8744 end Has_Extra_Accessibility;
8745
70482933
RK
8746 -- Start of processing for Expand_N_Type_Conversion
8747
8748 begin
685094bf 8749 -- Nothing at all to do if conversion is to the identical type so remove
76efd572
AC
8750 -- the conversion completely, it is useless, except that it may carry
8751 -- an Assignment_OK attribute, which must be propagated to the operand.
70482933
RK
8752
8753 if Operand_Type = Target_Type then
7b00e31d
AC
8754 if Assignment_OK (N) then
8755 Set_Assignment_OK (Operand);
8756 end if;
8757
fbf5a39b 8758 Rewrite (N, Relocate_Node (Operand));
e606088a 8759 goto Done;
70482933
RK
8760 end if;
8761
685094bf
RD
8762 -- Nothing to do if this is the second argument of read. This is a
8763 -- "backwards" conversion that will be handled by the specialized code
8764 -- in attribute processing.
70482933
RK
8765
8766 if Nkind (Parent (N)) = N_Attribute_Reference
8767 and then Attribute_Name (Parent (N)) = Name_Read
8768 and then Next (First (Expressions (Parent (N)))) = N
8769 then
e606088a
AC
8770 goto Done;
8771 end if;
8772
8773 -- Check for case of converting to a type that has an invariant
8774 -- associated with it. This required an invariant check. We convert
8775
8776 -- typ (expr)
8777
8778 -- into
8779
8780 -- do invariant_check (typ (expr)) in typ (expr);
8781
8782 -- using Duplicate_Subexpr to avoid multiple side effects
8783
8784 -- Note: the Comes_From_Source check, and then the resetting of this
8785 -- flag prevents what would otherwise be an infinite recursion.
8786
fd0ff1cf
RD
8787 if Has_Invariants (Target_Type)
8788 and then Present (Invariant_Procedure (Target_Type))
e606088a
AC
8789 and then Comes_From_Source (N)
8790 then
8791 Set_Comes_From_Source (N, False);
8792 Rewrite (N,
8793 Make_Expression_With_Actions (Loc,
8794 Actions => New_List (
8795 Make_Invariant_Call (Duplicate_Subexpr (N))),
8796 Expression => Duplicate_Subexpr_No_Checks (N)));
8797 Analyze_And_Resolve (N, Target_Type);
8798 goto Done;
70482933
RK
8799 end if;
8800
8801 -- Here if we may need to expand conversion
8802
eaa826f8
RD
8803 -- If the operand of the type conversion is an arithmetic operation on
8804 -- signed integers, and the based type of the signed integer type in
8805 -- question is smaller than Standard.Integer, we promote both of the
8806 -- operands to type Integer.
8807
8808 -- For example, if we have
8809
8810 -- target-type (opnd1 + opnd2)
8811
8812 -- and opnd1 and opnd2 are of type short integer, then we rewrite
8813 -- this as:
8814
8815 -- target-type (integer(opnd1) + integer(opnd2))
8816
8817 -- We do this because we are always allowed to compute in a larger type
8818 -- if we do the right thing with the result, and in this case we are
8819 -- going to do a conversion which will do an appropriate check to make
8820 -- sure that things are in range of the target type in any case. This
8821 -- avoids some unnecessary intermediate overflows.
8822
dfcfdc0a
AC
8823 -- We might consider a similar transformation in the case where the
8824 -- target is a real type or a 64-bit integer type, and the operand
8825 -- is an arithmetic operation using a 32-bit integer type. However,
8826 -- we do not bother with this case, because it could cause significant
308e6f3a 8827 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
dfcfdc0a
AC
8828 -- much cheaper, but we don't want different behavior on 32-bit and
8829 -- 64-bit machines. Note that the exclusion of the 64-bit case also
8830 -- handles the configurable run-time cases where 64-bit arithmetic
8831 -- may simply be unavailable.
eaa826f8
RD
8832
8833 -- Note: this circuit is partially redundant with respect to the circuit
8834 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
8835 -- the processing here. Also we still need the Checks circuit, since we
8836 -- have to be sure not to generate junk overflow checks in the first
8837 -- place, since it would be trick to remove them here!
8838
fdfcc663 8839 if Integer_Promotion_Possible (N) then
eaa826f8 8840
fdfcc663 8841 -- All conditions met, go ahead with transformation
eaa826f8 8842
fdfcc663
AC
8843 declare
8844 Opnd : Node_Id;
8845 L, R : Node_Id;
dfcfdc0a 8846
fdfcc663
AC
8847 begin
8848 R :=
8849 Make_Type_Conversion (Loc,
8850 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8851 Expression => Relocate_Node (Right_Opnd (Operand)));
eaa826f8 8852
5f3f175d
AC
8853 Opnd := New_Op_Node (Nkind (Operand), Loc);
8854 Set_Right_Opnd (Opnd, R);
eaa826f8 8855
5f3f175d 8856 if Nkind (Operand) in N_Binary_Op then
fdfcc663 8857 L :=
eaa826f8 8858 Make_Type_Conversion (Loc,
dfcfdc0a 8859 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
fdfcc663
AC
8860 Expression => Relocate_Node (Left_Opnd (Operand)));
8861
5f3f175d
AC
8862 Set_Left_Opnd (Opnd, L);
8863 end if;
eaa826f8 8864
5f3f175d
AC
8865 Rewrite (N,
8866 Make_Type_Conversion (Loc,
8867 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
8868 Expression => Opnd));
dfcfdc0a 8869
5f3f175d 8870 Analyze_And_Resolve (N, Target_Type);
e606088a 8871 goto Done;
fdfcc663
AC
8872 end;
8873 end if;
eaa826f8 8874
f82944b7
JM
8875 -- Do validity check if validity checking operands
8876
8877 if Validity_Checks_On
8878 and then Validity_Check_Operands
8879 then
8880 Ensure_Valid (Operand);
8881 end if;
8882
70482933
RK
8883 -- Special case of converting from non-standard boolean type
8884
8885 if Is_Boolean_Type (Operand_Type)
8886 and then (Nonzero_Is_True (Operand_Type))
8887 then
8888 Adjust_Condition (Operand);
8889 Set_Etype (Operand, Standard_Boolean);
8890 Operand_Type := Standard_Boolean;
8891 end if;
8892
8893 -- Case of converting to an access type
8894
8895 if Is_Access_Type (Target_Type) then
8896
d766cee3
RD
8897 -- Apply an accessibility check when the conversion operand is an
8898 -- access parameter (or a renaming thereof), unless conversion was
e84e11ba
GD
8899 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
8900 -- Note that other checks may still need to be applied below (such
8901 -- as tagged type checks).
70482933
RK
8902
8903 if Is_Entity_Name (Operand)
d15f9422 8904 and then Has_Extra_Accessibility (Entity (Operand))
70482933 8905 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
d766cee3
RD
8906 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
8907 or else Attribute_Name (Original_Node (N)) = Name_Access)
70482933 8908 then
e84e11ba
GD
8909 Apply_Accessibility_Check
8910 (Operand, Target_Type, Insert_Node => Operand);
70482933 8911
e84e11ba 8912 -- If the level of the operand type is statically deeper than the
685094bf
RD
8913 -- level of the target type, then force Program_Error. Note that this
8914 -- can only occur for cases where the attribute is within the body of
8915 -- an instantiation (otherwise the conversion will already have been
8916 -- rejected as illegal). Note: warnings are issued by the analyzer
8917 -- for the instance cases.
70482933
RK
8918
8919 elsif In_Instance_Body
07fc65c4
GB
8920 and then Type_Access_Level (Operand_Type) >
8921 Type_Access_Level (Target_Type)
70482933 8922 then
426908f8 8923 Raise_Accessibility_Error;
70482933 8924
685094bf
RD
8925 -- When the operand is a selected access discriminant the check needs
8926 -- to be made against the level of the object denoted by the prefix
8927 -- of the selected name. Force Program_Error for this case as well
8928 -- (this accessibility violation can only happen if within the body
8929 -- of an instantiation).
70482933
RK
8930
8931 elsif In_Instance_Body
8932 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
8933 and then Nkind (Operand) = N_Selected_Component
8934 and then Object_Access_Level (Operand) >
8935 Type_Access_Level (Target_Type)
8936 then
426908f8 8937 Raise_Accessibility_Error;
e606088a 8938 goto Done;
70482933
RK
8939 end if;
8940 end if;
8941
8942 -- Case of conversions of tagged types and access to tagged types
8943
685094bf
RD
8944 -- When needed, that is to say when the expression is class-wide, Add
8945 -- runtime a tag check for (strict) downward conversion by using the
8946 -- membership test, generating:
70482933
RK
8947
8948 -- [constraint_error when Operand not in Target_Type'Class]
8949
8950 -- or in the access type case
8951
8952 -- [constraint_error
8953 -- when Operand /= null
8954 -- and then Operand.all not in
8955 -- Designated_Type (Target_Type)'Class]
8956
8957 if (Is_Access_Type (Target_Type)
8958 and then Is_Tagged_Type (Designated_Type (Target_Type)))
8959 or else Is_Tagged_Type (Target_Type)
8960 then
685094bf
RD
8961 -- Do not do any expansion in the access type case if the parent is a
8962 -- renaming, since this is an error situation which will be caught by
8963 -- Sem_Ch8, and the expansion can interfere with this error check.
70482933 8964
e7e4d230 8965 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
e606088a 8966 goto Done;
70482933
RK
8967 end if;
8968
0669bebe 8969 -- Otherwise, proceed with processing tagged conversion
70482933 8970
e7e4d230 8971 Tagged_Conversion : declare
8cea7b64
HK
8972 Actual_Op_Typ : Entity_Id;
8973 Actual_Targ_Typ : Entity_Id;
8974 Make_Conversion : Boolean := False;
8975 Root_Op_Typ : Entity_Id;
70482933 8976
8cea7b64
HK
8977 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
8978 -- Create a membership check to test whether Operand is a member
8979 -- of Targ_Typ. If the original Target_Type is an access, include
8980 -- a test for null value. The check is inserted at N.
8981
8982 --------------------
8983 -- Make_Tag_Check --
8984 --------------------
8985
8986 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
8987 Cond : Node_Id;
8988
8989 begin
8990 -- Generate:
8991 -- [Constraint_Error
8992 -- when Operand /= null
8993 -- and then Operand.all not in Targ_Typ]
8994
8995 if Is_Access_Type (Target_Type) then
8996 Cond :=
8997 Make_And_Then (Loc,
8998 Left_Opnd =>
8999 Make_Op_Ne (Loc,
9000 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
9001 Right_Opnd => Make_Null (Loc)),
9002
9003 Right_Opnd =>
9004 Make_Not_In (Loc,
9005 Left_Opnd =>
9006 Make_Explicit_Dereference (Loc,
9007 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
9008 Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
9009
9010 -- Generate:
9011 -- [Constraint_Error when Operand not in Targ_Typ]
9012
9013 else
9014 Cond :=
9015 Make_Not_In (Loc,
9016 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
9017 Right_Opnd => New_Reference_To (Targ_Typ, Loc));
9018 end if;
9019
9020 Insert_Action (N,
9021 Make_Raise_Constraint_Error (Loc,
9022 Condition => Cond,
9023 Reason => CE_Tag_Check_Failed));
9024 end Make_Tag_Check;
9025
e7e4d230 9026 -- Start of processing for Tagged_Conversion
70482933
RK
9027
9028 begin
9732e886 9029 -- Handle entities from the limited view
852dba80 9030
9732e886 9031 if Is_Access_Type (Operand_Type) then
852dba80
AC
9032 Actual_Op_Typ :=
9033 Available_View (Designated_Type (Operand_Type));
9732e886
JM
9034 else
9035 Actual_Op_Typ := Operand_Type;
9036 end if;
9037
9038 if Is_Access_Type (Target_Type) then
852dba80
AC
9039 Actual_Targ_Typ :=
9040 Available_View (Designated_Type (Target_Type));
70482933 9041 else
8cea7b64 9042 Actual_Targ_Typ := Target_Type;
70482933
RK
9043 end if;
9044
8cea7b64
HK
9045 Root_Op_Typ := Root_Type (Actual_Op_Typ);
9046
20b5d666
JM
9047 -- Ada 2005 (AI-251): Handle interface type conversion
9048
8cea7b64 9049 if Is_Interface (Actual_Op_Typ) then
20b5d666 9050 Expand_Interface_Conversion (N, Is_Static => False);
e606088a 9051 goto Done;
20b5d666
JM
9052 end if;
9053
8cea7b64 9054 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
70482933 9055
8cea7b64
HK
9056 -- Create a runtime tag check for a downward class-wide type
9057 -- conversion.
70482933 9058
8cea7b64 9059 if Is_Class_Wide_Type (Actual_Op_Typ)
852dba80 9060 and then Actual_Op_Typ /= Actual_Targ_Typ
8cea7b64 9061 and then Root_Op_Typ /= Actual_Targ_Typ
4ac2477e
JM
9062 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
9063 Use_Full_View => True)
8cea7b64
HK
9064 then
9065 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
9066 Make_Conversion := True;
9067 end if;
70482933 9068
8cea7b64
HK
9069 -- AI05-0073: If the result subtype of the function is defined
9070 -- by an access_definition designating a specific tagged type
9071 -- T, a check is made that the result value is null or the tag
9072 -- of the object designated by the result value identifies T.
9073 -- Constraint_Error is raised if this check fails.
70482933 9074
8cea7b64
HK
9075 if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
9076 declare
e886436a 9077 Func : Entity_Id;
8cea7b64
HK
9078 Func_Typ : Entity_Id;
9079
9080 begin
e886436a 9081 -- Climb scope stack looking for the enclosing function
8cea7b64 9082
e886436a 9083 Func := Current_Scope;
8cea7b64
HK
9084 while Present (Func)
9085 and then Ekind (Func) /= E_Function
9086 loop
9087 Func := Scope (Func);
9088 end loop;
9089
9090 -- The function's return subtype must be defined using
9091 -- an access definition.
9092
9093 if Nkind (Result_Definition (Parent (Func))) =
9094 N_Access_Definition
9095 then
9096 Func_Typ := Directly_Designated_Type (Etype (Func));
9097
9098 -- The return subtype denotes a specific tagged type,
9099 -- in other words, a non class-wide type.
9100
9101 if Is_Tagged_Type (Func_Typ)
9102 and then not Is_Class_Wide_Type (Func_Typ)
9103 then
9104 Make_Tag_Check (Actual_Targ_Typ);
9105 Make_Conversion := True;
9106 end if;
9107 end if;
9108 end;
70482933
RK
9109 end if;
9110
8cea7b64
HK
9111 -- We have generated a tag check for either a class-wide type
9112 -- conversion or for AI05-0073.
70482933 9113
8cea7b64
HK
9114 if Make_Conversion then
9115 declare
9116 Conv : Node_Id;
9117 begin
9118 Conv :=
9119 Make_Unchecked_Type_Conversion (Loc,
9120 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
9121 Expression => Relocate_Node (Expression (N)));
9122 Rewrite (N, Conv);
9123 Analyze_And_Resolve (N, Target_Type);
9124 end;
9125 end if;
70482933 9126 end if;
e7e4d230 9127 end Tagged_Conversion;
70482933
RK
9128
9129 -- Case of other access type conversions
9130
9131 elsif Is_Access_Type (Target_Type) then
9132 Apply_Constraint_Check (Operand, Target_Type);
9133
9134 -- Case of conversions from a fixed-point type
9135
685094bf
RD
9136 -- These conversions require special expansion and processing, found in
9137 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
9138 -- since from a semantic point of view, these are simple integer
70482933
RK
9139 -- conversions, which do not need further processing.
9140
9141 elsif Is_Fixed_Point_Type (Operand_Type)
9142 and then not Conversion_OK (N)
9143 then
9144 -- We should never see universal fixed at this case, since the
9145 -- expansion of the constituent divide or multiply should have
9146 -- eliminated the explicit mention of universal fixed.
9147
9148 pragma Assert (Operand_Type /= Universal_Fixed);
9149
685094bf
RD
9150 -- Check for special case of the conversion to universal real that
9151 -- occurs as a result of the use of a round attribute. In this case,
9152 -- the real type for the conversion is taken from the target type of
9153 -- the Round attribute and the result must be marked as rounded.
70482933
RK
9154
9155 if Target_Type = Universal_Real
9156 and then Nkind (Parent (N)) = N_Attribute_Reference
9157 and then Attribute_Name (Parent (N)) = Name_Round
9158 then
9159 Set_Rounded_Result (N);
9160 Set_Etype (N, Etype (Parent (N)));
9161 end if;
9162
9163 -- Otherwise do correct fixed-conversion, but skip these if the
e7e4d230
AC
9164 -- Conversion_OK flag is set, because from a semantic point of view
9165 -- these are simple integer conversions needing no further processing
9166 -- (the backend will simply treat them as integers).
70482933
RK
9167
9168 if not Conversion_OK (N) then
9169 if Is_Fixed_Point_Type (Etype (N)) then
9170 Expand_Convert_Fixed_To_Fixed (N);
9171 Real_Range_Check;
9172
9173 elsif Is_Integer_Type (Etype (N)) then
9174 Expand_Convert_Fixed_To_Integer (N);
9175
9176 else
9177 pragma Assert (Is_Floating_Point_Type (Etype (N)));
9178 Expand_Convert_Fixed_To_Float (N);
9179 Real_Range_Check;
9180 end if;
9181 end if;
9182
9183 -- Case of conversions to a fixed-point type
9184
685094bf
RD
9185 -- These conversions require special expansion and processing, found in
9186 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
9187 -- since from a semantic point of view, these are simple integer
9188 -- conversions, which do not need further processing.
70482933
RK
9189
9190 elsif Is_Fixed_Point_Type (Target_Type)
9191 and then not Conversion_OK (N)
9192 then
9193 if Is_Integer_Type (Operand_Type) then
9194 Expand_Convert_Integer_To_Fixed (N);
9195 Real_Range_Check;
9196 else
9197 pragma Assert (Is_Floating_Point_Type (Operand_Type));
9198 Expand_Convert_Float_To_Fixed (N);
9199 Real_Range_Check;
9200 end if;
9201
9202 -- Case of float-to-integer conversions
9203
9204 -- We also handle float-to-fixed conversions with Conversion_OK set
9205 -- since semantically the fixed-point target is treated as though it
9206 -- were an integer in such cases.
9207
9208 elsif Is_Floating_Point_Type (Operand_Type)
9209 and then
9210 (Is_Integer_Type (Target_Type)
9211 or else
9212 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
9213 then
70482933
RK
9214 -- One more check here, gcc is still not able to do conversions of
9215 -- this type with proper overflow checking, and so gigi is doing an
9216 -- approximation of what is required by doing floating-point compares
9217 -- with the end-point. But that can lose precision in some cases, and
f02b8bb8 9218 -- give a wrong result. Converting the operand to Universal_Real is
70482933 9219 -- helpful, but still does not catch all cases with 64-bit integers
e7e4d230 9220 -- on targets with only 64-bit floats.
0669bebe
GB
9221
9222 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
9223 -- Can this code be removed ???
70482933 9224
fbf5a39b
AC
9225 if Do_Range_Check (Operand) then
9226 Rewrite (Operand,
70482933
RK
9227 Make_Type_Conversion (Loc,
9228 Subtype_Mark =>
f02b8bb8 9229 New_Occurrence_Of (Universal_Real, Loc),
70482933 9230 Expression =>
fbf5a39b 9231 Relocate_Node (Operand)));
70482933 9232
f02b8bb8 9233 Set_Etype (Operand, Universal_Real);
fbf5a39b
AC
9234 Enable_Range_Check (Operand);
9235 Set_Do_Range_Check (Expression (Operand), False);
70482933
RK
9236 end if;
9237
9238 -- Case of array conversions
9239
685094bf
RD
9240 -- Expansion of array conversions, add required length/range checks but
9241 -- only do this if there is no change of representation. For handling of
9242 -- this case, see Handle_Changed_Representation.
70482933
RK
9243
9244 elsif Is_Array_Type (Target_Type) then
70482933
RK
9245 if Is_Constrained (Target_Type) then
9246 Apply_Length_Check (Operand, Target_Type);
9247 else
9248 Apply_Range_Check (Operand, Target_Type);
9249 end if;
9250
9251 Handle_Changed_Representation;
9252
9253 -- Case of conversions of discriminated types
9254
685094bf
RD
9255 -- Add required discriminant checks if target is constrained. Again this
9256 -- change is skipped if we have a change of representation.
70482933
RK
9257
9258 elsif Has_Discriminants (Target_Type)
9259 and then Is_Constrained (Target_Type)
9260 then
9261 Apply_Discriminant_Check (Operand, Target_Type);
9262 Handle_Changed_Representation;
9263
9264 -- Case of all other record conversions. The only processing required
9265 -- is to check for a change of representation requiring the special
9266 -- assignment processing.
9267
9268 elsif Is_Record_Type (Target_Type) then
5d09245e
AC
9269
9270 -- Ada 2005 (AI-216): Program_Error is raised when converting from
685094bf
RD
9271 -- a derived Unchecked_Union type to an unconstrained type that is
9272 -- not Unchecked_Union if the operand lacks inferable discriminants.
5d09245e
AC
9273
9274 if Is_Derived_Type (Operand_Type)
9275 and then Is_Unchecked_Union (Base_Type (Operand_Type))
9276 and then not Is_Constrained (Target_Type)
9277 and then not Is_Unchecked_Union (Base_Type (Target_Type))
9278 and then not Has_Inferable_Discriminants (Operand)
9279 then
685094bf 9280 -- To prevent Gigi from generating illegal code, we generate a
5d09245e
AC
9281 -- Program_Error node, but we give it the target type of the
9282 -- conversion.
9283
9284 declare
9285 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
9286 Reason => PE_Unchecked_Union_Restriction);
9287
9288 begin
9289 Set_Etype (PE, Target_Type);
9290 Rewrite (N, PE);
9291
9292 end;
9293 else
9294 Handle_Changed_Representation;
9295 end if;
70482933
RK
9296
9297 -- Case of conversions of enumeration types
9298
9299 elsif Is_Enumeration_Type (Target_Type) then
9300
9301 -- Special processing is required if there is a change of
e7e4d230 9302 -- representation (from enumeration representation clauses).
70482933
RK
9303
9304 if not Same_Representation (Target_Type, Operand_Type) then
9305
9306 -- Convert: x(y) to x'val (ytyp'val (y))
9307
9308 Rewrite (N,
9309 Make_Attribute_Reference (Loc,
9310 Prefix => New_Occurrence_Of (Target_Type, Loc),
9311 Attribute_Name => Name_Val,
9312 Expressions => New_List (
9313 Make_Attribute_Reference (Loc,
9314 Prefix => New_Occurrence_Of (Operand_Type, Loc),
9315 Attribute_Name => Name_Pos,
9316 Expressions => New_List (Operand)))));
9317
9318 Analyze_And_Resolve (N, Target_Type);
9319 end if;
9320
9321 -- Case of conversions to floating-point
9322
9323 elsif Is_Floating_Point_Type (Target_Type) then
9324 Real_Range_Check;
70482933
RK
9325 end if;
9326
685094bf 9327 -- At this stage, either the conversion node has been transformed into
e7e4d230
AC
9328 -- some other equivalent expression, or left as a conversion that can be
9329 -- handled by Gigi, in the following cases:
70482933
RK
9330
9331 -- Conversions with no change of representation or type
9332
685094bf
RD
9333 -- Numeric conversions involving integer, floating- and fixed-point
9334 -- values. Fixed-point values are allowed only if Conversion_OK is
9335 -- set, i.e. if the fixed-point values are to be treated as integers.
70482933 9336
5e1c00fa
RD
9337 -- No other conversions should be passed to Gigi
9338
9339 -- Check: are these rules stated in sinfo??? if so, why restate here???
70482933 9340
685094bf
RD
9341 -- The only remaining step is to generate a range check if we still have
9342 -- a type conversion at this stage and Do_Range_Check is set. For now we
9343 -- do this only for conversions of discrete types.
fbf5a39b
AC
9344
9345 if Nkind (N) = N_Type_Conversion
9346 and then Is_Discrete_Type (Etype (N))
9347 then
9348 declare
9349 Expr : constant Node_Id := Expression (N);
9350 Ftyp : Entity_Id;
9351 Ityp : Entity_Id;
9352
9353 begin
9354 if Do_Range_Check (Expr)
9355 and then Is_Discrete_Type (Etype (Expr))
9356 then
9357 Set_Do_Range_Check (Expr, False);
9358
685094bf
RD
9359 -- Before we do a range check, we have to deal with treating a
9360 -- fixed-point operand as an integer. The way we do this is
9361 -- simply to do an unchecked conversion to an appropriate
fbf5a39b
AC
9362 -- integer type large enough to hold the result.
9363
9364 -- This code is not active yet, because we are only dealing
9365 -- with discrete types so far ???
9366
9367 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
9368 and then Treat_Fixed_As_Integer (Expr)
9369 then
9370 Ftyp := Base_Type (Etype (Expr));
9371
9372 if Esize (Ftyp) >= Esize (Standard_Integer) then
9373 Ityp := Standard_Long_Long_Integer;
9374 else
9375 Ityp := Standard_Integer;
9376 end if;
9377
9378 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
9379 end if;
9380
9381 -- Reset overflow flag, since the range check will include
e7e4d230 9382 -- dealing with possible overflow, and generate the check. If
685094bf 9383 -- Address is either a source type or target type, suppress
8a36a0cc
AC
9384 -- range check to avoid typing anomalies when it is a visible
9385 -- integer type.
fbf5a39b
AC
9386
9387 Set_Do_Overflow_Check (N, False);
8a36a0cc
AC
9388 if not Is_Descendent_Of_Address (Etype (Expr))
9389 and then not Is_Descendent_Of_Address (Target_Type)
9390 then
9391 Generate_Range_Check
9392 (Expr, Target_Type, CE_Range_Check_Failed);
9393 end if;
fbf5a39b
AC
9394 end if;
9395 end;
9396 end if;
f02b8bb8
RD
9397
9398 -- Final step, if the result is a type conversion involving Vax_Float
9399 -- types, then it is subject for further special processing.
9400
9401 if Nkind (N) = N_Type_Conversion
9402 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
9403 then
9404 Expand_Vax_Conversion (N);
e606088a 9405 goto Done;
f02b8bb8 9406 end if;
e606088a
AC
9407
9408 -- Here at end of processing
9409
48f91b44
RD
9410 <<Done>>
9411 -- Apply predicate check if required. Note that we can't just call
9412 -- Apply_Predicate_Check here, because the type looks right after
9413 -- the conversion and it would omit the check. The Comes_From_Source
9414 -- guard is necessary to prevent infinite recursions when we generate
9415 -- internal conversions for the purpose of checking predicates.
9416
9417 if Present (Predicate_Function (Target_Type))
9418 and then Target_Type /= Operand_Type
9419 and then Comes_From_Source (N)
9420 then
00332244
AC
9421 declare
9422 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
9423
9424 begin
9425 -- Avoid infinite recursion on the subsequent expansion of
9426 -- of the copy of the original type conversion.
9427
9428 Set_Comes_From_Source (New_Expr, False);
9429 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
9430 end;
48f91b44 9431 end if;
70482933
RK
9432 end Expand_N_Type_Conversion;
9433
9434 -----------------------------------
9435 -- Expand_N_Unchecked_Expression --
9436 -----------------------------------
9437
e7e4d230 9438 -- Remove the unchecked expression node from the tree. Its job was simply
70482933
RK
9439 -- to make sure that its constituent expression was handled with checks
9440 -- off, and now that that is done, we can remove it from the tree, and
e7e4d230 9441 -- indeed must, since Gigi does not expect to see these nodes.
70482933
RK
9442
9443 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
9444 Exp : constant Node_Id := Expression (N);
70482933 9445 begin
e7e4d230 9446 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
70482933
RK
9447 Rewrite (N, Exp);
9448 end Expand_N_Unchecked_Expression;
9449
9450 ----------------------------------------
9451 -- Expand_N_Unchecked_Type_Conversion --
9452 ----------------------------------------
9453
685094bf
RD
9454 -- If this cannot be handled by Gigi and we haven't already made a
9455 -- temporary for it, do it now.
70482933
RK
9456
9457 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
9458 Target_Type : constant Entity_Id := Etype (N);
9459 Operand : constant Node_Id := Expression (N);
9460 Operand_Type : constant Entity_Id := Etype (Operand);
9461
9462 begin
7b00e31d 9463 -- Nothing at all to do if conversion is to the identical type so remove
76efd572 9464 -- the conversion completely, it is useless, except that it may carry
e7e4d230 9465 -- an Assignment_OK indication which must be propagated to the operand.
7b00e31d
AC
9466
9467 if Operand_Type = Target_Type then
13d923cc 9468
e7e4d230
AC
9469 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
9470
7b00e31d
AC
9471 if Assignment_OK (N) then
9472 Set_Assignment_OK (Operand);
9473 end if;
9474
9475 Rewrite (N, Relocate_Node (Operand));
9476 return;
9477 end if;
9478
70482933
RK
9479 -- If we have a conversion of a compile time known value to a target
9480 -- type and the value is in range of the target type, then we can simply
9481 -- replace the construct by an integer literal of the correct type. We
9482 -- only apply this to integer types being converted. Possibly it may
9483 -- apply in other cases, but it is too much trouble to worry about.
9484
9485 -- Note that we do not do this transformation if the Kill_Range_Check
9486 -- flag is set, since then the value may be outside the expected range.
9487 -- This happens in the Normalize_Scalars case.
9488
20b5d666
JM
9489 -- We also skip this if either the target or operand type is biased
9490 -- because in this case, the unchecked conversion is supposed to
9491 -- preserve the bit pattern, not the integer value.
9492
70482933 9493 if Is_Integer_Type (Target_Type)
20b5d666 9494 and then not Has_Biased_Representation (Target_Type)
70482933 9495 and then Is_Integer_Type (Operand_Type)
20b5d666 9496 and then not Has_Biased_Representation (Operand_Type)
70482933
RK
9497 and then Compile_Time_Known_Value (Operand)
9498 and then not Kill_Range_Check (N)
9499 then
9500 declare
9501 Val : constant Uint := Expr_Value (Operand);
9502
9503 begin
9504 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
9505 and then
9506 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
9507 and then
9508 Val >= Expr_Value (Type_Low_Bound (Target_Type))
9509 and then
9510 Val <= Expr_Value (Type_High_Bound (Target_Type))
9511 then
9512 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8a36a0cc 9513
685094bf
RD
9514 -- If Address is the target type, just set the type to avoid a
9515 -- spurious type error on the literal when Address is a visible
9516 -- integer type.
8a36a0cc
AC
9517
9518 if Is_Descendent_Of_Address (Target_Type) then
9519 Set_Etype (N, Target_Type);
9520 else
9521 Analyze_And_Resolve (N, Target_Type);
9522 end if;
9523
70482933
RK
9524 return;
9525 end if;
9526 end;
9527 end if;
9528
9529 -- Nothing to do if conversion is safe
9530
9531 if Safe_Unchecked_Type_Conversion (N) then
9532 return;
9533 end if;
9534
9535 -- Otherwise force evaluation unless Assignment_OK flag is set (this
9536 -- flag indicates ??? -- more comments needed here)
9537
9538 if Assignment_OK (N) then
9539 null;
9540 else
9541 Force_Evaluation (N);
9542 end if;
9543 end Expand_N_Unchecked_Type_Conversion;
9544
9545 ----------------------------
9546 -- Expand_Record_Equality --
9547 ----------------------------
9548
9549 -- For non-variant records, Equality is expanded when needed into:
9550
9551 -- and then Lhs.Discr1 = Rhs.Discr1
9552 -- and then ...
9553 -- and then Lhs.Discrn = Rhs.Discrn
9554 -- and then Lhs.Cmp1 = Rhs.Cmp1
9555 -- and then ...
9556 -- and then Lhs.Cmpn = Rhs.Cmpn
9557
9558 -- The expression is folded by the back-end for adjacent fields. This
9559 -- function is called for tagged record in only one occasion: for imple-
9560 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
9561 -- otherwise the primitive "=" is used directly.
9562
9563 function Expand_Record_Equality
9564 (Nod : Node_Id;
9565 Typ : Entity_Id;
9566 Lhs : Node_Id;
9567 Rhs : Node_Id;
2e071734 9568 Bodies : List_Id) return Node_Id
70482933
RK
9569 is
9570 Loc : constant Source_Ptr := Sloc (Nod);
9571
0ab80019
AC
9572 Result : Node_Id;
9573 C : Entity_Id;
9574
9575 First_Time : Boolean := True;
9576
70482933
RK
9577 function Suitable_Element (C : Entity_Id) return Entity_Id;
9578 -- Return the first field to compare beginning with C, skipping the
0ab80019
AC
9579 -- inherited components.
9580
9581 ----------------------
9582 -- Suitable_Element --
9583 ----------------------
70482933
RK
9584
9585 function Suitable_Element (C : Entity_Id) return Entity_Id is
9586 begin
9587 if No (C) then
9588 return Empty;
9589
9590 elsif Ekind (C) /= E_Discriminant
9591 and then Ekind (C) /= E_Component
9592 then
9593 return Suitable_Element (Next_Entity (C));
9594
9595 elsif Is_Tagged_Type (Typ)
9596 and then C /= Original_Record_Component (C)
9597 then
9598 return Suitable_Element (Next_Entity (C));
9599
df3e68b1 9600 elsif Chars (C) = Name_uTag then
70482933
RK
9601 return Suitable_Element (Next_Entity (C));
9602
24558db8
AC
9603 -- The .NET/JVM version of type Root_Controlled contains two fields
9604 -- which should not be considered part of the object. To achieve
9605 -- proper equiality between two controlled objects on .NET/JVM, skip
9606 -- field _parent whenever it is of type Root_Controlled.
9607
9608 elsif Chars (C) = Name_uParent
9609 and then VM_Target /= No_VM
9610 and then Etype (C) = RTE (RE_Root_Controlled)
9611 then
9612 return Suitable_Element (Next_Entity (C));
9613
26bff3d9
JM
9614 elsif Is_Interface (Etype (C)) then
9615 return Suitable_Element (Next_Entity (C));
9616
70482933
RK
9617 else
9618 return C;
9619 end if;
9620 end Suitable_Element;
9621
70482933
RK
9622 -- Start of processing for Expand_Record_Equality
9623
9624 begin
70482933
RK
9625 -- Generates the following code: (assuming that Typ has one Discr and
9626 -- component C2 is also a record)
9627
9628 -- True
9629 -- and then Lhs.Discr1 = Rhs.Discr1
9630 -- and then Lhs.C1 = Rhs.C1
9631 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
9632 -- and then ...
9633 -- and then Lhs.Cmpn = Rhs.Cmpn
9634
9635 Result := New_Reference_To (Standard_True, Loc);
9636 C := Suitable_Element (First_Entity (Typ));
70482933 9637 while Present (C) loop
70482933
RK
9638 declare
9639 New_Lhs : Node_Id;
9640 New_Rhs : Node_Id;
8aceda64 9641 Check : Node_Id;
70482933
RK
9642
9643 begin
9644 if First_Time then
9645 First_Time := False;
9646 New_Lhs := Lhs;
9647 New_Rhs := Rhs;
70482933
RK
9648 else
9649 New_Lhs := New_Copy_Tree (Lhs);
9650 New_Rhs := New_Copy_Tree (Rhs);
9651 end if;
9652
8aceda64
AC
9653 Check :=
9654 Expand_Composite_Equality (Nod, Etype (C),
9655 Lhs =>
9656 Make_Selected_Component (Loc,
9657 Prefix => New_Lhs,
9658 Selector_Name => New_Reference_To (C, Loc)),
9659 Rhs =>
9660 Make_Selected_Component (Loc,
9661 Prefix => New_Rhs,
9662 Selector_Name => New_Reference_To (C, Loc)),
9663 Bodies => Bodies);
9664
9665 -- If some (sub)component is an unchecked_union, the whole
9666 -- operation will raise program error.
9667
9668 if Nkind (Check) = N_Raise_Program_Error then
9669 Result := Check;
9670 Set_Etype (Result, Standard_Boolean);
9671 exit;
9672 else
9673 Result :=
9674 Make_And_Then (Loc,
9675 Left_Opnd => Result,
9676 Right_Opnd => Check);
9677 end if;
70482933
RK
9678 end;
9679
9680 C := Suitable_Element (Next_Entity (C));
9681 end loop;
9682
9683 return Result;
9684 end Expand_Record_Equality;
9685
a3068ca6
AC
9686 ---------------------------
9687 -- Expand_Set_Membership --
9688 ---------------------------
9689
9690 procedure Expand_Set_Membership (N : Node_Id) is
9691 Lop : constant Node_Id := Left_Opnd (N);
9692 Alt : Node_Id;
9693 Res : Node_Id;
9694
9695 function Make_Cond (Alt : Node_Id) return Node_Id;
9696 -- If the alternative is a subtype mark, create a simple membership
9697 -- test. Otherwise create an equality test for it.
9698
9699 ---------------
9700 -- Make_Cond --
9701 ---------------
9702
9703 function Make_Cond (Alt : Node_Id) return Node_Id is
9704 Cond : Node_Id;
9705 L : constant Node_Id := New_Copy (Lop);
9706 R : constant Node_Id := Relocate_Node (Alt);
9707
9708 begin
9709 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
9710 or else Nkind (Alt) = N_Range
9711 then
9712 Cond :=
9713 Make_In (Sloc (Alt),
9714 Left_Opnd => L,
9715 Right_Opnd => R);
9716 else
9717 Cond :=
9718 Make_Op_Eq (Sloc (Alt),
9719 Left_Opnd => L,
9720 Right_Opnd => R);
9721 end if;
9722
9723 return Cond;
9724 end Make_Cond;
9725
9726 -- Start of processing for Expand_Set_Membership
9727
9728 begin
9729 Remove_Side_Effects (Lop);
9730
9731 Alt := Last (Alternatives (N));
9732 Res := Make_Cond (Alt);
9733
9734 Prev (Alt);
9735 while Present (Alt) loop
9736 Res :=
9737 Make_Or_Else (Sloc (Alt),
9738 Left_Opnd => Make_Cond (Alt),
9739 Right_Opnd => Res);
9740 Prev (Alt);
9741 end loop;
9742
9743 Rewrite (N, Res);
9744 Analyze_And_Resolve (N, Standard_Boolean);
9745 end Expand_Set_Membership;
9746
5875f8d6
AC
9747 -----------------------------------
9748 -- Expand_Short_Circuit_Operator --
9749 -----------------------------------
9750
955871d3
AC
9751 -- Deal with special expansion if actions are present for the right operand
9752 -- and deal with optimizing case of arguments being True or False. We also
9753 -- deal with the special case of non-standard boolean values.
5875f8d6
AC
9754
9755 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
9756 Loc : constant Source_Ptr := Sloc (N);
9757 Typ : constant Entity_Id := Etype (N);
5875f8d6
AC
9758 Left : constant Node_Id := Left_Opnd (N);
9759 Right : constant Node_Id := Right_Opnd (N);
955871d3 9760 LocR : constant Source_Ptr := Sloc (Right);
5875f8d6
AC
9761 Actlist : List_Id;
9762
9763 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
9764 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
9765 -- If Left = Shortcut_Value then Right need not be evaluated
9766
25adc5fb
AC
9767 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
9768 -- For Opnd a boolean expression, return a Boolean expression equivalent
9769 -- to Opnd /= Shortcut_Value.
9770
9771 --------------------
9772 -- Make_Test_Expr --
9773 --------------------
9774
9775 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
9776 begin
9777 if Shortcut_Value then
9778 return Make_Op_Not (Sloc (Opnd), Opnd);
9779 else
9780 return Opnd;
9781 end if;
9782 end Make_Test_Expr;
9783
9784 Op_Var : Entity_Id;
9785 -- Entity for a temporary variable holding the value of the operator,
9786 -- used for expansion in the case where actions are present.
9787
9788 -- Start of processing for Expand_Short_Circuit_Operator
5875f8d6
AC
9789
9790 begin
9791 -- Deal with non-standard booleans
9792
9793 if Is_Boolean_Type (Typ) then
9794 Adjust_Condition (Left);
9795 Adjust_Condition (Right);
9796 Set_Etype (N, Standard_Boolean);
9797 end if;
9798
9799 -- Check for cases where left argument is known to be True or False
9800
9801 if Compile_Time_Known_Value (Left) then
25adc5fb
AC
9802
9803 -- Mark SCO for left condition as compile time known
9804
9805 if Generate_SCO and then Comes_From_Source (Left) then
9806 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
9807 end if;
9808
5875f8d6
AC
9809 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
9810 -- Any actions associated with Right will be executed unconditionally
9811 -- and can thus be inserted into the tree unconditionally.
9812
9813 if Expr_Value_E (Left) /= Shortcut_Ent then
9814 if Present (Actions (N)) then
9815 Insert_Actions (N, Actions (N));
9816 end if;
9817
9818 Rewrite (N, Right);
9819
9820 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
9821 -- In this case we can forget the actions associated with Right,
9822 -- since they will never be executed.
9823
9824 else
9825 Kill_Dead_Code (Right);
9826 Kill_Dead_Code (Actions (N));
9827 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9828 end if;
9829
9830 Adjust_Result_Type (N, Typ);
9831 return;
9832 end if;
9833
955871d3
AC
9834 -- If Actions are present for the right operand, we have to do some
9835 -- special processing. We can't just let these actions filter back into
9836 -- code preceding the short circuit (which is what would have happened
9837 -- if we had not trapped them in the short-circuit form), since they
9838 -- must only be executed if the right operand of the short circuit is
9839 -- executed and not otherwise.
5875f8d6 9840
955871d3 9841 -- the temporary variable C.
5875f8d6 9842
955871d3
AC
9843 if Present (Actions (N)) then
9844 Actlist := Actions (N);
5875f8d6 9845
955871d3 9846 -- The old approach is to expand:
5875f8d6 9847
955871d3 9848 -- left AND THEN right
25adc5fb 9849
955871d3 9850 -- into
25adc5fb 9851
955871d3
AC
9852 -- C : Boolean := False;
9853 -- IF left THEN
9854 -- Actions;
9855 -- IF right THEN
9856 -- C := True;
9857 -- END IF;
9858 -- END IF;
5875f8d6 9859
955871d3
AC
9860 -- and finally rewrite the operator into a reference to C. Similarly
9861 -- for left OR ELSE right, with negated values. Note that this
9862 -- rewrite causes some difficulties for coverage analysis because
9863 -- of the introduction of the new variable C, which obscures the
9864 -- structure of the test.
5875f8d6 9865
9cbfc269
AC
9866 -- We use this "old approach" if use of N_Expression_With_Actions
9867 -- is False (see description in Opt of when this is or is not set).
5875f8d6 9868
9cbfc269 9869 if not Use_Expression_With_Actions then
955871d3 9870 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
5875f8d6 9871
955871d3
AC
9872 Insert_Action (N,
9873 Make_Object_Declaration (Loc,
9874 Defining_Identifier =>
9875 Op_Var,
9876 Object_Definition =>
9877 New_Occurrence_Of (Standard_Boolean, Loc),
9878 Expression =>
9879 New_Occurrence_Of (Shortcut_Ent, Loc)));
9880
9881 Append_To (Actlist,
9882 Make_Implicit_If_Statement (Right,
9883 Condition => Make_Test_Expr (Right),
9884 Then_Statements => New_List (
9885 Make_Assignment_Statement (LocR,
9886 Name => New_Occurrence_Of (Op_Var, LocR),
9887 Expression =>
9888 New_Occurrence_Of
9889 (Boolean_Literals (not Shortcut_Value), LocR)))));
5875f8d6 9890
955871d3
AC
9891 Insert_Action (N,
9892 Make_Implicit_If_Statement (Left,
9893 Condition => Make_Test_Expr (Left),
9894 Then_Statements => Actlist));
9895
9896 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
9897 Analyze_And_Resolve (N, Standard_Boolean);
9898
9899 -- The new approach, activated for now by the use of debug flag
9900 -- -gnatd.X is to use the new Expression_With_Actions node for the
9901 -- right operand of the short-circuit form. This should solve the
9902 -- traceability problems for coverage analysis.
9903
9904 else
9905 Rewrite (Right,
9906 Make_Expression_With_Actions (LocR,
9907 Expression => Relocate_Node (Right),
9908 Actions => Actlist));
48b351d9 9909 Set_Actions (N, No_List);
955871d3
AC
9910 Analyze_And_Resolve (Right, Standard_Boolean);
9911 end if;
9912
5875f8d6
AC
9913 Adjust_Result_Type (N, Typ);
9914 return;
9915 end if;
9916
9917 -- No actions present, check for cases of right argument True/False
9918
9919 if Compile_Time_Known_Value (Right) then
25adc5fb
AC
9920
9921 -- Mark SCO for left condition as compile time known
9922
9923 if Generate_SCO and then Comes_From_Source (Right) then
9924 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
9925 end if;
9926
5875f8d6
AC
9927 -- Change (Left and then True), (Left or else False) to Left.
9928 -- Note that we know there are no actions associated with the right
9929 -- operand, since we just checked for this case above.
9930
9931 if Expr_Value_E (Right) /= Shortcut_Ent then
9932 Rewrite (N, Left);
9933
9934 -- Change (Left and then False), (Left or else True) to Right,
9935 -- making sure to preserve any side effects associated with the Left
9936 -- operand.
9937
9938 else
9939 Remove_Side_Effects (Left);
9940 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9941 end if;
9942 end if;
9943
9944 Adjust_Result_Type (N, Typ);
9945 end Expand_Short_Circuit_Operator;
9946
70482933
RK
9947 -------------------------------------
9948 -- Fixup_Universal_Fixed_Operation --
9949 -------------------------------------
9950
9951 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
9952 Conv : constant Node_Id := Parent (N);
9953
9954 begin
9955 -- We must have a type conversion immediately above us
9956
9957 pragma Assert (Nkind (Conv) = N_Type_Conversion);
9958
9959 -- Normally the type conversion gives our target type. The exception
9960 -- occurs in the case of the Round attribute, where the conversion
9961 -- will be to universal real, and our real type comes from the Round
9962 -- attribute (as well as an indication that we must round the result)
9963
9964 if Nkind (Parent (Conv)) = N_Attribute_Reference
9965 and then Attribute_Name (Parent (Conv)) = Name_Round
9966 then
9967 Set_Etype (N, Etype (Parent (Conv)));
9968 Set_Rounded_Result (N);
9969
9970 -- Normal case where type comes from conversion above us
9971
9972 else
9973 Set_Etype (N, Etype (Conv));
9974 end if;
9975 end Fixup_Universal_Fixed_Operation;
9976
5d09245e
AC
9977 ---------------------------------
9978 -- Has_Inferable_Discriminants --
9979 ---------------------------------
9980
9981 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
9982
9983 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
9984 -- Determines whether the left-most prefix of a selected component is a
9985 -- formal parameter in a subprogram. Assumes N is a selected component.
9986
9987 --------------------------------
9988 -- Prefix_Is_Formal_Parameter --
9989 --------------------------------
9990
9991 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
9992 Sel_Comp : Node_Id := N;
9993
9994 begin
9995 -- Move to the left-most prefix by climbing up the tree
9996
9997 while Present (Parent (Sel_Comp))
9998 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
9999 loop
10000 Sel_Comp := Parent (Sel_Comp);
10001 end loop;
10002
10003 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
10004 end Prefix_Is_Formal_Parameter;
10005
10006 -- Start of processing for Has_Inferable_Discriminants
10007
10008 begin
8fc789c8 10009 -- For identifiers and indexed components, it is sufficient to have a
5d09245e
AC
10010 -- constrained Unchecked_Union nominal subtype.
10011
303b4d58 10012 if Nkind_In (N, N_Identifier, N_Indexed_Component) then
5d09245e
AC
10013 return Is_Unchecked_Union (Base_Type (Etype (N)))
10014 and then
10015 Is_Constrained (Etype (N));
10016
10017 -- For selected components, the subtype of the selector must be a
10018 -- constrained Unchecked_Union. If the component is subject to a
10019 -- per-object constraint, then the enclosing object must have inferable
10020 -- discriminants.
10021
10022 elsif Nkind (N) = N_Selected_Component then
10023 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
10024
10025 -- A small hack. If we have a per-object constrained selected
10026 -- component of a formal parameter, return True since we do not
10027 -- know the actual parameter association yet.
10028
10029 if Prefix_Is_Formal_Parameter (N) then
10030 return True;
10031 end if;
10032
10033 -- Otherwise, check the enclosing object and the selector
10034
10035 return Has_Inferable_Discriminants (Prefix (N))
10036 and then
10037 Has_Inferable_Discriminants (Selector_Name (N));
10038 end if;
10039
10040 -- The call to Has_Inferable_Discriminants will determine whether
10041 -- the selector has a constrained Unchecked_Union nominal type.
10042
10043 return Has_Inferable_Discriminants (Selector_Name (N));
10044
10045 -- A qualified expression has inferable discriminants if its subtype
10046 -- mark is a constrained Unchecked_Union subtype.
10047
10048 elsif Nkind (N) = N_Qualified_Expression then
10049 return Is_Unchecked_Union (Subtype_Mark (N))
10050 and then
10051 Is_Constrained (Subtype_Mark (N));
10052
10053 end if;
10054
10055 return False;
10056 end Has_Inferable_Discriminants;
10057
70482933
RK
10058 -------------------------------
10059 -- Insert_Dereference_Action --
10060 -------------------------------
10061
10062 procedure Insert_Dereference_Action (N : Node_Id) is
10063 Loc : constant Source_Ptr := Sloc (N);
10064 Typ : constant Entity_Id := Etype (N);
10065 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
0ab80019 10066 Pnod : constant Node_Id := Parent (N);
70482933
RK
10067
10068 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
2e071734
AC
10069 -- Return true if type of P is derived from Checked_Pool;
10070
10071 -----------------------------
10072 -- Is_Checked_Storage_Pool --
10073 -----------------------------
70482933
RK
10074
10075 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
10076 T : Entity_Id;
10077
10078 begin
10079 if No (P) then
10080 return False;
10081 end if;
10082
10083 T := Etype (P);
10084 while T /= Etype (T) loop
10085 if Is_RTE (T, RE_Checked_Pool) then
10086 return True;
10087 else
10088 T := Etype (T);
10089 end if;
10090 end loop;
10091
10092 return False;
10093 end Is_Checked_Storage_Pool;
10094
10095 -- Start of processing for Insert_Dereference_Action
10096
10097 begin
e6f69614
AC
10098 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
10099
0ab80019
AC
10100 if not (Is_Checked_Storage_Pool (Pool)
10101 and then Comes_From_Source (Original_Node (Pnod)))
e6f69614 10102 then
70482933 10103 return;
70482933
RK
10104 end if;
10105
10106 Insert_Action (N,
10107 Make_Procedure_Call_Statement (Loc,
10108 Name => New_Reference_To (
10109 Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
10110
10111 Parameter_Associations => New_List (
10112
10113 -- Pool
10114
10115 New_Reference_To (Pool, Loc),
10116
685094bf
RD
10117 -- Storage_Address. We use the attribute Pool_Address, which uses
10118 -- the pointer itself to find the address of the object, and which
10119 -- handles unconstrained arrays properly by computing the address
10120 -- of the template. i.e. the correct address of the corresponding
10121 -- allocation.
70482933
RK
10122
10123 Make_Attribute_Reference (Loc,
fbf5a39b
AC
10124 Prefix => Duplicate_Subexpr_Move_Checks (N),
10125 Attribute_Name => Name_Pool_Address),
70482933
RK
10126
10127 -- Size_In_Storage_Elements
10128
10129 Make_Op_Divide (Loc,
10130 Left_Opnd =>
10131 Make_Attribute_Reference (Loc,
10132 Prefix =>
fbf5a39b
AC
10133 Make_Explicit_Dereference (Loc,
10134 Duplicate_Subexpr_Move_Checks (N)),
70482933
RK
10135 Attribute_Name => Name_Size),
10136 Right_Opnd =>
10137 Make_Integer_Literal (Loc, System_Storage_Unit)),
10138
10139 -- Alignment
10140
10141 Make_Attribute_Reference (Loc,
10142 Prefix =>
fbf5a39b
AC
10143 Make_Explicit_Dereference (Loc,
10144 Duplicate_Subexpr_Move_Checks (N)),
70482933
RK
10145 Attribute_Name => Name_Alignment))));
10146
fbf5a39b
AC
10147 exception
10148 when RE_Not_Available =>
10149 return;
70482933
RK
10150 end Insert_Dereference_Action;
10151
fdfcc663
AC
10152 --------------------------------
10153 -- Integer_Promotion_Possible --
10154 --------------------------------
10155
10156 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
10157 Operand : constant Node_Id := Expression (N);
10158 Operand_Type : constant Entity_Id := Etype (Operand);
10159 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
10160
10161 begin
10162 pragma Assert (Nkind (N) = N_Type_Conversion);
10163
10164 return
10165
10166 -- We only do the transformation for source constructs. We assume
10167 -- that the expander knows what it is doing when it generates code.
10168
10169 Comes_From_Source (N)
10170
10171 -- If the operand type is Short_Integer or Short_Short_Integer,
10172 -- then we will promote to Integer, which is available on all
10173 -- targets, and is sufficient to ensure no intermediate overflow.
10174 -- Furthermore it is likely to be as efficient or more efficient
10175 -- than using the smaller type for the computation so we do this
10176 -- unconditionally.
10177
10178 and then
10179 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
10180 or else
10181 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
10182
10183 -- Test for interesting operation, which includes addition,
5f3f175d
AC
10184 -- division, exponentiation, multiplication, subtraction, absolute
10185 -- value and unary negation. Unary "+" is omitted since it is a
10186 -- no-op and thus can't overflow.
fdfcc663 10187
5f3f175d
AC
10188 and then Nkind_In (Operand, N_Op_Abs,
10189 N_Op_Add,
fdfcc663
AC
10190 N_Op_Divide,
10191 N_Op_Expon,
10192 N_Op_Minus,
10193 N_Op_Multiply,
10194 N_Op_Subtract);
10195 end Integer_Promotion_Possible;
10196
70482933
RK
10197 ------------------------------
10198 -- Make_Array_Comparison_Op --
10199 ------------------------------
10200
10201 -- This is a hand-coded expansion of the following generic function:
10202
10203 -- generic
10204 -- type elem is (<>);
10205 -- type index is (<>);
10206 -- type a is array (index range <>) of elem;
20b5d666 10207
70482933
RK
10208 -- function Gnnn (X : a; Y: a) return boolean is
10209 -- J : index := Y'first;
20b5d666 10210
70482933
RK
10211 -- begin
10212 -- if X'length = 0 then
10213 -- return false;
20b5d666 10214
70482933
RK
10215 -- elsif Y'length = 0 then
10216 -- return true;
20b5d666 10217
70482933
RK
10218 -- else
10219 -- for I in X'range loop
10220 -- if X (I) = Y (J) then
10221 -- if J = Y'last then
10222 -- exit;
10223 -- else
10224 -- J := index'succ (J);
10225 -- end if;
20b5d666 10226
70482933
RK
10227 -- else
10228 -- return X (I) > Y (J);
10229 -- end if;
10230 -- end loop;
20b5d666 10231
70482933
RK
10232 -- return X'length > Y'length;
10233 -- end if;
10234 -- end Gnnn;
10235
10236 -- Note that since we are essentially doing this expansion by hand, we
10237 -- do not need to generate an actual or formal generic part, just the
10238 -- instantiated function itself.
10239
10240 function Make_Array_Comparison_Op
2e071734
AC
10241 (Typ : Entity_Id;
10242 Nod : Node_Id) return Node_Id
70482933
RK
10243 is
10244 Loc : constant Source_Ptr := Sloc (Nod);
10245
10246 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
10247 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
10248 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
10249 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
10250
10251 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
10252
10253 Loop_Statement : Node_Id;
10254 Loop_Body : Node_Id;
10255 If_Stat : Node_Id;
10256 Inner_If : Node_Id;
10257 Final_Expr : Node_Id;
10258 Func_Body : Node_Id;
10259 Func_Name : Entity_Id;
10260 Formals : List_Id;
10261 Length1 : Node_Id;
10262 Length2 : Node_Id;
10263
10264 begin
10265 -- if J = Y'last then
10266 -- exit;
10267 -- else
10268 -- J := index'succ (J);
10269 -- end if;
10270
10271 Inner_If :=
10272 Make_Implicit_If_Statement (Nod,
10273 Condition =>
10274 Make_Op_Eq (Loc,
10275 Left_Opnd => New_Reference_To (J, Loc),
10276 Right_Opnd =>
10277 Make_Attribute_Reference (Loc,
10278 Prefix => New_Reference_To (Y, Loc),
10279 Attribute_Name => Name_Last)),
10280
10281 Then_Statements => New_List (
10282 Make_Exit_Statement (Loc)),
10283
10284 Else_Statements =>
10285 New_List (
10286 Make_Assignment_Statement (Loc,
10287 Name => New_Reference_To (J, Loc),
10288 Expression =>
10289 Make_Attribute_Reference (Loc,
10290 Prefix => New_Reference_To (Index, Loc),
10291 Attribute_Name => Name_Succ,
10292 Expressions => New_List (New_Reference_To (J, Loc))))));
10293
10294 -- if X (I) = Y (J) then
10295 -- if ... end if;
10296 -- else
10297 -- return X (I) > Y (J);
10298 -- end if;
10299
10300 Loop_Body :=
10301 Make_Implicit_If_Statement (Nod,
10302 Condition =>
10303 Make_Op_Eq (Loc,
10304 Left_Opnd =>
10305 Make_Indexed_Component (Loc,
10306 Prefix => New_Reference_To (X, Loc),
10307 Expressions => New_List (New_Reference_To (I, Loc))),
10308
10309 Right_Opnd =>
10310 Make_Indexed_Component (Loc,
10311 Prefix => New_Reference_To (Y, Loc),
10312 Expressions => New_List (New_Reference_To (J, Loc)))),
10313
10314 Then_Statements => New_List (Inner_If),
10315
10316 Else_Statements => New_List (
d766cee3 10317 Make_Simple_Return_Statement (Loc,
70482933
RK
10318 Expression =>
10319 Make_Op_Gt (Loc,
10320 Left_Opnd =>
10321 Make_Indexed_Component (Loc,
10322 Prefix => New_Reference_To (X, Loc),
10323 Expressions => New_List (New_Reference_To (I, Loc))),
10324
10325 Right_Opnd =>
10326 Make_Indexed_Component (Loc,
10327 Prefix => New_Reference_To (Y, Loc),
10328 Expressions => New_List (
10329 New_Reference_To (J, Loc)))))));
10330
10331 -- for I in X'range loop
10332 -- if ... end if;
10333 -- end loop;
10334
10335 Loop_Statement :=
10336 Make_Implicit_Loop_Statement (Nod,
10337 Identifier => Empty,
10338
10339 Iteration_Scheme =>
10340 Make_Iteration_Scheme (Loc,
10341 Loop_Parameter_Specification =>
10342 Make_Loop_Parameter_Specification (Loc,
10343 Defining_Identifier => I,
10344 Discrete_Subtype_Definition =>
10345 Make_Attribute_Reference (Loc,
10346 Prefix => New_Reference_To (X, Loc),
10347 Attribute_Name => Name_Range))),
10348
10349 Statements => New_List (Loop_Body));
10350
10351 -- if X'length = 0 then
10352 -- return false;
10353 -- elsif Y'length = 0 then
10354 -- return true;
10355 -- else
10356 -- for ... loop ... end loop;
10357 -- return X'length > Y'length;
10358 -- end if;
10359
10360 Length1 :=
10361 Make_Attribute_Reference (Loc,
10362 Prefix => New_Reference_To (X, Loc),
10363 Attribute_Name => Name_Length);
10364
10365 Length2 :=
10366 Make_Attribute_Reference (Loc,
10367 Prefix => New_Reference_To (Y, Loc),
10368 Attribute_Name => Name_Length);
10369
10370 Final_Expr :=
10371 Make_Op_Gt (Loc,
10372 Left_Opnd => Length1,
10373 Right_Opnd => Length2);
10374
10375 If_Stat :=
10376 Make_Implicit_If_Statement (Nod,
10377 Condition =>
10378 Make_Op_Eq (Loc,
10379 Left_Opnd =>
10380 Make_Attribute_Reference (Loc,
10381 Prefix => New_Reference_To (X, Loc),
10382 Attribute_Name => Name_Length),
10383 Right_Opnd =>
10384 Make_Integer_Literal (Loc, 0)),
10385
10386 Then_Statements =>
10387 New_List (
d766cee3 10388 Make_Simple_Return_Statement (Loc,
70482933
RK
10389 Expression => New_Reference_To (Standard_False, Loc))),
10390
10391 Elsif_Parts => New_List (
10392 Make_Elsif_Part (Loc,
10393 Condition =>
10394 Make_Op_Eq (Loc,
10395 Left_Opnd =>
10396 Make_Attribute_Reference (Loc,
10397 Prefix => New_Reference_To (Y, Loc),
10398 Attribute_Name => Name_Length),
10399 Right_Opnd =>
10400 Make_Integer_Literal (Loc, 0)),
10401
10402 Then_Statements =>
10403 New_List (
d766cee3 10404 Make_Simple_Return_Statement (Loc,
70482933
RK
10405 Expression => New_Reference_To (Standard_True, Loc))))),
10406
10407 Else_Statements => New_List (
10408 Loop_Statement,
d766cee3 10409 Make_Simple_Return_Statement (Loc,
70482933
RK
10410 Expression => Final_Expr)));
10411
10412 -- (X : a; Y: a)
10413
10414 Formals := New_List (
10415 Make_Parameter_Specification (Loc,
10416 Defining_Identifier => X,
10417 Parameter_Type => New_Reference_To (Typ, Loc)),
10418
10419 Make_Parameter_Specification (Loc,
10420 Defining_Identifier => Y,
10421 Parameter_Type => New_Reference_To (Typ, Loc)));
10422
10423 -- function Gnnn (...) return boolean is
10424 -- J : index := Y'first;
10425 -- begin
10426 -- if ... end if;
10427 -- end Gnnn;
10428
191fcb3a 10429 Func_Name := Make_Temporary (Loc, 'G');
70482933
RK
10430
10431 Func_Body :=
10432 Make_Subprogram_Body (Loc,
10433 Specification =>
10434 Make_Function_Specification (Loc,
10435 Defining_Unit_Name => Func_Name,
10436 Parameter_Specifications => Formals,
630d30e9 10437 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
70482933
RK
10438
10439 Declarations => New_List (
10440 Make_Object_Declaration (Loc,
10441 Defining_Identifier => J,
10442 Object_Definition => New_Reference_To (Index, Loc),
10443 Expression =>
10444 Make_Attribute_Reference (Loc,
10445 Prefix => New_Reference_To (Y, Loc),
10446 Attribute_Name => Name_First))),
10447
10448 Handled_Statement_Sequence =>
10449 Make_Handled_Sequence_Of_Statements (Loc,
10450 Statements => New_List (If_Stat)));
10451
10452 return Func_Body;
70482933
RK
10453 end Make_Array_Comparison_Op;
10454
10455 ---------------------------
10456 -- Make_Boolean_Array_Op --
10457 ---------------------------
10458
685094bf
RD
10459 -- For logical operations on boolean arrays, expand in line the following,
10460 -- replacing 'and' with 'or' or 'xor' where needed:
70482933
RK
10461
10462 -- function Annn (A : typ; B: typ) return typ is
10463 -- C : typ;
10464 -- begin
10465 -- for J in A'range loop
10466 -- C (J) := A (J) op B (J);
10467 -- end loop;
10468 -- return C;
10469 -- end Annn;
10470
10471 -- Here typ is the boolean array type
10472
10473 function Make_Boolean_Array_Op
2e071734
AC
10474 (Typ : Entity_Id;
10475 N : Node_Id) return Node_Id
70482933
RK
10476 is
10477 Loc : constant Source_Ptr := Sloc (N);
10478
10479 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
10480 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
10481 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
10482 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
10483
10484 A_J : Node_Id;
10485 B_J : Node_Id;
10486 C_J : Node_Id;
10487 Op : Node_Id;
10488
10489 Formals : List_Id;
10490 Func_Name : Entity_Id;
10491 Func_Body : Node_Id;
10492 Loop_Statement : Node_Id;
10493
10494 begin
10495 A_J :=
10496 Make_Indexed_Component (Loc,
10497 Prefix => New_Reference_To (A, Loc),
10498 Expressions => New_List (New_Reference_To (J, Loc)));
10499
10500 B_J :=
10501 Make_Indexed_Component (Loc,
10502 Prefix => New_Reference_To (B, Loc),
10503 Expressions => New_List (New_Reference_To (J, Loc)));
10504
10505 C_J :=
10506 Make_Indexed_Component (Loc,
10507 Prefix => New_Reference_To (C, Loc),
10508 Expressions => New_List (New_Reference_To (J, Loc)));
10509
10510 if Nkind (N) = N_Op_And then
10511 Op :=
10512 Make_Op_And (Loc,
10513 Left_Opnd => A_J,
10514 Right_Opnd => B_J);
10515
10516 elsif Nkind (N) = N_Op_Or then
10517 Op :=
10518 Make_Op_Or (Loc,
10519 Left_Opnd => A_J,
10520 Right_Opnd => B_J);
10521
10522 else
10523 Op :=
10524 Make_Op_Xor (Loc,
10525 Left_Opnd => A_J,
10526 Right_Opnd => B_J);
10527 end if;
10528
10529 Loop_Statement :=
10530 Make_Implicit_Loop_Statement (N,
10531 Identifier => Empty,
10532
10533 Iteration_Scheme =>
10534 Make_Iteration_Scheme (Loc,
10535 Loop_Parameter_Specification =>
10536 Make_Loop_Parameter_Specification (Loc,
10537 Defining_Identifier => J,
10538 Discrete_Subtype_Definition =>
10539 Make_Attribute_Reference (Loc,
10540 Prefix => New_Reference_To (A, Loc),
10541 Attribute_Name => Name_Range))),
10542
10543 Statements => New_List (
10544 Make_Assignment_Statement (Loc,
10545 Name => C_J,
10546 Expression => Op)));
10547
10548 Formals := New_List (
10549 Make_Parameter_Specification (Loc,
10550 Defining_Identifier => A,
10551 Parameter_Type => New_Reference_To (Typ, Loc)),
10552
10553 Make_Parameter_Specification (Loc,
10554 Defining_Identifier => B,
10555 Parameter_Type => New_Reference_To (Typ, Loc)));
10556
191fcb3a 10557 Func_Name := Make_Temporary (Loc, 'A');
70482933
RK
10558 Set_Is_Inlined (Func_Name);
10559
10560 Func_Body :=
10561 Make_Subprogram_Body (Loc,
10562 Specification =>
10563 Make_Function_Specification (Loc,
10564 Defining_Unit_Name => Func_Name,
10565 Parameter_Specifications => Formals,
630d30e9 10566 Result_Definition => New_Reference_To (Typ, Loc)),
70482933
RK
10567
10568 Declarations => New_List (
10569 Make_Object_Declaration (Loc,
10570 Defining_Identifier => C,
10571 Object_Definition => New_Reference_To (Typ, Loc))),
10572
10573 Handled_Statement_Sequence =>
10574 Make_Handled_Sequence_Of_Statements (Loc,
10575 Statements => New_List (
10576 Loop_Statement,
d766cee3 10577 Make_Simple_Return_Statement (Loc,
70482933
RK
10578 Expression => New_Reference_To (C, Loc)))));
10579
10580 return Func_Body;
10581 end Make_Boolean_Array_Op;
10582
0580d807
AC
10583 --------------------------------
10584 -- Optimize_Length_Comparison --
10585 --------------------------------
10586
10587 procedure Optimize_Length_Comparison (N : Node_Id) is
10588 Loc : constant Source_Ptr := Sloc (N);
10589 Typ : constant Entity_Id := Etype (N);
10590 Result : Node_Id;
10591
10592 Left : Node_Id;
10593 Right : Node_Id;
10594 -- First and Last attribute reference nodes, which end up as left and
10595 -- right operands of the optimized result.
10596
10597 Is_Zero : Boolean;
10598 -- True for comparison operand of zero
10599
10600 Comp : Node_Id;
10601 -- Comparison operand, set only if Is_Zero is false
10602
10603 Ent : Entity_Id;
10604 -- Entity whose length is being compared
10605
10606 Index : Node_Id;
10607 -- Integer_Literal node for length attribute expression, or Empty
10608 -- if there is no such expression present.
10609
10610 Ityp : Entity_Id;
10611 -- Type of array index to which 'Length is applied
10612
10613 Op : Node_Kind := Nkind (N);
10614 -- Kind of comparison operator, gets flipped if operands backwards
10615
10616 function Is_Optimizable (N : Node_Id) return Boolean;
abcd9db2
AC
10617 -- Tests N to see if it is an optimizable comparison value (defined as
10618 -- constant zero or one, or something else where the value is known to
10619 -- be positive and in the range of 32-bits, and where the corresponding
10620 -- Length value is also known to be 32-bits. If result is true, sets
10621 -- Is_Zero, Ityp, and Comp accordingly.
0580d807
AC
10622
10623 function Is_Entity_Length (N : Node_Id) return Boolean;
10624 -- Tests if N is a length attribute applied to a simple entity. If so,
10625 -- returns True, and sets Ent to the entity, and Index to the integer
10626 -- literal provided as an attribute expression, or to Empty if none.
10627 -- Also returns True if the expression is a generated type conversion
10628 -- whose expression is of the desired form. This latter case arises
10629 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
10630 -- to check for being in range, which is not needed in this context.
10631 -- Returns False if neither condition holds.
10632
10633 function Prepare_64 (N : Node_Id) return Node_Id;
10634 -- Given a discrete expression, returns a Long_Long_Integer typed
10635 -- expression representing the underlying value of the expression.
10636 -- This is done with an unchecked conversion to the result type. We
10637 -- use unchecked conversion to handle the enumeration type case.
10638
10639 ----------------------
10640 -- Is_Entity_Length --
10641 ----------------------
10642
10643 function Is_Entity_Length (N : Node_Id) return Boolean is
10644 begin
10645 if Nkind (N) = N_Attribute_Reference
10646 and then Attribute_Name (N) = Name_Length
10647 and then Is_Entity_Name (Prefix (N))
10648 then
10649 Ent := Entity (Prefix (N));
10650
10651 if Present (Expressions (N)) then
10652 Index := First (Expressions (N));
10653 else
10654 Index := Empty;
10655 end if;
10656
10657 return True;
10658
10659 elsif Nkind (N) = N_Type_Conversion
10660 and then not Comes_From_Source (N)
10661 then
10662 return Is_Entity_Length (Expression (N));
10663
10664 else
10665 return False;
10666 end if;
10667 end Is_Entity_Length;
10668
10669 --------------------
10670 -- Is_Optimizable --
10671 --------------------
10672
10673 function Is_Optimizable (N : Node_Id) return Boolean is
10674 Val : Uint;
10675 OK : Boolean;
10676 Lo : Uint;
10677 Hi : Uint;
10678 Indx : Node_Id;
10679
10680 begin
10681 if Compile_Time_Known_Value (N) then
10682 Val := Expr_Value (N);
10683
10684 if Val = Uint_0 then
10685 Is_Zero := True;
10686 Comp := Empty;
10687 return True;
10688
10689 elsif Val = Uint_1 then
10690 Is_Zero := False;
10691 Comp := Empty;
10692 return True;
10693 end if;
10694 end if;
10695
10696 -- Here we have to make sure of being within 32-bits
10697
10698 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
10699
10700 if not OK
abcd9db2 10701 or else Lo < Uint_1
0580d807
AC
10702 or else Hi > UI_From_Int (Int'Last)
10703 then
10704 return False;
10705 end if;
10706
abcd9db2
AC
10707 -- Comparison value was within range, so now we must check the index
10708 -- value to make sure it is also within 32-bits.
0580d807
AC
10709
10710 Indx := First_Index (Etype (Ent));
10711
10712 if Present (Index) then
10713 for J in 2 .. UI_To_Int (Intval (Index)) loop
10714 Next_Index (Indx);
10715 end loop;
10716 end if;
10717
10718 Ityp := Etype (Indx);
10719
10720 if Esize (Ityp) > 32 then
10721 return False;
10722 end if;
10723
10724 Is_Zero := False;
10725 Comp := N;
10726 return True;
10727 end Is_Optimizable;
10728
10729 ----------------
10730 -- Prepare_64 --
10731 ----------------
10732
10733 function Prepare_64 (N : Node_Id) return Node_Id is
10734 begin
10735 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
10736 end Prepare_64;
10737
10738 -- Start of processing for Optimize_Length_Comparison
10739
10740 begin
10741 -- Nothing to do if not a comparison
10742
10743 if Op not in N_Op_Compare then
10744 return;
10745 end if;
10746
10747 -- Nothing to do if special -gnatd.P debug flag set
10748
10749 if Debug_Flag_Dot_PP then
10750 return;
10751 end if;
10752
10753 -- Ent'Length op 0/1
10754
10755 if Is_Entity_Length (Left_Opnd (N))
10756 and then Is_Optimizable (Right_Opnd (N))
10757 then
10758 null;
10759
10760 -- 0/1 op Ent'Length
10761
10762 elsif Is_Entity_Length (Right_Opnd (N))
10763 and then Is_Optimizable (Left_Opnd (N))
10764 then
10765 -- Flip comparison to opposite sense
10766
10767 case Op is
10768 when N_Op_Lt => Op := N_Op_Gt;
10769 when N_Op_Le => Op := N_Op_Ge;
10770 when N_Op_Gt => Op := N_Op_Lt;
10771 when N_Op_Ge => Op := N_Op_Le;
10772 when others => null;
10773 end case;
10774
10775 -- Else optimization not possible
10776
10777 else
10778 return;
10779 end if;
10780
10781 -- Fall through if we will do the optimization
10782
10783 -- Cases to handle:
10784
10785 -- X'Length = 0 => X'First > X'Last
10786 -- X'Length = 1 => X'First = X'Last
10787 -- X'Length = n => X'First + (n - 1) = X'Last
10788
10789 -- X'Length /= 0 => X'First <= X'Last
10790 -- X'Length /= 1 => X'First /= X'Last
10791 -- X'Length /= n => X'First + (n - 1) /= X'Last
10792
10793 -- X'Length >= 0 => always true, warn
10794 -- X'Length >= 1 => X'First <= X'Last
10795 -- X'Length >= n => X'First + (n - 1) <= X'Last
10796
10797 -- X'Length > 0 => X'First <= X'Last
10798 -- X'Length > 1 => X'First < X'Last
10799 -- X'Length > n => X'First + (n - 1) < X'Last
10800
10801 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
10802 -- X'Length <= 1 => X'First >= X'Last
10803 -- X'Length <= n => X'First + (n - 1) >= X'Last
10804
10805 -- X'Length < 0 => always false (warn)
10806 -- X'Length < 1 => X'First > X'Last
10807 -- X'Length < n => X'First + (n - 1) > X'Last
10808
10809 -- Note: for the cases of n (not constant 0,1), we require that the
10810 -- corresponding index type be integer or shorter (i.e. not 64-bit),
10811 -- and the same for the comparison value. Then we do the comparison
10812 -- using 64-bit arithmetic (actually long long integer), so that we
10813 -- cannot have overflow intefering with the result.
10814
10815 -- First deal with warning cases
10816
10817 if Is_Zero then
10818 case Op is
10819
10820 -- X'Length >= 0
10821
10822 when N_Op_Ge =>
10823 Rewrite (N,
10824 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
10825 Analyze_And_Resolve (N, Typ);
10826 Warn_On_Known_Condition (N);
10827 return;
10828
10829 -- X'Length < 0
10830
10831 when N_Op_Lt =>
10832 Rewrite (N,
10833 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
10834 Analyze_And_Resolve (N, Typ);
10835 Warn_On_Known_Condition (N);
10836 return;
10837
10838 when N_Op_Le =>
10839 if Constant_Condition_Warnings
10840 and then Comes_From_Source (Original_Node (N))
10841 then
10842 Error_Msg_N ("could replace by ""'=""?", N);
10843 end if;
10844
10845 Op := N_Op_Eq;
10846
10847 when others =>
10848 null;
10849 end case;
10850 end if;
10851
10852 -- Build the First reference we will use
10853
10854 Left :=
10855 Make_Attribute_Reference (Loc,
10856 Prefix => New_Occurrence_Of (Ent, Loc),
10857 Attribute_Name => Name_First);
10858
10859 if Present (Index) then
10860 Set_Expressions (Left, New_List (New_Copy (Index)));
10861 end if;
10862
10863 -- If general value case, then do the addition of (n - 1), and
10864 -- also add the needed conversions to type Long_Long_Integer.
10865
10866 if Present (Comp) then
10867 Left :=
10868 Make_Op_Add (Loc,
10869 Left_Opnd => Prepare_64 (Left),
10870 Right_Opnd =>
10871 Make_Op_Subtract (Loc,
10872 Left_Opnd => Prepare_64 (Comp),
10873 Right_Opnd => Make_Integer_Literal (Loc, 1)));
10874 end if;
10875
10876 -- Build the Last reference we will use
10877
10878 Right :=
10879 Make_Attribute_Reference (Loc,
10880 Prefix => New_Occurrence_Of (Ent, Loc),
10881 Attribute_Name => Name_Last);
10882
10883 if Present (Index) then
10884 Set_Expressions (Right, New_List (New_Copy (Index)));
10885 end if;
10886
10887 -- If general operand, convert Last reference to Long_Long_Integer
10888
10889 if Present (Comp) then
10890 Right := Prepare_64 (Right);
10891 end if;
10892
10893 -- Check for cases to optimize
10894
10895 -- X'Length = 0 => X'First > X'Last
10896 -- X'Length < 1 => X'First > X'Last
10897 -- X'Length < n => X'First + (n - 1) > X'Last
10898
10899 if (Is_Zero and then Op = N_Op_Eq)
10900 or else (not Is_Zero and then Op = N_Op_Lt)
10901 then
10902 Result :=
10903 Make_Op_Gt (Loc,
10904 Left_Opnd => Left,
10905 Right_Opnd => Right);
10906
10907 -- X'Length = 1 => X'First = X'Last
10908 -- X'Length = n => X'First + (n - 1) = X'Last
10909
10910 elsif not Is_Zero and then Op = N_Op_Eq then
10911 Result :=
10912 Make_Op_Eq (Loc,
10913 Left_Opnd => Left,
10914 Right_Opnd => Right);
10915
10916 -- X'Length /= 0 => X'First <= X'Last
10917 -- X'Length > 0 => X'First <= X'Last
10918
10919 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
10920 Result :=
10921 Make_Op_Le (Loc,
10922 Left_Opnd => Left,
10923 Right_Opnd => Right);
10924
10925 -- X'Length /= 1 => X'First /= X'Last
10926 -- X'Length /= n => X'First + (n - 1) /= X'Last
10927
10928 elsif not Is_Zero and then Op = N_Op_Ne then
10929 Result :=
10930 Make_Op_Ne (Loc,
10931 Left_Opnd => Left,
10932 Right_Opnd => Right);
10933
10934 -- X'Length >= 1 => X'First <= X'Last
10935 -- X'Length >= n => X'First + (n - 1) <= X'Last
10936
10937 elsif not Is_Zero and then Op = N_Op_Ge then
10938 Result :=
10939 Make_Op_Le (Loc,
10940 Left_Opnd => Left,
10941 Right_Opnd => Right);
10942
10943 -- X'Length > 1 => X'First < X'Last
10944 -- X'Length > n => X'First + (n = 1) < X'Last
10945
10946 elsif not Is_Zero and then Op = N_Op_Gt then
10947 Result :=
10948 Make_Op_Lt (Loc,
10949 Left_Opnd => Left,
10950 Right_Opnd => Right);
10951
10952 -- X'Length <= 1 => X'First >= X'Last
10953 -- X'Length <= n => X'First + (n - 1) >= X'Last
10954
10955 elsif not Is_Zero and then Op = N_Op_Le then
10956 Result :=
10957 Make_Op_Ge (Loc,
10958 Left_Opnd => Left,
10959 Right_Opnd => Right);
10960
10961 -- Should not happen at this stage
10962
10963 else
10964 raise Program_Error;
10965 end if;
10966
10967 -- Rewrite and finish up
10968
10969 Rewrite (N, Result);
10970 Analyze_And_Resolve (N, Typ);
10971 return;
10972 end Optimize_Length_Comparison;
10973
70482933
RK
10974 ------------------------
10975 -- Rewrite_Comparison --
10976 ------------------------
10977
10978 procedure Rewrite_Comparison (N : Node_Id) is
c800f862
RD
10979 Warning_Generated : Boolean := False;
10980 -- Set to True if first pass with Assume_Valid generates a warning in
10981 -- which case we skip the second pass to avoid warning overloaded.
10982
10983 Result : Node_Id;
10984 -- Set to Standard_True or Standard_False
10985
d26dc4b5
AC
10986 begin
10987 if Nkind (N) = N_Type_Conversion then
10988 Rewrite_Comparison (Expression (N));
20b5d666 10989 return;
70482933 10990
d26dc4b5 10991 elsif Nkind (N) not in N_Op_Compare then
20b5d666
JM
10992 return;
10993 end if;
70482933 10994
c800f862
RD
10995 -- Now start looking at the comparison in detail. We potentially go
10996 -- through this loop twice. The first time, Assume_Valid is set False
10997 -- in the call to Compile_Time_Compare. If this call results in a
10998 -- clear result of always True or Always False, that's decisive and
10999 -- we are done. Otherwise we repeat the processing with Assume_Valid
e7e4d230 11000 -- set to True to generate additional warnings. We can skip that step
c800f862
RD
11001 -- if Constant_Condition_Warnings is False.
11002
11003 for AV in False .. True loop
11004 declare
11005 Typ : constant Entity_Id := Etype (N);
11006 Op1 : constant Node_Id := Left_Opnd (N);
11007 Op2 : constant Node_Id := Right_Opnd (N);
70482933 11008
c800f862
RD
11009 Res : constant Compare_Result :=
11010 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
11011 -- Res indicates if compare outcome can be compile time determined
f02b8bb8 11012
c800f862
RD
11013 True_Result : Boolean;
11014 False_Result : Boolean;
f02b8bb8 11015
c800f862
RD
11016 begin
11017 case N_Op_Compare (Nkind (N)) is
d26dc4b5
AC
11018 when N_Op_Eq =>
11019 True_Result := Res = EQ;
11020 False_Result := Res = LT or else Res = GT or else Res = NE;
11021
11022 when N_Op_Ge =>
11023 True_Result := Res in Compare_GE;
11024 False_Result := Res = LT;
11025
11026 if Res = LE
11027 and then Constant_Condition_Warnings
11028 and then Comes_From_Source (Original_Node (N))
11029 and then Nkind (Original_Node (N)) = N_Op_Ge
11030 and then not In_Instance
d26dc4b5 11031 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 11032 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 11033 then
ed2233dc 11034 Error_Msg_N
d26dc4b5 11035 ("can never be greater than, could replace by ""'=""?", N);
c800f862 11036 Warning_Generated := True;
d26dc4b5 11037 end if;
70482933 11038
d26dc4b5
AC
11039 when N_Op_Gt =>
11040 True_Result := Res = GT;
11041 False_Result := Res in Compare_LE;
11042
11043 when N_Op_Lt =>
11044 True_Result := Res = LT;
11045 False_Result := Res in Compare_GE;
11046
11047 when N_Op_Le =>
11048 True_Result := Res in Compare_LE;
11049 False_Result := Res = GT;
11050
11051 if Res = GE
11052 and then Constant_Condition_Warnings
11053 and then Comes_From_Source (Original_Node (N))
11054 and then Nkind (Original_Node (N)) = N_Op_Le
11055 and then not In_Instance
d26dc4b5 11056 and then Is_Integer_Type (Etype (Left_Opnd (N)))
59ae6391 11057 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
d26dc4b5 11058 then
ed2233dc 11059 Error_Msg_N
d26dc4b5 11060 ("can never be less than, could replace by ""'=""?", N);
c800f862 11061 Warning_Generated := True;
d26dc4b5 11062 end if;
70482933 11063
d26dc4b5
AC
11064 when N_Op_Ne =>
11065 True_Result := Res = NE or else Res = GT or else Res = LT;
11066 False_Result := Res = EQ;
c800f862 11067 end case;
d26dc4b5 11068
c800f862
RD
11069 -- If this is the first iteration, then we actually convert the
11070 -- comparison into True or False, if the result is certain.
d26dc4b5 11071
c800f862
RD
11072 if AV = False then
11073 if True_Result or False_Result then
11074 if True_Result then
11075 Result := Standard_True;
11076 else
11077 Result := Standard_False;
11078 end if;
11079
11080 Rewrite (N,
11081 Convert_To (Typ,
11082 New_Occurrence_Of (Result, Sloc (N))));
11083 Analyze_And_Resolve (N, Typ);
11084 Warn_On_Known_Condition (N);
11085 return;
11086 end if;
11087
11088 -- If this is the second iteration (AV = True), and the original
e7e4d230
AC
11089 -- node comes from source and we are not in an instance, then give
11090 -- a warning if we know result would be True or False. Note: we
11091 -- know Constant_Condition_Warnings is set if we get here.
c800f862
RD
11092
11093 elsif Comes_From_Source (Original_Node (N))
11094 and then not In_Instance
11095 then
11096 if True_Result then
ed2233dc 11097 Error_Msg_N
c800f862
RD
11098 ("condition can only be False if invalid values present?",
11099 N);
11100 elsif False_Result then
ed2233dc 11101 Error_Msg_N
c800f862
RD
11102 ("condition can only be True if invalid values present?",
11103 N);
11104 end if;
11105 end if;
11106 end;
11107
11108 -- Skip second iteration if not warning on constant conditions or
e7e4d230
AC
11109 -- if the first iteration already generated a warning of some kind or
11110 -- if we are in any case assuming all values are valid (so that the
11111 -- first iteration took care of the valid case).
c800f862
RD
11112
11113 exit when not Constant_Condition_Warnings;
11114 exit when Warning_Generated;
11115 exit when Assume_No_Invalid_Values;
11116 end loop;
70482933
RK
11117 end Rewrite_Comparison;
11118
fbf5a39b
AC
11119 ----------------------------
11120 -- Safe_In_Place_Array_Op --
11121 ----------------------------
11122
11123 function Safe_In_Place_Array_Op
2e071734
AC
11124 (Lhs : Node_Id;
11125 Op1 : Node_Id;
11126 Op2 : Node_Id) return Boolean
fbf5a39b
AC
11127 is
11128 Target : Entity_Id;
11129
11130 function Is_Safe_Operand (Op : Node_Id) return Boolean;
11131 -- Operand is safe if it cannot overlap part of the target of the
11132 -- operation. If the operand and the target are identical, the operand
11133 -- is safe. The operand can be empty in the case of negation.
11134
11135 function Is_Unaliased (N : Node_Id) return Boolean;
5e1c00fa 11136 -- Check that N is a stand-alone entity
fbf5a39b
AC
11137
11138 ------------------
11139 -- Is_Unaliased --
11140 ------------------
11141
11142 function Is_Unaliased (N : Node_Id) return Boolean is
11143 begin
11144 return
11145 Is_Entity_Name (N)
11146 and then No (Address_Clause (Entity (N)))
11147 and then No (Renamed_Object (Entity (N)));
11148 end Is_Unaliased;
11149
11150 ---------------------
11151 -- Is_Safe_Operand --
11152 ---------------------
11153
11154 function Is_Safe_Operand (Op : Node_Id) return Boolean is
11155 begin
11156 if No (Op) then
11157 return True;
11158
11159 elsif Is_Entity_Name (Op) then
11160 return Is_Unaliased (Op);
11161
303b4d58 11162 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
fbf5a39b
AC
11163 return Is_Unaliased (Prefix (Op));
11164
11165 elsif Nkind (Op) = N_Slice then
11166 return
11167 Is_Unaliased (Prefix (Op))
11168 and then Entity (Prefix (Op)) /= Target;
11169
11170 elsif Nkind (Op) = N_Op_Not then
11171 return Is_Safe_Operand (Right_Opnd (Op));
11172
11173 else
11174 return False;
11175 end if;
11176 end Is_Safe_Operand;
11177
e7e4d230 11178 -- Start of processing for Is_Safe_In_Place_Array_Op
fbf5a39b
AC
11179
11180 begin
685094bf
RD
11181 -- Skip this processing if the component size is different from system
11182 -- storage unit (since at least for NOT this would cause problems).
fbf5a39b 11183
eaa826f8 11184 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
fbf5a39b
AC
11185 return False;
11186
26bff3d9 11187 -- Cannot do in place stuff on VM_Target since cannot pass addresses
fbf5a39b 11188
26bff3d9 11189 elsif VM_Target /= No_VM then
fbf5a39b
AC
11190 return False;
11191
11192 -- Cannot do in place stuff if non-standard Boolean representation
11193
eaa826f8 11194 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
fbf5a39b
AC
11195 return False;
11196
11197 elsif not Is_Unaliased (Lhs) then
11198 return False;
e7e4d230 11199
fbf5a39b
AC
11200 else
11201 Target := Entity (Lhs);
e7e4d230 11202 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
fbf5a39b
AC
11203 end if;
11204 end Safe_In_Place_Array_Op;
11205
70482933
RK
11206 -----------------------
11207 -- Tagged_Membership --
11208 -----------------------
11209
685094bf
RD
11210 -- There are two different cases to consider depending on whether the right
11211 -- operand is a class-wide type or not. If not we just compare the actual
11212 -- tag of the left expr to the target type tag:
70482933
RK
11213 --
11214 -- Left_Expr.Tag = Right_Type'Tag;
11215 --
685094bf
RD
11216 -- If it is a class-wide type we use the RT function CW_Membership which is
11217 -- usually implemented by looking in the ancestor tables contained in the
11218 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
70482933 11219
0669bebe
GB
11220 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
11221 -- function IW_Membership which is usually implemented by looking in the
11222 -- table of abstract interface types plus the ancestor table contained in
11223 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
11224
82878151
AC
11225 procedure Tagged_Membership
11226 (N : Node_Id;
11227 SCIL_Node : out Node_Id;
11228 Result : out Node_Id)
11229 is
70482933
RK
11230 Left : constant Node_Id := Left_Opnd (N);
11231 Right : constant Node_Id := Right_Opnd (N);
11232 Loc : constant Source_Ptr := Sloc (N);
11233
38171f43 11234 Full_R_Typ : Entity_Id;
70482933 11235 Left_Type : Entity_Id;
82878151 11236 New_Node : Node_Id;
70482933
RK
11237 Right_Type : Entity_Id;
11238 Obj_Tag : Node_Id;
11239
11240 begin
82878151
AC
11241 SCIL_Node := Empty;
11242
852dba80
AC
11243 -- Handle entities from the limited view
11244
11245 Left_Type := Available_View (Etype (Left));
11246 Right_Type := Available_View (Etype (Right));
70482933 11247
6cce2156
GD
11248 -- In the case where the type is an access type, the test is applied
11249 -- using the designated types (needed in Ada 2012 for implicit anonymous
11250 -- access conversions, for AI05-0149).
11251
11252 if Is_Access_Type (Right_Type) then
11253 Left_Type := Designated_Type (Left_Type);
11254 Right_Type := Designated_Type (Right_Type);
11255 end if;
11256
70482933
RK
11257 if Is_Class_Wide_Type (Left_Type) then
11258 Left_Type := Root_Type (Left_Type);
11259 end if;
11260
38171f43
AC
11261 if Is_Class_Wide_Type (Right_Type) then
11262 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
11263 else
11264 Full_R_Typ := Underlying_Type (Right_Type);
11265 end if;
11266
70482933
RK
11267 Obj_Tag :=
11268 Make_Selected_Component (Loc,
11269 Prefix => Relocate_Node (Left),
a9d8907c
JM
11270 Selector_Name =>
11271 New_Reference_To (First_Tag_Component (Left_Type), Loc));
70482933
RK
11272
11273 if Is_Class_Wide_Type (Right_Type) then
758c442c 11274
0669bebe
GB
11275 -- No need to issue a run-time check if we statically know that the
11276 -- result of this membership test is always true. For example,
11277 -- considering the following declarations:
11278
11279 -- type Iface is interface;
11280 -- type T is tagged null record;
11281 -- type DT is new T and Iface with null record;
11282
11283 -- Obj1 : T;
11284 -- Obj2 : DT;
11285
11286 -- These membership tests are always true:
11287
11288 -- Obj1 in T'Class
11289 -- Obj2 in T'Class;
11290 -- Obj2 in Iface'Class;
11291
11292 -- We do not need to handle cases where the membership is illegal.
11293 -- For example:
11294
11295 -- Obj1 in DT'Class; -- Compile time error
11296 -- Obj1 in Iface'Class; -- Compile time error
11297
11298 if not Is_Class_Wide_Type (Left_Type)
4ac2477e
JM
11299 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
11300 Use_Full_View => True)
0669bebe
GB
11301 or else (Is_Interface (Etype (Right_Type))
11302 and then Interface_Present_In_Ancestor
11303 (Typ => Left_Type,
11304 Iface => Etype (Right_Type))))
11305 then
82878151
AC
11306 Result := New_Reference_To (Standard_True, Loc);
11307 return;
0669bebe
GB
11308 end if;
11309
758c442c
GD
11310 -- Ada 2005 (AI-251): Class-wide applied to interfaces
11311
630d30e9
RD
11312 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
11313
0669bebe 11314 -- Support to: "Iface_CW_Typ in Typ'Class"
630d30e9
RD
11315
11316 or else Is_Interface (Left_Type)
11317 then
dfd99a80
TQ
11318 -- Issue error if IW_Membership operation not available in a
11319 -- configurable run time setting.
11320
11321 if not RTE_Available (RE_IW_Membership) then
b4592168
GD
11322 Error_Msg_CRT
11323 ("dynamic membership test on interface types", N);
82878151
AC
11324 Result := Empty;
11325 return;
dfd99a80
TQ
11326 end if;
11327
82878151 11328 Result :=
758c442c
GD
11329 Make_Function_Call (Loc,
11330 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
11331 Parameter_Associations => New_List (
11332 Make_Attribute_Reference (Loc,
11333 Prefix => Obj_Tag,
11334 Attribute_Name => Name_Address),
11335 New_Reference_To (
38171f43 11336 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
758c442c
GD
11337 Loc)));
11338
11339 -- Ada 95: Normal case
11340
11341 else
82878151
AC
11342 Build_CW_Membership (Loc,
11343 Obj_Tag_Node => Obj_Tag,
11344 Typ_Tag_Node =>
11345 New_Reference_To (
38171f43 11346 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
82878151
AC
11347 Related_Nod => N,
11348 New_Node => New_Node);
11349
11350 -- Generate the SCIL node for this class-wide membership test.
11351 -- Done here because the previous call to Build_CW_Membership
11352 -- relocates Obj_Tag.
11353
11354 if Generate_SCIL then
11355 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
11356 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
11357 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
11358 end if;
11359
11360 Result := New_Node;
758c442c
GD
11361 end if;
11362
0669bebe
GB
11363 -- Right_Type is not a class-wide type
11364
70482933 11365 else
0669bebe
GB
11366 -- No need to check the tag of the object if Right_Typ is abstract
11367
11368 if Is_Abstract_Type (Right_Type) then
82878151 11369 Result := New_Reference_To (Standard_False, Loc);
0669bebe
GB
11370
11371 else
82878151 11372 Result :=
0669bebe
GB
11373 Make_Op_Eq (Loc,
11374 Left_Opnd => Obj_Tag,
11375 Right_Opnd =>
11376 New_Reference_To
38171f43 11377 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
0669bebe 11378 end if;
70482933 11379 end if;
70482933
RK
11380 end Tagged_Membership;
11381
11382 ------------------------------
11383 -- Unary_Op_Validity_Checks --
11384 ------------------------------
11385
11386 procedure Unary_Op_Validity_Checks (N : Node_Id) is
11387 begin
11388 if Validity_Checks_On and Validity_Check_Operands then
11389 Ensure_Valid (Right_Opnd (N));
11390 end if;
11391 end Unary_Op_Validity_Checks;
11392
11393end Exp_Ch4;