]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/freeze.adb
tree.h: Update documentation on nothrow_flag.
[thirdparty/gcc.git] / gcc / ada / freeze.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
fbf5a39b 9-- Copyright (C) 1992-2003, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20-- MA 02111-1307, USA. --
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
33with Exp_Ch11; use Exp_Ch11;
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
fbf5a39b 36with Exp_Tss; use Exp_Tss;
70482933 37with Layout; use Layout;
07fc65c4 38with Lib.Xref; use Lib.Xref;
70482933
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Restrict; use Restrict;
43with Sem; use Sem;
44with Sem_Cat; use Sem_Cat;
45with Sem_Ch6; use Sem_Ch6;
46with Sem_Ch7; use Sem_Ch7;
47with Sem_Ch8; use Sem_Ch8;
48with Sem_Ch13; use Sem_Ch13;
49with Sem_Eval; use Sem_Eval;
50with Sem_Mech; use Sem_Mech;
51with Sem_Prag; use Sem_Prag;
52with Sem_Res; use Sem_Res;
53with Sem_Util; use Sem_Util;
54with Sinfo; use Sinfo;
55with Snames; use Snames;
56with Stand; use Stand;
57with Targparm; use Targparm;
58with Tbuild; use Tbuild;
59with Ttypes; use Ttypes;
60with Uintp; use Uintp;
61with Urealp; use Urealp;
62
63package body Freeze is
64
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
68
69 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
70 -- Typ is a type that is being frozen. If no size clause is given,
71 -- but a default Esize has been computed, then this default Esize is
72 -- adjusted up if necessary to be consistent with a given alignment,
73 -- but never to a value greater than Long_Long_Integer'Size. This
74 -- is used for all discrete types and for fixed-point types.
75
76 procedure Build_And_Analyze_Renamed_Body
77 (Decl : Node_Id;
78 New_S : Entity_Id;
79 After : in out Node_Id);
80 -- Build body for a renaming declaration, insert in tree and analyze.
81
fbf5a39b
AC
82 procedure Check_Address_Clause (E : Entity_Id);
83 -- Apply legality checks to address clauses for object declarations,
84 -- at the point the object is frozen.
85
70482933
RK
86 procedure Check_Strict_Alignment (E : Entity_Id);
87 -- E is a base type. If E is tagged or has a component that is aliased
88 -- or tagged or contains something this is aliased or tagged, set
89 -- Strict_Alignment.
90
91 procedure Check_Unsigned_Type (E : Entity_Id);
92 pragma Inline (Check_Unsigned_Type);
93 -- If E is a fixed-point or discrete type, then all the necessary work
94 -- to freeze it is completed except for possible setting of the flag
95 -- Is_Unsigned_Type, which is done by this procedure. The call has no
96 -- effect if the entity E is not a discrete or fixed-point type.
97
98 procedure Freeze_And_Append
99 (Ent : Entity_Id;
100 Loc : Source_Ptr;
101 Result : in out List_Id);
102 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
103 -- nodes to Result, modifying Result from No_List if necessary.
104
105 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
106 -- Freeze enumeration type. The Esize field is set as processing
107 -- proceeds (i.e. set by default when the type is declared and then
108 -- adjusted by rep clauses. What this procedure does is to make sure
109 -- that if a foreign convention is specified, and no specific size
110 -- is given, then the size must be at least Integer'Size.
111
70482933
RK
112 procedure Freeze_Static_Object (E : Entity_Id);
113 -- If an object is frozen which has Is_Statically_Allocated set, then
114 -- all referenced types must also be marked with this flag. This routine
115 -- is in charge of meeting this requirement for the object entity E.
116
117 procedure Freeze_Subprogram (E : Entity_Id);
118 -- Perform freezing actions for a subprogram (create extra formals,
119 -- and set proper default mechanism values). Note that this routine
120 -- is not called for internal subprograms, for which neither of these
121 -- actions is needed (or desirable, we do not want for example to have
122 -- these extra formals present in initialization procedures, where they
123 -- would serve no purpose). In this call E is either a subprogram or
124 -- a subprogram type (i.e. an access to a subprogram).
125
126 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 127 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
128 -- view. Used to determine whether the designated type of an access type
129 -- should be frozen when the access type is frozen. This is done when an
130 -- allocator is frozen, or an expression that may involve attributes of
131 -- the designated type. Otherwise freezing the access type does not freeze
132 -- the designated type.
70482933
RK
133
134 procedure Process_Default_Expressions
135 (E : Entity_Id;
136 After : in out Node_Id);
137 -- This procedure is called for each subprogram to complete processing
138 -- of default expressions at the point where all types are known to be
139 -- frozen. The expressions must be analyzed in full, to make sure that
140 -- all error processing is done (they have only been pre-analyzed). If
141 -- the expression is not an entity or literal, its analysis may generate
142 -- code which must not be executed. In that case we build a function
143 -- body to hold that code. This wrapper function serves no other purpose
144 -- (it used to be called to evaluate the default, but now the default is
145 -- inlined at each point of call).
146
147 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
148 -- Typ is a record or array type that is being frozen. This routine
149 -- sets the default component alignment from the scope stack values
150 -- if the alignment is otherwise not specified.
151
152 procedure Check_Debug_Info_Needed (T : Entity_Id);
153 -- As each entity is frozen, this routine is called to deal with the
154 -- setting of Debug_Info_Needed for the entity. This flag is set if
155 -- the entity comes from source, or if we are in Debug_Generated_Code
156 -- mode or if the -gnatdV debug flag is set. However, it never sets
157 -- the flag if Debug_Info_Off is set.
158
159 procedure Set_Debug_Info_Needed (T : Entity_Id);
160 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
161 -- also on any entities that are needed by T (for an object, the type
162 -- of the object is needed, and for a type, the subsidiary types are
163 -- needed -- see body for details). Never has any effect on T if the
164 -- Debug_Info_Off flag is set.
165
fbf5a39b
AC
166 procedure Warn_Overlay
167 (Expr : Node_Id;
168 Typ : Entity_Id;
169 Nam : Node_Id);
170 -- Expr is the expression for an address clause for entity Nam whose type
171 -- is Typ. If Typ has a default initialization, and there is no explicit
172 -- initialization in the source declaration, check whether the address
173 -- clause might cause overlaying of an entity, and emit a warning on the
174 -- side effect that the initialization will cause.
175
70482933
RK
176 -------------------------------
177 -- Adjust_Esize_For_Alignment --
178 -------------------------------
179
180 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
181 Align : Uint;
182
183 begin
184 if Known_Esize (Typ) and then Known_Alignment (Typ) then
185 Align := Alignment_In_Bits (Typ);
186
187 if Align > Esize (Typ)
188 and then Align <= Standard_Long_Long_Integer_Size
189 then
190 Set_Esize (Typ, Align);
191 end if;
192 end if;
193 end Adjust_Esize_For_Alignment;
194
195 ------------------------------------
196 -- Build_And_Analyze_Renamed_Body --
197 ------------------------------------
198
199 procedure Build_And_Analyze_Renamed_Body
200 (Decl : Node_Id;
201 New_S : Entity_Id;
202 After : in out Node_Id)
203 is
204 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
205
206 begin
207 Insert_After (After, Body_Node);
208 Mark_Rewrite_Insertion (Body_Node);
209 Analyze (Body_Node);
210 After := Body_Node;
211 end Build_And_Analyze_Renamed_Body;
212
213 ------------------------
214 -- Build_Renamed_Body --
215 ------------------------
216
217 function Build_Renamed_Body
218 (Decl : Node_Id;
fbf5a39b 219 New_S : Entity_Id) return Node_Id
70482933
RK
220 is
221 Loc : constant Source_Ptr := Sloc (New_S);
222 -- We use for the source location of the renamed body, the location
223 -- of the spec entity. It might seem more natural to use the location
224 -- of the renaming declaration itself, but that would be wrong, since
225 -- then the body we create would look as though it was created far
226 -- too late, and this could cause problems with elaboration order
227 -- analysis, particularly in connection with instantiations.
228
229 N : constant Node_Id := Unit_Declaration_Node (New_S);
230 Nam : constant Node_Id := Name (N);
231 Old_S : Entity_Id;
232 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
233 Actuals : List_Id := No_List;
234 Call_Node : Node_Id;
235 Call_Name : Node_Id;
236 Body_Node : Node_Id;
237 Formal : Entity_Id;
238 O_Formal : Entity_Id;
239 Param_Spec : Node_Id;
240
241 begin
242 -- Determine the entity being renamed, which is the target of the
243 -- call statement. If the name is an explicit dereference, this is
244 -- a renaming of a subprogram type rather than a subprogram. The
245 -- name itself is fully analyzed.
246
247 if Nkind (Nam) = N_Selected_Component then
248 Old_S := Entity (Selector_Name (Nam));
249
250 elsif Nkind (Nam) = N_Explicit_Dereference then
251 Old_S := Etype (Nam);
252
253 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
254 if Is_Entity_Name (Prefix (Nam)) then
255 Old_S := Entity (Prefix (Nam));
256 else
257 Old_S := Entity (Selector_Name (Prefix (Nam)));
258 end if;
259
260 elsif Nkind (Nam) = N_Character_Literal then
261 Old_S := Etype (New_S);
262
263 else
264 Old_S := Entity (Nam);
265 end if;
266
267 if Is_Entity_Name (Nam) then
07fc65c4
GB
268
269 -- If the renamed entity is a predefined operator, retain full
270 -- name to ensure its visibility.
271
272 if Ekind (Old_S) = E_Operator
273 and then Nkind (Nam) = N_Expanded_Name
274 then
275 Call_Name := New_Copy (Name (N));
276 else
277 Call_Name := New_Reference_To (Old_S, Loc);
278 end if;
279
70482933
RK
280 else
281 Call_Name := New_Copy (Name (N));
282
283 -- The original name may have been overloaded, but
284 -- is fully resolved now.
285
286 Set_Is_Overloaded (Call_Name, False);
287 end if;
288
289 -- For simple renamings, subsequent calls can be expanded directly
290 -- as called to the renamed entity. The body must be generated in
291 -- any case for calls they may appear elsewhere.
292
293 if (Ekind (Old_S) = E_Function
294 or else Ekind (Old_S) = E_Procedure)
295 and then Nkind (Decl) = N_Subprogram_Declaration
296 then
297 Set_Body_To_Inline (Decl, Old_S);
298 end if;
299
300 -- The body generated for this renaming is an internal artifact, and
301 -- does not constitute a freeze point for the called entity.
302
303 Set_Must_Not_Freeze (Call_Name);
304
305 Formal := First_Formal (Defining_Entity (Decl));
306
307 if Present (Formal) then
308 Actuals := New_List;
309
310 while Present (Formal) loop
311 Append (New_Reference_To (Formal, Loc), Actuals);
312 Next_Formal (Formal);
313 end loop;
314 end if;
315
316 -- If the renamed entity is an entry, inherit its profile. For
317 -- other renamings as bodies, both profiles must be subtype
318 -- conformant, so it is not necessary to replace the profile given
319 -- in the declaration. However, default values that are aggregates
320 -- are rewritten when partially analyzed, so we recover the original
321 -- aggregate to insure that subsequent conformity checking works.
07fc65c4
GB
322 -- Similarly, if the default expression was constant-folded, recover
323 -- the original expression.
70482933
RK
324
325 Formal := First_Formal (Defining_Entity (Decl));
326
327 if Present (Formal) then
328 O_Formal := First_Formal (Old_S);
329 Param_Spec := First (Parameter_Specifications (Spec));
330
331 while Present (Formal) loop
332 if Is_Entry (Old_S) then
333
334 if Nkind (Parameter_Type (Param_Spec)) /=
335 N_Access_Definition
336 then
337 Set_Etype (Formal, Etype (O_Formal));
338 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
339 end if;
340
07fc65c4
GB
341 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
342 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
343 Nkind (Default_Value (O_Formal))
344 then
70482933
RK
345 Set_Expression (Param_Spec,
346 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
347 end if;
348
349 Next_Formal (Formal);
350 Next_Formal (O_Formal);
351 Next (Param_Spec);
352 end loop;
353 end if;
354
355 -- If the renamed entity is a function, the generated body contains a
356 -- return statement. Otherwise, build a procedure call. If the entity is
357 -- an entry, subsequent analysis of the call will transform it into the
358 -- proper entry or protected operation call. If the renamed entity is
359 -- a character literal, return it directly.
360
361 if Ekind (Old_S) = E_Function
362 or else Ekind (Old_S) = E_Operator
363 or else (Ekind (Old_S) = E_Subprogram_Type
364 and then Etype (Old_S) /= Standard_Void_Type)
365 then
366 Call_Node :=
367 Make_Return_Statement (Loc,
368 Expression =>
369 Make_Function_Call (Loc,
370 Name => Call_Name,
371 Parameter_Associations => Actuals));
372
373 elsif Ekind (Old_S) = E_Enumeration_Literal then
374 Call_Node :=
375 Make_Return_Statement (Loc,
376 Expression => New_Occurrence_Of (Old_S, Loc));
377
378 elsif Nkind (Nam) = N_Character_Literal then
379 Call_Node :=
380 Make_Return_Statement (Loc,
381 Expression => Call_Name);
382
383 else
384 Call_Node :=
385 Make_Procedure_Call_Statement (Loc,
386 Name => Call_Name,
387 Parameter_Associations => Actuals);
388 end if;
389
390 -- Create entities for subprogram body and formals.
391
392 Set_Defining_Unit_Name (Spec,
393 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
394
395 Param_Spec := First (Parameter_Specifications (Spec));
396
397 while Present (Param_Spec) loop
398 Set_Defining_Identifier (Param_Spec,
399 Make_Defining_Identifier (Loc,
400 Chars => Chars (Defining_Identifier (Param_Spec))));
401 Next (Param_Spec);
402 end loop;
403
404 Body_Node :=
405 Make_Subprogram_Body (Loc,
406 Specification => Spec,
407 Declarations => New_List,
408 Handled_Statement_Sequence =>
409 Make_Handled_Sequence_Of_Statements (Loc,
410 Statements => New_List (Call_Node)));
411
412 if Nkind (Decl) /= N_Subprogram_Declaration then
413 Rewrite (N,
414 Make_Subprogram_Declaration (Loc,
415 Specification => Specification (N)));
416 end if;
417
418 -- Link the body to the entity whose declaration it completes. If
419 -- the body is analyzed when the renamed entity is frozen, it may be
420 -- necessary to restore the proper scope (see package Exp_Ch13).
421
422 if Nkind (N) = N_Subprogram_Renaming_Declaration
423 and then Present (Corresponding_Spec (N))
424 then
425 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
426 else
427 Set_Corresponding_Spec (Body_Node, New_S);
428 end if;
429
430 return Body_Node;
431 end Build_Renamed_Body;
432
fbf5a39b
AC
433 --------------------------
434 -- Check_Address_Clause --
435 --------------------------
436
437 procedure Check_Address_Clause (E : Entity_Id) is
438 Addr : constant Node_Id := Address_Clause (E);
439 Expr : Node_Id;
440 Decl : constant Node_Id := Declaration_Node (E);
441 Typ : constant Entity_Id := Etype (E);
442
443 begin
444 if Present (Addr) then
445 Expr := Expression (Addr);
446
447 -- If we have no initialization of any kind, then we don't
448 -- need to place any restrictions on the address clause, because
449 -- the object will be elaborated after the address clause is
450 -- evaluated. This happens if the declaration has no initial
451 -- expression, or the type has no implicit initialization, or
452 -- the object is imported.
453
454 -- The same holds for all initialized scalar types and all
455 -- access types. Packed bit arrays of size up to 64 are
456 -- represented using a modular type with an initialization
457 -- (to zero) and can be processed like other initialized
458 -- scalar types.
459
460 -- If the type is controlled, code to attach the object to a
461 -- finalization chain is generated at the point of declaration,
462 -- and therefore the elaboration of the object cannot be delayed:
463 -- the address expression must be a constant.
464
465 if (No (Expression (Decl))
466 and then not Controlled_Type (Typ)
467 and then
468 (not Has_Non_Null_Base_Init_Proc (Typ)
469 or else Is_Imported (E)))
470
471 or else
472 (Present (Expression (Decl))
473 and then Is_Scalar_Type (Typ))
474
475 or else
476 Is_Access_Type (Typ)
477
478 or else
479 (Is_Bit_Packed_Array (Typ)
480 and then
481 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
482 then
483 null;
484
485 -- Otherwise, we require the address clause to be constant
486 -- because the call to the initialization procedure (or the
487 -- attach code) has to happen at the point of the declaration.
488
489 else
490 Check_Constant_Address_Clause (Expr, E);
491 Set_Has_Delayed_Freeze (E, False);
492 end if;
493
494 if not Error_Posted (Expr)
495 and then not Controlled_Type (Typ)
496 then
497 Warn_Overlay (Expr, Typ, Name (Addr));
498 end if;
499 end if;
500 end Check_Address_Clause;
501
70482933
RK
502 -----------------------------
503 -- Check_Compile_Time_Size --
504 -----------------------------
505
506 procedure Check_Compile_Time_Size (T : Entity_Id) is
507
508 procedure Set_Small_Size (S : Uint);
509 -- Sets the compile time known size (32 bits or less) in the Esize
510 -- field, checking for a size clause that was given which attempts
511 -- to give a smaller size.
512
513 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 514 -- Recursive function that does all the work
70482933
RK
515
516 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
517 -- If T is a constrained subtype, its size is not known if any of its
518 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 519 -- The test is conservative and doesn't check that the components are
70482933
RK
520 -- in fact constrained by non-static discriminant values. Could be made
521 -- more precise ???
522
523 --------------------
524 -- Set_Small_Size --
525 --------------------
526
527 procedure Set_Small_Size (S : Uint) is
528 begin
529 if S > 32 then
530 return;
531
532 elsif Has_Size_Clause (T) then
533 if RM_Size (T) < S then
534 Error_Msg_Uint_1 := S;
535 Error_Msg_NE
536 ("size for & is too small, minimum is ^",
537 Size_Clause (T), T);
538
539 elsif Unknown_Esize (T) then
540 Set_Esize (T, S);
541 end if;
542
543 -- Set sizes if not set already
544
545 else
546 if Unknown_Esize (T) then
547 Set_Esize (T, S);
548 end if;
549
550 if Unknown_RM_Size (T) then
551 Set_RM_Size (T, S);
552 end if;
553 end if;
554 end Set_Small_Size;
555
556 ----------------
557 -- Size_Known --
558 ----------------
559
560 function Size_Known (T : Entity_Id) return Boolean is
561 Index : Entity_Id;
562 Comp : Entity_Id;
563 Ctyp : Entity_Id;
564 Low : Node_Id;
565 High : Node_Id;
566
567 begin
568 if Size_Known_At_Compile_Time (T) then
569 return True;
570
70482933
RK
571 elsif Is_Scalar_Type (T)
572 or else Is_Task_Type (T)
573 then
574 return not Is_Generic_Type (T);
575
576 elsif Is_Array_Type (T) then
70482933
RK
577 if Ekind (T) = E_String_Literal_Subtype then
578 Set_Small_Size (Component_Size (T) * String_Literal_Length (T));
579 return True;
580
581 elsif not Is_Constrained (T) then
582 return False;
583
07fc65c4
GB
584 -- Don't do any recursion on type with error posted, since
585 -- we may have a malformed type that leads us into a loop
586
587 elsif Error_Posted (T) then
588 return False;
589
70482933
RK
590 elsif not Size_Known (Component_Type (T)) then
591 return False;
592 end if;
593
594 -- Check for all indexes static, and also compute possible
595 -- size (in case it is less than 32 and may be packable).
596
597 declare
598 Esiz : Uint := Component_Size (T);
599 Dim : Uint;
600
601 begin
602 Index := First_Index (T);
603
604 while Present (Index) loop
605 if Nkind (Index) = N_Range then
606 Get_Index_Bounds (Index, Low, High);
607
608 elsif Error_Posted (Scalar_Range (Etype (Index))) then
609 return False;
610
611 else
612 Low := Type_Low_Bound (Etype (Index));
613 High := Type_High_Bound (Etype (Index));
614 end if;
615
616 if not Compile_Time_Known_Value (Low)
617 or else not Compile_Time_Known_Value (High)
618 or else Etype (Index) = Any_Type
619 then
620 return False;
621
622 else
623 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
624
625 if Dim >= 0 then
626 Esiz := Esiz * Dim;
627 else
628 Esiz := Uint_0;
629 end if;
630 end if;
631
632 Next_Index (Index);
633 end loop;
634
635 Set_Small_Size (Esiz);
636 return True;
637 end;
638
639 elsif Is_Access_Type (T) then
640 return True;
641
642 elsif Is_Private_Type (T)
643 and then not Is_Generic_Type (T)
644 and then Present (Underlying_Type (T))
645 then
07fc65c4
GB
646 -- Don't do any recursion on type with error posted, since
647 -- we may have a malformed type that leads us into a loop
648
649 if Error_Posted (T) then
650 return False;
651 else
652 return Size_Known (Underlying_Type (T));
653 end if;
70482933
RK
654
655 elsif Is_Record_Type (T) then
fbf5a39b
AC
656
657 -- A class-wide type is never considered to have a known size
658
70482933
RK
659 if Is_Class_Wide_Type (T) then
660 return False;
661
fbf5a39b
AC
662 -- A subtype of a variant record must not have non-static
663 -- discriminanted components.
664
665 elsif T /= Base_Type (T)
666 and then not Static_Discriminated_Components (T)
667 then
668 return False;
70482933 669
07fc65c4
GB
670 -- Don't do any recursion on type with error posted, since
671 -- we may have a malformed type that leads us into a loop
672
673 elsif Error_Posted (T) then
674 return False;
fbf5a39b 675 end if;
07fc65c4 676
fbf5a39b 677 -- Now look at the components of the record
70482933 678
fbf5a39b
AC
679 declare
680 -- The following two variables are used to keep track of
681 -- the size of packed records if we can tell the size of
682 -- the packed record in the front end. Packed_Size_Known
683 -- is True if so far we can figure out the size. It is
684 -- initialized to True for a packed record, unless the
685 -- record has discriminants. The reason we eliminate the
686 -- discriminated case is that we don't know the way the
687 -- back end lays out discriminated packed records. If
688 -- Packed_Size_Known is True, then Packed_Size is the
689 -- size in bits so far.
690
691 Packed_Size_Known : Boolean :=
692 Is_Packed (T)
693 and then not Has_Discriminants (T);
694
695 Packed_Size : Uint := Uint_0;
696
697 begin
698 -- Test for variant part present
699
700 if Has_Discriminants (T)
701 and then Present (Parent (T))
702 and then Nkind (Parent (T)) = N_Full_Type_Declaration
703 and then Nkind (Type_Definition (Parent (T))) =
704 N_Record_Definition
705 and then not Null_Present (Type_Definition (Parent (T)))
706 and then Present (Variant_Part
707 (Component_List (Type_Definition (Parent (T)))))
708 then
709 -- If variant part is present, and type is unconstrained,
710 -- then we must have defaulted discriminants, or a size
711 -- clause must be present for the type, or else the size
712 -- is definitely not known at compile time.
713
714 if not Is_Constrained (T)
715 and then
716 No (Discriminant_Default_Value
717 (First_Discriminant (T)))
718 and then Unknown_Esize (T)
70482933 719 then
fbf5a39b
AC
720 return False;
721 end if;
722 end if;
70482933 723
fbf5a39b
AC
724 -- Loop through components
725
726 Comp := First_Entity (T);
727 while Present (Comp) loop
728 if Ekind (Comp) = E_Component
729 or else
730 Ekind (Comp) = E_Discriminant
731 then
732 Ctyp := Etype (Comp);
733
734 -- We do not know the packed size if there is a
735 -- component clause present (we possibly could,
736 -- but this would only help in the case of a record
737 -- with partial rep clauses. That's because in the
738 -- case of full rep clauses, the size gets figured
739 -- out anyway by a different circuit).
740
741 if Present (Component_Clause (Comp)) then
70482933
RK
742 Packed_Size_Known := False;
743 end if;
70482933 744
fbf5a39b
AC
745 -- We need to identify a component that is an array
746 -- where the index type is an enumeration type with
747 -- non-standard representation, and some bound of the
748 -- type depends on a discriminant.
749
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value
752 -- in the size expression for the base type, and gigi
753 -- is not clever enough to evaluate the resulting
754 -- expression (which involves a call to rep_to_pos)
755 -- at compile time.
756
757 -- It would be nice if gigi would either recognize that
758 -- this expression can be computed at compile time, or
759 -- alternatively figured out the size from the subtype
760 -- directly, where all the information is at hand ???
761
762 if Is_Array_Type (Etype (Comp))
763 and then Present (Packed_Array_Type (Etype (Comp)))
70482933 764 then
fbf5a39b
AC
765 declare
766 Ocomp : constant Entity_Id :=
767 Original_Record_Component (Comp);
768 OCtyp : constant Entity_Id := Etype (Ocomp);
769 Ind : Node_Id;
770 Indtyp : Entity_Id;
771 Lo, Hi : Node_Id;
70482933 772
fbf5a39b
AC
773 begin
774 Ind := First_Index (OCtyp);
775 while Present (Ind) loop
776 Indtyp := Etype (Ind);
777
778 if Is_Enumeration_Type (Indtyp)
779 and then Has_Non_Standard_Rep (Indtyp)
780 then
781 Lo := Type_Low_Bound (Indtyp);
782 Hi := Type_High_Bound (Indtyp);
783
784 if Is_Entity_Name (Lo)
785 and then
786 Ekind (Entity (Lo)) = E_Discriminant
787 then
788 return False;
789
790 elsif Is_Entity_Name (Hi)
791 and then
792 Ekind (Entity (Hi)) = E_Discriminant
793 then
794 return False;
795 end if;
796 end if;
797
798 Next_Index (Ind);
799 end loop;
800 end;
801 end if;
70482933 802
fbf5a39b
AC
803 -- Clearly size of record is not known if the size of
804 -- one of the components is not known.
70482933 805
fbf5a39b
AC
806 if not Size_Known (Ctyp) then
807 return False;
808 end if;
809
810 -- Accumulate packed size if possible
811
812 if Packed_Size_Known then
813
814 -- We can only deal with elementary types, since for
815 -- non-elementary components, alignment enters into
816 -- the picture, and we don't know enough to handle
817 -- proper alignment in this context. Packed arrays
818 -- count as elementary if the representation is a
819 -- modular type.
70482933 820
fbf5a39b
AC
821 if Is_Elementary_Type (Ctyp)
822 or else (Is_Array_Type (Ctyp)
823 and then
824 Present (Packed_Array_Type (Ctyp))
825 and then
826 Is_Modular_Integer_Type
827 (Packed_Array_Type (Ctyp)))
828 then
70482933
RK
829 -- If RM_Size is known and static, then we can
830 -- keep accumulating the packed size.
831
832 if Known_Static_RM_Size (Ctyp) then
833
834 -- A little glitch, to be removed sometime ???
835 -- gigi does not understand zero sizes yet.
836
837 if RM_Size (Ctyp) = Uint_0 then
838 Packed_Size_Known := False;
70482933 839
fbf5a39b
AC
840 -- Normal case where we can keep accumulating
841 -- the packed array size.
842
843 else
844 Packed_Size := Packed_Size + RM_Size (Ctyp);
845 end if;
70482933
RK
846
847 -- If we have a field whose RM_Size is not known
848 -- then we can't figure out the packed size here.
849
850 else
851 Packed_Size_Known := False;
852 end if;
fbf5a39b
AC
853
854 -- If we have a non-elementary type we can't figure
855 -- out the packed array size (alignment issues).
856
857 else
858 Packed_Size_Known := False;
70482933
RK
859 end if;
860 end if;
fbf5a39b 861 end if;
70482933 862
fbf5a39b
AC
863 Next_Entity (Comp);
864 end loop;
70482933 865
fbf5a39b
AC
866 if Packed_Size_Known then
867 Set_Small_Size (Packed_Size);
868 end if;
70482933 869
fbf5a39b
AC
870 return True;
871 end;
70482933
RK
872
873 else
874 return False;
875 end if;
876 end Size_Known;
877
878 -------------------------------------
879 -- Static_Discriminated_Components --
880 -------------------------------------
881
882 function Static_Discriminated_Components
883 (T : Entity_Id)
884 return Boolean
885 is
886 Constraint : Elmt_Id;
887
888 begin
889 if Has_Discriminants (T)
890 and then Present (Discriminant_Constraint (T))
891 and then Present (First_Component (T))
892 then
893 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
894 while Present (Constraint) loop
895 if not Compile_Time_Known_Value (Node (Constraint)) then
896 return False;
897 end if;
898
899 Next_Elmt (Constraint);
900 end loop;
901 end if;
902
903 return True;
904 end Static_Discriminated_Components;
905
906 -- Start of processing for Check_Compile_Time_Size
907
908 begin
909 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
910 end Check_Compile_Time_Size;
911
912 -----------------------------
913 -- Check_Debug_Info_Needed --
914 -----------------------------
915
916 procedure Check_Debug_Info_Needed (T : Entity_Id) is
917 begin
918 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
919 return;
920
921 elsif Comes_From_Source (T)
922 or else Debug_Generated_Code
923 or else Debug_Flag_VV
924 then
925 Set_Debug_Info_Needed (T);
926 end if;
927 end Check_Debug_Info_Needed;
928
929 ----------------------------
930 -- Check_Strict_Alignment --
931 ----------------------------
932
933 procedure Check_Strict_Alignment (E : Entity_Id) is
934 Comp : Entity_Id;
935
936 begin
937 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
938 Set_Strict_Alignment (E);
939
940 elsif Is_Array_Type (E) then
941 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
942
943 elsif Is_Record_Type (E) then
944 if Is_Limited_Record (E) then
945 Set_Strict_Alignment (E);
946 return;
947 end if;
948
949 Comp := First_Component (E);
950
951 while Present (Comp) loop
952 if not Is_Type (Comp)
953 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 954 or else Is_Aliased (Comp))
70482933
RK
955 then
956 Set_Strict_Alignment (E);
957 return;
958 end if;
959
960 Next_Component (Comp);
961 end loop;
962 end if;
963 end Check_Strict_Alignment;
964
965 -------------------------
966 -- Check_Unsigned_Type --
967 -------------------------
968
969 procedure Check_Unsigned_Type (E : Entity_Id) is
970 Ancestor : Entity_Id;
971 Lo_Bound : Node_Id;
972 Btyp : Entity_Id;
973
974 begin
975 if not Is_Discrete_Or_Fixed_Point_Type (E) then
976 return;
977 end if;
978
979 -- Do not attempt to analyze case where range was in error
980
981 if Error_Posted (Scalar_Range (E)) then
982 return;
983 end if;
984
985 -- The situation that is non trivial is something like
986
987 -- subtype x1 is integer range -10 .. +10;
988 -- subtype x2 is x1 range 0 .. V1;
989 -- subtype x3 is x2 range V2 .. V3;
990 -- subtype x4 is x3 range V4 .. V5;
991
992 -- where Vn are variables. Here the base type is signed, but we still
993 -- know that x4 is unsigned because of the lower bound of x2.
994
995 -- The only way to deal with this is to look up the ancestor chain
996
997 Ancestor := E;
998 loop
999 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1000 return;
1001 end if;
1002
1003 Lo_Bound := Type_Low_Bound (Ancestor);
1004
1005 if Compile_Time_Known_Value (Lo_Bound) then
1006
1007 if Expr_Rep_Value (Lo_Bound) >= 0 then
1008 Set_Is_Unsigned_Type (E, True);
1009 end if;
1010
1011 return;
1012
1013 else
1014 Ancestor := Ancestor_Subtype (Ancestor);
1015
1016 -- If no ancestor had a static lower bound, go to base type
1017
1018 if No (Ancestor) then
1019
1020 -- Note: the reason we still check for a compile time known
1021 -- value for the base type is that at least in the case of
1022 -- generic formals, we can have bounds that fail this test,
1023 -- and there may be other cases in error situations.
1024
1025 Btyp := Base_Type (E);
1026
1027 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1028 return;
1029 end if;
1030
1031 Lo_Bound := Type_Low_Bound (Base_Type (E));
1032
1033 if Compile_Time_Known_Value (Lo_Bound)
1034 and then Expr_Rep_Value (Lo_Bound) >= 0
1035 then
1036 Set_Is_Unsigned_Type (E, True);
1037 end if;
1038
1039 return;
70482933
RK
1040 end if;
1041 end if;
1042 end loop;
1043 end Check_Unsigned_Type;
1044
fbf5a39b
AC
1045 -----------------------------
1046 -- Expand_Atomic_Aggregate --
1047 -----------------------------
1048
1049 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1050 Loc : constant Source_Ptr := Sloc (E);
1051 New_N : Node_Id;
1052 Temp : Entity_Id;
1053
1054 begin
1055 if (Nkind (Parent (E)) = N_Object_Declaration
1056 or else Nkind (Parent (E)) = N_Assignment_Statement)
1057 and then Comes_From_Source (Parent (E))
1058 and then Nkind (E) = N_Aggregate
1059 then
1060 Temp :=
1061 Make_Defining_Identifier (Loc,
1062 New_Internal_Name ('T'));
1063
1064 New_N :=
1065 Make_Object_Declaration (Loc,
1066 Defining_Identifier => Temp,
1067 Object_definition => New_Occurrence_Of (Typ, Loc),
1068 Expression => Relocate_Node (E));
1069 Insert_Before (Parent (E), New_N);
1070 Analyze (New_N);
1071
1072 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1073
1074 -- To prevent the temporary from being constant-folded (which
1075 -- would lead to the same piecemeal assignment on the original
1076 -- target) indicate to the back-end that the temporary is a
1077 -- variable with real storage. See description of this flag
1078 -- in Einfo, and the notes on N_Assignment_Statement and
1079 -- N_Object_Declaration in Sinfo.
1080
1081 Set_Is_True_Constant (Temp, False);
1082 end if;
1083 end Expand_Atomic_Aggregate;
1084
70482933
RK
1085 ----------------
1086 -- Freeze_All --
1087 ----------------
1088
1089 -- Note: the easy coding for this procedure would be to just build a
1090 -- single list of freeze nodes and then insert them and analyze them
1091 -- all at once. This won't work, because the analysis of earlier freeze
1092 -- nodes may recursively freeze types which would otherwise appear later
1093 -- on in the freeze list. So we must analyze and expand the freeze nodes
1094 -- as they are generated.
1095
1096 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1097 Loc : constant Source_Ptr := Sloc (After);
1098 E : Entity_Id;
1099 Decl : Node_Id;
1100
1101 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1102 -- This is the internal recursive routine that does freezing of
1103 -- entities (but NOT the analysis of default expressions, which
1104 -- should not be recursive, we don't want to analyze those till
1105 -- we are sure that ALL the types are frozen).
1106
fbf5a39b
AC
1107 --------------------
1108 -- Freeze_All_Ent --
1109 --------------------
1110
70482933
RK
1111 procedure Freeze_All_Ent
1112 (From : Entity_Id;
1113 After : in out Node_Id)
1114 is
1115 E : Entity_Id;
1116 Flist : List_Id;
1117 Lastn : Node_Id;
1118
1119 procedure Process_Flist;
1120 -- If freeze nodes are present, insert and analyze, and reset
1121 -- cursor for next insertion.
1122
fbf5a39b
AC
1123 -------------------
1124 -- Process_Flist --
1125 -------------------
1126
70482933
RK
1127 procedure Process_Flist is
1128 begin
1129 if Is_Non_Empty_List (Flist) then
1130 Lastn := Next (After);
1131 Insert_List_After_And_Analyze (After, Flist);
1132
1133 if Present (Lastn) then
1134 After := Prev (Lastn);
1135 else
1136 After := Last (List_Containing (After));
1137 end if;
1138 end if;
1139 end Process_Flist;
1140
fbf5a39b
AC
1141 -- Start or processing for Freeze_All_Ent
1142
70482933
RK
1143 begin
1144 E := From;
1145 while Present (E) loop
1146
1147 -- If the entity is an inner package which is not a package
1148 -- renaming, then its entities must be frozen at this point.
1149 -- Note that such entities do NOT get frozen at the end of
1150 -- the nested package itself (only library packages freeze).
1151
1152 -- Same is true for task declarations, where anonymous records
1153 -- created for entry parameters must be frozen.
1154
1155 if Ekind (E) = E_Package
1156 and then No (Renamed_Object (E))
1157 and then not Is_Child_Unit (E)
1158 and then not Is_Frozen (E)
1159 then
1160 New_Scope (E);
1161 Install_Visible_Declarations (E);
1162 Install_Private_Declarations (E);
1163
1164 Freeze_All (First_Entity (E), After);
1165
1166 End_Package_Scope (E);
1167
1168 elsif Ekind (E) in Task_Kind
1169 and then
1170 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1171 or else
70482933
RK
1172 Nkind (Parent (E)) = N_Single_Task_Declaration)
1173 then
1174 New_Scope (E);
1175 Freeze_All (First_Entity (E), After);
1176 End_Scope;
1177
1178 -- For a derived tagged type, we must ensure that all the
1179 -- primitive operations of the parent have been frozen, so
1180 -- that their addresses will be in the parent's dispatch table
1181 -- at the point it is inherited.
1182
1183 elsif Ekind (E) = E_Record_Type
1184 and then Is_Tagged_Type (E)
1185 and then Is_Tagged_Type (Etype (E))
1186 and then Is_Derived_Type (E)
1187 then
1188 declare
1189 Prim_List : constant Elist_Id :=
1190 Primitive_Operations (Etype (E));
fbf5a39b
AC
1191
1192 Prim : Elmt_Id;
1193 Subp : Entity_Id;
70482933
RK
1194
1195 begin
1196 Prim := First_Elmt (Prim_List);
1197
1198 while Present (Prim) loop
1199 Subp := Node (Prim);
1200
1201 if Comes_From_Source (Subp)
1202 and then not Is_Frozen (Subp)
1203 then
1204 Flist := Freeze_Entity (Subp, Loc);
1205 Process_Flist;
1206 end if;
1207
1208 Next_Elmt (Prim);
1209 end loop;
1210 end;
1211 end if;
1212
1213 if not Is_Frozen (E) then
1214 Flist := Freeze_Entity (E, Loc);
1215 Process_Flist;
1216 end if;
1217
fbf5a39b
AC
1218 -- If an incomplete type is still not frozen, this may be
1219 -- a premature freezing because of a body declaration that
1220 -- follows. Indicate where the freezing took place.
1221
1222 -- If the freezing is caused by the end of the current
1223 -- declarative part, it is a Taft Amendment type, and there
1224 -- is no error.
1225
1226 if not Is_Frozen (E)
1227 and then Ekind (E) = E_Incomplete_Type
1228 then
1229 declare
1230 Bod : constant Node_Id := Next (After);
1231
1232 begin
1233 if (Nkind (Bod) = N_Subprogram_Body
1234 or else Nkind (Bod) = N_Entry_Body
1235 or else Nkind (Bod) = N_Package_Body
1236 or else Nkind (Bod) = N_Protected_Body
1237 or else Nkind (Bod) = N_Task_Body
1238 or else Nkind (Bod) in N_Body_Stub)
1239 and then
1240 List_Containing (After) = List_Containing (Parent (E))
1241 then
1242 Error_Msg_Sloc := Sloc (Next (After));
1243 Error_Msg_NE
1244 ("type& is frozen# before its full declaration",
1245 Parent (E), E);
1246 end if;
1247 end;
1248 end if;
1249
70482933
RK
1250 Next_Entity (E);
1251 end loop;
1252 end Freeze_All_Ent;
1253
1254 -- Start of processing for Freeze_All
1255
1256 begin
1257 Freeze_All_Ent (From, After);
1258
1259 -- Now that all types are frozen, we can deal with default expressions
1260 -- that require us to build a default expression functions. This is the
1261 -- point at which such functions are constructed (after all types that
1262 -- might be used in such expressions have been frozen).
fbf5a39b 1263
70482933
RK
1264 -- We also add finalization chains to access types whose designated
1265 -- types are controlled. This is normally done when freezing the type,
1266 -- but this misses recursive type definitions where the later members
1267 -- of the recursion introduce controlled components (e.g. 5624-001).
1268
1269 -- Loop through entities
1270
1271 E := From;
1272 while Present (E) loop
70482933
RK
1273 if Is_Subprogram (E) then
1274
1275 if not Default_Expressions_Processed (E) then
1276 Process_Default_Expressions (E, After);
1277 end if;
1278
1279 if not Has_Completion (E) then
1280 Decl := Unit_Declaration_Node (E);
1281
1282 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1283 Build_And_Analyze_Renamed_Body (Decl, E, After);
1284
1285 elsif Nkind (Decl) = N_Subprogram_Declaration
1286 and then Present (Corresponding_Body (Decl))
1287 and then
1288 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1289 = N_Subprogram_Renaming_Declaration
70482933
RK
1290 then
1291 Build_And_Analyze_Renamed_Body
1292 (Decl, Corresponding_Body (Decl), After);
1293 end if;
1294 end if;
1295
1296 elsif Ekind (E) in Task_Kind
1297 and then
1298 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1299 or else
70482933
RK
1300 Nkind (Parent (E)) = N_Single_Task_Declaration)
1301 then
1302 declare
1303 Ent : Entity_Id;
70482933
RK
1304 begin
1305 Ent := First_Entity (E);
1306
1307 while Present (Ent) loop
1308
1309 if Is_Entry (Ent)
1310 and then not Default_Expressions_Processed (Ent)
1311 then
1312 Process_Default_Expressions (Ent, After);
1313 end if;
1314
1315 Next_Entity (Ent);
1316 end loop;
1317 end;
1318
1319 elsif Is_Access_Type (E)
1320 and then Comes_From_Source (E)
1321 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1322 and then Controlled_Type (Designated_Type (E))
1323 and then No (Associated_Final_Chain (E))
1324 then
1325 Build_Final_List (Parent (E), E);
1326 end if;
1327
1328 Next_Entity (E);
1329 end loop;
70482933
RK
1330 end Freeze_All;
1331
1332 -----------------------
1333 -- Freeze_And_Append --
1334 -----------------------
1335
1336 procedure Freeze_And_Append
1337 (Ent : Entity_Id;
1338 Loc : Source_Ptr;
1339 Result : in out List_Id)
1340 is
1341 L : constant List_Id := Freeze_Entity (Ent, Loc);
1342
1343 begin
1344 if Is_Non_Empty_List (L) then
1345 if Result = No_List then
1346 Result := L;
1347 else
1348 Append_List (L, Result);
1349 end if;
1350 end if;
1351 end Freeze_And_Append;
1352
1353 -------------------
1354 -- Freeze_Before --
1355 -------------------
1356
1357 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1358 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1359
1360 begin
1361 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1362 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1363 end if;
1364 end Freeze_Before;
1365
1366 -------------------
1367 -- Freeze_Entity --
1368 -------------------
1369
1370 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1371 Comp : Entity_Id;
1372 F_Node : Node_Id;
1373 Result : List_Id;
1374 Indx : Node_Id;
1375 Formal : Entity_Id;
1376 Atype : Entity_Id;
1377
1378 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1379 -- Check that an Access or Unchecked_Access attribute with
1380 -- a prefix which is the current instance type can only be
1381 -- applied when the type is limited.
1382
1383 function After_Last_Declaration return Boolean;
1384 -- If Loc is a freeze_entity that appears after the last declaration
1385 -- in the scope, inhibit error messages on late completion.
1386
1387 procedure Freeze_Record_Type (Rec : Entity_Id);
1388 -- Freeze each component, handle some representation clauses, and
1389 -- freeze primitive operations if this is a tagged type.
1390
1391 ----------------------------
1392 -- After_Last_Declaration --
1393 ----------------------------
1394
1395 function After_Last_Declaration return Boolean is
fbf5a39b 1396 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1397
1398 begin
1399 if Nkind (Spec) = N_Package_Specification then
1400 if Present (Private_Declarations (Spec)) then
1401 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1402
1403 elsif Present (Visible_Declarations (Spec)) then
1404 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1405 else
1406 return False;
1407 end if;
1408
1409 else
1410 return False;
1411 end if;
1412 end After_Last_Declaration;
1413
1414 ----------------------------
1415 -- Check_Current_Instance --
1416 ----------------------------
1417
1418 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1419
1420 function Process (N : Node_Id) return Traverse_Result;
1421 -- Process routine to apply check to given node.
1422
fbf5a39b
AC
1423 -------------
1424 -- Process --
1425 -------------
1426
70482933
RK
1427 function Process (N : Node_Id) return Traverse_Result is
1428 begin
1429 case Nkind (N) is
1430 when N_Attribute_Reference =>
1431 if (Attribute_Name (N) = Name_Access
1432 or else
1433 Attribute_Name (N) = Name_Unchecked_Access)
1434 and then Is_Entity_Name (Prefix (N))
1435 and then Is_Type (Entity (Prefix (N)))
1436 and then Entity (Prefix (N)) = E
1437 then
1438 Error_Msg_N
1439 ("current instance must be a limited type", Prefix (N));
1440 return Abandon;
1441 else
1442 return OK;
1443 end if;
1444
1445 when others => return OK;
1446 end case;
1447 end Process;
1448
1449 procedure Traverse is new Traverse_Proc (Process);
1450
1451 -- Start of processing for Check_Current_Instance
1452
1453 begin
1454 Traverse (Comp_Decl);
1455 end Check_Current_Instance;
1456
1457 ------------------------
1458 -- Freeze_Record_Type --
1459 ------------------------
1460
1461 procedure Freeze_Record_Type (Rec : Entity_Id) is
1462 Comp : Entity_Id;
fbf5a39b 1463 IR : Node_Id;
70482933
RK
1464 Junk : Boolean;
1465 ADC : Node_Id;
1466
1467 Unplaced_Component : Boolean := False;
1468 -- Set True if we find at least one component with no component
1469 -- clause (used to warn about useless Pack pragmas).
1470
1471 Placed_Component : Boolean := False;
1472 -- Set True if we find at least one component with a component
1473 -- clause (used to warn about useless Bit_Order pragmas).
1474
1475 begin
fbf5a39b
AC
1476 -- If this is a subtype of a controlled type, declared without
1477 -- a constraint, the _controller may not appear in the component
1478 -- list if the parent was not frozen at the point of subtype
1479 -- declaration. Inherit the _controller component now.
1480
1481 if Rec /= Base_Type (Rec)
1482 and then Has_Controlled_Component (Rec)
1483 then
1484 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1485 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1486 then
1487 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1488
1489 -- If this is an internal type without a declaration, as for
1490 -- a record component, the base type may not yet be frozen,
1491 -- and its controller has not been created. Add an explicit
1492 -- freeze node for the itype, so it will be frozen after the
1493 -- base type.
1494
1495 elsif Is_Itype (Rec)
1496 and then Has_Delayed_Freeze (Base_Type (Rec))
1497 and then
1498 Nkind (Associated_Node_For_Itype (Rec)) =
1499 N_Component_Declaration
1500 then
1501 Ensure_Freeze_Node (Rec);
1502 end if;
1503 end if;
1504
70482933
RK
1505 -- Freeze components and embedded subtypes
1506
1507 Comp := First_Entity (Rec);
70482933 1508 while Present (Comp) loop
70482933
RK
1509 if not Is_Type (Comp) then
1510 Freeze_And_Append (Etype (Comp), Loc, Result);
1511 end if;
1512
1513 -- If the component is an access type with an allocator
1514 -- as default value, the designated type will be frozen
1515 -- by the corresponding expression in init_proc. In order
1516 -- to place the freeze node for the designated type before
1517 -- that for the current record type, freeze it now.
1518
1519 -- Same process if the component is an array of access types,
1520 -- initialized with an aggregate. If the designated type is
1521 -- private, it cannot contain allocators, and it is premature
1522 -- to freeze the type, so we check for this as well.
1523
1524 if Is_Access_Type (Etype (Comp))
1525 and then Present (Parent (Comp))
1526 and then Present (Expression (Parent (Comp)))
1527 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1528 then
1529 declare
1530 Alloc : constant Node_Id := Expression (Parent (Comp));
1531
1532 begin
1533 -- If component is pointer to a classwide type, freeze
1534 -- the specific type in the expression being allocated.
1535 -- The expression may be a subtype indication, in which
1536 -- case freeze the subtype mark.
1537
1538 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
70482933
RK
1539 if Is_Entity_Name (Expression (Alloc)) then
1540 Freeze_And_Append
1541 (Entity (Expression (Alloc)), Loc, Result);
1542 elsif
1543 Nkind (Expression (Alloc)) = N_Subtype_Indication
1544 then
1545 Freeze_And_Append
1546 (Entity (Subtype_Mark (Expression (Alloc))),
1547 Loc, Result);
1548 end if;
fbf5a39b 1549
70482933
RK
1550 else
1551 Freeze_And_Append
1552 (Designated_Type (Etype (Comp)), Loc, Result);
1553 end if;
1554 end;
1555
07fc65c4
GB
1556 -- If this is a constrained subtype of an already frozen type,
1557 -- make the subtype frozen as well. It might otherwise be frozen
1558 -- in the wrong scope, and a freeze node on subtype has no effect.
1559
1560 elsif Is_Access_Type (Etype (Comp))
1561 and then not Is_Frozen (Designated_Type (Etype (Comp)))
1562 and then Is_Itype (Designated_Type (Etype (Comp)))
1563 and then Is_Frozen (Base_Type (Designated_Type (Etype (Comp))))
1564 then
1565 Set_Is_Frozen (Designated_Type (Etype (Comp)));
1566
fbf5a39b
AC
1567 -- In addition, add an Itype_Reference to ensure that the
1568 -- access subtype is elaborated early enough. This cannot
1569 -- be done if the subtype may depend on discriminants.
1570
1571 if Ekind (Comp) = E_Component
1572 and then Is_Itype (Etype (Comp))
1573 and then not Has_Discriminants (Rec)
1574 then
1575 IR := Make_Itype_Reference (Sloc (Comp));
1576 Set_Itype (IR, Designated_Type (Etype (Comp)));
1577
1578 if No (Result) then
1579 Result := New_List (IR);
1580 else
1581 Append (IR, Result);
1582 end if;
1583 end if;
1584
70482933
RK
1585 elsif Is_Array_Type (Etype (Comp))
1586 and then Is_Access_Type (Component_Type (Etype (Comp)))
1587 and then Present (Parent (Comp))
1588 and then Nkind (Parent (Comp)) = N_Component_Declaration
1589 and then Present (Expression (Parent (Comp)))
1590 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1591 and then Is_Fully_Defined
1592 (Designated_Type (Component_Type (Etype (Comp))))
1593 then
1594 Freeze_And_Append
1595 (Designated_Type
1596 (Component_Type (Etype (Comp))), Loc, Result);
1597 end if;
1598
1599 -- Processing for real components (exclude anonymous subtypes)
1600
1601 if Ekind (Comp) = E_Component
1602 or else Ekind (Comp) = E_Discriminant
1603 then
1604 -- Check for error of component clause given for variable
1605 -- sized type. We have to delay this test till this point,
1606 -- since the component type has to be frozen for us to know
1607 -- if it is variable length. We omit this test in a generic
1608 -- context, it will be applied at instantiation time.
1609
1610 declare
1611 CC : constant Node_Id := Component_Clause (Comp);
1612
1613 begin
1614 if Present (CC) then
1615 Placed_Component := True;
1616
07fc65c4
GB
1617 if Inside_A_Generic then
1618 null;
1619
1620 elsif not Size_Known_At_Compile_Time
70482933 1621 (Underlying_Type (Etype (Comp)))
70482933
RK
1622 then
1623 Error_Msg_N
1624 ("component clause not allowed for variable " &
1625 "length component", CC);
1626 end if;
1627
1628 else
1629 Unplaced_Component := True;
1630 end if;
1631 end;
1632
1633 -- If component clause is present, then deal with the
1634 -- non-default bit order case. We cannot do this before
1635 -- the freeze point, because there is no required order
1636 -- for the component clause and the bit_order clause.
1637
1638 -- We only do this processing for the base type, and in
1639 -- fact that's important, since otherwise if there are
1640 -- record subtypes, we could reverse the bits once for
1641 -- each subtype, which would be incorrect.
1642
1643 if Present (Component_Clause (Comp))
1644 and then Reverse_Bit_Order (Rec)
1645 and then Ekind (E) = E_Record_Type
1646 then
1647 declare
1648 CFB : constant Uint := Component_Bit_Offset (Comp);
1649 CSZ : constant Uint := Esize (Comp);
1650 CLC : constant Node_Id := Component_Clause (Comp);
1651 Pos : constant Node_Id := Position (CLC);
1652 FB : constant Node_Id := First_Bit (CLC);
1653
1654 Storage_Unit_Offset : constant Uint :=
1655 CFB / System_Storage_Unit;
1656
1657 Start_Bit : constant Uint :=
1658 CFB mod System_Storage_Unit;
1659
1660 begin
1661 -- Cases where field goes over storage unit boundary
1662
1663 if Start_Bit + CSZ > System_Storage_Unit then
1664
1665 -- Allow multi-byte field but generate warning
1666
1667 if Start_Bit mod System_Storage_Unit = 0
1668 and then CSZ mod System_Storage_Unit = 0
1669 then
1670 Error_Msg_N
1671 ("multi-byte field specified with non-standard"
1672 & " Bit_Order?", CLC);
1673
1674 if Bytes_Big_Endian then
1675 Error_Msg_N
1676 ("bytes are not reversed "
1677 & "(component is big-endian)?", CLC);
1678 else
1679 Error_Msg_N
1680 ("bytes are not reversed "
1681 & "(component is little-endian)?", CLC);
1682 end if;
1683
1684 -- Do not allow non-contiguous field
1685
1686 else
1687 Error_Msg_N
1688 ("attempt to specify non-contiguous field"
1689 & " not permitted", CLC);
1690 Error_Msg_N
1691 ("\(caused by non-standard Bit_Order "
1692 & "specified)", CLC);
1693 end if;
1694
1695 -- Case where field fits in one storage unit
1696
1697 else
1698 -- Give warning if suspicious component clause
1699
1700 if Intval (FB) >= System_Storage_Unit then
1701 Error_Msg_N
1702 ("?Bit_Order clause does not affect " &
1703 "byte ordering", Pos);
1704 Error_Msg_Uint_1 :=
1705 Intval (Pos) + Intval (FB) / System_Storage_Unit;
1706 Error_Msg_N
1707 ("?position normalized to ^ before bit " &
1708 "order interpreted", Pos);
1709 end if;
1710
1711 -- Here is where we fix up the Component_Bit_Offset
1712 -- value to account for the reverse bit order.
1713 -- Some examples of what needs to be done are:
1714
1715 -- First_Bit .. Last_Bit Component_Bit_Offset
1716 -- old new old new
1717
1718 -- 0 .. 0 7 .. 7 0 7
1719 -- 0 .. 1 6 .. 7 0 6
1720 -- 0 .. 2 5 .. 7 0 5
1721 -- 0 .. 7 0 .. 7 0 4
1722
1723 -- 1 .. 1 6 .. 6 1 6
1724 -- 1 .. 4 3 .. 6 1 3
1725 -- 4 .. 7 0 .. 3 4 0
1726
1727 -- The general rule is that the first bit is
1728 -- is obtained by subtracting the old ending bit
1729 -- from storage_unit - 1.
1730
1731 Set_Component_Bit_Offset (Comp,
1732 (Storage_Unit_Offset * System_Storage_Unit)
1733 + (System_Storage_Unit - 1)
1734 - (Start_Bit + CSZ - 1));
1735
1736 Set_Normalized_First_Bit (Comp,
1737 Component_Bit_Offset (Comp) mod System_Storage_Unit);
1738 end if;
1739 end;
1740 end if;
1741 end if;
1742
1743 Next_Entity (Comp);
1744 end loop;
1745
1746 -- Check for useless pragma Bit_Order
1747
1748 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1749 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1750 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1751 Error_Msg_N ("\?since no component clauses were specified", ADC);
1752 end if;
1753
1754 -- Check for useless pragma Pack when all components placed
1755
1756 if Is_Packed (Rec)
1757 and then not Unplaced_Component
1758 and then Warn_On_Redundant_Constructs
1759 then
1760 Error_Msg_N
1761 ("?pragma Pack has no effect, no unplaced components",
1762 Get_Rep_Pragma (Rec, Name_Pack));
1763 Set_Is_Packed (Rec, False);
1764 end if;
1765
1766 -- If this is the record corresponding to a remote type,
1767 -- freeze the remote type here since that is what we are
fbf5a39b
AC
1768 -- semantically freezing. This prevents having the freeze
1769 -- node for that type in an inner scope.
70482933
RK
1770
1771 -- Also, Check for controlled components and unchecked unions.
1772 -- Finally, enforce the restriction that access attributes with
1773 -- a current instance prefix can only apply to limited types.
1774
1775 if Ekind (Rec) = E_Record_Type then
70482933
RK
1776 if Present (Corresponding_Remote_Type (Rec)) then
1777 Freeze_And_Append
1778 (Corresponding_Remote_Type (Rec), Loc, Result);
1779 end if;
1780
1781 Comp := First_Component (Rec);
70482933
RK
1782 while Present (Comp) loop
1783 if Has_Controlled_Component (Etype (Comp))
1784 or else (Chars (Comp) /= Name_uParent
1785 and then Is_Controlled (Etype (Comp)))
1786 or else (Is_Protected_Type (Etype (Comp))
1787 and then Present
1788 (Corresponding_Record_Type (Etype (Comp)))
1789 and then Has_Controlled_Component
1790 (Corresponding_Record_Type (Etype (Comp))))
1791 then
1792 Set_Has_Controlled_Component (Rec);
1793 exit;
1794 end if;
1795
1796 if Has_Unchecked_Union (Etype (Comp)) then
1797 Set_Has_Unchecked_Union (Rec);
1798 end if;
1799
1800 if Has_Per_Object_Constraint (Comp)
1801 and then not Is_Limited_Type (Rec)
1802 then
1803 -- Scan component declaration for likely misuses of
1804 -- current instance, either in a constraint or in a
1805 -- default expression.
1806
1807 Check_Current_Instance (Parent (Comp));
1808 end if;
1809
1810 Next_Component (Comp);
1811 end loop;
1812 end if;
1813
1814 Set_Component_Alignment_If_Not_Set (Rec);
1815
1816 -- For first subtypes, check if there are any fixed-point
1817 -- fields with component clauses, where we must check the size.
1818 -- This is not done till the freeze point, since for fixed-point
1819 -- types, we do not know the size until the type is frozen.
d05ef0ab 1820 -- Similar processing applies to bit packed arrays.
70482933
RK
1821
1822 if Is_First_Subtype (Rec) then
1823 Comp := First_Component (Rec);
1824
1825 while Present (Comp) loop
1826 if Present (Component_Clause (Comp))
d05ef0ab
AC
1827 and then (Is_Fixed_Point_Type (Etype (Comp))
1828 or else
1829 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
1830 then
1831 Check_Size
d05ef0ab 1832 (Component_Name (Component_Clause (Comp)),
70482933
RK
1833 Etype (Comp),
1834 Esize (Comp),
1835 Junk);
1836 end if;
1837
1838 Next_Component (Comp);
1839 end loop;
1840 end if;
1841 end Freeze_Record_Type;
1842
1843 -- Start of processing for Freeze_Entity
1844
1845 begin
fbf5a39b 1846 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
1847
1848 if Is_Frozen (E) then
1849 return No_List;
1850
1851 -- It is improper to freeze an external entity within a generic
1852 -- because its freeze node will appear in a non-valid context.
1853 -- ??? We should probably freeze the entity at that point and insert
1854 -- the freeze node in a proper place but this proper place is not
1855 -- easy to find, and the proper scope is not easy to restore. For
1856 -- now, just wait to get out of the generic to freeze ???
1857
1858 elsif Inside_A_Generic and then External_Ref_In_Generic (E) then
1859 return No_List;
1860
1861 -- Do not freeze a global entity within an inner scope created during
1862 -- expansion. A call to subprogram E within some internal procedure
1863 -- (a stream attribute for example) might require freezing E, but the
1864 -- freeze node must appear in the same declarative part as E itself.
1865 -- The two-pass elaboration mechanism in gigi guarantees that E will
1866 -- be frozen before the inner call is elaborated. We exclude constants
1867 -- from this test, because deferred constants may be frozen early, and
1868 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1869 -- comes from source, or is a generic instance, then the freeze point
1870 -- is the one mandated by the language. and we freze the entity.
1871
1872 elsif In_Open_Scopes (Scope (E))
1873 and then Scope (E) /= Current_Scope
1874 and then Ekind (E) /= E_Constant
1875 then
1876 declare
1877 S : Entity_Id := Current_Scope;
1878
1879 begin
1880 while Present (S) loop
1881 if Is_Overloadable (S) then
1882 if Comes_From_Source (S)
1883 or else Is_Generic_Instance (S)
1884 then
1885 exit;
1886 else
1887 return No_List;
1888 end if;
1889 end if;
1890
1891 S := Scope (S);
1892 end loop;
1893 end;
1894 end if;
1895
1896 -- Here to freeze the entity
1897
1898 Result := No_List;
1899 Set_Is_Frozen (E);
1900
1901 -- Case of entity being frozen is other than a type
1902
1903 if not Is_Type (E) then
1904
1905 -- If entity is exported or imported and does not have an external
1906 -- name, now is the time to provide the appropriate default name.
1907 -- Skip this if the entity is stubbed, since we don't need a name
1908 -- for any stubbed routine.
1909
1910 if (Is_Imported (E) or else Is_Exported (E))
1911 and then No (Interface_Name (E))
1912 and then Convention (E) /= Convention_Stubbed
1913 then
1914 Set_Encoded_Interface_Name
1915 (E, Get_Default_External_Name (E));
fbf5a39b
AC
1916
1917 -- Special processing for atomic objects appearing in object decls
1918
1919 elsif Is_Atomic (E)
1920 and then Nkind (Parent (E)) = N_Object_Declaration
1921 and then Present (Expression (Parent (E)))
1922 then
1923 declare
1924 Expr : constant Node_Id := Expression (Parent (E));
1925
1926 begin
1927 -- If expression is an aggregate, assign to a temporary to
1928 -- ensure that the actual assignment is done atomically rather
1929 -- than component-wise (the assignment to the temp may be done
1930 -- component-wise, but that is harmless.
1931
1932 if Nkind (Expr) = N_Aggregate then
1933 Expand_Atomic_Aggregate (Expr, Etype (E));
1934
1935 -- If the expression is a reference to a record or array
1936 -- object entity, then reset Is_True_Constant to False so
1937 -- that the compiler will not optimize away the intermediate
1938 -- object, which we need in this case for the same reason
1939 -- (to ensure that the actual assignment is atomic, rather
1940 -- than component-wise).
1941
1942 elsif Is_Entity_Name (Expr)
1943 and then (Is_Record_Type (Etype (Expr))
1944 or else
1945 Is_Array_Type (Etype (Expr)))
1946 then
1947 Set_Is_True_Constant (Entity (Expr), False);
1948 end if;
1949 end;
70482933
RK
1950 end if;
1951
1952 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 1953 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
1954 -- This is also the point where any extra formal parameters are
1955 -- created since we now know whether the subprogram will use
1956 -- a foreign convention.
1957
1958 if Is_Subprogram (E) then
70482933 1959 if not Is_Internal (E) then
70482933
RK
1960 declare
1961 F_Type : Entity_Id;
1962
1963 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
1964 -- Determines if given type entity is a fat pointer type
1965 -- used as an argument type or return type to a subprogram
1966 -- with C or C++ convention set.
1967
1968 --------------------------
1969 -- Is_Fat_C_Access_Type --
1970 --------------------------
1971
1972 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
1973 begin
1974 return (Convention (E) = Convention_C
1975 or else
1976 Convention (E) = Convention_CPP)
1977 and then Is_Access_Type (T)
1978 and then Esize (T) > Ttypes.System_Address_Size;
1979 end Is_Fat_C_Ptr_Type;
1980
1981 begin
1982 -- Loop through formals
1983
1984 Formal := First_Formal (E);
1985
1986 while Present (Formal) loop
70482933
RK
1987 F_Type := Etype (Formal);
1988 Freeze_And_Append (F_Type, Loc, Result);
1989
1990 if Is_Private_Type (F_Type)
1991 and then Is_Private_Type (Base_Type (F_Type))
1992 and then No (Full_View (Base_Type (F_Type)))
1993 and then not Is_Generic_Type (F_Type)
1994 and then not Is_Derived_Type (F_Type)
1995 then
1996 -- If the type of a formal is incomplete, subprogram
1997 -- is being frozen prematurely. Within an instance
1998 -- (but not within a wrapper package) this is an
1999 -- an artifact of our need to regard the end of an
2000 -- instantiation as a freeze point. Otherwise it is
2001 -- a definite error.
fbf5a39b 2002
70482933
RK
2003 -- and then not Is_Wrapper_Package (Current_Scope) ???
2004
2005 if In_Instance then
2006 Set_Is_Frozen (E, False);
2007 return No_List;
2008
2009 elsif not After_Last_Declaration then
2010 Error_Msg_Node_1 := F_Type;
2011 Error_Msg
2012 ("type& must be fully defined before this point",
2013 Loc);
2014 end if;
2015 end if;
2016
2017 -- Check bad use of fat C pointer
2018
fbf5a39b
AC
2019 if Warn_On_Export_Import and then
2020 Is_Fat_C_Ptr_Type (F_Type)
2021 then
70482933
RK
2022 Error_Msg_Qual_Level := 1;
2023 Error_Msg_N
2024 ("?type of & does not correspond to C pointer",
2025 Formal);
2026 Error_Msg_Qual_Level := 0;
2027 end if;
2028
2029 -- Check for unconstrained array in exported foreign
2030 -- convention case.
2031
2032 if Convention (E) in Foreign_Convention
2033 and then not Is_Imported (E)
2034 and then Is_Array_Type (F_Type)
2035 and then not Is_Constrained (F_Type)
fbf5a39b 2036 and then Warn_On_Export_Import
70482933
RK
2037 then
2038 Error_Msg_Qual_Level := 1;
2039 Error_Msg_N
2040 ("?type of argument& is unconstrained array",
2041 Formal);
2042 Error_Msg_N
2043 ("?foreign caller must pass bounds explicitly",
2044 Formal);
2045 Error_Msg_Qual_Level := 0;
2046 end if;
2047
2048 Next_Formal (Formal);
2049 end loop;
2050
2051 -- Check return type
2052
2053 if Ekind (E) = E_Function then
2054 Freeze_And_Append (Etype (E), Loc, Result);
2055
fbf5a39b
AC
2056 if Warn_On_Export_Import
2057 and then Is_Fat_C_Ptr_Type (Etype (E))
2058 then
70482933
RK
2059 Error_Msg_N
2060 ("?return type of& does not correspond to C pointer",
2061 E);
2062
2063 elsif Is_Array_Type (Etype (E))
2064 and then not Is_Constrained (Etype (E))
2065 and then not Is_Imported (E)
2066 and then Convention (E) in Foreign_Convention
fbf5a39b 2067 and then Warn_On_Export_Import
70482933
RK
2068 then
2069 Error_Msg_N
fbf5a39b 2070 ("?foreign convention function& should not " &
70482933
RK
2071 "return unconstrained array", E);
2072 end if;
2073 end if;
2074 end;
2075 end if;
2076
2077 -- Must freeze its parent first if it is a derived subprogram
2078
2079 if Present (Alias (E)) then
2080 Freeze_And_Append (Alias (E), Loc, Result);
2081 end if;
2082
2083 -- If the return type requires a transient scope, and we are on
2084 -- a target allowing functions to return with a depressed stack
2085 -- pointer, then we mark the function as requiring this treatment.
2086
2087 if Ekind (E) = E_Function
2088 and then Functions_Return_By_DSP_On_Target
2089 and then Requires_Transient_Scope (Etype (E))
2090 then
2091 Set_Function_Returns_With_DSP (E);
2092 end if;
2093
2094 if not Is_Internal (E) then
2095 Freeze_Subprogram (E);
2096 end if;
2097
2098 -- Here for other than a subprogram or type
2099
2100 else
2101 -- If entity has a type, and it is not a generic unit, then
2102 -- freeze it first (RM 13.14(10))
2103
2104 if Present (Etype (E))
2105 and then Ekind (E) /= E_Generic_Function
2106 then
2107 Freeze_And_Append (Etype (E), Loc, Result);
2108 end if;
2109
2110 -- For object created by object declaration, perform required
2111 -- categorization (preelaborate and pure) checks. Defer these
2112 -- checks to freeze time since pragma Import inhibits default
2113 -- initialization and thus pragma Import affects these checks.
2114
2115 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2116 Validate_Object_Declaration (Declaration_Node (E));
fbf5a39b 2117 Check_Address_Clause (E);
70482933
RK
2118 end if;
2119
2120 -- Check that a constant which has a pragma Volatile[_Components]
2121 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2122
2123 -- Note: Atomic[_Components] also sets Volatile[_Components]
2124
2125 if Ekind (E) = E_Constant
2126 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2127 and then not Is_Imported (E)
2128 then
2129 -- Make sure we actually have a pragma, and have not merely
2130 -- inherited the indication from elsewhere (e.g. an address
2131 -- clause, which is not good enough in RM terms!)
2132
2133 if Present (Get_Rep_Pragma (E, Name_Atomic)) or else
2134 Present (Get_Rep_Pragma (E, Name_Atomic_Components)) or else
2135 Present (Get_Rep_Pragma (E, Name_Volatile)) or else
2136 Present (Get_Rep_Pragma (E, Name_Volatile_Components))
2137 then
2138 Error_Msg_N
2139 ("stand alone atomic/volatile constant must be imported",
2140 E);
2141 end if;
2142 end if;
2143
2144 -- Static objects require special handling
2145
2146 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2147 and then Is_Statically_Allocated (E)
2148 then
2149 Freeze_Static_Object (E);
2150 end if;
2151
2152 -- Remaining step is to layout objects
2153
2154 if Ekind (E) = E_Variable
2155 or else
2156 Ekind (E) = E_Constant
2157 or else
2158 Ekind (E) = E_Loop_Parameter
2159 or else
2160 Is_Formal (E)
2161 then
2162 Layout_Object (E);
2163 end if;
2164 end if;
2165
2166 -- Case of a type or subtype being frozen
2167
2168 else
2169 -- The type may be defined in a generic unit. This can occur when
2170 -- freezing a generic function that returns the type (which is
2171 -- defined in a parent unit). It is clearly meaningless to freeze
2172 -- this type. However, if it is a subtype, its size may be determi-
2173 -- nable and used in subsequent checks, so might as well try to
2174 -- compute it.
2175
2176 if Present (Scope (E))
2177 and then Is_Generic_Unit (Scope (E))
2178 then
2179 Check_Compile_Time_Size (E);
2180 return No_List;
2181 end if;
2182
2183 -- Deal with special cases of freezing for subtype
2184
2185 if E /= Base_Type (E) then
2186
2187 -- If ancestor subtype present, freeze that first.
2188 -- Note that this will also get the base type frozen.
2189
2190 Atype := Ancestor_Subtype (E);
2191
2192 if Present (Atype) then
2193 Freeze_And_Append (Atype, Loc, Result);
2194
2195 -- Otherwise freeze the base type of the entity before
fbf5a39b 2196 -- freezing the entity itself, (RM 13.14(15)).
70482933
RK
2197
2198 elsif E /= Base_Type (E) then
2199 Freeze_And_Append (Base_Type (E), Loc, Result);
2200 end if;
2201
fbf5a39b 2202 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2203
2204 elsif Is_Derived_Type (E) then
2205 Freeze_And_Append (Etype (E), Loc, Result);
2206 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2207 end if;
2208
2209 -- For array type, freeze index types and component type first
fbf5a39b 2210 -- before freezing the array (RM 13.14(15)).
70482933
RK
2211
2212 if Is_Array_Type (E) then
2213 declare
fbf5a39b
AC
2214 Ctyp : constant Entity_Id := Component_Type (E);
2215 Pnod : Node_Id;
70482933
RK
2216
2217 Non_Standard_Enum : Boolean := False;
2218 -- Set true if any of the index types is an enumeration
2219 -- type with a non-standard representation.
2220
2221 begin
2222 Freeze_And_Append (Ctyp, Loc, Result);
2223
2224 Indx := First_Index (E);
2225 while Present (Indx) loop
2226 Freeze_And_Append (Etype (Indx), Loc, Result);
2227
2228 if Is_Enumeration_Type (Etype (Indx))
2229 and then Has_Non_Standard_Rep (Etype (Indx))
2230 then
2231 Non_Standard_Enum := True;
2232 end if;
2233
2234 Next_Index (Indx);
2235 end loop;
2236
07fc65c4 2237 -- Processing that is done only for base types
70482933
RK
2238
2239 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2240
2241 -- Propagate flags for component type
2242
70482933
RK
2243 if Is_Controlled (Component_Type (E))
2244 or else Has_Controlled_Component (Ctyp)
2245 then
2246 Set_Has_Controlled_Component (E);
2247 end if;
2248
2249 if Has_Unchecked_Union (Component_Type (E)) then
2250 Set_Has_Unchecked_Union (E);
2251 end if;
70482933 2252
07fc65c4
GB
2253 -- If packing was requested or if the component size was set
2254 -- explicitly, then see if bit packing is required. This
2255 -- processing is only done for base types, since all the
2256 -- representation aspects involved are type-related. This
2257 -- is not just an optimization, if we start processing the
2258 -- subtypes, they intefere with the settings on the base
2259 -- type (this is because Is_Packed has a slightly different
2260 -- meaning before and after freezing).
70482933 2261
70482933
RK
2262 declare
2263 Csiz : Uint;
2264 Esiz : Uint;
2265
2266 begin
2267 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2268 and then not Has_Atomic_Components (E)
2269 and then Known_Static_RM_Size (Ctyp)
2270 then
2271 Csiz := UI_Max (RM_Size (Ctyp), 1);
2272
2273 elsif Known_Component_Size (E) then
2274 Csiz := Component_Size (E);
2275
2276 elsif not Known_Static_Esize (Ctyp) then
2277 Csiz := Uint_0;
2278
2279 else
2280 Esiz := Esize (Ctyp);
2281
2282 -- We can set the component size if it is less than
2283 -- 16, rounding it up to the next storage unit size.
2284
2285 if Esiz <= 8 then
2286 Csiz := Uint_8;
2287 elsif Esiz <= 16 then
2288 Csiz := Uint_16;
2289 else
2290 Csiz := Uint_0;
2291 end if;
2292
2293 -- Set component size up to match alignment if
2294 -- it would otherwise be less than the alignment.
2295 -- This deals with cases of types whose alignment
2296 -- exceeds their sizes (padded types).
2297
2298 if Csiz /= 0 then
2299 declare
2300 A : constant Uint := Alignment_In_Bits (Ctyp);
2301
2302 begin
2303 if Csiz < A then
2304 Csiz := A;
2305 end if;
2306 end;
2307 end if;
2308
2309 end if;
2310
2311 if 1 <= Csiz and then Csiz <= 64 then
2312
2313 -- We set the component size for all cases 1-64
2314
2315 Set_Component_Size (Base_Type (E), Csiz);
2316
fbf5a39b
AC
2317 -- Check for base type of 8,16,32 bits, where the
2318 -- subtype has a length one less than the base type
2319 -- and is unsigned (e.g. Natural subtype of Integer)
2320
2321 -- In such cases, if a component size was not set
2322 -- explicitly, then generate a warning.
2323
2324 if Has_Pragma_Pack (E)
2325 and then not Has_Component_Size_Clause (E)
2326 and then
2327 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2328 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2329 then
2330 Error_Msg_Uint_1 := Csiz;
2331 Pnod :=
2332 Get_Rep_Pragma (First_Subtype (E), Name_Pack);
2333
2334 if Present (Pnod) then
2335 Error_Msg_N
2336 ("pragma Pack causes component size to be ^?",
2337 Pnod);
2338 Error_Msg_N
2339 ("\use Component_Size to set desired value",
2340 Pnod);
2341 end if;
2342 end if;
2343
70482933
RK
2344 -- Actual packing is not needed for 8,16,32,64
2345 -- Also not needed for 24 if alignment is 1
2346
2347 if Csiz = 8
2348 or else Csiz = 16
2349 or else Csiz = 32
2350 or else Csiz = 64
2351 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2352 then
2353 -- Here the array was requested to be packed, but
2354 -- the packing request had no effect, so Is_Packed
2355 -- is reset.
2356
2357 -- Note: semantically this means that we lose
2358 -- track of the fact that a derived type inherited
2359 -- a pack pragma that was non-effective, but that
2360 -- seems fine.
2361
2362 -- We regard a Pack pragma as a request to set a
2363 -- representation characteristic, and this request
2364 -- may be ignored.
2365
2366 Set_Is_Packed (Base_Type (E), False);
2367
2368 -- In all other cases, packing is indeed needed
2369
2370 else
2371 Set_Has_Non_Standard_Rep (Base_Type (E));
2372 Set_Is_Bit_Packed_Array (Base_Type (E));
2373 Set_Is_Packed (Base_Type (E));
2374 end if;
2375 end if;
2376 end;
07fc65c4
GB
2377
2378 -- Processing that is done only for subtypes
2379
2380 else
2381 -- Acquire alignment from base type
2382
2383 if Unknown_Alignment (E) then
2384 Set_Alignment (E, Alignment (Base_Type (E)));
2385 end if;
2386 end if;
2387
d05ef0ab
AC
2388 -- For bit-packed arrays, check the size
2389
2390 if Is_Bit_Packed_Array (E)
2391 and then Known_Esize (E)
2392 then
2393 declare
2394 Discard : Boolean;
2395 SizC : constant Node_Id := Size_Clause (E);
2396
2397 begin
2398 -- It is not clear if it is possible to have no size
2399 -- clause at this stage, but this is not worth worrying
2400 -- about. Post the error on the entity name in the size
2401 -- clause if present, else on the type entity itself.
2402
2403 if Present (SizC) then
2404 Check_Size (Name (SizC), E, Esize (E), Discard);
2405 else
2406 Check_Size (E, E, Esize (E), Discard);
2407 end if;
2408 end;
2409 end if;
2410
07fc65c4
GB
2411 -- Check one common case of a size given where the array
2412 -- needs to be packed, but was not so the size cannot be
2413 -- honored. This would of course be caught by the backend,
2414 -- and indeed we don't catch all cases. The point is that
2415 -- we can give a better error message in those cases that
2416 -- we do catch with the circuitry here.
2417
fbf5a39b
AC
2418 declare
2419 Lo, Hi : Node_Id;
2420 Ctyp : constant Entity_Id := Component_Type (E);
07fc65c4 2421
fbf5a39b
AC
2422 begin
2423 if Present (Size_Clause (E))
2424 and then Known_Static_Esize (E)
2425 and then not Is_Bit_Packed_Array (E)
2426 and then not Has_Pragma_Pack (E)
2427 and then Number_Dimensions (E) = 1
2428 and then not Has_Component_Size_Clause (E)
2429 and then Known_Static_Esize (Ctyp)
2430 then
07fc65c4
GB
2431 Get_Index_Bounds (First_Index (E), Lo, Hi);
2432
2433 if Compile_Time_Known_Value (Lo)
2434 and then Compile_Time_Known_Value (Hi)
2435 and then Known_Static_RM_Size (Ctyp)
2436 and then RM_Size (Ctyp) < 64
2437 then
2438 declare
fbf5a39b
AC
2439 Lov : constant Uint := Expr_Value (Lo);
2440 Hiv : constant Uint := Expr_Value (Hi);
2441 Len : constant Uint :=
2442 UI_Max (Uint_0, Hiv - Lov + 1);
2443 Rsiz : constant Uint := RM_Size (Ctyp);
2444
2445 -- What we are looking for here is the situation
2446 -- where the Esize given would be exactly right
2447 -- if there was a pragma Pack (resulting in the
2448 -- component size being the same as the RM_Size).
2449 -- Furthermore, the component type size must be
2450 -- an odd size (not a multiple of storage unit)
07fc65c4
GB
2451
2452 begin
fbf5a39b
AC
2453 if Esize (E) = Len * Rsiz
2454 and then Rsiz mod System_Storage_Unit /= 0
07fc65c4
GB
2455 then
2456 Error_Msg_NE
2457 ("size given for& too small",
2458 Size_Clause (E), E);
2459 Error_Msg_N
2460 ("\explicit pragma Pack is required",
2461 Size_Clause (E));
2462 end if;
2463 end;
2464 end if;
fbf5a39b
AC
2465 end if;
2466 end;
70482933
RK
2467
2468 -- If any of the index types was an enumeration type with
2469 -- a non-standard rep clause, then we indicate that the
2470 -- array type is always packed (even if it is not bit packed).
2471
2472 if Non_Standard_Enum then
2473 Set_Has_Non_Standard_Rep (Base_Type (E));
2474 Set_Is_Packed (Base_Type (E));
2475 end if;
2476 end;
2477
2478 Set_Component_Alignment_If_Not_Set (E);
2479
2480 -- If the array is packed, we must create the packed array
2481 -- type to be used to actually implement the type. This is
2482 -- only needed for real array types (not for string literal
2483 -- types, since they are present only for the front end).
2484
2485 if Is_Packed (E)
2486 and then Ekind (E) /= E_String_Literal_Subtype
2487 then
2488 Create_Packed_Array_Type (E);
2489 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
2490
2491 -- Size information of packed array type is copied to the
2492 -- array type, since this is really the representation.
2493
2494 Set_Size_Info (E, Packed_Array_Type (E));
2495 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2496 end if;
2497
fbf5a39b
AC
2498 -- For a class-wide type, the corresponding specific type is
2499 -- frozen as well (RM 13.14(15))
70482933
RK
2500
2501 elsif Is_Class_Wide_Type (E) then
2502 Freeze_And_Append (Root_Type (E), Loc, Result);
2503
2504 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2505 -- parent of a derived type) and it is a library-level entity,
2506 -- generate an itype reference for it. Otherwise, its first
2507 -- explicit reference may be in an inner scope, which will be
2508 -- rejected by the back-end.
2509
2510 if Is_Itype (E)
2511 and then Is_Compilation_Unit (Scope (E))
2512 then
70482933 2513 declare
fbf5a39b 2514 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
2515
2516 begin
2517 Set_Itype (Ref, E);
2518 if No (Result) then
2519 Result := New_List (Ref);
2520 else
2521 Append (Ref, Result);
2522 end if;
2523 end;
2524 end if;
2525
fbf5a39b
AC
2526 -- The equivalent type associated with a class-wide subtype
2527 -- needs to be frozen to ensure that its layout is done.
2528 -- Class-wide subtypes are currently only frozen on targets
2529 -- requiring front-end layout (see New_Class_Wide_Subtype
2530 -- and Make_CW_Equivalent_Type in exp_util.adb).
2531
2532 if Ekind (E) = E_Class_Wide_Subtype
2533 and then Present (Equivalent_Type (E))
2534 then
2535 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2536 end if;
2537
2538 -- For a record (sub)type, freeze all the component types (RM
2539 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
70482933
RK
2540 -- using Is_Record_Type, because we don't want to attempt the
2541 -- freeze for the case of a private type with record extension
2542 -- (we will do that later when the full type is frozen).
2543
2544 elsif Ekind (E) = E_Record_Type
2545 or else Ekind (E) = E_Record_Subtype
2546 then
2547 Freeze_Record_Type (E);
2548
2549 -- For a concurrent type, freeze corresponding record type. This
2550 -- does not correpond to any specific rule in the RM, but the
2551 -- record type is essentially part of the concurrent type.
2552 -- Freeze as well all local entities. This includes record types
2553 -- created for entry parameter blocks, and whatever local entities
2554 -- may appear in the private part.
2555
2556 elsif Is_Concurrent_Type (E) then
2557 if Present (Corresponding_Record_Type (E)) then
2558 Freeze_And_Append
2559 (Corresponding_Record_Type (E), Loc, Result);
2560 end if;
2561
2562 Comp := First_Entity (E);
2563
2564 while Present (Comp) loop
2565 if Is_Type (Comp) then
2566 Freeze_And_Append (Comp, Loc, Result);
2567
2568 elsif (Ekind (Comp)) /= E_Function then
2569 Freeze_And_Append (Etype (Comp), Loc, Result);
2570 end if;
2571
2572 Next_Entity (Comp);
2573 end loop;
2574
2575 -- Private types are required to point to the same freeze node
2576 -- as their corresponding full views. The freeze node itself
2577 -- has to point to the partial view of the entity (because
2578 -- from the partial view, we can retrieve the full view, but
2579 -- not the reverse). However, in order to freeze correctly,
2580 -- we need to freeze the full view. If we are freezing at the
2581 -- end of a scope (or within the scope of the private type),
2582 -- the partial and full views will have been swapped, the
2583 -- full view appears first in the entity chain and the swapping
fbf5a39b 2584 -- mechanism ensures that the pointers are properly set (on
70482933
RK
2585 -- scope exit).
2586
2587 -- If we encounter the partial view before the full view
2588 -- (e.g. when freezing from another scope), we freeze the
2589 -- full view, and then set the pointers appropriately since
2590 -- we cannot rely on swapping to fix things up (subtypes in an
2591 -- outer scope might not get swapped).
2592
2593 elsif Is_Incomplete_Or_Private_Type (E)
2594 and then not Is_Generic_Type (E)
2595 then
2596 -- Case of full view present
2597
2598 if Present (Full_View (E)) then
2599
2600 -- If full view has already been frozen, then no
2601 -- further processing is required
2602
2603 if Is_Frozen (Full_View (E)) then
2604
2605 Set_Has_Delayed_Freeze (E, False);
2606 Set_Freeze_Node (E, Empty);
2607 Check_Debug_Info_Needed (E);
2608
2609 -- Otherwise freeze full view and patch the pointers
fbf5a39b
AC
2610 -- so that the freeze node will elaborate both views
2611 -- in the back-end.
70482933
RK
2612
2613 else
fbf5a39b
AC
2614 declare
2615 Full : constant Entity_Id := Full_View (E);
70482933 2616
fbf5a39b
AC
2617 begin
2618 if Is_Private_Type (Full)
2619 and then Present (Underlying_Full_View (Full))
2620 then
2621 Freeze_And_Append
2622 (Underlying_Full_View (Full), Loc, Result);
2623 end if;
70482933 2624
fbf5a39b 2625 Freeze_And_Append (Full, Loc, Result);
70482933 2626
fbf5a39b
AC
2627 if Has_Delayed_Freeze (E) then
2628 F_Node := Freeze_Node (Full);
70482933 2629
fbf5a39b
AC
2630 if Present (F_Node) then
2631 Set_Freeze_Node (E, F_Node);
2632 Set_Entity (F_Node, E);
2633
2634 else
2635 -- {Incomplete,Private}_Subtypes
2636 -- with Full_Views constrained by discriminants
2637
2638 Set_Has_Delayed_Freeze (E, False);
2639 Set_Freeze_Node (E, Empty);
2640 end if;
70482933 2641 end if;
fbf5a39b 2642 end;
70482933
RK
2643
2644 Check_Debug_Info_Needed (E);
2645 end if;
2646
2647 -- AI-117 requires that the convention of a partial view
2648 -- be the same as the convention of the full view. Note
2649 -- that this is a recognized breach of privacy, but it's
2650 -- essential for logical consistency of representation,
2651 -- and the lack of a rule in RM95 was an oversight.
2652
2653 Set_Convention (E, Convention (Full_View (E)));
2654
2655 Set_Size_Known_At_Compile_Time (E,
2656 Size_Known_At_Compile_Time (Full_View (E)));
2657
2658 -- Size information is copied from the full view to the
2659 -- incomplete or private view for consistency
2660
2661 -- We skip this is the full view is not a type. This is
2662 -- very strange of course, and can only happen as a result
2663 -- of certain illegalities, such as a premature attempt to
2664 -- derive from an incomplete type.
2665
2666 if Is_Type (Full_View (E)) then
2667 Set_Size_Info (E, Full_View (E));
2668 Set_RM_Size (E, RM_Size (Full_View (E)));
2669 end if;
2670
2671 return Result;
2672
2673 -- Case of no full view present. If entity is derived or subtype,
2674 -- it is safe to freeze, correctness depends on the frozen status
2675 -- of parent. Otherwise it is either premature usage, or a Taft
2676 -- amendment type, so diagnosis is at the point of use and the
2677 -- type might be frozen later.
2678
2679 elsif E /= Base_Type (E)
2680 or else Is_Derived_Type (E)
2681 then
2682 null;
2683
2684 else
2685 Set_Is_Frozen (E, False);
2686 return No_List;
2687 end if;
2688
2689 -- For access subprogram, freeze types of all formals, the return
2690 -- type was already frozen, since it is the Etype of the function.
2691
2692 elsif Ekind (E) = E_Subprogram_Type then
2693 Formal := First_Formal (E);
2694 while Present (Formal) loop
2695 Freeze_And_Append (Etype (Formal), Loc, Result);
2696 Next_Formal (Formal);
2697 end loop;
2698
2699 -- If the return type requires a transient scope, and we are on
2700 -- a target allowing functions to return with a depressed stack
2701 -- pointer, then we mark the function as requiring this treatment.
2702
2703 if Functions_Return_By_DSP_On_Target
2704 and then Requires_Transient_Scope (Etype (E))
2705 then
2706 Set_Function_Returns_With_DSP (E);
2707 end if;
2708
2709 Freeze_Subprogram (E);
2710
2711 -- For access to a protected subprogram, freeze the equivalent
2712 -- type (however this is not set if we are not generating code)
2713 -- or if this is an anonymous type used just for resolution).
2714
2715 elsif Ekind (E) = E_Access_Protected_Subprogram_Type
2716 and then Operating_Mode = Generate_Code
2717 and then Present (Equivalent_Type (E))
2718 then
2719 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2720 end if;
2721
2722 -- Generic types are never seen by the back-end, and are also not
2723 -- processed by the expander (since the expander is turned off for
2724 -- generic processing), so we never need freeze nodes for them.
2725
2726 if Is_Generic_Type (E) then
2727 return Result;
2728 end if;
2729
2730 -- Some special processing for non-generic types to complete
2731 -- representation details not known till the freeze point.
2732
2733 if Is_Fixed_Point_Type (E) then
2734 Freeze_Fixed_Point_Type (E);
2735
fbf5a39b
AC
2736 -- Some error checks required for ordinary fixed-point type.
2737 -- Defer these till the freeze-point since we need the small
2738 -- and range values. We only do these checks for base types
2739
2740 if Is_Ordinary_Fixed_Point_Type (E)
2741 and then E = Base_Type (E)
2742 then
2743 if Small_Value (E) < Ureal_2_M_80 then
2744 Error_Msg_Name_1 := Name_Small;
2745 Error_Msg_N
2746 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
2747
2748 elsif Small_Value (E) > Ureal_2_80 then
2749 Error_Msg_Name_1 := Name_Small;
2750 Error_Msg_N
2751 ("`&''%` is too large, maximum is 2.0'*'*80", E);
2752 end if;
2753
2754 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
2755 Error_Msg_Name_1 := Name_First;
2756 Error_Msg_N
2757 ("`&''%` is too small, minimum is -10.0'*'*36", E);
2758 end if;
2759
2760 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
2761 Error_Msg_Name_1 := Name_Last;
2762 Error_Msg_N
2763 ("`&''%` is too large, maximum is 10.0'*'*36", E);
2764 end if;
2765 end if;
2766
70482933
RK
2767 elsif Is_Enumeration_Type (E) then
2768 Freeze_Enumeration_Type (E);
2769
2770 elsif Is_Integer_Type (E) then
2771 Adjust_Esize_For_Alignment (E);
2772
2773 elsif Is_Access_Type (E)
2774 and then No (Associated_Storage_Pool (E))
2775 then
2776 Check_Restriction (No_Standard_Storage_Pools, E);
2777 end if;
2778
2779 -- If the current entity is an array or record subtype and has
2780 -- discriminants used to constrain it, it must not freeze, because
2781 -- Freeze_Entity nodes force Gigi to process the frozen type.
2782
2783 if Is_Composite_Type (E) then
2784
2785 if Is_Array_Type (E) then
70482933
RK
2786 declare
2787 Index : Node_Id := First_Index (E);
2788 Expr1 : Node_Id;
2789 Expr2 : Node_Id;
2790
2791 begin
2792 while Present (Index) loop
2793 if Etype (Index) /= Any_Type then
2794 Get_Index_Bounds (Index, Expr1, Expr2);
2795
2796 for J in 1 .. 2 loop
2797 if Nkind (Expr1) = N_Identifier
2798 and then Ekind (Entity (Expr1)) = E_Discriminant
2799 then
2800 Set_Has_Delayed_Freeze (E, False);
2801 Set_Freeze_Node (E, Empty);
2802 Check_Debug_Info_Needed (E);
2803 return Result;
2804 end if;
2805
2806 Expr1 := Expr2;
2807 end loop;
2808 end if;
2809
2810 Next_Index (Index);
2811 end loop;
2812 end;
2813
2814 elsif Has_Discriminants (E)
2815 and Is_Constrained (E)
2816 then
70482933
RK
2817 declare
2818 Constraint : Elmt_Id;
2819 Expr : Node_Id;
07fc65c4 2820
70482933
RK
2821 begin
2822 Constraint := First_Elmt (Discriminant_Constraint (E));
70482933 2823 while Present (Constraint) loop
70482933
RK
2824 Expr := Node (Constraint);
2825 if Nkind (Expr) = N_Identifier
2826 and then Ekind (Entity (Expr)) = E_Discriminant
2827 then
2828 Set_Has_Delayed_Freeze (E, False);
2829 Set_Freeze_Node (E, Empty);
2830 Check_Debug_Info_Needed (E);
2831 return Result;
2832 end if;
2833
2834 Next_Elmt (Constraint);
2835 end loop;
2836 end;
70482933
RK
2837 end if;
2838
2839 -- AI-117 requires that all new primitives of a tagged type
2840 -- must inherit the convention of the full view of the type.
2841 -- Inherited and overriding operations are defined to inherit
2842 -- the convention of their parent or overridden subprogram
2843 -- (also specified in AI-117), and that will have occurred
2844 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2845 -- Here we set the convention of primitives that are still
2846 -- convention Ada, which will ensure that any new primitives
2847 -- inherit the type's convention. Class-wide types can have
2848 -- a foreign convention inherited from their specific type,
2849 -- but are excluded from this since they don't have any
2850 -- associated primitives.
2851
2852 if Is_Tagged_Type (E)
2853 and then not Is_Class_Wide_Type (E)
2854 and then Convention (E) /= Convention_Ada
2855 then
2856 declare
2857 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 2858 Prim : Elmt_Id;
70482933 2859 begin
07fc65c4 2860 Prim := First_Elmt (Prim_List);
70482933
RK
2861 while Present (Prim) loop
2862 if Convention (Node (Prim)) = Convention_Ada then
2863 Set_Convention (Node (Prim), Convention (E));
2864 end if;
2865
2866 Next_Elmt (Prim);
2867 end loop;
2868 end;
2869 end if;
2870 end if;
2871
07fc65c4
GB
2872 -- Generate primitive operation references for a tagged type
2873
2874 if Is_Tagged_Type (E)
2875 and then not Is_Class_Wide_Type (E)
2876 then
2877 declare
2878 Prim_List : constant Elist_Id := Primitive_Operations (E);
2879 Prim : Elmt_Id;
2880 Ent : Entity_Id;
2881
2882 begin
2883 Prim := First_Elmt (Prim_List);
2884 while Present (Prim) loop
2885 Ent := Node (Prim);
2886
2887 -- If the operation is derived, get the original for
2888 -- cross-reference purposes (it is the original for
2889 -- which we want the xref, and for which the comes
2890 -- from source test needs to be performed).
2891
2892 while Present (Alias (Ent)) loop
2893 Ent := Alias (Ent);
2894 end loop;
2895
2896 Generate_Reference (E, Ent, 'p', Set_Ref => False);
2897 Next_Elmt (Prim);
2898 end loop;
2899
2900 -- If we get an exception, then something peculiar has happened
2901 -- probably as a result of a previous error. Since this is only
2902 -- for non-critical cross-references, ignore the error.
2903
2904 exception
2905 when others => null;
2906 end;
2907 end if;
2908
70482933
RK
2909 -- Now that all types from which E may depend are frozen, see
2910 -- if the size is known at compile time, if it must be unsigned,
2911 -- or if strict alignent is required
2912
2913 Check_Compile_Time_Size (E);
2914 Check_Unsigned_Type (E);
2915
2916 if Base_Type (E) = E then
2917 Check_Strict_Alignment (E);
2918 end if;
2919
2920 -- Do not allow a size clause for a type which does not have a size
2921 -- that is known at compile time
2922
2923 if Has_Size_Clause (E)
2924 and then not Size_Known_At_Compile_Time (E)
2925 then
07fc65c4
GB
2926 -- Supress this message if errors posted on E, even if we are
2927 -- in all errors mode, since this is often a junk message
2928
2929 if not Error_Posted (E) then
2930 Error_Msg_N
2931 ("size clause not allowed for variable length type",
2932 Size_Clause (E));
2933 end if;
70482933
RK
2934 end if;
2935
2936 -- Remaining process is to set/verify the representation information,
2937 -- in particular the size and alignment values. This processing is
2938 -- not required for generic types, since generic types do not play
2939 -- any part in code generation, and so the size and alignment values
2940 -- for suhc types are irrelevant.
2941
2942 if Is_Generic_Type (E) then
2943 return Result;
2944
2945 -- Otherwise we call the layout procedure
2946
2947 else
2948 Layout_Type (E);
2949 end if;
2950
2951 -- End of freeze processing for type entities
2952 end if;
2953
2954 -- Here is where we logically freeze the current entity. If it has a
2955 -- freeze node, then this is the point at which the freeze node is
2956 -- linked into the result list.
2957
2958 if Has_Delayed_Freeze (E) then
2959
2960 -- If a freeze node is already allocated, use it, otherwise allocate
2961 -- a new one. The preallocation happens in the case of anonymous base
2962 -- types, where we preallocate so that we can set First_Subtype_Link.
2963 -- Note that we reset the Sloc to the current freeze location.
2964
2965 if Present (Freeze_Node (E)) then
2966 F_Node := Freeze_Node (E);
2967 Set_Sloc (F_Node, Loc);
2968
2969 else
2970 F_Node := New_Node (N_Freeze_Entity, Loc);
2971 Set_Freeze_Node (E, F_Node);
2972 Set_Access_Types_To_Process (F_Node, No_Elist);
2973 Set_TSS_Elist (F_Node, No_Elist);
2974 Set_Actions (F_Node, No_List);
2975 end if;
2976
2977 Set_Entity (F_Node, E);
2978
2979 if Result = No_List then
2980 Result := New_List (F_Node);
2981 else
2982 Append (F_Node, Result);
2983 end if;
70482933
RK
2984 end if;
2985
2986 -- When a type is frozen, the first subtype of the type is frozen as
2987 -- well (RM 13.14(15)). This has to be done after freezing the type,
2988 -- since obviously the first subtype depends on its own base type.
2989
2990 if Is_Type (E) then
2991 Freeze_And_Append (First_Subtype (E), Loc, Result);
2992
2993 -- If we just froze a tagged non-class wide record, then freeze the
2994 -- corresponding class-wide type. This must be done after the tagged
2995 -- type itself is frozen, because the class-wide type refers to the
2996 -- tagged type which generates the class.
2997
2998 if Is_Tagged_Type (E)
2999 and then not Is_Class_Wide_Type (E)
3000 and then Present (Class_Wide_Type (E))
3001 then
3002 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3003 end if;
3004 end if;
3005
3006 Check_Debug_Info_Needed (E);
3007
3008 -- Special handling for subprograms
3009
3010 if Is_Subprogram (E) then
3011
3012 -- If subprogram has address clause then reset Is_Public flag, since
3013 -- we do not want the backend to generate external references.
3014
3015 if Present (Address_Clause (E))
3016 and then not Is_Library_Level_Entity (E)
3017 then
3018 Set_Is_Public (E, False);
3019
3020 -- If no address clause and not intrinsic, then for imported
3021 -- subprogram in main unit, generate descriptor if we are in
3022 -- Propagate_Exceptions mode.
3023
3024 elsif Propagate_Exceptions
3025 and then Is_Imported (E)
3026 and then not Is_Intrinsic_Subprogram (E)
3027 and then Convention (E) /= Convention_Stubbed
3028 then
3029 if Result = No_List then
3030 Result := Empty_List;
3031 end if;
3032
3033 Generate_Subprogram_Descriptor_For_Imported_Subprogram
3034 (E, Result);
3035 end if;
70482933
RK
3036 end if;
3037
3038 return Result;
3039 end Freeze_Entity;
3040
3041 -----------------------------
3042 -- Freeze_Enumeration_Type --
3043 -----------------------------
3044
3045 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3046 begin
3047 if Has_Foreign_Convention (Typ)
3048 and then not Has_Size_Clause (Typ)
3049 and then Esize (Typ) < Standard_Integer_Size
3050 then
3051 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3052 else
3053 Adjust_Esize_For_Alignment (Typ);
3054 end if;
3055 end Freeze_Enumeration_Type;
3056
3057 -----------------------
3058 -- Freeze_Expression --
3059 -----------------------
3060
3061 procedure Freeze_Expression (N : Node_Id) is
3062 In_Def_Exp : constant Boolean := In_Default_Expression;
3063 Typ : Entity_Id;
3064 Nam : Entity_Id;
3065 Desig_Typ : Entity_Id;
3066 P : Node_Id;
3067 Parent_P : Node_Id;
3068
3069 Freeze_Outside : Boolean := False;
3070 -- This flag is set true if the entity must be frozen outside the
3071 -- current subprogram. This happens in the case of expander generated
3072 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3073 -- not freeze all entities like other bodies, but which nevertheless
3074 -- may reference entities that have to be frozen before the body and
3075 -- obviously cannot be frozen inside the body.
3076
3077 function In_Exp_Body (N : Node_Id) return Boolean;
3078 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3079 -- it is the handled statement sequence of an expander generated
3080 -- subprogram (init proc, or stream subprogram). If so, it returns
3081 -- True, otherwise False.
3082
fbf5a39b
AC
3083 -----------------
3084 -- In_Exp_Body --
3085 -----------------
3086
70482933
RK
3087 function In_Exp_Body (N : Node_Id) return Boolean is
3088 P : Node_Id;
3089
3090 begin
3091 if Nkind (N) = N_Subprogram_Body then
3092 P := N;
3093 else
3094 P := Parent (N);
3095 end if;
3096
3097 if Nkind (P) /= N_Subprogram_Body then
3098 return False;
3099
3100 else
3101 P := Defining_Unit_Name (Specification (P));
3102
3103 if Nkind (P) = N_Defining_Identifier
fbf5a39b
AC
3104 and then (Is_Init_Proc (P) or else
3105 Is_TSS (P, TSS_Stream_Input) or else
3106 Is_TSS (P, TSS_Stream_Output) or else
3107 Is_TSS (P, TSS_Stream_Read) or else
3108 Is_TSS (P, TSS_Stream_Write))
70482933
RK
3109 then
3110 return True;
3111 else
3112 return False;
3113 end if;
3114 end if;
70482933
RK
3115 end In_Exp_Body;
3116
3117 -- Start of processing for Freeze_Expression
3118
3119 begin
3120 -- Immediate return if freezing is inhibited. This flag is set by
3121 -- the analyzer to stop freezing on generated expressions that would
3122 -- cause freezing if they were in the source program, but which are
3123 -- not supposed to freeze, since they are created.
3124
3125 if Must_Not_Freeze (N) then
3126 return;
3127 end if;
3128
3129 -- If expression is non-static, then it does not freeze in a default
3130 -- expression, see section "Handling of Default Expressions" in the
3131 -- spec of package Sem for further details. Note that we have to
3132 -- make sure that we actually have a real expression (if we have
3133 -- a subtype indication, we can't test Is_Static_Expression!)
3134
3135 if In_Def_Exp
3136 and then Nkind (N) in N_Subexpr
3137 and then not Is_Static_Expression (N)
3138 then
3139 return;
3140 end if;
3141
3142 -- Freeze type of expression if not frozen already
3143
fbf5a39b
AC
3144 Typ := Empty;
3145
3146 if Nkind (N) in N_Has_Etype then
3147 if not Is_Frozen (Etype (N)) then
3148 Typ := Etype (N);
3149
3150 -- Base type may be an derived numeric type that is frozen at
3151 -- the point of declaration, but first_subtype is still unfrozen.
3152
3153 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3154 Typ := First_Subtype (Etype (N));
3155 end if;
70482933
RK
3156 end if;
3157
3158 -- For entity name, freeze entity if not frozen already. A special
3159 -- exception occurs for an identifier that did not come from source.
3160 -- We don't let such identifiers freeze a non-internal entity, i.e.
3161 -- an entity that did come from source, since such an identifier was
3162 -- generated by the expander, and cannot have any semantic effect on
3163 -- the freezing semantics. For example, this stops the parameter of
3164 -- an initialization procedure from freezing the variable.
3165
3166 if Is_Entity_Name (N)
3167 and then not Is_Frozen (Entity (N))
3168 and then (Nkind (N) /= N_Identifier
3169 or else Comes_From_Source (N)
3170 or else not Comes_From_Source (Entity (N)))
3171 then
3172 Nam := Entity (N);
70482933
RK
3173 else
3174 Nam := Empty;
3175 end if;
3176
3177 -- For an allocator freeze designated type if not frozen already.
3178
3179 -- For an aggregate whose component type is an access type, freeze
3180 -- the designated type now, so that its freeze does not appear within
3181 -- the loop that might be created in the expansion of the aggregate.
3182 -- If the designated type is a private type without full view, the
3183 -- expression cannot contain an allocator, so the type is not frozen.
3184
3185 Desig_Typ := Empty;
70482933 3186
fbf5a39b 3187 case Nkind (N) is
70482933
RK
3188 when N_Allocator =>
3189 Desig_Typ := Designated_Type (Etype (N));
3190
3191 when N_Aggregate =>
3192 if Is_Array_Type (Etype (N))
3193 and then Is_Access_Type (Component_Type (Etype (N)))
3194 then
3195 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3196 end if;
3197
3198 when N_Selected_Component |
3199 N_Indexed_Component |
3200 N_Slice =>
3201
3202 if Is_Access_Type (Etype (Prefix (N))) then
3203 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3204 end if;
3205
3206 when others =>
3207 null;
70482933
RK
3208 end case;
3209
3210 if Desig_Typ /= Empty
3211 and then (Is_Frozen (Desig_Typ)
3212 or else (not Is_Fully_Defined (Desig_Typ)))
3213 then
3214 Desig_Typ := Empty;
3215 end if;
3216
3217 -- All done if nothing needs freezing
3218
3219 if No (Typ)
3220 and then No (Nam)
3221 and then No (Desig_Typ)
3222 then
3223 return;
3224 end if;
3225
3226 -- Loop for looking at the right place to insert the freeze nodes
3227 -- exiting from the loop when it is appropriate to insert the freeze
3228 -- node before the current node P.
3229
3230 -- Also checks some special exceptions to the freezing rules. These
3231 -- cases result in a direct return, bypassing the freeze action.
3232
3233 P := N;
3234 loop
3235 Parent_P := Parent (P);
3236
3237 -- If we don't have a parent, then we are not in a well-formed
3238 -- tree. This is an unusual case, but there are some legitimate
3239 -- situations in which this occurs, notably when the expressions
3240 -- in the range of a type declaration are resolved. We simply
3241 -- ignore the freeze request in this case. Is this right ???
3242
3243 if No (Parent_P) then
3244 return;
3245 end if;
3246
3247 -- See if we have got to an appropriate point in the tree
3248
3249 case Nkind (Parent_P) is
3250
3251 -- A special test for the exception of (RM 13.14(8)) for the
3252 -- case of per-object expressions (RM 3.8(18)) occurring in a
3253 -- component definition or a discrete subtype definition. Note
3254 -- that we test for a component declaration which includes both
3255 -- cases we are interested in, and furthermore the tree does not
3256 -- have explicit nodes for either of these two constructs.
3257
3258 when N_Component_Declaration =>
3259
3260 -- The case we want to test for here is an identifier that is
3261 -- a per-object expression, this is either a discriminant that
3262 -- appears in a context other than the component declaration
3263 -- or it is a reference to the type of the enclosing construct.
3264
3265 -- For either of these cases, we skip the freezing
3266
3267 if not In_Default_Expression
3268 and then Nkind (N) = N_Identifier
3269 and then (Present (Entity (N)))
3270 then
3271 -- We recognize the discriminant case by just looking for
3272 -- a reference to a discriminant. It can only be one for
3273 -- the enclosing construct. Skip freezing in this case.
3274
3275 if Ekind (Entity (N)) = E_Discriminant then
3276 return;
3277
3278 -- For the case of a reference to the enclosing record,
3279 -- (or task or protected type), we look for a type that
3280 -- matches the current scope.
3281
3282 elsif Entity (N) = Current_Scope then
3283 return;
3284 end if;
3285 end if;
3286
3287 -- If we have an enumeration literal that appears as the
3288 -- choice in the aggregate of an enumeration representation
fbf5a39b 3289 -- clause, then freezing does not occur (RM 13.14(10)).
70482933
RK
3290
3291 when N_Enumeration_Representation_Clause =>
3292
3293 -- The case we are looking for is an enumeration literal
3294
3295 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3296 and then Is_Enumeration_Type (Etype (N))
3297 then
3298 -- If enumeration literal appears directly as the choice,
3299 -- do not freeze (this is the normal non-overloade case)
3300
3301 if Nkind (Parent (N)) = N_Component_Association
3302 and then First (Choices (Parent (N))) = N
3303 then
3304 return;
3305
3306 -- If enumeration literal appears as the name of a
3307 -- function which is the choice, then also do not freeze.
3308 -- This happens in the overloaded literal case, where the
3309 -- enumeration literal is temporarily changed to a function
3310 -- call for overloading analysis purposes.
3311
3312 elsif Nkind (Parent (N)) = N_Function_Call
3313 and then
3314 Nkind (Parent (Parent (N))) = N_Component_Association
3315 and then
3316 First (Choices (Parent (Parent (N)))) = Parent (N)
3317 then
3318 return;
3319 end if;
3320 end if;
3321
3322 -- Normally if the parent is a handled sequence of statements,
3323 -- then the current node must be a statement, and that is an
3324 -- appropriate place to insert a freeze node.
3325
3326 when N_Handled_Sequence_Of_Statements =>
3327
3328 -- An exception occurs when the sequence of statements is
3329 -- for an expander generated body that did not do the usual
3330 -- freeze all operation. In this case we usually want to
3331 -- freeze outside this body, not inside it, and we skip
3332 -- past the subprogram body that we are inside.
3333
3334 if In_Exp_Body (Parent_P) then
3335
3336 -- However, we *do* want to freeze at this point if we have
3337 -- an entity to freeze, and that entity is declared *inside*
3338 -- the body of the expander generated procedure. This case
3339 -- is recognized by the scope of the type, which is either
3340 -- the spec for some enclosing body, or (in the case of
3341 -- init_procs, for which there are no separate specs) the
3342 -- current scope.
3343
3344 declare
3345 Subp : constant Node_Id := Parent (Parent_P);
3346 Cspc : Entity_Id;
3347
3348 begin
3349 if Nkind (Subp) = N_Subprogram_Body then
3350 Cspc := Corresponding_Spec (Subp);
3351
3352 if (Present (Typ) and then Scope (Typ) = Cspc)
3353 or else
3354 (Present (Nam) and then Scope (Nam) = Cspc)
3355 then
3356 exit;
3357
3358 elsif Present (Typ)
3359 and then Scope (Typ) = Current_Scope
3360 and then Current_Scope = Defining_Entity (Subp)
3361 then
3362 exit;
3363 end if;
3364 end if;
3365 end;
3366
3367 -- If not that exception to the exception, then this is
3368 -- where we delay the freeze till outside the body.
3369
3370 Parent_P := Parent (Parent_P);
3371 Freeze_Outside := True;
3372
3373 -- Here if normal case where we are in handled statement
3374 -- sequence and want to do the insertion right there.
3375
3376 else
3377 exit;
3378 end if;
3379
3380 -- If parent is a body or a spec or a block, then the current
3381 -- node is a statement or declaration and we can insert the
3382 -- freeze node before it.
3383
3384 when N_Package_Specification |
3385 N_Package_Body |
3386 N_Subprogram_Body |
3387 N_Task_Body |
3388 N_Protected_Body |
3389 N_Entry_Body |
3390 N_Block_Statement => exit;
3391
3392 -- The expander is allowed to define types in any statements list,
3393 -- so any of the following parent nodes also mark a freezing point
3394 -- if the actual node is in a list of statements or declarations.
3395
3396 when N_Exception_Handler |
3397 N_If_Statement |
3398 N_Elsif_Part |
3399 N_Case_Statement_Alternative |
3400 N_Compilation_Unit_Aux |
3401 N_Selective_Accept |
3402 N_Accept_Alternative |
3403 N_Delay_Alternative |
3404 N_Conditional_Entry_Call |
3405 N_Entry_Call_Alternative |
3406 N_Triggering_Alternative |
3407 N_Abortable_Part |
3408 N_Freeze_Entity =>
3409
3410 exit when Is_List_Member (P);
3411
3412 -- Note: The N_Loop_Statement is a special case. A type that
3413 -- appears in the source can never be frozen in a loop (this
3414 -- occurs only because of a loop expanded by the expander),
3415 -- so we keep on going. Otherwise we terminate the search.
3416 -- Same is true of any entity which comes from source. (if they
3417 -- have a predefined type, that type does not appear to come
3418 -- from source, but the entity should not be frozen here).
3419
3420 when N_Loop_Statement =>
3421 exit when not Comes_From_Source (Etype (N))
3422 and then (No (Nam) or else not Comes_From_Source (Nam));
3423
3424 -- For all other cases, keep looking at parents
3425
3426 when others =>
3427 null;
3428 end case;
3429
3430 -- We fall through the case if we did not yet find the proper
3431 -- place in the free for inserting the freeze node, so climb!
3432
3433 P := Parent_P;
3434 end loop;
3435
3436 -- If the expression appears in a record or an initialization
3437 -- procedure, the freeze nodes are collected and attached to
3438 -- the current scope, to be inserted and analyzed on exit from
3439 -- the scope, to insure that generated entities appear in the
3440 -- correct scope. If the expression is a default for a discriminant
3441 -- specification, the scope is still void. The expression can also
3442 -- appear in the discriminant part of a private or concurrent type.
3443
3444 -- The other case requiring this special handling is if we are in
3445 -- a default expression, since in that case we are about to freeze
3446 -- a static type, and the freeze scope needs to be the outer scope,
3447 -- not the scope of the subprogram with the default parameter.
3448
3449 -- For default expressions in generic units, the Move_Freeze_Nodes
3450 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3451 -- proper place, after the generic unit.
3452
3453 if (In_Def_Exp and not Inside_A_Generic)
3454 or else Freeze_Outside
3455 or else (Is_Type (Current_Scope)
3456 and then (not Is_Concurrent_Type (Current_Scope)
3457 or else not Has_Completion (Current_Scope)))
3458 or else Ekind (Current_Scope) = E_Void
3459 then
3460 declare
3461 Loc : constant Source_Ptr := Sloc (Current_Scope);
3462 Freeze_Nodes : List_Id := No_List;
3463
3464 begin
3465 if Present (Desig_Typ) then
3466 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
3467 end if;
3468
3469 if Present (Typ) then
3470 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
3471 end if;
3472
3473 if Present (Nam) then
3474 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3475 end if;
3476
3477 if Is_Non_Empty_List (Freeze_Nodes) then
70482933
RK
3478 if No (Scope_Stack.Table
3479 (Scope_Stack.Last).Pending_Freeze_Actions)
3480 then
3481 Scope_Stack.Table
3482 (Scope_Stack.Last).Pending_Freeze_Actions :=
3483 Freeze_Nodes;
3484 else
3485 Append_List (Freeze_Nodes, Scope_Stack.Table
3486 (Scope_Stack.Last).Pending_Freeze_Actions);
3487 end if;
3488 end if;
3489 end;
3490
3491 return;
3492 end if;
3493
3494 -- Now we have the right place to do the freezing. First, a special
3495 -- adjustment, if we are in default expression analysis mode, these
3496 -- freeze actions must not be thrown away (normally all inserted
3497 -- actions are thrown away in this mode. However, the freeze actions
3498 -- are from static expressions and one of the important reasons we
3499 -- are doing this special analysis is to get these freeze actions.
3500 -- Therefore we turn off the In_Default_Expression mode to propagate
3501 -- these freeze actions. This also means they get properly analyzed
3502 -- and expanded.
3503
3504 In_Default_Expression := False;
3505
fbf5a39b 3506 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
3507
3508 if Present (Desig_Typ) then
3509 Freeze_Before (P, Desig_Typ);
3510 end if;
3511
fbf5a39b 3512 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
3513 -- the enumeration representation clause exception in the loop above.
3514
3515 if Present (Typ) then
3516 Freeze_Before (P, Typ);
3517 end if;
3518
fbf5a39b 3519 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
3520
3521 if Present (Nam) then
3522 Freeze_Before (P, Nam);
3523 end if;
3524
3525 In_Default_Expression := In_Def_Exp;
3526 end Freeze_Expression;
3527
3528 -----------------------------
3529 -- Freeze_Fixed_Point_Type --
3530 -----------------------------
3531
3532 -- Certain fixed-point types and subtypes, including implicit base
3533 -- types and declared first subtypes, have not yet set up a range.
3534 -- This is because the range cannot be set until the Small and Size
3535 -- values are known, and these are not known till the type is frozen.
3536
3537 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3538 -- range whose bounds are unanalyzed real literals. This routine will
3539 -- recognize this case, and transform this range node into a properly
3540 -- typed range with properly analyzed and resolved values.
3541
3542 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3543 Rng : constant Node_Id := Scalar_Range (Typ);
3544 Lo : constant Node_Id := Low_Bound (Rng);
3545 Hi : constant Node_Id := High_Bound (Rng);
3546 Btyp : constant Entity_Id := Base_Type (Typ);
3547 Brng : constant Node_Id := Scalar_Range (Btyp);
3548 BLo : constant Node_Id := Low_Bound (Brng);
3549 BHi : constant Node_Id := High_Bound (Brng);
3550 Small : constant Ureal := Small_Value (Typ);
3551 Loval : Ureal;
3552 Hival : Ureal;
3553 Atype : Entity_Id;
3554
3555 Actual_Size : Nat;
3556
3557 function Fsize (Lov, Hiv : Ureal) return Nat;
3558 -- Returns size of type with given bounds. Also leaves these
3559 -- bounds set as the current bounds of the Typ.
3560
3561 function Fsize (Lov, Hiv : Ureal) return Nat is
3562 begin
3563 Set_Realval (Lo, Lov);
3564 Set_Realval (Hi, Hiv);
3565 return Minimum_Size (Typ);
3566 end Fsize;
3567
3568 -- Start of processing for Freeze_Fixed_Point_Type;
3569
3570 begin
3571 -- If Esize of a subtype has not previously been set, set it now
3572
3573 if Unknown_Esize (Typ) then
3574 Atype := Ancestor_Subtype (Typ);
3575
3576 if Present (Atype) then
fbf5a39b 3577 Set_Esize (Typ, Esize (Atype));
70482933 3578 else
fbf5a39b 3579 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
3580 end if;
3581 end if;
3582
3583 -- Immediate return if the range is already analyzed. This means
3584 -- that the range is already set, and does not need to be computed
3585 -- by this routine.
3586
3587 if Analyzed (Rng) then
3588 return;
3589 end if;
3590
3591 -- Immediate return if either of the bounds raises Constraint_Error
3592
3593 if Raises_Constraint_Error (Lo)
3594 or else Raises_Constraint_Error (Hi)
3595 then
3596 return;
3597 end if;
3598
3599 Loval := Realval (Lo);
3600 Hival := Realval (Hi);
3601
3602 -- Ordinary fixed-point case
3603
3604 if Is_Ordinary_Fixed_Point_Type (Typ) then
3605
3606 -- For the ordinary fixed-point case, we are allowed to fudge the
3607 -- end-points up or down by small. Generally we prefer to fudge
3608 -- up, i.e. widen the bounds for non-model numbers so that the
3609 -- end points are included. However there are cases in which this
3610 -- cannot be done, and indeed cases in which we may need to narrow
3611 -- the bounds. The following circuit makes the decision.
3612
3613 -- Note: our terminology here is that Incl_EP means that the
3614 -- bounds are widened by Small if necessary to include the end
3615 -- points, and Excl_EP means that the bounds are narrowed by
3616 -- Small to exclude the end-points if this reduces the size.
3617
3618 -- Note that in the Incl case, all we care about is including the
3619 -- end-points. In the Excl case, we want to narrow the bounds as
3620 -- much as permitted by the RM, to give the smallest possible size.
3621
3622 Fudge : declare
3623 Loval_Incl_EP : Ureal;
3624 Hival_Incl_EP : Ureal;
3625
3626 Loval_Excl_EP : Ureal;
3627 Hival_Excl_EP : Ureal;
3628
3629 Size_Incl_EP : Nat;
3630 Size_Excl_EP : Nat;
3631
3632 Model_Num : Ureal;
3633 First_Subt : Entity_Id;
3634 Actual_Lo : Ureal;
3635 Actual_Hi : Ureal;
3636
3637 begin
3638 -- First step. Base types are required to be symmetrical. Right
3639 -- now, the base type range is a copy of the first subtype range.
3640 -- This will be corrected before we are done, but right away we
3641 -- need to deal with the case where both bounds are non-negative.
3642 -- In this case, we set the low bound to the negative of the high
3643 -- bound, to make sure that the size is computed to include the
3644 -- required sign. Note that we do not need to worry about the
3645 -- case of both bounds negative, because the sign will be dealt
3646 -- with anyway. Furthermore we can't just go making such a bound
3647 -- symmetrical, since in a twos-complement system, there is an
3648 -- extra negative value which could not be accomodated on the
3649 -- positive side.
3650
3651 if Typ = Btyp
3652 and then not UR_Is_Negative (Loval)
3653 and then Hival > Loval
3654 then
3655 Loval := -Hival;
3656 Set_Realval (Lo, Loval);
3657 end if;
3658
3659 -- Compute the fudged bounds. If the number is a model number,
3660 -- then we do nothing to include it, but we are allowed to
3661 -- backoff to the next adjacent model number when we exclude
3662 -- it. If it is not a model number then we straddle the two
3663 -- values with the model numbers on either side.
3664
3665 Model_Num := UR_Trunc (Loval / Small) * Small;
3666
3667 if Loval = Model_Num then
3668 Loval_Incl_EP := Model_Num;
3669 else
3670 Loval_Incl_EP := Model_Num - Small;
3671 end if;
3672
3673 -- The low value excluding the end point is Small greater, but
3674 -- we do not do this exclusion if the low value is positive,
3675 -- since it can't help the size and could actually hurt by
3676 -- crossing the high bound.
3677
3678 if UR_Is_Negative (Loval_Incl_EP) then
3679 Loval_Excl_EP := Loval_Incl_EP + Small;
3680 else
3681 Loval_Excl_EP := Loval_Incl_EP;
3682 end if;
3683
3684 -- Similar processing for upper bound and high value
3685
3686 Model_Num := UR_Trunc (Hival / Small) * Small;
3687
3688 if Hival = Model_Num then
3689 Hival_Incl_EP := Model_Num;
3690 else
3691 Hival_Incl_EP := Model_Num + Small;
3692 end if;
3693
3694 if UR_Is_Positive (Hival_Incl_EP) then
3695 Hival_Excl_EP := Hival_Incl_EP - Small;
3696 else
3697 Hival_Excl_EP := Hival_Incl_EP;
3698 end if;
3699
3700 -- One further adjustment is needed. In the case of subtypes,
3701 -- we cannot go outside the range of the base type, or we get
3702 -- peculiarities, and the base type range is already set. This
3703 -- only applies to the Incl values, since clearly the Excl
3704 -- values are already as restricted as they are allowed to be.
3705
3706 if Typ /= Btyp then
3707 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
3708 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
3709 end if;
3710
3711 -- Get size including and excluding end points
3712
3713 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
3714 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
3715
3716 -- No need to exclude end-points if it does not reduce size
3717
3718 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
3719 Loval_Excl_EP := Loval_Incl_EP;
3720 end if;
3721
3722 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
3723 Hival_Excl_EP := Hival_Incl_EP;
3724 end if;
3725
3726 -- Now we set the actual size to be used. We want to use the
3727 -- bounds fudged up to include the end-points but only if this
3728 -- can be done without violating a specifically given size
3729 -- size clause or causing an unacceptable increase in size.
3730
3731 -- Case of size clause given
3732
3733 if Has_Size_Clause (Typ) then
3734
3735 -- Use the inclusive size only if it is consistent with
3736 -- the explicitly specified size.
3737
3738 if Size_Incl_EP <= RM_Size (Typ) then
3739 Actual_Lo := Loval_Incl_EP;
3740 Actual_Hi := Hival_Incl_EP;
3741 Actual_Size := Size_Incl_EP;
3742
3743 -- If the inclusive size is too large, we try excluding
3744 -- the end-points (will be caught later if does not work).
3745
3746 else
3747 Actual_Lo := Loval_Excl_EP;
3748 Actual_Hi := Hival_Excl_EP;
3749 Actual_Size := Size_Excl_EP;
3750 end if;
3751
3752 -- Case of size clause not given
3753
3754 else
3755 -- If we have a base type whose corresponding first subtype
3756 -- has an explicit size that is large enough to include our
3757 -- end-points, then do so. There is no point in working hard
3758 -- to get a base type whose size is smaller than the specified
3759 -- size of the first subtype.
3760
3761 First_Subt := First_Subtype (Typ);
3762
3763 if Has_Size_Clause (First_Subt)
3764 and then Size_Incl_EP <= Esize (First_Subt)
3765 then
3766 Actual_Size := Size_Incl_EP;
3767 Actual_Lo := Loval_Incl_EP;
3768 Actual_Hi := Hival_Incl_EP;
3769
3770 -- If excluding the end-points makes the size smaller and
3771 -- results in a size of 8,16,32,64, then we take the smaller
3772 -- size. For the 64 case, this is compulsory. For the other
3773 -- cases, it seems reasonable. We like to include end points
3774 -- if we can, but not at the expense of moving to the next
3775 -- natural boundary of size.
3776
3777 elsif Size_Incl_EP /= Size_Excl_EP
3778 and then
3779 (Size_Excl_EP = 8 or else
3780 Size_Excl_EP = 16 or else
3781 Size_Excl_EP = 32 or else
3782 Size_Excl_EP = 64)
3783 then
3784 Actual_Size := Size_Excl_EP;
3785 Actual_Lo := Loval_Excl_EP;
3786 Actual_Hi := Hival_Excl_EP;
3787
3788 -- Otherwise we can definitely include the end points
3789
3790 else
3791 Actual_Size := Size_Incl_EP;
3792 Actual_Lo := Loval_Incl_EP;
3793 Actual_Hi := Hival_Incl_EP;
3794 end if;
3795
3796 -- One pathological case: normally we never fudge a low
3797 -- bound down, since it would seem to increase the size
3798 -- (if it has any effect), but for ranges containing a
3799 -- single value, or no values, the high bound can be
3800 -- small too large. Consider:
3801
3802 -- type t is delta 2.0**(-14)
3803 -- range 131072.0 .. 0;
3804
3805 -- That lower bound is *just* outside the range of 32
3806 -- bits, and does need fudging down in this case. Note
3807 -- that the bounds will always have crossed here, since
3808 -- the high bound will be fudged down if necessary, as
3809 -- in the case of:
3810
3811 -- type t is delta 2.0**(-14)
3812 -- range 131072.0 .. 131072.0;
3813
3814 -- So we can detect the situation by looking for crossed
3815 -- bounds, and if the bounds are crossed, and the low
3816 -- bound is greater than zero, we will always back it
3817 -- off by small, since this is completely harmless.
3818
3819 if Actual_Lo > Actual_Hi then
3820 if UR_Is_Positive (Actual_Lo) then
3821 Actual_Lo := Loval_Incl_EP - Small;
3822 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3823
3824 -- And of course, we need to do exactly the same parallel
3825 -- fudge for flat ranges in the negative region.
3826
3827 elsif UR_Is_Negative (Actual_Hi) then
3828 Actual_Hi := Hival_Incl_EP + Small;
3829 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3830 end if;
3831 end if;
3832 end if;
3833
3834 Set_Realval (Lo, Actual_Lo);
3835 Set_Realval (Hi, Actual_Hi);
3836 end Fudge;
3837
3838 -- For the decimal case, none of this fudging is required, since there
3839 -- are no end-point problems in the decimal case (the end-points are
3840 -- always included).
3841
3842 else
3843 Actual_Size := Fsize (Loval, Hival);
3844 end if;
3845
3846 -- At this stage, the actual size has been calculated and the proper
3847 -- required bounds are stored in the low and high bounds.
3848
3849 if Actual_Size > 64 then
3850 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
3851 Error_Msg_N
3852 ("size required (^) for type& too large, maximum is 64", Typ);
3853 Actual_Size := 64;
3854 end if;
3855
3856 -- Check size against explicit given size
3857
3858 if Has_Size_Clause (Typ) then
3859 if Actual_Size > RM_Size (Typ) then
3860 Error_Msg_Uint_1 := RM_Size (Typ);
3861 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
3862 Error_Msg_NE
3863 ("size given (^) for type& too small, minimum is ^",
3864 Size_Clause (Typ), Typ);
3865
3866 else
3867 Actual_Size := UI_To_Int (Esize (Typ));
3868 end if;
3869
3870 -- Increase size to next natural boundary if no size clause given
3871
3872 else
3873 if Actual_Size <= 8 then
3874 Actual_Size := 8;
3875 elsif Actual_Size <= 16 then
3876 Actual_Size := 16;
3877 elsif Actual_Size <= 32 then
3878 Actual_Size := 32;
3879 else
3880 Actual_Size := 64;
3881 end if;
3882
3883 Init_Esize (Typ, Actual_Size);
3884 Adjust_Esize_For_Alignment (Typ);
3885 end if;
3886
3887 -- If we have a base type, then expand the bounds so that they
3888 -- extend to the full width of the allocated size in bits, to
3889 -- avoid junk range checks on intermediate computations.
3890
3891 if Base_Type (Typ) = Typ then
3892 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
3893 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
3894 end if;
3895
3896 -- Final step is to reanalyze the bounds using the proper type
3897 -- and set the Corresponding_Integer_Value fields of the literals.
3898
3899 Set_Etype (Lo, Empty);
3900 Set_Analyzed (Lo, False);
3901 Analyze (Lo);
3902
3903 -- Resolve with universal fixed if the base type, and the base
3904 -- type if it is a subtype. Note we can't resolve the base type
3905 -- with itself, that would be a reference before definition.
3906
3907 if Typ = Btyp then
3908 Resolve (Lo, Universal_Fixed);
3909 else
3910 Resolve (Lo, Btyp);
3911 end if;
3912
3913 -- Set corresponding integer value for bound
3914
3915 Set_Corresponding_Integer_Value
3916 (Lo, UR_To_Uint (Realval (Lo) / Small));
3917
3918 -- Similar processing for high bound
3919
3920 Set_Etype (Hi, Empty);
3921 Set_Analyzed (Hi, False);
3922 Analyze (Hi);
3923
3924 if Typ = Btyp then
3925 Resolve (Hi, Universal_Fixed);
3926 else
3927 Resolve (Hi, Btyp);
3928 end if;
3929
3930 Set_Corresponding_Integer_Value
3931 (Hi, UR_To_Uint (Realval (Hi) / Small));
3932
3933 -- Set type of range to correspond to bounds
3934
3935 Set_Etype (Rng, Etype (Lo));
3936
fbf5a39b 3937 -- Set Esize to calculated size if not set already
70482933 3938
fbf5a39b
AC
3939 if Unknown_Esize (Typ) then
3940 Init_Esize (Typ, Actual_Size);
3941 end if;
70482933
RK
3942
3943 -- Set RM_Size if not already set. If already set, check value
3944
3945 declare
3946 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
3947
3948 begin
3949 if RM_Size (Typ) /= Uint_0 then
3950 if RM_Size (Typ) < Minsiz then
3951 Error_Msg_Uint_1 := RM_Size (Typ);
3952 Error_Msg_Uint_2 := Minsiz;
3953 Error_Msg_NE
3954 ("size given (^) for type& too small, minimum is ^",
3955 Size_Clause (Typ), Typ);
3956 end if;
3957
3958 else
3959 Set_RM_Size (Typ, Minsiz);
3960 end if;
3961 end;
70482933
RK
3962 end Freeze_Fixed_Point_Type;
3963
3964 ------------------
3965 -- Freeze_Itype --
3966 ------------------
3967
3968 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
3969 L : List_Id;
3970
3971 begin
3972 Set_Has_Delayed_Freeze (T);
3973 L := Freeze_Entity (T, Sloc (N));
3974
3975 if Is_Non_Empty_List (L) then
3976 Insert_Actions (N, L);
3977 end if;
3978 end Freeze_Itype;
3979
3980 --------------------------
3981 -- Freeze_Static_Object --
3982 --------------------------
3983
3984 procedure Freeze_Static_Object (E : Entity_Id) is
3985
3986 Cannot_Be_Static : exception;
3987 -- Exception raised if the type of a static object cannot be made
3988 -- static. This happens if the type depends on non-global objects.
3989
3990 procedure Ensure_Expression_Is_SA (N : Node_Id);
3991 -- Called to ensure that an expression used as part of a type
3992 -- definition is statically allocatable, which means that the type
3993 -- of the expression is statically allocatable, and the expression
3994 -- is either static, or a reference to a library level constant.
3995
3996 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
3997 -- Called to mark a type as static, checking that it is possible
3998 -- to set the type as static. If it is not possible, then the
3999 -- exception Cannot_Be_Static is raised.
4000
4001 -----------------------------
4002 -- Ensure_Expression_Is_SA --
4003 -----------------------------
4004
4005 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4006 Ent : Entity_Id;
4007
4008 begin
4009 Ensure_Type_Is_SA (Etype (N));
4010
4011 if Is_Static_Expression (N) then
4012 return;
4013
4014 elsif Nkind (N) = N_Identifier then
4015 Ent := Entity (N);
4016
4017 if Present (Ent)
4018 and then Ekind (Ent) = E_Constant
4019 and then Is_Library_Level_Entity (Ent)
4020 then
4021 return;
4022 end if;
4023 end if;
4024
4025 raise Cannot_Be_Static;
4026 end Ensure_Expression_Is_SA;
4027
4028 -----------------------
4029 -- Ensure_Type_Is_SA --
4030 -----------------------
4031
4032 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4033 N : Node_Id;
4034 C : Entity_Id;
4035
4036 begin
4037 -- If type is library level, we are all set
4038
4039 if Is_Library_Level_Entity (Typ) then
4040 return;
4041 end if;
4042
4043 -- We are also OK if the type is already marked as statically
4044 -- allocated, which means we processed it before.
4045
4046 if Is_Statically_Allocated (Typ) then
4047 return;
4048 end if;
4049
4050 -- Mark type as statically allocated
4051
4052 Set_Is_Statically_Allocated (Typ);
4053
4054 -- Check that it is safe to statically allocate this type
4055
4056 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4057 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4058 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4059
4060 elsif Is_Array_Type (Typ) then
4061 N := First_Index (Typ);
4062 while Present (N) loop
4063 Ensure_Type_Is_SA (Etype (N));
4064 Next_Index (N);
4065 end loop;
4066
4067 Ensure_Type_Is_SA (Component_Type (Typ));
4068
4069 elsif Is_Access_Type (Typ) then
4070 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4071
4072 declare
4073 F : Entity_Id;
4074 T : constant Entity_Id := Etype (Designated_Type (Typ));
4075
4076 begin
4077 if T /= Standard_Void_Type then
4078 Ensure_Type_Is_SA (T);
4079 end if;
4080
4081 F := First_Formal (Designated_Type (Typ));
4082
4083 while Present (F) loop
4084 Ensure_Type_Is_SA (Etype (F));
4085 Next_Formal (F);
4086 end loop;
4087 end;
4088
4089 else
4090 Ensure_Type_Is_SA (Designated_Type (Typ));
4091 end if;
4092
4093 elsif Is_Record_Type (Typ) then
4094 C := First_Entity (Typ);
4095
4096 while Present (C) loop
4097 if Ekind (C) = E_Discriminant
4098 or else Ekind (C) = E_Component
4099 then
4100 Ensure_Type_Is_SA (Etype (C));
4101
4102 elsif Is_Type (C) then
4103 Ensure_Type_Is_SA (C);
4104 end if;
4105
4106 Next_Entity (C);
4107 end loop;
4108
4109 elsif Ekind (Typ) = E_Subprogram_Type then
4110 Ensure_Type_Is_SA (Etype (Typ));
4111
4112 C := First_Formal (Typ);
4113 while Present (C) loop
4114 Ensure_Type_Is_SA (Etype (C));
4115 Next_Formal (C);
4116 end loop;
4117
4118 else
4119 raise Cannot_Be_Static;
4120 end if;
4121 end Ensure_Type_Is_SA;
4122
4123 -- Start of processing for Freeze_Static_Object
4124
4125 begin
4126 Ensure_Type_Is_SA (Etype (E));
4127
fbf5a39b
AC
4128 -- Reset True_Constant flag, since something strange is going on
4129 -- with the scoping here, and our simple value traceing may not
4130 -- be sufficient for this indication to be reliable. We kill the
4131 -- Constant_Value indication for the same reason.
4132
4133 Set_Is_True_Constant (E, False);
4134 Set_Current_Value (E, Empty);
4135
70482933
RK
4136 exception
4137 when Cannot_Be_Static =>
4138
4139 -- If the object that cannot be static is imported or exported,
4140 -- then we give an error message saying that this object cannot
4141 -- be imported or exported.
4142
4143 if Is_Imported (E) then
4144 Error_Msg_N
4145 ("& cannot be imported (local type is not constant)", E);
4146
4147 -- Otherwise must be exported, something is wrong if compiler
4148 -- is marking something as statically allocated which cannot be).
4149
4150 else pragma Assert (Is_Exported (E));
4151 Error_Msg_N
4152 ("& cannot be exported (local type is not constant)", E);
4153 end if;
4154 end Freeze_Static_Object;
4155
4156 -----------------------
4157 -- Freeze_Subprogram --
4158 -----------------------
4159
4160 procedure Freeze_Subprogram (E : Entity_Id) is
4161 Retype : Entity_Id;
4162 F : Entity_Id;
4163
4164 begin
4165 -- Subprogram may not have an address clause unless it is imported
4166
4167 if Present (Address_Clause (E)) then
4168 if not Is_Imported (E) then
4169 Error_Msg_N
4170 ("address clause can only be given " &
4171 "for imported subprogram",
4172 Name (Address_Clause (E)));
4173 end if;
4174 end if;
4175
4176 -- For non-foreign convention subprograms, this is where we create
4177 -- the extra formals (for accessibility level and constrained bit
4178 -- information). We delay this till the freeze point precisely so
4179 -- that we know the convention!
4180
4181 if not Has_Foreign_Convention (E) then
4182 Create_Extra_Formals (E);
4183 Set_Mechanisms (E);
4184
4185 -- If this is convention Ada and a Valued_Procedure, that's odd
4186
4187 if Ekind (E) = E_Procedure
4188 and then Is_Valued_Procedure (E)
4189 and then Convention (E) = Convention_Ada
fbf5a39b 4190 and then Warn_On_Export_Import
70482933
RK
4191 then
4192 Error_Msg_N
4193 ("?Valued_Procedure has no effect for convention Ada", E);
4194 Set_Is_Valued_Procedure (E, False);
4195 end if;
4196
4197 -- Case of foreign convention
4198
4199 else
4200 Set_Mechanisms (E);
4201
fbf5a39b 4202 -- For foreign conventions, warn about return of an
70482933
RK
4203 -- unconstrained array.
4204
4205 -- Note: we *do* allow a return by descriptor for the VMS case,
4206 -- though here there is probably more to be done ???
4207
4208 if Ekind (E) = E_Function then
4209 Retype := Underlying_Type (Etype (E));
4210
4211 -- If no return type, probably some other error, e.g. a
4212 -- missing full declaration, so ignore.
4213
4214 if No (Retype) then
4215 null;
4216
4217 -- If the return type is generic, we have emitted a warning
4218 -- earlier on, and there is nothing else to check here.
4219 -- Specific instantiations may lead to erroneous behavior.
4220
4221 elsif Is_Generic_Type (Etype (E)) then
4222 null;
4223
4224 elsif Is_Array_Type (Retype)
4225 and then not Is_Constrained (Retype)
4226 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4227 and then Warn_On_Export_Import
70482933 4228 then
fbf5a39b
AC
4229 Error_Msg_N
4230 ("?foreign convention function& should not return " &
4231 "unconstrained array", E);
70482933
RK
4232 return;
4233 end if;
4234 end if;
4235
4236 -- If any of the formals for an exported foreign convention
4237 -- subprogram have defaults, then emit an appropriate warning
4238 -- since this is odd (default cannot be used from non-Ada code)
4239
4240 if Is_Exported (E) then
4241 F := First_Formal (E);
4242 while Present (F) loop
fbf5a39b
AC
4243 if Warn_On_Export_Import
4244 and then Present (Default_Value (F))
4245 then
70482933
RK
4246 Error_Msg_N
4247 ("?parameter cannot be defaulted in non-Ada call",
4248 Default_Value (F));
4249 end if;
4250
4251 Next_Formal (F);
4252 end loop;
4253 end if;
4254 end if;
4255
4256 -- For VMS, descriptor mechanisms for parameters are allowed only
4257 -- for imported subprograms.
4258
4259 if OpenVMS_On_Target then
4260 if not Is_Imported (E) then
4261 F := First_Formal (E);
4262 while Present (F) loop
4263 if Mechanism (F) in Descriptor_Codes then
4264 Error_Msg_N
4265 ("descriptor mechanism for parameter not permitted", F);
4266 Error_Msg_N
4267 ("\can only be used for imported subprogram", F);
4268 end if;
4269
4270 Next_Formal (F);
4271 end loop;
4272 end if;
4273 end if;
70482933
RK
4274 end Freeze_Subprogram;
4275
4276 -----------------------
4277 -- Is_Fully_Defined --
4278 -----------------------
4279
70482933
RK
4280 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4281 begin
4282 if Ekind (T) = E_Class_Wide_Type then
4283 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
4284
4285 elsif Is_Array_Type (T) then
4286 return Is_Fully_Defined (Component_Type (T));
4287
4288 elsif Is_Record_Type (T)
4289 and not Is_Private_Type (T)
4290 then
657a9dd9
AC
4291 -- Verify that the record type has no components with
4292 -- private types without completion.
4293
4294 declare
4295 Comp : Entity_Id;
bde58e32 4296
657a9dd9
AC
4297 begin
4298 Comp := First_Component (T);
4299
4300 while Present (Comp) loop
4301 if not Is_Fully_Defined (Etype (Comp)) then
4302 return False;
4303 end if;
4304
4305 Next_Component (Comp);
4306 end loop;
4307 return True;
4308 end;
4309
4310 else return not Is_Private_Type (T)
4311 or else Present (Full_View (Base_Type (T)));
70482933
RK
4312 end if;
4313 end Is_Fully_Defined;
4314
4315 ---------------------------------
4316 -- Process_Default_Expressions --
4317 ---------------------------------
4318
4319 procedure Process_Default_Expressions
4320 (E : Entity_Id;
4321 After : in out Node_Id)
4322 is
4323 Loc : constant Source_Ptr := Sloc (E);
4324 Dbody : Node_Id;
4325 Formal : Node_Id;
4326 Dcopy : Node_Id;
4327 Dnam : Entity_Id;
4328
4329 begin
4330 Set_Default_Expressions_Processed (E);
4331
4332 -- A subprogram instance and its associated anonymous subprogram
4333 -- share their signature. The default expression functions are defined
4334 -- in the wrapper packages for the anonymous subprogram, and should
4335 -- not be generated again for the instance.
4336
4337 if Is_Generic_Instance (E)
4338 and then Present (Alias (E))
4339 and then Default_Expressions_Processed (Alias (E))
4340 then
4341 return;
4342 end if;
4343
4344 Formal := First_Formal (E);
4345
4346 while Present (Formal) loop
4347 if Present (Default_Value (Formal)) then
4348
4349 -- We work with a copy of the default expression because we
4350 -- do not want to disturb the original, since this would mess
4351 -- up the conformance checking.
4352
4353 Dcopy := New_Copy_Tree (Default_Value (Formal));
4354
4355 -- The analysis of the expression may generate insert actions,
4356 -- which of course must not be executed. We wrap those actions
4357 -- in a procedure that is not called, and later on eliminated.
4358 -- The following cases have no side-effects, and are analyzed
4359 -- directly.
4360
4361 if Nkind (Dcopy) = N_Identifier
4362 or else Nkind (Dcopy) = N_Expanded_Name
4363 or else Nkind (Dcopy) = N_Integer_Literal
4364 or else (Nkind (Dcopy) = N_Real_Literal
4365 and then not Vax_Float (Etype (Dcopy)))
4366 or else Nkind (Dcopy) = N_Character_Literal
4367 or else Nkind (Dcopy) = N_String_Literal
4368 or else Nkind (Dcopy) = N_Null
4369 or else (Nkind (Dcopy) = N_Attribute_Reference
4370 and then
4371 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
4372 then
4373
4374 -- If there is no default function, we must still do a full
4375 -- analyze call on the default value, to ensure that all
4376 -- error checks are performed, e.g. those associated with
4377 -- static evaluation. Note that this branch will always be
4378 -- taken if the analyzer is turned off (but we still need the
4379 -- error checks).
4380
4381 -- Note: the setting of parent here is to meet the requirement
4382 -- that we can only analyze the expression while attached to
4383 -- the tree. Really the requirement is that the parent chain
4384 -- be set, we don't actually need to be in the tree.
4385
4386 Set_Parent (Dcopy, Declaration_Node (Formal));
4387 Analyze (Dcopy);
4388
4389 -- Default expressions are resolved with their own type if the
4390 -- context is generic, to avoid anomalies with private types.
4391
4392 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 4393 Resolve (Dcopy);
70482933
RK
4394 else
4395 Resolve (Dcopy, Etype (Formal));
4396 end if;
4397
4398 -- If that resolved expression will raise constraint error,
4399 -- then flag the default value as raising constraint error.
4400 -- This allows a proper error message on the calls.
4401
4402 if Raises_Constraint_Error (Dcopy) then
4403 Set_Raises_Constraint_Error (Default_Value (Formal));
4404 end if;
4405
4406 -- If the default is a parameterless call, we use the name of
4407 -- the called function directly, and there is no body to build.
4408
4409 elsif Nkind (Dcopy) = N_Function_Call
4410 and then No (Parameter_Associations (Dcopy))
4411 then
4412 null;
4413
4414 -- Else construct and analyze the body of a wrapper procedure
4415 -- that contains an object declaration to hold the expression.
4416 -- Given that this is done only to complete the analysis, it
4417 -- simpler to build a procedure than a function which might
4418 -- involve secondary stack expansion.
4419
4420 else
4421 Dnam :=
4422 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
4423
4424 Dbody :=
4425 Make_Subprogram_Body (Loc,
4426 Specification =>
4427 Make_Procedure_Specification (Loc,
4428 Defining_Unit_Name => Dnam),
4429
4430 Declarations => New_List (
4431 Make_Object_Declaration (Loc,
4432 Defining_Identifier =>
4433 Make_Defining_Identifier (Loc,
4434 New_Internal_Name ('T')),
4435 Object_Definition =>
4436 New_Occurrence_Of (Etype (Formal), Loc),
4437 Expression => New_Copy_Tree (Dcopy))),
4438
4439 Handled_Statement_Sequence =>
4440 Make_Handled_Sequence_Of_Statements (Loc,
4441 Statements => New_List));
4442
4443 Set_Scope (Dnam, Scope (E));
4444 Set_Assignment_OK (First (Declarations (Dbody)));
4445 Set_Is_Eliminated (Dnam);
4446 Insert_After (After, Dbody);
4447 Analyze (Dbody);
4448 After := Dbody;
4449 end if;
4450 end if;
4451
4452 Next_Formal (Formal);
4453 end loop;
4454
4455 end Process_Default_Expressions;
4456
4457 ----------------------------------------
4458 -- Set_Component_Alignment_If_Not_Set --
4459 ----------------------------------------
4460
4461 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
4462 begin
4463 -- Ignore if not base type, subtypes don't need anything
4464
4465 if Typ /= Base_Type (Typ) then
4466 return;
4467 end if;
4468
4469 -- Do not override existing representation
4470
4471 if Is_Packed (Typ) then
4472 return;
4473
4474 elsif Has_Specified_Layout (Typ) then
4475 return;
4476
4477 elsif Component_Alignment (Typ) /= Calign_Default then
4478 return;
4479
4480 else
4481 Set_Component_Alignment
4482 (Typ, Scope_Stack.Table
4483 (Scope_Stack.Last).Component_Alignment_Default);
4484 end if;
4485 end Set_Component_Alignment_If_Not_Set;
4486
4487 ---------------------------
4488 -- Set_Debug_Info_Needed --
4489 ---------------------------
4490
4491 procedure Set_Debug_Info_Needed (T : Entity_Id) is
4492 begin
4493 if No (T)
4494 or else Needs_Debug_Info (T)
4495 or else Debug_Info_Off (T)
4496 then
4497 return;
4498 else
4499 Set_Needs_Debug_Info (T);
4500 end if;
4501
4502 if Is_Object (T) then
4503 Set_Debug_Info_Needed (Etype (T));
4504
4505 elsif Is_Type (T) then
4506 Set_Debug_Info_Needed (Etype (T));
4507
4508 if Is_Record_Type (T) then
4509 declare
4510 Ent : Entity_Id := First_Entity (T);
4511 begin
4512 while Present (Ent) loop
4513 Set_Debug_Info_Needed (Ent);
4514 Next_Entity (Ent);
4515 end loop;
4516 end;
4517
4518 elsif Is_Array_Type (T) then
4519 Set_Debug_Info_Needed (Component_Type (T));
4520
4521 declare
4522 Indx : Node_Id := First_Index (T);
4523 begin
4524 while Present (Indx) loop
4525 Set_Debug_Info_Needed (Etype (Indx));
4526 Indx := Next_Index (Indx);
4527 end loop;
4528 end;
4529
4530 if Is_Packed (T) then
4531 Set_Debug_Info_Needed (Packed_Array_Type (T));
4532 end if;
4533
4534 elsif Is_Access_Type (T) then
4535 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4536
4537 elsif Is_Private_Type (T) then
4538 Set_Debug_Info_Needed (Full_View (T));
4539
4540 elsif Is_Protected_Type (T) then
4541 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4542 end if;
4543 end if;
70482933
RK
4544 end Set_Debug_Info_Needed;
4545
fbf5a39b
AC
4546 ------------------
4547 -- Warn_Overlay --
4548 ------------------
4549
4550 procedure Warn_Overlay
4551 (Expr : Node_Id;
4552 Typ : Entity_Id;
4553 Nam : Entity_Id)
4554 is
4555 Ent : constant Entity_Id := Entity (Nam);
4556 -- The object to which the address clause applies.
4557
4558 Init : Node_Id;
4559 Old : Entity_Id := Empty;
4560 Decl : Node_Id;
4561
4562 begin
4563 -- No warning if address clause overlay warnings are off
4564
4565 if not Address_Clause_Overlay_Warnings then
4566 return;
4567 end if;
4568
4569 -- No warning if there is an explicit initialization
4570
4571 Init := Original_Node (Expression (Declaration_Node (Ent)));
4572
4573 if Present (Init) and then Comes_From_Source (Init) then
4574 return;
4575 end if;
4576
4577 -- We only give the warning for non-imported entities of a type
4578 -- for which a non-null base init proc is defined (or for access
4579 -- types which have implicit null initialization).
4580
4581 if Present (Expr)
4582 and then (Has_Non_Null_Base_Init_Proc (Typ)
4583 or else Is_Access_Type (Typ))
4584 and then not Is_Imported (Ent)
4585 then
4586 if Nkind (Expr) = N_Attribute_Reference
4587 and then Is_Entity_Name (Prefix (Expr))
4588 then
4589 Old := Entity (Prefix (Expr));
4590
4591 elsif Is_Entity_Name (Expr)
4592 and then Ekind (Entity (Expr)) = E_Constant
4593 then
4594 Decl := Declaration_Node (Entity (Expr));
4595
4596 if Nkind (Decl) = N_Object_Declaration
4597 and then Present (Expression (Decl))
4598 and then Nkind (Expression (Decl)) = N_Attribute_Reference
4599 and then Is_Entity_Name (Prefix (Expression (Decl)))
4600 then
4601 Old := Entity (Prefix (Expression (Decl)));
4602
4603 elsif Nkind (Expr) = N_Function_Call then
4604 return;
4605 end if;
4606
4607 -- A function call (most likely to To_Address) is probably not
4608 -- an overlay, so skip warning. Ditto if the function call was
4609 -- inlined and transformed into an entity.
4610
4611 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
4612 return;
4613 end if;
4614
4615 Decl := Next (Parent (Expr));
4616
4617 -- If a pragma Import follows, we assume that it is for the current
4618 -- target of the address clause, and skip the warning.
4619
4620 if Present (Decl)
4621 and then Nkind (Decl) = N_Pragma
4622 and then Chars (Decl) = Name_Import
4623 then
4624 return;
4625 end if;
4626
4627 if Present (Old) then
4628 Error_Msg_Node_2 := Old;
4629 Error_Msg_N
4630 ("default initialization of & may modify &?",
4631 Nam);
4632 else
4633 Error_Msg_N
4634 ("default initialization of & may modify overlaid storage?",
4635 Nam);
4636 end if;
4637
4638 -- Add friendly warning if initialization comes from a packed array
4639 -- component.
4640
4641 if Is_Record_Type (Typ) then
4642 declare
4643 Comp : Entity_Id;
4644
4645 begin
4646 Comp := First_Component (Typ);
4647
4648 while Present (Comp) loop
4649 if Nkind (Parent (Comp)) = N_Component_Declaration
4650 and then Present (Expression (Parent (Comp)))
4651 then
4652 exit;
4653 elsif Is_Array_Type (Etype (Comp))
4654 and then Present (Packed_Array_Type (Etype (Comp)))
4655 then
4656 Error_Msg_NE
4657 ("packed array component& will be initialized to zero?",
4658 Nam, Comp);
4659 exit;
4660 else
4661 Next_Component (Comp);
4662 end if;
4663 end loop;
4664 end;
4665 end if;
4666
4667 Error_Msg_N
4668 ("use pragma Import for & to " &
4669 "suppress initialization ('R'M B.1(24))?",
4670 Nam);
4671 end if;
4672 end Warn_Overlay;
4673
70482933 4674end Freeze;