]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
Complete previous change.
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
b727a82b 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
a961aa79 50with Sem_Ch5; use Sem_Ch5;
d469eabe 51with Sem_Ch6; use Sem_Ch6;
996ae0b0 52with Sem_Ch8; use Sem_Ch8;
dec6faf1 53with Sem_Dim; use Sem_Dim;
b67a385c 54with Sem_Disp; use Sem_Disp;
996ae0b0
RK
55with Sem_Dist; use Sem_Dist;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res; use Sem_Res;
996ae0b0 58with Sem_Type; use Sem_Type;
19d846a0
RD
59with Sem_Util; use Sem_Util;
60with Sem_Warn; use Sem_Warn;
996ae0b0
RK
61with Stand; use Stand;
62with Sinfo; use Sinfo;
63with Snames; use Snames;
64with Tbuild; use Tbuild;
b727a82b 65with Uintp; use Uintp;
996ae0b0 66
996ae0b0
RK
67package body Sem_Ch4 is
68
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
72
fe39cf20
BD
73 procedure Analyze_Concatenation_Rest (N : Node_Id);
74 -- Does the "rest" of the work of Analyze_Concatenation, after the left
75 -- operand has been analyzed. See Analyze_Concatenation for details.
76
996ae0b0
RK
77 procedure Analyze_Expression (N : Node_Id);
78 -- For expressions that are not names, this is just a call to analyze.
79 -- If the expression is a name, it may be a call to a parameterless
80 -- function, and if so must be converted into an explicit call node
81 -- and analyzed as such. This deproceduring must be done during the first
82 -- pass of overload resolution, because otherwise a procedure call with
b4592168 83 -- overloaded actuals may fail to resolve.
996ae0b0
RK
84
85 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
86 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
87 -- is an operator name or an expanded name whose selector is an operator
88 -- name, and one possible interpretation is as a predefined operator.
89
90 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
91 -- If the prefix of a selected_component is overloaded, the proper
92 -- interpretation that yields a record type with the proper selector
93 -- name must be selected.
94
95 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
96 -- Procedure to analyze a user defined binary operator, which is resolved
97 -- like a function, but instead of a list of actuals it is presented
98 -- with the left and right operands of an operator node.
99
100 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
101 -- Procedure to analyze a user defined unary operator, which is resolved
102 -- like a function, but instead of a list of actuals, it is presented with
103 -- the operand of the operator node.
104
105 procedure Ambiguous_Operands (N : Node_Id);
0877856b 106 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
107 -- arguments, list possible interpretations.
108
996ae0b0 109 procedure Analyze_One_Call
ec6078e3
ES
110 (N : Node_Id;
111 Nam : Entity_Id;
112 Report : Boolean;
113 Success : out Boolean;
114 Skip_First : Boolean := False);
996ae0b0
RK
115 -- Check one interpretation of an overloaded subprogram name for
116 -- compatibility with the types of the actuals in a call. If there is a
117 -- single interpretation which does not match, post error if Report is
118 -- set to True.
119 --
120 -- Nam is the entity that provides the formals against which the actuals
121 -- are checked. Nam is either the name of a subprogram, or the internal
122 -- subprogram type constructed for an access_to_subprogram. If the actuals
123 -- are compatible with Nam, then Nam is added to the list of candidate
124 -- interpretations for N, and Success is set to True.
ec6078e3
ES
125 --
126 -- The flag Skip_First is used when analyzing a call that was rewritten
127 -- from object notation. In this case the first actual may have to receive
128 -- an explicit dereference, depending on the first formal of the operation
129 -- being called. The caller will have verified that the object is legal
130 -- for the call. If the remaining parameters match, the first parameter
131 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
132
133 procedure Check_Misspelled_Selector
134 (Prefix : Entity_Id;
135 Sel : Node_Id);
8dbf3473
AC
136 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
137 -- spelling of one of the selectors of the Prefix. This is called by
138 -- Analyze_Selected_Component after producing an invalid selector error
139 -- message.
996ae0b0
RK
140
141 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 142 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
143 -- for operators given by expanded names. This is abstracted as a separate
144 -- function to handle extensions to System, where S is System, but T is
145 -- declared in the extension.
146
147 procedure Find_Arithmetic_Types
148 (L, R : Node_Id;
149 Op_Id : Entity_Id;
150 N : Node_Id);
151 -- L and R are the operands of an arithmetic operator. Find
152 -- consistent pairs of interpretations for L and R that have a
153 -- numeric type consistent with the semantics of the operator.
154
155 procedure Find_Comparison_Types
156 (L, R : Node_Id;
157 Op_Id : Entity_Id;
158 N : Node_Id);
159 -- L and R are operands of a comparison operator. Find consistent
160 -- pairs of interpretations for L and R.
161
162 procedure Find_Concatenation_Types
163 (L, R : Node_Id;
164 Op_Id : Entity_Id;
165 N : Node_Id);
6e73e3ab 166 -- For the four varieties of concatenation
996ae0b0
RK
167
168 procedure Find_Equality_Types
169 (L, R : Node_Id;
170 Op_Id : Entity_Id;
171 N : Node_Id);
6e73e3ab 172 -- Ditto for equality operators
996ae0b0
RK
173
174 procedure Find_Boolean_Types
175 (L, R : Node_Id;
176 Op_Id : Entity_Id;
177 N : Node_Id);
6e73e3ab 178 -- Ditto for binary logical operations
996ae0b0
RK
179
180 procedure Find_Negation_Types
181 (R : Node_Id;
182 Op_Id : Entity_Id;
183 N : Node_Id);
6e73e3ab 184 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
185
186 procedure Find_Non_Universal_Interpretations
187 (N : Node_Id;
188 R : Node_Id;
189 Op_Id : Entity_Id;
190 T1 : Entity_Id);
191 -- For equality and comparison operators, the result is always boolean,
192 -- and the legality of the operation is determined from the visibility
193 -- of the operand types. If one of the operands has a universal interpre-
194 -- tation, the legality check uses some compatible non-universal
195 -- interpretation of the other operand. N can be an operator node, or
196 -- a function call whose name is an operator designator.
197
d469eabe
HK
198 function Find_Primitive_Operation (N : Node_Id) return Boolean;
199 -- Find candidate interpretations for the name Obj.Proc when it appears
200 -- in a subprogram renaming declaration.
201
996ae0b0
RK
202 procedure Find_Unary_Types
203 (R : Node_Id;
204 Op_Id : Entity_Id;
205 N : Node_Id);
6e73e3ab 206 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
207
208 procedure Check_Arithmetic_Pair
209 (T1, T2 : Entity_Id;
210 Op_Id : Entity_Id;
211 N : Node_Id);
212 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
213 -- types for left and right operand. Determine whether they constitute
214 -- a valid pair for the given operator, and record the corresponding
215 -- interpretation of the operator node. The node N may be an operator
216 -- node (the usual case) or a function call whose prefix is an operator
401093c1 217 -- designator. In both cases Op_Id is the operator name itself.
996ae0b0
RK
218
219 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
220 -- Give detailed information on overloaded call where none of the
221 -- interpretations match. N is the call node, Nam the designator for
222 -- the overloaded entity being called.
223
224 function Junk_Operand (N : Node_Id) return Boolean;
225 -- Test for an operand that is an inappropriate entity (e.g. a package
226 -- name or a label). If so, issue an error message and return True. If
227 -- the operand is not an inappropriate entity kind, return False.
228
229 procedure Operator_Check (N : Node_Id);
da709d08
AC
230 -- Verify that an operator has received some valid interpretation. If none
231 -- was found, determine whether a use clause would make the operation
232 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
233 -- every type compatible with the operator, even if the operator for the
234 -- type is not directly visible. The routine uses this type to emit a more
235 -- informative message.
996ae0b0 236
d469eabe 237 function Process_Implicit_Dereference_Prefix
da709d08 238 (E : Entity_Id;
d469eabe 239 P : Node_Id) return Entity_Id;
da709d08 240 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
241 -- object E. The function returns the designated type of the prefix, taking
242 -- into account that the designated type of an anonymous access type may be
243 -- a limited view, when the non-limited view is visible.
244 -- If in semantics only mode (-gnatc or generic), the function also records
245 -- that the prefix is a reference to E, if any. Normally, such a reference
246 -- is generated only when the implicit dereference is expanded into an
247 -- explicit one, but for consistency we must generate the reference when
248 -- expansion is disabled as well.
6e73e3ab 249
30c20106
AC
250 procedure Remove_Abstract_Operations (N : Node_Id);
251 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
252 -- operation is not a candidate interpretation.
253
d50f4827
AC
254 function Try_Container_Indexing
255 (N : Node_Id;
256 Prefix : Node_Id;
257 Expr : Node_Id) return Boolean;
258 -- AI05-0139: Generalized indexing to support iterators over containers
259
996ae0b0 260 function Try_Indexed_Call
aab883ec
ES
261 (N : Node_Id;
262 Nam : Entity_Id;
263 Typ : Entity_Id;
264 Skip_First : Boolean) return Boolean;
265 -- If a function has defaults for all its actuals, a call to it may in fact
266 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
267 -- interpretation as an indexing, prior to analysis as a call. If both are
268 -- possible, the node is overloaded with both interpretations (same symbol
269 -- but two different types). If the call is written in prefix form, the
270 -- prefix becomes the first parameter in the call, and only the remaining
271 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
272
273 function Try_Indirect_Call
91b1417d
AC
274 (N : Node_Id;
275 Nam : Entity_Id;
276 Typ : Entity_Id) return Boolean;
aab883ec
ES
277 -- Similarly, a function F that needs no actuals can return an access to a
278 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
279 -- the call may be overloaded with both interpretations.
996ae0b0 280
8cf23b91 281 function Try_Object_Operation
11bc76df
AC
282 (N : Node_Id;
283 CW_Test_Only : Boolean := False) return Boolean;
0d57c6f4
RD
284 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
285 -- is a call in this notation, it is transformed into a normal subprogram
286 -- call where the prefix is a parameter, and True is returned. If node
8cf23b91
AC
287 -- N is not of this form, it is unchanged, and False is returned. if
288 -- CW_Test_Only is true then N is an N_Selected_Component node which
289 -- is part of a call to an entry or procedure of a tagged concurrent
290 -- type and this routine is invoked to search for class-wide subprograms
291 -- conflicting with the target entity.
35ae2ed8 292
b4592168
GD
293 procedure wpo (T : Entity_Id);
294 pragma Warnings (Off, wpo);
295 -- Used for debugging: obtain list of primitive operations even if
296 -- type is not frozen and dispatch table is not built yet.
297
996ae0b0
RK
298 ------------------------
299 -- Ambiguous_Operands --
300 ------------------------
301
302 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 303 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 304
4c46b835
AC
305 --------------------------
306 -- List_Operand_Interps --
307 --------------------------
308
fbf5a39b 309 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
310 Nam : Node_Id;
311 Err : Node_Id := N;
312
313 begin
314 if Is_Overloaded (Opnd) then
315 if Nkind (Opnd) in N_Op then
316 Nam := Opnd;
996ae0b0
RK
317 elsif Nkind (Opnd) = N_Function_Call then
318 Nam := Name (Opnd);
44a10091
AC
319 elsif Ada_Version >= Ada_2012 then
320 declare
321 It : Interp;
322 I : Interp_Index;
323
324 begin
325 Get_First_Interp (Opnd, I, It);
326 while Present (It.Nam) loop
327 if Has_Implicit_Dereference (It.Typ) then
328 Error_Msg_N
329 ("can be interpreted as implicit dereference", Opnd);
330 return;
331 end if;
332
333 Get_Next_Interp (I, It);
334 end loop;
335 end;
336
996ae0b0
RK
337 return;
338 end if;
339
340 else
341 return;
342 end if;
343
344 if Opnd = Left_Opnd (N) then
ed2233dc 345 Error_Msg_N ("\left operand has the following interpretations", N);
996ae0b0 346 else
ed2233dc 347 Error_Msg_N
996ae0b0
RK
348 ("\right operand has the following interpretations", N);
349 Err := Opnd;
350 end if;
351
fbf5a39b
AC
352 List_Interps (Nam, Err);
353 end List_Operand_Interps;
996ae0b0 354
4c46b835
AC
355 -- Start of processing for Ambiguous_Operands
356
996ae0b0 357 begin
b67a385c 358 if Nkind (N) in N_Membership_Test then
ed2233dc 359 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 360
d469eabe 361 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 362 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
363
364 else
ed2233dc 365 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
366 end if;
367
368 if All_Errors_Mode then
fbf5a39b
AC
369 List_Operand_Interps (Left_Opnd (N));
370 List_Operand_Interps (Right_Opnd (N));
996ae0b0 371 else
555360a5 372 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
373 end if;
374 end Ambiguous_Operands;
375
376 -----------------------
377 -- Analyze_Aggregate --
378 -----------------------
379
380 -- Most of the analysis of Aggregates requires that the type be known,
381 -- and is therefore put off until resolution.
382
383 procedure Analyze_Aggregate (N : Node_Id) is
384 begin
385 if No (Etype (N)) then
386 Set_Etype (N, Any_Composite);
387 end if;
388 end Analyze_Aggregate;
389
390 -----------------------
391 -- Analyze_Allocator --
392 -----------------------
393
394 procedure Analyze_Allocator (N : Node_Id) is
395 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 396 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 397 E : Node_Id := Expression (N);
996ae0b0
RK
398 Acc_Type : Entity_Id;
399 Type_Id : Entity_Id;
87003b28
RD
400 P : Node_Id;
401 C : Node_Id;
996ae0b0
RK
402
403 begin
2ba431e5 404 Check_SPARK_Restriction ("allocator is not allowed", N);
1d801f21 405
87003b28
RD
406 -- Deal with allocator restrictions
407
50cff367 408 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28
RD
409 -- to user-written allocators. The same consideration applies to the
410 -- No_Allocators_Before_Elaboration restriction.
50cff367
GD
411
412 if Comes_From_Source (N) then
413 Check_Restriction (No_Allocators, N);
87003b28
RD
414
415 -- Processing for No_Allocators_After_Elaboration, loop to look at
416 -- enclosing context, checking task case and main subprogram case.
417
418 C := N;
419 P := Parent (C);
420 while Present (P) loop
421
422 -- In both cases we need a handled sequence of statements, where
423 -- the occurrence of the allocator is within the statements.
424
425 if Nkind (P) = N_Handled_Sequence_Of_Statements
426 and then Is_List_Member (C)
427 and then List_Containing (C) = Statements (P)
428 then
429 -- Check for allocator within task body, this is a definite
430 -- violation of No_Allocators_After_Elaboration we can detect.
431
432 if Nkind (Original_Node (Parent (P))) = N_Task_Body then
433 Check_Restriction (No_Allocators_After_Elaboration, N);
434 exit;
435 end if;
436
308e6f3a 437 -- The other case is appearance in a subprogram body. This may
87003b28
RD
438 -- be a violation if this is a library level subprogram, and it
439 -- turns out to be used as the main program, but only the
440 -- binder knows that, so just record the occurrence.
441
442 if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
443 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
444 then
445 Set_Has_Allocator (Current_Sem_Unit);
446 end if;
447 end if;
448
449 C := P;
450 P := Parent (C);
451 end loop;
50cff367 452 end if;
996ae0b0 453
df170605
AC
454 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
455 -- any. The expected type for the name is any type. A non-overloading
456 -- rule then requires it to be of a type descended from
f0f88eb6
RD
457 -- System.Storage_Pools.Subpools.Subpool_Handle.
458
459 -- This isn't exactly what the AI says, but it seems to be the right
460 -- rule. The AI should be fixed.???
df170605
AC
461
462 declare
463 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 464
df170605
AC
465 begin
466 if Present (Subpool) then
467 Analyze (Subpool);
f0f88eb6 468
df170605
AC
469 if Is_Overloaded (Subpool) then
470 Error_Msg_N ("ambiguous subpool handle", Subpool);
471 end if;
472
f0f88eb6 473 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
474
475 Resolve (Subpool);
476 end if;
477 end;
478
479 -- Analyze the qualified expression or subtype indication
87003b28 480
996ae0b0
RK
481 if Nkind (E) = N_Qualified_Expression then
482 Acc_Type := Create_Itype (E_Allocator_Type, N);
483 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 484 Find_Type (Subtype_Mark (E));
45c8b94b
ES
485
486 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 487 -- rule given in 4.7(3).
45c8b94b
ES
488
489 Analyze (E);
490 Type_Id := Etype (E);
996ae0b0
RK
491 Set_Directly_Designated_Type (Acc_Type, Type_Id);
492
45c8b94b 493 Resolve (Expression (E), Type_Id);
b67a385c 494
f7bb41af
AC
495 -- Allocators generated by the build-in-place expansion mechanism
496 -- are explicitly marked as coming from source but do not need to be
497 -- checked for limited initialization. To exclude this case, ensure
498 -- that the parent of the allocator is a source node.
499
d05ef0ab 500 if Is_Limited_Type (Type_Id)
996ae0b0 501 and then Comes_From_Source (N)
f7bb41af 502 and then Comes_From_Source (Parent (N))
996ae0b0
RK
503 and then not In_Instance_Body
504 then
2a31c32b 505 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
506 Error_Msg_N ("initialization not allowed for limited types", N);
507 Explain_Limited_Type (Type_Id, N);
508 end if;
996ae0b0
RK
509 end if;
510
996ae0b0
RK
511 -- A qualified expression requires an exact match of the type,
512 -- class-wide matching is not allowed.
513
45c8b94b
ES
514 -- if Is_Class_Wide_Type (Type_Id)
515 -- and then Base_Type
516 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
517 -- then
518 -- Wrong_Type (Expression (E), Type_Id);
519 -- end if;
996ae0b0
RK
520
521 Check_Non_Static_Context (Expression (E));
522
523 -- We don't analyze the qualified expression itself because it's
524 -- part of the allocator
525
526 Set_Etype (E, Type_Id);
527
aab883ec 528 -- Case where allocator has a subtype indication
4c46b835 529
996ae0b0
RK
530 else
531 declare
758c442c
GD
532 Def_Id : Entity_Id;
533 Base_Typ : Entity_Id;
996ae0b0
RK
534
535 begin
536 -- If the allocator includes a N_Subtype_Indication then a
537 -- constraint is present, otherwise the node is a subtype mark.
538 -- Introduce an explicit subtype declaration into the tree
539 -- defining some anonymous subtype and rewrite the allocator to
540 -- use this subtype rather than the subtype indication.
541
542 -- It is important to introduce the explicit subtype declaration
543 -- so that the bounds of the subtype indication are attached to
544 -- the tree in case the allocator is inside a generic unit.
545
546 if Nkind (E) = N_Subtype_Indication then
547
548 -- A constraint is only allowed for a composite type in Ada
549 -- 95. In Ada 83, a constraint is also allowed for an
550 -- access-to-composite type, but the constraint is ignored.
551
552 Find_Type (Subtype_Mark (E));
758c442c 553 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 554
758c442c 555 if Is_Elementary_Type (Base_Typ) then
0ab80019 556 if not (Ada_Version = Ada_83
758c442c 557 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
558 then
559 Error_Msg_N ("constraint not allowed here", E);
560
24657705
HK
561 if Nkind (Constraint (E)) =
562 N_Index_Or_Discriminant_Constraint
996ae0b0 563 then
4e7a4f6e 564 Error_Msg_N -- CODEFIX
996ae0b0
RK
565 ("\if qualified expression was meant, " &
566 "use apostrophe", Constraint (E));
567 end if;
568 end if;
569
570 -- Get rid of the bogus constraint:
571
572 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
573 Analyze_Allocator (N);
574 return;
758c442c
GD
575
576 -- Ada 2005, AI-363: if the designated type has a constrained
577 -- partial view, it cannot receive a discriminant constraint,
578 -- and the allocated object is unconstrained.
579
0791fbe9 580 elsif Ada_Version >= Ada_2005
414b312e
AC
581 and then Effectively_Has_Constrained_Partial_View
582 (Typ => Base_Typ,
583 Scop => Current_Scope)
758c442c
GD
584 then
585 Error_Msg_N
cc96a1b8 586 ("constraint not allowed when type " &
758c442c 587 "has a constrained partial view", Constraint (E));
996ae0b0
RK
588 end if;
589
590 if Expander_Active then
092ef350 591 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
592
593 Insert_Action (E,
594 Make_Subtype_Declaration (Loc,
595 Defining_Identifier => Def_Id,
596 Subtype_Indication => Relocate_Node (E)));
597
07fc65c4 598 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
599 and then Nkind (Constraint (E)) =
600 N_Index_Or_Discriminant_Constraint
996ae0b0 601 then
4e7a4f6e 602 Error_Msg_N -- CODEFIX
996ae0b0
RK
603 ("if qualified expression was meant, " &
604 "use apostrophe!", Constraint (E));
605 end if;
606
607 E := New_Occurrence_Of (Def_Id, Loc);
608 Rewrite (Expression (N), E);
609 end if;
610 end if;
611
612 Type_Id := Process_Subtype (E, N);
613 Acc_Type := Create_Itype (E_Allocator_Type, N);
614 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
615 Set_Directly_Designated_Type (Acc_Type, Type_Id);
616 Check_Fully_Declared (Type_Id, N);
617
1baa4d2d 618 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 619 -- type that excludes null, its default initialization will
75ad5042
ES
620 -- be a null object, and we can insert an unconditional raise
621 -- before the allocator.
2820d220 622
bfae1846 623 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
624 -- illegal.
625
2820d220 626 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
627 declare
628 Not_Null_Check : constant Node_Id :=
629 Make_Raise_Constraint_Error (Sloc (E),
630 Reason => CE_Null_Not_Allowed);
40b93859 631
75ad5042 632 begin
dbe945f1 633 if Ada_Version >= Ada_2012 then
518ade91
AC
634 Error_Msg_N
635 ("an uninitialized allocator cannot have"
636 & " a null exclusion", N);
637
638 elsif Expander_Active then
75ad5042
ES
639 Insert_Action (N, Not_Null_Check);
640 Analyze (Not_Null_Check);
40b93859 641
75ad5042
ES
642 else
643 Error_Msg_N ("null value not allowed here?", E);
644 end if;
645 end;
2820d220
AC
646 end if;
647
91b1417d
AC
648 -- Check restriction against dynamically allocated protected
649 -- objects. Note that when limited aggregates are supported,
650 -- a similar test should be applied to an allocator with a
651 -- qualified expression ???
652
653 if Is_Protected_Type (Type_Id) then
654 Check_Restriction (No_Protected_Type_Allocators, N);
655 end if;
656
996ae0b0
RK
657 -- Check for missing initialization. Skip this check if we already
658 -- had errors on analyzing the allocator, since in that case these
24657705 659 -- are probably cascaded errors.
996ae0b0
RK
660
661 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 662 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 663 then
a4956515
AC
664 -- The build-in-place machinery may produce an allocator when
665 -- the designated type is indefinite but the underlying type is
666 -- not. In this case the unknown discriminants are meaningless
667 -- and should not trigger error messages. Check the parent node
668 -- because the allocator is marked as coming from source.
669
670 if Present (Underlying_Type (Type_Id))
671 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
672 and then not Comes_From_Source (Parent (N))
673 then
674 null;
675
676 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
677 Error_Msg_N
678 ("initialization required in class-wide allocation", N);
a4956515 679
996ae0b0 680 else
0791fbe9 681 if Ada_Version < Ada_2005
24657705
HK
682 and then Is_Limited_Type (Type_Id)
683 then
684 Error_Msg_N ("unconstrained allocation not allowed", N);
685
686 if Is_Array_Type (Type_Id) then
687 Error_Msg_N
688 ("\constraint with array bounds required", N);
689
690 elsif Has_Unknown_Discriminants (Type_Id) then
691 null;
692
693 else pragma Assert (Has_Discriminants (Type_Id));
694 Error_Msg_N
695 ("\constraint with discriminant values required", N);
696 end if;
697
698 -- Limited Ada 2005 and general non-limited case
699
700 else
701 Error_Msg_N
702 ("uninitialized unconstrained allocation not allowed",
703 N);
704
705 if Is_Array_Type (Type_Id) then
706 Error_Msg_N
707 ("\qualified expression or constraint with " &
708 "array bounds required", N);
709
710 elsif Has_Unknown_Discriminants (Type_Id) then
711 Error_Msg_N ("\qualified expression required", N);
712
713 else pragma Assert (Has_Discriminants (Type_Id));
714 Error_Msg_N
715 ("\qualified expression or constraint with " &
716 "discriminant values required", N);
717 end if;
718 end if;
996ae0b0
RK
719 end if;
720 end if;
721 end;
722 end if;
723
aab883ec 724 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
725 Error_Msg_N ("cannot allocate abstract object", E);
726 end if;
727
728 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 729 Check_Restriction (No_Tasking, N);
fbf5a39b 730 Check_Restriction (Max_Tasks, N);
996ae0b0 731 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
732 end if;
733
646e2823
AC
734 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
735 -- type is nested, and the designated type needs finalization. The rule
736 -- is conservative in that class-wide types need finalization.
737
738 if Needs_Finalization (Designated_Type (Acc_Type))
739 and then not Is_Library_Level_Entity (Acc_Type)
740 then
741 Check_Restriction (No_Nested_Finalization, N);
742 end if;
743
70b3b953
GD
744 -- Check that an allocator of a nested access type doesn't create a
745 -- protected object when restriction No_Local_Protected_Objects applies.
746 -- We don't have an equivalent to Has_Task for protected types, so only
747 -- cases where the designated type itself is a protected type are
748 -- currently checked. ???
749
750 if Is_Protected_Type (Designated_Type (Acc_Type))
751 and then not Is_Library_Level_Entity (Acc_Type)
752 then
753 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
754 end if;
755
ffe9aba8
AC
756 -- If the No_Streams restriction is set, check that the type of the
757 -- object is not, and does not contain, any subtype derived from
758 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
759 -- Has_Stream just for efficiency reasons. There is no point in
760 -- spending time on a Has_Stream check if the restriction is not set.
761
7a963087 762 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
763 if Has_Stream (Designated_Type (Acc_Type)) then
764 Check_Restriction (No_Streams, N);
765 end if;
766 end if;
767
996ae0b0
RK
768 Set_Etype (N, Acc_Type);
769
770 if not Is_Library_Level_Entity (Acc_Type) then
771 Check_Restriction (No_Local_Allocators, N);
772 end if;
2820d220 773
07fc65c4 774 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
775 Set_Error_Posted (N);
776 Set_Etype (N, Any_Type);
777 end if;
996ae0b0
RK
778 end Analyze_Allocator;
779
780 ---------------------------
781 -- Analyze_Arithmetic_Op --
782 ---------------------------
783
784 procedure Analyze_Arithmetic_Op (N : Node_Id) is
785 L : constant Node_Id := Left_Opnd (N);
786 R : constant Node_Id := Right_Opnd (N);
787 Op_Id : Entity_Id;
788
789 begin
790 Candidate_Type := Empty;
791 Analyze_Expression (L);
792 Analyze_Expression (R);
793
d469eabe
HK
794 -- If the entity is already set, the node is the instantiation of a
795 -- generic node with a non-local reference, or was manufactured by a
796 -- call to Make_Op_xxx. In either case the entity is known to be valid,
797 -- and we do not need to collect interpretations, instead we just get
798 -- the single possible interpretation.
996ae0b0
RK
799
800 Op_Id := Entity (N);
801
802 if Present (Op_Id) then
803 if Ekind (Op_Id) = E_Operator then
804
d469eabe 805 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
806 and then Treat_Fixed_As_Integer (N)
807 then
808 null;
809 else
810 Set_Etype (N, Any_Type);
811 Find_Arithmetic_Types (L, R, Op_Id, N);
812 end if;
813
814 else
815 Set_Etype (N, Any_Type);
816 Add_One_Interp (N, Op_Id, Etype (Op_Id));
817 end if;
818
819 -- Entity is not already set, so we do need to collect interpretations
820
821 else
822 Op_Id := Get_Name_Entity_Id (Chars (N));
823 Set_Etype (N, Any_Type);
824
825 while Present (Op_Id) loop
826 if Ekind (Op_Id) = E_Operator
827 and then Present (Next_Entity (First_Entity (Op_Id)))
828 then
829 Find_Arithmetic_Types (L, R, Op_Id, N);
830
831 -- The following may seem superfluous, because an operator cannot
832 -- be generic, but this ignores the cleverness of the author of
833 -- ACVC bc1013a.
834
835 elsif Is_Overloadable (Op_Id) then
836 Analyze_User_Defined_Binary_Op (N, Op_Id);
837 end if;
838
839 Op_Id := Homonym (Op_Id);
840 end loop;
841 end if;
842
843 Operator_Check (N);
844 end Analyze_Arithmetic_Op;
845
846 ------------------
847 -- Analyze_Call --
848 ------------------
849
4c46b835
AC
850 -- Function, procedure, and entry calls are checked here. The Name in
851 -- the call may be overloaded. The actuals have been analyzed and may
852 -- themselves be overloaded. On exit from this procedure, the node N
853 -- may have zero, one or more interpretations. In the first case an
854 -- error message is produced. In the last case, the node is flagged
855 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
856
857 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
858 -- the type-checking is similar to that of other calls.
859
860 procedure Analyze_Call (N : Node_Id) is
861 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 862 Nam : Node_Id;
996ae0b0
RK
863 X : Interp_Index;
864 It : Interp;
865 Nam_Ent : Entity_Id;
63319f58
RD
866 Success : Boolean := False;
867
868 Deref : Boolean := False;
1cb17b78
AC
869 -- Flag indicates whether an interpretation of the prefix is a
870 -- parameterless call that returns an access_to_subprogram.
996ae0b0 871
23685ae6
AC
872 procedure Check_Mixed_Parameter_And_Named_Associations;
873 -- Check that parameter and named associations are not mixed. This is
874 -- a restriction in SPARK mode.
875
996ae0b0 876 function Name_Denotes_Function return Boolean;
5ff22245
ES
877 -- If the type of the name is an access to subprogram, this may be the
878 -- type of a name, or the return type of the function being called. If
879 -- the name is not an entity then it can denote a protected function.
880 -- Until we distinguish Etype from Return_Type, we must use this routine
881 -- to resolve the meaning of the name in the call.
882
883 procedure No_Interpretation;
884 -- Output error message when no valid interpretation exists
996ae0b0 885
23685ae6
AC
886 --------------------------------------------------
887 -- Check_Mixed_Parameter_And_Named_Associations --
888 --------------------------------------------------
889
890 procedure Check_Mixed_Parameter_And_Named_Associations is
891 Actual : Node_Id;
892 Named_Seen : Boolean;
f5afb270 893
23685ae6 894 begin
23685ae6 895 Named_Seen := False;
f5afb270
AC
896
897 Actual := First (Actuals);
23685ae6
AC
898 while Present (Actual) loop
899 case Nkind (Actual) is
900 when N_Parameter_Association =>
901 if Named_Seen then
2ba431e5 902 Check_SPARK_Restriction
23685ae6
AC
903 ("named association cannot follow positional one",
904 Actual);
905 exit;
906 end if;
907 when others =>
908 Named_Seen := True;
909 end case;
910
911 Next (Actual);
912 end loop;
913 end Check_Mixed_Parameter_And_Named_Associations;
914
996ae0b0
RK
915 ---------------------------
916 -- Name_Denotes_Function --
917 ---------------------------
918
919 function Name_Denotes_Function return Boolean is
920 begin
921 if Is_Entity_Name (Nam) then
922 return Ekind (Entity (Nam)) = E_Function;
923
924 elsif Nkind (Nam) = N_Selected_Component then
925 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
926
927 else
928 return False;
929 end if;
930 end Name_Denotes_Function;
931
5ff22245
ES
932 -----------------------
933 -- No_Interpretation --
934 -----------------------
935
936 procedure No_Interpretation is
937 L : constant Boolean := Is_List_Member (N);
938 K : constant Node_Kind := Nkind (Parent (N));
939
940 begin
941 -- If the node is in a list whose parent is not an expression then it
942 -- must be an attempted procedure call.
943
944 if L and then K not in N_Subexpr then
945 if Ekind (Entity (Nam)) = E_Generic_Procedure then
946 Error_Msg_NE
947 ("must instantiate generic procedure& before call",
948 Nam, Entity (Nam));
949 else
950 Error_Msg_N
951 ("procedure or entry name expected", Nam);
952 end if;
953
954 -- Check for tasking cases where only an entry call will do
955
956 elsif not L
957 and then Nkind_In (K, N_Entry_Call_Alternative,
958 N_Triggering_Alternative)
959 then
960 Error_Msg_N ("entry name expected", Nam);
961
962 -- Otherwise give general error message
963
964 else
965 Error_Msg_N ("invalid prefix in call", Nam);
966 end if;
967 end No_Interpretation;
968
996ae0b0
RK
969 -- Start of processing for Analyze_Call
970
971 begin
24558db8 972 if Restriction_Check_Required (SPARK) then
23685ae6
AC
973 Check_Mixed_Parameter_And_Named_Associations;
974 end if;
975
996ae0b0
RK
976 -- Initialize the type of the result of the call to the error type,
977 -- which will be reset if the type is successfully resolved.
978
979 Set_Etype (N, Any_Type);
980
63319f58
RD
981 Nam := Name (N);
982
996ae0b0
RK
983 if not Is_Overloaded (Nam) then
984
985 -- Only one interpretation to check
986
987 if Ekind (Etype (Nam)) = E_Subprogram_Type then
988 Nam_Ent := Etype (Nam);
989
758c442c
GD
990 -- If the prefix is an access_to_subprogram, this may be an indirect
991 -- call. This is the case if the name in the call is not an entity
992 -- name, or if it is a function name in the context of a procedure
993 -- call. In this latter case, we have a call to a parameterless
994 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
995 -- being called. Finally, F (X) may be a call to a parameterless
996 -- function that returns a pointer to a function with parameters.
758c442c 997
996ae0b0
RK
998 elsif Is_Access_Type (Etype (Nam))
999 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
1000 and then
1001 (not Name_Denotes_Function
5ff22245
ES
1002 or else Nkind (N) = N_Procedure_Call_Statement
1003 or else
1004 (Nkind (Parent (N)) /= N_Explicit_Dereference
1005 and then Is_Entity_Name (Nam)
1006 and then No (First_Formal (Entity (Nam)))
1007 and then Present (Actuals)))
996ae0b0
RK
1008 then
1009 Nam_Ent := Designated_Type (Etype (Nam));
1010 Insert_Explicit_Dereference (Nam);
1011
1012 -- Selected component case. Simple entry or protected operation,
1013 -- where the entry name is given by the selector name.
1014
1015 elsif Nkind (Nam) = N_Selected_Component then
1016 Nam_Ent := Entity (Selector_Name (Nam));
1017
bce79204
AC
1018 if not Ekind_In (Nam_Ent, E_Entry,
1019 E_Entry_Family,
1020 E_Function,
1021 E_Procedure)
996ae0b0
RK
1022 then
1023 Error_Msg_N ("name in call is not a callable entity", Nam);
1024 Set_Etype (N, Any_Type);
1025 return;
1026 end if;
1027
1028 -- If the name is an Indexed component, it can be a call to a member
1029 -- of an entry family. The prefix must be a selected component whose
1030 -- selector is the entry. Analyze_Procedure_Call normalizes several
1031 -- kinds of call into this form.
1032
1033 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1034 if Nkind (Prefix (Nam)) = N_Selected_Component then
1035 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1036 else
1037 Error_Msg_N ("name in call is not a callable entity", Nam);
1038 Set_Etype (N, Any_Type);
1039 return;
996ae0b0
RK
1040 end if;
1041
1042 elsif not Is_Entity_Name (Nam) then
1043 Error_Msg_N ("name in call is not a callable entity", Nam);
1044 Set_Etype (N, Any_Type);
1045 return;
1046
1047 else
1048 Nam_Ent := Entity (Nam);
1049
1050 -- If no interpretations, give error message
1051
1052 if not Is_Overloadable (Nam_Ent) then
5ff22245
ES
1053 No_Interpretation;
1054 return;
1055 end if;
1056 end if;
996ae0b0 1057
5ff22245
ES
1058 -- Operations generated for RACW stub types are called only through
1059 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1060
5ff22245
ES
1061 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1062 No_Interpretation;
1063 return;
996ae0b0
RK
1064 end if;
1065
1066 Analyze_One_Call (N, Nam_Ent, True, Success);
1067
ec6078e3
ES
1068 -- If this is an indirect call, the return type of the access_to
1069 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1070 -- use the full type if available, and at the same time update the
1071 -- return type of the access_to_subprogram.
ec6078e3
ES
1072
1073 if Success
d469eabe 1074 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1075 and then Ekind (Etype (N)) = E_Incomplete_Type
1076 and then Present (Full_View (Etype (N)))
1077 then
1078 Set_Etype (N, Full_View (Etype (N)));
1079 Set_Etype (Nam_Ent, Etype (N));
1080 end if;
1081
996ae0b0 1082 else
5ff22245
ES
1083 -- An overloaded selected component must denote overloaded operations
1084 -- of a concurrent type. The interpretations are attached to the
1085 -- simple name of those operations.
996ae0b0
RK
1086
1087 if Nkind (Nam) = N_Selected_Component then
1088 Nam := Selector_Name (Nam);
1089 end if;
1090
1091 Get_First_Interp (Nam, X, It);
1092
1093 while Present (It.Nam) loop
1094 Nam_Ent := It.Nam;
1cb17b78 1095 Deref := False;
996ae0b0
RK
1096
1097 -- Name may be call that returns an access to subprogram, or more
1098 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1099 -- yields an access to subprogram. If the name is an entity, we do
1100 -- not dereference, because the node is a call that returns the
1101 -- access type: note difference between f(x), where the call may
1102 -- return an access subprogram type, and f(x)(y), where the type
1103 -- returned by the call to f is implicitly dereferenced to analyze
1104 -- the outer call.
996ae0b0
RK
1105
1106 if Is_Access_Type (Nam_Ent) then
1107 Nam_Ent := Designated_Type (Nam_Ent);
1108
1109 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1110 and then
1111 (not Is_Entity_Name (Nam)
1112 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1113 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1114 = E_Subprogram_Type
1115 then
1116 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1117
1118 if Is_Entity_Name (Nam) then
1119 Deref := True;
1120 end if;
996ae0b0
RK
1121 end if;
1122
7415029d
AC
1123 -- If the call has been rewritten from a prefixed call, the first
1124 -- parameter has been analyzed, but may need a subsequent
1125 -- dereference, so skip its analysis now.
1126
1127 if N /= Original_Node (N)
1128 and then Nkind (Original_Node (N)) = Nkind (N)
1129 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1130 and then Present (Parameter_Associations (N))
1131 and then Present (Etype (First (Parameter_Associations (N))))
1132 then
1133 Analyze_One_Call
1134 (N, Nam_Ent, False, Success, Skip_First => True);
1135 else
1136 Analyze_One_Call (N, Nam_Ent, False, Success);
1137 end if;
996ae0b0
RK
1138
1139 -- If the interpretation succeeds, mark the proper type of the
1140 -- prefix (any valid candidate will do). If not, remove the
1141 -- candidate interpretation. This only needs to be done for
1142 -- overloaded protected operations, for other entities disambi-
1143 -- guation is done directly in Resolve.
1144
1145 if Success then
1cb17b78
AC
1146 if Deref
1147 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1148 then
1149 Set_Entity (Nam, It.Nam);
1150 Insert_Explicit_Dereference (Nam);
1151 Set_Etype (Nam, Nam_Ent);
1152
1153 else
1154 Set_Etype (Nam, It.Typ);
1155 end if;
996ae0b0 1156
d469eabe
HK
1157 elsif Nkind_In (Name (N), N_Selected_Component,
1158 N_Function_Call)
fbf5a39b 1159 then
996ae0b0
RK
1160 Remove_Interp (X);
1161 end if;
1162
1163 Get_Next_Interp (X, It);
1164 end loop;
1165
1166 -- If the name is the result of a function call, it can only
1167 -- be a call to a function returning an access to subprogram.
1168 -- Insert explicit dereference.
1169
1170 if Nkind (Nam) = N_Function_Call then
1171 Insert_Explicit_Dereference (Nam);
1172 end if;
1173
1174 if Etype (N) = Any_Type then
1175
1176 -- None of the interpretations is compatible with the actuals
1177
1178 Diagnose_Call (N, Nam);
1179
1180 -- Special checks for uninstantiated put routines
1181
1182 if Nkind (N) = N_Procedure_Call_Statement
1183 and then Is_Entity_Name (Nam)
1184 and then Chars (Nam) = Name_Put
1185 and then List_Length (Actuals) = 1
1186 then
1187 declare
1188 Arg : constant Node_Id := First (Actuals);
1189 Typ : Entity_Id;
1190
1191 begin
1192 if Nkind (Arg) = N_Parameter_Association then
1193 Typ := Etype (Explicit_Actual_Parameter (Arg));
1194 else
1195 Typ := Etype (Arg);
1196 end if;
1197
1198 if Is_Signed_Integer_Type (Typ) then
1199 Error_Msg_N
1200 ("possible missing instantiation of " &
1201 "'Text_'I'O.'Integer_'I'O!", Nam);
1202
1203 elsif Is_Modular_Integer_Type (Typ) then
1204 Error_Msg_N
1205 ("possible missing instantiation of " &
1206 "'Text_'I'O.'Modular_'I'O!", Nam);
1207
1208 elsif Is_Floating_Point_Type (Typ) then
1209 Error_Msg_N
1210 ("possible missing instantiation of " &
1211 "'Text_'I'O.'Float_'I'O!", Nam);
1212
1213 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1214 Error_Msg_N
1215 ("possible missing instantiation of " &
1216 "'Text_'I'O.'Fixed_'I'O!", Nam);
1217
1218 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1219 Error_Msg_N
1220 ("possible missing instantiation of " &
1221 "'Text_'I'O.'Decimal_'I'O!", Nam);
1222
1223 elsif Is_Enumeration_Type (Typ) then
1224 Error_Msg_N
1225 ("possible missing instantiation of " &
1226 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1227 end if;
1228 end;
1229 end if;
1230
1231 elsif not Is_Overloaded (N)
1232 and then Is_Entity_Name (Nam)
1233 then
aab883ec
ES
1234 -- Resolution yields a single interpretation. Verify that the
1235 -- reference has capitalization consistent with the declaration.
996ae0b0
RK
1236
1237 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1238 Generate_Reference (Entity (Nam), Nam);
1239
1240 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1241 else
1242 Remove_Abstract_Operations (N);
996ae0b0
RK
1243 end if;
1244
1245 End_Interp_List;
1246 end if;
1247 end Analyze_Call;
1248
19d846a0
RD
1249 -----------------------------
1250 -- Analyze_Case_Expression --
1251 -----------------------------
1252
1253 procedure Analyze_Case_Expression (N : Node_Id) is
1254 Expr : constant Node_Id := Expression (N);
1255 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1256 Alt : Node_Id;
1257 Exp_Type : Entity_Id;
1258 Exp_Btype : Entity_Id;
1259
19d846a0
RD
1260 Dont_Care : Boolean;
1261 Others_Present : Boolean;
1262
1263 procedure Non_Static_Choice_Error (Choice : Node_Id);
1264 -- Error routine invoked by the generic instantiation below when
1265 -- the case expression has a non static choice.
1266
1267 package Case_Choices_Processing is new
1268 Generic_Choices_Processing
1269 (Get_Alternatives => Alternatives,
1270 Get_Choices => Discrete_Choices,
1271 Process_Empty_Choice => No_OP,
1272 Process_Non_Static_Choice => Non_Static_Choice_Error,
1273 Process_Associated_Node => No_OP);
1274 use Case_Choices_Processing;
1275
19d846a0
RD
1276 -----------------------------
1277 -- Non_Static_Choice_Error --
1278 -----------------------------
1279
1280 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1281 begin
1282 Flag_Non_Static_Expr
1283 ("choice given in case expression is not static!", Choice);
1284 end Non_Static_Choice_Error;
1285
1286 -- Start of processing for Analyze_Case_Expression
1287
1288 begin
1289 if Comes_From_Source (N) then
1290 Check_Compiler_Unit (N);
1291 end if;
1292
1293 Analyze_And_Resolve (Expr, Any_Discrete);
1294 Check_Unset_Reference (Expr);
1295 Exp_Type := Etype (Expr);
1296 Exp_Btype := Base_Type (Exp_Type);
1297
1298 Alt := First (Alternatives (N));
1299 while Present (Alt) loop
1300 Analyze (Expression (Alt));
1301 Next (Alt);
1302 end loop;
1303
1304 if not Is_Overloaded (FirstX) then
1305 Set_Etype (N, Etype (FirstX));
1306
1307 else
1308 declare
1309 I : Interp_Index;
1310 It : Interp;
1311
1312 begin
1313 Set_Etype (N, Any_Type);
1314
1315 Get_First_Interp (FirstX, I, It);
1316 while Present (It.Nam) loop
1317
308e6f3a
RW
1318 -- For each interpretation of the first expression, we only
1319 -- add the interpretation if every other expression in the
19d846a0
RD
1320 -- case expression alternatives has a compatible type.
1321
1322 Alt := Next (First (Alternatives (N)));
1323 while Present (Alt) loop
1324 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1325 Next (Alt);
1326 end loop;
1327
1328 if No (Alt) then
1329 Add_One_Interp (N, It.Typ, It.Typ);
1330 end if;
1331
1332 Get_Next_Interp (I, It);
1333 end loop;
1334 end;
1335 end if;
1336
1337 Exp_Btype := Base_Type (Exp_Type);
1338
1339 -- The expression must be of a discrete type which must be determinable
1340 -- independently of the context in which the expression occurs, but
1341 -- using the fact that the expression must be of a discrete type.
1342 -- Moreover, the type this expression must not be a character literal
1343 -- (which is always ambiguous).
1344
1345 -- If error already reported by Resolve, nothing more to do
1346
1347 if Exp_Btype = Any_Discrete
1348 or else Exp_Btype = Any_Type
1349 then
1350 return;
1351
1352 elsif Exp_Btype = Any_Character then
1353 Error_Msg_N
1354 ("character literal as case expression is ambiguous", Expr);
1355 return;
1356 end if;
1357
1358 -- If the case expression is a formal object of mode in out, then
1359 -- treat it as having a nonstatic subtype by forcing use of the base
1360 -- type (which has to get passed to Check_Case_Choices below). Also
1361 -- use base type when the case expression is parenthesized.
1362
1363 if Paren_Count (Expr) > 0
1364 or else (Is_Entity_Name (Expr)
1365 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1366 then
1367 Exp_Type := Exp_Btype;
1368 end if;
1369
1370 -- Call instantiated Analyze_Choices which does the rest of the work
1371
86200f66 1372 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
19d846a0
RD
1373
1374 if Exp_Type = Universal_Integer and then not Others_Present then
1375 Error_Msg_N
1376 ("case on universal integer requires OTHERS choice", Expr);
1377 end if;
1378 end Analyze_Case_Expression;
1379
996ae0b0
RK
1380 ---------------------------
1381 -- Analyze_Comparison_Op --
1382 ---------------------------
1383
1384 procedure Analyze_Comparison_Op (N : Node_Id) is
1385 L : constant Node_Id := Left_Opnd (N);
1386 R : constant Node_Id := Right_Opnd (N);
1387 Op_Id : Entity_Id := Entity (N);
1388
1389 begin
1390 Set_Etype (N, Any_Type);
1391 Candidate_Type := Empty;
1392
1393 Analyze_Expression (L);
1394 Analyze_Expression (R);
1395
1396 if Present (Op_Id) then
996ae0b0
RK
1397 if Ekind (Op_Id) = E_Operator then
1398 Find_Comparison_Types (L, R, Op_Id, N);
1399 else
1400 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1401 end if;
1402
1403 if Is_Overloaded (L) then
1404 Set_Etype (L, Intersect_Types (L, R));
1405 end if;
1406
1407 else
1408 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1409 while Present (Op_Id) loop
996ae0b0
RK
1410 if Ekind (Op_Id) = E_Operator then
1411 Find_Comparison_Types (L, R, Op_Id, N);
1412 else
1413 Analyze_User_Defined_Binary_Op (N, Op_Id);
1414 end if;
1415
1416 Op_Id := Homonym (Op_Id);
1417 end loop;
1418 end if;
1419
1420 Operator_Check (N);
1421 end Analyze_Comparison_Op;
1422
1423 ---------------------------
1424 -- Analyze_Concatenation --
1425 ---------------------------
1426
fe39cf20
BD
1427 procedure Analyze_Concatenation (N : Node_Id) is
1428
1429 -- We wish to avoid deep recursion, because concatenations are often
1430 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1431 -- operands nonrecursively until we find something that is not a
1432 -- concatenation (A in this case), or has already been analyzed. We
1433 -- analyze that, and then walk back up the tree following Parent
1434 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1435 -- work at each level. The Parent pointers allow us to avoid recursion,
1436 -- and thus avoid running out of memory.
1437
1438 NN : Node_Id := N;
1439 L : Node_Id;
1440
1441 begin
1442 Candidate_Type := Empty;
1443
1444 -- The following code is equivalent to:
1445
1446 -- Set_Etype (N, Any_Type);
1447 -- Analyze_Expression (Left_Opnd (N));
1448 -- Analyze_Concatenation_Rest (N);
1449
1450 -- where the Analyze_Expression call recurses back here if the left
1451 -- operand is a concatenation.
1452
1453 -- Walk down left operands
1454
1455 loop
1456 Set_Etype (NN, Any_Type);
1457 L := Left_Opnd (NN);
1458 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1459 NN := L;
1460 end loop;
1461
1462 -- Now (given the above example) NN is A&B and L is A
1463
1464 -- First analyze L ...
1465
1466 Analyze_Expression (L);
1467
1468 -- ... then walk NN back up until we reach N (where we started), calling
1469 -- Analyze_Concatenation_Rest along the way.
1470
1471 loop
1472 Analyze_Concatenation_Rest (NN);
1473 exit when NN = N;
1474 NN := Parent (NN);
1475 end loop;
1476 end Analyze_Concatenation;
1477
1478 --------------------------------
1479 -- Analyze_Concatenation_Rest --
1480 --------------------------------
1481
996ae0b0
RK
1482 -- If the only one-dimensional array type in scope is String,
1483 -- this is the resulting type of the operation. Otherwise there
1484 -- will be a concatenation operation defined for each user-defined
1485 -- one-dimensional array.
1486
fe39cf20 1487 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1488 L : constant Node_Id := Left_Opnd (N);
1489 R : constant Node_Id := Right_Opnd (N);
1490 Op_Id : Entity_Id := Entity (N);
1491 LT : Entity_Id;
1492 RT : Entity_Id;
1493
1494 begin
996ae0b0
RK
1495 Analyze_Expression (R);
1496
cd3cd5b1
AC
1497 -- If the entity is present, the node appears in an instance, and
1498 -- denotes a predefined concatenation operation. The resulting type is
1499 -- obtained from the arguments when possible. If the arguments are
1500 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1501 -- visible.
996ae0b0
RK
1502
1503 if Present (Op_Id) then
1504 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1505 LT := Base_Type (Etype (L));
1506 RT := Base_Type (Etype (R));
1507
1508 if Is_Array_Type (LT)
1509 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1510 then
1511 Add_One_Interp (N, Op_Id, LT);
1512
1513 elsif Is_Array_Type (RT)
1514 and then LT = Base_Type (Component_Type (RT))
1515 then
1516 Add_One_Interp (N, Op_Id, RT);
1517
fbf5a39b
AC
1518 -- If one operand is a string type or a user-defined array type,
1519 -- and the other is a literal, result is of the specific type.
1520
1521 elsif
1522 (Root_Type (LT) = Standard_String
1523 or else Scope (LT) /= Standard_Standard)
1524 and then Etype (R) = Any_String
1525 then
1526 Add_One_Interp (N, Op_Id, LT);
1527
1528 elsif
1529 (Root_Type (RT) = Standard_String
1530 or else Scope (RT) /= Standard_Standard)
1531 and then Etype (L) = Any_String
1532 then
1533 Add_One_Interp (N, Op_Id, RT);
1534
1535 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1536 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1537
1538 else
4c46b835 1539 -- Type and its operations must be visible
fbf5a39b
AC
1540
1541 Set_Entity (N, Empty);
1542 Analyze_Concatenation (N);
996ae0b0
RK
1543 end if;
1544
1545 else
1546 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1547 end if;
1548
1549 else
1a8fae99 1550 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1551 while Present (Op_Id) loop
1552 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1553
1554 -- Do not consider operators declared in dead code, they can
1555 -- not be part of the resolution.
1556
1557 if Is_Eliminated (Op_Id) then
1558 null;
1559 else
1560 Find_Concatenation_Types (L, R, Op_Id, N);
1561 end if;
1562
996ae0b0
RK
1563 else
1564 Analyze_User_Defined_Binary_Op (N, Op_Id);
1565 end if;
1566
1567 Op_Id := Homonym (Op_Id);
1568 end loop;
1569 end if;
1570
1571 Operator_Check (N);
fe39cf20 1572 end Analyze_Concatenation_Rest;
996ae0b0
RK
1573
1574 ------------------------------------
1575 -- Analyze_Conditional_Expression --
1576 ------------------------------------
1577
1578 procedure Analyze_Conditional_Expression (N : Node_Id) is
1579 Condition : constant Node_Id := First (Expressions (N));
1580 Then_Expr : constant Node_Id := Next (Condition);
6c994759 1581 Else_Expr : Node_Id;
b46be8a2 1582
996ae0b0 1583 begin
6c994759
AC
1584 -- Defend against error of missing expressions from previous error
1585
1586 if No (Then_Expr) then
1587 return;
1588 end if;
1589
2ba431e5 1590 Check_SPARK_Restriction ("conditional expression is not allowed", N);
1d801f21 1591
6c994759
AC
1592 Else_Expr := Next (Then_Expr);
1593
b46be8a2
RD
1594 if Comes_From_Source (N) then
1595 Check_Compiler_Unit (N);
1596 end if;
1597
996ae0b0
RK
1598 Analyze_Expression (Condition);
1599 Analyze_Expression (Then_Expr);
b46be8a2
RD
1600
1601 if Present (Else_Expr) then
1602 Analyze_Expression (Else_Expr);
1603 end if;
1604
19d846a0
RD
1605 -- If then expression not overloaded, then that decides the type
1606
bee2a781 1607 if not Is_Overloaded (Then_Expr) then
e0ba1bfd 1608 Set_Etype (N, Etype (Then_Expr));
19d846a0
RD
1609
1610 -- Case where then expression is overloaded
1611
e0ba1bfd
ES
1612 else
1613 declare
1614 I : Interp_Index;
1615 It : Interp;
1616
1617 begin
1618 Set_Etype (N, Any_Type);
8d606a78
RD
1619
1620 -- Shouldn't the following statement be down in the ELSE of the
1621 -- following loop? ???
1622
e0ba1bfd 1623 Get_First_Interp (Then_Expr, I, It);
19d846a0 1624
8d606a78
RD
1625 -- if no Else_Expression the conditional must be boolean
1626
1627 if No (Else_Expr) then
2010d078 1628 Set_Etype (N, Standard_Boolean);
19d846a0 1629
8d606a78
RD
1630 -- Else_Expression Present. For each possible intepretation of
1631 -- the Then_Expression, add it only if the Else_Expression has
1632 -- a compatible type.
19d846a0 1633
8d606a78
RD
1634 else
1635 while Present (It.Nam) loop
2010d078
AC
1636 if Has_Compatible_Type (Else_Expr, It.Typ) then
1637 Add_One_Interp (N, It.Typ, It.Typ);
1638 end if;
e0ba1bfd 1639
2010d078
AC
1640 Get_Next_Interp (I, It);
1641 end loop;
1642 end if;
e0ba1bfd
ES
1643 end;
1644 end if;
996ae0b0
RK
1645 end Analyze_Conditional_Expression;
1646
1647 -------------------------
1648 -- Analyze_Equality_Op --
1649 -------------------------
1650
1651 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1652 Loc : constant Source_Ptr := Sloc (N);
1653 L : constant Node_Id := Left_Opnd (N);
1654 R : constant Node_Id := Right_Opnd (N);
1655 Op_Id : Entity_Id;
996ae0b0
RK
1656
1657 begin
1658 Set_Etype (N, Any_Type);
1659 Candidate_Type := Empty;
1660
1661 Analyze_Expression (L);
1662 Analyze_Expression (R);
1663
1664 -- If the entity is set, the node is a generic instance with a non-local
1665 -- reference to the predefined operator or to a user-defined function.
1666 -- It can also be an inequality that is expanded into the negation of a
1667 -- call to a user-defined equality operator.
1668
1669 -- For the predefined case, the result is Boolean, regardless of the
1670 -- type of the operands. The operands may even be limited, if they are
1671 -- generic actuals. If they are overloaded, label the left argument with
1672 -- the common type that must be present, or with the type of the formal
1673 -- of the user-defined function.
1674
1675 if Present (Entity (N)) then
996ae0b0
RK
1676 Op_Id := Entity (N);
1677
1678 if Ekind (Op_Id) = E_Operator then
1679 Add_One_Interp (N, Op_Id, Standard_Boolean);
1680 else
1681 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1682 end if;
1683
1684 if Is_Overloaded (L) then
996ae0b0
RK
1685 if Ekind (Op_Id) = E_Operator then
1686 Set_Etype (L, Intersect_Types (L, R));
1687 else
1688 Set_Etype (L, Etype (First_Formal (Op_Id)));
1689 end if;
1690 end if;
1691
1692 else
1693 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1694 while Present (Op_Id) loop
996ae0b0
RK
1695 if Ekind (Op_Id) = E_Operator then
1696 Find_Equality_Types (L, R, Op_Id, N);
1697 else
1698 Analyze_User_Defined_Binary_Op (N, Op_Id);
1699 end if;
1700
1701 Op_Id := Homonym (Op_Id);
1702 end loop;
1703 end if;
1704
1705 -- If there was no match, and the operator is inequality, this may
1706 -- be a case where inequality has not been made explicit, as for
1707 -- tagged types. Analyze the node as the negation of an equality
1708 -- operation. This cannot be done earlier, because before analysis
1709 -- we cannot rule out the presence of an explicit inequality.
1710
1711 if Etype (N) = Any_Type
1712 and then Nkind (N) = N_Op_Ne
1713 then
1714 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1715 while Present (Op_Id) loop
996ae0b0
RK
1716 if Ekind (Op_Id) = E_Operator then
1717 Find_Equality_Types (L, R, Op_Id, N);
1718 else
1719 Analyze_User_Defined_Binary_Op (N, Op_Id);
1720 end if;
1721
1722 Op_Id := Homonym (Op_Id);
1723 end loop;
1724
1725 if Etype (N) /= Any_Type then
1726 Op_Id := Entity (N);
1727
1728 Rewrite (N,
1729 Make_Op_Not (Loc,
1730 Right_Opnd =>
1731 Make_Op_Eq (Loc,
aab883ec
ES
1732 Left_Opnd => Left_Opnd (N),
1733 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1734
1735 Set_Entity (Right_Opnd (N), Op_Id);
1736 Analyze (N);
1737 end if;
1738 end if;
1739
1740 Operator_Check (N);
1741 end Analyze_Equality_Op;
1742
1743 ----------------------------------
1744 -- Analyze_Explicit_Dereference --
1745 ----------------------------------
1746
1747 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1748 Loc : constant Source_Ptr := Sloc (N);
1749 P : constant Node_Id := Prefix (N);
1750 T : Entity_Id;
1751 I : Interp_Index;
1752 It : Interp;
1753 New_N : Node_Id;
1754
1755 function Is_Function_Type return Boolean;
4c46b835
AC
1756 -- Check whether node may be interpreted as an implicit function call
1757
1758 ----------------------
1759 -- Is_Function_Type --
1760 ----------------------
996ae0b0
RK
1761
1762 function Is_Function_Type return Boolean is
4c46b835
AC
1763 I : Interp_Index;
1764 It : Interp;
996ae0b0
RK
1765
1766 begin
1767 if not Is_Overloaded (N) then
1768 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1769 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1770
1771 else
1772 Get_First_Interp (N, I, It);
996ae0b0
RK
1773 while Present (It.Nam) loop
1774 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1775 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1776 then
1777 return False;
1778 end if;
1779
1780 Get_Next_Interp (I, It);
1781 end loop;
1782
1783 return True;
1784 end if;
1785 end Is_Function_Type;
1786
98123480 1787 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1788
996ae0b0 1789 begin
11bc76df
AC
1790 -- If source node, check SPARK restriction. We guard this with the
1791 -- source node check, because ???
1792
36b8f95f
AC
1793 if Comes_From_Source (N) then
1794 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1795 end if;
1d801f21 1796
226a7fa4
AC
1797 -- In formal verification mode, keep track of all reads and writes
1798 -- through explicit dereferences.
1799
56812278
AC
1800 if Alfa_Mode then
1801 Alfa.Generate_Dereference (N);
226a7fa4
AC
1802 end if;
1803
996ae0b0
RK
1804 Analyze (P);
1805 Set_Etype (N, Any_Type);
1806
1807 -- Test for remote access to subprogram type, and if so return
1808 -- after rewriting the original tree.
1809
1810 if Remote_AST_E_Dereference (P) then
1811 return;
1812 end if;
1813
1814 -- Normal processing for other than remote access to subprogram type
1815
1816 if not Is_Overloaded (P) then
1817 if Is_Access_Type (Etype (P)) then
1818
f3d57416 1819 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1820 -- avoid other problems caused by the Private_Subtype and it is
1821 -- safe to go to the Base_Type because this is the same as
1822 -- converting the access value to its Base_Type.
996ae0b0
RK
1823
1824 declare
1825 DT : Entity_Id := Designated_Type (Etype (P));
1826
1827 begin
1828 if Ekind (DT) = E_Private_Subtype
1829 and then Is_For_Access_Subtype (DT)
1830 then
1831 DT := Base_Type (DT);
1832 end if;
1833
0a36105d
JM
1834 -- An explicit dereference is a legal occurrence of an
1835 -- incomplete type imported through a limited_with clause,
1836 -- if the full view is visible.
1837
1838 if From_With_Type (DT)
1839 and then not From_With_Type (Scope (DT))
1840 and then
1841 (Is_Immediately_Visible (Scope (DT))
1842 or else
1843 (Is_Child_Unit (Scope (DT))
1844 and then Is_Visible_Child_Unit (Scope (DT))))
1845 then
1846 Set_Etype (N, Available_View (DT));
1847
1848 else
1849 Set_Etype (N, DT);
1850 end if;
996ae0b0
RK
1851 end;
1852
1853 elsif Etype (P) /= Any_Type then
1854 Error_Msg_N ("prefix of dereference must be an access type", N);
1855 return;
1856 end if;
1857
1858 else
1859 Get_First_Interp (P, I, It);
996ae0b0
RK
1860 while Present (It.Nam) loop
1861 T := It.Typ;
1862
1863 if Is_Access_Type (T) then
1864 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1865 end if;
1866
1867 Get_Next_Interp (I, It);
1868 end loop;
1869
6e73e3ab 1870 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1871
1872 if Etype (N) = Any_Type then
1873 Error_Msg_N
1874 ("access type required in prefix of explicit dereference", P);
1875 Set_Etype (N, Any_Type);
1876 return;
1877 end if;
1878 end if;
1879
1880 if Is_Function_Type
1881 and then Nkind (Parent (N)) /= N_Indexed_Component
1882
1883 and then (Nkind (Parent (N)) /= N_Function_Call
1884 or else N /= Name (Parent (N)))
1885
1886 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1887 or else N /= Name (Parent (N)))
1888
1889 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1890 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1891 or else
1892 (Attribute_Name (Parent (N)) /= Name_Address
1893 and then
1894 Attribute_Name (Parent (N)) /= Name_Access))
1895 then
1896 -- Name is a function call with no actuals, in a context that
1897 -- requires deproceduring (including as an actual in an enclosing
98123480 1898 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1899 -- where the prefix might include functions that return access to
1900 -- subprograms and others that return a regular type. Disambiguation
98123480 1901 -- of those has to take place in Resolve.
996ae0b0
RK
1902
1903 New_N :=
1904 Make_Function_Call (Loc,
1905 Name => Make_Explicit_Dereference (Loc, P),
1906 Parameter_Associations => New_List);
1907
1908 -- If the prefix is overloaded, remove operations that have formals,
1909 -- we know that this is a parameterless call.
1910
1911 if Is_Overloaded (P) then
1912 Get_First_Interp (P, I, It);
996ae0b0
RK
1913 while Present (It.Nam) loop
1914 T := It.Typ;
1915
1916 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1917 Set_Etype (P, T);
1918 else
1919 Remove_Interp (I);
1920 end if;
1921
1922 Get_Next_Interp (I, It);
1923 end loop;
1924 end if;
1925
1926 Rewrite (N, New_N);
1927 Analyze (N);
98123480
ES
1928
1929 elsif not Is_Function_Type
1930 and then Is_Overloaded (N)
1931 then
1932 -- The prefix may include access to subprograms and other access
1cb17b78 1933 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1934 -- function call (not a procedure call) we cannot rewrite the node
1935 -- yet, but we include the result of the call interpretation.
98123480
ES
1936
1937 Get_First_Interp (N, I, It);
1938 while Present (It.Nam) loop
1939 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1940 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 1941 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
1942 then
1943 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1944 end if;
1945
1946 Get_Next_Interp (I, It);
1947 end loop;
996ae0b0
RK
1948 end if;
1949
1950 -- A value of remote access-to-class-wide must not be dereferenced
1951 -- (RM E.2.2(16)).
1952
1953 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
1954 end Analyze_Explicit_Dereference;
1955
1956 ------------------------
1957 -- Analyze_Expression --
1958 ------------------------
1959
1960 procedure Analyze_Expression (N : Node_Id) is
1961 begin
1962 Analyze (N);
1963 Check_Parameterless_Call (N);
1964 end Analyze_Expression;
1965
955871d3
AC
1966 -------------------------------------
1967 -- Analyze_Expression_With_Actions --
1968 -------------------------------------
1969
1970 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1971 A : Node_Id;
1972
1973 begin
1974 A := First (Actions (N));
1975 loop
1976 Analyze (A);
1977 Next (A);
1978 exit when No (A);
1979 end loop;
1980
1981 Analyze_Expression (Expression (N));
1982 Set_Etype (N, Etype (Expression (N)));
1983 end Analyze_Expression_With_Actions;
1984
996ae0b0
RK
1985 ------------------------------------
1986 -- Analyze_Indexed_Component_Form --
1987 ------------------------------------
1988
1989 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
1990 P : constant Node_Id := Prefix (N);
1991 Exprs : constant List_Id := Expressions (N);
1992 Exp : Node_Id;
1993 P_T : Entity_Id;
1994 E : Node_Id;
1995 U_N : Entity_Id;
996ae0b0
RK
1996
1997 procedure Process_Function_Call;
1998 -- Prefix in indexed component form is an overloadable entity,
1999 -- so the node is a function call. Reformat it as such.
2000
2001 procedure Process_Indexed_Component;
2002 -- Prefix in indexed component form is actually an indexed component.
2003 -- This routine processes it, knowing that the prefix is already
2004 -- resolved.
2005
2006 procedure Process_Indexed_Component_Or_Slice;
2007 -- An indexed component with a single index may designate a slice if
2008 -- the index is a subtype mark. This routine disambiguates these two
2009 -- cases by resolving the prefix to see if it is a subtype mark.
2010
2011 procedure Process_Overloaded_Indexed_Component;
2012 -- If the prefix of an indexed component is overloaded, the proper
2013 -- interpretation is selected by the index types and the context.
2014
2015 ---------------------------
2016 -- Process_Function_Call --
2017 ---------------------------
2018
2019 procedure Process_Function_Call is
f5afb270
AC
2020 Actual : Node_Id;
2021
996ae0b0
RK
2022 begin
2023 Change_Node (N, N_Function_Call);
2024 Set_Name (N, P);
2025 Set_Parameter_Associations (N, Exprs);
996ae0b0 2026
401093c1 2027 -- Analyze actuals prior to analyzing the call itself
0a36105d 2028
4c46b835 2029 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2030 while Present (Actual) loop
2031 Analyze (Actual);
2032 Check_Parameterless_Call (Actual);
0a36105d
JM
2033
2034 -- Move to next actual. Note that we use Next, not Next_Actual
2035 -- here. The reason for this is a bit subtle. If a function call
2036 -- includes named associations, the parser recognizes the node as
2037 -- a call, and it is analyzed as such. If all associations are
2038 -- positional, the parser builds an indexed_component node, and
2039 -- it is only after analysis of the prefix that the construct
2040 -- is recognized as a call, in which case Process_Function_Call
2041 -- rewrites the node and analyzes the actuals. If the list of
2042 -- actuals is malformed, the parser may leave the node as an
2043 -- indexed component (despite the presence of named associations).
2044 -- The iterator Next_Actual is equivalent to Next if the list is
2045 -- positional, but follows the normalized chain of actuals when
2046 -- named associations are present. In this case normalization has
2047 -- not taken place, and actuals remain unanalyzed, which leads to
2048 -- subsequent crashes or loops if there is an attempt to continue
2049 -- analysis of the program.
2050
2051 Next (Actual);
996ae0b0
RK
2052 end loop;
2053
2054 Analyze_Call (N);
2055 end Process_Function_Call;
2056
2057 -------------------------------
2058 -- Process_Indexed_Component --
2059 -------------------------------
2060
2061 procedure Process_Indexed_Component is
fe39cf20
BD
2062 Exp : Node_Id;
2063 Array_Type : Entity_Id;
2064 Index : Node_Id;
2065 Pent : Entity_Id := Empty;
996ae0b0
RK
2066
2067 begin
2068 Exp := First (Exprs);
2069
2070 if Is_Overloaded (P) then
2071 Process_Overloaded_Indexed_Component;
2072
2073 else
2074 Array_Type := Etype (P);
2075
6e73e3ab
AC
2076 if Is_Entity_Name (P) then
2077 Pent := Entity (P);
2078 elsif Nkind (P) = N_Selected_Component
2079 and then Is_Entity_Name (Selector_Name (P))
2080 then
2081 Pent := Entity (Selector_Name (P));
2082 end if;
2083
2084 -- Prefix must be appropriate for an array type, taking into
2085 -- account a possible implicit dereference.
996ae0b0
RK
2086
2087 if Is_Access_Type (Array_Type) then
fbf5a39b 2088 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
d469eabe 2089 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2090 end if;
2091
2092 if Is_Array_Type (Array_Type) then
2093 null;
2094
6e73e3ab 2095 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2096 Analyze (Exp);
2097 Set_Etype (N, Any_Type);
2098
2099 if not Has_Compatible_Type
6e73e3ab 2100 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2101 then
2102 Error_Msg_N ("invalid index type in entry name", N);
2103
2104 elsif Present (Next (Exp)) then
2105 Error_Msg_N ("too many subscripts in entry reference", N);
2106
2107 else
2108 Set_Etype (N, Etype (P));
2109 end if;
2110
2111 return;
2112
2113 elsif Is_Record_Type (Array_Type)
2114 and then Remote_AST_I_Dereference (P)
2115 then
2116 return;
2117
d50f4827
AC
2118 elsif Try_Container_Indexing (N, P, Exp) then
2119 return;
2120
996ae0b0
RK
2121 elsif Array_Type = Any_Type then
2122 Set_Etype (N, Any_Type);
6465b6a7
AC
2123
2124 -- In most cases the analysis of the prefix will have emitted
2125 -- an error already, but if the prefix may be interpreted as a
2126 -- call in prefixed notation, the report is left to the caller.
2127 -- To prevent cascaded errors, report only if no previous ones.
2128
2129 if Serious_Errors_Detected = 0 then
2130 Error_Msg_N ("invalid prefix in indexed component", P);
2131
2132 if Nkind (P) = N_Expanded_Name then
2133 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2134 end if;
2135 end if;
2136
996ae0b0
RK
2137 return;
2138
2139 -- Here we definitely have a bad indexing
2140
2141 else
2142 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2143 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2144 then
2145 Error_Msg_N
2146 ("REQUEUE does not permit parameters", First (Exprs));
2147
2148 elsif Is_Entity_Name (P)
2149 and then Etype (P) = Standard_Void_Type
2150 then
2151 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2152
2153 else
2154 Error_Msg_N ("array type required in indexed component", P);
2155 end if;
2156
2157 Set_Etype (N, Any_Type);
2158 return;
2159 end if;
2160
2161 Index := First_Index (Array_Type);
996ae0b0
RK
2162 while Present (Index) and then Present (Exp) loop
2163 if not Has_Compatible_Type (Exp, Etype (Index)) then
2164 Wrong_Type (Exp, Etype (Index));
2165 Set_Etype (N, Any_Type);
2166 return;
2167 end if;
2168
2169 Next_Index (Index);
2170 Next (Exp);
2171 end loop;
2172
2173 Set_Etype (N, Component_Type (Array_Type));
44a10091 2174 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2175
2176 if Present (Index) then
2177 Error_Msg_N
2178 ("too few subscripts in array reference", First (Exprs));
2179
2180 elsif Present (Exp) then
2181 Error_Msg_N ("too many subscripts in array reference", Exp);
2182 end if;
2183 end if;
996ae0b0
RK
2184 end Process_Indexed_Component;
2185
2186 ----------------------------------------
2187 -- Process_Indexed_Component_Or_Slice --
2188 ----------------------------------------
2189
2190 procedure Process_Indexed_Component_Or_Slice is
2191 begin
2192 Exp := First (Exprs);
996ae0b0
RK
2193 while Present (Exp) loop
2194 Analyze_Expression (Exp);
2195 Next (Exp);
2196 end loop;
2197
2198 Exp := First (Exprs);
2199
2200 -- If one index is present, and it is a subtype name, then the
2201 -- node denotes a slice (note that the case of an explicit range
2202 -- for a slice was already built as an N_Slice node in the first
2203 -- place, so that case is not handled here).
2204
2205 -- We use a replace rather than a rewrite here because this is one
2206 -- of the cases in which the tree built by the parser is plain wrong.
2207
2208 if No (Next (Exp))
2209 and then Is_Entity_Name (Exp)
2210 and then Is_Type (Entity (Exp))
2211 then
2212 Replace (N,
2213 Make_Slice (Sloc (N),
2214 Prefix => P,
2215 Discrete_Range => New_Copy (Exp)));
2216 Analyze (N);
2217
2218 -- Otherwise (more than one index present, or single index is not
2219 -- a subtype name), then we have the indexed component case.
2220
2221 else
2222 Process_Indexed_Component;
2223 end if;
2224 end Process_Indexed_Component_Or_Slice;
2225
2226 ------------------------------------------
2227 -- Process_Overloaded_Indexed_Component --
2228 ------------------------------------------
2229
2230 procedure Process_Overloaded_Indexed_Component is
2231 Exp : Node_Id;
2232 I : Interp_Index;
2233 It : Interp;
2234 Typ : Entity_Id;
2235 Index : Node_Id;
2236 Found : Boolean;
2237
2238 begin
2239 Set_Etype (N, Any_Type);
996ae0b0 2240
4c46b835 2241 Get_First_Interp (P, I, It);
996ae0b0
RK
2242 while Present (It.Nam) loop
2243 Typ := It.Typ;
2244
2245 if Is_Access_Type (Typ) then
2246 Typ := Designated_Type (Typ);
fbf5a39b 2247 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
2248 end if;
2249
2250 if Is_Array_Type (Typ) then
2251
2252 -- Got a candidate: verify that index types are compatible
2253
2254 Index := First_Index (Typ);
2255 Found := True;
996ae0b0 2256 Exp := First (Exprs);
996ae0b0
RK
2257 while Present (Index) and then Present (Exp) loop
2258 if Has_Compatible_Type (Exp, Etype (Index)) then
2259 null;
2260 else
2261 Found := False;
2262 Remove_Interp (I);
2263 exit;
2264 end if;
2265
2266 Next_Index (Index);
2267 Next (Exp);
2268 end loop;
2269
2270 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2271 declare
2272 CT : constant Entity_Id :=
2273 Base_Type (Component_Type (Typ));
2274 begin
2275 Add_One_Interp (N, CT, CT);
2276 Check_Implicit_Dereference (N, CT);
2277 end;
996ae0b0 2278 end if;
57a8057a
AC
2279
2280 elsif Try_Container_Indexing (N, P, First (Exprs)) then
2281 return;
2282
996ae0b0
RK
2283 end if;
2284
2285 Get_Next_Interp (I, It);
2286 end loop;
2287
2288 if Etype (N) = Any_Type then
ad6b5b00 2289 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2290 Set_Is_Overloaded (N, False);
2291 end if;
2292
2293 End_Interp_List;
2294 end Process_Overloaded_Indexed_Component;
2295
4c46b835 2296 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2297
2298 begin
2299 -- Get name of array, function or type
2300
2301 Analyze (P);
d469eabe
HK
2302
2303 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2304
fbf5a39b
AC
2305 -- If P is an explicit dereference whose prefix is of a
2306 -- remote access-to-subprogram type, then N has already
2307 -- been rewritten as a subprogram call and analyzed.
2308
2309 return;
2310 end if;
2311
2312 pragma Assert (Nkind (N) = N_Indexed_Component);
2313
996ae0b0
RK
2314 P_T := Base_Type (Etype (P));
2315
878f708a 2316 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2317 U_N := Entity (P);
2318
aab883ec 2319 if Is_Type (U_N) then
996ae0b0 2320
4c46b835 2321 -- Reformat node as a type conversion
996ae0b0
RK
2322
2323 E := Remove_Head (Exprs);
2324
2325 if Present (First (Exprs)) then
2326 Error_Msg_N
2327 ("argument of type conversion must be single expression", N);
2328 end if;
2329
2330 Change_Node (N, N_Type_Conversion);
2331 Set_Subtype_Mark (N, P);
2332 Set_Etype (N, U_N);
2333 Set_Expression (N, E);
2334
2335 -- After changing the node, call for the specific Analysis
2336 -- routine directly, to avoid a double call to the expander.
2337
2338 Analyze_Type_Conversion (N);
2339 return;
2340 end if;
2341
2342 if Is_Overloadable (U_N) then
2343 Process_Function_Call;
2344
2345 elsif Ekind (Etype (P)) = E_Subprogram_Type
2346 or else (Is_Access_Type (Etype (P))
2347 and then
bce79204
AC
2348 Ekind (Designated_Type (Etype (P))) =
2349 E_Subprogram_Type)
996ae0b0
RK
2350 then
2351 -- Call to access_to-subprogram with possible implicit dereference
2352
2353 Process_Function_Call;
2354
fbf5a39b
AC
2355 elsif Is_Generic_Subprogram (U_N) then
2356
4c46b835 2357 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2358
2359 Error_Msg_N ("generic subprogram cannot be called", N);
2360 Set_Etype (N, Any_Type);
2361 return;
2362
2363 else
2364 Process_Indexed_Component_Or_Slice;
2365 end if;
2366
2367 -- If not an entity name, prefix is an expression that may denote
2368 -- an array or an access-to-subprogram.
2369
2370 else
fbf5a39b 2371 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2372 or else (Is_Access_Type (P_T)
2373 and then
bce79204 2374 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2375 then
2376 Process_Function_Call;
2377
2378 elsif Nkind (P) = N_Selected_Component
ffe9aba8 2379 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2380 then
2381 Process_Function_Call;
2382
2383 else
2384 -- Indexed component, slice, or a call to a member of a family
2385 -- entry, which will be converted to an entry call later.
fbf5a39b 2386
996ae0b0
RK
2387 Process_Indexed_Component_Or_Slice;
2388 end if;
2389 end if;
2390 end Analyze_Indexed_Component_Form;
2391
2392 ------------------------
2393 -- Analyze_Logical_Op --
2394 ------------------------
2395
2396 procedure Analyze_Logical_Op (N : Node_Id) is
2397 L : constant Node_Id := Left_Opnd (N);
2398 R : constant Node_Id := Right_Opnd (N);
2399 Op_Id : Entity_Id := Entity (N);
2400
2401 begin
2402 Set_Etype (N, Any_Type);
2403 Candidate_Type := Empty;
2404
2405 Analyze_Expression (L);
2406 Analyze_Expression (R);
2407
2408 if Present (Op_Id) then
2409
2410 if Ekind (Op_Id) = E_Operator then
2411 Find_Boolean_Types (L, R, Op_Id, N);
2412 else
2413 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2414 end if;
2415
2416 else
2417 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2418 while Present (Op_Id) loop
2419 if Ekind (Op_Id) = E_Operator then
2420 Find_Boolean_Types (L, R, Op_Id, N);
2421 else
2422 Analyze_User_Defined_Binary_Op (N, Op_Id);
2423 end if;
2424
2425 Op_Id := Homonym (Op_Id);
2426 end loop;
2427 end if;
2428
2429 Operator_Check (N);
2430 end Analyze_Logical_Op;
2431
2432 ---------------------------
2433 -- Analyze_Membership_Op --
2434 ---------------------------
2435
2436 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2437 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2438 L : constant Node_Id := Left_Opnd (N);
2439 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2440
2441 Index : Interp_Index;
2442 It : Interp;
2443 Found : Boolean := False;
2444 I_F : Interp_Index;
2445 T_F : Entity_Id;
2446
2447 procedure Try_One_Interp (T1 : Entity_Id);
2448 -- Routine to try one proposed interpretation. Note that the context
2449 -- of the operation plays no role in resolving the arguments, so that
2450 -- if there is more than one interpretation of the operands that is
2451 -- compatible with a membership test, the operation is ambiguous.
2452
4c46b835
AC
2453 --------------------
2454 -- Try_One_Interp --
2455 --------------------
2456
996ae0b0
RK
2457 procedure Try_One_Interp (T1 : Entity_Id) is
2458 begin
2459 if Has_Compatible_Type (R, T1) then
2460 if Found
2461 and then Base_Type (T1) /= Base_Type (T_F)
2462 then
2463 It := Disambiguate (L, I_F, Index, Any_Type);
2464
2465 if It = No_Interp then
2466 Ambiguous_Operands (N);
2467 Set_Etype (L, Any_Type);
2468 return;
2469
2470 else
2471 T_F := It.Typ;
2472 end if;
2473
2474 else
2475 Found := True;
2476 T_F := T1;
2477 I_F := Index;
2478 end if;
2479
2480 Set_Etype (L, T_F);
2481 end if;
996ae0b0
RK
2482 end Try_One_Interp;
2483
197e4514
AC
2484 procedure Analyze_Set_Membership;
2485 -- If a set of alternatives is present, analyze each and find the
2486 -- common type to which they must all resolve.
2487
2488 ----------------------------
2489 -- Analyze_Set_Membership --
2490 ----------------------------
2491
2492 procedure Analyze_Set_Membership is
2493 Alt : Node_Id;
2494 Index : Interp_Index;
2495 It : Interp;
197e4514
AC
2496 Candidate_Interps : Node_Id;
2497 Common_Type : Entity_Id := Empty;
2498
2499 begin
2500 Analyze (L);
2501 Candidate_Interps := L;
2502
2503 if not Is_Overloaded (L) then
2504 Common_Type := Etype (L);
2505
2506 Alt := First (Alternatives (N));
2507 while Present (Alt) loop
2508 Analyze (Alt);
2509
2510 if not Has_Compatible_Type (Alt, Common_Type) then
2511 Wrong_Type (Alt, Common_Type);
2512 end if;
2513
2514 Next (Alt);
2515 end loop;
2516
2517 else
2518 Alt := First (Alternatives (N));
2519 while Present (Alt) loop
2520 Analyze (Alt);
2521 if not Is_Overloaded (Alt) then
2522 Common_Type := Etype (Alt);
2523
2524 else
2525 Get_First_Interp (Alt, Index, It);
2526 while Present (It.Typ) loop
442c0581
RD
2527 if not
2528 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2529 then
2530 Remove_Interp (Index);
2531 end if;
442c0581 2532
197e4514
AC
2533 Get_Next_Interp (Index, It);
2534 end loop;
2535
2536 Get_First_Interp (Alt, Index, It);
442c0581 2537
197e4514
AC
2538 if No (It.Typ) then
2539 Error_Msg_N ("alternative has no legal type", Alt);
2540 return;
2541 end if;
2542
442c0581
RD
2543 -- If alternative is not overloaded, we have a unique type
2544 -- for all of them.
197e4514
AC
2545
2546 Set_Etype (Alt, It.Typ);
2547 Get_Next_Interp (Index, It);
2548
2549 if No (It.Typ) then
2550 Set_Is_Overloaded (Alt, False);
2551 Common_Type := Etype (Alt);
2552 end if;
2553
2554 Candidate_Interps := Alt;
2555 end if;
2556
2557 Next (Alt);
2558 end loop;
2559 end if;
2560
2561 Set_Etype (N, Standard_Boolean);
2562
2563 if Present (Common_Type) then
2564 Set_Etype (L, Common_Type);
2565 Set_Is_Overloaded (L, False);
2566
2567 else
2568 Error_Msg_N ("cannot resolve membership operation", N);
2569 end if;
2570 end Analyze_Set_Membership;
2571
996ae0b0
RK
2572 -- Start of processing for Analyze_Membership_Op
2573
2574 begin
2575 Analyze_Expression (L);
2576
197e4514 2577 if No (R)
dbe945f1 2578 and then Ada_Version >= Ada_2012
197e4514
AC
2579 then
2580 Analyze_Set_Membership;
2581 return;
2582 end if;
2583
996ae0b0
RK
2584 if Nkind (R) = N_Range
2585 or else (Nkind (R) = N_Attribute_Reference
2586 and then Attribute_Name (R) = Name_Range)
2587 then
2588 Analyze (R);
2589
2590 if not Is_Overloaded (L) then
2591 Try_One_Interp (Etype (L));
2592
2593 else
2594 Get_First_Interp (L, Index, It);
996ae0b0
RK
2595 while Present (It.Typ) loop
2596 Try_One_Interp (It.Typ);
2597 Get_Next_Interp (Index, It);
2598 end loop;
2599 end if;
2600
f6b5dc8e 2601 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2602 -- membership test with a singleton value, i.e. a test for equality,
2603 -- if the types are compatible.
996ae0b0
RK
2604
2605 else
66150d01 2606 Analyze (R);
7483c888 2607
66150d01
AC
2608 if Is_Entity_Name (R)
2609 and then Is_Type (Entity (R))
2610 then
2611 Find_Type (R);
996ae0b0 2612 Check_Fully_Declared (Entity (R), R);
66150d01 2613
b0186f71
AC
2614 elsif Ada_Version >= Ada_2012
2615 and then Has_Compatible_Type (R, Etype (L))
2616 then
66150d01
AC
2617 if Nkind (N) = N_In then
2618 Rewrite (N,
2619 Make_Op_Eq (Loc,
2620 Left_Opnd => L,
2621 Right_Opnd => R));
2622 else
2623 Rewrite (N,
2624 Make_Op_Ne (Loc,
2625 Left_Opnd => L,
2626 Right_Opnd => R));
2627 end if;
2628
2629 Analyze (N);
2630 return;
2631
2632 else
b0186f71
AC
2633 -- In all versions of the language, if we reach this point there
2634 -- is a previous error that will be diagnosed below.
66150d01
AC
2635
2636 Find_Type (R);
996ae0b0
RK
2637 end if;
2638 end if;
2639
2640 -- Compatibility between expression and subtype mark or range is
2641 -- checked during resolution. The result of the operation is Boolean
2642 -- in any case.
2643
2644 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2645
2646 if Comes_From_Source (N)
197e4514 2647 and then Present (Right_Opnd (N))
fe45e59e
ES
2648 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2649 then
2650 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2651 end if;
996ae0b0
RK
2652 end Analyze_Membership_Op;
2653
b727a82b
AC
2654 -----------------
2655 -- Analyze_Mod --
2656 -----------------
2657
2658 procedure Analyze_Mod (N : Node_Id) is
2659 begin
2660 -- A special warning check, if we have an expression of the form:
2661 -- expr mod 2 * literal
2662 -- where literal is 64 or less, then probably what was meant was
2663 -- expr mod 2 ** literal
2664 -- so issue an appropriate warning.
2665
2666 if Warn_On_Suspicious_Modulus_Value
2667 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2668 and then Intval (Right_Opnd (N)) = Uint_2
2669 and then Nkind (Parent (N)) = N_Op_Multiply
2670 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2671 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2672 then
2673 Error_Msg_N
2674 ("suspicious MOD value, was '*'* intended'??", Parent (N));
2675 end if;
2676
2677 -- Remaining processing is same as for other arithmetic operators
2678
2679 Analyze_Arithmetic_Op (N);
2680 end Analyze_Mod;
2681
996ae0b0
RK
2682 ----------------------
2683 -- Analyze_Negation --
2684 ----------------------
2685
2686 procedure Analyze_Negation (N : Node_Id) is
2687 R : constant Node_Id := Right_Opnd (N);
2688 Op_Id : Entity_Id := Entity (N);
2689
2690 begin
2691 Set_Etype (N, Any_Type);
2692 Candidate_Type := Empty;
2693
2694 Analyze_Expression (R);
2695
2696 if Present (Op_Id) then
2697 if Ekind (Op_Id) = E_Operator then
2698 Find_Negation_Types (R, Op_Id, N);
2699 else
2700 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2701 end if;
2702
2703 else
2704 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2705 while Present (Op_Id) loop
2706 if Ekind (Op_Id) = E_Operator then
2707 Find_Negation_Types (R, Op_Id, N);
2708 else
2709 Analyze_User_Defined_Unary_Op (N, Op_Id);
2710 end if;
2711
2712 Op_Id := Homonym (Op_Id);
2713 end loop;
2714 end if;
2715
2716 Operator_Check (N);
2717 end Analyze_Negation;
2718
15ce9ca2
AC
2719 ------------------
2720 -- Analyze_Null --
2721 ------------------
996ae0b0
RK
2722
2723 procedure Analyze_Null (N : Node_Id) is
2724 begin
2ba431e5 2725 Check_SPARK_Restriction ("null is not allowed", N);
1d801f21 2726
996ae0b0
RK
2727 Set_Etype (N, Any_Access);
2728 end Analyze_Null;
2729
2730 ----------------------
2731 -- Analyze_One_Call --
2732 ----------------------
2733
2734 procedure Analyze_One_Call
ec6078e3
ES
2735 (N : Node_Id;
2736 Nam : Entity_Id;
2737 Report : Boolean;
2738 Success : out Boolean;
2739 Skip_First : Boolean := False)
996ae0b0 2740 is
d469eabe
HK
2741 Actuals : constant List_Id := Parameter_Associations (N);
2742 Prev_T : constant Entity_Id := Etype (N);
2743
aab883ec
ES
2744 Must_Skip : constant Boolean := Skip_First
2745 or else Nkind (Original_Node (N)) = N_Selected_Component
2746 or else
2747 (Nkind (Original_Node (N)) = N_Indexed_Component
2748 and then Nkind (Prefix (Original_Node (N)))
2749 = N_Selected_Component);
2750 -- The first formal must be omitted from the match when trying to find
2751 -- a primitive operation that is a possible interpretation, and also
2752 -- after the call has been rewritten, because the corresponding actual
2753 -- is already known to be compatible, and because this may be an
2754 -- indexing of a call with default parameters.
2755
53cf4600
ES
2756 Formal : Entity_Id;
2757 Actual : Node_Id;
2758 Is_Indexed : Boolean := False;
2759 Is_Indirect : Boolean := False;
2760 Subp_Type : constant Entity_Id := Etype (Nam);
2761 Norm_OK : Boolean;
996ae0b0 2762
157a9bf5
ES
2763 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2764 -- There may be a user-defined operator that hides the current
2765 -- interpretation. We must check for this independently of the
2766 -- analysis of the call with the user-defined operation, because
2767 -- the parameter names may be wrong and yet the hiding takes place.
2768 -- This fixes a problem with ACATS test B34014O.
2769 --
2770 -- When the type Address is a visible integer type, and the DEC
2771 -- system extension is visible, the predefined operator may be
2772 -- hidden as well, by one of the address operations in auxdec.
2773 -- Finally, The abstract operations on address do not hide the
2774 -- predefined operator (this is the purpose of making them abstract).
2775
fbf5a39b 2776 procedure Indicate_Name_And_Type;
996ae0b0
RK
2777 -- If candidate interpretation matches, indicate name and type of
2778 -- result on call node.
2779
fbf5a39b
AC
2780 ----------------------------
2781 -- Indicate_Name_And_Type --
2782 ----------------------------
996ae0b0 2783
fbf5a39b 2784 procedure Indicate_Name_And_Type is
996ae0b0
RK
2785 begin
2786 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 2787 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
2788 Success := True;
2789
2790 -- If the prefix of the call is a name, indicate the entity
2791 -- being called. If it is not a name, it is an expression that
2792 -- denotes an access to subprogram or else an entry or family. In
2793 -- the latter case, the name is a selected component, and the entity
2794 -- being called is noted on the selector.
2795
2796 if not Is_Type (Nam) then
a3f2babd 2797 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
2798 Set_Entity (Name (N), Nam);
2799
2800 elsif Nkind (Name (N)) = N_Selected_Component then
2801 Set_Entity (Selector_Name (Name (N)), Nam);
2802 end if;
2803 end if;
2804
2805 if Debug_Flag_E and not Report then
2806 Write_Str (" Overloaded call ");
2807 Write_Int (Int (N));
2808 Write_Str (" compatible with ");
2809 Write_Int (Int (Nam));
2810 Write_Eol;
2811 end if;
fbf5a39b 2812 end Indicate_Name_And_Type;
996ae0b0 2813
157a9bf5
ES
2814 ------------------------
2815 -- Operator_Hidden_By --
2816 ------------------------
2817
2818 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2819 Act1 : constant Node_Id := First_Actual (N);
2820 Act2 : constant Node_Id := Next_Actual (Act1);
2821 Form1 : constant Entity_Id := First_Formal (Fun);
2822 Form2 : constant Entity_Id := Next_Formal (Form1);
2823
2824 begin
2825 if Ekind (Fun) /= E_Function
2826 or else Is_Abstract_Subprogram (Fun)
2827 then
2828 return False;
2829
2830 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2831 return False;
2832
2833 elsif Present (Form2) then
2834 if
2835 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2836 then
2837 return False;
2838 end if;
2839
2840 elsif Present (Act2) then
2841 return False;
2842 end if;
2843
2844 -- Now we know that the arity of the operator matches the function,
2845 -- and the function call is a valid interpretation. The function
2846 -- hides the operator if it has the right signature, or if one of
2847 -- its operands is a non-abstract operation on Address when this is
2848 -- a visible integer type.
2849
2850 return Hides_Op (Fun, Nam)
2851 or else Is_Descendent_Of_Address (Etype (Form1))
2852 or else
2853 (Present (Form2)
2854 and then Is_Descendent_Of_Address (Etype (Form2)));
2855 end Operator_Hidden_By;
2856
996ae0b0
RK
2857 -- Start of processing for Analyze_One_Call
2858
2859 begin
2860 Success := False;
2861
157a9bf5
ES
2862 -- If the subprogram has no formals or if all the formals have defaults,
2863 -- and the return type is an array type, the node may denote an indexing
2864 -- of the result of a parameterless call. In Ada 2005, the subprogram
2865 -- may have one non-defaulted formal, and the call may have been written
2866 -- in prefix notation, so that the rebuilt parameter list has more than
2867 -- one actual.
996ae0b0 2868
53cf4600
ES
2869 if not Is_Overloadable (Nam)
2870 and then Ekind (Nam) /= E_Subprogram_Type
2871 and then Ekind (Nam) /= E_Entry_Family
2872 then
2873 return;
2874 end if;
2875
8f2eeab7 2876 -- An indexing requires at least one actual
e1f3cb58
AC
2877
2878 if not Is_Empty_List (Actuals)
aab883ec
ES
2879 and then
2880 (Needs_No_Actuals (Nam)
2881 or else
2882 (Needs_One_Actual (Nam)
2883 and then Present (Next_Actual (First (Actuals)))))
996ae0b0
RK
2884 then
2885 if Is_Array_Type (Subp_Type) then
aab883ec 2886 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
2887
2888 elsif Is_Access_Type (Subp_Type)
2889 and then Is_Array_Type (Designated_Type (Subp_Type))
2890 then
2891 Is_Indexed :=
aab883ec
ES
2892 Try_Indexed_Call
2893 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 2894
758c442c 2895 -- The prefix can also be a parameterless function that returns an
f3d57416 2896 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
2897 -- If this succeeds, an explicit dereference is added later on,
2898 -- in Analyze_Call or Resolve_Call.
758c442c 2899
996ae0b0 2900 elsif Is_Access_Type (Subp_Type)
401093c1 2901 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 2902 then
53cf4600 2903 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
2904 end if;
2905
2906 end if;
2907
5ff22245 2908 -- If the call has been transformed into a slice, it is of the form
30783513 2909 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
2910 -- Try_Indexed_Call and there is nothing else to do.
2911
2912 if Is_Indexed
2913 and then Nkind (N) = N_Slice
2914 then
2915 return;
2916 end if;
2917
53cf4600
ES
2918 Normalize_Actuals
2919 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
2920
2921 if not Norm_OK then
2922
53cf4600
ES
2923 -- If an indirect call is a possible interpretation, indicate
2924 -- success to the caller.
2925
2926 if Is_Indirect then
2927 Success := True;
2928 return;
2929
996ae0b0
RK
2930 -- Mismatch in number or names of parameters
2931
53cf4600 2932 elsif Debug_Flag_E then
996ae0b0
RK
2933 Write_Str (" normalization fails in call ");
2934 Write_Int (Int (N));
2935 Write_Str (" with subprogram ");
2936 Write_Int (Int (Nam));
2937 Write_Eol;
2938 end if;
2939
2940 -- If the context expects a function call, discard any interpretation
2941 -- that is a procedure. If the node is not overloaded, leave as is for
2942 -- better error reporting when type mismatch is found.
2943
2944 elsif Nkind (N) = N_Function_Call
2945 and then Is_Overloaded (Name (N))
2946 and then Ekind (Nam) = E_Procedure
2947 then
2948 return;
2949
4c46b835 2950 -- Ditto for function calls in a procedure context
996ae0b0
RK
2951
2952 elsif Nkind (N) = N_Procedure_Call_Statement
2953 and then Is_Overloaded (Name (N))
2954 and then Etype (Nam) /= Standard_Void_Type
2955 then
2956 return;
2957
fe45e59e 2958 elsif No (Actuals) then
996ae0b0
RK
2959
2960 -- If Normalize succeeds, then there are default parameters for
2961 -- all formals.
2962
fbf5a39b 2963 Indicate_Name_And_Type;
996ae0b0
RK
2964
2965 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
2966 if Nkind (N) = N_Procedure_Call_Statement then
2967 return;
2968 end if;
2969
2970 -- This can occur when the prefix of the call is an operator
2971 -- name or an expanded name whose selector is an operator name.
2972
2973 Analyze_Operator_Call (N, Nam);
2974
2975 if Etype (N) /= Prev_T then
2976
157a9bf5 2977 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
2978
2979 if Is_Overloaded (Name (N)) then
2980 declare
2981 I : Interp_Index;
2982 It : Interp;
2983
2984 begin
2985 Get_First_Interp (Name (N), I, It);
996ae0b0 2986 while Present (It.Nam) loop
157a9bf5 2987 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
2988 Set_Etype (N, Prev_T);
2989 return;
2990 end if;
2991
2992 Get_Next_Interp (I, It);
2993 end loop;
2994 end;
2995 end if;
2996
2997 -- If operator matches formals, record its name on the call.
2998 -- If the operator is overloaded, Resolve will select the
2999 -- correct one from the list of interpretations. The call
3000 -- node itself carries the first candidate.
3001
3002 Set_Entity (Name (N), Nam);
3003 Success := True;
3004
3005 elsif Report and then Etype (N) = Any_Type then
3006 Error_Msg_N ("incompatible arguments for operator", N);
3007 end if;
3008
3009 else
3010 -- Normalize_Actuals has chained the named associations in the
3011 -- correct order of the formals.
3012
3013 Actual := First_Actual (N);
3014 Formal := First_Formal (Nam);
ec6078e3 3015
df3e68b1
HK
3016 -- If we are analyzing a call rewritten from object notation, skip
3017 -- first actual, which may be rewritten later as an explicit
3018 -- dereference.
ec6078e3 3019
aab883ec 3020 if Must_Skip then
ec6078e3
ES
3021 Next_Actual (Actual);
3022 Next_Formal (Formal);
3023 end if;
3024
996ae0b0 3025 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3026 if Nkind (Parent (Actual)) /= N_Parameter_Association
3027 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3028 then
9c510803
ES
3029 -- The actual can be compatible with the formal, but we must
3030 -- also check that the context is not an address type that is
3031 -- visibly an integer type, as is the case in VMS_64. In this
3032 -- case the use of literals is illegal, except in the body of
3033 -- descendents of system, where arithmetic operations on
3034 -- address are of course used.
3035
3036 if Has_Compatible_Type (Actual, Etype (Formal))
3037 and then
3038 (Etype (Actual) /= Universal_Integer
3039 or else not Is_Descendent_Of_Address (Etype (Formal))
3040 or else
3041 Is_Predefined_File_Name
3042 (Unit_File_Name (Get_Source_Unit (N))))
3043 then
996ae0b0
RK
3044 Next_Actual (Actual);
3045 Next_Formal (Formal);
3046
3047 else
3048 if Debug_Flag_E then
3049 Write_Str (" type checking fails in call ");
3050 Write_Int (Int (N));
3051 Write_Str (" with formal ");
3052 Write_Int (Int (Formal));
3053 Write_Str (" in subprogram ");
3054 Write_Int (Int (Nam));
3055 Write_Eol;
3056 end if;
3057
53cf4600 3058 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3059
3060 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3061 -- to help new Ada 2005 users.
758c442c
GD
3062
3063 if Is_Class_Wide_Type (Etype (Formal))
3064 and then Is_Interface (Etype (Etype (Formal)))
3065 and then not Interface_Present_In_Ancestor
3066 (Typ => Etype (Actual),
3067 Iface => Etype (Etype (Formal)))
3068 then
758c442c 3069 Error_Msg_NE
ec6078e3 3070 ("(Ada 2005) does not implement interface }",
758c442c
GD
3071 Actual, Etype (Etype (Formal)));
3072 end if;
3073
996ae0b0
RK
3074 Wrong_Type (Actual, Etype (Formal));
3075
3076 if Nkind (Actual) = N_Op_Eq
3077 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3078 then
3079 Formal := First_Formal (Nam);
996ae0b0 3080 while Present (Formal) loop
996ae0b0 3081 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3082 Error_Msg_N -- CODEFIX
fbf5a39b 3083 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3084 exit;
3085 end if;
3086
3087 Next_Formal (Formal);
3088 end loop;
3089 end if;
3090
3091 if All_Errors_Mode then
3092 Error_Msg_Sloc := Sloc (Nam);
3093
3b42c566
RD
3094 if Etype (Formal) = Any_Type then
3095 Error_Msg_N
3096 ("there is no legal actual parameter", Actual);
3097 end if;
3098
996ae0b0
RK
3099 if Is_Overloadable (Nam)
3100 and then Present (Alias (Nam))
3101 and then not Comes_From_Source (Nam)
3102 then
3103 Error_Msg_NE
401093c1
ES
3104 ("\\ =='> in call to inherited operation & #!",
3105 Actual, Nam);
7324bf49
AC
3106
3107 elsif Ekind (Nam) = E_Subprogram_Type then
3108 declare
3109 Access_To_Subprogram_Typ :
3110 constant Entity_Id :=
3111 Defining_Identifier
3112 (Associated_Node_For_Itype (Nam));
3113 begin
3114 Error_Msg_NE (
401093c1 3115 "\\ =='> in call to dereference of &#!",
7324bf49
AC
3116 Actual, Access_To_Subprogram_Typ);
3117 end;
3118
996ae0b0 3119 else
401093c1
ES
3120 Error_Msg_NE
3121 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3122
996ae0b0
RK
3123 end if;
3124 end if;
3125 end if;
3126
3127 return;
3128 end if;
3129
3130 else
3131 -- Normalize_Actuals has verified that a default value exists
3132 -- for this formal. Current actual names a subsequent formal.
3133
3134 Next_Formal (Formal);
3135 end if;
3136 end loop;
3137
4c46b835 3138 -- On exit, all actuals match
996ae0b0 3139
fbf5a39b 3140 Indicate_Name_And_Type;
996ae0b0
RK
3141 end if;
3142 end Analyze_One_Call;
3143
15ce9ca2
AC
3144 ---------------------------
3145 -- Analyze_Operator_Call --
3146 ---------------------------
996ae0b0
RK
3147
3148 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3149 Op_Name : constant Name_Id := Chars (Op_Id);
3150 Act1 : constant Node_Id := First_Actual (N);
3151 Act2 : constant Node_Id := Next_Actual (Act1);
3152
3153 begin
4c46b835
AC
3154 -- Binary operator case
3155
996ae0b0
RK
3156 if Present (Act2) then
3157
4c46b835 3158 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3159
3160 if Present (Next_Actual (Act2)) then
996ae0b0 3161 return;
b7539c3b 3162 end if;
996ae0b0 3163
b7539c3b 3164 -- Otherwise action depends on operator
996ae0b0 3165
b7539c3b
AC
3166 case Op_Name is
3167 when Name_Op_Add |
3168 Name_Op_Subtract |
3169 Name_Op_Multiply |
3170 Name_Op_Divide |
3171 Name_Op_Mod |
3172 Name_Op_Rem |
3173 Name_Op_Expon =>
3174 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3175
b7539c3b
AC
3176 when Name_Op_And |
3177 Name_Op_Or |
3178 Name_Op_Xor =>
3179 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3180
b7539c3b
AC
3181 when Name_Op_Lt |
3182 Name_Op_Le |
3183 Name_Op_Gt |
3184 Name_Op_Ge =>
3185 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3186
b7539c3b
AC
3187 when Name_Op_Eq |
3188 Name_Op_Ne =>
3189 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3190
b7539c3b
AC
3191 when Name_Op_Concat =>
3192 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3193
b7539c3b
AC
3194 -- Is this when others, or should it be an abort???
3195
3196 when others =>
3197 null;
3198 end case;
996ae0b0 3199
4c46b835 3200 -- Unary operator case
996ae0b0 3201
4c46b835 3202 else
b7539c3b
AC
3203 case Op_Name is
3204 when Name_Op_Subtract |
3205 Name_Op_Add |
3206 Name_Op_Abs =>
3207 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3208
b7539c3b
AC
3209 when Name_Op_Not =>
3210 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3211
b7539c3b 3212 -- Is this when others correct, or should it be an abort???
996ae0b0 3213
b7539c3b
AC
3214 when others =>
3215 null;
3216 end case;
996ae0b0
RK
3217 end if;
3218 end Analyze_Operator_Call;
3219
3220 -------------------------------------------
3221 -- Analyze_Overloaded_Selected_Component --
3222 -------------------------------------------
3223
3224 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3225 Nam : constant Node_Id := Prefix (N);
3226 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3227 Comp : Entity_Id;
996ae0b0
RK
3228 I : Interp_Index;
3229 It : Interp;
3230 T : Entity_Id;
3231
3232 begin
4c46b835 3233 Set_Etype (Sel, Any_Type);
996ae0b0 3234
4c46b835 3235 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3236 while Present (It.Typ) loop
3237 if Is_Access_Type (It.Typ) then
3238 T := Designated_Type (It.Typ);
fbf5a39b 3239 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3240 else
3241 T := It.Typ;
3242 end if;
3243
95eb8b69
AC
3244 -- Locate the component. For a private prefix the selector can denote
3245 -- a discriminant.
3246
3247 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3248
3249 -- If the prefix is a class-wide type, the visible components are
3250 -- those of the base type.
3251
3252 if Is_Class_Wide_Type (T) then
3253 T := Etype (T);
3254 end if;
3255
996ae0b0 3256 Comp := First_Entity (T);
996ae0b0 3257 while Present (Comp) loop
996ae0b0
RK
3258 if Chars (Comp) = Chars (Sel)
3259 and then Is_Visible_Component (Comp)
3260 then
996ae0b0 3261
f16d05d9
AC
3262 -- AI05-105: if the context is an object renaming with
3263 -- an anonymous access type, the expected type of the
3264 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3265
f16d05d9
AC
3266 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3267 or else No (Access_Definition (Parent (N)))
3268 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3269 or else
3270 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3271 then
3272 Set_Entity (Sel, Comp);
3273 Set_Etype (Sel, Etype (Comp));
3274 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3275 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3276
3277 -- This also specifies a candidate to resolve the name.
3278 -- Further overloading will be resolved from context.
3279 -- The selector name itself does not carry overloading
3280 -- information.
3281
3282 Set_Etype (Nam, It.Typ);
3283
3284 else
b61ee1aa 3285 -- Named access type in the context of a renaming
f16d05d9
AC
3286 -- declaration with an access definition. Remove
3287 -- inapplicable candidate.
3288
3289 Remove_Interp (I);
3290 end if;
996ae0b0
RK
3291 end if;
3292
3293 Next_Entity (Comp);
3294 end loop;
3295
3296 elsif Is_Concurrent_Type (T) then
3297 Comp := First_Entity (T);
996ae0b0
RK
3298 while Present (Comp)
3299 and then Comp /= First_Private_Entity (T)
3300 loop
3301 if Chars (Comp) = Chars (Sel) then
3302 if Is_Overloadable (Comp) then
3303 Add_One_Interp (Sel, Comp, Etype (Comp));
3304 else
3305 Set_Entity_With_Style_Check (Sel, Comp);
3306 Generate_Reference (Comp, Sel);
3307 end if;
3308
3309 Set_Etype (Sel, Etype (Comp));
3310 Set_Etype (N, Etype (Comp));
3311 Set_Etype (Nam, It.Typ);
3312
09494c32
AC
3313 -- For access type case, introduce explicit dereference for
3314 -- more uniform treatment of entry calls. Do this only once
3315 -- if several interpretations yield an access type.
996ae0b0 3316
d469eabe
HK
3317 if Is_Access_Type (Etype (Nam))
3318 and then Nkind (Nam) /= N_Explicit_Dereference
3319 then
996ae0b0 3320 Insert_Explicit_Dereference (Nam);
fbf5a39b
AC
3321 Error_Msg_NW
3322 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3323 end if;
3324 end if;
3325
3326 Next_Entity (Comp);
3327 end loop;
3328
3329 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3330 end if;
3331
3332 Get_Next_Interp (I, It);
3333 end loop;
3334
0a36105d
JM
3335 if Etype (N) = Any_Type
3336 and then not Try_Object_Operation (N)
3337 then
996ae0b0
RK
3338 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3339 Set_Entity (Sel, Any_Id);
3340 Set_Etype (Sel, Any_Type);
3341 end if;
996ae0b0
RK
3342 end Analyze_Overloaded_Selected_Component;
3343
3344 ----------------------------------
3345 -- Analyze_Qualified_Expression --
3346 ----------------------------------
3347
3348 procedure Analyze_Qualified_Expression (N : Node_Id) is
3349 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3350 Expr : constant Node_Id := Expression (N);
3351 I : Interp_Index;
3352 It : Interp;
996ae0b0
RK
3353 T : Entity_Id;
3354
3355 begin
45c8b94b
ES
3356 Analyze_Expression (Expr);
3357
996ae0b0
RK
3358 Set_Etype (N, Any_Type);
3359 Find_Type (Mark);
3360 T := Entity (Mark);
45c8b94b 3361 Set_Etype (N, T);
996ae0b0
RK
3362
3363 if T = Any_Type then
3364 return;
3365 end if;
996ae0b0 3366
4c46b835 3367 Check_Fully_Declared (T, N);
45c8b94b
ES
3368
3369 -- If expected type is class-wide, check for exact match before
3370 -- expansion, because if the expression is a dispatching call it
3371 -- may be rewritten as explicit dereference with class-wide result.
3372 -- If expression is overloaded, retain only interpretations that
3373 -- will yield exact matches.
3374
3375 if Is_Class_Wide_Type (T) then
3376 if not Is_Overloaded (Expr) then
3377 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3378 if Nkind (Expr) = N_Aggregate then
3379 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3380 else
3381 Wrong_Type (Expr, T);
3382 end if;
3383 end if;
3384
3385 else
3386 Get_First_Interp (Expr, I, It);
3387
3388 while Present (It.Nam) loop
3389 if Base_Type (It.Typ) /= Base_Type (T) then
3390 Remove_Interp (I);
3391 end if;
3392
3393 Get_Next_Interp (I, It);
3394 end loop;
3395 end if;
3396 end if;
3397
996ae0b0
RK
3398 Set_Etype (N, T);
3399 end Analyze_Qualified_Expression;
3400
a961aa79
AC
3401 -----------------------------------
3402 -- Analyze_Quantified_Expression --
3403 -----------------------------------
3404
3405 procedure Analyze_Quantified_Expression (N : Node_Id) is
b3e42de5
VP
3406 Loc : constant Source_Ptr := Sloc (N);
3407 Ent : constant Entity_Id :=
3408 New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3409
3410 Need_Preanalysis : constant Boolean :=
3411 Operating_Mode /= Check_Semantics
3412 and then not Alfa_Mode;
a961aa79 3413
011f9d5d
AC
3414 Iterator : Node_Id;
3415 Original_N : Node_Id;
90c63b09 3416
a961aa79 3417 begin
b3e42de5
VP
3418 -- The approach in this procedure is very non-standard and at the
3419 -- very least, extensive comments are required saying why this very
3420 -- non-standard approach is needed???
3421
3422 -- Also general comments are needed in any case saying what is going
3423 -- on here, since tree rewriting of this kind should normally be done
3424 -- by the expander and not by the analyzer ??? Probably Ent, Iterator,
3425 -- and Original_N, and Needs_Preanalysis, all need comments above ???
3426
011f9d5d
AC
3427 -- Preserve the original node used for the expansion of the quantified
3428 -- expression.
3429
b3e42de5
VP
3430 -- This is a very unusual use of Copy_Separate_Tree, needs looking at???
3431
3432 if Need_Preanalysis then
011f9d5d
AC
3433 Original_N := Copy_Separate_Tree (N);
3434 end if;
3435
62db841a 3436 Set_Etype (Ent, Standard_Void_Type);
c37cbdc3
AC
3437 Set_Scope (Ent, Current_Scope);
3438 Set_Parent (Ent, N);
833eaa8a 3439
2ba431e5 3440 Check_SPARK_Restriction ("quantified expression is not allowed", N);
1d801f21 3441
b3e42de5
VP
3442 -- The following seems like expansion activity done at analysis
3443 -- time, which seems weird ???
3444
c56a9ba4
AC
3445 if Present (Loop_Parameter_Specification (N)) then
3446 Iterator :=
3447 Make_Iteration_Scheme (Loc,
4561baf7
ES
3448 Loop_Parameter_Specification =>
3449 Loop_Parameter_Specification (N));
c56a9ba4
AC
3450 else
3451 Iterator :=
3452 Make_Iteration_Scheme (Loc,
3453 Iterator_Specification =>
3454 Iterator_Specification (N));
3455 end if;
a961aa79
AC
3456
3457 Push_Scope (Ent);
c56a9ba4 3458 Set_Parent (Iterator, N);
a961aa79 3459 Analyze_Iteration_Scheme (Iterator);
c56a9ba4 3460
833eaa8a
AC
3461 -- The loop specification may have been converted into an iterator
3462 -- specification during its analysis. Update the quantified node
3463 -- accordingly.
c56a9ba4
AC
3464
3465 if Present (Iterator_Specification (Iterator)) then
3466 Set_Iterator_Specification
3467 (N, Iterator_Specification (Iterator));
3468 Set_Loop_Parameter_Specification (N, Empty);
62db841a 3469 Set_Parent (Iterator_Specification (Iterator), Iterator);
c56a9ba4
AC
3470 end if;
3471
b3e42de5 3472 if Need_Preanalysis then
ce6002ec
AC
3473
3474 -- The full analysis will be performed during the expansion of the
3475 -- quantified expression, only a preanalysis of the condition needs
3476 -- to be done.
3477
b3e42de5 3478 -- This is strange for two reasons
2a1b208c 3479
b3e42de5
VP
3480 -- First, there is almost no situation in which Preanalyze vs
3481 -- Analyze should be conditioned on -gnatc mode (since error msgs
3482 -- must be 100% unaffected by -gnatc). Seconed doing a Preanalyze
3483 -- with no resolution almost certainly means that some messages are
3484 -- either missed, or flagged differently in the two cases.
3485
3486 Preanalyze (Condition (N));
ce6002ec
AC
3487 else
3488 Analyze (Condition (N));
3489 end if;
3490
a961aa79 3491 End_Scope;
011f9d5d 3492
a961aa79 3493 Set_Etype (N, Standard_Boolean);
011f9d5d
AC
3494
3495 -- Attach the original node to the iteration scheme created above
3496
b3e42de5 3497 if Need_Preanalysis then
011f9d5d
AC
3498 Set_Etype (Original_N, Standard_Boolean);
3499 Set_Parent (Iterator, Original_N);
3500 end if;
a961aa79
AC
3501 end Analyze_Quantified_Expression;
3502
996ae0b0
RK
3503 -------------------
3504 -- Analyze_Range --
3505 -------------------
3506
3507 procedure Analyze_Range (N : Node_Id) is
3508 L : constant Node_Id := Low_Bound (N);
3509 H : constant Node_Id := High_Bound (N);
3510 I1, I2 : Interp_Index;
3511 It1, It2 : Interp;
3512
3513 procedure Check_Common_Type (T1, T2 : Entity_Id);
3514 -- Verify the compatibility of two types, and choose the
3515 -- non universal one if the other is universal.
3516
3517 procedure Check_High_Bound (T : Entity_Id);
3518 -- Test one interpretation of the low bound against all those
3519 -- of the high bound.
3520
fbf5a39b 3521 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
3522 -- In Ada 83, reject bounds of a universal range that are not literals
3523 -- or entity names.
fbf5a39b 3524
996ae0b0
RK
3525 -----------------------
3526 -- Check_Common_Type --
3527 -----------------------
3528
3529 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3530 begin
b4592168
GD
3531 if Covers (T1 => T1, T2 => T2)
3532 or else
3533 Covers (T1 => T2, T2 => T1)
3534 then
996ae0b0
RK
3535 if T1 = Universal_Integer
3536 or else T1 = Universal_Real
3537 or else T1 = Any_Character
3538 then
3539 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3540
fbf5a39b 3541 elsif T1 = T2 then
996ae0b0
RK
3542 Add_One_Interp (N, T1, T1);
3543
3544 else
3545 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3546 end if;
3547 end if;
3548 end Check_Common_Type;
3549
3550 ----------------------
3551 -- Check_High_Bound --
3552 ----------------------
3553
3554 procedure Check_High_Bound (T : Entity_Id) is
3555 begin
3556 if not Is_Overloaded (H) then
3557 Check_Common_Type (T, Etype (H));
3558 else
3559 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3560 while Present (It2.Typ) loop
3561 Check_Common_Type (T, It2.Typ);
3562 Get_Next_Interp (I2, It2);
3563 end loop;
3564 end if;
3565 end Check_High_Bound;
3566
fbf5a39b
AC
3567 -----------------------------
3568 -- Is_Universal_Expression --
3569 -----------------------------
3570
3571 procedure Check_Universal_Expression (N : Node_Id) is
3572 begin
3573 if Etype (N) = Universal_Integer
3574 and then Nkind (N) /= N_Integer_Literal
3575 and then not Is_Entity_Name (N)
3576 and then Nkind (N) /= N_Attribute_Reference
3577 then
3578 Error_Msg_N ("illegal bound in discrete range", N);
3579 end if;
3580 end Check_Universal_Expression;
3581
996ae0b0
RK
3582 -- Start of processing for Analyze_Range
3583
3584 begin
3585 Set_Etype (N, Any_Type);
3586 Analyze_Expression (L);
3587 Analyze_Expression (H);
3588
3589 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3590 return;
3591
3592 else
3593 if not Is_Overloaded (L) then
3594 Check_High_Bound (Etype (L));
3595 else
3596 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3597 while Present (It1.Typ) loop
3598 Check_High_Bound (It1.Typ);
3599 Get_Next_Interp (I1, It1);
3600 end loop;
3601 end if;
3602
3603 -- If result is Any_Type, then we did not find a compatible pair
3604
3605 if Etype (N) = Any_Type then
3606 Error_Msg_N ("incompatible types in range ", N);
3607 end if;
3608 end if;
fbf5a39b 3609
0ab80019 3610 if Ada_Version = Ada_83
fbf5a39b
AC
3611 and then
3612 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3613 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3614 then
3615 Check_Universal_Expression (L);
3616 Check_Universal_Expression (H);
3617 end if;
996ae0b0
RK
3618 end Analyze_Range;
3619
3620 -----------------------
3621 -- Analyze_Reference --
3622 -----------------------
3623
3624 procedure Analyze_Reference (N : Node_Id) is
3625 P : constant Node_Id := Prefix (N);
b4592168
GD
3626 E : Entity_Id;
3627 T : Entity_Id;
996ae0b0 3628 Acc_Type : Entity_Id;
b4592168 3629
996ae0b0
RK
3630 begin
3631 Analyze (P);
b4592168
GD
3632
3633 -- An interesting error check, if we take the 'Reference of an object
3634 -- for which a pragma Atomic or Volatile has been given, and the type
3635 -- of the object is not Atomic or Volatile, then we are in trouble. The
3636 -- problem is that no trace of the atomic/volatile status will remain
3637 -- for the backend to respect when it deals with the resulting pointer,
3638 -- since the pointer type will not be marked atomic (it is a pointer to
3639 -- the base type of the object).
3640
3641 -- It is not clear if that can ever occur, but in case it does, we will
3642 -- generate an error message. Not clear if this message can ever be
3643 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3644 -- seems worth checking, except in CodePeer mode where we do not really
3645 -- care and don't want to bother the user.
b4592168
GD
3646
3647 T := Etype (P);
3648
3649 if Is_Entity_Name (P)
3650 and then Is_Object_Reference (P)
d2f25cd1 3651 and then not CodePeer_Mode
b4592168
GD
3652 then
3653 E := Entity (P);
3654 T := Etype (P);
3655
3656 if (Has_Atomic_Components (E)
3657 and then not Has_Atomic_Components (T))
3658 or else
3659 (Has_Volatile_Components (E)
3660 and then not Has_Volatile_Components (T))
3661 or else (Is_Atomic (E) and then not Is_Atomic (T))
3662 or else (Is_Volatile (E) and then not Is_Volatile (T))
3663 then
3664 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3665 end if;
3666 end if;
3667
3668 -- Carry on with normal processing
3669
996ae0b0 3670 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3671 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3672 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3673 Set_Etype (N, Acc_Type);
3674 end Analyze_Reference;
3675
3676 --------------------------------
3677 -- Analyze_Selected_Component --
3678 --------------------------------
3679
2383acbd
AC
3680 -- Prefix is a record type or a task or protected type. In the latter case,
3681 -- the selector must denote a visible entry.
996ae0b0
RK
3682
3683 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3684 Name : constant Node_Id := Prefix (N);
3685 Sel : constant Node_Id := Selector_Name (N);
3686 Act_Decl : Node_Id;
3687 Comp : Entity_Id;
3688 Has_Candidate : Boolean := False;
3689 In_Scope : Boolean;
3690 Parent_N : Node_Id;
3691 Pent : Entity_Id := Empty;
3692 Prefix_Type : Entity_Id;
401093c1
ES
3693
3694 Type_To_Use : Entity_Id;
3695 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3696 -- a class-wide type, we use its root type, whose components are
3697 -- present in the class-wide type.
3698
2383acbd
AC
3699 Is_Single_Concurrent_Object : Boolean;
3700 -- Set True if the prefix is a single task or a single protected object
3701
20261dc1
AC
3702 procedure Find_Component_In_Instance (Rec : Entity_Id);
3703 -- In an instance, a component of a private extension may not be visible
3704 -- while it was visible in the generic. Search candidate scope for a
3705 -- component with the proper identifier. This is only done if all other
3706 -- searches have failed. When the match is found (it always will be),
3707 -- the Etype of both N and Sel are set from this component, and the
3708 -- entity of Sel is set to reference this component.
3709
d469eabe
HK
3710 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3711 -- It is known that the parent of N denotes a subprogram call. Comp
3712 -- is an overloadable component of the concurrent type of the prefix.
3713 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
3714 -- conformant. If the parent node is not analyzed yet it may be an
3715 -- indexed component rather than a function call.
d469eabe 3716
20261dc1
AC
3717 --------------------------------
3718 -- Find_Component_In_Instance --
3719 --------------------------------
3720
3721 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3722 Comp : Entity_Id;
3723
3724 begin
3725 Comp := First_Component (Rec);
3726 while Present (Comp) loop
3727 if Chars (Comp) = Chars (Sel) then
3728 Set_Entity_With_Style_Check (Sel, Comp);
3729 Set_Etype (Sel, Etype (Comp));
3730 Set_Etype (N, Etype (Comp));
3731 return;
3732 end if;
3733
3734 Next_Component (Comp);
3735 end loop;
3736
3737 -- This must succeed because code was legal in the generic
3738
3739 raise Program_Error;
3740 end Find_Component_In_Instance;
3741
d469eabe
HK
3742 ------------------------------
3743 -- Has_Mode_Conformant_Spec --
3744 ------------------------------
3745
3746 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3747 Comp_Param : Entity_Id;
3748 Param : Node_Id;
3749 Param_Typ : Entity_Id;
3750
3751 begin
3752 Comp_Param := First_Formal (Comp);
b4592168
GD
3753
3754 if Nkind (Parent (N)) = N_Indexed_Component then
3755 Param := First (Expressions (Parent (N)));
3756 else
3757 Param := First (Parameter_Associations (Parent (N)));
3758 end if;
3759
d469eabe
HK
3760 while Present (Comp_Param)
3761 and then Present (Param)
3762 loop
3763 Param_Typ := Find_Parameter_Type (Param);
3764
3765 if Present (Param_Typ)
3766 and then
3767 not Conforming_Types
3768 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3769 then
3770 return False;
3771 end if;
3772
3773 Next_Formal (Comp_Param);
3774 Next (Param);
3775 end loop;
3776
3777 -- One of the specs has additional formals
3778
3779 if Present (Comp_Param) or else Present (Param) then
3780 return False;
3781 end if;
3782
3783 return True;
3784 end Has_Mode_Conformant_Spec;
996ae0b0
RK
3785
3786 -- Start of processing for Analyze_Selected_Component
3787
3788 begin
3789 Set_Etype (N, Any_Type);
3790
3791 if Is_Overloaded (Name) then
3792 Analyze_Overloaded_Selected_Component (N);
3793 return;
3794
3795 elsif Etype (Name) = Any_Type then
3796 Set_Entity (Sel, Any_Id);
3797 Set_Etype (Sel, Any_Type);
3798 return;
3799
3800 else
996ae0b0
RK
3801 Prefix_Type := Etype (Name);
3802 end if;
3803
3804 if Is_Access_Type (Prefix_Type) then
07fc65c4 3805
0d57c6f4
RD
3806 -- A RACW object can never be used as prefix of a selected component
3807 -- since that means it is dereferenced without being a controlling
3808 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3809 -- reporting an error, we must check whether this is actually a
3810 -- dispatching call in prefix form.
07fc65c4 3811
996ae0b0
RK
3812 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3813 and then Comes_From_Source (N)
3814 then
b4592168
GD
3815 if Try_Object_Operation (N) then
3816 return;
3817 else
3818 Error_Msg_N
3819 ("invalid dereference of a remote access-to-class-wide value",
3820 N);
3821 end if;
07fc65c4
GB
3822
3823 -- Normal case of selected component applied to access type
3824
3825 else
fbf5a39b 3826 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
da709d08 3827
6e73e3ab
AC
3828 if Is_Entity_Name (Name) then
3829 Pent := Entity (Name);
3830 elsif Nkind (Name) = N_Selected_Component
3831 and then Is_Entity_Name (Selector_Name (Name))
3832 then
3833 Pent := Entity (Selector_Name (Name));
3834 end if;
da709d08 3835
d469eabe 3836 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 3837 end if;
b4592168
GD
3838
3839 -- If we have an explicit dereference of a remote access-to-class-wide
3840 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3841 -- have to check for the case of a prefix that is a controlling operand
3842 -- of a prefixed dispatching call, as the dereference is legal in that
3843 -- case. Normally this condition is checked in Validate_Remote_Access_
3844 -- To_Class_Wide_Type, but we have to defer the checking for selected
3845 -- component prefixes because of the prefixed dispatching call case.
3846 -- Note that implicit dereferences are checked for this just above.
3847
3848 elsif Nkind (Name) = N_Explicit_Dereference
3849 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3850 and then Comes_From_Source (N)
3851 then
3852 if Try_Object_Operation (N) then
3853 return;
3854 else
3855 Error_Msg_N
3856 ("invalid dereference of a remote access-to-class-wide value",
3857 N);
3858 end if;
aab883ec 3859 end if;
b67a385c 3860
aab883ec
ES
3861 -- (Ada 2005): if the prefix is the limited view of a type, and
3862 -- the context already includes the full view, use the full view
3863 -- in what follows, either to retrieve a component of to find
3864 -- a primitive operation. If the prefix is an explicit dereference,
3865 -- set the type of the prefix to reflect this transformation.
401093c1
ES
3866 -- If the non-limited view is itself an incomplete type, get the
3867 -- full view if available.
aab883ec
ES
3868
3869 if Is_Incomplete_Type (Prefix_Type)
3870 and then From_With_Type (Prefix_Type)
3871 and then Present (Non_Limited_View (Prefix_Type))
3872 then
401093c1 3873 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
3874
3875 if Nkind (N) = N_Explicit_Dereference then
3876 Set_Etype (Prefix (N), Prefix_Type);
3877 end if;
3878
3879 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3880 and then From_With_Type (Prefix_Type)
3881 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3882 then
3883 Prefix_Type :=
3884 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3885
3886 if Nkind (N) = N_Explicit_Dereference then
3887 Set_Etype (Prefix (N), Prefix_Type);
b67a385c 3888 end if;
996ae0b0
RK
3889 end if;
3890
3891 if Ekind (Prefix_Type) = E_Private_Subtype then
3892 Prefix_Type := Base_Type (Prefix_Type);
3893 end if;
3894
401093c1 3895 Type_To_Use := Prefix_Type;
996ae0b0
RK
3896
3897 -- For class-wide types, use the entity list of the root type. This
3898 -- indirection is specially important for private extensions because
3899 -- only the root type get switched (not the class-wide type).
3900
3901 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 3902 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
3903 end if;
3904
2383acbd
AC
3905 -- If the prefix is a single concurrent object, use its name in error
3906 -- messages, rather than that of its anonymous type.
3907
3908 Is_Single_Concurrent_Object :=
3909 Is_Concurrent_Type (Prefix_Type)
3910 and then Is_Internal_Name (Chars (Prefix_Type))
3911 and then not Is_Derived_Type (Prefix_Type)
3912 and then Is_Entity_Name (Name);
3913
401093c1 3914 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
3915
3916 -- If the selector has an original discriminant, the node appears in
3917 -- an instance. Replace the discriminant with the corresponding one
3918 -- in the current discriminated type. For nested generics, this must
3919 -- be done transitively, so note the new original discriminant.
3920
3921 if Nkind (Sel) = N_Identifier
c0b11850 3922 and then In_Instance
996ae0b0
RK
3923 and then Present (Original_Discriminant (Sel))
3924 then
3925 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3926
3927 -- Mark entity before rewriting, for completeness and because
3928 -- subsequent semantic checks might examine the original node.
3929
3930 Set_Entity (Sel, Comp);
3931 Rewrite (Selector_Name (N),
3932 New_Occurrence_Of (Comp, Sloc (N)));
3933 Set_Original_Discriminant (Selector_Name (N), Comp);
3934 Set_Etype (N, Etype (Comp));
44a10091 3935 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
3936
3937 if Is_Access_Type (Etype (Name)) then
3938 Insert_Explicit_Dereference (Name);
fbf5a39b 3939 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
3940 end if;
3941
3942 elsif Is_Record_Type (Prefix_Type) then
3943
3944 -- Find component with given name
4913e24c
AC
3945 -- In an instance, if the node is known as a prefixed call, do
3946 -- not examine components whose visibility may be accidental.
996ae0b0 3947
4913e24c 3948 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0
RK
3949 if Chars (Comp) = Chars (Sel)
3950 and then Is_Visible_Component (Comp)
3951 then
3952 Set_Entity_With_Style_Check (Sel, Comp);
996ae0b0
RK
3953 Set_Etype (Sel, Etype (Comp));
3954
3955 if Ekind (Comp) = E_Discriminant then
5d09245e 3956 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0
RK
3957 Error_Msg_N
3958 ("cannot reference discriminant of Unchecked_Union",
3959 Sel);
3960 end if;
3961
3962 if Is_Generic_Type (Prefix_Type)
3963 or else
3964 Is_Generic_Type (Root_Type (Prefix_Type))
3965 then
3966 Set_Original_Discriminant (Sel, Comp);
3967 end if;
3968 end if;
3969
3970 -- Resolve the prefix early otherwise it is not possible to
3971 -- build the actual subtype of the component: it may need
3972 -- to duplicate this prefix and duplication is only allowed
3973 -- on fully resolved expressions.
3974
fbf5a39b 3975 Resolve (Name);
996ae0b0 3976
b67a385c
ES
3977 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3978 -- subtypes in a package specification.
28be29ce
ES
3979 -- Example:
3980
3981 -- limited with Pkg;
3982 -- package Pkg is
3983 -- type Acc_Inc is access Pkg.T;
3984 -- X : Acc_Inc;
b67a385c
ES
3985 -- N : Natural := X.all.Comp; -- ERROR, limited view
3986 -- end Pkg; -- Comp is not visible
28be29ce
ES
3987
3988 if Nkind (Name) = N_Explicit_Dereference
3989 and then From_With_Type (Etype (Prefix (Name)))
3990 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
3991 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3992 N_Package_Specification
28be29ce
ES
3993 then
3994 Error_Msg_NE
3995 ("premature usage of incomplete}", Prefix (Name),
3996 Etype (Prefix (Name)));
3997 end if;
3998
996ae0b0
RK
3999 -- We never need an actual subtype for the case of a selection
4000 -- for a indexed component of a non-packed array, since in
4001 -- this case gigi generates all the checks and can find the
4002 -- necessary bounds information.
4003
0d57c6f4
RD
4004 -- We also do not need an actual subtype for the case of a
4005 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4006 -- non-packed array, since gigi can again get the bounds in
4007 -- these cases (gigi cannot handle the packed case, since it
4008 -- has the bounds of the packed array type, not the original
4009 -- bounds of the type). However, if the prefix is itself a
4010 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4011 -- as a dynamic-sized temporary, so we do generate an actual
4012 -- subtype for this case.
4013
4014 Parent_N := Parent (N);
4015
4016 if not Is_Packed (Etype (Comp))
4017 and then
4018 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4019 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4020 or else
4021 (Nkind (Parent_N) = N_Attribute_Reference
4022 and then (Attribute_Name (Parent_N) = Name_First
ffe9aba8 4023 or else
996ae0b0 4024 Attribute_Name (Parent_N) = Name_Last
ffe9aba8 4025 or else
996ae0b0 4026 Attribute_Name (Parent_N) = Name_Length
ffe9aba8 4027 or else
996ae0b0
RK
4028 Attribute_Name (Parent_N) = Name_Range)))
4029 then
4030 Set_Etype (N, Etype (Comp));
4031
98123480
ES
4032 -- If full analysis is not enabled, we do not generate an
4033 -- actual subtype, because in the absence of expansion
4034 -- reference to a formal of a protected type, for example,
4035 -- will not be properly transformed, and will lead to
4036 -- out-of-scope references in gigi.
4037
4038 -- In all other cases, we currently build an actual subtype.
4039 -- It seems likely that many of these cases can be avoided,
4040 -- but right now, the front end makes direct references to the
fbf5a39b 4041 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4042 -- not make an actual subtype, we end up getting a direct
98123480 4043 -- reference to a discriminant, which will not do.
996ae0b0 4044
98123480 4045 elsif Full_Analysis then
996ae0b0
RK
4046 Act_Decl :=
4047 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4048 Insert_Action (N, Act_Decl);
4049
4050 if No (Act_Decl) then
4051 Set_Etype (N, Etype (Comp));
4052
4053 else
4054 -- Component type depends on discriminants. Enter the
4055 -- main attributes of the subtype.
4056
4057 declare
fbf5a39b
AC
4058 Subt : constant Entity_Id :=
4059 Defining_Identifier (Act_Decl);
996ae0b0
RK
4060
4061 begin
4062 Set_Etype (Subt, Base_Type (Etype (Comp)));
4063 Set_Ekind (Subt, Ekind (Etype (Comp)));
4064 Set_Etype (N, Subt);
4065 end;
4066 end if;
98123480
ES
4067
4068 -- If Full_Analysis not enabled, just set the Etype
4069
4070 else
4071 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4072 end if;
4073
44a10091 4074 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4075 return;
4076 end if;
4077
aab883ec 4078 -- If the prefix is a private extension, check only the visible
9c510803 4079 -- components of the partial view. This must include the tag,
f3d57416 4080 -- which can appear in expanded code in a tag check.
aab883ec 4081
9c510803 4082 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4083 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4084 then
401093c1 4085 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4086 end if;
4087
996ae0b0
RK
4088 Next_Entity (Comp);
4089 end loop;
4090
d469eabe
HK
4091 -- Ada 2005 (AI-252): The selected component can be interpreted as
4092 -- a prefixed view of a subprogram. Depending on the context, this is
4093 -- either a name that can appear in a renaming declaration, or part
4094 -- of an enclosing call given in prefix form.
4095
4096 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4097 -- selected component should resolve to a name.
35ae2ed8 4098
0791fbe9 4099 if Ada_Version >= Ada_2005
35ae2ed8 4100 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4101 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4102 then
d469eabe
HK
4103 if Nkind (Parent (N)) = N_Generic_Association
4104 or else Nkind (Parent (N)) = N_Requeue_Statement
4105 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4106 then
4107 if Find_Primitive_Operation (N) then
4108 return;
4109 end if;
4110
4111 elsif Try_Object_Operation (N) then
4112 return;
4113 end if;
4c46b835 4114
98123480
ES
4115 -- If the transformation fails, it will be necessary to redo the
4116 -- analysis with all errors enabled, to indicate candidate
4117 -- interpretations and reasons for each failure ???
4c46b835 4118
35ae2ed8
AC
4119 end if;
4120
996ae0b0 4121 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4122
98123480
ES
4123 -- Allow access only to discriminants of the type. If the type has
4124 -- no full view, gigi uses the parent type for the components, so we
4125 -- do the same here.
996ae0b0
RK
4126
4127 if No (Full_View (Prefix_Type)) then
401093c1
ES
4128 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4129 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4130 end if;
4131
4132 while Present (Comp) loop
996ae0b0
RK
4133 if Chars (Comp) = Chars (Sel) then
4134 if Ekind (Comp) = E_Discriminant then
4135 Set_Entity_With_Style_Check (Sel, Comp);
4136 Generate_Reference (Comp, Sel);
4137
4138 Set_Etype (Sel, Etype (Comp));
4139 Set_Etype (N, Etype (Comp));
44a10091 4140 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4141
4142 if Is_Generic_Type (Prefix_Type)
d469eabe 4143 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4144 then
4145 Set_Original_Discriminant (Sel, Comp);
4146 end if;
4147
f3d57416 4148 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4149 -- private type and a call to a primitive operation.
4150
0791fbe9 4151 elsif Ada_Version >= Ada_2005
aab883ec
ES
4152 and then Is_Tagged_Type (Prefix_Type)
4153 and then Try_Object_Operation (N)
4154 then
4155 return;
4156
996ae0b0 4157 else
2383acbd
AC
4158 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4159 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4160 Set_Entity (Sel, Any_Id);
4161 Set_Etype (N, Any_Type);
4162 end if;
4163
4164 return;
4165 end if;
4166
4167 Next_Entity (Comp);
4168 end loop;
4169
4170 elsif Is_Concurrent_Type (Prefix_Type) then
4171
d469eabe
HK
4172 -- Find visible operation with given name. For a protected type,
4173 -- the possible candidates are discriminants, entries or protected
4174 -- procedures. For a task type, the set can only include entries or
4175 -- discriminants if the task type is not an enclosing scope. If it
4176 -- is an enclosing scope (e.g. in an inner task) then all entities
4177 -- are visible, but the prefix must denote the enclosing scope, i.e.
4178 -- can only be a direct name or an expanded name.
996ae0b0 4179
d469eabe 4180 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4181 In_Scope := In_Open_Scopes (Prefix_Type);
4182
4183 while Present (Comp) loop
4184 if Chars (Comp) = Chars (Sel) then
4185 if Is_Overloadable (Comp) then
4186 Add_One_Interp (Sel, Comp, Etype (Comp));
4187
d469eabe
HK
4188 -- If the prefix is tagged, the correct interpretation may
4189 -- lie in the primitive or class-wide operations of the
4190 -- type. Perform a simple conformance check to determine
4191 -- whether Try_Object_Operation should be invoked even if
4192 -- a visible entity is found.
4193
4194 if Is_Tagged_Type (Prefix_Type)
4195 and then
4196 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4197 N_Function_Call,
4198 N_Indexed_Component)
d469eabe
HK
4199 and then Has_Mode_Conformant_Spec (Comp)
4200 then
4201 Has_Candidate := True;
4202 end if;
4203
2383acbd
AC
4204 -- Note: a selected component may not denote a component of a
4205 -- protected type (4.1.3(7)).
4206
bce79204 4207 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4208 or else (In_Scope
4209 and then not Is_Protected_Type (Prefix_Type)
4210 and then Is_Entity_Name (Name))
996ae0b0
RK
4211 then
4212 Set_Entity_With_Style_Check (Sel, Comp);
4213 Generate_Reference (Comp, Sel);
4214
65e78a74
AC
4215 -- The selector is not overloadable, so we have a candidate
4216 -- interpretation.
4217
4218 Has_Candidate := True;
4219
996ae0b0
RK
4220 else
4221 goto Next_Comp;
4222 end if;
4223
4224 Set_Etype (Sel, Etype (Comp));
4225 Set_Etype (N, Etype (Comp));
4226
4227 if Ekind (Comp) = E_Discriminant then
4228 Set_Original_Discriminant (Sel, Comp);
4229 end if;
4230
09494c32
AC
4231 -- For access type case, introduce explicit dereference for
4232 -- more uniform treatment of entry calls.
996ae0b0
RK
4233
4234 if Is_Access_Type (Etype (Name)) then
4235 Insert_Explicit_Dereference (Name);
fbf5a39b
AC
4236 Error_Msg_NW
4237 (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4238 end if;
4239 end if;
4240
4241 <<Next_Comp>>
4242 Next_Entity (Comp);
4243 exit when not In_Scope
9bc856dd
AC
4244 and then
4245 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4246 end loop;
4247
d469eabe
HK
4248 -- If there is no visible entity with the given name or none of the
4249 -- visible entities are plausible interpretations, check whether
4250 -- there is some other primitive operation with that name.
aab883ec 4251
0791fbe9 4252 if Ada_Version >= Ada_2005
aab883ec 4253 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4254 then
d469eabe
HK
4255 if (Etype (N) = Any_Type
4256 or else not Has_Candidate)
0a36105d
JM
4257 and then Try_Object_Operation (N)
4258 then
4259 return;
4260
4261 -- If the context is not syntactically a procedure call, it
4262 -- may be a call to a primitive function declared outside of
4263 -- the synchronized type.
4264
4265 -- If the context is a procedure call, there might still be
4266 -- an overloading between an entry and a primitive procedure
4267 -- declared outside of the synchronized type, called in prefix
4268 -- notation. This is harder to disambiguate because in one case
4269 -- the controlling formal is implicit ???
4270
4271 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4272 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4273 and then Try_Object_Operation (N)
4274 then
4275 return;
4276 end if;
8cf23b91
AC
4277
4278 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4279 -- entry or procedure of a tagged concurrent type we must check
4280 -- if there are class-wide subprograms covering the primitive. If
4281 -- true then Try_Object_Operation reports the error.
4282
4283 if Has_Candidate
4284 and then Is_Concurrent_Type (Prefix_Type)
4285 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4286
4287 -- Duplicate the call. This is required to avoid problems with
4288 -- the tree transformations performed by Try_Object_Operation.
4289
11bc76df
AC
4290 and then
4291 Try_Object_Operation
4292 (N => Sinfo.Name (New_Copy_Tree (Parent (N))),
4293 CW_Test_Only => True)
8cf23b91
AC
4294 then
4295 return;
4296 end if;
aab883ec
ES
4297 end if;
4298
2383acbd 4299 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 4300
2383acbd
AC
4301 -- Case of a prefix of a protected type: selector might denote
4302 -- an invisible private component.
4303
4304 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4305 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4306 Next_Entity (Comp);
4307 end loop;
4308
4309 if Present (Comp) then
4310 if Is_Single_Concurrent_Object then
4311 Error_Msg_Node_2 := Entity (Name);
4312 Error_Msg_NE ("invisible selector& for &", N, Sel);
4313
4314 else
4315 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4316 Error_Msg_NE ("invisible selector& for }", N, Sel);
4317 end if;
4318 return;
4319 end if;
4320 end if;
4321
996ae0b0
RK
4322 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4323
4324 else
4325 -- Invalid prefix
4326
4327 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4328 end if;
4329
4c46b835 4330 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4331
4332 if Etype (N) = Any_Type then
4333
2383acbd 4334 if Is_Single_Concurrent_Object then
996ae0b0
RK
4335 Error_Msg_Node_2 := Entity (Name);
4336 Error_Msg_NE ("no selector& for&", N, Sel);
4337
401093c1 4338 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4339
de76a39c
GB
4340 elsif Is_Generic_Type (Prefix_Type)
4341 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4342 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4343 and then Is_Record_Type (Etype (Prefix_Type))
4344 then
98123480 4345 -- If this is a derived formal type, the parent may have
de76a39c
GB
4346 -- different visibility at this point. Try for an inherited
4347 -- component before reporting an error.
4348
4349 Set_Etype (Prefix (N), Etype (Prefix_Type));
4350 Analyze_Selected_Component (N);
4351 return;
4352
20261dc1
AC
4353 -- Similarly, if this is the actual for a formal derived type, the
4354 -- component inherited from the generic parent may not be visible
4355 -- in the actual, but the selected component is legal.
4356
fbf5a39b
AC
4357 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
4358 and then Is_Generic_Actual_Type (Prefix_Type)
4359 and then Present (Full_View (Prefix_Type))
4360 then
fbf5a39b 4361
20261dc1
AC
4362 Find_Component_In_Instance
4363 (Generic_Parent_Type (Parent (Prefix_Type)));
4364 return;
4c46b835 4365
20261dc1
AC
4366 -- Finally, the formal and the actual may be private extensions,
4367 -- but the generic is declared in a child unit of the parent, and
308e6f3a 4368 -- an additional step is needed to retrieve the proper scope.
fbf5a39b 4369
20261dc1
AC
4370 elsif In_Instance
4371 and then Present (Parent_Subtype (Etype (Base_Type (Prefix_Type))))
4372 then
4373 Find_Component_In_Instance
4374 (Parent_Subtype (Etype (Base_Type (Prefix_Type))));
4375 return;
fbf5a39b 4376
20261dc1 4377 -- Component not found, specialize error message when appropriate
fbf5a39b 4378
996ae0b0
RK
4379 else
4380 if Ekind (Prefix_Type) = E_Record_Subtype then
4381
f4b049db
AC
4382 -- Check whether this is a component of the base type which
4383 -- is absent from a statically constrained subtype. This will
4384 -- raise constraint error at run time, but is not a compile-
4385 -- time error. When the selector is illegal for base type as
4386 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4387
4388 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4389 while Present (Comp) loop
996ae0b0
RK
4390 if Chars (Comp) = Chars (Sel)
4391 and then Is_Visible_Component (Comp)
4392 then
4393 Set_Entity_With_Style_Check (Sel, Comp);
4394 Generate_Reference (Comp, Sel);
4395 Set_Etype (Sel, Etype (Comp));
4396 Set_Etype (N, Etype (Comp));
4397
4398 -- Emit appropriate message. Gigi will replace the
4399 -- node subsequently with the appropriate Raise.
4400
4401 Apply_Compile_Time_Constraint_Error
4402 (N, "component not present in }?",
07fc65c4 4403 CE_Discriminant_Check_Failed,
996ae0b0
RK
4404 Ent => Prefix_Type, Rep => False);
4405 Set_Raises_Constraint_Error (N);
4406 return;
4407 end if;
4408
4409 Next_Component (Comp);
4410 end loop;
4411
4412 end if;
4413
4414 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4415 Error_Msg_NE ("no selector& for}", N, Sel);
4416
94bbf008 4417 -- Add information in the case of an incomplete prefix
99d520ad
ES
4418
4419 if Is_Incomplete_Type (Type_To_Use) then
4420 declare
4421 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4422
4423 begin
4424 if From_With_Type (Scope (Type_To_Use)) then
4425 Error_Msg_NE
4426 ("\limited view of& has no components", N, Inc);
bd38b431 4427
99d520ad
ES
4428 else
4429 Error_Msg_NE
4430 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
4431
4432 if Nkind (Parent (Inc)) =
4433 N_Incomplete_Type_Declaration
99d520ad 4434 then
94bbf008
AC
4435 -- Record location of premature use in entity so that
4436 -- a continuation message is generated when the
4437 -- completion is seen.
4438
99d520ad
ES
4439 Set_Premature_Use (Parent (Inc), N);
4440 end if;
4441 end if;
4442 end;
4443 end if;
4444
401093c1 4445 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4446 end if;
4447
4448 Set_Entity (Sel, Any_Id);
4449 Set_Etype (Sel, Any_Type);
4450 end if;
4451 end Analyze_Selected_Component;
4452
4453 ---------------------------
4454 -- Analyze_Short_Circuit --
4455 ---------------------------
4456
4457 procedure Analyze_Short_Circuit (N : Node_Id) is
4458 L : constant Node_Id := Left_Opnd (N);
4459 R : constant Node_Id := Right_Opnd (N);
4460 Ind : Interp_Index;
4461 It : Interp;
4462
4463 begin
4464 Analyze_Expression (L);
4465 Analyze_Expression (R);
4466 Set_Etype (N, Any_Type);
4467
4468 if not Is_Overloaded (L) then
996ae0b0
RK
4469 if Root_Type (Etype (L)) = Standard_Boolean
4470 and then Has_Compatible_Type (R, Etype (L))
4471 then
4472 Add_One_Interp (N, Etype (L), Etype (L));
4473 end if;
4474
4475 else
4476 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4477 while Present (It.Typ) loop
4478 if Root_Type (It.Typ) = Standard_Boolean
4479 and then Has_Compatible_Type (R, It.Typ)
4480 then
4481 Add_One_Interp (N, It.Typ, It.Typ);
4482 end if;
4483
4484 Get_Next_Interp (Ind, It);
4485 end loop;
4486 end if;
4487
d469eabe
HK
4488 -- Here we have failed to find an interpretation. Clearly we know that
4489 -- it is not the case that both operands can have an interpretation of
4490 -- Boolean, but this is by far the most likely intended interpretation.
4491 -- So we simply resolve both operands as Booleans, and at least one of
4492 -- these resolutions will generate an error message, and we do not need
4493 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4494
4495 if Etype (N) = Any_Type then
4496 Resolve (L, Standard_Boolean);
4497 Resolve (R, Standard_Boolean);
4498 Set_Etype (N, Standard_Boolean);
4499 end if;
4500 end Analyze_Short_Circuit;
4501
4502 -------------------
4503 -- Analyze_Slice --
4504 -------------------
4505
4506 procedure Analyze_Slice (N : Node_Id) is
4507 P : constant Node_Id := Prefix (N);
4508 D : constant Node_Id := Discrete_Range (N);
4509 Array_Type : Entity_Id;
4510
4511 procedure Analyze_Overloaded_Slice;
4512 -- If the prefix is overloaded, select those interpretations that
4513 -- yield a one-dimensional array type.
4514
4c46b835
AC
4515 ------------------------------
4516 -- Analyze_Overloaded_Slice --
4517 ------------------------------
4518
996ae0b0
RK
4519 procedure Analyze_Overloaded_Slice is
4520 I : Interp_Index;
4521 It : Interp;
4522 Typ : Entity_Id;
4523
4524 begin
4525 Set_Etype (N, Any_Type);
996ae0b0 4526
4c46b835 4527 Get_First_Interp (P, I, It);
996ae0b0
RK
4528 while Present (It.Nam) loop
4529 Typ := It.Typ;
4530
4531 if Is_Access_Type (Typ) then
4532 Typ := Designated_Type (Typ);
fbf5a39b 4533 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4534 end if;
4535
4536 if Is_Array_Type (Typ)
4537 and then Number_Dimensions (Typ) = 1
4538 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4539 then
4540 Add_One_Interp (N, Typ, Typ);
4541 end if;
4542
4543 Get_Next_Interp (I, It);
4544 end loop;
4545
4546 if Etype (N) = Any_Type then
4547 Error_Msg_N ("expect array type in prefix of slice", N);
4548 end if;
4549 end Analyze_Overloaded_Slice;
4550
4551 -- Start of processing for Analyze_Slice
4552
4553 begin
36b8f95f
AC
4554 if Comes_From_Source (N) then
4555 Check_SPARK_Restriction ("slice is not allowed", N);
4556 end if;
1d801f21 4557
523456db 4558 Analyze (P);
996ae0b0
RK
4559 Analyze (D);
4560
4561 if Is_Overloaded (P) then
4562 Analyze_Overloaded_Slice;
4563
4564 else
4565 Array_Type := Etype (P);
4566 Set_Etype (N, Any_Type);
4567
4568 if Is_Access_Type (Array_Type) then
4569 Array_Type := Designated_Type (Array_Type);
fbf5a39b 4570 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
996ae0b0
RK
4571 end if;
4572
4573 if not Is_Array_Type (Array_Type) then
4574 Wrong_Type (P, Any_Array);
4575
4576 elsif Number_Dimensions (Array_Type) > 1 then
4577 Error_Msg_N
4578 ("type is not one-dimensional array in slice prefix", N);
4579
4580 elsif not
4581 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4582 then
4583 Wrong_Type (D, Etype (First_Index (Array_Type)));
4584
4585 else
4586 Set_Etype (N, Array_Type);
4587 end if;
4588 end if;
4589 end Analyze_Slice;
4590
4591 -----------------------------
4592 -- Analyze_Type_Conversion --
4593 -----------------------------
4594
4595 procedure Analyze_Type_Conversion (N : Node_Id) is
4596 Expr : constant Node_Id := Expression (N);
4597 T : Entity_Id;
4598
4599 begin
4600 -- If Conversion_OK is set, then the Etype is already set, and the
4601 -- only processing required is to analyze the expression. This is
4602 -- used to construct certain "illegal" conversions which are not
4603 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4604 -- Sinfo for further details.
4605
4606 if Conversion_OK (N) then
4607 Analyze (Expr);
4608 return;
4609 end if;
4610
4611 -- Otherwise full type analysis is required, as well as some semantic
4612 -- checks to make sure the argument of the conversion is appropriate.
4613
4614 Find_Type (Subtype_Mark (N));
4615 T := Entity (Subtype_Mark (N));
4616 Set_Etype (N, T);
4617 Check_Fully_Declared (T, N);
4618 Analyze_Expression (Expr);
4619 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 4620
996ae0b0
RK
4621 -- Only remaining step is validity checks on the argument. These
4622 -- are skipped if the conversion does not come from the source.
4623
4624 if not Comes_From_Source (N) then
4625 return;
4626
b67a385c
ES
4627 -- If there was an error in a generic unit, no need to replicate the
4628 -- error message. Conversely, constant-folding in the generic may
4629 -- transform the argument of a conversion into a string literal, which
4630 -- is legal. Therefore the following tests are not performed in an
4631 -- instance.
4632
4633 elsif In_Instance then
4634 return;
4635
996ae0b0
RK
4636 elsif Nkind (Expr) = N_Null then
4637 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4638 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4639 Set_Etype (N, Any_Type);
4640
4641 elsif Nkind (Expr) = N_Aggregate then
4642 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4643 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4644
4645 elsif Nkind (Expr) = N_Allocator then
4646 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4647 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4648
4649 elsif Nkind (Expr) = N_String_Literal then
4650 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 4651 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4652
4653 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 4654 if Ada_Version = Ada_83 then
996ae0b0
RK
4655 Resolve (Expr, T);
4656 else
4657 Error_Msg_N ("argument of conversion cannot be character literal",
4658 N);
ed2233dc 4659 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4660 end if;
4661
4662 elsif Nkind (Expr) = N_Attribute_Reference
4663 and then
4664 (Attribute_Name (Expr) = Name_Access or else
4665 Attribute_Name (Expr) = Name_Unchecked_Access or else
4666 Attribute_Name (Expr) = Name_Unrestricted_Access)
4667 then
4668 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 4669 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 4670 end if;
996ae0b0
RK
4671 end Analyze_Type_Conversion;
4672
4673 ----------------------
4674 -- Analyze_Unary_Op --
4675 ----------------------
4676
4677 procedure Analyze_Unary_Op (N : Node_Id) is
4678 R : constant Node_Id := Right_Opnd (N);
4679 Op_Id : Entity_Id := Entity (N);
4680
4681 begin
4682 Set_Etype (N, Any_Type);
4683 Candidate_Type := Empty;
4684
4685 Analyze_Expression (R);
4686
4687 if Present (Op_Id) then
4688 if Ekind (Op_Id) = E_Operator then
4689 Find_Unary_Types (R, Op_Id, N);
4690 else
4691 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4692 end if;
4693
4694 else
4695 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 4696 while Present (Op_Id) loop
996ae0b0
RK
4697 if Ekind (Op_Id) = E_Operator then
4698 if No (Next_Entity (First_Entity (Op_Id))) then
4699 Find_Unary_Types (R, Op_Id, N);
4700 end if;
4701
4702 elsif Is_Overloadable (Op_Id) then
4703 Analyze_User_Defined_Unary_Op (N, Op_Id);
4704 end if;
4705
4706 Op_Id := Homonym (Op_Id);
4707 end loop;
4708 end if;
4709
4710 Operator_Check (N);
4711 end Analyze_Unary_Op;
4712
4713 ----------------------------------
4714 -- Analyze_Unchecked_Expression --
4715 ----------------------------------
4716
4717 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4718 begin
4719 Analyze (Expression (N), Suppress => All_Checks);
4720 Set_Etype (N, Etype (Expression (N)));
4721 Save_Interps (Expression (N), N);
4722 end Analyze_Unchecked_Expression;
4723
4724 ---------------------------------------
4725 -- Analyze_Unchecked_Type_Conversion --
4726 ---------------------------------------
4727
4728 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4729 begin
4730 Find_Type (Subtype_Mark (N));
4731 Analyze_Expression (Expression (N));
4732 Set_Etype (N, Entity (Subtype_Mark (N)));
4733 end Analyze_Unchecked_Type_Conversion;
4734
4735 ------------------------------------
4736 -- Analyze_User_Defined_Binary_Op --
4737 ------------------------------------
4738
4739 procedure Analyze_User_Defined_Binary_Op
4740 (N : Node_Id;
4741 Op_Id : Entity_Id)
4742 is
4743 begin
4744 -- Only do analysis if the operator Comes_From_Source, since otherwise
4745 -- the operator was generated by the expander, and all such operators
4746 -- always refer to the operators in package Standard.
4747
4748 if Comes_From_Source (N) then
4749 declare
4750 F1 : constant Entity_Id := First_Formal (Op_Id);
4751 F2 : constant Entity_Id := Next_Formal (F1);
4752
4753 begin
4754 -- Verify that Op_Id is a visible binary function. Note that since
4755 -- we know Op_Id is overloaded, potentially use visible means use
4756 -- visible for sure (RM 9.4(11)).
4757
4758 if Ekind (Op_Id) = E_Function
4759 and then Present (F2)
4760 and then (Is_Immediately_Visible (Op_Id)
4761 or else Is_Potentially_Use_Visible (Op_Id))
4762 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4763 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4764 then
4765 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4766
7340e432
AC
4767 -- If the left operand is overloaded, indicate that the
4768 -- current type is a viable candidate. This is redundant
4769 -- in most cases, but for equality and comparison operators
4770 -- where the context does not impose a type on the operands,
4771 -- setting the proper type is necessary to avoid subsequent
4772 -- ambiguities during resolution, when both user-defined and
4773 -- predefined operators may be candidates.
4774
4775 if Is_Overloaded (Left_Opnd (N)) then
4776 Set_Etype (Left_Opnd (N), Etype (F1));
4777 end if;
4778
996ae0b0
RK
4779 if Debug_Flag_E then
4780 Write_Str ("user defined operator ");
4781 Write_Name (Chars (Op_Id));
4782 Write_Str (" on node ");
4783 Write_Int (Int (N));
4784 Write_Eol;
4785 end if;
4786 end if;
4787 end;
4788 end if;
4789 end Analyze_User_Defined_Binary_Op;
4790
4791 -----------------------------------
4792 -- Analyze_User_Defined_Unary_Op --
4793 -----------------------------------
4794
4795 procedure Analyze_User_Defined_Unary_Op
4796 (N : Node_Id;
4797 Op_Id : Entity_Id)
4798 is
4799 begin
4800 -- Only do analysis if the operator Comes_From_Source, since otherwise
4801 -- the operator was generated by the expander, and all such operators
4802 -- always refer to the operators in package Standard.
4803
4804 if Comes_From_Source (N) then
4805 declare
4806 F : constant Entity_Id := First_Formal (Op_Id);
4807
4808 begin
4809 -- Verify that Op_Id is a visible unary function. Note that since
4810 -- we know Op_Id is overloaded, potentially use visible means use
4811 -- visible for sure (RM 9.4(11)).
4812
4813 if Ekind (Op_Id) = E_Function
4814 and then No (Next_Formal (F))
4815 and then (Is_Immediately_Visible (Op_Id)
4816 or else Is_Potentially_Use_Visible (Op_Id))
4817 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4818 then
4819 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4820 end if;
4821 end;
4822 end if;
4823 end Analyze_User_Defined_Unary_Op;
4824
4825 ---------------------------
4826 -- Check_Arithmetic_Pair --
4827 ---------------------------
4828
4829 procedure Check_Arithmetic_Pair
4830 (T1, T2 : Entity_Id;
4831 Op_Id : Entity_Id;
4832 N : Node_Id)
4833 is
401093c1 4834 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 4835
da709d08
AC
4836 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4837 -- Check whether the fixed-point type Typ has a user-defined operator
4838 -- (multiplication or division) that should hide the corresponding
4839 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4840 -- such operators more visible and therefore useful.
4841
50cff367
GD
4842 -- If the name of the operation is an expanded name with prefix
4843 -- Standard, the predefined universal fixed operator is available,
4844 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4845
996ae0b0
RK
4846 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4847 -- Get specific type (i.e. non-universal type if there is one)
4848
da709d08
AC
4849 ------------------
4850 -- Has_Fixed_Op --
4851 ------------------
4852
4853 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 4854 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
4855 Ent : Entity_Id;
4856 F1 : Entity_Id;
4857 F2 : Entity_Id;
4858
4859 begin
50cff367
GD
4860 -- If the universal_fixed operation is given explicitly the rule
4861 -- concerning primitive operations of the type do not apply.
4862
4863 if Nkind (N) = N_Function_Call
4864 and then Nkind (Name (N)) = N_Expanded_Name
4865 and then Entity (Prefix (Name (N))) = Standard_Standard
4866 then
4867 return False;
4868 end if;
4869
da709d08
AC
4870 -- The operation is treated as primitive if it is declared in the
4871 -- same scope as the type, and therefore on the same entity chain.
4872
4873 Ent := Next_Entity (Typ);
4874 while Present (Ent) loop
4875 if Chars (Ent) = Chars (Op) then
4876 F1 := First_Formal (Ent);
4877 F2 := Next_Formal (F1);
4878
4879 -- The operation counts as primitive if either operand or
401093c1
ES
4880 -- result are of the given base type, and both operands are
4881 -- fixed point types.
da709d08 4882
401093c1 4883 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
4884 and then Is_Fixed_Point_Type (Etype (F2)))
4885
4886 or else
401093c1 4887 (Base_Type (Etype (F2)) = Bas
da709d08
AC
4888 and then Is_Fixed_Point_Type (Etype (F1)))
4889
4890 or else
401093c1 4891 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
4892 and then Is_Fixed_Point_Type (Etype (F1))
4893 and then Is_Fixed_Point_Type (Etype (F2)))
4894 then
4895 return True;
4896 end if;
4897 end if;
4898
4899 Next_Entity (Ent);
4900 end loop;
4901
4902 return False;
4903 end Has_Fixed_Op;
4904
4c46b835
AC
4905 -------------------
4906 -- Specific_Type --
4907 -------------------
4908
996ae0b0
RK
4909 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4910 begin
4911 if T1 = Universal_Integer or else T1 = Universal_Real then
4912 return Base_Type (T2);
4913 else
4914 return Base_Type (T1);
4915 end if;
4916 end Specific_Type;
4917
4918 -- Start of processing for Check_Arithmetic_Pair
4919
4920 begin
4921 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4922
4923 if Is_Numeric_Type (T1)
4924 and then Is_Numeric_Type (T2)
b4592168
GD
4925 and then (Covers (T1 => T1, T2 => T2)
4926 or else
4927 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4928 then
4929 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4930 end if;
4931
4932 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4933
4934 if Is_Fixed_Point_Type (T1)
4935 and then (Is_Fixed_Point_Type (T2)
4936 or else T2 = Universal_Real)
4937 then
4938 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4939 -- and no further processing is required (this is the case of an
4940 -- operator constructed by Exp_Fixd for a fixed point operation)
4941 -- Otherwise add one interpretation with universal fixed result
4942 -- If the operator is given in functional notation, it comes
4943 -- from source and Fixed_As_Integer cannot apply.
4944
da709d08
AC
4945 if (Nkind (N) not in N_Op
4946 or else not Treat_Fixed_As_Integer (N))
4947 and then
401093c1 4948 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4949 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 4950 then
996ae0b0
RK
4951 Add_One_Interp (N, Op_Id, Universal_Fixed);
4952 end if;
4953
4954 elsif Is_Fixed_Point_Type (T2)
4955 and then (Nkind (N) not in N_Op
4956 or else not Treat_Fixed_As_Integer (N))
4957 and then T1 = Universal_Real
da709d08 4958 and then
401093c1 4959 (not Has_Fixed_Op (T1, Op_Id)
da709d08 4960 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
4961 then
4962 Add_One_Interp (N, Op_Id, Universal_Fixed);
4963
4964 elsif Is_Numeric_Type (T1)
4965 and then Is_Numeric_Type (T2)
b4592168
GD
4966 and then (Covers (T1 => T1, T2 => T2)
4967 or else
4968 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
4969 then
4970 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4971
4972 elsif Is_Fixed_Point_Type (T1)
4973 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4974 or else T2 = Universal_Integer)
4975 then
4976 Add_One_Interp (N, Op_Id, T1);
4977
4978 elsif T2 = Universal_Real
4979 and then Base_Type (T1) = Base_Type (Standard_Integer)
4980 and then Op_Name = Name_Op_Multiply
4981 then
4982 Add_One_Interp (N, Op_Id, Any_Fixed);
4983
4984 elsif T1 = Universal_Real
4985 and then Base_Type (T2) = Base_Type (Standard_Integer)
4986 then
4987 Add_One_Interp (N, Op_Id, Any_Fixed);
4988
4989 elsif Is_Fixed_Point_Type (T2)
4990 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4991 or else T1 = Universal_Integer)
4992 and then Op_Name = Name_Op_Multiply
4993 then
4994 Add_One_Interp (N, Op_Id, T2);
4995
4996 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4997 Add_One_Interp (N, Op_Id, T1);
4998
4999 elsif T2 = Universal_Real
5000 and then T1 = Universal_Integer
5001 and then Op_Name = Name_Op_Multiply
5002 then
5003 Add_One_Interp (N, Op_Id, T2);
5004 end if;
5005
5006 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5007
5008 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5009 -- set does not require any special processing, since the Etype is
5010 -- already set (case of operation constructed by Exp_Fixed).
5011
5012 if Is_Integer_Type (T1)
b4592168
GD
5013 and then (Covers (T1 => T1, T2 => T2)
5014 or else
5015 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5016 then
5017 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5018 end if;
5019
5020 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5021 if Is_Numeric_Type (T1)
5022 and then not Is_Fixed_Point_Type (T1)
5023 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5024 or else T2 = Universal_Integer)
5025 then
5026 Add_One_Interp (N, Op_Id, Base_Type (T1));
5027 end if;
5028
5029 else pragma Assert (Nkind (N) in N_Op_Shift);
5030
5031 -- If not one of the predefined operators, the node may be one
5032 -- of the intrinsic functions. Its kind is always specific, and
5033 -- we can use it directly, rather than the name of the operation.
5034
5035 if Is_Integer_Type (T1)
5036 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5037 or else T2 = Universal_Integer)
5038 then
5039 Add_One_Interp (N, Op_Id, Base_Type (T1));
5040 end if;
5041 end if;
5042 end Check_Arithmetic_Pair;
5043
5044 -------------------------------
5045 -- Check_Misspelled_Selector --
5046 -------------------------------
5047
5048 procedure Check_Misspelled_Selector
5049 (Prefix : Entity_Id;
5050 Sel : Node_Id)
5051 is
5052 Max_Suggestions : constant := 2;
5053 Nr_Of_Suggestions : Natural := 0;
5054
5055 Suggestion_1 : Entity_Id := Empty;
5056 Suggestion_2 : Entity_Id := Empty;
5057
5058 Comp : Entity_Id;
5059
5060 begin
5061 -- All the components of the prefix of selector Sel are matched
5062 -- against Sel and a count is maintained of possible misspellings.
5063 -- When at the end of the analysis there are one or two (not more!)
5064 -- possible misspellings, these misspellings will be suggested as
5065 -- possible correction.
5066
4c46b835
AC
5067 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5068
996ae0b0 5069 -- Concurrent types should be handled as well ???
4c46b835 5070
996ae0b0
RK
5071 return;
5072 end if;
5073
d469eabe
HK
5074 Comp := First_Entity (Prefix);
5075 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5076 if Is_Visible_Component (Comp) then
5077 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5078 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5079
5080 case Nr_Of_Suggestions is
5081 when 1 => Suggestion_1 := Comp;
5082 when 2 => Suggestion_2 := Comp;
5083 when others => exit;
5084 end case;
996ae0b0 5085 end if;
d469eabe 5086 end if;
996ae0b0 5087
d469eabe
HK
5088 Comp := Next_Entity (Comp);
5089 end loop;
996ae0b0 5090
d469eabe 5091 -- Report at most two suggestions
996ae0b0 5092
d469eabe 5093 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5094 Error_Msg_NE -- CODEFIX
d469eabe 5095 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5096
d469eabe
HK
5097 elsif Nr_Of_Suggestions = 2 then
5098 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5099 Error_Msg_NE -- CODEFIX
d469eabe
HK
5100 ("\possible misspelling of& or&", Sel, Suggestion_1);
5101 end if;
996ae0b0
RK
5102 end Check_Misspelled_Selector;
5103
5104 ----------------------
5105 -- Defined_In_Scope --
5106 ----------------------
5107
5108 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5109 is
5110 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5111 begin
5112 return S1 = S
5113 or else (S1 = System_Aux_Id and then S = Scope (S1));
5114 end Defined_In_Scope;
5115
5116 -------------------
5117 -- Diagnose_Call --
5118 -------------------
5119
5120 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5121 Actual : Node_Id;
5122 X : Interp_Index;
5123 It : Interp;
fbf5a39b
AC
5124 Err_Mode : Boolean;
5125 New_Nam : Node_Id;
5126 Void_Interp_Seen : Boolean := False;
996ae0b0 5127
24657705
HK
5128 Success : Boolean;
5129 pragma Warnings (Off, Boolean);
5130
996ae0b0 5131 begin
0791fbe9 5132 if Ada_Version >= Ada_2005 then
996ae0b0 5133 Actual := First_Actual (N);
996ae0b0 5134 while Present (Actual) loop
0ab80019
AC
5135
5136 -- Ada 2005 (AI-50217): Post an error in case of premature
5137 -- usage of an entity from the limited view.
19f0526a 5138
996ae0b0
RK
5139 if not Analyzed (Etype (Actual))
5140 and then From_With_Type (Etype (Actual))
5141 then
5142 Error_Msg_Qual_Level := 1;
ed2233dc 5143 Error_Msg_NE
996ae0b0
RK
5144 ("missing with_clause for scope of imported type&",
5145 Actual, Etype (Actual));
5146 Error_Msg_Qual_Level := 0;
5147 end if;
5148
5149 Next_Actual (Actual);
5150 end loop;
5151 end if;
5152
fbf5a39b
AC
5153 -- Analyze each candidate call again, with full error reporting
5154 -- for each.
5155
5156 Error_Msg_N
5157 ("no candidate interpretations match the actuals:!", Nam);
5158 Err_Mode := All_Errors_Mode;
5159 All_Errors_Mode := True;
5160
5161 -- If this is a call to an operation of a concurrent type,
5162 -- the failed interpretations have been removed from the
5163 -- name. Recover them to provide full diagnostics.
5164
5165 if Nkind (Parent (Nam)) = N_Selected_Component then
5166 Set_Entity (Nam, Empty);
5167 New_Nam := New_Copy_Tree (Parent (Nam));
5168 Set_Is_Overloaded (New_Nam, False);
5169 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5170 Set_Parent (New_Nam, Parent (Parent (Nam)));
5171 Analyze_Selected_Component (New_Nam);
5172 Get_First_Interp (Selector_Name (New_Nam), X, It);
5173 else
996ae0b0 5174 Get_First_Interp (Nam, X, It);
fbf5a39b 5175 end if;
996ae0b0 5176
fbf5a39b
AC
5177 while Present (It.Nam) loop
5178 if Etype (It.Nam) = Standard_Void_Type then
5179 Void_Interp_Seen := True;
996ae0b0 5180 end if;
fbf5a39b
AC
5181
5182 Analyze_One_Call (N, It.Nam, True, Success);
5183 Get_Next_Interp (X, It);
5184 end loop;
996ae0b0
RK
5185
5186 if Nkind (N) = N_Function_Call then
5187 Get_First_Interp (Nam, X, It);
996ae0b0 5188 while Present (It.Nam) loop
bce79204 5189 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5190 return;
5191 else
5192 Get_Next_Interp (X, It);
5193 end if;
5194 end loop;
5195
5196 -- If all interpretations are procedures, this deserves a
5197 -- more precise message. Ditto if this appears as the prefix
5198 -- of a selected component, which may be a lexical error.
5199
4c46b835
AC
5200 Error_Msg_N
5201 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5202
5203 if Nkind (Parent (N)) = N_Selected_Component
5204 and then N = Prefix (Parent (N))
5205 then
4e7a4f6e
AC
5206 Error_Msg_N -- CODEFIX
5207 ("\period should probably be semicolon", Parent (N));
996ae0b0 5208 end if;
fbf5a39b
AC
5209
5210 elsif Nkind (N) = N_Procedure_Call_Statement
5211 and then not Void_Interp_Seen
5212 then
5213 Error_Msg_N (
5214 "\function name found in procedure call", Nam);
996ae0b0 5215 end if;
fbf5a39b
AC
5216
5217 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5218 end Diagnose_Call;
5219
5220 ---------------------------
5221 -- Find_Arithmetic_Types --
5222 ---------------------------
5223
5224 procedure Find_Arithmetic_Types
5225 (L, R : Node_Id;
5226 Op_Id : Entity_Id;
5227 N : Node_Id)
5228 is
4c46b835
AC
5229 Index1 : Interp_Index;
5230 Index2 : Interp_Index;
5231 It1 : Interp;
5232 It2 : Interp;
996ae0b0
RK
5233
5234 procedure Check_Right_Argument (T : Entity_Id);
5235 -- Check right operand of operator
5236
4c46b835
AC
5237 --------------------------
5238 -- Check_Right_Argument --
5239 --------------------------
5240
996ae0b0
RK
5241 procedure Check_Right_Argument (T : Entity_Id) is
5242 begin
5243 if not Is_Overloaded (R) then
5244 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5245 else
5246 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5247 while Present (It2.Typ) loop
5248 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5249 Get_Next_Interp (Index2, It2);
5250 end loop;
5251 end if;
5252 end Check_Right_Argument;
5253
d8221f45 5254 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5255
5256 begin
5257 if not Is_Overloaded (L) then
5258 Check_Right_Argument (Etype (L));
5259
5260 else
5261 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5262 while Present (It1.Typ) loop
5263 Check_Right_Argument (It1.Typ);
5264 Get_Next_Interp (Index1, It1);
5265 end loop;
5266 end if;
5267
5268 end Find_Arithmetic_Types;
5269
5270 ------------------------
5271 -- Find_Boolean_Types --
5272 ------------------------
5273
5274 procedure Find_Boolean_Types
5275 (L, R : Node_Id;
5276 Op_Id : Entity_Id;
5277 N : Node_Id)
5278 is
5279 Index : Interp_Index;
5280 It : Interp;
5281
5282 procedure Check_Numeric_Argument (T : Entity_Id);
5283 -- Special case for logical operations one of whose operands is an
5284 -- integer literal. If both are literal the result is any modular type.
5285
4c46b835
AC
5286 ----------------------------
5287 -- Check_Numeric_Argument --
5288 ----------------------------
5289
996ae0b0
RK
5290 procedure Check_Numeric_Argument (T : Entity_Id) is
5291 begin
5292 if T = Universal_Integer then
5293 Add_One_Interp (N, Op_Id, Any_Modular);
5294
5295 elsif Is_Modular_Integer_Type (T) then
5296 Add_One_Interp (N, Op_Id, T);
5297 end if;
5298 end Check_Numeric_Argument;
5299
5300 -- Start of processing for Find_Boolean_Types
5301
5302 begin
5303 if not Is_Overloaded (L) then
996ae0b0
RK
5304 if Etype (L) = Universal_Integer
5305 or else Etype (L) = Any_Modular
5306 then
5307 if not Is_Overloaded (R) then
5308 Check_Numeric_Argument (Etype (R));
5309
5310 else
5311 Get_First_Interp (R, Index, It);
996ae0b0
RK
5312 while Present (It.Typ) loop
5313 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5314 Get_Next_Interp (Index, It);
5315 end loop;
5316 end if;
5317
69e6a03e
ES
5318 -- If operands are aggregates, we must assume that they may be
5319 -- boolean arrays, and leave disambiguation for the second pass.
5320 -- If only one is an aggregate, verify that the other one has an
5321 -- interpretation as a boolean array
5322
5323 elsif Nkind (L) = N_Aggregate then
5324 if Nkind (R) = N_Aggregate then
5325 Add_One_Interp (N, Op_Id, Etype (L));
5326
5327 elsif not Is_Overloaded (R) then
5328 if Valid_Boolean_Arg (Etype (R)) then
5329 Add_One_Interp (N, Op_Id, Etype (R));
5330 end if;
5331
5332 else
5333 Get_First_Interp (R, Index, It);
5334 while Present (It.Typ) loop
5335 if Valid_Boolean_Arg (It.Typ) then
5336 Add_One_Interp (N, Op_Id, It.Typ);
5337 end if;
5338
5339 Get_Next_Interp (Index, It);
5340 end loop;
5341 end if;
5342
996ae0b0
RK
5343 elsif Valid_Boolean_Arg (Etype (L))
5344 and then Has_Compatible_Type (R, Etype (L))
5345 then
5346 Add_One_Interp (N, Op_Id, Etype (L));
5347 end if;
5348
5349 else
5350 Get_First_Interp (L, Index, It);
996ae0b0
RK
5351 while Present (It.Typ) loop
5352 if Valid_Boolean_Arg (It.Typ)
5353 and then Has_Compatible_Type (R, It.Typ)
5354 then
5355 Add_One_Interp (N, Op_Id, It.Typ);
5356 end if;
5357
5358 Get_Next_Interp (Index, It);
5359 end loop;
5360 end if;
5361 end Find_Boolean_Types;
5362
5363 ---------------------------
5364 -- Find_Comparison_Types --
5365 ---------------------------
5366
5367 procedure Find_Comparison_Types
5368 (L, R : Node_Id;
5369 Op_Id : Entity_Id;
5370 N : Node_Id)
5371 is
5372 Index : Interp_Index;
5373 It : Interp;
5374 Found : Boolean := False;
5375 I_F : Interp_Index;
5376 T_F : Entity_Id;
5377 Scop : Entity_Id := Empty;
5378
5379 procedure Try_One_Interp (T1 : Entity_Id);
5380 -- Routine to try one proposed interpretation. Note that the context
5381 -- of the operator plays no role in resolving the arguments, so that
5382 -- if there is more than one interpretation of the operands that is
5383 -- compatible with comparison, the operation is ambiguous.
5384
4c46b835
AC
5385 --------------------
5386 -- Try_One_Interp --
5387 --------------------
5388
996ae0b0
RK
5389 procedure Try_One_Interp (T1 : Entity_Id) is
5390 begin
5391
5392 -- If the operator is an expanded name, then the type of the operand
5393 -- must be defined in the corresponding scope. If the type is
5394 -- universal, the context will impose the correct type.
5395
5396 if Present (Scop)
5397 and then not Defined_In_Scope (T1, Scop)
5398 and then T1 /= Universal_Integer
5399 and then T1 /= Universal_Real
5400 and then T1 /= Any_String
5401 and then T1 /= Any_Composite
5402 then
5403 return;
5404 end if;
5405
5406 if Valid_Comparison_Arg (T1)
5407 and then Has_Compatible_Type (R, T1)
5408 then
5409 if Found
5410 and then Base_Type (T1) /= Base_Type (T_F)
5411 then
5412 It := Disambiguate (L, I_F, Index, Any_Type);
5413
5414 if It = No_Interp then
5415 Ambiguous_Operands (N);
5416 Set_Etype (L, Any_Type);
5417 return;
5418
5419 else
5420 T_F := It.Typ;
5421 end if;
5422
5423 else
5424 Found := True;
5425 T_F := T1;
5426 I_F := Index;
5427 end if;
5428
5429 Set_Etype (L, T_F);
5430 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5431
5432 end if;
5433 end Try_One_Interp;
5434
d8221f45 5435 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5436
5437 begin
fbf5a39b
AC
5438 -- If left operand is aggregate, the right operand has to
5439 -- provide a usable type for it.
5440
5441 if Nkind (L) = N_Aggregate
5442 and then Nkind (R) /= N_Aggregate
5443 then
b4592168 5444 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5445 return;
5446 end if;
996ae0b0
RK
5447
5448 if Nkind (N) = N_Function_Call
5449 and then Nkind (Name (N)) = N_Expanded_Name
5450 then
5451 Scop := Entity (Prefix (Name (N)));
5452
5453 -- The prefix may be a package renaming, and the subsequent test
5454 -- requires the original package.
5455
5456 if Ekind (Scop) = E_Package
5457 and then Present (Renamed_Entity (Scop))
5458 then
5459 Scop := Renamed_Entity (Scop);
5460 Set_Entity (Prefix (Name (N)), Scop);
5461 end if;
5462 end if;
5463
5464 if not Is_Overloaded (L) then
5465 Try_One_Interp (Etype (L));
5466
5467 else
5468 Get_First_Interp (L, Index, It);
996ae0b0
RK
5469 while Present (It.Typ) loop
5470 Try_One_Interp (It.Typ);
5471 Get_Next_Interp (Index, It);
5472 end loop;
5473 end if;
5474 end Find_Comparison_Types;
5475
5476 ----------------------------------------
5477 -- Find_Non_Universal_Interpretations --
5478 ----------------------------------------
5479
5480 procedure Find_Non_Universal_Interpretations
5481 (N : Node_Id;
5482 R : Node_Id;
5483 Op_Id : Entity_Id;
5484 T1 : Entity_Id)
5485 is
5486 Index : Interp_Index;
4c46b835 5487 It : Interp;
996ae0b0
RK
5488
5489 begin
5490 if T1 = Universal_Integer
5491 or else T1 = Universal_Real
5492 then
5493 if not Is_Overloaded (R) then
5494 Add_One_Interp
5495 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5496 else
5497 Get_First_Interp (R, Index, It);
996ae0b0
RK
5498 while Present (It.Typ) loop
5499 if Covers (It.Typ, T1) then
5500 Add_One_Interp
5501 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5502 end if;
5503
5504 Get_Next_Interp (Index, It);
5505 end loop;
5506 end if;
5507 else
5508 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5509 end if;
5510 end Find_Non_Universal_Interpretations;
5511
5512 ------------------------------
5513 -- Find_Concatenation_Types --
5514 ------------------------------
5515
5516 procedure Find_Concatenation_Types
5517 (L, R : Node_Id;
5518 Op_Id : Entity_Id;
5519 N : Node_Id)
5520 is
5521 Op_Type : constant Entity_Id := Etype (Op_Id);
5522
5523 begin
5524 if Is_Array_Type (Op_Type)
5525 and then not Is_Limited_Type (Op_Type)
5526
5527 and then (Has_Compatible_Type (L, Op_Type)
5528 or else
5529 Has_Compatible_Type (L, Component_Type (Op_Type)))
5530
5531 and then (Has_Compatible_Type (R, Op_Type)
5532 or else
5533 Has_Compatible_Type (R, Component_Type (Op_Type)))
5534 then
5535 Add_One_Interp (N, Op_Id, Op_Type);
5536 end if;
5537 end Find_Concatenation_Types;
5538
5539 -------------------------
5540 -- Find_Equality_Types --
5541 -------------------------
5542
5543 procedure Find_Equality_Types
5544 (L, R : Node_Id;
5545 Op_Id : Entity_Id;
5546 N : Node_Id)
5547 is
5548 Index : Interp_Index;
5549 It : Interp;
5550 Found : Boolean := False;
5551 I_F : Interp_Index;
5552 T_F : Entity_Id;
5553 Scop : Entity_Id := Empty;
5554
5555 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5556 -- The context of the equality operator plays no role in resolving the
5557 -- arguments, so that if there is more than one interpretation of the
5558 -- operands that is compatible with equality, the construct is ambiguous
5559 -- and an error can be emitted now, after trying to disambiguate, i.e.
5560 -- applying preference rules.
996ae0b0 5561
4c46b835
AC
5562 --------------------
5563 -- Try_One_Interp --
5564 --------------------
5565
996ae0b0 5566 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5567 Bas : constant Entity_Id := Base_Type (T1);
5568
996ae0b0 5569 begin
996ae0b0
RK
5570 -- If the operator is an expanded name, then the type of the operand
5571 -- must be defined in the corresponding scope. If the type is
5572 -- universal, the context will impose the correct type. An anonymous
5573 -- type for a 'Access reference is also universal in this sense, as
5574 -- the actual type is obtained from context.
fe45e59e
ES
5575 -- In Ada 2005, the equality operator for anonymous access types
5576 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5577
fe45e59e
ES
5578 if Present (Scop) then
5579 if Defined_In_Scope (T1, Scop)
5580 or else T1 = Universal_Integer
5581 or else T1 = Universal_Real
5582 or else T1 = Any_Access
5583 or else T1 = Any_String
5584 or else T1 = Any_Composite
5585 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5586 and then not Comes_From_Source (T1))
fe45e59e
ES
5587 then
5588 null;
5589
5590 elsif Ekind (T1) = E_Anonymous_Access_Type
5591 and then Scop = Standard_Standard
5592 then
5593 null;
5594
5595 else
5596 -- The scope does not contain an operator for the type
5597
5598 return;
5599 end if;
a8e65aa5 5600
9aa04cc7
AC
5601 -- If we have infix notation, the operator must be usable. Within
5602 -- an instance, if the type is already established we know it is
5603 -- correct. If an operand is universal it is compatible with any
5604 -- numeric type.
31af8899 5605
a8e65aa5
AC
5606 -- In Ada 2005, the equality on anonymous access types is declared
5607 -- in Standard, and is always visible.
5608
5609 elsif In_Open_Scopes (Scope (Bas))
5610 or else Is_Potentially_Use_Visible (Bas)
5611 or else In_Use (Bas)
9aa04cc7 5612 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a8e65aa5 5613 or else (In_Instance
9aa04cc7
AC
5614 and then
5615 (First_Subtype (T1) = First_Subtype (Etype (R))
5616 or else
5617 (Is_Numeric_Type (T1)
5618 and then Is_Universal_Numeric_Type (Etype (R)))))
a8e65aa5
AC
5619 or else Ekind (T1) = E_Anonymous_Access_Type
5620 then
5621 null;
5622
5623 else
308e6f3a 5624 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
5625
5626 if not Is_Limited_Type (T1) then
5627 Candidate_Type := T1;
5628 end if;
5629
5630 return;
996ae0b0
RK
5631 end if;
5632
0ab80019
AC
5633 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5634 -- Do not allow anonymous access types in equality operators.
6e937c1c 5635
0791fbe9 5636 if Ada_Version < Ada_2005
6e937c1c
AC
5637 and then Ekind (T1) = E_Anonymous_Access_Type
5638 then
5639 return;
5640 end if;
5641
996ae0b0 5642 if T1 /= Standard_Void_Type
996ae0b0 5643 and then Has_Compatible_Type (R, T1)
9b62eb32
AC
5644 and then
5645 ((not Is_Limited_Type (T1)
5646 and then not Is_Limited_Composite (T1))
5647
5648 or else
2fcc44fa 5649 (Is_Array_Type (T1)
9b62eb32
AC
5650 and then not Is_Limited_Type (Component_Type (T1))
5651 and then Available_Full_View_Of_Component (T1)))
996ae0b0
RK
5652 then
5653 if Found
5654 and then Base_Type (T1) /= Base_Type (T_F)
5655 then
5656 It := Disambiguate (L, I_F, Index, Any_Type);
5657
5658 if It = No_Interp then
5659 Ambiguous_Operands (N);
5660 Set_Etype (L, Any_Type);
5661 return;
5662
5663 else
5664 T_F := It.Typ;
5665 end if;
5666
5667 else
5668 Found := True;
5669 T_F := T1;
5670 I_F := Index;
5671 end if;
5672
5673 if not Analyzed (L) then
5674 Set_Etype (L, T_F);
5675 end if;
5676
5677 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5678
6e73e3ab 5679 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 5680
6e73e3ab 5681 if Etype (N) = Any_Type then
996ae0b0
RK
5682 Found := False;
5683 end if;
fe45e59e
ES
5684
5685 elsif Scop = Standard_Standard
5686 and then Ekind (T1) = E_Anonymous_Access_Type
5687 then
5688 Found := True;
996ae0b0
RK
5689 end if;
5690 end Try_One_Interp;
5691
5692 -- Start of processing for Find_Equality_Types
5693
5694 begin
fbf5a39b
AC
5695 -- If left operand is aggregate, the right operand has to
5696 -- provide a usable type for it.
5697
5698 if Nkind (L) = N_Aggregate
5699 and then Nkind (R) /= N_Aggregate
5700 then
b4592168 5701 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5702 return;
5703 end if;
996ae0b0
RK
5704
5705 if Nkind (N) = N_Function_Call
5706 and then Nkind (Name (N)) = N_Expanded_Name
5707 then
5708 Scop := Entity (Prefix (Name (N)));
5709
5710 -- The prefix may be a package renaming, and the subsequent test
5711 -- requires the original package.
5712
5713 if Ekind (Scop) = E_Package
5714 and then Present (Renamed_Entity (Scop))
5715 then
5716 Scop := Renamed_Entity (Scop);
5717 Set_Entity (Prefix (Name (N)), Scop);
5718 end if;
5719 end if;
5720
5721 if not Is_Overloaded (L) then
5722 Try_One_Interp (Etype (L));
996ae0b0 5723
4c46b835 5724 else
996ae0b0 5725 Get_First_Interp (L, Index, It);
996ae0b0
RK
5726 while Present (It.Typ) loop
5727 Try_One_Interp (It.Typ);
5728 Get_Next_Interp (Index, It);
5729 end loop;
5730 end if;
5731 end Find_Equality_Types;
5732
5733 -------------------------
5734 -- Find_Negation_Types --
5735 -------------------------
5736
5737 procedure Find_Negation_Types
5738 (R : Node_Id;
5739 Op_Id : Entity_Id;
5740 N : Node_Id)
5741 is
5742 Index : Interp_Index;
5743 It : Interp;
5744
5745 begin
5746 if not Is_Overloaded (R) then
996ae0b0
RK
5747 if Etype (R) = Universal_Integer then
5748 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
5749 elsif Valid_Boolean_Arg (Etype (R)) then
5750 Add_One_Interp (N, Op_Id, Etype (R));
5751 end if;
5752
5753 else
5754 Get_First_Interp (R, Index, It);
996ae0b0
RK
5755 while Present (It.Typ) loop
5756 if Valid_Boolean_Arg (It.Typ) then
5757 Add_One_Interp (N, Op_Id, It.Typ);
5758 end if;
5759
5760 Get_Next_Interp (Index, It);
5761 end loop;
5762 end if;
5763 end Find_Negation_Types;
5764
d469eabe
HK
5765 ------------------------------
5766 -- Find_Primitive_Operation --
5767 ------------------------------
5768
5769 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5770 Obj : constant Node_Id := Prefix (N);
5771 Op : constant Node_Id := Selector_Name (N);
5772
5773 Prim : Elmt_Id;
5774 Prims : Elist_Id;
5775 Typ : Entity_Id;
5776
5777 begin
5778 Set_Etype (Op, Any_Type);
5779
5780 if Is_Access_Type (Etype (Obj)) then
5781 Typ := Designated_Type (Etype (Obj));
5782 else
5783 Typ := Etype (Obj);
5784 end if;
5785
5786 if Is_Class_Wide_Type (Typ) then
5787 Typ := Root_Type (Typ);
5788 end if;
5789
5790 Prims := Primitive_Operations (Typ);
5791
5792 Prim := First_Elmt (Prims);
5793 while Present (Prim) loop
5794 if Chars (Node (Prim)) = Chars (Op) then
5795 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5796 Set_Etype (N, Etype (Node (Prim)));
5797 end if;
5798
5799 Next_Elmt (Prim);
5800 end loop;
5801
5802 -- Now look for class-wide operations of the type or any of its
5803 -- ancestors by iterating over the homonyms of the selector.
5804
5805 declare
5806 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5807 Hom : Entity_Id;
5808
5809 begin
5810 Hom := Current_Entity (Op);
5811 while Present (Hom) loop
5812 if (Ekind (Hom) = E_Procedure
5813 or else
5814 Ekind (Hom) = E_Function)
5815 and then Scope (Hom) = Scope (Typ)
5816 and then Present (First_Formal (Hom))
5817 and then
5818 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5819 or else
5820 (Is_Access_Type (Etype (First_Formal (Hom)))
5821 and then
5822 Ekind (Etype (First_Formal (Hom))) =
5823 E_Anonymous_Access_Type
5824 and then
5825 Base_Type
5826 (Designated_Type (Etype (First_Formal (Hom)))) =
5827 Cls_Type))
5828 then
5829 Add_One_Interp (Op, Hom, Etype (Hom));
5830 Set_Etype (N, Etype (Hom));
5831 end if;
5832
5833 Hom := Homonym (Hom);
5834 end loop;
5835 end;
5836
5837 return Etype (Op) /= Any_Type;
5838 end Find_Primitive_Operation;
5839
996ae0b0
RK
5840 ----------------------
5841 -- Find_Unary_Types --
5842 ----------------------
5843
5844 procedure Find_Unary_Types
5845 (R : Node_Id;
5846 Op_Id : Entity_Id;
5847 N : Node_Id)
5848 is
5849 Index : Interp_Index;
5850 It : Interp;
5851
5852 begin
5853 if not Is_Overloaded (R) then
5854 if Is_Numeric_Type (Etype (R)) then
5855 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5856 end if;
5857
5858 else
5859 Get_First_Interp (R, Index, It);
996ae0b0
RK
5860 while Present (It.Typ) loop
5861 if Is_Numeric_Type (It.Typ) then
5862 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5863 end if;
5864
5865 Get_Next_Interp (Index, It);
5866 end loop;
5867 end if;
5868 end Find_Unary_Types;
5869
996ae0b0
RK
5870 ------------------
5871 -- Junk_Operand --
5872 ------------------
5873
5874 function Junk_Operand (N : Node_Id) return Boolean is
5875 Enode : Node_Id;
5876
5877 begin
5878 if Error_Posted (N) then
5879 return False;
5880 end if;
5881
5882 -- Get entity to be tested
5883
5884 if Is_Entity_Name (N)
5885 and then Present (Entity (N))
5886 then
5887 Enode := N;
5888
5889 -- An odd case, a procedure name gets converted to a very peculiar
5890 -- function call, and here is where we detect this happening.
5891
5892 elsif Nkind (N) = N_Function_Call
5893 and then Is_Entity_Name (Name (N))
5894 and then Present (Entity (Name (N)))
5895 then
5896 Enode := Name (N);
5897
5898 -- Another odd case, there are at least some cases of selected
5899 -- components where the selected component is not marked as having
5900 -- an entity, even though the selector does have an entity
5901
5902 elsif Nkind (N) = N_Selected_Component
5903 and then Present (Entity (Selector_Name (N)))
5904 then
5905 Enode := Selector_Name (N);
5906
5907 else
5908 return False;
5909 end if;
5910
9de61fcb 5911 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
5912
5913 case Ekind (Entity (Enode)) is
5914
5915 when E_Package =>
5916 Error_Msg_N
5917 ("package name cannot be used as operand", Enode);
5918
5919 when Generic_Unit_Kind =>
5920 Error_Msg_N
5921 ("generic unit name cannot be used as operand", Enode);
5922
5923 when Type_Kind =>
5924 Error_Msg_N
5925 ("subtype name cannot be used as operand", Enode);
5926
5927 when Entry_Kind =>
5928 Error_Msg_N
5929 ("entry name cannot be used as operand", Enode);
5930
5931 when E_Procedure =>
5932 Error_Msg_N
5933 ("procedure name cannot be used as operand", Enode);
5934
5935 when E_Exception =>
5936 Error_Msg_N
5937 ("exception name cannot be used as operand", Enode);
5938
5939 when E_Block | E_Label | E_Loop =>
5940 Error_Msg_N
5941 ("label name cannot be used as operand", Enode);
5942
5943 when others =>
5944 return False;
5945
5946 end case;
5947
5948 return True;
5949 end Junk_Operand;
5950
5951 --------------------
5952 -- Operator_Check --
5953 --------------------
5954
5955 procedure Operator_Check (N : Node_Id) is
5956 begin
30c20106
AC
5957 Remove_Abstract_Operations (N);
5958
996ae0b0
RK
5959 -- Test for case of no interpretation found for operator
5960
5961 if Etype (N) = Any_Type then
5962 declare
b67a385c
ES
5963 L : Node_Id;
5964 R : Node_Id;
5965 Op_Id : Entity_Id := Empty;
996ae0b0
RK
5966
5967 begin
5968 R := Right_Opnd (N);
5969
5970 if Nkind (N) in N_Binary_Op then
5971 L := Left_Opnd (N);
5972 else
5973 L := Empty;
5974 end if;
5975
5976 -- If either operand has no type, then don't complain further,
9de61fcb 5977 -- since this simply means that we have a propagated error.
996ae0b0
RK
5978
5979 if R = Error
5980 or else Etype (R) = Any_Type
5981 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5982 then
5983 return;
5984
4c46b835
AC
5985 -- We explicitly check for the case of concatenation of component
5986 -- with component to avoid reporting spurious matching array types
5987 -- that might happen to be lurking in distant packages (such as
5988 -- run-time packages). This also prevents inconsistencies in the
5989 -- messages for certain ACVC B tests, which can vary depending on
5990 -- types declared in run-time interfaces. Another improvement when
5991 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
5992
5993 elsif Present (Candidate_Type)
5994 and then (Nkind (N) /= N_Op_Concat
5995 or else Is_Array_Type (Etype (L))
5996 or else Is_Array_Type (Etype (R)))
5997 then
996ae0b0
RK
5998 if Nkind (N) = N_Op_Concat then
5999 if Etype (L) /= Any_Composite
6000 and then Is_Array_Type (Etype (L))
6001 then
6002 Candidate_Type := Etype (L);
6003
6004 elsif Etype (R) /= Any_Composite
6005 and then Is_Array_Type (Etype (R))
6006 then
6007 Candidate_Type := Etype (R);
6008 end if;
6009 end if;
6010
19d846a0 6011 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6012 ("operator for} is not directly visible!",
6013 N, First_Subtype (Candidate_Type));
4561baf7
ES
6014
6015 declare
6016 U : constant Node_Id :=
6017 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6018 begin
6019 if Unit_Is_Visible (U) then
6020 Error_Msg_N -- CODEFIX
6021 ("use clause would make operation legal!", N);
4561baf7
ES
6022 else
6023 Error_Msg_NE -- CODEFIX
6024 ("add with_clause and use_clause for&!",
6025 N, Defining_Entity (Unit (U)));
6026 end if;
6027 end;
996ae0b0
RK
6028 return;
6029
6030 -- If either operand is a junk operand (e.g. package name), then
6031 -- post appropriate error messages, but do not complain further.
6032
0e0eecec
ES
6033 -- Note that the use of OR in this test instead of OR ELSE is
6034 -- quite deliberate, we may as well check both operands in the
6035 -- binary operator case.
996ae0b0
RK
6036
6037 elsif Junk_Operand (R)
6038 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6039 then
6040 return;
6041
6042 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6043 -- Boolean, then we know that the other operand cannot resolve to
6044 -- Boolean (since we got no interpretations), but in that case we
6045 -- pretty much know that the other operand should be Boolean, so
6046 -- resolve it that way (generating an error)
996ae0b0 6047
d469eabe 6048 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6049 if Etype (L) = Standard_Boolean then
6050 Resolve (R, Standard_Boolean);
6051 return;
6052 elsif Etype (R) = Standard_Boolean then
6053 Resolve (L, Standard_Boolean);
6054 return;
6055 end if;
6056
6057 -- For an arithmetic operator or comparison operator, if one
6058 -- of the operands is numeric, then we know the other operand
6059 -- is not the same numeric type. If it is a non-numeric type,
6060 -- then probably it is intended to match the other operand.
6061
d469eabe
HK
6062 elsif Nkind_In (N, N_Op_Add,
6063 N_Op_Divide,
6064 N_Op_Ge,
6065 N_Op_Gt,
6066 N_Op_Le)
6067 or else
6068 Nkind_In (N, N_Op_Lt,
6069 N_Op_Mod,
6070 N_Op_Multiply,
6071 N_Op_Rem,
6072 N_Op_Subtract)
996ae0b0
RK
6073 then
6074 if Is_Numeric_Type (Etype (L))
6075 and then not Is_Numeric_Type (Etype (R))
6076 then
6077 Resolve (R, Etype (L));
6078 return;
6079
6080 elsif Is_Numeric_Type (Etype (R))
6081 and then not Is_Numeric_Type (Etype (L))
6082 then
6083 Resolve (L, Etype (R));
6084 return;
6085 end if;
6086
6087 -- Comparisons on A'Access are common enough to deserve a
6088 -- special message.
6089
d469eabe 6090 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
6091 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6092 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6093 then
6094 Error_Msg_N
6095 ("two access attributes cannot be compared directly", N);
6096 Error_Msg_N
aab883ec 6097 ("\use qualified expression for one of the operands",
996ae0b0
RK
6098 N);
6099 return;
6100
6101 -- Another one for C programmers
6102
6103 elsif Nkind (N) = N_Op_Concat
6104 and then Valid_Boolean_Arg (Etype (L))
6105 and then Valid_Boolean_Arg (Etype (R))
6106 then
6107 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
6108 Error_Msg_N -- CODEFIX
6109 ("\maybe AND was meant", N);
996ae0b0
RK
6110 return;
6111
6112 -- A special case for comparison of access parameter with null
6113
6114 elsif Nkind (N) = N_Op_Eq
6115 and then Is_Entity_Name (L)
6116 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6117 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6118 N_Access_Definition
6119 and then Nkind (R) = N_Null
6120 then
6121 Error_Msg_N ("access parameter is not allowed to be null", L);
6122 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6123 return;
61bee0e3
AC
6124
6125 -- Another special case for exponentiation, where the right
6126 -- operand must be Natural, independently of the base.
6127
6128 elsif Nkind (N) = N_Op_Expon
6129 and then Is_Numeric_Type (Etype (L))
6130 and then not Is_Overloaded (R)
6131 and then
6132 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6133 and then Base_Type (Etype (R)) /= Universal_Integer
6134 then
dec6faf1 6135 if Ada_Version >= Ada_2012
15954beb 6136 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
6137 then
6138 Error_Msg_NE
54c04d6c 6139 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
6140 ", found}", R, Etype (R));
6141 else
6142 Error_Msg_NE
6143 ("exponent must be of type Natural, found}", R, Etype (R));
6144 end if;
54c04d6c 6145
61bee0e3 6146 return;
996ae0b0
RK
6147 end if;
6148
0e0eecec
ES
6149 -- If we fall through then just give general message. Note that in
6150 -- the following messages, if the operand is overloaded we choose
6151 -- an arbitrary type to complain about, but that is probably more
6152 -- useful than not giving a type at all.
996ae0b0
RK
6153
6154 if Nkind (N) in N_Unary_Op then
6155 Error_Msg_Node_2 := Etype (R);
6156 Error_Msg_N ("operator& not defined for}", N);
6157 return;
6158
6159 else
fbf5a39b
AC
6160 if Nkind (N) in N_Binary_Op then
6161 if not Is_Overloaded (L)
6162 and then not Is_Overloaded (R)
6163 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6164 then
7ffd9312 6165 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 6166 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 6167
fbf5a39b 6168 else
b67a385c
ES
6169 -- Another attempt to find a fix: one of the candidate
6170 -- interpretations may not be use-visible. This has
6171 -- already been checked for predefined operators, so
6172 -- we examine only user-defined functions.
6173
6174 Op_Id := Get_Name_Entity_Id (Chars (N));
6175
6176 while Present (Op_Id) loop
6177 if Ekind (Op_Id) /= E_Operator
6178 and then Is_Overloadable (Op_Id)
6179 then
6180 if not Is_Immediately_Visible (Op_Id)
6181 and then not In_Use (Scope (Op_Id))
aab883ec 6182 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6183 and then not Is_Hidden (Op_Id)
6184 and then Ekind (Scope (Op_Id)) = E_Package
6185 and then
6186 Has_Compatible_Type
6187 (L, Etype (First_Formal (Op_Id)))
6188 and then Present
6189 (Next_Formal (First_Formal (Op_Id)))
6190 and then
6191 Has_Compatible_Type
6192 (R,
6193 Etype (Next_Formal (First_Formal (Op_Id))))
6194 then
ed2233dc 6195 Error_Msg_N
b67a385c 6196 ("No legal interpretation for operator&", N);
ed2233dc 6197 Error_Msg_NE
b67a385c
ES
6198 ("\use clause on& would make operation legal",
6199 N, Scope (Op_Id));
6200 exit;
6201 end if;
6202 end if;
fbf5a39b 6203
b67a385c
ES
6204 Op_Id := Homonym (Op_Id);
6205 end loop;
6206
6207 if No (Op_Id) then
6208 Error_Msg_N ("invalid operand types for operator&", N);
6209
6210 if Nkind (N) /= N_Op_Concat then
6211 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6212 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6213 end if;
fbf5a39b
AC
6214 end if;
6215 end if;
996ae0b0
RK
6216 end if;
6217 end if;
6218 end;
6219 end if;
6220 end Operator_Check;
6221
6e73e3ab
AC
6222 -----------------------------------------
6223 -- Process_Implicit_Dereference_Prefix --
6224 -----------------------------------------
6225
d469eabe 6226 function Process_Implicit_Dereference_Prefix
da709d08 6227 (E : Entity_Id;
d469eabe 6228 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6229 is
6230 Ref : Node_Id;
d469eabe 6231 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6232
6e73e3ab 6233 begin
1a8fae99
ES
6234 if Present (E)
6235 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6236 then
6e73e3ab
AC
6237 -- We create a dummy reference to E to ensure that the reference
6238 -- is not considered as part of an assignment (an implicit
6239 -- dereference can never assign to its prefix). The Comes_From_Source
6240 -- attribute needs to be propagated for accurate warnings.
6241
6242 Ref := New_Reference_To (E, Sloc (P));
6243 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6244 Generate_Reference (E, Ref);
6245 end if;
d469eabe
HK
6246
6247 -- An implicit dereference is a legal occurrence of an
6248 -- incomplete type imported through a limited_with clause,
6249 -- if the full view is visible.
6250
6251 if From_With_Type (Typ)
6252 and then not From_With_Type (Scope (Typ))
6253 and then
6254 (Is_Immediately_Visible (Scope (Typ))
6255 or else
6256 (Is_Child_Unit (Scope (Typ))
6257 and then Is_Visible_Child_Unit (Scope (Typ))))
6258 then
6259 return Available_View (Typ);
6260 else
6261 return Typ;
6262 end if;
6263
6e73e3ab
AC
6264 end Process_Implicit_Dereference_Prefix;
6265
30c20106
AC
6266 --------------------------------
6267 -- Remove_Abstract_Operations --
6268 --------------------------------
6269
6270 procedure Remove_Abstract_Operations (N : Node_Id) is
401093c1
ES
6271 Abstract_Op : Entity_Id := Empty;
6272 Address_Kludge : Boolean := False;
6273 I : Interp_Index;
6274 It : Interp;
30c20106 6275
0e0eecec
ES
6276 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6277 -- activate this if either extensions are enabled, or if the abstract
6278 -- operation in question comes from a predefined file. This latter test
6279 -- allows us to use abstract to make operations invisible to users. In
6280 -- particular, if type Address is non-private and abstract subprograms
6281 -- are used to hide its operators, they will be truly hidden.
30c20106 6282
5950a3ac 6283 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6284 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6285
6286 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6287 -- Ambiguities may arise when the operands are literal and the address
6288 -- operations in s-auxdec are visible. In that case, remove the
6289 -- interpretation of a literal as Address, to retain the semantics of
6290 -- Address as a private type.
9f4fd324
AC
6291
6292 ------------------------------------
5950a3ac 6293 -- Remove_Address_Interpretations --
9f4fd324
AC
6294 ------------------------------------
6295
5950a3ac 6296 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6297 Formal : Entity_Id;
6298
6299 begin
6300 if Is_Overloaded (N) then
6301 Get_First_Interp (N, I, It);
6302 while Present (It.Nam) loop
6303 Formal := First_Entity (It.Nam);
6304
5950a3ac
AC
6305 if Op = Second_Op then
6306 Formal := Next_Entity (Formal);
6307 end if;
6308
6309 if Is_Descendent_Of_Address (Etype (Formal)) then
401093c1 6310 Address_Kludge := True;
9f4fd324
AC
6311 Remove_Interp (I);
6312 end if;
6313
6314 Get_Next_Interp (I, It);
6315 end loop;
6316 end if;
6317 end Remove_Address_Interpretations;
6318
6319 -- Start of processing for Remove_Abstract_Operations
6320
30c20106 6321 begin
d935a36e 6322 if Is_Overloaded (N) then
ee1a7572
AC
6323 if Debug_Flag_V then
6324 Write_Str ("Remove_Abstract_Operations: ");
6325 Write_Overloads (N);
6326 end if;
6327
30c20106 6328 Get_First_Interp (N, I, It);
d935a36e 6329
30c20106 6330 while Present (It.Nam) loop
aab883ec
ES
6331 if Is_Overloadable (It.Nam)
6332 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6333 and then not Is_Dispatching_Operation (It.Nam)
6334 then
af152989 6335 Abstract_Op := It.Nam;
fe45e59e 6336
401093c1
ES
6337 if Is_Descendent_Of_Address (It.Typ) then
6338 Address_Kludge := True;
6339 Remove_Interp (I);
6340 exit;
6341
76264f60 6342 -- In Ada 2005, this operation does not participate in overload
9c510803 6343 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6344 -- unit, it is one of the operations declared abstract in some
6345 -- variants of System, and it must be removed as well.
6346
0791fbe9 6347 elsif Ada_Version >= Ada_2005
401093c1
ES
6348 or else Is_Predefined_File_Name
6349 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6350 then
6351 Remove_Interp (I);
6352 exit;
6353 end if;
30c20106
AC
6354 end if;
6355
6356 Get_Next_Interp (I, It);
6357 end loop;
6358
af152989 6359 if No (Abstract_Op) then
fe45e59e
ES
6360
6361 -- If some interpretation yields an integer type, it is still
6362 -- possible that there are address interpretations. Remove them
6363 -- if one operand is a literal, to avoid spurious ambiguities
6364 -- on systems where Address is a visible integer type.
6365
6366 if Is_Overloaded (N)
401093c1 6367 and then Nkind (N) in N_Op
fe45e59e
ES
6368 and then Is_Integer_Type (Etype (N))
6369 then
6370 if Nkind (N) in N_Binary_Op then
6371 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6372 Remove_Address_Interpretations (Second_Op);
6373
6374 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6375 Remove_Address_Interpretations (First_Op);
6376 end if;
6377 end if;
6378 end if;
3984e89a
AC
6379
6380 elsif Nkind (N) in N_Op then
4c46b835 6381
fe45e59e
ES
6382 -- Remove interpretations that treat literals as addresses. This
6383 -- is never appropriate, even when Address is defined as a visible
6384 -- Integer type. The reason is that we would really prefer Address
6385 -- to behave as a private type, even in this case, which is there
f3d57416
RW
6386 -- only to accommodate oddities of VMS address sizes. If Address
6387 -- is a visible integer type, we get lots of overload ambiguities.
30c20106 6388
5950a3ac
AC
6389 if Nkind (N) in N_Binary_Op then
6390 declare
6391 U1 : constant Boolean :=
6392 Present (Universal_Interpretation (Right_Opnd (N)));
6393 U2 : constant Boolean :=
6394 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 6395
5950a3ac 6396 begin
0e0eecec 6397 if U1 then
5950a3ac 6398 Remove_Address_Interpretations (Second_Op);
0e0eecec 6399 end if;
5950a3ac 6400
0e0eecec 6401 if U2 then
5950a3ac 6402 Remove_Address_Interpretations (First_Op);
30c20106
AC
6403 end if;
6404
5950a3ac
AC
6405 if not (U1 and U2) then
6406
6407 -- Remove corresponding predefined operator, which is
6408 -- always added to the overload set.
6409
6410 Get_First_Interp (N, I, It);
6411 while Present (It.Nam) loop
0ab80019
AC
6412 if Scope (It.Nam) = Standard_Standard
6413 and then Base_Type (It.Typ) =
6414 Base_Type (Etype (Abstract_Op))
6415 then
5950a3ac
AC
6416 Remove_Interp (I);
6417 end if;
6418
8a36a0cc
AC
6419 Get_Next_Interp (I, It);
6420 end loop;
6421
6422 elsif Is_Overloaded (N)
6423 and then Present (Univ_Type)
6424 then
6425 -- If both operands have a universal interpretation,
0e0eecec
ES
6426 -- it is still necessary to remove interpretations that
6427 -- yield Address. Any remaining ambiguities will be
6428 -- removed in Disambiguate.
8a36a0cc
AC
6429
6430 Get_First_Interp (N, I, It);
8a36a0cc 6431 while Present (It.Nam) loop
0e0eecec
ES
6432 if Is_Descendent_Of_Address (It.Typ) then
6433 Remove_Interp (I);
6434
6435 elsif not Is_Type (It.Nam) then
8a36a0cc 6436 Set_Entity (N, It.Nam);
8a36a0cc
AC
6437 end if;
6438
5950a3ac
AC
6439 Get_Next_Interp (I, It);
6440 end loop;
6441 end if;
6442 end;
30c20106 6443 end if;
3984e89a
AC
6444
6445 elsif Nkind (N) = N_Function_Call
6446 and then
6447 (Nkind (Name (N)) = N_Operator_Symbol
6448 or else
6449 (Nkind (Name (N)) = N_Expanded_Name
6450 and then
6451 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6452 then
5950a3ac 6453
3984e89a
AC
6454 declare
6455 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
6456 U1 : constant Boolean :=
6457 Present (Universal_Interpretation (Arg1));
6458 U2 : constant Boolean :=
6459 Present (Next (Arg1)) and then
6460 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
6461
6462 begin
0e0eecec 6463 if U1 then
5950a3ac 6464 Remove_Address_Interpretations (First_Op);
0e0eecec 6465 end if;
3984e89a 6466
0e0eecec 6467 if U2 then
5950a3ac
AC
6468 Remove_Address_Interpretations (Second_Op);
6469 end if;
6470
6471 if not (U1 and U2) then
3984e89a
AC
6472 Get_First_Interp (N, I, It);
6473 while Present (It.Nam) loop
9f4fd324
AC
6474 if Scope (It.Nam) = Standard_Standard
6475 and then It.Typ = Base_Type (Etype (Abstract_Op))
6476 then
3984e89a
AC
6477 Remove_Interp (I);
6478 end if;
6479
6480 Get_Next_Interp (I, It);
6481 end loop;
6482 end if;
6483 end;
30c20106 6484 end if;
af152989 6485
401093c1
ES
6486 -- If the removal has left no valid interpretations, emit an error
6487 -- message now and label node as illegal.
af152989
AC
6488
6489 if Present (Abstract_Op) then
6490 Get_First_Interp (N, I, It);
6491
6492 if No (It.Nam) then
6493
6e73e3ab 6494 -- Removal of abstract operation left no viable candidate
af152989
AC
6495
6496 Set_Etype (N, Any_Type);
6497 Error_Msg_Sloc := Sloc (Abstract_Op);
6498 Error_Msg_NE
6499 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
6500
6501 -- In Ada 2005, an abstract operation may disable predefined
6502 -- operators. Since the context is not yet known, we mark the
6503 -- predefined operators as potentially hidden. Do not include
6504 -- predefined operators when addresses are involved since this
6505 -- case is handled separately.
6506
0791fbe9 6507 elsif Ada_Version >= Ada_2005
401093c1
ES
6508 and then not Address_Kludge
6509 then
6510 while Present (It.Nam) loop
6511 if Is_Numeric_Type (It.Typ)
6512 and then Scope (It.Typ) = Standard_Standard
6513 then
6514 Set_Abstract_Op (I, Abstract_Op);
6515 end if;
6516
6517 Get_Next_Interp (I, It);
6518 end loop;
af152989
AC
6519 end if;
6520 end if;
ee1a7572
AC
6521
6522 if Debug_Flag_V then
6523 Write_Str ("Remove_Abstract_Operations done: ");
6524 Write_Overloads (N);
6525 end if;
30c20106
AC
6526 end if;
6527 end Remove_Abstract_Operations;
6528
d50f4827
AC
6529 ----------------------------
6530 -- Try_Container_Indexing --
6531 ----------------------------
6532
6533 function Try_Container_Indexing
6534 (N : Node_Id;
6535 Prefix : Node_Id;
6536 Expr : Node_Id) return Boolean
6537 is
6538 Loc : constant Source_Ptr := Sloc (N);
6539 Disc : Entity_Id;
6540 Func : Entity_Id;
6541 Func_Name : Node_Id;
6542 Indexing : Node_Id;
d50f4827
AC
6543
6544 begin
6545
af89615f 6546 -- Check whether type has a specified indexing aspect
d50f4827
AC
6547
6548 Func_Name := Empty;
d50f4827 6549
9ee76313
AC
6550 if Is_Variable (Prefix) then
6551 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
6552 end if;
dedac3eb 6553
9ee76313
AC
6554 if No (Func_Name) then
6555 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
6556 end if;
d50f4827
AC
6557
6558 -- If aspect does not exist the expression is illegal. Error is
6559 -- diagnosed in caller.
6560
6561 if No (Func_Name) then
57a8057a
AC
6562
6563 -- The prefix itself may be an indexing of a container
6564 -- rewrite as such and re-analyze.
6565
6566 if Has_Implicit_Dereference (Etype (Prefix)) then
6567 Build_Explicit_Dereference
6568 (Prefix, First_Discriminant (Etype (Prefix)));
6569 return Try_Container_Indexing (N, Prefix, Expr);
6570
6571 else
6572 return False;
6573 end if;
d50f4827
AC
6574 end if;
6575
d50f4827
AC
6576 if not Is_Overloaded (Func_Name) then
6577 Func := Entity (Func_Name);
6578 Indexing := Make_Function_Call (Loc,
6579 Name => New_Occurrence_Of (Func, Loc),
6580 Parameter_Associations =>
6581 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6582 Rewrite (N, Indexing);
6583 Analyze (N);
6584
76d49f49
ES
6585 -- If the return type of the indexing function is a reference type,
6586 -- add the dereference as a possible interpretation. Note that the
6587 -- indexing aspect may be a function that returns the element type
6588 -- with no intervening implicit dereference.
6589
6590 if Has_Discriminants (Etype (Func)) then
6591 Disc := First_Discriminant (Etype (Func));
6592 while Present (Disc) loop
6593 if Has_Implicit_Dereference (Disc) then
6594 Add_One_Interp (N, Disc, Designated_Type (Etype (Disc)));
6595 exit;
6596 end if;
d50f4827 6597
76d49f49
ES
6598 Next_Discriminant (Disc);
6599 end loop;
6600 end if;
d50f4827
AC
6601
6602 else
6603 Indexing := Make_Function_Call (Loc,
6604 Name => Make_Identifier (Loc, Chars (Func_Name)),
6605 Parameter_Associations =>
6606 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6607
6608 Rewrite (N, Indexing);
6609
6610 declare
6611 I : Interp_Index;
6612 It : Interp;
6613 Success : Boolean;
6614
6615 begin
6616 Get_First_Interp (Func_Name, I, It);
6617 Set_Etype (N, Any_Type);
6618 while Present (It.Nam) loop
6619 Analyze_One_Call (N, It.Nam, False, Success);
6620 if Success then
6621 Set_Etype (Name (N), It.Typ);
9ee76313 6622 Set_Entity (Name (N), It.Nam);
d50f4827 6623
af89615f 6624 -- Add implicit dereference interpretation
d50f4827 6625
76d49f49
ES
6626 if Has_Discriminants (Etype (It.Nam)) then
6627 Disc := First_Discriminant (Etype (It.Nam));
6628 while Present (Disc) loop
6629 if Has_Implicit_Dereference (Disc) then
6630 Add_One_Interp
6631 (N, Disc, Designated_Type (Etype (Disc)));
6632 exit;
6633 end if;
d50f4827 6634
76d49f49
ES
6635 Next_Discriminant (Disc);
6636 end loop;
6637 end if;
b5bf3335 6638
9ee76313 6639 exit;
d50f4827
AC
6640 end if;
6641 Get_Next_Interp (I, It);
6642 end loop;
6643 end;
6644 end if;
6645
9ee76313
AC
6646 if Etype (N) = Any_Type then
6647 Error_Msg_NE ("container cannot be indexed with&", N, Etype (Expr));
6648 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
6649 else
6650 Analyze (N);
6651 end if;
6652
d50f4827
AC
6653 return True;
6654 end Try_Container_Indexing;
6655
996ae0b0
RK
6656 -----------------------
6657 -- Try_Indirect_Call --
6658 -----------------------
6659
6660 function Try_Indirect_Call
91b1417d
AC
6661 (N : Node_Id;
6662 Nam : Entity_Id;
6663 Typ : Entity_Id) return Boolean
996ae0b0 6664 is
24657705
HK
6665 Actual : Node_Id;
6666 Formal : Entity_Id;
6667
8a7988f5 6668 Call_OK : Boolean;
24657705 6669 pragma Warnings (Off, Call_OK);
996ae0b0
RK
6670
6671 begin
8a7988f5 6672 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 6673
8a7988f5 6674 Actual := First_Actual (N);
fbf5a39b 6675 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 6676 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
6677 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6678 return False;
6679 end if;
6680
6681 Next (Actual);
6682 Next_Formal (Formal);
6683 end loop;
6684
6685 if No (Actual) and then No (Formal) then
6686 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6687
6688 -- Nam is a candidate interpretation for the name in the call,
6689 -- if it is not an indirect call.
6690
6691 if not Is_Type (Nam)
6692 and then Is_Entity_Name (Name (N))
6693 then
6694 Set_Entity (Name (N), Nam);
6695 end if;
6696
6697 return True;
6698 else
6699 return False;
6700 end if;
6701 end Try_Indirect_Call;
6702
6703 ----------------------
6704 -- Try_Indexed_Call --
6705 ----------------------
6706
6707 function Try_Indexed_Call
aab883ec
ES
6708 (N : Node_Id;
6709 Nam : Entity_Id;
6710 Typ : Entity_Id;
6711 Skip_First : Boolean) return Boolean
996ae0b0 6712 is
5ff22245
ES
6713 Loc : constant Source_Ptr := Sloc (N);
6714 Actuals : constant List_Id := Parameter_Associations (N);
6715 Actual : Node_Id;
6716 Index : Entity_Id;
996ae0b0
RK
6717
6718 begin
fbf5a39b 6719 Actual := First (Actuals);
aab883ec
ES
6720
6721 -- If the call was originally written in prefix form, skip the first
6722 -- actual, which is obviously not defaulted.
6723
6724 if Skip_First then
6725 Next (Actual);
6726 end if;
6727
fbf5a39b 6728 Index := First_Index (Typ);
9de61fcb
RD
6729 while Present (Actual) and then Present (Index) loop
6730
996ae0b0
RK
6731 -- If the parameter list has a named association, the expression
6732 -- is definitely a call and not an indexed component.
6733
6734 if Nkind (Actual) = N_Parameter_Association then
6735 return False;
6736 end if;
6737
5ff22245
ES
6738 if Is_Entity_Name (Actual)
6739 and then Is_Type (Entity (Actual))
6740 and then No (Next (Actual))
6741 then
1c218ac3
AC
6742 -- A single actual that is a type name indicates a slice if the
6743 -- type is discrete, and an error otherwise.
6744
6745 if Is_Discrete_Type (Entity (Actual)) then
6746 Rewrite (N,
6747 Make_Slice (Loc,
22b77f68
RD
6748 Prefix =>
6749 Make_Function_Call (Loc,
6750 Name => Relocate_Node (Name (N))),
6751 Discrete_Range =>
1c218ac3
AC
6752 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6753
6754 Analyze (N);
6755
6756 else
6757 Error_Msg_N ("invalid use of type in expression", Actual);
6758 Set_Etype (N, Any_Type);
6759 end if;
5ff22245 6760
5ff22245
ES
6761 return True;
6762
6763 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
6764 return False;
6765 end if;
6766
6767 Next (Actual);
6768 Next_Index (Index);
6769 end loop;
6770
6771 if No (Actual) and then No (Index) then
6772 Add_One_Interp (N, Nam, Component_Type (Typ));
6773
6774 -- Nam is a candidate interpretation for the name in the call,
6775 -- if it is not an indirect call.
6776
6777 if not Is_Type (Nam)
6778 and then Is_Entity_Name (Name (N))
6779 then
6780 Set_Entity (Name (N), Nam);
6781 end if;
6782
6783 return True;
6784 else
6785 return False;
6786 end if;
996ae0b0
RK
6787 end Try_Indexed_Call;
6788
35ae2ed8
AC
6789 --------------------------
6790 -- Try_Object_Operation --
6791 --------------------------
6792
8cf23b91
AC
6793 function Try_Object_Operation
6794 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
6795 is
b67a385c 6796 K : constant Node_Kind := Nkind (Parent (N));
d469eabe
HK
6797 Is_Subprg_Call : constant Boolean := Nkind_In
6798 (K, N_Procedure_Call_Statement,
6799 N_Function_Call);
b67a385c 6800 Loc : constant Source_Ptr := Sloc (N);
b67a385c 6801 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
6802
6803 Subprog : constant Node_Id :=
6804 Make_Identifier (Sloc (Selector_Name (N)),
6805 Chars => Chars (Selector_Name (N)));
401093c1 6806 -- Identifier on which possible interpretations will be collected
0a36105d 6807
b67a385c
ES
6808 Report_Error : Boolean := False;
6809 -- If no candidate interpretation matches the context, redo the
6810 -- analysis with error enabled to provide additional information.
28d6470f
JM
6811
6812 Actual : Node_Id;
d469eabe 6813 Candidate : Entity_Id := Empty;
b67a385c 6814 New_Call_Node : Node_Id := Empty;
4c46b835 6815 Node_To_Replace : Node_Id;
28d6470f 6816 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 6817 Success : Boolean := False;
4c46b835 6818
0a36105d
JM
6819 function Valid_Candidate
6820 (Success : Boolean;
6821 Call : Node_Id;
6822 Subp : Entity_Id) return Entity_Id;
6823 -- If the subprogram is a valid interpretation, record it, and add
11fa950b 6824 -- to the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 6825
4c46b835
AC
6826 procedure Complete_Object_Operation
6827 (Call_Node : Node_Id;
0a36105d 6828 Node_To_Replace : Node_Id);
ec6078e3
ES
6829 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6830 -- Call_Node, insert the object (or its dereference) as the first actual
6831 -- in the call, and complete the analysis of the call.
4c46b835 6832
0a36105d
JM
6833 procedure Report_Ambiguity (Op : Entity_Id);
6834 -- If a prefixed procedure call is ambiguous, indicate whether the
6835 -- call includes an implicit dereference or an implicit 'Access.
6836
4c46b835
AC
6837 procedure Transform_Object_Operation
6838 (Call_Node : out Node_Id;
0a36105d 6839 Node_To_Replace : out Node_Id);
ec6078e3 6840 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
6841 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6842 -- either N or the parent of N, and Subprog is a reference to the
6843 -- subprogram we are trying to match.
35ae2ed8
AC
6844
6845 function Try_Class_Wide_Operation
4c46b835
AC
6846 (Call_Node : Node_Id;
6847 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6848 -- Traverse all ancestor types looking for a class-wide subprogram
6849 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 6850
0a36105d
JM
6851 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6852 -- If prefix is overloaded, its interpretation may include different
6853 -- tagged types, and we must examine the primitive operations and
6854 -- the class-wide operations of each in order to find candidate
6855 -- interpretations for the call as a whole.
6856
4c46b835
AC
6857 function Try_Primitive_Operation
6858 (Call_Node : Node_Id;
6859 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
6860 -- Traverse the list of primitive subprograms looking for a dispatching
6861 -- operation for which the current node is a valid call .
4c46b835 6862
0a36105d
JM
6863 ---------------------
6864 -- Valid_Candidate --
6865 ---------------------
6866
6867 function Valid_Candidate
6868 (Success : Boolean;
6869 Call : Node_Id;
6870 Subp : Entity_Id) return Entity_Id
6871 is
ee9aa7b6 6872 Arr_Type : Entity_Id;
0a36105d
JM
6873 Comp_Type : Entity_Id;
6874
6875 begin
6876 -- If the subprogram is a valid interpretation, record it in global
6877 -- variable Subprog, to collect all possible overloadings.
6878
6879 if Success then
6880 if Subp /= Entity (Subprog) then
6881 Add_One_Interp (Subprog, Subp, Etype (Subp));
6882 end if;
6883 end if;
6884
d469eabe
HK
6885 -- If the call may be an indexed call, retrieve component type of
6886 -- resulting expression, and add possible interpretation.
0a36105d 6887
ee9aa7b6 6888 Arr_Type := Empty;
0a36105d
JM
6889 Comp_Type := Empty;
6890
6891 if Nkind (Call) = N_Function_Call
d469eabe
HK
6892 and then Nkind (Parent (N)) = N_Indexed_Component
6893 and then Needs_One_Actual (Subp)
0a36105d
JM
6894 then
6895 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 6896 Arr_Type := Etype (Subp);
0a36105d
JM
6897
6898 elsif Is_Access_Type (Etype (Subp))
6899 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6900 then
ee9aa7b6 6901 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
6902 end if;
6903 end if;
6904
ee9aa7b6
AC
6905 if Present (Arr_Type) then
6906
3b42c566
RD
6907 -- Verify that the actuals (excluding the object) match the types
6908 -- of the indexes.
ee9aa7b6
AC
6909
6910 declare
6911 Actual : Node_Id;
6912 Index : Node_Id;
6913
6914 begin
6915 Actual := Next (First_Actual (Call));
6916 Index := First_Index (Arr_Type);
ee9aa7b6
AC
6917 while Present (Actual) and then Present (Index) loop
6918 if not Has_Compatible_Type (Actual, Etype (Index)) then
6919 Arr_Type := Empty;
6920 exit;
6921 end if;
6922
6923 Next_Actual (Actual);
6924 Next_Index (Index);
6925 end loop;
6926
6927 if No (Actual)
6928 and then No (Index)
6929 and then Present (Arr_Type)
6930 then
6931 Comp_Type := Component_Type (Arr_Type);
6932 end if;
6933 end;
6934
6935 if Present (Comp_Type)
6936 and then Etype (Subprog) /= Comp_Type
6937 then
6938 Add_One_Interp (Subprog, Subp, Comp_Type);
6939 end if;
0a36105d
JM
6940 end if;
6941
6942 if Etype (Call) /= Any_Type then
6943 return Subp;
6944 else
6945 return Empty;
6946 end if;
6947 end Valid_Candidate;
6948
4c46b835
AC
6949 -------------------------------
6950 -- Complete_Object_Operation --
6951 -------------------------------
6952
6953 procedure Complete_Object_Operation
6954 (Call_Node : Node_Id;
0a36105d 6955 Node_To_Replace : Node_Id)
4c46b835 6956 is
b4592168
GD
6957 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6958 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
6959 First_Actual : Node_Id;
6960
4c46b835 6961 begin
955871d3
AC
6962 -- Place the name of the operation, with its interpretations,
6963 -- on the rewritten call.
0a36105d 6964
ec6078e3
ES
6965 Set_Name (Call_Node, Subprog);
6966
0a36105d
JM
6967 First_Actual := First (Parameter_Associations (Call_Node));
6968
b67a385c 6969 -- For cross-reference purposes, treat the new node as being in
b2ab8c33
AC
6970 -- the source if the original one is. Set entity and type, even
6971 -- though they may be overwritten during resolution if overloaded.
b67a385c
ES
6972
6973 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6974 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6975
ec6078e3
ES
6976 if Nkind (N) = N_Selected_Component
6977 and then not Inside_A_Generic
6978 then
6979 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 6980 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
6981 end if;
6982
6983 -- If need be, rewrite first actual as an explicit dereference
0a36105d
JM
6984 -- If the call is overloaded, the rewriting can only be done
6985 -- once the primitive operation is identified.
6986
6987 if Is_Overloaded (Subprog) then
ec6078e3 6988
0a36105d
JM
6989 -- The prefix itself may be overloaded, and its interpretations
6990 -- must be propagated to the new actual in the call.
6991
6992 if Is_Overloaded (Obj) then
6993 Save_Interps (Obj, First_Actual);
6994 end if;
6995
6996 Rewrite (First_Actual, Obj);
6997
6998 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
6999 and then Is_Access_Type (Etype (Obj))
7000 then
7001 Rewrite (First_Actual,
7002 Make_Explicit_Dereference (Sloc (Obj), Obj));
7003 Analyze (First_Actual);
fe45e59e 7004
401093c1
ES
7005 -- If we need to introduce an explicit dereference, verify that
7006 -- the resulting actual is compatible with the mode of the formal.
7007
7008 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7009 and then Is_Access_Constant (Etype (Obj))
7010 then
7011 Error_Msg_NE
7012 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7013 end if;
7014
d469eabe
HK
7015 -- Conversely, if the formal is an access parameter and the object
7016 -- is not, replace the actual with a 'Access reference. Its analysis
7017 -- will check that the object is aliased.
fe45e59e
ES
7018
7019 elsif Is_Access_Type (Formal_Type)
7020 and then not Is_Access_Type (Etype (Obj))
7021 then
b4592168
GD
7022 -- A special case: A.all'access is illegal if A is an access to a
7023 -- constant and the context requires an access to a variable.
7024
7025 if not Is_Access_Constant (Formal_Type) then
7026 if (Nkind (Obj) = N_Explicit_Dereference
7027 and then Is_Access_Constant (Etype (Prefix (Obj))))
7028 or else not Is_Variable (Obj)
7029 then
7030 Error_Msg_NE
7031 ("actual for& must be a variable", Obj, Control);
7032 end if;
7033 end if;
7034
fe45e59e
ES
7035 Rewrite (First_Actual,
7036 Make_Attribute_Reference (Loc,
7037 Attribute_Name => Name_Access,
7038 Prefix => Relocate_Node (Obj)));
0a36105d
JM
7039
7040 if not Is_Aliased_View (Obj) then
ed2233dc 7041 Error_Msg_NE
0a36105d 7042 ("object in prefixed call to& must be aliased"
401093c1 7043 & " (RM-2005 4.3.1 (13))",
0a36105d
JM
7044 Prefix (First_Actual), Subprog);
7045 end if;
7046
fe45e59e
ES
7047 Analyze (First_Actual);
7048
ec6078e3 7049 else
0a36105d
JM
7050 if Is_Overloaded (Obj) then
7051 Save_Interps (Obj, First_Actual);
7052 end if;
ec6078e3 7053
0a36105d 7054 Rewrite (First_Actual, Obj);
aab883ec
ES
7055 end if;
7056
7ffd9312 7057 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
7058
7059 -- Propagate the interpretations collected in subprog to the new
7060 -- function call node, to be resolved from context.
7061
7062 if Is_Overloaded (Subprog) then
7063 Save_Interps (Subprog, Node_To_Replace);
7415029d 7064
0a36105d
JM
7065 else
7066 Analyze (Node_To_Replace);
438ff97c 7067
199c6a10
AC
7068 -- If the operation has been rewritten into a call, which may get
7069 -- subsequently an explicit dereference, preserve the type on the
7070 -- original node (selected component or indexed component) for
7071 -- subsequent legality tests, e.g. Is_Variable. which examines
7072 -- the original node.
438ff97c
ES
7073
7074 if Nkind (Node_To_Replace) = N_Function_Call then
7075 Set_Etype
7076 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7077 end if;
0a36105d 7078 end if;
4c46b835
AC
7079 end Complete_Object_Operation;
7080
0a36105d
JM
7081 ----------------------
7082 -- Report_Ambiguity --
7083 ----------------------
7084
7085 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
7086 Access_Actual : constant Boolean :=
7087 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 7088 Access_Formal : Boolean := False;
0a36105d
JM
7089
7090 begin
7091 Error_Msg_Sloc := Sloc (Op);
7092
8cf23b91
AC
7093 if Present (First_Formal (Op)) then
7094 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7095 end if;
7096
0a36105d
JM
7097 if Access_Formal and then not Access_Actual then
7098 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7099 Error_Msg_N
0a36105d
JM
7100 ("\possible interpretation"
7101 & " (inherited, with implicit 'Access) #", N);
7102 else
ed2233dc 7103 Error_Msg_N
0a36105d
JM
7104 ("\possible interpretation (with implicit 'Access) #", N);
7105 end if;
7106
7107 elsif not Access_Formal and then Access_Actual then
7108 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7109 Error_Msg_N
0a36105d
JM
7110 ("\possible interpretation"
7111 & " ( inherited, with implicit dereference) #", N);
7112 else
ed2233dc 7113 Error_Msg_N
0a36105d
JM
7114 ("\possible interpretation (with implicit dereference) #", N);
7115 end if;
7116
7117 else
7118 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7119 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 7120 else
4e7a4f6e
AC
7121 Error_Msg_N -- CODEFIX
7122 ("\possible interpretation#", N);
0a36105d
JM
7123 end if;
7124 end if;
7125 end Report_Ambiguity;
7126
4c46b835
AC
7127 --------------------------------
7128 -- Transform_Object_Operation --
7129 --------------------------------
7130
7131 procedure Transform_Object_Operation
7132 (Call_Node : out Node_Id;
0a36105d 7133 Node_To_Replace : out Node_Id)
35ae2ed8 7134 is
ec6078e3
ES
7135 Dummy : constant Node_Id := New_Copy (Obj);
7136 -- Placeholder used as a first parameter in the call, replaced
7137 -- eventually by the proper object.
7138
d469eabe
HK
7139 Parent_Node : constant Node_Id := Parent (N);
7140
ec6078e3 7141 Actual : Node_Id;
d469eabe 7142 Actuals : List_Id;
ec6078e3 7143
35ae2ed8 7144 begin
ec6078e3
ES
7145 -- Common case covering 1) Call to a procedure and 2) Call to a
7146 -- function that has some additional actuals.
35ae2ed8 7147
d469eabe
HK
7148 if Nkind_In (Parent_Node, N_Function_Call,
7149 N_Procedure_Call_Statement)
35ae2ed8 7150
ec6078e3
ES
7151 -- N is a selected component node containing the name of the
7152 -- subprogram. If N is not the name of the parent node we must
7153 -- not replace the parent node by the new construct. This case
7154 -- occurs when N is a parameterless call to a subprogram that
7155 -- is an actual parameter of a call to another subprogram. For
7156 -- example:
7157 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 7158
ec6078e3 7159 and then Name (Parent_Node) = N
4c46b835
AC
7160 then
7161 Node_To_Replace := Parent_Node;
35ae2ed8 7162
ec6078e3 7163 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 7164
ec6078e3
ES
7165 if Present (Actuals) then
7166 Prepend (Dummy, Actuals);
7167 else
7168 Actuals := New_List (Dummy);
7169 end if;
4c46b835
AC
7170
7171 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7172 Call_Node :=
7173 Make_Procedure_Call_Statement (Loc,
0a36105d 7174 Name => New_Copy (Subprog),
4c46b835
AC
7175 Parameter_Associations => Actuals);
7176
7177 else
4c46b835
AC
7178 Call_Node :=
7179 Make_Function_Call (Loc,
0a36105d 7180 Name => New_Copy (Subprog),
4c46b835 7181 Parameter_Associations => Actuals);
35ae2ed8 7182
35ae2ed8
AC
7183 end if;
7184
d469eabe 7185 -- Before analysis, a function call appears as an indexed component
ec6078e3 7186 -- if there are no named associations.
758c442c 7187
ec6078e3
ES
7188 elsif Nkind (Parent_Node) = N_Indexed_Component
7189 and then N = Prefix (Parent_Node)
7190 then
758c442c 7191 Node_To_Replace := Parent_Node;
ec6078e3
ES
7192 Actuals := Expressions (Parent_Node);
7193
7194 Actual := First (Actuals);
7195 while Present (Actual) loop
7196 Analyze (Actual);
7197 Next (Actual);
7198 end loop;
7199
7200 Prepend (Dummy, Actuals);
758c442c
GD
7201
7202 Call_Node :=
7203 Make_Function_Call (Loc,
0a36105d 7204 Name => New_Copy (Subprog),
758c442c
GD
7205 Parameter_Associations => Actuals);
7206
d469eabe 7207 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 7208
4c46b835
AC
7209 else
7210 Node_To_Replace := N;
7211
7212 Call_Node :=
7213 Make_Function_Call (Loc,
0a36105d 7214 Name => New_Copy (Subprog),
ec6078e3 7215 Parameter_Associations => New_List (Dummy));
4c46b835
AC
7216 end if;
7217 end Transform_Object_Operation;
35ae2ed8
AC
7218
7219 ------------------------------
7220 -- Try_Class_Wide_Operation --
7221 ------------------------------
7222
7223 function Try_Class_Wide_Operation
4c46b835
AC
7224 (Call_Node : Node_Id;
7225 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7226 is
0a36105d
JM
7227 Anc_Type : Entity_Id;
7228 Matching_Op : Entity_Id := Empty;
7229 Error : Boolean;
7230
7231 procedure Traverse_Homonyms
7232 (Anc_Type : Entity_Id;
7233 Error : out Boolean);
7234 -- Traverse the homonym chain of the subprogram searching for those
7235 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
7236 -- or an anonymous access type designating the class-wide type. If
7237 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
7238
7239 procedure Traverse_Interfaces
7240 (Anc_Type : Entity_Id;
7241 Error : out Boolean);
7242 -- Traverse the list of interfaces, if any, associated with Anc_Type
7243 -- and search for acceptable class-wide homonyms associated with each
7244 -- interface. If an ambiguity is detected, then Error is set to True.
7245
7246 -----------------------
7247 -- Traverse_Homonyms --
7248 -----------------------
7249
7250 procedure Traverse_Homonyms
7251 (Anc_Type : Entity_Id;
7252 Error : out Boolean)
7253 is
7254 Cls_Type : Entity_Id;
7255 Hom : Entity_Id;
7256 Hom_Ref : Node_Id;
7257 Success : Boolean;
35ae2ed8 7258
0a36105d
JM
7259 begin
7260 Error := False;
ec6078e3 7261
b67a385c
ES
7262 Cls_Type := Class_Wide_Type (Anc_Type);
7263
4c46b835 7264 Hom := Current_Entity (Subprog);
401093c1 7265
383e179e
AC
7266 -- Find a non-hidden operation whose first parameter is of the
7267 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b
AC
7268 -- to same. If in an instance, the operation can be considered
7269 -- even if hidden (it may be hidden because the instantiation is
7270 -- expanded after the containing package has been analyzed).
401093c1 7271
35ae2ed8 7272 while Present (Hom) loop
6a2e4f0b 7273 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 7274 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 7275 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 7276 and then Present (First_Formal (Hom))
b67a385c 7277 and then
401093c1 7278 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
7279 or else
7280 (Is_Access_Type (Etype (First_Formal (Hom)))
0a36105d
JM
7281 and then
7282 Ekind (Etype (First_Formal (Hom))) =
7283 E_Anonymous_Access_Type
b67a385c 7284 and then
401093c1
ES
7285 Base_Type
7286 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 7287 Cls_Type))
35ae2ed8 7288 then
88f47280
AC
7289 -- If the context is a procedure call, ignore functions
7290 -- in the name of the call.
7291
7292 if Ekind (Hom) = E_Function
7293 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7294 and then N = Name (Parent (N))
7295 then
7296 goto Next_Hom;
11fa950b
AC
7297
7298 -- If the context is a function call, ignore procedures
7299 -- in the name of the call.
7300
7301 elsif Ekind (Hom) = E_Procedure
7302 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7303 then
7304 goto Next_Hom;
88f47280
AC
7305 end if;
7306
ec6078e3 7307 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
7308 Set_Is_Overloaded (Call_Node, False);
7309 Success := False;
4c46b835 7310
0a36105d
JM
7311 if No (Matching_Op) then
7312 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
7313 Set_Etype (Call_Node, Any_Type);
7314 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 7315
0a36105d 7316 Set_Name (Call_Node, Hom_Ref);
4c46b835 7317
0a36105d
JM
7318 Analyze_One_Call
7319 (N => Call_Node,
7320 Nam => Hom,
7321 Report => Report_Error,
7322 Success => Success,
7323 Skip_First => True);
4c46b835 7324
0a36105d
JM
7325 Matching_Op :=
7326 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 7327
0a36105d
JM
7328 else
7329 Analyze_One_Call
7330 (N => Call_Node,
7331 Nam => Hom,
7332 Report => Report_Error,
7333 Success => Success,
7334 Skip_First => True);
7335
7336 if Present (Valid_Candidate (Success, Call_Node, Hom))
7337 and then Nkind (Call_Node) /= N_Function_Call
7338 then
ed2233dc 7339 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
7340 Report_Ambiguity (Matching_Op);
7341 Report_Ambiguity (Hom);
7342 Error := True;
7343 return;
7344 end if;
35ae2ed8
AC
7345 end if;
7346 end if;
7347
88f47280
AC
7348 <<Next_Hom>>
7349 Hom := Homonym (Hom);
35ae2ed8 7350 end loop;
0a36105d
JM
7351 end Traverse_Homonyms;
7352
7353 -------------------------
7354 -- Traverse_Interfaces --
7355 -------------------------
35ae2ed8 7356
0a36105d
JM
7357 procedure Traverse_Interfaces
7358 (Anc_Type : Entity_Id;
7359 Error : out Boolean)
7360 is
0a36105d
JM
7361 Intface_List : constant List_Id :=
7362 Abstract_Interface_List (Anc_Type);
d469eabe 7363 Intface : Node_Id;
0a36105d
JM
7364
7365 begin
7366 Error := False;
7367
7368 if Is_Non_Empty_List (Intface_List) then
7369 Intface := First (Intface_List);
7370 while Present (Intface) loop
7371
7372 -- Look for acceptable class-wide homonyms associated with
7373 -- the interface.
7374
7375 Traverse_Homonyms (Etype (Intface), Error);
7376
7377 if Error then
7378 return;
7379 end if;
7380
7381 -- Continue the search by looking at each of the interface's
7382 -- associated interface ancestors.
7383
7384 Traverse_Interfaces (Etype (Intface), Error);
7385
7386 if Error then
7387 return;
7388 end if;
7389
7390 Next (Intface);
7391 end loop;
7392 end if;
7393 end Traverse_Interfaces;
7394
7395 -- Start of processing for Try_Class_Wide_Operation
7396
7397 begin
8cf23b91
AC
7398 -- If we are searching only for conflicting class-wide subprograms
7399 -- then initialize directly Matching_Op with the target entity.
7400
7401 if CW_Test_Only then
7402 Matching_Op := Entity (Selector_Name (N));
7403 end if;
7404
d469eabe
HK
7405 -- Loop through ancestor types (including interfaces), traversing
7406 -- the homonym chain of the subprogram, trying out those homonyms
7407 -- whose first formal has the class-wide type of the ancestor, or
7408 -- an anonymous access type designating the class-wide type.
0a36105d
JM
7409
7410 Anc_Type := Obj_Type;
7411 loop
7412 -- Look for a match among homonyms associated with the ancestor
7413
7414 Traverse_Homonyms (Anc_Type, Error);
7415
7416 if Error then
7417 return True;
7418 end if;
7419
7420 -- Continue the search for matches among homonyms associated with
7421 -- any interfaces implemented by the ancestor.
7422
7423 Traverse_Interfaces (Anc_Type, Error);
7424
7425 if Error then
7426 return True;
7427 end if;
35ae2ed8 7428
4c46b835
AC
7429 exit when Etype (Anc_Type) = Anc_Type;
7430 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
7431 end loop;
7432
0a36105d
JM
7433 if Present (Matching_Op) then
7434 Set_Etype (Call_Node, Etype (Matching_Op));
7435 end if;
ec6078e3 7436
0a36105d 7437 return Present (Matching_Op);
35ae2ed8
AC
7438 end Try_Class_Wide_Operation;
7439
0a36105d
JM
7440 -----------------------------------
7441 -- Try_One_Prefix_Interpretation --
7442 -----------------------------------
7443
7444 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7445 begin
7446 Obj_Type := T;
7447
7448 if Is_Access_Type (Obj_Type) then
7449 Obj_Type := Designated_Type (Obj_Type);
7450 end if;
7451
7452 if Ekind (Obj_Type) = E_Private_Subtype then
7453 Obj_Type := Base_Type (Obj_Type);
7454 end if;
7455
7456 if Is_Class_Wide_Type (Obj_Type) then
7457 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7458 end if;
7459
7460 -- The type may have be obtained through a limited_with clause,
7461 -- in which case the primitive operations are available on its
401093c1 7462 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
7463
7464 if Ekind (Obj_Type) = E_Incomplete_Type
7465 and then From_With_Type (Obj_Type)
7466 then
401093c1 7467 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
7468 end if;
7469
7470 -- If the object is not tagged, or the type is still an incomplete
7471 -- type, this is not a prefixed call.
7472
7473 if not Is_Tagged_Type (Obj_Type)
7474 or else Is_Incomplete_Type (Obj_Type)
7475 then
7476 return;
7477 end if;
7478
11fa950b
AC
7479 declare
7480 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7481 CW_Result : Boolean;
7482 Prim_Result : Boolean;
7483 pragma Unreferenced (CW_Result);
7484
7485 begin
8cf23b91
AC
7486 if not CW_Test_Only then
7487 Prim_Result :=
7488 Try_Primitive_Operation
7489 (Call_Node => New_Call_Node,
7490 Node_To_Replace => Node_To_Replace);
7491 end if;
11fa950b
AC
7492
7493 -- Check if there is a class-wide subprogram covering the
7494 -- primitive. This check must be done even if a candidate
7495 -- was found in order to report ambiguous calls.
7496
7497 if not (Prim_Result) then
7498 CW_Result :=
7499 Try_Class_Wide_Operation
7500 (Call_Node => New_Call_Node,
7501 Node_To_Replace => Node_To_Replace);
7502
7503 -- If we found a primitive we search for class-wide subprograms
7504 -- using a duplicate of the call node (done to avoid missing its
7505 -- decoration if there is no ambiguity).
7506
7507 else
7508 CW_Result :=
7509 Try_Class_Wide_Operation
7510 (Call_Node => Dup_Call_Node,
7511 Node_To_Replace => Node_To_Replace);
7512 end if;
7513 end;
0a36105d
JM
7514 end Try_One_Prefix_Interpretation;
7515
4c46b835
AC
7516 -----------------------------
7517 -- Try_Primitive_Operation --
7518 -----------------------------
35ae2ed8 7519
4c46b835
AC
7520 function Try_Primitive_Operation
7521 (Call_Node : Node_Id;
7522 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7523 is
6e73e3ab
AC
7524 Elmt : Elmt_Id;
7525 Prim_Op : Entity_Id;
0a36105d
JM
7526 Matching_Op : Entity_Id := Empty;
7527 Prim_Op_Ref : Node_Id := Empty;
7528
7529 Corr_Type : Entity_Id := Empty;
7530 -- If the prefix is a synchronized type, the controlling type of
7531 -- the primitive operation is the corresponding record type, else
7532 -- this is the object type itself.
7533
7534 Success : Boolean := False;
35ae2ed8 7535
401093c1
ES
7536 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
7537 -- For tagged types the candidate interpretations are found in
7538 -- the list of primitive operations of the type and its ancestors.
7539 -- For formal tagged types we have to find the operations declared
7540 -- in the same scope as the type (including in the generic formal
7541 -- part) because the type itself carries no primitive operations,
7542 -- except for formal derived types that inherit the operations of
7543 -- the parent and progenitors.
d469eabe
HK
7544 -- If the context is a generic subprogram body, the generic formals
7545 -- are visible by name, but are not in the entity list of the
7546 -- subprogram because that list starts with the subprogram formals.
7547 -- We retrieve the candidate operations from the generic declaration.
401093c1 7548
dfcfdc0a
AC
7549 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
7550 -- An operation that overrides an inherited operation in the private
7551 -- part of its package may be hidden, but if the inherited operation
7552 -- is visible a direct call to it will dispatch to the private one,
7553 -- which is therefore a valid candidate.
7554
ec6078e3
ES
7555 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
7556 -- Verify that the prefix, dereferenced if need be, is a valid
7557 -- controlling argument in a call to Op. The remaining actuals
7558 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 7559
401093c1
ES
7560 ------------------------------
7561 -- Collect_Generic_Type_Ops --
7562 ------------------------------
7563
7564 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
7565 Bas : constant Entity_Id := Base_Type (T);
7566 Candidates : constant Elist_Id := New_Elmt_List;
7567 Subp : Entity_Id;
7568 Formal : Entity_Id;
7569
d469eabe
HK
7570 procedure Check_Candidate;
7571 -- The operation is a candidate if its first parameter is a
7572 -- controlling operand of the desired type.
7573
7574 -----------------------
7575 -- Check_Candidate; --
7576 -----------------------
7577
7578 procedure Check_Candidate is
7579 begin
7580 Formal := First_Formal (Subp);
7581
7582 if Present (Formal)
7583 and then Is_Controlling_Formal (Formal)
7584 and then
7585 (Base_Type (Etype (Formal)) = Bas
7586 or else
7587 (Is_Access_Type (Etype (Formal))
7588 and then Designated_Type (Etype (Formal)) = Bas))
7589 then
7590 Append_Elmt (Subp, Candidates);
7591 end if;
7592 end Check_Candidate;
7593
7594 -- Start of processing for Collect_Generic_Type_Ops
7595
401093c1
ES
7596 begin
7597 if Is_Derived_Type (T) then
7598 return Primitive_Operations (T);
7599
bce79204
AC
7600 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
7601
d469eabe
HK
7602 -- Scan the list of generic formals to find subprograms
7603 -- that may have a first controlling formal of the type.
7604
bb10b891
AC
7605 if Nkind (Unit_Declaration_Node (Scope (T)))
7606 = N_Generic_Subprogram_Declaration
7607 then
7608 declare
7609 Decl : Node_Id;
7610
7611 begin
7612 Decl :=
7613 First (Generic_Formal_Declarations
7614 (Unit_Declaration_Node (Scope (T))));
7615 while Present (Decl) loop
7616 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
7617 Subp := Defining_Entity (Decl);
7618 Check_Candidate;
7619 end if;
d469eabe 7620
bb10b891
AC
7621 Next (Decl);
7622 end loop;
7623 end;
7624 end if;
d469eabe
HK
7625 return Candidates;
7626
401093c1
ES
7627 else
7628 -- Scan the list of entities declared in the same scope as
7629 -- the type. In general this will be an open scope, given that
7630 -- the call we are analyzing can only appear within a generic
7631 -- declaration or body (either the one that declares T, or a
7632 -- child unit).
7633
bb10b891
AC
7634 -- For a subtype representing a generic actual type, go to the
7635 -- base type.
7636
7637 if Is_Generic_Actual_Type (T) then
7638 Subp := First_Entity (Scope (Base_Type (T)));
7639 else
7640 Subp := First_Entity (Scope (T));
7641 end if;
7642
401093c1
ES
7643 while Present (Subp) loop
7644 if Is_Overloadable (Subp) then
d469eabe 7645 Check_Candidate;
401093c1
ES
7646 end if;
7647
7648 Next_Entity (Subp);
7649 end loop;
7650
7651 return Candidates;
7652 end if;
7653 end Collect_Generic_Type_Ops;
7654
dfcfdc0a
AC
7655 ---------------------------
7656 -- Is_Private_Overriding --
7657 ---------------------------
7658
7659 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
7660 Visible_Op : constant Entity_Id := Homonym (Op);
7661
7662 begin
7663 return Present (Visible_Op)
6465b6a7 7664 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
7665 and then not Comes_From_Source (Visible_Op)
7666 and then Alias (Visible_Op) = Op
7667 and then not Is_Hidden (Visible_Op);
7668 end Is_Private_Overriding;
7669
ec6078e3
ES
7670 -----------------------------
7671 -- Valid_First_Argument_Of --
7672 -----------------------------
35ae2ed8 7673
ec6078e3 7674 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 7675 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 7676
ec6078e3 7677 begin
9febb58f
JM
7678 if Is_Concurrent_Type (Typ)
7679 and then Present (Corresponding_Record_Type (Typ))
7680 then
7681 Typ := Corresponding_Record_Type (Typ);
7682 end if;
7683
d469eabe
HK
7684 -- Simple case. Object may be a subtype of the tagged type or
7685 -- may be the corresponding record of a synchronized type.
5d09245e 7686
aab883ec 7687 return Obj_Type = Typ
d469eabe 7688 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
7689 or else Corr_Type = Typ
7690
7691 -- Prefix can be dereferenced
725e2a15 7692
ec6078e3 7693 or else
0a36105d
JM
7694 (Is_Access_Type (Corr_Type)
7695 and then Designated_Type (Corr_Type) = Typ)
5d09245e 7696
0a36105d
JM
7697 -- Formal is an access parameter, for which the object
7698 -- can provide an access.
35ae2ed8 7699
ec6078e3
ES
7700 or else
7701 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
7702 and then
7703 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 7704 end Valid_First_Argument_Of;
35ae2ed8 7705
ec6078e3 7706 -- Start of processing for Try_Primitive_Operation
35ae2ed8 7707
ec6078e3 7708 begin
d469eabe 7709 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
7710 -- must be identical, and the kind of call indicates the expected
7711 -- kind of operation (function or procedure). If the type is a
d469eabe 7712 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 7713 -- corresponding record (base) type.
aab883ec
ES
7714
7715 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
7716 if Present (Corresponding_Record_Type (Obj_Type)) then
7717 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7718 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7719 else
7720 Corr_Type := Obj_Type;
7721 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
7722 end if;
7723
401093c1 7724 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 7725 Corr_Type := Obj_Type;
aab883ec 7726 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
401093c1
ES
7727
7728 else
7729 Corr_Type := Obj_Type;
7730 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 7731 end if;
35ae2ed8 7732
ec6078e3
ES
7733 while Present (Elmt) loop
7734 Prim_Op := Node (Elmt);
7735
7736 if Chars (Prim_Op) = Chars (Subprog)
7737 and then Present (First_Formal (Prim_Op))
7738 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 7739 and then
7415029d 7740 (Nkind (Call_Node) = N_Function_Call)
fe45e59e 7741 = (Ekind (Prim_Op) = E_Function)
ec6078e3 7742 then
b67a385c
ES
7743 -- Ada 2005 (AI-251): If this primitive operation corresponds
7744 -- with an immediate ancestor interface there is no need to add
7745 -- it to the list of interpretations; the corresponding aliased
7746 -- primitive is also in this list of primitive operations and
7747 -- will be used instead.
fe45e59e 7748
ce2b6ba5
JM
7749 if (Present (Interface_Alias (Prim_Op))
7750 and then Is_Ancestor (Find_Dispatching_Type
7751 (Alias (Prim_Op)), Corr_Type))
0a36105d 7752
dfcfdc0a
AC
7753 -- Do not consider hidden primitives unless the type is in an
7754 -- open scope or we are within an instance, where visibility
7755 -- is known to be correct, or else if this is an overriding
7756 -- operation in the private part for an inherited operation.
0a36105d 7757
dfcfdc0a
AC
7758 or else (Is_Hidden (Prim_Op)
7759 and then not Is_Immediately_Visible (Obj_Type)
7760 and then not In_Instance
7761 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
7762 then
7763 goto Continue;
7764 end if;
7765
0a36105d
JM
7766 Set_Etype (Call_Node, Any_Type);
7767 Set_Is_Overloaded (Call_Node, False);
7768
7769 if No (Matching_Op) then
fe45e59e 7770 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
b67a385c 7771 Candidate := Prim_Op;
35ae2ed8 7772
fe45e59e 7773 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 7774
fe45e59e 7775 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 7776 Success := False;
35ae2ed8 7777
fe45e59e
ES
7778 Analyze_One_Call
7779 (N => Call_Node,
7780 Nam => Prim_Op,
b67a385c 7781 Report => Report_Error,
fe45e59e
ES
7782 Success => Success,
7783 Skip_First => True);
35ae2ed8 7784
0a36105d 7785 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 7786
d469eabe
HK
7787 -- More than one interpretation, collect for subsequent
7788 -- disambiguation. If this is a procedure call and there
7789 -- is another match, report ambiguity now.
0a36105d 7790
d469eabe 7791 else
0a36105d
JM
7792 Analyze_One_Call
7793 (N => Call_Node,
7794 Nam => Prim_Op,
7795 Report => Report_Error,
7796 Success => Success,
7797 Skip_First => True);
fe45e59e 7798
0a36105d
JM
7799 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7800 and then Nkind (Call_Node) /= N_Function_Call
7801 then
ed2233dc 7802 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
7803 Report_Ambiguity (Matching_Op);
7804 Report_Ambiguity (Prim_Op);
7805 return True;
7806 end if;
4c46b835
AC
7807 end if;
7808 end if;
35ae2ed8 7809
fe45e59e 7810 <<Continue>>
4c46b835
AC
7811 Next_Elmt (Elmt);
7812 end loop;
35ae2ed8 7813
0a36105d
JM
7814 if Present (Matching_Op) then
7815 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
7816 end if;
7817
0a36105d 7818 return Present (Matching_Op);
4c46b835 7819 end Try_Primitive_Operation;
35ae2ed8 7820
4c46b835 7821 -- Start of processing for Try_Object_Operation
35ae2ed8 7822
4c46b835 7823 begin
0a36105d 7824 Analyze_Expression (Obj);
ec6078e3 7825
0a36105d 7826 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
7827
7828 if Is_Subprg_Call and then N = Name (Parent (N)) then
7829 Actual := First (Parameter_Associations (Parent (N)));
7830 while Present (Actual) loop
725e2a15 7831 Analyze_Expression (Actual);
28d6470f
JM
7832 Next (Actual);
7833 end loop;
7834 end if;
5d09245e 7835
ec6078e3
ES
7836 -- Build a subprogram call node, using a copy of Obj as its first
7837 -- actual. This is a placeholder, to be replaced by an explicit
7838 -- dereference when needed.
4c46b835 7839
ec6078e3
ES
7840 Transform_Object_Operation
7841 (Call_Node => New_Call_Node,
0a36105d 7842 Node_To_Replace => Node_To_Replace);
4c46b835 7843
ec6078e3 7844 Set_Etype (New_Call_Node, Any_Type);
0a36105d 7845 Set_Etype (Subprog, Any_Type);
ec6078e3 7846 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 7847
0a36105d
JM
7848 if not Is_Overloaded (Obj) then
7849 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 7850
0a36105d
JM
7851 else
7852 declare
7853 I : Interp_Index;
7854 It : Interp;
7855 begin
7856 Get_First_Interp (Obj, I, It);
7857 while Present (It.Nam) loop
7858 Try_One_Prefix_Interpretation (It.Typ);
7859 Get_Next_Interp (I, It);
7860 end loop;
7861 end;
7862 end if;
7863
7864 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
7865
7866 -- No need to complete the tree transformations if we are only
7867 -- searching for conflicting class-wide subprograms
7868
7869 if CW_Test_Only then
7870 return False;
7871 else
7872 Complete_Object_Operation
7873 (Call_Node => New_Call_Node,
7874 Node_To_Replace => Node_To_Replace);
7875 return True;
7876 end if;
b67a385c
ES
7877
7878 elsif Present (Candidate) then
7879
7880 -- The argument list is not type correct. Re-analyze with error
7881 -- reporting enabled, and use one of the possible candidates.
d469eabe 7882 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
7883
7884 if All_Errors_Mode then
7885 Report_Error := True;
7886 if Try_Primitive_Operation
7887 (Call_Node => New_Call_Node,
7888 Node_To_Replace => Node_To_Replace)
7889
7890 or else
7891 Try_Class_Wide_Operation
7892 (Call_Node => New_Call_Node,
7893 Node_To_Replace => Node_To_Replace)
7894 then
7895 null;
7896 end if;
7897
7898 else
7899 Analyze_One_Call
7900 (N => New_Call_Node,
7901 Nam => Candidate,
7902 Report => True,
7903 Success => Success,
7904 Skip_First => True);
7905 end if;
7906
d469eabe
HK
7907 -- No need for further errors
7908
7909 return True;
b67a385c
ES
7910
7911 else
7912 -- There was no candidate operation, so report it as an error
7913 -- in the caller: Analyze_Selected_Component.
7914
7915 return False;
7916 end if;
35ae2ed8
AC
7917 end Try_Object_Operation;
7918
b4592168
GD
7919 ---------
7920 -- wpo --
7921 ---------
7922
7923 procedure wpo (T : Entity_Id) is
7924 Op : Entity_Id;
7925 E : Elmt_Id;
7926
7927 begin
7928 if not Is_Tagged_Type (T) then
7929 return;
7930 end if;
7931
7932 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7933 while Present (E) loop
7934 Op := Node (E);
7935 Write_Int (Int (Op));
7936 Write_Str (" === ");
7937 Write_Name (Chars (Op));
7938 Write_Str (" in ");
7939 Write_Name (Chars (Scope (Op)));
7940 Next_Elmt (E);
7941 Write_Eol;
7942 end loop;
7943 end wpo;
7944
996ae0b0 7945end Sem_Ch4;