]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cfgloopmanip.c
rs6000-internal.h (create_TOC_reference): Delete.
[thirdparty/gcc.git] / gcc / cfgloopmanip.c
CommitLineData
3d436d2a 1/* Loop manipulation code for GNU compiler.
a5544970 2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
3d436d2a
ZD
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
3d436d2a
ZD
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
3d436d2a
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "rtl.h"
c7131fb2
AM
25#include "tree.h"
26#include "gimple.h"
957060b5 27#include "cfghooks.h"
60393bbc 28#include "cfganal.h"
3d436d2a 29#include "cfgloop.h"
5be5c238 30#include "gimple-iterator.h"
18f429e2 31#include "gimplify-me.h"
e28030cf 32#include "tree-ssa-loop-manip.h"
7ee2468b 33#include "dumpfile.h"
3d436d2a 34
d73be268 35static void copy_loops_to (struct loop **, int,
d329e058
AJ
36 struct loop *);
37static void loop_redirect_edge (edge, basic_block);
d47cc544 38static void remove_bbs (basic_block *, int);
ed7a4b4b 39static bool rpe_enum_p (const_basic_block, const void *);
d47cc544 40static int find_path (edge, basic_block **);
d73be268
ZD
41static void fix_loop_placements (struct loop *, bool *);
42static bool fix_bb_placement (basic_block);
1a7de201 43static void fix_bb_placements (basic_block, bool *, bitmap);
3d436d2a 44
d47cc544 45/* Checks whether basic block BB is dominated by DATA. */
617b465c 46static bool
ed7a4b4b 47rpe_enum_p (const_basic_block bb, const void *data)
617b465c 48{
ed7a4b4b 49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
617b465c
ZD
50}
51
598ec7bd
ZD
52/* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
617b465c 54static void
d47cc544 55remove_bbs (basic_block *bbs, int nbbs)
617b465c
ZD
56{
57 int i;
58
59 for (i = 0; i < nbbs; i++)
598ec7bd 60 delete_basic_block (bbs[i]);
617b465c
ZD
61}
62
63/* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
35b07080
ZD
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
617b465c 69static int
d47cc544 70find_path (edge e, basic_block **bbs)
617b465c 71{
628f6a4e 72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
617b465c
ZD
73
74 /* Find bbs in the path. */
0cae8d31 75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
617b465c 76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
0cae8d31 77 n_basic_blocks_for_fn (cfun), e->dest);
617b465c
ZD
78}
79
d73be268 80/* Fix placement of basic block BB inside loop hierarchy --
617b465c
ZD
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87static bool
d73be268 88fix_bb_placement (basic_block bb)
617b465c
ZD
89{
90 edge e;
628f6a4e 91 edge_iterator ei;
d73be268 92 struct loop *loop = current_loops->tree_root, *act;
617b465c 93
628f6a4e 94 FOR_EACH_EDGE (e, ei, bb->succs)
617b465c 95 {
fefa31b5 96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
617b465c
ZD
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
9ba025a2 101 act = loop_outer (act);
617b465c
ZD
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114}
115
b4c1c7e3
ZD
116/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
1bd3f750
MP
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
b4c1c7e3
ZD
123
124static bool
1bd3f750 125fix_loop_placement (struct loop *loop, bool *irred_invalidated)
b4c1c7e3
ZD
126{
127 unsigned i;
128 edge e;
9771b263 129 vec<edge> exits = get_loop_exit_edges (loop);
b4c1c7e3
ZD
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
9771b263 133 FOR_EACH_VEC_ELT (exits, i, e)
b4c1c7e3
ZD
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
9ba025a2 140 if (father != loop_outer (loop))
b4c1c7e3 141 {
9ba025a2 142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
b4c1c7e3
ZD
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
9771b263 149 FOR_EACH_VEC_ELT (exits, i, e)
1bd3f750
MP
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
b4c1c7e3
ZD
156
157 ret = true;
158 }
159
9771b263 160 exits.release ();
b4c1c7e3
ZD
161 return ret;
162}
163
617b465c 164/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
026c3cfd 165 enforce condition stated in description of fix_bb_placement. We
617b465c
ZD
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
4d6922ee 170 to this change; the condition for them is similar, except that instead of
dc14f191 171 successors we consider edges coming out of the loops.
b8698a0f 172
dc14f191 173 If the changes may invalidate the information about irreducible regions,
1a7de201
JH
174 IRRED_INVALIDATED is set to true.
175
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
dc14f191 178
617b465c 179static void
d73be268 180fix_bb_placements (basic_block from,
1a7de201
JH
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
617b465c 183{
617b465c 184 basic_block *queue, *qtop, *qbeg, *qend;
634ee309 185 struct loop *base_loop, *target_loop;
617b465c
ZD
186 edge e;
187
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
194
195 base_loop = from->loop_father;
cec8ac0b
ZD
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
617b465c
ZD
201 return;
202
7ba9e72d 203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
f61e445a 204 bitmap_clear (in_queue);
d7c028c0 205 bitmap_set_bit (in_queue, from->index);
617b465c 206 /* Prevent us from going out of the base_loop. */
d7c028c0 207 bitmap_set_bit (in_queue, base_loop->header->index);
617b465c 208
5ed6ace5 209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
617b465c
ZD
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
214
215 while (qbeg != qend)
216 {
628f6a4e 217 edge_iterator ei;
617b465c
ZD
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
d7c028c0 222 bitmap_clear_bit (in_queue, from->index);
617b465c
ZD
223
224 if (from->loop_father->header == from)
225 {
226 /* Subloop header, maybe move the loop upward. */
1bd3f750 227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
617b465c 228 continue;
634ee309 229 target_loop = loop_outer (from->loop_father);
467a3558
RB
230 if (loop_closed_ssa_invalidated)
231 {
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
236 }
617b465c
ZD
237 }
238 else
239 {
240 /* Ordinary basic block. */
d73be268 241 if (!fix_bb_placement (from))
617b465c 242 continue;
467a3558 243 target_loop = from->loop_father;
1a7de201
JH
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
617b465c
ZD
246 }
247
dc14f191
ZD
248 FOR_EACH_EDGE (e, ei, from->succs)
249 {
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
252 }
253
617b465c 254 /* Something has changed, insert predecessors into queue. */
628f6a4e 255 FOR_EACH_EDGE (e, ei, from->preds)
617b465c
ZD
256 {
257 basic_block pred = e->src;
258 struct loop *nca;
259
dc14f191
ZD
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
262
d7c028c0 263 if (bitmap_bit_p (in_queue, pred->index))
617b465c
ZD
264 continue;
265
d329e058 266 /* If it is subloop, then it either was not moved, or
617b465c
ZD
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
634ee309 274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
617b465c 275 {
634ee309
ZD
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
617b465c
ZD
280 continue;
281 }
282
d7c028c0 283 if (bitmap_bit_p (in_queue, pred->index))
617b465c
ZD
284 continue;
285
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
d7c028c0 291 bitmap_set_bit (in_queue, pred->index);
617b465c
ZD
292 }
293 }
617b465c
ZD
294 free (queue);
295}
296
297/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
d73be268
ZD
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
617b465c 300bool
eb2afa1a
RB
301remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
617b465c
ZD
303{
304 edge ae;
66f97d31 305 basic_block *rem_bbs, *bord_bbs, from, bb;
9771b263 306 vec<basic_block> dom_bbs;
2f697bc4 307 int i, nrem, n_bord_bbs;
eb2afa1a 308 bool local_irred_invalidated = false;
06f1716b 309 edge_iterator ei;
56494762 310 struct loop *l, *f;
617b465c 311
eb2afa1a
RB
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
314
14fa2cc0 315 if (!can_remove_branch_p (e))
35b07080
ZD
316 return false;
317
dc14f191
ZD
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
eb2afa1a 324 *irred_invalidated = true;
dc14f191 325
35b07080
ZD
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
c5cbcccf 330 if (!single_pred_p (e->dest))
598ec7bd 331 e = single_pred_edge (split_edge (e));
35b07080
ZD
332
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
56494762
JH
337 for (l = e->src->loop_father; loop_outer (l); l = f)
338 {
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
eb2afa1a 341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
56494762 342 }
d329e058 343
35b07080 344 /* Identify the path. */
d47cc544 345 nrem = find_path (e, &rem_bbs);
617b465c
ZD
346
347 n_bord_bbs = 0;
0cae8d31 348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
7ba9e72d 349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
f61e445a 350 bitmap_clear (seen);
617b465c
ZD
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
d7c028c0 354 bitmap_set_bit (seen, rem_bbs[i]->index);
eb2afa1a 355 if (!*irred_invalidated)
06f1716b 356 FOR_EACH_EDGE (ae, ei, e->src->succs)
fefa31b5
DM
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
06f1716b 359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
c7b3b99f 360 {
eb2afa1a 361 *irred_invalidated = true;
c7b3b99f
PCC
362 break;
363 }
364
35b07080 365 for (i = 0; i < nrem; i++)
617b465c 366 {
628f6a4e 367 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
fefa31b5
DM
368 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && !bitmap_bit_p (seen, ae->dest->index))
35b07080 370 {
d7c028c0 371 bitmap_set_bit (seen, ae->dest->index);
35b07080 372 bord_bbs[n_bord_bbs++] = ae->dest;
b8698a0f 373
dc14f191 374 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
eb2afa1a 375 *irred_invalidated = true;
35b07080 376 }
617b465c 377 }
617b465c
ZD
378
379 /* Remove the path. */
380 from = e->src;
14fa2cc0 381 remove_branch (e);
9771b263 382 dom_bbs.create (0);
617b465c
ZD
383
384 /* Cancel loops contained in the path. */
385 for (i = 0; i < nrem; i++)
386 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
2f697bc4 387 cancel_loop_tree (rem_bbs[i]->loop_father);
598ec7bd 388
9b43d37b
JJ
389 remove_bbs (rem_bbs, nrem);
390 free (rem_bbs);
391
35b07080 392 /* Find blocks whose dominators may be affected. */
f61e445a 393 bitmap_clear (seen);
617b465c
ZD
394 for (i = 0; i < n_bord_bbs; i++)
395 {
d47cc544 396 basic_block ldom;
617b465c 397
d47cc544 398 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
d7c028c0 399 if (bitmap_bit_p (seen, bb->index))
617b465c 400 continue;
d7c028c0 401 bitmap_set_bit (seen, bb->index);
617b465c 402
d47cc544
SB
403 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
404 ldom;
405 ldom = next_dom_son (CDI_DOMINATORS, ldom))
406 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
9771b263 407 dom_bbs.safe_push (ldom);
617b465c
ZD
408 }
409
617b465c 410 /* Recount dominators. */
66f97d31 411 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
9771b263 412 dom_bbs.release ();
35b07080
ZD
413 free (bord_bbs);
414
617b465c
ZD
415 /* Fix placements of basic blocks inside loops and the placement of
416 loops in the loop tree. */
eb2afa1a
RB
417 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
418 fix_loop_placements (from->loop_father, irred_invalidated);
dc14f191 419
eb2afa1a 420 if (local_irred_invalidated
f87000d0 421 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
d73be268 422 mark_irreducible_loops ();
617b465c
ZD
423
424 return true;
425}
426
0fc822d0 427/* Creates place for a new LOOP in loops structure of FN. */
89f8f30f 428
a9e0d843 429void
0fc822d0 430place_new_loop (struct function *fn, struct loop *loop)
617b465c 431{
0fc822d0
RB
432 loop->num = number_of_loops (fn);
433 vec_safe_push (loops_for_fn (fn)->larray, loop);
617b465c
ZD
434}
435
436/* Given LOOP structure with filled header and latch, find the body of the
d73be268 437 corresponding loop and add it to loops tree. Insert the LOOP as a son of
598ec7bd
ZD
438 outer. */
439
89f8f30f 440void
d73be268 441add_loop (struct loop *loop, struct loop *outer)
617b465c
ZD
442{
443 basic_block *bbs;
444 int i, n;
89f8f30f 445 struct loop *subloop;
d24a32a1
ZD
446 edge e;
447 edge_iterator ei;
d329e058 448
617b465c 449 /* Add it to loop structure. */
0fc822d0 450 place_new_loop (cfun, loop);
598ec7bd 451 flow_loop_tree_node_add (outer, loop);
617b465c
ZD
452
453 /* Find its nodes. */
0cae8d31
DM
454 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
455 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
617b465c
ZD
456
457 for (i = 0; i < n; i++)
598ec7bd 458 {
89f8f30f
ZD
459 if (bbs[i]->loop_father == outer)
460 {
461 remove_bb_from_loops (bbs[i]);
462 add_bb_to_loop (bbs[i], loop);
463 continue;
464 }
465
466 loop->num_nodes++;
467
468 /* If we find a direct subloop of OUTER, move it to LOOP. */
469 subloop = bbs[i]->loop_father;
9ba025a2 470 if (loop_outer (subloop) == outer
89f8f30f
ZD
471 && subloop->header == bbs[i])
472 {
473 flow_loop_tree_node_remove (subloop);
474 flow_loop_tree_node_add (loop, subloop);
475 }
598ec7bd 476 }
617b465c 477
d24a32a1
ZD
478 /* Update the information about loop exit edges. */
479 for (i = 0; i < n; i++)
480 {
481 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 {
483 rescan_loop_exit (e, false, false);
484 }
485 }
486
617b465c
ZD
487 free (bbs);
488}
489
af2bbc51 490/* Scale profile of loop by P. */
6e73e84b 491
03cb2019 492void
af2bbc51 493scale_loop_frequencies (struct loop *loop, profile_probability p)
617b465c
ZD
494{
495 basic_block *bbs;
496
497 bbs = get_loop_body (loop);
af2bbc51 498 scale_bbs_frequencies (bbs, loop->num_nodes, p);
617b465c
ZD
499 free (bbs);
500}
501
af2bbc51 502/* Scale profile in LOOP by P.
6e73e84b 503 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
65739a68
JH
504 to iterate too many times.
505 Before caling this function, preheader block profile should be already
506 scaled to final count. This is necessary because loop iterations are
507 determined by comparing header edge count to latch ege count and thus
508 they need to be scaled synchronously. */
6e73e84b
JH
509
510void
af2bbc51
JH
511scale_loop_profile (struct loop *loop, profile_probability p,
512 gcov_type iteration_bound)
6e73e84b 513{
65739a68 514 edge e, preheader_e;
6e73e84b
JH
515 edge_iterator ei;
516
517 if (dump_file && (dump_flags & TDF_DETAILS))
af2bbc51
JH
518 {
519 fprintf (dump_file, ";; Scaling loop %i with scale ",
520 loop->num);
521 p.dump (dump_file);
65739a68
JH
522 fprintf (dump_file, " bounding iterations to %i\n",
523 (int)iteration_bound);
524 }
525
526 /* Scale the probabilities. */
527 scale_loop_frequencies (loop, p);
528
529 if (iteration_bound == 0)
530 return;
531
532 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
533
534 if (dump_file && (dump_flags & TDF_DETAILS))
535 {
536 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
537 (int)iterations);
af2bbc51 538 }
6e73e84b
JH
539
540 /* See if loop is predicted to iterate too many times. */
65739a68
JH
541 if (iterations <= iteration_bound)
542 return;
543
544 preheader_e = loop_preheader_edge (loop);
545
546 /* We could handle also loops without preheaders, but bounding is
547 currently used only by optimizers that have preheaders constructed. */
548 gcc_checking_assert (preheader_e);
549 profile_count count_in = preheader_e->count ();
550
551 if (count_in > profile_count::zero ()
552 && loop->header->count.initialized_p ())
6e73e84b 553 {
65739a68 554 profile_count count_delta = profile_count::zero ();
6e73e84b 555
6e73e84b
JH
556 e = single_exit (loop);
557 if (e)
558 {
559 edge other_e;
65739a68 560 FOR_EACH_EDGE (other_e, ei, e->src->succs)
6e73e84b
JH
561 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
562 && e != other_e)
563 break;
564
565 /* Probability of exit must be 1/iterations. */
ef30ab83 566 count_delta = e->count ();
b2ff44a8 567 e->probability = profile_probability::always ()
65739a68 568 .apply_scale (1, iteration_bound);
357067f2 569 other_e->probability = e->probability.invert ();
6e73e84b 570
65739a68
JH
571 /* In code below we only handle the following two updates. */
572 if (other_e->dest != loop->header
573 && other_e->dest != loop->latch
574 && (dump_file && (dump_flags & TDF_DETAILS)))
6e73e84b 575 {
65739a68
JH
576 fprintf (dump_file, ";; giving up on update of paths from "
577 "exit condition to latch\n");
6e73e84b
JH
578 }
579 }
65739a68
JH
580 else
581 if (dump_file && (dump_flags & TDF_DETAILS))
582 fprintf (dump_file, ";; Loop has multiple exit edges; "
583 "giving up on exit condition update\n");
6e73e84b
JH
584
585 /* Roughly speaking we want to reduce the loop body profile by the
6af801f5 586 difference of loop iterations. We however can do better if
6e73e84b 587 we look at the actual profile, if it is available. */
65739a68 588 p = profile_probability::always ();
6e73e84b 589
65739a68
JH
590 count_in = count_in.apply_scale (iteration_bound, 1);
591 p = count_in.probability_in (loop->header->count);
af2bbc51
JH
592 if (!(p > profile_probability::never ()))
593 p = profile_probability::very_unlikely ();
6e73e84b 594
65739a68
JH
595 if (p == profile_probability::always ()
596 || !p.initialized_p ())
597 return;
6e73e84b 598
65739a68
JH
599 /* If latch exists, change its count, since we changed
600 probability of exit. Theoretically we should update everything from
601 source of exit edge to latch, but for vectorizer this is enough. */
602 if (loop->latch && loop->latch != e->src)
603 loop->latch->count += count_delta;
604
605 /* Scale the probabilities. */
606 scale_loop_frequencies (loop, p);
607
608 /* Change latch's count back. */
609 if (loop->latch && loop->latch != e->src)
610 loop->latch->count -= count_delta;
611
612 if (dump_file && (dump_flags & TDF_DETAILS))
613 fprintf (dump_file, ";; guessed iterations are now %i\n",
614 (int)expected_loop_iterations_unbounded (loop, NULL, true));
615 }
6e73e84b
JH
616}
617
f8bf9252
SP
618/* Recompute dominance information for basic blocks outside LOOP. */
619
620static void
621update_dominators_in_loop (struct loop *loop)
622{
6e1aa848 623 vec<basic_block> dom_bbs = vNULL;
f8bf9252
SP
624 basic_block *body;
625 unsigned i;
626
7ba9e72d 627 auto_sbitmap seen (last_basic_block_for_fn (cfun));
f61e445a 628 bitmap_clear (seen);
f8bf9252
SP
629 body = get_loop_body (loop);
630
631 for (i = 0; i < loop->num_nodes; i++)
d7c028c0 632 bitmap_set_bit (seen, body[i]->index);
f8bf9252
SP
633
634 for (i = 0; i < loop->num_nodes; i++)
635 {
636 basic_block ldom;
637
638 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
639 ldom;
640 ldom = next_dom_son (CDI_DOMINATORS, ldom))
d7c028c0 641 if (!bitmap_bit_p (seen, ldom->index))
f8bf9252 642 {
d7c028c0 643 bitmap_set_bit (seen, ldom->index);
9771b263 644 dom_bbs.safe_push (ldom);
f8bf9252
SP
645 }
646 }
647
648 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
649 free (body);
9771b263 650 dom_bbs.release ();
f8bf9252
SP
651}
652
653/* Creates an if region as shown above. CONDITION is used to create
b8698a0f 654 the test for the if.
f8bf9252
SP
655
656 |
657 | ------------- -------------
658 | | pred_bb | | pred_bb |
659 | ------------- -------------
660 | | |
661 | | | ENTRY_EDGE
662 | | ENTRY_EDGE V
663 | | ====> -------------
664 | | | cond_bb |
665 | | | CONDITION |
666 | | -------------
667 | V / \
668 | ------------- e_false / \ e_true
669 | | succ_bb | V V
670 | ------------- ----------- -----------
671 | | false_bb | | true_bb |
672 | ----------- -----------
673 | \ /
674 | \ /
675 | V V
676 | -------------
677 | | join_bb |
678 | -------------
679 | | exit_edge (result)
680 | V
681 | -----------
682 | | succ_bb |
683 | -----------
684 |
685 */
686
687edge
688create_empty_if_region_on_edge (edge entry_edge, tree condition)
689{
690
f1ed99cd 691 basic_block cond_bb, true_bb, false_bb, join_bb;
f8bf9252 692 edge e_true, e_false, exit_edge;
538dd0b7 693 gcond *cond_stmt;
f8bf9252
SP
694 tree simple_cond;
695 gimple_stmt_iterator gsi;
696
f8bf9252 697 cond_bb = split_edge (entry_edge);
b8698a0f 698
f8bf9252
SP
699 /* Insert condition in cond_bb. */
700 gsi = gsi_last_bb (cond_bb);
701 simple_cond =
702 force_gimple_operand_gsi (&gsi, condition, true, NULL,
703 false, GSI_NEW_STMT);
704 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
705 gsi = gsi_last_bb (cond_bb);
706 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
b8698a0f 707
f8bf9252
SP
708 join_bb = split_edge (single_succ_edge (cond_bb));
709
710 e_true = single_succ_edge (cond_bb);
711 true_bb = split_edge (e_true);
712
713 e_false = make_edge (cond_bb, join_bb, 0);
714 false_bb = split_edge (e_false);
715
716 e_true->flags &= ~EDGE_FALLTHRU;
717 e_true->flags |= EDGE_TRUE_VALUE;
718 e_false->flags &= ~EDGE_FALLTHRU;
719 e_false->flags |= EDGE_FALSE_VALUE;
720
721 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
722 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
724 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
725
726 exit_edge = single_succ_edge (join_bb);
727
728 if (single_pred_p (exit_edge->dest))
729 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
730
731 return exit_edge;
732}
733
734/* create_empty_loop_on_edge
735 |
8e74b397
SP
736 | - pred_bb - ------ pred_bb ------
737 | | | | iv0 = initial_value |
738 | -----|----- ---------|-----------
739 | | ______ | entry_edge
740 | | entry_edge / | |
741 | | ====> | -V---V- loop_header -------------
742 | V | | iv_before = phi (iv0, iv_after) |
743 | - succ_bb - | ---|-----------------------------
744 | | | | |
745 | ----------- | ---V--- loop_body ---------------
746 | | | iv_after = iv_before + stride |
45e76e9f 747 | | | if (iv_before < upper_bound) |
8e74b397
SP
748 | | ---|--------------\--------------
749 | | | \ exit_e
750 | | V \
751 | | - loop_latch - V- succ_bb -
752 | | | | | |
753 | | /------------- -----------
754 | \ ___ /
f8bf9252
SP
755
756 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
45e76e9f 757 that is used before the increment of IV. IV_BEFORE should be used for
f8bf9252 758 adding code to the body that uses the IV. OUTER is the outer loop in
45e76e9f 759 which the new loop should be inserted.
8e74b397
SP
760
761 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
762 inserted on the loop entry edge. This implies that this function
763 should be used only when the UPPER_BOUND expression is a loop
764 invariant. */
f8bf9252
SP
765
766struct loop *
45e76e9f 767create_empty_loop_on_edge (edge entry_edge,
f8bf9252
SP
768 tree initial_value,
769 tree stride, tree upper_bound,
770 tree iv,
771 tree *iv_before,
8e74b397 772 tree *iv_after,
f8bf9252
SP
773 struct loop *outer)
774{
775 basic_block loop_header, loop_latch, succ_bb, pred_bb;
776 struct loop *loop;
f8bf9252 777 gimple_stmt_iterator gsi;
f8bf9252 778 gimple_seq stmts;
538dd0b7 779 gcond *cond_expr;
f8bf9252
SP
780 tree exit_test;
781 edge exit_e;
45e76e9f 782
f8bf9252
SP
783 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
784
785 /* Create header, latch and wire up the loop. */
786 pred_bb = entry_edge->src;
787 loop_header = split_edge (entry_edge);
788 loop_latch = split_edge (single_succ_edge (loop_header));
789 succ_bb = single_succ (loop_latch);
790 make_edge (loop_header, succ_bb, 0);
791 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
792
793 /* Set immediate dominator information. */
794 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
795 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
796 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
797
798 /* Initialize a loop structure and put it in a loop hierarchy. */
799 loop = alloc_loop ();
800 loop->header = loop_header;
801 loop->latch = loop_latch;
802 add_loop (loop, outer);
803
e7a74006 804 /* TODO: Fix counts. */
af2bbc51 805 scale_loop_frequencies (loop, profile_probability::even ());
f8bf9252
SP
806
807 /* Update dominators. */
808 update_dominators_in_loop (loop);
809
8e74b397
SP
810 /* Modify edge flags. */
811 exit_e = single_exit (loop);
812 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
813 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
814
f8bf9252
SP
815 /* Construct IV code in loop. */
816 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
817 if (stmts)
818 {
819 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
820 gsi_commit_edge_inserts ();
821 }
822
8e74b397
SP
823 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
824 if (stmts)
825 {
826 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
827 gsi_commit_edge_inserts ();
828 }
f8bf9252 829
8e74b397
SP
830 gsi = gsi_last_bb (loop_header);
831 create_iv (initial_value, stride, iv, loop, &gsi, false,
832 iv_before, iv_after);
f8bf9252 833
8e74b397
SP
834 /* Insert loop exit condition. */
835 cond_expr = gimple_build_cond
45e76e9f 836 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
f8bf9252
SP
837
838 exit_test = gimple_cond_lhs (cond_expr);
839 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
840 false, GSI_NEW_STMT);
841 gimple_cond_set_lhs (cond_expr, exit_test);
842 gsi = gsi_last_bb (exit_e->src);
843 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
844
8e74b397
SP
845 split_block_after_labels (loop_header);
846
f8bf9252
SP
847 return loop;
848}
849
617b465c 850/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
d73be268 851 latch to header and update loop tree and dominators
617b465c
ZD
852 accordingly. Everything between them plus LATCH_EDGE destination must
853 be dominated by HEADER_EDGE destination, and back-reachable from
854 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
5132abc2
KH
855 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
856 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
03cb2019
ZD
857 Returns the newly created loop. Frequencies and counts in the new loop
858 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
50654f6c 859
617b465c 860struct loop *
d73be268 861loopify (edge latch_edge, edge header_edge,
5132abc2 862 basic_block switch_bb, edge true_edge, edge false_edge,
af2bbc51
JH
863 bool redirect_all_edges, profile_probability true_scale,
864 profile_probability false_scale)
617b465c
ZD
865{
866 basic_block succ_bb = latch_edge->dest;
867 basic_block pred_bb = header_edge->src;
6270df4c 868 struct loop *loop = alloc_loop ();
9ba025a2 869 struct loop *outer = loop_outer (succ_bb->loop_father);
3995f3a2 870 profile_count cnt;
617b465c
ZD
871
872 loop->header = header_edge->dest;
873 loop->latch = latch_edge->src;
874
ef30ab83 875 cnt = header_edge->count ();
617b465c
ZD
876
877 /* Redirect edges. */
878 loop_redirect_edge (latch_edge, loop->header);
5132abc2 879 loop_redirect_edge (true_edge, succ_bb);
50654f6c 880
92fc4a2f
ZD
881 /* During loop versioning, one of the switch_bb edge is already properly
882 set. Do not redirect it again unless redirect_all_edges is true. */
883 if (redirect_all_edges)
884 {
885 loop_redirect_edge (header_edge, switch_bb);
c22cacf3
MS
886 loop_redirect_edge (false_edge, loop->header);
887
92fc4a2f
ZD
888 /* Update dominators. */
889 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
890 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
891 }
50654f6c 892
d47cc544 893 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
617b465c
ZD
894
895 /* Compute new loop. */
d73be268 896 add_loop (loop, outer);
617b465c
ZD
897
898 /* Add switch_bb to appropriate loop. */
598ec7bd
ZD
899 if (switch_bb->loop_father)
900 remove_bb_from_loops (switch_bb);
617b465c
ZD
901 add_bb_to_loop (switch_bb, outer);
902
e7a74006 903 /* Fix counts. */
03cb2019
ZD
904 if (redirect_all_edges)
905 {
03cb2019 906 switch_bb->count = cnt;
03cb2019 907 }
af2bbc51
JH
908 scale_loop_frequencies (loop, false_scale);
909 scale_loop_frequencies (succ_bb->loop_father, true_scale);
f8bf9252 910 update_dominators_in_loop (loop);
617b465c
ZD
911
912 return loop;
913}
914
d73be268 915/* Remove the latch edge of a LOOP and update loops to indicate that
35b07080 916 the LOOP was removed. After this function, original loop latch will
dc14f191
ZD
917 have no successor, which caller is expected to fix somehow.
918
919 If this may cause the information about irreducible regions to become
1a7de201
JH
920 invalid, IRRED_INVALIDATED is set to true.
921
922 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
923 basic blocks that had non-trivial update on their loop_father.*/
dc14f191 924
b7442c2f 925void
1a7de201
JH
926unloop (struct loop *loop, bool *irred_invalidated,
927 bitmap loop_closed_ssa_invalidated)
35b07080
ZD
928{
929 basic_block *body;
930 struct loop *ploop;
931 unsigned i, n;
932 basic_block latch = loop->latch;
dc14f191
ZD
933 bool dummy = false;
934
935 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
936 *irred_invalidated = true;
35b07080 937
e0bb17a8 938 /* This is relatively straightforward. The dominators are unchanged, as
35b07080
ZD
939 loop header dominates loop latch, so the only thing we have to care of
940 is the placement of loops and basic blocks inside the loop tree. We
941 move them all to the loop->outer, and then let fix_bb_placements do
942 its work. */
943
944 body = get_loop_body (loop);
35b07080
ZD
945 n = loop->num_nodes;
946 for (i = 0; i < n; i++)
947 if (body[i]->loop_father == loop)
948 {
949 remove_bb_from_loops (body[i]);
9ba025a2 950 add_bb_to_loop (body[i], loop_outer (loop));
35b07080 951 }
c3284718 952 free (body);
35b07080
ZD
953
954 while (loop->inner)
955 {
956 ploop = loop->inner;
957 flow_loop_tree_node_remove (ploop);
9ba025a2 958 flow_loop_tree_node_add (loop_outer (loop), ploop);
35b07080
ZD
959 }
960
961 /* Remove the loop and free its data. */
42fd6772 962 delete_loop (loop);
35b07080 963
c5cbcccf 964 remove_edge (single_succ_edge (latch));
dc14f191
ZD
965
966 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
967 there is an irreducible region inside the cancelled loop, the flags will
968 be still correct. */
1a7de201 969 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
35b07080
ZD
970}
971
617b465c
ZD
972/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
973 condition stated in description of fix_loop_placement holds for them.
974 It is used in case when we removed some edges coming out of LOOP, which
dc14f191 975 may cause the right placement of LOOP inside loop tree to change.
b8698a0f 976
dc14f191
ZD
977 IRRED_INVALIDATED is set to true if a change in the loop structures might
978 invalidate the information about irreducible regions. */
979
617b465c 980static void
d73be268 981fix_loop_placements (struct loop *loop, bool *irred_invalidated)
617b465c
ZD
982{
983 struct loop *outer;
984
9ba025a2 985 while (loop_outer (loop))
617b465c 986 {
9ba025a2 987 outer = loop_outer (loop);
1bd3f750 988 if (!fix_loop_placement (loop, irred_invalidated))
c22cacf3 989 break;
1548580c
EB
990
991 /* Changing the placement of a loop in the loop tree may alter the
992 validity of condition 2) of the description of fix_bb_placement
993 for its preheader, because the successor is the header and belongs
994 to the loop. So call fix_bb_placements to fix up the placement
995 of the preheader and (possibly) of its predecessors. */
d73be268 996 fix_bb_placements (loop_preheader_edge (loop)->src,
1a7de201 997 irred_invalidated, NULL);
617b465c
ZD
998 loop = outer;
999 }
1000}
1001
bf45c4c0
JH
1002/* Duplicate loop bounds and other information we store about
1003 the loop into its duplicate. */
1004
1005void
1006copy_loop_info (struct loop *loop, struct loop *target)
1007{
1008 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1009 target->any_upper_bound = loop->any_upper_bound;
1010 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
105e29c5
JH
1011 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1012 target->nb_iterations_likely_upper_bound
1013 = loop->nb_iterations_likely_upper_bound;
bf45c4c0
JH
1014 target->any_estimate = loop->any_estimate;
1015 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1016 target->estimate_state = loop->estimate_state;
5161ffa4 1017 target->safelen = loop->safelen;
f63445e5 1018 target->simdlen = loop->simdlen;
18767ebc 1019 target->constraints = loop->constraints;
5161ffa4 1020 target->can_be_parallel = loop->can_be_parallel;
2105be5a
JJ
1021 target->warned_aggressive_loop_optimizations
1022 |= loop->warned_aggressive_loop_optimizations;
5161ffa4
RB
1023 target->dont_vectorize = loop->dont_vectorize;
1024 target->force_vectorize = loop->force_vectorize;
886c388d 1025 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
5161ffa4 1026 target->unroll = loop->unroll;
94ec37a9 1027 target->owned_clique = loop->owned_clique;
bf45c4c0
JH
1028}
1029
617b465c 1030/* Copies copy of LOOP as subloop of TARGET loop, placing newly
1cc521f1
MM
1031 created loop into loops structure. If AFTER is non-null
1032 the new loop is added at AFTER->next, otherwise in front of TARGETs
1033 sibling list. */
f67d92e9 1034struct loop *
1cc521f1 1035duplicate_loop (struct loop *loop, struct loop *target, struct loop *after)
617b465c
ZD
1036{
1037 struct loop *cloop;
6270df4c 1038 cloop = alloc_loop ();
0fc822d0 1039 place_new_loop (cfun, cloop);
bf45c4c0
JH
1040
1041 copy_loop_info (loop, cloop);
617b465c 1042
99f8a411 1043 /* Mark the new loop as copy of LOOP. */
561e8a90 1044 set_loop_copy (loop, cloop);
617b465c
ZD
1045
1046 /* Add it to target. */
1cc521f1 1047 flow_loop_tree_node_add (target, cloop, after);
617b465c
ZD
1048
1049 return cloop;
1050}
1051
1052/* Copies structure of subloops of LOOP into TARGET loop, placing
1cc521f1
MM
1053 newly created loops into loop tree at the end of TARGETs sibling
1054 list in the original order. */
48710229 1055void
d73be268 1056duplicate_subloops (struct loop *loop, struct loop *target)
617b465c 1057{
1cc521f1 1058 struct loop *aloop, *cloop, *tail;
617b465c 1059
1cc521f1
MM
1060 for (tail = target->inner; tail && tail->next; tail = tail->next)
1061 ;
617b465c
ZD
1062 for (aloop = loop->inner; aloop; aloop = aloop->next)
1063 {
1cc521f1
MM
1064 cloop = duplicate_loop (aloop, target, tail);
1065 tail = cloop;
1066 gcc_assert(!tail->next);
d73be268 1067 duplicate_subloops (aloop, cloop);
617b465c
ZD
1068 }
1069}
1070
1071/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1cc521f1
MM
1072 into TARGET loop, placing newly created loops into loop tree adding
1073 them to TARGETs sibling list at the end in order. */
d329e058 1074static void
d73be268 1075copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
617b465c 1076{
1cc521f1 1077 struct loop *aloop, *tail;
617b465c
ZD
1078 int i;
1079
1cc521f1
MM
1080 for (tail = target->inner; tail && tail->next; tail = tail->next)
1081 ;
617b465c
ZD
1082 for (i = 0; i < n; i++)
1083 {
1cc521f1
MM
1084 aloop = duplicate_loop (copied_loops[i], target, tail);
1085 tail = aloop;
1086 gcc_assert(!tail->next);
d73be268 1087 duplicate_subloops (copied_loops[i], aloop);
617b465c
ZD
1088 }
1089}
1090
1091/* Redirects edge E to basic block DEST. */
1092static void
d329e058 1093loop_redirect_edge (edge e, basic_block dest)
617b465c
ZD
1094{
1095 if (e->dest == dest)
1096 return;
1097
9ee634e3 1098 redirect_edge_and_branch_force (e, dest);
617b465c
ZD
1099}
1100
617b465c
ZD
1101/* Check whether LOOP's body can be duplicated. */
1102bool
ed7a4b4b 1103can_duplicate_loop_p (const struct loop *loop)
617b465c 1104{
8d28e87d
ZD
1105 int ret;
1106 basic_block *bbs = get_loop_body (loop);
617b465c 1107
8d28e87d 1108 ret = can_copy_bbs_p (bbs, loop->num_nodes);
617b465c 1109 free (bbs);
c22cacf3 1110
8d28e87d 1111 return ret;
617b465c
ZD
1112}
1113
8d28e87d 1114/* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1cc521f1
MM
1115 loop structure and dominators (order of inner subloops is retained).
1116 E's destination must be LOOP header for this to work, i.e. it must be entry
1117 or latch edge of this loop; these are unique, as the loops must have
1118 preheaders for this function to work correctly (in case E is latch, the
1119 function unrolls the loop, if E is entry edge, it peels the loop). Store
1120 edges created by copying ORIG edge from copies corresponding to set bits in
1121 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1122 are numbered in order given by control flow through them) into TO_REMOVE
1123 array. Returns false if duplication is
8d28e87d 1124 impossible. */
ee8c1b05 1125
1cb7dfc3 1126bool
d73be268 1127duplicate_loop_to_header_edge (struct loop *loop, edge e,
d329e058 1128 unsigned int ndupl, sbitmap wont_exit,
9771b263 1129 edge orig, vec<edge> *to_remove,
ee8c1b05 1130 int flags)
617b465c
ZD
1131{
1132 struct loop *target, *aloop;
1133 struct loop **orig_loops;
1134 unsigned n_orig_loops;
1135 basic_block header = loop->header, latch = loop->latch;
1136 basic_block *new_bbs, *bbs, *first_active;
1137 basic_block new_bb, bb, first_active_latch = NULL;
8d28e87d
ZD
1138 edge ae, latch_edge;
1139 edge spec_edges[2], new_spec_edges[2];
e7b655e8
JH
1140 const int SE_LATCH = 0;
1141 const int SE_ORIG = 1;
617b465c
ZD
1142 unsigned i, j, n;
1143 int is_latch = (latch == e->src);
e7b655e8
JH
1144 profile_probability *scale_step = NULL;
1145 profile_probability scale_main = profile_probability::always ();
1146 profile_probability scale_act = profile_probability::always ();
1147 profile_count after_exit_num = profile_count::zero (),
1148 after_exit_den = profile_count::zero ();
1149 bool scale_after_exit = false;
617b465c 1150 int add_irreducible_flag;
b9a66240 1151 basic_block place_after;
03cb2019
ZD
1152 bitmap bbs_to_scale = NULL;
1153 bitmap_iterator bi;
617b465c 1154
341c100f
NS
1155 gcc_assert (e->dest == loop->header);
1156 gcc_assert (ndupl > 0);
617b465c
ZD
1157
1158 if (orig)
1159 {
1160 /* Orig must be edge out of the loop. */
341c100f
NS
1161 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1162 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
617b465c
ZD
1163 }
1164
b9a66240
ZD
1165 n = loop->num_nodes;
1166 bbs = get_loop_body_in_dom_order (loop);
1167 gcc_assert (bbs[0] == loop->header);
1168 gcc_assert (bbs[n - 1] == loop->latch);
617b465c
ZD
1169
1170 /* Check whether duplication is possible. */
8d28e87d 1171 if (!can_copy_bbs_p (bbs, loop->num_nodes))
617b465c 1172 {
8d28e87d
ZD
1173 free (bbs);
1174 return false;
617b465c 1175 }
5ed6ace5 1176 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
617b465c 1177
8d28e87d
ZD
1178 /* In case we are doing loop peeling and the loop is in the middle of
1179 irreducible region, the peeled copies will be inside it too. */
1180 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
341c100f 1181 gcc_assert (!is_latch || !add_irreducible_flag);
617b465c
ZD
1182
1183 /* Find edge from latch. */
1184 latch_edge = loop_latch_edge (loop);
1185
1186 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1187 {
e7b655e8 1188 /* Calculate coefficients by that we have to scale counts
617b465c 1189 of duplicated loop bodies. */
e7b655e8
JH
1190 profile_count count_in = header->count;
1191 profile_count count_le = latch_edge->count ();
1192 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1193 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1194 profile_probability prob_pass_wont_exit =
1195 (count_le + count_out_orig).probability_in (count_in);
617b465c 1196
357067f2
JH
1197 if (orig && orig->probability.initialized_p ()
1198 && !(orig->probability == profile_probability::always ()))
03cb2019
ZD
1199 {
1200 /* The blocks that are dominated by a removed exit edge ORIG have
1201 frequencies scaled by this. */
e7b655e8
JH
1202 if (orig->count ().initialized_p ())
1203 {
1204 after_exit_num = orig->src->count;
1205 after_exit_den = after_exit_num - orig->count ();
1206 scale_after_exit = true;
1207 }
03cb2019
ZD
1208 bbs_to_scale = BITMAP_ALLOC (NULL);
1209 for (i = 0; i < n; i++)
1210 {
1211 if (bbs[i] != orig->src
1212 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1213 bitmap_set_bit (bbs_to_scale, i);
1214 }
1215 }
1216
e7b655e8 1217 scale_step = XNEWVEC (profile_probability, ndupl);
617b465c 1218
03cb2019 1219 for (i = 1; i <= ndupl; i++)
d7c028c0 1220 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
617b465c
ZD
1221 ? prob_pass_wont_exit
1222 : prob_pass_thru;
1223
a4d05547 1224 /* Complete peeling is special as the probability of exit in last
c22cacf3 1225 copy becomes 1. */
178df94f
JH
1226 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1227 {
e7b655e8 1228 profile_count wanted_count = e->count ();
178df94f
JH
1229
1230 gcc_assert (!is_latch);
e7b655e8
JH
1231 /* First copy has count of incoming edge. Each subsequent
1232 count should be reduced by prob_pass_wont_exit. Caller
178df94f
JH
1233 should've managed the flags so all except for original loop
1234 has won't exist set. */
e7b655e8 1235 scale_act = wanted_count.probability_in (count_in);
178df94f
JH
1236 /* Now simulate the duplication adjustments and compute header
1237 frequency of the last copy. */
1238 for (i = 0; i < ndupl; i++)
e7b655e8
JH
1239 wanted_count = wanted_count.apply_probability (scale_step [i]);
1240 scale_main = wanted_count.probability_in (count_in);
178df94f 1241 }
e7b655e8
JH
1242 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1243 First iteration will be original loop followed by duplicated bodies.
1244 It is necessary to scale down the original so we get right overall
1245 number of iterations. */
178df94f 1246 else if (is_latch)
617b465c 1247 {
e7b655e8
JH
1248 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1249 ? prob_pass_wont_exit
1250 : prob_pass_thru;
1251 profile_probability p = prob_pass_main;
1252 profile_count scale_main_den = count_in;
617b465c
ZD
1253 for (i = 0; i < ndupl; i++)
1254 {
e7b655e8
JH
1255 scale_main_den += count_in.apply_probability (p);
1256 p = p * scale_step[i];
617b465c 1257 }
e7b655e8
JH
1258 /* If original loop is executed COUNT_IN times, the unrolled
1259 loop will account SCALE_MAIN_DEN times. */
1260 scale_main = count_in.probability_in (scale_main_den);
1261 scale_act = scale_main * prob_pass_main;
617b465c
ZD
1262 }
1263 else
1264 {
e7b655e8 1265 profile_count preheader_count = e->count ();
617b465c 1266 for (i = 0; i < ndupl; i++)
e7b655e8
JH
1267 scale_main = scale_main * scale_step[i];
1268 scale_act = preheader_count.probability_in (count_in);
617b465c 1269 }
617b465c
ZD
1270 }
1271
1272 /* Loop the new bbs will belong to. */
8d28e87d 1273 target = e->src->loop_father;
617b465c
ZD
1274
1275 /* Original loops. */
1276 n_orig_loops = 0;
1277 for (aloop = loop->inner; aloop; aloop = aloop->next)
1278 n_orig_loops++;
c302207e 1279 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
617b465c
ZD
1280 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1281 orig_loops[i] = aloop;
1282
561e8a90 1283 set_loop_copy (loop, target);
d329e058 1284
5ed6ace5 1285 first_active = XNEWVEC (basic_block, n);
617b465c
ZD
1286 if (is_latch)
1287 {
1288 memcpy (first_active, bbs, n * sizeof (basic_block));
1289 first_active_latch = latch;
1290 }
1291
8d28e87d
ZD
1292 spec_edges[SE_ORIG] = orig;
1293 spec_edges[SE_LATCH] = latch_edge;
d329e058 1294
b9a66240 1295 place_after = e->src;
617b465c
ZD
1296 for (j = 0; j < ndupl; j++)
1297 {
1298 /* Copy loops. */
d73be268 1299 copy_loops_to (orig_loops, n_orig_loops, target);
617b465c
ZD
1300
1301 /* Copy bbs. */
b9a66240 1302 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
f14540b6 1303 place_after, true);
b9a66240 1304 place_after = new_spec_edges[SE_LATCH]->src;
8d28e87d 1305
7f7b1718
JH
1306 if (flags & DLTHE_RECORD_COPY_NUMBER)
1307 for (i = 0; i < n; i++)
1308 {
1309 gcc_assert (!new_bbs[i]->aux);
1310 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1311 }
113d659a 1312
84d45ad1
ZD
1313 /* Note whether the blocks and edges belong to an irreducible loop. */
1314 if (add_irreducible_flag)
1315 {
1316 for (i = 0; i < n; i++)
6580ee77 1317 new_bbs[i]->flags |= BB_DUPLICATED;
84d45ad1
ZD
1318 for (i = 0; i < n; i++)
1319 {
628f6a4e 1320 edge_iterator ei;
84d45ad1
ZD
1321 new_bb = new_bbs[i];
1322 if (new_bb->loop_father == target)
1323 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1324
628f6a4e 1325 FOR_EACH_EDGE (ae, ei, new_bb->succs)
6580ee77 1326 if ((ae->dest->flags & BB_DUPLICATED)
84d45ad1
ZD
1327 && (ae->src->loop_father == target
1328 || ae->dest->loop_father == target))
1329 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1330 }
1331 for (i = 0; i < n; i++)
6580ee77 1332 new_bbs[i]->flags &= ~BB_DUPLICATED;
84d45ad1
ZD
1333 }
1334
8d28e87d 1335 /* Redirect the special edges. */
617b465c 1336 if (is_latch)
8d28e87d
ZD
1337 {
1338 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1339 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1340 loop->header);
d47cc544 1341 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
b9a66240 1342 latch = loop->latch = new_bbs[n - 1];
8d28e87d
ZD
1343 e = latch_edge = new_spec_edges[SE_LATCH];
1344 }
1345 else
1346 {
1347 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1348 loop->header);
1349 redirect_edge_and_branch_force (e, new_bbs[0]);
d47cc544 1350 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
8d28e87d
ZD
1351 e = new_spec_edges[SE_LATCH];
1352 }
617b465c 1353
8d28e87d 1354 /* Record exit edge in this copy. */
d7c028c0 1355 if (orig && bitmap_bit_p (wont_exit, j + 1))
ee8c1b05
ZD
1356 {
1357 if (to_remove)
9771b263 1358 to_remove->safe_push (new_spec_edges[SE_ORIG]);
357067f2 1359 force_edge_cold (new_spec_edges[SE_ORIG], true);
03cb2019
ZD
1360
1361 /* Scale the frequencies of the blocks dominated by the exit. */
e7b655e8 1362 if (bbs_to_scale && scale_after_exit)
03cb2019
ZD
1363 {
1364 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
e7b655e8
JH
1365 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1366 after_exit_den);
03cb2019 1367 }
ee8c1b05 1368 }
d329e058 1369
8d28e87d
ZD
1370 /* Record the first copy in the control flow order if it is not
1371 the original loop (i.e. in case of peeling). */
617b465c
ZD
1372 if (!first_active_latch)
1373 {
1374 memcpy (first_active, new_bbs, n * sizeof (basic_block));
b9a66240 1375 first_active_latch = new_bbs[n - 1];
617b465c 1376 }
d329e058 1377
8d28e87d
ZD
1378 /* Set counts and frequencies. */
1379 if (flags & DLTHE_FLAG_UPDATE_FREQ)
617b465c 1380 {
e7b655e8
JH
1381 scale_bbs_frequencies (new_bbs, n, scale_act);
1382 scale_act = scale_act * scale_step[j];
617b465c
ZD
1383 }
1384 }
8d28e87d
ZD
1385 free (new_bbs);
1386 free (orig_loops);
c22cacf3 1387
ee8c1b05 1388 /* Record the exit edge in the original loop body, and update the frequencies. */
d7c028c0 1389 if (orig && bitmap_bit_p (wont_exit, 0))
ee8c1b05
ZD
1390 {
1391 if (to_remove)
9771b263 1392 to_remove->safe_push (orig);
357067f2 1393 force_edge_cold (orig, true);
03cb2019
ZD
1394
1395 /* Scale the frequencies of the blocks dominated by the exit. */
e7b655e8 1396 if (bbs_to_scale && scale_after_exit)
03cb2019
ZD
1397 {
1398 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
e7b655e8
JH
1399 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1400 after_exit_den);
03cb2019 1401 }
ee8c1b05
ZD
1402 }
1403
8d28e87d
ZD
1404 /* Update the original loop. */
1405 if (!is_latch)
d47cc544 1406 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
617b465c
ZD
1407 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1408 {
e7b655e8 1409 scale_bbs_frequencies (bbs, n, scale_main);
617b465c
ZD
1410 free (scale_step);
1411 }
617b465c 1412
8d28e87d 1413 /* Update dominators of outer blocks if affected. */
617b465c
ZD
1414 for (i = 0; i < n; i++)
1415 {
66f97d31 1416 basic_block dominated, dom_bb;
9771b263 1417 vec<basic_block> dom_bbs;
66f97d31 1418 unsigned j;
617b465c
ZD
1419
1420 bb = bbs[i];
6580ee77 1421 bb->aux = 0;
113d659a 1422
66f97d31 1423 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
9771b263 1424 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
617b465c 1425 {
617b465c
ZD
1426 if (flow_bb_inside_loop_p (loop, dominated))
1427 continue;
1428 dom_bb = nearest_common_dominator (
d47cc544 1429 CDI_DOMINATORS, first_active[i], first_active_latch);
c22cacf3 1430 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
617b465c 1431 }
9771b263 1432 dom_bbs.release ();
617b465c
ZD
1433 }
1434 free (first_active);
1435
1436 free (bbs);
03cb2019 1437 BITMAP_FREE (bbs_to_scale);
617b465c
ZD
1438
1439 return true;
1440}
1441
f470c378
ZD
1442/* A callback for make_forwarder block, to redirect all edges except for
1443 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1444 whether to redirect it. */
1445
b02b9b53
ZD
1446edge mfb_kj_edge;
1447bool
f470c378
ZD
1448mfb_keep_just (edge e)
1449{
1450 return e != mfb_kj_edge;
1451}
1452
e855c69d
AB
1453/* True when a candidate preheader BLOCK has predecessors from LOOP. */
1454
1455static bool
1456has_preds_from_loop (basic_block block, struct loop *loop)
1457{
1458 edge e;
1459 edge_iterator ei;
b8698a0f 1460
e855c69d
AB
1461 FOR_EACH_EDGE (e, ei, block->preds)
1462 if (e->src->loop_father == loop)
1463 return true;
1464 return false;
1465}
1466
3d436d2a
ZD
1467/* Creates a pre-header for a LOOP. Returns newly created block. Unless
1468 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1469 entry; otherwise we also force preheader block to have only one successor.
e855c69d 1470 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
b8698a0f 1471 to be a fallthru predecessor to the loop header and to have only
e855c69d 1472 predecessors from outside of the loop.
f470c378
ZD
1473 The function also updates dominators. */
1474
b02b9b53 1475basic_block
d47cc544 1476create_preheader (struct loop *loop, int flags)
3d436d2a 1477{
183ac6d0 1478 edge e;
3d436d2a 1479 basic_block dummy;
3d436d2a 1480 int nentry = 0;
f470c378 1481 bool irred = false;
c15bc84b 1482 bool latch_edge_was_fallthru;
c7b852c8 1483 edge one_succ_pred = NULL, single_entry = NULL;
628f6a4e 1484 edge_iterator ei;
3d436d2a 1485
628f6a4e 1486 FOR_EACH_EDGE (e, ei, loop->header->preds)
3d436d2a
ZD
1487 {
1488 if (e->src == loop->latch)
1489 continue;
f470c378 1490 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
3d436d2a 1491 nentry++;
c7b852c8 1492 single_entry = e;
c5cbcccf 1493 if (single_succ_p (e->src))
c15bc84b 1494 one_succ_pred = e;
3d436d2a 1495 }
341c100f 1496 gcc_assert (nentry);
3d436d2a
ZD
1497 if (nentry == 1)
1498 {
e855c69d 1499 bool need_forwarder_block = false;
b8698a0f 1500
e855c69d 1501 /* We do not allow entry block to be the loop preheader, since we
89f8f30f 1502 cannot emit code there. */
fefa31b5 1503 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
e855c69d
AB
1504 need_forwarder_block = true;
1505 else
1506 {
1507 /* If we want simple preheaders, also force the preheader to have
1508 just a single successor. */
1509 if ((flags & CP_SIMPLE_PREHEADERS)
1510 && !single_succ_p (single_entry->src))
1511 need_forwarder_block = true;
1512 /* If we want fallthru preheaders, also create forwarder block when
1513 preheader ends with a jump or has predecessors from loop. */
1514 else if ((flags & CP_FALLTHRU_PREHEADERS)
1515 && (JUMP_P (BB_END (single_entry->src))
1516 || has_preds_from_loop (single_entry->src, loop)))
1517 need_forwarder_block = true;
1518 }
1519 if (! need_forwarder_block)
3d436d2a
ZD
1520 return NULL;
1521 }
1522
f470c378 1523 mfb_kj_edge = loop_latch_edge (loop);
c15bc84b 1524 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
49574486
JJ
1525 if (nentry == 1
1526 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1527 || (single_entry->flags & EDGE_CROSSING) == 0))
183ac6d0
RB
1528 dummy = split_edge (single_entry);
1529 else
1530 {
1531 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1532 dummy = fallthru->src;
1533 loop->header = fallthru->dest;
1534 }
3d436d2a 1535
c15bc84b
EB
1536 /* Try to be clever in placing the newly created preheader. The idea is to
1537 avoid breaking any "fallthruness" relationship between blocks.
1538
1539 The preheader was created just before the header and all incoming edges
1540 to the header were redirected to the preheader, except the latch edge.
1541 So the only problematic case is when this latch edge was a fallthru
1542 edge: it is not anymore after the preheader creation so we have broken
1543 the fallthruness. We're therefore going to look for a better place. */
1544 if (latch_edge_was_fallthru)
1545 {
1546 if (one_succ_pred)
1547 e = one_succ_pred;
1548 else
1549 e = EDGE_PRED (dummy, 0);
1550
1551 move_block_after (dummy, e->src);
1552 }
f470c378 1553
f470c378 1554 if (irred)
3d436d2a 1555 {
f470c378 1556 dummy->flags |= BB_IRREDUCIBLE_LOOP;
c5cbcccf 1557 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
3d436d2a
ZD
1558 }
1559
c263766c
RH
1560 if (dump_file)
1561 fprintf (dump_file, "Created preheader block for loop %i\n",
3d436d2a 1562 loop->num);
b8698a0f 1563
e855c69d
AB
1564 if (flags & CP_FALLTHRU_PREHEADERS)
1565 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1566 && !JUMP_P (BB_END (dummy)));
3d436d2a
ZD
1567
1568 return dummy;
1569}
1570
d73be268
ZD
1571/* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1572
3d436d2a 1573void
d73be268 1574create_preheaders (int flags)
3d436d2a 1575{
42fd6772
ZD
1576 struct loop *loop;
1577
c7b852c8
ZD
1578 if (!current_loops)
1579 return;
1580
f0bd40b1 1581 FOR_EACH_LOOP (loop, 0)
42fd6772 1582 create_preheader (loop, flags);
f87000d0 1583 loops_state_set (LOOPS_HAVE_PREHEADERS);
3d436d2a
ZD
1584}
1585
d73be268
ZD
1586/* Forces all loop latches to have only single successor. */
1587
3d436d2a 1588void
d73be268 1589force_single_succ_latches (void)
3d436d2a 1590{
3d436d2a
ZD
1591 struct loop *loop;
1592 edge e;
1593
f0bd40b1 1594 FOR_EACH_LOOP (loop, 0)
3d436d2a 1595 {
c5cbcccf 1596 if (loop->latch != loop->header && single_succ_p (loop->latch))
3d436d2a 1597 continue;
d329e058 1598
9ff3d2de 1599 e = find_edge (loop->latch, loop->header);
9dcbb380 1600 gcc_checking_assert (e != NULL);
bc810602 1601
598ec7bd 1602 split_edge (e);
3d436d2a 1603 }
f87000d0 1604 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
3d436d2a
ZD
1605}
1606
1cb7dfc3
MH
1607/* This function is called from loop_version. It splits the entry edge
1608 of the loop we want to version, adds the versioning condition, and
1609 adjust the edges to the two versions of the loop appropriately.
1610 e is an incoming edge. Returns the basic block containing the
1611 condition.
1612
1613 --- edge e ---- > [second_head]
1614
1615 Split it and insert new conditional expression and adjust edges.
1616
1617 --- edge e ---> [cond expr] ---> [first_head]
c22cacf3
MS
1618 |
1619 +---------> [second_head]
03cb2019 1620
5d3ebb71
JH
1621 THEN_PROB is the probability of then branch of the condition.
1622 ELSE_PROB is the probability of else branch. Note that they may be both
542e7230
BC
1623 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1624 IFN_LOOP_DIST_ALIAS. */
1cb7dfc3
MH
1625
1626static basic_block
03cb2019 1627lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
357067f2
JH
1628 edge e, void *cond_expr,
1629 profile_probability then_prob,
1630 profile_probability else_prob)
1cb7dfc3
MH
1631{
1632 basic_block new_head = NULL;
1633 edge e1;
1634
1635 gcc_assert (e->dest == second_head);
1636
1637 /* Split edge 'e'. This will create a new basic block, where we can
1638 insert conditional expr. */
1639 new_head = split_edge (e);
1640
1cb7dfc3
MH
1641 lv_add_condition_to_bb (first_head, second_head, new_head,
1642 cond_expr);
1643
766613a4 1644 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
03cb2019 1645 e = single_succ_edge (new_head);
52bca999
SB
1646 e1 = make_edge (new_head, first_head,
1647 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
03cb2019 1648 e1->probability = then_prob;
5d3ebb71 1649 e->probability = else_prob;
03cb2019 1650
1cb7dfc3
MH
1651 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1652 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1653
1654 /* Adjust loop header phi nodes. */
1655 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1656
1657 return new_head;
1658}
1659
1660/* Main entry point for Loop Versioning transformation.
c22cacf3 1661
b9a66240
ZD
1662 This transformation given a condition and a loop, creates
1663 -if (condition) { loop_copy1 } else { loop_copy2 },
1664 where loop_copy1 is the loop transformed in one way, and loop_copy2
5daaf2d5 1665 is the loop transformed in another way (or unchanged). COND_EXPR
b9a66240
ZD
1666 may be a run time test for things that were not resolved by static
1667 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1668
5daaf2d5
AH
1669 If non-NULL, CONDITION_BB is set to the basic block containing the
1670 condition.
1671
03cb2019
ZD
1672 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1673 is the ratio by that the frequencies in the original loop should
1674 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1675 new loop should be scaled.
b8698a0f 1676
b9a66240
ZD
1677 If PLACE_AFTER is true, we place the new loop after LOOP in the
1678 instruction stream, otherwise it is placed before LOOP. */
1cb7dfc3
MH
1679
1680struct loop *
d73be268 1681loop_version (struct loop *loop,
b9a66240 1682 void *cond_expr, basic_block *condition_bb,
357067f2 1683 profile_probability then_prob, profile_probability else_prob,
af2bbc51 1684 profile_probability then_scale, profile_probability else_scale,
b9a66240 1685 bool place_after)
1cb7dfc3
MH
1686{
1687 basic_block first_head, second_head;
6270df4c 1688 edge entry, latch_edge, true_edge, false_edge;
1cb7dfc3
MH
1689 int irred_flag;
1690 struct loop *nloop;
b9a66240 1691 basic_block cond_bb;
1cb7dfc3 1692
1cb7dfc3
MH
1693 /* Record entry and latch edges for the loop */
1694 entry = loop_preheader_edge (loop);
1695 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1696 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
c22cacf3 1697
1cb7dfc3
MH
1698 /* Note down head of loop as first_head. */
1699 first_head = entry->dest;
1700
1701 /* Duplicate loop. */
d73be268 1702 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
ee8c1b05 1703 NULL, NULL, NULL, 0))
71056fef
JJ
1704 {
1705 entry->flags |= irred_flag;
1706 return NULL;
1707 }
1cb7dfc3
MH
1708
1709 /* After duplication entry edge now points to new loop head block.
1710 Note down new head as second_head. */
1711 second_head = entry->dest;
1712
1713 /* Split loop entry edge and insert new block with cond expr. */
b9a66240 1714 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
5d3ebb71 1715 entry, cond_expr, then_prob, else_prob);
b9a66240
ZD
1716 if (condition_bb)
1717 *condition_bb = cond_bb;
1718
1719 if (!cond_bb)
1cb7dfc3
MH
1720 {
1721 entry->flags |= irred_flag;
1722 return NULL;
1723 }
1724
6580ee77 1725 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
c22cacf3 1726
b9a66240 1727 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
d73be268 1728 nloop = loopify (latch_edge,
6580ee77 1729 single_pred_edge (get_bb_copy (loop->header)),
b9a66240 1730 cond_bb, true_edge, false_edge,
03cb2019
ZD
1731 false /* Do not redirect all edges. */,
1732 then_scale, else_scale);
1cb7dfc3 1733
bf45c4c0
JH
1734 copy_loop_info (loop, nloop);
1735
c22cacf3 1736 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1cb7dfc3
MH
1737 lv_flush_pending_stmts (latch_edge);
1738
c22cacf3 1739 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
b9a66240 1740 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1cb7dfc3
MH
1741 lv_flush_pending_stmts (false_edge);
1742 /* Adjust irreducible flag. */
1743 if (irred_flag)
1744 {
b9a66240 1745 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1cb7dfc3
MH
1746 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1747 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
b9a66240
ZD
1748 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1749 }
1750
1751 if (place_after)
1752 {
1753 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1754 unsigned i;
1755
1756 after = loop->latch;
1757
1758 for (i = 0; i < nloop->num_nodes; i++)
1759 {
1760 move_block_after (bbs[i], after);
1761 after = bbs[i];
1762 }
1763 free (bbs);
1cb7dfc3
MH
1764 }
1765
fa10beec
RW
1766 /* At this point condition_bb is loop preheader with two successors,
1767 first_head and second_head. Make sure that loop preheader has only
1cb7dfc3 1768 one successor. */
598ec7bd
ZD
1769 split_edge (loop_preheader_edge (loop));
1770 split_edge (loop_preheader_edge (nloop));
1cb7dfc3
MH
1771
1772 return nloop;
1773}