]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/df-core.c
tree-call-cdce: If !HONOR_NANS do not make code with NaNs (PR88055)
[thirdparty/gcc.git] / gcc / df-core.c
CommitLineData
e011eba9 1/* Allocation for dataflow support routines.
fbd26352 2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
48e1416a 3 Originally contributed by Michael P. Hayes
e011eba9 4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
8c4c00c1 12Software Foundation; either version 3, or (at your option) any later
e011eba9 13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
8c4c00c1 21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
e011eba9 23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
3072d30e 36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
e011eba9 40
3072d30e 41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
f0b5f617 44areas that can be reached from a definition of a variable. The LIVE
48e1416a 45problem finds the intersection of these two areas.
e011eba9 46
3072d30e 47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
e011eba9 49
3072d30e 50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
e011eba9 57
3072d30e 58In the middle layer, basic blocks are scanned to produce transfer
f0b5f617 59functions which describe the effects of that block on the global
3072d30e 60dataflow solution. The transfer functions are only rebuilt if the
48e1416a 61some instruction within the block has changed.
e011eba9 62
3072d30e 63The top layer is the dataflow solution itself. The dataflow solution
bef304b8 64is computed by using an efficient iterative solver and the transfer
3072d30e 65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
e011eba9 67
68
3072d30e 69USAGE:
e011eba9 70
3072d30e 71Here is an example of using the dataflow routines.
e011eba9 72
84da8954 73 df_[chain,live,note,rd]_add_problem (flags);
e011eba9 74
3072d30e 75 df_set_blocks (blocks);
e011eba9 76
3072d30e 77 df_analyze ();
e011eba9 78
3072d30e 79 df_dump (stderr);
e011eba9 80
314966f4 81 df_finish_pass (false);
e011eba9 82
84da8954 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
3072d30e 84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
e011eba9 87
88Problems can be dependent on other problems. For instance, solving
ed7bb01a 89def-use or use-def chains is dependent on solving reaching
334ec2d8 90definitions. As long as these dependencies are listed in the problem
e011eba9 91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
3072d30e 101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
e011eba9 104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
334ec2d8 108before the call to analyze in order to eliminate the possibility that
e011eba9 109optimizations that reorder blocks invalidate the bitvector.
110
3072d30e 111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
a3de79f9 114to access these bitvectors. All deferred rescannings are down before
bef304b8 115the transfer functions are recomputed.
e011eba9 116
117DF_DUMP can then be called to dump the information produce to some
3072d30e 118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
a3de79f9 126deferred to be rescanned as well as clears all of the changeable flags.
3072d30e 127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
4a7e4fcc 146 upon even after changes have been made to the instructions. This
3072d30e 147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
bef304b8 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
3072d30e 173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
d6b07704 179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e506ea62 184 note_stores and rtx iterators instead of using the DF data. This
d6b07704 185 can be said to fall under case 1c.
3072d30e 186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
a3de79f9 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
3072d30e 190 be rescanned.
191
d6b07704 1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
3072d30e 198
1994) Do it yourself - In this mechanism, the pass updates the insns
6dfdc153 200 itself using the low level df primitives. Currently no pass does
3072d30e 201 this, but it has the advantage that it is quite efficient given
48e1416a 202 that the pass generally has exact knowledge of what it is changing.
3072d30e 203
204DATA STRUCTURES
e011eba9 205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
e011eba9 221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
554f2707 239keep the dataflow information up to data (if this is really what is
e011eba9 240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
48e1416a 249The basic object is a DF_REF (reference) and this may either be a
e011eba9 250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
3072d30e 261ACCESSING INSNS:
262
158b6cc9 2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
3072d30e 286
e011eba9 287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
48e1416a 293 REAL refs are associated with instructions.
e011eba9 294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
3072d30e 296 these lists can be accessed by calling df_get_artificial_defs or
48e1416a 297 df_get_artificial_uses for the particular basic block.
298
fcf2ad9f 299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
334ec2d8 314 Artificial defs occur at the end of the entry block. These arise
fcf2ad9f 315 from registers that are live at entry to the function.
e011eba9 316
48e1416a 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
3072d30e 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
e011eba9 319
3072d30e 320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
48e1416a 324 treated like uses. If it is not set they are ignored.
3072d30e 325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
e011eba9 332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
3072d30e 337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
e011eba9 340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
3072d30e 345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
48e1416a 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
e011eba9 350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
e011eba9 355NOTES:
48e1416a 356
e011eba9 357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
f0b5f617 368smaller than that covered by the inner mode, invokes a read-modify-write
e011eba9 369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
48e1416a 373are write-only operations.
e011eba9 374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
9ef16211 380#include "backend.h"
e011eba9 381#include "rtl.h"
9ef16211 382#include "df.h"
ad7b10a2 383#include "memmodel.h"
7c29e30e 384#include "emit-rtl.h"
94ea8568 385#include "cfganal.h"
e011eba9 386#include "tree-pass.h"
67e23d6f 387#include "cfgloop.h"
e011eba9 388
3e6933a8 389static void *df_get_bb_info (struct dataflow *, unsigned int);
f64e6a69 390static void df_set_bb_info (struct dataflow *, unsigned int, void *);
369ea98d 391static void df_clear_bb_info (struct dataflow *, unsigned int);
3072d30e 392#ifdef DF_DEBUG_CFG
393static void df_set_clean_cfg (void);
394#endif
e011eba9 395
4a020a8c 396/* The obstack on which regsets are allocated. */
397struct bitmap_obstack reg_obstack;
398
3072d30e 399/* An obstack for bitmap not related to specific dataflow problems.
400 This obstack should e.g. be used for bitmaps with a short life time
401 such as temporary bitmaps. */
e011eba9 402
3072d30e 403bitmap_obstack df_bitmap_obstack;
e011eba9 404
e011eba9 405
3072d30e 406/*----------------------------------------------------------------------------
407 Functions to create, destroy and manipulate an instance of df.
408----------------------------------------------------------------------------*/
409
f2956fc5 410struct df_d *df;
e011eba9 411
3072d30e 412/* Add PROBLEM (and any dependent problems) to the DF instance. */
e011eba9 413
3072d30e 414void
d8000c94 415df_add_problem (const struct df_problem *problem)
e011eba9 416{
417 struct dataflow *dflow;
3072d30e 418 int i;
e011eba9 419
420 /* First try to add the dependent problem. */
3072d30e 421 if (problem->dependent_problem)
422 df_add_problem (problem->dependent_problem);
e011eba9 423
424 /* Check to see if this problem has already been defined. If it
425 has, just return that instance, if not, add it to the end of the
426 vector. */
427 dflow = df->problems_by_index[problem->id];
428 if (dflow)
3072d30e 429 return;
e011eba9 430
431 /* Make a new one and add it to the end. */
4c36ffe6 432 dflow = XCNEW (struct dataflow);
e011eba9 433 dflow->problem = problem;
3072d30e 434 dflow->computed = false;
435 dflow->solutions_dirty = true;
e011eba9 436 df->problems_by_index[dflow->problem->id] = dflow;
437
3072d30e 438 /* Keep the defined problems ordered by index. This solves the
439 problem that RI will use the information from UREC if UREC has
440 been defined, or from LIVE if LIVE is defined and otherwise LR.
441 However for this to work, the computation of RI must be pushed
442 after which ever of those problems is defined, but we do not
443 require any of those except for LR to have actually been
48e1416a 444 defined. */
3072d30e 445 df->num_problems_defined++;
446 for (i = df->num_problems_defined - 2; i >= 0; i--)
447 {
448 if (problem->id < df->problems_in_order[i]->problem->id)
449 df->problems_in_order[i+1] = df->problems_in_order[i];
450 else
451 {
452 df->problems_in_order[i+1] = dflow;
453 return;
454 }
455 }
456 df->problems_in_order[0] = dflow;
e011eba9 457}
458
459
3e6933a8 460/* Set the MASK flags in the DFLOW problem. The old flags are
461 returned. If a flag is not allowed to be changed this will fail if
462 checking is enabled. */
bc620c5c 463int
b9c74b4d 464df_set_flags (int changeable_flags)
3e6933a8 465{
bc620c5c 466 int old_flags = df->changeable_flags;
3072d30e 467 df->changeable_flags |= changeable_flags;
3e6933a8 468 return old_flags;
469}
470
3072d30e 471
3e6933a8 472/* Clear the MASK flags in the DFLOW problem. The old flags are
473 returned. If a flag is not allowed to be changed this will fail if
474 checking is enabled. */
bc620c5c 475int
b9c74b4d 476df_clear_flags (int changeable_flags)
3e6933a8 477{
bc620c5c 478 int old_flags = df->changeable_flags;
3072d30e 479 df->changeable_flags &= ~changeable_flags;
3e6933a8 480 return old_flags;
481}
482
3072d30e 483
e011eba9 484/* Set the blocks that are to be considered for analysis. If this is
485 not called or is called with null, the entire function in
486 analyzed. */
487
48e1416a 488void
3072d30e 489df_set_blocks (bitmap blocks)
e011eba9 490{
491 if (blocks)
492 {
3072d30e 493 if (dump_file)
494 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
d0802b39 495 if (df->blocks_to_analyze)
496 {
deb2741b 497 /* This block is called to change the focus from one subset
498 to another. */
d0802b39 499 int p;
f6708c36 500 auto_bitmap diff (&df_bitmap_obstack);
501 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
deb2741b 502 for (p = 0; p < df->num_problems_defined; p++)
d0802b39 503 {
504 struct dataflow *dflow = df->problems_in_order[p];
deb2741b 505 if (dflow->optional_p && dflow->problem->reset_fun)
3072d30e 506 dflow->problem->reset_fun (df->blocks_to_analyze);
deb2741b 507 else if (dflow->problem->free_blocks_on_set_blocks)
d0802b39 508 {
509 bitmap_iterator bi;
510 unsigned int bb_index;
48e1416a 511
f6708c36 512 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
d0802b39 513 {
f5a6b05f 514 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
f64e6a69 515 if (bb)
516 {
3072d30e 517 void *bb_info = df_get_bb_info (dflow, bb_index);
369ea98d 518 dflow->problem->free_bb_fun (bb, bb_info);
519 df_clear_bb_info (dflow, bb_index);
f64e6a69 520 }
d0802b39 521 }
522 }
523 }
d0802b39 524 }
525 else
f64e6a69 526 {
deb2741b 527 /* This block of code is executed to change the focus from
528 the entire function to a subset. */
4b5a4301 529 bitmap_head blocks_to_reset;
530 bool initialized = false;
deb2741b 531 int p;
532 for (p = 0; p < df->num_problems_defined; p++)
f64e6a69 533 {
deb2741b 534 struct dataflow *dflow = df->problems_in_order[p];
535 if (dflow->optional_p && dflow->problem->reset_fun)
f64e6a69 536 {
4b5a4301 537 if (!initialized)
f64e6a69 538 {
deb2741b 539 basic_block bb;
4b5a4301 540 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
ed7d889a 541 FOR_ALL_BB_FN (bb, cfun)
f64e6a69 542 {
4b5a4301 543 bitmap_set_bit (&blocks_to_reset, bb->index);
f64e6a69 544 }
f64e6a69 545 }
4b5a4301 546 dflow->problem->reset_fun (&blocks_to_reset);
f64e6a69 547 }
f64e6a69 548 }
4b5a4301 549 if (initialized)
550 bitmap_clear (&blocks_to_reset);
deb2741b 551
3072d30e 552 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
f64e6a69 553 }
e011eba9 554 bitmap_copy (df->blocks_to_analyze, blocks);
3072d30e 555 df->analyze_subset = true;
e011eba9 556 }
557 else
558 {
deb2741b 559 /* This block is executed to reset the focus to the entire
560 function. */
3072d30e 561 if (dump_file)
deb2741b 562 fprintf (dump_file, "clearing blocks_to_analyze\n");
e011eba9 563 if (df->blocks_to_analyze)
564 {
565 BITMAP_FREE (df->blocks_to_analyze);
566 df->blocks_to_analyze = NULL;
567 }
3072d30e 568 df->analyze_subset = false;
e011eba9 569 }
3072d30e 570
571 /* Setting the blocks causes the refs to be unorganized since only
572 the refs in the blocks are seen. */
573 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 df_mark_solutions_dirty ();
e011eba9 576}
577
578
3072d30e 579/* Delete a DFLOW problem (and any problems that depend on this
580 problem). */
3e6933a8 581
582void
3072d30e 583df_remove_problem (struct dataflow *dflow)
3e6933a8 584{
d8000c94 585 const struct df_problem *problem;
3e6933a8 586 int i;
3072d30e 587
588 if (!dflow)
589 return;
590
591 problem = dflow->problem;
592 gcc_assert (problem->remove_problem_fun);
593
3072d30e 594 /* Delete any problems that depended on this problem first. */
deb2741b 595 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 596 if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 df_remove_problem (df->problems_in_order[i]);
598
599 /* Now remove this problem. */
deb2741b 600 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 601 if (df->problems_in_order[i] == dflow)
602 {
603 int j;
604 for (j = i + 1; j < df->num_problems_defined; j++)
605 df->problems_in_order[j-1] = df->problems_in_order[j];
149d23ac 606 df->problems_in_order[j-1] = NULL;
3072d30e 607 df->num_problems_defined--;
608 break;
609 }
610
611 (problem->remove_problem_fun) ();
612 df->problems_by_index[problem->id] = NULL;
613}
614
615
84da8954 616/* Remove all of the problems that are not permanent. Scanning, LR
617 and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 Also clear all of the changeable_flags. */
3072d30e 619
620void
314966f4 621df_finish_pass (bool verify ATTRIBUTE_UNUSED)
3072d30e 622{
623 int i;
3072d30e 624
5ccba2dc 625#ifdef ENABLE_DF_CHECKING
744b32fe 626 int saved_flags;
3072d30e 627#endif
628
629 if (!df)
630 return;
631
632 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634
5ccba2dc 635#ifdef ENABLE_DF_CHECKING
3072d30e 636 saved_flags = df->changeable_flags;
637#endif
638
4ef6d61b 639 /* We iterate over problems by index as each problem removed will
640 lead to problems_in_order to be reordered. */
641 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
3e6933a8 642 {
4ef6d61b 643 struct dataflow *dflow = df->problems_by_index[i];
3072d30e 644
4ef6d61b 645 if (dflow && dflow->optional_p)
646 df_remove_problem (dflow);
3072d30e 647 }
3072d30e 648
649 /* Clear all of the flags. */
650 df->changeable_flags = 0;
651 df_process_deferred_rescans ();
652
653 /* Set the focus back to the whole function. */
654 if (df->blocks_to_analyze)
655 {
656 BITMAP_FREE (df->blocks_to_analyze);
657 df->blocks_to_analyze = NULL;
658 df_mark_solutions_dirty ();
659 df->analyze_subset = false;
3e6933a8 660 }
3072d30e 661
5ccba2dc 662#ifdef ENABLE_DF_CHECKING
3072d30e 663 /* Verification will fail in DF_NO_INSN_RESCAN. */
664 if (!(saved_flags & DF_NO_INSN_RESCAN))
665 {
666 df_lr_verify_transfer_functions ();
667 if (df_live)
668 df_live_verify_transfer_functions ();
669 }
670
671#ifdef DF_DEBUG_CFG
672 df_set_clean_cfg ();
673#endif
674#endif
314966f4 675
382ecba7 676 if (flag_checking && verify)
314966f4 677 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3072d30e 678}
679
680
681/* Set up the dataflow instance for the entire back end. */
682
683static unsigned int
684rest_of_handle_df_initialize (void)
685{
686 gcc_assert (!df);
f2956fc5 687 df = XCNEW (struct df_d);
3072d30e 688 df->changeable_flags = 0;
689
690 bitmap_obstack_initialize (&df_bitmap_obstack);
691
692 /* Set this to a conservative value. Stack_ptr_mod will compute it
693 correctly later. */
d5bf7b64 694 crtl->sp_is_unchanging = 0;
3072d30e 695
696 df_scan_add_problem ();
697 df_scan_alloc (NULL);
698
699 /* These three problems are permanent. */
700 df_lr_add_problem ();
deb2741b 701 if (optimize > 1)
3072d30e 702 df_live_add_problem ();
703
fe672ac0 704 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
3072d30e 705 df->n_blocks = post_order_compute (df->postorder, true, true);
a4421e7b 706 inverted_post_order_compute (&df->postorder_inverted);
707 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
3072d30e 708
690973a8 709 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
3072d30e 710
711 df_hard_reg_init ();
712 /* After reload, some ports add certain bits to regs_ever_live so
713 this cannot be reset. */
714 df_compute_regs_ever_live (true);
715 df_scan_blocks ();
716 df_compute_regs_ever_live (false);
717 return 0;
718}
719
720
cbe8bda8 721namespace {
722
723const pass_data pass_data_df_initialize_opt =
3072d30e 724{
cbe8bda8 725 RTL_PASS, /* type */
726 "dfinit", /* name */
727 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 728 TV_DF_SCAN, /* tv_id */
729 0, /* properties_required */
730 0, /* properties_provided */
731 0, /* properties_destroyed */
732 0, /* todo_flags_start */
733 0, /* todo_flags_finish */
3072d30e 734};
735
cbe8bda8 736class pass_df_initialize_opt : public rtl_opt_pass
737{
738public:
9af5ce0c 739 pass_df_initialize_opt (gcc::context *ctxt)
740 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
cbe8bda8 741 {}
742
743 /* opt_pass methods: */
31315c24 744 virtual bool gate (function *) { return optimize > 0; }
65b0537f 745 virtual unsigned int execute (function *)
746 {
747 return rest_of_handle_df_initialize ();
748 }
cbe8bda8 749
750}; // class pass_df_initialize_opt
751
752} // anon namespace
753
754rtl_opt_pass *
755make_pass_df_initialize_opt (gcc::context *ctxt)
756{
757 return new pass_df_initialize_opt (ctxt);
758}
759
3072d30e 760
cbe8bda8 761namespace {
762
763const pass_data pass_data_df_initialize_no_opt =
3072d30e 764{
cbe8bda8 765 RTL_PASS, /* type */
766 "no-opt dfinit", /* name */
767 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 768 TV_DF_SCAN, /* tv_id */
769 0, /* properties_required */
770 0, /* properties_provided */
771 0, /* properties_destroyed */
772 0, /* todo_flags_start */
773 0, /* todo_flags_finish */
3072d30e 774};
775
cbe8bda8 776class pass_df_initialize_no_opt : public rtl_opt_pass
777{
778public:
9af5ce0c 779 pass_df_initialize_no_opt (gcc::context *ctxt)
780 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
cbe8bda8 781 {}
782
783 /* opt_pass methods: */
31315c24 784 virtual bool gate (function *) { return optimize == 0; }
65b0537f 785 virtual unsigned int execute (function *)
786 {
787 return rest_of_handle_df_initialize ();
788 }
cbe8bda8 789
790}; // class pass_df_initialize_no_opt
791
792} // anon namespace
793
794rtl_opt_pass *
795make_pass_df_initialize_no_opt (gcc::context *ctxt)
796{
797 return new pass_df_initialize_no_opt (ctxt);
798}
799
3072d30e 800
e011eba9 801/* Free all the dataflow info and the DF structure. This should be
802 called from the df_finish macro which also NULLs the parm. */
803
3072d30e 804static unsigned int
805rest_of_handle_df_finish (void)
e011eba9 806{
807 int i;
808
3072d30e 809 gcc_assert (df);
810
e011eba9 811 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 812 {
813 struct dataflow *dflow = df->problems_in_order[i];
48e1416a 814 dflow->problem->free_fun ();
3072d30e 815 }
e011eba9 816
dd045aee 817 free (df->postorder);
a4421e7b 818 df->postorder_inverted.release ();
3072d30e 819 free (df->hard_regs_live_count);
e011eba9 820 free (df);
3072d30e 821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
e011eba9 825}
826
3072d30e 827
cbe8bda8 828namespace {
829
830const pass_data pass_data_df_finish =
3072d30e 831{
cbe8bda8 832 RTL_PASS, /* type */
833 "dfinish", /* name */
834 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 835 TV_NONE, /* tv_id */
836 0, /* properties_required */
837 0, /* properties_provided */
838 0, /* properties_destroyed */
839 0, /* todo_flags_start */
840 0, /* todo_flags_finish */
3072d30e 841};
842
cbe8bda8 843class pass_df_finish : public rtl_opt_pass
844{
845public:
9af5ce0c 846 pass_df_finish (gcc::context *ctxt)
847 : rtl_opt_pass (pass_data_df_finish, ctxt)
cbe8bda8 848 {}
849
850 /* opt_pass methods: */
65b0537f 851 virtual unsigned int execute (function *)
852 {
853 return rest_of_handle_df_finish ();
854 }
cbe8bda8 855
856}; // class pass_df_finish
857
858} // anon namespace
859
860rtl_opt_pass *
861make_pass_df_finish (gcc::context *ctxt)
862{
863 return new pass_df_finish (ctxt);
864}
865
3072d30e 866
867
868
e011eba9 869\f
870/*----------------------------------------------------------------------------
871 The general data flow analysis engine.
872----------------------------------------------------------------------------*/
873
21256416 874/* Return time BB when it was visited for last time. */
875#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
e011eba9 876
3072d30e 877/* Helper function for df_worklist_dataflow.
48e1416a 878 Propagate the dataflow forward.
3072d30e 879 Given a BB_INDEX, do the dataflow propagation
880 and set bits on for successors in PENDING
21256416 881 if the out set of the dataflow has changed.
882
883 AGE specify time when BB was visited last time.
884 AGE of 0 means we are visiting for first time and need to
885 compute transfer function to initialize datastructures.
886 Otherwise we re-do transfer function only if something change
887 while computing confluence functions.
888 We need to compute confluence only of basic block that are younger
889 then last visit of the BB.
890
891 Return true if BB info has changed. This is always the case
892 in the first visit. */
e011eba9 893
a703ca31 894static bool
3072d30e 895df_worklist_propagate_forward (struct dataflow *dataflow,
896 unsigned bb_index,
897 unsigned *bbindex_to_postorder,
898 bitmap pending,
a703ca31 899 sbitmap considered,
21256416 900 ptrdiff_t age)
e011eba9 901{
e011eba9 902 edge e;
903 edge_iterator ei;
f5a6b05f 904 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
a703ca31 905 bool changed = !age;
e011eba9 906
3072d30e 907 /* Calculate <conf_op> of incoming edges. */
e011eba9 908 if (EDGE_COUNT (bb->preds) > 0)
909 FOR_EACH_EDGE (e, ei, bb->preds)
48e1416a 910 {
21256416 911 if (age <= BB_LAST_CHANGE_AGE (e->src)
08b7917c 912 && bitmap_bit_p (considered, e->src->index))
a703ca31 913 changed |= dataflow->problem->con_fun_n (e);
48e1416a 914 }
1c1a6437 915 else if (dataflow->problem->con_fun_0)
21256416 916 dataflow->problem->con_fun_0 (bb);
3072d30e 917
a703ca31 918 if (changed
919 && dataflow->problem->trans_fun (bb_index))
e011eba9 920 {
48e1416a 921 /* The out set of this block has changed.
3072d30e 922 Propagate to the outgoing blocks. */
923 FOR_EACH_EDGE (e, ei, bb->succs)
924 {
925 unsigned ob_index = e->dest->index;
926
08b7917c 927 if (bitmap_bit_p (considered, ob_index))
3072d30e 928 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
929 }
a703ca31 930 return true;
e011eba9 931 }
a703ca31 932 return false;
e011eba9 933}
934
3072d30e 935
936/* Helper function for df_worklist_dataflow.
937 Propagate the dataflow backward. */
938
a703ca31 939static bool
3072d30e 940df_worklist_propagate_backward (struct dataflow *dataflow,
941 unsigned bb_index,
942 unsigned *bbindex_to_postorder,
943 bitmap pending,
a703ca31 944 sbitmap considered,
21256416 945 ptrdiff_t age)
e011eba9 946{
e011eba9 947 edge e;
948 edge_iterator ei;
f5a6b05f 949 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
a703ca31 950 bool changed = !age;
e011eba9 951
3072d30e 952 /* Calculate <conf_op> of incoming edges. */
e011eba9 953 if (EDGE_COUNT (bb->succs) > 0)
3072d30e 954 FOR_EACH_EDGE (e, ei, bb->succs)
48e1416a 955 {
21256416 956 if (age <= BB_LAST_CHANGE_AGE (e->dest)
08b7917c 957 && bitmap_bit_p (considered, e->dest->index))
a703ca31 958 changed |= dataflow->problem->con_fun_n (e);
48e1416a 959 }
1c1a6437 960 else if (dataflow->problem->con_fun_0)
21256416 961 dataflow->problem->con_fun_0 (bb);
e011eba9 962
a703ca31 963 if (changed
964 && dataflow->problem->trans_fun (bb_index))
e011eba9 965 {
48e1416a 966 /* The out set of this block has changed.
3072d30e 967 Propagate to the outgoing blocks. */
968 FOR_EACH_EDGE (e, ei, bb->preds)
969 {
970 unsigned ob_index = e->src->index;
971
08b7917c 972 if (bitmap_bit_p (considered, ob_index))
3072d30e 973 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
974 }
a703ca31 975 return true;
e011eba9 976 }
a703ca31 977 return false;
e011eba9 978}
979
21256416 980/* Main dataflow solver loop.
981
982 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
983 need to visit.
984 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
a04e8d62 985 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
21256416 986 PENDING will be freed.
987
988 The worklists are bitmaps indexed by postorder positions.
989
990 The function implements standard algorithm for dataflow solving with two
991 worklists (we are processing WORKLIST and storing new BBs to visit in
992 PENDING).
a9e21c4c 993
21256416 994 As an optimization we maintain ages when BB was changed (stored in bb->aux)
995 and when it was last visited (stored in last_visit_age). This avoids need
996 to re-do confluence function for edges to basic blocks whose source
997 did not change since destination was visited last time. */
a9e21c4c 998
48e1416a 999static void
a9e21c4c 1000df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1001 bitmap pending,
1002 sbitmap considered,
1003 int *blocks_in_postorder,
a703ca31 1004 unsigned *bbindex_to_postorder,
1005 int n_blocks)
a9e21c4c 1006{
1007 enum df_flow_dir dir = dataflow->problem->dir;
1008 int dcount = 0;
1009 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
21256416 1010 int age = 0;
a703ca31 1011 bool changed;
1e094109 1012 vec<int> last_visit_age = vNULL;
21256416 1013 int prev_age;
a703ca31 1014 basic_block bb;
1015 int i;
1016
f1f41a6c 1017 last_visit_age.safe_grow_cleared (n_blocks);
a9e21c4c 1018
1019 /* Double-queueing. Worklist is for the current iteration,
1020 and pending is for the next. */
1021 while (!bitmap_empty_p (pending))
1022 {
a703ca31 1023 bitmap_iterator bi;
1024 unsigned int index;
1025
a4f59596 1026 std::swap (pending, worklist);
a9e21c4c 1027
a703ca31 1028 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
a9e21c4c 1029 {
a9e21c4c 1030 unsigned bb_index;
1031 dcount++;
1032
21256416 1033 bitmap_clear_bit (pending, index);
a9e21c4c 1034 bb_index = blocks_in_postorder[index];
f5a6b05f 1035 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
f1f41a6c 1036 prev_age = last_visit_age[index];
a9e21c4c 1037 if (dir == DF_FORWARD)
a703ca31 1038 changed = df_worklist_propagate_forward (dataflow, bb_index,
1039 bbindex_to_postorder,
1040 pending, considered,
1041 prev_age);
48e1416a 1042 else
a703ca31 1043 changed = df_worklist_propagate_backward (dataflow, bb_index,
1044 bbindex_to_postorder,
1045 pending, considered,
1046 prev_age);
f1f41a6c 1047 last_visit_age[index] = ++age;
a703ca31 1048 if (changed)
21256416 1049 bb->aux = (void *)(ptrdiff_t)age;
a9e21c4c 1050 }
a703ca31 1051 bitmap_clear (worklist);
a9e21c4c 1052 }
a703ca31 1053 for (i = 0; i < n_blocks; i++)
f5a6b05f 1054 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
a9e21c4c 1055
1056 BITMAP_FREE (worklist);
1057 BITMAP_FREE (pending);
f1f41a6c 1058 last_visit_age.release ();
a9e21c4c 1059
1060 /* Dump statistics. */
1061 if (dump_file)
1062 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
19efce70 1063 " n_basic_blocks %d n_edges %d"
a9e21c4c 1064 " count %d (%5.2g)\n",
f1955b22 1065 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
a28770e1 1066 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
a9e21c4c 1067}
1068
3072d30e 1069/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
48e1416a 1070 with "n"-th bit representing the n-th block in the reverse-postorder order.
576af552 1071 The solver is a double-queue algorithm similar to the "double stack" solver
1072 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1073 The only significant difference is that the worklist in this implementation
1074 is always sorted in RPO of the CFG visiting direction. */
e011eba9 1075
48e1416a 1076void
3072d30e 1077df_worklist_dataflow (struct dataflow *dataflow,
1078 bitmap blocks_to_consider,
1079 int *blocks_in_postorder,
1080 int n_blocks)
e011eba9 1081{
3072d30e 1082 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
e011eba9 1083 bitmap_iterator bi;
3072d30e 1084 unsigned int *bbindex_to_postorder;
1085 int i;
1086 unsigned int index;
1087 enum df_flow_dir dir = dataflow->problem->dir;
e011eba9 1088
3072d30e 1089 gcc_assert (dir != DF_NONE);
e011eba9 1090
3072d30e 1091 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
fe672ac0 1092 bbindex_to_postorder = XNEWVEC (unsigned int,
1093 last_basic_block_for_fn (cfun));
e011eba9 1094
3072d30e 1095 /* Initialize the array to an out-of-bound value. */
fe672ac0 1096 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1097 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
3e6933a8 1098
3072d30e 1099 /* Initialize the considered map. */
3c6549f8 1100 auto_sbitmap considered (last_basic_block_for_fn (cfun));
53c5d9d4 1101 bitmap_clear (considered);
3072d30e 1102 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
e011eba9 1103 {
08b7917c 1104 bitmap_set_bit (considered, index);
e011eba9 1105 }
1106
3072d30e 1107 /* Initialize the mapping of block index to postorder. */
e011eba9 1108 for (i = 0; i < n_blocks; i++)
1109 {
3072d30e 1110 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1111 /* Add all blocks to the worklist. */
1112 bitmap_set_bit (pending, i);
1113 }
e011eba9 1114
a9e21c4c 1115 /* Initialize the problem. */
3072d30e 1116 if (dataflow->problem->init_fun)
1117 dataflow->problem->init_fun (blocks_to_consider);
e011eba9 1118
576af552 1119 /* Solve it. */
1120 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1121 blocks_in_postorder,
a703ca31 1122 bbindex_to_postorder,
1123 n_blocks);
3072d30e 1124 free (bbindex_to_postorder);
e011eba9 1125}
1126
1127
1128/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1129 the order of the remaining entries. Returns the length of the resulting
1130 list. */
1131
1132static unsigned
1133df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1134{
1135 unsigned act, last;
1136
1137 for (act = 0, last = 0; act < len; act++)
1138 if (bitmap_bit_p (blocks, list[act]))
1139 list[last++] = list[act];
1140
1141 return last;
1142}
1143
1144
48e1416a 1145/* Execute dataflow analysis on a single dataflow problem.
e011eba9 1146
e011eba9 1147 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1148 examined or will be computed. For calls from DF_ANALYZE, this is
48e1416a 1149 the set of blocks that has been passed to DF_SET_BLOCKS.
e011eba9 1150*/
1151
3e6933a8 1152void
48e1416a 1153df_analyze_problem (struct dataflow *dflow,
1154 bitmap blocks_to_consider,
3072d30e 1155 int *postorder, int n_blocks)
e011eba9 1156{
3072d30e 1157 timevar_push (dflow->problem->tv_id);
1158
253d7fd0 1159 /* (Re)Allocate the datastructures necessary to solve the problem. */
1160 if (dflow->problem->alloc_fun)
1161 dflow->problem->alloc_fun (blocks_to_consider);
1162
5ccba2dc 1163#ifdef ENABLE_DF_CHECKING
3072d30e 1164 if (dflow->problem->verify_start_fun)
1165 dflow->problem->verify_start_fun ();
1166#endif
1167
3072d30e 1168 /* Set up the problem and compute the local information. */
1c1a6437 1169 if (dflow->problem->local_compute_fun)
3072d30e 1170 dflow->problem->local_compute_fun (blocks_to_consider);
e011eba9 1171
1172 /* Solve the equations. */
1c1a6437 1173 if (dflow->problem->dataflow_fun)
3072d30e 1174 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1175 postorder, n_blocks);
e011eba9 1176
1177 /* Massage the solution. */
1c1a6437 1178 if (dflow->problem->finalize_fun)
3072d30e 1179 dflow->problem->finalize_fun (blocks_to_consider);
1180
5ccba2dc 1181#ifdef ENABLE_DF_CHECKING
3072d30e 1182 if (dflow->problem->verify_end_fun)
1183 dflow->problem->verify_end_fun ();
1184#endif
1185
1186 timevar_pop (dflow->problem->tv_id);
1187
1188 dflow->computed = true;
e011eba9 1189}
1190
1191
67e23d6f 1192/* Analyze dataflow info. */
e011eba9 1193
67e23d6f 1194static void
1195df_analyze_1 (void)
e011eba9 1196{
3072d30e 1197 int i;
48e1416a 1198
3072d30e 1199 /* These should be the same. */
a4421e7b 1200 gcc_assert ((unsigned) df->n_blocks == df->postorder_inverted.length ());
3072d30e 1201
1202 /* We need to do this before the df_verify_all because this is
1203 not kept incrementally up to date. */
1204 df_compute_regs_ever_live (false);
1205 df_process_deferred_rescans ();
1206
3072d30e 1207 if (dump_file)
1208 fprintf (dump_file, "df_analyze called\n");
5ccba2dc 1209
314966f4 1210#ifndef ENABLE_DF_CHECKING
1211 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1212#endif
1213 df_verify ();
3072d30e 1214
67e23d6f 1215 /* Skip over the DF_SCAN problem. */
1216 for (i = 1; i < df->num_problems_defined; i++)
1217 {
1218 struct dataflow *dflow = df->problems_in_order[i];
1219 if (dflow->solutions_dirty)
1220 {
1221 if (dflow->problem->dir == DF_FORWARD)
1222 df_analyze_problem (dflow,
1223 df->blocks_to_analyze,
a4421e7b 1224 df->postorder_inverted.address (),
1225 df->postorder_inverted.length ());
67e23d6f 1226 else
1227 df_analyze_problem (dflow,
1228 df->blocks_to_analyze,
1229 df->postorder,
1230 df->n_blocks);
1231 }
1232 }
1233
1234 if (!df->analyze_subset)
1235 {
1236 BITMAP_FREE (df->blocks_to_analyze);
1237 df->blocks_to_analyze = NULL;
1238 }
1239
1240#ifdef DF_DEBUG_CFG
1241 df_set_clean_cfg ();
1242#endif
1243}
1244
1245/* Analyze dataflow info. */
1246
1247void
1248df_analyze (void)
1249{
1250 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
67e23d6f 1251
1252 free (df->postorder);
67e23d6f 1253 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
67e23d6f 1254 df->n_blocks = post_order_compute (df->postorder, true, true);
a4421e7b 1255 df->postorder_inverted.truncate (0);
1256 inverted_post_order_compute (&df->postorder_inverted);
67e23d6f 1257
a4421e7b 1258 for (int i = 0; i < df->n_blocks; i++)
3072d30e 1259 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1260
382ecba7 1261 if (flag_checking)
1262 {
1263 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1264 the ENTRY block. */
a4421e7b 1265 for (unsigned int i = 0; i < df->postorder_inverted.length (); i++)
382ecba7 1266 gcc_assert (bitmap_bit_p (current_all_blocks,
1267 df->postorder_inverted[i]));
1268 }
e011eba9 1269
1270 /* Make sure that we have pruned any unreachable blocks from these
1271 sets. */
3072d30e 1272 if (df->analyze_subset)
e011eba9 1273 {
e011eba9 1274 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
48e1416a 1275 df->n_blocks = df_prune_to_subcfg (df->postorder,
3072d30e 1276 df->n_blocks, df->blocks_to_analyze);
a4421e7b 1277 unsigned int newlen = df_prune_to_subcfg (df->postorder_inverted.address (),
1278 df->postorder_inverted.length (),
67e23d6f 1279 df->blocks_to_analyze);
a4421e7b 1280 df->postorder_inverted.truncate (newlen);
e011eba9 1281 BITMAP_FREE (current_all_blocks);
1282 }
1283 else
1284 {
e011eba9 1285 df->blocks_to_analyze = current_all_blocks;
1286 current_all_blocks = NULL;
1287 }
1288
67e23d6f 1289 df_analyze_1 ();
1290}
1291
1292/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1293 Returns the number of blocks which is always loop->num_nodes. */
1294
1295static int
1296loop_post_order_compute (int *post_order, struct loop *loop)
1297{
1298 edge_iterator *stack;
1299 int sp;
1300 int post_order_num = 0;
67e23d6f 1301
1302 /* Allocate stack for back-tracking up CFG. */
1303 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1304 sp = 0;
1305
1306 /* Allocate bitmap to track nodes that have been visited. */
035def86 1307 auto_bitmap visited;
67e23d6f 1308
1309 /* Push the first edge on to the stack. */
1310 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1311
1312 while (sp)
3072d30e 1313 {
67e23d6f 1314 edge_iterator ei;
1315 basic_block src;
1316 basic_block dest;
1317
1318 /* Look at the edge on the top of the stack. */
1319 ei = stack[sp - 1];
1320 src = ei_edge (ei)->src;
1321 dest = ei_edge (ei)->dest;
1322
1323 /* Check if the edge destination has been visited yet and mark it
1324 if not so. */
1325 if (flow_bb_inside_loop_p (loop, dest)
1326 && bitmap_set_bit (visited, dest->index))
1327 {
1328 if (EDGE_COUNT (dest->succs) > 0)
1329 /* Since the DEST node has been visited for the first
1330 time, check its successors. */
1331 stack[sp++] = ei_start (dest->succs);
1332 else
1333 post_order[post_order_num++] = dest->index;
1334 }
1335 else
1336 {
1337 if (ei_one_before_end_p (ei)
1338 && src != loop_preheader_edge (loop)->src)
1339 post_order[post_order_num++] = src->index;
1340
1341 if (!ei_one_before_end_p (ei))
1342 ei_next (&stack[sp - 1]);
1343 else
1344 sp--;
1345 }
3072d30e 1346 }
e011eba9 1347
67e23d6f 1348 free (stack);
67e23d6f 1349
1350 return post_order_num;
1351}
1352
1353/* Compute the reverse top sort order of the inverted sub-CFG specified
1354 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1355
a4421e7b 1356static void
1357loop_inverted_post_order_compute (vec<int> *post_order, struct loop *loop)
67e23d6f 1358{
1359 basic_block bb;
1360 edge_iterator *stack;
1361 int sp;
a4421e7b 1362
1363 post_order->reserve_exact (loop->num_nodes);
67e23d6f 1364
1365 /* Allocate stack for back-tracking up CFG. */
1366 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1367 sp = 0;
1368
1369 /* Allocate bitmap to track nodes that have been visited. */
035def86 1370 auto_bitmap visited;
67e23d6f 1371
1372 /* Put all latches into the initial work list. In theory we'd want
1373 to start from loop exits but then we'd have the special case of
1374 endless loops. It doesn't really matter for DF iteration order and
1375 handling latches last is probably even better. */
1376 stack[sp++] = ei_start (loop->header->preds);
1377 bitmap_set_bit (visited, loop->header->index);
1378
1379 /* The inverted traversal loop. */
1380 while (sp)
e011eba9 1381 {
67e23d6f 1382 edge_iterator ei;
1383 basic_block pred;
1384
1385 /* Look at the edge on the top of the stack. */
1386 ei = stack[sp - 1];
1387 bb = ei_edge (ei)->dest;
1388 pred = ei_edge (ei)->src;
1389
1390 /* Check if the predecessor has been visited yet and mark it
1391 if not so. */
1392 if (flow_bb_inside_loop_p (loop, pred)
1393 && bitmap_set_bit (visited, pred->index))
1394 {
1395 if (EDGE_COUNT (pred->preds) > 0)
1396 /* Since the predecessor node has been visited for the first
1397 time, check its predecessors. */
1398 stack[sp++] = ei_start (pred->preds);
1399 else
a4421e7b 1400 post_order->quick_push (pred->index);
67e23d6f 1401 }
1402 else
1403 {
1404 if (flow_bb_inside_loop_p (loop, bb)
1405 && ei_one_before_end_p (ei))
a4421e7b 1406 post_order->quick_push (bb->index);
67e23d6f 1407
1408 if (!ei_one_before_end_p (ei))
1409 ei_next (&stack[sp - 1]);
1410 else
1411 sp--;
1412 }
e011eba9 1413 }
1414
67e23d6f 1415 free (stack);
67e23d6f 1416}
1417
1418
1419/* Analyze dataflow info for the basic blocks contained in LOOP. */
1420
1421void
1422df_analyze_loop (struct loop *loop)
1423{
1424 free (df->postorder);
67e23d6f 1425
1426 df->postorder = XNEWVEC (int, loop->num_nodes);
a4421e7b 1427 df->postorder_inverted.truncate (0);
67e23d6f 1428 df->n_blocks = loop_post_order_compute (df->postorder, loop);
a4421e7b 1429 loop_inverted_post_order_compute (&df->postorder_inverted, loop);
67e23d6f 1430 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
a4421e7b 1431 gcc_assert (df->postorder_inverted.length () == loop->num_nodes);
67e23d6f 1432
1433 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1434 for (int i = 0; i < df->n_blocks; ++i)
1435 bitmap_set_bit (blocks, df->postorder[i]);
1436 df_set_blocks (blocks);
1437 BITMAP_FREE (blocks);
1438
1439 df_analyze_1 ();
3072d30e 1440}
1441
1442
1443/* Return the number of basic blocks from the last call to df_analyze. */
1444
48e1416a 1445int
3072d30e 1446df_get_n_blocks (enum df_flow_dir dir)
1447{
1448 gcc_assert (dir != DF_NONE);
1449
1450 if (dir == DF_FORWARD)
1451 {
a4421e7b 1452 gcc_assert (df->postorder_inverted.length ());
1453 return df->postorder_inverted.length ();
3072d30e 1454 }
1455
1456 gcc_assert (df->postorder);
1457 return df->n_blocks;
1458}
1459
1460
48e1416a 1461/* Return a pointer to the array of basic blocks in the reverse postorder.
3072d30e 1462 Depending on the direction of the dataflow problem,
1463 it returns either the usual reverse postorder array
1464 or the reverse postorder of inverted traversal. */
1465int *
1466df_get_postorder (enum df_flow_dir dir)
1467{
1468 gcc_assert (dir != DF_NONE);
1469
1470 if (dir == DF_FORWARD)
1471 {
a4421e7b 1472 gcc_assert (df->postorder_inverted.length ());
1473 return df->postorder_inverted.address ();
3072d30e 1474 }
1475 gcc_assert (df->postorder);
1476 return df->postorder;
e011eba9 1477}
1478
48e1416a 1479static struct df_problem user_problem;
3072d30e 1480static struct dataflow user_dflow;
e011eba9 1481
3072d30e 1482/* Interface for calling iterative dataflow with user defined
1483 confluence and transfer functions. All that is necessary is to
1484 supply DIR, a direction, CONF_FUN_0, a confluence function for
1485 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1486 confluence function, TRANS_FUN, the basic block transfer function,
1487 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1488 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1489
1490void
1491df_simple_dataflow (enum df_flow_dir dir,
1492 df_init_function init_fun,
1493 df_confluence_function_0 con_fun_0,
1494 df_confluence_function_n con_fun_n,
1495 df_transfer_function trans_fun,
1496 bitmap blocks, int * postorder, int n_blocks)
1497{
1498 memset (&user_problem, 0, sizeof (struct df_problem));
1499 user_problem.dir = dir;
1500 user_problem.init_fun = init_fun;
1501 user_problem.con_fun_0 = con_fun_0;
1502 user_problem.con_fun_n = con_fun_n;
1503 user_problem.trans_fun = trans_fun;
1504 user_dflow.problem = &user_problem;
1505 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1506}
1507
48e1416a 1508
e011eba9 1509\f
1510/*----------------------------------------------------------------------------
1511 Functions to support limited incremental change.
1512----------------------------------------------------------------------------*/
1513
1514
1515/* Get basic block info. */
1516
1517static void *
1518df_get_bb_info (struct dataflow *dflow, unsigned int index)
1519{
3072d30e 1520 if (dflow->block_info == NULL)
1521 return NULL;
1522 if (index >= dflow->block_info_size)
1523 return NULL;
369ea98d 1524 return (void *)((char *)dflow->block_info
1525 + index * dflow->problem->block_info_elt_size);
e011eba9 1526}
1527
1528
1529/* Set basic block info. */
1530
1531static void
48e1416a 1532df_set_bb_info (struct dataflow *dflow, unsigned int index,
e011eba9 1533 void *bb_info)
1534{
3072d30e 1535 gcc_assert (dflow->block_info);
369ea98d 1536 memcpy ((char *)dflow->block_info
1537 + index * dflow->problem->block_info_elt_size,
1538 bb_info, dflow->problem->block_info_elt_size);
1539}
1540
1541
1542/* Clear basic block info. */
1543
1544static void
1545df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1546{
1547 gcc_assert (dflow->block_info);
1548 gcc_assert (dflow->block_info_size > index);
1549 memset ((char *)dflow->block_info
1550 + index * dflow->problem->block_info_elt_size,
1551 0, dflow->problem->block_info_elt_size);
e011eba9 1552}
1553
1554
3072d30e 1555/* Mark the solutions as being out of date. */
1556
48e1416a 1557void
3072d30e 1558df_mark_solutions_dirty (void)
1559{
1560 if (df)
1561 {
48e1416a 1562 int p;
3072d30e 1563 for (p = 1; p < df->num_problems_defined; p++)
1564 df->problems_in_order[p]->solutions_dirty = true;
1565 }
1566}
1567
1568
1569/* Return true if BB needs it's transfer functions recomputed. */
1570
48e1416a 1571bool
3072d30e 1572df_get_bb_dirty (basic_block bb)
1573{
3693f86f 1574 return bitmap_bit_p ((df_live
1575 ? df_live : df_lr)->out_of_date_transfer_functions,
1576 bb->index);
3072d30e 1577}
1578
1579
1580/* Mark BB as needing it's transfer functions as being out of
1581 date. */
1582
48e1416a 1583void
3072d30e 1584df_set_bb_dirty (basic_block bb)
1585{
bc6adae4 1586 bb->flags |= BB_MODIFIED;
3072d30e 1587 if (df)
1588 {
48e1416a 1589 int p;
3072d30e 1590 for (p = 1; p < df->num_problems_defined; p++)
1591 {
1592 struct dataflow *dflow = df->problems_in_order[p];
1593 if (dflow->out_of_date_transfer_functions)
1594 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1595 }
1596 df_mark_solutions_dirty ();
1597 }
1598}
1599
1600
369ea98d 1601/* Grow the bb_info array. */
1602
1603void
1604df_grow_bb_info (struct dataflow *dflow)
1605{
fe672ac0 1606 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
369ea98d 1607 if (dflow->block_info_size < new_size)
1608 {
1609 new_size += new_size / 4;
1610 dflow->block_info
1611 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1612 new_size
1613 * dflow->problem->block_info_elt_size);
1614 memset ((char *)dflow->block_info
1615 + dflow->block_info_size
1616 * dflow->problem->block_info_elt_size,
1617 0,
1618 (new_size - dflow->block_info_size)
1619 * dflow->problem->block_info_elt_size);
1620 dflow->block_info_size = new_size;
1621 }
1622}
1623
86fc6921 1624
3072d30e 1625/* Clear the dirty bits. This is called from places that delete
1626 blocks. */
1627static void
1628df_clear_bb_dirty (basic_block bb)
1629{
48e1416a 1630 int p;
3072d30e 1631 for (p = 1; p < df->num_problems_defined; p++)
1632 {
1633 struct dataflow *dflow = df->problems_in_order[p];
1634 if (dflow->out_of_date_transfer_functions)
1635 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1636 }
1637}
369ea98d 1638
e011eba9 1639/* Called from the rtl_compact_blocks to reorganize the problems basic
1640 block info. */
1641
48e1416a 1642void
3072d30e 1643df_compact_blocks (void)
e011eba9 1644{
1645 int i, p;
1646 basic_block bb;
369ea98d 1647 void *problem_temps;
e011eba9 1648
f6708c36 1649 auto_bitmap tmp (&df_bitmap_obstack);
e011eba9 1650 for (p = 0; p < df->num_problems_defined; p++)
1651 {
1652 struct dataflow *dflow = df->problems_in_order[p];
3072d30e 1653
1654 /* Need to reorganize the out_of_date_transfer_functions for the
1655 dflow problem. */
1656 if (dflow->out_of_date_transfer_functions)
1657 {
f6708c36 1658 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
3072d30e 1659 bitmap_clear (dflow->out_of_date_transfer_functions);
f6708c36 1660 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
3072d30e 1661 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
f6708c36 1662 if (bitmap_bit_p (tmp, EXIT_BLOCK))
3072d30e 1663 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1664
1665 i = NUM_FIXED_BLOCKS;
fc00614f 1666 FOR_EACH_BB_FN (bb, cfun)
3072d30e 1667 {
f6708c36 1668 if (bitmap_bit_p (tmp, bb->index))
3072d30e 1669 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1670 i++;
1671 }
1672 }
1673
1674 /* Now shuffle the block info for the problem. */
1c1a6437 1675 if (dflow->problem->free_bb_fun)
e011eba9 1676 {
fe672ac0 1677 int size = (last_basic_block_for_fn (cfun)
1678 * dflow->problem->block_info_elt_size);
369ea98d 1679 problem_temps = XNEWVAR (char, size);
e011eba9 1680 df_grow_bb_info (dflow);
1681 memcpy (problem_temps, dflow->block_info, size);
1682
1683 /* Copy the bb info from the problem tmps to the proper
1684 place in the block_info vector. Null out the copied
3072d30e 1685 item. The entry and exit blocks never move. */
e011eba9 1686 i = NUM_FIXED_BLOCKS;
fc00614f 1687 FOR_EACH_BB_FN (bb, cfun)
e011eba9 1688 {
369ea98d 1689 df_set_bb_info (dflow, i,
1690 (char *)problem_temps
1691 + bb->index * dflow->problem->block_info_elt_size);
e011eba9 1692 i++;
1693 }
369ea98d 1694 memset ((char *)dflow->block_info
1695 + i * dflow->problem->block_info_elt_size, 0,
fe672ac0 1696 (last_basic_block_for_fn (cfun) - i)
369ea98d 1697 * dflow->problem->block_info_elt_size);
c5fa0717 1698 free (problem_temps);
e011eba9 1699 }
1700 }
1701
3072d30e 1702 /* Shuffle the bits in the basic_block indexed arrays. */
1703
1704 if (df->blocks_to_analyze)
1705 {
f6708c36 1706 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
3072d30e 1707 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
f6708c36 1708 if (bitmap_bit_p (tmp, EXIT_BLOCK))
3072d30e 1709 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
f6708c36 1710 bitmap_copy (tmp, df->blocks_to_analyze);
3072d30e 1711 bitmap_clear (df->blocks_to_analyze);
1712 i = NUM_FIXED_BLOCKS;
fc00614f 1713 FOR_EACH_BB_FN (bb, cfun)
3072d30e 1714 {
f6708c36 1715 if (bitmap_bit_p (tmp, bb->index))
3072d30e 1716 bitmap_set_bit (df->blocks_to_analyze, i);
1717 i++;
1718 }
1719 }
1720
e011eba9 1721 i = NUM_FIXED_BLOCKS;
fc00614f 1722 FOR_EACH_BB_FN (bb, cfun)
e011eba9 1723 {
f64d2ca4 1724 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
e011eba9 1725 bb->index = i;
1726 i++;
1727 }
1728
a28770e1 1729 gcc_assert (i == n_basic_blocks_for_fn (cfun));
e011eba9 1730
fe672ac0 1731 for (; i < last_basic_block_for_fn (cfun); i++)
f64d2ca4 1732 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
3072d30e 1733
1734#ifdef DF_DEBUG_CFG
1735 if (!df_lr->solutions_dirty)
1736 df_set_clean_cfg ();
1737#endif
e011eba9 1738}
1739
1740
3072d30e 1741/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
e011eba9 1742 block. There is no excuse for people to do this kind of thing. */
1743
48e1416a 1744void
3072d30e 1745df_bb_replace (int old_index, basic_block new_block)
e011eba9 1746{
3072d30e 1747 int new_block_index = new_block->index;
e011eba9 1748 int p;
1749
3072d30e 1750 if (dump_file)
1751 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1752
1753 gcc_assert (df);
f5a6b05f 1754 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
3072d30e 1755
e011eba9 1756 for (p = 0; p < df->num_problems_defined; p++)
1757 {
1758 struct dataflow *dflow = df->problems_in_order[p];
1759 if (dflow->block_info)
1760 {
e011eba9 1761 df_grow_bb_info (dflow);
48e1416a 1762 df_set_bb_info (dflow, old_index,
3072d30e 1763 df_get_bb_info (dflow, new_block_index));
e011eba9 1764 }
1765 }
1766
3072d30e 1767 df_clear_bb_dirty (new_block);
f64d2ca4 1768 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
e011eba9 1769 new_block->index = old_index;
f5a6b05f 1770 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
f64d2ca4 1771 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
3072d30e 1772}
1773
1774
1775/* Free all of the per basic block dataflow from all of the problems.
1776 This is typically called before a basic block is deleted and the
1777 problem will be reanalyzed. */
1778
1779void
1780df_bb_delete (int bb_index)
1781{
f5a6b05f 1782 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
3072d30e 1783 int i;
1784
1785 if (!df)
1786 return;
48e1416a 1787
3072d30e 1788 for (i = 0; i < df->num_problems_defined; i++)
1789 {
1790 struct dataflow *dflow = df->problems_in_order[i];
1791 if (dflow->problem->free_bb_fun)
1792 {
1793 void *bb_info = df_get_bb_info (dflow, bb_index);
1794 if (bb_info)
1795 {
48e1416a 1796 dflow->problem->free_bb_fun (bb, bb_info);
369ea98d 1797 df_clear_bb_info (dflow, bb_index);
3072d30e 1798 }
1799 }
1800 }
1801 df_clear_bb_dirty (bb);
1802 df_mark_solutions_dirty ();
1803}
1804
1805
1806/* Verify that there is a place for everything and everything is in
1807 its place. This is too expensive to run after every pass in the
1808 mainline. However this is an excellent debugging tool if the
6dfdc153 1809 dataflow information is not being updated properly. You can just
3072d30e 1810 sprinkle calls in until you find the place that is changing an
1811 underlying structure without calling the proper updating
bef304b8 1812 routine. */
3072d30e 1813
1814void
1815df_verify (void)
1816{
1817 df_scan_verify ();
314966f4 1818#ifdef ENABLE_DF_CHECKING
3072d30e 1819 df_lr_verify_transfer_functions ();
1820 if (df_live)
1821 df_live_verify_transfer_functions ();
314966f4 1822#endif
07c7518d 1823 df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
3072d30e 1824}
1825
1826#ifdef DF_DEBUG_CFG
1827
1828/* Compute an array of ints that describes the cfg. This can be used
1829 to discover places where the cfg is modified by the appropriate
1830 calls have not been made to the keep df informed. The internals of
1831 this are unexciting, the key is that two instances of this can be
1832 compared to see if any changes have been made to the cfg. */
1833
1834static int *
1835df_compute_cfg_image (void)
1836{
1837 basic_block bb;
a28770e1 1838 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
3072d30e 1839 int i;
1840 int * map;
1841
ed7d889a 1842 FOR_ALL_BB_FN (bb, cfun)
3072d30e 1843 {
1844 size += EDGE_COUNT (bb->succs);
1845 }
1846
1847 map = XNEWVEC (int, size);
1848 map[0] = size;
1849 i = 1;
ed7d889a 1850 FOR_ALL_BB_FN (bb, cfun)
3072d30e 1851 {
1852 edge_iterator ei;
1853 edge e;
1854
1855 map[i++] = bb->index;
1856 FOR_EACH_EDGE (e, ei, bb->succs)
1857 map[i++] = e->dest->index;
1858 map[i++] = -1;
1859 }
1860 map[i] = -1;
1861 return map;
1862}
1863
1864static int *saved_cfg = NULL;
1865
1866
1867/* This function compares the saved version of the cfg with the
1868 current cfg and aborts if the two are identical. The function
1869 silently returns if the cfg has been marked as dirty or the two are
1870 the same. */
1871
1872void
1873df_check_cfg_clean (void)
1874{
1875 int *new_map;
1876
1877 if (!df)
1878 return;
1879
1880 if (df_lr->solutions_dirty)
1881 return;
1882
48e1416a 1883 if (saved_cfg == NULL)
3072d30e 1884 return;
1885
1886 new_map = df_compute_cfg_image ();
1887 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1888 free (new_map);
e011eba9 1889}
1890
3072d30e 1891
1892/* This function builds a cfg fingerprint and squirrels it away in
1893 saved_cfg. */
1894
1895static void
1896df_set_clean_cfg (void)
1897{
dd045aee 1898 free (saved_cfg);
3072d30e 1899 saved_cfg = df_compute_cfg_image ();
1900}
1901
1902#endif /* DF_DEBUG_CFG */
e011eba9 1903/*----------------------------------------------------------------------------
1904 PUBLIC INTERFACES TO QUERY INFORMATION.
1905----------------------------------------------------------------------------*/
1906
1907
e011eba9 1908/* Return first def of REGNO within BB. */
1909
48e1416a 1910df_ref
3072d30e 1911df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
e011eba9 1912{
7a6a083c 1913 rtx_insn *insn;
be10bb5a 1914 df_ref def;
e011eba9 1915
1916 FOR_BB_INSNS (bb, insn)
1917 {
6151bbc3 1918 if (!INSN_P (insn))
1919 continue;
1920
be10bb5a 1921 FOR_EACH_INSN_DEF (def, insn)
1922 if (DF_REF_REGNO (def) == regno)
1923 return def;
e011eba9 1924 }
1925 return NULL;
1926}
1927
1928
1929/* Return last def of REGNO within BB. */
1930
48e1416a 1931df_ref
3072d30e 1932df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
e011eba9 1933{
7a6a083c 1934 rtx_insn *insn;
be10bb5a 1935 df_ref def;
e011eba9 1936
1937 FOR_BB_INSNS_REVERSE (bb, insn)
1938 {
6151bbc3 1939 if (!INSN_P (insn))
1940 continue;
e011eba9 1941
be10bb5a 1942 FOR_EACH_INSN_DEF (def, insn)
1943 if (DF_REF_REGNO (def) == regno)
1944 return def;
e011eba9 1945 }
1946
1947 return NULL;
1948}
1949
e011eba9 1950/* Finds the reference corresponding to the definition of REG in INSN.
1951 DF is the dataflow object. */
1952
48e1416a 1953df_ref
e149ca56 1954df_find_def (rtx_insn *insn, rtx reg)
e011eba9 1955{
be10bb5a 1956 df_ref def;
e011eba9 1957
1958 if (GET_CODE (reg) == SUBREG)
1959 reg = SUBREG_REG (reg);
1960 gcc_assert (REG_P (reg));
1961
be10bb5a 1962 FOR_EACH_INSN_DEF (def, insn)
1963 if (DF_REF_REGNO (def) == REGNO (reg))
1964 return def;
e011eba9 1965
1966 return NULL;
1967}
1968
1969
48e1416a 1970/* Return true if REG is defined in INSN, zero otherwise. */
e011eba9 1971
1972bool
e149ca56 1973df_reg_defined (rtx_insn *insn, rtx reg)
e011eba9 1974{
3072d30e 1975 return df_find_def (insn, reg) != NULL;
e011eba9 1976}
48e1416a 1977
e011eba9 1978
1979/* Finds the reference corresponding to the use of REG in INSN.
1980 DF is the dataflow object. */
48e1416a 1981
1982df_ref
e149ca56 1983df_find_use (rtx_insn *insn, rtx reg)
e011eba9 1984{
be10bb5a 1985 df_ref use;
e011eba9 1986
1987 if (GET_CODE (reg) == SUBREG)
1988 reg = SUBREG_REG (reg);
1989 gcc_assert (REG_P (reg));
1990
be10bb5a 1991 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1992 FOR_EACH_INSN_INFO_USE (use, insn_info)
1993 if (DF_REF_REGNO (use) == REGNO (reg))
1994 return use;
1995 if (df->changeable_flags & DF_EQ_NOTES)
1996 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
09f44684 1997 if (DF_REF_REGNO (use) == REGNO (reg))
3072d30e 1998 return use;
e011eba9 1999 return NULL;
2000}
2001
2002
48e1416a 2003/* Return true if REG is referenced in INSN, zero otherwise. */
e011eba9 2004
2005bool
e149ca56 2006df_reg_used (rtx_insn *insn, rtx reg)
e011eba9 2007{
3072d30e 2008 return df_find_use (insn, reg) != NULL;
e011eba9 2009}
48e1416a 2010
e011eba9 2011\f
2012/*----------------------------------------------------------------------------
2013 Debugging and printing functions.
2014----------------------------------------------------------------------------*/
2015
4a020a8c 2016/* Write information about registers and basic blocks into FILE.
2017 This is part of making a debugging dump. */
2018
2019void
2020dump_regset (regset r, FILE *outf)
2021{
2022 unsigned i;
2023 reg_set_iterator rsi;
2024
2025 if (r == NULL)
2026 {
2027 fputs (" (nil)", outf);
2028 return;
2029 }
2030
2031 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2032 {
2033 fprintf (outf, " %d", i);
2034 if (i < FIRST_PSEUDO_REGISTER)
2035 fprintf (outf, " [%s]",
2036 reg_names[i]);
2037 }
2038}
2039
2040/* Print a human-readable representation of R on the standard error
2041 stream. This function is designed to be used from within the
2042 debugger. */
2043extern void debug_regset (regset);
2044DEBUG_FUNCTION void
2045debug_regset (regset r)
2046{
2047 dump_regset (r, stderr);
2048 putc ('\n', stderr);
2049}
3072d30e 2050
2051/* Write information about registers and basic blocks into FILE.
2052 This is part of making a debugging dump. */
2053
2054void
2055df_print_regset (FILE *file, bitmap r)
2056{
2057 unsigned int i;
2058 bitmap_iterator bi;
2059
2060 if (r == NULL)
2061 fputs (" (nil)", file);
2062 else
2063 {
2064 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2065 {
2066 fprintf (file, " %d", i);
2067 if (i < FIRST_PSEUDO_REGISTER)
2068 fprintf (file, " [%s]", reg_names[i]);
2069 }
2070 }
2071 fprintf (file, "\n");
2072}
2073
2074
bf1f8fbc 2075/* Write information about registers and basic blocks into FILE. The
2076 bitmap is in the form used by df_byte_lr. This is part of making a
2077 debugging dump. */
2078
2079void
0e8e9be3 2080df_print_word_regset (FILE *file, bitmap r)
bf1f8fbc 2081{
2082 unsigned int max_reg = max_reg_num ();
bf1f8fbc 2083
2084 if (r == NULL)
2085 fputs (" (nil)", file);
2086 else
2087 {
2088 unsigned int i;
0e8e9be3 2089 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
bf1f8fbc 2090 {
0e8e9be3 2091 bool found = (bitmap_bit_p (r, 2 * i)
2092 || bitmap_bit_p (r, 2 * i + 1));
2093 if (found)
bf1f8fbc 2094 {
0e8e9be3 2095 int word;
2096 const char * sep = "";
2097 fprintf (file, " %d", i);
2098 fprintf (file, "(");
2099 for (word = 0; word < 2; word++)
2100 if (bitmap_bit_p (r, 2 * i + word))
2101 {
2102 fprintf (file, "%s%d", sep, word);
2103 sep = ", ";
2104 }
2105 fprintf (file, ")");
bf1f8fbc 2106 }
bf1f8fbc 2107 }
2108 }
2109 fprintf (file, "\n");
2110}
2111
2112
e011eba9 2113/* Dump dataflow info. */
774f8797 2114
e011eba9 2115void
3072d30e 2116df_dump (FILE *file)
2117{
2118 basic_block bb;
2119 df_dump_start (file);
2120
ed7d889a 2121 FOR_ALL_BB_FN (bb, cfun)
3072d30e 2122 {
2123 df_print_bb_index (bb, file);
2124 df_dump_top (bb, file);
2125 df_dump_bottom (bb, file);
2126 }
2127
2128 fprintf (file, "\n");
2129}
2130
2131
774f8797 2132/* Dump dataflow info for df->blocks_to_analyze. */
2133
2134void
2135df_dump_region (FILE *file)
2136{
2137 if (df->blocks_to_analyze)
2138 {
2139 bitmap_iterator bi;
2140 unsigned int bb_index;
2141
2142 fprintf (file, "\n\nstarting region dump\n");
2143 df_dump_start (file);
48e1416a 2144
2145 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
774f8797 2146 {
f5a6b05f 2147 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
ea9538fb 2148 dump_bb (file, bb, 0, TDF_DETAILS);
774f8797 2149 }
2150 fprintf (file, "\n");
2151 }
48e1416a 2152 else
774f8797 2153 df_dump (file);
2154}
2155
2156
3072d30e 2157/* Dump the introductory information for each problem defined. */
2158
2159void
2160df_dump_start (FILE *file)
e011eba9 2161{
2162 int i;
2163
3e6933a8 2164 if (!df || !file)
e011eba9 2165 return;
2166
2167 fprintf (file, "\n\n%s\n", current_function_name ());
2168 fprintf (file, "\nDataflow summary:\n");
3072d30e 2169 if (df->blocks_to_analyze)
2170 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2171 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
e011eba9 2172
2173 for (i = 0; i < df->num_problems_defined; i++)
3072d30e 2174 {
2175 struct dataflow *dflow = df->problems_in_order[i];
2176 if (dflow->computed)
2177 {
2178 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2179 if (fun)
9af5ce0c 2180 fun (file);
3072d30e 2181 }
2182 }
2183}
e011eba9 2184
3072d30e 2185
ea9538fb 2186/* Dump the top or bottom of the block information for BB. */
2187static void
2188df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
3072d30e 2189{
2190 int i;
2191
2192 if (!df || !file)
2193 return;
2194
2195 for (i = 0; i < df->num_problems_defined; i++)
2196 {
2197 struct dataflow *dflow = df->problems_in_order[i];
2198 if (dflow->computed)
2199 {
ea9538fb 2200 df_dump_bb_problem_function bbfun;
2201
2202 if (top)
2203 bbfun = dflow->problem->dump_top_fun;
2204 else
2205 bbfun = dflow->problem->dump_bottom_fun;
2206
3072d30e 2207 if (bbfun)
48e1416a 2208 bbfun (bb, file);
3072d30e 2209 }
2210 }
2211}
2212
ea9538fb 2213/* Dump the top of the block information for BB. */
2214
2215void
2216df_dump_top (basic_block bb, FILE *file)
2217{
2218 df_dump_bb_problem_data (bb, file, /*top=*/true);
2219}
3072d30e 2220
48e1416a 2221/* Dump the bottom of the block information for BB. */
3072d30e 2222
2223void
2224df_dump_bottom (basic_block bb, FILE *file)
ea9538fb 2225{
2226 df_dump_bb_problem_data (bb, file, /*top=*/false);
2227}
2228
2229
2230/* Dump information about INSN just before or after dumping INSN itself. */
2231static void
e149ca56 2232df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
3072d30e 2233{
2234 int i;
2235
2236 if (!df || !file)
2237 return;
2238
2239 for (i = 0; i < df->num_problems_defined; i++)
2240 {
2241 struct dataflow *dflow = df->problems_in_order[i];
2242 if (dflow->computed)
2243 {
ea9538fb 2244 df_dump_insn_problem_function insnfun;
2245
2246 if (top)
2247 insnfun = dflow->problem->dump_insn_top_fun;
2248 else
2249 insnfun = dflow->problem->dump_insn_bottom_fun;
2250
2251 if (insnfun)
2252 insnfun (insn, file);
3072d30e 2253 }
2254 }
e011eba9 2255}
2256
ea9538fb 2257/* Dump information about INSN before dumping INSN itself. */
2258
2259void
e149ca56 2260df_dump_insn_top (const rtx_insn *insn, FILE *file)
ea9538fb 2261{
2262 df_dump_insn_problem_data (insn, file, /*top=*/true);
2263}
2264
2265/* Dump information about INSN after dumping INSN itself. */
2266
2267void
e149ca56 2268df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
ea9538fb 2269{
2270 df_dump_insn_problem_data (insn, file, /*top=*/false);
2271}
2272
e011eba9 2273
09669349 2274static void
2275df_ref_dump (df_ref ref, FILE *file)
2276{
2277 fprintf (file, "%c%d(%d)",
2278 DF_REF_REG_DEF_P (ref)
2279 ? 'd'
2280 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2281 DF_REF_ID (ref),
2282 DF_REF_REGNO (ref));
2283}
2284
e011eba9 2285void
ddc2d0e3 2286df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
e011eba9 2287{
2288 fprintf (file, "{ ");
ddc2d0e3 2289 for (; ref; ref = DF_REF_NEXT_LOC (ref))
e011eba9 2290 {
09669349 2291 df_ref_dump (ref, file);
e011eba9 2292 if (follow_chain)
3e6933a8 2293 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2294 }
2295 fprintf (file, "}");
2296}
2297
2298
2299/* Dump either a ref-def or reg-use chain. */
2300
2301void
ed6e85ae 2302df_regs_chain_dump (df_ref ref, FILE *file)
e011eba9 2303{
2304 fprintf (file, "{ ");
2305 while (ref)
2306 {
09669349 2307 df_ref_dump (ref, file);
ed6e85ae 2308 ref = DF_REF_NEXT_REG (ref);
e011eba9 2309 }
2310 fprintf (file, "}");
2311}
2312
2313
3e6933a8 2314static void
ddc2d0e3 2315df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
e011eba9 2316{
ddc2d0e3 2317 for (; mws; mws = DF_MWS_NEXT (mws))
2318 fprintf (file, "mw %c r[%d..%d]\n",
2319 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2320 mws->start_regno, mws->end_regno);
3e6933a8 2321}
2322
2323
48e1416a 2324static void
2325df_insn_uid_debug (unsigned int uid,
3e6933a8 2326 bool follow_chain, FILE *file)
2327{
3072d30e 2328 fprintf (file, "insn %d luid %d",
2329 uid, DF_INSN_UID_LUID (uid));
e011eba9 2330
3072d30e 2331 if (DF_INSN_UID_DEFS (uid))
3e6933a8 2332 {
2333 fprintf (file, " defs ");
3072d30e 2334 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
3e6933a8 2335 }
2336
3072d30e 2337 if (DF_INSN_UID_USES (uid))
3e6933a8 2338 {
2339 fprintf (file, " uses ");
3072d30e 2340 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2341 }
2342
2343 if (DF_INSN_UID_EQ_USES (uid))
2344 {
2345 fprintf (file, " eq uses ");
2346 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
3e6933a8 2347 }
2348
3072d30e 2349 if (DF_INSN_UID_MWS (uid))
3e6933a8 2350 {
2351 fprintf (file, " mws ");
3072d30e 2352 df_mws_dump (DF_INSN_UID_MWS (uid), file);
3e6933a8 2353 }
e011eba9 2354 fprintf (file, "\n");
2355}
2356
3e6933a8 2357
4b987fac 2358DEBUG_FUNCTION void
e149ca56 2359df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
3e6933a8 2360{
3072d30e 2361 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
3e6933a8 2362}
2363
4b987fac 2364DEBUG_FUNCTION void
e149ca56 2365df_insn_debug_regno (rtx_insn *insn, FILE *file)
e011eba9 2366{
158b6cc9 2367 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
e011eba9 2368
2369 fprintf (file, "insn %d bb %d luid %d defs ",
158b6cc9 2370 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2371 DF_INSN_INFO_LUID (insn_info));
2372 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
48e1416a 2373
e011eba9 2374 fprintf (file, " uses ");
158b6cc9 2375 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
3072d30e 2376
2377 fprintf (file, " eq_uses ");
158b6cc9 2378 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
e011eba9 2379 fprintf (file, "\n");
2380}
2381
4b987fac 2382DEBUG_FUNCTION void
3072d30e 2383df_regno_debug (unsigned int regno, FILE *file)
e011eba9 2384{
2385 fprintf (file, "reg %d defs ", regno);
3072d30e 2386 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
e011eba9 2387 fprintf (file, " uses ");
3072d30e 2388 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2389 fprintf (file, " eq_uses ");
2390 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
e011eba9 2391 fprintf (file, "\n");
2392}
2393
2394
4b987fac 2395DEBUG_FUNCTION void
ed6e85ae 2396df_ref_debug (df_ref ref, FILE *file)
e011eba9 2397{
2398 fprintf (file, "%c%d ",
2399 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2400 DF_REF_ID (ref));
3eb9ad16 2401 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
e011eba9 2402 DF_REF_REGNO (ref),
2403 DF_REF_BBNO (ref),
ed6e85ae 2404 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
3072d30e 2405 DF_REF_FLAGS (ref),
2406 DF_REF_TYPE (ref));
2407 if (DF_REF_LOC (ref))
44cb2148 2408 {
2409 if (flag_dump_noaddr)
2410 fprintf (file, "loc #(#) chain ");
2411 else
2412 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2413 (void *)*DF_REF_LOC (ref));
2414 }
3072d30e 2415 else
2416 fprintf (file, "chain ");
3e6933a8 2417 df_chain_dump (DF_REF_CHAIN (ref), file);
e011eba9 2418 fprintf (file, "\n");
2419}
2420\f
2421/* Functions for debugging from GDB. */
2422
4b987fac 2423DEBUG_FUNCTION void
e149ca56 2424debug_df_insn (rtx_insn *insn)
e011eba9 2425{
3072d30e 2426 df_insn_debug (insn, true, stderr);
e011eba9 2427 debug_rtx (insn);
2428}
2429
2430
4b987fac 2431DEBUG_FUNCTION void
e011eba9 2432debug_df_reg (rtx reg)
2433{
3072d30e 2434 df_regno_debug (REGNO (reg), stderr);
e011eba9 2435}
2436
2437
4b987fac 2438DEBUG_FUNCTION void
e011eba9 2439debug_df_regno (unsigned int regno)
2440{
3072d30e 2441 df_regno_debug (regno, stderr);
e011eba9 2442}
2443
2444
4b987fac 2445DEBUG_FUNCTION void
ed6e85ae 2446debug_df_ref (df_ref ref)
e011eba9 2447{
3e6933a8 2448 df_ref_debug (ref, stderr);
e011eba9 2449}
2450
2451
4b987fac 2452DEBUG_FUNCTION void
e011eba9 2453debug_df_defno (unsigned int defno)
2454{
3072d30e 2455 df_ref_debug (DF_DEFS_GET (defno), stderr);
e011eba9 2456}
2457
2458
4b987fac 2459DEBUG_FUNCTION void
e011eba9 2460debug_df_useno (unsigned int defno)
2461{
3072d30e 2462 df_ref_debug (DF_USES_GET (defno), stderr);
e011eba9 2463}
2464
2465
4b987fac 2466DEBUG_FUNCTION void
e011eba9 2467debug_df_chain (struct df_link *link)
2468{
3e6933a8 2469 df_chain_dump (link, stderr);
e011eba9 2470 fputc ('\n', stderr);
2471}