]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dominance.c
profile.c (branch_prob): Restore support for USE_MAPPED_LOCATION.
[thirdparty/gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
d9221e01 2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688
MM
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "basic-block.h"
8a67e083 43#include "errors.h"
355be0dc 44#include "et-forest.h"
f8032688 45
d47cc544
SB
46/* Whether the dominators and the postdominators are available. */
47enum dom_state dom_computed[2];
f8032688
MM
48
49/* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
d55bc081 54 'last_basic_block' for that. Its dfs number is of course 1. */
f8032688
MM
55
56/* Type of Basic Block aka. TBB */
57typedef unsigned int TBB;
58
59/* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64struct dom_info
65{
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
09da1532 98 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
26e0e410 104 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
26e0e410
RH
108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
f8032688
MM
112};
113
26e0e410 114static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735
AJ
115static void free_dom_info (struct dom_info *);
116static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119static void compress (struct dom_info *, TBB);
120static TBB eval (struct dom_info *, TBB);
121static void link_roots (struct dom_info *, TBB, TBB);
122static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 123void debug_dominance_info (enum cdi_direction);
f8032688 124
6de9cd9a
DN
125/* Keeps track of the*/
126static unsigned n_bbs_in_dom_tree[2];
127
f8032688
MM
128/* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130#define init_ar(var, type, num, content) \
3a538a66
KH
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
703ad42b 135 (var) = xcalloc ((num), sizeof (type)); \
3a538a66
KH
136 else \
137 { \
703ad42b 138 (var) = xmalloc ((num) * sizeof (type)); \
3a538a66
KH
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
f8032688
MM
144
145/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 146 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
147
148static void
26e0e410 149init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 150{
0b17ab2f 151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
f8032688 152 EXIT_BLOCK. */
0b17ab2f 153 unsigned int num = n_basic_blocks + 1 + 1;
f8032688
MM
154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
158
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
161
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
165
d55bc081 166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
167 init_ar (di->dfs_to_bb, basic_block, num, 0);
168
169 di->dfsnum = 1;
170 di->nodes = 0;
26e0e410
RH
171
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
f8032688
MM
173}
174
175#undef init_ar
176
177/* Free all allocated memory in DI, but not DI itself. */
178
179static void
7080f735 180free_dom_info (struct dom_info *di)
f8032688
MM
181{
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
26e0e410 193 BITMAP_XFREE (di->fake_exit_edge);
f8032688
MM
194}
195
196/* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
201
202static void
26e0e410
RH
203calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
f8032688 205{
f8032688
MM
206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 TBB child_i, my_i = 0;
209 edge *stack;
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
216
703ad42b 217 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge));
f8032688
MM
218 sp = 0;
219
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
222 {
223 e = bb->pred;
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
226 }
227 else
228 {
229 e = bb->succ;
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
232 }
233
234 /* When the stack is empty we break out of this loop. */
235 while (1)
236 {
237 basic_block bn;
238
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
241 while (e)
242 {
243 edge e_next;
244
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
248 {
249 bn = e->src;
250
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
0b17ab2f 254 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
255 {
256 e = e->pred_next;
257 continue;
258 }
259 bb = e->dest;
260 e_next = bn->pred;
261 }
262 else
263 {
264 bn = e->dest;
0b17ab2f 265 if (bn == ex_block || di->dfs_order[bn->index])
f8032688
MM
266 {
267 e = e->succ_next;
268 continue;
269 }
270 bb = e->src;
271 e_next = bn->succ;
272 }
273
ced3f397 274 gcc_assert (bn != en_block);
f8032688
MM
275
276 /* Fill the DFS tree info calculatable _before_ recursing. */
277 if (bb != en_block)
0b17ab2f 278 my_i = di->dfs_order[bb->index];
f8032688 279 else
d55bc081 280 my_i = di->dfs_order[last_basic_block];
0b17ab2f 281 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
282 di->dfs_to_bb[child_i] = bn;
283 di->dfs_parent[child_i] = my_i;
284
285 /* Save the current point in the CFG on the stack, and recurse. */
286 stack[sp++] = e;
287 e = e_next;
288 }
289
290 if (!sp)
291 break;
292 e = stack[--sp];
293
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
303 if (reverse)
304 e = e->pred_next;
305 else
306 e = e->succ_next;
307 }
308 free (stack);
309}
310
311/* The main entry for calculating the DFS tree or forest. DI is our working
312 structure and REVERSE is true, if we are interested in the reverse flow
313 graph. In that case the result is not necessarily a tree but a forest,
314 because there may be nodes from which the EXIT_BLOCK is unreachable. */
315
316static void
7080f735 317calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
318{
319 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
320 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 321 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
322 di->dfs_to_bb[di->dfsnum] = begin;
323 di->dfsnum++;
324
325 calc_dfs_tree_nonrec (di, begin, reverse);
326
327 if (reverse)
328 {
329 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
330 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
331 nodes, but in post-dom we have to deal with them.
332
333 There are two situations in which this occurs. First, noreturn
334 functions. Second, infinite loops. In the first case we need to
335 pretend that there is an edge to the exit block. In the second
336 case, we wind up with a forest. We need to process all noreturn
337 blocks before we know if we've got any infinite loops. */
338
e0082a72 339 basic_block b;
26e0e410
RH
340 bool saw_unconnected = false;
341
e0082a72 342 FOR_EACH_BB_REVERSE (b)
f8032688 343 {
26e0e410
RH
344 if (b->succ)
345 {
346 if (di->dfs_order[b->index] == 0)
347 saw_unconnected = true;
348 continue;
349 }
350 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 351 di->dfs_order[b->index] = di->dfsnum;
f8032688 352 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 353 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
354 di->dfsnum++;
355 calc_dfs_tree_nonrec (di, b, reverse);
356 }
26e0e410
RH
357
358 if (saw_unconnected)
359 {
360 FOR_EACH_BB_REVERSE (b)
361 {
362 if (di->dfs_order[b->index])
363 continue;
364 bitmap_set_bit (di->fake_exit_edge, b->index);
365 di->dfs_order[b->index] = di->dfsnum;
366 di->dfs_to_bb[di->dfsnum] = b;
367 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
368 di->dfsnum++;
369 calc_dfs_tree_nonrec (di, b, reverse);
370 }
371 }
f8032688
MM
372 }
373
374 di->nodes = di->dfsnum - 1;
375
376 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
ced3f397 377 gcc_assert (di->nodes == (unsigned int) n_basic_blocks + 1);
f8032688
MM
378}
379
380/* Compress the path from V to the root of its set and update path_min at the
381 same time. After compress(di, V) set_chain[V] is the root of the set V is
382 in and path_min[V] is the node with the smallest key[] value on the path
383 from V to that root. */
384
385static void
7080f735 386compress (struct dom_info *di, TBB v)
f8032688
MM
387{
388 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
389 greater than 5 even for huge graphs (I've not seen call depth > 4).
390 Also performance wise compress() ranges _far_ behind eval(). */
391 TBB parent = di->set_chain[v];
392 if (di->set_chain[parent])
393 {
394 compress (di, parent);
395 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
396 di->path_min[v] = di->path_min[parent];
397 di->set_chain[v] = di->set_chain[parent];
398 }
399}
400
401/* Compress the path from V to the set root of V if needed (when the root has
402 changed since the last call). Returns the node with the smallest key[]
403 value on the path from V to the root. */
404
405static inline TBB
7080f735 406eval (struct dom_info *di, TBB v)
f8032688
MM
407{
408 /* The representant of the set V is in, also called root (as the set
409 representation is a tree). */
410 TBB rep = di->set_chain[v];
411
412 /* V itself is the root. */
413 if (!rep)
414 return di->path_min[v];
415
416 /* Compress only if necessary. */
417 if (di->set_chain[rep])
418 {
419 compress (di, v);
420 rep = di->set_chain[v];
421 }
422
423 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
424 return di->path_min[v];
425 else
426 return di->path_min[rep];
427}
428
429/* This essentially merges the two sets of V and W, giving a single set with
430 the new root V. The internal representation of these disjoint sets is a
431 balanced tree. Currently link(V,W) is only used with V being the parent
432 of W. */
433
434static void
7080f735 435link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
436{
437 TBB s = w;
438
439 /* Rebalance the tree. */
440 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
441 {
442 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
443 >= 2 * di->set_size[di->set_child[s]])
444 {
445 di->set_chain[di->set_child[s]] = s;
446 di->set_child[s] = di->set_child[di->set_child[s]];
447 }
448 else
449 {
450 di->set_size[di->set_child[s]] = di->set_size[s];
451 s = di->set_chain[s] = di->set_child[s];
452 }
453 }
454
455 di->path_min[s] = di->path_min[w];
456 di->set_size[v] += di->set_size[w];
457 if (di->set_size[v] < 2 * di->set_size[w])
458 {
459 TBB tmp = s;
460 s = di->set_child[v];
461 di->set_child[v] = tmp;
462 }
463
464 /* Merge all subtrees. */
465 while (s)
466 {
467 di->set_chain[s] = v;
468 s = di->set_child[s];
469 }
470}
471
472/* This calculates the immediate dominators (or post-dominators if REVERSE is
473 true). DI is our working structure and should hold the DFS forest.
474 On return the immediate dominator to node V is in di->dom[V]. */
475
476static void
7080f735 477calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
478{
479 TBB v, w, k, par;
480 basic_block en_block;
481 if (reverse)
482 en_block = EXIT_BLOCK_PTR;
483 else
484 en_block = ENTRY_BLOCK_PTR;
485
486 /* Go backwards in DFS order, to first look at the leafs. */
487 v = di->nodes;
488 while (v > 1)
489 {
490 basic_block bb = di->dfs_to_bb[v];
491 edge e, e_next;
492
493 par = di->dfs_parent[v];
494 k = v;
495 if (reverse)
26e0e410
RH
496 {
497 e = bb->succ;
498
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 {
502 e_next = e;
503 goto do_fake_exit_edge;
504 }
505 }
f8032688
MM
506 else
507 e = bb->pred;
508
509 /* Search all direct predecessors for the smallest node with a path
510 to them. That way we have the smallest node with also a path to
511 us only over nodes behind us. In effect we search for our
512 semidominator. */
26e0e410 513 for (; e ; e = e_next)
f8032688
MM
514 {
515 TBB k1;
516 basic_block b;
517
518 if (reverse)
519 {
520 b = e->dest;
521 e_next = e->succ_next;
522 }
523 else
524 {
525 b = e->src;
526 e_next = e->pred_next;
527 }
528 if (b == en_block)
26e0e410
RH
529 {
530 do_fake_exit_edge:
531 k1 = di->dfs_order[last_basic_block];
532 }
f8032688 533 else
0b17ab2f 534 k1 = di->dfs_order[b->index];
f8032688
MM
535
536 /* Call eval() only if really needed. If k1 is above V in DFS tree,
537 then we know, that eval(k1) == k1 and key[k1] == k1. */
538 if (k1 > v)
539 k1 = di->key[eval (di, k1)];
540 if (k1 < k)
541 k = k1;
542 }
543
544 di->key[v] = k;
545 link_roots (di, par, v);
546 di->next_bucket[v] = di->bucket[k];
547 di->bucket[k] = v;
548
549 /* Transform semidominators into dominators. */
550 for (w = di->bucket[par]; w; w = di->next_bucket[w])
551 {
552 k = eval (di, w);
553 if (di->key[k] < di->key[w])
554 di->dom[w] = k;
555 else
556 di->dom[w] = par;
557 }
558 /* We don't need to cleanup next_bucket[]. */
559 di->bucket[par] = 0;
560 v--;
561 }
562
a1f300c0 563 /* Explicitly define the dominators. */
f8032688
MM
564 di->dom[1] = 0;
565 for (v = 2; v <= di->nodes; v++)
566 if (di->dom[v] != di->key[v])
567 di->dom[v] = di->dom[di->dom[v]];
568}
569
d47cc544
SB
570/* Assign dfs numbers starting from NUM to NODE and its sons. */
571
572static void
573assign_dfs_numbers (struct et_node *node, int *num)
574{
575 struct et_node *son;
576
577 node->dfs_num_in = (*num)++;
578
579 if (node->son)
580 {
581 assign_dfs_numbers (node->son, num);
582 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 583 assign_dfs_numbers (son, num);
d47cc544 584 }
f8032688 585
d47cc544
SB
586 node->dfs_num_out = (*num)++;
587}
f8032688 588
5d3cc252 589/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 590 static dominator tree. */
f8032688 591
d47cc544
SB
592static void
593compute_dom_fast_query (enum cdi_direction dir)
594{
595 int num = 0;
596 basic_block bb;
597
ced3f397 598 gcc_assert (dom_computed[dir] >= DOM_NO_FAST_QUERY);
d47cc544
SB
599
600 if (dom_computed[dir] == DOM_OK)
601 return;
602
603 FOR_ALL_BB (bb)
604 {
605 if (!bb->dom[dir]->father)
6de9cd9a 606 assign_dfs_numbers (bb->dom[dir], &num);
d47cc544
SB
607 }
608
609 dom_computed[dir] = DOM_OK;
610}
611
612/* The main entry point into this module. DIR is set depending on whether
613 we want to compute dominators or postdominators. */
614
615void
616calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
617{
618 struct dom_info di;
355be0dc
JH
619 basic_block b;
620
d47cc544
SB
621 if (dom_computed[dir] == DOM_OK)
622 return;
355be0dc 623
d47cc544
SB
624 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
625 {
626 if (dom_computed[dir] != DOM_NONE)
6de9cd9a
DN
627 free_dominance_info (dir);
628
ced3f397 629 gcc_assert (!n_bbs_in_dom_tree[dir]);
f8032688 630
d47cc544
SB
631 FOR_ALL_BB (b)
632 {
633 b->dom[dir] = et_new_tree (b);
634 }
6de9cd9a 635 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
f8032688 636
26e0e410 637 init_dom_info (&di, dir);
d47cc544
SB
638 calc_dfs_tree (&di, dir);
639 calc_idoms (&di, dir);
355be0dc 640
d47cc544
SB
641 FOR_EACH_BB (b)
642 {
643 TBB d = di.dom[di.dfs_order[b->index]];
644
645 if (di.dfs_to_bb[d])
646 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
647 }
e0082a72 648
d47cc544
SB
649 free_dom_info (&di);
650 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
651 }
652
d47cc544 653 compute_dom_fast_query (dir);
355be0dc
JH
654}
655
d47cc544 656/* Free dominance information for direction DIR. */
355be0dc 657void
d47cc544 658free_dominance_info (enum cdi_direction dir)
355be0dc
JH
659{
660 basic_block bb;
661
d47cc544
SB
662 if (!dom_computed[dir])
663 return;
664
665 FOR_ALL_BB (bb)
666 {
667 delete_from_dominance_info (dir, bb);
668 }
669
6de9cd9a 670 /* If there are any nodes left, something is wrong. */
ced3f397 671 gcc_assert (!n_bbs_in_dom_tree[dir]);
6de9cd9a 672
d47cc544 673 dom_computed[dir] = DOM_NONE;
355be0dc
JH
674}
675
676/* Return the immediate dominator of basic block BB. */
677basic_block
d47cc544 678get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 679{
d47cc544
SB
680 struct et_node *node = bb->dom[dir];
681
ced3f397 682 gcc_assert (dom_computed[dir]);
d47cc544
SB
683
684 if (!node->father)
685 return NULL;
686
6de9cd9a 687 return node->father->data;
355be0dc
JH
688}
689
690/* Set the immediate dominator of the block possibly removing
691 existing edge. NULL can be used to remove any edge. */
692inline void
d47cc544
SB
693set_immediate_dominator (enum cdi_direction dir, basic_block bb,
694 basic_block dominated_by)
355be0dc 695{
d47cc544
SB
696 struct et_node *node = bb->dom[dir];
697
ced3f397 698 gcc_assert (dom_computed[dir]);
355be0dc 699
d47cc544 700 if (node->father)
355be0dc 701 {
d47cc544 702 if (node->father->data == dominated_by)
6de9cd9a 703 return;
d47cc544 704 et_split (node);
355be0dc 705 }
d47cc544
SB
706
707 if (dominated_by)
708 et_set_father (node, dominated_by->dom[dir]);
709
710 if (dom_computed[dir] == DOM_OK)
711 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
712}
713
5d3cc252 714/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 715 their number. */
355be0dc 716int
d47cc544 717get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 718{
d47cc544
SB
719 int n;
720 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
721
ced3f397 722 gcc_assert (dom_computed[dir]);
d47cc544
SB
723
724 if (!son)
725 {
726 *bbs = NULL;
727 return 0;
728 }
729
730 for (ason = son->right, n = 1; ason != son; ason = ason->right)
731 n++;
732
733 *bbs = xmalloc (n * sizeof (basic_block));
734 (*bbs)[0] = son->data;
735 for (ason = son->right, n = 1; ason != son; ason = ason->right)
736 (*bbs)[n++] = ason->data;
355be0dc 737
355be0dc
JH
738 return n;
739}
740
741/* Redirect all edges pointing to BB to TO. */
742void
d47cc544
SB
743redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
744 basic_block to)
355be0dc 745{
d47cc544
SB
746 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
747
ced3f397 748 gcc_assert (dom_computed[dir]);
355be0dc 749
d47cc544
SB
750 if (!bb_node->son)
751 return;
752
753 while (bb_node->son)
355be0dc 754 {
d47cc544
SB
755 son = bb_node->son;
756
757 et_split (son);
758 et_set_father (son, to_node);
355be0dc 759 }
d47cc544
SB
760
761 if (dom_computed[dir] == DOM_OK)
762 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
763}
764
765/* Find first basic block in the tree dominating both BB1 and BB2. */
766basic_block
d47cc544 767nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 768{
ced3f397 769 gcc_assert (dom_computed[dir]);
d47cc544 770
355be0dc
JH
771 if (!bb1)
772 return bb2;
773 if (!bb2)
774 return bb1;
d47cc544
SB
775
776 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
777}
778
779/* Return TRUE in case BB1 is dominated by BB2. */
780bool
d47cc544 781dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 782{
d47cc544
SB
783 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
784
ced3f397 785 gcc_assert (dom_computed[dir]);
d47cc544
SB
786
787 if (dom_computed[dir] == DOM_OK)
788 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 789 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
790
791 return et_below (n1, n2);
355be0dc
JH
792}
793
794/* Verify invariants of dominator structure. */
795void
d47cc544 796verify_dominators (enum cdi_direction dir)
355be0dc
JH
797{
798 int err = 0;
799 basic_block bb;
800
ced3f397 801 gcc_assert (dom_computed[dir]);
d47cc544 802
355be0dc
JH
803 FOR_EACH_BB (bb)
804 {
805 basic_block dom_bb;
806
d47cc544
SB
807 dom_bb = recount_dominator (dir, bb);
808 if (dom_bb != get_immediate_dominator (dir, bb))
f8032688 809 {
355be0dc 810 error ("dominator of %d should be %d, not %d",
d47cc544 811 bb->index, dom_bb->index, get_immediate_dominator(dir, bb)->index);
355be0dc
JH
812 err = 1;
813 }
814 }
e7bd94cc
ZD
815
816 if (dir == CDI_DOMINATORS
817 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
818 {
819 FOR_EACH_BB (bb)
820 {
821 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
822 {
823 error ("ENTRY does not dominate bb %d", bb->index);
824 err = 1;
825 }
826 }
827 }
828
ced3f397 829 gcc_assert (!err);
355be0dc
JH
830}
831
738ed977
ZD
832/* Determine immediate dominator (or postdominator, according to DIR) of BB,
833 assuming that dominators of other blocks are correct. We also use it to
834 recompute the dominators in a restricted area, by iterating it until it
71cc389b 835 reaches a fixed point. */
738ed977 836
355be0dc 837basic_block
d47cc544 838recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 839{
738ed977
ZD
840 basic_block dom_bb = NULL;
841 edge e;
355be0dc 842
ced3f397 843 gcc_assert (dom_computed[dir]);
d47cc544 844
738ed977
ZD
845 if (dir == CDI_DOMINATORS)
846 {
847 for (e = bb->pred; e; e = e->pred_next)
848 {
e7bd94cc
ZD
849 /* Ignore the predecessors that either are not reachable from
850 the entry block, or whose dominator was not determined yet. */
851 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
852 continue;
853
738ed977
ZD
854 if (!dominated_by_p (dir, e->src, bb))
855 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
856 }
857 }
858 else
859 {
860 for (e = bb->succ; e; e = e->succ_next)
861 {
862 if (!dominated_by_p (dir, e->dest, bb))
863 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
864 }
865 }
f8032688 866
738ed977 867 return dom_bb;
355be0dc
JH
868}
869
870/* Iteratively recount dominators of BBS. The change is supposed to be local
871 and not to grow further. */
872void
d47cc544 873iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
874{
875 int i, changed = 1;
876 basic_block old_dom, new_dom;
877
ced3f397 878 gcc_assert (dom_computed[dir]);
d47cc544 879
e7bd94cc
ZD
880 for (i = 0; i < n; i++)
881 set_immediate_dominator (dir, bbs[i], NULL);
882
355be0dc
JH
883 while (changed)
884 {
885 changed = 0;
886 for (i = 0; i < n; i++)
887 {
d47cc544
SB
888 old_dom = get_immediate_dominator (dir, bbs[i]);
889 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
890 if (old_dom != new_dom)
891 {
892 changed = 1;
d47cc544 893 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 894 }
f8032688
MM
895 }
896 }
e7bd94cc
ZD
897
898 for (i = 0; i < n; i++)
ced3f397 899 gcc_assert (get_immediate_dominator (dir, bbs[i]));
355be0dc 900}
f8032688 901
355be0dc 902void
d47cc544 903add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 904{
ced3f397
NS
905 gcc_assert (dom_computed[dir]);
906 gcc_assert (!bb->dom[dir]);
d47cc544 907
6de9cd9a
DN
908 n_bbs_in_dom_tree[dir]++;
909
d47cc544
SB
910 bb->dom[dir] = et_new_tree (bb);
911
912 if (dom_computed[dir] == DOM_OK)
913 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
914}
915
916void
d47cc544
SB
917delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
918{
ced3f397 919 gcc_assert (dom_computed[dir]);
d47cc544
SB
920
921 et_free_tree (bb->dom[dir]);
922 bb->dom[dir] = NULL;
6de9cd9a 923 n_bbs_in_dom_tree[dir]--;
d47cc544
SB
924
925 if (dom_computed[dir] == DOM_OK)
926 dom_computed[dir] = DOM_NO_FAST_QUERY;
927}
928
929/* Returns the first son of BB in the dominator or postdominator tree
930 as determined by DIR. */
931
932basic_block
933first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 934{
d47cc544
SB
935 struct et_node *son = bb->dom[dir]->son;
936
937 return son ? son->data : NULL;
938}
939
940/* Returns the next dominance son after BB in the dominator or postdominator
941 tree as determined by DIR, or NULL if it was the last one. */
942
943basic_block
944next_dom_son (enum cdi_direction dir, basic_block bb)
945{
946 struct et_node *next = bb->dom[dir]->right;
947
948 return next->father->son == next ? NULL : next->data;
355be0dc
JH
949}
950
951void
d47cc544 952debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
953{
954 basic_block bb, bb2;
955 FOR_EACH_BB (bb)
d47cc544 956 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 957 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 958}