]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dwarf2out.c
gcse.c (gcse_emit_move_after): New.
[thirdparty/gcc.git] / gcc / dwarf2out.c
CommitLineData
a3f97cbb 1/* Output Dwarf2 format symbol table information from the GNU C compiler.
54ba1f0d 2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
06ceef4e 3 Free Software Foundation, Inc.
e9a25f70
JL
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
469ac993 6 Extensively modified by Jason Merrill (jason@cygnus.com).
a3f97cbb 7
1322177d 8This file is part of GCC.
a3f97cbb 9
1322177d
LB
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
12Software Foundation; either version 2, or (at your option) any later
13version.
a3f97cbb 14
1322177d
LB
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
a3f97cbb
JW
19
20You should have received a copy of the GNU General Public License
1322177d
LB
21along with GCC; see the file COPYING. If not, write to the Free
22Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2302111-1307, USA. */
a3f97cbb 24
9eb4015a 25/* TODO: Emit .debug_line header even when there are no functions, since
348bb3c7
JM
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
3f76745e
JM
31/* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
0021b564 37#include "config.h"
670ee920 38#include "system.h"
a3f97cbb
JW
39#include "tree.h"
40#include "flags.h"
11ad4784 41#include "real.h"
a3f97cbb
JW
42#include "rtl.h"
43#include "hard-reg-set.h"
44#include "regs.h"
45#include "insn-config.h"
46#include "reload.h"
52a11cbf 47#include "function.h"
a3f97cbb 48#include "output.h"
71dfc51f 49#include "expr.h"
e78d8e51 50#include "libfuncs.h"
3f76745e 51#include "except.h"
a7cc7f29 52#include "dwarf2.h"
76ead72b 53#include "dwarf2out.h"
2e4b9b8c 54#include "dwarf2asm.h"
10f0ad3d 55#include "toplev.h"
1865dbb5 56#include "varray.h"
951a525f 57#include "ggc.h"
881c6935 58#include "md5.h"
57bed152 59#include "tm_p.h"
2a2b2d43 60#include "diagnostic.h"
a51d908e 61#include "debug.h"
07c9d2eb 62#include "target.h"
3ac88239 63#include "langhooks.h"
9eb4015a 64#include "hashtable.h"
a3f97cbb 65
653e276c
NB
66#ifdef DWARF2_DEBUGGING_INFO
67static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
68#endif
69
770ca8c6
JO
70/* DWARF2 Abbreviation Glossary:
71 CFA = Canonical Frame Address
00a42e21
JM
72 a fixed address on the stack which identifies a call frame.
73 We define it to be the value of SP just before the call insn.
74 The CFA register and offset, which may change during the course
75 of the function, are used to calculate its value at runtime.
a401107d
JO
76 CFI = Call Frame Instruction
77 an instruction for the DWARF2 abstract machine
770ca8c6
JO
78 CIE = Common Information Entry
79 information describing information common to one or more FDEs
80 DIE = Debugging Information Entry
81 FDE = Frame Description Entry
82 information describing the stack call frame, in particular,
83 how to restore registers
84
85 DW_CFA_... = DWARF2 CFA call frame instruction
86 DW_TAG_... = DWARF2 DIE tag */
87
0021b564
JM
88/* Decide whether we want to emit frame unwind information for the current
89 translation unit. */
90
91int
92dwarf2out_do_frame ()
93{
94 return (write_symbols == DWARF2_DEBUG
7a0c8d71 95 || write_symbols == VMS_AND_DWARF2_DEBUG
9ec36da5 96#ifdef DWARF2_FRAME_INFO
556273e0 97 || DWARF2_FRAME_INFO
9ec36da5 98#endif
0021b564 99#ifdef DWARF2_UNWIND_INFO
14a774a9 100 || flag_unwind_tables
531073e7 101 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
0021b564
JM
102#endif
103 );
104}
105
b1e6ab03
RH
106/* The number of the current function definition for which debugging
107 information is being generated. These numbers range from 1 up to the
108 maximum number of function definitions contained within the current
109 compilation unit. These numbers are used to create unique label id's
110 unique to each function definition. */
111unsigned current_funcdef_number = 0;
112
f3a8e4f5
KG
113/* The size of the target's pointer type. */
114#ifndef PTR_SIZE
115#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
116#endif
117
118/* Default version of targetm.eh_frame_section. Note this must appear
119 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
120 guards. */
121
122void
123default_eh_frame_section ()
124{
125#ifdef EH_FRAME_SECTION_NAME
126 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
127#else
128 tree label = get_file_function_name ('F');
129
130 data_section ();
131 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
132 ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
133 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
134#endif
135}
136
0021b564
JM
137#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
138
eaf95893
RK
139/* How to start an assembler comment. */
140#ifndef ASM_COMMENT_START
141#define ASM_COMMENT_START ";#"
142#endif
143
a3f97cbb
JW
144typedef struct dw_cfi_struct *dw_cfi_ref;
145typedef struct dw_fde_struct *dw_fde_ref;
146typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
a3f97cbb
JW
147
148/* Call frames are described using a sequence of Call Frame
149 Information instructions. The register number, offset
150 and address fields are provided as possible operands;
151 their use is selected by the opcode field. */
71dfc51f 152
a3f97cbb 153typedef union dw_cfi_oprnd_struct
71dfc51f
RK
154{
155 unsigned long dw_cfi_reg_num;
156 long int dw_cfi_offset;
d3e3972c 157 const char *dw_cfi_addr;
7d9d8943 158 struct dw_loc_descr_struct *dw_cfi_loc;
71dfc51f 159}
a3f97cbb
JW
160dw_cfi_oprnd;
161
162typedef struct dw_cfi_struct
71dfc51f
RK
163{
164 dw_cfi_ref dw_cfi_next;
165 enum dwarf_call_frame_info dw_cfi_opc;
166 dw_cfi_oprnd dw_cfi_oprnd1;
167 dw_cfi_oprnd dw_cfi_oprnd2;
168}
a3f97cbb
JW
169dw_cfi_node;
170
7d9d8943
AM
171/* This is how we define the location of the CFA. We use to handle it
172 as REG + OFFSET all the time, but now it can be more complex.
173 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
556273e0 174 Instead of passing around REG and OFFSET, we pass a copy
7d9d8943
AM
175 of this structure. */
176typedef struct cfa_loc
177{
556273e0 178 unsigned long reg;
7d9d8943
AM
179 long offset;
180 long base_offset;
181 int indirect; /* 1 if CFA is accessed via a dereference. */
182} dw_cfa_location;
183
a3f97cbb 184/* All call frame descriptions (FDE's) in the GCC generated DWARF
4b674448 185 refer to a single Common Information Entry (CIE), defined at
fb530c07 186 the beginning of the .debug_frame section. This use of a single
a3f97cbb
JW
187 CIE obviates the need to keep track of multiple CIE's
188 in the DWARF generation routines below. */
71dfc51f 189
a3f97cbb 190typedef struct dw_fde_struct
71dfc51f 191{
d3e3972c
KG
192 const char *dw_fde_begin;
193 const char *dw_fde_current_label;
194 const char *dw_fde_end;
71dfc51f 195 dw_cfi_ref dw_fde_cfi;
52a11cbf
RH
196 unsigned funcdef_number;
197 unsigned nothrow : 1;
198 unsigned uses_eh_lsda : 1;
71dfc51f 199}
a3f97cbb
JW
200dw_fde_node;
201
6d2f8887 202/* Maximum size (in bytes) of an artificially generated label. */
a3f97cbb
JW
203#define MAX_ARTIFICIAL_LABEL_BYTES 30
204
a1a4189d
JB
205/* The size of addresses as they appear in the Dwarf 2 data.
206 Some architectures use word addresses to refer to code locations,
207 but Dwarf 2 info always uses byte addresses. On such machines,
208 Dwarf 2 addresses need to be larger than the architecture's
209 pointers. */
210#ifndef DWARF2_ADDR_SIZE
211#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
212#endif
213
7e23cb16 214/* The size in bytes of a DWARF field indicating an offset or length
a1a4189d
JB
215 relative to a debug info section, specified to be 4 bytes in the
216 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
b13fe8bf 217 as PTR_SIZE. */
71dfc51f 218
7e23cb16
JM
219#ifndef DWARF_OFFSET_SIZE
220#define DWARF_OFFSET_SIZE 4
221#endif
222
9a666dda
JM
223#define DWARF_VERSION 2
224
7e23cb16
JM
225/* Round SIZE up to the nearest BOUNDARY. */
226#define DWARF_ROUND(SIZE,BOUNDARY) \
262b6384 227 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
a3f97cbb 228
a3f97cbb 229/* Offsets recorded in opcodes are a multiple of this alignment factor. */
27c35f4b 230#ifndef DWARF_CIE_DATA_ALIGNMENT
469ac993 231#ifdef STACK_GROWS_DOWNWARD
08cb3d38 232#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
469ac993 233#else
08cb3d38 234#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
469ac993 235#endif
2ad9852d 236#endif
a3f97cbb 237
3f76745e
JM
238/* A pointer to the base of a table that contains frame description
239 information for each routine. */
240static dw_fde_ref fde_table;
a3f97cbb 241
3f76745e
JM
242/* Number of elements currently allocated for fde_table. */
243static unsigned fde_table_allocated;
a94dbf2c 244
3f76745e
JM
245/* Number of elements in fde_table currently in use. */
246static unsigned fde_table_in_use;
a3f97cbb 247
3f76745e
JM
248/* Size (in elements) of increments by which we may expand the
249 fde_table. */
250#define FDE_TABLE_INCREMENT 256
a3f97cbb 251
a94dbf2c
JM
252/* A list of call frame insns for the CIE. */
253static dw_cfi_ref cie_cfi_head;
254
a3f97cbb
JW
255/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
256 attribute that accelerates the lookup of the FDE associated
556273e0 257 with the subprogram. This variable holds the table index of the FDE
a3f97cbb
JW
258 associated with the current function (body) definition. */
259static unsigned current_funcdef_fde;
260
9eb4015a
JJ
261struct ht *debug_str_hash;
262
263struct indirect_string_node
264{
265 struct ht_identifier id;
266 unsigned int refcount;
267 unsigned int form;
268 char *label;
269};
270
a3f97cbb 271/* Forward declarations for functions defined in this file. */
71dfc51f 272
83d2b3b9
KG
273static char *stripattributes PARAMS ((const char *));
274static const char *dwarf_cfi_name PARAMS ((unsigned));
275static dw_cfi_ref new_cfi PARAMS ((void));
276static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
d3e3972c 277static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
2ad9852d
RK
278static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
279 dw_cfa_location *));
7d9d8943 280static void lookup_cfa PARAMS ((dw_cfa_location *));
d3e3972c
KG
281static void reg_save PARAMS ((const char *, unsigned,
282 unsigned, long));
83d2b3b9 283static void initial_return_save PARAMS ((rtx));
5e640c56 284static long stack_adjust_offset PARAMS ((rtx));
12f0b96b 285static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
83d2b3b9 286static void output_call_frame_info PARAMS ((int));
83d2b3b9 287static void dwarf2out_stack_adjust PARAMS ((rtx));
fbfa55b0
RH
288static void queue_reg_save PARAMS ((const char *, rtx, long));
289static void flush_queued_reg_saves PARAMS ((void));
290static bool clobbers_queued_reg_save PARAMS ((rtx));
d3e3972c 291static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
a3f97cbb 292
7d9d8943
AM
293/* Support for complex CFA locations. */
294static void output_cfa_loc PARAMS ((dw_cfi_ref));
556273e0 295static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
7d9d8943
AM
296 struct dw_loc_descr_struct *));
297static struct dw_loc_descr_struct *build_cfa_loc
298 PARAMS ((dw_cfa_location *));
2ad9852d
RK
299static void def_cfa_1 PARAMS ((const char *,
300 dw_cfa_location *));
7d9d8943 301
2e4b9b8c
RH
302/* How to start an assembler comment. */
303#ifndef ASM_COMMENT_START
304#define ASM_COMMENT_START ";#"
a3f97cbb
JW
305#endif
306
7e23cb16
JM
307/* Data and reference forms for relocatable data. */
308#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
309#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
310
a3f97cbb
JW
311/* Pseudo-op for defining a new section. */
312#ifndef SECTION_ASM_OP
0a3e1f45 313#define SECTION_ASM_OP "\t.section\t"
a3f97cbb
JW
314#endif
315
cf2fe500
RH
316#ifndef DEBUG_FRAME_SECTION
317#define DEBUG_FRAME_SECTION ".debug_frame"
a3f97cbb 318#endif
a3f97cbb 319
5c90448c
JM
320#ifndef FUNC_BEGIN_LABEL
321#define FUNC_BEGIN_LABEL "LFB"
a3f97cbb 322#endif
2ad9852d 323
5c90448c
JM
324#ifndef FUNC_END_LABEL
325#define FUNC_END_LABEL "LFE"
a3f97cbb 326#endif
2ad9852d 327
27d95cbe 328#define FRAME_BEGIN_LABEL "Lframe"
a6ab3aad
JM
329#define CIE_AFTER_SIZE_LABEL "LSCIE"
330#define CIE_END_LABEL "LECIE"
2ed2af28 331#define CIE_LENGTH_LABEL "LLCIE"
2e4b9b8c
RH
332#define FDE_LABEL "LSFDE"
333#define FDE_AFTER_SIZE_LABEL "LASFDE"
a6ab3aad 334#define FDE_END_LABEL "LEFDE"
2ed2af28 335#define FDE_LENGTH_LABEL "LLFDE"
981975b6
RH
336#define LINE_NUMBER_BEGIN_LABEL "LSLT"
337#define LINE_NUMBER_END_LABEL "LELT"
338#define LN_PROLOG_AS_LABEL "LASLTP"
339#define LN_PROLOG_END_LABEL "LELTP"
881c6935 340#define DIE_LABEL_PREFIX "DW"
a3f97cbb 341
a3f97cbb
JW
342/* Definitions of defaults for various types of primitive assembly language
343 output operations. These may be overridden from within the tm.h file,
956d6950 344 but typically, that is unnecessary. */
71dfc51f 345
2ed2af28
PDM
346#ifdef SET_ASM_OP
347#ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
3a538a66
KH
348#define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
349 do \
350 { \
351 fprintf (FILE, "%s", SET_ASM_OP); \
352 assemble_name (FILE, SY); \
353 fputc (',', FILE); \
354 assemble_name (FILE, HI); \
355 fputc ('-', FILE); \
356 assemble_name (FILE, LO); \
357 } \
358 while (0)
2ed2af28 359#endif
2ad9852d 360#endif
2ed2af28 361
c8cc5c4a 362/* The DWARF 2 CFA column which tracks the return address. Normally this
a94dbf2c
JM
363 is the column for PC, or the first column after all of the hard
364 registers. */
c8cc5c4a 365#ifndef DWARF_FRAME_RETURN_COLUMN
a94dbf2c
JM
366#ifdef PC_REGNUM
367#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
368#else
3073d01c 369#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
a94dbf2c 370#endif
c8cc5c4a
JM
371#endif
372
373/* The mapping from gcc register number to DWARF 2 CFA column number. By
469ac993 374 default, we just provide columns for all registers. */
c8cc5c4a 375#ifndef DWARF_FRAME_REGNUM
469ac993 376#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
c8cc5c4a 377#endif
3f76745e 378
2ad9852d
RK
379/* The offset from the incoming value of %sp to the top of the stack frame
380 for the current function. */
381#ifndef INCOMING_FRAME_SP_OFFSET
382#define INCOMING_FRAME_SP_OFFSET 0
383#endif
384\f
0021b564
JM
385/* Hook used by __throw. */
386
387rtx
388expand_builtin_dwarf_fp_regnum ()
389{
390 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
391}
392
71dfc51f 393/* Return a pointer to a copy of the section string name S with all
bf20f341 394 attributes stripped off, and an asterisk prepended (for assemble_name). */
71dfc51f
RK
395
396static inline char *
a3f97cbb 397stripattributes (s)
d560ee52 398 const char *s;
a3f97cbb 399{
bf20f341 400 char *stripped = xmalloc (strlen (s) + 2);
71dfc51f
RK
401 char *p = stripped;
402
bf20f341
JW
403 *p++ = '*';
404
405 while (*s && *s != ',')
406 *p++ = *s++;
71dfc51f 407
a3f97cbb
JW
408 *p = '\0';
409 return stripped;
410}
411
d9d5c9de 412/* Generate code to initialize the register size table. */
2f3ca9e7 413
d9d5c9de
BS
414void
415expand_builtin_init_dwarf_reg_sizes (address)
416 tree address;
2f3ca9e7 417{
d9d5c9de
BS
418 int i;
419 enum machine_mode mode = TYPE_MODE (char_type_node);
420 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
2ad9852d 421 rtx mem = gen_rtx_MEM (BLKmode, addr);
2f3ca9e7 422
2ad9852d 423 for (i = 0; i < DWARF_FRAME_REGISTERS; i++)
2f3ca9e7 424 {
2ad9852d
RK
425 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
426 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
2f3ca9e7 427
c699cee9
JM
428 if (offset < 0)
429 continue;
430
f4ef873c 431 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
2f3ca9e7 432 }
2f3ca9e7
JM
433}
434
3f76745e 435/* Convert a DWARF call frame info. operation to its string name */
a3f97cbb 436
d560ee52 437static const char *
3f76745e 438dwarf_cfi_name (cfi_opc)
b3694847 439 unsigned cfi_opc;
3f76745e
JM
440{
441 switch (cfi_opc)
442 {
443 case DW_CFA_advance_loc:
444 return "DW_CFA_advance_loc";
445 case DW_CFA_offset:
446 return "DW_CFA_offset";
447 case DW_CFA_restore:
448 return "DW_CFA_restore";
449 case DW_CFA_nop:
450 return "DW_CFA_nop";
451 case DW_CFA_set_loc:
452 return "DW_CFA_set_loc";
453 case DW_CFA_advance_loc1:
454 return "DW_CFA_advance_loc1";
455 case DW_CFA_advance_loc2:
456 return "DW_CFA_advance_loc2";
457 case DW_CFA_advance_loc4:
458 return "DW_CFA_advance_loc4";
459 case DW_CFA_offset_extended:
460 return "DW_CFA_offset_extended";
461 case DW_CFA_restore_extended:
462 return "DW_CFA_restore_extended";
463 case DW_CFA_undefined:
464 return "DW_CFA_undefined";
465 case DW_CFA_same_value:
466 return "DW_CFA_same_value";
467 case DW_CFA_register:
468 return "DW_CFA_register";
469 case DW_CFA_remember_state:
470 return "DW_CFA_remember_state";
471 case DW_CFA_restore_state:
472 return "DW_CFA_restore_state";
473 case DW_CFA_def_cfa:
474 return "DW_CFA_def_cfa";
475 case DW_CFA_def_cfa_register:
476 return "DW_CFA_def_cfa_register";
477 case DW_CFA_def_cfa_offset:
478 return "DW_CFA_def_cfa_offset";
6bb28965
JM
479
480 /* DWARF 3 */
7d9d8943
AM
481 case DW_CFA_def_cfa_expression:
482 return "DW_CFA_def_cfa_expression";
6bb28965
JM
483 case DW_CFA_expression:
484 return "DW_CFA_expression";
485 case DW_CFA_offset_extended_sf:
486 return "DW_CFA_offset_extended_sf";
487 case DW_CFA_def_cfa_sf:
488 return "DW_CFA_def_cfa_sf";
489 case DW_CFA_def_cfa_offset_sf:
490 return "DW_CFA_def_cfa_offset_sf";
c53aa195 491
3f76745e
JM
492 /* SGI/MIPS specific */
493 case DW_CFA_MIPS_advance_loc8:
494 return "DW_CFA_MIPS_advance_loc8";
c53aa195
JM
495
496 /* GNU extensions */
497 case DW_CFA_GNU_window_save:
498 return "DW_CFA_GNU_window_save";
0021b564
JM
499 case DW_CFA_GNU_args_size:
500 return "DW_CFA_GNU_args_size";
3f388b42
GK
501 case DW_CFA_GNU_negative_offset_extended:
502 return "DW_CFA_GNU_negative_offset_extended";
c53aa195 503
3f76745e
JM
504 default:
505 return "DW_CFA_<unknown>";
506 }
507}
a3f97cbb 508
3f76745e 509/* Return a pointer to a newly allocated Call Frame Instruction. */
71dfc51f 510
3f76745e
JM
511static inline dw_cfi_ref
512new_cfi ()
513{
b3694847 514 dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));
71dfc51f 515
3f76745e
JM
516 cfi->dw_cfi_next = NULL;
517 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
518 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
a3f97cbb 519
3f76745e
JM
520 return cfi;
521}
a3f97cbb 522
3f76745e 523/* Add a Call Frame Instruction to list of instructions. */
a3f97cbb 524
3f76745e
JM
525static inline void
526add_cfi (list_head, cfi)
b3694847
SS
527 dw_cfi_ref *list_head;
528 dw_cfi_ref cfi;
3f76745e 529{
b3694847 530 dw_cfi_ref *p;
a3f97cbb 531
3f76745e
JM
532 /* Find the end of the chain. */
533 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
534 ;
535
536 *p = cfi;
a3f97cbb
JW
537}
538
3f76745e 539/* Generate a new label for the CFI info to refer to. */
71dfc51f 540
c53aa195 541char *
3f76745e 542dwarf2out_cfi_label ()
a3f97cbb 543{
3f76745e
JM
544 static char label[20];
545 static unsigned long label_num = 0;
556273e0 546
3f76745e
JM
547 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
548 ASM_OUTPUT_LABEL (asm_out_file, label);
3f76745e 549 return label;
a3f97cbb
JW
550}
551
3f76745e
JM
552/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
553 or to the CIE if LABEL is NULL. */
71dfc51f 554
3f76745e
JM
555static void
556add_fde_cfi (label, cfi)
b3694847
SS
557 const char *label;
558 dw_cfi_ref cfi;
a3f97cbb 559{
3f76745e
JM
560 if (label)
561 {
b3694847 562 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
a3f97cbb 563
3f76745e
JM
564 if (*label == 0)
565 label = dwarf2out_cfi_label ();
71dfc51f 566
3f76745e
JM
567 if (fde->dw_fde_current_label == NULL
568 || strcmp (label, fde->dw_fde_current_label) != 0)
569 {
b3694847 570 dw_cfi_ref xcfi;
a3f97cbb 571
3f76745e 572 fde->dw_fde_current_label = label = xstrdup (label);
71dfc51f 573
3f76745e
JM
574 /* Set the location counter to the new label. */
575 xcfi = new_cfi ();
576 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
577 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
578 add_cfi (&fde->dw_fde_cfi, xcfi);
579 }
71dfc51f 580
3f76745e
JM
581 add_cfi (&fde->dw_fde_cfi, cfi);
582 }
583
584 else
585 add_cfi (&cie_cfi_head, cfi);
a3f97cbb
JW
586}
587
3f76745e 588/* Subroutine of lookup_cfa. */
71dfc51f 589
3f76745e 590static inline void
7d9d8943 591lookup_cfa_1 (cfi, loc)
b3694847
SS
592 dw_cfi_ref cfi;
593 dw_cfa_location *loc;
a3f97cbb 594{
3f76745e
JM
595 switch (cfi->dw_cfi_opc)
596 {
597 case DW_CFA_def_cfa_offset:
7d9d8943 598 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
3f76745e
JM
599 break;
600 case DW_CFA_def_cfa_register:
7d9d8943 601 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
3f76745e
JM
602 break;
603 case DW_CFA_def_cfa:
7d9d8943
AM
604 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
605 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
606 break;
607 case DW_CFA_def_cfa_expression:
608 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
3f76745e 609 break;
e9a25f70
JL
610 default:
611 break;
3f76745e 612 }
a3f97cbb
JW
613}
614
3f76745e 615/* Find the previous value for the CFA. */
71dfc51f 616
3f76745e 617static void
7d9d8943 618lookup_cfa (loc)
b3694847 619 dw_cfa_location *loc;
a3f97cbb 620{
b3694847 621 dw_cfi_ref cfi;
3f76745e 622
7d9d8943
AM
623 loc->reg = (unsigned long) -1;
624 loc->offset = 0;
625 loc->indirect = 0;
626 loc->base_offset = 0;
3f76745e
JM
627
628 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
7d9d8943 629 lookup_cfa_1 (cfi, loc);
3f76745e
JM
630
631 if (fde_table_in_use)
a3f97cbb 632 {
b3694847 633 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
3f76745e 634 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
7d9d8943 635 lookup_cfa_1 (cfi, loc);
a3f97cbb
JW
636 }
637}
638
3f76745e 639/* The current rule for calculating the DWARF2 canonical frame address. */
fbfa55b0 640static dw_cfa_location cfa;
71dfc51f 641
3f76745e
JM
642/* The register used for saving registers to the stack, and its offset
643 from the CFA. */
fbfa55b0 644static dw_cfa_location cfa_store;
3f76745e 645
0021b564
JM
646/* The running total of the size of arguments pushed onto the stack. */
647static long args_size;
648
b57d9225
JM
649/* The last args_size we actually output. */
650static long old_args_size;
651
3f76745e
JM
652/* Entry point to update the canonical frame address (CFA).
653 LABEL is passed to add_fde_cfi. The value of CFA is now to be
654 calculated from REG+OFFSET. */
655
656void
657dwarf2out_def_cfa (label, reg, offset)
b3694847 658 const char *label;
7d9d8943
AM
659 unsigned reg;
660 long offset;
661{
662 dw_cfa_location loc;
663 loc.indirect = 0;
664 loc.base_offset = 0;
665 loc.reg = reg;
666 loc.offset = offset;
667 def_cfa_1 (label, &loc);
668}
669
770ca8c6 670/* This routine does the actual work. The CFA is now calculated from
7d9d8943 671 the dw_cfa_location structure. */
2ad9852d 672
7d9d8943
AM
673static void
674def_cfa_1 (label, loc_p)
b3694847 675 const char *label;
7d9d8943 676 dw_cfa_location *loc_p;
a3f97cbb 677{
b3694847 678 dw_cfi_ref cfi;
7d9d8943 679 dw_cfa_location old_cfa, loc;
3f76745e 680
7d9d8943
AM
681 cfa = *loc_p;
682 loc = *loc_p;
5bef9b1f 683
7d9d8943
AM
684 if (cfa_store.reg == loc.reg && loc.indirect == 0)
685 cfa_store.offset = loc.offset;
3f76745e 686
7d9d8943
AM
687 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
688 lookup_cfa (&old_cfa);
689
2ad9852d
RK
690 /* If nothing changed, no need to issue any call frame instructions. */
691 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
692 && loc.indirect == old_cfa.indirect
693 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
694 return;
3f76745e
JM
695
696 cfi = new_cfi ();
697
e09bbb25 698 if (loc.reg == old_cfa.reg && !loc.indirect)
a3f97cbb 699 {
770ca8c6
JO
700 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
701 indicating the CFA register did not change but the offset
702 did. */
3f76745e 703 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
7d9d8943 704 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
3f76745e 705 }
a3f97cbb 706
3f76745e 707#ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
7d9d8943 708 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
e09bbb25 709 && !loc.indirect)
3f76745e 710 {
770ca8c6
JO
711 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
712 indicating the CFA register has changed to <register> but the
713 offset has not changed. */
3f76745e 714 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
7d9d8943 715 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
3f76745e
JM
716 }
717#endif
a3f97cbb 718
7d9d8943 719 else if (loc.indirect == 0)
3f76745e 720 {
770ca8c6
JO
721 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
722 indicating the CFA register has changed to <register> with
723 the specified offset. */
3f76745e 724 cfi->dw_cfi_opc = DW_CFA_def_cfa;
7d9d8943
AM
725 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
726 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
727 }
728 else
729 {
770ca8c6
JO
730 /* Construct a DW_CFA_def_cfa_expression instruction to
731 calculate the CFA using a full location expression since no
732 register-offset pair is available. */
556273e0 733 struct dw_loc_descr_struct *loc_list;
2ad9852d 734
7d9d8943
AM
735 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
736 loc_list = build_cfa_loc (&loc);
737 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
a3f97cbb 738 }
3f76745e
JM
739
740 add_fde_cfi (label, cfi);
a3f97cbb
JW
741}
742
3f76745e
JM
743/* Add the CFI for saving a register. REG is the CFA column number.
744 LABEL is passed to add_fde_cfi.
745 If SREG is -1, the register is saved at OFFSET from the CFA;
746 otherwise it is saved in SREG. */
71dfc51f 747
3f76745e
JM
748static void
749reg_save (label, reg, sreg, offset)
b3694847
SS
750 const char *label;
751 unsigned reg;
752 unsigned sreg;
753 long offset;
a3f97cbb 754{
b3694847 755 dw_cfi_ref cfi = new_cfi ();
3f76745e
JM
756
757 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
758
85066503
MH
759 /* The following comparison is correct. -1 is used to indicate that
760 the value isn't a register number. */
761 if (sreg == (unsigned int) -1)
a3f97cbb 762 {
3f76745e
JM
763 if (reg & ~0x3f)
764 /* The register number won't fit in 6 bits, so we have to use
765 the long form. */
766 cfi->dw_cfi_opc = DW_CFA_offset_extended;
767 else
768 cfi->dw_cfi_opc = DW_CFA_offset;
769
27c35f4b
HPN
770#ifdef ENABLE_CHECKING
771 {
772 /* If we get an offset that is not a multiple of
773 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
774 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
775 description. */
776 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
777
778 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
779 abort ();
780 }
781#endif
3f76745e 782 offset /= DWARF_CIE_DATA_ALIGNMENT;
3a88cbd1 783 if (offset < 0)
6bb28965 784 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
2ad9852d 785
3f76745e
JM
786 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
787 }
2c849145
JM
788 else if (sreg == reg)
789 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
790 return;
3f76745e
JM
791 else
792 {
793 cfi->dw_cfi_opc = DW_CFA_register;
794 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
795 }
796
797 add_fde_cfi (label, cfi);
798}
799
c53aa195
JM
800/* Add the CFI for saving a register window. LABEL is passed to reg_save.
801 This CFI tells the unwinder that it needs to restore the window registers
802 from the previous frame's window save area.
556273e0 803
c53aa195
JM
804 ??? Perhaps we should note in the CIE where windows are saved (instead of
805 assuming 0(cfa)) and what registers are in the window. */
806
807void
808dwarf2out_window_save (label)
b3694847 809 const char *label;
c53aa195 810{
b3694847 811 dw_cfi_ref cfi = new_cfi ();
2ad9852d 812
c53aa195
JM
813 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
814 add_fde_cfi (label, cfi);
815}
816
0021b564
JM
817/* Add a CFI to update the running total of the size of arguments
818 pushed onto the stack. */
819
820void
821dwarf2out_args_size (label, size)
d3e3972c 822 const char *label;
0021b564
JM
823 long size;
824{
b3694847 825 dw_cfi_ref cfi;
b57d9225
JM
826
827 if (size == old_args_size)
828 return;
2ad9852d 829
b57d9225
JM
830 old_args_size = size;
831
832 cfi = new_cfi ();
0021b564
JM
833 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
834 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
835 add_fde_cfi (label, cfi);
836}
837
c53aa195
JM
838/* Entry point for saving a register to the stack. REG is the GCC register
839 number. LABEL and OFFSET are passed to reg_save. */
3f76745e
JM
840
841void
842dwarf2out_reg_save (label, reg, offset)
b3694847
SS
843 const char *label;
844 unsigned reg;
845 long offset;
3f76745e
JM
846{
847 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
848}
849
c53aa195
JM
850/* Entry point for saving the return address in the stack.
851 LABEL and OFFSET are passed to reg_save. */
852
853void
854dwarf2out_return_save (label, offset)
b3694847
SS
855 const char *label;
856 long offset;
c53aa195
JM
857{
858 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
859}
860
861/* Entry point for saving the return address in a register.
862 LABEL and SREG are passed to reg_save. */
863
864void
865dwarf2out_return_reg (label, sreg)
b3694847
SS
866 const char *label;
867 unsigned sreg;
c53aa195
JM
868{
869 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
870}
871
3f76745e
JM
872/* Record the initial position of the return address. RTL is
873 INCOMING_RETURN_ADDR_RTX. */
874
875static void
876initial_return_save (rtl)
b3694847 877 rtx rtl;
3f76745e 878{
973838fd 879 unsigned int reg = (unsigned int) -1;
2ad9852d 880 HOST_WIDE_INT offset = 0;
3f76745e
JM
881
882 switch (GET_CODE (rtl))
883 {
884 case REG:
885 /* RA is in a register. */
2c849145 886 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
3f76745e 887 break;
2ad9852d 888
3f76745e
JM
889 case MEM:
890 /* RA is on the stack. */
891 rtl = XEXP (rtl, 0);
892 switch (GET_CODE (rtl))
893 {
894 case REG:
3a88cbd1
JL
895 if (REGNO (rtl) != STACK_POINTER_REGNUM)
896 abort ();
3f76745e
JM
897 offset = 0;
898 break;
2ad9852d 899
3f76745e 900 case PLUS:
3a88cbd1
JL
901 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
902 abort ();
3f76745e
JM
903 offset = INTVAL (XEXP (rtl, 1));
904 break;
2ad9852d 905
3f76745e 906 case MINUS:
3a88cbd1
JL
907 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
908 abort ();
3f76745e
JM
909 offset = -INTVAL (XEXP (rtl, 1));
910 break;
2ad9852d 911
3f76745e
JM
912 default:
913 abort ();
914 }
2ad9852d 915
3f76745e 916 break;
2ad9852d 917
c53aa195
JM
918 case PLUS:
919 /* The return address is at some offset from any value we can
920 actually load. For instance, on the SPARC it is in %i7+8. Just
921 ignore the offset for now; it doesn't matter for unwinding frames. */
3a88cbd1
JL
922 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
923 abort ();
c53aa195
JM
924 initial_return_save (XEXP (rtl, 0));
925 return;
2ad9852d 926
a3f97cbb 927 default:
3f76745e 928 abort ();
a3f97cbb 929 }
3f76745e 930
7d9d8943 931 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
a3f97cbb
JW
932}
933
1ba5ae8f 934/* Given a SET, calculate the amount of stack adjustment it
30f7a378 935 contains. */
1ba5ae8f 936
5e640c56
AH
937static long
938stack_adjust_offset (pattern)
173bf5be 939 rtx pattern;
1ba5ae8f
AH
940{
941 rtx src = SET_SRC (pattern);
942 rtx dest = SET_DEST (pattern);
2ad9852d 943 HOST_WIDE_INT offset = 0;
1ba5ae8f
AH
944 enum rtx_code code;
945
946 if (dest == stack_pointer_rtx)
947 {
948 /* (set (reg sp) (plus (reg sp) (const_int))) */
949 code = GET_CODE (src);
950 if (! (code == PLUS || code == MINUS)
951 || XEXP (src, 0) != stack_pointer_rtx
952 || GET_CODE (XEXP (src, 1)) != CONST_INT)
953 return 0;
954
955 offset = INTVAL (XEXP (src, 1));
f472fa29
AM
956 if (code == PLUS)
957 offset = -offset;
1ba5ae8f
AH
958 }
959 else if (GET_CODE (dest) == MEM)
960 {
961 /* (set (mem (pre_dec (reg sp))) (foo)) */
962 src = XEXP (dest, 0);
963 code = GET_CODE (src);
964
c26fbbca
KH
965 switch (code)
966 {
f472fa29
AM
967 case PRE_MODIFY:
968 case POST_MODIFY:
969 if (XEXP (src, 0) == stack_pointer_rtx)
970 {
971 rtx val = XEXP (XEXP (src, 1), 1);
972 /* We handle only adjustments by constant amount. */
973 if (GET_CODE (XEXP (src, 1)) != PLUS ||
974 GET_CODE (val) != CONST_INT)
c26fbbca 975 abort ();
f472fa29
AM
976 offset = -INTVAL (val);
977 break;
978 }
979 return 0;
980
981 case PRE_DEC:
982 case POST_DEC:
983 if (XEXP (src, 0) == stack_pointer_rtx)
984 {
985 offset = GET_MODE_SIZE (GET_MODE (dest));
986 break;
987 }
988 return 0;
989
990 case PRE_INC:
991 case POST_INC:
992 if (XEXP (src, 0) == stack_pointer_rtx)
993 {
994 offset = -GET_MODE_SIZE (GET_MODE (dest));
995 break;
996 }
997 return 0;
2ad9852d 998
f472fa29
AM
999 default:
1000 return 0;
e2134eea 1001 }
1ba5ae8f
AH
1002 }
1003 else
1004 return 0;
1005
1ba5ae8f
AH
1006 return offset;
1007}
1008
0021b564
JM
1009/* Check INSN to see if it looks like a push or a stack adjustment, and
1010 make a note of it if it does. EH uses this information to find out how
1011 much extra space it needs to pop off the stack. */
1012
1013static void
1014dwarf2out_stack_adjust (insn)
1015 rtx insn;
1016{
2ad9852d 1017 HOST_WIDE_INT offset;
d3e3972c 1018 const char *label;
2ad9852d 1019 int i;
0021b564 1020
2ad9852d 1021 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
b57d9225
JM
1022 {
1023 /* Extract the size of the args from the CALL rtx itself. */
b57d9225
JM
1024 insn = PATTERN (insn);
1025 if (GET_CODE (insn) == PARALLEL)
1026 insn = XVECEXP (insn, 0, 0);
1027 if (GET_CODE (insn) == SET)
1028 insn = SET_SRC (insn);
3db35af4
MM
1029 if (GET_CODE (insn) != CALL)
1030 abort ();
2ad9852d 1031
b57d9225
JM
1032 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1033 return;
1034 }
1035
1036 /* If only calls can throw, and we have a frame pointer,
1037 save up adjustments until we see the CALL_INSN. */
2ad9852d 1038 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
b57d9225
JM
1039 return;
1040
6020d360 1041 if (GET_CODE (insn) == BARRIER)
0021b564 1042 {
6020d360
JM
1043 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1044 the compiler will have already emitted a stack adjustment, but
1045 doesn't bother for calls to noreturn functions. */
1046#ifdef STACK_GROWS_DOWNWARD
1047 offset = -args_size;
1048#else
1049 offset = args_size;
1050#endif
0021b564 1051 }
6020d360 1052 else if (GET_CODE (PATTERN (insn)) == SET)
2ad9852d 1053 offset = stack_adjust_offset (PATTERN (insn));
1ba5ae8f
AH
1054 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1055 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1056 {
1057 /* There may be stack adjustments inside compound insns. Search
2ad9852d
RK
1058 for them. */
1059 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1060 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1061 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
0021b564
JM
1062 }
1063 else
1064 return;
0b34cf1e 1065
6020d360
JM
1066 if (offset == 0)
1067 return;
1068
7d9d8943
AM
1069 if (cfa.reg == STACK_POINTER_REGNUM)
1070 cfa.offset += offset;
0021b564
JM
1071
1072#ifndef STACK_GROWS_DOWNWARD
1073 offset = -offset;
1074#endif
2ad9852d 1075
0021b564
JM
1076 args_size += offset;
1077 if (args_size < 0)
1078 args_size = 0;
1079
1080 label = dwarf2out_cfi_label ();
7d9d8943 1081 def_cfa_1 (label, &cfa);
0021b564
JM
1082 dwarf2out_args_size (label, args_size);
1083}
1084
fbfa55b0
RH
1085/* We delay emitting a register save until either (a) we reach the end
1086 of the prologue or (b) the register is clobbered. This clusters
1087 register saves so that there are fewer pc advances. */
1088
1089struct queued_reg_save
1090{
1091 struct queued_reg_save *next;
1092 rtx reg;
1093 long cfa_offset;
1094};
1095
1096static struct queued_reg_save *queued_reg_saves;
1097static const char *last_reg_save_label;
1098
1099static void
1100queue_reg_save (label, reg, offset)
1101 const char *label;
1102 rtx reg;
1103 long offset;
1104{
1105 struct queued_reg_save *q = (struct queued_reg_save *) xmalloc (sizeof (*q));
1106
1107 q->next = queued_reg_saves;
1108 q->reg = reg;
1109 q->cfa_offset = offset;
1110 queued_reg_saves = q;
1111
1112 last_reg_save_label = label;
1113}
1114
1115static void
1116flush_queued_reg_saves ()
1117{
1118 struct queued_reg_save *q, *next;
1119
c26fbbca 1120 for (q = queued_reg_saves; q; q = next)
fbfa55b0
RH
1121 {
1122 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1123 next = q->next;
1124 free (q);
1125 }
1126
1127 queued_reg_saves = NULL;
1128 last_reg_save_label = NULL;
1129}
1130
1131static bool
1132clobbers_queued_reg_save (insn)
1133 rtx insn;
1134{
1135 struct queued_reg_save *q;
1136
c26fbbca 1137 for (q = queued_reg_saves; q; q = q->next)
fbfa55b0
RH
1138 if (modified_in_p (q->reg, insn))
1139 return true;
1140
1141 return false;
1142}
c26fbbca 1143
fbfa55b0 1144
770ca8c6
JO
1145/* A temporary register holding an integral value used in adjusting SP
1146 or setting up the store_reg. The "offset" field holds the integer
1147 value, not an offset. */
fbfa55b0 1148static dw_cfa_location cfa_temp;
770ca8c6
JO
1149
1150/* Record call frame debugging information for an expression EXPR,
1151 which either sets SP or FP (adjusting how we calculate the frame
1152 address) or saves a register to the stack. LABEL indicates the
1153 address of EXPR.
1154
1155 This function encodes a state machine mapping rtxes to actions on
1156 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1157 users need not read the source code.
1158
a401107d
JO
1159 The High-Level Picture
1160
1161 Changes in the register we use to calculate the CFA: Currently we
1162 assume that if you copy the CFA register into another register, we
1163 should take the other one as the new CFA register; this seems to
1164 work pretty well. If it's wrong for some target, it's simple
1165 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1166
1167 Changes in the register we use for saving registers to the stack:
1168 This is usually SP, but not always. Again, we deduce that if you
1169 copy SP into another register (and SP is not the CFA register),
1170 then the new register is the one we will be using for register
1171 saves. This also seems to work.
1172
1173 Register saves: There's not much guesswork about this one; if
1174 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1175 register save, and the register used to calculate the destination
1176 had better be the one we think we're using for this purpose.
1177
1178 Except: If the register being saved is the CFA register, and the
1179 offset is non-zero, we are saving the CFA, so we assume we have to
1180 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1181 the intent is to save the value of SP from the previous frame.
1182
770ca8c6
JO
1183 Invariants / Summaries of Rules
1184
a401107d
JO
1185 cfa current rule for calculating the CFA. It usually
1186 consists of a register and an offset.
770ca8c6
JO
1187 cfa_store register used by prologue code to save things to the stack
1188 cfa_store.offset is the offset from the value of
1189 cfa_store.reg to the actual CFA
1190 cfa_temp register holding an integral value. cfa_temp.offset
1191 stores the value, which will be used to adjust the
19ec6a36
AM
1192 stack pointer. cfa_temp is also used like cfa_store,
1193 to track stores to the stack via fp or a temp reg.
c26fbbca 1194
770ca8c6
JO
1195 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1196 with cfa.reg as the first operand changes the cfa.reg and its
19ec6a36
AM
1197 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1198 cfa_temp.offset.
770ca8c6
JO
1199
1200 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1201 expression yielding a constant. This sets cfa_temp.reg
1202 and cfa_temp.offset.
1203
1204 Rule 5: Create a new register cfa_store used to save items to the
1205 stack.
1206
19ec6a36 1207 Rules 10-14: Save a register to the stack. Define offset as the
a401107d 1208 difference of the original location and cfa_store's
19ec6a36 1209 location (or cfa_temp's location if cfa_temp is used).
770ca8c6
JO
1210
1211 The Rules
1212
1213 "{a,b}" indicates a choice of a xor b.
1214 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1215
1216 Rule 1:
1217 (set <reg1> <reg2>:cfa.reg)
19ec6a36 1218 effects: cfa.reg = <reg1>
770ca8c6 1219 cfa.offset unchanged
19ec6a36
AM
1220 cfa_temp.reg = <reg1>
1221 cfa_temp.offset = cfa.offset
770ca8c6
JO
1222
1223 Rule 2:
2ad9852d
RK
1224 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1225 {<const_int>,<reg>:cfa_temp.reg}))
770ca8c6
JO
1226 effects: cfa.reg = sp if fp used
1227 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1228 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1229 if cfa_store.reg==sp
1230
1231 Rule 3:
19ec6a36 1232 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
770ca8c6
JO
1233 effects: cfa.reg = fp
1234 cfa_offset += +/- <const_int>
1235
1236 Rule 4:
19ec6a36 1237 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
770ca8c6
JO
1238 constraints: <reg1> != fp
1239 <reg1> != sp
1240 effects: cfa.reg = <reg1>
19ec6a36
AM
1241 cfa_temp.reg = <reg1>
1242 cfa_temp.offset = cfa.offset
770ca8c6
JO
1243
1244 Rule 5:
1245 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1246 constraints: <reg1> != fp
1247 <reg1> != sp
1248 effects: cfa_store.reg = <reg1>
1249 cfa_store.offset = cfa.offset - cfa_temp.offset
1250
1251 Rule 6:
1252 (set <reg> <const_int>)
1253 effects: cfa_temp.reg = <reg>
1254 cfa_temp.offset = <const_int>
1255
1256 Rule 7:
1257 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1258 effects: cfa_temp.reg = <reg1>
1259 cfa_temp.offset |= <const_int>
1260
1261 Rule 8:
1262 (set <reg> (high <exp>))
1263 effects: none
1264
1265 Rule 9:
1266 (set <reg> (lo_sum <exp> <const_int>))
1267 effects: cfa_temp.reg = <reg>
1268 cfa_temp.offset = <const_int>
1269
1270 Rule 10:
1271 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1272 effects: cfa_store.offset -= <const_int>
1273 cfa.offset = cfa_store.offset if cfa.reg == sp
770ca8c6 1274 cfa.reg = sp
19ec6a36 1275 cfa.base_offset = -cfa_store.offset
770ca8c6
JO
1276
1277 Rule 11:
1278 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1279 effects: cfa_store.offset += -/+ mode_size(mem)
1280 cfa.offset = cfa_store.offset if cfa.reg == sp
770ca8c6 1281 cfa.reg = sp
19ec6a36 1282 cfa.base_offset = -cfa_store.offset
770ca8c6
JO
1283
1284 Rule 12:
2ad9852d
RK
1285 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1286
1287 <reg2>)
19ec6a36
AM
1288 effects: cfa.reg = <reg1>
1289 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
770ca8c6
JO
1290
1291 Rule 13:
19ec6a36
AM
1292 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1293 effects: cfa.reg = <reg1>
1294 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1295
1296 Rule 14:
1297 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1298 effects: cfa.reg = <reg1>
1299 cfa.base_offset = -cfa_temp.offset
1300 cfa_temp.offset -= mode_size(mem) */
b664de3a
AM
1301
1302static void
1303dwarf2out_frame_debug_expr (expr, label)
1304 rtx expr;
d3e3972c 1305 const char *label;
b664de3a
AM
1306{
1307 rtx src, dest;
2ad9852d 1308 HOST_WIDE_INT offset;
556273e0
KH
1309
1310 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1311 the PARALLEL independently. The first element is always processed if
770ca8c6 1312 it is a SET. This is for backward compatibility. Other elements
556273e0
KH
1313 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1314 flag is set in them. */
2ad9852d 1315 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
556273e0 1316 {
b664de3a
AM
1317 int par_index;
1318 int limit = XVECLEN (expr, 0);
1319
1320 for (par_index = 0; par_index < limit; par_index++)
2ad9852d
RK
1321 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1322 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1323 || par_index == 0))
1324 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
556273e0 1325
b664de3a
AM
1326 return;
1327 }
556273e0 1328
b664de3a
AM
1329 if (GET_CODE (expr) != SET)
1330 abort ();
1331
1332 src = SET_SRC (expr);
1333 dest = SET_DEST (expr);
1334
1335 switch (GET_CODE (dest))
1336 {
1337 case REG:
770ca8c6 1338 /* Rule 1 */
b664de3a
AM
1339 /* Update the CFA rule wrt SP or FP. Make sure src is
1340 relative to the current CFA register. */
1341 switch (GET_CODE (src))
556273e0
KH
1342 {
1343 /* Setting FP from SP. */
1344 case REG:
1345 if (cfa.reg == (unsigned) REGNO (src))
1346 /* OK. */
1347 ;
626d1efd 1348 else
556273e0 1349 abort ();
2c849145
JM
1350
1351 /* We used to require that dest be either SP or FP, but the
1352 ARM copies SP to a temporary register, and from there to
1353 FP. So we just rely on the backends to only set
1354 RTX_FRAME_RELATED_P on appropriate insns. */
556273e0 1355 cfa.reg = REGNO (dest);
19ec6a36
AM
1356 cfa_temp.reg = cfa.reg;
1357 cfa_temp.offset = cfa.offset;
556273e0 1358 break;
b664de3a 1359
556273e0
KH
1360 case PLUS:
1361 case MINUS:
19ec6a36 1362 case LO_SUM:
556273e0
KH
1363 if (dest == stack_pointer_rtx)
1364 {
770ca8c6 1365 /* Rule 2 */
2618f955
MM
1366 /* Adjusting SP. */
1367 switch (GET_CODE (XEXP (src, 1)))
1368 {
1369 case CONST_INT:
1370 offset = INTVAL (XEXP (src, 1));
1371 break;
1372 case REG:
770ca8c6 1373 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
2618f955 1374 abort ();
770ca8c6 1375 offset = cfa_temp.offset;
2618f955
MM
1376 break;
1377 default:
1378 abort ();
1379 }
1380
1381 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1382 {
1383 /* Restoring SP from FP in the epilogue. */
7d9d8943 1384 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
2618f955 1385 abort ();
7d9d8943 1386 cfa.reg = STACK_POINTER_REGNUM;
2618f955 1387 }
19ec6a36
AM
1388 else if (GET_CODE (src) == LO_SUM)
1389 /* Assume we've set the source reg of the LO_SUM from sp. */
1390 ;
2618f955
MM
1391 else if (XEXP (src, 0) != stack_pointer_rtx)
1392 abort ();
1393
19ec6a36 1394 if (GET_CODE (src) != MINUS)
2618f955 1395 offset = -offset;
7d9d8943
AM
1396 if (cfa.reg == STACK_POINTER_REGNUM)
1397 cfa.offset += offset;
1398 if (cfa_store.reg == STACK_POINTER_REGNUM)
1399 cfa_store.offset += offset;
556273e0
KH
1400 }
1401 else if (dest == hard_frame_pointer_rtx)
1402 {
770ca8c6 1403 /* Rule 3 */
2618f955
MM
1404 /* Either setting the FP from an offset of the SP,
1405 or adjusting the FP */
2c849145 1406 if (! frame_pointer_needed)
2618f955
MM
1407 abort ();
1408
2c849145 1409 if (GET_CODE (XEXP (src, 0)) == REG
7d9d8943 1410 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
2618f955
MM
1411 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1412 {
2618f955 1413 offset = INTVAL (XEXP (src, 1));
19ec6a36 1414 if (GET_CODE (src) != MINUS)
2618f955 1415 offset = -offset;
7d9d8943
AM
1416 cfa.offset += offset;
1417 cfa.reg = HARD_FRAME_POINTER_REGNUM;
2618f955 1418 }
556273e0
KH
1419 else
1420 abort ();
1421 }
1422 else
1423 {
19ec6a36 1424 if (GET_CODE (src) == MINUS)
2618f955 1425 abort ();
b53ef1a2 1426
770ca8c6 1427 /* Rule 4 */
b53ef1a2
NC
1428 if (GET_CODE (XEXP (src, 0)) == REG
1429 && REGNO (XEXP (src, 0)) == cfa.reg
1430 && GET_CODE (XEXP (src, 1)) == CONST_INT)
34ce3d7b
JM
1431 {
1432 /* Setting a temporary CFA register that will be copied
1433 into the FP later on. */
19ec6a36 1434 offset = - INTVAL (XEXP (src, 1));
34ce3d7b
JM
1435 cfa.offset += offset;
1436 cfa.reg = REGNO (dest);
19ec6a36
AM
1437 /* Or used to save regs to the stack. */
1438 cfa_temp.reg = cfa.reg;
1439 cfa_temp.offset = cfa.offset;
34ce3d7b 1440 }
2ad9852d 1441
770ca8c6 1442 /* Rule 5 */
19ec6a36
AM
1443 else if (GET_CODE (XEXP (src, 0)) == REG
1444 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1445 && XEXP (src, 1) == stack_pointer_rtx)
b53ef1a2 1446 {
00a42e21
JM
1447 /* Setting a scratch register that we will use instead
1448 of SP for saving registers to the stack. */
b53ef1a2
NC
1449 if (cfa.reg != STACK_POINTER_REGNUM)
1450 abort ();
1451 cfa_store.reg = REGNO (dest);
770ca8c6 1452 cfa_store.offset = cfa.offset - cfa_temp.offset;
b53ef1a2 1453 }
2ad9852d 1454
19ec6a36
AM
1455 /* Rule 9 */
1456 else if (GET_CODE (src) == LO_SUM
1457 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1458 {
1459 cfa_temp.reg = REGNO (dest);
1460 cfa_temp.offset = INTVAL (XEXP (src, 1));
1461 }
1462 else
1463 abort ();
556273e0
KH
1464 }
1465 break;
b664de3a 1466
770ca8c6 1467 /* Rule 6 */
556273e0 1468 case CONST_INT:
770ca8c6
JO
1469 cfa_temp.reg = REGNO (dest);
1470 cfa_temp.offset = INTVAL (src);
556273e0 1471 break;
b664de3a 1472
770ca8c6 1473 /* Rule 7 */
556273e0
KH
1474 case IOR:
1475 if (GET_CODE (XEXP (src, 0)) != REG
770ca8c6 1476 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
2618f955 1477 || GET_CODE (XEXP (src, 1)) != CONST_INT)
556273e0 1478 abort ();
2ad9852d 1479
770ca8c6
JO
1480 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1481 cfa_temp.reg = REGNO (dest);
1482 cfa_temp.offset |= INTVAL (XEXP (src, 1));
556273e0 1483 break;
b664de3a 1484
9ae21d2a
AM
1485 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1486 which will fill in all of the bits. */
1487 /* Rule 8 */
1488 case HIGH:
1489 break;
1490
556273e0
KH
1491 default:
1492 abort ();
1493 }
2ad9852d 1494
7d9d8943 1495 def_cfa_1 (label, &cfa);
2618f955 1496 break;
b664de3a 1497
2618f955 1498 case MEM:
2618f955
MM
1499 if (GET_CODE (src) != REG)
1500 abort ();
7d9d8943 1501
7d9d8943
AM
1502 /* Saving a register to the stack. Make sure dest is relative to the
1503 CFA register. */
2618f955
MM
1504 switch (GET_CODE (XEXP (dest, 0)))
1505 {
770ca8c6 1506 /* Rule 10 */
2618f955 1507 /* With a push. */
e2134eea
JH
1508 case PRE_MODIFY:
1509 /* We can't handle variable size modifications. */
1510 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
173bf5be 1511 abort ();
e2134eea
JH
1512 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1513
1514 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1515 || cfa_store.reg != STACK_POINTER_REGNUM)
1516 abort ();
2ad9852d 1517
e2134eea
JH
1518 cfa_store.offset += offset;
1519 if (cfa.reg == STACK_POINTER_REGNUM)
1520 cfa.offset = cfa_store.offset;
1521
1522 offset = -cfa_store.offset;
1523 break;
2ad9852d 1524
770ca8c6 1525 /* Rule 11 */
2618f955
MM
1526 case PRE_INC:
1527 case PRE_DEC:
1528 offset = GET_MODE_SIZE (GET_MODE (dest));
1529 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1530 offset = -offset;
b664de3a 1531
2618f955 1532 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
7d9d8943 1533 || cfa_store.reg != STACK_POINTER_REGNUM)
2618f955 1534 abort ();
2ad9852d 1535
7d9d8943
AM
1536 cfa_store.offset += offset;
1537 if (cfa.reg == STACK_POINTER_REGNUM)
1538 cfa.offset = cfa_store.offset;
b664de3a 1539
7d9d8943 1540 offset = -cfa_store.offset;
2618f955 1541 break;
b664de3a 1542
770ca8c6 1543 /* Rule 12 */
2618f955
MM
1544 /* With an offset. */
1545 case PLUS:
1546 case MINUS:
19ec6a36 1547 case LO_SUM:
770ca8c6
JO
1548 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1549 abort ();
2618f955
MM
1550 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1551 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1552 offset = -offset;
b664de3a 1553
19ec6a36
AM
1554 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1555 offset -= cfa_store.offset;
1556 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1557 offset -= cfa_temp.offset;
1558 else
2618f955 1559 abort ();
2618f955
MM
1560 break;
1561
770ca8c6 1562 /* Rule 13 */
2618f955
MM
1563 /* Without an offset. */
1564 case REG:
19ec6a36
AM
1565 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1566 offset = -cfa_store.offset;
1567 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1568 offset = -cfa_temp.offset;
1569 else
556273e0 1570 abort ();
19ec6a36
AM
1571 break;
1572
1573 /* Rule 14 */
1574 case POST_INC:
1575 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1576 abort ();
1577 offset = -cfa_temp.offset;
1578 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
2618f955
MM
1579 break;
1580
1581 default:
1582 abort ();
1583 }
e09bbb25 1584
556273e0 1585 if (REGNO (src) != STACK_POINTER_REGNUM
e09bbb25
JM
1586 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1587 && (unsigned) REGNO (src) == cfa.reg)
1588 {
1589 /* We're storing the current CFA reg into the stack. */
1590
1591 if (cfa.offset == 0)
1592 {
1593 /* If the source register is exactly the CFA, assume
1594 we're saving SP like any other register; this happens
1595 on the ARM. */
e09bbb25 1596 def_cfa_1 (label, &cfa);
fbfa55b0 1597 queue_reg_save (label, stack_pointer_rtx, offset);
e09bbb25
JM
1598 break;
1599 }
1600 else
1601 {
1602 /* Otherwise, we'll need to look in the stack to
1603 calculate the CFA. */
e09bbb25 1604 rtx x = XEXP (dest, 0);
2ad9852d 1605
e09bbb25
JM
1606 if (GET_CODE (x) != REG)
1607 x = XEXP (x, 0);
1608 if (GET_CODE (x) != REG)
1609 abort ();
2ad9852d
RK
1610
1611 cfa.reg = REGNO (x);
e09bbb25
JM
1612 cfa.base_offset = offset;
1613 cfa.indirect = 1;
1614 def_cfa_1 (label, &cfa);
1615 break;
1616 }
1617 }
1618
7d9d8943 1619 def_cfa_1 (label, &cfa);
fbfa55b0 1620 queue_reg_save (label, src, offset);
2618f955
MM
1621 break;
1622
1623 default:
1624 abort ();
1625 }
b664de3a
AM
1626}
1627
3f76745e
JM
1628/* Record call frame debugging information for INSN, which either
1629 sets SP or FP (adjusting how we calculate the frame address) or saves a
1630 register to the stack. If INSN is NULL_RTX, initialize our state. */
71dfc51f 1631
3f76745e
JM
1632void
1633dwarf2out_frame_debug (insn)
1634 rtx insn;
a3f97cbb 1635{
d3e3972c 1636 const char *label;
b664de3a 1637 rtx src;
3f76745e
JM
1638
1639 if (insn == NULL_RTX)
a3f97cbb 1640 {
fbfa55b0
RH
1641 /* Flush any queued register saves. */
1642 flush_queued_reg_saves ();
1643
3f76745e 1644 /* Set up state for generating call frame debug info. */
7d9d8943
AM
1645 lookup_cfa (&cfa);
1646 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
3a88cbd1 1647 abort ();
2ad9852d 1648
7d9d8943
AM
1649 cfa.reg = STACK_POINTER_REGNUM;
1650 cfa_store = cfa;
770ca8c6
JO
1651 cfa_temp.reg = -1;
1652 cfa_temp.offset = 0;
3f76745e
JM
1653 return;
1654 }
1655
fbfa55b0
RH
1656 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1657 flush_queued_reg_saves ();
1658
0021b564
JM
1659 if (! RTX_FRAME_RELATED_P (insn))
1660 {
fbfa55b0 1661 if (!ACCUMULATE_OUTGOING_ARGS)
c26fbbca 1662 dwarf2out_stack_adjust (insn);
2ad9852d 1663
0021b564
JM
1664 return;
1665 }
1666
3f76745e 1667 label = dwarf2out_cfi_label ();
07ebc930
RH
1668 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1669 if (src)
1670 insn = XEXP (src, 0);
556273e0 1671 else
07ebc930
RH
1672 insn = PATTERN (insn);
1673
b664de3a 1674 dwarf2out_frame_debug_expr (insn, label);
3f76745e
JM
1675}
1676
3f76745e
JM
1677/* Output a Call Frame Information opcode and its operand(s). */
1678
1679static void
12f0b96b 1680output_cfi (cfi, fde, for_eh)
b3694847
SS
1681 dw_cfi_ref cfi;
1682 dw_fde_ref fde;
12f0b96b 1683 int for_eh;
3f76745e
JM
1684{
1685 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2ad9852d
RK
1686 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1687 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1688 "DW_CFA_advance_loc 0x%lx",
1689 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3f76745e
JM
1690 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1691 {
2e4b9b8c
RH
1692 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1693 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1694 "DW_CFA_offset, column 0x%lx",
1695 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1696 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3f76745e
JM
1697 }
1698 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2ad9852d
RK
1699 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1700 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1701 "DW_CFA_restore, column 0x%lx",
1702 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
3f76745e
JM
1703 else
1704 {
2e4b9b8c
RH
1705 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1706 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3f76745e 1707
3f76745e
JM
1708 switch (cfi->dw_cfi_opc)
1709 {
1710 case DW_CFA_set_loc:
e1f9550a
RH
1711 if (for_eh)
1712 dw2_asm_output_encoded_addr_rtx (
1713 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1714 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1715 NULL);
1716 else
1717 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1718 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3f76745e 1719 break;
2ad9852d 1720
3f76745e 1721 case DW_CFA_advance_loc1:
2e4b9b8c
RH
1722 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1723 fde->dw_fde_current_label, NULL);
bb727b5a 1724 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3f76745e 1725 break;
2ad9852d 1726
3f76745e 1727 case DW_CFA_advance_loc2:
2e4b9b8c
RH
1728 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1729 fde->dw_fde_current_label, NULL);
3f76745e
JM
1730 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1731 break;
2ad9852d 1732
3f76745e 1733 case DW_CFA_advance_loc4:
2e4b9b8c
RH
1734 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1735 fde->dw_fde_current_label, NULL);
3f76745e
JM
1736 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1737 break;
2ad9852d 1738
3f76745e 1739 case DW_CFA_MIPS_advance_loc8:
2e4b9b8c
RH
1740 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1741 fde->dw_fde_current_label, NULL);
1742 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3f76745e 1743 break;
2ad9852d 1744
3f76745e
JM
1745 case DW_CFA_offset_extended:
1746 case DW_CFA_def_cfa:
2ad9852d
RK
1747 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1748 NULL);
2e4b9b8c 1749 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3f76745e 1750 break;
2ad9852d 1751
6bb28965
JM
1752 case DW_CFA_offset_extended_sf:
1753 case DW_CFA_def_cfa_sf:
1754 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1755 NULL);
1756 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1757 break;
1758
3f76745e
JM
1759 case DW_CFA_restore_extended:
1760 case DW_CFA_undefined:
3f76745e
JM
1761 case DW_CFA_same_value:
1762 case DW_CFA_def_cfa_register:
2ad9852d
RK
1763 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1764 NULL);
3f76745e 1765 break;
2ad9852d 1766
3f76745e 1767 case DW_CFA_register:
2ad9852d
RK
1768 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1769 NULL);
1770 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1771 NULL);
3f76745e 1772 break;
2ad9852d 1773
3f76745e 1774 case DW_CFA_def_cfa_offset:
2e4b9b8c
RH
1775 case DW_CFA_GNU_args_size:
1776 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3f76745e 1777 break;
2ad9852d 1778
6bb28965
JM
1779 case DW_CFA_def_cfa_offset_sf:
1780 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1781 break;
1782
c53aa195
JM
1783 case DW_CFA_GNU_window_save:
1784 break;
2ad9852d 1785
7d9d8943 1786 case DW_CFA_def_cfa_expression:
6bb28965 1787 case DW_CFA_expression:
7d9d8943
AM
1788 output_cfa_loc (cfi);
1789 break;
2ad9852d 1790
6bb28965
JM
1791 case DW_CFA_GNU_negative_offset_extended:
1792 /* Obsoleted by DW_CFA_offset_extended_sf. */
1793 abort ();
1794
3f76745e
JM
1795 default:
1796 break;
1797 }
556273e0 1798 }
3f76745e
JM
1799}
1800
1801/* Output the call frame information used to used to record information
1802 that relates to calculating the frame pointer, and records the
1803 location of saved registers. */
1804
1805static void
1806output_call_frame_info (for_eh)
1807 int for_eh;
1808{
b3694847
SS
1809 unsigned int i;
1810 dw_fde_ref fde;
1811 dw_cfi_ref cfi;
27d95cbe 1812 char l1[20], l2[20], section_start_label[20];
52a11cbf
RH
1813 int any_lsda_needed = 0;
1814 char augmentation[6];
e1f9550a
RH
1815 int augmentation_size;
1816 int fde_encoding = DW_EH_PE_absptr;
1817 int per_encoding = DW_EH_PE_absptr;
1818 int lsda_encoding = DW_EH_PE_absptr;
3f76745e 1819
29b91443
JM
1820 /* Don't emit a CIE if there won't be any FDEs. */
1821 if (fde_table_in_use == 0)
1822 return;
1823
2ad9852d
RK
1824 /* If we don't have any functions we'll want to unwind out of, don't emit any
1825 EH unwind information. */
737faf14
JM
1826 if (for_eh)
1827 {
b932f770 1828 int any_eh_needed = flag_asynchronous_unwind_tables;
2ad9852d
RK
1829
1830 for (i = 0; i < fde_table_in_use; i++)
52a11cbf
RH
1831 if (fde_table[i].uses_eh_lsda)
1832 any_eh_needed = any_lsda_needed = 1;
1833 else if (! fde_table[i].nothrow)
1834 any_eh_needed = 1;
1835
1836 if (! any_eh_needed)
1837 return;
737faf14
JM
1838 }
1839
aa0c1401
JL
1840 /* We're going to be generating comments, so turn on app. */
1841 if (flag_debug_asm)
1842 app_enable ();
956d6950 1843
3f76745e 1844 if (for_eh)
07c9d2eb 1845 (*targetm.asm_out.eh_frame_section) ();
3f76745e 1846 else
715bdd29 1847 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
3f76745e 1848
27d95cbe
RH
1849 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1850 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1851
556273e0 1852 /* Output the CIE. */
a6ab3aad
JM
1853 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1854 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2e4b9b8c
RH
1855 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1856 "Length of Common Information Entry");
a6ab3aad
JM
1857 ASM_OUTPUT_LABEL (asm_out_file, l1);
1858
2e4b9b8c
RH
1859 /* Now that the CIE pointer is PC-relative for EH,
1860 use 0 to identify the CIE. */
1861 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1862 (for_eh ? 0 : DW_CIE_ID),
1863 "CIE Identifier Tag");
3f76745e 1864
2e4b9b8c 1865 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
3f76745e 1866
52a11cbf 1867 augmentation[0] = 0;
e1f9550a 1868 augmentation_size = 0;
52a11cbf 1869 if (for_eh)
a6ab3aad 1870 {
e1f9550a
RH
1871 char *p;
1872
52a11cbf
RH
1873 /* Augmentation:
1874 z Indicates that a uleb128 is present to size the
1875 augmentation section.
e1f9550a
RH
1876 L Indicates the encoding (and thus presence) of
1877 an LSDA pointer in the FDE augmentation.
1878 R Indicates a non-default pointer encoding for
1879 FDE code pointers.
1880 P Indicates the presence of an encoding + language
1881 personality routine in the CIE augmentation. */
1882
1883 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1884 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1885 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1886
1887 p = augmentation + 1;
1888 if (eh_personality_libfunc)
1889 {
1890 *p++ = 'P';
1891 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1892 }
52a11cbf 1893 if (any_lsda_needed)
e1f9550a
RH
1894 {
1895 *p++ = 'L';
1896 augmentation_size += 1;
1897 }
1898 if (fde_encoding != DW_EH_PE_absptr)
1899 {
1900 *p++ = 'R';
1901 augmentation_size += 1;
1902 }
1903 if (p > augmentation + 1)
1904 {
1905 augmentation[0] = 'z';
c26fbbca 1906 *p = '\0';
e1f9550a 1907 }
099c8b17
RH
1908
1909 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1910 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
1911 {
1912 int offset = ( 4 /* Length */
1913 + 4 /* CIE Id */
1914 + 1 /* CIE version */
1915 + strlen (augmentation) + 1 /* Augmentation */
1916 + size_of_uleb128 (1) /* Code alignment */
1917 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
1918 + 1 /* RA column */
1919 + 1 /* Augmentation size */
1920 + 1 /* Personality encoding */ );
1921 int pad = -offset & (PTR_SIZE - 1);
1922
1923 augmentation_size += pad;
1924
1925 /* Augmentations should be small, so there's scarce need to
1926 iterate for a solution. Die if we exceed one uleb128 byte. */
1927 if (size_of_uleb128 (augmentation_size) != 1)
1928 abort ();
1929 }
a6ab3aad 1930 }
3f76745e 1931
2ad9852d 1932 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2e4b9b8c 1933 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2e4b9b8c
RH
1934 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
1935 "CIE Data Alignment Factor");
2e4b9b8c 1936 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
3f76745e 1937
52a11cbf
RH
1938 if (augmentation[0])
1939 {
e1f9550a 1940 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
52a11cbf 1941 if (eh_personality_libfunc)
e1f9550a
RH
1942 {
1943 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
1944 eh_data_format_name (per_encoding));
1945 dw2_asm_output_encoded_addr_rtx (per_encoding,
1946 eh_personality_libfunc, NULL);
1947 }
2ad9852d 1948
e1f9550a
RH
1949 if (any_lsda_needed)
1950 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
1951 eh_data_format_name (lsda_encoding));
2ad9852d 1952
e1f9550a
RH
1953 if (fde_encoding != DW_EH_PE_absptr)
1954 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
1955 eh_data_format_name (fde_encoding));
52a11cbf
RH
1956 }
1957
3f76745e 1958 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
12f0b96b 1959 output_cfi (cfi, NULL, for_eh);
3f76745e
JM
1960
1961 /* Pad the CIE out to an address sized boundary. */
c26fbbca 1962 ASM_OUTPUT_ALIGN (asm_out_file,
12f0b96b 1963 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
a6ab3aad 1964 ASM_OUTPUT_LABEL (asm_out_file, l2);
3f76745e
JM
1965
1966 /* Loop through all of the FDE's. */
2ad9852d 1967 for (i = 0; i < fde_table_in_use; i++)
3f76745e
JM
1968 {
1969 fde = &fde_table[i];
3f76745e 1970
52a11cbf 1971 /* Don't emit EH unwind info for leaf functions that don't need it. */
194734e9
JH
1972 if (!flag_asynchronous_unwind_tables && for_eh && fde->nothrow
1973 && ! fde->uses_eh_lsda)
737faf14
JM
1974 continue;
1975
2e4b9b8c 1976 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, FDE_LABEL, for_eh + i * 2);
556273e0
KH
1977 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
1978 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2e4b9b8c
RH
1979 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1980 "FDE Length");
a6ab3aad
JM
1981 ASM_OUTPUT_LABEL (asm_out_file, l1);
1982
3f76745e 1983 if (for_eh)
27d95cbe 1984 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
3f76745e 1985 else
27d95cbe 1986 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2e4b9b8c 1987 "FDE CIE offset");
3f76745e 1988
e1f9550a
RH
1989 if (for_eh)
1990 {
1991 dw2_asm_output_encoded_addr_rtx (fde_encoding,
1992 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
1993 "FDE initial location");
1994 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
c26fbbca 1995 fde->dw_fde_end, fde->dw_fde_begin,
e1f9550a
RH
1996 "FDE address range");
1997 }
1998 else
1999 {
2000 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2001 "FDE initial location");
c26fbbca
KH
2002 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2003 fde->dw_fde_end, fde->dw_fde_begin,
e1f9550a
RH
2004 "FDE address range");
2005 }
3f76745e 2006
52a11cbf
RH
2007 if (augmentation[0])
2008 {
e1f9550a 2009 if (any_lsda_needed)
52a11cbf 2010 {
099c8b17
RH
2011 int size = size_of_encoded_value (lsda_encoding);
2012
2013 if (lsda_encoding == DW_EH_PE_aligned)
2014 {
2015 int offset = ( 4 /* Length */
2016 + 4 /* CIE offset */
2017 + 2 * size_of_encoded_value (fde_encoding)
2018 + 1 /* Augmentation size */ );
2019 int pad = -offset & (PTR_SIZE - 1);
2020
2021 size += pad;
2022 if (size_of_uleb128 (size) != 1)
2023 abort ();
2024 }
2025
2026 dw2_asm_output_data_uleb128 (size, "Augmentation size");
e1f9550a
RH
2027
2028 if (fde->uses_eh_lsda)
2029 {
2030 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2031 fde->funcdef_number);
2032 dw2_asm_output_encoded_addr_rtx (
2033 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2034 "Language Specific Data Area");
2035 }
2036 else
099c8b17
RH
2037 {
2038 if (lsda_encoding == DW_EH_PE_aligned)
2039 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2ad9852d
RK
2040 dw2_asm_output_data
2041 (size_of_encoded_value (lsda_encoding), 0,
2042 "Language Specific Data Area (none)");
099c8b17 2043 }
52a11cbf
RH
2044 }
2045 else
e1f9550a 2046 dw2_asm_output_data_uleb128 (0, "Augmentation size");
52a11cbf
RH
2047 }
2048
3f76745e
JM
2049 /* Loop through the Call Frame Instructions associated with
2050 this FDE. */
2051 fde->dw_fde_current_label = fde->dw_fde_begin;
2052 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
12f0b96b 2053 output_cfi (cfi, fde, for_eh);
3f76745e 2054
a6ab3aad 2055 /* Pad the FDE out to an address sized boundary. */
c26fbbca 2056 ASM_OUTPUT_ALIGN (asm_out_file,
e1f9550a 2057 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
a6ab3aad 2058 ASM_OUTPUT_LABEL (asm_out_file, l2);
3f76745e 2059 }
2e4b9b8c 2060
7c262518 2061#ifndef EH_FRAME_SECTION_NAME
3f76745e 2062 if (for_eh)
2e4b9b8c 2063 dw2_asm_output_data (4, 0, "End of Table");
3f76745e 2064#endif
a6ab3aad
JM
2065#ifdef MIPS_DEBUGGING_INFO
2066 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2067 get a value of 0. Putting .align 0 after the label fixes it. */
2068 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2069#endif
aa0c1401
JL
2070
2071 /* Turn off app to make assembly quicker. */
2072 if (flag_debug_asm)
2073 app_disable ();
a6ab3aad
JM
2074}
2075
3f76745e
JM
2076/* Output a marker (i.e. a label) for the beginning of a function, before
2077 the prologue. */
2078
2079void
653e276c
NB
2080dwarf2out_begin_prologue (line, file)
2081 unsigned int line ATTRIBUTE_UNUSED;
2082 const char *file ATTRIBUTE_UNUSED;
3f76745e
JM
2083{
2084 char label[MAX_ARTIFICIAL_LABEL_BYTES];
b3694847 2085 dw_fde_ref fde;
3f76745e 2086
2a1ee410
RH
2087 current_function_func_begin_label = 0;
2088
2089#ifdef IA64_UNWIND_INFO
2090 /* ??? current_function_func_begin_label is also used by except.c
2091 for call-site information. We must emit this label if it might
2092 be used. */
2093 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2094 && ! dwarf2out_do_frame ())
2095 return;
2096#else
2097 if (! dwarf2out_do_frame ())
2098 return;
2099#endif
2100
2ad9852d 2101 current_funcdef_number++;
3f76745e
JM
2102 function_section (current_function_decl);
2103 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2104 current_funcdef_number);
2a1ee410
RH
2105 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2106 current_funcdef_number);
00262c8a 2107 current_function_func_begin_label = get_identifier (label);
3f76745e 2108
2a1ee410
RH
2109#ifdef IA64_UNWIND_INFO
2110 /* We can elide the fde allocation if we're not emitting debug info. */
2111 if (! dwarf2out_do_frame ())
2112 return;
2113#endif
2114
3f76745e
JM
2115 /* Expand the fde table if necessary. */
2116 if (fde_table_in_use == fde_table_allocated)
2117 {
2118 fde_table_allocated += FDE_TABLE_INCREMENT;
2119 fde_table
2120 = (dw_fde_ref) xrealloc (fde_table,
2121 fde_table_allocated * sizeof (dw_fde_node));
a3f97cbb 2122 }
3f76745e
JM
2123
2124 /* Record the FDE associated with this function. */
2125 current_funcdef_fde = fde_table_in_use;
2126
2127 /* Add the new FDE at the end of the fde_table. */
2128 fde = &fde_table[fde_table_in_use++];
2129 fde->dw_fde_begin = xstrdup (label);
2130 fde->dw_fde_current_label = NULL;
2131 fde->dw_fde_end = NULL;
2132 fde->dw_fde_cfi = NULL;
52a11cbf 2133 fde->funcdef_number = current_funcdef_number;
fb13d4d0 2134 fde->nothrow = current_function_nothrow;
52a11cbf 2135 fde->uses_eh_lsda = cfun->uses_eh_lsda;
737faf14 2136
b57d9225 2137 args_size = old_args_size = 0;
653e276c 2138
2ad9852d
RK
2139 /* We only want to output line number information for the genuine dwarf2
2140 prologue case, not the eh frame case. */
653e276c
NB
2141#ifdef DWARF2_DEBUGGING_INFO
2142 if (file)
2143 dwarf2out_source_line (line, file);
2144#endif
3f76745e
JM
2145}
2146
2147/* Output a marker (i.e. a label) for the absolute end of the generated code
2148 for a function definition. This gets called *after* the epilogue code has
2149 been generated. */
2150
2151void
2152dwarf2out_end_epilogue ()
2153{
2154 dw_fde_ref fde;
2155 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2156
2157 /* Output a label to mark the endpoint of the code generated for this
3ef42a0c 2158 function. */
3f76745e
JM
2159 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
2160 ASM_OUTPUT_LABEL (asm_out_file, label);
2161 fde = &fde_table[fde_table_in_use - 1];
2162 fde->dw_fde_end = xstrdup (label);
3f76745e
JM
2163}
2164
2165void
2166dwarf2out_frame_init ()
2167{
2168 /* Allocate the initial hunk of the fde_table. */
3de90026 2169 fde_table = (dw_fde_ref) xcalloc (FDE_TABLE_INCREMENT, sizeof (dw_fde_node));
3f76745e
JM
2170 fde_table_allocated = FDE_TABLE_INCREMENT;
2171 fde_table_in_use = 0;
2172
2173 /* Generate the CFA instructions common to all FDE's. Do it now for the
2174 sake of lookup_cfa. */
2175
a6ab3aad 2176#ifdef DWARF2_UNWIND_INFO
91193900
AS
2177 /* On entry, the Canonical Frame Address is at SP. */
2178 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2179 initial_return_save (INCOMING_RETURN_ADDR_RTX);
3f76745e
JM
2180#endif
2181}
2182
2183void
2184dwarf2out_frame_finish ()
2185{
3f76745e 2186 /* Output call frame information. */
7a0c8d71 2187 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3f76745e 2188 output_call_frame_info (0);
2ad9852d 2189
ddee9e8d 2190 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
3f76745e 2191 output_call_frame_info (1);
556273e0 2192}
7d9d8943
AM
2193\f
2194/* And now, the subset of the debugging information support code necessary
2195 for emitting location expressions. */
3f76745e 2196
7d9d8943
AM
2197typedef struct dw_val_struct *dw_val_ref;
2198typedef struct die_struct *dw_die_ref;
2199typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
63e46568 2200typedef struct dw_loc_list_struct *dw_loc_list_ref;
3f76745e
JM
2201
2202/* Each DIE may have a series of attribute/value pairs. Values
2203 can take on several forms. The forms that are used in this
2204 implementation are listed below. */
2205
2206typedef enum
2207{
2208 dw_val_class_addr,
a20612aa 2209 dw_val_class_offset,
3f76745e 2210 dw_val_class_loc,
63e46568 2211 dw_val_class_loc_list,
2bee6045 2212 dw_val_class_range_list,
3f76745e
JM
2213 dw_val_class_const,
2214 dw_val_class_unsigned_const,
2215 dw_val_class_long_long,
2216 dw_val_class_float,
2217 dw_val_class_flag,
2218 dw_val_class_die_ref,
2219 dw_val_class_fde_ref,
2220 dw_val_class_lbl_id,
8b790721 2221 dw_val_class_lbl_offset,
3f76745e 2222 dw_val_class_str
a3f97cbb 2223}
3f76745e 2224dw_val_class;
a3f97cbb 2225
3f76745e 2226/* Describe a double word constant value. */
21217bd0 2227/* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
3f76745e
JM
2228
2229typedef struct dw_long_long_struct
a3f97cbb 2230{
3f76745e
JM
2231 unsigned long hi;
2232 unsigned long low;
2233}
2234dw_long_long_const;
2235
2236/* Describe a floating point constant value. */
2237
2238typedef struct dw_fp_struct
2239{
2240 long *array;
2241 unsigned length;
2242}
2243dw_float_const;
2244
956d6950 2245/* The dw_val_node describes an attribute's value, as it is
3f76745e
JM
2246 represented internally. */
2247
2248typedef struct dw_val_struct
2249{
2250 dw_val_class val_class;
2251 union
a3f97cbb 2252 {
1865dbb5 2253 rtx val_addr;
a20612aa 2254 long unsigned val_offset;
63e46568 2255 dw_loc_list_ref val_loc_list;
3f76745e
JM
2256 dw_loc_descr_ref val_loc;
2257 long int val_int;
2258 long unsigned val_unsigned;
2259 dw_long_long_const val_long_long;
2260 dw_float_const val_float;
2ad9852d
RK
2261 struct
2262 {
2263 dw_die_ref die;
2264 int external;
2265 } val_die_ref;
3f76745e 2266 unsigned val_fde_index;
9eb4015a 2267 struct indirect_string_node *val_str;
3f76745e 2268 char *val_lbl_id;
3f76745e 2269 unsigned char val_flag;
a3f97cbb 2270 }
3f76745e
JM
2271 v;
2272}
2273dw_val_node;
2274
2275/* Locations in memory are described using a sequence of stack machine
2276 operations. */
2277
2278typedef struct dw_loc_descr_struct
2279{
2280 dw_loc_descr_ref dw_loc_next;
2281 enum dwarf_location_atom dw_loc_opc;
2282 dw_val_node dw_loc_oprnd1;
2283 dw_val_node dw_loc_oprnd2;
d8041cc8 2284 int dw_loc_addr;
3f76745e
JM
2285}
2286dw_loc_descr_node;
2287
63e46568
DB
2288/* Location lists are ranges + location descriptions for that range,
2289 so you can track variables that are in different places over
30f7a378 2290 their entire life. */
63e46568
DB
2291typedef struct dw_loc_list_struct
2292{
2293 dw_loc_list_ref dw_loc_next;
2294 const char *begin; /* Label for begin address of range */
2295 const char *end; /* Label for end address of range */
2ad9852d
RK
2296 char *ll_symbol; /* Label for beginning of location list.
2297 Only on head of list */
63e46568
DB
2298 const char *section; /* Section this loclist is relative to */
2299 dw_loc_descr_ref expr;
2300} dw_loc_list_node;
2301
7d9d8943
AM
2302static const char *dwarf_stack_op_name PARAMS ((unsigned));
2303static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2304 unsigned long,
2305 unsigned long));
2306static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2307 dw_loc_descr_ref));
2308static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2309static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2310static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2311static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
3f76745e 2312
7d9d8943 2313/* Convert a DWARF stack opcode into its string name. */
3f76745e 2314
7d9d8943
AM
2315static const char *
2316dwarf_stack_op_name (op)
b3694847 2317 unsigned op;
ef76d03b 2318{
7d9d8943
AM
2319 switch (op)
2320 {
2321 case DW_OP_addr:
2322 return "DW_OP_addr";
2323 case DW_OP_deref:
2324 return "DW_OP_deref";
2325 case DW_OP_const1u:
2326 return "DW_OP_const1u";
2327 case DW_OP_const1s:
2328 return "DW_OP_const1s";
2329 case DW_OP_const2u:
2330 return "DW_OP_const2u";
2331 case DW_OP_const2s:
2332 return "DW_OP_const2s";
2333 case DW_OP_const4u:
2334 return "DW_OP_const4u";
2335 case DW_OP_const4s:
2336 return "DW_OP_const4s";
2337 case DW_OP_const8u:
2338 return "DW_OP_const8u";
2339 case DW_OP_const8s:
2340 return "DW_OP_const8s";
2341 case DW_OP_constu:
2342 return "DW_OP_constu";
2343 case DW_OP_consts:
2344 return "DW_OP_consts";
2345 case DW_OP_dup:
2346 return "DW_OP_dup";
2347 case DW_OP_drop:
2348 return "DW_OP_drop";
2349 case DW_OP_over:
2350 return "DW_OP_over";
2351 case DW_OP_pick:
2352 return "DW_OP_pick";
2353 case DW_OP_swap:
2354 return "DW_OP_swap";
2355 case DW_OP_rot:
2356 return "DW_OP_rot";
2357 case DW_OP_xderef:
2358 return "DW_OP_xderef";
2359 case DW_OP_abs:
2360 return "DW_OP_abs";
2361 case DW_OP_and:
2362 return "DW_OP_and";
2363 case DW_OP_div:
2364 return "DW_OP_div";
2365 case DW_OP_minus:
2366 return "DW_OP_minus";
2367 case DW_OP_mod:
2368 return "DW_OP_mod";
2369 case DW_OP_mul:
2370 return "DW_OP_mul";
2371 case DW_OP_neg:
2372 return "DW_OP_neg";
2373 case DW_OP_not:
2374 return "DW_OP_not";
2375 case DW_OP_or:
2376 return "DW_OP_or";
2377 case DW_OP_plus:
2378 return "DW_OP_plus";
2379 case DW_OP_plus_uconst:
2380 return "DW_OP_plus_uconst";
2381 case DW_OP_shl:
2382 return "DW_OP_shl";
2383 case DW_OP_shr:
2384 return "DW_OP_shr";
2385 case DW_OP_shra:
2386 return "DW_OP_shra";
2387 case DW_OP_xor:
2388 return "DW_OP_xor";
2389 case DW_OP_bra:
2390 return "DW_OP_bra";
2391 case DW_OP_eq:
2392 return "DW_OP_eq";
2393 case DW_OP_ge:
2394 return "DW_OP_ge";
2395 case DW_OP_gt:
2396 return "DW_OP_gt";
2397 case DW_OP_le:
2398 return "DW_OP_le";
2399 case DW_OP_lt:
2400 return "DW_OP_lt";
2401 case DW_OP_ne:
2402 return "DW_OP_ne";
2403 case DW_OP_skip:
2404 return "DW_OP_skip";
2405 case DW_OP_lit0:
2406 return "DW_OP_lit0";
2407 case DW_OP_lit1:
2408 return "DW_OP_lit1";
2409 case DW_OP_lit2:
2410 return "DW_OP_lit2";
2411 case DW_OP_lit3:
2412 return "DW_OP_lit3";
2413 case DW_OP_lit4:
2414 return "DW_OP_lit4";
2415 case DW_OP_lit5:
2416 return "DW_OP_lit5";
2417 case DW_OP_lit6:
2418 return "DW_OP_lit6";
2419 case DW_OP_lit7:
2420 return "DW_OP_lit7";
2421 case DW_OP_lit8:
2422 return "DW_OP_lit8";
2423 case DW_OP_lit9:
2424 return "DW_OP_lit9";
2425 case DW_OP_lit10:
2426 return "DW_OP_lit10";
2427 case DW_OP_lit11:
2428 return "DW_OP_lit11";
2429 case DW_OP_lit12:
2430 return "DW_OP_lit12";
2431 case DW_OP_lit13:
2432 return "DW_OP_lit13";
2433 case DW_OP_lit14:
2434 return "DW_OP_lit14";
2435 case DW_OP_lit15:
2436 return "DW_OP_lit15";
2437 case DW_OP_lit16:
2438 return "DW_OP_lit16";
2439 case DW_OP_lit17:
2440 return "DW_OP_lit17";
2441 case DW_OP_lit18:
2442 return "DW_OP_lit18";
2443 case DW_OP_lit19:
2444 return "DW_OP_lit19";
2445 case DW_OP_lit20:
2446 return "DW_OP_lit20";
2447 case DW_OP_lit21:
2448 return "DW_OP_lit21";
2449 case DW_OP_lit22:
2450 return "DW_OP_lit22";
2451 case DW_OP_lit23:
2452 return "DW_OP_lit23";
2453 case DW_OP_lit24:
2454 return "DW_OP_lit24";
2455 case DW_OP_lit25:
2456 return "DW_OP_lit25";
2457 case DW_OP_lit26:
2458 return "DW_OP_lit26";
2459 case DW_OP_lit27:
2460 return "DW_OP_lit27";
2461 case DW_OP_lit28:
2462 return "DW_OP_lit28";
2463 case DW_OP_lit29:
2464 return "DW_OP_lit29";
2465 case DW_OP_lit30:
2466 return "DW_OP_lit30";
2467 case DW_OP_lit31:
2468 return "DW_OP_lit31";
2469 case DW_OP_reg0:
2470 return "DW_OP_reg0";
2471 case DW_OP_reg1:
2472 return "DW_OP_reg1";
2473 case DW_OP_reg2:
2474 return "DW_OP_reg2";
2475 case DW_OP_reg3:
2476 return "DW_OP_reg3";
2477 case DW_OP_reg4:
2478 return "DW_OP_reg4";
2479 case DW_OP_reg5:
2480 return "DW_OP_reg5";
2481 case DW_OP_reg6:
2482 return "DW_OP_reg6";
2483 case DW_OP_reg7:
2484 return "DW_OP_reg7";
2485 case DW_OP_reg8:
2486 return "DW_OP_reg8";
2487 case DW_OP_reg9:
2488 return "DW_OP_reg9";
2489 case DW_OP_reg10:
2490 return "DW_OP_reg10";
2491 case DW_OP_reg11:
2492 return "DW_OP_reg11";
2493 case DW_OP_reg12:
2494 return "DW_OP_reg12";
2495 case DW_OP_reg13:
2496 return "DW_OP_reg13";
2497 case DW_OP_reg14:
2498 return "DW_OP_reg14";
2499 case DW_OP_reg15:
2500 return "DW_OP_reg15";
2501 case DW_OP_reg16:
2502 return "DW_OP_reg16";
2503 case DW_OP_reg17:
2504 return "DW_OP_reg17";
2505 case DW_OP_reg18:
2506 return "DW_OP_reg18";
2507 case DW_OP_reg19:
2508 return "DW_OP_reg19";
2509 case DW_OP_reg20:
2510 return "DW_OP_reg20";
2511 case DW_OP_reg21:
2512 return "DW_OP_reg21";
2513 case DW_OP_reg22:
2514 return "DW_OP_reg22";
2515 case DW_OP_reg23:
2516 return "DW_OP_reg23";
2517 case DW_OP_reg24:
2518 return "DW_OP_reg24";
2519 case DW_OP_reg25:
2520 return "DW_OP_reg25";
2521 case DW_OP_reg26:
2522 return "DW_OP_reg26";
2523 case DW_OP_reg27:
2524 return "DW_OP_reg27";
2525 case DW_OP_reg28:
2526 return "DW_OP_reg28";
2527 case DW_OP_reg29:
2528 return "DW_OP_reg29";
2529 case DW_OP_reg30:
2530 return "DW_OP_reg30";
2531 case DW_OP_reg31:
2532 return "DW_OP_reg31";
2533 case DW_OP_breg0:
2534 return "DW_OP_breg0";
2535 case DW_OP_breg1:
2536 return "DW_OP_breg1";
2537 case DW_OP_breg2:
2538 return "DW_OP_breg2";
2539 case DW_OP_breg3:
2540 return "DW_OP_breg3";
2541 case DW_OP_breg4:
2542 return "DW_OP_breg4";
2543 case DW_OP_breg5:
2544 return "DW_OP_breg5";
2545 case DW_OP_breg6:
2546 return "DW_OP_breg6";
2547 case DW_OP_breg7:
2548 return "DW_OP_breg7";
2549 case DW_OP_breg8:
2550 return "DW_OP_breg8";
2551 case DW_OP_breg9:
2552 return "DW_OP_breg9";
2553 case DW_OP_breg10:
2554 return "DW_OP_breg10";
2555 case DW_OP_breg11:
2556 return "DW_OP_breg11";
2557 case DW_OP_breg12:
2558 return "DW_OP_breg12";
2559 case DW_OP_breg13:
2560 return "DW_OP_breg13";
2561 case DW_OP_breg14:
2562 return "DW_OP_breg14";
2563 case DW_OP_breg15:
2564 return "DW_OP_breg15";
2565 case DW_OP_breg16:
2566 return "DW_OP_breg16";
2567 case DW_OP_breg17:
2568 return "DW_OP_breg17";
2569 case DW_OP_breg18:
2570 return "DW_OP_breg18";
2571 case DW_OP_breg19:
2572 return "DW_OP_breg19";
2573 case DW_OP_breg20:
2574 return "DW_OP_breg20";
2575 case DW_OP_breg21:
2576 return "DW_OP_breg21";
2577 case DW_OP_breg22:
2578 return "DW_OP_breg22";
2579 case DW_OP_breg23:
2580 return "DW_OP_breg23";
2581 case DW_OP_breg24:
2582 return "DW_OP_breg24";
2583 case DW_OP_breg25:
2584 return "DW_OP_breg25";
2585 case DW_OP_breg26:
2586 return "DW_OP_breg26";
2587 case DW_OP_breg27:
2588 return "DW_OP_breg27";
2589 case DW_OP_breg28:
2590 return "DW_OP_breg28";
2591 case DW_OP_breg29:
2592 return "DW_OP_breg29";
2593 case DW_OP_breg30:
2594 return "DW_OP_breg30";
2595 case DW_OP_breg31:
2596 return "DW_OP_breg31";
2597 case DW_OP_regx:
2598 return "DW_OP_regx";
2599 case DW_OP_fbreg:
2600 return "DW_OP_fbreg";
2601 case DW_OP_bregx:
2602 return "DW_OP_bregx";
2603 case DW_OP_piece:
2604 return "DW_OP_piece";
2605 case DW_OP_deref_size:
2606 return "DW_OP_deref_size";
2607 case DW_OP_xderef_size:
2608 return "DW_OP_xderef_size";
2609 case DW_OP_nop:
2610 return "DW_OP_nop";
3f76745e 2611 default:
7d9d8943 2612 return "OP_<unknown>";
3f76745e 2613 }
bdb669cb 2614}
a3f97cbb 2615
7d9d8943
AM
2616/* Return a pointer to a newly allocated location description. Location
2617 descriptions are simple expression terms that can be strung
2618 together to form more complicated location (address) descriptions. */
2619
2620static inline dw_loc_descr_ref
2621new_loc_descr (op, oprnd1, oprnd2)
b3694847
SS
2622 enum dwarf_location_atom op;
2623 unsigned long oprnd1;
2624 unsigned long oprnd2;
4b674448 2625{
5de0e8d4
JM
2626 /* Use xcalloc here so we clear out all of the long_long constant in
2627 the union. */
b3694847 2628 dw_loc_descr_ref descr
5de0e8d4 2629 = (dw_loc_descr_ref) xcalloc (1, sizeof (dw_loc_descr_node));
71dfc51f 2630
7d9d8943
AM
2631 descr->dw_loc_opc = op;
2632 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2633 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2634 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2635 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
71dfc51f 2636
7d9d8943
AM
2637 return descr;
2638}
2639
63e46568 2640
7d9d8943
AM
2641/* Add a location description term to a location description expression. */
2642
2643static inline void
2644add_loc_descr (list_head, descr)
b3694847
SS
2645 dw_loc_descr_ref *list_head;
2646 dw_loc_descr_ref descr;
7d9d8943 2647{
b3694847 2648 dw_loc_descr_ref *d;
7d9d8943
AM
2649
2650 /* Find the end of the chain. */
2651 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2652 ;
2653
2654 *d = descr;
2655}
2656
2657/* Return the size of a location descriptor. */
2658
2659static unsigned long
2660size_of_loc_descr (loc)
b3694847 2661 dw_loc_descr_ref loc;
7d9d8943 2662{
b3694847 2663 unsigned long size = 1;
7d9d8943
AM
2664
2665 switch (loc->dw_loc_opc)
2666 {
2667 case DW_OP_addr:
2668 size += DWARF2_ADDR_SIZE;
2669 break;
2670 case DW_OP_const1u:
2671 case DW_OP_const1s:
2672 size += 1;
2673 break;
2674 case DW_OP_const2u:
2675 case DW_OP_const2s:
2676 size += 2;
2677 break;
2678 case DW_OP_const4u:
2679 case DW_OP_const4s:
2680 size += 4;
2681 break;
2682 case DW_OP_const8u:
2683 case DW_OP_const8s:
2684 size += 8;
2685 break;
2686 case DW_OP_constu:
2687 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2688 break;
2689 case DW_OP_consts:
2690 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2691 break;
2692 case DW_OP_pick:
2693 size += 1;
2694 break;
2695 case DW_OP_plus_uconst:
2696 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2697 break;
2698 case DW_OP_skip:
2699 case DW_OP_bra:
2700 size += 2;
2701 break;
2702 case DW_OP_breg0:
2703 case DW_OP_breg1:
2704 case DW_OP_breg2:
2705 case DW_OP_breg3:
2706 case DW_OP_breg4:
2707 case DW_OP_breg5:
2708 case DW_OP_breg6:
2709 case DW_OP_breg7:
2710 case DW_OP_breg8:
2711 case DW_OP_breg9:
2712 case DW_OP_breg10:
2713 case DW_OP_breg11:
2714 case DW_OP_breg12:
2715 case DW_OP_breg13:
2716 case DW_OP_breg14:
2717 case DW_OP_breg15:
2718 case DW_OP_breg16:
2719 case DW_OP_breg17:
2720 case DW_OP_breg18:
2721 case DW_OP_breg19:
2722 case DW_OP_breg20:
2723 case DW_OP_breg21:
2724 case DW_OP_breg22:
2725 case DW_OP_breg23:
2726 case DW_OP_breg24:
2727 case DW_OP_breg25:
2728 case DW_OP_breg26:
2729 case DW_OP_breg27:
2730 case DW_OP_breg28:
2731 case DW_OP_breg29:
2732 case DW_OP_breg30:
2733 case DW_OP_breg31:
2734 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2735 break;
2736 case DW_OP_regx:
2737 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2738 break;
2739 case DW_OP_fbreg:
2740 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2741 break;
2742 case DW_OP_bregx:
2743 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2744 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2745 break;
2746 case DW_OP_piece:
2747 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2748 break;
2749 case DW_OP_deref_size:
2750 case DW_OP_xderef_size:
2751 size += 1;
2752 break;
3f76745e 2753 default:
7d9d8943 2754 break;
4b674448 2755 }
7d9d8943
AM
2756
2757 return size;
4b674448
JM
2758}
2759
7d9d8943 2760/* Return the size of a series of location descriptors. */
71dfc51f 2761
7d9d8943
AM
2762static unsigned long
2763size_of_locs (loc)
b3694847 2764 dw_loc_descr_ref loc;
4b674448 2765{
2ad9852d 2766 unsigned long size;
7d9d8943 2767
2ad9852d 2768 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
d8041cc8
RH
2769 {
2770 loc->dw_loc_addr = size;
2771 size += size_of_loc_descr (loc);
2772 }
7d9d8943
AM
2773
2774 return size;
4b674448
JM
2775}
2776
7d9d8943 2777/* Output location description stack opcode's operands (if any). */
71dfc51f 2778
7d9d8943
AM
2779static void
2780output_loc_operands (loc)
b3694847 2781 dw_loc_descr_ref loc;
a3f97cbb 2782{
b3694847
SS
2783 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2784 dw_val_ref val2 = &loc->dw_loc_oprnd2;
7d9d8943
AM
2785
2786 switch (loc->dw_loc_opc)
a3f97cbb 2787 {
0517872a 2788#ifdef DWARF2_DEBUGGING_INFO
3f76745e 2789 case DW_OP_addr:
2e4b9b8c 2790 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
7d9d8943 2791 break;
3f76745e 2792 case DW_OP_const2u:
3f76745e 2793 case DW_OP_const2s:
2e4b9b8c 2794 dw2_asm_output_data (2, val1->v.val_int, NULL);
7d9d8943 2795 break;
3f76745e 2796 case DW_OP_const4u:
3f76745e 2797 case DW_OP_const4s:
2e4b9b8c 2798 dw2_asm_output_data (4, val1->v.val_int, NULL);
7d9d8943 2799 break;
3f76745e 2800 case DW_OP_const8u:
3f76745e 2801 case DW_OP_const8s:
2e4b9b8c
RH
2802 if (HOST_BITS_PER_LONG < 64)
2803 abort ();
2804 dw2_asm_output_data (8, val1->v.val_int, NULL);
7d9d8943 2805 break;
0517872a
JM
2806 case DW_OP_skip:
2807 case DW_OP_bra:
d8041cc8
RH
2808 {
2809 int offset;
2810
2811 if (val1->val_class == dw_val_class_loc)
2812 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2813 else
2814 abort ();
2815
2e4b9b8c 2816 dw2_asm_output_data (2, offset, NULL);
d8041cc8 2817 }
0517872a 2818 break;
3139472f
JM
2819#else
2820 case DW_OP_addr:
2821 case DW_OP_const2u:
2822 case DW_OP_const2s:
2823 case DW_OP_const4u:
2824 case DW_OP_const4s:
2825 case DW_OP_const8u:
2826 case DW_OP_const8s:
2827 case DW_OP_skip:
2828 case DW_OP_bra:
2829 /* We currently don't make any attempt to make sure these are
2830 aligned properly like we do for the main unwind info, so
2831 don't support emitting things larger than a byte if we're
2832 only doing unwinding. */
2833 abort ();
0517872a
JM
2834#endif
2835 case DW_OP_const1u:
2836 case DW_OP_const1s:
2e4b9b8c 2837 dw2_asm_output_data (1, val1->v.val_int, NULL);
0517872a 2838 break;
3f76745e 2839 case DW_OP_constu:
2e4b9b8c 2840 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2841 break;
3f76745e 2842 case DW_OP_consts:
2e4b9b8c 2843 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943
AM
2844 break;
2845 case DW_OP_pick:
2e4b9b8c 2846 dw2_asm_output_data (1, val1->v.val_int, NULL);
7d9d8943
AM
2847 break;
2848 case DW_OP_plus_uconst:
2e4b9b8c 2849 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2850 break;
3f76745e 2851 case DW_OP_breg0:
3f76745e 2852 case DW_OP_breg1:
3f76745e 2853 case DW_OP_breg2:
3f76745e 2854 case DW_OP_breg3:
3f76745e 2855 case DW_OP_breg4:
3f76745e 2856 case DW_OP_breg5:
3f76745e 2857 case DW_OP_breg6:
3f76745e 2858 case DW_OP_breg7:
3f76745e 2859 case DW_OP_breg8:
3f76745e 2860 case DW_OP_breg9:
3f76745e 2861 case DW_OP_breg10:
3f76745e 2862 case DW_OP_breg11:
3f76745e 2863 case DW_OP_breg12:
3f76745e 2864 case DW_OP_breg13:
3f76745e 2865 case DW_OP_breg14:
3f76745e 2866 case DW_OP_breg15:
3f76745e 2867 case DW_OP_breg16:
3f76745e 2868 case DW_OP_breg17:
3f76745e 2869 case DW_OP_breg18:
3f76745e 2870 case DW_OP_breg19:
3f76745e 2871 case DW_OP_breg20:
3f76745e 2872 case DW_OP_breg21:
3f76745e 2873 case DW_OP_breg22:
3f76745e 2874 case DW_OP_breg23:
3f76745e 2875 case DW_OP_breg24:
3f76745e 2876 case DW_OP_breg25:
3f76745e 2877 case DW_OP_breg26:
3f76745e 2878 case DW_OP_breg27:
3f76745e 2879 case DW_OP_breg28:
3f76745e 2880 case DW_OP_breg29:
3f76745e 2881 case DW_OP_breg30:
3f76745e 2882 case DW_OP_breg31:
2e4b9b8c 2883 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943 2884 break;
3f76745e 2885 case DW_OP_regx:
2e4b9b8c 2886 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2887 break;
3f76745e 2888 case DW_OP_fbreg:
2e4b9b8c 2889 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
7d9d8943 2890 break;
3f76745e 2891 case DW_OP_bregx:
2e4b9b8c
RH
2892 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2893 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
7d9d8943 2894 break;
3f76745e 2895 case DW_OP_piece:
2e4b9b8c 2896 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
7d9d8943 2897 break;
3f76745e 2898 case DW_OP_deref_size:
3f76745e 2899 case DW_OP_xderef_size:
2e4b9b8c 2900 dw2_asm_output_data (1, val1->v.val_int, NULL);
7d9d8943
AM
2901 break;
2902 default:
3139472f
JM
2903 /* Other codes have no operands. */
2904 break;
7d9d8943
AM
2905 }
2906}
2907
2908/* Output a sequence of location operations. */
2909
2910static void
2911output_loc_sequence (loc)
2912 dw_loc_descr_ref loc;
2913{
2914 for (; loc != NULL; loc = loc->dw_loc_next)
2915 {
2916 /* Output the opcode. */
2e4b9b8c
RH
2917 dw2_asm_output_data (1, loc->dw_loc_opc,
2918 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
7d9d8943
AM
2919
2920 /* Output the operand(s) (if any). */
2921 output_loc_operands (loc);
2922 }
2923}
2924
2925/* This routine will generate the correct assembly data for a location
2926 description based on a cfi entry with a complex address. */
2927
2928static void
2929output_cfa_loc (cfi)
2930 dw_cfi_ref cfi;
2931{
2932 dw_loc_descr_ref loc;
2933 unsigned long size;
2934
2935 /* Output the size of the block. */
2936 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2937 size = size_of_locs (loc);
2e4b9b8c 2938 dw2_asm_output_data_uleb128 (size, NULL);
7d9d8943
AM
2939
2940 /* Now output the operations themselves. */
2941 output_loc_sequence (loc);
2942}
2943
dd49a9ec 2944/* This function builds a dwarf location descriptor sequence from
556273e0 2945 a dw_cfa_location. */
7d9d8943
AM
2946
2947static struct dw_loc_descr_struct *
2948build_cfa_loc (cfa)
2949 dw_cfa_location *cfa;
2950{
2951 struct dw_loc_descr_struct *head, *tmp;
2952
2953 if (cfa->indirect == 0)
2954 abort ();
2955
2956 if (cfa->base_offset)
f299afab
HPN
2957 {
2958 if (cfa->reg <= 31)
2959 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
2960 else
2961 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
2962 }
2963 else if (cfa->reg <= 31)
7d9d8943 2964 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
f299afab
HPN
2965 else
2966 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
2ad9852d 2967
7d9d8943
AM
2968 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2969 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2970 add_loc_descr (&head, tmp);
2971 if (cfa->offset != 0)
2972 {
2973 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
2974 add_loc_descr (&head, tmp);
2975 }
2ad9852d 2976
7d9d8943
AM
2977 return head;
2978}
2979
2ad9852d
RK
2980/* This function fills in aa dw_cfa_location structure from a dwarf location
2981 descriptor sequence. */
7d9d8943
AM
2982
2983static void
2984get_cfa_from_loc_descr (cfa, loc)
2985 dw_cfa_location *cfa;
556273e0 2986 struct dw_loc_descr_struct *loc;
7d9d8943 2987{
556273e0 2988 struct dw_loc_descr_struct *ptr;
7d9d8943
AM
2989 cfa->offset = 0;
2990 cfa->base_offset = 0;
2991 cfa->indirect = 0;
2992 cfa->reg = -1;
2993
2994 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
2995 {
2996 enum dwarf_location_atom op = ptr->dw_loc_opc;
2ad9852d 2997
7d9d8943 2998 switch (op)
556273e0 2999 {
7d9d8943
AM
3000 case DW_OP_reg0:
3001 case DW_OP_reg1:
3002 case DW_OP_reg2:
3003 case DW_OP_reg3:
3004 case DW_OP_reg4:
3005 case DW_OP_reg5:
3006 case DW_OP_reg6:
3007 case DW_OP_reg7:
3008 case DW_OP_reg8:
3009 case DW_OP_reg9:
3010 case DW_OP_reg10:
3011 case DW_OP_reg11:
3012 case DW_OP_reg12:
3013 case DW_OP_reg13:
3014 case DW_OP_reg14:
3015 case DW_OP_reg15:
3016 case DW_OP_reg16:
3017 case DW_OP_reg17:
3018 case DW_OP_reg18:
3019 case DW_OP_reg19:
3020 case DW_OP_reg20:
3021 case DW_OP_reg21:
3022 case DW_OP_reg22:
3023 case DW_OP_reg23:
3024 case DW_OP_reg24:
3025 case DW_OP_reg25:
3026 case DW_OP_reg26:
3027 case DW_OP_reg27:
3028 case DW_OP_reg28:
3029 case DW_OP_reg29:
3030 case DW_OP_reg30:
3031 case DW_OP_reg31:
3032 cfa->reg = op - DW_OP_reg0;
3033 break;
3034 case DW_OP_regx:
3035 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3036 break;
3037 case DW_OP_breg0:
3038 case DW_OP_breg1:
3039 case DW_OP_breg2:
3040 case DW_OP_breg3:
3041 case DW_OP_breg4:
3042 case DW_OP_breg5:
3043 case DW_OP_breg6:
3044 case DW_OP_breg7:
3045 case DW_OP_breg8:
3046 case DW_OP_breg9:
3047 case DW_OP_breg10:
3048 case DW_OP_breg11:
3049 case DW_OP_breg12:
3050 case DW_OP_breg13:
3051 case DW_OP_breg14:
3052 case DW_OP_breg15:
3053 case DW_OP_breg16:
3054 case DW_OP_breg17:
3055 case DW_OP_breg18:
3056 case DW_OP_breg19:
3057 case DW_OP_breg20:
3058 case DW_OP_breg21:
3059 case DW_OP_breg22:
3060 case DW_OP_breg23:
3061 case DW_OP_breg24:
3062 case DW_OP_breg25:
3063 case DW_OP_breg26:
3064 case DW_OP_breg27:
3065 case DW_OP_breg28:
3066 case DW_OP_breg29:
3067 case DW_OP_breg30:
3068 case DW_OP_breg31:
3069 cfa->reg = op - DW_OP_breg0;
3070 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3071 break;
3072 case DW_OP_bregx:
3073 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3074 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3075 break;
3076 case DW_OP_deref:
3077 cfa->indirect = 1;
3078 break;
3079 case DW_OP_plus_uconst:
556273e0 3080 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
7d9d8943
AM
3081 break;
3082 default:
a1f300c0 3083 internal_error ("DW_LOC_OP %s not implemented\n",
400500c4 3084 dwarf_stack_op_name (ptr->dw_loc_opc));
7d9d8943
AM
3085 }
3086 }
3087}
3088#endif /* .debug_frame support */
3089\f
3090/* And now, the support for symbolic debugging information. */
3091#ifdef DWARF2_DEBUGGING_INFO
3092
117f9d28
GS
3093/* .debug_str support. */
3094static hashnode indirect_string_alloc PARAMS ((hash_table *));
3095static int output_indirect_string PARAMS ((struct cpp_reader *,
3096 hashnode, const PTR));
3097
3098
e2a12aca
NB
3099static void dwarf2out_init PARAMS ((const char *));
3100static void dwarf2out_finish PARAMS ((const char *));
7f905405
NB
3101static void dwarf2out_define PARAMS ((unsigned int, const char *));
3102static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3103static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3104static void dwarf2out_end_source_file PARAMS ((unsigned));
e2a12aca
NB
3105static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3106static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
e1772ac0 3107static bool dwarf2out_ignore_block PARAMS ((tree));
2b85879e 3108static void dwarf2out_global_decl PARAMS ((tree));
e1772ac0 3109static void dwarf2out_abstract_function PARAMS ((tree));
7f905405
NB
3110
3111/* The debug hooks structure. */
3112
54b6670a 3113const struct gcc_debug_hooks dwarf2_debug_hooks =
7f905405
NB
3114{
3115 dwarf2out_init,
3116 dwarf2out_finish,
3117 dwarf2out_define,
3118 dwarf2out_undef,
3119 dwarf2out_start_source_file,
a5a42b92
NB
3120 dwarf2out_end_source_file,
3121 dwarf2out_begin_block,
e2a12aca 3122 dwarf2out_end_block,
e1772ac0 3123 dwarf2out_ignore_block,
e2a12aca 3124 dwarf2out_source_line,
653e276c
NB
3125 dwarf2out_begin_prologue,
3126 debug_nothing_int, /* end_prologue */
e2a12aca 3127 dwarf2out_end_epilogue,
653e276c 3128 debug_nothing_tree, /* begin_function */
2b85879e
NB
3129 debug_nothing_int, /* end_function */
3130 dwarf2out_decl, /* function_decl */
3131 dwarf2out_global_decl,
e1772ac0
NB
3132 debug_nothing_tree, /* deferred_inline_function */
3133 /* The DWARF 2 backend tries to reduce debugging bloat by not
3134 emitting the abstract description of inline functions until
3135 something tries to reference them. */
3136 dwarf2out_abstract_function, /* outlining_inline_function */
3137 debug_nothing_rtx /* label */
7f905405
NB
3138};
3139\f
7d9d8943
AM
3140/* NOTE: In the comments in this file, many references are made to
3141 "Debugging Information Entries". This term is abbreviated as `DIE'
3142 throughout the remainder of this file. */
3143
3144/* An internal representation of the DWARF output is built, and then
3145 walked to generate the DWARF debugging info. The walk of the internal
3146 representation is done after the entire program has been compiled.
3147 The types below are used to describe the internal representation. */
3148
3149/* Various DIE's use offsets relative to the beginning of the
3150 .debug_info section to refer to each other. */
3151
3152typedef long int dw_offset;
3153
3154/* Define typedefs here to avoid circular dependencies. */
3155
3156typedef struct dw_attr_struct *dw_attr_ref;
3157typedef struct dw_line_info_struct *dw_line_info_ref;
3158typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3159typedef struct pubname_struct *pubname_ref;
a20612aa 3160typedef struct dw_ranges_struct *dw_ranges_ref;
7d9d8943
AM
3161
3162/* Each entry in the line_info_table maintains the file and
3163 line number associated with the label generated for that
3164 entry. The label gives the PC value associated with
3165 the line number entry. */
3166
3167typedef struct dw_line_info_struct
3168{
3169 unsigned long dw_file_num;
3170 unsigned long dw_line_num;
3171}
3172dw_line_info_entry;
3173
3174/* Line information for functions in separate sections; each one gets its
3175 own sequence. */
3176typedef struct dw_separate_line_info_struct
3177{
3178 unsigned long dw_file_num;
3179 unsigned long dw_line_num;
3180 unsigned long function;
3181}
3182dw_separate_line_info_entry;
3183
3184/* Each DIE attribute has a field specifying the attribute kind,
3185 a link to the next attribute in the chain, and an attribute value.
3186 Attributes are typically linked below the DIE they modify. */
3187
3188typedef struct dw_attr_struct
3189{
3190 enum dwarf_attribute dw_attr;
3191 dw_attr_ref dw_attr_next;
3192 dw_val_node dw_attr_val;
3193}
3194dw_attr_node;
3195
3196/* The Debugging Information Entry (DIE) structure */
3197
3198typedef struct die_struct
3199{
3200 enum dwarf_tag die_tag;
881c6935 3201 char *die_symbol;
7d9d8943
AM
3202 dw_attr_ref die_attr;
3203 dw_die_ref die_parent;
3204 dw_die_ref die_child;
3205 dw_die_ref die_sib;
3206 dw_offset die_offset;
3207 unsigned long die_abbrev;
1bfb5f8f 3208 int die_mark;
7d9d8943
AM
3209}
3210die_node;
3211
3212/* The pubname structure */
3213
3214typedef struct pubname_struct
3215{
3216 dw_die_ref die;
556273e0 3217 char *name;
7d9d8943
AM
3218}
3219pubname_entry;
3220
a20612aa
RH
3221struct dw_ranges_struct
3222{
3223 int block_num;
3224};
3225
7d9d8943
AM
3226/* The limbo die list structure. */
3227typedef struct limbo_die_struct
3228{
3229 dw_die_ref die;
54ba1f0d 3230 tree created_for;
7d9d8943
AM
3231 struct limbo_die_struct *next;
3232}
3233limbo_die_node;
3234
3235/* How to start an assembler comment. */
3236#ifndef ASM_COMMENT_START
3237#define ASM_COMMENT_START ";#"
3238#endif
3239
3240/* Define a macro which returns non-zero for a TYPE_DECL which was
3241 implicitly generated for a tagged type.
3242
3243 Note that unlike the gcc front end (which generates a NULL named
3244 TYPE_DECL node for each complete tagged type, each array type, and
3245 each function type node created) the g++ front end generates a
3246 _named_ TYPE_DECL node for each tagged type node created.
3247 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3248 generate a DW_TAG_typedef DIE for them. */
3249
3250#define TYPE_DECL_IS_STUB(decl) \
3251 (DECL_NAME (decl) == NULL_TREE \
3252 || (DECL_ARTIFICIAL (decl) \
3253 && is_tagged_type (TREE_TYPE (decl)) \
3254 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3255 /* This is necessary for stub decls that \
3256 appear in nested inline functions. */ \
3257 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3258 && (decl_ultimate_origin (decl) \
3259 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3260
3261/* Information concerning the compilation unit's programming
3262 language, and compiler version. */
3263
7d9d8943
AM
3264/* Fixed size portion of the DWARF compilation unit header. */
3265#define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3266
3267/* Fixed size portion of debugging line information prolog. */
3268#define DWARF_LINE_PROLOG_HEADER_SIZE 5
3269
3270/* Fixed size portion of public names info. */
3271#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3272
3273/* Fixed size portion of the address range info. */
3274#define DWARF_ARANGES_HEADER_SIZE \
3275 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3276 - DWARF_OFFSET_SIZE)
3277
3278/* Size of padding portion in the address range info. It must be
3279 aligned to twice the pointer size. */
3280#define DWARF_ARANGES_PAD_SIZE \
3281 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3282 - (2 * DWARF_OFFSET_SIZE + 4))
3283
9d147085 3284/* Use assembler line directives if available. */
7d9d8943 3285#ifndef DWARF2_ASM_LINE_DEBUG_INFO
9d147085
RH
3286#ifdef HAVE_AS_DWARF2_DEBUG_LINE
3287#define DWARF2_ASM_LINE_DEBUG_INFO 1
3288#else
7d9d8943
AM
3289#define DWARF2_ASM_LINE_DEBUG_INFO 0
3290#endif
9d147085 3291#endif
7d9d8943 3292
7d9d8943
AM
3293/* Minimum line offset in a special line info. opcode.
3294 This value was chosen to give a reasonable range of values. */
3295#define DWARF_LINE_BASE -10
3296
a1f300c0 3297/* First special line opcode - leave room for the standard opcodes. */
7d9d8943
AM
3298#define DWARF_LINE_OPCODE_BASE 10
3299
3300/* Range of line offsets in a special line info. opcode. */
3301#define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3302
3303/* Flag that indicates the initial value of the is_stmt_start flag.
3304 In the present implementation, we do not mark any lines as
3305 the beginning of a source statement, because that information
3306 is not made available by the GCC front-end. */
3307#define DWARF_LINE_DEFAULT_IS_STMT_START 1
3308
3309/* This location is used by calc_die_sizes() to keep track
3310 the offset of each DIE within the .debug_info section. */
3311static unsigned long next_die_offset;
3312
3313/* Record the root of the DIE's built for the current compilation unit. */
3314static dw_die_ref comp_unit_die;
3315
3316/* A list of DIEs with a NULL parent waiting to be relocated. */
3317static limbo_die_node *limbo_die_list = 0;
3318
2e18bbae
RH
3319/* Structure used by lookup_filename to manage sets of filenames. */
3320struct file_table
3321{
3322 char **table;
3323 unsigned allocated;
3324 unsigned in_use;
3325 unsigned last_lookup_index;
3326};
7d9d8943
AM
3327
3328/* Size (in elements) of increments by which we may expand the filename
3329 table. */
3330#define FILE_TABLE_INCREMENT 64
3331
981975b6
RH
3332/* Filenames referenced by this compilation unit. */
3333static struct file_table file_table;
2e18bbae 3334
7d9d8943
AM
3335/* Local pointer to the name of the main input file. Initialized in
3336 dwarf2out_init. */
3337static const char *primary_filename;
3338
3339/* A pointer to the base of a table of references to DIE's that describe
3340 declarations. The table is indexed by DECL_UID() which is a unique
3341 number identifying each decl. */
3342static dw_die_ref *decl_die_table;
3343
3344/* Number of elements currently allocated for the decl_die_table. */
3345static unsigned decl_die_table_allocated;
3346
3347/* Number of elements in decl_die_table currently in use. */
3348static unsigned decl_die_table_in_use;
3349
3350/* Size (in elements) of increments by which we may expand the
3351 decl_die_table. */
3352#define DECL_DIE_TABLE_INCREMENT 256
3353
3354/* A pointer to the base of a table of references to declaration
3355 scopes. This table is a display which tracks the nesting
3356 of declaration scopes at the current scope and containing
3357 scopes. This table is used to find the proper place to
3358 define type declaration DIE's. */
244a4af0 3359varray_type decl_scope_table;
7d9d8943
AM
3360
3361/* A pointer to the base of a list of references to DIE's that
3362 are uniquely identified by their tag, presence/absence of
3363 children DIE's, and list of attribute/value pairs. */
3364static dw_die_ref *abbrev_die_table;
3365
3366/* Number of elements currently allocated for abbrev_die_table. */
3367static unsigned abbrev_die_table_allocated;
3368
3369/* Number of elements in type_die_table currently in use. */
3370static unsigned abbrev_die_table_in_use;
3371
3372/* Size (in elements) of increments by which we may expand the
3373 abbrev_die_table. */
3374#define ABBREV_DIE_TABLE_INCREMENT 256
3375
3376/* A pointer to the base of a table that contains line information
3377 for each source code line in .text in the compilation unit. */
3378static dw_line_info_ref line_info_table;
3379
3380/* Number of elements currently allocated for line_info_table. */
3381static unsigned line_info_table_allocated;
3382
3383/* Number of elements in separate_line_info_table currently in use. */
3384static unsigned separate_line_info_table_in_use;
3385
3386/* A pointer to the base of a table that contains line information
3387 for each source code line outside of .text in the compilation unit. */
3388static dw_separate_line_info_ref separate_line_info_table;
3389
3390/* Number of elements currently allocated for separate_line_info_table. */
3391static unsigned separate_line_info_table_allocated;
3392
3393/* Number of elements in line_info_table currently in use. */
3394static unsigned line_info_table_in_use;
3395
3396/* Size (in elements) of increments by which we may expand the
3397 line_info_table. */
3398#define LINE_INFO_TABLE_INCREMENT 1024
3399
3400/* A pointer to the base of a table that contains a list of publicly
3401 accessible names. */
3402static pubname_ref pubname_table;
3403
3404/* Number of elements currently allocated for pubname_table. */
3405static unsigned pubname_table_allocated;
3406
3407/* Number of elements in pubname_table currently in use. */
3408static unsigned pubname_table_in_use;
3409
3410/* Size (in elements) of increments by which we may expand the
3411 pubname_table. */
3412#define PUBNAME_TABLE_INCREMENT 64
3413
a20612aa
RH
3414/* Array of dies for which we should generate .debug_arange info. */
3415static dw_die_ref *arange_table;
7d9d8943
AM
3416
3417/* Number of elements currently allocated for arange_table. */
3418static unsigned arange_table_allocated;
3419
3420/* Number of elements in arange_table currently in use. */
3421static unsigned arange_table_in_use;
3422
3423/* Size (in elements) of increments by which we may expand the
3424 arange_table. */
3425#define ARANGE_TABLE_INCREMENT 64
3426
a20612aa
RH
3427/* Array of dies for which we should generate .debug_ranges info. */
3428static dw_ranges_ref ranges_table;
3429
3430/* Number of elements currently allocated for ranges_table. */
3431static unsigned ranges_table_allocated;
3432
3433/* Number of elements in ranges_table currently in use. */
3434static unsigned ranges_table_in_use;
3435
3436/* Size (in elements) of increments by which we may expand the
3437 ranges_table. */
3438#define RANGES_TABLE_INCREMENT 64
3439
63e46568
DB
3440/* Whether we have location lists that need outputting */
3441static unsigned have_location_lists;
3442
7d9d8943 3443/* A pointer to the base of a list of incomplete types which might be
244a4af0 3444 completed at some later time. incomplete_types_list needs to be a VARRAY
2ad9852d 3445 because we want to tell the garbage collector about it. */
244a4af0 3446varray_type incomplete_types;
7d9d8943
AM
3447
3448/* Record whether the function being analyzed contains inlined functions. */
3449static int current_function_has_inlines;
3450#if 0 && defined (MIPS_DEBUGGING_INFO)
3451static int comp_unit_has_inlines;
3452#endif
3453
3454/* Array of RTXes referenced by the debugging information, which therefore
c470afad 3455 must be kept around forever. This is a GC root. */
7d9d8943
AM
3456static varray_type used_rtx_varray;
3457
3458/* Forward declarations for functions defined in this file. */
3459
3460static int is_pseudo_reg PARAMS ((rtx));
3461static tree type_main_variant PARAMS ((tree));
3462static int is_tagged_type PARAMS ((tree));
3463static const char *dwarf_tag_name PARAMS ((unsigned));
3464static const char *dwarf_attr_name PARAMS ((unsigned));
3465static const char *dwarf_form_name PARAMS ((unsigned));
3466#if 0
3467static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3468#endif
3469static tree decl_ultimate_origin PARAMS ((tree));
3470static tree block_ultimate_origin PARAMS ((tree));
3471static tree decl_class_context PARAMS ((tree));
3472static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
2ad9852d 3473static inline dw_val_class AT_class PARAMS ((dw_attr_ref));
7d9d8943
AM
3474static void add_AT_flag PARAMS ((dw_die_ref,
3475 enum dwarf_attribute,
3476 unsigned));
2ad9852d 3477static inline unsigned AT_flag PARAMS ((dw_attr_ref));
7d9d8943
AM
3478static void add_AT_int PARAMS ((dw_die_ref,
3479 enum dwarf_attribute, long));
2ad9852d 3480static inline long int AT_int PARAMS ((dw_attr_ref));
7d9d8943
AM
3481static void add_AT_unsigned PARAMS ((dw_die_ref,
3482 enum dwarf_attribute,
3483 unsigned long));
2ad9852d 3484static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
7d9d8943
AM
3485static void add_AT_long_long PARAMS ((dw_die_ref,
3486 enum dwarf_attribute,
3487 unsigned long,
3488 unsigned long));
3489static void add_AT_float PARAMS ((dw_die_ref,
3490 enum dwarf_attribute,
3491 unsigned, long *));
3492static void add_AT_string PARAMS ((dw_die_ref,
3493 enum dwarf_attribute,
3494 const char *));
2ad9852d
RK
3495static inline const char *AT_string PARAMS ((dw_attr_ref));
3496static int AT_string_form PARAMS ((dw_attr_ref));
7d9d8943
AM
3497static void add_AT_die_ref PARAMS ((dw_die_ref,
3498 enum dwarf_attribute,
3499 dw_die_ref));
2ad9852d
RK
3500static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3501static inline int AT_ref_external PARAMS ((dw_attr_ref));
3502static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
7d9d8943
AM
3503static void add_AT_fde_ref PARAMS ((dw_die_ref,
3504 enum dwarf_attribute,
3505 unsigned));
3506static void add_AT_loc PARAMS ((dw_die_ref,
3507 enum dwarf_attribute,
3508 dw_loc_descr_ref));
2ad9852d 3509static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
63e46568
DB
3510static void add_AT_loc_list PARAMS ((dw_die_ref,
3511 enum dwarf_attribute,
3512 dw_loc_list_ref));
2ad9852d 3513static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
7d9d8943
AM
3514static void add_AT_addr PARAMS ((dw_die_ref,
3515 enum dwarf_attribute,
3516 rtx));
2ad9852d 3517static inline rtx AT_addr PARAMS ((dw_attr_ref));
7d9d8943
AM
3518static void add_AT_lbl_id PARAMS ((dw_die_ref,
3519 enum dwarf_attribute,
3520 const char *));
3521static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3522 enum dwarf_attribute,
3523 const char *));
a20612aa
RH
3524static void add_AT_offset PARAMS ((dw_die_ref,
3525 enum dwarf_attribute,
3526 unsigned long));
2bee6045
JJ
3527static void add_AT_range_list PARAMS ((dw_die_ref,
3528 enum dwarf_attribute,
3529 unsigned long));
2ad9852d 3530static inline const char *AT_lbl PARAMS ((dw_attr_ref));
7d9d8943
AM
3531static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3532 enum dwarf_attribute));
3533static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3534static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3535static const char *get_AT_string PARAMS ((dw_die_ref,
3536 enum dwarf_attribute));
3537static int get_AT_flag PARAMS ((dw_die_ref,
3538 enum dwarf_attribute));
3539static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3540 enum dwarf_attribute));
3541static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3542 enum dwarf_attribute));
3543static int is_c_family PARAMS ((void));
710af899 3544static int is_cxx PARAMS ((void));
28985b81 3545static int is_java PARAMS ((void));
7d9d8943
AM
3546static int is_fortran PARAMS ((void));
3547static void remove_AT PARAMS ((dw_die_ref,
3548 enum dwarf_attribute));
2ad9852d 3549static inline void free_die PARAMS ((dw_die_ref));
7d9d8943
AM
3550static void remove_children PARAMS ((dw_die_ref));
3551static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
54ba1f0d
RH
3552static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3553 tree));
7d9d8943
AM
3554static dw_die_ref lookup_type_die PARAMS ((tree));
3555static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3556static dw_die_ref lookup_decl_die PARAMS ((tree));
3557static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3558static void print_spaces PARAMS ((FILE *));
3559static void print_die PARAMS ((dw_die_ref, FILE *));
3560static void print_dwarf_line_table PARAMS ((FILE *));
881c6935
JM
3561static void reverse_die_lists PARAMS ((dw_die_ref));
3562static void reverse_all_dies PARAMS ((dw_die_ref));
3563static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3564static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
2ad9852d
RK
3565static void loc_checksum PARAMS ((dw_loc_descr_ref,
3566 struct md5_ctx *));
3567static void attr_checksum PARAMS ((dw_attr_ref,
3568 struct md5_ctx *));
3569static void die_checksum PARAMS ((dw_die_ref,
3570 struct md5_ctx *));
881c6935
JM
3571static void compute_section_prefix PARAMS ((dw_die_ref));
3572static int is_type_die PARAMS ((dw_die_ref));
3573static int is_comdat_die PARAMS ((dw_die_ref));
3574static int is_symbol_die PARAMS ((dw_die_ref));
881c6935
JM
3575static void assign_symbol_names PARAMS ((dw_die_ref));
3576static void break_out_includes PARAMS ((dw_die_ref));
7d9d8943
AM
3577static void add_sibling_attributes PARAMS ((dw_die_ref));
3578static void build_abbrev_table PARAMS ((dw_die_ref));
63e46568 3579static void output_location_lists PARAMS ((dw_die_ref));
7d9d8943
AM
3580static int constant_size PARAMS ((long unsigned));
3581static unsigned long size_of_die PARAMS ((dw_die_ref));
3582static void calc_die_sizes PARAMS ((dw_die_ref));
1bfb5f8f
JM
3583static void mark_dies PARAMS ((dw_die_ref));
3584static void unmark_dies PARAMS ((dw_die_ref));
7d9d8943
AM
3585static unsigned long size_of_pubnames PARAMS ((void));
3586static unsigned long size_of_aranges PARAMS ((void));
3587static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3588static void output_value_format PARAMS ((dw_attr_ref));
3589static void output_abbrev_section PARAMS ((void));
881c6935 3590static void output_die_symbol PARAMS ((dw_die_ref));
7d9d8943
AM
3591static void output_die PARAMS ((dw_die_ref));
3592static void output_compilation_unit_header PARAMS ((void));
881c6935 3593static void output_comp_unit PARAMS ((dw_die_ref));
7d9d8943
AM
3594static const char *dwarf2_name PARAMS ((tree, int));
3595static void add_pubname PARAMS ((tree, dw_die_ref));
3596static void output_pubnames PARAMS ((void));
3597static void add_arange PARAMS ((tree, dw_die_ref));
3598static void output_aranges PARAMS ((void));
a20612aa
RH
3599static unsigned int add_ranges PARAMS ((tree));
3600static void output_ranges PARAMS ((void));
7d9d8943 3601static void output_line_info PARAMS ((void));
0b34cf1e 3602static void output_file_names PARAMS ((void));
7d9d8943
AM
3603static dw_die_ref base_type_die PARAMS ((tree));
3604static tree root_type PARAMS ((tree));
3605static int is_base_type PARAMS ((tree));
3606static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3607static int type_is_enum PARAMS ((tree));
3608static unsigned int reg_number PARAMS ((rtx));
3609static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
d8041cc8 3610static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
7d9d8943
AM
3611static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3612static int is_based_loc PARAMS ((rtx));
3613static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3614static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3615static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
d8041cc8 3616static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
7d9d8943
AM
3617static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3618static tree field_type PARAMS ((tree));
3619static unsigned int simple_type_align_in_bits PARAMS ((tree));
5f446d21 3620static unsigned int simple_decl_align_in_bits PARAMS ((tree));
7d9d8943
AM
3621static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3622static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3623static void add_AT_location_description PARAMS ((dw_die_ref,
3624 enum dwarf_attribute, rtx));
3625static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3626static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
d8041cc8 3627static rtx rtl_for_decl_location PARAMS ((tree));
7d9d8943 3628static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
1bfb5f8f 3629static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
7d9d8943
AM
3630static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3631static void add_bound_info PARAMS ((dw_die_ref,
3632 enum dwarf_attribute, tree));
3633static void add_subscript_info PARAMS ((dw_die_ref, tree));
3634static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3635static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3636static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3637static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3638static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3639static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3640static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3641static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3642static void push_decl_scope PARAMS ((tree));
7d9d8943 3643static void pop_decl_scope PARAMS ((void));
2ad9852d
RK
3644static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3645static inline int local_scope_p PARAMS ((dw_die_ref));
3646static inline int class_scope_p PARAMS ((dw_die_ref));
7d9d8943
AM
3647static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3648 dw_die_ref));
3649static const char *type_tag PARAMS ((tree));
3650static tree member_declared_type PARAMS ((tree));
3651#if 0
3652static const char *decl_start_label PARAMS ((tree));
3653#endif
3654static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3655static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3656#if 0
3657static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3658#endif
3659static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3660static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3661static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3662static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3663static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3664static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3665static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3666static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3667static void gen_variable_die PARAMS ((tree, dw_die_ref));
3668static void gen_label_die PARAMS ((tree, dw_die_ref));
3669static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3670static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3671static void gen_field_die PARAMS ((tree, dw_die_ref));
3672static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3673static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3674static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3675static void gen_inheritance_die PARAMS ((tree, dw_die_ref));
3676static void gen_member_die PARAMS ((tree, dw_die_ref));
3677static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3678static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3679static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3680static void gen_type_die PARAMS ((tree, dw_die_ref));
3681static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3682static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3683static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3684static int is_redundant_typedef PARAMS ((tree));
3685static void gen_decl_die PARAMS ((tree, dw_die_ref));
981975b6
RH
3686static unsigned lookup_filename PARAMS ((const char *));
3687static void init_file_table PARAMS ((void));
7d9d8943
AM
3688static void retry_incomplete_types PARAMS ((void));
3689static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
7d9d8943 3690static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
fc608b03 3691static int file_info_cmp PARAMS ((const void *, const void *));
c26fbbca 3692static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
84a5b4f8
DB
3693 const char *, const char *,
3694 const char *, unsigned));
3695static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3696 dw_loc_descr_ref,
3697 const char *, const char *, const char *));
3698static void output_loc_list PARAMS ((dw_loc_list_ref));
3699static char *gen_internal_sym PARAMS ((const char *));
54ba1f0d 3700static void mark_limbo_die_list PARAMS ((void *));
7d9d8943
AM
3701
3702/* Section names used to hold DWARF debugging information. */
3703#ifndef DEBUG_INFO_SECTION
3704#define DEBUG_INFO_SECTION ".debug_info"
3705#endif
9d2f2c45
RH
3706#ifndef DEBUG_ABBREV_SECTION
3707#define DEBUG_ABBREV_SECTION ".debug_abbrev"
7d9d8943 3708#endif
9d2f2c45
RH
3709#ifndef DEBUG_ARANGES_SECTION
3710#define DEBUG_ARANGES_SECTION ".debug_aranges"
7d9d8943 3711#endif
9d2f2c45
RH
3712#ifndef DEBUG_MACINFO_SECTION
3713#define DEBUG_MACINFO_SECTION ".debug_macinfo"
7d9d8943
AM
3714#endif
3715#ifndef DEBUG_LINE_SECTION
3716#define DEBUG_LINE_SECTION ".debug_line"
3717#endif
9d2f2c45
RH
3718#ifndef DEBUG_LOC_SECTION
3719#define DEBUG_LOC_SECTION ".debug_loc"
7d9d8943 3720#endif
9d2f2c45
RH
3721#ifndef DEBUG_PUBNAMES_SECTION
3722#define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
7d9d8943 3723#endif
9d2f2c45
RH
3724#ifndef DEBUG_STR_SECTION
3725#define DEBUG_STR_SECTION ".debug_str"
7d9d8943 3726#endif
a20612aa
RH
3727#ifndef DEBUG_RANGES_SECTION
3728#define DEBUG_RANGES_SECTION ".debug_ranges"
3729#endif
7d9d8943
AM
3730
3731/* Standard ELF section names for compiled code and data. */
f99ffb60
RH
3732#ifndef TEXT_SECTION_NAME
3733#define TEXT_SECTION_NAME ".text"
7d9d8943
AM
3734#endif
3735
9eb4015a
JJ
3736/* Section flags for .debug_str section. */
3737#ifdef HAVE_GAS_SHF_MERGE
3738#define DEBUG_STR_SECTION_FLAGS \
3739 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3740#else
3741#define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3742#endif
3743
7d9d8943 3744/* Labels we insert at beginning sections we can reference instead of
556273e0 3745 the section names themselves. */
7d9d8943
AM
3746
3747#ifndef TEXT_SECTION_LABEL
9d2f2c45 3748#define TEXT_SECTION_LABEL "Ltext"
7d9d8943
AM
3749#endif
3750#ifndef DEBUG_LINE_SECTION_LABEL
9d2f2c45 3751#define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
7d9d8943
AM
3752#endif
3753#ifndef DEBUG_INFO_SECTION_LABEL
9d2f2c45 3754#define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
7d9d8943 3755#endif
9d2f2c45
RH
3756#ifndef DEBUG_ABBREV_SECTION_LABEL
3757#define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
7d9d8943 3758#endif
9d2f2c45
RH
3759#ifndef DEBUG_LOC_SECTION_LABEL
3760#define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
63e46568 3761#endif
2bee6045
JJ
3762#ifndef DEBUG_RANGES_SECTION_LABEL
3763#define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3764#endif
84a5b4f8
DB
3765#ifndef DEBUG_MACINFO_SECTION_LABEL
3766#define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3767#endif
a20612aa 3768
7d9d8943
AM
3769/* Definitions of defaults for formats and names of various special
3770 (artificial) labels which may be generated within this file (when the -g
3771 options is used and DWARF_DEBUGGING_INFO is in effect.
3772 If necessary, these may be overridden from within the tm.h file, but
3773 typically, overriding these defaults is unnecessary. */
3774
3775static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3776static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3777static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3778static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3779static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
84a5b4f8 3780static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
63e46568 3781static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
2bee6045 3782static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
2ad9852d 3783
7d9d8943
AM
3784#ifndef TEXT_END_LABEL
3785#define TEXT_END_LABEL "Letext"
3786#endif
3787#ifndef DATA_END_LABEL
3788#define DATA_END_LABEL "Ledata"
3789#endif
3790#ifndef BSS_END_LABEL
3791#define BSS_END_LABEL "Lebss"
3792#endif
7d9d8943
AM
3793#ifndef BLOCK_BEGIN_LABEL
3794#define BLOCK_BEGIN_LABEL "LBB"
3795#endif
3796#ifndef BLOCK_END_LABEL
3797#define BLOCK_END_LABEL "LBE"
3798#endif
3799#ifndef BODY_BEGIN_LABEL
3800#define BODY_BEGIN_LABEL "Lbb"
3801#endif
3802#ifndef BODY_END_LABEL
3803#define BODY_END_LABEL "Lbe"
3804#endif
3805#ifndef LINE_CODE_LABEL
3806#define LINE_CODE_LABEL "LM"
3807#endif
3808#ifndef SEPARATE_LINE_CODE_LABEL
3809#define SEPARATE_LINE_CODE_LABEL "LSM"
3810#endif
3811\f
3812/* We allow a language front-end to designate a function that is to be
3813 called to "demangle" any name before it it put into a DIE. */
3814
3815static const char *(*demangle_name_func) PARAMS ((const char *));
3816
3817void
3818dwarf2out_set_demangle_name_func (func)
3819 const char *(*func) PARAMS ((const char *));
3820{
3821 demangle_name_func = func;
3822}
7d9d8943
AM
3823
3824/* Test if rtl node points to a pseudo register. */
3825
3826static inline int
3827is_pseudo_reg (rtl)
b3694847 3828 rtx rtl;
7d9d8943
AM
3829{
3830 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3831 || (GET_CODE (rtl) == SUBREG
ddef6bc7 3832 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
7d9d8943
AM
3833}
3834
3835/* Return a reference to a type, with its const and volatile qualifiers
3836 removed. */
3837
3838static inline tree
3839type_main_variant (type)
b3694847 3840 tree type;
7d9d8943
AM
3841{
3842 type = TYPE_MAIN_VARIANT (type);
3843
2ad9852d
RK
3844 /* ??? There really should be only one main variant among any group of
3845 variants of a given type (and all of the MAIN_VARIANT values for all
3846 members of the group should point to that one type) but sometimes the C
3847 front-end messes this up for array types, so we work around that bug
3848 here. */
7d9d8943
AM
3849 if (TREE_CODE (type) == ARRAY_TYPE)
3850 while (type != TYPE_MAIN_VARIANT (type))
3851 type = TYPE_MAIN_VARIANT (type);
3852
3853 return type;
3854}
3855
3856/* Return non-zero if the given type node represents a tagged type. */
3857
3858static inline int
3859is_tagged_type (type)
b3694847 3860 tree type;
7d9d8943 3861{
b3694847 3862 enum tree_code code = TREE_CODE (type);
7d9d8943
AM
3863
3864 return (code == RECORD_TYPE || code == UNION_TYPE
3865 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3866}
3867
3868/* Convert a DIE tag into its string name. */
3869
3870static const char *
3871dwarf_tag_name (tag)
b3694847 3872 unsigned tag;
7d9d8943
AM
3873{
3874 switch (tag)
3875 {
3876 case DW_TAG_padding:
3877 return "DW_TAG_padding";
3878 case DW_TAG_array_type:
3879 return "DW_TAG_array_type";
3880 case DW_TAG_class_type:
3881 return "DW_TAG_class_type";
3882 case DW_TAG_entry_point:
3883 return "DW_TAG_entry_point";
3884 case DW_TAG_enumeration_type:
3885 return "DW_TAG_enumeration_type";
3886 case DW_TAG_formal_parameter:
3887 return "DW_TAG_formal_parameter";
3888 case DW_TAG_imported_declaration:
3889 return "DW_TAG_imported_declaration";
3890 case DW_TAG_label:
3891 return "DW_TAG_label";
3892 case DW_TAG_lexical_block:
3893 return "DW_TAG_lexical_block";
3894 case DW_TAG_member:
3895 return "DW_TAG_member";
3896 case DW_TAG_pointer_type:
3897 return "DW_TAG_pointer_type";
3898 case DW_TAG_reference_type:
3899 return "DW_TAG_reference_type";
3900 case DW_TAG_compile_unit:
3901 return "DW_TAG_compile_unit";
3902 case DW_TAG_string_type:
3903 return "DW_TAG_string_type";
3904 case DW_TAG_structure_type:
3905 return "DW_TAG_structure_type";
3906 case DW_TAG_subroutine_type:
3907 return "DW_TAG_subroutine_type";
3908 case DW_TAG_typedef:
3909 return "DW_TAG_typedef";
3910 case DW_TAG_union_type:
3911 return "DW_TAG_union_type";
3912 case DW_TAG_unspecified_parameters:
3913 return "DW_TAG_unspecified_parameters";
3914 case DW_TAG_variant:
3915 return "DW_TAG_variant";
3916 case DW_TAG_common_block:
3917 return "DW_TAG_common_block";
3918 case DW_TAG_common_inclusion:
3919 return "DW_TAG_common_inclusion";
3920 case DW_TAG_inheritance:
3921 return "DW_TAG_inheritance";
3922 case DW_TAG_inlined_subroutine:
3923 return "DW_TAG_inlined_subroutine";
3924 case DW_TAG_module:
3925 return "DW_TAG_module";
3926 case DW_TAG_ptr_to_member_type:
3927 return "DW_TAG_ptr_to_member_type";
3928 case DW_TAG_set_type:
3929 return "DW_TAG_set_type";
3930 case DW_TAG_subrange_type:
3931 return "DW_TAG_subrange_type";
3932 case DW_TAG_with_stmt:
3933 return "DW_TAG_with_stmt";
3934 case DW_TAG_access_declaration:
3935 return "DW_TAG_access_declaration";
3936 case DW_TAG_base_type:
3937 return "DW_TAG_base_type";
3938 case DW_TAG_catch_block:
3939 return "DW_TAG_catch_block";
3940 case DW_TAG_const_type:
3941 return "DW_TAG_const_type";
3942 case DW_TAG_constant:
3943 return "DW_TAG_constant";
3944 case DW_TAG_enumerator:
3945 return "DW_TAG_enumerator";
3946 case DW_TAG_file_type:
3947 return "DW_TAG_file_type";
3948 case DW_TAG_friend:
3949 return "DW_TAG_friend";
3950 case DW_TAG_namelist:
3951 return "DW_TAG_namelist";
3952 case DW_TAG_namelist_item:
3953 return "DW_TAG_namelist_item";
3954 case DW_TAG_packed_type:
3955 return "DW_TAG_packed_type";
3956 case DW_TAG_subprogram:
3957 return "DW_TAG_subprogram";
3958 case DW_TAG_template_type_param:
3959 return "DW_TAG_template_type_param";
3960 case DW_TAG_template_value_param:
3961 return "DW_TAG_template_value_param";
3962 case DW_TAG_thrown_type:
3963 return "DW_TAG_thrown_type";
3964 case DW_TAG_try_block:
3965 return "DW_TAG_try_block";
3966 case DW_TAG_variant_part:
3967 return "DW_TAG_variant_part";
3968 case DW_TAG_variable:
3969 return "DW_TAG_variable";
3970 case DW_TAG_volatile_type:
3971 return "DW_TAG_volatile_type";
3972 case DW_TAG_MIPS_loop:
3973 return "DW_TAG_MIPS_loop";
3974 case DW_TAG_format_label:
3975 return "DW_TAG_format_label";
3976 case DW_TAG_function_template:
3977 return "DW_TAG_function_template";
3978 case DW_TAG_class_template:
3979 return "DW_TAG_class_template";
881c6935
JM
3980 case DW_TAG_GNU_BINCL:
3981 return "DW_TAG_GNU_BINCL";
3982 case DW_TAG_GNU_EINCL:
3983 return "DW_TAG_GNU_EINCL";
7d9d8943
AM
3984 default:
3985 return "DW_TAG_<unknown>";
3986 }
3987}
3988
3989/* Convert a DWARF attribute code into its string name. */
3990
3991static const char *
3992dwarf_attr_name (attr)
b3694847 3993 unsigned attr;
7d9d8943
AM
3994{
3995 switch (attr)
3996 {
3997 case DW_AT_sibling:
3998 return "DW_AT_sibling";
3999 case DW_AT_location:
4000 return "DW_AT_location";
4001 case DW_AT_name:
4002 return "DW_AT_name";
4003 case DW_AT_ordering:
4004 return "DW_AT_ordering";
4005 case DW_AT_subscr_data:
4006 return "DW_AT_subscr_data";
4007 case DW_AT_byte_size:
4008 return "DW_AT_byte_size";
4009 case DW_AT_bit_offset:
4010 return "DW_AT_bit_offset";
4011 case DW_AT_bit_size:
4012 return "DW_AT_bit_size";
4013 case DW_AT_element_list:
4014 return "DW_AT_element_list";
4015 case DW_AT_stmt_list:
4016 return "DW_AT_stmt_list";
4017 case DW_AT_low_pc:
4018 return "DW_AT_low_pc";
4019 case DW_AT_high_pc:
4020 return "DW_AT_high_pc";
4021 case DW_AT_language:
4022 return "DW_AT_language";
4023 case DW_AT_member:
4024 return "DW_AT_member";
4025 case DW_AT_discr:
4026 return "DW_AT_discr";
4027 case DW_AT_discr_value:
4028 return "DW_AT_discr_value";
4029 case DW_AT_visibility:
4030 return "DW_AT_visibility";
4031 case DW_AT_import:
4032 return "DW_AT_import";
4033 case DW_AT_string_length:
4034 return "DW_AT_string_length";
4035 case DW_AT_common_reference:
4036 return "DW_AT_common_reference";
4037 case DW_AT_comp_dir:
4038 return "DW_AT_comp_dir";
4039 case DW_AT_const_value:
4040 return "DW_AT_const_value";
4041 case DW_AT_containing_type:
4042 return "DW_AT_containing_type";
4043 case DW_AT_default_value:
4044 return "DW_AT_default_value";
4045 case DW_AT_inline:
4046 return "DW_AT_inline";
4047 case DW_AT_is_optional:
4048 return "DW_AT_is_optional";
4049 case DW_AT_lower_bound:
4050 return "DW_AT_lower_bound";
4051 case DW_AT_producer:
4052 return "DW_AT_producer";
4053 case DW_AT_prototyped:
4054 return "DW_AT_prototyped";
4055 case DW_AT_return_addr:
4056 return "DW_AT_return_addr";
4057 case DW_AT_start_scope:
4058 return "DW_AT_start_scope";
4059 case DW_AT_stride_size:
4060 return "DW_AT_stride_size";
4061 case DW_AT_upper_bound:
4062 return "DW_AT_upper_bound";
4063 case DW_AT_abstract_origin:
4064 return "DW_AT_abstract_origin";
4065 case DW_AT_accessibility:
4066 return "DW_AT_accessibility";
4067 case DW_AT_address_class:
4068 return "DW_AT_address_class";
4069 case DW_AT_artificial:
4070 return "DW_AT_artificial";
4071 case DW_AT_base_types:
4072 return "DW_AT_base_types";
4073 case DW_AT_calling_convention:
4074 return "DW_AT_calling_convention";
4075 case DW_AT_count:
4076 return "DW_AT_count";
4077 case DW_AT_data_member_location:
4078 return "DW_AT_data_member_location";
4079 case DW_AT_decl_column:
4080 return "DW_AT_decl_column";
4081 case DW_AT_decl_file:
4082 return "DW_AT_decl_file";
4083 case DW_AT_decl_line:
4084 return "DW_AT_decl_line";
4085 case DW_AT_declaration:
4086 return "DW_AT_declaration";
4087 case DW_AT_discr_list:
4088 return "DW_AT_discr_list";
4089 case DW_AT_encoding:
4090 return "DW_AT_encoding";
4091 case DW_AT_external:
4092 return "DW_AT_external";
4093 case DW_AT_frame_base:
4094 return "DW_AT_frame_base";
4095 case DW_AT_friend:
4096 return "DW_AT_friend";
4097 case DW_AT_identifier_case:
4098 return "DW_AT_identifier_case";
4099 case DW_AT_macro_info:
4100 return "DW_AT_macro_info";
4101 case DW_AT_namelist_items:
4102 return "DW_AT_namelist_items";
4103 case DW_AT_priority:
4104 return "DW_AT_priority";
4105 case DW_AT_segment:
4106 return "DW_AT_segment";
4107 case DW_AT_specification:
4108 return "DW_AT_specification";
4109 case DW_AT_static_link:
4110 return "DW_AT_static_link";
4111 case DW_AT_type:
4112 return "DW_AT_type";
4113 case DW_AT_use_location:
4114 return "DW_AT_use_location";
4115 case DW_AT_variable_parameter:
4116 return "DW_AT_variable_parameter";
4117 case DW_AT_virtuality:
4118 return "DW_AT_virtuality";
4119 case DW_AT_vtable_elem_location:
4120 return "DW_AT_vtable_elem_location";
4121
a20612aa
RH
4122 case DW_AT_allocated:
4123 return "DW_AT_allocated";
4124 case DW_AT_associated:
4125 return "DW_AT_associated";
4126 case DW_AT_data_location:
4127 return "DW_AT_data_location";
4128 case DW_AT_stride:
4129 return "DW_AT_stride";
4130 case DW_AT_entry_pc:
4131 return "DW_AT_entry_pc";
4132 case DW_AT_use_UTF8:
4133 return "DW_AT_use_UTF8";
4134 case DW_AT_extension:
4135 return "DW_AT_extension";
4136 case DW_AT_ranges:
4137 return "DW_AT_ranges";
4138 case DW_AT_trampoline:
4139 return "DW_AT_trampoline";
4140 case DW_AT_call_column:
4141 return "DW_AT_call_column";
4142 case DW_AT_call_file:
4143 return "DW_AT_call_file";
4144 case DW_AT_call_line:
4145 return "DW_AT_call_line";
4146
7d9d8943
AM
4147 case DW_AT_MIPS_fde:
4148 return "DW_AT_MIPS_fde";
4149 case DW_AT_MIPS_loop_begin:
4150 return "DW_AT_MIPS_loop_begin";
4151 case DW_AT_MIPS_tail_loop_begin:
4152 return "DW_AT_MIPS_tail_loop_begin";
4153 case DW_AT_MIPS_epilog_begin:
4154 return "DW_AT_MIPS_epilog_begin";
4155 case DW_AT_MIPS_loop_unroll_factor:
4156 return "DW_AT_MIPS_loop_unroll_factor";
4157 case DW_AT_MIPS_software_pipeline_depth:
4158 return "DW_AT_MIPS_software_pipeline_depth";
4159 case DW_AT_MIPS_linkage_name:
4160 return "DW_AT_MIPS_linkage_name";
4161 case DW_AT_MIPS_stride:
4162 return "DW_AT_MIPS_stride";
4163 case DW_AT_MIPS_abstract_name:
4164 return "DW_AT_MIPS_abstract_name";
4165 case DW_AT_MIPS_clone_origin:
4166 return "DW_AT_MIPS_clone_origin";
4167 case DW_AT_MIPS_has_inlines:
4168 return "DW_AT_MIPS_has_inlines";
4169
4170 case DW_AT_sf_names:
4171 return "DW_AT_sf_names";
4172 case DW_AT_src_info:
4173 return "DW_AT_src_info";
4174 case DW_AT_mac_info:
4175 return "DW_AT_mac_info";
4176 case DW_AT_src_coords:
4177 return "DW_AT_src_coords";
4178 case DW_AT_body_begin:
4179 return "DW_AT_body_begin";
4180 case DW_AT_body_end:
4181 return "DW_AT_body_end";
84f0ace0
JM
4182 case DW_AT_GNU_vector:
4183 return "DW_AT_GNU_vector";
4184
7a0c8d71
DR
4185 case DW_AT_VMS_rtnbeg_pd_address:
4186 return "DW_AT_VMS_rtnbeg_pd_address";
4187
7d9d8943
AM
4188 default:
4189 return "DW_AT_<unknown>";
4190 }
4191}
4192
4193/* Convert a DWARF value form code into its string name. */
4194
4195static const char *
4196dwarf_form_name (form)
b3694847 4197 unsigned form;
7d9d8943
AM
4198{
4199 switch (form)
4200 {
4201 case DW_FORM_addr:
4202 return "DW_FORM_addr";
4203 case DW_FORM_block2:
4204 return "DW_FORM_block2";
4205 case DW_FORM_block4:
4206 return "DW_FORM_block4";
4207 case DW_FORM_data2:
4208 return "DW_FORM_data2";
4209 case DW_FORM_data4:
4210 return "DW_FORM_data4";
4211 case DW_FORM_data8:
4212 return "DW_FORM_data8";
4213 case DW_FORM_string:
4214 return "DW_FORM_string";
4215 case DW_FORM_block:
4216 return "DW_FORM_block";
4217 case DW_FORM_block1:
4218 return "DW_FORM_block1";
4219 case DW_FORM_data1:
4220 return "DW_FORM_data1";
4221 case DW_FORM_flag:
4222 return "DW_FORM_flag";
4223 case DW_FORM_sdata:
4224 return "DW_FORM_sdata";
4225 case DW_FORM_strp:
4226 return "DW_FORM_strp";
4227 case DW_FORM_udata:
4228 return "DW_FORM_udata";
4229 case DW_FORM_ref_addr:
4230 return "DW_FORM_ref_addr";
4231 case DW_FORM_ref1:
4232 return "DW_FORM_ref1";
4233 case DW_FORM_ref2:
4234 return "DW_FORM_ref2";
4235 case DW_FORM_ref4:
4236 return "DW_FORM_ref4";
4237 case DW_FORM_ref8:
4238 return "DW_FORM_ref8";
4239 case DW_FORM_ref_udata:
4240 return "DW_FORM_ref_udata";
4241 case DW_FORM_indirect:
4242 return "DW_FORM_indirect";
3f76745e 4243 default:
7d9d8943 4244 return "DW_FORM_<unknown>";
a3f97cbb
JW
4245 }
4246}
4247
3f76745e 4248/* Convert a DWARF type code into its string name. */
71dfc51f 4249
487a6e06 4250#if 0
d560ee52 4251static const char *
3f76745e 4252dwarf_type_encoding_name (enc)
b3694847 4253 unsigned enc;
a3f97cbb 4254{
3f76745e 4255 switch (enc)
a3f97cbb 4256 {
3f76745e
JM
4257 case DW_ATE_address:
4258 return "DW_ATE_address";
4259 case DW_ATE_boolean:
4260 return "DW_ATE_boolean";
4261 case DW_ATE_complex_float:
4262 return "DW_ATE_complex_float";
4263 case DW_ATE_float:
4264 return "DW_ATE_float";
4265 case DW_ATE_signed:
4266 return "DW_ATE_signed";
4267 case DW_ATE_signed_char:
4268 return "DW_ATE_signed_char";
4269 case DW_ATE_unsigned:
4270 return "DW_ATE_unsigned";
4271 case DW_ATE_unsigned_char:
4272 return "DW_ATE_unsigned_char";
4273 default:
4274 return "DW_ATE_<unknown>";
4275 }
a3f97cbb 4276}
487a6e06 4277#endif
3f76745e
JM
4278\f
4279/* Determine the "ultimate origin" of a decl. The decl may be an inlined
4280 instance of an inlined instance of a decl which is local to an inline
4281 function, so we have to trace all of the way back through the origin chain
4282 to find out what sort of node actually served as the original seed for the
4283 given block. */
a3f97cbb 4284
3f76745e
JM
4285static tree
4286decl_ultimate_origin (decl)
b3694847 4287 tree decl;
a3f97cbb 4288{
10a11b75
JM
4289 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4290 nodes in the function to point to themselves; ignore that if
4291 we're trying to output the abstract instance of this function. */
4292 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4293 return NULL_TREE;
4294
556273e0 4295#ifdef ENABLE_CHECKING
02e24c7a
MM
4296 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4297 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4298 most distant ancestor, this should never happen. */
4299 abort ();
4300#endif
3f76745e 4301
02e24c7a 4302 return DECL_ABSTRACT_ORIGIN (decl);
a3f97cbb
JW
4303}
4304
3f76745e
JM
4305/* Determine the "ultimate origin" of a block. The block may be an inlined
4306 instance of an inlined instance of a block which is local to an inline
4307 function, so we have to trace all of the way back through the origin chain
4308 to find out what sort of node actually served as the original seed for the
4309 given block. */
71dfc51f 4310
3f76745e
JM
4311static tree
4312block_ultimate_origin (block)
b3694847 4313 tree block;
a3f97cbb 4314{
b3694847 4315 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
71dfc51f 4316
10a11b75
JM
4317 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4318 nodes in the function to point to themselves; ignore that if
4319 we're trying to output the abstract instance of this function. */
4320 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4321 return NULL_TREE;
4322
3f76745e
JM
4323 if (immediate_origin == NULL_TREE)
4324 return NULL_TREE;
4325 else
4326 {
b3694847
SS
4327 tree ret_val;
4328 tree lookahead = immediate_origin;
71dfc51f 4329
3f76745e
JM
4330 do
4331 {
4332 ret_val = lookahead;
2ad9852d
RK
4333 lookahead = (TREE_CODE (ret_val) == BLOCK
4334 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
3f76745e
JM
4335 }
4336 while (lookahead != NULL && lookahead != ret_val);
4337
4338 return ret_val;
4339 }
a3f97cbb
JW
4340}
4341
3f76745e
JM
4342/* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4343 of a virtual function may refer to a base class, so we check the 'this'
4344 parameter. */
71dfc51f 4345
3f76745e
JM
4346static tree
4347decl_class_context (decl)
4348 tree decl;
a3f97cbb 4349{
3f76745e 4350 tree context = NULL_TREE;
71dfc51f 4351
3f76745e
JM
4352 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4353 context = DECL_CONTEXT (decl);
4354 else
4355 context = TYPE_MAIN_VARIANT
4356 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
71dfc51f 4357
2f939d94 4358 if (context && !TYPE_P (context))
3f76745e
JM
4359 context = NULL_TREE;
4360
4361 return context;
a3f97cbb
JW
4362}
4363\f
a96c67ec 4364/* Add an attribute/value pair to a DIE. We build the lists up in reverse
881c6935 4365 addition order, and correct that in reverse_all_dies. */
71dfc51f
RK
4366
4367static inline void
3f76745e 4368add_dwarf_attr (die, attr)
b3694847
SS
4369 dw_die_ref die;
4370 dw_attr_ref attr;
a3f97cbb 4371{
3f76745e 4372 if (die != NULL && attr != NULL)
a3f97cbb 4373 {
a96c67ec
JM
4374 attr->dw_attr_next = die->die_attr;
4375 die->die_attr = attr;
a3f97cbb
JW
4376 }
4377}
4378
a96c67ec
JM
4379static inline dw_val_class
4380AT_class (a)
4381 dw_attr_ref a;
4382{
4383 return a->dw_attr_val.val_class;
4384}
4385
3f76745e 4386/* Add a flag value attribute to a DIE. */
71dfc51f 4387
3f76745e
JM
4388static inline void
4389add_AT_flag (die, attr_kind, flag)
b3694847
SS
4390 dw_die_ref die;
4391 enum dwarf_attribute attr_kind;
4392 unsigned flag;
a3f97cbb 4393{
b3694847 4394 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4395
3f76745e
JM
4396 attr->dw_attr_next = NULL;
4397 attr->dw_attr = attr_kind;
4398 attr->dw_attr_val.val_class = dw_val_class_flag;
4399 attr->dw_attr_val.v.val_flag = flag;
4400 add_dwarf_attr (die, attr);
a3f97cbb
JW
4401}
4402
a96c67ec
JM
4403static inline unsigned
4404AT_flag (a)
b3694847 4405 dw_attr_ref a;
a96c67ec
JM
4406{
4407 if (a && AT_class (a) == dw_val_class_flag)
4408 return a->dw_attr_val.v.val_flag;
4409
40e8cc95 4410 abort ();
a96c67ec
JM
4411}
4412
3f76745e 4413/* Add a signed integer attribute value to a DIE. */
71dfc51f 4414
3f76745e
JM
4415static inline void
4416add_AT_int (die, attr_kind, int_val)
b3694847
SS
4417 dw_die_ref die;
4418 enum dwarf_attribute attr_kind;
4419 long int int_val;
a3f97cbb 4420{
b3694847 4421 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
3f76745e
JM
4422
4423 attr->dw_attr_next = NULL;
4424 attr->dw_attr = attr_kind;
4425 attr->dw_attr_val.val_class = dw_val_class_const;
4426 attr->dw_attr_val.v.val_int = int_val;
4427 add_dwarf_attr (die, attr);
a3f97cbb
JW
4428}
4429
a96c67ec
JM
4430static inline long int
4431AT_int (a)
b3694847 4432 dw_attr_ref a;
a96c67ec
JM
4433{
4434 if (a && AT_class (a) == dw_val_class_const)
4435 return a->dw_attr_val.v.val_int;
4436
40e8cc95 4437 abort ();
a96c67ec
JM
4438}
4439
3f76745e 4440/* Add an unsigned integer attribute value to a DIE. */
71dfc51f 4441
3f76745e
JM
4442static inline void
4443add_AT_unsigned (die, attr_kind, unsigned_val)
b3694847
SS
4444 dw_die_ref die;
4445 enum dwarf_attribute attr_kind;
4446 unsigned long unsigned_val;
a3f97cbb 4447{
b3694847 4448 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
3f76745e
JM
4449
4450 attr->dw_attr_next = NULL;
4451 attr->dw_attr = attr_kind;
4452 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4453 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4454 add_dwarf_attr (die, attr);
a3f97cbb 4455}
71dfc51f 4456
a96c67ec
JM
4457static inline unsigned long
4458AT_unsigned (a)
b3694847 4459 dw_attr_ref a;
a96c67ec
JM
4460{
4461 if (a && AT_class (a) == dw_val_class_unsigned_const)
4462 return a->dw_attr_val.v.val_unsigned;
4463
40e8cc95 4464 abort ();
a96c67ec
JM
4465}
4466
3f76745e
JM
4467/* Add an unsigned double integer attribute value to a DIE. */
4468
4469static inline void
4470add_AT_long_long (die, attr_kind, val_hi, val_low)
b3694847
SS
4471 dw_die_ref die;
4472 enum dwarf_attribute attr_kind;
4473 unsigned long val_hi;
4474 unsigned long val_low;
a3f97cbb 4475{
b3694847 4476 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4477
3f76745e
JM
4478 attr->dw_attr_next = NULL;
4479 attr->dw_attr = attr_kind;
4480 attr->dw_attr_val.val_class = dw_val_class_long_long;
4481 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4482 attr->dw_attr_val.v.val_long_long.low = val_low;
4483 add_dwarf_attr (die, attr);
4484}
71dfc51f 4485
3f76745e 4486/* Add a floating point attribute value to a DIE and return it. */
71dfc51f 4487
3f76745e
JM
4488static inline void
4489add_AT_float (die, attr_kind, length, array)
b3694847
SS
4490 dw_die_ref die;
4491 enum dwarf_attribute attr_kind;
4492 unsigned length;
4493 long *array;
3f76745e 4494{
b3694847 4495 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
3f76745e
JM
4496
4497 attr->dw_attr_next = NULL;
4498 attr->dw_attr = attr_kind;
4499 attr->dw_attr_val.val_class = dw_val_class_float;
4500 attr->dw_attr_val.v.val_float.length = length;
4501 attr->dw_attr_val.v.val_float.array = array;
4502 add_dwarf_attr (die, attr);
a3f97cbb
JW
4503}
4504
3f76745e 4505/* Add a string attribute value to a DIE. */
71dfc51f 4506
3f76745e
JM
4507static inline void
4508add_AT_string (die, attr_kind, str)
b3694847
SS
4509 dw_die_ref die;
4510 enum dwarf_attribute attr_kind;
4511 const char *str;
a3f97cbb 4512{
b3694847 4513 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
9eb4015a 4514 struct indirect_string_node *node;
c26fbbca 4515
9eb4015a
JJ
4516 if (! debug_str_hash)
4517 {
4518 debug_str_hash = ht_create (10);
4519 debug_str_hash->alloc_node = indirect_string_alloc;
4520 }
4521
4522 node = (struct indirect_string_node *)
4523 ht_lookup (debug_str_hash, (const unsigned char *) str,
4524 strlen (str), HT_ALLOC);
4525 node->refcount++;
71dfc51f 4526
3f76745e
JM
4527 attr->dw_attr_next = NULL;
4528 attr->dw_attr = attr_kind;
4529 attr->dw_attr_val.val_class = dw_val_class_str;
9eb4015a 4530 attr->dw_attr_val.v.val_str = node;
3f76745e
JM
4531 add_dwarf_attr (die, attr);
4532}
71dfc51f 4533
a96c67ec
JM
4534static inline const char *
4535AT_string (a)
b3694847 4536 dw_attr_ref a;
a96c67ec
JM
4537{
4538 if (a && AT_class (a) == dw_val_class_str)
9eb4015a
JJ
4539 return (const char *) HT_STR (&a->dw_attr_val.v.val_str->id);
4540
4541 abort ();
4542}
4543
4544/* Find out whether a string should be output inline in DIE
4545 or out-of-line in .debug_str section. */
4546
9eb4015a
JJ
4547static int
4548AT_string_form (a)
4549 dw_attr_ref a;
4550{
4551 if (a && AT_class (a) == dw_val_class_str)
4552 {
4553 struct indirect_string_node *node;
4554 unsigned int len;
4555 extern int const_labelno;
4556 char label[32];
4557
4558 node = a->dw_attr_val.v.val_str;
4559 if (node->form)
4560 return node->form;
4561
4562 len = HT_LEN (&node->id) + 1;
4563
2ad9852d
RK
4564 /* If the string is shorter or equal to the size of the reference, it is
4565 always better to put it inline. */
9eb4015a
JJ
4566 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4567 return node->form = DW_FORM_string;
4568
2ad9852d
RK
4569 /* If we cannot expect the linker to merge strings in .debug_str
4570 section, only put it into .debug_str if it is worth even in this
4571 single module. */
4572 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4573 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4574 return node->form = DW_FORM_string;
9eb4015a
JJ
4575
4576 ASM_GENERATE_INTERNAL_LABEL (label, "LC", const_labelno);
4577 ++const_labelno;
4578 node->label = xstrdup (label);
2ad9852d 4579
9eb4015a
JJ
4580 return node->form = DW_FORM_strp;
4581 }
a96c67ec 4582
40e8cc95 4583 abort ();
a96c67ec
JM
4584}
4585
3f76745e 4586/* Add a DIE reference attribute value to a DIE. */
71dfc51f 4587
3f76745e
JM
4588static inline void
4589add_AT_die_ref (die, attr_kind, targ_die)
b3694847
SS
4590 dw_die_ref die;
4591 enum dwarf_attribute attr_kind;
4592 dw_die_ref targ_die;
3f76745e 4593{
b3694847 4594 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4595
3f76745e
JM
4596 attr->dw_attr_next = NULL;
4597 attr->dw_attr = attr_kind;
4598 attr->dw_attr_val.val_class = dw_val_class_die_ref;
881c6935
JM
4599 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4600 attr->dw_attr_val.v.val_die_ref.external = 0;
3f76745e
JM
4601 add_dwarf_attr (die, attr);
4602}
b1ccbc24 4603
a96c67ec
JM
4604static inline dw_die_ref
4605AT_ref (a)
b3694847 4606 dw_attr_ref a;
a96c67ec
JM
4607{
4608 if (a && AT_class (a) == dw_val_class_die_ref)
881c6935 4609 return a->dw_attr_val.v.val_die_ref.die;
a96c67ec 4610
40e8cc95 4611 abort ();
a96c67ec
JM
4612}
4613
881c6935
JM
4614static inline int
4615AT_ref_external (a)
b3694847 4616 dw_attr_ref a;
881c6935
JM
4617{
4618 if (a && AT_class (a) == dw_val_class_die_ref)
4619 return a->dw_attr_val.v.val_die_ref.external;
4620
4621 return 0;
4622}
4623
881c6935
JM
4624static inline void
4625set_AT_ref_external (a, i)
b3694847 4626 dw_attr_ref a;
881c6935
JM
4627 int i;
4628{
4629 if (a && AT_class (a) == dw_val_class_die_ref)
4630 a->dw_attr_val.v.val_die_ref.external = i;
4631 else
4632 abort ();
4633}
4634
3f76745e 4635/* Add an FDE reference attribute value to a DIE. */
b1ccbc24 4636
3f76745e
JM
4637static inline void
4638add_AT_fde_ref (die, attr_kind, targ_fde)
b3694847
SS
4639 dw_die_ref die;
4640 enum dwarf_attribute attr_kind;
4641 unsigned targ_fde;
3f76745e 4642{
b3694847 4643 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
b1ccbc24 4644
3f76745e
JM
4645 attr->dw_attr_next = NULL;
4646 attr->dw_attr = attr_kind;
4647 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4648 attr->dw_attr_val.v.val_fde_index = targ_fde;
4649 add_dwarf_attr (die, attr);
a3f97cbb 4650}
71dfc51f 4651
3f76745e 4652/* Add a location description attribute value to a DIE. */
71dfc51f 4653
3f76745e
JM
4654static inline void
4655add_AT_loc (die, attr_kind, loc)
b3694847
SS
4656 dw_die_ref die;
4657 enum dwarf_attribute attr_kind;
4658 dw_loc_descr_ref loc;
3f76745e 4659{
b3694847 4660 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4661
3f76745e
JM
4662 attr->dw_attr_next = NULL;
4663 attr->dw_attr = attr_kind;
4664 attr->dw_attr_val.val_class = dw_val_class_loc;
4665 attr->dw_attr_val.v.val_loc = loc;
4666 add_dwarf_attr (die, attr);
a3f97cbb
JW
4667}
4668
a96c67ec
JM
4669static inline dw_loc_descr_ref
4670AT_loc (a)
b3694847 4671 dw_attr_ref a;
a96c67ec
JM
4672{
4673 if (a && AT_class (a) == dw_val_class_loc)
4674 return a->dw_attr_val.v.val_loc;
4675
40e8cc95 4676 abort ();
a96c67ec
JM
4677}
4678
63e46568
DB
4679static inline void
4680add_AT_loc_list (die, attr_kind, loc_list)
b3694847
SS
4681 dw_die_ref die;
4682 enum dwarf_attribute attr_kind;
4683 dw_loc_list_ref loc_list;
63e46568 4684{
b3694847 4685 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
63e46568
DB
4686
4687 attr->dw_attr_next = NULL;
4688 attr->dw_attr = attr_kind;
4689 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4690 attr->dw_attr_val.v.val_loc_list = loc_list;
4691 add_dwarf_attr (die, attr);
4692 have_location_lists = 1;
4693}
4694
63e46568
DB
4695static inline dw_loc_list_ref
4696AT_loc_list (a)
b3694847 4697 dw_attr_ref a;
63e46568
DB
4698{
4699 if (a && AT_class (a) == dw_val_class_loc_list)
4700 return a->dw_attr_val.v.val_loc_list;
4701
4702 abort ();
4703}
4704
3f76745e 4705/* Add an address constant attribute value to a DIE. */
71dfc51f 4706
3f76745e
JM
4707static inline void
4708add_AT_addr (die, attr_kind, addr)
b3694847
SS
4709 dw_die_ref die;
4710 enum dwarf_attribute attr_kind;
1865dbb5 4711 rtx addr;
a3f97cbb 4712{
b3694847 4713 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4714
3f76745e
JM
4715 attr->dw_attr_next = NULL;
4716 attr->dw_attr = attr_kind;
4717 attr->dw_attr_val.val_class = dw_val_class_addr;
4718 attr->dw_attr_val.v.val_addr = addr;
4719 add_dwarf_attr (die, attr);
a3f97cbb
JW
4720}
4721
1865dbb5 4722static inline rtx
a96c67ec 4723AT_addr (a)
b3694847 4724 dw_attr_ref a;
a96c67ec
JM
4725{
4726 if (a && AT_class (a) == dw_val_class_addr)
4727 return a->dw_attr_val.v.val_addr;
4728
40e8cc95 4729 abort ();
a96c67ec
JM
4730}
4731
3f76745e 4732/* Add a label identifier attribute value to a DIE. */
71dfc51f 4733
3f76745e
JM
4734static inline void
4735add_AT_lbl_id (die, attr_kind, lbl_id)
b3694847
SS
4736 dw_die_ref die;
4737 enum dwarf_attribute attr_kind;
4738 const char *lbl_id;
a3f97cbb 4739{
b3694847 4740 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4741
3f76745e
JM
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4745 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4746 add_dwarf_attr (die, attr);
4747}
71dfc51f 4748
3f76745e
JM
4749/* Add a section offset attribute value to a DIE. */
4750
4751static inline void
8b790721 4752add_AT_lbl_offset (die, attr_kind, label)
b3694847
SS
4753 dw_die_ref die;
4754 enum dwarf_attribute attr_kind;
4755 const char *label;
3f76745e 4756{
b3694847 4757 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
71dfc51f 4758
3f76745e
JM
4759 attr->dw_attr_next = NULL;
4760 attr->dw_attr = attr_kind;
8b790721 4761 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
a96c67ec 4762 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
3f76745e 4763 add_dwarf_attr (die, attr);
a3f97cbb
JW
4764}
4765
a20612aa
RH
4766/* Add an offset attribute value to a DIE. */
4767
2bee6045 4768static inline void
a20612aa 4769add_AT_offset (die, attr_kind, offset)
b3694847
SS
4770 dw_die_ref die;
4771 enum dwarf_attribute attr_kind;
4772 unsigned long offset;
a20612aa 4773{
b3694847 4774 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
a20612aa
RH
4775
4776 attr->dw_attr_next = NULL;
4777 attr->dw_attr = attr_kind;
4778 attr->dw_attr_val.val_class = dw_val_class_offset;
4779 attr->dw_attr_val.v.val_offset = offset;
4780 add_dwarf_attr (die, attr);
4781}
4782
2bee6045
JJ
4783/* Add an range_list attribute value to a DIE. */
4784
4785static void
4786add_AT_range_list (die, attr_kind, offset)
4787 dw_die_ref die;
4788 enum dwarf_attribute attr_kind;
4789 unsigned long offset;
4790{
4791 dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
4792
4793 attr->dw_attr_next = NULL;
4794 attr->dw_attr = attr_kind;
4795 attr->dw_attr_val.val_class = dw_val_class_range_list;
4796 attr->dw_attr_val.v.val_offset = offset;
4797 add_dwarf_attr (die, attr);
4798}
4799
a96c67ec
JM
4800static inline const char *
4801AT_lbl (a)
b3694847 4802 dw_attr_ref a;
a3f97cbb 4803{
a96c67ec
JM
4804 if (a && (AT_class (a) == dw_val_class_lbl_id
4805 || AT_class (a) == dw_val_class_lbl_offset))
4806 return a->dw_attr_val.v.val_lbl_id;
71dfc51f 4807
40e8cc95 4808 abort ();
a3f97cbb
JW
4809}
4810
3f76745e 4811/* Get the attribute of type attr_kind. */
71dfc51f 4812
3f76745e
JM
4813static inline dw_attr_ref
4814get_AT (die, attr_kind)
b3694847
SS
4815 dw_die_ref die;
4816 enum dwarf_attribute attr_kind;
f37230f0 4817{
b3694847
SS
4818 dw_attr_ref a;
4819 dw_die_ref spec = NULL;
556273e0 4820
3f76745e
JM
4821 if (die != NULL)
4822 {
4823 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
2ad9852d
RK
4824 if (a->dw_attr == attr_kind)
4825 return a;
4826 else if (a->dw_attr == DW_AT_specification
4827 || a->dw_attr == DW_AT_abstract_origin)
4828 spec = AT_ref (a);
71dfc51f 4829
3f76745e
JM
4830 if (spec)
4831 return get_AT (spec, attr_kind);
4832 }
4833
4834 return NULL;
f37230f0
JM
4835}
4836
2ad9852d
RK
4837/* Return the "low pc" attribute value, typically associated with a subprogram
4838 DIE. Return null if the "low pc" attribute is either not present, or if it
4839 cannot be represented as an assembler label identifier. */
71dfc51f 4840
a96c67ec 4841static inline const char *
3f76745e 4842get_AT_low_pc (die)
b3694847 4843 dw_die_ref die;
7e23cb16 4844{
b3694847 4845 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
2ad9852d 4846
40e8cc95 4847 return a ? AT_lbl (a) : NULL;
7e23cb16
JM
4848}
4849
2ad9852d
RK
4850/* Return the "high pc" attribute value, typically associated with a subprogram
4851 DIE. Return null if the "high pc" attribute is either not present, or if it
4852 cannot be represented as an assembler label identifier. */
71dfc51f 4853
a96c67ec 4854static inline const char *
3f76745e 4855get_AT_hi_pc (die)
b3694847 4856 dw_die_ref die;
a3f97cbb 4857{
b3694847 4858 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
2ad9852d 4859
40e8cc95 4860 return a ? AT_lbl (a) : NULL;
3f76745e
JM
4861}
4862
4863/* Return the value of the string attribute designated by ATTR_KIND, or
4864 NULL if it is not present. */
71dfc51f 4865
a96c67ec 4866static inline const char *
3f76745e 4867get_AT_string (die, attr_kind)
b3694847
SS
4868 dw_die_ref die;
4869 enum dwarf_attribute attr_kind;
3f76745e 4870{
b3694847 4871 dw_attr_ref a = get_AT (die, attr_kind);
2ad9852d 4872
40e8cc95 4873 return a ? AT_string (a) : NULL;
a3f97cbb
JW
4874}
4875
3f76745e
JM
4876/* Return the value of the flag attribute designated by ATTR_KIND, or -1
4877 if it is not present. */
71dfc51f 4878
3f76745e
JM
4879static inline int
4880get_AT_flag (die, attr_kind)
b3694847
SS
4881 dw_die_ref die;
4882 enum dwarf_attribute attr_kind;
a3f97cbb 4883{
b3694847 4884 dw_attr_ref a = get_AT (die, attr_kind);
2ad9852d 4885
40e8cc95 4886 return a ? AT_flag (a) : 0;
a3f97cbb
JW
4887}
4888
3f76745e
JM
4889/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4890 if it is not present. */
71dfc51f 4891
3f76745e
JM
4892static inline unsigned
4893get_AT_unsigned (die, attr_kind)
b3694847
SS
4894 dw_die_ref die;
4895 enum dwarf_attribute attr_kind;
a3f97cbb 4896{
b3694847 4897 dw_attr_ref a = get_AT (die, attr_kind);
2ad9852d 4898
40e8cc95 4899 return a ? AT_unsigned (a) : 0;
a96c67ec 4900}
71dfc51f 4901
a96c67ec
JM
4902static inline dw_die_ref
4903get_AT_ref (die, attr_kind)
4904 dw_die_ref die;
b3694847 4905 enum dwarf_attribute attr_kind;
a96c67ec 4906{
b3694847 4907 dw_attr_ref a = get_AT (die, attr_kind);
2ad9852d 4908
40e8cc95 4909 return a ? AT_ref (a) : NULL;
3f76745e 4910}
71dfc51f 4911
3f76745e
JM
4912static inline int
4913is_c_family ()
4914{
b3694847 4915 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
71dfc51f 4916
3f76745e
JM
4917 return (lang == DW_LANG_C || lang == DW_LANG_C89
4918 || lang == DW_LANG_C_plus_plus);
556273e0 4919}
71dfc51f 4920
1d3d6b1e
JM
4921static inline int
4922is_cxx ()
4923{
4924 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4925 == DW_LANG_C_plus_plus);
c26fbbca 4926}
1d3d6b1e 4927
3f76745e
JM
4928static inline int
4929is_fortran ()
4930{
b3694847 4931 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
71dfc51f 4932
3f76745e 4933 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
556273e0 4934}
71dfc51f 4935
28985b81
AG
4936static inline int
4937is_java ()
4938{
b3694847 4939 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
28985b81
AG
4940
4941 return (lang == DW_LANG_Java);
4942}
4943
10a11b75 4944/* Free up the memory used by A. */
71dfc51f 4945
c6991660 4946static inline void free_AT PARAMS ((dw_attr_ref));
3f76745e 4947static inline void
10a11b75
JM
4948free_AT (a)
4949 dw_attr_ref a;
4950{
4951 switch (AT_class (a))
4952 {
10a11b75 4953 case dw_val_class_str:
9eb4015a
JJ
4954 if (a->dw_attr_val.v.val_str->refcount)
4955 a->dw_attr_val.v.val_str->refcount--;
4956 break;
4957
10a11b75
JM
4958 case dw_val_class_lbl_id:
4959 case dw_val_class_lbl_offset:
9eb4015a 4960 free (a->dw_attr_val.v.val_lbl_id);
10a11b75
JM
4961 break;
4962
3724ec07
WC
4963 case dw_val_class_float:
4964 free (a->dw_attr_val.v.val_float.array);
4965 break;
0b34cf1e 4966
10a11b75
JM
4967 default:
4968 break;
4969 }
4970
4971 free (a);
556273e0 4972}
10a11b75
JM
4973
4974/* Remove the specified attribute if present. */
4975
4976static void
3f76745e 4977remove_AT (die, attr_kind)
b3694847
SS
4978 dw_die_ref die;
4979 enum dwarf_attribute attr_kind;
3f76745e 4980{
b3694847
SS
4981 dw_attr_ref *p;
4982 dw_attr_ref removed = NULL;
a3f97cbb 4983
3f76745e
JM
4984 if (die != NULL)
4985 {
a96c67ec
JM
4986 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
4987 if ((*p)->dw_attr == attr_kind)
4988 {
4989 removed = *p;
4990 *p = (*p)->dw_attr_next;
4991 break;
4992 }
71dfc51f 4993
a96c67ec 4994 if (removed != 0)
10a11b75
JM
4995 free_AT (removed);
4996 }
4997}
71dfc51f 4998
10a11b75 4999/* Free up the memory used by DIE. */
71dfc51f 5000
10a11b75
JM
5001static inline void
5002free_die (die)
5003 dw_die_ref die;
5004{
5005 remove_children (die);
5006 free (die);
3f76745e 5007}
71dfc51f 5008
3f76745e 5009/* Discard the children of this DIE. */
71dfc51f 5010
10a11b75 5011static void
3f76745e 5012remove_children (die)
b3694847 5013 dw_die_ref die;
3f76745e 5014{
b3694847 5015 dw_die_ref child_die = die->die_child;
3f76745e
JM
5016
5017 die->die_child = NULL;
3f76745e
JM
5018
5019 while (child_die != NULL)
a3f97cbb 5020 {
b3694847
SS
5021 dw_die_ref tmp_die = child_die;
5022 dw_attr_ref a;
71dfc51f 5023
3f76745e 5024 child_die = child_die->die_sib;
556273e0
KH
5025
5026 for (a = tmp_die->die_attr; a != NULL;)
a3f97cbb 5027 {
b3694847 5028 dw_attr_ref tmp_a = a;
71dfc51f 5029
3f76745e 5030 a = a->dw_attr_next;
10a11b75 5031 free_AT (tmp_a);
a3f97cbb 5032 }
71dfc51f 5033
10a11b75 5034 free_die (tmp_die);
3f76745e
JM
5035 }
5036}
71dfc51f 5037
a96c67ec 5038/* Add a child DIE below its parent. We build the lists up in reverse
881c6935 5039 addition order, and correct that in reverse_all_dies. */
71dfc51f 5040
3f76745e
JM
5041static inline void
5042add_child_die (die, child_die)
b3694847
SS
5043 dw_die_ref die;
5044 dw_die_ref child_die;
3f76745e
JM
5045{
5046 if (die != NULL && child_die != NULL)
e90b62db 5047 {
3a88cbd1
JL
5048 if (die == child_die)
5049 abort ();
2ad9852d 5050
3f76745e 5051 child_die->die_parent = die;
a96c67ec
JM
5052 child_die->die_sib = die->die_child;
5053 die->die_child = child_die;
3f76745e
JM
5054 }
5055}
5056
2081603c
JM
5057/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5058 is the specification, to the front of PARENT's list of children. */
10a11b75
JM
5059
5060static void
5061splice_child_die (parent, child)
5062 dw_die_ref parent, child;
5063{
5064 dw_die_ref *p;
5065
5066 /* We want the declaration DIE from inside the class, not the
5067 specification DIE at toplevel. */
5068 if (child->die_parent != parent)
2081603c
JM
5069 {
5070 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
2ad9852d 5071
2081603c
JM
5072 if (tmp)
5073 child = tmp;
5074 }
10a11b75 5075
2081603c
JM
5076 if (child->die_parent != parent
5077 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
10a11b75
JM
5078 abort ();
5079
5de0e8d4 5080 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
10a11b75
JM
5081 if (*p == child)
5082 {
5083 *p = child->die_sib;
5084 break;
5085 }
5086
5087 child->die_sib = parent->die_child;
5088 parent->die_child = child;
5089}
5090
3f76745e
JM
5091/* Return a pointer to a newly created DIE node. */
5092
5093static inline dw_die_ref
54ba1f0d 5094new_die (tag_value, parent_die, t)
b3694847
SS
5095 enum dwarf_tag tag_value;
5096 dw_die_ref parent_die;
54ba1f0d 5097 tree t;
3f76745e 5098{
b3694847 5099 dw_die_ref die = (dw_die_ref) xcalloc (1, sizeof (die_node));
3f76745e
JM
5100
5101 die->die_tag = tag_value;
3f76745e
JM
5102
5103 if (parent_die != NULL)
5104 add_child_die (parent_die, die);
5105 else
ef76d03b
JW
5106 {
5107 limbo_die_node *limbo_node;
5108
5109 limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
5110 limbo_node->die = die;
54ba1f0d 5111 limbo_node->created_for = t;
ef76d03b
JW
5112 limbo_node->next = limbo_die_list;
5113 limbo_die_list = limbo_node;
5114 }
71dfc51f 5115
3f76745e
JM
5116 return die;
5117}
71dfc51f 5118
3f76745e 5119/* Return the DIE associated with the given type specifier. */
71dfc51f 5120
3f76745e
JM
5121static inline dw_die_ref
5122lookup_type_die (type)
b3694847 5123 tree type;
3f76745e
JM
5124{
5125 return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
5126}
e90b62db 5127
3f76745e 5128/* Equate a DIE to a given type specifier. */
71dfc51f 5129
10a11b75 5130static inline void
3f76745e 5131equate_type_number_to_die (type, type_die)
b3694847
SS
5132 tree type;
5133 dw_die_ref type_die;
3f76745e
JM
5134{
5135 TYPE_SYMTAB_POINTER (type) = (char *) type_die;
5136}
71dfc51f 5137
3f76745e 5138/* Return the DIE associated with a given declaration. */
71dfc51f 5139
3f76745e
JM
5140static inline dw_die_ref
5141lookup_decl_die (decl)
b3694847 5142 tree decl;
3f76745e 5143{
b3694847 5144 unsigned decl_id = DECL_UID (decl);
3f76745e 5145
2ad9852d 5146 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
a3f97cbb
JW
5147}
5148
3f76745e 5149/* Equate a DIE to a particular declaration. */
71dfc51f 5150
3f76745e
JM
5151static void
5152equate_decl_number_to_die (decl, decl_die)
b3694847
SS
5153 tree decl;
5154 dw_die_ref decl_die;
a3f97cbb 5155{
aea9695c
RK
5156 unsigned int decl_id = DECL_UID (decl);
5157 unsigned int num_allocated;
d291dd49 5158
3f76745e 5159 if (decl_id >= decl_die_table_allocated)
a3f97cbb 5160 {
3f76745e
JM
5161 num_allocated
5162 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5163 / DECL_DIE_TABLE_INCREMENT)
5164 * DECL_DIE_TABLE_INCREMENT;
5165
5166 decl_die_table
5167 = (dw_die_ref *) xrealloc (decl_die_table,
5168 sizeof (dw_die_ref) * num_allocated);
5169
961192e1 5170 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
3f76745e
JM
5171 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5172 decl_die_table_allocated = num_allocated;
a3f97cbb 5173 }
71dfc51f 5174
3f76745e
JM
5175 if (decl_id >= decl_die_table_in_use)
5176 decl_die_table_in_use = (decl_id + 1);
5177
5178 decl_die_table[decl_id] = decl_die;
a3f97cbb 5179}
3f76745e
JM
5180\f
5181/* Keep track of the number of spaces used to indent the
5182 output of the debugging routines that print the structure of
5183 the DIE internal representation. */
5184static int print_indent;
71dfc51f 5185
3f76745e
JM
5186/* Indent the line the number of spaces given by print_indent. */
5187
5188static inline void
5189print_spaces (outfile)
5190 FILE *outfile;
5191{
5192 fprintf (outfile, "%*s", print_indent, "");
a3f97cbb
JW
5193}
5194
956d6950 5195/* Print the information associated with a given DIE, and its children.
3f76745e 5196 This routine is a debugging aid only. */
71dfc51f 5197
a3f97cbb 5198static void
3f76745e
JM
5199print_die (die, outfile)
5200 dw_die_ref die;
5201 FILE *outfile;
a3f97cbb 5202{
b3694847
SS
5203 dw_attr_ref a;
5204 dw_die_ref c;
71dfc51f 5205
3f76745e 5206 print_spaces (outfile);
2d8b0f3a 5207 fprintf (outfile, "DIE %4lu: %s\n",
3f76745e
JM
5208 die->die_offset, dwarf_tag_name (die->die_tag));
5209 print_spaces (outfile);
2d8b0f3a
JL
5210 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5211 fprintf (outfile, " offset: %lu\n", die->die_offset);
3f76745e
JM
5212
5213 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
a3f97cbb 5214 {
3f76745e
JM
5215 print_spaces (outfile);
5216 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5217
a96c67ec 5218 switch (AT_class (a))
3f76745e
JM
5219 {
5220 case dw_val_class_addr:
5221 fprintf (outfile, "address");
5222 break;
a20612aa
RH
5223 case dw_val_class_offset:
5224 fprintf (outfile, "offset");
5225 break;
3f76745e
JM
5226 case dw_val_class_loc:
5227 fprintf (outfile, "location descriptor");
5228 break;
63e46568 5229 case dw_val_class_loc_list:
a20612aa
RH
5230 fprintf (outfile, "location list -> label:%s",
5231 AT_loc_list (a)->ll_symbol);
63e46568 5232 break;
2bee6045
JJ
5233 case dw_val_class_range_list:
5234 fprintf (outfile, "range list");
5235 break;
3f76745e 5236 case dw_val_class_const:
a96c67ec 5237 fprintf (outfile, "%ld", AT_int (a));
3f76745e
JM
5238 break;
5239 case dw_val_class_unsigned_const:
a96c67ec 5240 fprintf (outfile, "%lu", AT_unsigned (a));
3f76745e
JM
5241 break;
5242 case dw_val_class_long_long:
2d8b0f3a 5243 fprintf (outfile, "constant (%lu,%lu)",
556273e0
KH
5244 a->dw_attr_val.v.val_long_long.hi,
5245 a->dw_attr_val.v.val_long_long.low);
3f76745e
JM
5246 break;
5247 case dw_val_class_float:
5248 fprintf (outfile, "floating-point constant");
5249 break;
5250 case dw_val_class_flag:
a96c67ec 5251 fprintf (outfile, "%u", AT_flag (a));
3f76745e
JM
5252 break;
5253 case dw_val_class_die_ref:
a96c67ec 5254 if (AT_ref (a) != NULL)
881c6935 5255 {
1bfb5f8f 5256 if (AT_ref (a)->die_symbol)
881c6935
JM
5257 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5258 else
5259 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5260 }
3f76745e
JM
5261 else
5262 fprintf (outfile, "die -> <null>");
5263 break;
5264 case dw_val_class_lbl_id:
8b790721 5265 case dw_val_class_lbl_offset:
a96c67ec 5266 fprintf (outfile, "label: %s", AT_lbl (a));
3f76745e 5267 break;
3f76745e 5268 case dw_val_class_str:
a96c67ec
JM
5269 if (AT_string (a) != NULL)
5270 fprintf (outfile, "\"%s\"", AT_string (a));
3f76745e
JM
5271 else
5272 fprintf (outfile, "<null>");
5273 break;
e9a25f70
JL
5274 default:
5275 break;
3f76745e
JM
5276 }
5277
5278 fprintf (outfile, "\n");
5279 }
5280
5281 if (die->die_child != NULL)
5282 {
5283 print_indent += 4;
5284 for (c = die->die_child; c != NULL; c = c->die_sib)
5285 print_die (c, outfile);
71dfc51f 5286
3f76745e 5287 print_indent -= 4;
a3f97cbb 5288 }
881c6935
JM
5289 if (print_indent == 0)
5290 fprintf (outfile, "\n");
a3f97cbb
JW
5291}
5292
3f76745e
JM
5293/* Print the contents of the source code line number correspondence table.
5294 This routine is a debugging aid only. */
71dfc51f 5295
3f76745e
JM
5296static void
5297print_dwarf_line_table (outfile)
5298 FILE *outfile;
a3f97cbb 5299{
b3694847
SS
5300 unsigned i;
5301 dw_line_info_ref line_info;
3f76745e
JM
5302
5303 fprintf (outfile, "\n\nDWARF source line information\n");
2ad9852d 5304 for (i = 1; i < line_info_table_in_use; i++)
a3f97cbb 5305 {
3f76745e
JM
5306 line_info = &line_info_table[i];
5307 fprintf (outfile, "%5d: ", i);
981975b6 5308 fprintf (outfile, "%-20s", file_table.table[line_info->dw_file_num]);
2d8b0f3a 5309 fprintf (outfile, "%6ld", line_info->dw_line_num);
3f76745e 5310 fprintf (outfile, "\n");
a3f97cbb 5311 }
3f76745e
JM
5312
5313 fprintf (outfile, "\n\n");
f37230f0
JM
5314}
5315
3f76745e
JM
5316/* Print the information collected for a given DIE. */
5317
5318void
5319debug_dwarf_die (die)
5320 dw_die_ref die;
5321{
5322 print_die (die, stderr);
5323}
5324
5325/* Print all DWARF information collected for the compilation unit.
5326 This routine is a debugging aid only. */
5327
5328void
5329debug_dwarf ()
5330{
5331 print_indent = 0;
5332 print_die (comp_unit_die, stderr);
b2244e22
JW
5333 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5334 print_dwarf_line_table (stderr);
3f76745e
JM
5335}
5336\f
a96c67ec
JM
5337/* We build up the lists of children and attributes by pushing new ones
5338 onto the beginning of the list. Reverse the lists for DIE so that
5339 they are in order of addition. */
71dfc51f 5340
f37230f0 5341static void
a96c67ec 5342reverse_die_lists (die)
b3694847 5343 dw_die_ref die;
f37230f0 5344{
b3694847
SS
5345 dw_die_ref c, cp, cn;
5346 dw_attr_ref a, ap, an;
71dfc51f 5347
a96c67ec 5348 for (a = die->die_attr, ap = 0; a; a = an)
7d9d8943
AM
5349 {
5350 an = a->dw_attr_next;
5351 a->dw_attr_next = ap;
5352 ap = a;
a3f97cbb 5353 }
2ad9852d 5354
7d9d8943 5355 die->die_attr = ap;
3f76745e 5356
7d9d8943
AM
5357 for (c = die->die_child, cp = 0; c; c = cn)
5358 {
5359 cn = c->die_sib;
5360 c->die_sib = cp;
5361 cp = c;
5362 }
2ad9852d 5363
7d9d8943 5364 die->die_child = cp;
a3f97cbb
JW
5365}
5366
2ad9852d
RK
5367/* reverse_die_lists only reverses the single die you pass it. Since we used to
5368 reverse all dies in add_sibling_attributes, which runs through all the dies,
5369 it would reverse all the dies. Now, however, since we don't call
5370 reverse_die_lists in add_sibling_attributes, we need a routine to
5371 recursively reverse all the dies. This is that routine. */
71dfc51f 5372
7d9d8943 5373static void
881c6935 5374reverse_all_dies (die)
b3694847 5375 dw_die_ref die;
a3f97cbb 5376{
b3694847 5377 dw_die_ref c;
71dfc51f 5378
7d9d8943 5379 reverse_die_lists (die);
3f76745e 5380
881c6935
JM
5381 for (c = die->die_child; c; c = c->die_sib)
5382 reverse_all_dies (c);
5383}
5384
2ad9852d
RK
5385/* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5386 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5387 DIE that marks the start of the DIEs for this include file. */
881c6935
JM
5388
5389static dw_die_ref
5390push_new_compile_unit (old_unit, bincl_die)
5391 dw_die_ref old_unit, bincl_die;
5392{
5393 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5394 dw_die_ref new_unit = gen_compile_unit_die (filename);
2ad9852d 5395
881c6935
JM
5396 new_unit->die_sib = old_unit;
5397 return new_unit;
5398}
5399
5400/* Close an include-file CU and reopen the enclosing one. */
5401
5402static dw_die_ref
5403pop_compile_unit (old_unit)
5404 dw_die_ref old_unit;
5405{
5406 dw_die_ref new_unit = old_unit->die_sib;
2ad9852d 5407
881c6935
JM
5408 old_unit->die_sib = NULL;
5409 return new_unit;
5410}
5411
2ad9852d
RK
5412#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5413#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
881c6935
JM
5414
5415/* Calculate the checksum of a location expression. */
5416
5417static inline void
5418loc_checksum (loc, ctx)
5419 dw_loc_descr_ref loc;
5420 struct md5_ctx *ctx;
5421{
2ad9852d
RK
5422 CHECKSUM (loc->dw_loc_opc);
5423 CHECKSUM (loc->dw_loc_oprnd1);
5424 CHECKSUM (loc->dw_loc_oprnd2);
881c6935
JM
5425}
5426
5427/* Calculate the checksum of an attribute. */
5428
5429static void
5430attr_checksum (at, ctx)
5431 dw_attr_ref at;
5432 struct md5_ctx *ctx;
5433{
5434 dw_loc_descr_ref loc;
5435 rtx r;
5436
2ad9852d 5437 CHECKSUM (at->dw_attr);
881c6935
JM
5438
5439 /* We don't care about differences in file numbering. */
5f632b5e
JM
5440 if (at->dw_attr == DW_AT_decl_file
5441 /* Or that this was compiled with a different compiler snapshot; if
5442 the output is the same, that's what matters. */
5443 || at->dw_attr == DW_AT_producer)
881c6935
JM
5444 return;
5445
5446 switch (AT_class (at))
5447 {
5448 case dw_val_class_const:
2ad9852d 5449 CHECKSUM (at->dw_attr_val.v.val_int);
881c6935
JM
5450 break;
5451 case dw_val_class_unsigned_const:
2ad9852d 5452 CHECKSUM (at->dw_attr_val.v.val_unsigned);
881c6935
JM
5453 break;
5454 case dw_val_class_long_long:
2ad9852d 5455 CHECKSUM (at->dw_attr_val.v.val_long_long);
881c6935
JM
5456 break;
5457 case dw_val_class_float:
2ad9852d 5458 CHECKSUM (at->dw_attr_val.v.val_float);
881c6935
JM
5459 break;
5460 case dw_val_class_flag:
2ad9852d 5461 CHECKSUM (at->dw_attr_val.v.val_flag);
881c6935 5462 break;
881c6935 5463 case dw_val_class_str:
2ad9852d 5464 CHECKSUM_STRING (AT_string (at));
881c6935 5465 break;
a20612aa 5466
881c6935
JM
5467 case dw_val_class_addr:
5468 r = AT_addr (at);
5469 switch (GET_CODE (r))
5470 {
5471 case SYMBOL_REF:
2ad9852d 5472 CHECKSUM_STRING (XSTR (r, 0));
881c6935
JM
5473 break;
5474
5475 default:
5476 abort ();
5477 }
5478 break;
5479
a20612aa 5480 case dw_val_class_offset:
2ad9852d 5481 CHECKSUM (at->dw_attr_val.v.val_offset);
a20612aa
RH
5482 break;
5483
881c6935
JM
5484 case dw_val_class_loc:
5485 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5486 loc_checksum (loc, ctx);
5487 break;
5488
5489 case dw_val_class_die_ref:
5490 if (AT_ref (at)->die_offset)
2ad9852d 5491 CHECKSUM (AT_ref (at)->die_offset);
881c6935
JM
5492 /* FIXME else use target die name or something. */
5493
5494 case dw_val_class_fde_ref:
5495 case dw_val_class_lbl_id:
5496 case dw_val_class_lbl_offset:
a20612aa 5497 break;
881c6935
JM
5498
5499 default:
5500 break;
5501 }
5502}
5503
5504/* Calculate the checksum of a DIE. */
5505
5506static void
5507die_checksum (die, ctx)
5508 dw_die_ref die;
5509 struct md5_ctx *ctx;
5510{
5511 dw_die_ref c;
5512 dw_attr_ref a;
5513
2ad9852d 5514 CHECKSUM (die->die_tag);
881c6935
JM
5515
5516 for (a = die->die_attr; a; a = a->dw_attr_next)
5517 attr_checksum (a, ctx);
5518
5519 for (c = die->die_child; c; c = c->die_sib)
5520 die_checksum (c, ctx);
5521}
5522
2ad9852d
RK
5523#undef CHECKSUM
5524#undef CHECKSUM_STRING
881c6935
JM
5525
5526/* The prefix to attach to symbols on DIEs in the current comdat debug
5527 info section. */
5528static char *comdat_symbol_id;
5529
5530/* The index of the current symbol within the current comdat CU. */
5531static unsigned int comdat_symbol_number;
5532
5533/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5534 children, and set comdat_symbol_id accordingly. */
5535
5536static void
5537compute_section_prefix (unit_die)
5538 dw_die_ref unit_die;
5539{
f11c3043
RK
5540 const char *base = lbasename (get_AT_string (unit_die, DW_AT_name));
5541 char *name = (char *) alloca (strlen (base) + 64);
5542 char *p;
881c6935
JM
5543 int i;
5544 unsigned char checksum[16];
5545 struct md5_ctx ctx;
5546
f11c3043
RK
5547 /* Compute the checksum of the DIE, then append part of it as hex digits to
5548 the name filename of the unit. */
5549
881c6935
JM
5550 md5_init_ctx (&ctx);
5551 die_checksum (unit_die, &ctx);
5552 md5_finish_ctx (&ctx, checksum);
5553
0023400b 5554 sprintf (name, "%s.", base);
881c6935
JM
5555 clean_symbol_name (name);
5556
2ad9852d
RK
5557 p = name + strlen (name);
5558 for (i = 0; i < 4; i++)
5559 {
5560 sprintf (p, "%.2x", checksum[i]);
5561 p += 2;
5562 }
881c6935
JM
5563
5564 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5565 comdat_symbol_number = 0;
5566}
5567
f11c3043 5568/* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
881c6935
JM
5569
5570static int
5571is_type_die (die)
5572 dw_die_ref die;
5573{
5574 switch (die->die_tag)
5575 {
5576 case DW_TAG_array_type:
5577 case DW_TAG_class_type:
5578 case DW_TAG_enumeration_type:
5579 case DW_TAG_pointer_type:
5580 case DW_TAG_reference_type:
5581 case DW_TAG_string_type:
5582 case DW_TAG_structure_type:
5583 case DW_TAG_subroutine_type:
5584 case DW_TAG_union_type:
5585 case DW_TAG_ptr_to_member_type:
5586 case DW_TAG_set_type:
5587 case DW_TAG_subrange_type:
5588 case DW_TAG_base_type:
5589 case DW_TAG_const_type:
5590 case DW_TAG_file_type:
5591 case DW_TAG_packed_type:
5592 case DW_TAG_volatile_type:
5593 return 1;
5594 default:
5595 return 0;
5596 }
5597}
5598
5599/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5600 Basically, we want to choose the bits that are likely to be shared between
5601 compilations (types) and leave out the bits that are specific to individual
5602 compilations (functions). */
5603
5604static int
5605is_comdat_die (c)
5606 dw_die_ref c;
5607{
2ad9852d
RK
5608 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5609 we do for stabs. The advantage is a greater likelihood of sharing between
5610 objects that don't include headers in the same order (and therefore would
5611 put the base types in a different comdat). jason 8/28/00 */
5612
881c6935
JM
5613 if (c->die_tag == DW_TAG_base_type)
5614 return 0;
5615
5616 if (c->die_tag == DW_TAG_pointer_type
5617 || c->die_tag == DW_TAG_reference_type
5618 || c->die_tag == DW_TAG_const_type
5619 || c->die_tag == DW_TAG_volatile_type)
5620 {
5621 dw_die_ref t = get_AT_ref (c, DW_AT_type);
2ad9852d 5622
881c6935
JM
5623 return t ? is_comdat_die (t) : 0;
5624 }
881c6935
JM
5625
5626 return is_type_die (c);
5627}
5628
5629/* Returns 1 iff C is the sort of DIE that might be referred to from another
5630 compilation unit. */
5631
5632static int
5633is_symbol_die (c)
5634 dw_die_ref c;
5635{
2ad9852d 5636 return (is_type_die (c)
c26fbbca 5637 || (get_AT (c, DW_AT_declaration)
2ad9852d 5638 && !get_AT (c, DW_AT_specification)));
881c6935
JM
5639}
5640
5641static char *
63e46568 5642gen_internal_sym (prefix)
173bf5be 5643 const char *prefix;
881c6935
JM
5644{
5645 char buf[256];
5646 static int label_num;
2ad9852d 5647
63e46568 5648 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
881c6935
JM
5649 return xstrdup (buf);
5650}
5651
5652/* Assign symbols to all worthy DIEs under DIE. */
5653
5654static void
5655assign_symbol_names (die)
b3694847 5656 dw_die_ref die;
881c6935 5657{
b3694847 5658 dw_die_ref c;
881c6935
JM
5659
5660 if (is_symbol_die (die))
5661 {
5662 if (comdat_symbol_id)
5663 {
5664 char *p = alloca (strlen (comdat_symbol_id) + 64);
2ad9852d 5665
881c6935
JM
5666 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5667 comdat_symbol_id, comdat_symbol_number++);
5668 die->die_symbol = xstrdup (p);
5669 }
5670 else
63e46568 5671 die->die_symbol = gen_internal_sym ("LDIE");
881c6935
JM
5672 }
5673
5674 for (c = die->die_child; c != NULL; c = c->die_sib)
5675 assign_symbol_names (c);
5676}
5677
5678/* Traverse the DIE (which is always comp_unit_die), and set up
5679 additional compilation units for each of the include files we see
5680 bracketed by BINCL/EINCL. */
5681
5682static void
5683break_out_includes (die)
b3694847 5684 dw_die_ref die;
881c6935
JM
5685{
5686 dw_die_ref *ptr;
b3694847 5687 dw_die_ref unit = NULL;
881c6935
JM
5688 limbo_die_node *node;
5689
c26fbbca 5690 for (ptr = &(die->die_child); *ptr;)
881c6935 5691 {
b3694847 5692 dw_die_ref c = *ptr;
881c6935 5693
2ad9852d 5694 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
881c6935
JM
5695 || (unit && is_comdat_die (c)))
5696 {
5697 /* This DIE is for a secondary CU; remove it from the main one. */
5698 *ptr = c->die_sib;
5699
5700 if (c->die_tag == DW_TAG_GNU_BINCL)
5701 {
5702 unit = push_new_compile_unit (unit, c);
5703 free_die (c);
5704 }
5705 else if (c->die_tag == DW_TAG_GNU_EINCL)
5706 {
5707 unit = pop_compile_unit (unit);
5708 free_die (c);
5709 }
5710 else
5711 add_child_die (unit, c);
5712 }
5713 else
5714 {
5715 /* Leave this DIE in the main CU. */
5716 ptr = &(c->die_sib);
5717 continue;
5718 }
5719 }
5720
5721#if 0
5722 /* We can only use this in debugging, since the frontend doesn't check
0b34cf1e 5723 to make sure that we leave every include file we enter. */
881c6935
JM
5724 if (unit != NULL)
5725 abort ();
5726#endif
5727
5728 assign_symbol_names (die);
5729 for (node = limbo_die_list; node; node = node->next)
5730 {
5731 compute_section_prefix (node->die);
5732 assign_symbol_names (node->die);
5733 }
5734}
5735
5736/* Traverse the DIE and add a sibling attribute if it may have the
5737 effect of speeding up access to siblings. To save some space,
5738 avoid generating sibling attributes for DIE's without children. */
5739
5740static void
5741add_sibling_attributes (die)
b3694847 5742 dw_die_ref die;
881c6935 5743{
b3694847 5744 dw_die_ref c;
881c6935
JM
5745
5746 if (die->die_tag != DW_TAG_compile_unit
5747 && die->die_sib && die->die_child != NULL)
7d9d8943
AM
5748 /* Add the sibling link to the front of the attribute list. */
5749 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5750
5751 for (c = die->die_child; c != NULL; c = c->die_sib)
5752 add_sibling_attributes (c);
5753}
5754
2ad9852d
RK
5755/* Output all location lists for the DIE and its children. */
5756
63e46568
DB
5757static void
5758output_location_lists (die)
b3694847 5759 dw_die_ref die;
63e46568
DB
5760{
5761 dw_die_ref c;
5762 dw_attr_ref d_attr;
2ad9852d 5763
63e46568 5764 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
2ad9852d
RK
5765 if (AT_class (d_attr) == dw_val_class_loc_list)
5766 output_loc_list (AT_loc_list (d_attr));
5767
63e46568
DB
5768 for (c = die->die_child; c != NULL; c = c->die_sib)
5769 output_location_lists (c);
5770
5771}
c26fbbca 5772
2ad9852d
RK
5773/* The format of each DIE (and its attribute value pairs) is encoded in an
5774 abbreviation table. This routine builds the abbreviation table and assigns
5775 a unique abbreviation id for each abbreviation entry. The children of each
5776 die are visited recursively. */
7d9d8943
AM
5777
5778static void
5779build_abbrev_table (die)
b3694847 5780 dw_die_ref die;
7d9d8943 5781{
b3694847
SS
5782 unsigned long abbrev_id;
5783 unsigned int n_alloc;
5784 dw_die_ref c;
5785 dw_attr_ref d_attr, a_attr;
881c6935
JM
5786
5787 /* Scan the DIE references, and mark as external any that refer to
1bfb5f8f 5788 DIEs from other CUs (i.e. those which are not marked). */
881c6935 5789 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
2ad9852d
RK
5790 if (AT_class (d_attr) == dw_val_class_die_ref
5791 && AT_ref (d_attr)->die_mark == 0)
5792 {
5793 if (AT_ref (d_attr)->die_symbol == 0)
5794 abort ();
5795
5796 set_AT_ref_external (d_attr, 1);
5797 }
881c6935 5798
7d9d8943
AM
5799 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
5800 {
b3694847 5801 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7d9d8943
AM
5802
5803 if (abbrev->die_tag == die->die_tag)
5804 {
5805 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
5806 {
5807 a_attr = abbrev->die_attr;
5808 d_attr = die->die_attr;
5809
5810 while (a_attr != NULL && d_attr != NULL)
5811 {
5812 if ((a_attr->dw_attr != d_attr->dw_attr)
5813 || (value_format (a_attr) != value_format (d_attr)))
5814 break;
5815
5816 a_attr = a_attr->dw_attr_next;
5817 d_attr = d_attr->dw_attr_next;
5818 }
5819
5820 if (a_attr == NULL && d_attr == NULL)
5821 break;
5822 }
5823 }
5824 }
5825
5826 if (abbrev_id >= abbrev_die_table_in_use)
5827 {
5828 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
5829 {
5830 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
556273e0 5831 abbrev_die_table
7d9d8943
AM
5832 = (dw_die_ref *) xrealloc (abbrev_die_table,
5833 sizeof (dw_die_ref) * n_alloc);
5834
961192e1 5835 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
7d9d8943
AM
5836 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
5837 abbrev_die_table_allocated = n_alloc;
5838 }
5839
5840 ++abbrev_die_table_in_use;
5841 abbrev_die_table[abbrev_id] = die;
5842 }
5843
5844 die->die_abbrev = abbrev_id;
5845 for (c = die->die_child; c != NULL; c = c->die_sib)
5846 build_abbrev_table (c);
5847}
5848\f
3f76745e
JM
5849/* Return the power-of-two number of bytes necessary to represent VALUE. */
5850
5851static int
5852constant_size (value)
5853 long unsigned value;
5854{
5855 int log;
5856
5857 if (value == 0)
5858 log = 0;
a3f97cbb 5859 else
3f76745e 5860 log = floor_log2 (value);
71dfc51f 5861
3f76745e
JM
5862 log = log / 8;
5863 log = 1 << (floor_log2 (log) + 1);
5864
5865 return log;
a3f97cbb
JW
5866}
5867
2ad9852d 5868/* Return the size of a DIE as it is represented in the
3f76745e 5869 .debug_info section. */
71dfc51f 5870
3f76745e
JM
5871static unsigned long
5872size_of_die (die)
b3694847 5873 dw_die_ref die;
a3f97cbb 5874{
b3694847
SS
5875 unsigned long size = 0;
5876 dw_attr_ref a;
71dfc51f 5877
3f76745e 5878 size += size_of_uleb128 (die->die_abbrev);
a3f97cbb
JW
5879 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5880 {
a96c67ec 5881 switch (AT_class (a))
a3f97cbb
JW
5882 {
5883 case dw_val_class_addr:
a1a4189d 5884 size += DWARF2_ADDR_SIZE;
a3f97cbb 5885 break;
a20612aa
RH
5886 case dw_val_class_offset:
5887 size += DWARF_OFFSET_SIZE;
5888 break;
a3f97cbb 5889 case dw_val_class_loc:
3f76745e 5890 {
b3694847 5891 unsigned long lsize = size_of_locs (AT_loc (a));
71dfc51f 5892
3f76745e
JM
5893 /* Block length. */
5894 size += constant_size (lsize);
5895 size += lsize;
5896 }
a3f97cbb 5897 break;
63e46568
DB
5898 case dw_val_class_loc_list:
5899 size += DWARF_OFFSET_SIZE;
5900 break;
2bee6045
JJ
5901 case dw_val_class_range_list:
5902 size += DWARF_OFFSET_SIZE;
5903 break;
a3f97cbb 5904 case dw_val_class_const:
25dd13ec 5905 size += size_of_sleb128 (AT_int (a));
a3f97cbb
JW
5906 break;
5907 case dw_val_class_unsigned_const:
a96c67ec 5908 size += constant_size (AT_unsigned (a));
a3f97cbb 5909 break;
469ac993 5910 case dw_val_class_long_long:
2e4b9b8c 5911 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
469ac993
JM
5912 break;
5913 case dw_val_class_float:
3f76745e 5914 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
a3f97cbb
JW
5915 break;
5916 case dw_val_class_flag:
3f76745e 5917 size += 1;
a3f97cbb
JW
5918 break;
5919 case dw_val_class_die_ref:
3f76745e 5920 size += DWARF_OFFSET_SIZE;
a3f97cbb
JW
5921 break;
5922 case dw_val_class_fde_ref:
3f76745e 5923 size += DWARF_OFFSET_SIZE;
a3f97cbb
JW
5924 break;
5925 case dw_val_class_lbl_id:
a1a4189d 5926 size += DWARF2_ADDR_SIZE;
3f76745e 5927 break;
8b790721 5928 case dw_val_class_lbl_offset:
3f76745e
JM
5929 size += DWARF_OFFSET_SIZE;
5930 break;
5931 case dw_val_class_str:
9eb4015a
JJ
5932 if (AT_string_form (a) == DW_FORM_strp)
5933 size += DWARF_OFFSET_SIZE;
5934 else
5935 size += HT_LEN (&a->dw_attr_val.v.val_str->id) + 1;
3f76745e
JM
5936 break;
5937 default:
5938 abort ();
5939 }
a3f97cbb 5940 }
3f76745e
JM
5941
5942 return size;
a3f97cbb
JW
5943}
5944
2ad9852d
RK
5945/* Size the debugging information associated with a given DIE. Visits the
5946 DIE's children recursively. Updates the global variable next_die_offset, on
5947 each time through. Uses the current value of next_die_offset to update the
5948 die_offset field in each DIE. */
71dfc51f 5949
a3f97cbb 5950static void
3f76745e
JM
5951calc_die_sizes (die)
5952 dw_die_ref die;
a3f97cbb 5953{
b3694847 5954 dw_die_ref c;
2ad9852d 5955
3f76745e
JM
5956 die->die_offset = next_die_offset;
5957 next_die_offset += size_of_die (die);
71dfc51f 5958
3f76745e
JM
5959 for (c = die->die_child; c != NULL; c = c->die_sib)
5960 calc_die_sizes (c);
71dfc51f 5961
3f76745e
JM
5962 if (die->die_child != NULL)
5963 /* Count the null byte used to terminate sibling lists. */
5964 next_die_offset += 1;
a3f97cbb
JW
5965}
5966
1bfb5f8f 5967/* Set the marks for a die and its children. We do this so
881c6935 5968 that we know whether or not a reference needs to use FORM_ref_addr; only
1bfb5f8f
JM
5969 DIEs in the same CU will be marked. We used to clear out the offset
5970 and use that as the flag, but ran into ordering problems. */
881c6935
JM
5971
5972static void
1bfb5f8f 5973mark_dies (die)
881c6935
JM
5974 dw_die_ref die;
5975{
b3694847 5976 dw_die_ref c;
2ad9852d 5977
1bfb5f8f
JM
5978 die->die_mark = 1;
5979 for (c = die->die_child; c; c = c->die_sib)
5980 mark_dies (c);
5981}
5982
5983/* Clear the marks for a die and its children. */
5984
5985static void
5986unmark_dies (die)
5987 dw_die_ref die;
5988{
b3694847 5989 dw_die_ref c;
2ad9852d 5990
1bfb5f8f 5991 die->die_mark = 0;
881c6935 5992 for (c = die->die_child; c; c = c->die_sib)
1bfb5f8f 5993 unmark_dies (c);
881c6935
JM
5994}
5995
3f76745e
JM
5996/* Return the size of the .debug_pubnames table generated for the
5997 compilation unit. */
a94dbf2c 5998
3f76745e
JM
5999static unsigned long
6000size_of_pubnames ()
a94dbf2c 6001{
b3694847
SS
6002 unsigned long size;
6003 unsigned i;
469ac993 6004
3f76745e 6005 size = DWARF_PUBNAMES_HEADER_SIZE;
2ad9852d 6006 for (i = 0; i < pubname_table_in_use; i++)
a94dbf2c 6007 {
b3694847 6008 pubname_ref p = &pubname_table[i];
9eb4015a 6009 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
a94dbf2c
JM
6010 }
6011
3f76745e
JM
6012 size += DWARF_OFFSET_SIZE;
6013 return size;
a94dbf2c
JM
6014}
6015
956d6950 6016/* Return the size of the information in the .debug_aranges section. */
469ac993 6017
3f76745e
JM
6018static unsigned long
6019size_of_aranges ()
469ac993 6020{
b3694847 6021 unsigned long size;
469ac993 6022
3f76745e 6023 size = DWARF_ARANGES_HEADER_SIZE;
469ac993 6024
3f76745e 6025 /* Count the address/length pair for this compilation unit. */
a1a4189d
JB
6026 size += 2 * DWARF2_ADDR_SIZE;
6027 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
469ac993 6028
3f76745e 6029 /* Count the two zero words used to terminated the address range table. */
a1a4189d 6030 size += 2 * DWARF2_ADDR_SIZE;
3f76745e
JM
6031 return size;
6032}
6033\f
6034/* Select the encoding of an attribute value. */
6035
6036static enum dwarf_form
a96c67ec
JM
6037value_format (a)
6038 dw_attr_ref a;
3f76745e 6039{
a96c67ec 6040 switch (a->dw_attr_val.val_class)
469ac993 6041 {
3f76745e
JM
6042 case dw_val_class_addr:
6043 return DW_FORM_addr;
2bee6045 6044 case dw_val_class_range_list:
a20612aa
RH
6045 case dw_val_class_offset:
6046 if (DWARF_OFFSET_SIZE == 4)
6047 return DW_FORM_data4;
6048 if (DWARF_OFFSET_SIZE == 8)
6049 return DW_FORM_data8;
6050 abort ();
63e46568 6051 case dw_val_class_loc_list:
9d2f2c45
RH
6052 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6053 .debug_loc section */
6054 return DW_FORM_data4;
3f76745e 6055 case dw_val_class_loc:
a96c67ec 6056 switch (constant_size (size_of_locs (AT_loc (a))))
469ac993 6057 {
3f76745e
JM
6058 case 1:
6059 return DW_FORM_block1;
6060 case 2:
6061 return DW_FORM_block2;
469ac993
JM
6062 default:
6063 abort ();
6064 }
3f76745e 6065 case dw_val_class_const:
25dd13ec 6066 return DW_FORM_sdata;
3f76745e 6067 case dw_val_class_unsigned_const:
a96c67ec 6068 switch (constant_size (AT_unsigned (a)))
3f76745e
JM
6069 {
6070 case 1:
6071 return DW_FORM_data1;
6072 case 2:
6073 return DW_FORM_data2;
6074 case 4:
6075 return DW_FORM_data4;
6076 case 8:
6077 return DW_FORM_data8;
6078 default:
6079 abort ();
6080 }
6081 case dw_val_class_long_long:
6082 return DW_FORM_block1;
6083 case dw_val_class_float:
6084 return DW_FORM_block1;
6085 case dw_val_class_flag:
6086 return DW_FORM_flag;
6087 case dw_val_class_die_ref:
881c6935
JM
6088 if (AT_ref_external (a))
6089 return DW_FORM_ref_addr;
6090 else
6091 return DW_FORM_ref;
3f76745e
JM
6092 case dw_val_class_fde_ref:
6093 return DW_FORM_data;
6094 case dw_val_class_lbl_id:
6095 return DW_FORM_addr;
8b790721 6096 case dw_val_class_lbl_offset:
3f76745e
JM
6097 return DW_FORM_data;
6098 case dw_val_class_str:
9eb4015a 6099 return AT_string_form (a);
a20612aa 6100
469ac993
JM
6101 default:
6102 abort ();
6103 }
a94dbf2c
JM
6104}
6105
3f76745e 6106/* Output the encoding of an attribute value. */
469ac993 6107
3f76745e 6108static void
a96c67ec
JM
6109output_value_format (a)
6110 dw_attr_ref a;
a94dbf2c 6111{
a96c67ec 6112 enum dwarf_form form = value_format (a);
2ad9852d 6113
2e4b9b8c 6114 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
3f76745e 6115}
469ac993 6116
3f76745e
JM
6117/* Output the .debug_abbrev section which defines the DIE abbreviation
6118 table. */
469ac993 6119
3f76745e
JM
6120static void
6121output_abbrev_section ()
6122{
6123 unsigned long abbrev_id;
71dfc51f 6124
3f76745e 6125 dw_attr_ref a_attr;
2ad9852d 6126
3f76745e
JM
6127 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6128 {
b3694847 6129 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
71dfc51f 6130
2e4b9b8c 6131 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
2e4b9b8c
RH
6132 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6133 dwarf_tag_name (abbrev->die_tag));
71dfc51f 6134
2e4b9b8c
RH
6135 if (abbrev->die_child != NULL)
6136 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6137 else
6138 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
3f76745e
JM
6139
6140 for (a_attr = abbrev->die_attr; a_attr != NULL;
6141 a_attr = a_attr->dw_attr_next)
6142 {
2e4b9b8c
RH
6143 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6144 dwarf_attr_name (a_attr->dw_attr));
a96c67ec 6145 output_value_format (a_attr);
469ac993 6146 }
469ac993 6147
2e4b9b8c
RH
6148 dw2_asm_output_data (1, 0, NULL);
6149 dw2_asm_output_data (1, 0, NULL);
469ac993 6150 }
81f374eb
HPN
6151
6152 /* Terminate the table. */
2e4b9b8c 6153 dw2_asm_output_data (1, 0, NULL);
a94dbf2c
JM
6154}
6155
881c6935
JM
6156/* Output a symbol we can use to refer to this DIE from another CU. */
6157
6158static inline void
6159output_die_symbol (die)
b3694847 6160 dw_die_ref die;
881c6935
JM
6161{
6162 char *sym = die->die_symbol;
6163
6164 if (sym == 0)
6165 return;
6166
6167 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6168 /* We make these global, not weak; if the target doesn't support
6169 .linkonce, it doesn't support combining the sections, so debugging
6170 will break. */
6171 ASM_GLOBALIZE_LABEL (asm_out_file, sym);
2ad9852d 6172
881c6935
JM
6173 ASM_OUTPUT_LABEL (asm_out_file, sym);
6174}
6175
84a5b4f8 6176/* Return a new location list, given the begin and end range, and the
2ad9852d
RK
6177 expression. gensym tells us whether to generate a new internal symbol for
6178 this location list node, which is done for the head of the list only. */
6179
84a5b4f8
DB
6180static inline dw_loc_list_ref
6181new_loc_list (expr, begin, end, section, gensym)
b3694847
SS
6182 dw_loc_descr_ref expr;
6183 const char *begin;
6184 const char *end;
6185 const char *section;
6186 unsigned gensym;
84a5b4f8 6187{
b3694847 6188 dw_loc_list_ref retlist
84a5b4f8 6189 = (dw_loc_list_ref) xcalloc (1, sizeof (dw_loc_list_node));
2ad9852d 6190
84a5b4f8
DB
6191 retlist->begin = begin;
6192 retlist->end = end;
6193 retlist->expr = expr;
6194 retlist->section = section;
c26fbbca 6195 if (gensym)
84a5b4f8 6196 retlist->ll_symbol = gen_internal_sym ("LLST");
2ad9852d 6197
84a5b4f8
DB
6198 return retlist;
6199}
6200
6201/* Add a location description expression to a location list */
2ad9852d 6202
84a5b4f8
DB
6203static inline void
6204add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
b3694847
SS
6205 dw_loc_list_ref *list_head;
6206 dw_loc_descr_ref descr;
6207 const char *begin;
6208 const char *end;
6209 const char *section;
84a5b4f8 6210{
b3694847 6211 dw_loc_list_ref *d;
c26fbbca 6212
30f7a378 6213 /* Find the end of the chain. */
84a5b4f8
DB
6214 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6215 ;
2ad9852d 6216
84a5b4f8
DB
6217 /* Add a new location list node to the list */
6218 *d = new_loc_list (descr, begin, end, section, 0);
6219}
6220
63e46568 6221/* Output the location list given to us */
2ad9852d 6222
63e46568
DB
6223static void
6224output_loc_list (list_head)
b3694847 6225 dw_loc_list_ref list_head;
63e46568 6226{
2ad9852d
RK
6227 dw_loc_list_ref curr = list_head;
6228
63e46568 6229 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
a20612aa
RH
6230
6231 /* ??? This shouldn't be needed now that we've forced the
6232 compilation unit base address to zero when there is code
6233 in more than one section. */
63e46568
DB
6234 if (strcmp (curr->section, ".text") == 0)
6235 {
aafdcfcd 6236 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
c4f2c499 6237 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
aafdcfcd
NS
6238 "Location list base address specifier fake entry");
6239 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6240 "Location list base address specifier base");
63e46568 6241 }
2ad9852d 6242
c26fbbca 6243 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
63e46568 6244 {
2bee6045 6245 unsigned long size;
2ad9852d 6246
aafdcfcd
NS
6247 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6248 "Location list begin address (%s)",
6249 list_head->ll_symbol);
6250 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6251 "Location list end address (%s)",
6252 list_head->ll_symbol);
63e46568 6253 size = size_of_locs (curr->expr);
c26fbbca 6254
63e46568 6255 /* Output the block length for this list of location operations. */
2bee6045
JJ
6256 if (size > 0xffff)
6257 abort ();
6258 dw2_asm_output_data (2, size, "%s", "Location expression size");
6259
63e46568
DB
6260 output_loc_sequence (curr->expr);
6261 }
2ad9852d 6262
aafdcfcd
NS
6263 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6264 "Location list terminator begin (%s)",
6265 list_head->ll_symbol);
6266 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6267 "Location list terminator end (%s)",
6268 list_head->ll_symbol);
63e46568 6269}
9eb4015a 6270
3f76745e
JM
6271/* Output the DIE and its attributes. Called recursively to generate
6272 the definitions of each child DIE. */
71dfc51f 6273
a3f97cbb 6274static void
3f76745e 6275output_die (die)
b3694847 6276 dw_die_ref die;
a3f97cbb 6277{
b3694847
SS
6278 dw_attr_ref a;
6279 dw_die_ref c;
6280 unsigned long size;
a94dbf2c 6281
881c6935
JM
6282 /* If someone in another CU might refer to us, set up a symbol for
6283 them to point to. */
6284 if (die->die_symbol)
6285 output_die_symbol (die);
6286
2e4b9b8c
RH
6287 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6288 die->die_offset, dwarf_tag_name (die->die_tag));
a94dbf2c 6289
3f76745e 6290 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
a3f97cbb 6291 {
2e4b9b8c
RH
6292 const char *name = dwarf_attr_name (a->dw_attr);
6293
a96c67ec 6294 switch (AT_class (a))
3f76745e
JM
6295 {
6296 case dw_val_class_addr:
2e4b9b8c 6297 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
3f76745e 6298 break;
a3f97cbb 6299
a20612aa
RH
6300 case dw_val_class_offset:
6301 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6302 "%s", name);
6303 break;
6304
2bee6045
JJ
6305 case dw_val_class_range_list:
6306 {
6307 char *p = strchr (ranges_section_label, '\0');
6308
6309 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6310 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6311 "%s", name);
6312 *p = '\0';
6313 }
6314 break;
6315
3f76745e 6316 case dw_val_class_loc:
a96c67ec 6317 size = size_of_locs (AT_loc (a));
71dfc51f 6318
3f76745e 6319 /* Output the block length for this list of location operations. */
2e4b9b8c 6320 dw2_asm_output_data (constant_size (size), size, "%s", name);
71dfc51f 6321
7d9d8943 6322 output_loc_sequence (AT_loc (a));
a3f97cbb 6323 break;
3f76745e
JM
6324
6325 case dw_val_class_const:
25dd13ec
JW
6326 /* ??? It would be slightly more efficient to use a scheme like is
6327 used for unsigned constants below, but gdb 4.x does not sign
6328 extend. Gdb 5.x does sign extend. */
2e4b9b8c 6329 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
a3f97cbb 6330 break;
3f76745e
JM
6331
6332 case dw_val_class_unsigned_const:
2e4b9b8c
RH
6333 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6334 AT_unsigned (a), "%s", name);
a3f97cbb 6335 break;
3f76745e
JM
6336
6337 case dw_val_class_long_long:
2e4b9b8c
RH
6338 {
6339 unsigned HOST_WIDE_INT first, second;
3f76745e 6340
2ad9852d
RK
6341 dw2_asm_output_data (1,
6342 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
c26fbbca 6343 "%s", name);
556273e0 6344
2e4b9b8c
RH
6345 if (WORDS_BIG_ENDIAN)
6346 {
6347 first = a->dw_attr_val.v.val_long_long.hi;
6348 second = a->dw_attr_val.v.val_long_long.low;
6349 }
6350 else
6351 {
6352 first = a->dw_attr_val.v.val_long_long.low;
6353 second = a->dw_attr_val.v.val_long_long.hi;
6354 }
2ad9852d
RK
6355
6356 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
2e4b9b8c 6357 first, "long long constant");
2ad9852d 6358 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
2e4b9b8c
RH
6359 second, NULL);
6360 }
a3f97cbb 6361 break;
3f76745e
JM
6362
6363 case dw_val_class_float:
c84e2712 6364 {
b3694847 6365 unsigned int i;
c84e2712 6366
2e4b9b8c 6367 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
c26fbbca 6368 "%s", name);
c84e2712 6369
2ad9852d 6370 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
2e4b9b8c
RH
6371 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6372 "fp constant word %u", i);
556273e0 6373 break;
c84e2712 6374 }
3f76745e
JM
6375
6376 case dw_val_class_flag:
2e4b9b8c 6377 dw2_asm_output_data (1, AT_flag (a), "%s", name);
a3f97cbb 6378 break;
a20612aa 6379
c26fbbca 6380 case dw_val_class_loc_list:
63e46568
DB
6381 {
6382 char *sym = AT_loc_list (a)->ll_symbol;
2ad9852d 6383
63e46568 6384 if (sym == 0)
173bf5be 6385 abort ();
a20612aa
RH
6386 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6387 loc_section_label, "%s", name);
63e46568
DB
6388 }
6389 break;
a20612aa 6390
3f76745e 6391 case dw_val_class_die_ref:
881c6935 6392 if (AT_ref_external (a))
2e4b9b8c
RH
6393 {
6394 char *sym = AT_ref (a)->die_symbol;
2ad9852d 6395
2e4b9b8c
RH
6396 if (sym == 0)
6397 abort ();
6398 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6399 }
3f4907a6
JM
6400 else if (AT_ref (a)->die_offset == 0)
6401 abort ();
881c6935 6402 else
2e4b9b8c
RH
6403 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6404 "%s", name);
a3f97cbb 6405 break;
3f76745e
JM
6406
6407 case dw_val_class_fde_ref:
a6ab3aad
JM
6408 {
6409 char l1[20];
2ad9852d 6410
2e4b9b8c
RH
6411 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6412 a->dw_attr_val.v.val_fde_index * 2);
6413 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
a6ab3aad 6414 }
a3f97cbb 6415 break;
a3f97cbb 6416
3f76745e 6417 case dw_val_class_lbl_id:
8e7fa2c8 6418 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
3f76745e 6419 break;
71dfc51f 6420
8b790721 6421 case dw_val_class_lbl_offset:
2e4b9b8c 6422 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
3f76745e 6423 break;
a3f97cbb 6424
3f76745e 6425 case dw_val_class_str:
9eb4015a
JJ
6426 if (AT_string_form (a) == DW_FORM_strp)
6427 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6428 a->dw_attr_val.v.val_str->label,
a4cf1d85 6429 "%s: \"%s\"", name, AT_string (a));
9eb4015a
JJ
6430 else
6431 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
3f76745e 6432 break;
b2932ae5 6433
3f76745e
JM
6434 default:
6435 abort ();
6436 }
3f76745e 6437 }
71dfc51f 6438
3f76745e
JM
6439 for (c = die->die_child; c != NULL; c = c->die_sib)
6440 output_die (c);
71dfc51f 6441
2ad9852d 6442 /* Add null byte to terminate sibling list. */
3f76745e 6443 if (die->die_child != NULL)
2ad9852d
RK
6444 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6445 die->die_offset);
3f76745e 6446}
71dfc51f 6447
3f76745e
JM
6448/* Output the compilation unit that appears at the beginning of the
6449 .debug_info section, and precedes the DIE descriptions. */
71dfc51f 6450
3f76745e
JM
6451static void
6452output_compilation_unit_header ()
6453{
2e4b9b8c
RH
6454 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6455 "Length of Compilation Unit Info");
2e4b9b8c 6456 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
2e4b9b8c
RH
6457 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6458 "Offset Into Abbrev. Section");
2e4b9b8c 6459 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
a3f97cbb
JW
6460}
6461
881c6935
JM
6462/* Output the compilation unit DIE and its children. */
6463
6464static void
6465output_comp_unit (die)
6466 dw_die_ref die;
6467{
ce1cc601 6468 const char *secname;
881c6935 6469
2ad9852d
RK
6470 /* Even if there are no children of this DIE, we must output the information
6471 about the compilation unit. Otherwise, on an empty translation unit, we
6472 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6473 will then complain when examining the file. First mark all the DIEs in
6474 this CU so we know which get local refs. */
1bfb5f8f
JM
6475 mark_dies (die);
6476
6477 build_abbrev_table (die);
6478
6d2f8887 6479 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
881c6935
JM
6480 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6481 calc_die_sizes (die);
6482
881c6935
JM
6483 if (die->die_symbol)
6484 {
ce1cc601 6485 char *tmp = (char *) alloca (strlen (die->die_symbol) + 24);
2ad9852d 6486
ce1cc601
KG
6487 sprintf (tmp, ".gnu.linkonce.wi.%s", die->die_symbol);
6488 secname = tmp;
881c6935
JM
6489 die->die_symbol = NULL;
6490 }
6491 else
ce1cc601 6492 secname = (const char *) DEBUG_INFO_SECTION;
881c6935
JM
6493
6494 /* Output debugging information. */
715bdd29 6495 named_section_flags (secname, SECTION_DEBUG);
881c6935
JM
6496 output_compilation_unit_header ();
6497 output_die (die);
6498
1bfb5f8f
JM
6499 /* Leave the marks on the main CU, so we can check them in
6500 output_pubnames. */
881c6935 6501 if (die->die_symbol)
1bfb5f8f 6502 unmark_dies (die);
881c6935
JM
6503}
6504
7afff7cf
NB
6505/* The DWARF2 pubname for a nested thingy looks like "A::f". The
6506 output of lang_hooks.decl_printable_name for C++ looks like
6507 "A::f(int)". Let's drop the argument list, and maybe the scope. */
a1d7ffe3 6508
d560ee52 6509static const char *
a1d7ffe3
JM
6510dwarf2_name (decl, scope)
6511 tree decl;
6512 int scope;
6513{
7afff7cf 6514 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
a1d7ffe3
JM
6515}
6516
d291dd49 6517/* Add a new entry to .debug_pubnames if appropriate. */
71dfc51f 6518
d291dd49
JM
6519static void
6520add_pubname (decl, die)
6521 tree decl;
6522 dw_die_ref die;
6523{
6524 pubname_ref p;
6525
6526 if (! TREE_PUBLIC (decl))
6527 return;
6528
6529 if (pubname_table_in_use == pubname_table_allocated)
6530 {
6531 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
2ad9852d
RK
6532 pubname_table
6533 = (pubname_ref) xrealloc (pubname_table,
6534 (pubname_table_allocated
6535 * sizeof (pubname_entry)));
d291dd49 6536 }
71dfc51f 6537
d291dd49
JM
6538 p = &pubname_table[pubname_table_in_use++];
6539 p->die = die;
a1d7ffe3 6540 p->name = xstrdup (dwarf2_name (decl, 1));
d291dd49
JM
6541}
6542
a3f97cbb
JW
6543/* Output the public names table used to speed up access to externally
6544 visible names. For now, only generate entries for externally
6545 visible procedures. */
71dfc51f 6546
a3f97cbb
JW
6547static void
6548output_pubnames ()
6549{
b3694847
SS
6550 unsigned i;
6551 unsigned long pubnames_length = size_of_pubnames ();
71dfc51f 6552
2e4b9b8c
RH
6553 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6554 "Length of Public Names Info");
2e4b9b8c 6555 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
2e4b9b8c
RH
6556 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6557 "Offset of Compilation Unit Info");
2e4b9b8c
RH
6558 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6559 "Compilation Unit Length");
71dfc51f 6560
2ad9852d 6561 for (i = 0; i < pubname_table_in_use; i++)
a3f97cbb 6562 {
b3694847 6563 pubname_ref pub = &pubname_table[i];
71dfc51f 6564
881c6935 6565 /* We shouldn't see pubnames for DIEs outside of the main CU. */
1bfb5f8f 6566 if (pub->die->die_mark == 0)
881c6935
JM
6567 abort ();
6568
2e4b9b8c
RH
6569 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6570 "DIE offset");
71dfc51f 6571
2e4b9b8c 6572 dw2_asm_output_nstring (pub->name, -1, "external name");
a3f97cbb 6573 }
71dfc51f 6574
2e4b9b8c 6575 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
a3f97cbb
JW
6576}
6577
d291dd49 6578/* Add a new entry to .debug_aranges if appropriate. */
71dfc51f 6579
d291dd49
JM
6580static void
6581add_arange (decl, die)
6582 tree decl;
6583 dw_die_ref die;
6584{
6585 if (! DECL_SECTION_NAME (decl))
6586 return;
6587
6588 if (arange_table_in_use == arange_table_allocated)
6589 {
6590 arange_table_allocated += ARANGE_TABLE_INCREMENT;
a20612aa
RH
6591 arange_table = (dw_die_ref *)
6592 xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref));
d291dd49 6593 }
71dfc51f 6594
d291dd49
JM
6595 arange_table[arange_table_in_use++] = die;
6596}
6597
a3f97cbb
JW
6598/* Output the information that goes into the .debug_aranges table.
6599 Namely, define the beginning and ending address range of the
6600 text section generated for this compilation unit. */
71dfc51f 6601
a3f97cbb
JW
6602static void
6603output_aranges ()
6604{
b3694847
SS
6605 unsigned i;
6606 unsigned long aranges_length = size_of_aranges ();
71dfc51f 6607
2e4b9b8c
RH
6608 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6609 "Length of Address Ranges Info");
2e4b9b8c 6610 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
2e4b9b8c
RH
6611 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6612 "Offset of Compilation Unit Info");
2e4b9b8c 6613 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
2e4b9b8c 6614 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
71dfc51f 6615
262b6384
SC
6616 /* We need to align to twice the pointer size here. */
6617 if (DWARF_ARANGES_PAD_SIZE)
6618 {
2e4b9b8c
RH
6619 /* Pad using a 2 byte words so that padding is correct for any
6620 pointer size. */
6621 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6622 2 * DWARF2_ADDR_SIZE);
770ca8c6 6623 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
2e4b9b8c 6624 dw2_asm_output_data (2, 0, NULL);
262b6384 6625 }
71dfc51f 6626
8e7fa2c8 6627 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
2e4b9b8c
RH
6628 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6629 text_section_label, "Length");
71dfc51f 6630
2ad9852d 6631 for (i = 0; i < arange_table_in_use; i++)
d291dd49 6632 {
e689ae67 6633 dw_die_ref die = arange_table[i];
71dfc51f 6634
881c6935 6635 /* We shouldn't see aranges for DIEs outside of the main CU. */
1bfb5f8f 6636 if (die->die_mark == 0)
881c6935
JM
6637 abort ();
6638
e689ae67 6639 if (die->die_tag == DW_TAG_subprogram)
2e4b9b8c 6640 {
8e7fa2c8 6641 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
173bf5be 6642 "Address");
2e4b9b8c
RH
6643 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6644 get_AT_low_pc (die), "Length");
6645 }
d291dd49 6646 else
a1d7ffe3 6647 {
e689ae67
JM
6648 /* A static variable; extract the symbol from DW_AT_location.
6649 Note that this code isn't currently hit, as we only emit
6650 aranges for functions (jason 9/23/99). */
e689ae67
JM
6651 dw_attr_ref a = get_AT (die, DW_AT_location);
6652 dw_loc_descr_ref loc;
2ad9852d 6653
a96c67ec 6654 if (! a || AT_class (a) != dw_val_class_loc)
e689ae67
JM
6655 abort ();
6656
a96c67ec 6657 loc = AT_loc (a);
e689ae67
JM
6658 if (loc->dw_loc_opc != DW_OP_addr)
6659 abort ();
6660
2e4b9b8c
RH
6661 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6662 loc->dw_loc_oprnd1.v.val_addr, "Address");
6663 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6664 get_AT_unsigned (die, DW_AT_byte_size),
6665 "Length");
a1d7ffe3 6666 }
d291dd49 6667 }
71dfc51f 6668
a3f97cbb 6669 /* Output the terminator words. */
2e4b9b8c
RH
6670 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6671 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
a3f97cbb
JW
6672}
6673
a20612aa
RH
6674/* Add a new entry to .debug_ranges. Return the offset at which it
6675 was placed. */
6676
6677static unsigned int
6678add_ranges (block)
6679 tree block;
6680{
6681 unsigned int in_use = ranges_table_in_use;
6682
6683 if (in_use == ranges_table_allocated)
6684 {
6685 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6686 ranges_table = (dw_ranges_ref)
6687 xrealloc (ranges_table, (ranges_table_allocated
6688 * sizeof (struct dw_ranges_struct)));
6689 }
6690
6691 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6692 ranges_table_in_use = in_use + 1;
6693
6694 return in_use * 2 * DWARF2_ADDR_SIZE;
6695}
6696
6697static void
6698output_ranges ()
6699{
b3694847 6700 unsigned i;
83182544 6701 static const char *const start_fmt = "Offset 0x%x";
a20612aa
RH
6702 const char *fmt = start_fmt;
6703
2ad9852d 6704 for (i = 0; i < ranges_table_in_use; i++)
a20612aa
RH
6705 {
6706 int block_num = ranges_table[i].block_num;
6707
6708 if (block_num)
6709 {
6710 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6711 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6712
6713 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6714 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6715
6716 /* If all code is in the text section, then the compilation
6717 unit base address defaults to DW_AT_low_pc, which is the
6718 base of the text section. */
6719 if (separate_line_info_table_in_use == 0)
6720 {
6721 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6722 text_section_label,
6723 fmt, i * 2 * DWARF2_ADDR_SIZE);
6724 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6725 text_section_label, NULL);
6726 }
2ad9852d 6727
a20612aa
RH
6728 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6729 compilation unit base address to zero, which allows us to
6730 use absolute addresses, and not worry about whether the
6731 target supports cross-section arithmetic. */
6732 else
6733 {
6734 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
6735 fmt, i * 2 * DWARF2_ADDR_SIZE);
6736 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
6737 }
6738
6739 fmt = NULL;
6740 }
6741 else
6742 {
6743 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6744 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6745 fmt = start_fmt;
6746 }
6747 }
6748}
0b34cf1e
UD
6749
6750/* Data structure containing information about input files. */
6751struct file_info
6752{
6753 char *path; /* Complete file name. */
6754 char *fname; /* File name part. */
6755 int length; /* Length of entire string. */
6756 int file_idx; /* Index in input file table. */
6757 int dir_idx; /* Index in directory table. */
6758};
6759
6760/* Data structure containing information about directories with source
6761 files. */
6762struct dir_info
6763{
6764 char *path; /* Path including directory name. */
6765 int length; /* Path length. */
6766 int prefix; /* Index of directory entry which is a prefix. */
0b34cf1e
UD
6767 int count; /* Number of files in this directory. */
6768 int dir_idx; /* Index of directory used as base. */
6769 int used; /* Used in the end? */
6770};
6771
6772/* Callback function for file_info comparison. We sort by looking at
6773 the directories in the path. */
356b0698 6774
0b34cf1e
UD
6775static int
6776file_info_cmp (p1, p2)
6777 const void *p1;
6778 const void *p2;
6779{
6780 const struct file_info *s1 = p1;
6781 const struct file_info *s2 = p2;
6782 unsigned char *cp1;
6783 unsigned char *cp2;
6784
356b0698
RK
6785 /* Take care of file names without directories. We need to make sure that
6786 we return consistent values to qsort since some will get confused if
6787 we return the same value when identical operands are passed in opposite
6788 orders. So if neither has a directory, return 0 and otherwise return
6789 1 or -1 depending on which one has the directory. */
6790 if ((s1->path == s1->fname || s2->path == s2->fname))
6791 return (s2->path == s2->fname) - (s1->path == s1->fname);
0b34cf1e
UD
6792
6793 cp1 = (unsigned char *) s1->path;
6794 cp2 = (unsigned char *) s2->path;
6795
6796 while (1)
6797 {
6798 ++cp1;
6799 ++cp2;
356b0698
RK
6800 /* Reached the end of the first path? If so, handle like above. */
6801 if ((cp1 == (unsigned char *) s1->fname)
6802 || (cp2 == (unsigned char *) s2->fname))
6803 return ((cp2 == (unsigned char *) s2->fname)
6804 - (cp1 == (unsigned char *) s1->fname));
0b34cf1e
UD
6805
6806 /* Character of current path component the same? */
356b0698 6807 else if (*cp1 != *cp2)
0b34cf1e
UD
6808 return *cp1 - *cp2;
6809 }
6810}
6811
6812/* Output the directory table and the file name table. We try to minimize
6813 the total amount of memory needed. A heuristic is used to avoid large
6814 slowdowns with many input files. */
2ad9852d 6815
0b34cf1e
UD
6816static void
6817output_file_names ()
6818{
6819 struct file_info *files;
6820 struct dir_info *dirs;
6821 int *saved;
6822 int *savehere;
6823 int *backmap;
6824 int ndirs;
6825 int idx_offset;
6826 int i;
6827 int idx;
6828
6829 /* Allocate the various arrays we need. */
981975b6 6830 files = (struct file_info *) alloca (file_table.in_use
0b34cf1e 6831 * sizeof (struct file_info));
981975b6 6832 dirs = (struct dir_info *) alloca (file_table.in_use
0b34cf1e
UD
6833 * sizeof (struct dir_info));
6834
6835 /* Sort the file names. */
2ad9852d 6836 for (i = 1; i < (int) file_table.in_use; i++)
0b34cf1e
UD
6837 {
6838 char *f;
6839
6840 /* Skip all leading "./". */
981975b6 6841 f = file_table.table[i];
0b34cf1e
UD
6842 while (f[0] == '.' && f[1] == '/')
6843 f += 2;
6844
6845 /* Create a new array entry. */
6846 files[i].path = f;
6847 files[i].length = strlen (f);
6848 files[i].file_idx = i;
6849
6850 /* Search for the file name part. */
6851 f = strrchr (f, '/');
6852 files[i].fname = f == NULL ? files[i].path : f + 1;
6853 }
2ad9852d 6854
981975b6 6855 qsort (files + 1, file_table.in_use - 1, sizeof (files[0]), file_info_cmp);
0b34cf1e
UD
6856
6857 /* Find all the different directories used. */
6858 dirs[0].path = files[1].path;
6859 dirs[0].length = files[1].fname - files[1].path;
6860 dirs[0].prefix = -1;
0b34cf1e
UD
6861 dirs[0].count = 1;
6862 dirs[0].dir_idx = 0;
6863 dirs[0].used = 0;
6864 files[1].dir_idx = 0;
6865 ndirs = 1;
6866
2ad9852d 6867 for (i = 2; i < (int) file_table.in_use; i++)
0b34cf1e
UD
6868 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
6869 && memcmp (dirs[ndirs - 1].path, files[i].path,
6870 dirs[ndirs - 1].length) == 0)
6871 {
6872 /* Same directory as last entry. */
6873 files[i].dir_idx = ndirs - 1;
0b34cf1e
UD
6874 ++dirs[ndirs - 1].count;
6875 }
6876 else
6877 {
6878 int j;
6879
6880 /* This is a new directory. */
6881 dirs[ndirs].path = files[i].path;
6882 dirs[ndirs].length = files[i].fname - files[i].path;
0b34cf1e
UD
6883 dirs[ndirs].count = 1;
6884 dirs[ndirs].dir_idx = ndirs;
6885 dirs[ndirs].used = 0;
6886 files[i].dir_idx = ndirs;
6887
6888 /* Search for a prefix. */
981975b6 6889 dirs[ndirs].prefix = -1;
2ad9852d 6890 for (j = 0; j < ndirs; j++)
981975b6
RH
6891 if (dirs[j].length < dirs[ndirs].length
6892 && dirs[j].length > 1
6893 && (dirs[ndirs].prefix == -1
6894 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
6895 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
6896 dirs[ndirs].prefix = j;
0b34cf1e
UD
6897
6898 ++ndirs;
6899 }
6900
2ad9852d
RK
6901 /* Now to the actual work. We have to find a subset of the directories which
6902 allow expressing the file name using references to the directory table
6903 with the least amount of characters. We do not do an exhaustive search
6904 where we would have to check out every combination of every single
6905 possible prefix. Instead we use a heuristic which provides nearly optimal
6906 results in most cases and never is much off. */
0b34cf1e
UD
6907 saved = (int *) alloca (ndirs * sizeof (int));
6908 savehere = (int *) alloca (ndirs * sizeof (int));
6909
6910 memset (saved, '\0', ndirs * sizeof (saved[0]));
2ad9852d 6911 for (i = 0; i < ndirs; i++)
0b34cf1e
UD
6912 {
6913 int j;
6914 int total;
6915
2ad9852d
RK
6916 /* We can always save some space for the current directory. But this
6917 does not mean it will be enough to justify adding the directory. */
0b34cf1e
UD
6918 savehere[i] = dirs[i].length;
6919 total = (savehere[i] - saved[i]) * dirs[i].count;
6920
2ad9852d 6921 for (j = i + 1; j < ndirs; j++)
0b34cf1e
UD
6922 {
6923 savehere[j] = 0;
0b34cf1e
UD
6924 if (saved[j] < dirs[i].length)
6925 {
6926 /* Determine whether the dirs[i] path is a prefix of the
6927 dirs[j] path. */
6928 int k;
6929
981975b6
RH
6930 k = dirs[j].prefix;
6931 while (k != -1 && k != i)
6932 k = dirs[k].prefix;
6933
6934 if (k == i)
6935 {
6936 /* Yes it is. We can possibly safe some memory but
6937 writing the filenames in dirs[j] relative to
6938 dirs[i]. */
6939 savehere[j] = dirs[i].length;
6940 total += (savehere[j] - saved[j]) * dirs[j].count;
6941 }
0b34cf1e
UD
6942 }
6943 }
6944
6945 /* Check whether we can safe enough to justify adding the dirs[i]
6946 directory. */
6947 if (total > dirs[i].length + 1)
6948 {
981975b6 6949 /* It's worthwhile adding. */
c26fbbca 6950 for (j = i; j < ndirs; j++)
0b34cf1e
UD
6951 if (savehere[j] > 0)
6952 {
6953 /* Remember how much we saved for this directory so far. */
6954 saved[j] = savehere[j];
6955
6956 /* Remember the prefix directory. */
6957 dirs[j].dir_idx = i;
6958 }
6959 }
6960 }
6961
2ad9852d
RK
6962 /* We have to emit them in the order they appear in the file_table array
6963 since the index is used in the debug info generation. To do this
6964 efficiently we generate a back-mapping of the indices first. */
981975b6 6965 backmap = (int *) alloca (file_table.in_use * sizeof (int));
2ad9852d 6966 for (i = 1; i < (int) file_table.in_use; i++)
0b34cf1e
UD
6967 {
6968 backmap[files[i].file_idx] = i;
2ad9852d 6969
0b34cf1e
UD
6970 /* Mark this directory as used. */
6971 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
6972 }
6973
2ad9852d
RK
6974 /* That was it. We are ready to emit the information. First emit the
6975 directory name table. We have to make sure the first actually emitted
6976 directory name has index one; zero is reserved for the current working
6977 directory. Make sure we do not confuse these indices with the one for the
6978 constructed table (even though most of the time they are identical). */
0b34cf1e 6979 idx = 1;
e57cabac 6980 idx_offset = dirs[0].length > 0 ? 1 : 0;
2ad9852d 6981 for (i = 1 - idx_offset; i < ndirs; i++)
0b34cf1e
UD
6982 if (dirs[i].used != 0)
6983 {
6984 dirs[i].used = idx++;
2e4b9b8c
RH
6985 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
6986 "Directory Entry: 0x%x", dirs[i].used);
0b34cf1e 6987 }
2ad9852d 6988
2e4b9b8c
RH
6989 dw2_asm_output_data (1, 0, "End directory table");
6990
0b34cf1e
UD
6991 /* Correct the index for the current working directory entry if it
6992 exists. */
6993 if (idx_offset == 0)
6994 dirs[0].used = 0;
0b34cf1e
UD
6995
6996 /* Now write all the file names. */
2ad9852d 6997 for (i = 1; i < (int) file_table.in_use; i++)
0b34cf1e
UD
6998 {
6999 int file_idx = backmap[i];
7000 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7001
2e4b9b8c
RH
7002 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7003 "File Entry: 0x%x", i);
0b34cf1e
UD
7004
7005 /* Include directory index. */
2e4b9b8c 7006 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
0b34cf1e
UD
7007
7008 /* Modification time. */
2e4b9b8c 7009 dw2_asm_output_data_uleb128 (0, NULL);
0b34cf1e
UD
7010
7011 /* File length in bytes. */
2e4b9b8c 7012 dw2_asm_output_data_uleb128 (0, NULL);
0b34cf1e 7013 }
2ad9852d 7014
2e4b9b8c 7015 dw2_asm_output_data (1, 0, "End file name table");
0b34cf1e
UD
7016}
7017
7018
a3f97cbb 7019/* Output the source line number correspondence information. This
14a774a9 7020 information goes into the .debug_line section. */
71dfc51f 7021
a3f97cbb
JW
7022static void
7023output_line_info ()
7024{
981975b6 7025 char l1[20], l2[20], p1[20], p2[20];
a3f97cbb
JW
7026 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7027 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
b3694847
SS
7028 unsigned opc;
7029 unsigned n_op_args;
7030 unsigned long lt_index;
7031 unsigned long current_line;
7032 long line_offset;
7033 long line_delta;
7034 unsigned long current_file;
7035 unsigned long function;
71dfc51f 7036
2e4b9b8c
RH
7037 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7038 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
981975b6
RH
7039 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7040 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
71dfc51f 7041
2e4b9b8c
RH
7042 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7043 "Length of Source Line Info");
7044 ASM_OUTPUT_LABEL (asm_out_file, l1);
71dfc51f 7045
2e4b9b8c 7046 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
981975b6
RH
7047 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7048 ASM_OUTPUT_LABEL (asm_out_file, p1);
71dfc51f 7049
c1a046e5
TT
7050 /* Define the architecture-dependent minimum instruction length (in
7051 bytes). In this implementation of DWARF, this field is used for
7052 information purposes only. Since GCC generates assembly language,
7053 we have no a priori knowledge of how many instruction bytes are
7054 generated for each source line, and therefore can use only the
7055 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7056 commands. Accordingly, we fix this as `1', which is "correct
7057 enough" for all architectures, and don't let the target override. */
7058 dw2_asm_output_data (1, 1,
2e4b9b8c 7059 "Minimum Instruction Length");
c1a046e5 7060
2e4b9b8c
RH
7061 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7062 "Default is_stmt_start flag");
2e4b9b8c
RH
7063 dw2_asm_output_data (1, DWARF_LINE_BASE,
7064 "Line Base Value (Special Opcodes)");
2e4b9b8c
RH
7065 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7066 "Line Range Value (Special Opcodes)");
2e4b9b8c
RH
7067 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7068 "Special Opcode Base");
71dfc51f 7069
2ad9852d 7070 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
a3f97cbb
JW
7071 {
7072 switch (opc)
7073 {
7074 case DW_LNS_advance_pc:
7075 case DW_LNS_advance_line:
7076 case DW_LNS_set_file:
7077 case DW_LNS_set_column:
7078 case DW_LNS_fixed_advance_pc:
7079 n_op_args = 1;
7080 break;
7081 default:
7082 n_op_args = 0;
7083 break;
7084 }
2e4b9b8c
RH
7085
7086 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7087 opc, n_op_args);
a3f97cbb 7088 }
71dfc51f 7089
0b34cf1e
UD
7090 /* Write out the information about the files we use. */
7091 output_file_names ();
981975b6 7092 ASM_OUTPUT_LABEL (asm_out_file, p2);
a3f97cbb 7093
2f22d404
JM
7094 /* We used to set the address register to the first location in the text
7095 section here, but that didn't accomplish anything since we already
7096 have a line note for the opening brace of the first function. */
a3f97cbb
JW
7097
7098 /* Generate the line number to PC correspondence table, encoded as
7099 a series of state machine operations. */
7100 current_file = 1;
7101 current_line = 1;
8b790721 7102 strcpy (prev_line_label, text_section_label);
a3f97cbb
JW
7103 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7104 {
b3694847 7105 dw_line_info_ref line_info = &line_info_table[lt_index];
2f22d404 7106
10a11b75
JM
7107#if 0
7108 /* Disable this optimization for now; GDB wants to see two line notes
7109 at the beginning of a function so it can find the end of the
7110 prologue. */
7111
2f22d404
JM
7112 /* Don't emit anything for redundant notes. Just updating the
7113 address doesn't accomplish anything, because we already assume
7114 that anything after the last address is this line. */
7115 if (line_info->dw_line_num == current_line
7116 && line_info->dw_file_num == current_file)
7117 continue;
10a11b75 7118#endif
71dfc51f 7119
2e4b9b8c
RH
7120 /* Emit debug info for the address of the current line.
7121
7122 Unfortunately, we have little choice here currently, and must always
2ad9852d 7123 use the most general form. GCC does not know the address delta
2e4b9b8c
RH
7124 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7125 attributes which will give an upper bound on the address range. We
7126 could perhaps use length attributes to determine when it is safe to
7127 use DW_LNS_fixed_advance_pc. */
7128
5c90448c 7129 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
f19a6894
JW
7130 if (0)
7131 {
7132 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
2e4b9b8c
RH
7133 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7134 "DW_LNS_fixed_advance_pc");
7135 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
7136 }
7137 else
7138 {
a1a4189d
JB
7139 /* This can handle any delta. This takes
7140 4+DWARF2_ADDR_SIZE bytes. */
2e4b9b8c
RH
7141 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7142 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7143 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7144 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894 7145 }
2ad9852d 7146
f19a6894
JW
7147 strcpy (prev_line_label, line_label);
7148
7149 /* Emit debug info for the source file of the current line, if
7150 different from the previous line. */
a3f97cbb
JW
7151 if (line_info->dw_file_num != current_file)
7152 {
7153 current_file = line_info->dw_file_num;
2e4b9b8c
RH
7154 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7155 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
981975b6 7156 file_table.table[current_file]);
a3f97cbb 7157 }
71dfc51f 7158
f19a6894
JW
7159 /* Emit debug info for the current line number, choosing the encoding
7160 that uses the least amount of space. */
2f22d404 7161 if (line_info->dw_line_num != current_line)
a3f97cbb 7162 {
2f22d404
JM
7163 line_offset = line_info->dw_line_num - current_line;
7164 line_delta = line_offset - DWARF_LINE_BASE;
7165 current_line = line_info->dw_line_num;
7166 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
2ad9852d
RK
7167 /* This can handle deltas from -10 to 234, using the current
7168 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7169 takes 1 byte. */
7170 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7171 "line %lu", current_line);
2f22d404
JM
7172 else
7173 {
7174 /* This can handle any delta. This takes at least 4 bytes,
7175 depending on the value being encoded. */
2e4b9b8c
RH
7176 dw2_asm_output_data (1, DW_LNS_advance_line,
7177 "advance to line %lu", current_line);
7178 dw2_asm_output_data_sleb128 (line_offset, NULL);
7179 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
2f22d404 7180 }
a94dbf2c
JM
7181 }
7182 else
2ad9852d
RK
7183 /* We still need to start a new row, so output a copy insn. */
7184 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
a3f97cbb
JW
7185 }
7186
f19a6894
JW
7187 /* Emit debug info for the address of the end of the function. */
7188 if (0)
7189 {
2e4b9b8c
RH
7190 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7191 "DW_LNS_fixed_advance_pc");
7192 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
f19a6894
JW
7193 }
7194 else
7195 {
2e4b9b8c
RH
7196 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7197 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7198 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7199 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
f19a6894 7200 }
bdb669cb 7201
2e4b9b8c
RH
7202 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7203 dw2_asm_output_data_uleb128 (1, NULL);
7204 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
e90b62db
JM
7205
7206 function = 0;
7207 current_file = 1;
7208 current_line = 1;
556273e0 7209 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
e90b62db 7210 {
b3694847 7211 dw_separate_line_info_ref line_info
e90b62db 7212 = &separate_line_info_table[lt_index];
71dfc51f 7213
10a11b75 7214#if 0
2f22d404
JM
7215 /* Don't emit anything for redundant notes. */
7216 if (line_info->dw_line_num == current_line
7217 && line_info->dw_file_num == current_file
7218 && line_info->function == function)
7219 goto cont;
10a11b75 7220#endif
2f22d404 7221
f19a6894
JW
7222 /* Emit debug info for the address of the current line. If this is
7223 a new function, or the first line of a function, then we need
7224 to handle it differently. */
5c90448c
JM
7225 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7226 lt_index);
e90b62db
JM
7227 if (function != line_info->function)
7228 {
7229 function = line_info->function;
71dfc51f 7230
e90b62db 7231 /* Set the address register to the first line in the function */
2e4b9b8c
RH
7232 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7233 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7234 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7235 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
e90b62db
JM
7236 }
7237 else
7238 {
f19a6894
JW
7239 /* ??? See the DW_LNS_advance_pc comment above. */
7240 if (0)
7241 {
2e4b9b8c
RH
7242 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7243 "DW_LNS_fixed_advance_pc");
7244 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
7245 }
7246 else
7247 {
2e4b9b8c
RH
7248 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7249 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7250 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7251 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894 7252 }
e90b62db 7253 }
2ad9852d 7254
f19a6894 7255 strcpy (prev_line_label, line_label);
71dfc51f 7256
f19a6894
JW
7257 /* Emit debug info for the source file of the current line, if
7258 different from the previous line. */
e90b62db
JM
7259 if (line_info->dw_file_num != current_file)
7260 {
7261 current_file = line_info->dw_file_num;
2e4b9b8c
RH
7262 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7263 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
981975b6 7264 file_table.table[current_file]);
e90b62db 7265 }
71dfc51f 7266
f19a6894
JW
7267 /* Emit debug info for the current line number, choosing the encoding
7268 that uses the least amount of space. */
e90b62db
JM
7269 if (line_info->dw_line_num != current_line)
7270 {
7271 line_offset = line_info->dw_line_num - current_line;
7272 line_delta = line_offset - DWARF_LINE_BASE;
7273 current_line = line_info->dw_line_num;
7274 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
2e4b9b8c
RH
7275 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7276 "line %lu", current_line);
e90b62db
JM
7277 else
7278 {
2e4b9b8c
RH
7279 dw2_asm_output_data (1, DW_LNS_advance_line,
7280 "advance to line %lu", current_line);
7281 dw2_asm_output_data_sleb128 (line_offset, NULL);
7282 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
e90b62db
JM
7283 }
7284 }
2f22d404 7285 else
2e4b9b8c 7286 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
71dfc51f 7287
10a11b75 7288#if 0
2f22d404 7289 cont:
10a11b75 7290#endif
2ad9852d
RK
7291
7292 lt_index++;
e90b62db
JM
7293
7294 /* If we're done with a function, end its sequence. */
7295 if (lt_index == separate_line_info_table_in_use
7296 || separate_line_info_table[lt_index].function != function)
7297 {
7298 current_file = 1;
7299 current_line = 1;
71dfc51f 7300
f19a6894 7301 /* Emit debug info for the address of the end of the function. */
5c90448c 7302 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
f19a6894
JW
7303 if (0)
7304 {
2e4b9b8c
RH
7305 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7306 "DW_LNS_fixed_advance_pc");
7307 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
f19a6894
JW
7308 }
7309 else
7310 {
2e4b9b8c
RH
7311 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7312 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7313 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8e7fa2c8 7314 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
f19a6894 7315 }
e90b62db
JM
7316
7317 /* Output the marker for the end of this sequence. */
2e4b9b8c
RH
7318 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7319 dw2_asm_output_data_uleb128 (1, NULL);
7320 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
e90b62db
JM
7321 }
7322 }
f19f17e0
JM
7323
7324 /* Output the marker for the end of the line number info. */
2e4b9b8c 7325 ASM_OUTPUT_LABEL (asm_out_file, l2);
a3f97cbb
JW
7326}
7327\f
a3f97cbb
JW
7328/* Given a pointer to a tree node for some base type, return a pointer to
7329 a DIE that describes the given type.
7330
7331 This routine must only be called for GCC type nodes that correspond to
7332 Dwarf base (fundamental) types. */
71dfc51f 7333
a3f97cbb
JW
7334static dw_die_ref
7335base_type_die (type)
b3694847 7336 tree type;
a3f97cbb 7337{
b3694847
SS
7338 dw_die_ref base_type_result;
7339 const char *type_name;
7340 enum dwarf_type encoding;
7341 tree name = TYPE_NAME (type);
a3f97cbb 7342
2ad9852d 7343 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
a3f97cbb
JW
7344 return 0;
7345
405f63da
MM
7346 if (name)
7347 {
7348 if (TREE_CODE (name) == TYPE_DECL)
7349 name = DECL_NAME (name);
7350
7351 type_name = IDENTIFIER_POINTER (name);
7352 }
7353 else
7354 type_name = "__unknown__";
a9d38797 7355
a3f97cbb
JW
7356 switch (TREE_CODE (type))
7357 {
a3f97cbb 7358 case INTEGER_TYPE:
a9d38797 7359 /* Carefully distinguish the C character types, without messing
a3f97cbb 7360 up if the language is not C. Note that we check only for the names
556273e0 7361 that contain spaces; other names might occur by coincidence in other
a3f97cbb 7362 languages. */
a9d38797
JM
7363 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7364 && (type == char_type_node
7365 || ! strcmp (type_name, "signed char")
7366 || ! strcmp (type_name, "unsigned char"))))
a3f97cbb 7367 {
a9d38797
JM
7368 if (TREE_UNSIGNED (type))
7369 encoding = DW_ATE_unsigned;
7370 else
7371 encoding = DW_ATE_signed;
7372 break;
a3f97cbb 7373 }
556273e0 7374 /* else fall through. */
a3f97cbb 7375
a9d38797
JM
7376 case CHAR_TYPE:
7377 /* GNU Pascal/Ada CHAR type. Not used in C. */
7378 if (TREE_UNSIGNED (type))
7379 encoding = DW_ATE_unsigned_char;
7380 else
7381 encoding = DW_ATE_signed_char;
a3f97cbb
JW
7382 break;
7383
7384 case REAL_TYPE:
a9d38797 7385 encoding = DW_ATE_float;
a3f97cbb
JW
7386 break;
7387
405f63da
MM
7388 /* Dwarf2 doesn't know anything about complex ints, so use
7389 a user defined type for it. */
a3f97cbb 7390 case COMPLEX_TYPE:
405f63da
MM
7391 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7392 encoding = DW_ATE_complex_float;
7393 else
7394 encoding = DW_ATE_lo_user;
a3f97cbb
JW
7395 break;
7396
7397 case BOOLEAN_TYPE:
a9d38797
JM
7398 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7399 encoding = DW_ATE_boolean;
a3f97cbb
JW
7400 break;
7401
7402 default:
2ad9852d
RK
7403 /* No other TREE_CODEs are Dwarf fundamental types. */
7404 abort ();
a3f97cbb
JW
7405 }
7406
54ba1f0d 7407 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
14a774a9
RK
7408 if (demangle_name_func)
7409 type_name = (*demangle_name_func) (type_name);
7410
a9d38797
JM
7411 add_AT_string (base_type_result, DW_AT_name, type_name);
7412 add_AT_unsigned (base_type_result, DW_AT_byte_size,
4e5a8d7b 7413 int_size_in_bytes (type));
a9d38797 7414 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
a3f97cbb
JW
7415
7416 return base_type_result;
7417}
7418
7419/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7420 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7421 a given type is generally the same as the given type, except that if the
7422 given type is a pointer or reference type, then the root type of the given
7423 type is the root type of the "basis" type for the pointer or reference
7424 type. (This definition of the "root" type is recursive.) Also, the root
7425 type of a `const' qualified type or a `volatile' qualified type is the
7426 root type of the given type without the qualifiers. */
71dfc51f 7427
a3f97cbb
JW
7428static tree
7429root_type (type)
b3694847 7430 tree type;
a3f97cbb
JW
7431{
7432 if (TREE_CODE (type) == ERROR_MARK)
7433 return error_mark_node;
7434
7435 switch (TREE_CODE (type))
7436 {
7437 case ERROR_MARK:
7438 return error_mark_node;
7439
7440 case POINTER_TYPE:
7441 case REFERENCE_TYPE:
7442 return type_main_variant (root_type (TREE_TYPE (type)));
7443
7444 default:
7445 return type_main_variant (type);
7446 }
7447}
7448
7449/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7450 given input type is a Dwarf "fundamental" type. Otherwise return null. */
71dfc51f
RK
7451
7452static inline int
a3f97cbb 7453is_base_type (type)
b3694847 7454 tree type;
a3f97cbb
JW
7455{
7456 switch (TREE_CODE (type))
7457 {
7458 case ERROR_MARK:
7459 case VOID_TYPE:
7460 case INTEGER_TYPE:
7461 case REAL_TYPE:
7462 case COMPLEX_TYPE:
7463 case BOOLEAN_TYPE:
7464 case CHAR_TYPE:
7465 return 1;
7466
7467 case SET_TYPE:
7468 case ARRAY_TYPE:
7469 case RECORD_TYPE:
7470 case UNION_TYPE:
7471 case QUAL_UNION_TYPE:
7472 case ENUMERAL_TYPE:
7473 case FUNCTION_TYPE:
7474 case METHOD_TYPE:
7475 case POINTER_TYPE:
7476 case REFERENCE_TYPE:
7477 case FILE_TYPE:
7478 case OFFSET_TYPE:
7479 case LANG_TYPE:
604bb87d 7480 case VECTOR_TYPE:
a3f97cbb
JW
7481 return 0;
7482
7483 default:
7484 abort ();
7485 }
71dfc51f 7486
a3f97cbb
JW
7487 return 0;
7488}
7489
7490/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7491 entry that chains various modifiers in front of the given type. */
71dfc51f 7492
a3f97cbb
JW
7493static dw_die_ref
7494modified_type_die (type, is_const_type, is_volatile_type, context_die)
b3694847
SS
7495 tree type;
7496 int is_const_type;
7497 int is_volatile_type;
7498 dw_die_ref context_die;
a3f97cbb 7499{
b3694847
SS
7500 enum tree_code code = TREE_CODE (type);
7501 dw_die_ref mod_type_die = NULL;
7502 dw_die_ref sub_die = NULL;
7503 tree item_type = NULL;
a3f97cbb
JW
7504
7505 if (code != ERROR_MARK)
7506 {
5101b304
MM
7507 tree qualified_type;
7508
7509 /* See if we already have the appropriately qualified variant of
7510 this type. */
c26fbbca 7511 qualified_type
5101b304
MM
7512 = get_qualified_type (type,
7513 ((is_const_type ? TYPE_QUAL_CONST : 0)
c26fbbca 7514 | (is_volatile_type
5101b304 7515 ? TYPE_QUAL_VOLATILE : 0)));
2ad9852d 7516
5101b304
MM
7517 /* If we do, then we can just use its DIE, if it exists. */
7518 if (qualified_type)
7519 {
7520 mod_type_die = lookup_type_die (qualified_type);
7521 if (mod_type_die)
7522 return mod_type_die;
7523 }
bdb669cb 7524
556273e0 7525 /* Handle C typedef types. */
c26fbbca 7526 if (qualified_type && TYPE_NAME (qualified_type)
5101b304
MM
7527 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7528 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
a94dbf2c 7529 {
5101b304
MM
7530 tree type_name = TYPE_NAME (qualified_type);
7531 tree dtype = TREE_TYPE (type_name);
2ad9852d 7532
5101b304 7533 if (qualified_type == dtype)
a94dbf2c
JM
7534 {
7535 /* For a named type, use the typedef. */
5101b304
MM
7536 gen_type_die (qualified_type, context_die);
7537 mod_type_die = lookup_type_die (qualified_type);
a94dbf2c
JM
7538 }
7539 else if (is_const_type < TYPE_READONLY (dtype)
7540 || is_volatile_type < TYPE_VOLATILE (dtype))
7541 /* cv-unqualified version of named type. Just use the unnamed
7542 type to which it refers. */
71dfc51f 7543 mod_type_die
5101b304 7544 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
71dfc51f
RK
7545 is_const_type, is_volatile_type,
7546 context_die);
2ad9852d 7547
71dfc51f 7548 /* Else cv-qualified version of named type; fall through. */
a94dbf2c
JM
7549 }
7550
7551 if (mod_type_die)
556273e0
KH
7552 /* OK. */
7553 ;
a94dbf2c 7554 else if (is_const_type)
a3f97cbb 7555 {
54ba1f0d 7556 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
a9d38797 7557 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
a3f97cbb
JW
7558 }
7559 else if (is_volatile_type)
7560 {
54ba1f0d 7561 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
a9d38797 7562 sub_die = modified_type_die (type, 0, 0, context_die);
a3f97cbb
JW
7563 }
7564 else if (code == POINTER_TYPE)
7565 {
54ba1f0d 7566 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
a3f97cbb 7567 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
61b32c02 7568#if 0
a3f97cbb 7569 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
61b32c02 7570#endif
a3f97cbb 7571 item_type = TREE_TYPE (type);
a3f97cbb
JW
7572 }
7573 else if (code == REFERENCE_TYPE)
7574 {
54ba1f0d 7575 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
a3f97cbb 7576 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
61b32c02 7577#if 0
a3f97cbb 7578 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
556273e0 7579#endif
a3f97cbb 7580 item_type = TREE_TYPE (type);
a3f97cbb
JW
7581 }
7582 else if (is_base_type (type))
71dfc51f 7583 mod_type_die = base_type_die (type);
a3f97cbb
JW
7584 else
7585 {
4b674448
JM
7586 gen_type_die (type, context_die);
7587
a3f97cbb
JW
7588 /* We have to get the type_main_variant here (and pass that to the
7589 `lookup_type_die' routine) because the ..._TYPE node we have
7590 might simply be a *copy* of some original type node (where the
7591 copy was created to help us keep track of typedef names) and
7592 that copy might have a different TYPE_UID from the original
a94dbf2c 7593 ..._TYPE node. */
0e98f924
AH
7594 if (TREE_CODE (type) != VECTOR_TYPE)
7595 mod_type_die = lookup_type_die (type_main_variant (type));
7596 else
7597 /* Vectors have the debugging information in the type,
7598 not the main variant. */
7599 mod_type_die = lookup_type_die (type);
3a88cbd1
JL
7600 if (mod_type_die == NULL)
7601 abort ();
a3f97cbb 7602 }
3d2999ba
MK
7603
7604 /* We want to equate the qualified type to the die below. */
7605 if (qualified_type)
7606 type = qualified_type;
a3f97cbb 7607 }
71dfc51f 7608
dfcf9891
JW
7609 equate_type_number_to_die (type, mod_type_die);
7610 if (item_type)
71dfc51f
RK
7611 /* We must do this after the equate_type_number_to_die call, in case
7612 this is a recursive type. This ensures that the modified_type_die
7613 recursion will terminate even if the type is recursive. Recursive
7614 types are possible in Ada. */
7615 sub_die = modified_type_die (item_type,
7616 TYPE_READONLY (item_type),
7617 TYPE_VOLATILE (item_type),
7618 context_die);
7619
a3f97cbb 7620 if (sub_die != NULL)
71dfc51f
RK
7621 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7622
a3f97cbb
JW
7623 return mod_type_die;
7624}
7625
a3f97cbb 7626/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
6d2f8887 7627 an enumerated type. */
71dfc51f
RK
7628
7629static inline int
a3f97cbb 7630type_is_enum (type)
b3694847 7631 tree type;
a3f97cbb
JW
7632{
7633 return TREE_CODE (type) == ENUMERAL_TYPE;
7634}
7635
7d9d8943
AM
7636/* Return the register number described by a given RTL node. */
7637
7638static unsigned int
7639reg_number (rtl)
b3694847 7640 rtx rtl;
7d9d8943 7641{
b3694847 7642 unsigned regno = REGNO (rtl);
7d9d8943
AM
7643
7644 if (regno >= FIRST_PSEUDO_REGISTER)
e7af1d45 7645 abort ();
7d9d8943 7646
e7af1d45 7647 return DBX_REGISTER_NUMBER (regno);
7d9d8943
AM
7648}
7649
e7af1d45
RK
7650/* Return a location descriptor that designates a machine register or
7651 zero if there is no such. */
71dfc51f 7652
a3f97cbb
JW
7653static dw_loc_descr_ref
7654reg_loc_descriptor (rtl)
b3694847 7655 rtx rtl;
a3f97cbb 7656{
b3694847 7657 dw_loc_descr_ref loc_result = NULL;
e7af1d45 7658 unsigned reg;
71dfc51f 7659
e7af1d45
RK
7660 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7661 return 0;
7662
7663 reg = reg_number (rtl);
85066503 7664 if (reg <= 31)
71dfc51f 7665 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
a3f97cbb 7666 else
71dfc51f
RK
7667 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
7668
a3f97cbb
JW
7669 return loc_result;
7670}
7671
d8041cc8
RH
7672/* Return a location descriptor that designates a constant. */
7673
7674static dw_loc_descr_ref
7675int_loc_descriptor (i)
7676 HOST_WIDE_INT i;
7677{
7678 enum dwarf_location_atom op;
7679
7680 /* Pick the smallest representation of a constant, rather than just
7681 defaulting to the LEB encoding. */
7682 if (i >= 0)
7683 {
7684 if (i <= 31)
7685 op = DW_OP_lit0 + i;
7686 else if (i <= 0xff)
7687 op = DW_OP_const1u;
7688 else if (i <= 0xffff)
7689 op = DW_OP_const2u;
7690 else if (HOST_BITS_PER_WIDE_INT == 32
7691 || i <= 0xffffffff)
7692 op = DW_OP_const4u;
7693 else
7694 op = DW_OP_constu;
7695 }
7696 else
7697 {
7698 if (i >= -0x80)
7699 op = DW_OP_const1s;
7700 else if (i >= -0x8000)
7701 op = DW_OP_const2s;
7702 else if (HOST_BITS_PER_WIDE_INT == 32
7703 || i >= -0x80000000)
7704 op = DW_OP_const4s;
7705 else
7706 op = DW_OP_consts;
7707 }
7708
7709 return new_loc_descr (op, i, 0);
7710}
7711
a3f97cbb 7712/* Return a location descriptor that designates a base+offset location. */
71dfc51f 7713
a3f97cbb
JW
7714static dw_loc_descr_ref
7715based_loc_descr (reg, offset)
7716 unsigned reg;
7717 long int offset;
7718{
b3694847 7719 dw_loc_descr_ref loc_result;
810429b7
JM
7720 /* For the "frame base", we use the frame pointer or stack pointer
7721 registers, since the RTL for local variables is relative to one of
7722 them. */
b3694847
SS
7723 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
7724 ? HARD_FRAME_POINTER_REGNUM
7725 : STACK_POINTER_REGNUM);
71dfc51f 7726
a3f97cbb 7727 if (reg == fp_reg)
71dfc51f 7728 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
85066503 7729 else if (reg <= 31)
71dfc51f 7730 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
a3f97cbb 7731 else
71dfc51f
RK
7732 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
7733
a3f97cbb
JW
7734 return loc_result;
7735}
7736
7737/* Return true if this RTL expression describes a base+offset calculation. */
71dfc51f
RK
7738
7739static inline int
a3f97cbb 7740is_based_loc (rtl)
b3694847 7741 rtx rtl;
a3f97cbb 7742{
173bf5be
KH
7743 return (GET_CODE (rtl) == PLUS
7744 && ((GET_CODE (XEXP (rtl, 0)) == REG
7745 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
7746 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
a3f97cbb
JW
7747}
7748
7749/* The following routine converts the RTL for a variable or parameter
7750 (resident in memory) into an equivalent Dwarf representation of a
7751 mechanism for getting the address of that same variable onto the top of a
7752 hypothetical "address evaluation" stack.
71dfc51f 7753
a3f97cbb
JW
7754 When creating memory location descriptors, we are effectively transforming
7755 the RTL for a memory-resident object into its Dwarf postfix expression
7756 equivalent. This routine recursively descends an RTL tree, turning
e60d4d7b
JL
7757 it into Dwarf postfix code as it goes.
7758
7759 MODE is the mode of the memory reference, needed to handle some
e7af1d45
RK
7760 autoincrement addressing modes.
7761
7762 Return 0 if we can't represent the location. */
71dfc51f 7763
a3f97cbb 7764static dw_loc_descr_ref
e60d4d7b 7765mem_loc_descriptor (rtl, mode)
b3694847 7766 rtx rtl;
e60d4d7b 7767 enum machine_mode mode;
a3f97cbb
JW
7768{
7769 dw_loc_descr_ref mem_loc_result = NULL;
e7af1d45 7770
556273e0 7771 /* Note that for a dynamically sized array, the location we will generate a
a3f97cbb
JW
7772 description of here will be the lowest numbered location which is
7773 actually within the array. That's *not* necessarily the same as the
7774 zeroth element of the array. */
71dfc51f 7775
1865dbb5
JM
7776#ifdef ASM_SIMPLIFY_DWARF_ADDR
7777 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
7778#endif
7779
a3f97cbb
JW
7780 switch (GET_CODE (rtl))
7781 {
e60d4d7b
JL
7782 case POST_INC:
7783 case POST_DEC:
e2134eea 7784 case POST_MODIFY:
e60d4d7b
JL
7785 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7786 just fall into the SUBREG code. */
7787
2ad9852d 7788 /* ... fall through ... */
e60d4d7b 7789
a3f97cbb
JW
7790 case SUBREG:
7791 /* The case of a subreg may arise when we have a local (register)
7792 variable or a formal (register) parameter which doesn't quite fill
7793 up an entire register. For now, just assume that it is
7794 legitimate to make the Dwarf info refer to the whole register which
7795 contains the given subreg. */
ddef6bc7 7796 rtl = SUBREG_REG (rtl);
71dfc51f 7797
2ad9852d 7798 /* ... fall through ... */
a3f97cbb
JW
7799
7800 case REG:
7801 /* Whenever a register number forms a part of the description of the
7802 method for calculating the (dynamic) address of a memory resident
556273e0 7803 object, DWARF rules require the register number be referred to as
a3f97cbb
JW
7804 a "base register". This distinction is not based in any way upon
7805 what category of register the hardware believes the given register
7806 belongs to. This is strictly DWARF terminology we're dealing with
7807 here. Note that in cases where the location of a memory-resident
7808 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7809 OP_CONST (0)) the actual DWARF location descriptor that we generate
7810 may just be OP_BASEREG (basereg). This may look deceptively like
7811 the object in question was allocated to a register (rather than in
7812 memory) so DWARF consumers need to be aware of the subtle
7813 distinction between OP_REG and OP_BASEREG. */
e7af1d45
RK
7814 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
7815 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
a3f97cbb
JW
7816 break;
7817
7818 case MEM:
f7d2b0ed 7819 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
e7af1d45
RK
7820 if (mem_loc_result != 0)
7821 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
a3f97cbb
JW
7822 break;
7823
d8041cc8
RH
7824 case LABEL_REF:
7825 /* Some ports can transform a symbol ref into a label ref, because
368f4cd6
NC
7826 the symbol ref is too far away and has to be dumped into a constant
7827 pool. */
a3f97cbb
JW
7828 case CONST:
7829 case SYMBOL_REF:
6331d1c1 7830 /* Alternatively, the symbol in the constant pool might be referenced
c6f9b9a1 7831 by a different symbol. */
2ad9852d 7832 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
79cdfa4b 7833 {
149d6f9e
JJ
7834 bool marked;
7835 rtx tmp = get_pool_constant_mark (rtl, &marked);
2ad9852d 7836
6331d1c1 7837 if (GET_CODE (tmp) == SYMBOL_REF)
149d6f9e
JJ
7838 {
7839 rtl = tmp;
7840 if (CONSTANT_POOL_ADDRESS_P (tmp))
7841 get_pool_constant_mark (tmp, &marked);
7842 else
7843 marked = true;
7844 }
7845
7846 /* If all references to this pool constant were optimized away,
7847 it was not output and thus we can't represent it.
7848 FIXME: might try to use DW_OP_const_value here, though
7849 DW_OP_piece complicates it. */
7850 if (!marked)
7851 return 0;
79cdfa4b
TM
7852 }
7853
a3f97cbb
JW
7854 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
7855 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
c470afad
RK
7856 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
7857 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
a3f97cbb
JW
7858 break;
7859
e2134eea
JH
7860 case PRE_MODIFY:
7861 /* Extract the PLUS expression nested inside and fall into
0407c02b 7862 PLUS code below. */
e2134eea
JH
7863 rtl = XEXP (rtl, 1);
7864 goto plus;
7865
e60d4d7b
JL
7866 case PRE_INC:
7867 case PRE_DEC:
7868 /* Turn these into a PLUS expression and fall into the PLUS code
7869 below. */
7870 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
7871 GEN_INT (GET_CODE (rtl) == PRE_INC
556273e0
KH
7872 ? GET_MODE_UNIT_SIZE (mode)
7873 : -GET_MODE_UNIT_SIZE (mode)));
7874
2ad9852d 7875 /* ... fall through ... */
e60d4d7b 7876
a3f97cbb 7877 case PLUS:
e2134eea 7878 plus:
a3f97cbb 7879 if (is_based_loc (rtl))
71dfc51f
RK
7880 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
7881 INTVAL (XEXP (rtl, 1)));
a3f97cbb
JW
7882 else
7883 {
d8041cc8 7884 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
e7af1d45
RK
7885 if (mem_loc_result == 0)
7886 break;
d8041cc8
RH
7887
7888 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
7889 && INTVAL (XEXP (rtl, 1)) >= 0)
e7af1d45
RK
7890 add_loc_descr (&mem_loc_result,
7891 new_loc_descr (DW_OP_plus_uconst,
7892 INTVAL (XEXP (rtl, 1)), 0));
d8041cc8
RH
7893 else
7894 {
7895 add_loc_descr (&mem_loc_result,
7896 mem_loc_descriptor (XEXP (rtl, 1), mode));
7897 add_loc_descr (&mem_loc_result,
7898 new_loc_descr (DW_OP_plus, 0, 0));
7899 }
a3f97cbb
JW
7900 }
7901 break;
7902
dd2478ae 7903 case MULT:
e7af1d45
RK
7904 {
7905 /* If a pseudo-reg is optimized away, it is possible for it to
7906 be replaced with a MEM containing a multiply. */
7907 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
7908 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
7909
7910 if (op0 == 0 || op1 == 0)
7911 break;
7912
7913 mem_loc_result = op0;
7914 add_loc_descr (&mem_loc_result, op1);
7915 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
7916 break;
7917 }
dd2478ae 7918
a3f97cbb 7919 case CONST_INT:
d8041cc8 7920 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
a3f97cbb
JW
7921 break;
7922
a9e8a5ee
RK
7923 case ADDRESSOF:
7924 /* If this is a MEM, return its address. Otherwise, we can't
7925 represent this. */
7926 if (GET_CODE (XEXP (rtl, 0)) == MEM)
7927 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
7928 else
7929 return 0;
7930
a3f97cbb
JW
7931 default:
7932 abort ();
7933 }
71dfc51f 7934
a3f97cbb
JW
7935 return mem_loc_result;
7936}
7937
956d6950 7938/* Return a descriptor that describes the concatenation of two locations.
4401bf24
JL
7939 This is typically a complex variable. */
7940
7941static dw_loc_descr_ref
7942concat_loc_descriptor (x0, x1)
b3694847 7943 rtx x0, x1;
4401bf24
JL
7944{
7945 dw_loc_descr_ref cc_loc_result = NULL;
e7af1d45
RK
7946 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
7947 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
4401bf24 7948
e7af1d45
RK
7949 if (x0_ref == 0 || x1_ref == 0)
7950 return 0;
7951
7952 cc_loc_result = x0_ref;
4401bf24 7953 add_loc_descr (&cc_loc_result,
e7af1d45
RK
7954 new_loc_descr (DW_OP_piece,
7955 GET_MODE_SIZE (GET_MODE (x0)), 0));
4401bf24 7956
e7af1d45 7957 add_loc_descr (&cc_loc_result, x1_ref);
4401bf24 7958 add_loc_descr (&cc_loc_result,
e7af1d45
RK
7959 new_loc_descr (DW_OP_piece,
7960 GET_MODE_SIZE (GET_MODE (x1)), 0));
4401bf24
JL
7961
7962 return cc_loc_result;
7963}
7964
a3f97cbb
JW
7965/* Output a proper Dwarf location descriptor for a variable or parameter
7966 which is either allocated in a register or in a memory location. For a
7967 register, we just generate an OP_REG and the register number. For a
7968 memory location we provide a Dwarf postfix expression describing how to
e7af1d45
RK
7969 generate the (dynamic) address of the object onto the address stack.
7970
7971 If we don't know how to describe it, return 0. */
71dfc51f 7972
a3f97cbb
JW
7973static dw_loc_descr_ref
7974loc_descriptor (rtl)
b3694847 7975 rtx rtl;
a3f97cbb
JW
7976{
7977 dw_loc_descr_ref loc_result = NULL;
e7af1d45 7978
a3f97cbb
JW
7979 switch (GET_CODE (rtl))
7980 {
7981 case SUBREG:
a3f97cbb
JW
7982 /* The case of a subreg may arise when we have a local (register)
7983 variable or a formal (register) parameter which doesn't quite fill
71dfc51f 7984 up an entire register. For now, just assume that it is
a3f97cbb
JW
7985 legitimate to make the Dwarf info refer to the whole register which
7986 contains the given subreg. */
ddef6bc7 7987 rtl = SUBREG_REG (rtl);
71dfc51f 7988
2ad9852d 7989 /* ... fall through ... */
a3f97cbb
JW
7990
7991 case REG:
5c90448c 7992 loc_result = reg_loc_descriptor (rtl);
a3f97cbb
JW
7993 break;
7994
7995 case MEM:
e60d4d7b 7996 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
a3f97cbb
JW
7997 break;
7998
4401bf24
JL
7999 case CONCAT:
8000 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8001 break;
8002
a3f97cbb 8003 default:
71dfc51f 8004 abort ();
a3f97cbb 8005 }
71dfc51f 8006
a3f97cbb
JW
8007 return loc_result;
8008}
8009
2ad9852d
RK
8010/* Similar, but generate the descriptor from trees instead of rtl. This comes
8011 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8012 looking for an address. Otherwise, we return a value. If we can't make a
8013 descriptor, return 0. */
d8041cc8
RH
8014
8015static dw_loc_descr_ref
8016loc_descriptor_from_tree (loc, addressp)
8017 tree loc;
8018 int addressp;
8019{
e7af1d45
RK
8020 dw_loc_descr_ref ret, ret1;
8021 int indirect_p = 0;
d8041cc8
RH
8022 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8023 enum dwarf_location_atom op;
8024
8025 /* ??? Most of the time we do not take proper care for sign/zero
8026 extending the values properly. Hopefully this won't be a real
8027 problem... */
8028
8029 switch (TREE_CODE (loc))
8030 {
8031 case ERROR_MARK:
e7af1d45 8032 return 0;
d8041cc8 8033
b4ae5201 8034 case WITH_RECORD_EXPR:
e7af1d45 8035 case PLACEHOLDER_EXPR:
b4ae5201
RK
8036 /* This case involves extracting fields from an object to determine the
8037 position of other fields. We don't try to encode this here. The
8038 only user of this is Ada, which encodes the needed information using
8039 the names of types. */
e7af1d45 8040 return 0;
b4ae5201 8041
aea9695c
RK
8042 case CALL_EXPR:
8043 return 0;
8044
8045 case ADDR_EXPR:
8046 /* We can support this only if we can look through conversions and
8047 find an INDIRECT_EXPR. */
8048 for (loc = TREE_OPERAND (loc, 0);
8049 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8050 || TREE_CODE (loc) == NON_LVALUE_EXPR
8051 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8052 || TREE_CODE (loc) == SAVE_EXPR;
8053 loc = TREE_OPERAND (loc, 0))
8054 ;
8055
8056 return (TREE_CODE (loc) == INDIRECT_REF
8057 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8058 : 0);
8059
d8041cc8
RH
8060 case VAR_DECL:
8061 case PARM_DECL:
8062 {
8063 rtx rtl = rtl_for_decl_location (loc);
d8041cc8 8064
a97c9600 8065 if (rtl == NULL_RTX)
e7af1d45 8066 return 0;
a97c9600 8067 else if (CONSTANT_P (rtl))
d8041cc8
RH
8068 {
8069 ret = new_loc_descr (DW_OP_addr, 0, 0);
8070 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8071 ret->dw_loc_oprnd1.v.val_addr = rtl;
e7af1d45 8072 indirect_p = 1;
d8041cc8
RH
8073 }
8074 else
8075 {
c28abdf0
RH
8076 enum machine_mode mode = GET_MODE (rtl);
8077
d8041cc8
RH
8078 if (GET_CODE (rtl) == MEM)
8079 {
e7af1d45 8080 indirect_p = 1;
d8041cc8
RH
8081 rtl = XEXP (rtl, 0);
8082 }
2ad9852d 8083
d8041cc8
RH
8084 ret = mem_loc_descriptor (rtl, mode);
8085 }
8086 }
8087 break;
8088
8089 case INDIRECT_REF:
8090 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
e7af1d45 8091 indirect_p = 1;
d8041cc8
RH
8092 break;
8093
749552c4
RK
8094 case COMPOUND_EXPR:
8095 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8096
ed972b14
RK
8097 case NOP_EXPR:
8098 case CONVERT_EXPR:
8099 case NON_LVALUE_EXPR:
ed239f5a 8100 case VIEW_CONVERT_EXPR:
b4ae5201 8101 case SAVE_EXPR:
ed972b14 8102 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
e57cabac 8103
d8041cc8
RH
8104 case COMPONENT_REF:
8105 case BIT_FIELD_REF:
8106 case ARRAY_REF:
b4e3fabb 8107 case ARRAY_RANGE_REF:
d8041cc8
RH
8108 {
8109 tree obj, offset;
8110 HOST_WIDE_INT bitsize, bitpos, bytepos;
8111 enum machine_mode mode;
8112 int volatilep;
d8041cc8
RH
8113
8114 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
a06ef755 8115 &unsignedp, &volatilep);
e7af1d45
RK
8116
8117 if (obj == loc)
8118 return 0;
8119
d8041cc8 8120 ret = loc_descriptor_from_tree (obj, 1);
e7af1d45 8121 if (ret == 0
2ad9852d 8122 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
e7af1d45 8123 return 0;
d8041cc8
RH
8124
8125 if (offset != NULL_TREE)
8126 {
8127 /* Variable offset. */
8128 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8129 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8130 }
8131
e7af1d45
RK
8132 if (!addressp)
8133 indirect_p = 1;
d8041cc8
RH
8134
8135 bytepos = bitpos / BITS_PER_UNIT;
8136 if (bytepos > 0)
8137 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8138 else if (bytepos < 0)
8139 {
8140 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8141 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8142 }
8143 break;
8144 }
8145
8146 case INTEGER_CST:
8147 if (host_integerp (loc, 0))
8148 ret = int_loc_descriptor (tree_low_cst (loc, 0));
e7af1d45
RK
8149 else
8150 return 0;
d8041cc8 8151 break;
d8041cc8 8152
c26fbbca 8153 case TRUTH_AND_EXPR:
9702143f 8154 case TRUTH_ANDIF_EXPR:
d8041cc8
RH
8155 case BIT_AND_EXPR:
8156 op = DW_OP_and;
8157 goto do_binop;
e7af1d45 8158
9702143f 8159 case TRUTH_XOR_EXPR:
d8041cc8
RH
8160 case BIT_XOR_EXPR:
8161 op = DW_OP_xor;
8162 goto do_binop;
e7af1d45 8163
9702143f
RK
8164 case TRUTH_OR_EXPR:
8165 case TRUTH_ORIF_EXPR:
d8041cc8
RH
8166 case BIT_IOR_EXPR:
8167 op = DW_OP_or;
8168 goto do_binop;
e7af1d45 8169
d8041cc8
RH
8170 case TRUNC_DIV_EXPR:
8171 op = DW_OP_div;
8172 goto do_binop;
e7af1d45 8173
d8041cc8
RH
8174 case MINUS_EXPR:
8175 op = DW_OP_minus;
8176 goto do_binop;
e7af1d45 8177
d8041cc8
RH
8178 case TRUNC_MOD_EXPR:
8179 op = DW_OP_mod;
8180 goto do_binop;
e7af1d45 8181
d8041cc8
RH
8182 case MULT_EXPR:
8183 op = DW_OP_mul;
8184 goto do_binop;
e7af1d45 8185
d8041cc8
RH
8186 case LSHIFT_EXPR:
8187 op = DW_OP_shl;
8188 goto do_binop;
e7af1d45 8189
d8041cc8
RH
8190 case RSHIFT_EXPR:
8191 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8192 goto do_binop;
e7af1d45 8193
d8041cc8
RH
8194 case PLUS_EXPR:
8195 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8196 && host_integerp (TREE_OPERAND (loc, 1), 0))
8197 {
8198 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
e7af1d45
RK
8199 if (ret == 0)
8200 return 0;
8201
d8041cc8
RH
8202 add_loc_descr (&ret,
8203 new_loc_descr (DW_OP_plus_uconst,
8204 tree_low_cst (TREE_OPERAND (loc, 1),
8205 0),
8206 0));
8207 break;
8208 }
e7af1d45 8209
d8041cc8
RH
8210 op = DW_OP_plus;
8211 goto do_binop;
2ad9852d 8212
d8041cc8
RH
8213 case LE_EXPR:
8214 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
e7af1d45
RK
8215 return 0;
8216
d8041cc8
RH
8217 op = DW_OP_le;
8218 goto do_binop;
e7af1d45 8219
d8041cc8
RH
8220 case GE_EXPR:
8221 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
e7af1d45
RK
8222 return 0;
8223
d8041cc8
RH
8224 op = DW_OP_ge;
8225 goto do_binop;
e7af1d45 8226
d8041cc8
RH
8227 case LT_EXPR:
8228 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
e7af1d45
RK
8229 return 0;
8230
d8041cc8
RH
8231 op = DW_OP_lt;
8232 goto do_binop;
e7af1d45 8233
d8041cc8
RH
8234 case GT_EXPR:
8235 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
e7af1d45
RK
8236 return 0;
8237
d8041cc8
RH
8238 op = DW_OP_gt;
8239 goto do_binop;
e7af1d45 8240
d8041cc8
RH
8241 case EQ_EXPR:
8242 op = DW_OP_eq;
8243 goto do_binop;
e7af1d45 8244
d8041cc8
RH
8245 case NE_EXPR:
8246 op = DW_OP_ne;
8247 goto do_binop;
8248
8249 do_binop:
8250 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
e7af1d45
RK
8251 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8252 if (ret == 0 || ret1 == 0)
8253 return 0;
8254
8255 add_loc_descr (&ret, ret1);
d8041cc8
RH
8256 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8257 break;
8258
9702143f 8259 case TRUTH_NOT_EXPR:
d8041cc8
RH
8260 case BIT_NOT_EXPR:
8261 op = DW_OP_not;
8262 goto do_unop;
e7af1d45 8263
d8041cc8
RH
8264 case ABS_EXPR:
8265 op = DW_OP_abs;
8266 goto do_unop;
e7af1d45 8267
d8041cc8
RH
8268 case NEGATE_EXPR:
8269 op = DW_OP_neg;
8270 goto do_unop;
8271
8272 do_unop:
8273 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
e7af1d45
RK
8274 if (ret == 0)
8275 return 0;
8276
d8041cc8
RH
8277 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8278 break;
8279
8280 case MAX_EXPR:
8281 loc = build (COND_EXPR, TREE_TYPE (loc),
8282 build (LT_EXPR, integer_type_node,
8283 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8284 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
2ad9852d 8285
3ef42a0c 8286 /* ... fall through ... */
d8041cc8
RH
8287
8288 case COND_EXPR:
8289 {
e7af1d45
RK
8290 dw_loc_descr_ref lhs
8291 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8292 dw_loc_descr_ref rhs
8293 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
d8041cc8
RH
8294 dw_loc_descr_ref bra_node, jump_node, tmp;
8295
8296 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
e7af1d45
RK
8297 if (ret == 0 || lhs == 0 || rhs == 0)
8298 return 0;
8299
d8041cc8
RH
8300 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8301 add_loc_descr (&ret, bra_node);
8302
e7af1d45 8303 add_loc_descr (&ret, rhs);
d8041cc8
RH
8304 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8305 add_loc_descr (&ret, jump_node);
8306
e7af1d45 8307 add_loc_descr (&ret, lhs);
d8041cc8 8308 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
e7af1d45 8309 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
d8041cc8
RH
8310
8311 /* ??? Need a node to point the skip at. Use a nop. */
8312 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8313 add_loc_descr (&ret, tmp);
8314 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8315 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8316 }
8317 break;
8318
8319 default:
8320 abort ();
8321 }
8322
e7af1d45
RK
8323 /* Show if we can't fill the request for an address. */
8324 if (addressp && indirect_p == 0)
8325 return 0;
d8041cc8
RH
8326
8327 /* If we've got an address and don't want one, dereference. */
e7af1d45 8328 if (!addressp && indirect_p > 0)
d8041cc8 8329 {
e7af1d45
RK
8330 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8331
8332 if (size > DWARF2_ADDR_SIZE || size == -1)
8333 return 0;
2ad9852d 8334 else if (size == DWARF2_ADDR_SIZE)
d8041cc8
RH
8335 op = DW_OP_deref;
8336 else
8337 op = DW_OP_deref_size;
e7af1d45
RK
8338
8339 add_loc_descr (&ret, new_loc_descr (op, size, 0));
d8041cc8
RH
8340 }
8341
8342 return ret;
8343}
8344
665f2503 8345/* Given a value, round it up to the lowest multiple of `boundary'
a3f97cbb 8346 which is not less than the value itself. */
71dfc51f 8347
665f2503 8348static inline HOST_WIDE_INT
a3f97cbb 8349ceiling (value, boundary)
665f2503
RK
8350 HOST_WIDE_INT value;
8351 unsigned int boundary;
a3f97cbb
JW
8352{
8353 return (((value + boundary - 1) / boundary) * boundary);
8354}
8355
8356/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8357 pointer to the declared type for the relevant field variable, or return
8358 `integer_type_node' if the given node turns out to be an
8359 ERROR_MARK node. */
71dfc51f
RK
8360
8361static inline tree
a3f97cbb 8362field_type (decl)
b3694847 8363 tree decl;
a3f97cbb 8364{
b3694847 8365 tree type;
a3f97cbb
JW
8366
8367 if (TREE_CODE (decl) == ERROR_MARK)
8368 return integer_type_node;
8369
8370 type = DECL_BIT_FIELD_TYPE (decl);
71dfc51f 8371 if (type == NULL_TREE)
a3f97cbb
JW
8372 type = TREE_TYPE (decl);
8373
8374 return type;
8375}
8376
5f446d21
DD
8377/* Given a pointer to a tree node, return the alignment in bits for
8378 it, or else return BITS_PER_WORD if the node actually turns out to
8379 be an ERROR_MARK node. */
71dfc51f
RK
8380
8381static inline unsigned
a3f97cbb 8382simple_type_align_in_bits (type)
b3694847 8383 tree type;
a3f97cbb
JW
8384{
8385 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8386}
8387
5f446d21
DD
8388static inline unsigned
8389simple_decl_align_in_bits (decl)
b3694847 8390 tree decl;
5f446d21
DD
8391{
8392 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8393}
8394
a3f97cbb
JW
8395/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8396 node, return the size in bits for the type if it is a constant, or else
8397 return the alignment for the type if the type's size is not constant, or
8398 else return BITS_PER_WORD if the type actually turns out to be an
8399 ERROR_MARK node. */
71dfc51f 8400
665f2503 8401static inline unsigned HOST_WIDE_INT
a3f97cbb 8402simple_type_size_in_bits (type)
b3694847 8403 tree type;
a3f97cbb 8404{
3df18884 8405
a3f97cbb
JW
8406 if (TREE_CODE (type) == ERROR_MARK)
8407 return BITS_PER_WORD;
2ad9852d 8408 else if (TYPE_SIZE (type) == NULL_TREE)
3df18884 8409 return 0;
2ad9852d
RK
8410 else if (host_integerp (TYPE_SIZE (type), 1))
8411 return tree_low_cst (TYPE_SIZE (type), 1);
8412 else
3df18884 8413 return TYPE_ALIGN (type);
a3f97cbb
JW
8414}
8415
2ad9852d
RK
8416/* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8417 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8418 or return 0 if we are unable to determine what that offset is, either
8419 because the argument turns out to be a pointer to an ERROR_MARK node, or
8420 because the offset is actually variable. (We can't handle the latter case
8421 just yet). */
71dfc51f 8422
665f2503 8423static HOST_WIDE_INT
a3f97cbb 8424field_byte_offset (decl)
b3694847 8425 tree decl;
a3f97cbb 8426{
665f2503 8427 unsigned int type_align_in_bits;
5f446d21 8428 unsigned int decl_align_in_bits;
665f2503 8429 unsigned HOST_WIDE_INT type_size_in_bits;
665f2503 8430 HOST_WIDE_INT object_offset_in_bits;
665f2503
RK
8431 tree type;
8432 tree field_size_tree;
8433 HOST_WIDE_INT bitpos_int;
8434 HOST_WIDE_INT deepest_bitpos;
8435 unsigned HOST_WIDE_INT field_size_in_bits;
a3f97cbb
JW
8436
8437 if (TREE_CODE (decl) == ERROR_MARK)
8438 return 0;
2ad9852d 8439 else if (TREE_CODE (decl) != FIELD_DECL)
a3f97cbb
JW
8440 abort ();
8441
8442 type = field_type (decl);
a3f97cbb
JW
8443 field_size_tree = DECL_SIZE (decl);
8444
3df18884
RH
8445 /* The size could be unspecified if there was an error, or for
8446 a flexible array member. */
50352c9c 8447 if (! field_size_tree)
3df18884 8448 field_size_tree = bitsize_zero_node;
50352c9c 8449
556273e0 8450 /* We cannot yet cope with fields whose positions are variable, so
a3f97cbb
JW
8451 for now, when we see such things, we simply return 0. Someday, we may
8452 be able to handle such cases, but it will be damn difficult. */
665f2503 8453 if (! host_integerp (bit_position (decl), 0))
a3f97cbb 8454 return 0;
14a774a9 8455
665f2503 8456 bitpos_int = int_bit_position (decl);
a3f97cbb 8457
3df18884 8458 /* If we don't know the size of the field, pretend it's a full word. */
665f2503
RK
8459 if (host_integerp (field_size_tree, 1))
8460 field_size_in_bits = tree_low_cst (field_size_tree, 1);
14a774a9
RK
8461 else
8462 field_size_in_bits = BITS_PER_WORD;
a3f97cbb
JW
8463
8464 type_size_in_bits = simple_type_size_in_bits (type);
a3f97cbb 8465 type_align_in_bits = simple_type_align_in_bits (type);
5f446d21 8466 decl_align_in_bits = simple_decl_align_in_bits (decl);
a3f97cbb 8467
2ad9852d
RK
8468 /* The GCC front-end doesn't make any attempt to keep track of the starting
8469 bit offset (relative to the start of the containing structure type) of the
8470 hypothetical "containing object" for a bit-field. Thus, when computing
8471 the byte offset value for the start of the "containing object" of a
8472 bit-field, we must deduce this information on our own. This can be rather
8473 tricky to do in some cases. For example, handling the following structure
8474 type definition when compiling for an i386/i486 target (which only aligns
8475 long long's to 32-bit boundaries) can be very tricky:
a3f97cbb
JW
8476
8477 struct S { int field1; long long field2:31; };
8478
2ad9852d
RK
8479 Fortunately, there is a simple rule-of-thumb which can be used in such
8480 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8481 structure shown above. It decides to do this based upon one simple rule
8482 for bit-field allocation. GCC allocates each "containing object" for each
8483 bit-field at the first (i.e. lowest addressed) legitimate alignment
8484 boundary (based upon the required minimum alignment for the declared type
8485 of the field) which it can possibly use, subject to the condition that
8486 there is still enough available space remaining in the containing object
8487 (when allocated at the selected point) to fully accommodate all of the
8488 bits of the bit-field itself.
8489
8490 This simple rule makes it obvious why GCC allocates 8 bytes for each
8491 object of the structure type shown above. When looking for a place to
8492 allocate the "containing object" for `field2', the compiler simply tries
8493 to allocate a 64-bit "containing object" at each successive 32-bit
8494 boundary (starting at zero) until it finds a place to allocate that 64-
8495 bit field such that at least 31 contiguous (and previously unallocated)
8496 bits remain within that selected 64 bit field. (As it turns out, for the
8497 example above, the compiler finds it is OK to allocate the "containing
8498 object" 64-bit field at bit-offset zero within the structure type.)
8499
8500 Here we attempt to work backwards from the limited set of facts we're
8501 given, and we try to deduce from those facts, where GCC must have believed
8502 that the containing object started (within the structure type). The value
8503 we deduce is then used (by the callers of this routine) to generate
8504 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8505 and, in the case of DW_AT_location, regular fields as well). */
a3f97cbb
JW
8506
8507 /* Figure out the bit-distance from the start of the structure to the
8508 "deepest" bit of the bit-field. */
8509 deepest_bitpos = bitpos_int + field_size_in_bits;
8510
8511 /* This is the tricky part. Use some fancy footwork to deduce where the
8512 lowest addressed bit of the containing object must be. */
5f446d21
DD
8513 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8514
8515 /* Round up to type_align by default. This works best for bitfields. */
8516 object_offset_in_bits += type_align_in_bits - 1;
8517 object_offset_in_bits /= type_align_in_bits;
8518 object_offset_in_bits *= type_align_in_bits;
a3f97cbb 8519
5f446d21
DD
8520 if (object_offset_in_bits > bitpos_int)
8521 {
8522 /* Sigh, the decl must be packed. */
8523 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8524
8525 /* Round up to decl_align instead. */
8526 object_offset_in_bits += decl_align_in_bits - 1;
8527 object_offset_in_bits /= decl_align_in_bits;
8528 object_offset_in_bits *= decl_align_in_bits;
8529 }
a3f97cbb 8530
2ad9852d 8531 return object_offset_in_bits / BITS_PER_UNIT;
a3f97cbb 8532}
a3f97cbb 8533\f
71dfc51f
RK
8534/* The following routines define various Dwarf attributes and any data
8535 associated with them. */
a3f97cbb 8536
ef76d03b 8537/* Add a location description attribute value to a DIE.
a3f97cbb 8538
ef76d03b 8539 This emits location attributes suitable for whole variables and
a3f97cbb
JW
8540 whole parameters. Note that the location attributes for struct fields are
8541 generated by the routine `data_member_location_attribute' below. */
71dfc51f 8542
a3f97cbb 8543static void
ef76d03b 8544add_AT_location_description (die, attr_kind, rtl)
a3f97cbb 8545 dw_die_ref die;
ef76d03b 8546 enum dwarf_attribute attr_kind;
b3694847 8547 rtx rtl;
a3f97cbb 8548{
e7af1d45 8549 dw_loc_descr_ref descr = loc_descriptor (rtl);
a3f97cbb 8550
e7af1d45
RK
8551 if (descr != 0)
8552 add_AT_loc (die, attr_kind, descr);
a3f97cbb
JW
8553}
8554
2ad9852d
RK
8555/* Attach the specialized form of location attribute used for data members of
8556 struct and union types. In the special case of a FIELD_DECL node which
8557 represents a bit-field, the "offset" part of this special location
8558 descriptor must indicate the distance in bytes from the lowest-addressed
8559 byte of the containing struct or union type to the lowest-addressed byte of
8560 the "containing object" for the bit-field. (See the `field_byte_offset'
8561 function above).
8562
8563 For any given bit-field, the "containing object" is a hypothetical object
8564 (of some integral or enum type) within which the given bit-field lives. The
8565 type of this hypothetical "containing object" is always the same as the
8566 declared type of the individual bit-field itself (for GCC anyway... the
8567 DWARF spec doesn't actually mandate this). Note that it is the size (in
8568 bytes) of the hypothetical "containing object" which will be given in the
8569 DW_AT_byte_size attribute for this bit-field. (See the
8570 `byte_size_attribute' function below.) It is also used when calculating the
8571 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8572 function below.) */
71dfc51f 8573
a3f97cbb
JW
8574static void
8575add_data_member_location_attribute (die, decl)
b3694847
SS
8576 dw_die_ref die;
8577 tree decl;
a3f97cbb 8578{
649ce3f2
JM
8579 long offset;
8580 dw_loc_descr_ref loc_descr = 0;
a3f97cbb 8581
61b32c02 8582 if (TREE_CODE (decl) == TREE_VEC)
649ce3f2
JM
8583 {
8584 /* We're working on the TAG_inheritance for a base class. */
1d3d6b1e 8585 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
649ce3f2
JM
8586 {
8587 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8588 aren't at a fixed offset from all (sub)objects of the same
8589 type. We need to extract the appropriate offset from our
8590 vtable. The following dwarf expression means
8591
8592 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8593
8594 This is specific to the V3 ABI, of course. */
8595
8596 dw_loc_descr_ref tmp;
2ad9852d 8597
649ce3f2
JM
8598 /* Make a copy of the object address. */
8599 tmp = new_loc_descr (DW_OP_dup, 0, 0);
8600 add_loc_descr (&loc_descr, tmp);
2ad9852d 8601
649ce3f2
JM
8602 /* Extract the vtable address. */
8603 tmp = new_loc_descr (DW_OP_deref, 0, 0);
8604 add_loc_descr (&loc_descr, tmp);
2ad9852d 8605
649ce3f2
JM
8606 /* Calculate the address of the offset. */
8607 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
8608 if (offset >= 0)
8609 abort ();
2ad9852d 8610
649ce3f2
JM
8611 tmp = int_loc_descriptor (-offset);
8612 add_loc_descr (&loc_descr, tmp);
8613 tmp = new_loc_descr (DW_OP_minus, 0, 0);
8614 add_loc_descr (&loc_descr, tmp);
2ad9852d 8615
649ce3f2
JM
8616 /* Extract the offset. */
8617 tmp = new_loc_descr (DW_OP_deref, 0, 0);
8618 add_loc_descr (&loc_descr, tmp);
2ad9852d 8619
649ce3f2
JM
8620 /* Add it to the object address. */
8621 tmp = new_loc_descr (DW_OP_plus, 0, 0);
8622 add_loc_descr (&loc_descr, tmp);
8623 }
8624 else
8625 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
8626 }
61b32c02
JM
8627 else
8628 offset = field_byte_offset (decl);
8629
649ce3f2
JM
8630 if (! loc_descr)
8631 {
8632 enum dwarf_location_atom op;
8633
2ad9852d
RK
8634 /* The DWARF2 standard says that we should assume that the structure
8635 address is already on the stack, so we can specify a structure field
8636 address by using DW_OP_plus_uconst. */
71dfc51f 8637
a3f97cbb 8638#ifdef MIPS_DEBUGGING_INFO
2ad9852d
RK
8639 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
8640 operator correctly. It works only if we leave the offset on the
8641 stack. */
649ce3f2 8642 op = DW_OP_constu;
a3f97cbb 8643#else
649ce3f2 8644 op = DW_OP_plus_uconst;
a3f97cbb 8645#endif
71dfc51f 8646
649ce3f2
JM
8647 loc_descr = new_loc_descr (op, offset, 0);
8648 }
2ad9852d 8649
a3f97cbb
JW
8650 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
8651}
8652
8653/* Attach an DW_AT_const_value attribute for a variable or a parameter which
8654 does not have a "location" either in memory or in a register. These
8655 things can arise in GNU C when a constant is passed as an actual parameter
8656 to an inlined function. They can also arise in C++ where declared
8657 constants do not necessarily get memory "homes". */
71dfc51f 8658
a3f97cbb
JW
8659static void
8660add_const_value_attribute (die, rtl)
b3694847
SS
8661 dw_die_ref die;
8662 rtx rtl;
a3f97cbb
JW
8663{
8664 switch (GET_CODE (rtl))
8665 {
8666 case CONST_INT:
2e4b9b8c
RH
8667 /* Note that a CONST_INT rtx could represent either an integer
8668 or a floating-point constant. A CONST_INT is used whenever
8669 the constant will fit into a single word. In all such
8670 cases, the original mode of the constant value is wiped
8671 out, and the CONST_INT rtx is assigned VOIDmode. */
8672 {
8673 HOST_WIDE_INT val = INTVAL (rtl);
c26fbbca 8674
2e4b9b8c 8675 /* ??? We really should be using HOST_WIDE_INT throughout. */
5929a2f0 8676 if (val < 0 && (long) val == val)
3d7a191f 8677 add_AT_int (die, DW_AT_const_value, (long) val);
5929a2f0
RH
8678 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
8679 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
94784fb9
RK
8680 else
8681 {
e7af1d45 8682#if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
94784fb9
RK
8683 add_AT_long_long (die, DW_AT_const_value,
8684 val >> HOST_BITS_PER_LONG, val);
e7af1d45 8685#else
94784fb9 8686 abort ();
e7af1d45 8687#endif
94784fb9 8688 }
2e4b9b8c 8689 }
a3f97cbb
JW
8690 break;
8691
8692 case CONST_DOUBLE:
8693 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8694 floating-point constant. A CONST_DOUBLE is used whenever the
8695 constant requires more than one word in order to be adequately
469ac993
JM
8696 represented. We output CONST_DOUBLEs as blocks. */
8697 {
b3694847 8698 enum machine_mode mode = GET_MODE (rtl);
469ac993
JM
8699
8700 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
8701 {
b3694847 8702 unsigned length = GET_MODE_SIZE (mode) / 4;
c26fbbca 8703 long *array = (long *) xmalloc (sizeof (long) * length);
71dfc51f 8704 REAL_VALUE_TYPE rv;
469ac993 8705
71dfc51f 8706 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
469ac993
JM
8707 switch (mode)
8708 {
8709 case SFmode:
71dfc51f 8710 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
469ac993
JM
8711 break;
8712
8713 case DFmode:
71dfc51f 8714 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
469ac993
JM
8715 break;
8716
8717 case XFmode:
8718 case TFmode:
71dfc51f 8719 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
469ac993
JM
8720 break;
8721
8722 default:
8723 abort ();
8724 }
8725
469ac993
JM
8726 add_AT_float (die, DW_AT_const_value, length, array);
8727 }
8728 else
2e4b9b8c
RH
8729 {
8730 /* ??? We really should be using HOST_WIDE_INT throughout. */
8731 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
8732 abort ();
2ad9852d 8733
2e4b9b8c
RH
8734 add_AT_long_long (die, DW_AT_const_value,
8735 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
8736 }
469ac993 8737 }
a3f97cbb
JW
8738 break;
8739
8740 case CONST_STRING:
8741 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
8742 break;
8743
8744 case SYMBOL_REF:
8745 case LABEL_REF:
8746 case CONST:
c470afad
RK
8747 add_AT_addr (die, DW_AT_const_value, rtl);
8748 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
a3f97cbb
JW
8749 break;
8750
8751 case PLUS:
8752 /* In cases where an inlined instance of an inline function is passed
8753 the address of an `auto' variable (which is local to the caller) we
8754 can get a situation where the DECL_RTL of the artificial local
8755 variable (for the inlining) which acts as a stand-in for the
8756 corresponding formal parameter (of the inline function) will look
8757 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
556273e0
KH
8758 exactly a compile-time constant expression, but it isn't the address
8759 of the (artificial) local variable either. Rather, it represents the
a3f97cbb 8760 *value* which the artificial local variable always has during its
556273e0 8761 lifetime. We currently have no way to represent such quasi-constant
6a7a9f01 8762 values in Dwarf, so for now we just punt and generate nothing. */
a3f97cbb
JW
8763 break;
8764
8765 default:
8766 /* No other kinds of rtx should be possible here. */
8767 abort ();
8768 }
8769
8770}
8771
d8041cc8
RH
8772static rtx
8773rtl_for_decl_location (decl)
8774 tree decl;
a3f97cbb 8775{
b3694847 8776 rtx rtl;
71dfc51f 8777
a3f97cbb
JW
8778 /* Here we have to decide where we are going to say the parameter "lives"
8779 (as far as the debugger is concerned). We only have a couple of
8780 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
71dfc51f 8781
556273e0 8782 DECL_RTL normally indicates where the parameter lives during most of the
71dfc51f 8783 activation of the function. If optimization is enabled however, this
556273e0 8784 could be either NULL or else a pseudo-reg. Both of those cases indicate
a3f97cbb
JW
8785 that the parameter doesn't really live anywhere (as far as the code
8786 generation parts of GCC are concerned) during most of the function's
8787 activation. That will happen (for example) if the parameter is never
71dfc51f
RK
8788 referenced within the function.
8789
8790 We could just generate a location descriptor here for all non-NULL
8791 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8792 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8793 where DECL_RTL is NULL or is a pseudo-reg.
8794
8795 Note however that we can only get away with using DECL_INCOMING_RTL as
8796 a backup substitute for DECL_RTL in certain limited cases. In cases
8797 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8798 we can be sure that the parameter was passed using the same type as it is
8799 declared to have within the function, and that its DECL_INCOMING_RTL
8800 points us to a place where a value of that type is passed.
8801
8802 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8803 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8804 because in these cases DECL_INCOMING_RTL points us to a value of some
8805 type which is *different* from the type of the parameter itself. Thus,
8806 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8807 such cases, the debugger would end up (for example) trying to fetch a
8808 `float' from a place which actually contains the first part of a
8809 `double'. That would lead to really incorrect and confusing
8810 output at debug-time.
8811
8812 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8813 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8814 are a couple of exceptions however. On little-endian machines we can
8815 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8816 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8817 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8818 when (on a little-endian machine) a non-prototyped function has a
8819 parameter declared to be of type `short' or `char'. In such cases,
8820 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8821 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8822 passed `int' value. If the debugger then uses that address to fetch
8823 a `short' or a `char' (on a little-endian machine) the result will be
8824 the correct data, so we allow for such exceptional cases below.
8825
8826 Note that our goal here is to describe the place where the given formal
2ad9852d
RK
8827 parameter lives during most of the function's activation (i.e. between the
8828 end of the prologue and the start of the epilogue). We'll do that as best
8829 as we can. Note however that if the given formal parameter is modified
8830 sometime during the execution of the function, then a stack backtrace (at
8831 debug-time) will show the function as having been called with the *new*
8832 value rather than the value which was originally passed in. This happens
8833 rarely enough that it is not a major problem, but it *is* a problem, and
8834 I'd like to fix it.
8835
8836 A future version of dwarf2out.c may generate two additional attributes for
8837 any given DW_TAG_formal_parameter DIE which will describe the "passed
8838 type" and the "passed location" for the given formal parameter in addition
8839 to the attributes we now generate to indicate the "declared type" and the
8840 "active location" for each parameter. This additional set of attributes
8841 could be used by debuggers for stack backtraces. Separately, note that
8842 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
8843 This happens (for example) for inlined-instances of inline function formal
8844 parameters which are never referenced. This really shouldn't be
8845 happening. All PARM_DECL nodes should get valid non-NULL
8846 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
8847 values for inlined instances of inline function parameters, so when we see
8848 such cases, we are just out-of-luck for the time being (until integrate.c
a3f97cbb
JW
8849 gets fixed). */
8850
8851 /* Use DECL_RTL as the "location" unless we find something better. */
110c3568 8852 rtl = DECL_RTL_IF_SET (decl);
a3f97cbb 8853
c28abdf0
RH
8854 /* When generating abstract instances, ignore everything except
8855 constants and symbols living in memory. */
8856 if (! reload_completed)
8857 {
8858 if (rtl
8859 && (CONSTANT_P (rtl)
8860 || (GET_CODE (rtl) == MEM
8861 && CONSTANT_P (XEXP (rtl, 0)))))
4c8c0dec
JJ
8862 {
8863#ifdef ASM_SIMPLIFY_DWARF_ADDR
8864 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
8865#endif
8866 return rtl;
8867 }
c28abdf0
RH
8868 rtl = NULL_RTX;
8869 }
8870 else if (TREE_CODE (decl) == PARM_DECL)
a3f97cbb
JW
8871 {
8872 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
8873 {
d8041cc8
RH
8874 tree declared_type = type_main_variant (TREE_TYPE (decl));
8875 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
a3f97cbb 8876
71dfc51f 8877 /* This decl represents a formal parameter which was optimized out.
a3f97cbb 8878 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2ad9852d 8879 all cases where (rtl == NULL_RTX) just below. */
a3f97cbb 8880 if (declared_type == passed_type)
71dfc51f
RK
8881 rtl = DECL_INCOMING_RTL (decl);
8882 else if (! BYTES_BIG_ENDIAN
8883 && TREE_CODE (declared_type) == INTEGER_TYPE
555b6442
HPN
8884 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
8885 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
556273e0 8886 rtl = DECL_INCOMING_RTL (decl);
a3f97cbb 8887 }
5a904a61
JW
8888
8889 /* If the parm was passed in registers, but lives on the stack, then
8890 make a big endian correction if the mode of the type of the
8891 parameter is not the same as the mode of the rtl. */
8892 /* ??? This is the same series of checks that are made in dbxout.c before
8893 we reach the big endian correction code there. It isn't clear if all
8894 of these checks are necessary here, but keeping them all is the safe
8895 thing to do. */
8896 else if (GET_CODE (rtl) == MEM
8897 && XEXP (rtl, 0) != const0_rtx
8898 && ! CONSTANT_P (XEXP (rtl, 0))
8899 /* Not passed in memory. */
8900 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
8901 /* Not passed by invisible reference. */
8902 && (GET_CODE (XEXP (rtl, 0)) != REG
8903 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
8904 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
8905#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8906 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
8907#endif
8908 )
8909 /* Big endian correction check. */
8910 && BYTES_BIG_ENDIAN
8911 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
8912 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
8913 < UNITS_PER_WORD))
8914 {
8915 int offset = (UNITS_PER_WORD
8916 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
2ad9852d 8917
5a904a61
JW
8918 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
8919 plus_constant (XEXP (rtl, 0), offset));
8920 }
a3f97cbb 8921 }
71dfc51f 8922
d8041cc8
RH
8923 if (rtl != NULL_RTX)
8924 {
8925 rtl = eliminate_regs (rtl, 0, NULL_RTX);
6a7a9f01 8926#ifdef LEAF_REG_REMAP
d8041cc8
RH
8927 if (current_function_uses_only_leaf_regs)
8928 leaf_renumber_regs_insn (rtl);
6a7a9f01 8929#endif
d8041cc8
RH
8930 }
8931
2ad9852d
RK
8932 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
8933 and will have been substituted directly into all expressions that use it.
8934 C does not have such a concept, but C++ and other languages do. */
c28abdf0 8935 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
6d73371a
JJ
8936 {
8937 /* If a variable is initialized with a string constant without embedded
8938 zeros, build CONST_STRING. */
8939 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
8940 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
8941 {
8942 tree arrtype = TREE_TYPE (decl);
8943 tree enttype = TREE_TYPE (arrtype);
8944 tree domain = TYPE_DOMAIN (arrtype);
8945 tree init = DECL_INITIAL (decl);
8946 enum machine_mode mode = TYPE_MODE (enttype);
8947
8948 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
8949 && domain
8950 && integer_zerop (TYPE_MIN_VALUE (domain))
8951 && compare_tree_int (TYPE_MAX_VALUE (domain),
8952 TREE_STRING_LENGTH (init) - 1) == 0
8953 && ((size_t) TREE_STRING_LENGTH (init)
8954 == strlen (TREE_STRING_POINTER (init)) + 1))
8955 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
8956 }
29b91443
JM
8957 /* If the initializer is something that we know will expand into an
8958 immediate RTL constant, expand it now. Expanding anything else
8959 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
8960 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
8961 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
6d73371a
JJ
8962 {
8963 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
8964 EXPAND_INITIALIZER);
29b91443 8965 /* If expand_expr returns a MEM, it wasn't immediate. */
6d73371a 8966 if (rtl && GET_CODE (rtl) == MEM)
29b91443 8967 abort ();
6d73371a
JJ
8968 }
8969 }
8063ddcf 8970
4c8c0dec
JJ
8971#ifdef ASM_SIMPLIFY_DWARF_ADDR
8972 if (rtl)
8973 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
8974#endif
d8041cc8
RH
8975 return rtl;
8976}
8977
8978/* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8979 data attribute for a variable or a parameter. We generate the
8980 DW_AT_const_value attribute only in those cases where the given variable
8981 or parameter does not have a true "location" either in memory or in a
8982 register. This can happen (for example) when a constant is passed as an
8983 actual argument in a call to an inline function. (It's possible that
8984 these things can crop up in other ways also.) Note that one type of
8985 constant value which can be passed into an inlined function is a constant
8986 pointer. This can happen for example if an actual argument in an inlined
8987 function call evaluates to a compile-time constant address. */
8988
8989static void
8990add_location_or_const_value_attribute (die, decl)
b3694847
SS
8991 dw_die_ref die;
8992 tree decl;
d8041cc8 8993{
b3694847 8994 rtx rtl;
d8041cc8
RH
8995
8996 if (TREE_CODE (decl) == ERROR_MARK)
8997 return;
2ad9852d 8998 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
d8041cc8
RH
8999 abort ();
9000
9001 rtl = rtl_for_decl_location (decl);
a97c9600
RH
9002 if (rtl == NULL_RTX)
9003 return;
6a7a9f01 9004
732910b9
RH
9005 /* If we don't look past the constant pool, we risk emitting a
9006 reference to a constant pool entry that isn't referenced from
9007 code, and thus is not emitted. */
9008 rtl = avoid_constant_pool_reference (rtl);
9009
a3f97cbb
JW
9010 switch (GET_CODE (rtl))
9011 {
e9a25f70
JL
9012 case ADDRESSOF:
9013 /* The address of a variable that was optimized away; don't emit
9014 anything. */
9015 break;
9016
a3f97cbb
JW
9017 case CONST_INT:
9018 case CONST_DOUBLE:
9019 case CONST_STRING:
9020 case SYMBOL_REF:
9021 case LABEL_REF:
9022 case CONST:
9023 case PLUS:
9024 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9025 add_const_value_attribute (die, rtl);
9026 break;
9027
9028 case MEM:
9029 case REG:
9030 case SUBREG:
4401bf24 9031 case CONCAT:
ef76d03b 9032 add_AT_location_description (die, DW_AT_location, rtl);
a3f97cbb
JW
9033 break;
9034
9035 default:
71dfc51f 9036 abort ();
a3f97cbb
JW
9037 }
9038}
9039
1bfb5f8f
JM
9040/* If we don't have a copy of this variable in memory for some reason (such
9041 as a C++ member constant that doesn't have an out-of-line definition),
9042 we should tell the debugger about the constant value. */
9043
9044static void
9045tree_add_const_value_attribute (var_die, decl)
9046 dw_die_ref var_die;
9047 tree decl;
9048{
9049 tree init = DECL_INITIAL (decl);
9050 tree type = TREE_TYPE (decl);
9051
9052 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9053 && initializer_constant_valid_p (init, type) == null_pointer_node)
9054 /* OK */;
9055 else
9056 return;
9057
9058 switch (TREE_CODE (type))
9059 {
9060 case INTEGER_TYPE:
9061 if (host_integerp (init, 0))
9062 add_AT_unsigned (var_die, DW_AT_const_value,
2ad9852d 9063 tree_low_cst (init, 0));
1bfb5f8f
JM
9064 else
9065 add_AT_long_long (var_die, DW_AT_const_value,
9066 TREE_INT_CST_HIGH (init),
9067 TREE_INT_CST_LOW (init));
9068 break;
9069
9070 default:;
9071 }
9072}
0b34cf1e 9073
a3f97cbb
JW
9074/* Generate an DW_AT_name attribute given some string value to be included as
9075 the value of the attribute. */
71dfc51f
RK
9076
9077static inline void
a3f97cbb 9078add_name_attribute (die, name_string)
b3694847
SS
9079 dw_die_ref die;
9080 const char *name_string;
a3f97cbb 9081{
71dfc51f 9082 if (name_string != NULL && *name_string != 0)
14a774a9
RK
9083 {
9084 if (demangle_name_func)
9085 name_string = (*demangle_name_func) (name_string);
9086
9087 add_AT_string (die, DW_AT_name, name_string);
9088 }
a3f97cbb
JW
9089}
9090
9091/* Given a tree node describing an array bound (either lower or upper) output
466446b0 9092 a representation for that bound. */
71dfc51f 9093
a3f97cbb
JW
9094static void
9095add_bound_info (subrange_die, bound_attr, bound)
b3694847
SS
9096 dw_die_ref subrange_die;
9097 enum dwarf_attribute bound_attr;
9098 tree bound;
a3f97cbb 9099{
a3f97cbb
JW
9100 switch (TREE_CODE (bound))
9101 {
9102 case ERROR_MARK:
9103 return;
9104
3ef42a0c 9105 /* All fixed-bounds are represented by INTEGER_CST nodes. */
a3f97cbb 9106 case INTEGER_CST:
665f2503
RK
9107 if (! host_integerp (bound, 0)
9108 || (bound_attr == DW_AT_lower_bound
28985b81 9109 && (((is_c_family () || is_java ()) && integer_zerop (bound))
665f2503
RK
9110 || (is_fortran () && integer_onep (bound)))))
9111 /* use the default */
9112 ;
141719a8 9113 else
665f2503 9114 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
a3f97cbb
JW
9115 break;
9116
b1ccbc24 9117 case CONVERT_EXPR:
a3f97cbb 9118 case NOP_EXPR:
b1ccbc24 9119 case NON_LVALUE_EXPR:
ed239f5a 9120 case VIEW_CONVERT_EXPR:
b1ccbc24
RK
9121 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9122 break;
556273e0 9123
a3f97cbb
JW
9124 case SAVE_EXPR:
9125 /* If optimization is turned on, the SAVE_EXPRs that describe how to
466446b0
JM
9126 access the upper bound values may be bogus. If they refer to a
9127 register, they may only describe how to get at these values at the
9128 points in the generated code right after they have just been
9129 computed. Worse yet, in the typical case, the upper bound values
9130 will not even *be* computed in the optimized code (though the
9131 number of elements will), so these SAVE_EXPRs are entirely
9132 bogus. In order to compensate for this fact, we check here to see
9133 if optimization is enabled, and if so, we don't add an attribute
9134 for the (unknown and unknowable) upper bound. This should not
9135 cause too much trouble for existing (stupid?) debuggers because
9136 they have to deal with empty upper bounds location descriptions
9137 anyway in order to be able to deal with incomplete array types.
9138 Of course an intelligent debugger (GDB?) should be able to
4fe9b91c 9139 comprehend that a missing upper bound specification in an array
466446b0
JM
9140 type used for a storage class `auto' local array variable
9141 indicates that the upper bound is both unknown (at compile- time)
9142 and unknowable (at run-time) due to optimization.
9143
9144 We assume that a MEM rtx is safe because gcc wouldn't put the
9145 value there unless it was going to be used repeatedly in the
9146 function, i.e. for cleanups. */
1edf43d6
JM
9147 if (SAVE_EXPR_RTL (bound)
9148 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
a3f97cbb 9149 {
b3694847 9150 dw_die_ref ctx = lookup_decl_die (current_function_decl);
54ba1f0d 9151 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
b3694847 9152 rtx loc = SAVE_EXPR_RTL (bound);
f5963e61
JL
9153
9154 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9155 it references an outer function's frame. */
f5963e61
JL
9156 if (GET_CODE (loc) == MEM)
9157 {
9158 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9159
9160 if (XEXP (loc, 0) != new_addr)
c5c76735 9161 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
f5963e61
JL
9162 }
9163
466446b0
JM
9164 add_AT_flag (decl_die, DW_AT_artificial, 1);
9165 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
f5963e61 9166 add_AT_location_description (decl_die, DW_AT_location, loc);
466446b0 9167 add_AT_die_ref (subrange_die, bound_attr, decl_die);
a3f97cbb 9168 }
71dfc51f
RK
9169
9170 /* Else leave out the attribute. */
a3f97cbb 9171 break;
3f76745e 9172
ef76d03b 9173 case VAR_DECL:
d8041cc8
RH
9174 case PARM_DECL:
9175 {
9176 dw_die_ref decl_die = lookup_decl_die (bound);
9177
9178 /* ??? Can this happen, or should the variable have been bound
9179 first? Probably it can, since I imagine that we try to create
9180 the types of parameters in the order in which they exist in
0b34cf1e 9181 the list, and won't have created a forward reference to a
d8041cc8
RH
9182 later parameter. */
9183 if (decl_die != NULL)
9184 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9185 break;
9186 }
ef76d03b 9187
3f76745e 9188 default:
d8041cc8
RH
9189 {
9190 /* Otherwise try to create a stack operation procedure to
9191 evaluate the value of the array bound. */
9192
9193 dw_die_ref ctx, decl_die;
9194 dw_loc_descr_ref loc;
9195
9196 loc = loc_descriptor_from_tree (bound, 0);
9197 if (loc == NULL)
9198 break;
9199
e7af1d45
RK
9200 if (current_function_decl == 0)
9201 ctx = comp_unit_die;
9202 else
9203 ctx = lookup_decl_die (current_function_decl);
d8041cc8 9204
aea9695c
RK
9205 /* If we weren't able to find a context, it's most likely the case
9206 that we are processing the return type of the function. So
9207 make a SAVE_EXPR to point to it and have the limbo DIE code
9208 find the proper die. The save_expr function doesn't always
9209 make a SAVE_EXPR, so do it ourselves. */
9210 if (ctx == 0)
9211 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9212 current_function_decl, NULL_TREE);
9213
54ba1f0d 9214 decl_die = new_die (DW_TAG_variable, ctx, bound);
d8041cc8
RH
9215 add_AT_flag (decl_die, DW_AT_artificial, 1);
9216 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9217 add_AT_loc (decl_die, DW_AT_location, loc);
9218
9219 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9220 break;
9221 }
a3f97cbb
JW
9222 }
9223}
9224
9225/* Note that the block of subscript information for an array type also
9226 includes information about the element type of type given array type. */
71dfc51f 9227
a3f97cbb
JW
9228static void
9229add_subscript_info (type_die, type)
b3694847
SS
9230 dw_die_ref type_die;
9231 tree type;
a3f97cbb 9232{
081f5e7e 9233#ifndef MIPS_DEBUGGING_INFO
b3694847 9234 unsigned dimension_number;
081f5e7e 9235#endif
b3694847
SS
9236 tree lower, upper;
9237 dw_die_ref subrange_die;
a3f97cbb 9238
556273e0 9239 /* The GNU compilers represent multidimensional array types as sequences of
a3f97cbb
JW
9240 one dimensional array types whose element types are themselves array
9241 types. Here we squish that down, so that each multidimensional array
556273e0 9242 type gets only one array_type DIE in the Dwarf debugging info. The draft
a3f97cbb
JW
9243 Dwarf specification say that we are allowed to do this kind of
9244 compression in C (because there is no difference between an array or
556273e0 9245 arrays and a multidimensional array in C) but for other source languages
a3f97cbb 9246 (e.g. Ada) we probably shouldn't do this. */
71dfc51f 9247
a3f97cbb
JW
9248 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9249 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9250 We work around this by disabling this feature. See also
9251 gen_array_type_die. */
9252#ifndef MIPS_DEBUGGING_INFO
9253 for (dimension_number = 0;
9254 TREE_CODE (type) == ARRAY_TYPE;
9255 type = TREE_TYPE (type), dimension_number++)
a3f97cbb 9256#endif
2ad9852d 9257 {
b3694847 9258 tree domain = TYPE_DOMAIN (type);
a3f97cbb
JW
9259
9260 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
556273e0 9261 and (in GNU C only) variable bounds. Handle all three forms
a3f97cbb 9262 here. */
54ba1f0d 9263 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
a3f97cbb
JW
9264 if (domain)
9265 {
9266 /* We have an array type with specified bounds. */
9267 lower = TYPE_MIN_VALUE (domain);
9268 upper = TYPE_MAX_VALUE (domain);
9269
a9d38797
JM
9270 /* define the index type. */
9271 if (TREE_TYPE (domain))
ef76d03b
JW
9272 {
9273 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9274 TREE_TYPE field. We can't emit debug info for this
9275 because it is an unnamed integral type. */
9276 if (TREE_CODE (domain) == INTEGER_TYPE
9277 && TYPE_NAME (domain) == NULL_TREE
9278 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9279 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
556273e0 9280 ;
ef76d03b
JW
9281 else
9282 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9283 type_die);
9284 }
a9d38797 9285
e1ee5cdc
RH
9286 /* ??? If upper is NULL, the array has unspecified length,
9287 but it does have a lower bound. This happens with Fortran
9288 dimension arr(N:*)
9289 Since the debugger is definitely going to need to know N
9290 to produce useful results, go ahead and output the lower
9291 bound solo, and hope the debugger can cope. */
9292
141719a8 9293 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
e1ee5cdc
RH
9294 if (upper)
9295 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
a3f97cbb 9296 }
71dfc51f 9297
2ad9852d
RK
9298 /* Otherwise we have an array type with an unspecified length. The
9299 DWARF-2 spec does not say how to handle this; let's just leave out the
9300 bounds. */
a3f97cbb 9301 }
a3f97cbb
JW
9302}
9303
9304static void
9305add_byte_size_attribute (die, tree_node)
9306 dw_die_ref die;
b3694847 9307 tree tree_node;
a3f97cbb 9308{
b3694847 9309 unsigned size;
a3f97cbb
JW
9310
9311 switch (TREE_CODE (tree_node))
9312 {
9313 case ERROR_MARK:
9314 size = 0;
9315 break;
9316 case ENUMERAL_TYPE:
9317 case RECORD_TYPE:
9318 case UNION_TYPE:
9319 case QUAL_UNION_TYPE:
9320 size = int_size_in_bytes (tree_node);
9321 break;
9322 case FIELD_DECL:
9323 /* For a data member of a struct or union, the DW_AT_byte_size is
9324 generally given as the number of bytes normally allocated for an
9325 object of the *declared* type of the member itself. This is true
9326 even for bit-fields. */
9327 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9328 break;
9329 default:
9330 abort ();
9331 }
9332
9333 /* Note that `size' might be -1 when we get to this point. If it is, that
9334 indicates that the byte size of the entity in question is variable. We
9335 have no good way of expressing this fact in Dwarf at the present time,
9336 so just let the -1 pass on through. */
a3f97cbb
JW
9337 add_AT_unsigned (die, DW_AT_byte_size, size);
9338}
9339
9340/* For a FIELD_DECL node which represents a bit-field, output an attribute
9341 which specifies the distance in bits from the highest order bit of the
9342 "containing object" for the bit-field to the highest order bit of the
9343 bit-field itself.
9344
2ad9852d
RK
9345 For any given bit-field, the "containing object" is a hypothetical object
9346 (of some integral or enum type) within which the given bit-field lives. The
9347 type of this hypothetical "containing object" is always the same as the
9348 declared type of the individual bit-field itself. The determination of the
9349 exact location of the "containing object" for a bit-field is rather
9350 complicated. It's handled by the `field_byte_offset' function (above).
a3f97cbb
JW
9351
9352 Note that it is the size (in bytes) of the hypothetical "containing object"
9353 which will be given in the DW_AT_byte_size attribute for this bit-field.
9354 (See `byte_size_attribute' above). */
71dfc51f
RK
9355
9356static inline void
a3f97cbb 9357add_bit_offset_attribute (die, decl)
b3694847
SS
9358 dw_die_ref die;
9359 tree decl;
a3f97cbb 9360{
665f2503
RK
9361 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9362 tree type = DECL_BIT_FIELD_TYPE (decl);
9363 HOST_WIDE_INT bitpos_int;
9364 HOST_WIDE_INT highest_order_object_bit_offset;
9365 HOST_WIDE_INT highest_order_field_bit_offset;
9366 HOST_WIDE_INT unsigned bit_offset;
a3f97cbb 9367
3a88cbd1
JL
9368 /* Must be a field and a bit field. */
9369 if (!type
9370 || TREE_CODE (decl) != FIELD_DECL)
9371 abort ();
a3f97cbb
JW
9372
9373 /* We can't yet handle bit-fields whose offsets are variable, so if we
9374 encounter such things, just return without generating any attribute
665f2503
RK
9375 whatsoever. Likewise for variable or too large size. */
9376 if (! host_integerp (bit_position (decl), 0)
9377 || ! host_integerp (DECL_SIZE (decl), 1))
71dfc51f
RK
9378 return;
9379
665f2503 9380 bitpos_int = int_bit_position (decl);
a3f97cbb
JW
9381
9382 /* Note that the bit offset is always the distance (in bits) from the
556273e0
KH
9383 highest-order bit of the "containing object" to the highest-order bit of
9384 the bit-field itself. Since the "high-order end" of any object or field
a3f97cbb
JW
9385 is different on big-endian and little-endian machines, the computation
9386 below must take account of these differences. */
9387 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9388 highest_order_field_bit_offset = bitpos_int;
9389
71dfc51f 9390 if (! BYTES_BIG_ENDIAN)
a3f97cbb 9391 {
665f2503 9392 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
a3f97cbb
JW
9393 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9394 }
71dfc51f
RK
9395
9396 bit_offset
9397 = (! BYTES_BIG_ENDIAN
9398 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9399 : highest_order_field_bit_offset - highest_order_object_bit_offset);
a3f97cbb
JW
9400
9401 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9402}
9403
9404/* For a FIELD_DECL node which represents a bit field, output an attribute
9405 which specifies the length in bits of the given field. */
71dfc51f
RK
9406
9407static inline void
a3f97cbb 9408add_bit_size_attribute (die, decl)
b3694847
SS
9409 dw_die_ref die;
9410 tree decl;
a3f97cbb 9411{
3a88cbd1
JL
9412 /* Must be a field and a bit field. */
9413 if (TREE_CODE (decl) != FIELD_DECL
9414 || ! DECL_BIT_FIELD_TYPE (decl))
9415 abort ();
665f2503
RK
9416
9417 if (host_integerp (DECL_SIZE (decl), 1))
9418 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
a3f97cbb
JW
9419}
9420
88dad228 9421/* If the compiled language is ANSI C, then add a 'prototyped'
a3f97cbb 9422 attribute, if arg types are given for the parameters of a function. */
71dfc51f
RK
9423
9424static inline void
a3f97cbb 9425add_prototyped_attribute (die, func_type)
b3694847
SS
9426 dw_die_ref die;
9427 tree func_type;
a3f97cbb 9428{
88dad228
JM
9429 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9430 && TYPE_ARG_TYPES (func_type) != NULL)
9431 add_AT_flag (die, DW_AT_prototyped, 1);
a3f97cbb
JW
9432}
9433
a3f97cbb
JW
9434/* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9435 by looking in either the type declaration or object declaration
9436 equate table. */
71dfc51f
RK
9437
9438static inline void
a3f97cbb 9439add_abstract_origin_attribute (die, origin)
b3694847
SS
9440 dw_die_ref die;
9441 tree origin;
a3f97cbb
JW
9442{
9443 dw_die_ref origin_die = NULL;
bbc6ae08 9444
d10b8e05 9445 if (TREE_CODE (origin) != FUNCTION_DECL)
e40a1c67
JM
9446 {
9447 /* We may have gotten separated from the block for the inlined
9448 function, if we're in an exception handler or some such; make
9449 sure that the abstract function has been written out.
9450
9451 Doing this for nested functions is wrong, however; functions are
9452 distinct units, and our context might not even be inline. */
fb13d4d0 9453 tree fn = origin;
2ad9852d 9454
fb13d4d0
JM
9455 if (TYPE_P (fn))
9456 fn = TYPE_STUB_DECL (fn);
2ad9852d 9457
fb13d4d0 9458 fn = decl_function_context (fn);
e40a1c67 9459 if (fn)
1edf43d6 9460 dwarf2out_abstract_function (fn);
e40a1c67 9461 }
44db1d9c 9462
2f939d94 9463 if (DECL_P (origin))
71dfc51f 9464 origin_die = lookup_decl_die (origin);
2f939d94 9465 else if (TYPE_P (origin))
71dfc51f
RK
9466 origin_die = lookup_type_die (origin);
9467
bbc6ae08 9468 if (origin_die == NULL)
1ae8994f 9469 abort ();
556273e0 9470
a3f97cbb
JW
9471 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9472}
9473
bdb669cb
JM
9474/* We do not currently support the pure_virtual attribute. */
9475
71dfc51f 9476static inline void
a3f97cbb 9477add_pure_or_virtual_attribute (die, func_decl)
b3694847
SS
9478 dw_die_ref die;
9479 tree func_decl;
a3f97cbb 9480{
a94dbf2c 9481 if (DECL_VINDEX (func_decl))
a3f97cbb 9482 {
bdb669cb 9483 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
665f2503
RK
9484
9485 if (host_integerp (DECL_VINDEX (func_decl), 0))
9486 add_AT_loc (die, DW_AT_vtable_elem_location,
9487 new_loc_descr (DW_OP_constu,
9488 tree_low_cst (DECL_VINDEX (func_decl), 0),
9489 0));
71dfc51f 9490
a94dbf2c
JM
9491 /* GNU extension: Record what type this method came from originally. */
9492 if (debug_info_level > DINFO_LEVEL_TERSE)
9493 add_AT_die_ref (die, DW_AT_containing_type,
9494 lookup_type_die (DECL_CONTEXT (func_decl)));
a3f97cbb
JW
9495 }
9496}
9497\f
b2932ae5 9498/* Add source coordinate attributes for the given decl. */
71dfc51f 9499
b2932ae5
JM
9500static void
9501add_src_coords_attributes (die, decl)
b3694847
SS
9502 dw_die_ref die;
9503 tree decl;
b2932ae5 9504{
b3694847 9505 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
71dfc51f 9506
b2932ae5
JM
9507 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9508 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9509}
9510
a3f97cbb
JW
9511/* Add an DW_AT_name attribute and source coordinate attribute for the
9512 given decl, but only if it actually has a name. */
71dfc51f 9513
a3f97cbb
JW
9514static void
9515add_name_and_src_coords_attributes (die, decl)
b3694847
SS
9516 dw_die_ref die;
9517 tree decl;
a3f97cbb 9518{
b3694847 9519 tree decl_name;
71dfc51f 9520
556273e0 9521 decl_name = DECL_NAME (decl);
71dfc51f 9522 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
a3f97cbb 9523 {
a1d7ffe3 9524 add_name_attribute (die, dwarf2_name (decl, 0));
a96c67ec
JM
9525 if (! DECL_ARTIFICIAL (decl))
9526 add_src_coords_attributes (die, decl);
e689ae67 9527
a1d7ffe3 9528 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
bc808e0b 9529 && TREE_PUBLIC (decl)
5daf7c0a
JM
9530 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9531 && !DECL_ABSTRACT (decl))
a1d7ffe3
JM
9532 add_AT_string (die, DW_AT_MIPS_linkage_name,
9533 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
a3f97cbb 9534 }
7a0c8d71
DR
9535
9536#ifdef VMS_DEBUGGING_INFO
7a0c8d71
DR
9537 /* Get the function's name, as described by its RTL. This may be different
9538 from the DECL_NAME name used in the source file. */
9539 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
c470afad
RK
9540 {
9541 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9542 XEXP (DECL_RTL (decl), 0));
9543 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9544 }
7a0c8d71 9545#endif
a3f97cbb
JW
9546}
9547
556273e0 9548/* Push a new declaration scope. */
71dfc51f 9549
a3f97cbb
JW
9550static void
9551push_decl_scope (scope)
9552 tree scope;
9553{
244a4af0 9554 VARRAY_PUSH_TREE (decl_scope_table, scope);
a3f97cbb
JW
9555}
9556
777ad4c2 9557/* Pop a declaration scope. */
2ad9852d 9558
777ad4c2
JM
9559static inline void
9560pop_decl_scope ()
9561{
244a4af0 9562 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
777ad4c2 9563 abort ();
2ad9852d 9564
244a4af0 9565 VARRAY_POP (decl_scope_table);
777ad4c2
JM
9566}
9567
9568/* Return the DIE for the scope that immediately contains this type.
9569 Non-named types get global scope. Named types nested in other
9570 types get their containing scope if it's open, or global scope
9571 otherwise. All other types (i.e. function-local named types) get
9572 the current active scope. */
71dfc51f 9573
a3f97cbb 9574static dw_die_ref
ab72d377 9575scope_die_for (t, context_die)
b3694847
SS
9576 tree t;
9577 dw_die_ref context_die;
a3f97cbb 9578{
b3694847
SS
9579 dw_die_ref scope_die = NULL;
9580 tree containing_scope;
9581 int i;
a3f97cbb 9582
777ad4c2
JM
9583 /* Non-types always go in the current scope. */
9584 if (! TYPE_P (t))
9585 abort ();
9586
9587 containing_scope = TYPE_CONTEXT (t);
ab72d377 9588
2addbe1d
JM
9589 /* Ignore namespaces for the moment. */
9590 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9591 containing_scope = NULL_TREE;
9592
5f2f160c
JM
9593 /* Ignore function type "scopes" from the C frontend. They mean that
9594 a tagged type is local to a parmlist of a function declarator, but
9595 that isn't useful to DWARF. */
9596 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9597 containing_scope = NULL_TREE;
9598
71dfc51f
RK
9599 if (containing_scope == NULL_TREE)
9600 scope_die = comp_unit_die;
777ad4c2 9601 else if (TYPE_P (containing_scope))
348bb3c7 9602 {
777ad4c2
JM
9603 /* For types, we can just look up the appropriate DIE. But
9604 first we check to see if we're in the middle of emitting it
9605 so we know where the new DIE should go. */
244a4af0
TF
9606 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
9607 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
348bb3c7
JM
9608 break;
9609
9610 if (i < 0)
9611 {
348bb3c7
JM
9612 if (debug_info_level > DINFO_LEVEL_TERSE
9613 && !TREE_ASM_WRITTEN (containing_scope))
9614 abort ();
9615
9616 /* If none of the current dies are suitable, we get file scope. */
9617 scope_die = comp_unit_die;
9618 }
9619 else
777ad4c2 9620 scope_die = lookup_type_die (containing_scope);
348bb3c7 9621 }
a3f97cbb 9622 else
777ad4c2 9623 scope_die = context_die;
71dfc51f 9624
a3f97cbb
JW
9625 return scope_die;
9626}
9627
2ad9852d 9628/* Returns nonzero if CONTEXT_DIE is internal to a function. */
777ad4c2
JM
9629
9630static inline int
9631local_scope_p (context_die)
9632 dw_die_ref context_die;
a3f97cbb 9633{
777ad4c2
JM
9634 for (; context_die; context_die = context_die->die_parent)
9635 if (context_die->die_tag == DW_TAG_inlined_subroutine
9636 || context_die->die_tag == DW_TAG_subprogram)
9637 return 1;
2ad9852d 9638
777ad4c2 9639 return 0;
a3f97cbb
JW
9640}
9641
2ad9852d 9642/* Returns nonzero if CONTEXT_DIE is a class. */
9765e357
JM
9643
9644static inline int
9645class_scope_p (context_die)
9646 dw_die_ref context_die;
9647{
9648 return (context_die
9649 && (context_die->die_tag == DW_TAG_structure_type
9650 || context_die->die_tag == DW_TAG_union_type));
9651}
9652
a3f97cbb
JW
9653/* Many forms of DIEs require a "type description" attribute. This
9654 routine locates the proper "type descriptor" die for the type given
9655 by 'type', and adds an DW_AT_type attribute below the given die. */
71dfc51f 9656
a3f97cbb
JW
9657static void
9658add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
b3694847
SS
9659 dw_die_ref object_die;
9660 tree type;
9661 int decl_const;
9662 int decl_volatile;
9663 dw_die_ref context_die;
a3f97cbb 9664{
b3694847
SS
9665 enum tree_code code = TREE_CODE (type);
9666 dw_die_ref type_die = NULL;
a3f97cbb 9667
ef76d03b
JW
9668 /* ??? If this type is an unnamed subrange type of an integral or
9669 floating-point type, use the inner type. This is because we have no
9670 support for unnamed types in base_type_die. This can happen if this is
9671 an Ada subrange type. Correct solution is emit a subrange type die. */
b1ccbc24
RK
9672 if ((code == INTEGER_TYPE || code == REAL_TYPE)
9673 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
9674 type = TREE_TYPE (type), code = TREE_CODE (type);
9675
2ad9852d
RK
9676 if (code == ERROR_MARK
9677 /* Handle a special case. For functions whose return type is void, we
9678 generate *no* type attribute. (Note that no object may have type
9679 `void', so this only applies to function return types). */
9680 || code == VOID_TYPE)
b1ccbc24 9681 return;
a3f97cbb 9682
a3f97cbb
JW
9683 type_die = modified_type_die (type,
9684 decl_const || TYPE_READONLY (type),
9685 decl_volatile || TYPE_VOLATILE (type),
ab72d377 9686 context_die);
2ad9852d 9687
a3f97cbb 9688 if (type_die != NULL)
71dfc51f 9689 add_AT_die_ref (object_die, DW_AT_type, type_die);
a3f97cbb
JW
9690}
9691
9692/* Given a tree pointer to a struct, class, union, or enum type node, return
9693 a pointer to the (string) tag name for the given type, or zero if the type
9694 was declared without a tag. */
71dfc51f 9695
d3e3972c 9696static const char *
a3f97cbb 9697type_tag (type)
b3694847 9698 tree type;
a3f97cbb 9699{
b3694847 9700 const char *name = 0;
a3f97cbb
JW
9701
9702 if (TYPE_NAME (type) != 0)
9703 {
b3694847 9704 tree t = 0;
a3f97cbb
JW
9705
9706 /* Find the IDENTIFIER_NODE for the type name. */
9707 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
9708 t = TYPE_NAME (type);
bdb669cb 9709
556273e0 9710 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
a3f97cbb 9711 a TYPE_DECL node, regardless of whether or not a `typedef' was
bdb669cb 9712 involved. */
a94dbf2c
JM
9713 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
9714 && ! DECL_IGNORED_P (TYPE_NAME (type)))
a3f97cbb 9715 t = DECL_NAME (TYPE_NAME (type));
bdb669cb 9716
a3f97cbb
JW
9717 /* Now get the name as a string, or invent one. */
9718 if (t != 0)
a94dbf2c 9719 name = IDENTIFIER_POINTER (t);
a3f97cbb 9720 }
71dfc51f 9721
a3f97cbb
JW
9722 return (name == 0 || *name == '\0') ? 0 : name;
9723}
9724
9725/* Return the type associated with a data member, make a special check
9726 for bit field types. */
71dfc51f
RK
9727
9728static inline tree
a3f97cbb 9729member_declared_type (member)
b3694847 9730 tree member;
a3f97cbb 9731{
71dfc51f 9732 return (DECL_BIT_FIELD_TYPE (member)
2ad9852d 9733 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
a3f97cbb
JW
9734}
9735
d291dd49 9736/* Get the decl's label, as described by its RTL. This may be different
a3f97cbb 9737 from the DECL_NAME name used in the source file. */
71dfc51f 9738
487a6e06 9739#if 0
d3e3972c 9740static const char *
d291dd49 9741decl_start_label (decl)
b3694847 9742 tree decl;
a3f97cbb
JW
9743{
9744 rtx x;
d3e3972c 9745 const char *fnname;
2ad9852d 9746
a3f97cbb
JW
9747 x = DECL_RTL (decl);
9748 if (GET_CODE (x) != MEM)
71dfc51f
RK
9749 abort ();
9750
a3f97cbb
JW
9751 x = XEXP (x, 0);
9752 if (GET_CODE (x) != SYMBOL_REF)
71dfc51f
RK
9753 abort ();
9754
a3f97cbb
JW
9755 fnname = XSTR (x, 0);
9756 return fnname;
9757}
487a6e06 9758#endif
a3f97cbb 9759\f
956d6950 9760/* These routines generate the internal representation of the DIE's for
a3f97cbb 9761 the compilation unit. Debugging information is collected by walking
88dad228 9762 the declaration trees passed in from dwarf2out_decl(). */
a3f97cbb
JW
9763
9764static void
9765gen_array_type_die (type, context_die)
b3694847
SS
9766 tree type;
9767 dw_die_ref context_die;
a3f97cbb 9768{
b3694847
SS
9769 dw_die_ref scope_die = scope_die_for (type, context_die);
9770 dw_die_ref array_die;
9771 tree element_type;
bdb669cb 9772
a9d38797
JM
9773 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9774 the inner array type comes before the outer array type. Thus we must
9775 call gen_type_die before we call new_die. See below also. */
9776#ifdef MIPS_DEBUGGING_INFO
9777 gen_type_die (TREE_TYPE (type), context_die);
9778#endif
9779
54ba1f0d 9780 array_die = new_die (DW_TAG_array_type, scope_die, type);
84f0ace0
JM
9781 add_name_attribute (array_die, type_tag (type));
9782 equate_type_number_to_die (type, array_die);
9783
9784 if (TREE_CODE (type) == VECTOR_TYPE)
9785 {
9786 /* The frontend feeds us a representation for the vector as a struct
9787 containing an array. Pull out the array type. */
9788 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
9789 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
9790 }
a9d38797 9791
a3f97cbb
JW
9792#if 0
9793 /* We default the array ordering. SDB will probably do
9794 the right things even if DW_AT_ordering is not present. It's not even
9795 an issue until we start to get into multidimensional arrays anyway. If
9796 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9797 then we'll have to put the DW_AT_ordering attribute back in. (But if
9798 and when we find out that we need to put these in, we will only do so
9799 for multidimensional arrays. */
9800 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
9801#endif
9802
a9d38797 9803#ifdef MIPS_DEBUGGING_INFO
4edb7b60
JM
9804 /* The SGI compilers handle arrays of unknown bound by setting
9805 AT_declaration and not emitting any subrange DIEs. */
a9d38797
JM
9806 if (! TYPE_DOMAIN (type))
9807 add_AT_unsigned (array_die, DW_AT_declaration, 1);
9808 else
9809#endif
9810 add_subscript_info (array_die, type);
a3f97cbb 9811
a3f97cbb
JW
9812 /* Add representation of the type of the elements of this array type. */
9813 element_type = TREE_TYPE (type);
71dfc51f 9814
a3f97cbb
JW
9815 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9816 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9817 We work around this by disabling this feature. See also
9818 add_subscript_info. */
9819#ifndef MIPS_DEBUGGING_INFO
71dfc51f
RK
9820 while (TREE_CODE (element_type) == ARRAY_TYPE)
9821 element_type = TREE_TYPE (element_type);
9822
a3f97cbb 9823 gen_type_die (element_type, context_die);
a9d38797 9824#endif
a3f97cbb
JW
9825
9826 add_type_attribute (array_die, element_type, 0, 0, context_die);
9827}
9828
9829static void
9830gen_set_type_die (type, context_die)
b3694847
SS
9831 tree type;
9832 dw_die_ref context_die;
a3f97cbb 9833{
b3694847 9834 dw_die_ref type_die
54ba1f0d 9835 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
71dfc51f 9836
a3f97cbb 9837 equate_type_number_to_die (type, type_die);
a3f97cbb
JW
9838 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
9839}
9840
d6f4ec51 9841#if 0
a3f97cbb
JW
9842static void
9843gen_entry_point_die (decl, context_die)
b3694847
SS
9844 tree decl;
9845 dw_die_ref context_die;
a3f97cbb 9846{
b3694847 9847 tree origin = decl_ultimate_origin (decl);
54ba1f0d 9848 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
2ad9852d 9849
a3f97cbb 9850 if (origin != NULL)
71dfc51f 9851 add_abstract_origin_attribute (decl_die, origin);
a3f97cbb
JW
9852 else
9853 {
9854 add_name_and_src_coords_attributes (decl_die, decl);
a3f97cbb
JW
9855 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
9856 0, 0, context_die);
9857 }
71dfc51f 9858
a3f97cbb 9859 if (DECL_ABSTRACT (decl))
71dfc51f 9860 equate_decl_number_to_die (decl, decl_die);
a3f97cbb 9861 else
71dfc51f 9862 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
a3f97cbb 9863}
d6f4ec51 9864#endif
a3f97cbb 9865
8a8c3656
JM
9866/* Walk through the list of incomplete types again, trying once more to
9867 emit full debugging info for them. */
9868
9869static void
9870retry_incomplete_types ()
9871{
244a4af0 9872 int i;
2ad9852d 9873
244a4af0 9874 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
2ad9852d 9875 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
8a8c3656
JM
9876}
9877
a3f97cbb 9878/* Generate a DIE to represent an inlined instance of an enumeration type. */
71dfc51f 9879
a3f97cbb
JW
9880static void
9881gen_inlined_enumeration_type_die (type, context_die)
b3694847
SS
9882 tree type;
9883 dw_die_ref context_die;
a3f97cbb 9884{
54ba1f0d 9885 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
2ad9852d 9886
bbc6ae08
NC
9887 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9888 be incomplete and such types are not marked. */
a3f97cbb
JW
9889 add_abstract_origin_attribute (type_die, type);
9890}
9891
9892/* Generate a DIE to represent an inlined instance of a structure type. */
71dfc51f 9893
a3f97cbb
JW
9894static void
9895gen_inlined_structure_type_die (type, context_die)
b3694847
SS
9896 tree type;
9897 dw_die_ref context_die;
a3f97cbb 9898{
54ba1f0d 9899 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
777ad4c2 9900
bbc6ae08
NC
9901 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9902 be incomplete and such types are not marked. */
a3f97cbb
JW
9903 add_abstract_origin_attribute (type_die, type);
9904}
9905
9906/* Generate a DIE to represent an inlined instance of a union type. */
71dfc51f 9907
a3f97cbb
JW
9908static void
9909gen_inlined_union_type_die (type, context_die)
b3694847
SS
9910 tree type;
9911 dw_die_ref context_die;
a3f97cbb 9912{
54ba1f0d 9913 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
777ad4c2 9914
bbc6ae08
NC
9915 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9916 be incomplete and such types are not marked. */
a3f97cbb
JW
9917 add_abstract_origin_attribute (type_die, type);
9918}
9919
9920/* Generate a DIE to represent an enumeration type. Note that these DIEs
9921 include all of the information about the enumeration values also. Each
273dbe67
JM
9922 enumerated type name/value is listed as a child of the enumerated type
9923 DIE. */
71dfc51f 9924
a3f97cbb 9925static void
273dbe67 9926gen_enumeration_type_die (type, context_die)
b3694847
SS
9927 tree type;
9928 dw_die_ref context_die;
a3f97cbb 9929{
b3694847 9930 dw_die_ref type_die = lookup_type_die (type);
273dbe67 9931
a3f97cbb
JW
9932 if (type_die == NULL)
9933 {
9934 type_die = new_die (DW_TAG_enumeration_type,
54ba1f0d 9935 scope_die_for (type, context_die), type);
a3f97cbb
JW
9936 equate_type_number_to_die (type, type_die);
9937 add_name_attribute (type_die, type_tag (type));
a3f97cbb 9938 }
273dbe67
JM
9939 else if (! TYPE_SIZE (type))
9940 return;
9941 else
9942 remove_AT (type_die, DW_AT_declaration);
9943
9944 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9945 given enum type is incomplete, do not generate the DW_AT_byte_size
9946 attribute or the DW_AT_element_list attribute. */
9947 if (TYPE_SIZE (type))
a3f97cbb 9948 {
b3694847 9949 tree link;
71dfc51f 9950
a082c85a 9951 TREE_ASM_WRITTEN (type) = 1;
273dbe67 9952 add_byte_size_attribute (type_die, type);
e9a25f70 9953 if (TYPE_STUB_DECL (type) != NULL_TREE)
b2932ae5 9954 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
71dfc51f 9955
ef76d03b
JW
9956 /* If the first reference to this type was as the return type of an
9957 inline function, then it may not have a parent. Fix this now. */
9958 if (type_die->die_parent == NULL)
9959 add_child_die (scope_die_for (type, context_die), type_die);
9960
273dbe67
JM
9961 for (link = TYPE_FIELDS (type);
9962 link != NULL; link = TREE_CHAIN (link))
a3f97cbb 9963 {
54ba1f0d 9964 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
71dfc51f 9965
273dbe67
JM
9966 add_name_attribute (enum_die,
9967 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
665f2503
RK
9968
9969 if (host_integerp (TREE_VALUE (link), 0))
fc9e8a14
JJ
9970 {
9971 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
9972 add_AT_int (enum_die, DW_AT_const_value,
9973 tree_low_cst (TREE_VALUE (link), 0));
9974 else
9975 add_AT_unsigned (enum_die, DW_AT_const_value,
9976 tree_low_cst (TREE_VALUE (link), 0));
9977 }
a3f97cbb
JW
9978 }
9979 }
273dbe67
JM
9980 else
9981 add_AT_flag (type_die, DW_AT_declaration, 1);
a3f97cbb
JW
9982}
9983
a3f97cbb
JW
9984/* Generate a DIE to represent either a real live formal parameter decl or to
9985 represent just the type of some formal parameter position in some function
9986 type.
71dfc51f 9987
a3f97cbb
JW
9988 Note that this routine is a bit unusual because its argument may be a
9989 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9990 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9991 node. If it's the former then this function is being called to output a
9992 DIE to represent a formal parameter object (or some inlining thereof). If
9993 it's the latter, then this function is only being called to output a
9994 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9995 argument type of some subprogram type. */
71dfc51f 9996
a94dbf2c 9997static dw_die_ref
a3f97cbb 9998gen_formal_parameter_die (node, context_die)
b3694847
SS
9999 tree node;
10000 dw_die_ref context_die;
a3f97cbb 10001{
b3694847 10002 dw_die_ref parm_die
54ba1f0d 10003 = new_die (DW_TAG_formal_parameter, context_die, node);
b3694847 10004 tree origin;
71dfc51f 10005
a3f97cbb
JW
10006 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10007 {
a3f97cbb
JW
10008 case 'd':
10009 origin = decl_ultimate_origin (node);
10010 if (origin != NULL)
a94dbf2c 10011 add_abstract_origin_attribute (parm_die, origin);
a3f97cbb
JW
10012 else
10013 {
10014 add_name_and_src_coords_attributes (parm_die, node);
10015 add_type_attribute (parm_die, TREE_TYPE (node),
10016 TREE_READONLY (node),
10017 TREE_THIS_VOLATILE (node),
10018 context_die);
bdb669cb
JM
10019 if (DECL_ARTIFICIAL (node))
10020 add_AT_flag (parm_die, DW_AT_artificial, 1);
a3f97cbb 10021 }
71dfc51f 10022
141719a8
JM
10023 equate_decl_number_to_die (node, parm_die);
10024 if (! DECL_ABSTRACT (node))
a94dbf2c 10025 add_location_or_const_value_attribute (parm_die, node);
71dfc51f 10026
a3f97cbb
JW
10027 break;
10028
a3f97cbb 10029 case 't':
71dfc51f 10030 /* We were called with some kind of a ..._TYPE node. */
a3f97cbb
JW
10031 add_type_attribute (parm_die, node, 0, 0, context_die);
10032 break;
10033
a3f97cbb
JW
10034 default:
10035 abort ();
10036 }
71dfc51f 10037
a94dbf2c 10038 return parm_die;
a3f97cbb
JW
10039}
10040
10041/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10042 at the end of an (ANSI prototyped) formal parameters list. */
71dfc51f 10043
a3f97cbb
JW
10044static void
10045gen_unspecified_parameters_die (decl_or_type, context_die)
54ba1f0d 10046 tree decl_or_type;
b3694847 10047 dw_die_ref context_die;
a3f97cbb 10048{
54ba1f0d 10049 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
a3f97cbb
JW
10050}
10051
10052/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10053 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10054 parameters as specified in some function type specification (except for
1cfdcc15 10055 those which appear as part of a function *definition*). */
71dfc51f 10056
a3f97cbb
JW
10057static void
10058gen_formal_types_die (function_or_method_type, context_die)
b3694847
SS
10059 tree function_or_method_type;
10060 dw_die_ref context_die;
a3f97cbb 10061{
b3694847
SS
10062 tree link;
10063 tree formal_type = NULL;
10064 tree first_parm_type;
5daf7c0a 10065 tree arg;
a3f97cbb 10066
5daf7c0a
JM
10067 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10068 {
10069 arg = DECL_ARGUMENTS (function_or_method_type);
10070 function_or_method_type = TREE_TYPE (function_or_method_type);
10071 }
10072 else
10073 arg = NULL_TREE;
c26fbbca 10074
5daf7c0a 10075 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
a3f97cbb 10076
556273e0 10077 /* Make our first pass over the list of formal parameter types and output a
a3f97cbb 10078 DW_TAG_formal_parameter DIE for each one. */
5daf7c0a 10079 for (link = first_parm_type; link; )
a3f97cbb 10080 {
b3694847 10081 dw_die_ref parm_die;
556273e0 10082
a3f97cbb
JW
10083 formal_type = TREE_VALUE (link);
10084 if (formal_type == void_type_node)
10085 break;
10086
10087 /* Output a (nameless) DIE to represent the formal parameter itself. */
a94dbf2c 10088 parm_die = gen_formal_parameter_die (formal_type, context_die);
5daf7c0a
JM
10089 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10090 && link == first_parm_type)
10091 || (arg && DECL_ARTIFICIAL (arg)))
a94dbf2c 10092 add_AT_flag (parm_die, DW_AT_artificial, 1);
5daf7c0a
JM
10093
10094 link = TREE_CHAIN (link);
10095 if (arg)
10096 arg = TREE_CHAIN (arg);
a3f97cbb
JW
10097 }
10098
10099 /* If this function type has an ellipsis, add a
10100 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10101 if (formal_type != void_type_node)
10102 gen_unspecified_parameters_die (function_or_method_type, context_die);
10103
556273e0 10104 /* Make our second (and final) pass over the list of formal parameter types
a3f97cbb
JW
10105 and output DIEs to represent those types (as necessary). */
10106 for (link = TYPE_ARG_TYPES (function_or_method_type);
2ad9852d 10107 link && TREE_VALUE (link);
a3f97cbb 10108 link = TREE_CHAIN (link))
2ad9852d 10109 gen_type_die (TREE_VALUE (link), context_die);
a3f97cbb
JW
10110}
10111
10a11b75
JM
10112/* We want to generate the DIE for TYPE so that we can generate the
10113 die for MEMBER, which has been defined; we will need to refer back
10114 to the member declaration nested within TYPE. If we're trying to
10115 generate minimal debug info for TYPE, processing TYPE won't do the
10116 trick; we need to attach the member declaration by hand. */
10117
10118static void
10119gen_type_die_for_member (type, member, context_die)
10120 tree type, member;
10121 dw_die_ref context_die;
10122{
10123 gen_type_die (type, context_die);
10124
10125 /* If we're trying to avoid duplicate debug info, we may not have
10126 emitted the member decl for this function. Emit it now. */
10127 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10128 && ! lookup_decl_die (member))
10129 {
10130 if (decl_ultimate_origin (member))
10131 abort ();
10132
10133 push_decl_scope (type);
10134 if (TREE_CODE (member) == FUNCTION_DECL)
10135 gen_subprogram_die (member, lookup_type_die (type));
10136 else
10137 gen_variable_die (member, lookup_type_die (type));
2ad9852d 10138
10a11b75
JM
10139 pop_decl_scope ();
10140 }
10141}
10142
2ad9852d
RK
10143/* Generate the DWARF2 info for the "abstract" instance of a function which we
10144 may later generate inlined and/or out-of-line instances of. */
10a11b75 10145
e1772ac0 10146static void
1edf43d6 10147dwarf2out_abstract_function (decl)
10a11b75
JM
10148 tree decl;
10149{
b3694847 10150 dw_die_ref old_die;
777ad4c2 10151 tree save_fn;
5daf7c0a
JM
10152 tree context;
10153 int was_abstract = DECL_ABSTRACT (decl);
10154
10155 /* Make sure we have the actual abstract inline, not a clone. */
10156 decl = DECL_ORIGIN (decl);
10a11b75 10157
c26fbbca 10158 old_die = lookup_decl_die (decl);
10a11b75
JM
10159 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10160 /* We've already generated the abstract instance. */
10161 return;
10162
5daf7c0a
JM
10163 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10164 we don't get confused by DECL_ABSTRACT. */
8458e954
JS
10165 if (debug_info_level > DINFO_LEVEL_TERSE)
10166 {
10167 context = decl_class_context (decl);
10168 if (context)
10169 gen_type_die_for_member
10170 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10171 }
c26fbbca 10172
5daf7c0a 10173 /* Pretend we've just finished compiling this function. */
777ad4c2
JM
10174 save_fn = current_function_decl;
10175 current_function_decl = decl;
10176
10a11b75
JM
10177 set_decl_abstract_flags (decl, 1);
10178 dwarf2out_decl (decl);
5daf7c0a
JM
10179 if (! was_abstract)
10180 set_decl_abstract_flags (decl, 0);
777ad4c2
JM
10181
10182 current_function_decl = save_fn;
10a11b75
JM
10183}
10184
a3f97cbb
JW
10185/* Generate a DIE to represent a declared function (either file-scope or
10186 block-local). */
71dfc51f 10187
a3f97cbb
JW
10188static void
10189gen_subprogram_die (decl, context_die)
b3694847
SS
10190 tree decl;
10191 dw_die_ref context_die;
a3f97cbb
JW
10192{
10193 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
b3694847
SS
10194 tree origin = decl_ultimate_origin (decl);
10195 dw_die_ref subr_die;
10196 rtx fp_reg;
10197 tree fn_arg_types;
10198 tree outer_scope;
10199 dw_die_ref old_die = lookup_decl_die (decl);
10200 int declaration = (current_function_decl != decl
10201 || class_scope_p (context_die));
a3f97cbb 10202
2ad9852d
RK
10203 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10204 started to generate the abstract instance of an inline, decided to output
10205 its containing class, and proceeded to emit the declaration of the inline
10206 from the member list for the class. If so, DECLARATION takes priority;
10207 we'll get back to the abstract instance when done with the class. */
10a11b75 10208
1cfdcc15
JM
10209 /* The class-scope declaration DIE must be the primary DIE. */
10210 if (origin && declaration && class_scope_p (context_die))
10211 {
10212 origin = NULL;
10213 if (old_die)
10214 abort ();
10215 }
10216
a3f97cbb
JW
10217 if (origin != NULL)
10218 {
777ad4c2 10219 if (declaration && ! local_scope_p (context_die))
10a11b75
JM
10220 abort ();
10221
8d8238b6
JM
10222 /* Fixup die_parent for the abstract instance of a nested
10223 inline function. */
10224 if (old_die && old_die->die_parent == NULL)
10225 add_child_die (context_die, old_die);
10226
54ba1f0d 10227 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
a3f97cbb
JW
10228 add_abstract_origin_attribute (subr_die, origin);
10229 }
bdb669cb
JM
10230 else if (old_die)
10231 {
981975b6 10232 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
a94dbf2c 10233
1edf43d6
JM
10234 if (!get_AT_flag (old_die, DW_AT_declaration)
10235 /* We can have a normal definition following an inline one in the
10236 case of redefinition of GNU C extern inlines.
10237 It seems reasonable to use AT_specification in this case. */
10238 && !get_AT_unsigned (old_die, DW_AT_inline))
b75ab88b
NC
10239 {
10240 /* ??? This can happen if there is a bug in the program, for
10241 instance, if it has duplicate function definitions. Ideally,
10242 we should detect this case and ignore it. For now, if we have
10243 already reported an error, any error at all, then assume that
4fe9b91c 10244 we got here because of an input error, not a dwarf2 bug. */
b75ab88b
NC
10245 if (errorcount)
10246 return;
10247 abort ();
10248 }
4b674448
JM
10249
10250 /* If the definition comes from the same place as the declaration,
a94dbf2c
JM
10251 maybe use the old DIE. We always want the DIE for this function
10252 that has the *_pc attributes to be under comp_unit_die so the
cb9e9d8d
JM
10253 debugger can find it. We also need to do this for abstract
10254 instances of inlines, since the spec requires the out-of-line copy
10255 to have the same parent. For local class methods, this doesn't
10256 apply; we just use the old DIE. */
10257 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
a96c67ec
JM
10258 && (DECL_ARTIFICIAL (decl)
10259 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10260 && (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 10261 == (unsigned) DECL_SOURCE_LINE (decl)))))
bdb669cb 10262 {
4b674448
JM
10263 subr_die = old_die;
10264
10265 /* Clear out the declaration attribute and the parm types. */
10266 remove_AT (subr_die, DW_AT_declaration);
10267 remove_children (subr_die);
10268 }
10269 else
10270 {
54ba1f0d 10271 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
4b674448 10272 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
bdb669cb
JM
10273 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10274 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10275 if (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 10276 != (unsigned) DECL_SOURCE_LINE (decl))
bdb669cb
JM
10277 add_AT_unsigned
10278 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10279 }
10280 }
a3f97cbb
JW
10281 else
10282 {
54ba1f0d 10283 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
556273e0 10284
273dbe67
JM
10285 if (TREE_PUBLIC (decl))
10286 add_AT_flag (subr_die, DW_AT_external, 1);
71dfc51f 10287
a3f97cbb 10288 add_name_and_src_coords_attributes (subr_die, decl);
4927276d
JM
10289 if (debug_info_level > DINFO_LEVEL_TERSE)
10290 {
2ad9852d
RK
10291 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10292 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10293 0, 0, context_die);
4927276d 10294 }
71dfc51f 10295
a3f97cbb 10296 add_pure_or_virtual_attribute (subr_die, decl);
273dbe67
JM
10297 if (DECL_ARTIFICIAL (decl))
10298 add_AT_flag (subr_die, DW_AT_artificial, 1);
2ad9852d 10299
a94dbf2c
JM
10300 if (TREE_PROTECTED (decl))
10301 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10302 else if (TREE_PRIVATE (decl))
10303 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb 10304 }
4edb7b60 10305
a94dbf2c
JM
10306 if (declaration)
10307 {
2ad9852d 10308 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
1edf43d6
JM
10309 {
10310 add_AT_flag (subr_die, DW_AT_declaration, 1);
10311
10312 /* The first time we see a member function, it is in the context of
10313 the class to which it belongs. We make sure of this by emitting
10314 the class first. The next time is the definition, which is
10315 handled above. The two may come from the same source text. */
10316 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10317 equate_decl_number_to_die (decl, subr_die);
10318 }
a94dbf2c
JM
10319 }
10320 else if (DECL_ABSTRACT (decl))
a3f97cbb 10321 {
10a11b75 10322 if (DECL_INLINE (decl) && !flag_no_inline)
61b32c02 10323 {
10a11b75
JM
10324 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10325 inline functions, but not for extern inline functions.
10326 We can't get this completely correct because information
10327 about whether the function was declared inline is not
10328 saved anywhere. */
10329 if (DECL_DEFER_OUTPUT (decl))
61b32c02
JM
10330 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10331 else
10a11b75 10332 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
61b32c02 10333 }
61b32c02 10334 else
10a11b75 10335 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
61b32c02 10336
a3f97cbb
JW
10337 equate_decl_number_to_die (decl, subr_die);
10338 }
10339 else if (!DECL_EXTERNAL (decl))
10340 {
2ad9852d 10341 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
ba7b35df 10342 equate_decl_number_to_die (decl, subr_die);
71dfc51f 10343
5c90448c
JM
10344 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10345 current_funcdef_number);
7d4440be 10346 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
5c90448c
JM
10347 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10348 current_funcdef_number);
a3f97cbb
JW
10349 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10350
d291dd49
JM
10351 add_pubname (decl, subr_die);
10352 add_arange (decl, subr_die);
10353
a3f97cbb 10354#ifdef MIPS_DEBUGGING_INFO
a3f97cbb
JW
10355 /* Add a reference to the FDE for this routine. */
10356 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10357#endif
10358
810429b7
JM
10359 /* Define the "frame base" location for this routine. We use the
10360 frame pointer or stack pointer registers, since the RTL for local
10361 variables is relative to one of them. */
b1ccbc24
RK
10362 fp_reg
10363 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10364 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
a3f97cbb 10365
ef76d03b
JW
10366#if 0
10367 /* ??? This fails for nested inline functions, because context_display
10368 is not part of the state saved/restored for inline functions. */
88dad228 10369 if (current_function_needs_context)
ef76d03b
JW
10370 add_AT_location_description (subr_die, DW_AT_static_link,
10371 lookup_static_chain (decl));
10372#endif
a3f97cbb
JW
10373 }
10374
10375 /* Now output descriptions of the arguments for this function. This gets
556273e0 10376 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
a3f97cbb
JW
10377 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10378 `...' at the end of the formal parameter list. In order to find out if
10379 there was a trailing ellipsis or not, we must instead look at the type
10380 associated with the FUNCTION_DECL. This will be a node of type
10381 FUNCTION_TYPE. If the chain of type nodes hanging off of this
556273e0 10382 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
a3f97cbb 10383 an ellipsis at the end. */
71dfc51f 10384
a3f97cbb 10385 /* In the case where we are describing a mere function declaration, all we
556273e0 10386 need to do here (and all we *can* do here) is to describe the *types* of
a3f97cbb 10387 its formal parameters. */
4927276d 10388 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 10389 ;
4edb7b60 10390 else if (declaration)
5daf7c0a 10391 gen_formal_types_die (decl, subr_die);
a3f97cbb
JW
10392 else
10393 {
10394 /* Generate DIEs to represent all known formal parameters */
b3694847
SS
10395 tree arg_decls = DECL_ARGUMENTS (decl);
10396 tree parm;
a3f97cbb
JW
10397
10398 /* When generating DIEs, generate the unspecified_parameters DIE
10399 instead if we come across the arg "__builtin_va_alist" */
10400 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
71dfc51f
RK
10401 if (TREE_CODE (parm) == PARM_DECL)
10402 {
db3cf6fb
MS
10403 if (DECL_NAME (parm)
10404 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10405 "__builtin_va_alist"))
71dfc51f
RK
10406 gen_unspecified_parameters_die (parm, subr_die);
10407 else
10408 gen_decl_die (parm, subr_die);
10409 }
a3f97cbb 10410
4fe9b91c 10411 /* Decide whether we need an unspecified_parameters DIE at the end.
556273e0 10412 There are 2 more cases to do this for: 1) the ansi ... declaration -
a3f97cbb
JW
10413 this is detectable when the end of the arg list is not a
10414 void_type_node 2) an unprototyped function declaration (not a
10415 definition). This just means that we have no info about the
10416 parameters at all. */
10417 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
71dfc51f 10418 if (fn_arg_types != NULL)
a3f97cbb
JW
10419 {
10420 /* this is the prototyped case, check for ... */
10421 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
71dfc51f 10422 gen_unspecified_parameters_die (decl, subr_die);
a3f97cbb 10423 }
71dfc51f
RK
10424 else if (DECL_INITIAL (decl) == NULL_TREE)
10425 gen_unspecified_parameters_die (decl, subr_die);
a3f97cbb
JW
10426 }
10427
10428 /* Output Dwarf info for all of the stuff within the body of the function
10429 (if it has one - it may be just a declaration). */
10430 outer_scope = DECL_INITIAL (decl);
10431
2ad9852d
RK
10432 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10433 a function. This BLOCK actually represents the outermost binding contour
10434 for the function, i.e. the contour in which the function's formal
10435 parameters and labels get declared. Curiously, it appears that the front
10436 end doesn't actually put the PARM_DECL nodes for the current function onto
10437 the BLOCK_VARS list for this outer scope, but are strung off of the
10438 DECL_ARGUMENTS list for the function instead.
10439
10440 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10441 the LABEL_DECL nodes for the function however, and we output DWARF info
10442 for those in decls_for_scope. Just within the `outer_scope' there will be
10443 a BLOCK node representing the function's outermost pair of curly braces,
10444 and any blocks used for the base and member initializers of a C++
d7248bff 10445 constructor function. */
4edb7b60 10446 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
7e23cb16
JM
10447 {
10448 current_function_has_inlines = 0;
10449 decls_for_scope (outer_scope, subr_die, 0);
71dfc51f 10450
ce61cc73 10451#if 0 && defined (MIPS_DEBUGGING_INFO)
7e23cb16
JM
10452 if (current_function_has_inlines)
10453 {
10454 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10455 if (! comp_unit_has_inlines)
10456 {
10457 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10458 comp_unit_has_inlines = 1;
10459 }
10460 }
10461#endif
10462 }
a3f97cbb
JW
10463}
10464
10465/* Generate a DIE to represent a declared data object. */
71dfc51f 10466
a3f97cbb
JW
10467static void
10468gen_variable_die (decl, context_die)
b3694847
SS
10469 tree decl;
10470 dw_die_ref context_die;
a3f97cbb 10471{
b3694847 10472 tree origin = decl_ultimate_origin (decl);
54ba1f0d 10473 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
71dfc51f 10474
bdb669cb 10475 dw_die_ref old_die = lookup_decl_die (decl);
9765e357
JM
10476 int declaration = (DECL_EXTERNAL (decl)
10477 || class_scope_p (context_die));
4edb7b60 10478
a3f97cbb 10479 if (origin != NULL)
71dfc51f 10480 add_abstract_origin_attribute (var_die, origin);
2ad9852d 10481
f76b8156 10482 /* Loop unrolling can create multiple blocks that refer to the same
2ad9852d
RK
10483 static variable, so we must test for the DW_AT_declaration flag.
10484
10485 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
f76b8156 10486 copy decls and set the DECL_ABSTRACT flag on them instead of
2ad9852d
RK
10487 sharing them.
10488
10489 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
f76b8156 10490 else if (old_die && TREE_STATIC (decl)
c26fbbca 10491 && get_AT_flag (old_die, DW_AT_declaration) == 1)
bdb669cb 10492 {
e689ae67 10493 /* This is a definition of a C++ class level static. */
bdb669cb
JM
10494 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10495 if (DECL_NAME (decl))
10496 {
981975b6 10497 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
71dfc51f 10498
bdb669cb
JM
10499 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10500 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
71dfc51f 10501
bdb669cb 10502 if (get_AT_unsigned (old_die, DW_AT_decl_line)
556273e0 10503 != (unsigned) DECL_SOURCE_LINE (decl))
71dfc51f
RK
10504
10505 add_AT_unsigned (var_die, DW_AT_decl_line,
10506 DECL_SOURCE_LINE (decl));
bdb669cb
JM
10507 }
10508 }
a3f97cbb
JW
10509 else
10510 {
10511 add_name_and_src_coords_attributes (var_die, decl);
2ad9852d 10512 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
a3f97cbb 10513 TREE_THIS_VOLATILE (decl), context_die);
71dfc51f 10514
273dbe67
JM
10515 if (TREE_PUBLIC (decl))
10516 add_AT_flag (var_die, DW_AT_external, 1);
71dfc51f 10517
273dbe67
JM
10518 if (DECL_ARTIFICIAL (decl))
10519 add_AT_flag (var_die, DW_AT_artificial, 1);
71dfc51f 10520
a94dbf2c
JM
10521 if (TREE_PROTECTED (decl))
10522 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10523 else if (TREE_PRIVATE (decl))
10524 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb 10525 }
4edb7b60
JM
10526
10527 if (declaration)
10528 add_AT_flag (var_die, DW_AT_declaration, 1);
556273e0 10529
9765e357 10530 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
4edb7b60
JM
10531 equate_decl_number_to_die (decl, var_die);
10532
10533 if (! declaration && ! DECL_ABSTRACT (decl))
a3f97cbb
JW
10534 {
10535 add_location_or_const_value_attribute (var_die, decl);
d291dd49 10536 add_pubname (decl, var_die);
a3f97cbb 10537 }
1bfb5f8f
JM
10538 else
10539 tree_add_const_value_attribute (var_die, decl);
a3f97cbb
JW
10540}
10541
10542/* Generate a DIE to represent a label identifier. */
71dfc51f 10543
a3f97cbb
JW
10544static void
10545gen_label_die (decl, context_die)
b3694847
SS
10546 tree decl;
10547 dw_die_ref context_die;
a3f97cbb 10548{
b3694847 10549 tree origin = decl_ultimate_origin (decl);
54ba1f0d 10550 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
b3694847 10551 rtx insn;
a3f97cbb 10552 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f 10553
a3f97cbb 10554 if (origin != NULL)
71dfc51f 10555 add_abstract_origin_attribute (lbl_die, origin);
a3f97cbb 10556 else
71dfc51f
RK
10557 add_name_and_src_coords_attributes (lbl_die, decl);
10558
a3f97cbb 10559 if (DECL_ABSTRACT (decl))
71dfc51f 10560 equate_decl_number_to_die (decl, lbl_die);
a3f97cbb
JW
10561 else
10562 {
10563 insn = DECL_RTL (decl);
088e7160
NC
10564
10565 /* Deleted labels are programmer specified labels which have been
10566 eliminated because of various optimisations. We still emit them
10567 here so that it is possible to put breakpoints on them. */
10568 if (GET_CODE (insn) == CODE_LABEL
10569 || ((GET_CODE (insn) == NOTE
10570 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
a3f97cbb 10571 {
556273e0
KH
10572 /* When optimization is enabled (via -O) some parts of the compiler
10573 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
a3f97cbb
JW
10574 represent source-level labels which were explicitly declared by
10575 the user. This really shouldn't be happening though, so catch
10576 it if it ever does happen. */
10577 if (INSN_DELETED_P (insn))
71dfc51f
RK
10578 abort ();
10579
66234570 10580 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
a3f97cbb
JW
10581 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10582 }
10583 }
10584}
10585
10586/* Generate a DIE for a lexical block. */
71dfc51f 10587
a3f97cbb 10588static void
d7248bff 10589gen_lexical_block_die (stmt, context_die, depth)
b3694847
SS
10590 tree stmt;
10591 dw_die_ref context_die;
d7248bff 10592 int depth;
a3f97cbb 10593{
54ba1f0d 10594 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
a3f97cbb 10595 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f
RK
10596
10597 if (! BLOCK_ABSTRACT (stmt))
a3f97cbb 10598 {
a20612aa
RH
10599 if (BLOCK_FRAGMENT_CHAIN (stmt))
10600 {
10601 tree chain;
10602
2bee6045 10603 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
a20612aa
RH
10604
10605 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10606 do
10607 {
10608 add_ranges (chain);
10609 chain = BLOCK_FRAGMENT_CHAIN (chain);
10610 }
10611 while (chain);
10612 add_ranges (NULL);
10613 }
10614 else
10615 {
10616 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10617 BLOCK_NUMBER (stmt));
10618 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10619 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10620 BLOCK_NUMBER (stmt));
10621 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10622 }
a3f97cbb 10623 }
71dfc51f 10624
d7248bff 10625 decls_for_scope (stmt, stmt_die, depth);
a3f97cbb
JW
10626}
10627
10628/* Generate a DIE for an inlined subprogram. */
71dfc51f 10629
a3f97cbb 10630static void
d7248bff 10631gen_inlined_subroutine_die (stmt, context_die, depth)
b3694847
SS
10632 tree stmt;
10633 dw_die_ref context_die;
d7248bff 10634 int depth;
a3f97cbb 10635{
71dfc51f 10636 if (! BLOCK_ABSTRACT (stmt))
a3f97cbb 10637 {
b3694847 10638 dw_die_ref subr_die
54ba1f0d 10639 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
b3694847 10640 tree decl = block_ultimate_origin (stmt);
d7248bff 10641 char label[MAX_ARTIFICIAL_LABEL_BYTES];
71dfc51f 10642
10a11b75 10643 /* Emit info for the abstract instance first, if we haven't yet. */
1edf43d6 10644 dwarf2out_abstract_function (decl);
10a11b75 10645
ab72d377 10646 add_abstract_origin_attribute (subr_die, decl);
5c90448c 10647 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
18c038b9 10648 BLOCK_NUMBER (stmt));
a3f97cbb 10649 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
18c038b9
MM
10650 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10651 BLOCK_NUMBER (stmt));
a3f97cbb 10652 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
d7248bff 10653 decls_for_scope (stmt, subr_die, depth);
7e23cb16 10654 current_function_has_inlines = 1;
a3f97cbb 10655 }
06e224f7
AO
10656 else
10657 /* We may get here if we're the outer block of function A that was
10658 inlined into function B that was inlined into function C. When
10659 generating debugging info for C, dwarf2out_abstract_function(B)
10660 would mark all inlined blocks as abstract, including this one.
10661 So, we wouldn't (and shouldn't) expect labels to be generated
10662 for this one. Instead, just emit debugging info for
10663 declarations within the block. This is particularly important
10664 in the case of initializers of arguments passed from B to us:
10665 if they're statement expressions containing declarations, we
10666 wouldn't generate dies for their abstract variables, and then,
10667 when generating dies for the real variables, we'd die (pun
10668 intended :-) */
10669 gen_lexical_block_die (stmt, context_die, depth);
a3f97cbb
JW
10670}
10671
10672/* Generate a DIE for a field in a record, or structure. */
71dfc51f 10673
a3f97cbb
JW
10674static void
10675gen_field_die (decl, context_die)
b3694847
SS
10676 tree decl;
10677 dw_die_ref context_die;
a3f97cbb 10678{
54ba1f0d 10679 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
71dfc51f 10680
a3f97cbb 10681 add_name_and_src_coords_attributes (decl_die, decl);
a3f97cbb
JW
10682 add_type_attribute (decl_die, member_declared_type (decl),
10683 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
10684 context_die);
71dfc51f 10685
a3f97cbb
JW
10686 if (DECL_BIT_FIELD_TYPE (decl))
10687 {
10688 add_byte_size_attribute (decl_die, decl);
10689 add_bit_size_attribute (decl_die, decl);
10690 add_bit_offset_attribute (decl_die, decl);
10691 }
71dfc51f 10692
a94dbf2c
JM
10693 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
10694 add_data_member_location_attribute (decl_die, decl);
71dfc51f 10695
273dbe67
JM
10696 if (DECL_ARTIFICIAL (decl))
10697 add_AT_flag (decl_die, DW_AT_artificial, 1);
71dfc51f 10698
a94dbf2c
JM
10699 if (TREE_PROTECTED (decl))
10700 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
10701 else if (TREE_PRIVATE (decl))
10702 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
a3f97cbb
JW
10703}
10704
ab72d377
JM
10705#if 0
10706/* Don't generate either pointer_type DIEs or reference_type DIEs here.
10707 Use modified_type_die instead.
a3f97cbb
JW
10708 We keep this code here just in case these types of DIEs may be needed to
10709 represent certain things in other languages (e.g. Pascal) someday. */
2ad9852d 10710
a3f97cbb
JW
10711static void
10712gen_pointer_type_die (type, context_die)
b3694847
SS
10713 tree type;
10714 dw_die_ref context_die;
a3f97cbb 10715{
b3694847 10716 dw_die_ref ptr_die
54ba1f0d 10717 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
71dfc51f 10718
a3f97cbb 10719 equate_type_number_to_die (type, ptr_die);
a3f97cbb 10720 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
ab72d377 10721 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
a3f97cbb
JW
10722}
10723
ab72d377
JM
10724/* Don't generate either pointer_type DIEs or reference_type DIEs here.
10725 Use modified_type_die instead.
a3f97cbb
JW
10726 We keep this code here just in case these types of DIEs may be needed to
10727 represent certain things in other languages (e.g. Pascal) someday. */
2ad9852d 10728
a3f97cbb
JW
10729static void
10730gen_reference_type_die (type, context_die)
b3694847
SS
10731 tree type;
10732 dw_die_ref context_die;
a3f97cbb 10733{
b3694847 10734 dw_die_ref ref_die
54ba1f0d 10735 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
71dfc51f 10736
a3f97cbb 10737 equate_type_number_to_die (type, ref_die);
a3f97cbb 10738 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
ab72d377 10739 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
a3f97cbb 10740}
ab72d377 10741#endif
a3f97cbb
JW
10742
10743/* Generate a DIE for a pointer to a member type. */
2ad9852d 10744
a3f97cbb
JW
10745static void
10746gen_ptr_to_mbr_type_die (type, context_die)
b3694847
SS
10747 tree type;
10748 dw_die_ref context_die;
a3f97cbb 10749{
b3694847 10750 dw_die_ref ptr_die
54ba1f0d
RH
10751 = new_die (DW_TAG_ptr_to_member_type,
10752 scope_die_for (type, context_die), type);
71dfc51f 10753
a3f97cbb 10754 equate_type_number_to_die (type, ptr_die);
a3f97cbb 10755 add_AT_die_ref (ptr_die, DW_AT_containing_type,
bdb669cb 10756 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
a3f97cbb
JW
10757 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
10758}
10759
10760/* Generate the DIE for the compilation unit. */
71dfc51f 10761
a96c67ec
JM
10762static dw_die_ref
10763gen_compile_unit_die (filename)
b3694847 10764 const char *filename;
a3f97cbb 10765{
b3694847 10766 dw_die_ref die;
a3f97cbb 10767 char producer[250];
d3e3972c 10768 const char *wd = getpwd ();
3ac88239 10769 const char *language_string = lang_hooks.name;
a96c67ec 10770 int language;
a3f97cbb 10771
54ba1f0d 10772 die = new_die (DW_TAG_compile_unit, NULL, NULL);
a96c67ec 10773 add_name_attribute (die, filename);
bdb669cb 10774
a96c67ec
JM
10775 if (wd != NULL && filename[0] != DIR_SEPARATOR)
10776 add_AT_string (die, DW_AT_comp_dir, wd);
a3f97cbb
JW
10777
10778 sprintf (producer, "%s %s", language_string, version_string);
10779
10780#ifdef MIPS_DEBUGGING_INFO
10781 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10782 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10783 not appear in the producer string, the debugger reaches the conclusion
10784 that the object file is stripped and has no debugging information.
10785 To get the MIPS/SGI debugger to believe that there is debugging
10786 information in the object file, we add a -g to the producer string. */
4927276d
JM
10787 if (debug_info_level > DINFO_LEVEL_TERSE)
10788 strcat (producer, " -g");
a3f97cbb
JW
10789#endif
10790
a96c67ec 10791 add_AT_string (die, DW_AT_producer, producer);
a9d38797 10792
a3f97cbb 10793 if (strcmp (language_string, "GNU C++") == 0)
a96c67ec 10794 language = DW_LANG_C_plus_plus;
a3f97cbb 10795 else if (strcmp (language_string, "GNU Ada") == 0)
a96c67ec 10796 language = DW_LANG_Ada83;
a9d38797 10797 else if (strcmp (language_string, "GNU F77") == 0)
a96c67ec 10798 language = DW_LANG_Fortran77;
bc28c45b 10799 else if (strcmp (language_string, "GNU Pascal") == 0)
a96c67ec 10800 language = DW_LANG_Pascal83;
28985b81
AG
10801 else if (strcmp (language_string, "GNU Java") == 0)
10802 language = DW_LANG_Java;
a3f97cbb 10803 else
a96c67ec 10804 language = DW_LANG_C89;
a9d38797 10805
a96c67ec 10806 add_AT_unsigned (die, DW_AT_language, language);
a96c67ec 10807 return die;
a3f97cbb
JW
10808}
10809
10810/* Generate a DIE for a string type. */
71dfc51f 10811
a3f97cbb
JW
10812static void
10813gen_string_type_die (type, context_die)
b3694847
SS
10814 tree type;
10815 dw_die_ref context_die;
a3f97cbb 10816{
b3694847 10817 dw_die_ref type_die
54ba1f0d 10818 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
71dfc51f 10819
bdb669cb 10820 equate_type_number_to_die (type, type_die);
a3f97cbb 10821
2ad9852d
RK
10822 /* ??? Fudge the string length attribute for now.
10823 TODO: add string length info. */
10824#if 0
10825 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
10826 bound_representation (upper_bound, 0, 'u');
10827#endif
a3f97cbb
JW
10828}
10829
61b32c02 10830/* Generate the DIE for a base class. */
71dfc51f 10831
61b32c02
JM
10832static void
10833gen_inheritance_die (binfo, context_die)
b3694847
SS
10834 tree binfo;
10835 dw_die_ref context_die;
61b32c02 10836{
54ba1f0d 10837 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
71dfc51f 10838
61b32c02
JM
10839 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
10840 add_data_member_location_attribute (die, binfo);
71dfc51f 10841
61b32c02
JM
10842 if (TREE_VIA_VIRTUAL (binfo))
10843 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
2ad9852d 10844
61b32c02
JM
10845 if (TREE_VIA_PUBLIC (binfo))
10846 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
10847 else if (TREE_VIA_PROTECTED (binfo))
10848 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
10849}
10850
956d6950 10851/* Generate a DIE for a class member. */
71dfc51f 10852
a3f97cbb
JW
10853static void
10854gen_member_die (type, context_die)
b3694847
SS
10855 tree type;
10856 dw_die_ref context_die;
a3f97cbb 10857{
b3694847 10858 tree member;
10a11b75 10859 dw_die_ref child;
71dfc51f 10860
a3f97cbb
JW
10861 /* If this is not an incomplete type, output descriptions of each of its
10862 members. Note that as we output the DIEs necessary to represent the
10863 members of this record or union type, we will also be trying to output
10864 DIEs to represent the *types* of those members. However the `type'
556273e0 10865 function (above) will specifically avoid generating type DIEs for member
eaec9b3d 10866 types *within* the list of member DIEs for this (containing) type except
a3f97cbb
JW
10867 for those types (of members) which are explicitly marked as also being
10868 members of this (containing) type themselves. The g++ front- end can
2ad9852d
RK
10869 force any given type to be treated as a member of some other (containing)
10870 type by setting the TYPE_CONTEXT of the given (member) type to point to
10871 the TREE node representing the appropriate (containing) type. */
a3f97cbb 10872
61b32c02
JM
10873 /* First output info about the base classes. */
10874 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
a3f97cbb 10875 {
b3694847
SS
10876 tree bases = TYPE_BINFO_BASETYPES (type);
10877 int n_bases = TREE_VEC_LENGTH (bases);
10878 int i;
61b32c02
JM
10879
10880 for (i = 0; i < n_bases; i++)
10881 gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
a3f97cbb
JW
10882 }
10883
61b32c02
JM
10884 /* Now output info about the data members and type members. */
10885 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
10a11b75
JM
10886 {
10887 /* If we thought we were generating minimal debug info for TYPE
10888 and then changed our minds, some of the member declarations
10889 may have already been defined. Don't define them again, but
10890 do put them in the right order. */
10891
10892 child = lookup_decl_die (member);
10893 if (child)
10894 splice_child_die (context_die, child);
10895 else
10896 gen_decl_die (member, context_die);
10897 }
61b32c02 10898
a3f97cbb 10899 /* Now output info about the function members (if any). */
61b32c02 10900 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
10a11b75 10901 {
5daf7c0a
JM
10902 /* Don't include clones in the member list. */
10903 if (DECL_ABSTRACT_ORIGIN (member))
10904 continue;
10905
10a11b75
JM
10906 child = lookup_decl_die (member);
10907 if (child)
10908 splice_child_die (context_die, child);
10909 else
10910 gen_decl_die (member, context_die);
10911 }
a3f97cbb
JW
10912}
10913
10a11b75
JM
10914/* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10915 is set, we pretend that the type was never defined, so we only get the
10916 member DIEs needed by later specification DIEs. */
71dfc51f 10917
a3f97cbb 10918static void
273dbe67 10919gen_struct_or_union_type_die (type, context_die)
b3694847
SS
10920 tree type;
10921 dw_die_ref context_die;
a3f97cbb 10922{
b3694847
SS
10923 dw_die_ref type_die = lookup_type_die (type);
10924 dw_die_ref scope_die = 0;
10925 int nested = 0;
10a11b75 10926 int complete = (TYPE_SIZE (type)
65e1263a
JW
10927 && (! TYPE_STUB_DECL (type)
10928 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
273dbe67 10929
10a11b75 10930 if (type_die && ! complete)
273dbe67 10931 return;
a082c85a 10932
71dfc51f 10933 if (TYPE_CONTEXT (type) != NULL_TREE
5f2f160c 10934 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
a082c85a
JM
10935 nested = 1;
10936
a94dbf2c 10937 scope_die = scope_die_for (type, context_die);
a082c85a
JM
10938
10939 if (! type_die || (nested && scope_die == comp_unit_die))
273dbe67 10940 /* First occurrence of type or toplevel definition of nested class. */
a3f97cbb 10941 {
b3694847 10942 dw_die_ref old_die = type_die;
71dfc51f 10943
a3f97cbb
JW
10944 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
10945 ? DW_TAG_structure_type : DW_TAG_union_type,
54ba1f0d 10946 scope_die, type);
a3f97cbb 10947 equate_type_number_to_die (type, type_die);
273dbe67
JM
10948 if (old_die)
10949 add_AT_die_ref (type_die, DW_AT_specification, old_die);
5de0e8d4
JM
10950 else
10951 add_name_attribute (type_die, type_tag (type));
a3f97cbb 10952 }
4b674448 10953 else
273dbe67 10954 remove_AT (type_die, DW_AT_declaration);
a3f97cbb
JW
10955
10956 /* If this type has been completed, then give it a byte_size attribute and
10957 then give a list of members. */
2081603c 10958 if (complete)
a3f97cbb 10959 {
556273e0 10960 /* Prevent infinite recursion in cases where the type of some member of
a3f97cbb
JW
10961 this type is expressed in terms of this type itself. */
10962 TREE_ASM_WRITTEN (type) = 1;
273dbe67 10963 add_byte_size_attribute (type_die, type);
e9a25f70 10964 if (TYPE_STUB_DECL (type) != NULL_TREE)
b2932ae5 10965 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
71dfc51f 10966
ef76d03b
JW
10967 /* If the first reference to this type was as the return type of an
10968 inline function, then it may not have a parent. Fix this now. */
10969 if (type_die->die_parent == NULL)
10970 add_child_die (scope_die, type_die);
10971
273dbe67
JM
10972 push_decl_scope (type);
10973 gen_member_die (type, type_die);
10974 pop_decl_scope ();
71dfc51f 10975
a94dbf2c
JM
10976 /* GNU extension: Record what type our vtable lives in. */
10977 if (TYPE_VFIELD (type))
10978 {
10979 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
71dfc51f 10980
de6e505e
JM
10981 gen_type_die (vtype, context_die);
10982 add_AT_die_ref (type_die, DW_AT_containing_type,
10983 lookup_type_die (vtype));
a94dbf2c 10984 }
a3f97cbb 10985 }
4b674448 10986 else
8a8c3656
JM
10987 {
10988 add_AT_flag (type_die, DW_AT_declaration, 1);
a30d4514 10989
9765e357 10990 /* We don't need to do this for function-local types. */
9702143f
RK
10991 if (TYPE_STUB_DECL (type)
10992 && ! decl_function_context (TYPE_STUB_DECL (type)))
2ad9852d 10993 VARRAY_PUSH_TREE (incomplete_types, type);
8a8c3656 10994 }
a3f97cbb
JW
10995}
10996
10997/* Generate a DIE for a subroutine _type_. */
71dfc51f 10998
a3f97cbb
JW
10999static void
11000gen_subroutine_type_die (type, context_die)
b3694847
SS
11001 tree type;
11002 dw_die_ref context_die;
a3f97cbb 11003{
b3694847
SS
11004 tree return_type = TREE_TYPE (type);
11005 dw_die_ref subr_die
54ba1f0d
RH
11006 = new_die (DW_TAG_subroutine_type,
11007 scope_die_for (type, context_die), type);
71dfc51f 11008
a3f97cbb
JW
11009 equate_type_number_to_die (type, subr_die);
11010 add_prototyped_attribute (subr_die, type);
a3f97cbb 11011 add_type_attribute (subr_die, return_type, 0, 0, context_die);
a94dbf2c 11012 gen_formal_types_die (type, subr_die);
a3f97cbb
JW
11013}
11014
11015/* Generate a DIE for a type definition */
71dfc51f 11016
a3f97cbb
JW
11017static void
11018gen_typedef_die (decl, context_die)
b3694847
SS
11019 tree decl;
11020 dw_die_ref context_die;
a3f97cbb 11021{
b3694847
SS
11022 dw_die_ref type_die;
11023 tree origin;
a94dbf2c
JM
11024
11025 if (TREE_ASM_WRITTEN (decl))
11026 return;
a94dbf2c 11027
2ad9852d 11028 TREE_ASM_WRITTEN (decl) = 1;
54ba1f0d 11029 type_die = new_die (DW_TAG_typedef, context_die, decl);
a94dbf2c 11030 origin = decl_ultimate_origin (decl);
a3f97cbb 11031 if (origin != NULL)
a94dbf2c 11032 add_abstract_origin_attribute (type_die, origin);
a3f97cbb
JW
11033 else
11034 {
b3694847 11035 tree type;
2ad9852d 11036
a3f97cbb 11037 add_name_and_src_coords_attributes (type_die, decl);
a94dbf2c
JM
11038 if (DECL_ORIGINAL_TYPE (decl))
11039 {
11040 type = DECL_ORIGINAL_TYPE (decl);
62e3bf54
JM
11041
11042 if (type == TREE_TYPE (decl))
11043 abort ();
11044 else
11045 equate_type_number_to_die (TREE_TYPE (decl), type_die);
a94dbf2c
JM
11046 }
11047 else
11048 type = TREE_TYPE (decl);
2ad9852d 11049
a94dbf2c
JM
11050 add_type_attribute (type_die, type, TREE_READONLY (decl),
11051 TREE_THIS_VOLATILE (decl), context_die);
a3f97cbb 11052 }
71dfc51f 11053
a3f97cbb 11054 if (DECL_ABSTRACT (decl))
a94dbf2c 11055 equate_decl_number_to_die (decl, type_die);
a3f97cbb
JW
11056}
11057
11058/* Generate a type description DIE. */
71dfc51f 11059
a3f97cbb
JW
11060static void
11061gen_type_die (type, context_die)
b3694847
SS
11062 tree type;
11063 dw_die_ref context_die;
a3f97cbb 11064{
348bb3c7
JM
11065 int need_pop;
11066
71dfc51f
RK
11067 if (type == NULL_TREE || type == error_mark_node)
11068 return;
a3f97cbb 11069
0e98f924
AH
11070 /* We are going to output a DIE to represent the unqualified version
11071 of this type (i.e. without any const or volatile qualifiers) so
11072 get the main variant (i.e. the unqualified version) of this type
11073 now. (Vectors are special because the debugging info is in the
11074 cloned type itself). */
11075 if (TREE_CODE (type) != VECTOR_TYPE)
11076 type = type_main_variant (type);
a3f97cbb
JW
11077
11078 if (TREE_ASM_WRITTEN (type))
71dfc51f 11079 return;
a3f97cbb 11080
a94dbf2c
JM
11081 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11082 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
556273e0 11083 {
29b91443
JM
11084 /* Prevent broken recursion; we can't hand off to the same type. */
11085 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11086 abort ();
11087
a94dbf2c
JM
11088 TREE_ASM_WRITTEN (type) = 1;
11089 gen_decl_die (TYPE_NAME (type), context_die);
11090 return;
11091 }
11092
a3f97cbb
JW
11093 switch (TREE_CODE (type))
11094 {
11095 case ERROR_MARK:
11096 break;
11097
11098 case POINTER_TYPE:
11099 case REFERENCE_TYPE:
956d6950
JL
11100 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11101 ensures that the gen_type_die recursion will terminate even if the
11102 type is recursive. Recursive types are possible in Ada. */
11103 /* ??? We could perhaps do this for all types before the switch
11104 statement. */
11105 TREE_ASM_WRITTEN (type) = 1;
11106
a3f97cbb
JW
11107 /* For these types, all that is required is that we output a DIE (or a
11108 set of DIEs) to represent the "basis" type. */
11109 gen_type_die (TREE_TYPE (type), context_die);
11110 break;
11111
11112 case OFFSET_TYPE:
556273e0 11113 /* This code is used for C++ pointer-to-data-member types.
71dfc51f 11114 Output a description of the relevant class type. */
a3f97cbb 11115 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
71dfc51f 11116
a3f97cbb
JW
11117 /* Output a description of the type of the object pointed to. */
11118 gen_type_die (TREE_TYPE (type), context_die);
71dfc51f 11119
a3f97cbb
JW
11120 /* Now output a DIE to represent this pointer-to-data-member type
11121 itself. */
11122 gen_ptr_to_mbr_type_die (type, context_die);
11123 break;
11124
11125 case SET_TYPE:
11126 gen_type_die (TYPE_DOMAIN (type), context_die);
11127 gen_set_type_die (type, context_die);
11128 break;
11129
11130 case FILE_TYPE:
11131 gen_type_die (TREE_TYPE (type), context_die);
11132 abort (); /* No way to represent these in Dwarf yet! */
11133 break;
11134
11135 case FUNCTION_TYPE:
11136 /* Force out return type (in case it wasn't forced out already). */
11137 gen_type_die (TREE_TYPE (type), context_die);
11138 gen_subroutine_type_die (type, context_die);
11139 break;
11140
11141 case METHOD_TYPE:
11142 /* Force out return type (in case it wasn't forced out already). */
11143 gen_type_die (TREE_TYPE (type), context_die);
11144 gen_subroutine_type_die (type, context_die);
11145 break;
11146
11147 case ARRAY_TYPE:
11148 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11149 {
11150 gen_type_die (TREE_TYPE (type), context_die);
11151 gen_string_type_die (type, context_die);
11152 }
11153 else
71dfc51f 11154 gen_array_type_die (type, context_die);
a3f97cbb
JW
11155 break;
11156
4061f623 11157 case VECTOR_TYPE:
84f0ace0 11158 gen_array_type_die (type, context_die);
4061f623
BS
11159 break;
11160
a3f97cbb
JW
11161 case ENUMERAL_TYPE:
11162 case RECORD_TYPE:
11163 case UNION_TYPE:
11164 case QUAL_UNION_TYPE:
2ad9852d
RK
11165 /* If this is a nested type whose containing class hasn't been written
11166 out yet, writing it out will cover this one, too. This does not apply
11167 to instantiations of member class templates; they need to be added to
11168 the containing class as they are generated. FIXME: This hurts the
11169 idea of combining type decls from multiple TUs, since we can't predict
11170 what set of template instantiations we'll get. */
a082c85a 11171 if (TYPE_CONTEXT (type)
5f2f160c 11172 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
a082c85a 11173 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
a94dbf2c
JM
11174 {
11175 gen_type_die (TYPE_CONTEXT (type), context_die);
11176
348bb3c7 11177 if (TREE_ASM_WRITTEN (type))
a94dbf2c
JM
11178 return;
11179
11180 /* If that failed, attach ourselves to the stub. */
11181 push_decl_scope (TYPE_CONTEXT (type));
11182 context_die = lookup_type_die (TYPE_CONTEXT (type));
348bb3c7 11183 need_pop = 1;
a94dbf2c 11184 }
348bb3c7
JM
11185 else
11186 need_pop = 0;
a94dbf2c
JM
11187
11188 if (TREE_CODE (type) == ENUMERAL_TYPE)
273dbe67 11189 gen_enumeration_type_die (type, context_die);
a3f97cbb 11190 else
273dbe67 11191 gen_struct_or_union_type_die (type, context_die);
4b674448 11192
348bb3c7 11193 if (need_pop)
a94dbf2c
JM
11194 pop_decl_scope ();
11195
4b674448 11196 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
a082c85a
JM
11197 it up if it is ever completed. gen_*_type_die will set it for us
11198 when appropriate. */
11199 return;
a3f97cbb
JW
11200
11201 case VOID_TYPE:
11202 case INTEGER_TYPE:
11203 case REAL_TYPE:
11204 case COMPLEX_TYPE:
11205 case BOOLEAN_TYPE:
11206 case CHAR_TYPE:
11207 /* No DIEs needed for fundamental types. */
11208 break;
11209
11210 case LANG_TYPE:
11211 /* No Dwarf representation currently defined. */
11212 break;
11213
11214 default:
11215 abort ();
11216 }
11217
11218 TREE_ASM_WRITTEN (type) = 1;
11219}
11220
11221/* Generate a DIE for a tagged type instantiation. */
71dfc51f 11222
a3f97cbb
JW
11223static void
11224gen_tagged_type_instantiation_die (type, context_die)
b3694847
SS
11225 tree type;
11226 dw_die_ref context_die;
a3f97cbb 11227{
71dfc51f
RK
11228 if (type == NULL_TREE || type == error_mark_node)
11229 return;
a3f97cbb 11230
38e01259 11231 /* We are going to output a DIE to represent the unqualified version of
a3f97cbb
JW
11232 this type (i.e. without any const or volatile qualifiers) so make sure
11233 that we have the main variant (i.e. the unqualified version) of this
11234 type now. */
bbc6ae08 11235 if (type != type_main_variant (type))
3a88cbd1 11236 abort ();
a3f97cbb 11237
203588e7 11238 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
bbc6ae08 11239 an instance of an unresolved type. */
556273e0 11240
a3f97cbb
JW
11241 switch (TREE_CODE (type))
11242 {
11243 case ERROR_MARK:
11244 break;
11245
11246 case ENUMERAL_TYPE:
11247 gen_inlined_enumeration_type_die (type, context_die);
11248 break;
11249
11250 case RECORD_TYPE:
11251 gen_inlined_structure_type_die (type, context_die);
11252 break;
11253
11254 case UNION_TYPE:
11255 case QUAL_UNION_TYPE:
11256 gen_inlined_union_type_die (type, context_die);
11257 break;
11258
11259 default:
71dfc51f 11260 abort ();
a3f97cbb
JW
11261 }
11262}
11263
11264/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11265 things which are local to the given block. */
71dfc51f 11266
a3f97cbb 11267static void
d7248bff 11268gen_block_die (stmt, context_die, depth)
b3694847
SS
11269 tree stmt;
11270 dw_die_ref context_die;
d7248bff 11271 int depth;
a3f97cbb 11272{
b3694847
SS
11273 int must_output_die = 0;
11274 tree origin;
11275 tree decl;
11276 enum tree_code origin_code;
a3f97cbb
JW
11277
11278 /* Ignore blocks never really used to make RTL. */
1e7f092a
JM
11279 if (stmt == NULL_TREE || !TREE_USED (stmt)
11280 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
71dfc51f 11281 return;
a3f97cbb 11282
a20612aa
RH
11283 /* If the block is one fragment of a non-contiguous block, do not
11284 process the variables, since they will have been done by the
11285 origin block. Do process subblocks. */
11286 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11287 {
11288 tree sub;
11289
2ad9852d 11290 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
a20612aa 11291 gen_block_die (sub, context_die, depth + 1);
2ad9852d 11292
a20612aa
RH
11293 return;
11294 }
11295
a3f97cbb
JW
11296 /* Determine the "ultimate origin" of this block. This block may be an
11297 inlined instance of an inlined instance of inline function, so we have
11298 to trace all of the way back through the origin chain to find out what
11299 sort of node actually served as the original seed for the creation of
11300 the current block. */
11301 origin = block_ultimate_origin (stmt);
11302 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11303
11304 /* Determine if we need to output any Dwarf DIEs at all to represent this
11305 block. */
11306 if (origin_code == FUNCTION_DECL)
71dfc51f
RK
11307 /* The outer scopes for inlinings *must* always be represented. We
11308 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11309 must_output_die = 1;
a3f97cbb
JW
11310 else
11311 {
11312 /* In the case where the current block represents an inlining of the
556273e0 11313 "body block" of an inline function, we must *NOT* output any DIE for
2ad9852d
RK
11314 this block because we have already output a DIE to represent the whole
11315 inlined function scope and the "body block" of any function doesn't
11316 really represent a different scope according to ANSI C rules. So we
11317 check here to make sure that this block does not represent a "body
11318 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
d7248bff 11319 if (! is_body_block (origin ? origin : stmt))
a3f97cbb
JW
11320 {
11321 /* Determine if this block directly contains any "significant"
11322 local declarations which we will need to output DIEs for. */
11323 if (debug_info_level > DINFO_LEVEL_TERSE)
71dfc51f
RK
11324 /* We are not in terse mode so *any* local declaration counts
11325 as being a "significant" one. */
11326 must_output_die = (BLOCK_VARS (stmt) != NULL);
a3f97cbb 11327 else
71dfc51f
RK
11328 /* We are in terse mode, so only local (nested) function
11329 definitions count as "significant" local declarations. */
11330 for (decl = BLOCK_VARS (stmt);
11331 decl != NULL; decl = TREE_CHAIN (decl))
11332 if (TREE_CODE (decl) == FUNCTION_DECL
11333 && DECL_INITIAL (decl))
a3f97cbb 11334 {
71dfc51f
RK
11335 must_output_die = 1;
11336 break;
a3f97cbb 11337 }
a3f97cbb
JW
11338 }
11339 }
11340
11341 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11342 DIE for any block which contains no significant local declarations at
11343 all. Rather, in such cases we just call `decls_for_scope' so that any
11344 needed Dwarf info for any sub-blocks will get properly generated. Note
11345 that in terse mode, our definition of what constitutes a "significant"
11346 local declaration gets restricted to include only inlined function
11347 instances and local (nested) function definitions. */
11348 if (must_output_die)
11349 {
11350 if (origin_code == FUNCTION_DECL)
71dfc51f 11351 gen_inlined_subroutine_die (stmt, context_die, depth);
a3f97cbb 11352 else
71dfc51f 11353 gen_lexical_block_die (stmt, context_die, depth);
a3f97cbb
JW
11354 }
11355 else
d7248bff 11356 decls_for_scope (stmt, context_die, depth);
a3f97cbb
JW
11357}
11358
11359/* Generate all of the decls declared within a given scope and (recursively)
9ec36da5 11360 all of its sub-blocks. */
71dfc51f 11361
a3f97cbb 11362static void
d7248bff 11363decls_for_scope (stmt, context_die, depth)
b3694847
SS
11364 tree stmt;
11365 dw_die_ref context_die;
d7248bff 11366 int depth;
a3f97cbb 11367{
b3694847
SS
11368 tree decl;
11369 tree subblocks;
71dfc51f 11370
a3f97cbb 11371 /* Ignore blocks never really used to make RTL. */
71dfc51f
RK
11372 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11373 return;
11374
88dad228
JM
11375 /* Output the DIEs to represent all of the data objects and typedefs
11376 declared directly within this block but not within any nested
11377 sub-blocks. Also, nested function and tag DIEs have been
11378 generated with a parent of NULL; fix that up now. */
2ad9852d 11379 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
a3f97cbb 11380 {
b3694847 11381 dw_die_ref die;
a94dbf2c 11382
88dad228 11383 if (TREE_CODE (decl) == FUNCTION_DECL)
a94dbf2c 11384 die = lookup_decl_die (decl);
88dad228 11385 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
a94dbf2c
JM
11386 die = lookup_type_die (TREE_TYPE (decl));
11387 else
11388 die = NULL;
11389
71dfc51f 11390 if (die != NULL && die->die_parent == NULL)
ef76d03b 11391 add_child_die (context_die, die);
88dad228
JM
11392 else
11393 gen_decl_die (decl, context_die);
a3f97cbb
JW
11394 }
11395
11396 /* Output the DIEs to represent all sub-blocks (and the items declared
11397 therein) of this block. */
11398 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11399 subblocks != NULL;
11400 subblocks = BLOCK_CHAIN (subblocks))
71dfc51f 11401 gen_block_die (subblocks, context_die, depth + 1);
a3f97cbb
JW
11402}
11403
a94dbf2c 11404/* Is this a typedef we can avoid emitting? */
71dfc51f
RK
11405
11406static inline int
a94dbf2c 11407is_redundant_typedef (decl)
b3694847 11408 tree decl;
a94dbf2c
JM
11409{
11410 if (TYPE_DECL_IS_STUB (decl))
11411 return 1;
71dfc51f 11412
a94dbf2c
JM
11413 if (DECL_ARTIFICIAL (decl)
11414 && DECL_CONTEXT (decl)
11415 && is_tagged_type (DECL_CONTEXT (decl))
11416 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11417 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11418 /* Also ignore the artificial member typedef for the class name. */
11419 return 1;
71dfc51f 11420
a94dbf2c
JM
11421 return 0;
11422}
11423
a3f97cbb 11424/* Generate Dwarf debug information for a decl described by DECL. */
71dfc51f 11425
a3f97cbb
JW
11426static void
11427gen_decl_die (decl, context_die)
b3694847
SS
11428 tree decl;
11429 dw_die_ref context_die;
a3f97cbb 11430{
b3694847 11431 tree origin;
71dfc51f 11432
f11c3043 11433 if (DECL_P (decl) && DECL_IGNORED_P (decl))
71dfc51f 11434 return;
a3f97cbb 11435
a3f97cbb
JW
11436 switch (TREE_CODE (decl))
11437 {
2ad9852d
RK
11438 case ERROR_MARK:
11439 break;
11440
a3f97cbb 11441 case CONST_DECL:
556273e0 11442 /* The individual enumerators of an enum type get output when we output
a3f97cbb
JW
11443 the Dwarf representation of the relevant enum type itself. */
11444 break;
11445
11446 case FUNCTION_DECL:
4edb7b60
JM
11447 /* Don't output any DIEs to represent mere function declarations,
11448 unless they are class members or explicit block externs. */
11449 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
777ad4c2 11450 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
71dfc51f 11451 break;
bdb669cb 11452
5daf7c0a
JM
11453 /* If we're emitting a clone, emit info for the abstract instance. */
11454 if (DECL_ORIGIN (decl) != decl)
11455 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
2ad9852d 11456
1cfdcc15
JM
11457 /* If we're emitting an out-of-line copy of an inline function,
11458 emit info for the abstract instance and set up to refer to it. */
5daf7c0a
JM
11459 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
11460 && ! class_scope_p (context_die)
11461 /* dwarf2out_abstract_function won't emit a die if this is just
11462 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11463 that case, because that works only if we have a die. */
11464 && DECL_INITIAL (decl) != NULL_TREE)
1cfdcc15 11465 {
1edf43d6 11466 dwarf2out_abstract_function (decl);
1cfdcc15
JM
11467 set_decl_origin_self (decl);
11468 }
2ad9852d 11469
5daf7c0a
JM
11470 /* Otherwise we're emitting the primary DIE for this decl. */
11471 else if (debug_info_level > DINFO_LEVEL_TERSE)
a94dbf2c
JM
11472 {
11473 /* Before we describe the FUNCTION_DECL itself, make sure that we
11474 have described its return type. */
11475 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11476
2081603c
JM
11477 /* And its virtual context. */
11478 if (DECL_VINDEX (decl) != NULL_TREE)
11479 gen_type_die (DECL_CONTEXT (decl), context_die);
11480
a94dbf2c
JM
11481 /* And its containing type. */
11482 origin = decl_class_context (decl);
71dfc51f 11483 if (origin != NULL_TREE)
10a11b75 11484 gen_type_die_for_member (origin, decl, context_die);
a94dbf2c 11485 }
a3f97cbb
JW
11486
11487 /* Now output a DIE to represent the function itself. */
11488 gen_subprogram_die (decl, context_die);
11489 break;
11490
11491 case TYPE_DECL:
11492 /* If we are in terse mode, don't generate any DIEs to represent any
4927276d 11493 actual typedefs. */
a3f97cbb 11494 if (debug_info_level <= DINFO_LEVEL_TERSE)
4927276d 11495 break;
a3f97cbb 11496
2ad9852d
RK
11497 /* In the special case of a TYPE_DECL node representing the declaration
11498 of some type tag, if the given TYPE_DECL is marked as having been
11499 instantiated from some other (original) TYPE_DECL node (e.g. one which
11500 was generated within the original definition of an inline function) we
11501 have to generate a special (abbreviated) DW_TAG_structure_type,
11502 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
2081603c 11503 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
a3f97cbb
JW
11504 {
11505 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11506 break;
11507 }
a3f97cbb 11508
a94dbf2c
JM
11509 if (is_redundant_typedef (decl))
11510 gen_type_die (TREE_TYPE (decl), context_die);
11511 else
71dfc51f
RK
11512 /* Output a DIE to represent the typedef itself. */
11513 gen_typedef_die (decl, context_die);
a3f97cbb
JW
11514 break;
11515
11516 case LABEL_DECL:
11517 if (debug_info_level >= DINFO_LEVEL_NORMAL)
71dfc51f 11518 gen_label_die (decl, context_die);
a3f97cbb
JW
11519 break;
11520
11521 case VAR_DECL:
11522 /* If we are in terse mode, don't generate any DIEs to represent any
11523 variable declarations or definitions. */
11524 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 11525 break;
a3f97cbb
JW
11526
11527 /* Output any DIEs that are needed to specify the type of this data
11528 object. */
11529 gen_type_die (TREE_TYPE (decl), context_die);
11530
a94dbf2c
JM
11531 /* And its containing type. */
11532 origin = decl_class_context (decl);
71dfc51f 11533 if (origin != NULL_TREE)
10a11b75 11534 gen_type_die_for_member (origin, decl, context_die);
a94dbf2c 11535
a3f97cbb
JW
11536 /* Now output the DIE to represent the data object itself. This gets
11537 complicated because of the possibility that the VAR_DECL really
11538 represents an inlined instance of a formal parameter for an inline
11539 function. */
11540 origin = decl_ultimate_origin (decl);
71dfc51f
RK
11541 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11542 gen_formal_parameter_die (decl, context_die);
a3f97cbb 11543 else
71dfc51f 11544 gen_variable_die (decl, context_die);
a3f97cbb
JW
11545 break;
11546
11547 case FIELD_DECL:
2ad9852d
RK
11548 /* Ignore the nameless fields that are used to skip bits but handle C++
11549 anonymous unions. */
71dfc51f
RK
11550 if (DECL_NAME (decl) != NULL_TREE
11551 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
a3f97cbb
JW
11552 {
11553 gen_type_die (member_declared_type (decl), context_die);
11554 gen_field_die (decl, context_die);
11555 }
11556 break;
11557
11558 case PARM_DECL:
11559 gen_type_die (TREE_TYPE (decl), context_die);
11560 gen_formal_parameter_die (decl, context_die);
11561 break;
11562
348bb3c7
JM
11563 case NAMESPACE_DECL:
11564 /* Ignore for now. */
11565 break;
11566
a3f97cbb
JW
11567 default:
11568 abort ();
11569 }
a3f97cbb 11570}
54ba1f0d
RH
11571
11572static void
11573mark_limbo_die_list (ptr)
11574 void *ptr ATTRIBUTE_UNUSED;
11575{
11576 limbo_die_node *node;
c26fbbca 11577 for (node = limbo_die_list; node; node = node->next)
54ba1f0d
RH
11578 ggc_mark_tree (node->created_for);
11579}
a3f97cbb 11580\f
14a774a9
RK
11581/* Add Ada "use" clause information for SGI Workshop debugger. */
11582
11583void
11584dwarf2out_add_library_unit_info (filename, context_list)
c6991660
KG
11585 const char *filename;
11586 const char *context_list;
14a774a9
RK
11587{
11588 unsigned int file_index;
11589
11590 if (filename != NULL)
11591 {
54ba1f0d 11592 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
556273e0 11593 tree context_list_decl
14a774a9
RK
11594 = build_decl (LABEL_DECL, get_identifier (context_list),
11595 void_type_node);
11596
11597 TREE_PUBLIC (context_list_decl) = TRUE;
11598 add_name_attribute (unit_die, context_list);
981975b6 11599 file_index = lookup_filename (filename);
14a774a9
RK
11600 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11601 add_pubname (context_list_decl, unit_die);
11602 }
11603}
11604
2ad9852d 11605/* Output debug information for global decl DECL. Called from toplev.c after
2b85879e 11606 compilation proper has finished. */
2ad9852d 11607
2b85879e
NB
11608static void
11609dwarf2out_global_decl (decl)
11610 tree decl;
11611{
11612 /* Output DWARF2 information for file-scope tentative data object
2ad9852d
RK
11613 declarations, file-scope (extern) function declarations (which had no
11614 corresponding body) and file-scope tagged type declarations and
11615 definitions which have not yet been forced out. */
2b85879e
NB
11616 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11617 dwarf2out_decl (decl);
11618}
11619
71dfc51f
RK
11620/* Write the debugging output for DECL. */
11621
a3f97cbb 11622void
88dad228 11623dwarf2out_decl (decl)
b3694847 11624 tree decl;
a3f97cbb 11625{
b3694847 11626 dw_die_ref context_die = comp_unit_die;
88dad228 11627
a3f97cbb
JW
11628 switch (TREE_CODE (decl))
11629 {
2ad9852d
RK
11630 case ERROR_MARK:
11631 return;
11632
a3f97cbb 11633 case FUNCTION_DECL:
556273e0 11634 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
a3f97cbb
JW
11635 builtin function. Explicit programmer-supplied declarations of
11636 these same functions should NOT be ignored however. */
9765e357 11637 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
b1ccbc24 11638 return;
a3f97cbb
JW
11639
11640 /* What we would really like to do here is to filter out all mere
11641 file-scope declarations of file-scope functions which are never
11642 referenced later within this translation unit (and keep all of ones
556273e0
KH
11643 that *are* referenced later on) but we aren't clairvoyant, so we have
11644 no idea which functions will be referenced in the future (i.e. later
a3f97cbb 11645 on within the current translation unit). So here we just ignore all
556273e0 11646 file-scope function declarations which are not also definitions. If
956d6950 11647 and when the debugger needs to know something about these functions,
556273e0 11648 it will have to hunt around and find the DWARF information associated
2ad9852d
RK
11649 with the definition of the function.
11650
11651 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11652 nodes represent definitions and which ones represent mere
11653 declarations. We have to check DECL_INITIAL instead. That's because
11654 the C front-end supports some weird semantics for "extern inline"
11655 function definitions. These can get inlined within the current
11656 translation unit (an thus, we need to generate Dwarf info for their
11657 abstract instances so that the Dwarf info for the concrete inlined
11658 instances can have something to refer to) but the compiler never
11659 generates any out-of-lines instances of such things (despite the fact
11660 that they *are* definitions).
11661
11662 The important point is that the C front-end marks these "extern
11663 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11664 them anyway. Note that the C++ front-end also plays some similar games
11665 for inline function definitions appearing within include files which
11666 also contain `#pragma interface' pragmas. */
a3f97cbb 11667 if (DECL_INITIAL (decl) == NULL_TREE)
b1ccbc24 11668 return;
88dad228 11669
9c6cd30e
JM
11670 /* If we're a nested function, initially use a parent of NULL; if we're
11671 a plain function, this will be fixed up in decls_for_scope. If
11672 we're a method, it will be ignored, since we already have a DIE. */
88dad228 11673 if (decl_function_context (decl))
9c6cd30e 11674 context_die = NULL;
a3f97cbb
JW
11675 break;
11676
11677 case VAR_DECL:
556273e0 11678 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
a3f97cbb
JW
11679 declaration and if the declaration was never even referenced from
11680 within this entire compilation unit. We suppress these DIEs in
11681 order to save space in the .debug section (by eliminating entries
11682 which are probably useless). Note that we must not suppress
11683 block-local extern declarations (whether used or not) because that
11684 would screw-up the debugger's name lookup mechanism and cause it to
11685 miss things which really ought to be in scope at a given point. */
11686 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
71dfc51f 11687 return;
a3f97cbb
JW
11688
11689 /* If we are in terse mode, don't generate any DIEs to represent any
11690 variable declarations or definitions. */
11691 if (debug_info_level <= DINFO_LEVEL_TERSE)
71dfc51f 11692 return;
a3f97cbb
JW
11693 break;
11694
11695 case TYPE_DECL:
57fb7689
JM
11696 /* Don't emit stubs for types unless they are needed by other DIEs. */
11697 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
11698 return;
11699
a3f97cbb 11700 /* Don't bother trying to generate any DIEs to represent any of the
a9d38797
JM
11701 normal built-in types for the language we are compiling. */
11702 if (DECL_SOURCE_LINE (decl) == 0)
a94dbf2c
JM
11703 {
11704 /* OK, we need to generate one for `bool' so GDB knows what type
11705 comparisons have. */
11706 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
11707 == DW_LANG_C_plus_plus)
f11c3043
RK
11708 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
11709 && ! DECL_IGNORED_P (decl))
a94dbf2c 11710 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
71dfc51f 11711
a94dbf2c
JM
11712 return;
11713 }
a3f97cbb 11714
88dad228 11715 /* If we are in terse mode, don't generate any DIEs for types. */
a3f97cbb 11716 if (debug_info_level <= DINFO_LEVEL_TERSE)
4927276d 11717 return;
88dad228
JM
11718
11719 /* If we're a function-scope tag, initially use a parent of NULL;
11720 this will be fixed up in decls_for_scope. */
11721 if (decl_function_context (decl))
3f76745e 11722 context_die = NULL;
88dad228 11723
a3f97cbb
JW
11724 break;
11725
11726 default:
11727 return;
11728 }
11729
88dad228 11730 gen_decl_die (decl, context_die);
a3f97cbb
JW
11731}
11732
11733/* Output a marker (i.e. a label) for the beginning of the generated code for
11734 a lexical block. */
71dfc51f 11735
a5a42b92 11736static void
e2a12aca 11737dwarf2out_begin_block (line, blocknum)
a5a42b92
NB
11738 unsigned int line ATTRIBUTE_UNUSED;
11739 unsigned int blocknum;
a3f97cbb 11740{
a3f97cbb 11741 function_section (current_function_decl);
8215347e 11742 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
a3f97cbb
JW
11743}
11744
11745/* Output a marker (i.e. a label) for the end of the generated code for a
11746 lexical block. */
71dfc51f 11747
a5a42b92 11748static void
e2a12aca 11749dwarf2out_end_block (line, blocknum)
a5a42b92
NB
11750 unsigned int line ATTRIBUTE_UNUSED;
11751 unsigned int blocknum;
a3f97cbb 11752{
a3f97cbb 11753 function_section (current_function_decl);
8215347e 11754 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
a3f97cbb
JW
11755}
11756
64b59a80
JM
11757/* Returns nonzero if it is appropriate not to emit any debugging
11758 information for BLOCK, because it doesn't contain any instructions.
fcd7f76b 11759
64b59a80
JM
11760 Don't allow this for blocks with nested functions or local classes
11761 as we would end up with orphans, and in the presence of scheduling
11762 we may end up calling them anyway. */
11763
e1772ac0 11764static bool
fcd7f76b
JM
11765dwarf2out_ignore_block (block)
11766 tree block;
11767{
11768 tree decl;
2ad9852d 11769
fcd7f76b 11770 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
64b59a80
JM
11771 if (TREE_CODE (decl) == FUNCTION_DECL
11772 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
11773 return 0;
2ad9852d 11774
64b59a80 11775 return 1;
fcd7f76b
JM
11776}
11777
2ad9852d 11778/* Lookup FILE_NAME (in the list of filenames that we know about here in
9a666dda 11779 dwarf2out.c) and return its "index". The index of each (known) filename is
2ad9852d
RK
11780 just a unique number which is associated with only that one filename. We
11781 need such numbers for the sake of generating labels (in the .debug_sfnames
11782 section) and references to those files numbers (in the .debug_srcinfo
11783 and.debug_macinfo sections). If the filename given as an argument is not
11784 found in our current list, add it to the list and assign it the next
11785 available unique index number. In order to speed up searches, we remember
11786 the index of the filename was looked up last. This handles the majority of
11787 all searches. */
71dfc51f 11788
a3f97cbb 11789static unsigned
981975b6 11790lookup_filename (file_name)
d560ee52 11791 const char *file_name;
a3f97cbb 11792{
b3694847 11793 unsigned i;
a3f97cbb 11794
981975b6
RH
11795 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11796 if (strcmp (file_name, "<internal>") == 0
11797 || strcmp (file_name, "<built-in>") == 0)
11798 return 0;
11799
2e18bbae
RH
11800 /* Check to see if the file name that was searched on the previous
11801 call matches this file name. If so, return the index. */
981975b6 11802 if (file_table.last_lookup_index != 0)
2ad9852d
RK
11803 if (0 == strcmp (file_name,
11804 file_table.table[file_table.last_lookup_index]))
981975b6 11805 return file_table.last_lookup_index;
a3f97cbb
JW
11806
11807 /* Didn't match the previous lookup, search the table */
2ad9852d 11808 for (i = 1; i < file_table.in_use; i++)
981975b6 11809 if (strcmp (file_name, file_table.table[i]) == 0)
71dfc51f 11810 {
981975b6 11811 file_table.last_lookup_index = i;
71dfc51f
RK
11812 return i;
11813 }
a3f97cbb 11814
556273e0 11815 /* Prepare to add a new table entry by making sure there is enough space in
a3f97cbb 11816 the table to do so. If not, expand the current table. */
981975b6 11817 if (i == file_table.allocated)
a3f97cbb 11818 {
981975b6
RH
11819 file_table.allocated = i + FILE_TABLE_INCREMENT;
11820 file_table.table = (char **)
11821 xrealloc (file_table.table, file_table.allocated * sizeof (char *));
a3f97cbb
JW
11822 }
11823
71dfc51f 11824 /* Add the new entry to the end of the filename table. */
981975b6
RH
11825 file_table.table[i] = xstrdup (file_name);
11826 file_table.in_use = i + 1;
11827 file_table.last_lookup_index = i;
2e18bbae 11828
acc187f5 11829 if (DWARF2_ASM_LINE_DEBUG_INFO)
211a0cbe
GDR
11830 {
11831 fprintf (asm_out_file, "\t.file %u ", i);
11832 output_quoted_string (asm_out_file, file_name);
11833 fputc ('\n', asm_out_file);
11834 }
acc187f5 11835
2e18bbae
RH
11836 return i;
11837}
11838
11839static void
981975b6 11840init_file_table ()
2e18bbae
RH
11841{
11842 /* Allocate the initial hunk of the file_table. */
981975b6
RH
11843 file_table.table = (char **) xcalloc (FILE_TABLE_INCREMENT, sizeof (char *));
11844 file_table.allocated = FILE_TABLE_INCREMENT;
71dfc51f 11845
2e18bbae 11846 /* Skip the first entry - file numbers begin at 1. */
981975b6
RH
11847 file_table.in_use = 1;
11848 file_table.last_lookup_index = 0;
a3f97cbb
JW
11849}
11850
11851/* Output a label to mark the beginning of a source code line entry
11852 and record information relating to this source line, in
11853 'line_info_table' for later output of the .debug_line section. */
71dfc51f 11854
e2a12aca 11855static void
653e276c
NB
11856dwarf2out_source_line (line, filename)
11857 unsigned int line;
b3694847 11858 const char *filename;
a3f97cbb 11859{
a3f97cbb
JW
11860 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11861 {
11862 function_section (current_function_decl);
a3f97cbb 11863
8aaf55ac
JM
11864 /* If requested, emit something human-readable. */
11865 if (flag_debug_asm)
11866 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
11867 filename, line);
11868
b2244e22
JW
11869 if (DWARF2_ASM_LINE_DEBUG_INFO)
11870 {
981975b6 11871 unsigned file_num = lookup_filename (filename);
b2244e22 11872
981975b6 11873 /* Emit the .loc directive understood by GNU as. */
2e18bbae 11874 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
b2244e22
JW
11875
11876 /* Indicate that line number info exists. */
2ad9852d 11877 line_info_table_in_use++;
b2244e22
JW
11878
11879 /* Indicate that multiple line number tables exist. */
11880 if (DECL_SECTION_NAME (current_function_decl))
2ad9852d 11881 separate_line_info_table_in_use++;
b2244e22
JW
11882 }
11883 else if (DECL_SECTION_NAME (current_function_decl))
a3f97cbb 11884 {
b3694847 11885 dw_separate_line_info_ref line_info;
5c90448c
JM
11886 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
11887 separate_line_info_table_in_use);
e90b62db
JM
11888
11889 /* expand the line info table if necessary */
11890 if (separate_line_info_table_in_use
11891 == separate_line_info_table_allocated)
11892 {
11893 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11894 separate_line_info_table
71dfc51f
RK
11895 = (dw_separate_line_info_ref)
11896 xrealloc (separate_line_info_table,
11897 separate_line_info_table_allocated
11898 * sizeof (dw_separate_line_info_entry));
e90b62db 11899 }
71dfc51f
RK
11900
11901 /* Add the new entry at the end of the line_info_table. */
e90b62db
JM
11902 line_info
11903 = &separate_line_info_table[separate_line_info_table_in_use++];
981975b6 11904 line_info->dw_file_num = lookup_filename (filename);
e90b62db
JM
11905 line_info->dw_line_num = line;
11906 line_info->function = current_funcdef_number;
11907 }
11908 else
11909 {
b3694847 11910 dw_line_info_ref line_info;
71dfc51f 11911
5c90448c
JM
11912 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
11913 line_info_table_in_use);
e90b62db 11914
71dfc51f 11915 /* Expand the line info table if necessary. */
e90b62db
JM
11916 if (line_info_table_in_use == line_info_table_allocated)
11917 {
11918 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
11919 line_info_table
71dfc51f
RK
11920 = (dw_line_info_ref)
11921 xrealloc (line_info_table,
11922 (line_info_table_allocated
11923 * sizeof (dw_line_info_entry)));
e90b62db 11924 }
71dfc51f
RK
11925
11926 /* Add the new entry at the end of the line_info_table. */
e90b62db 11927 line_info = &line_info_table[line_info_table_in_use++];
981975b6 11928 line_info->dw_file_num = lookup_filename (filename);
e90b62db 11929 line_info->dw_line_num = line;
a3f97cbb 11930 }
a3f97cbb
JW
11931 }
11932}
11933
30f7a378 11934/* Record the beginning of a new source file. */
71dfc51f 11935
7f905405 11936static void
84a5b4f8 11937dwarf2out_start_source_file (lineno, filename)
b3694847
SS
11938 unsigned int lineno;
11939 const char *filename;
a3f97cbb 11940{
881c6935
JM
11941 if (flag_eliminate_dwarf2_dups)
11942 {
11943 /* Record the beginning of the file for break_out_includes. */
54ba1f0d 11944 dw_die_ref bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
881c6935
JM
11945 add_AT_string (bincl_die, DW_AT_name, filename);
11946 }
2ad9852d 11947
84a5b4f8
DB
11948 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11949 {
715bdd29 11950 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8 11951 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
7c262518
RH
11952 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
11953 lineno);
11954 dw2_asm_output_data_uleb128 (lookup_filename (filename),
11955 "Filename we just started");
84a5b4f8 11956 }
a3f97cbb
JW
11957}
11958
cc260610 11959/* Record the end of a source file. */
71dfc51f 11960
7f905405
NB
11961static void
11962dwarf2out_end_source_file (lineno)
11963 unsigned int lineno ATTRIBUTE_UNUSED;
a3f97cbb 11964{
881c6935 11965 if (flag_eliminate_dwarf2_dups)
2ad9852d 11966 /* Record the end of the file for break_out_includes. */
54ba1f0d 11967 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
2ad9852d 11968
84a5b4f8
DB
11969 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11970 {
715bdd29 11971 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11972 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
11973 }
a3f97cbb
JW
11974}
11975
cc260610 11976/* Called from debug_define in toplev.c. The `buffer' parameter contains
a3f97cbb
JW
11977 the tail part of the directive line, i.e. the part which is past the
11978 initial whitespace, #, whitespace, directive-name, whitespace part. */
71dfc51f 11979
7f905405 11980static void
9a666dda 11981dwarf2out_define (lineno, buffer)
b3694847
SS
11982 unsigned lineno ATTRIBUTE_UNUSED;
11983 const char *buffer ATTRIBUTE_UNUSED;
a3f97cbb 11984{
84a5b4f8
DB
11985 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
11986 {
715bdd29 11987 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
11988 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
11989 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
11990 dw2_asm_output_nstring (buffer, -1, "The macro");
11991 }
a3f97cbb
JW
11992}
11993
cc260610 11994/* Called from debug_undef in toplev.c. The `buffer' parameter contains
a3f97cbb
JW
11995 the tail part of the directive line, i.e. the part which is past the
11996 initial whitespace, #, whitespace, directive-name, whitespace part. */
71dfc51f 11997
7f905405 11998static void
9a666dda 11999dwarf2out_undef (lineno, buffer)
b3694847
SS
12000 unsigned lineno ATTRIBUTE_UNUSED;
12001 const char *buffer ATTRIBUTE_UNUSED;
a3f97cbb 12002{
84a5b4f8
DB
12003 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12004 {
715bdd29 12005 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
12006 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12007 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12008 dw2_asm_output_nstring (buffer, -1, "The macro");
12009 }
a3f97cbb
JW
12010}
12011
12012/* Set up for Dwarf output at the start of compilation. */
71dfc51f 12013
a51d908e 12014static void
e2a12aca 12015dwarf2out_init (main_input_filename)
b3694847 12016 const char *main_input_filename;
a3f97cbb 12017{
acc187f5
RH
12018 init_file_table ();
12019
a3f97cbb
JW
12020 /* Remember the name of the primary input file. */
12021 primary_filename = main_input_filename;
12022
acc187f5
RH
12023 /* Add it to the file table first, under the assumption that we'll
12024 be emitting line number data for it first, which avoids having
12025 to add an initial DW_LNS_set_file. */
12026 lookup_filename (main_input_filename);
a3f97cbb 12027
a3f97cbb
JW
12028 /* Allocate the initial hunk of the decl_die_table. */
12029 decl_die_table
3de90026 12030 = (dw_die_ref *) xcalloc (DECL_DIE_TABLE_INCREMENT, sizeof (dw_die_ref));
a3f97cbb
JW
12031 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12032 decl_die_table_in_use = 0;
12033
12034 /* Allocate the initial hunk of the decl_scope_table. */
244a4af0
TF
12035 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12036 ggc_add_tree_varray_root (&decl_scope_table, 1);
a3f97cbb
JW
12037
12038 /* Allocate the initial hunk of the abbrev_die_table. */
12039 abbrev_die_table
3de90026
RH
12040 = (dw_die_ref *) xcalloc (ABBREV_DIE_TABLE_INCREMENT,
12041 sizeof (dw_die_ref));
a3f97cbb 12042 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
71dfc51f 12043 /* Zero-th entry is allocated, but unused */
a3f97cbb
JW
12044 abbrev_die_table_in_use = 1;
12045
12046 /* Allocate the initial hunk of the line_info_table. */
12047 line_info_table
3de90026
RH
12048 = (dw_line_info_ref) xcalloc (LINE_INFO_TABLE_INCREMENT,
12049 sizeof (dw_line_info_entry));
a3f97cbb 12050 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
2ad9852d 12051
71dfc51f 12052 /* Zero-th entry is allocated, but unused */
a3f97cbb
JW
12053 line_info_table_in_use = 1;
12054
556273e0 12055 /* Generate the initial DIE for the .debug section. Note that the (string)
a3f97cbb 12056 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
556273e0 12057 will (typically) be a relative pathname and that this pathname should be
a3f97cbb
JW
12058 taken as being relative to the directory from which the compiler was
12059 invoked when the given (base) source file was compiled. */
a96c67ec 12060 comp_unit_die = gen_compile_unit_die (main_input_filename);
a3f97cbb 12061
244a4af0
TF
12062 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12063 ggc_add_tree_varray_root (&incomplete_types, 1);
12064
1f8f4a0b
MM
12065 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12066 ggc_add_rtx_varray_root (&used_rtx_varray, 1);
1865dbb5 12067
54ba1f0d
RH
12068 ggc_add_root (&limbo_die_list, 1, 1, mark_limbo_die_list);
12069
5c90448c 12070 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
9d2f2c45
RH
12071 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12072 DEBUG_ABBREV_SECTION_LABEL, 0);
b366352b
MM
12073 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12074 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12075 else
f99ffb60 12076 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
2ad9852d 12077
556273e0 12078 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
8b790721 12079 DEBUG_INFO_SECTION_LABEL, 0);
556273e0 12080 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
8b790721 12081 DEBUG_LINE_SECTION_LABEL, 0);
2bee6045
JJ
12082 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12083 DEBUG_RANGES_SECTION_LABEL, 0);
715bdd29 12084 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
8b790721 12085 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
715bdd29 12086 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
8b790721 12087 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
715bdd29 12088 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
8b790721 12089 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
2ad9852d 12090
84a5b4f8
DB
12091 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12092 {
715bdd29 12093 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
84a5b4f8
DB
12094 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12095 DEBUG_MACINFO_SECTION_LABEL, 0);
12096 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12097 }
7c262518
RH
12098
12099 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12100 {
12101 text_section ();
12102 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12103 }
a3f97cbb
JW
12104}
12105
9eb4015a
JJ
12106/* Allocate a string in .debug_str hash table. */
12107
12108static hashnode
12109indirect_string_alloc (tab)
12110 hash_table *tab ATTRIBUTE_UNUSED;
12111{
12112 struct indirect_string_node *node;
12113
12114 node = xmalloc (sizeof (struct indirect_string_node));
12115 node->refcount = 0;
12116 node->form = 0;
12117 node->label = NULL;
2ad9852d 12118
9eb4015a
JJ
12119 return (hashnode) node;
12120}
12121
12122/* A helper function for dwarf2out_finish called through
12123 ht_forall. Emit one queued .debug_str string. */
12124
12125static int
12126output_indirect_string (pfile, h, v)
12127 struct cpp_reader *pfile ATTRIBUTE_UNUSED;
12128 hashnode h;
12129 const PTR v ATTRIBUTE_UNUSED;
12130{
2ad9852d 12131 struct indirect_string_node *node = (struct indirect_string_node *) h;
9eb4015a 12132
9eb4015a
JJ
12133 if (node->form == DW_FORM_strp)
12134 {
12135 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12136 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12137 assemble_string ((const char *) HT_STR (&node->id),
12138 HT_LEN (&node->id) + 1);
12139 }
2ad9852d 12140
9eb4015a
JJ
12141 return 1;
12142}
12143
a3f97cbb
JW
12144/* Output stuff that dwarf requires at the end of every file,
12145 and generate the DWARF-2 debugging info. */
71dfc51f 12146
a51d908e 12147static void
e2a12aca 12148dwarf2out_finish (input_filename)
b3694847 12149 const char *input_filename ATTRIBUTE_UNUSED;
a3f97cbb 12150{
ef76d03b 12151 limbo_die_node *node, *next_node;
ae0ed63a 12152 dw_die_ref die = 0;
ef76d03b
JW
12153
12154 /* Traverse the limbo die list, and add parent/child links. The only
12155 dies without parents that should be here are concrete instances of
12156 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12157 For concrete instances, we can get the parent die from the abstract
12158 instance. */
12159 for (node = limbo_die_list; node; node = next_node)
12160 {
12161 next_node = node->next;
12162 die = node->die;
12163
12164 if (die->die_parent == NULL)
12165 {
a96c67ec 12166 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
54ba1f0d 12167 tree context;
2ad9852d 12168
a96c67ec
JM
12169 if (origin)
12170 add_child_die (origin->die_parent, die);
ef76d03b 12171 else if (die == comp_unit_die)
a96c67ec 12172 ;
aea9695c
RK
12173 /* If this was an expression for a bound involved in a function
12174 return type, it may be a SAVE_EXPR for which we weren't able
12175 to find a DIE previously. So try now. */
12176 else if (node->created_for
12177 && TREE_CODE (node->created_for) == SAVE_EXPR
12178 && 0 != (origin = (lookup_decl_die
12179 (SAVE_EXPR_CONTEXT
12180 (node->created_for)))))
12181 add_child_die (origin, die);
6bb28965
JM
12182 else if (errorcount > 0 || sorrycount > 0)
12183 /* It's OK to be confused by errors in the input. */
12184 add_child_die (comp_unit_die, die);
54ba1f0d
RH
12185 else if (node->created_for
12186 && ((DECL_P (node->created_for)
c26fbbca 12187 && (context = DECL_CONTEXT (node->created_for)))
54ba1f0d
RH
12188 || (TYPE_P (node->created_for)
12189 && (context = TYPE_CONTEXT (node->created_for))))
12190 && TREE_CODE (context) == FUNCTION_DECL)
12191 {
12192 /* In certain situations, the lexical block containing a
12193 nested function can be optimized away, which results
12194 in the nested function die being orphaned. Likewise
12195 with the return type of that nested function. Force
12196 this to be a child of the containing function. */
12197 origin = lookup_decl_die (context);
12198 if (! origin)
12199 abort ();
12200 add_child_die (origin, die);
12201 }
ef76d03b
JW
12202 else
12203 abort ();
12204 }
2ad9852d 12205
ef76d03b
JW
12206 free (node);
12207 }
2ad9852d 12208
a96c67ec 12209 limbo_die_list = NULL;
ef76d03b 12210
8a8c3656
JM
12211 /* Walk through the list of incomplete types again, trying once more to
12212 emit full debugging info for them. */
12213 retry_incomplete_types ();
12214
881c6935
JM
12215 /* We need to reverse all the dies before break_out_includes, or
12216 we'll see the end of an include file before the beginning. */
12217 reverse_all_dies (comp_unit_die);
12218
12219 /* Generate separate CUs for each of the include files we've seen.
12220 They will go into limbo_die_list. */
5f632b5e
JM
12221 if (flag_eliminate_dwarf2_dups)
12222 break_out_includes (comp_unit_die);
881c6935
JM
12223
12224 /* Traverse the DIE's and add add sibling attributes to those DIE's
12225 that have children. */
a3f97cbb 12226 add_sibling_attributes (comp_unit_die);
881c6935
JM
12227 for (node = limbo_die_list; node; node = node->next)
12228 add_sibling_attributes (node->die);
a3f97cbb
JW
12229
12230 /* Output a terminator label for the .text section. */
7c262518 12231 text_section ();
5c90448c 12232 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);
a3f97cbb 12233
db3c0315
MM
12234 /* Output the source line correspondence table. We must do this
12235 even if there is no line information. Otherwise, on an empty
12236 translation unit, we will generate a present, but empty,
12237 .debug_info section. IRIX 6.5 `nm' will then complain when
12238 examining the file. */
12239 if (! DWARF2_ASM_LINE_DEBUG_INFO)
e90b62db 12240 {
715bdd29 12241 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
db3c0315
MM
12242 output_line_info ();
12243 }
71dfc51f 12244
b38a75e5
RH
12245 /* Output location list section if necessary. */
12246 if (have_location_lists)
12247 {
12248 /* Output the location lists info. */
12249 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12250 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12251 DEBUG_LOC_SECTION_LABEL, 0);
12252 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12253 output_location_lists (die);
12254 have_location_lists = 0;
12255 }
12256
db3c0315
MM
12257 /* We can only use the low/high_pc attributes if all of the code was
12258 in .text. */
12259 if (separate_line_info_table_in_use == 0)
12260 {
12261 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12262 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
e90b62db 12263 }
2ad9852d
RK
12264
12265 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12266 "base address". Use zero so that these addresses become absolute. */
a20612aa
RH
12267 else if (have_location_lists || ranges_table_in_use)
12268 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
e90b62db 12269
fe7cd37f
RH
12270 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12271 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12272 debug_line_section_label);
db3c0315 12273
84a5b4f8
DB
12274 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12275 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
a96c67ec 12276
881c6935
JM
12277 /* Output all of the compilation units. We put the main one last so that
12278 the offsets are available to output_pubnames. */
12279 for (node = limbo_die_list; node; node = node->next)
12280 output_comp_unit (node->die);
2ad9852d 12281
881c6935
JM
12282 output_comp_unit (comp_unit_die);
12283
a3f97cbb 12284 /* Output the abbreviation table. */
715bdd29 12285 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
a3f97cbb
JW
12286 output_abbrev_section ();
12287
2ad9852d 12288 /* Output public names table if necessary. */
d291dd49
JM
12289 if (pubname_table_in_use)
12290 {
715bdd29 12291 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
d291dd49
JM
12292 output_pubnames ();
12293 }
12294
2ad9852d
RK
12295 /* Output the address range information. We only put functions in the arange
12296 table, so don't write it out if we don't have any. */
a3f97cbb
JW
12297 if (fde_table_in_use)
12298 {
715bdd29 12299 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
a3f97cbb
JW
12300 output_aranges ();
12301 }
a20612aa 12302
a20612aa
RH
12303 /* Output ranges section if necessary. */
12304 if (ranges_table_in_use)
12305 {
715bdd29 12306 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
2bee6045 12307 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
a20612aa
RH
12308 output_ranges ();
12309 }
12310
30f7a378 12311 /* Have to end the primary source file. */
cc260610 12312 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
c26fbbca 12313 {
715bdd29 12314 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
cc260610 12315 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
2f8d482e 12316 dw2_asm_output_data (1, 0, "End compilation unit");
cc260610 12317 }
9eb4015a 12318
2ad9852d 12319 /* If we emitted any DW_FORM_strp form attribute, output the string
9eb4015a
JJ
12320 table too. */
12321 if (debug_str_hash)
12322 ht_forall (debug_str_hash, output_indirect_string, NULL);
a3f97cbb 12323}
f3a8e4f5 12324#endif /* DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO */