]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
libphobos: core.atomic should have fallback when there's no libatomic.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
bccafa26 1/* Emit RTL for the GCC expander.
fbd26352 2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
15bbde2b 3
f12b58b3 4This file is part of GCC.
15bbde2b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
15bbde2b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15bbde2b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15bbde2b 19
20
21/* Middle-to-low level generation of rtx code and insns.
22
74efa612 23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
15bbde2b 25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
74efa612 28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
8fd5918e 31 dependent is the kind of rtx's they make and what arguments they
32 use. */
15bbde2b 33
34#include "config.h"
405711de 35#include "system.h"
805e22b2 36#include "coretypes.h"
ad7b10a2 37#include "memmodel.h"
9ef16211 38#include "backend.h"
7c29e30e 39#include "target.h"
15bbde2b 40#include "rtl.h"
7c29e30e 41#include "tree.h"
9ef16211 42#include "df.h"
7c29e30e 43#include "tm_p.h"
44#include "stringpool.h"
7c29e30e 45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
9ef16211 49#include "diagnostic-core.h"
b20a8bb4 50#include "alias.h"
b20a8bb4 51#include "fold-const.h"
9ed99284 52#include "varasm.h"
94ea8568 53#include "cfgrtl.h"
94ea8568 54#include "tree-eh.h"
d53441c8 55#include "explow.h"
15bbde2b 56#include "expr.h"
9845d120 57#include "params.h"
f7715905 58#include "builtins.h"
4073adaa 59#include "rtl-iter.h"
94f92c36 60#include "stor-layout.h"
48a7e3d1 61#include "opts.h"
61cb1816 62#include "predict.h"
a80726d1 63#include "rtx-vector-builder.h"
649d8da6 64
679bcc8d 65struct target_rtl default_target_rtl;
66#if SWITCHABLE_TARGET
67struct target_rtl *this_target_rtl = &default_target_rtl;
68#endif
69
70#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71
399d45d3 72/* Commonly used modes. */
73
af8303fa 74scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
75scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
76scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 77
b079a207 78/* Datastructures maintained for currently processed function in RTL form. */
79
fd6ffb7c 80struct rtl_data x_rtl;
b079a207 81
82/* Indexed by pseudo register number, gives the rtx for that pseudo.
48e1416a 83 Allocated in parallel with regno_pointer_align.
b079a207 84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87rtx * regno_reg_rtx;
15bbde2b 88
89/* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
9105005a 92static GTY(()) int label_num = 1;
15bbde2b 93
15bbde2b 94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
ba8dfb08 96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
15bbde2b 98
ba8dfb08 99rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
15bbde2b 100
1a60f06a 101rtx const_true_rtx;
102
15bbde2b 103REAL_VALUE_TYPE dconst0;
104REAL_VALUE_TYPE dconst1;
105REAL_VALUE_TYPE dconst2;
106REAL_VALUE_TYPE dconstm1;
77e89269 107REAL_VALUE_TYPE dconsthalf;
15bbde2b 108
06f0b99c 109/* Record fixed-point constant 0 and 1. */
110FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112
15bbde2b 113/* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
117
57c097d5 118rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 119
7d7b0bac 120/* Standard pieces of rtx, to be substituted directly into things. */
121rtx pc_rtx;
122rtx ret_rtx;
123rtx simple_return_rtx;
124rtx cc0_rtx;
125
f9a00e9e 126/* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129rtx_insn *invalid_insn_rtx;
130
73f5c1e3 131/* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
133
eae1ecb4 134struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 135{
136 typedef HOST_WIDE_INT compare_type;
137
138 static hashval_t hash (rtx i);
139 static bool equal (rtx i, HOST_WIDE_INT h);
140};
73f5c1e3 141
f863a586 142static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
143
eae1ecb4 144struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 145{
146 static hashval_t hash (rtx x);
147 static bool equal (rtx x, rtx y);
148};
149
150static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
e913b5cd 151
bbad7cd0 152struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
153{
154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
155
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, const compare_type &y);
158};
159
160static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
161
ca74b940 162/* A hash table storing register attribute structures. */
eae1ecb4 163struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
f863a586 164{
165 static hashval_t hash (reg_attrs *x);
166 static bool equal (reg_attrs *a, reg_attrs *b);
167};
168
169static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
ca74b940 170
2ff23ed0 171/* A hash table storing all CONST_DOUBLEs. */
eae1ecb4 172struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 173{
174 static hashval_t hash (rtx x);
175 static bool equal (rtx x, rtx y);
176};
177
178static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
2ff23ed0 179
e397ad8e 180/* A hash table storing all CONST_FIXEDs. */
eae1ecb4 181struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 182{
183 static hashval_t hash (rtx x);
184 static bool equal (rtx x, rtx y);
185};
186
187static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
e397ad8e 188
fd6ffb7c 189#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
9845d120 190#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
fd6ffb7c 191#define first_label_num (crtl->emit.x_first_label_num)
15bbde2b 192
265be050 193static void set_used_decls (tree);
35cb5232 194static void mark_label_nuses (rtx);
e913b5cd 195#if TARGET_SUPPORTS_WIDE_INT
e913b5cd 196static rtx lookup_const_wide_int (rtx);
197#endif
35cb5232 198static rtx lookup_const_double (rtx);
e397ad8e 199static rtx lookup_const_fixed (rtx);
3754d046 200static rtx gen_const_vector (machine_mode, int);
0e0727c4 201static void copy_rtx_if_shared_1 (rtx *orig);
73f5c1e3 202
61cb1816 203/* Probability of the conditional branch currently proceeded by try_split. */
204profile_probability split_branch_probability;
649d8da6 205\f
73f5c1e3 206/* Returns a hash code for X (which is a really a CONST_INT). */
207
f863a586 208hashval_t
209const_int_hasher::hash (rtx x)
73f5c1e3 210{
f863a586 211 return (hashval_t) INTVAL (x);
73f5c1e3 212}
213
6ef828f9 214/* Returns nonzero if the value represented by X (which is really a
73f5c1e3 215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
217
f863a586 218bool
219const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
73f5c1e3 220{
f863a586 221 return (INTVAL (x) == y);
2ff23ed0 222}
223
e913b5cd 224#if TARGET_SUPPORTS_WIDE_INT
225/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
226
f863a586 227hashval_t
228const_wide_int_hasher::hash (rtx x)
e913b5cd 229{
230 int i;
06b8401d 231 unsigned HOST_WIDE_INT hash = 0;
f863a586 232 const_rtx xr = x;
e913b5cd 233
234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
235 hash += CONST_WIDE_INT_ELT (xr, i);
236
237 return (hashval_t) hash;
238}
239
240/* Returns nonzero if the value represented by X (which is really a
241 CONST_WIDE_INT) is the same as that given by Y (which is really a
242 CONST_WIDE_INT). */
243
f863a586 244bool
245const_wide_int_hasher::equal (rtx x, rtx y)
e913b5cd 246{
247 int i;
f863a586 248 const_rtx xr = x;
249 const_rtx yr = y;
e913b5cd 250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
f863a586 251 return false;
e913b5cd 252
253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
f863a586 255 return false;
ddb1be65 256
f863a586 257 return true;
e913b5cd 258}
259#endif
260
bbad7cd0 261/* Returns a hash code for CONST_POLY_INT X. */
262
263hashval_t
264const_poly_int_hasher::hash (rtx x)
265{
266 inchash::hash h;
267 h.add_int (GET_MODE (x));
268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
270 return h.end ();
271}
272
273/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
274
275bool
276const_poly_int_hasher::equal (rtx x, const compare_type &y)
277{
278 if (GET_MODE (x) != y.first)
279 return false;
280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
282 return false;
283 return true;
284}
285
2ff23ed0 286/* Returns a hash code for X (which is really a CONST_DOUBLE). */
f863a586 287hashval_t
288const_double_hasher::hash (rtx x)
2ff23ed0 289{
f863a586 290 const_rtx const value = x;
3393215f 291 hashval_t h;
2ff23ed0 292
e913b5cd 293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
3393215f 294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
295 else
a5760913 296 {
e2e205b3 297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
a5760913 298 /* MODE is used in the comparison, so it should be in the hash. */
299 h ^= GET_MODE (value);
300 }
2ff23ed0 301 return h;
302}
303
6ef828f9 304/* Returns nonzero if the value represented by X (really a ...)
2ff23ed0 305 is the same as that represented by Y (really a ...) */
f863a586 306bool
307const_double_hasher::equal (rtx x, rtx y)
2ff23ed0 308{
f863a586 309 const_rtx const a = x, b = y;
2ff23ed0 310
311 if (GET_MODE (a) != GET_MODE (b))
312 return 0;
e913b5cd 313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
f82a103d 314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
316 else
317 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
318 CONST_DOUBLE_REAL_VALUE (b));
73f5c1e3 319}
320
e397ad8e 321/* Returns a hash code for X (which is really a CONST_FIXED). */
322
f863a586 323hashval_t
324const_fixed_hasher::hash (rtx x)
e397ad8e 325{
f863a586 326 const_rtx const value = x;
e397ad8e 327 hashval_t h;
328
329 h = fixed_hash (CONST_FIXED_VALUE (value));
330 /* MODE is used in the comparison, so it should be in the hash. */
331 h ^= GET_MODE (value);
332 return h;
333}
334
f863a586 335/* Returns nonzero if the value represented by X is the same as that
336 represented by Y. */
e397ad8e 337
f863a586 338bool
339const_fixed_hasher::equal (rtx x, rtx y)
e397ad8e 340{
f863a586 341 const_rtx const a = x, b = y;
e397ad8e 342
343 if (GET_MODE (a) != GET_MODE (b))
344 return 0;
345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
346}
347
d72886b5 348/* Return true if the given memory attributes are equal. */
73f5c1e3 349
7e304b71 350bool
d72886b5 351mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
73f5c1e3 352{
7e304b71 353 if (p == q)
354 return true;
355 if (!p || !q)
356 return false;
6d58bcba 357 return (p->alias == q->alias
358 && p->offset_known_p == q->offset_known_p
711f137f 359 && (!p->offset_known_p || known_eq (p->offset, q->offset))
6d58bcba 360 && p->size_known_p == q->size_known_p
711f137f 361 && (!p->size_known_p || known_eq (p->size, q->size))
6d58bcba 362 && p->align == q->align
bd1a81f7 363 && p->addrspace == q->addrspace
2f16183e 364 && (p->expr == q->expr
365 || (p->expr != NULL_TREE && q->expr != NULL_TREE
366 && operand_equal_p (p->expr, q->expr, 0))));
73f5c1e3 367}
368
d72886b5 369/* Set MEM's memory attributes so that they are the same as ATTRS. */
5cc193e7 370
d72886b5 371static void
372set_mem_attrs (rtx mem, mem_attrs *attrs)
373{
d72886b5 374 /* If everything is the default, we can just clear the attributes. */
375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
376 {
377 MEM_ATTRS (mem) = 0;
378 return;
379 }
c6259b83 380
8dc3230c 381 if (!MEM_ATTRS (mem)
382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
c6259b83 383 {
25a27413 384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
8dc3230c 385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
c6259b83 386 }
73f5c1e3 387}
388
ca74b940 389/* Returns a hash code for X (which is a really a reg_attrs *). */
390
f863a586 391hashval_t
392reg_attr_hasher::hash (reg_attrs *x)
ca74b940 393{
f863a586 394 const reg_attrs *const p = x;
ca74b940 395
a14d43f8 396 inchash::hash h;
397 h.add_ptr (p->decl);
398 h.add_poly_hwi (p->offset);
399 return h.end ();
ca74b940 400}
401
f863a586 402/* Returns nonzero if the value represented by X is the same as that given by
403 Y. */
ca74b940 404
f863a586 405bool
406reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
ca74b940 407{
f863a586 408 const reg_attrs *const p = x;
409 const reg_attrs *const q = y;
ca74b940 410
a14d43f8 411 return (p->decl == q->decl && known_eq (p->offset, q->offset));
ca74b940 412}
413/* Allocate a new reg_attrs structure and insert it into the hash table if
414 one identical to it is not already in the table. We are doing this for
415 MEM of mode MODE. */
416
417static reg_attrs *
a14d43f8 418get_reg_attrs (tree decl, poly_int64 offset)
ca74b940 419{
420 reg_attrs attrs;
ca74b940 421
422 /* If everything is the default, we can just return zero. */
a14d43f8 423 if (decl == 0 && known_eq (offset, 0))
ca74b940 424 return 0;
425
426 attrs.decl = decl;
427 attrs.offset = offset;
428
f863a586 429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
ca74b940 430 if (*slot == 0)
431 {
25a27413 432 *slot = ggc_alloc<reg_attrs> ();
ca74b940 433 memcpy (*slot, &attrs, sizeof (reg_attrs));
434 }
435
f863a586 436 return *slot;
ca74b940 437}
438
3072d30e 439
440#if !HAVE_blockage
e12b44a3 441/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
442 and to block register equivalences to be seen across this insn. */
3072d30e 443
444rtx
445gen_blockage (void)
446{
447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
448 MEM_VOLATILE_P (x) = true;
449 return x;
450}
451#endif
452
453
937ca48e 454/* Set the mode and register number of X to MODE and REGNO. */
455
456void
457set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
458{
1c0849e5 459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
92d2aec3 460 ? hard_regno_nregs (regno, mode)
1c0849e5 461 : 1);
937ca48e 462 PUT_MODE_RAW (x, mode);
1c0849e5 463 set_regno_raw (x, regno, nregs);
937ca48e 464}
465
22cf44bc 466/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
467 don't attempt to share with the various global pieces of rtl (such as
468 frame_pointer_rtx). */
469
470rtx
937ca48e 471gen_raw_REG (machine_mode mode, unsigned int regno)
22cf44bc 472{
68095389 473 rtx x = rtx_alloc (REG MEM_STAT_INFO);
937ca48e 474 set_mode_and_regno (x, mode, regno);
15183fd2 475 REG_ATTRS (x) = NULL;
22cf44bc 476 ORIGINAL_REGNO (x) = regno;
477 return x;
478}
479
7014838c 480/* There are some RTL codes that require special attention; the generation
481 functions do the raw handling. If you add to this list, modify
482 special_rtx in gengenrtl.c as well. */
483
ede4900a 484rtx_expr_list *
3754d046 485gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
ede4900a 486{
487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
488 expr_list));
489}
490
13be9dc6 491rtx_insn_list *
3754d046 492gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
13be9dc6 493{
494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
495 insn_list));
496}
497
f935868a 498rtx_insn *
3754d046 499gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
f935868a 500 basic_block bb, rtx pattern, int location, int code,
501 rtx reg_notes)
502{
503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
504 prev_insn, next_insn,
505 bb, pattern, location, code,
506 reg_notes));
507}
508
3ad7bb1c 509rtx
3754d046 510gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3ad7bb1c 511{
512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 513 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 514
515#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
516 if (const_true_rtx && arg == STORE_FLAG_VALUE)
517 return const_true_rtx;
518#endif
519
73f5c1e3 520 /* Look up the CONST_INT in the hash table. */
f863a586 521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
522 INSERT);
7f2875d3 523 if (*slot == 0)
d7c47c0e 524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 525
f863a586 526 return *slot;
3ad7bb1c 527}
528
2d232d05 529rtx
bbad7cd0 530gen_int_mode (poly_int64 c, machine_mode mode)
2d232d05 531{
bbad7cd0 532 c = trunc_int_for_mode (c, mode);
533 if (c.is_constant ())
534 return GEN_INT (c.coeffs[0]);
535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
2d232d05 537}
538
2ff23ed0 539/* CONST_DOUBLEs might be created from pairs of integers, or from
540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
542
543/* Determine whether REAL, a CONST_DOUBLE, already exists in the
544 hash table. If so, return its counterpart; otherwise add it
545 to the hash table and return it. */
546static rtx
35cb5232 547lookup_const_double (rtx real)
2ff23ed0 548{
f863a586 549 rtx *slot = const_double_htab->find_slot (real, INSERT);
2ff23ed0 550 if (*slot == 0)
551 *slot = real;
552
f863a586 553 return *slot;
2ff23ed0 554}
7f2875d3 555
2ff23ed0 556/* Return a CONST_DOUBLE rtx for a floating-point value specified by
557 VALUE in mode MODE. */
67f2a2eb 558rtx
3754d046 559const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
67f2a2eb 560{
2ff23ed0 561 rtx real = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (real, mode);
563
e8aaae4e 564 real->u.rv = value;
2ff23ed0 565
566 return lookup_const_double (real);
567}
568
e397ad8e 569/* Determine whether FIXED, a CONST_FIXED, already exists in the
570 hash table. If so, return its counterpart; otherwise add it
571 to the hash table and return it. */
572
573static rtx
574lookup_const_fixed (rtx fixed)
575{
f863a586 576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
e397ad8e 577 if (*slot == 0)
578 *slot = fixed;
579
f863a586 580 return *slot;
e397ad8e 581}
582
583/* Return a CONST_FIXED rtx for a fixed-point value specified by
584 VALUE in mode MODE. */
585
586rtx
3754d046 587const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
e397ad8e 588{
589 rtx fixed = rtx_alloc (CONST_FIXED);
590 PUT_MODE (fixed, mode);
591
592 fixed->u.fv = value;
593
594 return lookup_const_fixed (fixed);
595}
596
e913b5cd 597#if TARGET_SUPPORTS_WIDE_INT == 0
33274180 598/* Constructs double_int from rtx CST. */
599
600double_int
601rtx_to_double_int (const_rtx cst)
602{
603 double_int r;
604
605 if (CONST_INT_P (cst))
cf8f0e63 606 r = double_int::from_shwi (INTVAL (cst));
78f1962f 607 else if (CONST_DOUBLE_AS_INT_P (cst))
33274180 608 {
609 r.low = CONST_DOUBLE_LOW (cst);
610 r.high = CONST_DOUBLE_HIGH (cst);
611 }
612 else
613 gcc_unreachable ();
614
615 return r;
616}
e913b5cd 617#endif
618
619#if TARGET_SUPPORTS_WIDE_INT
a342dbb2 620/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
621 If so, return its counterpart; otherwise add it to the hash table and
e913b5cd 622 return it. */
33274180 623
e913b5cd 624static rtx
625lookup_const_wide_int (rtx wint)
626{
f863a586 627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
e913b5cd 628 if (*slot == 0)
629 *slot = wint;
33274180 630
f863a586 631 return *slot;
e913b5cd 632}
633#endif
3e052aec 634
a342dbb2 635/* Return an rtx constant for V, given that the constant has mode MODE.
636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
638 (if TARGET_SUPPORTS_WIDE_INT). */
639
bbad7cd0 640static rtx
641immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
3e052aec 642{
e913b5cd 643 unsigned int len = v.get_len ();
074473dd 644 /* Not scalar_int_mode because we also allow pointer bound modes. */
645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
e913b5cd 646
647 /* Allow truncation but not extension since we do not know if the
648 number is signed or unsigned. */
649 gcc_assert (prec <= v.get_precision ());
650
651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
652 return gen_int_mode (v.elt (0), mode);
653
654#if TARGET_SUPPORTS_WIDE_INT
655 {
656 unsigned int i;
657 rtx value;
ddb1be65 658 unsigned int blocks_needed
e913b5cd 659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
660
661 if (len > blocks_needed)
662 len = blocks_needed;
663
664 value = const_wide_int_alloc (len);
665
666 /* It is so tempting to just put the mode in here. Must control
667 myself ... */
668 PUT_MODE (value, VOIDmode);
05c25ee6 669 CWI_PUT_NUM_ELEM (value, len);
e913b5cd 670
671 for (i = 0; i < len; i++)
05363b4a 672 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
e913b5cd 673
674 return lookup_const_wide_int (value);
675 }
676#else
05363b4a 677 return immed_double_const (v.elt (0), v.elt (1), mode);
e913b5cd 678#endif
3e052aec 679}
680
e913b5cd 681#if TARGET_SUPPORTS_WIDE_INT == 0
2ff23ed0 682/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
683 of ints: I0 is the low-order word and I1 is the high-order word.
24cd46a7 684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
db20fb47 685 implied upper bits are copies of the high bit of i1. The value
686 itself is neither signed nor unsigned. Do not use this routine for
687 non-integer modes; convert to REAL_VALUE_TYPE and use
d5f9611d 688 const_double_from_real_value. */
2ff23ed0 689
690rtx
3754d046 691immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
2ff23ed0 692{
693 rtx value;
694 unsigned int i;
695
b1ca4af4 696 /* There are the following cases (note that there are no modes with
24cd46a7 697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
b1ca4af4 698
699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
700 gen_int_mode.
db20fb47 701 2) If the value of the integer fits into HOST_WIDE_INT anyway
702 (i.e., i1 consists only from copies of the sign bit, and sign
703 of i0 and i1 are the same), then we return a CONST_INT for i0.
b1ca4af4 704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
074473dd 705 scalar_mode smode;
706 if (is_a <scalar_mode> (mode, &smode)
707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
708 return gen_int_mode (i0, mode);
2ff23ed0 709
710 /* If this integer fits in one word, return a CONST_INT. */
711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
712 return GEN_INT (i0);
713
714 /* We use VOIDmode for integers. */
715 value = rtx_alloc (CONST_DOUBLE);
716 PUT_MODE (value, VOIDmode);
717
718 CONST_DOUBLE_LOW (value) = i0;
719 CONST_DOUBLE_HIGH (value) = i1;
720
721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
722 XWINT (value, i) = 0;
723
724 return lookup_const_double (value);
67f2a2eb 725}
e913b5cd 726#endif
67f2a2eb 727
bbad7cd0 728/* Return an rtx representation of C in mode MODE. */
729
730rtx
731immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
732{
733 if (c.is_constant ())
734 return immed_wide_int_const_1 (c.coeffs[0], mode);
735
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
738
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec <= c.coeffs[0].get_precision ());
742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
743
744 /* See whether we already have an rtx for this constant. */
745 inchash::hash h;
746 h.add_int (mode);
747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
748 h.add_wide_int (newc.coeffs[i]);
749 const_poly_int_hasher::compare_type typed_value (mode, newc);
750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
751 h.end (), INSERT);
752 rtx x = *slot;
753 if (x)
754 return x;
755
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
763 size_t extra_size = twi::extra_size (prec);
764 x = rtx_alloc_v (CONST_POLY_INT,
765 sizeof (struct const_poly_int_def) + extra_size);
766 PUT_MODE (x, mode);
767 CONST_POLY_INT_COEFFS (x).set_precision (prec);
768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
770
771 *slot = x;
772 return x;
773}
774
3ad7bb1c 775rtx
3754d046 776gen_rtx_REG (machine_mode mode, unsigned int regno)
3ad7bb1c 777{
778 /* In case the MD file explicitly references the frame pointer, have
779 all such references point to the same frame pointer. This is
780 used during frame pointer elimination to distinguish the explicit
781 references to these registers from pseudos that happened to be
782 assigned to them.
783
784 If we have eliminated the frame pointer or arg pointer, we will
785 be using it as a normal register, for example as a spill
786 register. In such cases, we might be accessing it in a mode that
787 is not Pmode and therefore cannot use the pre-allocated rtx.
788
789 Also don't do this when we are making new REGs in reload, since
790 we don't want to get confused with the real pointers. */
791
c6a6cdaa 792 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3ad7bb1c 793 {
71801afc 794 if (regno == FRAME_POINTER_REGNUM
795 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 796 return frame_pointer_rtx;
f703b3d6 797
798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
799 && regno == HARD_FRAME_POINTER_REGNUM
71801afc 800 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 801 return hard_frame_pointer_rtx;
c6bb296a 802#if !HARD_FRAME_POINTER_IS_ARG_POINTER
803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
804 && regno == ARG_POINTER_REGNUM)
3ad7bb1c 805 return arg_pointer_rtx;
806#endif
807#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 808 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 809 return return_address_pointer_rtx;
810#endif
3473aefe 811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
8d43ad05 812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
6ea47475 813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
d4c5e26d 814 return pic_offset_table_rtx;
e8b59353 815 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 816 return stack_pointer_rtx;
817 }
818
32b53d83 819#if 0
90295bd2 820 /* If the per-function register table has been set up, try to re-use
32b53d83 821 an existing entry in that table to avoid useless generation of RTL.
822
823 This code is disabled for now until we can fix the various backends
824 which depend on having non-shared hard registers in some cases. Long
825 term we want to re-enable this code as it can significantly cut down
71801afc 826 on the amount of useless RTL that gets generated.
827
828 We'll also need to fix some code that runs after reload that wants to
829 set ORIGINAL_REGNO. */
830
90295bd2 831 if (cfun
832 && cfun->emit
833 && regno_reg_rtx
834 && regno < FIRST_PSEUDO_REGISTER
835 && reg_raw_mode[regno] == mode)
836 return regno_reg_rtx[regno];
32b53d83 837#endif
90295bd2 838
22cf44bc 839 return gen_raw_REG (mode, regno);
3ad7bb1c 840}
841
b5ba9f3a 842rtx
3754d046 843gen_rtx_MEM (machine_mode mode, rtx addr)
b5ba9f3a 844{
845 rtx rt = gen_rtx_raw_MEM (mode, addr);
846
847 /* This field is not cleared by the mere allocation of the rtx, so
848 we clear it here. */
c6259b83 849 MEM_ATTRS (rt) = 0;
b5ba9f3a 850
851 return rt;
852}
701e46d0 853
e265a6da 854/* Generate a memory referring to non-trapping constant memory. */
855
856rtx
3754d046 857gen_const_mem (machine_mode mode, rtx addr)
e265a6da 858{
859 rtx mem = gen_rtx_MEM (mode, addr);
860 MEM_READONLY_P (mem) = 1;
861 MEM_NOTRAP_P (mem) = 1;
862 return mem;
863}
864
00060fc2 865/* Generate a MEM referring to fixed portions of the frame, e.g., register
866 save areas. */
867
868rtx
3754d046 869gen_frame_mem (machine_mode mode, rtx addr)
00060fc2 870{
871 rtx mem = gen_rtx_MEM (mode, addr);
872 MEM_NOTRAP_P (mem) = 1;
873 set_mem_alias_set (mem, get_frame_alias_set ());
874 return mem;
875}
876
877/* Generate a MEM referring to a temporary use of the stack, not part
878 of the fixed stack frame. For example, something which is pushed
879 by a target splitter. */
880rtx
3754d046 881gen_tmp_stack_mem (machine_mode mode, rtx addr)
00060fc2 882{
883 rtx mem = gen_rtx_MEM (mode, addr);
884 MEM_NOTRAP_P (mem) = 1;
18d50ae6 885 if (!cfun->calls_alloca)
00060fc2 886 set_mem_alias_set (mem, get_frame_alias_set ());
887 return mem;
888}
889
2166bbaa 890/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
891 this construct would be valid, and false otherwise. */
892
893bool
3754d046 894validate_subreg (machine_mode omode, machine_mode imode,
9edf7ea8 895 const_rtx reg, poly_uint64 offset)
701e46d0 896{
68cc7e7b 897 poly_uint64 isize = GET_MODE_SIZE (imode);
898 poly_uint64 osize = GET_MODE_SIZE (omode);
899
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize, osize))
903 return false;
2166bbaa 904
905 /* All subregs must be aligned. */
9edf7ea8 906 if (!multiple_p (offset, osize))
2166bbaa 907 return false;
908
909 /* The subreg offset cannot be outside the inner object. */
9edf7ea8 910 if (maybe_ge (offset, isize))
2166bbaa 911 return false;
912
68cc7e7b 913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
44ce7b27 914
2166bbaa 915 /* ??? This should not be here. Temporarily continue to allow word_mode
916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
917 Generally, backends are doing something sketchy but it'll take time to
918 fix them all. */
919 if (omode == word_mode)
920 ;
921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
922 is the culprit here, and not the backends. */
68cc7e7b 923 else if (known_ge (osize, regsize) && known_ge (isize, osize))
2166bbaa 924 ;
925 /* Allow component subregs of complex and vector. Though given the below
926 extraction rules, it's not always clear what that means. */
927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
928 && GET_MODE_INNER (imode) == omode)
929 ;
930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
932 represent this. It's questionable if this ought to be represented at
933 all -- why can't this all be hidden in post-reload splitters that make
934 arbitrarily mode changes to the registers themselves. */
935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
936 ;
937 /* Subregs involving floating point modes are not allowed to
938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
939 (subreg:SI (reg:DF) 0) isn't. */
940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
941 {
68cc7e7b 942 if (! (known_eq (isize, osize)
c6a6cdaa 943 /* LRA can use subreg to store a floating point value in
944 an integer mode. Although the floating point and the
945 integer modes need the same number of hard registers,
946 the size of floating point mode can be less than the
947 integer mode. LRA also uses subregs for a register
948 should be used in different mode in on insn. */
949 || lra_in_progress))
2166bbaa 950 return false;
951 }
701e46d0 952
2166bbaa 953 /* Paradoxical subregs must have offset zero. */
68cc7e7b 954 if (maybe_gt (osize, isize))
9edf7ea8 955 return known_eq (offset, 0U);
2166bbaa 956
957 /* This is a normal subreg. Verify that the offset is representable. */
958
959 /* For hard registers, we already have most of these rules collected in
960 subreg_offset_representable_p. */
961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
962 {
963 unsigned int regno = REGNO (reg);
964
2166bbaa 965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
966 && GET_MODE_INNER (imode) == omode)
967 ;
b56a9dbc 968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
2166bbaa 969 return false;
2166bbaa 970
971 return subreg_offset_representable_p (regno, imode, offset, omode);
972 }
973
68cc7e7b 974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
976 mode occupies. */
977 if (!ordered_p (osize, regsize))
978 return false;
979
2166bbaa 980 /* For pseudo registers, we want most of the same checks. Namely:
44ce7b27 981
982 Assume that the pseudo register will be allocated to hard registers
983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
984 the remainder must correspond to the lowpart of the containing hard
985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
986 otherwise it is at the lowest offset.
987
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
68cc7e7b 990 if (maybe_lt (osize, regsize)
c6a6cdaa 991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
2166bbaa 992 {
68cc7e7b 993 /* It is invalid for the target to pick a register size for a mode
994 that isn't ordered wrt to the size of that mode. */
995 poly_uint64 block_size = ordered_min (isize, regsize);
9edf7ea8 996 unsigned int start_reg;
997 poly_uint64 offset_within_reg;
998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
999 || (BYTES_BIG_ENDIAN
1000 ? maybe_ne (offset_within_reg, block_size - osize)
1001 : maybe_ne (offset_within_reg, 0U)))
2166bbaa 1002 return false;
1003 }
1004 return true;
1005}
1006
1007rtx
9edf7ea8 1008gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
2166bbaa 1009{
1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
2ff23ed0 1011 return gen_rtx_raw_SUBREG (mode, reg, offset);
701e46d0 1012}
1013
c6259b83 1014/* Generate a SUBREG representing the least-significant part of REG if MODE
1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1016
701e46d0 1017rtx
3754d046 1018gen_lowpart_SUBREG (machine_mode mode, rtx reg)
701e46d0 1019{
3754d046 1020 machine_mode inmode;
701e46d0 1021
1022 inmode = GET_MODE (reg);
1023 if (inmode == VOIDmode)
1024 inmode = mode;
81802af6 1025 return gen_rtx_SUBREG (mode, reg,
1026 subreg_lowpart_offset (mode, inmode));
701e46d0 1027}
e1398578 1028
1029rtx
3754d046 1030gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
e1398578 1031 enum var_init_status status)
1032{
1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1034 PAT_VAR_LOCATION_STATUS (x) = status;
1035 return x;
1036}
7014838c 1037\f
15bbde2b 1038
cf9ac040 1039/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1040
15bbde2b 1041rtvec
ee582a61 1042gen_rtvec (int n, ...)
15bbde2b 1043{
cf9ac040 1044 int i;
1045 rtvec rt_val;
ee582a61 1046 va_list p;
15bbde2b 1047
ee582a61 1048 va_start (p, n);
15bbde2b 1049
cf9ac040 1050 /* Don't allocate an empty rtvec... */
15bbde2b 1051 if (n == 0)
451c8e2f 1052 {
1053 va_end (p);
1054 return NULL_RTVEC;
1055 }
15bbde2b 1056
cf9ac040 1057 rt_val = rtvec_alloc (n);
e5fcd76a 1058
15bbde2b 1059 for (i = 0; i < n; i++)
cf9ac040 1060 rt_val->elem[i] = va_arg (p, rtx);
7ad77798 1061
ee582a61 1062 va_end (p);
cf9ac040 1063 return rt_val;
15bbde2b 1064}
1065
1066rtvec
35cb5232 1067gen_rtvec_v (int n, rtx *argp)
15bbde2b 1068{
19cb6b50 1069 int i;
1070 rtvec rt_val;
15bbde2b 1071
cf9ac040 1072 /* Don't allocate an empty rtvec... */
15bbde2b 1073 if (n == 0)
cf9ac040 1074 return NULL_RTVEC;
15bbde2b 1075
cf9ac040 1076 rt_val = rtvec_alloc (n);
15bbde2b 1077
1078 for (i = 0; i < n; i++)
a4070a91 1079 rt_val->elem[i] = *argp++;
15bbde2b 1080
1081 return rt_val;
1082}
f17e3fff 1083
1084rtvec
1085gen_rtvec_v (int n, rtx_insn **argp)
1086{
1087 int i;
1088 rtvec rt_val;
1089
1090 /* Don't allocate an empty rtvec... */
1091 if (n == 0)
1092 return NULL_RTVEC;
1093
1094 rt_val = rtvec_alloc (n);
1095
1096 for (i = 0; i < n; i++)
1097 rt_val->elem[i] = *argp++;
1098
1099 return rt_val;
1100}
1101
15bbde2b 1102\f
80c70e76 1103/* Return the number of bytes between the start of an OUTER_MODE
1104 in-memory value and the start of an INNER_MODE in-memory value,
1105 given that the former is a lowpart of the latter. It may be a
1106 paradoxical lowpart, in which case the offset will be negative
1107 on big-endian targets. */
1108
9edf7ea8 1109poly_int64
3754d046 1110byte_lowpart_offset (machine_mode outer_mode,
1111 machine_mode inner_mode)
80c70e76 1112{
d0257d43 1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
80c70e76 1114 return -subreg_lowpart_offset (inner_mode, outer_mode);
d0257d43 1115 else
1116 return subreg_lowpart_offset (outer_mode, inner_mode);
80c70e76 1117}
57689c10 1118
1119/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1120 from address X. For paradoxical big-endian subregs this is a
1121 negative value, otherwise it's the same as OFFSET. */
1122
9edf7ea8 1123poly_int64
57689c10 1124subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
9edf7ea8 1125 poly_uint64 offset)
57689c10 1126{
1127 if (paradoxical_subreg_p (outer_mode, inner_mode))
1128 {
9edf7ea8 1129 gcc_assert (known_eq (offset, 0U));
57689c10 1130 return -subreg_lowpart_offset (inner_mode, outer_mode);
1131 }
1132 return offset;
1133}
1134
1135/* As above, but return the offset that existing subreg X would have
1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1137 about the current SUBREG_REG is its mode. */
1138
9edf7ea8 1139poly_int64
57689c10 1140subreg_memory_offset (const_rtx x)
1141{
1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1143 SUBREG_BYTE (x));
1144}
80c70e76 1145\f
15bbde2b 1146/* Generate a REG rtx for a new pseudo register of mode MODE.
1147 This pseudo is assigned the next sequential register number. */
1148
1149rtx
3754d046 1150gen_reg_rtx (machine_mode mode)
15bbde2b 1151{
19cb6b50 1152 rtx val;
27a7a23a 1153 unsigned int align = GET_MODE_ALIGNMENT (mode);
15bbde2b 1154
1b7ff857 1155 gcc_assert (can_create_pseudo_p ());
15bbde2b 1156
27a7a23a 1157 /* If a virtual register with bigger mode alignment is generated,
1158 increase stack alignment estimation because it might be spilled
1159 to stack later. */
48e1416a 1160 if (SUPPORTS_STACK_ALIGNMENT
27a7a23a 1161 && crtl->stack_alignment_estimated < align
1162 && !crtl->stack_realign_processed)
8645d3e7 1163 {
1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1165 if (crtl->stack_alignment_estimated < min_align)
1166 crtl->stack_alignment_estimated = min_align;
1167 }
27a7a23a 1168
316bc009 1169 if (generating_concat_p
1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 1172 {
1173 /* For complex modes, don't make a single pseudo.
1174 Instead, make a CONCAT of two pseudos.
1175 This allows noncontiguous allocation of the real and imaginary parts,
1176 which makes much better code. Besides, allocating DCmode
1177 pseudos overstrains reload on some machines like the 386. */
1178 rtx realpart, imagpart;
3754d046 1179 machine_mode partmode = GET_MODE_INNER (mode);
76c37538 1180
1181 realpart = gen_reg_rtx (partmode);
1182 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 1183 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 1184 }
1185
b4c6ce9b 1186 /* Do not call gen_reg_rtx with uninitialized crtl. */
1187 gcc_assert (crtl->emit.regno_pointer_align_length);
1188
cd769037 1189 crtl->emit.ensure_regno_capacity ();
1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
15bbde2b 1191
cd769037 1192 val = gen_raw_REG (mode, reg_rtx_no);
1193 regno_reg_rtx[reg_rtx_no++] = val;
1194 return val;
1195}
fcdc122e 1196
cd769037 1197/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
0a893c29 1199
cd769037 1200void
1201emit_status::ensure_regno_capacity ()
1202{
1203 int old_size = regno_pointer_align_length;
15bbde2b 1204
cd769037 1205 if (reg_rtx_no < old_size)
1206 return;
15bbde2b 1207
cd769037 1208 int new_size = old_size * 2;
1209 while (reg_rtx_no >= new_size)
1210 new_size *= 2;
1211
1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1213 memset (tmp + old_size, 0, new_size - old_size);
1214 regno_pointer_align = (unsigned char *) tmp;
1215
1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1218 regno_reg_rtx = new1;
1219
1220 crtl->emit.regno_pointer_align_length = new_size;
15bbde2b 1221}
1222
ea239197 1223/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1224
1225bool
1226reg_is_parm_p (rtx reg)
1227{
1228 tree decl;
1229
1230 gcc_assert (REG_P (reg));
1231 decl = REG_EXPR (reg);
1232 return (decl && TREE_CODE (decl) == PARM_DECL);
1233}
1234
80c70e76 1235/* Update NEW with the same attributes as REG, but with OFFSET added
1236 to the REG_OFFSET. */
ca74b940 1237
1a6a0f2a 1238static void
a14d43f8 1239update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
ca74b940 1240{
9ce37fa7 1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
a14d43f8 1242 REG_OFFSET (reg) + offset);
1a6a0f2a 1243}
1244
80c70e76 1245/* Generate a register with same attributes as REG, but with OFFSET
1246 added to the REG_OFFSET. */
1a6a0f2a 1247
1248rtx
3754d046 1249gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
a14d43f8 1250 poly_int64 offset)
1a6a0f2a 1251{
9ce37fa7 1252 rtx new_rtx = gen_rtx_REG (mode, regno);
1a6a0f2a 1253
9ce37fa7 1254 update_reg_offset (new_rtx, reg, offset);
1255 return new_rtx;
1a6a0f2a 1256}
1257
1258/* Generate a new pseudo-register with the same attributes as REG, but
80c70e76 1259 with OFFSET added to the REG_OFFSET. */
1a6a0f2a 1260
1261rtx
3754d046 1262gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1a6a0f2a 1263{
9ce37fa7 1264 rtx new_rtx = gen_reg_rtx (mode);
1a6a0f2a 1265
9ce37fa7 1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
ca74b940 1268}
1269
80c70e76 1270/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1271 new register is a (possibly paradoxical) lowpart of the old one. */
ca74b940 1272
1273void
3754d046 1274adjust_reg_mode (rtx reg, machine_mode mode)
ca74b940 1275{
80c70e76 1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1277 PUT_MODE (reg, mode);
1278}
1279
1280/* Copy REG's attributes from X, if X has any attributes. If REG and X
1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1282
1283void
1284set_reg_attrs_from_value (rtx reg, rtx x)
1285{
a14d43f8 1286 poly_int64 offset;
e623c80a 1287 bool can_be_reg_pointer = true;
1288
1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1290 extension. */
1291 while (GET_CODE (x) == SIGN_EXTEND
1292 || GET_CODE (x) == ZERO_EXTEND
1293 || GET_CODE (x) == TRUNCATE
1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1295 {
4dd7c283 1296#if defined(POINTERS_EXTEND_UNSIGNED)
1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
afcace5c 1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1299 || (paradoxical_subreg_p (x)
1300 && ! (SUBREG_PROMOTED_VAR_P (x)
1301 && SUBREG_CHECK_PROMOTED_SIGN (x,
1302 POINTERS_EXTEND_UNSIGNED))))
4dd7c283 1303 && !targetm.have_ptr_extend ())
e623c80a 1304 can_be_reg_pointer = false;
1305#endif
1306 x = XEXP (x, 0);
1307 }
80c70e76 1308
ac56145e 1309 /* Hard registers can be reused for multiple purposes within the same
1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1311 on them is wrong. */
1312 if (HARD_REGISTER_P (reg))
1313 return;
1314
80c70e76 1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
ae12ddda 1316 if (MEM_P (x))
1317 {
da443c27 1318 if (MEM_OFFSET_KNOWN_P (x))
1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1320 MEM_OFFSET (x) + offset);
e623c80a 1321 if (can_be_reg_pointer && MEM_POINTER (x))
40b93dba 1322 mark_reg_pointer (reg, 0);
ae12ddda 1323 }
1324 else if (REG_P (x))
1325 {
1326 if (REG_ATTRS (x))
1327 update_reg_offset (reg, x, offset);
e623c80a 1328 if (can_be_reg_pointer && REG_POINTER (x))
ae12ddda 1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1330 }
1331}
1332
1333/* Generate a REG rtx for a new pseudo register, copying the mode
1334 and attributes from X. */
1335
1336rtx
1337gen_reg_rtx_and_attrs (rtx x)
1338{
1339 rtx reg = gen_reg_rtx (GET_MODE (x));
1340 set_reg_attrs_from_value (reg, x);
1341 return reg;
ca74b940 1342}
1343
263c416c 1344/* Set the register attributes for registers contained in PARM_RTX.
1345 Use needed values from memory attributes of MEM. */
1346
1347void
35cb5232 1348set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
263c416c 1349{
8ad4c111 1350 if (REG_P (parm_rtx))
80c70e76 1351 set_reg_attrs_from_value (parm_rtx, mem);
263c416c 1352 else if (GET_CODE (parm_rtx) == PARALLEL)
1353 {
1354 /* Check for a NULL entry in the first slot, used to indicate that the
1355 parameter goes both on the stack and in registers. */
1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1357 for (; i < XVECLEN (parm_rtx, 0); i++)
1358 {
1359 rtx x = XVECEXP (parm_rtx, 0, i);
8ad4c111 1360 if (REG_P (XEXP (x, 0)))
263c416c 1361 REG_ATTRS (XEXP (x, 0))
1362 = get_reg_attrs (MEM_EXPR (mem),
1363 INTVAL (XEXP (x, 1)));
1364 }
1365 }
1366}
1367
80c70e76 1368/* Set the REG_ATTRS for registers in value X, given that X represents
1369 decl T. */
ca74b940 1370
a8dd994c 1371void
80c70e76 1372set_reg_attrs_for_decl_rtl (tree t, rtx x)
1373{
94f92c36 1374 if (!t)
1375 return;
1376 tree tdecl = t;
80c70e76 1377 if (GET_CODE (x) == SUBREG)
ebfc27f5 1378 {
80c70e76 1379 gcc_assert (subreg_lowpart_p (x));
1380 x = SUBREG_REG (x);
ebfc27f5 1381 }
8ad4c111 1382 if (REG_P (x))
80c70e76 1383 REG_ATTRS (x)
1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
94f92c36 1385 DECL_P (tdecl)
1386 ? DECL_MODE (tdecl)
1387 : TYPE_MODE (TREE_TYPE (tdecl))));
ca74b940 1388 if (GET_CODE (x) == CONCAT)
1389 {
1390 if (REG_P (XEXP (x, 0)))
1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1392 if (REG_P (XEXP (x, 1)))
1393 REG_ATTRS (XEXP (x, 1))
1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1395 }
1396 if (GET_CODE (x) == PARALLEL)
1397 {
85d25060 1398 int i, start;
1399
1400 /* Check for a NULL entry, used to indicate that the parameter goes
1401 both on the stack and in registers. */
1402 if (XEXP (XVECEXP (x, 0, 0), 0))
1403 start = 0;
1404 else
1405 start = 1;
1406
1407 for (i = start; i < XVECLEN (x, 0); i++)
ca74b940 1408 {
1409 rtx y = XVECEXP (x, 0, i);
1410 if (REG_P (XEXP (y, 0)))
1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1412 }
1413 }
1414}
1415
80c70e76 1416/* Assign the RTX X to declaration T. */
1417
1418void
1419set_decl_rtl (tree t, rtx x)
1420{
1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1422 if (x)
1423 set_reg_attrs_for_decl_rtl (t, x);
1424}
1425
d91cf567 1426/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1427 if the ABI requires the parameter to be passed by reference. */
80c70e76 1428
1429void
d91cf567 1430set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
80c70e76 1431{
1432 DECL_INCOMING_RTL (t) = x;
d91cf567 1433 if (x && !by_reference_p)
80c70e76 1434 set_reg_attrs_for_decl_rtl (t, x);
1435}
1436
de8ecfb5 1437/* Identify REG (which may be a CONCAT) as a user register. */
1438
1439void
35cb5232 1440mark_user_reg (rtx reg)
de8ecfb5 1441{
1442 if (GET_CODE (reg) == CONCAT)
1443 {
1444 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1445 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1446 }
de8ecfb5 1447 else
611234b4 1448 {
1449 gcc_assert (REG_P (reg));
1450 REG_USERVAR_P (reg) = 1;
1451 }
de8ecfb5 1452}
1453
d4c332ff 1454/* Identify REG as a probable pointer register and show its alignment
1455 as ALIGN, if nonzero. */
15bbde2b 1456
1457void
35cb5232 1458mark_reg_pointer (rtx reg, int align)
15bbde2b 1459{
e61a0a7f 1460 if (! REG_POINTER (reg))
612409a6 1461 {
e61a0a7f 1462 REG_POINTER (reg) = 1;
d4c332ff 1463
612409a6 1464 if (align)
1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1466 }
1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
8b332087 1468 /* We can no-longer be sure just how aligned this pointer is. */
d4c332ff 1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 1470}
1471
1472/* Return 1 plus largest pseudo reg number used in the current function. */
1473
1474int
35cb5232 1475max_reg_num (void)
15bbde2b 1476{
1477 return reg_rtx_no;
1478}
1479
1480/* Return 1 + the largest label number used so far in the current function. */
1481
1482int
35cb5232 1483max_label_num (void)
15bbde2b 1484{
15bbde2b 1485 return label_num;
1486}
1487
1488/* Return first label number used in this function (if any were used). */
1489
1490int
35cb5232 1491get_first_label_num (void)
15bbde2b 1492{
1493 return first_label_num;
1494}
4ee9c684 1495
1496/* If the rtx for label was created during the expansion of a nested
1497 function, then first_label_num won't include this label number.
f0b5f617 1498 Fix this now so that array indices work later. */
4ee9c684 1499
1500void
6313d5da 1501maybe_set_first_label_num (rtx_code_label *x)
4ee9c684 1502{
1503 if (CODE_LABEL_NUMBER (x) < first_label_num)
1504 first_label_num = CODE_LABEL_NUMBER (x);
1505}
836c1c68 1506
1507/* For use by the RTL function loader, when mingling with normal
1508 functions.
1509 Ensure that label_num is greater than the label num of X, to avoid
1510 duplicate labels in the generated assembler. */
1511
1512void
1513maybe_set_max_label_num (rtx_code_label *x)
1514{
1515 if (CODE_LABEL_NUMBER (x) >= label_num)
1516 label_num = CODE_LABEL_NUMBER (x) + 1;
1517}
1518
15bbde2b 1519\f
1520/* Return a value representing some low-order bits of X, where the number
1521 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 1522 between floating-point and fixed-point values, rather, the bit
15bbde2b 1523 representation is returned.
1524
1525 This function handles the cases in common between gen_lowpart, below,
1526 and two variants in cse.c and combine.c. These are the cases that can
1527 be safely handled at all points in the compilation.
1528
1529 If this is not a case we can handle, return 0. */
1530
1531rtx
3754d046 1532gen_lowpart_common (machine_mode mode, rtx x)
15bbde2b 1533{
68cc7e7b 1534 poly_uint64 msize = GET_MODE_SIZE (mode);
3754d046 1535 machine_mode innermode;
791172c5 1536
1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1538 so we have to make one up. Yuk. */
1539 innermode = GET_MODE (x);
971ba038 1540 if (CONST_INT_P (x)
68cc7e7b 1541 && known_le (msize * BITS_PER_UNIT,
1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
517be012 1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
791172c5 1544 else if (innermode == VOIDmode)
517be012 1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
48e1416a 1546
611234b4 1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
15bbde2b 1548
791172c5 1549 if (innermode == mode)
15bbde2b 1550 return x;
1551
68cc7e7b 1552 /* The size of the outer and inner modes must be ordered. */
1553 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1554 if (!ordered_p (msize, xsize))
1555 return 0;
1556
44ce7b27 1557 if (SCALAR_FLOAT_MODE_P (mode))
1558 {
1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
68cc7e7b 1560 if (maybe_gt (msize, xsize))
44ce7b27 1561 return 0;
1562 }
1563 else
1564 {
1565 /* MODE must occupy no more of the underlying registers than X. */
68cc7e7b 1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1567 unsigned int mregs, xregs;
1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1570 || mregs > xregs)
44ce7b27 1571 return 0;
1572 }
9abe1e73 1573
58a70f63 1574 scalar_int_mode int_mode, int_innermode, from_mode;
15bbde2b 1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
58a70f63 1576 && is_a <scalar_int_mode> (mode, &int_mode)
1577 && is_a <scalar_int_mode> (innermode, &int_innermode)
1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
15bbde2b 1579 {
1580 /* If we are getting the low-order part of something that has been
1581 sign- or zero-extended, we can either just use the object being
1582 extended or make a narrower extension. If we want an even smaller
1583 piece than the size of the object being extended, call ourselves
1584 recursively.
1585
1586 This case is used mostly by combine and cse. */
1587
58a70f63 1588 if (from_mode == int_mode)
15bbde2b 1589 return XEXP (x, 0);
58a70f63 1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1591 return gen_lowpart_common (int_mode, XEXP (x, 0));
1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
15bbde2b 1594 }
8ad4c111 1595 else if (GET_CODE (x) == SUBREG || REG_P (x)
499d2606 1596 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
bbad7cd0 1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1598 || CONST_POLY_INT_P (x))
a8a727ad 1599 return lowpart_subreg (mode, x, innermode);
4a307dd5 1600
15bbde2b 1601 /* Otherwise, we can't do this. */
1602 return 0;
1603}
1604\f
d56d0ca2 1605rtx
3754d046 1606gen_highpart (machine_mode mode, rtx x)
d56d0ca2 1607{
52acb7ae 1608 poly_uint64 msize = GET_MODE_SIZE (mode);
81802af6 1609 rtx result;
701e46d0 1610
d56d0ca2 1611 /* This case loses if X is a subreg. To catch bugs early,
1612 complain if an invalid MODE is used even in other cases. */
52acb7ae 1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
701e46d0 1615
81802af6 1616 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1617 subreg_highpart_offset (mode, GET_MODE (x)));
611234b4 1618 gcc_assert (result);
48e1416a 1619
a8c36ab2 1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1621 the target if we have a MEM. gen_highpart must return a valid operand,
1622 emitting code if necessary to do so. */
611234b4 1623 if (MEM_P (result))
1624 {
1625 result = validize_mem (result);
1626 gcc_assert (result);
1627 }
48e1416a 1628
81802af6 1629 return result;
1630}
704fcf2b 1631
29d56731 1632/* Like gen_highpart, but accept mode of EXP operand in case EXP can
704fcf2b 1633 be VOIDmode constant. */
1634rtx
3754d046 1635gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
704fcf2b 1636{
1637 if (GET_MODE (exp) != VOIDmode)
1638 {
611234b4 1639 gcc_assert (GET_MODE (exp) == innermode);
704fcf2b 1640 return gen_highpart (outermode, exp);
1641 }
1642 return simplify_gen_subreg (outermode, exp, innermode,
1643 subreg_highpart_offset (outermode, innermode));
1644}
d4c5e26d 1645
ca99c787 1646/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
10ef59ac 1648
9edf7ea8 1649poly_uint64
1650subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
81802af6 1651{
9edf7ea8 1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1653 if (maybe_gt (outer_bytes, inner_bytes))
ca99c787 1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1655 return 0;
701e46d0 1656
ca99c787 1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1658 return inner_bytes - outer_bytes;
1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1660 return 0;
1661 else
1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
d56d0ca2 1663}
64ab453f 1664
ca99c787 1665/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1667
9edf7ea8 1668poly_uint64
1669subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
64ab453f 1670{
9edf7ea8 1671 gcc_assert (known_ge (inner_bytes, outer_bytes));
64ab453f 1672
ca99c787 1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1674 return 0;
1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1676 return inner_bytes - outer_bytes;
1677 else
1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1679 (inner_bytes - outer_bytes)
1680 * BITS_PER_UNIT);
64ab453f 1681}
d56d0ca2 1682
15bbde2b 1683/* Return 1 iff X, assumed to be a SUBREG,
1684 refers to the least significant part of its containing reg.
1685 If X is not a SUBREG, always return 1 (it is its own low part!). */
1686
1687int
b7bf20db 1688subreg_lowpart_p (const_rtx x)
15bbde2b 1689{
1690 if (GET_CODE (x) != SUBREG)
1691 return 1;
7e14c1bf 1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1693 return 0;
15bbde2b 1694
9edf7ea8 1695 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1696 GET_MODE (SUBREG_REG (x))),
1697 SUBREG_BYTE (x));
15bbde2b 1698}
1699\f
701e46d0 1700/* Return subword OFFSET of operand OP.
1701 The word number, OFFSET, is interpreted as the word number starting
1702 at the low-order address. OFFSET 0 is the low-order word if not
1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1704
1705 If we cannot extract the required word, we return zero. Otherwise,
1706 an rtx corresponding to the requested word will be returned.
1707
1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1709 reload has completed, a valid address will always be returned. After
1710 reload, if a valid address cannot be returned, we return zero.
1711
1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1713 it is the responsibility of the caller.
1714
1715 MODE is the mode of OP in case it is a CONST_INT.
1716
1717 ??? This is still rather broken for some cases. The problem for the
1718 moment is that all callers of this thing provide no 'goal mode' to
1719 tell us to work with. This exists because all callers were written
84e81e84 1720 in a word based SUBREG world.
1721 Now use of this function can be deprecated by simplify_subreg in most
1722 cases.
1723 */
701e46d0 1724
1725rtx
b3d467b7 1726operand_subword (rtx op, poly_uint64 offset, int validate_address,
1727 machine_mode mode)
701e46d0 1728{
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (op);
1731
611234b4 1732 gcc_assert (mode != VOIDmode);
701e46d0 1733
6312a35e 1734 /* If OP is narrower than a word, fail. */
701e46d0 1735 if (mode != BLKmode
b3d467b7 1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
701e46d0 1737 return 0;
1738
6312a35e 1739 /* If we want a word outside OP, return zero. */
701e46d0 1740 if (mode != BLKmode
b3d467b7 1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
701e46d0 1742 return const0_rtx;
1743
701e46d0 1744 /* Form a new MEM at the requested address. */
e16ceb8e 1745 if (MEM_P (op))
701e46d0 1746 {
9ce37fa7 1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1748
e4e86ec5 1749 if (! validate_address)
9ce37fa7 1750 return new_rtx;
e4e86ec5 1751
1752 else if (reload_completed)
701e46d0 1753 {
bd1a81f7 1754 if (! strict_memory_address_addr_space_p (word_mode,
1755 XEXP (new_rtx, 0),
1756 MEM_ADDR_SPACE (op)))
e4e86ec5 1757 return 0;
701e46d0 1758 }
e4e86ec5 1759 else
9ce37fa7 1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
701e46d0 1761 }
1762
84e81e84 1763 /* Rest can be handled by simplify_subreg. */
1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1765}
1766
89f18f73 1767/* Similar to `operand_subword', but never return 0. If we can't
1768 extract the required subword, put OP into a register and try again.
1769 The second attempt must succeed. We always validate the address in
1770 this case.
15bbde2b 1771
1772 MODE is the mode of OP, in case it is CONST_INT. */
1773
1774rtx
b3d467b7 1775operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
15bbde2b 1776{
701e46d0 1777 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1778
1779 if (result)
1780 return result;
1781
1782 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1783 {
f4d3c071 1784 /* If this is a register which cannot be accessed by words, copy it
ac825d29 1785 to a pseudo register. */
8ad4c111 1786 if (REG_P (op))
ac825d29 1787 op = copy_to_reg (op);
1788 else
1789 op = force_reg (mode, op);
1790 }
15bbde2b 1791
701e46d0 1792 result = operand_subword (op, offset, 1, mode);
611234b4 1793 gcc_assert (result);
15bbde2b 1794
1795 return result;
1796}
1797\f
711f137f 1798mem_attrs::mem_attrs ()
1799 : expr (NULL_TREE),
1800 offset (0),
1801 size (0),
1802 alias (0),
1803 align (0),
1804 addrspace (ADDR_SPACE_GENERIC),
1805 offset_known_p (false),
1806 size_known_p (false)
1807{}
1808
b3ff8d90 1809/* Returns 1 if both MEM_EXPR can be considered equal
1810 and 0 otherwise. */
1811
1812int
52d07779 1813mem_expr_equal_p (const_tree expr1, const_tree expr2)
b3ff8d90 1814{
1815 if (expr1 == expr2)
1816 return 1;
1817
1818 if (! expr1 || ! expr2)
1819 return 0;
1820
1821 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1822 return 0;
1823
3a443843 1824 return operand_equal_p (expr1, expr2, 0);
b3ff8d90 1825}
1826
ad0a178f 1827/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1829 -1 if not known. */
1830
1831int
7cfdc2f0 1832get_mem_align_offset (rtx mem, unsigned int align)
ad0a178f 1833{
1834 tree expr;
711f137f 1835 poly_uint64 offset;
ad0a178f 1836
1837 /* This function can't use
da443c27 1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
98ab9e8f 1839 || (MAX (MEM_ALIGN (mem),
957d0361 1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
ad0a178f 1841 < align))
1842 return -1;
1843 else
da443c27 1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
ad0a178f 1845 for two reasons:
1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1847 for <variable>. get_inner_reference doesn't handle it and
1848 even if it did, the alignment in that case needs to be determined
1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1851 isn't sufficiently aligned, the object it is in might be. */
1852 gcc_assert (MEM_P (mem));
1853 expr = MEM_EXPR (mem);
da443c27 1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
ad0a178f 1855 return -1;
1856
da443c27 1857 offset = MEM_OFFSET (mem);
ad0a178f 1858 if (DECL_P (expr))
1859 {
1860 if (DECL_ALIGN (expr) < align)
1861 return -1;
1862 }
1863 else if (INDIRECT_REF_P (expr))
1864 {
1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1866 return -1;
1867 }
1868 else if (TREE_CODE (expr) == COMPONENT_REF)
1869 {
1870 while (1)
1871 {
1872 tree inner = TREE_OPERAND (expr, 0);
1873 tree field = TREE_OPERAND (expr, 1);
1874 tree byte_offset = component_ref_field_offset (expr);
1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1876
711f137f 1877 poly_uint64 suboffset;
ad0a178f 1878 if (!byte_offset
711f137f 1879 || !poly_int_tree_p (byte_offset, &suboffset)
e913b5cd 1880 || !tree_fits_uhwi_p (bit_offset))
ad0a178f 1881 return -1;
1882
711f137f 1883 offset += suboffset;
e913b5cd 1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
ad0a178f 1885
1886 if (inner == NULL_TREE)
1887 {
1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1889 < (unsigned int) align)
1890 return -1;
1891 break;
1892 }
1893 else if (DECL_P (inner))
1894 {
1895 if (DECL_ALIGN (inner) < align)
1896 return -1;
1897 break;
1898 }
1899 else if (TREE_CODE (inner) != COMPONENT_REF)
1900 return -1;
1901 expr = inner;
1902 }
1903 }
1904 else
1905 return -1;
1906
711f137f 1907 HOST_WIDE_INT misalign;
1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1909 return -1;
1910 return misalign;
ad0a178f 1911}
1912
310b57a1 1913/* Given REF (a MEM) and T, either the type of X or the expression
c6259b83 1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f717f77 1915 if we are making a new object of this type. BITPOS is nonzero if
1916 there is an offset outstanding on T that will be applied later. */
c6259b83 1917
1918void
35cb5232 1919set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
711f137f 1920 poly_int64 bitpos)
c6259b83 1921{
711f137f 1922 poly_int64 apply_bitpos = 0;
c6259b83 1923 tree type;
d72886b5 1924 struct mem_attrs attrs, *defattrs, *refattrs;
3f06bd1b 1925 addr_space_t as;
c6259b83 1926
1927 /* It can happen that type_for_mode was given a mode for which there
1928 is no language-level type. In which case it returns NULL, which
1929 we can see here. */
1930 if (t == NULL_TREE)
1931 return;
1932
1933 type = TYPE_P (t) ? t : TREE_TYPE (t);
4ccffa39 1934 if (type == error_mark_node)
1935 return;
c6259b83 1936
c6259b83 1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1939 info. Callers should not set DECL_RTL until after the call to
1940 set_mem_attributes. */
611234b4 1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
c6259b83 1942
96216d37 1943 /* Get the alias set from the expression or type (perhaps using a
2a631e19 1944 front-end routine) and use it. */
d72886b5 1945 attrs.alias = get_alias_set (t);
c6259b83 1946
fbc6244b 1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
8d350e69 1948 MEM_POINTER (ref) = POINTER_TYPE_P (type);
c6259b83 1949
d8dccfe9 1950 /* Default values from pre-existing memory attributes if present. */
d72886b5 1951 refattrs = MEM_ATTRS (ref);
1952 if (refattrs)
d8dccfe9 1953 {
1954 /* ??? Can this ever happen? Calling this routine on a MEM that
1955 already carries memory attributes should probably be invalid. */
d72886b5 1956 attrs.expr = refattrs->expr;
6d58bcba 1957 attrs.offset_known_p = refattrs->offset_known_p;
d72886b5 1958 attrs.offset = refattrs->offset;
6d58bcba 1959 attrs.size_known_p = refattrs->size_known_p;
d72886b5 1960 attrs.size = refattrs->size;
1961 attrs.align = refattrs->align;
d8dccfe9 1962 }
1963
1964 /* Otherwise, default values from the mode of the MEM reference. */
d72886b5 1965 else
d8dccfe9 1966 {
d72886b5 1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1968 gcc_assert (!defattrs->expr);
6d58bcba 1969 gcc_assert (!defattrs->offset_known_p);
d72886b5 1970
d8dccfe9 1971 /* Respect mode size. */
6d58bcba 1972 attrs.size_known_p = defattrs->size_known_p;
d72886b5 1973 attrs.size = defattrs->size;
d8dccfe9 1974 /* ??? Is this really necessary? We probably should always get
1975 the size from the type below. */
1976
1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1978 if T is an object, always compute the object alignment below. */
d72886b5 1979 if (TYPE_P (t))
1980 attrs.align = defattrs->align;
1981 else
1982 attrs.align = BITS_PER_UNIT;
d8dccfe9 1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1984 e.g. if the type carries an alignment attribute. Should we be
1985 able to simply always use TYPE_ALIGN? */
1986 }
1987
b3b6e4b5 1988 /* We can set the alignment from the type if we are making an object or if
1989 this is an INDIRECT_REF. */
1990 if (objectp || TREE_CODE (t) == INDIRECT_REF)
d72886b5 1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
679e0056 1992
96216d37 1993 /* If the size is known, we can set that. */
50ba3acc 1994 tree new_size = TYPE_SIZE_UNIT (type);
96216d37 1995
9eec20bf 1996 /* The address-space is that of the type. */
1997 as = TYPE_ADDR_SPACE (type);
1998
579bccf9 1999 /* If T is not a type, we may be able to deduce some more information about
2000 the expression. */
2001 if (! TYPE_P (t))
2a631e19 2002 {
ae2dd339 2003 tree base;
b04fab2a 2004
2a631e19 2005 if (TREE_THIS_VOLATILE (t))
2006 MEM_VOLATILE_P (ref) = 1;
c6259b83 2007
3c00f11c 2008 /* Now remove any conversions: they don't change what the underlying
2009 object is. Likewise for SAVE_EXPR. */
72dd6141 2010 while (CONVERT_EXPR_P (t)
3c00f11c 2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2012 || TREE_CODE (t) == SAVE_EXPR)
2a631e19 2013 t = TREE_OPERAND (t, 0);
2014
73eb0a09 2015 /* Note whether this expression can trap. */
2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2017
2018 base = get_base_address (t);
3f06bd1b 2019 if (base)
2020 {
2021 if (DECL_P (base)
2022 && TREE_READONLY (base)
2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2024 && !TREE_THIS_VOLATILE (base))
2025 MEM_READONLY_P (ref) = 1;
2026
2027 /* Mark static const strings readonly as well. */
2028 if (TREE_CODE (base) == STRING_CST
2029 && TREE_READONLY (base)
2030 && TREE_STATIC (base))
2031 MEM_READONLY_P (ref) = 1;
2032
9eec20bf 2033 /* Address-space information is on the base object. */
3f06bd1b 2034 if (TREE_CODE (base) == MEM_REF
2035 || TREE_CODE (base) == TARGET_MEM_REF)
2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2037 0))));
2038 else
2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2040 }
cab98a0d 2041
2b02580f 2042 /* If this expression uses it's parent's alias set, mark it such
2043 that we won't change it. */
d400f5e1 2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
5cc193e7 2045 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2046
2a631e19 2047 /* If this is a decl, set the attributes of the MEM from it. */
2048 if (DECL_P (t))
2049 {
d72886b5 2050 attrs.expr = t;
6d58bcba 2051 attrs.offset_known_p = true;
2052 attrs.offset = 0;
6f717f77 2053 apply_bitpos = bitpos;
50ba3acc 2054 new_size = DECL_SIZE_UNIT (t);
2a631e19 2055 }
2056
9eec20bf 2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */
ce45a448 2058 else if (CONSTANT_CLASS_P (t))
9eec20bf 2059 ;
b10dbbca 2060
50ba3acc 2061 /* If this is a field reference, record it. */
2062 else if (TREE_CODE (t) == COMPONENT_REF)
b10dbbca 2063 {
d72886b5 2064 attrs.expr = t;
6d58bcba 2065 attrs.offset_known_p = true;
2066 attrs.offset = 0;
6f717f77 2067 apply_bitpos = bitpos;
50ba3acc 2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
b10dbbca 2070 }
2071
2072 /* If this is an array reference, look for an outer field reference. */
2073 else if (TREE_CODE (t) == ARRAY_REF)
2074 {
2075 tree off_tree = size_zero_node;
6b039979 2076 /* We can't modify t, because we use it at the end of the
2077 function. */
2078 tree t2 = t;
b10dbbca 2079
2080 do
2081 {
6b039979 2082 tree index = TREE_OPERAND (t2, 1);
6374121b 2083 tree low_bound = array_ref_low_bound (t2);
2084 tree unit_size = array_ref_element_size (t2);
97f8ce30 2085
2086 /* We assume all arrays have sizes that are a multiple of a byte.
2087 First subtract the lower bound, if any, in the type of the
6374121b 2088 index, then convert to sizetype and multiply by the size of
2089 the array element. */
2090 if (! integer_zerop (low_bound))
faa43f85 2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2092 index, low_bound);
97f8ce30 2093
6374121b 2094 off_tree = size_binop (PLUS_EXPR,
535664e3 2095 size_binop (MULT_EXPR,
2096 fold_convert (sizetype,
2097 index),
6374121b 2098 unit_size),
2099 off_tree);
6b039979 2100 t2 = TREE_OPERAND (t2, 0);
b10dbbca 2101 }
6b039979 2102 while (TREE_CODE (t2) == ARRAY_REF);
b10dbbca 2103
9eec20bf 2104 if (DECL_P (t2)
6a57a1e8 2105 || (TREE_CODE (t2) == COMPONENT_REF
2106 /* For trailing arrays t2 doesn't have a size that
2107 covers all valid accesses. */
07110764 2108 && ! array_at_struct_end_p (t)))
b10dbbca 2109 {
d72886b5 2110 attrs.expr = t2;
6d58bcba 2111 attrs.offset_known_p = false;
711f137f 2112 if (poly_int_tree_p (off_tree, &attrs.offset))
6f717f77 2113 {
6d58bcba 2114 attrs.offset_known_p = true;
6f717f77 2115 apply_bitpos = bitpos;
2116 }
b10dbbca 2117 }
9eec20bf 2118 /* Else do not record a MEM_EXPR. */
2d8fe5d0 2119 }
2120
6d72287b 2121 /* If this is an indirect reference, record it. */
182cf5a9 2122 else if (TREE_CODE (t) == MEM_REF
5d9de213 2123 || TREE_CODE (t) == TARGET_MEM_REF)
6d72287b 2124 {
d72886b5 2125 attrs.expr = t;
6d58bcba 2126 attrs.offset_known_p = true;
2127 attrs.offset = 0;
6d72287b 2128 apply_bitpos = bitpos;
2129 }
2130
9eec20bf 2131 /* Compute the alignment. */
2132 unsigned int obj_align;
2133 unsigned HOST_WIDE_INT obj_bitpos;
2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
711f137f 2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2136 if (diff_align != 0)
2137 obj_align = MIN (obj_align, diff_align);
9eec20bf 2138 attrs.align = MAX (attrs.align, obj_align);
2a631e19 2139 }
2140
711f137f 2141 poly_uint64 const_size;
2142 if (poly_int_tree_p (new_size, &const_size))
50ba3acc 2143 {
2144 attrs.size_known_p = true;
711f137f 2145 attrs.size = const_size;
50ba3acc 2146 }
2147
e2e205b3 2148 /* If we modified OFFSET based on T, then subtract the outstanding
595f1461 2149 bit position offset. Similarly, increase the size of the accessed
2150 object to contain the negative offset. */
711f137f 2151 if (maybe_ne (apply_bitpos, 0))
595f1461 2152 {
6d58bcba 2153 gcc_assert (attrs.offset_known_p);
711f137f 2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2155 attrs.offset -= bytepos;
6d58bcba 2156 if (attrs.size_known_p)
711f137f 2157 attrs.size += bytepos;
595f1461 2158 }
6f717f77 2159
2a631e19 2160 /* Now set the attributes we computed above. */
3f06bd1b 2161 attrs.addrspace = as;
d72886b5 2162 set_mem_attrs (ref, &attrs);
c6259b83 2163}
2164
6f717f77 2165void
35cb5232 2166set_mem_attributes (rtx ref, tree t, int objectp)
6f717f77 2167{
2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2169}
2170
c6259b83 2171/* Set the alias set of MEM to SET. */
2172
2173void
32c2fdea 2174set_mem_alias_set (rtx mem, alias_set_type set)
c6259b83 2175{
c6259b83 2176 /* If the new and old alias sets don't conflict, something is wrong. */
1b4345f7 2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
711f137f 2178 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2179 attrs.alias = set;
2180 set_mem_attrs (mem, &attrs);
bd1a81f7 2181}
2182
2183/* Set the address space of MEM to ADDRSPACE (target-defined). */
2184
2185void
2186set_mem_addr_space (rtx mem, addr_space_t addrspace)
2187{
711f137f 2188 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2189 attrs.addrspace = addrspace;
2190 set_mem_attrs (mem, &attrs);
c6259b83 2191}
96216d37 2192
1c4512da 2193/* Set the alignment of MEM to ALIGN bits. */
96216d37 2194
2195void
35cb5232 2196set_mem_align (rtx mem, unsigned int align)
96216d37 2197{
711f137f 2198 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2199 attrs.align = align;
2200 set_mem_attrs (mem, &attrs);
96216d37 2201}
278fe152 2202
b10dbbca 2203/* Set the expr for MEM to EXPR. */
278fe152 2204
2205void
35cb5232 2206set_mem_expr (rtx mem, tree expr)
278fe152 2207{
711f137f 2208 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2209 attrs.expr = expr;
2210 set_mem_attrs (mem, &attrs);
278fe152 2211}
b10dbbca 2212
2213/* Set the offset of MEM to OFFSET. */
2214
2215void
711f137f 2216set_mem_offset (rtx mem, poly_int64 offset)
b10dbbca 2217{
711f137f 2218 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2219 attrs.offset_known_p = true;
2220 attrs.offset = offset;
da443c27 2221 set_mem_attrs (mem, &attrs);
2222}
2223
2224/* Clear the offset of MEM. */
2225
2226void
2227clear_mem_offset (rtx mem)
2228{
711f137f 2229 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2230 attrs.offset_known_p = false;
d72886b5 2231 set_mem_attrs (mem, &attrs);
f0500469 2232}
2233
2234/* Set the size of MEM to SIZE. */
2235
2236void
711f137f 2237set_mem_size (rtx mem, poly_int64 size)
f0500469 2238{
711f137f 2239 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2240 attrs.size_known_p = true;
2241 attrs.size = size;
5b2a69fa 2242 set_mem_attrs (mem, &attrs);
2243}
2244
2245/* Clear the size of MEM. */
2246
2247void
2248clear_mem_size (rtx mem)
2249{
711f137f 2250 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2251 attrs.size_known_p = false;
d72886b5 2252 set_mem_attrs (mem, &attrs);
b10dbbca 2253}
c6259b83 2254\f
96216d37 2255/* Return a memory reference like MEMREF, but with its mode changed to MODE
2256 and its address changed to ADDR. (VOIDmode means don't change the mode.
2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
5cc04e45 2258 returned memory location is required to be valid. INPLACE is true if any
2259 changes can be made directly to MEMREF or false if MEMREF must be treated
2260 as immutable.
2261
2262 The memory attributes are not changed. */
15bbde2b 2263
96216d37 2264static rtx
3754d046 2265change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
5cc04e45 2266 bool inplace)
15bbde2b 2267{
bd1a81f7 2268 addr_space_t as;
9ce37fa7 2269 rtx new_rtx;
15bbde2b 2270
611234b4 2271 gcc_assert (MEM_P (memref));
bd1a81f7 2272 as = MEM_ADDR_SPACE (memref);
15bbde2b 2273 if (mode == VOIDmode)
2274 mode = GET_MODE (memref);
2275 if (addr == 0)
2276 addr = XEXP (memref, 0);
3988ef8b 2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
bd1a81f7 2278 && (!validate || memory_address_addr_space_p (mode, addr, as)))
3988ef8b 2279 return memref;
15bbde2b 2280
73a18f44 2281 /* Don't validate address for LRA. LRA can make the address valid
2282 by itself in most efficient way. */
2283 if (validate && !lra_in_progress)
15bbde2b 2284 {
e4e86ec5 2285 if (reload_in_progress || reload_completed)
bd1a81f7 2286 gcc_assert (memory_address_addr_space_p (mode, addr, as));
e4e86ec5 2287 else
bd1a81f7 2288 addr = memory_address_addr_space (mode, addr, as);
15bbde2b 2289 }
d823ba47 2290
e8976cd7 2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2292 return memref;
2293
5cc04e45 2294 if (inplace)
2295 {
2296 XEXP (memref, 0) = addr;
2297 return memref;
2298 }
2299
9ce37fa7 2300 new_rtx = gen_rtx_MEM (mode, addr);
2301 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2302 return new_rtx;
15bbde2b 2303}
537ffcfc 2304
96216d37 2305/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2306 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 2307
2308rtx
3754d046 2309change_address (rtx memref, machine_mode mode, rtx addr)
e513d163 2310{
5cc04e45 2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
3754d046 2312 machine_mode mmode = GET_MODE (new_rtx);
711f137f 2313 struct mem_attrs *defattrs;
0ab96142 2314
711f137f 2315 mem_attrs attrs (*get_mem_attrs (memref));
d72886b5 2316 defattrs = mode_mem_attrs[(int) mmode];
6d58bcba 2317 attrs.expr = NULL_TREE;
2318 attrs.offset_known_p = false;
2319 attrs.size_known_p = defattrs->size_known_p;
d72886b5 2320 attrs.size = defattrs->size;
2321 attrs.align = defattrs->align;
6cc60c4d 2322
d28edf0d 2323 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2324 if (new_rtx == memref)
0ab96142 2325 {
d72886b5 2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
9ce37fa7 2327 return new_rtx;
0ab96142 2328
9ce37fa7 2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2330 MEM_COPY_ATTRIBUTES (new_rtx, memref);
0ab96142 2331 }
d28edf0d 2332
d72886b5 2333 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2334 return new_rtx;
e513d163 2335}
537ffcfc 2336
96216d37 2337/* Return a memory reference like MEMREF, but with its mode changed
2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is
bf42c62d 2339 nonzero, the memory address is forced to be valid.
2d0fd66d 2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2341 and the caller is responsible for adjusting MEMREF base register.
2342 If ADJUST_OBJECT is zero, the underlying object associated with the
2343 memory reference is left unchanged and the caller is responsible for
2344 dealing with it. Otherwise, if the new memory reference is outside
226c6baf 2345 the underlying object, even partially, then the object is dropped.
2346 SIZE, if nonzero, is the size of an access in cases where MODE
2347 has no inherent size. */
e4e86ec5 2348
2349rtx
711f137f 2350adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
226c6baf 2351 int validate, int adjust_address, int adjust_object,
711f137f 2352 poly_int64 size)
e4e86ec5 2353{
fb257ae6 2354 rtx addr = XEXP (memref, 0);
9ce37fa7 2355 rtx new_rtx;
f77c4496 2356 scalar_int_mode address_mode;
711f137f 2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
d72886b5 2358 unsigned HOST_WIDE_INT max_align;
21b8bc7e 2359#ifdef POINTERS_EXTEND_UNSIGNED
f77c4496 2360 scalar_int_mode pointer_mode
21b8bc7e 2361 = targetm.addr_space.pointer_mode (attrs.addrspace);
2362#endif
fb257ae6 2363
4733f549 2364 /* VOIDmode means no mode change for change_address_1. */
2365 if (mode == VOIDmode)
2366 mode = GET_MODE (memref);
2367
226c6baf 2368 /* Take the size of non-BLKmode accesses from the mode. */
2369 defattrs = mode_mem_attrs[(int) mode];
2370 if (defattrs->size_known_p)
2371 size = defattrs->size;
2372
d28edf0d 2373 /* If there are no changes, just return the original memory reference. */
711f137f 2374 if (mode == GET_MODE (memref)
2375 && known_eq (offset, 0)
2376 && (known_eq (size, 0)
2377 || (attrs.size_known_p && known_eq (attrs.size, size)))
d72886b5 2378 && (!validate || memory_address_addr_space_p (mode, addr,
2379 attrs.addrspace)))
d28edf0d 2380 return memref;
2381
e36c3d58 2382 /* ??? Prefer to create garbage instead of creating shared rtl.
6ef828f9 2383 This may happen even if offset is nonzero -- consider
e36c3d58 2384 (plus (plus reg reg) const_int) -- so do this always. */
2385 addr = copy_rtx (addr);
2386
cfb75cdf 2387 /* Convert a possibly large offset to a signed value within the
2388 range of the target address space. */
87cf5753 2389 address_mode = get_address_mode (memref);
711f137f 2390 offset = trunc_int_for_mode (offset, address_mode);
cfb75cdf 2391
2d0fd66d 2392 if (adjust_address)
cd358719 2393 {
2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2395 object, we can merge it into the LO_SUM. */
711f137f 2396 if (GET_MODE (memref) != BLKmode
2397 && GET_CODE (addr) == LO_SUM
2398 && known_in_range_p (offset,
2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2400 / BITS_PER_UNIT)))
98155838 2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
29c05e22 2402 plus_constant (address_mode,
2403 XEXP (addr, 1), offset));
21b8bc7e 2404#ifdef POINTERS_EXTEND_UNSIGNED
2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2407 the fact that pointers are not allowed to overflow. */
2408 else if (POINTERS_EXTEND_UNSIGNED > 0
2409 && GET_CODE (addr) == ZERO_EXTEND
2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode
711f137f 2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
21b8bc7e 2412 addr = gen_rtx_ZERO_EXTEND (address_mode,
2413 plus_constant (pointer_mode,
2414 XEXP (addr, 0), offset));
2415#endif
cd358719 2416 else
29c05e22 2417 addr = plus_constant (address_mode, addr, offset);
cd358719 2418 }
fb257ae6 2419
5cc04e45 2420 new_rtx = change_address_1 (memref, mode, addr, validate, false);
96216d37 2421
e077413c 2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2423 but this would destroy memref's MEM_ATTRS. */
711f137f 2424 if (new_rtx == memref && maybe_ne (offset, 0))
e077413c 2425 new_rtx = copy_rtx (new_rtx);
2426
2d0fd66d 2427 /* Conservatively drop the object if we don't know where we start from. */
2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2429 {
2430 attrs.expr = NULL_TREE;
2431 attrs.alias = 0;
2432 }
2433
96216d37 2434 /* Compute the new values of the memory attributes due to this adjustment.
2435 We add the offsets and update the alignment. */
6d58bcba 2436 if (attrs.offset_known_p)
2d0fd66d 2437 {
2438 attrs.offset += offset;
2439
2440 /* Drop the object if the new left end is not within its bounds. */
711f137f 2441 if (adjust_object && maybe_lt (attrs.offset, 0))
2d0fd66d 2442 {
2443 attrs.expr = NULL_TREE;
2444 attrs.alias = 0;
2445 }
2446 }
96216d37 2447
b8098e5b 2448 /* Compute the new alignment by taking the MIN of the alignment and the
2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2450 if zero. */
711f137f 2451 if (maybe_ne (offset, 0))
d72886b5 2452 {
711f137f 2453 max_align = known_alignment (offset) * BITS_PER_UNIT;
d72886b5 2454 attrs.align = MIN (attrs.align, max_align);
2455 }
96216d37 2456
711f137f 2457 if (maybe_ne (size, 0))
6d58bcba 2458 {
2d0fd66d 2459 /* Drop the object if the new right end is not within its bounds. */
711f137f 2460 if (adjust_object && maybe_gt (offset + size, attrs.size))
2d0fd66d 2461 {
2462 attrs.expr = NULL_TREE;
2463 attrs.alias = 0;
2464 }
6d58bcba 2465 attrs.size_known_p = true;
226c6baf 2466 attrs.size = size;
6d58bcba 2467 }
2468 else if (attrs.size_known_p)
2d0fd66d 2469 {
226c6baf 2470 gcc_assert (!adjust_object);
2d0fd66d 2471 attrs.size -= offset;
226c6baf 2472 /* ??? The store_by_pieces machinery generates negative sizes,
2473 so don't assert for that here. */
2d0fd66d 2474 }
5cc193e7 2475
d72886b5 2476 set_mem_attrs (new_rtx, &attrs);
96216d37 2477
9ce37fa7 2478 return new_rtx;
e4e86ec5 2479}
2480
bf42c62d 2481/* Return a memory reference like MEMREF, but with its mode changed
2482 to MODE and its address changed to ADDR, which is assumed to be
f0b5f617 2483 MEMREF offset by OFFSET bytes. If VALIDATE is
bf42c62d 2484 nonzero, the memory address is forced to be valid. */
2485
2486rtx
3754d046 2487adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
711f137f 2488 poly_int64 offset, int validate)
bf42c62d 2489{
5cc04e45 2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
226c6baf 2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
bf42c62d 2492}
2493
2a631e19 2494/* Return a memory reference like MEMREF, but whose address is changed by
2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2496 known to be in OFFSET (possibly 1). */
fcdc122e 2497
2498rtx
35cb5232 2499offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
fcdc122e 2500{
9ce37fa7 2501 rtx new_rtx, addr = XEXP (memref, 0);
3754d046 2502 machine_mode address_mode;
711f137f 2503 struct mem_attrs *defattrs;
fac6aae6 2504
711f137f 2505 mem_attrs attrs (*get_mem_attrs (memref));
87cf5753 2506 address_mode = get_address_mode (memref);
98155838 2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2508
d4c5e26d 2509 /* At this point we don't know _why_ the address is invalid. It
917bbcab 2510 could have secondary memory references, multiplies or anything.
fac6aae6 2511
2512 However, if we did go and rearrange things, we can wind up not
2513 being able to recognize the magic around pic_offset_table_rtx.
2514 This stuff is fragile, and is yet another example of why it is
2515 bad to expose PIC machinery too early. */
d72886b5 2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2517 attrs.addrspace)
fac6aae6 2518 && GET_CODE (addr) == PLUS
2519 && XEXP (addr, 0) == pic_offset_table_rtx)
2520 {
2521 addr = force_reg (GET_MODE (addr), addr);
98155838 2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2523 }
2524
9ce37fa7 2525 update_temp_slot_address (XEXP (memref, 0), new_rtx);
5cc04e45 2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
fcdc122e 2527
d28edf0d 2528 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2529 if (new_rtx == memref)
2530 return new_rtx;
d28edf0d 2531
fcdc122e 2532 /* Update the alignment to reflect the offset. Reset the offset, which
2533 we don't know. */
6d58bcba 2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2535 attrs.offset_known_p = false;
2536 attrs.size_known_p = defattrs->size_known_p;
2537 attrs.size = defattrs->size;
d72886b5 2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2539 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2540 return new_rtx;
fcdc122e 2541}
d4c5e26d 2542
537ffcfc 2543/* Return a memory reference like MEMREF, but with its address changed to
2544 ADDR. The caller is asserting that the actual piece of memory pointed
2545 to is the same, just the form of the address is being changed, such as
5cc04e45 2546 by putting something into a register. INPLACE is true if any changes
2547 can be made directly to MEMREF or false if MEMREF must be treated as
2548 immutable. */
537ffcfc 2549
2550rtx
5cc04e45 2551replace_equiv_address (rtx memref, rtx addr, bool inplace)
537ffcfc 2552{
96216d37 2553 /* change_address_1 copies the memory attribute structure without change
2554 and that's exactly what we want here. */
ecfe4ca9 2555 update_temp_slot_address (XEXP (memref, 0), addr);
5cc04e45 2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
537ffcfc 2557}
96216d37 2558
e4e86ec5 2559/* Likewise, but the reference is not required to be valid. */
2560
2561rtx
5cc04e45 2562replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
e4e86ec5 2563{
5cc04e45 2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
e4e86ec5 2565}
8259ab07 2566
2567/* Return a memory reference like MEMREF, but with its mode widened to
2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2569 cannot issue QImode memory operations and have to use SImode memory
2570 operations plus masking logic. */
2571
2572rtx
711f137f 2573widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
8259ab07 2574{
226c6baf 2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
52acb7ae 2576 poly_uint64 size = GET_MODE_SIZE (mode);
8259ab07 2577
d28edf0d 2578 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2579 if (new_rtx == memref)
2580 return new_rtx;
d28edf0d 2581
711f137f 2582 mem_attrs attrs (*get_mem_attrs (new_rtx));
d72886b5 2583
8259ab07 2584 /* If we don't know what offset we were at within the expression, then
2585 we can't know if we've overstepped the bounds. */
6d58bcba 2586 if (! attrs.offset_known_p)
d72886b5 2587 attrs.expr = NULL_TREE;
8259ab07 2588
d72886b5 2589 while (attrs.expr)
8259ab07 2590 {
d72886b5 2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
8259ab07 2592 {
d72886b5 2593 tree field = TREE_OPERAND (attrs.expr, 1);
2594 tree offset = component_ref_field_offset (attrs.expr);
8259ab07 2595
2596 if (! DECL_SIZE_UNIT (field))
2597 {
d72886b5 2598 attrs.expr = NULL_TREE;
8259ab07 2599 break;
2600 }
2601
2602 /* Is the field at least as large as the access? If so, ok,
2603 otherwise strip back to the containing structure. */
711f137f 2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2606 && known_ge (attrs.offset, 0))
8259ab07 2607 break;
2608
711f137f 2609 poly_uint64 suboffset;
2610 if (!poly_int_tree_p (offset, &suboffset))
8259ab07 2611 {
d72886b5 2612 attrs.expr = NULL_TREE;
8259ab07 2613 break;
2614 }
2615
d72886b5 2616 attrs.expr = TREE_OPERAND (attrs.expr, 0);
711f137f 2617 attrs.offset += suboffset;
e913b5cd 2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
6d58bcba 2619 / BITS_PER_UNIT);
8259ab07 2620 }
2621 /* Similarly for the decl. */
d72886b5 2622 else if (DECL_P (attrs.expr)
2623 && DECL_SIZE_UNIT (attrs.expr)
711f137f 2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2626 size)
2627 && known_ge (attrs.offset, 0))
8259ab07 2628 break;
2629 else
2630 {
2631 /* The widened memory access overflows the expression, which means
2632 that it could alias another expression. Zap it. */
d72886b5 2633 attrs.expr = NULL_TREE;
8259ab07 2634 break;
2635 }
2636 }
2637
d72886b5 2638 if (! attrs.expr)
6d58bcba 2639 attrs.offset_known_p = false;
8259ab07 2640
2641 /* The widened memory may alias other stuff, so zap the alias set. */
2642 /* ??? Maybe use get_alias_set on any remaining expression. */
d72886b5 2643 attrs.alias = 0;
6d58bcba 2644 attrs.size_known_p = true;
2645 attrs.size = size;
d72886b5 2646 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2647 return new_rtx;
8259ab07 2648}
15bbde2b 2649\f
ac681e84 2650/* A fake decl that is used as the MEM_EXPR of spill slots. */
2651static GTY(()) tree spill_slot_decl;
2652
58029e61 2653tree
2654get_spill_slot_decl (bool force_build_p)
ac681e84 2655{
2656 tree d = spill_slot_decl;
2657 rtx rd;
2658
58029e61 2659 if (d || !force_build_p)
ac681e84 2660 return d;
2661
e60a6f7b 2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2663 VAR_DECL, get_identifier ("%sfp"), void_type_node);
ac681e84 2664 DECL_ARTIFICIAL (d) = 1;
2665 DECL_IGNORED_P (d) = 1;
2666 TREE_USED (d) = 1;
ac681e84 2667 spill_slot_decl = d;
2668
2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2670 MEM_NOTRAP_P (rd) = 1;
711f137f 2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
d72886b5 2672 attrs.alias = new_alias_set ();
2673 attrs.expr = d;
2674 set_mem_attrs (rd, &attrs);
ac681e84 2675 SET_DECL_RTL (d, rd);
2676
2677 return d;
2678}
2679
2680/* Given MEM, a result from assign_stack_local, fill in the memory
2681 attributes as appropriate for a register allocator spill slot.
2682 These slots are not aliasable by other memory. We arrange for
2683 them all to use a single MEM_EXPR, so that the aliasing code can
2684 work properly in the case of shared spill slots. */
2685
2686void
2687set_mem_attrs_for_spill (rtx mem)
2688{
d72886b5 2689 rtx addr;
ac681e84 2690
711f137f 2691 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2692 attrs.expr = get_spill_slot_decl (true);
2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2694 attrs.addrspace = ADDR_SPACE_GENERIC;
ac681e84 2695
2696 /* We expect the incoming memory to be of the form:
2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2698 with perhaps the plus missing for offset = 0. */
2699 addr = XEXP (mem, 0);
6d58bcba 2700 attrs.offset_known_p = true;
711f137f 2701 strip_offset (addr, &attrs.offset);
ac681e84 2702
d72886b5 2703 set_mem_attrs (mem, &attrs);
ac681e84 2704 MEM_NOTRAP_P (mem) = 1;
2705}
2706\f
15bbde2b 2707/* Return a newly created CODE_LABEL rtx with a unique label number. */
2708
be95c7c7 2709rtx_code_label *
35cb5232 2710gen_label_rtx (void)
15bbde2b 2711{
be95c7c7 2712 return as_a <rtx_code_label *> (
2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2714 NULL, label_num++, NULL));
15bbde2b 2715}
2716\f
2717/* For procedure integration. */
2718
15bbde2b 2719/* Install new pointers to the first and last insns in the chain.
d4c332ff 2720 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 2721 Used for an inline-procedure after copying the insn chain. */
2722
2723void
57c26b3a 2724set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
15bbde2b 2725{
57c26b3a 2726 rtx_insn *insn;
d4c332ff 2727
06f9d6ef 2728 set_first_insn (first);
2729 set_last_insn (last);
d4c332ff 2730 cur_insn_uid = 0;
2731
9845d120 2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2733 {
2734 int debug_count = 0;
2735
2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2737 cur_debug_insn_uid = 0;
2738
2739 for (insn = first; insn; insn = NEXT_INSN (insn))
2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2742 else
2743 {
2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2745 if (DEBUG_INSN_P (insn))
2746 debug_count++;
2747 }
2748
2749 if (debug_count)
2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2751 else
2752 cur_debug_insn_uid++;
2753 }
2754 else
2755 for (insn = first; insn; insn = NEXT_INSN (insn))
2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
d4c332ff 2757
2758 cur_insn_uid++;
15bbde2b 2759}
15bbde2b 2760\f
d823ba47 2761/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2762 structure. This routine should only be called once. */
15bbde2b 2763
a40c0eeb 2764static void
58945f46 2765unshare_all_rtl_1 (rtx_insn *insn)
15bbde2b 2766{
2d96a59a 2767 /* Unshare just about everything else. */
1cd4cfea 2768 unshare_all_rtl_in_chain (insn);
d823ba47 2769
15bbde2b 2770 /* Make sure the addresses of stack slots found outside the insn chain
2771 (such as, in DECL_RTL of a variable) are not shared
2772 with the insn chain.
2773
2774 This special care is necessary when the stack slot MEM does not
2775 actually appear in the insn chain. If it does appear, its address
2776 is unshared from all else at that point. */
84f4f7bf 2777 unsigned int i;
2778 rtx temp;
2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
15bbde2b 2781}
2782
d823ba47 2783/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2784 structure, again. This is a fairly expensive thing to do so it
2785 should be done sparingly. */
2786
2787void
58945f46 2788unshare_all_rtl_again (rtx_insn *insn)
2d96a59a 2789{
58945f46 2790 rtx_insn *p;
5244079b 2791 tree decl;
2792
2d96a59a 2793 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2794 if (INSN_P (p))
2d96a59a 2795 {
2796 reset_used_flags (PATTERN (p));
2797 reset_used_flags (REG_NOTES (p));
6d2a4bac 2798 if (CALL_P (p))
2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2d96a59a 2800 }
5244079b 2801
01dc9f0c 2802 /* Make sure that virtual stack slots are not shared. */
265be050 2803 set_used_decls (DECL_INITIAL (cfun->decl));
01dc9f0c 2804
5244079b 2805 /* Make sure that virtual parameters are not shared. */
1767a056 2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
265be050 2807 set_used_flags (DECL_RTL (decl));
5244079b 2808
84f4f7bf 2809 rtx temp;
2810 unsigned int i;
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2812 reset_used_flags (temp);
5244079b 2813
df329266 2814 unshare_all_rtl_1 (insn);
a40c0eeb 2815}
2816
2a1990e9 2817unsigned int
a40c0eeb 2818unshare_all_rtl (void)
2819{
df329266 2820 unshare_all_rtl_1 (get_insns ());
607381a9 2821
2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2823 {
2824 if (DECL_RTL_SET_P (decl))
2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2827 }
2828
2a1990e9 2829 return 0;
2d96a59a 2830}
2831
77fce4cd 2832
1cd4cfea 2833/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2834 Recursively does the same for subexpressions. */
2835
2836static void
2837verify_rtx_sharing (rtx orig, rtx insn)
2838{
2839 rtx x = orig;
2840 int i;
2841 enum rtx_code code;
2842 const char *format_ptr;
2843
2844 if (x == 0)
2845 return;
2846
2847 code = GET_CODE (x);
2848
2849 /* These types may be freely shared. */
2850
2851 switch (code)
2852 {
2853 case REG:
688ff29b 2854 case DEBUG_EXPR:
2855 case VALUE:
0349edce 2856 CASE_CONST_ANY:
1cd4cfea 2857 case SYMBOL_REF:
2858 case LABEL_REF:
2859 case CODE_LABEL:
2860 case PC:
2861 case CC0:
1a860023 2862 case RETURN:
9cb2517e 2863 case SIMPLE_RETURN:
1cd4cfea 2864 case SCRATCH:
c09425a0 2865 /* SCRATCH must be shared because they represent distinct values. */
b291008a 2866 return;
c09425a0 2867 case CLOBBER:
ccd6679f 2868 case CLOBBER_HIGH:
b291008a 2869 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2870 clobbers or clobbers of hard registers that originated as pseudos.
2871 This is needed to allow safe register renaming. */
2b5f32ae 2872 if (REG_P (XEXP (x, 0))
2873 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2874 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 2875 return;
2876 break;
1cd4cfea 2877
2878 case CONST:
3072d30e 2879 if (shared_const_p (orig))
1cd4cfea 2880 return;
2881 break;
2882
2883 case MEM:
2884 /* A MEM is allowed to be shared if its address is constant. */
2885 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2886 || reload_completed || reload_in_progress)
2887 return;
2888
2889 break;
2890
2891 default:
2892 break;
2893 }
2894
2895 /* This rtx may not be shared. If it has already been seen,
2896 replace it with a copy of itself. */
382ecba7 2897 if (flag_checking && RTX_FLAG (x, used))
1cd4cfea 2898 {
0a81f5a0 2899 error ("invalid rtl sharing found in the insn");
1cd4cfea 2900 debug_rtx (insn);
0a81f5a0 2901 error ("shared rtx");
1cd4cfea 2902 debug_rtx (x);
0a81f5a0 2903 internal_error ("internal consistency failure");
1cd4cfea 2904 }
9cee7c3f 2905 gcc_assert (!RTX_FLAG (x, used));
48e1416a 2906
1cd4cfea 2907 RTX_FLAG (x, used) = 1;
2908
8b332087 2909 /* Now scan the subexpressions recursively. */
1cd4cfea 2910
2911 format_ptr = GET_RTX_FORMAT (code);
2912
2913 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2914 {
2915 switch (*format_ptr++)
2916 {
2917 case 'e':
2918 verify_rtx_sharing (XEXP (x, i), insn);
2919 break;
2920
2921 case 'E':
2922 if (XVEC (x, i) != NULL)
2923 {
2924 int j;
2925 int len = XVECLEN (x, i);
2926
2927 for (j = 0; j < len; j++)
2928 {
9cee7c3f 2929 /* We allow sharing of ASM_OPERANDS inside single
2930 instruction. */
1cd4cfea 2931 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
9cee7c3f 2932 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2933 == ASM_OPERANDS))
1cd4cfea 2934 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2935 else
2936 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2937 }
2938 }
2939 break;
2940 }
2941 }
2942 return;
2943}
2944
1e9af25c 2945/* Reset used-flags for INSN. */
2946
2947static void
2948reset_insn_used_flags (rtx insn)
2949{
2950 gcc_assert (INSN_P (insn));
2951 reset_used_flags (PATTERN (insn));
2952 reset_used_flags (REG_NOTES (insn));
2953 if (CALL_P (insn))
2954 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2955}
2956
7cdd84a2 2957/* Go through all the RTL insn bodies and clear all the USED bits. */
1cd4cfea 2958
7cdd84a2 2959static void
2960reset_all_used_flags (void)
1cd4cfea 2961{
4cd001d5 2962 rtx_insn *p;
1cd4cfea 2963
2964 for (p = get_insns (); p; p = NEXT_INSN (p))
2965 if (INSN_P (p))
2966 {
1e9af25c 2967 rtx pat = PATTERN (p);
2968 if (GET_CODE (pat) != SEQUENCE)
2969 reset_insn_used_flags (p);
2970 else
764f640f 2971 {
1e9af25c 2972 gcc_assert (REG_NOTES (p) == NULL);
2973 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2974 {
2975 rtx insn = XVECEXP (pat, 0, i);
2976 if (INSN_P (insn))
2977 reset_insn_used_flags (insn);
2978 }
764f640f 2979 }
1cd4cfea 2980 }
7cdd84a2 2981}
2982
1e9af25c 2983/* Verify sharing in INSN. */
2984
2985static void
2986verify_insn_sharing (rtx insn)
2987{
2988 gcc_assert (INSN_P (insn));
44bf3f4e 2989 verify_rtx_sharing (PATTERN (insn), insn);
2990 verify_rtx_sharing (REG_NOTES (insn), insn);
1e9af25c 2991 if (CALL_P (insn))
44bf3f4e 2992 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
1e9af25c 2993}
2994
7cdd84a2 2995/* Go through all the RTL insn bodies and check that there is no unexpected
2996 sharing in between the subexpressions. */
2997
2998DEBUG_FUNCTION void
2999verify_rtl_sharing (void)
3000{
4cd001d5 3001 rtx_insn *p;
7cdd84a2 3002
3003 timevar_push (TV_VERIFY_RTL_SHARING);
3004
3005 reset_all_used_flags ();
1cd4cfea 3006
3007 for (p = get_insns (); p; p = NEXT_INSN (p))
3008 if (INSN_P (p))
3009 {
1e9af25c 3010 rtx pat = PATTERN (p);
3011 if (GET_CODE (pat) != SEQUENCE)
3012 verify_insn_sharing (p);
3013 else
3014 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 3015 {
3016 rtx insn = XVECEXP (pat, 0, i);
3017 if (INSN_P (insn))
3018 verify_insn_sharing (insn);
3019 }
1cd4cfea 3020 }
4b366dd3 3021
7cdd84a2 3022 reset_all_used_flags ();
3023
4b366dd3 3024 timevar_pop (TV_VERIFY_RTL_SHARING);
1cd4cfea 3025}
3026
2d96a59a 3027/* Go through all the RTL insn bodies and copy any invalid shared structure.
3028 Assumes the mark bits are cleared at entry. */
3029
1cd4cfea 3030void
4cd001d5 3031unshare_all_rtl_in_chain (rtx_insn *insn)
2d96a59a 3032{
3033 for (; insn; insn = NEXT_INSN (insn))
9204e736 3034 if (INSN_P (insn))
2d96a59a 3035 {
3036 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3037 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
6d2a4bac 3038 if (CALL_P (insn))
3039 CALL_INSN_FUNCTION_USAGE (insn)
3040 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2d96a59a 3041 }
3042}
3043
01dc9f0c 3044/* Go through all virtual stack slots of a function and mark them as
265be050 3045 shared. We never replace the DECL_RTLs themselves with a copy,
3046 but expressions mentioned into a DECL_RTL cannot be shared with
3047 expressions in the instruction stream.
3048
3049 Note that reload may convert pseudo registers into memories in-place.
3050 Pseudo registers are always shared, but MEMs never are. Thus if we
3051 reset the used flags on MEMs in the instruction stream, we must set
3052 them again on MEMs that appear in DECL_RTLs. */
3053
01dc9f0c 3054static void
265be050 3055set_used_decls (tree blk)
01dc9f0c 3056{
3057 tree t;
3058
3059 /* Mark decls. */
1767a056 3060 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
0e8e37b2 3061 if (DECL_RTL_SET_P (t))
265be050 3062 set_used_flags (DECL_RTL (t));
01dc9f0c 3063
3064 /* Now process sub-blocks. */
93110716 3065 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
265be050 3066 set_used_decls (t);
01dc9f0c 3067}
3068
15bbde2b 3069/* Mark ORIG as in use, and return a copy of it if it was already in use.
7ba6ce7a 3070 Recursively does the same for subexpressions. Uses
3071 copy_rtx_if_shared_1 to reduce stack space. */
15bbde2b 3072
3073rtx
35cb5232 3074copy_rtx_if_shared (rtx orig)
15bbde2b 3075{
0e0727c4 3076 copy_rtx_if_shared_1 (&orig);
3077 return orig;
3078}
3079
7ba6ce7a 3080/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3081 use. Recursively does the same for subexpressions. */
3082
0e0727c4 3083static void
3084copy_rtx_if_shared_1 (rtx *orig1)
3085{
3086 rtx x;
19cb6b50 3087 int i;
3088 enum rtx_code code;
0e0727c4 3089 rtx *last_ptr;
19cb6b50 3090 const char *format_ptr;
15bbde2b 3091 int copied = 0;
0e0727c4 3092 int length;
3093
3094 /* Repeat is used to turn tail-recursion into iteration. */
3095repeat:
3096 x = *orig1;
15bbde2b 3097
3098 if (x == 0)
0e0727c4 3099 return;
15bbde2b 3100
3101 code = GET_CODE (x);
3102
3103 /* These types may be freely shared. */
3104
3105 switch (code)
3106 {
3107 case REG:
688ff29b 3108 case DEBUG_EXPR:
3109 case VALUE:
0349edce 3110 CASE_CONST_ANY:
15bbde2b 3111 case SYMBOL_REF:
1cd4cfea 3112 case LABEL_REF:
15bbde2b 3113 case CODE_LABEL:
3114 case PC:
3115 case CC0:
e0691b9a 3116 case RETURN:
9cb2517e 3117 case SIMPLE_RETURN:
15bbde2b 3118 case SCRATCH:
a92771b8 3119 /* SCRATCH must be shared because they represent distinct values. */
0e0727c4 3120 return;
c09425a0 3121 case CLOBBER:
ccd6679f 3122 case CLOBBER_HIGH:
b291008a 3123 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3124 clobbers or clobbers of hard registers that originated as pseudos.
3125 This is needed to allow safe register renaming. */
2b5f32ae 3126 if (REG_P (XEXP (x, 0))
3127 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3128 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 3129 return;
3130 break;
15bbde2b 3131
f63d12e3 3132 case CONST:
3072d30e 3133 if (shared_const_p (x))
0e0727c4 3134 return;
f63d12e3 3135 break;
3136
9845d120 3137 case DEBUG_INSN:
15bbde2b 3138 case INSN:
3139 case JUMP_INSN:
3140 case CALL_INSN:
3141 case NOTE:
15bbde2b 3142 case BARRIER:
3143 /* The chain of insns is not being copied. */
0e0727c4 3144 return;
15bbde2b 3145
0dbd1c74 3146 default:
3147 break;
15bbde2b 3148 }
3149
3150 /* This rtx may not be shared. If it has already been seen,
3151 replace it with a copy of itself. */
3152
7c25cb91 3153 if (RTX_FLAG (x, used))
15bbde2b 3154 {
f2d0e9f1 3155 x = shallow_copy_rtx (x);
15bbde2b 3156 copied = 1;
3157 }
7c25cb91 3158 RTX_FLAG (x, used) = 1;
15bbde2b 3159
3160 /* Now scan the subexpressions recursively.
3161 We can store any replaced subexpressions directly into X
3162 since we know X is not shared! Any vectors in X
3163 must be copied if X was copied. */
3164
3165 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3166 length = GET_RTX_LENGTH (code);
3167 last_ptr = NULL;
48e1416a 3168
0e0727c4 3169 for (i = 0; i < length; i++)
15bbde2b 3170 {
3171 switch (*format_ptr++)
3172 {
3173 case 'e':
0e0727c4 3174 if (last_ptr)
3175 copy_rtx_if_shared_1 (last_ptr);
3176 last_ptr = &XEXP (x, i);
15bbde2b 3177 break;
3178
3179 case 'E':
3180 if (XVEC (x, i) != NULL)
3181 {
19cb6b50 3182 int j;
ffe0869b 3183 int len = XVECLEN (x, i);
48e1416a 3184
8b332087 3185 /* Copy the vector iff I copied the rtx and the length
3186 is nonzero. */
ffe0869b 3187 if (copied && len > 0)
a4070a91 3188 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
48e1416a 3189
d632b59a 3190 /* Call recursively on all inside the vector. */
ffe0869b 3191 for (j = 0; j < len; j++)
0e0727c4 3192 {
3193 if (last_ptr)
3194 copy_rtx_if_shared_1 (last_ptr);
3195 last_ptr = &XVECEXP (x, i, j);
3196 }
15bbde2b 3197 }
3198 break;
3199 }
3200 }
0e0727c4 3201 *orig1 = x;
3202 if (last_ptr)
3203 {
3204 orig1 = last_ptr;
3205 goto repeat;
3206 }
3207 return;
15bbde2b 3208}
3209
709947e6 3210/* Set the USED bit in X and its non-shareable subparts to FLAG. */
15bbde2b 3211
709947e6 3212static void
3213mark_used_flags (rtx x, int flag)
15bbde2b 3214{
19cb6b50 3215 int i, j;
3216 enum rtx_code code;
3217 const char *format_ptr;
0e0727c4 3218 int length;
15bbde2b 3219
0e0727c4 3220 /* Repeat is used to turn tail-recursion into iteration. */
3221repeat:
15bbde2b 3222 if (x == 0)
3223 return;
3224
3225 code = GET_CODE (x);
3226
c3418f42 3227 /* These types may be freely shared so we needn't do any resetting
15bbde2b 3228 for them. */
3229
3230 switch (code)
3231 {
3232 case REG:
688ff29b 3233 case DEBUG_EXPR:
3234 case VALUE:
0349edce 3235 CASE_CONST_ANY:
15bbde2b 3236 case SYMBOL_REF:
3237 case CODE_LABEL:
3238 case PC:
3239 case CC0:
e0691b9a 3240 case RETURN:
9cb2517e 3241 case SIMPLE_RETURN:
15bbde2b 3242 return;
3243
9845d120 3244 case DEBUG_INSN:
15bbde2b 3245 case INSN:
3246 case JUMP_INSN:
3247 case CALL_INSN:
3248 case NOTE:
3249 case LABEL_REF:
3250 case BARRIER:
3251 /* The chain of insns is not being copied. */
3252 return;
d823ba47 3253
0dbd1c74 3254 default:
3255 break;
15bbde2b 3256 }
3257
709947e6 3258 RTX_FLAG (x, used) = flag;
15bbde2b 3259
3260 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3261 length = GET_RTX_LENGTH (code);
48e1416a 3262
0e0727c4 3263 for (i = 0; i < length; i++)
15bbde2b 3264 {
3265 switch (*format_ptr++)
3266 {
3267 case 'e':
0e0727c4 3268 if (i == length-1)
3269 {
3270 x = XEXP (x, i);
3271 goto repeat;
3272 }
709947e6 3273 mark_used_flags (XEXP (x, i), flag);
15bbde2b 3274 break;
3275
3276 case 'E':
3277 for (j = 0; j < XVECLEN (x, i); j++)
709947e6 3278 mark_used_flags (XVECEXP (x, i, j), flag);
15bbde2b 3279 break;
3280 }
3281 }
3282}
1cd4cfea 3283
709947e6 3284/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1cd4cfea 3285 to look for shared sub-parts. */
3286
3287void
709947e6 3288reset_used_flags (rtx x)
1cd4cfea 3289{
709947e6 3290 mark_used_flags (x, 0);
3291}
1cd4cfea 3292
709947e6 3293/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3294 to look for shared sub-parts. */
1cd4cfea 3295
709947e6 3296void
3297set_used_flags (rtx x)
3298{
3299 mark_used_flags (x, 1);
1cd4cfea 3300}
15bbde2b 3301\f
3302/* Copy X if necessary so that it won't be altered by changes in OTHER.
3303 Return X or the rtx for the pseudo reg the value of X was copied into.
3304 OTHER must be valid as a SET_DEST. */
3305
3306rtx
35cb5232 3307make_safe_from (rtx x, rtx other)
15bbde2b 3308{
3309 while (1)
3310 switch (GET_CODE (other))
3311 {
3312 case SUBREG:
3313 other = SUBREG_REG (other);
3314 break;
3315 case STRICT_LOW_PART:
3316 case SIGN_EXTEND:
3317 case ZERO_EXTEND:
3318 other = XEXP (other, 0);
3319 break;
3320 default:
3321 goto done;
3322 }
3323 done:
e16ceb8e 3324 if ((MEM_P (other)
15bbde2b 3325 && ! CONSTANT_P (x)
8ad4c111 3326 && !REG_P (x)
15bbde2b 3327 && GET_CODE (x) != SUBREG)
8ad4c111 3328 || (REG_P (other)
15bbde2b 3329 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3330 || reg_mentioned_p (other, x))))
3331 {
3332 rtx temp = gen_reg_rtx (GET_MODE (x));
3333 emit_move_insn (temp, x);
3334 return temp;
3335 }
3336 return x;
3337}
3338\f
3339/* Emission of insns (adding them to the doubly-linked list). */
3340
15bbde2b 3341/* Return the last insn emitted, even if it is in a sequence now pushed. */
3342
447ab0fc 3343rtx_insn *
35cb5232 3344get_last_insn_anywhere (void)
15bbde2b 3345{
c36aa54b 3346 struct sequence_stack *seq;
3347 for (seq = get_current_sequence (); seq; seq = seq->next)
3348 if (seq->last != 0)
3349 return seq->last;
15bbde2b 3350 return 0;
3351}
3352
70545de4 3353/* Return the first nonnote insn emitted in current sequence or current
3354 function. This routine looks inside SEQUENCEs. */
3355
2eb8c261 3356rtx_insn *
35cb5232 3357get_first_nonnote_insn (void)
70545de4 3358{
4cd001d5 3359 rtx_insn *insn = get_insns ();
f86e856e 3360
3361 if (insn)
3362 {
3363 if (NOTE_P (insn))
3364 for (insn = next_insn (insn);
3365 insn && NOTE_P (insn);
3366 insn = next_insn (insn))
3367 continue;
3368 else
3369 {
1c14a50e 3370 if (NONJUMP_INSN_P (insn)
f86e856e 3371 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3372 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
f86e856e 3373 }
3374 }
70545de4 3375
3376 return insn;
3377}
3378
3379/* Return the last nonnote insn emitted in current sequence or current
3380 function. This routine looks inside SEQUENCEs. */
3381
2eb8c261 3382rtx_insn *
35cb5232 3383get_last_nonnote_insn (void)
70545de4 3384{
4cd001d5 3385 rtx_insn *insn = get_last_insn ();
f86e856e 3386
3387 if (insn)
3388 {
3389 if (NOTE_P (insn))
3390 for (insn = previous_insn (insn);
3391 insn && NOTE_P (insn);
3392 insn = previous_insn (insn))
3393 continue;
3394 else
3395 {
4cd001d5 3396 if (NONJUMP_INSN_P (insn))
3397 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3398 insn = seq->insn (seq->len () - 1);
f86e856e 3399 }
3400 }
70545de4 3401
3402 return insn;
3403}
3404
9845d120 3405/* Return the number of actual (non-debug) insns emitted in this
3406 function. */
3407
3408int
3409get_max_insn_count (void)
3410{
3411 int n = cur_insn_uid;
3412
3413 /* The table size must be stable across -g, to avoid codegen
3414 differences due to debug insns, and not be affected by
3415 -fmin-insn-uid, to avoid excessive table size and to simplify
3416 debugging of -fcompare-debug failures. */
3417 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3418 n -= cur_debug_insn_uid;
3419 else
3420 n -= MIN_NONDEBUG_INSN_UID;
3421
3422 return n;
3423}
3424
15bbde2b 3425\f
3426/* Return the next insn. If it is a SEQUENCE, return the first insn
3427 of the sequence. */
3428
7bac25b3 3429rtx_insn *
50895eab 3430next_insn (rtx_insn *insn)
15bbde2b 3431{
ce4469fa 3432 if (insn)
3433 {
3434 insn = NEXT_INSN (insn);
3435 if (insn && NONJUMP_INSN_P (insn)
3436 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3437 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
ce4469fa 3438 }
15bbde2b 3439
4cd001d5 3440 return insn;
15bbde2b 3441}
3442
3443/* Return the previous insn. If it is a SEQUENCE, return the last insn
3444 of the sequence. */
3445
7bac25b3 3446rtx_insn *
50895eab 3447previous_insn (rtx_insn *insn)
15bbde2b 3448{
ce4469fa 3449 if (insn)
3450 {
3451 insn = PREV_INSN (insn);
4cd001d5 3452 if (insn && NONJUMP_INSN_P (insn))
3453 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3454 insn = seq->insn (seq->len () - 1);
ce4469fa 3455 }
15bbde2b 3456
4cd001d5 3457 return insn;
15bbde2b 3458}
3459
3460/* Return the next insn after INSN that is not a NOTE. This routine does not
3461 look inside SEQUENCEs. */
3462
7bac25b3 3463rtx_insn *
4066f31e 3464next_nonnote_insn (rtx_insn *insn)
15bbde2b 3465{
ce4469fa 3466 while (insn)
3467 {
3468 insn = NEXT_INSN (insn);
3469 if (insn == 0 || !NOTE_P (insn))
3470 break;
3471 }
15bbde2b 3472
4cd001d5 3473 return insn;
15bbde2b 3474}
3475
18fc6357 3476/* Return the next insn after INSN that is not a DEBUG_INSN. This
3477 routine does not look inside SEQUENCEs. */
c4d13c5c 3478
7bac25b3 3479rtx_insn *
18fc6357 3480next_nondebug_insn (rtx_insn *insn)
c4d13c5c 3481{
3482 while (insn)
3483 {
3484 insn = NEXT_INSN (insn);
18fc6357 3485 if (insn == 0 || !DEBUG_INSN_P (insn))
c4d13c5c 3486 break;
c4d13c5c 3487 }
3488
4cd001d5 3489 return insn;
c4d13c5c 3490}
3491
15bbde2b 3492/* Return the previous insn before INSN that is not a NOTE. This routine does
3493 not look inside SEQUENCEs. */
3494
7bac25b3 3495rtx_insn *
4066f31e 3496prev_nonnote_insn (rtx_insn *insn)
15bbde2b 3497{
ce4469fa 3498 while (insn)
3499 {
3500 insn = PREV_INSN (insn);
3501 if (insn == 0 || !NOTE_P (insn))
3502 break;
3503 }
15bbde2b 3504
4cd001d5 3505 return insn;
15bbde2b 3506}
3507
18fc6357 3508/* Return the previous insn before INSN that is not a DEBUG_INSN.
3509 This routine does not look inside SEQUENCEs. */
bcc66782 3510
7bac25b3 3511rtx_insn *
18fc6357 3512prev_nondebug_insn (rtx_insn *insn)
bcc66782 3513{
3514 while (insn)
3515 {
3516 insn = PREV_INSN (insn);
18fc6357 3517 if (insn == 0 || !DEBUG_INSN_P (insn))
bcc66782 3518 break;
bcc66782 3519 }
3520
4cd001d5 3521 return insn;
bcc66782 3522}
3523
18fc6357 3524/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3525 This routine does not look inside SEQUENCEs. */
9845d120 3526
7bac25b3 3527rtx_insn *
18fc6357 3528next_nonnote_nondebug_insn (rtx_insn *insn)
9845d120 3529{
3530 while (insn)
3531 {
3532 insn = NEXT_INSN (insn);
18fc6357 3533 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
9845d120 3534 break;
3535 }
3536
4cd001d5 3537 return insn;
9845d120 3538}
3539
18fc6357 3540/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3541 but stop the search before we enter another basic block. This
3542 routine does not look inside SEQUENCEs. */
9845d120 3543
7bac25b3 3544rtx_insn *
18fc6357 3545next_nonnote_nondebug_insn_bb (rtx_insn *insn)
9845d120 3546{
3547 while (insn)
3548 {
18fc6357 3549 insn = NEXT_INSN (insn);
3550 if (insn == 0)
3551 break;
3552 if (DEBUG_INSN_P (insn))
3553 continue;
3554 if (!NOTE_P (insn))
9845d120 3555 break;
18fc6357 3556 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3557 return NULL;
9845d120 3558 }
3559
4cd001d5 3560 return insn;
9845d120 3561}
3562
18fc6357 3563/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
5b8537a8 3564 This routine does not look inside SEQUENCEs. */
3565
7bac25b3 3566rtx_insn *
18fc6357 3567prev_nonnote_nondebug_insn (rtx_insn *insn)
5b8537a8 3568{
3569 while (insn)
3570 {
18fc6357 3571 insn = PREV_INSN (insn);
5b8537a8 3572 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3573 break;
3574 }
3575
4cd001d5 3576 return insn;
5b8537a8 3577}
3578
18fc6357 3579/* Return the previous insn before INSN that is not a NOTE nor
3580 DEBUG_INSN, but stop the search before we enter another basic
3581 block. This routine does not look inside SEQUENCEs. */
5b8537a8 3582
7bac25b3 3583rtx_insn *
18fc6357 3584prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
5b8537a8 3585{
3586 while (insn)
3587 {
3588 insn = PREV_INSN (insn);
18fc6357 3589 if (insn == 0)
5b8537a8 3590 break;
18fc6357 3591 if (DEBUG_INSN_P (insn))
3592 continue;
3593 if (!NOTE_P (insn))
3594 break;
3595 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3596 return NULL;
5b8537a8 3597 }
3598
4cd001d5 3599 return insn;
5b8537a8 3600}
3601
3ba5631b 3602/* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
15bbde2b 3603 or 0, if there is none. This routine does not look inside
a92771b8 3604 SEQUENCEs. */
15bbde2b 3605
7bac25b3 3606rtx_insn *
924b3c83 3607next_real_insn (rtx_insn *insn)
15bbde2b 3608{
ce4469fa 3609 while (insn)
3610 {
3611 insn = NEXT_INSN (insn);
3612 if (insn == 0 || INSN_P (insn))
3613 break;
3614 }
15bbde2b 3615
4cd001d5 3616 return insn;
15bbde2b 3617}
3618
3ba5631b 3619/* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
15bbde2b 3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3622
7bac25b3 3623rtx_insn *
4067fcc6 3624prev_real_insn (rtx_insn *insn)
15bbde2b 3625{
ce4469fa 3626 while (insn)
3627 {
3628 insn = PREV_INSN (insn);
3629 if (insn == 0 || INSN_P (insn))
3630 break;
3631 }
15bbde2b 3632
4cd001d5 3633 return insn;
15bbde2b 3634}
3635
3ba5631b 3636/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3637 or 0, if there is none. This routine does not look inside
3638 SEQUENCEs. */
3639
3640rtx_insn *
3641next_real_nondebug_insn (rtx uncast_insn)
3642{
3643 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3644
3645 while (insn)
3646 {
3647 insn = NEXT_INSN (insn);
3648 if (insn == 0 || NONDEBUG_INSN_P (insn))
3649 break;
3650 }
3651
3652 return insn;
3653}
3654
3655/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3656 or 0, if there is none. This routine does not look inside
3657 SEQUENCEs. */
3658
3659rtx_insn *
3660prev_real_nondebug_insn (rtx_insn *insn)
3661{
3662 while (insn)
3663 {
3664 insn = PREV_INSN (insn);
3665 if (insn == 0 || NONDEBUG_INSN_P (insn))
3666 break;
3667 }
3668
3669 return insn;
3670}
3671
d5f9786f 3672/* Return the last CALL_INSN in the current list, or 0 if there is none.
3673 This routine does not look inside SEQUENCEs. */
3674
ec22da62 3675rtx_call_insn *
35cb5232 3676last_call_insn (void)
d5f9786f 3677{
ec22da62 3678 rtx_insn *insn;
d5f9786f 3679
3680 for (insn = get_last_insn ();
6d7dc5b9 3681 insn && !CALL_P (insn);
d5f9786f 3682 insn = PREV_INSN (insn))
3683 ;
3684
ec22da62 3685 return safe_as_a <rtx_call_insn *> (insn);
d5f9786f 3686}
3687
15bbde2b 3688/* Find the next insn after INSN that really does something. This routine
084950ee 3689 does not look inside SEQUENCEs. After reload this also skips over
3690 standalone USE and CLOBBER insn. */
15bbde2b 3691
2215ca0d 3692int
41503955 3693active_insn_p (const rtx_insn *insn)
2215ca0d 3694{
6d7dc5b9 3695 return (CALL_P (insn) || JUMP_P (insn)
91f71fa3 3696 || JUMP_TABLE_DATA_P (insn) /* FIXME */
6d7dc5b9 3697 || (NONJUMP_INSN_P (insn)
3a66feab 3698 && (! reload_completed
3699 || (GET_CODE (PATTERN (insn)) != USE
3700 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2215ca0d 3701}
3702
7bac25b3 3703rtx_insn *
41503955 3704next_active_insn (rtx_insn *insn)
15bbde2b 3705{
ce4469fa 3706 while (insn)
3707 {
3708 insn = NEXT_INSN (insn);
3709 if (insn == 0 || active_insn_p (insn))
3710 break;
3711 }
15bbde2b 3712
4cd001d5 3713 return insn;
15bbde2b 3714}
3715
3716/* Find the last insn before INSN that really does something. This routine
084950ee 3717 does not look inside SEQUENCEs. After reload this also skips over
3718 standalone USE and CLOBBER insn. */
15bbde2b 3719
7bac25b3 3720rtx_insn *
41503955 3721prev_active_insn (rtx_insn *insn)
15bbde2b 3722{
ce4469fa 3723 while (insn)
3724 {
3725 insn = PREV_INSN (insn);
3726 if (insn == 0 || active_insn_p (insn))
3727 break;
3728 }
15bbde2b 3729
4cd001d5 3730 return insn;
15bbde2b 3731}
15bbde2b 3732\f
15bbde2b 3733/* Return the next insn that uses CC0 after INSN, which is assumed to
3734 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3735 applied to the result of this function should yield INSN).
3736
3737 Normally, this is simply the next insn. However, if a REG_CC_USER note
3738 is present, it contains the insn that uses CC0.
3739
3740 Return 0 if we can't find the insn. */
3741
0be88abd 3742rtx_insn *
924a5cee 3743next_cc0_user (rtx_insn *insn)
15bbde2b 3744{
b572011e 3745 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 3746
3747 if (note)
0be88abd 3748 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3749
3750 insn = next_nonnote_insn (insn);
6d7dc5b9 3751 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3752 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
15bbde2b 3753
9204e736 3754 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
4cd001d5 3755 return insn;
15bbde2b 3756
3757 return 0;
3758}
3759
3760/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3761 note, it is the previous insn. */
3762
0be88abd 3763rtx_insn *
fd8b0a1a 3764prev_cc0_setter (rtx_insn *insn)
15bbde2b 3765{
b572011e 3766 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 3767
3768 if (note)
0be88abd 3769 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3770
3771 insn = prev_nonnote_insn (insn);
611234b4 3772 gcc_assert (sets_cc0_p (PATTERN (insn)));
15bbde2b 3773
4cd001d5 3774 return insn;
15bbde2b 3775}
344dc2fa 3776
698ff1f0 3777/* Find a RTX_AUTOINC class rtx which matches DATA. */
3778
3779static int
4073adaa 3780find_auto_inc (const_rtx x, const_rtx reg)
698ff1f0 3781{
4073adaa 3782 subrtx_iterator::array_type array;
3783 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
698ff1f0 3784 {
4073adaa 3785 const_rtx x = *iter;
3786 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3787 && rtx_equal_p (reg, XEXP (x, 0)))
3788 return true;
698ff1f0 3789 }
4073adaa 3790 return false;
698ff1f0 3791}
698ff1f0 3792
344dc2fa 3793/* Increment the label uses for all labels present in rtx. */
3794
3795static void
35cb5232 3796mark_label_nuses (rtx x)
344dc2fa 3797{
19cb6b50 3798 enum rtx_code code;
3799 int i, j;
3800 const char *fmt;
344dc2fa 3801
3802 code = GET_CODE (x);
c7799456 3803 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3804 LABEL_NUSES (label_ref_label (x))++;
344dc2fa 3805
3806 fmt = GET_RTX_FORMAT (code);
3807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3808 {
3809 if (fmt[i] == 'e')
ff385626 3810 mark_label_nuses (XEXP (x, i));
344dc2fa 3811 else if (fmt[i] == 'E')
ff385626 3812 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
344dc2fa 3813 mark_label_nuses (XVECEXP (x, i, j));
3814 }
3815}
3816
15bbde2b 3817\f
3818/* Try splitting insns that can be split for better scheduling.
3819 PAT is the pattern which might split.
3820 TRIAL is the insn providing PAT.
6ef828f9 3821 LAST is nonzero if we should return the last insn of the sequence produced.
15bbde2b 3822
3823 If this routine succeeds in splitting, it returns the first or last
0e69a50a 3824 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 3825 returns TRIAL. If the insn to be returned can be split, it will be. */
3826
bffa1357 3827rtx_insn *
58a87a29 3828try_split (rtx pat, rtx_insn *trial, int last)
15bbde2b 3829{
3b50f202 3830 rtx_insn *before, *after;
4cd001d5 3831 rtx note;
3832 rtx_insn *seq, *tem;
61cb1816 3833 profile_probability probability;
4cd001d5 3834 rtx_insn *insn_last, *insn;
e13693ec 3835 int njumps = 0;
9ed997be 3836 rtx_insn *call_insn = NULL;
3cd757b1 3837
25e880b1 3838 /* We're not good at redistributing frame information. */
3839 if (RTX_FRAME_RELATED_P (trial))
4cd001d5 3840 return trial;
25e880b1 3841
3cd757b1 3842 if (any_condjump_p (trial)
3843 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
61cb1816 3844 split_branch_probability
3845 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3846 else
3847 split_branch_probability = profile_probability::uninitialized ();
3848
3cd757b1 3849 probability = split_branch_probability;
3850
58a87a29 3851 seq = split_insns (pat, trial);
3cd757b1 3852
61cb1816 3853 split_branch_probability = profile_probability::uninitialized ();
15bbde2b 3854
e13693ec 3855 if (!seq)
4cd001d5 3856 return trial;
e13693ec 3857
3858 /* Avoid infinite loop if any insn of the result matches
3859 the original pattern. */
3860 insn_last = seq;
3861 while (1)
15bbde2b 3862 {
e13693ec 3863 if (INSN_P (insn_last)
3864 && rtx_equal_p (PATTERN (insn_last), pat))
4cd001d5 3865 return trial;
e13693ec 3866 if (!NEXT_INSN (insn_last))
3867 break;
3868 insn_last = NEXT_INSN (insn_last);
3869 }
d823ba47 3870
3072d30e 3871 /* We will be adding the new sequence to the function. The splitters
3872 may have introduced invalid RTL sharing, so unshare the sequence now. */
3873 unshare_all_rtl_in_chain (seq);
3874
8f869004 3875 /* Mark labels and copy flags. */
e13693ec 3876 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3877 {
6d7dc5b9 3878 if (JUMP_P (insn))
e13693ec 3879 {
8f869004 3880 if (JUMP_P (trial))
3881 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
e13693ec 3882 mark_jump_label (PATTERN (insn), insn, 0);
3883 njumps++;
61cb1816 3884 if (probability.initialized_p ()
e13693ec 3885 && any_condjump_p (insn)
3886 && !find_reg_note (insn, REG_BR_PROB, 0))
31d3e01c 3887 {
e13693ec 3888 /* We can preserve the REG_BR_PROB notes only if exactly
3889 one jump is created, otherwise the machine description
3890 is responsible for this step using
3891 split_branch_probability variable. */
611234b4 3892 gcc_assert (njumps == 1);
61cb1816 3893 add_reg_br_prob_note (insn, probability);
31d3e01c 3894 }
e13693ec 3895 }
3896 }
3897
3898 /* If we are splitting a CALL_INSN, look for the CALL_INSN
b0bd0491 3899 in SEQ and copy any additional information across. */
6d7dc5b9 3900 if (CALL_P (trial))
e13693ec 3901 {
3902 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
6d7dc5b9 3903 if (CALL_P (insn))
e13693ec 3904 {
2e3b0d0f 3905 gcc_assert (call_insn == NULL_RTX);
3906 call_insn = insn;
3907
b0bd0491 3908 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3909 target may have explicitly specified. */
ddc5a1df 3910 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
0bb5a6cd 3911 while (*p)
3912 p = &XEXP (*p, 1);
3913 *p = CALL_INSN_FUNCTION_USAGE (trial);
b0bd0491 3914
3915 /* If the old call was a sibling call, the new one must
3916 be too. */
e13693ec 3917 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3918 }
3919 }
5262c253 3920
e13693ec 3921 /* Copy notes, particularly those related to the CFG. */
3922 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3923 {
3924 switch (REG_NOTE_KIND (note))
3925 {
3926 case REG_EH_REGION:
e38def9c 3927 copy_reg_eh_region_note_backward (note, insn_last, NULL);
e13693ec 3928 break;
381eb1e7 3929
e13693ec 3930 case REG_NORETURN:
3931 case REG_SETJMP:
4c0315d0 3932 case REG_TM:
3c0f15b4 3933 case REG_CALL_NOCF_CHECK:
ddc5a1df 3934 case REG_CALL_ARG_LOCATION:
698ff1f0 3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
381eb1e7 3936 {
6d7dc5b9 3937 if (CALL_P (insn))
a1ddb869 3938 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
381eb1e7 3939 }
e13693ec 3940 break;
5bb27a4b 3941
e13693ec 3942 case REG_NON_LOCAL_GOTO:
698ff1f0 3943 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
31d3e01c 3944 {
6d7dc5b9 3945 if (JUMP_P (insn))
a1ddb869 3946 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
31d3e01c 3947 }
e13693ec 3948 break;
344dc2fa 3949
698ff1f0 3950 case REG_INC:
32aa77d9 3951 if (!AUTO_INC_DEC)
3952 break;
3953
698ff1f0 3954 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3955 {
3956 rtx reg = XEXP (note, 0);
3957 if (!FIND_REG_INC_NOTE (insn, reg)
4073adaa 3958 && find_auto_inc (PATTERN (insn), reg))
a1ddb869 3959 add_reg_note (insn, REG_INC, reg);
698ff1f0 3960 }
3961 break;
698ff1f0 3962
dfe00a8f 3963 case REG_ARGS_SIZE:
f6a1fc98 3964 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
dfe00a8f 3965 break;
3966
2e3b0d0f 3967 case REG_CALL_DECL:
3968 gcc_assert (call_insn != NULL_RTX);
3969 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3970 break;
3971
e13693ec 3972 default:
3973 break;
15bbde2b 3974 }
e13693ec 3975 }
3976
3977 /* If there are LABELS inside the split insns increment the
3978 usage count so we don't delete the label. */
19d2fe05 3979 if (INSN_P (trial))
e13693ec 3980 {
3981 insn = insn_last;
3982 while (insn != NULL_RTX)
15bbde2b 3983 {
19d2fe05 3984 /* JUMP_P insns have already been "marked" above. */
6d7dc5b9 3985 if (NONJUMP_INSN_P (insn))
e13693ec 3986 mark_label_nuses (PATTERN (insn));
15bbde2b 3987
e13693ec 3988 insn = PREV_INSN (insn);
3989 }
15bbde2b 3990 }
3991
3b50f202 3992 before = PREV_INSN (trial);
3993 after = NEXT_INSN (trial);
3994
5169661d 3995 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
e13693ec 3996
3997 delete_insn (trial);
e13693ec 3998
3999 /* Recursively call try_split for each new insn created; by the
4000 time control returns here that insn will be fully split, so
4001 set LAST and continue from the insn after the one returned.
4002 We can't use next_active_insn here since AFTER may be a note.
4003 Ignore deleted insns, which can be occur if not optimizing. */
4004 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
dd1286fb 4005 if (! tem->deleted () && INSN_P (tem))
e13693ec 4006 tem = try_split (PATTERN (tem), tem, 1);
4007
4008 /* Return either the first or the last insn, depending on which was
4009 requested. */
4010 return last
06f9d6ef 4011 ? (after ? PREV_INSN (after) : get_last_insn ())
e13693ec 4012 : NEXT_INSN (before);
15bbde2b 4013}
4014\f
4015/* Make and return an INSN rtx, initializing all its slots.
6a84e367 4016 Store PATTERN in the pattern slots. */
15bbde2b 4017
2c57d586 4018rtx_insn *
35cb5232 4019make_insn_raw (rtx pattern)
15bbde2b 4020{
2c57d586 4021 rtx_insn *insn;
15bbde2b 4022
2c57d586 4023 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
15bbde2b 4024
575333f9 4025 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 4026 PATTERN (insn) = pattern;
4027 INSN_CODE (insn) = -1;
fc92fa61 4028 REG_NOTES (insn) = NULL;
5169661d 4029 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4030 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 4031
fe7f701d 4032#ifdef ENABLE_RTL_CHECKING
4033 if (insn
9204e736 4034 && INSN_P (insn)
fe7f701d 4035 && (returnjump_p (insn)
4036 || (GET_CODE (insn) == SET
4037 && SET_DEST (insn) == pc_rtx)))
4038 {
c3ceba8e 4039 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
fe7f701d 4040 debug_rtx (insn);
4041 }
4042#endif
d823ba47 4043
15bbde2b 4044 return insn;
4045}
4046
9845d120 4047/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4048
2c57d586 4049static rtx_insn *
9845d120 4050make_debug_insn_raw (rtx pattern)
4051{
2c57d586 4052 rtx_debug_insn *insn;
9845d120 4053
2c57d586 4054 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
9845d120 4055 INSN_UID (insn) = cur_debug_insn_uid++;
4056 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
4057 INSN_UID (insn) = cur_insn_uid++;
4058
4059 PATTERN (insn) = pattern;
4060 INSN_CODE (insn) = -1;
4061 REG_NOTES (insn) = NULL;
5169661d 4062 INSN_LOCATION (insn) = curr_insn_location ();
9845d120 4063 BLOCK_FOR_INSN (insn) = NULL;
4064
4065 return insn;
4066}
4067
31d3e01c 4068/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
15bbde2b 4069
2c57d586 4070static rtx_insn *
35cb5232 4071make_jump_insn_raw (rtx pattern)
15bbde2b 4072{
2c57d586 4073 rtx_jump_insn *insn;
15bbde2b 4074
2c57d586 4075 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
fc92fa61 4076 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 4077
4078 PATTERN (insn) = pattern;
4079 INSN_CODE (insn) = -1;
fc92fa61 4080 REG_NOTES (insn) = NULL;
4081 JUMP_LABEL (insn) = NULL;
5169661d 4082 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4083 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 4084
4085 return insn;
4086}
6e911104 4087
31d3e01c 4088/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
6e911104 4089
2c57d586 4090static rtx_insn *
35cb5232 4091make_call_insn_raw (rtx pattern)
6e911104 4092{
2c57d586 4093 rtx_call_insn *insn;
6e911104 4094
2c57d586 4095 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
6e911104 4096 INSN_UID (insn) = cur_insn_uid++;
4097
4098 PATTERN (insn) = pattern;
4099 INSN_CODE (insn) = -1;
6e911104 4100 REG_NOTES (insn) = NULL;
4101 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5169661d 4102 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4103 BLOCK_FOR_INSN (insn) = NULL;
6e911104 4104
4105 return insn;
4106}
35f3420b 4107
4108/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4109
cef3d8ad 4110static rtx_note *
35f3420b 4111make_note_raw (enum insn_note subtype)
4112{
4113 /* Some notes are never created this way at all. These notes are
4114 only created by patching out insns. */
4115 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4116 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4117
cef3d8ad 4118 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
35f3420b 4119 INSN_UID (note) = cur_insn_uid++;
4120 NOTE_KIND (note) = subtype;
4121 BLOCK_FOR_INSN (note) = NULL;
4122 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4123 return note;
4124}
15bbde2b 4125\f
35f3420b 4126/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4127 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4128 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4129
4130static inline void
3e75e92b 4131link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
35f3420b 4132{
4a57a2e8 4133 SET_PREV_INSN (insn) = prev;
4134 SET_NEXT_INSN (insn) = next;
35f3420b 4135 if (prev != NULL)
4136 {
4a57a2e8 4137 SET_NEXT_INSN (prev) = insn;
35f3420b 4138 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4139 {
f17e3fff 4140 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4141 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
35f3420b 4142 }
4143 }
4144 if (next != NULL)
4145 {
4a57a2e8 4146 SET_PREV_INSN (next) = insn;
35f3420b 4147 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 4148 {
4149 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4150 SET_PREV_INSN (sequence->insn (0)) = insn;
4151 }
35f3420b 4152 }
34f5b9ac 4153
4154 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4155 {
f17e3fff 4156 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4157 SET_PREV_INSN (sequence->insn (0)) = prev;
4158 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
34f5b9ac 4159 }
35f3420b 4160}
4161
15bbde2b 4162/* Add INSN to the end of the doubly-linked list.
4163 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4164
4165void
3e75e92b 4166add_insn (rtx_insn *insn)
15bbde2b 4167{
3e75e92b 4168 rtx_insn *prev = get_last_insn ();
35f3420b 4169 link_insn_into_chain (insn, prev, NULL);
c9281ef8 4170 if (get_insns () == NULL)
06f9d6ef 4171 set_first_insn (insn);
06f9d6ef 4172 set_last_insn (insn);
15bbde2b 4173}
4174
35f3420b 4175/* Add INSN into the doubly-linked list after insn AFTER. */
15bbde2b 4176
35f3420b 4177static void
3e75e92b 4178add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
15bbde2b 4179{
3e75e92b 4180 rtx_insn *next = NEXT_INSN (after);
15bbde2b 4181
dd1286fb 4182 gcc_assert (!optimize || !after->deleted ());
f65c10c0 4183
35f3420b 4184 link_insn_into_chain (insn, after, next);
15bbde2b 4185
35f3420b 4186 if (next == NULL)
15bbde2b 4187 {
c36aa54b 4188 struct sequence_stack *seq;
4189
4190 for (seq = get_current_sequence (); seq; seq = seq->next)
4191 if (after == seq->last)
4192 {
4193 seq->last = insn;
4194 break;
4195 }
15bbde2b 4196 }
35f3420b 4197}
4198
4199/* Add INSN into the doubly-linked list before insn BEFORE. */
4200
4201static void
3e75e92b 4202add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
35f3420b 4203{
3e75e92b 4204 rtx_insn *prev = PREV_INSN (before);
35f3420b 4205
dd1286fb 4206 gcc_assert (!optimize || !before->deleted ());
35f3420b 4207
4208 link_insn_into_chain (insn, prev, before);
4209
4210 if (prev == NULL)
15bbde2b 4211 {
c36aa54b 4212 struct sequence_stack *seq;
312de84d 4213
c36aa54b 4214 for (seq = get_current_sequence (); seq; seq = seq->next)
4215 if (before == seq->first)
4216 {
4217 seq->first = insn;
4218 break;
4219 }
4220
4221 gcc_assert (seq);
15bbde2b 4222 }
35f3420b 4223}
4224
4225/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4226 If BB is NULL, an attempt is made to infer the bb from before.
4227
4228 This and the next function should be the only functions called
4229 to insert an insn once delay slots have been filled since only
4230 they know how to update a SEQUENCE. */
15bbde2b 4231
35f3420b 4232void
924b3c83 4233add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
35f3420b 4234{
4235 add_insn_after_nobb (insn, after);
6d7dc5b9 4236 if (!BARRIER_P (after)
4237 && !BARRIER_P (insn)
9dda7915 4238 && (bb = BLOCK_FOR_INSN (after)))
4239 {
4240 set_block_for_insn (insn, bb);
308f9b79 4241 if (INSN_P (insn))
3072d30e 4242 df_insn_rescan (insn);
9dda7915 4243 /* Should not happen as first in the BB is always
3fb1e43b 4244 either NOTE or LABEL. */
5496dbfc 4245 if (BB_END (bb) == after
9dda7915 4246 /* Avoid clobbering of structure when creating new BB. */
6d7dc5b9 4247 && !BARRIER_P (insn)
ad4583d9 4248 && !NOTE_INSN_BASIC_BLOCK_P (insn))
26bb3cb2 4249 BB_END (bb) = insn;
9dda7915 4250 }
15bbde2b 4251}
4252
35f3420b 4253/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4254 If BB is NULL, an attempt is made to infer the bb from before.
4255
4256 This and the previous function should be the only functions called
4257 to insert an insn once delay slots have been filled since only
4258 they know how to update a SEQUENCE. */
312de84d 4259
4260void
924b3c83 4261add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
312de84d 4262{
35f3420b 4263 add_insn_before_nobb (insn, before);
312de84d 4264
48e1416a 4265 if (!bb
3072d30e 4266 && !BARRIER_P (before)
4267 && !BARRIER_P (insn))
4268 bb = BLOCK_FOR_INSN (before);
4269
4270 if (bb)
9dda7915 4271 {
4272 set_block_for_insn (insn, bb);
308f9b79 4273 if (INSN_P (insn))
3072d30e 4274 df_insn_rescan (insn);
611234b4 4275 /* Should not happen as first in the BB is always either NOTE or
ba821eb1 4276 LABEL. */
611234b4 4277 gcc_assert (BB_HEAD (bb) != insn
4278 /* Avoid clobbering of structure when creating new BB. */
4279 || BARRIER_P (insn)
ad4583d9 4280 || NOTE_INSN_BASIC_BLOCK_P (insn));
9dda7915 4281 }
312de84d 4282}
4283
3072d30e 4284/* Replace insn with an deleted instruction note. */
4285
fc3d1695 4286void
6b63fbbe 4287set_insn_deleted (rtx_insn *insn)
3072d30e 4288{
91f71fa3 4289 if (INSN_P (insn))
6b63fbbe 4290 df_insn_delete (insn);
3072d30e 4291 PUT_CODE (insn, NOTE);
4292 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4293}
4294
4295
93ff53d3 4296/* Unlink INSN from the insn chain.
4297
4298 This function knows how to handle sequences.
4299
4300 This function does not invalidate data flow information associated with
4301 INSN (i.e. does not call df_insn_delete). That makes this function
4302 usable for only disconnecting an insn from the chain, and re-emit it
4303 elsewhere later.
4304
4305 To later insert INSN elsewhere in the insn chain via add_insn and
4306 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4307 the caller. Nullifying them here breaks many insn chain walks.
4308
4309 To really delete an insn and related DF information, use delete_insn. */
4310
7ddcf2bf 4311void
924b3c83 4312remove_insn (rtx_insn *insn)
7ddcf2bf 4313{
26bb3cb2 4314 rtx_insn *next = NEXT_INSN (insn);
4315 rtx_insn *prev = PREV_INSN (insn);
e4bf866d 4316 basic_block bb;
4317
7ddcf2bf 4318 if (prev)
4319 {
4a57a2e8 4320 SET_NEXT_INSN (prev) = next;
6d7dc5b9 4321 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
7ddcf2bf 4322 {
f17e3fff 4323 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4324 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
7ddcf2bf 4325 }
4326 }
7ddcf2bf 4327 else
4328 {
c36aa54b 4329 struct sequence_stack *seq;
4330
4331 for (seq = get_current_sequence (); seq; seq = seq->next)
4332 if (insn == seq->first)
7ddcf2bf 4333 {
c36aa54b 4334 seq->first = next;
7ddcf2bf 4335 break;
4336 }
4337
c36aa54b 4338 gcc_assert (seq);
7ddcf2bf 4339 }
4340
4341 if (next)
4342 {
4a57a2e8 4343 SET_PREV_INSN (next) = prev;
6d7dc5b9 4344 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 4345 {
4346 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4347 SET_PREV_INSN (sequence->insn (0)) = prev;
4348 }
7ddcf2bf 4349 }
7ddcf2bf 4350 else
4351 {
c36aa54b 4352 struct sequence_stack *seq;
4353
4354 for (seq = get_current_sequence (); seq; seq = seq->next)
4355 if (insn == seq->last)
7ddcf2bf 4356 {
c36aa54b 4357 seq->last = prev;
7ddcf2bf 4358 break;
4359 }
4360
c36aa54b 4361 gcc_assert (seq);
7ddcf2bf 4362 }
b983ea33 4363
b983ea33 4364 /* Fix up basic block boundaries, if necessary. */
6d7dc5b9 4365 if (!BARRIER_P (insn)
e4bf866d 4366 && (bb = BLOCK_FOR_INSN (insn)))
4367 {
5496dbfc 4368 if (BB_HEAD (bb) == insn)
e4bf866d 4369 {
f4aee538 4370 /* Never ever delete the basic block note without deleting whole
4371 basic block. */
611234b4 4372 gcc_assert (!NOTE_P (insn));
26bb3cb2 4373 BB_HEAD (bb) = next;
e4bf866d 4374 }
5496dbfc 4375 if (BB_END (bb) == insn)
26bb3cb2 4376 BB_END (bb) = prev;
e4bf866d 4377 }
7ddcf2bf 4378}
4379
d5f9786f 4380/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4381
4382void
35cb5232 4383add_function_usage_to (rtx call_insn, rtx call_fusage)
d5f9786f 4384{
611234b4 4385 gcc_assert (call_insn && CALL_P (call_insn));
d5f9786f 4386
4387 /* Put the register usage information on the CALL. If there is already
4388 some usage information, put ours at the end. */
4389 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4390 {
4391 rtx link;
4392
4393 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4394 link = XEXP (link, 1))
4395 ;
4396
4397 XEXP (link, 1) = call_fusage;
4398 }
4399 else
4400 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4401}
4402
15bbde2b 4403/* Delete all insns made since FROM.
4404 FROM becomes the new last instruction. */
4405
4406void
57c26b3a 4407delete_insns_since (rtx_insn *from)
15bbde2b 4408{
4409 if (from == 0)
06f9d6ef 4410 set_first_insn (0);
15bbde2b 4411 else
4a57a2e8 4412 SET_NEXT_INSN (from) = 0;
06f9d6ef 4413 set_last_insn (from);
15bbde2b 4414}
4415
34e2ddcd 4416/* This function is deprecated, please use sequences instead.
4417
4418 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 4419 The insns to be moved are those between FROM and TO.
4420 They are moved to a new position after the insn AFTER.
4421 AFTER must not be FROM or TO or any insn in between.
4422
4423 This function does not know about SEQUENCEs and hence should not be
4424 called after delay-slot filling has been done. */
4425
4426void
57c26b3a 4427reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
15bbde2b 4428{
382ecba7 4429 if (flag_checking)
4430 {
4431 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4432 gcc_assert (after != x);
4433 gcc_assert (after != to);
4434 }
7f6ca11f 4435
15bbde2b 4436 /* Splice this bunch out of where it is now. */
4437 if (PREV_INSN (from))
4a57a2e8 4438 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
15bbde2b 4439 if (NEXT_INSN (to))
4a57a2e8 4440 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
06f9d6ef 4441 if (get_last_insn () == to)
4442 set_last_insn (PREV_INSN (from));
4443 if (get_insns () == from)
4444 set_first_insn (NEXT_INSN (to));
15bbde2b 4445
4446 /* Make the new neighbors point to it and it to them. */
4447 if (NEXT_INSN (after))
4a57a2e8 4448 SET_PREV_INSN (NEXT_INSN (after)) = to;
15bbde2b 4449
4a57a2e8 4450 SET_NEXT_INSN (to) = NEXT_INSN (after);
4451 SET_PREV_INSN (from) = after;
4452 SET_NEXT_INSN (after) = from;
9af5ce0c 4453 if (after == get_last_insn ())
06f9d6ef 4454 set_last_insn (to);
15bbde2b 4455}
4456
9dda7915 4457/* Same as function above, but take care to update BB boundaries. */
4458void
4a3fb716 4459reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
9dda7915 4460{
4a3fb716 4461 rtx_insn *prev = PREV_INSN (from);
9dda7915 4462 basic_block bb, bb2;
4463
4464 reorder_insns_nobb (from, to, after);
4465
6d7dc5b9 4466 if (!BARRIER_P (after)
9dda7915 4467 && (bb = BLOCK_FOR_INSN (after)))
4468 {
e149ca56 4469 rtx_insn *x;
3072d30e 4470 df_set_bb_dirty (bb);
d4c5e26d 4471
6d7dc5b9 4472 if (!BARRIER_P (from)
9dda7915 4473 && (bb2 = BLOCK_FOR_INSN (from)))
4474 {
5496dbfc 4475 if (BB_END (bb2) == to)
26bb3cb2 4476 BB_END (bb2) = prev;
3072d30e 4477 df_set_bb_dirty (bb2);
9dda7915 4478 }
4479
5496dbfc 4480 if (BB_END (bb) == after)
26bb3cb2 4481 BB_END (bb) = to;
9dda7915 4482
4483 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7097dd0c 4484 if (!BARRIER_P (x))
a2bdd643 4485 df_insn_change_bb (x, bb);
9dda7915 4486 }
4487}
4488
15bbde2b 4489\f
31d3e01c 4490/* Emit insn(s) of given code and pattern
4491 at a specified place within the doubly-linked list.
15bbde2b 4492
31d3e01c 4493 All of the emit_foo global entry points accept an object
4494 X which is either an insn list or a PATTERN of a single
4495 instruction.
15bbde2b 4496
31d3e01c 4497 There are thus a few canonical ways to generate code and
4498 emit it at a specific place in the instruction stream. For
4499 example, consider the instruction named SPOT and the fact that
4500 we would like to emit some instructions before SPOT. We might
4501 do it like this:
15bbde2b 4502
31d3e01c 4503 start_sequence ();
4504 ... emit the new instructions ...
4505 insns_head = get_insns ();
4506 end_sequence ();
15bbde2b 4507
31d3e01c 4508 emit_insn_before (insns_head, SPOT);
15bbde2b 4509
31d3e01c 4510 It used to be common to generate SEQUENCE rtl instead, but that
4511 is a relic of the past which no longer occurs. The reason is that
4512 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4513 generated would almost certainly die right after it was created. */
15bbde2b 4514
722334ea 4515static rtx_insn *
924b3c83 4516emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4517 basic_block bb,
2c57d586 4518 rtx_insn *(*make_raw) (rtx))
15bbde2b 4519{
2c57d586 4520 rtx_insn *insn;
15bbde2b 4521
611234b4 4522 gcc_assert (before);
31d3e01c 4523
4524 if (x == NULL_RTX)
924b3c83 4525 return last;
31d3e01c 4526
4527 switch (GET_CODE (x))
15bbde2b 4528 {
9845d120 4529 case DEBUG_INSN:
31d3e01c 4530 case INSN:
4531 case JUMP_INSN:
4532 case CALL_INSN:
4533 case CODE_LABEL:
4534 case BARRIER:
4535 case NOTE:
2c57d586 4536 insn = as_a <rtx_insn *> (x);
31d3e01c 4537 while (insn)
4538 {
2c57d586 4539 rtx_insn *next = NEXT_INSN (insn);
3072d30e 4540 add_insn_before (insn, before, bb);
31d3e01c 4541 last = insn;
4542 insn = next;
4543 }
4544 break;
4545
4546#ifdef ENABLE_RTL_CHECKING
4547 case SEQUENCE:
611234b4 4548 gcc_unreachable ();
31d3e01c 4549 break;
4550#endif
4551
4552 default:
5f7c5ddd 4553 last = (*make_raw) (x);
3072d30e 4554 add_insn_before (last, before, bb);
31d3e01c 4555 break;
15bbde2b 4556 }
4557
924b3c83 4558 return last;
15bbde2b 4559}
4560
5f7c5ddd 4561/* Make X be output before the instruction BEFORE. */
4562
722334ea 4563rtx_insn *
c9a09955 4564emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f7c5ddd 4565{
4566 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4567}
4568
31d3e01c 4569/* Make an instruction with body X and code JUMP_INSN
15bbde2b 4570 and output it before the instruction BEFORE. */
4571
f9a00e9e 4572rtx_jump_insn *
c9a09955 4573emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
15bbde2b 4574{
f9a00e9e 4575 return as_a <rtx_jump_insn *> (
924b3c83 4576 emit_pattern_before_noloc (x, before, NULL, NULL,
f9a00e9e 4577 make_jump_insn_raw));
15bbde2b 4578}
4579
31d3e01c 4580/* Make an instruction with body X and code CALL_INSN
cd0fe062 4581 and output it before the instruction BEFORE. */
4582
722334ea 4583rtx_insn *
c9a09955 4584emit_call_insn_before_noloc (rtx x, rtx_insn *before)
cd0fe062 4585{
924b3c83 4586 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f7c5ddd 4587 make_call_insn_raw);
cd0fe062 4588}
4589
9845d120 4590/* Make an instruction with body X and code DEBUG_INSN
4591 and output it before the instruction BEFORE. */
4592
722334ea 4593rtx_insn *
924b3c83 4594emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
9845d120 4595{
924b3c83 4596 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f7c5ddd 4597 make_debug_insn_raw);
9845d120 4598}
4599
15bbde2b 4600/* Make an insn of code BARRIER
71caadc0 4601 and output it before the insn BEFORE. */
15bbde2b 4602
722334ea 4603rtx_barrier *
924b3c83 4604emit_barrier_before (rtx_insn *before)
15bbde2b 4605{
722334ea 4606 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4607
4608 INSN_UID (insn) = cur_insn_uid++;
4609
3072d30e 4610 add_insn_before (insn, before, NULL);
15bbde2b 4611 return insn;
4612}
4613
71caadc0 4614/* Emit the label LABEL before the insn BEFORE. */
4615
f9a00e9e 4616rtx_code_label *
924b3c83 4617emit_label_before (rtx_code_label *label, rtx_insn *before)
71caadc0 4618{
596ef494 4619 gcc_checking_assert (INSN_UID (label) == 0);
4620 INSN_UID (label) = cur_insn_uid++;
4621 add_insn_before (label, before, NULL);
924b3c83 4622 return label;
71caadc0 4623}
15bbde2b 4624\f
31d3e01c 4625/* Helper for emit_insn_after, handles lists of instructions
4626 efficiently. */
15bbde2b 4627
f17e3fff 4628static rtx_insn *
924b3c83 4629emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
15bbde2b 4630{
26bb3cb2 4631 rtx_insn *last;
4632 rtx_insn *after_after;
3072d30e 4633 if (!bb && !BARRIER_P (after))
4634 bb = BLOCK_FOR_INSN (after);
15bbde2b 4635
3072d30e 4636 if (bb)
15bbde2b 4637 {
3072d30e 4638 df_set_bb_dirty (bb);
31d3e01c 4639 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
6d7dc5b9 4640 if (!BARRIER_P (last))
3072d30e 4641 {
4642 set_block_for_insn (last, bb);
4643 df_insn_rescan (last);
4644 }
6d7dc5b9 4645 if (!BARRIER_P (last))
3072d30e 4646 {
4647 set_block_for_insn (last, bb);
4648 df_insn_rescan (last);
4649 }
5496dbfc 4650 if (BB_END (bb) == after)
26bb3cb2 4651 BB_END (bb) = last;
15bbde2b 4652 }
4653 else
31d3e01c 4654 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4655 continue;
4656
4657 after_after = NEXT_INSN (after);
4658
4a57a2e8 4659 SET_NEXT_INSN (after) = first;
4660 SET_PREV_INSN (first) = after;
4661 SET_NEXT_INSN (last) = after_after;
31d3e01c 4662 if (after_after)
4a57a2e8 4663 SET_PREV_INSN (after_after) = last;
31d3e01c 4664
9af5ce0c 4665 if (after == get_last_insn ())
06f9d6ef 4666 set_last_insn (last);
e1ab7874 4667
31d3e01c 4668 return last;
4669}
4670
722334ea 4671static rtx_insn *
924b3c83 4672emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
2c57d586 4673 rtx_insn *(*make_raw)(rtx))
31d3e01c 4674{
f17e3fff 4675 rtx_insn *last = after;
31d3e01c 4676
611234b4 4677 gcc_assert (after);
31d3e01c 4678
4679 if (x == NULL_RTX)
f17e3fff 4680 return last;
31d3e01c 4681
4682 switch (GET_CODE (x))
15bbde2b 4683 {
9845d120 4684 case DEBUG_INSN:
31d3e01c 4685 case INSN:
4686 case JUMP_INSN:
4687 case CALL_INSN:
4688 case CODE_LABEL:
4689 case BARRIER:
4690 case NOTE:
26bb3cb2 4691 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
31d3e01c 4692 break;
4693
4694#ifdef ENABLE_RTL_CHECKING
4695 case SEQUENCE:
611234b4 4696 gcc_unreachable ();
31d3e01c 4697 break;
4698#endif
4699
4700 default:
5f7c5ddd 4701 last = (*make_raw) (x);
3072d30e 4702 add_insn_after (last, after, bb);
31d3e01c 4703 break;
15bbde2b 4704 }
4705
f17e3fff 4706 return last;
15bbde2b 4707}
4708
5f7c5ddd 4709/* Make X be output after the insn AFTER and set the BB of insn. If
4710 BB is NULL, an attempt is made to infer the BB from AFTER. */
4711
722334ea 4712rtx_insn *
924b3c83 4713emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
5f7c5ddd 4714{
4715 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4716}
4717
1bea98fb 4718
31d3e01c 4719/* Make an insn of code JUMP_INSN with body X
15bbde2b 4720 and output it after the insn AFTER. */
4721
f9a00e9e 4722rtx_jump_insn *
924b3c83 4723emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
15bbde2b 4724{
f9a00e9e 4725 return as_a <rtx_jump_insn *> (
4726 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
31d3e01c 4727}
4728
4729/* Make an instruction with body X and code CALL_INSN
4730 and output it after the instruction AFTER. */
4731
722334ea 4732rtx_insn *
924b3c83 4733emit_call_insn_after_noloc (rtx x, rtx_insn *after)
31d3e01c 4734{
5f7c5ddd 4735 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
15bbde2b 4736}
4737
9845d120 4738/* Make an instruction with body X and code CALL_INSN
4739 and output it after the instruction AFTER. */
4740
722334ea 4741rtx_insn *
924b3c83 4742emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
9845d120 4743{
5f7c5ddd 4744 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
9845d120 4745}
4746
15bbde2b 4747/* Make an insn of code BARRIER
4748 and output it after the insn AFTER. */
4749
722334ea 4750rtx_barrier *
924b3c83 4751emit_barrier_after (rtx_insn *after)
15bbde2b 4752{
722334ea 4753 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4754
4755 INSN_UID (insn) = cur_insn_uid++;
4756
3072d30e 4757 add_insn_after (insn, after, NULL);
15bbde2b 4758 return insn;
4759}
4760
4761/* Emit the label LABEL after the insn AFTER. */
4762
722334ea 4763rtx_insn *
924b3c83 4764emit_label_after (rtx_insn *label, rtx_insn *after)
15bbde2b 4765{
596ef494 4766 gcc_checking_assert (INSN_UID (label) == 0);
4767 INSN_UID (label) = cur_insn_uid++;
4768 add_insn_after (label, after, NULL);
924b3c83 4769 return label;
15bbde2b 4770}
35f3420b 4771\f
4772/* Notes require a bit of special handling: Some notes need to have their
4773 BLOCK_FOR_INSN set, others should never have it set, and some should
4774 have it set or clear depending on the context. */
4775
4776/* Return true iff a note of kind SUBTYPE should be emitted with routines
4777 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4778 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4779
4780static bool
4781note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4782{
4783 switch (subtype)
4784 {
4785 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4786 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4787 return true;
4788
4789 /* Notes for var tracking and EH region markers can appear between or
4790 inside basic blocks. If the caller is emitting on the basic block
4791 boundary, do not set BLOCK_FOR_INSN on the new note. */
4792 case NOTE_INSN_VAR_LOCATION:
35f3420b 4793 case NOTE_INSN_EH_REGION_BEG:
4794 case NOTE_INSN_EH_REGION_END:
4795 return on_bb_boundary_p;
4796
4797 /* Otherwise, BLOCK_FOR_INSN must be set. */
4798 default:
4799 return false;
4800 }
4801}
15bbde2b 4802
4803/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4804
cef3d8ad 4805rtx_note *
4d86329d 4806emit_note_after (enum insn_note subtype, rtx_insn *after)
15bbde2b 4807{
cef3d8ad 4808 rtx_note *note = make_note_raw (subtype);
35f3420b 4809 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4810 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4811
4812 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4813 add_insn_after_nobb (note, after);
4814 else
4815 add_insn_after (note, after, bb);
4816 return note;
4817}
4818
4819/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4820
cef3d8ad 4821rtx_note *
1dc26636 4822emit_note_before (enum insn_note subtype, rtx_insn *before)
35f3420b 4823{
cef3d8ad 4824 rtx_note *note = make_note_raw (subtype);
35f3420b 4825 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4826 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4827
4828 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4829 add_insn_before_nobb (note, before);
4830 else
4831 add_insn_before (note, before, bb);
15bbde2b 4832 return note;
4833}
15bbde2b 4834\f
ede4ebcb 4835/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4836 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4837
722334ea 4838static rtx_insn *
924b3c83 4839emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
2c57d586 4840 rtx_insn *(*make_raw) (rtx))
d321a68b 4841{
9ed997be 4842 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
d321a68b 4843
0891f67c 4844 if (pattern == NULL_RTX || !loc)
9ed997be 4845 return last;
ca154f3f 4846
31d3e01c 4847 after = NEXT_INSN (after);
4848 while (1)
4849 {
57e999d9 4850 if (active_insn_p (after)
4851 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4852 && !INSN_LOCATION (after))
5169661d 4853 INSN_LOCATION (after) = loc;
31d3e01c 4854 if (after == last)
4855 break;
4856 after = NEXT_INSN (after);
4857 }
9ed997be 4858 return last;
d321a68b 4859}
4860
ede4ebcb 4861/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4862 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4863 any DEBUG_INSNs. */
4864
722334ea 4865static rtx_insn *
6b63fbbe 4866emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
2c57d586 4867 rtx_insn *(*make_raw) (rtx))
0891f67c 4868{
4cd001d5 4869 rtx_insn *prev = after;
9845d120 4870
ede4ebcb 4871 if (skip_debug_insns)
4872 while (DEBUG_INSN_P (prev))
4873 prev = PREV_INSN (prev);
9845d120 4874
4875 if (INSN_P (prev))
5169661d 4876 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
ede4ebcb 4877 make_raw);
0891f67c 4878 else
ede4ebcb 4879 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0891f67c 4880}
4881
5169661d 4882/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4883rtx_insn *
924b3c83 4884emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
d321a68b 4885{
ede4ebcb 4886 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4887}
31d3e01c 4888
5169661d 4889/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4890rtx_insn *
6b63fbbe 4891emit_insn_after (rtx pattern, rtx_insn *after)
ede4ebcb 4892{
4893 return emit_pattern_after (pattern, after, true, make_insn_raw);
4894}
ca154f3f 4895
5169661d 4896/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 4897rtx_jump_insn *
924b3c83 4898emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
ede4ebcb 4899{
f9a00e9e 4900 return as_a <rtx_jump_insn *> (
4901 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
d321a68b 4902}
4903
5169661d 4904/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
f9a00e9e 4905rtx_jump_insn *
6b63fbbe 4906emit_jump_insn_after (rtx pattern, rtx_insn *after)
0891f67c 4907{
f9a00e9e 4908 return as_a <rtx_jump_insn *> (
4909 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
0891f67c 4910}
4911
5169661d 4912/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4913rtx_insn *
924b3c83 4914emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
d321a68b 4915{
ede4ebcb 4916 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
d321a68b 4917}
4918
5169661d 4919/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4920rtx_insn *
6b63fbbe 4921emit_call_insn_after (rtx pattern, rtx_insn *after)
0891f67c 4922{
ede4ebcb 4923 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
0891f67c 4924}
4925
5169661d 4926/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4927rtx_insn *
924b3c83 4928emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
9845d120 4929{
ede4ebcb 4930 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
9845d120 4931}
4932
5169661d 4933/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4934rtx_insn *
6b63fbbe 4935emit_debug_insn_after (rtx pattern, rtx_insn *after)
9845d120 4936{
ede4ebcb 4937 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
9845d120 4938}
4939
ede4ebcb 4940/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4941 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4942 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4943 CALL_INSN, etc. */
4944
722334ea 4945static rtx_insn *
924b3c83 4946emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4947 bool insnp, rtx_insn *(*make_raw) (rtx))
d321a68b 4948{
4cd001d5 4949 rtx_insn *first = PREV_INSN (before);
4950 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
924b3c83 4951 insnp ? before : NULL,
4cd001d5 4952 NULL, make_raw);
0891f67c 4953
4954 if (pattern == NULL_RTX || !loc)
4cd001d5 4955 return last;
0891f67c 4956
4486418e 4957 if (!first)
4958 first = get_insns ();
4959 else
4960 first = NEXT_INSN (first);
0891f67c 4961 while (1)
4962 {
57e999d9 4963 if (active_insn_p (first)
4964 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4965 && !INSN_LOCATION (first))
5169661d 4966 INSN_LOCATION (first) = loc;
0891f67c 4967 if (first == last)
4968 break;
4969 first = NEXT_INSN (first);
4970 }
4cd001d5 4971 return last;
0891f67c 4972}
4973
ede4ebcb 4974/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4975 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4976 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4977 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4978
722334ea 4979static rtx_insn *
6b63fbbe 4980emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
2c57d586 4981 bool insnp, rtx_insn *(*make_raw) (rtx))
0891f67c 4982{
4cd001d5 4983 rtx_insn *next = before;
9845d120 4984
ede4ebcb 4985 if (skip_debug_insns)
4986 while (DEBUG_INSN_P (next))
4987 next = PREV_INSN (next);
9845d120 4988
4989 if (INSN_P (next))
5169661d 4990 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
ede4ebcb 4991 insnp, make_raw);
0891f67c 4992 else
ede4ebcb 4993 return emit_pattern_before_noloc (pattern, before,
924b3c83 4994 insnp ? before : NULL,
ede4ebcb 4995 NULL, make_raw);
0891f67c 4996}
4997
5169661d 4998/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4999rtx_insn *
924b3c83 5000emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
0891f67c 5001{
ede4ebcb 5002 return emit_pattern_before_setloc (pattern, before, loc, true,
5003 make_insn_raw);
5004}
0891f67c 5005
5169661d 5006/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
722334ea 5007rtx_insn *
6b63fbbe 5008emit_insn_before (rtx pattern, rtx_insn *before)
ede4ebcb 5009{
5010 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5011}
0891f67c 5012
5169661d 5013/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 5014rtx_jump_insn *
924b3c83 5015emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
ede4ebcb 5016{
f9a00e9e 5017 return as_a <rtx_jump_insn *> (
5018 emit_pattern_before_setloc (pattern, before, loc, false,
5019 make_jump_insn_raw));
0891f67c 5020}
5021
5169661d 5022/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
f9a00e9e 5023rtx_jump_insn *
6b63fbbe 5024emit_jump_insn_before (rtx pattern, rtx_insn *before)
0891f67c 5025{
f9a00e9e 5026 return as_a <rtx_jump_insn *> (
5027 emit_pattern_before (pattern, before, true, false,
5028 make_jump_insn_raw));
0891f67c 5029}
5030
5169661d 5031/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 5032rtx_insn *
924b3c83 5033emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
0891f67c 5034{
ede4ebcb 5035 return emit_pattern_before_setloc (pattern, before, loc, false,
5036 make_call_insn_raw);
d321a68b 5037}
0891f67c 5038
ede4ebcb 5039/* Like emit_call_insn_before_noloc,
5169661d 5040 but set insn_location according to BEFORE. */
722334ea 5041rtx_insn *
c9a09955 5042emit_call_insn_before (rtx pattern, rtx_insn *before)
0891f67c 5043{
ede4ebcb 5044 return emit_pattern_before (pattern, before, true, false,
5045 make_call_insn_raw);
0891f67c 5046}
9845d120 5047
5169661d 5048/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 5049rtx_insn *
924b3c83 5050emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
9845d120 5051{
ede4ebcb 5052 return emit_pattern_before_setloc (pattern, before, loc, false,
5053 make_debug_insn_raw);
9845d120 5054}
5055
ede4ebcb 5056/* Like emit_debug_insn_before_noloc,
5169661d 5057 but set insn_location according to BEFORE. */
722334ea 5058rtx_insn *
5518cf83 5059emit_debug_insn_before (rtx pattern, rtx_insn *before)
9845d120 5060{
ede4ebcb 5061 return emit_pattern_before (pattern, before, false, false,
5062 make_debug_insn_raw);
9845d120 5063}
d321a68b 5064\f
31d3e01c 5065/* Take X and emit it at the end of the doubly-linked
5066 INSN list.
15bbde2b 5067
5068 Returns the last insn emitted. */
5069
722334ea 5070rtx_insn *
35cb5232 5071emit_insn (rtx x)
15bbde2b 5072{
722334ea 5073 rtx_insn *last = get_last_insn ();
5074 rtx_insn *insn;
15bbde2b 5075
31d3e01c 5076 if (x == NULL_RTX)
5077 return last;
15bbde2b 5078
31d3e01c 5079 switch (GET_CODE (x))
5080 {
9845d120 5081 case DEBUG_INSN:
31d3e01c 5082 case INSN:
5083 case JUMP_INSN:
5084 case CALL_INSN:
5085 case CODE_LABEL:
5086 case BARRIER:
5087 case NOTE:
722334ea 5088 insn = as_a <rtx_insn *> (x);
31d3e01c 5089 while (insn)
15bbde2b 5090 {
722334ea 5091 rtx_insn *next = NEXT_INSN (insn);
15bbde2b 5092 add_insn (insn);
31d3e01c 5093 last = insn;
5094 insn = next;
15bbde2b 5095 }
31d3e01c 5096 break;
15bbde2b 5097
31d3e01c 5098#ifdef ENABLE_RTL_CHECKING
91f71fa3 5099 case JUMP_TABLE_DATA:
31d3e01c 5100 case SEQUENCE:
611234b4 5101 gcc_unreachable ();
31d3e01c 5102 break;
5103#endif
15bbde2b 5104
31d3e01c 5105 default:
5106 last = make_insn_raw (x);
5107 add_insn (last);
5108 break;
15bbde2b 5109 }
5110
5111 return last;
5112}
5113
9845d120 5114/* Make an insn of code DEBUG_INSN with pattern X
5115 and add it to the end of the doubly-linked list. */
5116
722334ea 5117rtx_insn *
9845d120 5118emit_debug_insn (rtx x)
5119{
722334ea 5120 rtx_insn *last = get_last_insn ();
5121 rtx_insn *insn;
9845d120 5122
5123 if (x == NULL_RTX)
5124 return last;
5125
5126 switch (GET_CODE (x))
5127 {
5128 case DEBUG_INSN:
5129 case INSN:
5130 case JUMP_INSN:
5131 case CALL_INSN:
5132 case CODE_LABEL:
5133 case BARRIER:
5134 case NOTE:
722334ea 5135 insn = as_a <rtx_insn *> (x);
9845d120 5136 while (insn)
5137 {
722334ea 5138 rtx_insn *next = NEXT_INSN (insn);
9845d120 5139 add_insn (insn);
5140 last = insn;
5141 insn = next;
5142 }
5143 break;
5144
5145#ifdef ENABLE_RTL_CHECKING
91f71fa3 5146 case JUMP_TABLE_DATA:
9845d120 5147 case SEQUENCE:
5148 gcc_unreachable ();
5149 break;
5150#endif
5151
5152 default:
5153 last = make_debug_insn_raw (x);
5154 add_insn (last);
5155 break;
5156 }
5157
5158 return last;
5159}
5160
31d3e01c 5161/* Make an insn of code JUMP_INSN with pattern X
5162 and add it to the end of the doubly-linked list. */
15bbde2b 5163
722334ea 5164rtx_insn *
35cb5232 5165emit_jump_insn (rtx x)
15bbde2b 5166{
722334ea 5167 rtx_insn *last = NULL;
5168 rtx_insn *insn;
15bbde2b 5169
31d3e01c 5170 switch (GET_CODE (x))
15bbde2b 5171 {
9845d120 5172 case DEBUG_INSN:
31d3e01c 5173 case INSN:
5174 case JUMP_INSN:
5175 case CALL_INSN:
5176 case CODE_LABEL:
5177 case BARRIER:
5178 case NOTE:
722334ea 5179 insn = as_a <rtx_insn *> (x);
31d3e01c 5180 while (insn)
5181 {
722334ea 5182 rtx_insn *next = NEXT_INSN (insn);
31d3e01c 5183 add_insn (insn);
5184 last = insn;
5185 insn = next;
5186 }
5187 break;
b36b07d8 5188
31d3e01c 5189#ifdef ENABLE_RTL_CHECKING
91f71fa3 5190 case JUMP_TABLE_DATA:
31d3e01c 5191 case SEQUENCE:
611234b4 5192 gcc_unreachable ();
31d3e01c 5193 break;
5194#endif
b36b07d8 5195
31d3e01c 5196 default:
5197 last = make_jump_insn_raw (x);
5198 add_insn (last);
5199 break;
9dda7915 5200 }
b36b07d8 5201
5202 return last;
5203}
5204
31d3e01c 5205/* Make an insn of code CALL_INSN with pattern X
15bbde2b 5206 and add it to the end of the doubly-linked list. */
5207
722334ea 5208rtx_insn *
35cb5232 5209emit_call_insn (rtx x)
15bbde2b 5210{
722334ea 5211 rtx_insn *insn;
31d3e01c 5212
5213 switch (GET_CODE (x))
15bbde2b 5214 {
9845d120 5215 case DEBUG_INSN:
31d3e01c 5216 case INSN:
5217 case JUMP_INSN:
5218 case CALL_INSN:
5219 case CODE_LABEL:
5220 case BARRIER:
5221 case NOTE:
5222 insn = emit_insn (x);
5223 break;
15bbde2b 5224
31d3e01c 5225#ifdef ENABLE_RTL_CHECKING
5226 case SEQUENCE:
91f71fa3 5227 case JUMP_TABLE_DATA:
611234b4 5228 gcc_unreachable ();
31d3e01c 5229 break;
5230#endif
15bbde2b 5231
31d3e01c 5232 default:
5233 insn = make_call_insn_raw (x);
15bbde2b 5234 add_insn (insn);
31d3e01c 5235 break;
15bbde2b 5236 }
31d3e01c 5237
5238 return insn;
15bbde2b 5239}
5240
5241/* Add the label LABEL to the end of the doubly-linked list. */
5242
f9a00e9e 5243rtx_code_label *
5244emit_label (rtx uncast_label)
15bbde2b 5245{
f9a00e9e 5246 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5247
596ef494 5248 gcc_checking_assert (INSN_UID (label) == 0);
5249 INSN_UID (label) = cur_insn_uid++;
f9a00e9e 5250 add_insn (label);
5251 return label;
15bbde2b 5252}
5253
91f71fa3 5254/* Make an insn of code JUMP_TABLE_DATA
5255 and add it to the end of the doubly-linked list. */
5256
e41badc0 5257rtx_jump_table_data *
91f71fa3 5258emit_jump_table_data (rtx table)
5259{
e41badc0 5260 rtx_jump_table_data *jump_table_data =
5261 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
91f71fa3 5262 INSN_UID (jump_table_data) = cur_insn_uid++;
5263 PATTERN (jump_table_data) = table;
5264 BLOCK_FOR_INSN (jump_table_data) = NULL;
5265 add_insn (jump_table_data);
5266 return jump_table_data;
5267}
5268
15bbde2b 5269/* Make an insn of code BARRIER
5270 and add it to the end of the doubly-linked list. */
5271
722334ea 5272rtx_barrier *
35cb5232 5273emit_barrier (void)
15bbde2b 5274{
722334ea 5275 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 5276 INSN_UID (barrier) = cur_insn_uid++;
5277 add_insn (barrier);
5278 return barrier;
5279}
5280
2f57e3d9 5281/* Emit a copy of note ORIG. */
35cb5232 5282
cef3d8ad 5283rtx_note *
5284emit_note_copy (rtx_note *orig)
2f57e3d9 5285{
35f3420b 5286 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
cef3d8ad 5287 rtx_note *note = make_note_raw (kind);
2f57e3d9 5288 NOTE_DATA (note) = NOTE_DATA (orig);
2f57e3d9 5289 add_insn (note);
31b97e8f 5290 return note;
15bbde2b 5291}
5292
31b97e8f 5293/* Make an insn of code NOTE or type NOTE_NO
5294 and add it to the end of the doubly-linked list. */
15bbde2b 5295
cef3d8ad 5296rtx_note *
ad4583d9 5297emit_note (enum insn_note kind)
15bbde2b 5298{
cef3d8ad 5299 rtx_note *note = make_note_raw (kind);
15bbde2b 5300 add_insn (note);
5301 return note;
5302}
5303
18b42941 5304/* Emit a clobber of lvalue X. */
5305
722334ea 5306rtx_insn *
18b42941 5307emit_clobber (rtx x)
5308{
5309 /* CONCATs should not appear in the insn stream. */
5310 if (GET_CODE (x) == CONCAT)
5311 {
5312 emit_clobber (XEXP (x, 0));
5313 return emit_clobber (XEXP (x, 1));
5314 }
5315 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5316}
5317
5318/* Return a sequence of insns to clobber lvalue X. */
5319
722334ea 5320rtx_insn *
18b42941 5321gen_clobber (rtx x)
5322{
722334ea 5323 rtx_insn *seq;
18b42941 5324
5325 start_sequence ();
5326 emit_clobber (x);
5327 seq = get_insns ();
5328 end_sequence ();
5329 return seq;
5330}
5331
5332/* Emit a use of rvalue X. */
5333
722334ea 5334rtx_insn *
18b42941 5335emit_use (rtx x)
5336{
5337 /* CONCATs should not appear in the insn stream. */
5338 if (GET_CODE (x) == CONCAT)
5339 {
5340 emit_use (XEXP (x, 0));
5341 return emit_use (XEXP (x, 1));
5342 }
5343 return emit_insn (gen_rtx_USE (VOIDmode, x));
5344}
5345
5346/* Return a sequence of insns to use rvalue X. */
5347
722334ea 5348rtx_insn *
18b42941 5349gen_use (rtx x)
5350{
722334ea 5351 rtx_insn *seq;
18b42941 5352
5353 start_sequence ();
5354 emit_use (x);
5355 seq = get_insns ();
5356 end_sequence ();
5357 return seq;
5358}
5359
3a286419 5360/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5361 Return the set in INSN that such notes describe, or NULL if the notes
5362 have no meaning for INSN. */
5363
5364rtx
5365set_for_reg_notes (rtx insn)
5366{
5367 rtx pat, reg;
5368
5369 if (!INSN_P (insn))
5370 return NULL_RTX;
5371
5372 pat = PATTERN (insn);
5373 if (GET_CODE (pat) == PARALLEL)
5374 {
5375 /* We do not use single_set because that ignores SETs of unused
5376 registers. REG_EQUAL and REG_EQUIV notes really do require the
5377 PARALLEL to have a single SET. */
5378 if (multiple_sets (insn))
5379 return NULL_RTX;
5380 pat = XVECEXP (pat, 0, 0);
5381 }
5382
5383 if (GET_CODE (pat) != SET)
5384 return NULL_RTX;
5385
5386 reg = SET_DEST (pat);
5387
5388 /* Notes apply to the contents of a STRICT_LOW_PART. */
f2c7e335 5389 if (GET_CODE (reg) == STRICT_LOW_PART
5390 || GET_CODE (reg) == ZERO_EXTRACT)
3a286419 5391 reg = XEXP (reg, 0);
5392
5393 /* Check that we have a register. */
5394 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5395 return NULL_RTX;
5396
5397 return pat;
5398}
5399
f1934a33 5400/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 5401 note of this type already exists, remove it first. */
f1934a33 5402
c080d8f0 5403rtx
35cb5232 5404set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
f1934a33 5405{
5406 rtx note = find_reg_note (insn, kind, NULL_RTX);
5407
7e6224ab 5408 switch (kind)
5409 {
5410 case REG_EQUAL:
5411 case REG_EQUIV:
7b0b2add 5412 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5413 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
3a286419 5414 return NULL_RTX;
7e6224ab 5415
5416 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5417 It serves no useful purpose and breaks eliminate_regs. */
5418 if (GET_CODE (datum) == ASM_OPERANDS)
5419 return NULL_RTX;
2f8cf22c 5420
5421 /* Notes with side effects are dangerous. Even if the side-effect
5422 initially mirrors one in PATTERN (INSN), later optimizations
5423 might alter the way that the final register value is calculated
5424 and so move or alter the side-effect in some way. The note would
5425 then no longer be a valid substitution for SET_SRC. */
5426 if (side_effects_p (datum))
5427 return NULL_RTX;
7e6224ab 5428 break;
5429
5430 default:
5431 break;
5432 }
c080d8f0 5433
3a286419 5434 if (note)
5435 XEXP (note, 0) = datum;
5436 else
5437 {
5438 add_reg_note (insn, kind, datum);
5439 note = REG_NOTES (insn);
5440 }
3072d30e 5441
5442 switch (kind)
c080d8f0 5443 {
3072d30e 5444 case REG_EQUAL:
5445 case REG_EQUIV:
e149ca56 5446 df_notes_rescan (as_a <rtx_insn *> (insn));
3072d30e 5447 break;
5448 default:
5449 break;
c080d8f0 5450 }
f1934a33 5451
3a286419 5452 return note;
f1934a33 5453}
41cf444a 5454
5455/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5456rtx
5457set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5458{
3a286419 5459 rtx set = set_for_reg_notes (insn);
41cf444a 5460
5461 if (set && SET_DEST (set) == dst)
5462 return set_unique_reg_note (insn, kind, datum);
5463 return NULL_RTX;
5464}
15bbde2b 5465\f
16d83c02 5466/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5467 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5468 is true.
5469
15bbde2b 5470 If X is a label, it is simply added into the insn chain. */
5471
722334ea 5472rtx_insn *
16d83c02 5473emit (rtx x, bool allow_barrier_p)
15bbde2b 5474{
5475 enum rtx_code code = classify_insn (x);
5476
611234b4 5477 switch (code)
15bbde2b 5478 {
611234b4 5479 case CODE_LABEL:
5480 return emit_label (x);
5481 case INSN:
5482 return emit_insn (x);
5483 case JUMP_INSN:
5484 {
722334ea 5485 rtx_insn *insn = emit_jump_insn (x);
16d83c02 5486 if (allow_barrier_p
5487 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
611234b4 5488 return emit_barrier ();
5489 return insn;
5490 }
5491 case CALL_INSN:
5492 return emit_call_insn (x);
9845d120 5493 case DEBUG_INSN:
5494 return emit_debug_insn (x);
611234b4 5495 default:
5496 gcc_unreachable ();
15bbde2b 5497 }
15bbde2b 5498}
5499\f
1f3233d1 5500/* Space for free sequence stack entries. */
7035b2ab 5501static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
1f3233d1 5502
735f4358 5503/* Begin emitting insns to a sequence. If this sequence will contain
5504 something that might cause the compiler to pop arguments to function
5505 calls (because those pops have previously been deferred; see
5506 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5507 before calling this function. That will ensure that the deferred
5508 pops are not accidentally emitted in the middle of this sequence. */
15bbde2b 5509
5510void
35cb5232 5511start_sequence (void)
15bbde2b 5512{
5513 struct sequence_stack *tem;
5514
1f3233d1 5515 if (free_sequence_stack != NULL)
5516 {
5517 tem = free_sequence_stack;
5518 free_sequence_stack = tem->next;
5519 }
5520 else
25a27413 5521 tem = ggc_alloc<sequence_stack> ();
15bbde2b 5522
c36aa54b 5523 tem->next = get_current_sequence ()->next;
06f9d6ef 5524 tem->first = get_insns ();
5525 tem->last = get_last_insn ();
c36aa54b 5526 get_current_sequence ()->next = tem;
15bbde2b 5527
06f9d6ef 5528 set_first_insn (0);
5529 set_last_insn (0);
15bbde2b 5530}
5531
b49854c6 5532/* Set up the insn chain starting with FIRST as the current sequence,
5533 saving the previously current one. See the documentation for
5534 start_sequence for more information about how to use this function. */
15bbde2b 5535
5536void
57c26b3a 5537push_to_sequence (rtx_insn *first)
15bbde2b 5538{
57c26b3a 5539 rtx_insn *last;
15bbde2b 5540
5541 start_sequence ();
5542
3c802a1e 5543 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5544 ;
15bbde2b 5545
06f9d6ef 5546 set_first_insn (first);
5547 set_last_insn (last);
15bbde2b 5548}
5549
28bf151d 5550/* Like push_to_sequence, but take the last insn as an argument to avoid
5551 looping through the list. */
5552
5553void
57c26b3a 5554push_to_sequence2 (rtx_insn *first, rtx_insn *last)
28bf151d 5555{
5556 start_sequence ();
5557
06f9d6ef 5558 set_first_insn (first);
5559 set_last_insn (last);
28bf151d 5560}
5561
ab74c92f 5562/* Set up the outer-level insn chain
5563 as the current sequence, saving the previously current one. */
5564
5565void
35cb5232 5566push_topmost_sequence (void)
ab74c92f 5567{
c36aa54b 5568 struct sequence_stack *top;
ab74c92f 5569
5570 start_sequence ();
5571
c36aa54b 5572 top = get_topmost_sequence ();
06f9d6ef 5573 set_first_insn (top->first);
5574 set_last_insn (top->last);
ab74c92f 5575}
5576
5577/* After emitting to the outer-level insn chain, update the outer-level
5578 insn chain, and restore the previous saved state. */
5579
5580void
35cb5232 5581pop_topmost_sequence (void)
ab74c92f 5582{
c36aa54b 5583 struct sequence_stack *top;
ab74c92f 5584
c36aa54b 5585 top = get_topmost_sequence ();
06f9d6ef 5586 top->first = get_insns ();
5587 top->last = get_last_insn ();
ab74c92f 5588
5589 end_sequence ();
5590}
5591
15bbde2b 5592/* After emitting to a sequence, restore previous saved state.
5593
b49854c6 5594 To get the contents of the sequence just made, you must call
31d3e01c 5595 `get_insns' *before* calling here.
b49854c6 5596
5597 If the compiler might have deferred popping arguments while
5598 generating this sequence, and this sequence will not be immediately
5599 inserted into the instruction stream, use do_pending_stack_adjust
31d3e01c 5600 before calling get_insns. That will ensure that the deferred
b49854c6 5601 pops are inserted into this sequence, and not into some random
5602 location in the instruction stream. See INHIBIT_DEFER_POP for more
5603 information about deferred popping of arguments. */
15bbde2b 5604
5605void
35cb5232 5606end_sequence (void)
15bbde2b 5607{
c36aa54b 5608 struct sequence_stack *tem = get_current_sequence ()->next;
15bbde2b 5609
06f9d6ef 5610 set_first_insn (tem->first);
5611 set_last_insn (tem->last);
c36aa54b 5612 get_current_sequence ()->next = tem->next;
15bbde2b 5613
1f3233d1 5614 memset (tem, 0, sizeof (*tem));
5615 tem->next = free_sequence_stack;
5616 free_sequence_stack = tem;
15bbde2b 5617}
5618
5619/* Return 1 if currently emitting into a sequence. */
5620
5621int
35cb5232 5622in_sequence_p (void)
15bbde2b 5623{
c36aa54b 5624 return get_current_sequence ()->next != 0;
15bbde2b 5625}
15bbde2b 5626\f
02ebfa52 5627/* Put the various virtual registers into REGNO_REG_RTX. */
5628
2f3874ce 5629static void
b079a207 5630init_virtual_regs (void)
02ebfa52 5631{
b079a207 5632 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5633 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5634 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5635 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5636 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
60778e62 5637 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5638 = virtual_preferred_stack_boundary_rtx;
0a893c29 5639}
5640
928d57e3 5641\f
5642/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5643static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5644static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5645static int copy_insn_n_scratches;
5646
5647/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5648 copied an ASM_OPERANDS.
5649 In that case, it is the original input-operand vector. */
5650static rtvec orig_asm_operands_vector;
5651
5652/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5653 copied an ASM_OPERANDS.
5654 In that case, it is the copied input-operand vector. */
5655static rtvec copy_asm_operands_vector;
5656
5657/* Likewise for the constraints vector. */
5658static rtvec orig_asm_constraints_vector;
5659static rtvec copy_asm_constraints_vector;
5660
5661/* Recursively create a new copy of an rtx for copy_insn.
5662 This function differs from copy_rtx in that it handles SCRATCHes and
5663 ASM_OPERANDs properly.
5664 Normally, this function is not used directly; use copy_insn as front end.
5665 However, you could first copy an insn pattern with copy_insn and then use
5666 this function afterwards to properly copy any REG_NOTEs containing
5667 SCRATCHes. */
5668
5669rtx
35cb5232 5670copy_insn_1 (rtx orig)
928d57e3 5671{
19cb6b50 5672 rtx copy;
5673 int i, j;
5674 RTX_CODE code;
5675 const char *format_ptr;
928d57e3 5676
25e880b1 5677 if (orig == NULL)
5678 return NULL;
5679
928d57e3 5680 code = GET_CODE (orig);
5681
5682 switch (code)
5683 {
5684 case REG:
d7fce3c8 5685 case DEBUG_EXPR:
0349edce 5686 CASE_CONST_ANY:
928d57e3 5687 case SYMBOL_REF:
5688 case CODE_LABEL:
5689 case PC:
5690 case CC0:
e0691b9a 5691 case RETURN:
9cb2517e 5692 case SIMPLE_RETURN:
928d57e3 5693 return orig;
c09425a0 5694 case CLOBBER:
ccd6679f 5695 case CLOBBER_HIGH:
b291008a 5696 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5697 clobbers or clobbers of hard registers that originated as pseudos.
5698 This is needed to allow safe register renaming. */
2b5f32ae 5699 if (REG_P (XEXP (orig, 0))
5700 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5701 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
c09425a0 5702 return orig;
5703 break;
928d57e3 5704
5705 case SCRATCH:
5706 for (i = 0; i < copy_insn_n_scratches; i++)
5707 if (copy_insn_scratch_in[i] == orig)
5708 return copy_insn_scratch_out[i];
5709 break;
5710
5711 case CONST:
3072d30e 5712 if (shared_const_p (orig))
928d57e3 5713 return orig;
5714 break;
d823ba47 5715
928d57e3 5716 /* A MEM with a constant address is not sharable. The problem is that
5717 the constant address may need to be reloaded. If the mem is shared,
5718 then reloading one copy of this mem will cause all copies to appear
5719 to have been reloaded. */
5720
5721 default:
5722 break;
5723 }
5724
f2d0e9f1 5725 /* Copy the various flags, fields, and other information. We assume
5726 that all fields need copying, and then clear the fields that should
928d57e3 5727 not be copied. That is the sensible default behavior, and forces
5728 us to explicitly document why we are *not* copying a flag. */
f2d0e9f1 5729 copy = shallow_copy_rtx (orig);
928d57e3 5730
928d57e3 5731 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
6720e96c 5732 if (INSN_P (orig))
928d57e3 5733 {
7c25cb91 5734 RTX_FLAG (copy, jump) = 0;
5735 RTX_FLAG (copy, call) = 0;
5736 RTX_FLAG (copy, frame_related) = 0;
928d57e3 5737 }
d823ba47 5738
928d57e3 5739 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5740
5741 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
f2d0e9f1 5742 switch (*format_ptr++)
5743 {
5744 case 'e':
5745 if (XEXP (orig, i) != NULL)
5746 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5747 break;
928d57e3 5748
f2d0e9f1 5749 case 'E':
5750 case 'V':
5751 if (XVEC (orig, i) == orig_asm_constraints_vector)
5752 XVEC (copy, i) = copy_asm_constraints_vector;
5753 else if (XVEC (orig, i) == orig_asm_operands_vector)
5754 XVEC (copy, i) = copy_asm_operands_vector;
5755 else if (XVEC (orig, i) != NULL)
5756 {
5757 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5758 for (j = 0; j < XVECLEN (copy, i); j++)
5759 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5760 }
5761 break;
928d57e3 5762
f2d0e9f1 5763 case 't':
5764 case 'w':
5765 case 'i':
9edf7ea8 5766 case 'p':
f2d0e9f1 5767 case 's':
5768 case 'S':
5769 case 'u':
5770 case '0':
5771 /* These are left unchanged. */
5772 break;
928d57e3 5773
f2d0e9f1 5774 default:
5775 gcc_unreachable ();
5776 }
928d57e3 5777
5778 if (code == SCRATCH)
5779 {
5780 i = copy_insn_n_scratches++;
611234b4 5781 gcc_assert (i < MAX_RECOG_OPERANDS);
928d57e3 5782 copy_insn_scratch_in[i] = orig;
5783 copy_insn_scratch_out[i] = copy;
5784 }
5785 else if (code == ASM_OPERANDS)
5786 {
d91f2122 5787 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5788 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5789 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5790 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 5791 }
5792
5793 return copy;
5794}
5795
5796/* Create a new copy of an rtx.
5797 This function differs from copy_rtx in that it handles SCRATCHes and
5798 ASM_OPERANDs properly.
5799 INSN doesn't really have to be a full INSN; it could be just the
5800 pattern. */
5801rtx
35cb5232 5802copy_insn (rtx insn)
928d57e3 5803{
5804 copy_insn_n_scratches = 0;
5805 orig_asm_operands_vector = 0;
5806 orig_asm_constraints_vector = 0;
5807 copy_asm_operands_vector = 0;
5808 copy_asm_constraints_vector = 0;
5809 return copy_insn_1 (insn);
5810}
02ebfa52 5811
a9abe1f1 5812/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5813 on that assumption that INSN itself remains in its original place. */
5814
575a12f2 5815rtx_insn *
5816copy_delay_slot_insn (rtx_insn *insn)
a9abe1f1 5817{
5818 /* Copy INSN with its rtx_code, all its notes, location etc. */
575a12f2 5819 insn = as_a <rtx_insn *> (copy_rtx (insn));
a9abe1f1 5820 INSN_UID (insn) = cur_insn_uid++;
5821 return insn;
5822}
5823
15bbde2b 5824/* Initialize data structures and variables in this file
5825 before generating rtl for each function. */
5826
5827void
35cb5232 5828init_emit (void)
15bbde2b 5829{
06f9d6ef 5830 set_first_insn (NULL);
5831 set_last_insn (NULL);
9845d120 5832 if (MIN_NONDEBUG_INSN_UID)
5833 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5834 else
5835 cur_insn_uid = 1;
5836 cur_debug_insn_uid = 1;
15bbde2b 5837 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
15bbde2b 5838 first_label_num = label_num;
c36aa54b 5839 get_current_sequence ()->next = NULL;
15bbde2b 5840
15bbde2b 5841 /* Init the tables that describe all the pseudo regs. */
5842
fd6ffb7c 5843 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 5844
fd6ffb7c 5845 crtl->emit.regno_pointer_align
2457c754 5846 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
d4c332ff 5847
cd769037 5848 regno_reg_rtx
5849 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
fcdc122e 5850
936082bb 5851 /* Put copies of all the hard registers into regno_reg_rtx. */
90295bd2 5852 memcpy (regno_reg_rtx,
679bcc8d 5853 initial_regno_reg_rtx,
90295bd2 5854 FIRST_PSEUDO_REGISTER * sizeof (rtx));
936082bb 5855
15bbde2b 5856 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
b079a207 5857 init_virtual_regs ();
888e0d33 5858
5859 /* Indicate that the virtual registers and stack locations are
5860 all pointers. */
e61a0a7f 5861 REG_POINTER (stack_pointer_rtx) = 1;
5862 REG_POINTER (frame_pointer_rtx) = 1;
5863 REG_POINTER (hard_frame_pointer_rtx) = 1;
5864 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 5865
e61a0a7f 5866 REG_POINTER (virtual_incoming_args_rtx) = 1;
5867 REG_POINTER (virtual_stack_vars_rtx) = 1;
5868 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5869 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5870 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 5871
d4c332ff 5872#ifdef STACK_BOUNDARY
80909c64 5873 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5874 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5875 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5876 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5877
5878 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5879 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5880 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5881 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
213d1448 5882
80909c64 5883 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 5884#endif
5885
89525da0 5886#ifdef INIT_EXPANDERS
5887 INIT_EXPANDERS;
5888#endif
15bbde2b 5889}
5890
0f78b37a 5891/* Return the value of element I of CONST_VECTOR X as a wide_int. */
5892
5893wide_int
5894const_vector_int_elt (const_rtx x, unsigned int i)
5895{
5896 /* First handle elements that are directly encoded. */
5897 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5898 if (i < (unsigned int) XVECLEN (x, 0))
5899 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5900
5901 /* Identify the pattern that contains element I and work out the index of
5902 the last encoded element for that pattern. */
5903 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5904 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5905 unsigned int count = i / npatterns;
5906 unsigned int pattern = i % npatterns;
5907 unsigned int final_i = encoded_nelts - npatterns + pattern;
5908
5909 /* If there are no steps, the final encoded value is the right one. */
5910 if (!CONST_VECTOR_STEPPED_P (x))
5911 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5912
5913 /* Otherwise work out the value from the last two encoded elements. */
5914 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5915 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5916 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5917 rtx_mode_t (v1, elt_mode));
5918 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5919}
5920
5921/* Return the value of element I of CONST_VECTOR X. */
5922
5923rtx
5924const_vector_elt (const_rtx x, unsigned int i)
5925{
5926 /* First handle elements that are directly encoded. */
5927 if (i < (unsigned int) XVECLEN (x, 0))
5928 return CONST_VECTOR_ENCODED_ELT (x, i);
5929
5930 /* If there are no steps, the final encoded value is the right one. */
5931 if (!CONST_VECTOR_STEPPED_P (x))
5932 {
5933 /* Identify the pattern that contains element I and work out the index of
5934 the last encoded element for that pattern. */
5935 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5936 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5937 unsigned int pattern = i % npatterns;
5938 unsigned int final_i = encoded_nelts - npatterns + pattern;
5939 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5940 }
5941
5942 /* Otherwise work out the value from the last two encoded elements. */
5943 return immed_wide_int_const (const_vector_int_elt (x, i),
5944 GET_MODE_INNER (GET_MODE (x)));
5945}
5946
ca4bb72c 5947/* Return true if X is a valid element for a CONST_VECTOR of the given
5948 mode. */
67c52133 5949
5950bool
ca4bb72c 5951valid_for_const_vector_p (machine_mode, rtx x)
67c52133 5952{
5953 return (CONST_SCALAR_INT_P (x)
5954 || CONST_DOUBLE_AS_FLOAT_P (x)
5955 || CONST_FIXED_P (x));
5956}
5957
0b51f5ce 5958/* Generate a vector constant of mode MODE in which every element has
5959 value ELT. */
886cfd4f 5960
0b51f5ce 5961rtx
5962gen_const_vec_duplicate (machine_mode mode, rtx elt)
5963{
a80726d1 5964 rtx_vector_builder builder (mode, 1, 1);
5965 builder.quick_push (elt);
5966 return builder.build ();
0b51f5ce 5967}
5968
5969/* Return a vector rtx of mode MODE in which every element has value X.
5970 The result will be a constant if X is constant. */
5971
5972rtx
5973gen_vec_duplicate (machine_mode mode, rtx x)
5974{
ca4bb72c 5975 if (valid_for_const_vector_p (mode, x))
0b51f5ce 5976 return gen_const_vec_duplicate (mode, x);
5977 return gen_rtx_VEC_DUPLICATE (mode, x);
5978}
069b07bf 5979
a80726d1 5980/* A subroutine of const_vec_series_p that handles the case in which:
5981
5982 (GET_CODE (X) == CONST_VECTOR
5983 && CONST_VECTOR_NPATTERNS (X) == 1
5984 && !CONST_VECTOR_DUPLICATE_P (X))
5985
5986 is known to hold. */
ccc2ef18 5987
5988bool
5989const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5990{
a80726d1 5991 /* Stepped sequences are only defined for integers, to avoid specifying
5992 rounding behavior. */
5993 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5994 return false;
5995
5996 /* A non-duplicated vector with two elements can always be seen as a
5997 series with a nonzero step. Longer vectors must have a stepped
5998 encoding. */
ba7efd65 5999 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
a80726d1 6000 && !CONST_VECTOR_STEPPED_P (x))
ccc2ef18 6001 return false;
6002
a80726d1 6003 /* Calculate the step between the first and second elements. */
ccc2ef18 6004 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6005 rtx base = CONST_VECTOR_ELT (x, 0);
6006 rtx step = simplify_binary_operation (MINUS, inner,
a80726d1 6007 CONST_VECTOR_ENCODED_ELT (x, 1), base);
ccc2ef18 6008 if (rtx_equal_p (step, CONST0_RTX (inner)))
6009 return false;
6010
a80726d1 6011 /* If we have a stepped encoding, check that the step between the
6012 second and third elements is the same as STEP. */
6013 if (CONST_VECTOR_STEPPED_P (x))
ccc2ef18 6014 {
6015 rtx diff = simplify_binary_operation (MINUS, inner,
a80726d1 6016 CONST_VECTOR_ENCODED_ELT (x, 2),
6017 CONST_VECTOR_ENCODED_ELT (x, 1));
ccc2ef18 6018 if (!rtx_equal_p (step, diff))
6019 return false;
6020 }
6021
6022 *base_out = base;
6023 *step_out = step;
6024 return true;
6025}
6026
6027/* Generate a vector constant of mode MODE in which element I has
6028 the value BASE + I * STEP. */
6029
6030rtx
6031gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6032{
8c5096cc 6033 gcc_assert (valid_for_const_vector_p (mode, base)
6034 && valid_for_const_vector_p (mode, step));
ccc2ef18 6035
a80726d1 6036 rtx_vector_builder builder (mode, 1, 3);
6037 builder.quick_push (base);
6038 for (int i = 1; i < 3; ++i)
6039 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6040 builder[i - 1], step));
6041 return builder.build ();
ccc2ef18 6042}
6043
6044/* Generate a vector of mode MODE in which element I has the value
6045 BASE + I * STEP. The result will be a constant if BASE and STEP
6046 are both constants. */
6047
6048rtx
6049gen_vec_series (machine_mode mode, rtx base, rtx step)
6050{
6051 if (step == const0_rtx)
6052 return gen_vec_duplicate (mode, base);
8c5096cc 6053 if (valid_for_const_vector_p (mode, base)
6054 && valid_for_const_vector_p (mode, step))
ccc2ef18 6055 return gen_const_vec_series (mode, base, step);
6056 return gen_rtx_VEC_SERIES (mode, base, step);
6057}
6058
0b51f5ce 6059/* Generate a new vector constant for mode MODE and constant value
6060 CONSTANT. */
886cfd4f 6061
0b51f5ce 6062static rtx
6063gen_const_vector (machine_mode mode, int constant)
6064{
6065 machine_mode inner = GET_MODE_INNER (mode);
886cfd4f 6066
0b51f5ce 6067 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6068
6069 rtx el = const_tiny_rtx[constant][(int) inner];
6070 gcc_assert (el);
886cfd4f 6071
a80726d1 6072 return gen_const_vec_duplicate (mode, el);
886cfd4f 6073}
6074
9426b612 6075/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6e68dcb2 6076 all elements are zero, and the one vector when all elements are one. */
9426b612 6077rtx
3754d046 6078gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
9426b612 6079{
ba7efd65 6080 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6e68dcb2 6081
6082 /* If the values are all the same, check to see if we can use one of the
6083 standard constant vectors. */
0b51f5ce 6084 if (rtvec_all_equal_p (v))
6085 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6e68dcb2 6086
a80726d1 6087 unsigned int nunits = GET_NUM_ELEM (v);
6088 rtx_vector_builder builder (mode, nunits, 1);
6089 for (unsigned int i = 0; i < nunits; ++i)
6090 builder.quick_push (RTVEC_ELT (v, i));
6091 return builder.build (v);
9426b612 6092}
6093
6d8b68a3 6094/* Initialise global register information required by all functions. */
6095
6096void
6097init_emit_regs (void)
6098{
6099 int i;
3754d046 6100 machine_mode mode;
d83fcaa1 6101 mem_attrs *attrs;
6d8b68a3 6102
6103 /* Reset register attributes */
f863a586 6104 reg_attrs_htab->empty ();
6d8b68a3 6105
6106 /* We need reg_raw_mode, so initialize the modes now. */
6107 init_reg_modes_target ();
6108
6109 /* Assign register numbers to the globally defined register rtx. */
6d8b68a3 6110 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6111 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6112 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6113 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6114 virtual_incoming_args_rtx =
6115 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6116 virtual_stack_vars_rtx =
6117 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6118 virtual_stack_dynamic_rtx =
6119 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6120 virtual_outgoing_args_rtx =
6121 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6122 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
60778e62 6123 virtual_preferred_stack_boundary_rtx =
6124 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6d8b68a3 6125
6126 /* Initialize RTL for commonly used hard registers. These are
6127 copied into regno_reg_rtx as we begin to compile each function. */
6128 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
679bcc8d 6129 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6d8b68a3 6130
6131#ifdef RETURN_ADDRESS_POINTER_REGNUM
6132 return_address_pointer_rtx
6133 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6134#endif
6135
639f32a2 6136 pic_offset_table_rtx = NULL_RTX;
6d8b68a3 6137 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6138 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
d83fcaa1 6139
6140 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6141 {
3754d046 6142 mode = (machine_mode) i;
25a27413 6143 attrs = ggc_cleared_alloc<mem_attrs> ();
d83fcaa1 6144 attrs->align = BITS_PER_UNIT;
6145 attrs->addrspace = ADDR_SPACE_GENERIC;
de7513fb 6146 if (mode != BLKmode && mode != VOIDmode)
d83fcaa1 6147 {
6d58bcba 6148 attrs->size_known_p = true;
6149 attrs->size = GET_MODE_SIZE (mode);
d83fcaa1 6150 if (STRICT_ALIGNMENT)
6151 attrs->align = GET_MODE_ALIGNMENT (mode);
6152 }
6153 mode_mem_attrs[i] = attrs;
6154 }
15b08c01 6155
6156 split_branch_probability = profile_probability::uninitialized ();
6d8b68a3 6157}
6158
8059b95a 6159/* Initialize global machine_mode variables. */
6160
6161void
6162init_derived_machine_modes (void)
6163{
af8303fa 6164 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6165 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
8059b95a 6166 {
af8303fa 6167 scalar_int_mode mode = mode_iter.require ();
6168
8059b95a 6169 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
af8303fa 6170 && !opt_byte_mode.exists ())
6171 opt_byte_mode = mode;
8059b95a 6172
6173 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
af8303fa 6174 && !opt_word_mode.exists ())
6175 opt_word_mode = mode;
8059b95a 6176 }
6177
af8303fa 6178 byte_mode = opt_byte_mode.require ();
6179 word_mode = opt_word_mode.require ();
db22dc71 6180 ptr_mode = as_a <scalar_int_mode>
6181 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
8059b95a 6182}
6183
01703575 6184/* Create some permanent unique rtl objects shared between all functions. */
15bbde2b 6185
6186void
01703575 6187init_emit_once (void)
15bbde2b 6188{
6189 int i;
3754d046 6190 machine_mode mode;
99d671f4 6191 scalar_float_mode double_mode;
2b8f5b8a 6192 opt_scalar_mode smode_iter;
15bbde2b 6193
e913b5cd 6194 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6195 CONST_FIXED, and memory attribute hash tables. */
f863a586 6196 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
c6259b83 6197
e913b5cd 6198#if TARGET_SUPPORTS_WIDE_INT
f863a586 6199 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
e913b5cd 6200#endif
f863a586 6201 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
2ff23ed0 6202
bbad7cd0 6203 if (NUM_POLY_INT_COEFFS > 1)
6204 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6205
f863a586 6206 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
e397ad8e 6207
f863a586 6208 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
77695070 6209
57c097d5 6210#ifdef INIT_EXPANDERS
ab5beff9 6211 /* This is to initialize {init|mark|free}_machine_status before the first
6212 call to push_function_context_to. This is needed by the Chill front
3fb1e43b 6213 end which calls push_function_context_to before the first call to
57c097d5 6214 init_function_start. */
6215 INIT_EXPANDERS;
6216#endif
6217
15bbde2b 6218 /* Create the unique rtx's for certain rtx codes and operand values. */
6219
48a7e3d1 6220 /* Process stack-limiting command-line options. */
6221 if (opt_fstack_limit_symbol_arg != NULL)
6222 stack_limit_rtx
6223 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6224 if (opt_fstack_limit_register_no >= 0)
6225 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6226
8fd5918e 6227 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
7014838c 6228 tries to use these variables. */
15bbde2b 6229 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 6230 const_int_rtx[i + MAX_SAVED_CONST_INT] =
a717d5b4 6231 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
15bbde2b 6232
1a60f06a 6233 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6234 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 6235 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 6236 else
3ad7bb1c 6237 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 6238
99d671f4 6239 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
8059b95a 6240
cc69d08a 6241 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6242 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6243 real_from_integer (&dconst2, double_mode, 2, SIGNED);
3fa759a9 6244
6245 dconstm1 = dconst1;
6246 dconstm1.sign = 1;
77e89269 6247
6248 dconsthalf = dconst1;
9d96125b 6249 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
15bbde2b 6250
ba8dfb08 6251 for (i = 0; i < 3; i++)
15bbde2b 6252 {
3fa759a9 6253 const REAL_VALUE_TYPE *const r =
badfe841 6254 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6255
19a4dce4 6256 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
069b07bf 6257 const_tiny_rtx[i][(int) mode] =
d5f9611d 6258 const_double_from_real_value (*r, mode);
069b07bf 6259
19a4dce4 6260 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
2ff23ed0 6261 const_tiny_rtx[i][(int) mode] =
d5f9611d 6262 const_double_from_real_value (*r, mode);
15bbde2b 6263
b572011e 6264 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 6265
19a4dce4 6266 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
b572011e 6267 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 6268
8c20007a 6269 for (mode = MIN_MODE_PARTIAL_INT;
6270 mode <= MAX_MODE_PARTIAL_INT;
3754d046 6271 mode = (machine_mode)((int)(mode) + 1))
7540dcc4 6272 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 6273 }
6274
ba8dfb08 6275 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6276
19a4dce4 6277 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
ba8dfb08 6278 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6279
8464736b 6280 /* For BImode, 1 and -1 are unsigned and signed interpretations
6281 of the same value. */
6282 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6283 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6284 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6285
8c20007a 6286 for (mode = MIN_MODE_PARTIAL_INT;
6287 mode <= MAX_MODE_PARTIAL_INT;
3754d046 6288 mode = (machine_mode)((int)(mode) + 1))
dd276d20 6289 const_tiny_rtx[3][(int) mode] = constm1_rtx;
19a4dce4 6290
6291 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
4248fc32 6292 {
6293 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6294 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6295 }
6296
19a4dce4 6297 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
4248fc32 6298 {
6299 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6300 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6301 }
6302
8464736b 6303 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6304 interpretations of the same value. */
6305 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6306 {
6307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6308 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6309 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6310 }
6311
19a4dce4 6312 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6e68dcb2 6313 {
6314 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6315 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
ba8dfb08 6316 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6e68dcb2 6317 }
886cfd4f 6318
19a4dce4 6319 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6e68dcb2 6320 {
6321 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6322 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6323 }
886cfd4f 6324
2b8f5b8a 6325 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
06f0b99c 6326 {
2b8f5b8a 6327 scalar_mode smode = smode_iter.require ();
6328 FCONST0 (smode).data.high = 0;
6329 FCONST0 (smode).data.low = 0;
6330 FCONST0 (smode).mode = smode;
6331 const_tiny_rtx[0][(int) smode]
6332 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6333 }
6334
2b8f5b8a 6335 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
06f0b99c 6336 {
2b8f5b8a 6337 scalar_mode smode = smode_iter.require ();
6338 FCONST0 (smode).data.high = 0;
6339 FCONST0 (smode).data.low = 0;
6340 FCONST0 (smode).mode = smode;
6341 const_tiny_rtx[0][(int) smode]
6342 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6343 }
6344
2b8f5b8a 6345 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
06f0b99c 6346 {
2b8f5b8a 6347 scalar_mode smode = smode_iter.require ();
6348 FCONST0 (smode).data.high = 0;
6349 FCONST0 (smode).data.low = 0;
6350 FCONST0 (smode).mode = smode;
6351 const_tiny_rtx[0][(int) smode]
6352 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6353
6354 /* We store the value 1. */
2b8f5b8a 6355 FCONST1 (smode).data.high = 0;
6356 FCONST1 (smode).data.low = 0;
6357 FCONST1 (smode).mode = smode;
6358 FCONST1 (smode).data
6359 = double_int_one.lshift (GET_MODE_FBIT (smode),
d67b7119 6360 HOST_BITS_PER_DOUBLE_INT,
2b8f5b8a 6361 SIGNED_FIXED_POINT_MODE_P (smode));
6362 const_tiny_rtx[1][(int) smode]
6363 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
06f0b99c 6364 }
6365
2b8f5b8a 6366 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
06f0b99c 6367 {
2b8f5b8a 6368 scalar_mode smode = smode_iter.require ();
6369 FCONST0 (smode).data.high = 0;
6370 FCONST0 (smode).data.low = 0;
6371 FCONST0 (smode).mode = smode;
6372 const_tiny_rtx[0][(int) smode]
6373 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6374
6375 /* We store the value 1. */
2b8f5b8a 6376 FCONST1 (smode).data.high = 0;
6377 FCONST1 (smode).data.low = 0;
6378 FCONST1 (smode).mode = smode;
6379 FCONST1 (smode).data
6380 = double_int_one.lshift (GET_MODE_FBIT (smode),
d67b7119 6381 HOST_BITS_PER_DOUBLE_INT,
2b8f5b8a 6382 SIGNED_FIXED_POINT_MODE_P (smode));
6383 const_tiny_rtx[1][(int) smode]
6384 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
e397ad8e 6385 }
6386
19a4dce4 6387 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
e397ad8e 6388 {
6389 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6390 }
6391
19a4dce4 6392 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
e397ad8e 6393 {
6394 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6395 }
6396
19a4dce4 6397 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
e397ad8e 6398 {
6399 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6400 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6401 }
6402
19a4dce4 6403 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
e397ad8e 6404 {
6405 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6406 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
06f0b99c 6407 }
6408
0fd4500a 6409 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
3754d046 6410 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
0fd4500a 6411 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 6412
7d7b0bac 6413 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6414 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6415 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6416 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
f9a00e9e 6417 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6418 /*prev_insn=*/NULL,
6419 /*next_insn=*/NULL,
6420 /*bb=*/NULL,
6421 /*pattern=*/NULL_RTX,
6422 /*location=*/-1,
6423 CODE_FOR_nothing,
6424 /*reg_notes=*/NULL_RTX);
15bbde2b 6425}
ac6c481d 6426\f
cd0fe062 6427/* Produce exact duplicate of insn INSN after AFTER.
6428 Care updating of libcall regions if present. */
6429
722334ea 6430rtx_insn *
5e9c670f 6431emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
cd0fe062 6432{
722334ea 6433 rtx_insn *new_rtx;
6434 rtx link;
cd0fe062 6435
6436 switch (GET_CODE (insn))
6437 {
6438 case INSN:
9ce37fa7 6439 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6440 break;
6441
6442 case JUMP_INSN:
9ce37fa7 6443 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
01762951 6444 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
cd0fe062 6445 break;
6446
9845d120 6447 case DEBUG_INSN:
6448 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6449 break;
6450
cd0fe062 6451 case CALL_INSN:
9ce37fa7 6452 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6453 if (CALL_INSN_FUNCTION_USAGE (insn))
9ce37fa7 6454 CALL_INSN_FUNCTION_USAGE (new_rtx)
cd0fe062 6455 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
9ce37fa7 6456 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6457 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6458 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
48e1416a 6459 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
9c2a0c05 6460 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
cd0fe062 6461 break;
6462
6463 default:
611234b4 6464 gcc_unreachable ();
cd0fe062 6465 }
6466
6467 /* Update LABEL_NUSES. */
9ce37fa7 6468 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
cd0fe062 6469
5169661d 6470 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ab87d1bc 6471
98116afd 6472 /* If the old insn is frame related, then so is the new one. This is
6473 primarily needed for IA-64 unwind info which marks epilogue insns,
6474 which may be duplicated by the basic block reordering code. */
9ce37fa7 6475 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
98116afd 6476
bb99ba64 6477 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6478 rtx *ptail = &REG_NOTES (new_rtx);
6479 while (*ptail != NULL_RTX)
6480 ptail = &XEXP (*ptail, 1);
6481
19d2fe05 6482 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6483 will make them. REG_LABEL_TARGETs are created there too, but are
6484 supposed to be sticky, so we copy them. */
cd0fe062 6485 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
19d2fe05 6486 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
cd0fe062 6487 {
bb99ba64 6488 *ptail = duplicate_reg_note (link);
6489 ptail = &XEXP (*ptail, 1);
cd0fe062 6490 }
6491
9ce37fa7 6492 INSN_CODE (new_rtx) = INSN_CODE (insn);
6493 return new_rtx;
cd0fe062 6494}
1f3233d1 6495
7035b2ab 6496static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
c09425a0 6497rtx
3754d046 6498gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
c09425a0 6499{
6500 if (hard_reg_clobbers[mode][regno])
6501 return hard_reg_clobbers[mode][regno];
6502 else
6503 return (hard_reg_clobbers[mode][regno] =
6504 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6505}
6506
ccd6679f 6507static GTY((deletable)) rtx
6508hard_reg_clobbers_high[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6509
6510/* Return a CLOBBER_HIGH expression for register REGNO that clobbers MODE,
6511 caching into HARD_REG_CLOBBERS_HIGH. */
6512rtx
6513gen_hard_reg_clobber_high (machine_mode mode, unsigned int regno)
6514{
6515 if (hard_reg_clobbers_high[mode][regno])
6516 return hard_reg_clobbers_high[mode][regno];
6517 else
6518 return (hard_reg_clobbers_high[mode][regno]
6519 = gen_rtx_CLOBBER_HIGH (VOIDmode, gen_rtx_REG (mode, regno)));
6520}
6521
5169661d 6522location_t prologue_location;
6523location_t epilogue_location;
23a070f3 6524
6525/* Hold current location information and last location information, so the
6526 datastructures are built lazily only when some instructions in given
6527 place are needed. */
c7abeac5 6528static location_t curr_location;
23a070f3 6529
5169661d 6530/* Allocate insn location datastructure. */
23a070f3 6531void
5169661d 6532insn_locations_init (void)
23a070f3 6533{
5169661d 6534 prologue_location = epilogue_location = 0;
23a070f3 6535 curr_location = UNKNOWN_LOCATION;
23a070f3 6536}
6537
6538/* At the end of emit stage, clear current location. */
6539void
5169661d 6540insn_locations_finalize (void)
23a070f3 6541{
5169661d 6542 epilogue_location = curr_location;
6543 curr_location = UNKNOWN_LOCATION;
23a070f3 6544}
6545
6546/* Set current location. */
6547void
5169661d 6548set_curr_insn_location (location_t location)
23a070f3 6549{
23a070f3 6550 curr_location = location;
6551}
6552
6553/* Get current location. */
6554location_t
5169661d 6555curr_insn_location (void)
23a070f3 6556{
6557 return curr_location;
6558}
6559
23a070f3 6560/* Return lexical scope block insn belongs to. */
6561tree
5e9c670f 6562insn_scope (const rtx_insn *insn)
23a070f3 6563{
5169661d 6564 return LOCATION_BLOCK (INSN_LOCATION (insn));
23a070f3 6565}
6566
6567/* Return line number of the statement that produced this insn. */
6568int
5e9c670f 6569insn_line (const rtx_insn *insn)
23a070f3 6570{
5169661d 6571 return LOCATION_LINE (INSN_LOCATION (insn));
23a070f3 6572}
6573
6574/* Return source file of the statement that produced this insn. */
6575const char *
5e9c670f 6576insn_file (const rtx_insn *insn)
23a070f3 6577{
5169661d 6578 return LOCATION_FILE (INSN_LOCATION (insn));
23a070f3 6579}
30c3c442 6580
0e7ae557 6581/* Return expanded location of the statement that produced this insn. */
6582expanded_location
5e9c670f 6583insn_location (const rtx_insn *insn)
0e7ae557 6584{
6585 return expand_location (INSN_LOCATION (insn));
6586}
6587
30c3c442 6588/* Return true if memory model MODEL requires a pre-operation (release-style)
6589 barrier or a post-operation (acquire-style) barrier. While not universal,
6590 this function matches behavior of several targets. */
6591
6592bool
6593need_atomic_barrier_p (enum memmodel model, bool pre)
6594{
e205c62d 6595 switch (model & MEMMODEL_BASE_MASK)
30c3c442 6596 {
6597 case MEMMODEL_RELAXED:
6598 case MEMMODEL_CONSUME:
6599 return false;
6600 case MEMMODEL_RELEASE:
6601 return pre;
6602 case MEMMODEL_ACQUIRE:
6603 return !pre;
6604 case MEMMODEL_ACQ_REL:
6605 case MEMMODEL_SEQ_CST:
6606 return true;
6607 default:
6608 gcc_unreachable ();
6609 }
6610}
2add0b64 6611
bd39703a 6612/* Return a constant shift amount for shifting a value of mode MODE
6613 by VALUE bits. */
6614
6615rtx
bbad7cd0 6616gen_int_shift_amount (machine_mode, poly_int64 value)
bd39703a 6617{
6618 /* Use a 64-bit mode, to avoid any truncation.
6619
6620 ??? Perhaps this should be automatically derived from the .md files
6621 instead, or perhaps have a target hook. */
6622 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6623 ? DImode
6624 : int_mode_for_size (64, 0).require ());
6625 return gen_int_mode (value, shift_mode);
6626}
6627
2add0b64 6628/* Initialize fields of rtl_data related to stack alignment. */
6629
6630void
6631rtl_data::init_stack_alignment ()
6632{
6633 stack_alignment_needed = STACK_BOUNDARY;
6634 max_used_stack_slot_alignment = STACK_BOUNDARY;
6635 stack_alignment_estimated = 0;
6636 preferred_stack_boundary = STACK_BOUNDARY;
6637}
6638
30c3c442 6639\f
1f3233d1 6640#include "gt-emit-rtl.h"