]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/genrecog.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / gcc / genrecog.c
CommitLineData
ec65fa66 1/* Generate code from machine description to recognize rtl as insns.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
d9221e01 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
ec65fa66 4
1322177d 5 This file is part of GCC.
09051660 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
09051660
RH
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
09051660
RH
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
09051660
RH
21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
ec65fa66
RK
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
09051660
RH
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
ec65fa66 43
09051660
RH
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
2f937369 46 rtl as an INSN list.
09051660
RH
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
2f937369 50 the new rtl is returned in an INSN list, and LAST_INSN will point
09051660 51 to the last recognized insn in the old sequence. */
ec65fa66 52
4977bab6 53#include "bconfig.h"
0b93b64e 54#include "system.h"
4977bab6
ZW
55#include "coretypes.h"
56#include "tm.h"
ec65fa66 57#include "rtl.h"
f8b6598e 58#include "errors.h"
c88c0d42 59#include "gensupport.h"
ec65fa66 60
3916d6d8 61
736b02fd
KG
62#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
8aeba909 65/* Holds an array of names indexed by insn_code_number. */
a995e389
RH
66static char **insn_name_ptr = 0;
67static int insn_name_ptr_size = 0;
4db83042 68
09051660 69/* A listhead of decision trees. The alternatives to a node are kept
fbe5a4a6 70 in a doubly-linked list so we can easily add nodes to the proper
09051660
RH
71 place when merging. */
72
73struct decision_head
74{
75 struct decision *first;
76 struct decision *last;
77};
5b7c7046 78
09051660
RH
79/* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83struct decision_test
84{
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
070ef6f4
RK
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
ccdc1703 93 DT_const_int,
5b7c7046 94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
070ef6f4
RK
95 DT_accept_op, DT_accept_insn
96 } type;
09051660
RH
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
e0689256 102
09051660
RH
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
bcdaba58 118 int lineno; /* Line number of the insn. */
09051660
RH
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122};
e0689256 123
09051660 124/* Data structure for decision tree for recognizing legitimate insns. */
ec65fa66
RK
125
126struct decision
127{
09051660
RH
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
e0689256 138 int number; /* Node number, used for labels */
e0689256 139 int subroutine_number; /* Number of subroutine this node starts */
09051660 140 int need_label; /* Label needs to be output. */
ec65fa66
RK
141};
142
09051660 143#define SUBROUTINE_THRESHOLD 100
ec65fa66
RK
144
145static int next_subroutine_number;
146
ede7cd44
RH
147/* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
ec65fa66 150
09051660
RH
151enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153};
ede7cd44 154
09051660 155#define IS_SPLIT(X) ((X) != RECOG)
ec65fa66 156
e0689256 157/* Next available node number for tree nodes. */
ec65fa66 158
e0689256 159static int next_number;
ec65fa66 160
e0689256 161/* Next number to use as an insn_code. */
ec65fa66 162
e0689256 163static int next_insn_code;
ec65fa66 164
e0689256 165/* Similar, but counts all expressions in the MD file; used for
0f41302f 166 error messages. */
ec65fa66 167
e0689256 168static int next_index;
ec65fa66 169
e0689256
RK
170/* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
ec65fa66 172
e0689256 173static int max_depth;
bcdaba58
RH
174
175/* The line number of the start of the pattern currently being processed. */
176static int pattern_lineno;
177
178/* Count of errors. */
179static int error_count;
e0689256
RK
180\f
181/* This table contains a list of the rtl codes that can possibly match a
09051660 182 predicate defined in recog.c. The function `maybe_both_true' uses it to
e0689256
RK
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
ec65fa66 186
8b60264b 187static const struct pred_table
e0689256 188{
8b60264b
KG
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
09051660
RH
191} preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 193 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
e0689256 194#ifdef PREDICATE_CODES
09051660 195 PREDICATE_CODES
e0689256 196#endif
09051660 197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e
EB
198 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
09051660
RH
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
0b40e88e 207 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
09051660 208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 209 LABEL_REF, SUBREG, REG, ADDRESSOF}},
09051660
RH
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
3a3677ff
RH
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
8116809c 216 UNLT, LTGT}}
09051660 217};
e0689256 218
b6a1cbae 219#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
ec65fa66 220
27c38fbe 221static const char *const special_mode_pred_table[] = {
8fe0ca0c
RH
222#ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224#endif
556ffcc5 225 "pmode_register_operand"
8fe0ca0c
RH
226};
227
b6a1cbae 228#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
8fe0ca0c 229
09051660 230static struct decision *new_decision
3d7aafde 231 (const char *, struct decision_head *);
09051660 232static struct decision_test *new_decision_test
3d7aafde 233 (enum decision_type, struct decision_test ***);
8fe0ca0c 234static rtx find_operand
076963eb 235 (rtx, int, rtx);
c0ea284b 236static rtx find_matching_operand
3d7aafde 237 (rtx, int);
8fe0ca0c 238static void validate_pattern
3d7aafde 239 (rtx, rtx, rtx, int);
09051660 240static struct decision *add_to_sequence
3d7aafde 241 (rtx, struct decision_head *, const char *, enum routine_type, int);
09051660
RH
242
243static int maybe_both_true_2
3d7aafde 244 (struct decision_test *, struct decision_test *);
09051660 245static int maybe_both_true_1
3d7aafde 246 (struct decision_test *, struct decision_test *);
09051660 247static int maybe_both_true
3d7aafde 248 (struct decision *, struct decision *, int);
09051660
RH
249
250static int nodes_identical_1
3d7aafde 251 (struct decision_test *, struct decision_test *);
09051660 252static int nodes_identical
3d7aafde 253 (struct decision *, struct decision *);
09051660 254static void merge_accept_insn
3d7aafde 255 (struct decision *, struct decision *);
09051660 256static void merge_trees
3d7aafde 257 (struct decision_head *, struct decision_head *);
09051660
RH
258
259static void factor_tests
3d7aafde 260 (struct decision_head *);
09051660 261static void simplify_tests
3d7aafde 262 (struct decision_head *);
09051660 263static int break_out_subroutines
3d7aafde 264 (struct decision_head *, int);
09051660 265static void find_afterward
3d7aafde 266 (struct decision_head *, struct decision *);
09051660
RH
267
268static void change_state
3d7aafde 269 (const char *, const char *, struct decision *, const char *);
09051660 270static void print_code
3d7aafde 271 (enum rtx_code);
09051660 272static void write_afterward
3d7aafde 273 (struct decision *, struct decision *, const char *);
09051660 274static struct decision *write_switch
3d7aafde 275 (struct decision *, int);
09051660 276static void write_cond
3d7aafde 277 (struct decision_test *, int, enum routine_type);
09051660 278static void write_action
3d7aafde
AJ
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
09051660 281static int is_unconditional
3d7aafde 282 (struct decision_test *, enum routine_type);
09051660 283static int write_node
3d7aafde 284 (struct decision *, int, enum routine_type);
09051660 285static void write_tree_1
3d7aafde 286 (struct decision_head *, int, enum routine_type);
09051660 287static void write_tree
3d7aafde 288 (struct decision_head *, const char *, enum routine_type, int);
09051660 289static void write_subroutine
3d7aafde 290 (struct decision_head *, enum routine_type);
09051660 291static void write_subroutines
3d7aafde 292 (struct decision_head *, enum routine_type);
09051660 293static void write_header
3d7aafde 294 (void);
09051660
RH
295
296static struct decision_head make_insn_sequence
3d7aafde 297 (rtx, enum routine_type);
09051660 298static void process_tree
3d7aafde 299 (struct decision_head *, enum routine_type);
5b7c7046 300
09051660 301static void record_insn_name
3d7aafde 302 (int, const char *);
09051660 303
36f0e0a6 304static void debug_decision_0
3d7aafde 305 (struct decision *, int, int);
09051660 306static void debug_decision_1
3d7aafde 307 (struct decision *, int);
09051660 308static void debug_decision_2
3d7aafde 309 (struct decision_test *);
09051660 310extern void debug_decision
3d7aafde 311 (struct decision *);
36f0e0a6 312extern void debug_decision_list
3d7aafde 313 (struct decision *);
ede7cd44 314\f
09051660 315/* Create a new node in sequence after LAST. */
e0689256 316
09051660 317static struct decision *
3d7aafde 318new_decision (const char *position, struct decision_head *last)
ec65fa66 319{
29da5c92 320 struct decision *new = xcalloc (1, sizeof (struct decision));
ec65fa66 321
09051660
RH
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
ec65fa66 325
09051660
RH
326 last->first = last->last = new;
327 return new;
328}
e0689256 329
09051660 330/* Create a new test and link it in at PLACE. */
ec65fa66 331
09051660 332static struct decision_test *
3d7aafde 333new_decision_test (enum decision_type type, struct decision_test ***pplace)
09051660
RH
334{
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
ec65fa66 337
703ad42b 338 test = xmalloc (sizeof (*test));
09051660
RH
339 test->next = *place;
340 test->type = type;
341 *place = test;
ede7cd44 342
09051660
RH
343 place = &test->next;
344 *pplace = place;
ec65fa66 345
09051660 346 return test;
e0689256 347}
09051660 348
076963eb 349/* Search for and return operand N, stop when reaching node STOP. */
8fe0ca0c
RH
350
351static rtx
076963eb 352find_operand (rtx pattern, int n, rtx stop)
8fe0ca0c
RH
353{
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
076963eb
JH
359 if (pattern == stop)
360 return stop;
361
8fe0ca0c
RH
362 code = GET_CODE (pattern);
363 if ((code == MATCH_SCRATCH
8fe0ca0c
RH
364 || code == MATCH_OPERAND
365 || code == MATCH_OPERATOR
366 || code == MATCH_PARALLEL)
367 && XINT (pattern, 0) == n)
368 return pattern;
369
370 fmt = GET_RTX_FORMAT (code);
371 len = GET_RTX_LENGTH (code);
372 for (i = 0; i < len; i++)
373 {
374 switch (fmt[i])
375 {
376 case 'e': case 'u':
076963eb 377 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
8fe0ca0c
RH
378 return r;
379 break;
380
c0ea284b
RH
381 case 'V':
382 if (! XVEC (pattern, i))
383 break;
5d3cc252 384 /* Fall through. */
c0ea284b 385
8fe0ca0c
RH
386 case 'E':
387 for (j = 0; j < XVECLEN (pattern, i); j++)
076963eb
JH
388 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
389 != NULL_RTX)
8fe0ca0c
RH
390 return r;
391 break;
392
393 case 'i': case 'w': case '0': case 's':
394 break;
395
396 default:
397 abort ();
398 }
399 }
400
401 return NULL;
402}
403
c0ea284b
RH
404/* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
406
407static rtx
3d7aafde 408find_matching_operand (rtx pattern, int n)
c0ea284b
RH
409{
410 const char *fmt;
411 RTX_CODE code;
412 int i, j, len;
413 rtx r;
414
415 code = GET_CODE (pattern);
416 if (code == MATCH_OPERAND
417 && (XSTR (pattern, 2)[0] == '0' + n
418 || (XSTR (pattern, 2)[0] == '%'
419 && XSTR (pattern, 2)[1] == '0' + n)))
420 return pattern;
421
422 fmt = GET_RTX_FORMAT (code);
423 len = GET_RTX_LENGTH (code);
424 for (i = 0; i < len; i++)
425 {
426 switch (fmt[i])
427 {
428 case 'e': case 'u':
429 if ((r = find_matching_operand (XEXP (pattern, i), n)))
430 return r;
431 break;
432
433 case 'V':
434 if (! XVEC (pattern, i))
435 break;
5d3cc252 436 /* Fall through. */
c0ea284b
RH
437
438 case 'E':
439 for (j = 0; j < XVECLEN (pattern, i); j++)
440 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
441 return r;
442 break;
443
444 case 'i': case 'w': case '0': case 's':
445 break;
446
447 default:
448 abort ();
449 }
450 }
451
452 return NULL;
453}
454
455
aece2740 456/* Check for various errors in patterns. SET is nonnull for a destination,
7297e9fc
RH
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
bcdaba58
RH
459
460static void
3d7aafde 461validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
bcdaba58
RH
462{
463 const char *fmt;
464 RTX_CODE code;
8fe0ca0c
RH
465 size_t i, len;
466 int j;
bcdaba58
RH
467
468 code = GET_CODE (pattern);
469 switch (code)
470 {
471 case MATCH_SCRATCH:
bcdaba58 472 return;
076963eb
JH
473 case MATCH_DUP:
474 case MATCH_OP_DUP:
475 case MATCH_PAR_DUP:
476 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
477 {
478 message_with_line (pattern_lineno,
479 "operand %i duplicated before defined",
480 XINT (pattern, 0));
481 error_count++;
482 }
483 break;
bcdaba58 484 case MATCH_OPERAND:
8fe0ca0c 485 case MATCH_OPERATOR:
bcdaba58
RH
486 {
487 const char *pred_name = XSTR (pattern, 1);
8fe0ca0c
RH
488 int allows_non_lvalue = 1, allows_non_const = 1;
489 int special_mode_pred = 0;
490 const char *c_test;
491
492 if (GET_CODE (insn) == DEFINE_INSN)
493 c_test = XSTR (insn, 2);
494 else
495 c_test = XSTR (insn, 1);
bcdaba58
RH
496
497 if (pred_name[0] != 0)
498 {
8fe0ca0c 499 for (i = 0; i < NUM_KNOWN_PREDS; i++)
bcdaba58
RH
500 if (! strcmp (preds[i].name, pred_name))
501 break;
502
8fe0ca0c 503 if (i < NUM_KNOWN_PREDS)
bcdaba58 504 {
8fe0ca0c 505 int j;
bcdaba58 506
8fe0ca0c 507 allows_non_lvalue = allows_non_const = 0;
bcdaba58 508 for (j = 0; preds[i].codes[j] != 0; j++)
bcdaba58 509 {
8fe0ca0c
RH
510 RTX_CODE c = preds[i].codes[j];
511 if (c != LABEL_REF
512 && c != SYMBOL_REF
513 && c != CONST_INT
514 && c != CONST_DOUBLE
515 && c != CONST
6de9cd9a 516 && c != HIGH)
8fe0ca0c
RH
517 allows_non_const = 1;
518
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
0b40e88e 522 && c != ADDRESSOF
8fe0ca0c
RH
523 && c != CONCAT
524 && c != PARALLEL
525 && c != STRICT_LOW_PART)
526 allows_non_lvalue = 1;
bcdaba58
RH
527 }
528 }
529 else
530 {
531#ifdef PREDICATE_CODES
532 /* If the port has a list of the predicates it uses but
533 omits one, warn. */
8fe0ca0c
RH
534 message_with_line (pattern_lineno,
535 "warning: `%s' not in PREDICATE_CODES",
536 pred_name);
bcdaba58
RH
537#endif
538 }
8fe0ca0c
RH
539
540 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
541 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
542 {
543 special_mode_pred = 1;
544 break;
545 }
546 }
547
0dab343a 548 if (code == MATCH_OPERAND)
aece2740 549 {
0dab343a
RH
550 const char constraints0 = XSTR (pattern, 2)[0];
551
3d7aafde 552 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
0dab343a
RH
553 don't use the MATCH_OPERAND constraint, only the predicate.
554 This is confusing to folks doing new ports, so help them
555 not make the mistake. */
556 if (GET_CODE (insn) == DEFINE_EXPAND
557 || GET_CODE (insn) == DEFINE_SPLIT
558 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
7297e9fc 559 {
0dab343a
RH
560 if (constraints0)
561 message_with_line (pattern_lineno,
562 "warning: constraints not supported in %s",
563 rtx_name[GET_CODE (insn)]);
564 }
3d7aafde 565
0dab343a
RH
566 /* A MATCH_OPERAND that is a SET should have an output reload. */
567 else if (set && constraints0)
568 {
569 if (set_code == '+')
570 {
571 if (constraints0 == '+')
572 ;
573 /* If we've only got an output reload for this operand,
574 we'd better have a matching input operand. */
575 else if (constraints0 == '='
576 && find_matching_operand (insn, XINT (pattern, 0)))
577 ;
578 else
579 {
580 message_with_line (pattern_lineno,
581 "operand %d missing in-out reload",
582 XINT (pattern, 0));
583 error_count++;
584 }
585 }
586 else if (constraints0 != '=' && constraints0 != '+')
c0ea284b
RH
587 {
588 message_with_line (pattern_lineno,
3d7aafde 589 "operand %d missing output reload",
c0ea284b
RH
590 XINT (pattern, 0));
591 error_count++;
592 }
7297e9fc 593 }
aece2740
RH
594 }
595
8fe0ca0c
RH
596 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 while not likely to occur at runtime, results in less efficient
598 code from insn-recog.c. */
aece2740 599 if (set
8fe0ca0c
RH
600 && pred_name[0] != '\0'
601 && allows_non_lvalue)
602 {
603 message_with_line (pattern_lineno,
aece2740 604 "warning: destination operand %d allows non-lvalue",
476a33f4 605 XINT (pattern, 0));
8fe0ca0c
RH
606 }
607
608 /* A modeless MATCH_OPERAND can be handy when we can
609 check for multiple modes in the c_test. In most other cases,
610 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
5b7c7046 611 and PEEP2 can FAIL within the output pattern. Exclude
556ffcc5 612 address_operand, since its mode is related to the mode of
aece2740
RH
613 the memory not the operand. Exclude the SET_DEST of a call
614 instruction, as that is a common idiom. */
8fe0ca0c
RH
615
616 if (GET_MODE (pattern) == VOIDmode
617 && code == MATCH_OPERAND
556ffcc5 618 && GET_CODE (insn) == DEFINE_INSN
8fe0ca0c
RH
619 && allows_non_const
620 && ! special_mode_pred
556ffcc5
RH
621 && pred_name[0] != '\0'
622 && strcmp (pred_name, "address_operand") != 0
aece2740
RH
623 && strstr (c_test, "operands") == NULL
624 && ! (set
625 && GET_CODE (set) == SET
626 && GET_CODE (SET_SRC (set)) == CALL))
8fe0ca0c
RH
627 {
628 message_with_line (pattern_lineno,
629 "warning: operand %d missing mode?",
630 XINT (pattern, 0));
bcdaba58 631 }
bcdaba58
RH
632 return;
633 }
634
635 case SET:
8fe0ca0c
RH
636 {
637 enum machine_mode dmode, smode;
638 rtx dest, src;
639
640 dest = SET_DEST (pattern);
641 src = SET_SRC (pattern);
642
0dab343a
RH
643 /* STRICT_LOW_PART is a wrapper. Its argument is the real
644 destination, and it's mode should match the source. */
645 if (GET_CODE (dest) == STRICT_LOW_PART)
646 dest = XEXP (dest, 0);
647
d91edf86 648 /* Find the referent for a DUP. */
8fe0ca0c
RH
649
650 if (GET_CODE (dest) == MATCH_DUP
651 || GET_CODE (dest) == MATCH_OP_DUP
652 || GET_CODE (dest) == MATCH_PAR_DUP)
076963eb 653 dest = find_operand (insn, XINT (dest, 0), NULL);
8fe0ca0c
RH
654
655 if (GET_CODE (src) == MATCH_DUP
656 || GET_CODE (src) == MATCH_OP_DUP
657 || GET_CODE (src) == MATCH_PAR_DUP)
076963eb 658 src = find_operand (insn, XINT (src, 0), NULL);
8fe0ca0c 659
8fe0ca0c
RH
660 dmode = GET_MODE (dest);
661 smode = GET_MODE (src);
bcdaba58 662
8fe0ca0c
RH
663 /* The mode of an ADDRESS_OPERAND is the mode of the memory
664 reference, not the mode of the address. */
665 if (GET_CODE (src) == MATCH_OPERAND
666 && ! strcmp (XSTR (src, 1), "address_operand"))
667 ;
668
669 /* The operands of a SET must have the same mode unless one
670 is VOIDmode. */
671 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
672 {
673 message_with_line (pattern_lineno,
674 "mode mismatch in set: %smode vs %smode",
675 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
676 error_count++;
677 }
678
5b7c7046 679 /* If only one of the operands is VOIDmode, and PC or CC0 is
8fe0ca0c
RH
680 not involved, it's probably a mistake. */
681 else if (dmode != smode
682 && GET_CODE (dest) != PC
683 && GET_CODE (dest) != CC0
aece2740
RH
684 && GET_CODE (src) != PC
685 && GET_CODE (src) != CC0
8fe0ca0c
RH
686 && GET_CODE (src) != CONST_INT)
687 {
688 const char *which;
689 which = (dmode == VOIDmode ? "destination" : "source");
690 message_with_line (pattern_lineno,
691 "warning: %s missing a mode?", which);
692 }
693
694 if (dest != SET_DEST (pattern))
7297e9fc
RH
695 validate_pattern (dest, insn, pattern, '=');
696 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
697 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
8fe0ca0c
RH
698 return;
699 }
700
701 case CLOBBER:
7297e9fc
RH
702 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
703 return;
704
705 case ZERO_EXTRACT:
706 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
707 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
708 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
709 return;
710
711 case STRICT_LOW_PART:
712 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
bcdaba58 713 return;
8fe0ca0c 714
bcdaba58
RH
715 case LABEL_REF:
716 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
717 {
718 message_with_line (pattern_lineno,
719 "operand to label_ref %smode not VOIDmode",
720 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
721 error_count++;
722 }
723 break;
724
725 default:
726 break;
727 }
728
729 fmt = GET_RTX_FORMAT (code);
730 len = GET_RTX_LENGTH (code);
731 for (i = 0; i < len; i++)
732 {
733 switch (fmt[i])
734 {
735 case 'e': case 'u':
7297e9fc 736 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
bcdaba58
RH
737 break;
738
739 case 'E':
740 for (j = 0; j < XVECLEN (pattern, i); j++)
7297e9fc 741 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
bcdaba58
RH
742 break;
743
744 case 'i': case 'w': case '0': case 's':
745 break;
746
747 default:
748 abort ();
749 }
750 }
bcdaba58
RH
751}
752
e0689256
RK
753/* Create a chain of nodes to verify that an rtl expression matches
754 PATTERN.
ec65fa66 755
e0689256
RK
756 LAST is a pointer to the listhead in the previous node in the chain (or
757 in the calling function, for the first node).
ec65fa66 758
e0689256 759 POSITION is the string representing the current position in the insn.
ec65fa66 760
ede7cd44
RH
761 INSN_TYPE is the type of insn for which we are emitting code.
762
e0689256 763 A pointer to the final node in the chain is returned. */
ec65fa66
RK
764
765static struct decision *
3d7aafde
AJ
766add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
767 enum routine_type insn_type, int top)
ec65fa66 768{
09051660
RH
769 RTX_CODE code;
770 struct decision *this, *sub;
771 struct decision_test *test;
772 struct decision_test **place;
773 char *subpos;
b3694847
SS
774 size_t i;
775 const char *fmt;
e0689256 776 int depth = strlen (position);
ec65fa66 777 int len;
09051660 778 enum machine_mode mode;
ec65fa66 779
e0689256
RK
780 if (depth > max_depth)
781 max_depth = depth;
782
703ad42b 783 subpos = xmalloc (depth + 2);
09051660
RH
784 strcpy (subpos, position);
785 subpos[depth + 1] = 0;
ec65fa66 786
09051660
RH
787 sub = this = new_decision (position, last);
788 place = &this->tests;
ec65fa66
RK
789
790 restart:
09051660
RH
791 mode = GET_MODE (pattern);
792 code = GET_CODE (pattern);
ec65fa66
RK
793
794 switch (code)
795 {
ede7cd44 796 case PARALLEL:
dc297297 797 /* Toplevel peephole pattern. */
ede7cd44
RH
798 if (insn_type == PEEPHOLE2 && top)
799 {
09051660
RH
800 /* We don't need the node we just created -- unlink it. */
801 last->first = last->last = NULL;
ede7cd44
RH
802
803 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
804 {
805 /* Which insn we're looking at is represented by A-Z. We don't
dc297297 806 ever use 'A', however; it is always implied. */
09051660
RH
807
808 subpos[depth] = (i > 0 ? 'A' + i : 0);
809 sub = add_to_sequence (XVECEXP (pattern, 0, i),
810 last, subpos, insn_type, 0);
811 last = &sub->success;
ede7cd44 812 }
b548dffb 813 goto ret;
ede7cd44 814 }
09051660
RH
815
816 /* Else nothing special. */
ede7cd44 817 break;
09051660 818
521b9224
RH
819 case MATCH_PARALLEL:
820 /* The explicit patterns within a match_parallel enforce a minimum
821 length on the vector. The match_parallel predicate may allow
822 for more elements. We do need to check for this minimum here
823 or the code generated to match the internals may reference data
824 beyond the end of the vector. */
825 test = new_decision_test (DT_veclen_ge, &place);
826 test->u.veclen = XVECLEN (pattern, 2);
5d3cc252 827 /* Fall through. */
521b9224 828
ec65fa66 829 case MATCH_OPERAND:
ec65fa66 830 case MATCH_SCRATCH:
ec65fa66 831 case MATCH_OPERATOR:
09051660
RH
832 {
833 const char *pred_name;
834 RTX_CODE was_code = code;
ec1c89e6 835 int allows_const_int = 1;
09051660
RH
836
837 if (code == MATCH_SCRATCH)
838 {
839 pred_name = "scratch_operand";
840 code = UNKNOWN;
841 }
842 else
843 {
844 pred_name = XSTR (pattern, 1);
845 if (code == MATCH_PARALLEL)
846 code = PARALLEL;
847 else
848 code = UNKNOWN;
849 }
850
29360e56 851 if (pred_name[0] != 0)
09051660
RH
852 {
853 test = new_decision_test (DT_pred, &place);
854 test->u.pred.name = pred_name;
855 test->u.pred.mode = mode;
856
b4fbaca7
RH
857 /* See if we know about this predicate and save its number.
858 If we do, and it only accepts one code, note that fact.
859
860 If we know that the predicate does not allow CONST_INT,
861 we know that the only way the predicate can match is if
862 the modes match (here we use the kludge of relying on the
863 fact that "address_operand" accepts CONST_INT; otherwise,
864 it would have to be a special case), so we can test the
865 mode (but we need not). This fact should considerably
866 simplify the generated code. */
09051660
RH
867
868 for (i = 0; i < NUM_KNOWN_PREDS; i++)
869 if (! strcmp (preds[i].name, pred_name))
870 break;
e0689256 871
09051660 872 if (i < NUM_KNOWN_PREDS)
9edd4689 873 {
c3693cb1 874 int j;
e0689256 875
09051660 876 test->u.pred.index = i;
e0689256 877
09051660
RH
878 if (preds[i].codes[1] == 0 && code == UNKNOWN)
879 code = preds[i].codes[0];
e0689256 880
09051660
RH
881 allows_const_int = 0;
882 for (j = 0; preds[i].codes[j] != 0; j++)
9edd4689 883 if (preds[i].codes[j] == CONST_INT)
09051660
RH
884 {
885 allows_const_int = 1;
886 break;
887 }
9edd4689 888 }
09051660 889 else
bcdaba58 890 test->u.pred.index = -1;
09051660 891 }
ec1c89e6
RH
892
893 /* Can't enforce a mode if we allow const_int. */
894 if (allows_const_int)
895 mode = VOIDmode;
e0689256 896
09051660
RH
897 /* Accept the operand, ie. record it in `operands'. */
898 test = new_decision_test (DT_accept_op, &place);
899 test->u.opno = XINT (pattern, 0);
e0689256 900
09051660
RH
901 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
902 {
903 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
904 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
905 {
906 subpos[depth] = i + base;
907 sub = add_to_sequence (XVECEXP (pattern, 2, i),
908 &sub->success, subpos, insn_type, 0);
909 }
910 }
911 goto fini;
912 }
ec65fa66
RK
913
914 case MATCH_OP_DUP:
09051660
RH
915 code = UNKNOWN;
916
917 test = new_decision_test (DT_dup, &place);
918 test->u.dup = XINT (pattern, 0);
919
920 test = new_decision_test (DT_accept_op, &place);
921 test->u.opno = XINT (pattern, 0);
922
e51712db 923 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
ec65fa66 924 {
09051660
RH
925 subpos[depth] = i + '0';
926 sub = add_to_sequence (XVECEXP (pattern, 1, i),
927 &sub->success, subpos, insn_type, 0);
ec65fa66 928 }
09051660 929 goto fini;
ec65fa66
RK
930
931 case MATCH_DUP:
f582c9d5 932 case MATCH_PAR_DUP:
09051660
RH
933 code = UNKNOWN;
934
935 test = new_decision_test (DT_dup, &place);
936 test->u.dup = XINT (pattern, 0);
937 goto fini;
ec65fa66
RK
938
939 case ADDRESS:
940 pattern = XEXP (pattern, 0);
941 goto restart;
942
76d31c63
JL
943 default:
944 break;
ec65fa66
RK
945 }
946
947 fmt = GET_RTX_FORMAT (code);
948 len = GET_RTX_LENGTH (code);
09051660
RH
949
950 /* Do tests against the current node first. */
e51712db 951 for (i = 0; i < (size_t) len; i++)
ec65fa66 952 {
09051660 953 if (fmt[i] == 'i')
ec65fa66 954 {
09051660
RH
955 if (i == 0)
956 {
957 test = new_decision_test (DT_elt_zero_int, &place);
958 test->u.intval = XINT (pattern, i);
959 }
960 else if (i == 1)
961 {
962 test = new_decision_test (DT_elt_one_int, &place);
963 test->u.intval = XINT (pattern, i);
964 }
965 else
966 abort ();
ec65fa66 967 }
09051660 968 else if (fmt[i] == 'w')
3d678dca 969 {
070ef6f4
RK
970 /* If this value actually fits in an int, we can use a switch
971 statement here, so indicate that. */
972 enum decision_type type
973 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
974 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
975
09051660
RH
976 if (i != 0)
977 abort ();
978
070ef6f4 979 test = new_decision_test (type, &place);
09051660 980 test->u.intval = XWINT (pattern, i);
3d678dca 981 }
ec65fa66
RK
982 else if (fmt[i] == 'E')
983 {
ec65fa66
RK
984 if (i != 0)
985 abort ();
09051660
RH
986
987 test = new_decision_test (DT_veclen, &place);
988 test->u.veclen = XVECLEN (pattern, i);
989 }
990 }
991
992 /* Now test our sub-patterns. */
993 for (i = 0; i < (size_t) len; i++)
994 {
995 switch (fmt[i])
996 {
997 case 'e': case 'u':
998 subpos[depth] = '0' + i;
999 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1000 subpos, insn_type, 0);
1001 break;
1002
1003 case 'E':
1004 {
b3694847 1005 int j;
09051660
RH
1006 for (j = 0; j < XVECLEN (pattern, i); j++)
1007 {
1008 subpos[depth] = 'a' + j;
1009 sub = add_to_sequence (XVECEXP (pattern, i, j),
1010 &sub->success, subpos, insn_type, 0);
1011 }
1012 break;
1013 }
1014
1015 case 'i': case 'w':
1016 /* Handled above. */
1017 break;
1018 case '0':
1019 break;
1020
1021 default:
1022 abort ();
1023 }
1024 }
1025
1026 fini:
1027 /* Insert nodes testing mode and code, if they're still relevant,
1028 before any of the nodes we may have added above. */
1029 if (code != UNKNOWN)
1030 {
1031 place = &this->tests;
1032 test = new_decision_test (DT_code, &place);
1033 test->u.code = code;
1034 }
1035
1036 if (mode != VOIDmode)
1037 {
1038 place = &this->tests;
1039 test = new_decision_test (DT_mode, &place);
1040 test->u.mode = mode;
1041 }
1042
1043 /* If we didn't insert any tests or accept nodes, hork. */
1044 if (this->tests == NULL)
1045 abort ();
1046
b548dffb
ZW
1047 ret:
1048 free (subpos);
09051660
RH
1049 return sub;
1050}
1051\f
1052/* A subroutine of maybe_both_true; examines only one test.
1053 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1054
1055static int
3d7aafde 1056maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1057{
1058 if (d1->type == d2->type)
1059 {
1060 switch (d1->type)
1061 {
1062 case DT_mode:
f0e1f482 1063 return d1->u.mode == d2->u.mode;
09051660
RH
1064
1065 case DT_code:
1066 return d1->u.code == d2->u.code;
1067
1068 case DT_veclen:
1069 return d1->u.veclen == d2->u.veclen;
1070
1071 case DT_elt_zero_int:
1072 case DT_elt_one_int:
1073 case DT_elt_zero_wide:
070ef6f4 1074 case DT_elt_zero_wide_safe:
09051660
RH
1075 return d1->u.intval == d2->u.intval;
1076
1077 default:
1078 break;
1079 }
1080 }
1081
1082 /* If either has a predicate that we know something about, set
1083 things up so that D1 is the one that always has a known
1084 predicate. Then see if they have any codes in common. */
1085
1086 if (d1->type == DT_pred || d2->type == DT_pred)
1087 {
1088 if (d2->type == DT_pred)
1089 {
1090 struct decision_test *tmp;
1091 tmp = d1, d1 = d2, d2 = tmp;
1092 }
1093
1094 /* If D2 tests a mode, see if it matches D1. */
1095 if (d1->u.pred.mode != VOIDmode)
1096 {
1097 if (d2->type == DT_mode)
1098 {
f0e1f482 1099 if (d1->u.pred.mode != d2->u.mode
8f496bc2
HPN
1100 /* The mode of an address_operand predicate is the
1101 mode of the memory, not the operand. It can only
1102 be used for testing the predicate, so we must
1103 ignore it here. */
1104 && strcmp (d1->u.pred.name, "address_operand") != 0)
09051660
RH
1105 return 0;
1106 }
4dc320a5
RH
1107 /* Don't check two predicate modes here, because if both predicates
1108 accept CONST_INT, then both can still be true even if the modes
1109 are different. If they don't accept CONST_INT, there will be a
1110 separate DT_mode that will make maybe_both_true_1 return 0. */
09051660
RH
1111 }
1112
1113 if (d1->u.pred.index >= 0)
1114 {
1115 /* If D2 tests a code, see if it is in the list of valid
1116 codes for D1's predicate. */
1117 if (d2->type == DT_code)
1118 {
1119 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1120 while (*c != 0)
1121 {
1122 if (*c == d2->u.code)
1123 break;
1124 ++c;
1125 }
1126 if (*c == 0)
1127 return 0;
1128 }
1129
1130 /* Otherwise see if the predicates have any codes in common. */
1131 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
ec65fa66 1132 {
09051660
RH
1133 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1134 int common = 0;
1135
1136 while (*c1 != 0 && !common)
1137 {
1138 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1139 while (*c2 != 0 && !common)
1140 {
1141 common = (*c1 == *c2);
1142 ++c2;
1143 }
1144 ++c1;
1145 }
1146
1147 if (!common)
1148 return 0;
ec65fa66
RK
1149 }
1150 }
ec65fa66 1151 }
09051660 1152
521b9224
RH
1153 /* Tests vs veclen may be known when strict equality is involved. */
1154 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1155 return d1->u.veclen >= d2->u.veclen;
1156 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1157 return d2->u.veclen >= d1->u.veclen;
1158
09051660 1159 return -1;
ec65fa66 1160}
09051660
RH
1161
1162/* A subroutine of maybe_both_true; examines all the tests for a given node.
1163 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1164
1165static int
3d7aafde 1166maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1167{
1168 struct decision_test *t1, *t2;
1169
1170 /* A match_operand with no predicate can match anything. Recognize
ff7cc307 1171 this by the existence of a lone DT_accept_op test. */
09051660
RH
1172 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1173 return 1;
1174
1175 /* Eliminate pairs of tests while they can exactly match. */
1176 while (d1 && d2 && d1->type == d2->type)
1177 {
1178 if (maybe_both_true_2 (d1, d2) == 0)
1179 return 0;
1180 d1 = d1->next, d2 = d2->next;
1181 }
1182
1183 /* After that, consider all pairs. */
1184 for (t1 = d1; t1 ; t1 = t1->next)
1185 for (t2 = d2; t2 ; t2 = t2->next)
1186 if (maybe_both_true_2 (t1, t2) == 0)
1187 return 0;
1188
1189 return -1;
1190}
1191
1192/* Return 0 if we can prove that there is no RTL that can match both
1193 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
e0689256 1194 can match both or just that we couldn't prove there wasn't such an RTL).
ec65fa66 1195
cc2902df 1196 TOPLEVEL is nonzero if we are to only look at the top level and not
e0689256 1197 recursively descend. */
ec65fa66 1198
e0689256 1199static int
3d7aafde
AJ
1200maybe_both_true (struct decision *d1, struct decision *d2,
1201 int toplevel)
ec65fa66 1202{
e0689256 1203 struct decision *p1, *p2;
00ec6daa
JH
1204 int cmp;
1205
1206 /* Don't compare strings on the different positions in insn. Doing so
1207 is incorrect and results in false matches from constructs like
1208
1209 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1210 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1211 vs
1212 [(set (match_operand:HI "register_operand" "r")
1213 (match_operand:HI "register_operand" "r"))]
1214
1215 If we are presented with such, we are recursing through the remainder
1216 of a node's success nodes (from the loop at the end of this function).
1217 Skip forward until we come to a position that matches.
1218
1219 Due to the way position strings are constructed, we know that iterating
1220 forward from the lexically lower position (e.g. "00") will run into
1221 the lexically higher position (e.g. "1") and not the other way around.
1222 This saves a bit of effort. */
1223
1224 cmp = strcmp (d1->position, d2->position);
1225 if (cmp != 0)
1226 {
1227 if (toplevel)
c4f2c499 1228 abort ();
00ec6daa
JH
1229
1230 /* If the d2->position was lexically lower, swap. */
1231 if (cmp > 0)
ace91ff1 1232 p1 = d1, d1 = d2, d2 = p1;
00ec6daa
JH
1233
1234 if (d1->success.first == 0)
29360e56 1235 return 1;
00ec6daa 1236 for (p1 = d1->success.first; p1; p1 = p1->next)
09051660
RH
1237 if (maybe_both_true (p1, d2, 0))
1238 return 1;
00ec6daa 1239
09051660 1240 return 0;
00ec6daa 1241 }
e0689256 1242
09051660
RH
1243 /* Test the current level. */
1244 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1245 if (cmp >= 0)
1246 return cmp;
1247
1248 /* We can't prove that D1 and D2 cannot both be true. If we are only
1249 to check the top level, return 1. Otherwise, see if we can prove
1250 that all choices in both successors are mutually exclusive. If
1251 either does not have any successors, we can't prove they can't both
1252 be true. */
1253
1254 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
e0689256
RK
1255 return 1;
1256
09051660
RH
1257 for (p1 = d1->success.first; p1; p1 = p1->next)
1258 for (p2 = d2->success.first; p2; p2 = p2->next)
1259 if (maybe_both_true (p1, p2, 0))
1260 return 1;
e0689256 1261
09051660
RH
1262 return 0;
1263}
ec65fa66 1264
09051660 1265/* A subroutine of nodes_identical. Examine two tests for equivalence. */
ec65fa66 1266
09051660 1267static int
3d7aafde 1268nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1269{
1270 switch (d1->type)
ec65fa66 1271 {
09051660
RH
1272 case DT_mode:
1273 return d1->u.mode == d2->u.mode;
e0689256 1274
09051660
RH
1275 case DT_code:
1276 return d1->u.code == d2->u.code;
e0689256 1277
09051660
RH
1278 case DT_pred:
1279 return (d1->u.pred.mode == d2->u.pred.mode
1280 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
e0689256 1281
09051660
RH
1282 case DT_c_test:
1283 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
e0689256 1284
09051660 1285 case DT_veclen:
521b9224 1286 case DT_veclen_ge:
09051660 1287 return d1->u.veclen == d2->u.veclen;
e0689256 1288
09051660
RH
1289 case DT_dup:
1290 return d1->u.dup == d2->u.dup;
e0689256 1291
09051660
RH
1292 case DT_elt_zero_int:
1293 case DT_elt_one_int:
1294 case DT_elt_zero_wide:
070ef6f4 1295 case DT_elt_zero_wide_safe:
09051660 1296 return d1->u.intval == d2->u.intval;
e0689256 1297
09051660
RH
1298 case DT_accept_op:
1299 return d1->u.opno == d2->u.opno;
1300
1301 case DT_accept_insn:
1302 /* Differences will be handled in merge_accept_insn. */
1303 return 1;
1304
1305 default:
1306 abort ();
ec65fa66 1307 }
09051660 1308}
ec65fa66 1309
09051660 1310/* True iff the two nodes are identical (on one level only). Due
5b7c7046 1311 to the way these lists are constructed, we shouldn't have to
09051660 1312 consider different orderings on the tests. */
ec65fa66 1313
09051660 1314static int
3d7aafde 1315nodes_identical (struct decision *d1, struct decision *d2)
09051660
RH
1316{
1317 struct decision_test *t1, *t2;
e0689256 1318
09051660
RH
1319 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1320 {
1321 if (t1->type != t2->type)
1322 return 0;
1323 if (! nodes_identical_1 (t1, t2))
e0689256 1324 return 0;
09051660 1325 }
e0689256 1326
09051660 1327 /* For success, they should now both be null. */
aece2740
RH
1328 if (t1 != t2)
1329 return 0;
1330
1331 /* Check that their subnodes are at the same position, as any one set
2cec75a1
RH
1332 of sibling decisions must be at the same position. Allowing this
1333 requires complications to find_afterward and when change_state is
1334 invoked. */
aece2740
RH
1335 if (d1->success.first
1336 && d2->success.first
1337 && strcmp (d1->success.first->position, d2->success.first->position))
1338 return 0;
1339
1340 return 1;
e0689256 1341}
e0689256 1342
09051660
RH
1343/* A subroutine of merge_trees; given two nodes that have been declared
1344 identical, cope with two insn accept states. If they differ in the
1345 number of clobbers, then the conflict was created by make_insn_sequence
5b7c7046 1346 and we can drop the with-clobbers version on the floor. If both
09051660
RH
1347 nodes have no additional clobbers, we have found an ambiguity in the
1348 source machine description. */
1349
1350static void
3d7aafde 1351merge_accept_insn (struct decision *oldd, struct decision *addd)
ec65fa66 1352{
09051660
RH
1353 struct decision_test *old, *add;
1354
1355 for (old = oldd->tests; old; old = old->next)
1356 if (old->type == DT_accept_insn)
1357 break;
1358 if (old == NULL)
1359 return;
e0689256 1360
09051660
RH
1361 for (add = addd->tests; add; add = add->next)
1362 if (add->type == DT_accept_insn)
1363 break;
1364 if (add == NULL)
1365 return;
e0689256 1366
09051660
RH
1367 /* If one node is for a normal insn and the second is for the base
1368 insn with clobbers stripped off, the second node should be ignored. */
e0689256 1369
09051660
RH
1370 if (old->u.insn.num_clobbers_to_add == 0
1371 && add->u.insn.num_clobbers_to_add > 0)
1372 {
1373 /* Nothing to do here. */
1374 }
1375 else if (old->u.insn.num_clobbers_to_add > 0
1376 && add->u.insn.num_clobbers_to_add == 0)
1377 {
1378 /* In this case, replace OLD with ADD. */
1379 old->u.insn = add->u.insn;
1380 }
1381 else
1382 {
bcdaba58
RH
1383 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1384 get_insn_name (add->u.insn.code_number),
1385 get_insn_name (old->u.insn.code_number));
1386 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1387 get_insn_name (old->u.insn.code_number));
1388 error_count++;
09051660 1389 }
e0689256 1390}
e0689256 1391
09051660
RH
1392/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1393
1394static void
3d7aafde 1395merge_trees (struct decision_head *oldh, struct decision_head *addh)
e0689256 1396{
09051660 1397 struct decision *next, *add;
e0689256 1398
09051660
RH
1399 if (addh->first == 0)
1400 return;
1401 if (oldh->first == 0)
1402 {
1403 *oldh = *addh;
1404 return;
1405 }
ec65fa66 1406
09051660
RH
1407 /* Trying to merge bits at different positions isn't possible. */
1408 if (strcmp (oldh->first->position, addh->first->position))
e0689256
RK
1409 abort ();
1410
09051660 1411 for (add = addh->first; add ; add = next)
ec65fa66 1412 {
09051660 1413 struct decision *old, *insert_before = NULL;
e0689256
RK
1414
1415 next = add->next;
1416
09051660
RH
1417 /* The semantics of pattern matching state that the tests are
1418 done in the order given in the MD file so that if an insn
1419 matches two patterns, the first one will be used. However,
1420 in practice, most, if not all, patterns are unambiguous so
1421 that their order is independent. In that case, we can merge
1422 identical tests and group all similar modes and codes together.
e0689256
RK
1423
1424 Scan starting from the end of OLDH until we reach a point
09051660
RH
1425 where we reach the head of the list or where we pass a
1426 pattern that could also be true if NEW is true. If we find
1427 an identical pattern, we can merge them. Also, record the
1428 last node that tests the same code and mode and the last one
1429 that tests just the same mode.
e0689256
RK
1430
1431 If we have no match, place NEW after the closest match we found. */
5b7c7046 1432
09051660 1433 for (old = oldh->last; old; old = old->prev)
ec65fa66 1434 {
09051660 1435 if (nodes_identical (old, add))
e0689256 1436 {
09051660
RH
1437 merge_accept_insn (old, add);
1438 merge_trees (&old->success, &add->success);
1439 goto merged_nodes;
1440 }
e0689256 1441
09051660
RH
1442 if (maybe_both_true (old, add, 0))
1443 break;
e0689256 1444
09051660
RH
1445 /* Insert the nodes in DT test type order, which is roughly
1446 how expensive/important the test is. Given that the tests
1447 are also ordered within the list, examining the first is
1448 sufficient. */
dbbbbf3b 1449 if ((int) add->tests->type < (int) old->tests->type)
09051660
RH
1450 insert_before = old;
1451 }
de6a431b 1452
09051660
RH
1453 if (insert_before == NULL)
1454 {
1455 add->next = NULL;
1456 add->prev = oldh->last;
1457 oldh->last->next = add;
1458 oldh->last = add;
1459 }
1460 else
1461 {
1462 if ((add->prev = insert_before->prev) != NULL)
1463 add->prev->next = add;
1464 else
1465 oldh->first = add;
1466 add->next = insert_before;
1467 insert_before->prev = add;
1468 }
1469
1470 merged_nodes:;
1471 }
1472}
1473\f
5b7c7046 1474/* Walk the tree looking for sub-nodes that perform common tests.
09051660
RH
1475 Factor out the common test into a new node. This enables us
1476 (depending on the test type) to emit switch statements later. */
1477
1478static void
3d7aafde 1479factor_tests (struct decision_head *head)
09051660
RH
1480{
1481 struct decision *first, *next;
e0689256 1482
09051660
RH
1483 for (first = head->first; first && first->next; first = next)
1484 {
1485 enum decision_type type;
1486 struct decision *new, *old_last;
e0689256 1487
09051660
RH
1488 type = first->tests->type;
1489 next = first->next;
e0689256 1490
09051660
RH
1491 /* Want at least two compatible sequential nodes. */
1492 if (next->tests->type != type)
1493 continue;
ec65fa66 1494
5b7c7046 1495 /* Don't want all node types, just those we can turn into
09051660
RH
1496 switch statements. */
1497 if (type != DT_mode
1498 && type != DT_code
1499 && type != DT_veclen
1500 && type != DT_elt_zero_int
1501 && type != DT_elt_one_int
070ef6f4 1502 && type != DT_elt_zero_wide_safe)
e0689256 1503 continue;
ec65fa66 1504
09051660
RH
1505 /* If we'd been performing more than one test, create a new node
1506 below our first test. */
1507 if (first->tests->next != NULL)
1508 {
1509 new = new_decision (first->position, &first->success);
1510 new->tests = first->tests->next;
1511 first->tests->next = NULL;
1512 }
5b7c7046 1513
09051660
RH
1514 /* Crop the node tree off after our first test. */
1515 first->next = NULL;
1516 old_last = head->last;
1517 head->last = first;
1518
1519 /* For each compatible test, adjust to perform only one test in
1520 the top level node, then merge the node back into the tree. */
1521 do
1522 {
1523 struct decision_head h;
1524
1525 if (next->tests->next != NULL)
1526 {
1527 new = new_decision (next->position, &next->success);
1528 new->tests = next->tests->next;
1529 next->tests->next = NULL;
1530 }
1531 new = next;
1532 next = next->next;
1533 new->next = NULL;
1534 h.first = h.last = new;
ec65fa66 1535
09051660
RH
1536 merge_trees (head, &h);
1537 }
1538 while (next && next->tests->type == type);
ec65fa66 1539
09051660
RH
1540 /* After we run out of compatible tests, graft the remaining nodes
1541 back onto the tree. */
1542 if (next)
e0689256 1543 {
09051660
RH
1544 next->prev = head->last;
1545 head->last->next = next;
1546 head->last = old_last;
e0689256 1547 }
09051660 1548 }
ec65fa66 1549
09051660
RH
1550 /* Recurse. */
1551 for (first = head->first; first; first = first->next)
1552 factor_tests (&first->success);
1553}
1554
1555/* After factoring, try to simplify the tests on any one node.
1556 Tests that are useful for switch statements are recognizable
1557 by having only a single test on a node -- we'll be manipulating
1558 nodes with multiple tests:
1559
1560 If we have mode tests or code tests that are redundant with
1561 predicates, remove them. */
1562
1563static void
3d7aafde 1564simplify_tests (struct decision_head *head)
09051660
RH
1565{
1566 struct decision *tree;
1567
1568 for (tree = head->first; tree; tree = tree->next)
1569 {
1570 struct decision_test *a, *b;
1571
1572 a = tree->tests;
1573 b = a->next;
1574 if (b == NULL)
1575 continue;
1576
1577 /* Find a predicate node. */
1578 while (b && b->type != DT_pred)
1579 b = b->next;
1580 if (b)
e0689256 1581 {
09051660
RH
1582 /* Due to how these tests are constructed, we don't even need
1583 to check that the mode and code are compatible -- they were
1584 generated from the predicate in the first place. */
1585 while (a->type == DT_mode || a->type == DT_code)
1586 a = a->next;
1587 tree->tests = a;
e0689256
RK
1588 }
1589 }
ec65fa66 1590
09051660
RH
1591 /* Recurse. */
1592 for (tree = head->first; tree; tree = tree->next)
1593 simplify_tests (&tree->success);
ec65fa66 1594}
09051660 1595
e0689256
RK
1596/* Count the number of subnodes of HEAD. If the number is high enough,
1597 make the first node in HEAD start a separate subroutine in the C code
09051660 1598 that is generated. */
ec65fa66
RK
1599
1600static int
3d7aafde 1601break_out_subroutines (struct decision_head *head, int initial)
ec65fa66
RK
1602{
1603 int size = 0;
87bd0490 1604 struct decision *sub;
e0689256 1605
09051660
RH
1606 for (sub = head->first; sub; sub = sub->next)
1607 size += 1 + break_out_subroutines (&sub->success, 0);
e0689256
RK
1608
1609 if (size > SUBROUTINE_THRESHOLD && ! initial)
ec65fa66 1610 {
09051660 1611 head->first->subroutine_number = ++next_subroutine_number;
ec65fa66
RK
1612 size = 1;
1613 }
1614 return size;
1615}
09051660
RH
1616
1617/* For each node p, find the next alternative that might be true
1618 when p is true. */
ec65fa66
RK
1619
1620static void
3d7aafde 1621find_afterward (struct decision_head *head, struct decision *real_afterward)
ec65fa66 1622{
09051660 1623 struct decision *p, *q, *afterward;
69277eec 1624
a1f300c0 1625 /* We can't propagate alternatives across subroutine boundaries.
09051660 1626 This is not incorrect, merely a minor optimization loss. */
ec65fa66 1627
09051660
RH
1628 p = head->first;
1629 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
e0689256 1630
09051660 1631 for ( ; p ; p = p->next)
e0689256 1632 {
09051660
RH
1633 /* Find the next node that might be true if this one fails. */
1634 for (q = p->next; q ; q = q->next)
1635 if (maybe_both_true (p, q, 1))
1636 break;
e0689256 1637
5b7c7046 1638 /* If we reached the end of the list without finding one,
09051660
RH
1639 use the incoming afterward position. */
1640 if (!q)
1641 q = afterward;
1642 p->afterward = q;
1643 if (q)
1644 q->need_label = 1;
e0689256
RK
1645 }
1646
09051660
RH
1647 /* Recurse. */
1648 for (p = head->first; p ; p = p->next)
1649 if (p->success.first)
1650 find_afterward (&p->success, p->afterward);
1651
1652 /* When we are generating a subroutine, record the real afterward
1653 position in the first node where write_tree can find it, and we
1654 can do the right thing at the subroutine call site. */
1655 p = head->first;
1656 if (p->subroutine_number > 0)
1657 p->afterward = real_afterward;
1658}
1659\f
1660/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1661 actions are necessary to move to NEWPOS. If we fail to move to the
cc2902df 1662 new state, branch to node AFTERWARD if nonzero, otherwise return.
e0689256 1663
09051660 1664 Failure to move to the new state can only occur if we are trying to
dc297297 1665 match multiple insns and we try to step past the end of the stream. */
e0689256 1666
09051660 1667static void
3d7aafde
AJ
1668change_state (const char *oldpos, const char *newpos,
1669 struct decision *afterward, const char *indent)
09051660
RH
1670{
1671 int odepth = strlen (oldpos);
1672 int ndepth = strlen (newpos);
1673 int depth;
1674 int old_has_insn, new_has_insn;
e0689256 1675
09051660
RH
1676 /* Pop up as many levels as necessary. */
1677 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1678 continue;
ec65fa66 1679
09051660
RH
1680 /* Hunt for the last [A-Z] in both strings. */
1681 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
0df6c2c7 1682 if (ISUPPER (oldpos[old_has_insn]))
09051660 1683 break;
0deeec4e 1684 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
0df6c2c7 1685 if (ISUPPER (newpos[new_has_insn]))
09051660 1686 break;
e0689256 1687
09051660
RH
1688 /* Go down to desired level. */
1689 while (depth < ndepth)
1690 {
dc297297 1691 /* It's a different insn from the first one. */
0df6c2c7 1692 if (ISUPPER (newpos[depth]))
ec65fa66 1693 {
09051660
RH
1694 /* We can only fail if we're moving down the tree. */
1695 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
e0689256 1696 {
5b7c7046 1697 printf ("%stem = peep2_next_insn (%d);\n",
09051660 1698 indent, newpos[depth] - 'A');
e0689256
RK
1699 }
1700 else
1701 {
5b7c7046 1702 printf ("%stem = peep2_next_insn (%d);\n",
09051660
RH
1703 indent, newpos[depth] - 'A');
1704 printf ("%sif (tem == NULL_RTX)\n", indent);
1705 if (afterward)
1706 printf ("%s goto L%d;\n", indent, afterward->number);
e0689256 1707 else
09051660 1708 printf ("%s goto ret0;\n", indent);
e0689256 1709 }
23280139 1710 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
ec65fa66 1711 }
0df6c2c7 1712 else if (ISLOWER (newpos[depth]))
09051660
RH
1713 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1714 indent, depth + 1, depth, newpos[depth] - 'a');
1715 else
1716 printf ("%sx%d = XEXP (x%d, %c);\n",
1717 indent, depth + 1, depth, newpos[depth]);
1718 ++depth;
1719 }
1720}
1721\f
1722/* Print the enumerator constant for CODE -- the upcase version of
1723 the name. */
1724
1725static void
3d7aafde 1726print_code (enum rtx_code code)
09051660 1727{
b3694847 1728 const char *p;
09051660
RH
1729 for (p = GET_RTX_NAME (code); *p; p++)
1730 putchar (TOUPPER (*p));
1731}
ec65fa66 1732
09051660 1733/* Emit code to cross an afterward link -- change state and branch. */
ec65fa66 1734
09051660 1735static void
3d7aafde
AJ
1736write_afterward (struct decision *start, struct decision *afterward,
1737 const char *indent)
09051660
RH
1738{
1739 if (!afterward || start->subroutine_number > 0)
1740 printf("%sgoto ret0;\n", indent);
1741 else
1742 {
1743 change_state (start->position, afterward->position, NULL, indent);
1744 printf ("%sgoto L%d;\n", indent, afterward->number);
1745 }
1746}
e0689256 1747
4f2ca7f5
RH
1748/* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1749 special care to avoid "decimal constant is so large that it is unsigned"
1750 warnings in the resulting code. */
1751
1752static void
1753print_host_wide_int (HOST_WIDE_INT val)
1754{
1755 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1756 if (val == min)
1757 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1758 else
1759 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1760}
1761
5b7c7046 1762/* Emit a switch statement, if possible, for an initial sequence of
09051660 1763 nodes at START. Return the first node yet untested. */
e0689256 1764
09051660 1765static struct decision *
3d7aafde 1766write_switch (struct decision *start, int depth)
09051660
RH
1767{
1768 struct decision *p = start;
1769 enum decision_type type = p->tests->type;
1651ab85 1770 struct decision *needs_label = NULL;
ec65fa66 1771
09051660
RH
1772 /* If we have two or more nodes in sequence that test the same one
1773 thing, we may be able to use a switch statement. */
e0689256 1774
09051660
RH
1775 if (!p->next
1776 || p->tests->next
1777 || p->next->tests->type != type
2cec75a1
RH
1778 || p->next->tests->next
1779 || nodes_identical_1 (p->tests, p->next->tests))
09051660 1780 return p;
e0689256 1781
09051660
RH
1782 /* DT_code is special in that we can do interesting things with
1783 known predicates at the same time. */
1784 if (type == DT_code)
1785 {
1786 char codemap[NUM_RTX_CODE];
1787 struct decision *ret;
1e193337 1788 RTX_CODE code;
ec65fa66 1789
09051660 1790 memset (codemap, 0, sizeof(codemap));
ec65fa66 1791
09051660 1792 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1e193337 1793 code = p->tests->u.code;
5b7c7046 1794 do
ec65fa66 1795 {
1651ab85
AO
1796 if (p != start && p->need_label && needs_label == NULL)
1797 needs_label = p;
1798
09051660
RH
1799 printf (" case ");
1800 print_code (code);
1801 printf (":\n goto L%d;\n", p->success.first->number);
1802 p->success.first->need_label = 1;
1803
1804 codemap[code] = 1;
1805 p = p->next;
1806 }
1e193337
RH
1807 while (p
1808 && ! p->tests->next
1809 && p->tests->type == DT_code
1810 && ! codemap[code = p->tests->u.code]);
09051660
RH
1811
1812 /* If P is testing a predicate that we know about and we haven't
1813 seen any of the codes that are valid for the predicate, we can
1814 write a series of "case" statement, one for each possible code.
1815 Since we are already in a switch, these redundant tests are very
1816 cheap and will reduce the number of predicates called. */
1817
1818 /* Note that while we write out cases for these predicates here,
1819 we don't actually write the test here, as it gets kinda messy.
1820 It is trivial to leave this to later by telling our caller that
1821 we only processed the CODE tests. */
1651ab85
AO
1822 if (needs_label != NULL)
1823 ret = needs_label;
1824 else
1825 ret = p;
09051660
RH
1826
1827 while (p && p->tests->type == DT_pred
1828 && p->tests->u.pred.index >= 0)
1829 {
1830 const RTX_CODE *c;
ec65fa66 1831
09051660
RH
1832 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1833 if (codemap[(int) *c] != 0)
1834 goto pred_done;
e0689256 1835
09051660 1836 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
ec65fa66 1837 {
09051660
RH
1838 printf (" case ");
1839 print_code (*c);
1840 printf (":\n");
1841 codemap[(int) *c] = 1;
ec65fa66 1842 }
e0689256 1843
09051660
RH
1844 printf (" goto L%d;\n", p->number);
1845 p->need_label = 1;
1846 p = p->next;
ec65fa66
RK
1847 }
1848
09051660
RH
1849 pred_done:
1850 /* Make the default case skip the predicates we managed to match. */
e0689256 1851
09051660
RH
1852 printf (" default:\n");
1853 if (p != ret)
ec65fa66 1854 {
09051660 1855 if (p)
b030d598 1856 {
09051660
RH
1857 printf (" goto L%d;\n", p->number);
1858 p->need_label = 1;
b030d598 1859 }
e0689256 1860 else
09051660 1861 write_afterward (start, start->afterward, " ");
ec65fa66 1862 }
ec65fa66 1863 else
09051660
RH
1864 printf (" break;\n");
1865 printf (" }\n");
1866
1867 return ret;
1868 }
1869 else if (type == DT_mode
1870 || type == DT_veclen
1871 || type == DT_elt_zero_int
1872 || type == DT_elt_one_int
070ef6f4 1873 || type == DT_elt_zero_wide_safe)
09051660 1874 {
9591d210 1875 const char *indent = "";
9e9f3ede 1876
9591d210
JH
1877 /* We cast switch parameter to integer, so we must ensure that the value
1878 fits. */
1879 if (type == DT_elt_zero_wide_safe)
1880 {
1881 indent = " ";
1882 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1883 }
1884 printf ("%s switch (", indent);
09051660
RH
1885 switch (type)
1886 {
1887 case DT_mode:
c8d8ed65 1888 printf ("GET_MODE (x%d)", depth);
09051660
RH
1889 break;
1890 case DT_veclen:
c8d8ed65 1891 printf ("XVECLEN (x%d, 0)", depth);
09051660
RH
1892 break;
1893 case DT_elt_zero_int:
c8d8ed65 1894 printf ("XINT (x%d, 0)", depth);
09051660
RH
1895 break;
1896 case DT_elt_one_int:
c8d8ed65 1897 printf ("XINT (x%d, 1)", depth);
09051660 1898 break;
070ef6f4 1899 case DT_elt_zero_wide_safe:
c8d8ed65
RK
1900 /* Convert result of XWINT to int for portability since some C
1901 compilers won't do it and some will. */
1902 printf ("(int) XWINT (x%d, 0)", depth);
09051660
RH
1903 break;
1904 default:
1905 abort ();
1906 }
9591d210 1907 printf (")\n%s {\n", indent);
cba998bf 1908
09051660 1909 do
e0689256 1910 {
2cec75a1
RH
1911 /* Merge trees will not unify identical nodes if their
1912 sub-nodes are at different levels. Thus we must check
1913 for duplicate cases. */
1914 struct decision *q;
1915 for (q = start; q != p; q = q->next)
1916 if (nodes_identical_1 (p->tests, q->tests))
1917 goto case_done;
1918
1651ab85
AO
1919 if (p != start && p->need_label && needs_label == NULL)
1920 needs_label = p;
1921
9591d210 1922 printf ("%s case ", indent);
09051660 1923 switch (type)
cba998bf 1924 {
09051660
RH
1925 case DT_mode:
1926 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1927 break;
1928 case DT_veclen:
1929 printf ("%d", p->tests->u.veclen);
1930 break;
1931 case DT_elt_zero_int:
1932 case DT_elt_one_int:
1933 case DT_elt_zero_wide:
070ef6f4 1934 case DT_elt_zero_wide_safe:
4f2ca7f5 1935 print_host_wide_int (p->tests->u.intval);
09051660
RH
1936 break;
1937 default:
1938 abort ();
cba998bf 1939 }
9591d210 1940 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
09051660 1941 p->success.first->need_label = 1;
cba998bf 1942
09051660 1943 p = p->next;
e0689256 1944 }
09051660 1945 while (p && p->tests->type == type && !p->tests->next);
2cec75a1
RH
1946
1947 case_done:
9591d210
JH
1948 printf ("%s default:\n%s break;\n%s }\n",
1949 indent, indent, indent);
ec65fa66 1950
1651ab85 1951 return needs_label != NULL ? needs_label : p;
09051660
RH
1952 }
1953 else
1954 {
fbe5a4a6 1955 /* None of the other tests are amenable. */
09051660
RH
1956 return p;
1957 }
1958}
ec65fa66 1959
09051660 1960/* Emit code for one test. */
e0689256 1961
09051660 1962static void
3d7aafde
AJ
1963write_cond (struct decision_test *p, int depth,
1964 enum routine_type subroutine_type)
09051660
RH
1965{
1966 switch (p->type)
1967 {
1968 case DT_mode:
1969 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1970 break;
e0689256 1971
09051660
RH
1972 case DT_code:
1973 printf ("GET_CODE (x%d) == ", depth);
1974 print_code (p->u.code);
1975 break;
1976
1977 case DT_veclen:
1978 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1979 break;
1980
1981 case DT_elt_zero_int:
1982 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1983 break;
1984
1985 case DT_elt_one_int:
1986 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1987 break;
1988
1989 case DT_elt_zero_wide:
070ef6f4 1990 case DT_elt_zero_wide_safe:
09051660 1991 printf ("XWINT (x%d, 0) == ", depth);
4f2ca7f5 1992 print_host_wide_int (p->u.intval);
09051660
RH
1993 break;
1994
ccdc1703
KH
1995 case DT_const_int:
1996 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1997 depth, (int) p->u.intval);
1998 break;
1999
521b9224
RH
2000 case DT_veclen_ge:
2001 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2002 break;
2003
09051660
RH
2004 case DT_dup:
2005 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2006 break;
2007
2008 case DT_pred:
2009 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2010 GET_MODE_NAME (p->u.pred.mode));
2011 break;
2012
2013 case DT_c_test:
2014 printf ("(%s)", p->u.c_test);
2015 break;
2016
2017 case DT_accept_insn:
2018 switch (subroutine_type)
2019 {
2020 case RECOG:
2021 if (p->u.insn.num_clobbers_to_add == 0)
2022 abort ();
2023 printf ("pnum_clobbers != NULL");
2024 break;
2025
2026 default:
2027 abort ();
ec65fa66 2028 }
09051660 2029 break;
ec65fa66 2030
09051660
RH
2031 default:
2032 abort ();
e0689256 2033 }
09051660 2034}
ec65fa66 2035
09051660
RH
2036/* Emit code for one action. The previous tests have succeeded;
2037 TEST is the last of the chain. In the normal case we simply
2038 perform a state change. For the `accept' tests we must do more work. */
ec65fa66 2039
09051660 2040static void
3d7aafde
AJ
2041write_action (struct decision *p, struct decision_test *test,
2042 int depth, int uncond, struct decision *success,
2043 enum routine_type subroutine_type)
09051660
RH
2044{
2045 const char *indent;
2046 int want_close = 0;
2047
2048 if (uncond)
2049 indent = " ";
2050 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
e0689256 2051 {
09051660
RH
2052 fputs (" {\n", stdout);
2053 indent = " ";
2054 want_close = 1;
e0689256 2055 }
09051660
RH
2056 else
2057 indent = " ";
ec65fa66 2058
09051660 2059 if (test->type == DT_accept_op)
e0689256 2060 {
09051660
RH
2061 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2062
2063 /* Only allow DT_accept_insn to follow. */
2064 if (test->next)
2065 {
2066 test = test->next;
2067 if (test->type != DT_accept_insn)
2068 abort ();
2069 }
ec65fa66
RK
2070 }
2071
09051660
RH
2072 /* Sanity check that we're now at the end of the list of tests. */
2073 if (test->next)
e0689256 2074 abort ();
ec65fa66 2075
09051660 2076 if (test->type == DT_accept_insn)
ec65fa66 2077 {
09051660
RH
2078 switch (subroutine_type)
2079 {
2080 case RECOG:
2081 if (test->u.insn.num_clobbers_to_add != 0)
2082 printf ("%s*pnum_clobbers = %d;\n",
2083 indent, test->u.insn.num_clobbers_to_add);
2084 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2085 break;
2086
2087 case SPLIT:
a406f566 2088 printf ("%sreturn gen_split_%d (insn, operands);\n",
09051660
RH
2089 indent, test->u.insn.code_number);
2090 break;
2091
2092 case PEEPHOLE2:
23280139
RH
2093 {
2094 int match_len = 0, i;
2095
2096 for (i = strlen (p->position) - 1; i >= 0; --i)
0df6c2c7 2097 if (ISUPPER (p->position[i]))
23280139
RH
2098 {
2099 match_len = p->position[i] - 'A';
2100 break;
2101 }
2102 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2103 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2104 indent, test->u.insn.code_number);
2105 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2106 }
09051660
RH
2107 break;
2108
2109 default:
2110 abort ();
2111 }
ec65fa66
RK
2112 }
2113 else
09051660
RH
2114 {
2115 printf("%sgoto L%d;\n", indent, success->number);
2116 success->need_label = 1;
2117 }
ec65fa66 2118
09051660
RH
2119 if (want_close)
2120 fputs (" }\n", stdout);
ec65fa66
RK
2121}
2122
09051660
RH
2123/* Return 1 if the test is always true and has no fallthru path. Return -1
2124 if the test does have a fallthru path, but requires that the condition be
2125 terminated. Otherwise return 0 for a normal test. */
2126/* ??? is_unconditional is a stupid name for a tri-state function. */
2127
ec65fa66 2128static int
3d7aafde 2129is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
ec65fa66 2130{
09051660
RH
2131 if (t->type == DT_accept_op)
2132 return 1;
ec65fa66 2133
09051660
RH
2134 if (t->type == DT_accept_insn)
2135 {
2136 switch (subroutine_type)
2137 {
2138 case RECOG:
2139 return (t->u.insn.num_clobbers_to_add == 0);
2140 case SPLIT:
2141 return 1;
2142 case PEEPHOLE2:
2143 return -1;
2144 default:
2145 abort ();
2146 }
2147 }
ec65fa66 2148
09051660 2149 return 0;
ec65fa66
RK
2150}
2151
09051660
RH
2152/* Emit code for one node -- the conditional and the accompanying action.
2153 Return true if there is no fallthru path. */
2154
ec65fa66 2155static int
3d7aafde
AJ
2156write_node (struct decision *p, int depth,
2157 enum routine_type subroutine_type)
ec65fa66 2158{
09051660
RH
2159 struct decision_test *test, *last_test;
2160 int uncond;
ec65fa66 2161
ccdc1703
KH
2162 /* Scan the tests and simplify comparisons against small
2163 constants. */
2164 for (test = p->tests; test; test = test->next)
2165 {
2166 if (test->type == DT_code
2167 && test->u.code == CONST_INT
2168 && test->next
2169 && test->next->type == DT_elt_zero_wide_safe
2170 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2171 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2172 {
2173 test->type = DT_const_int;
2174 test->u.intval = test->next->u.intval;
2175 test->next = test->next->next;
2176 }
2177 }
2178
09051660
RH
2179 last_test = test = p->tests;
2180 uncond = is_unconditional (test, subroutine_type);
2181 if (uncond == 0)
2182 {
2183 printf (" if (");
2184 write_cond (test, depth, subroutine_type);
2185
2186 while ((test = test->next) != NULL)
2187 {
09051660 2188 last_test = test;
be2c39f8 2189 if (is_unconditional (test, subroutine_type))
09051660
RH
2190 break;
2191
2192 printf ("\n && ");
2193 write_cond (test, depth, subroutine_type);
2194 }
2195
2196 printf (")\n");
2197 }
2198
23280139 2199 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
09051660
RH
2200
2201 return uncond > 0;
ec65fa66
RK
2202}
2203
09051660
RH
2204/* Emit code for all of the sibling nodes of HEAD. */
2205
ec65fa66 2206static void
3d7aafde
AJ
2207write_tree_1 (struct decision_head *head, int depth,
2208 enum routine_type subroutine_type)
ec65fa66 2209{
09051660
RH
2210 struct decision *p, *next;
2211 int uncond = 0;
e0689256 2212
09051660
RH
2213 for (p = head->first; p ; p = next)
2214 {
2215 /* The label for the first element was printed in write_tree. */
2216 if (p != head->first && p->need_label)
2217 OUTPUT_LABEL (" ", p->number);
2218
2219 /* Attempt to write a switch statement for a whole sequence. */
2220 next = write_switch (p, depth);
2221 if (p != next)
2222 uncond = 0;
2223 else
2224 {
2225 /* Failed -- fall back and write one node. */
2226 uncond = write_node (p, depth, subroutine_type);
2227 next = p->next;
2228 }
2229 }
e0689256 2230
09051660
RH
2231 /* Finished with this chain. Close a fallthru path by branching
2232 to the afterward node. */
2233 if (! uncond)
2234 write_afterward (head->last, head->last->afterward, " ");
2235}
e0689256 2236
09051660
RH
2237/* Write out the decision tree starting at HEAD. PREVPOS is the
2238 position at the node that branched to this node. */
e0689256
RK
2239
2240static void
3d7aafde
AJ
2241write_tree (struct decision_head *head, const char *prevpos,
2242 enum routine_type type, int initial)
e0689256 2243{
b3694847 2244 struct decision *p = head->first;
e0689256 2245
09051660
RH
2246 putchar ('\n');
2247 if (p->need_label)
2248 OUTPUT_LABEL (" ", p->number);
2249
2250 if (! initial && p->subroutine_number > 0)
e0689256 2251 {
09051660
RH
2252 static const char * const name_prefix[] = {
2253 "recog", "split", "peephole2"
2254 };
2255
2256 static const char * const call_suffix[] = {
23280139 2257 ", pnum_clobbers", "", ", _pmatch_len"
09051660 2258 };
e0689256 2259
09051660
RH
2260 /* This node has been broken out into a separate subroutine.
2261 Call it, test the result, and branch accordingly. */
2262
2263 if (p->afterward)
e0689256
RK
2264 {
2265 printf (" tem = %s_%d (x0, insn%s);\n",
09051660 2266 name_prefix[type], p->subroutine_number, call_suffix[type]);
ede7cd44 2267 if (IS_SPLIT (type))
09051660 2268 printf (" if (tem != 0)\n return tem;\n");
71bde1f3 2269 else
09051660
RH
2270 printf (" if (tem >= 0)\n return tem;\n");
2271
2272 change_state (p->position, p->afterward->position, NULL, " ");
2273 printf (" goto L%d;\n", p->afterward->number);
e0689256
RK
2274 }
2275 else
09051660
RH
2276 {
2277 printf (" return %s_%d (x0, insn%s);\n",
2278 name_prefix[type], p->subroutine_number, call_suffix[type]);
2279 }
e0689256 2280 }
09051660
RH
2281 else
2282 {
2283 int depth = strlen (p->position);
e0689256 2284
09051660
RH
2285 change_state (prevpos, p->position, head->last->afterward, " ");
2286 write_tree_1 (head, depth, type);
e0689256 2287
09051660
RH
2288 for (p = head->first; p; p = p->next)
2289 if (p->success.first)
2290 write_tree (&p->success, p->position, type, 0);
2291 }
e0689256
RK
2292}
2293
09051660
RH
2294/* Write out a subroutine of type TYPE to do comparisons starting at
2295 node TREE. */
ede7cd44 2296
09051660 2297static void
3d7aafde 2298write_subroutine (struct decision_head *head, enum routine_type type)
09051660 2299{
e8f9b13a 2300 int subfunction = head->first ? head->first->subroutine_number : 0;
09051660
RH
2301 const char *s_or_e;
2302 char extension[32];
2303 int i;
5b7c7046 2304
09051660 2305 s_or_e = subfunction ? "static " : "";
e0689256 2306
09051660
RH
2307 if (subfunction)
2308 sprintf (extension, "_%d", subfunction);
2309 else if (type == RECOG)
2310 extension[0] = '\0';
2311 else
2312 strcpy (extension, "_insns");
2313
913d0833
KG
2314 switch (type)
2315 {
2316 case RECOG:
913d0833 2317 printf ("%sint\n\
6906ba40 2318recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
913d0833
KG
2319 break;
2320 case SPLIT:
913d0833 2321 printf ("%srtx\n\
6906ba40
KG
2322split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2323 s_or_e, extension);
913d0833
KG
2324 break;
2325 case PEEPHOLE2:
913d0833 2326 printf ("%srtx\n\
6906ba40
KG
2327peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2328 s_or_e, extension);
913d0833
KG
2329 break;
2330 }
09051660 2331
b3694847 2332 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
09051660 2333 for (i = 1; i <= max_depth; i++)
b3694847 2334 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
09051660 2335
09051660
RH
2336 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2337
d90ffc8d
JH
2338 if (!subfunction)
2339 printf (" recog_data.insn = NULL_RTX;\n");
2340
e8f9b13a
RH
2341 if (head->first)
2342 write_tree (head, "", type, 1);
2343 else
2344 printf (" goto ret0;\n");
09051660 2345
09051660
RH
2346 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2347}
2348
2349/* In break_out_subroutines, we discovered the boundaries for the
2350 subroutines, but did not write them out. Do so now. */
e0689256 2351
ec65fa66 2352static void
3d7aafde 2353write_subroutines (struct decision_head *head, enum routine_type type)
ec65fa66 2354{
09051660 2355 struct decision *p;
ec65fa66 2356
09051660
RH
2357 for (p = head->first; p ; p = p->next)
2358 if (p->success.first)
2359 write_subroutines (&p->success, type);
ec65fa66 2360
09051660
RH
2361 if (head->first->subroutine_number > 0)
2362 write_subroutine (head, type);
2363}
ede7cd44 2364
09051660 2365/* Begin the output file. */
ede7cd44 2366
09051660 2367static void
3d7aafde 2368write_header (void)
09051660
RH
2369{
2370 puts ("\
2371/* Generated automatically by the program `genrecog' from the target\n\
2372 machine description file. */\n\
2373\n\
2374#include \"config.h\"\n\
2375#include \"system.h\"\n\
4977bab6
ZW
2376#include \"coretypes.h\"\n\
2377#include \"tm.h\"\n\
09051660
RH
2378#include \"rtl.h\"\n\
2379#include \"tm_p.h\"\n\
2380#include \"function.h\"\n\
2381#include \"insn-config.h\"\n\
2382#include \"recog.h\"\n\
2383#include \"real.h\"\n\
2384#include \"output.h\"\n\
2385#include \"flags.h\"\n\
b1afd7f4
KG
2386#include \"hard-reg-set.h\"\n\
2387#include \"resource.h\"\n\
04f378ce 2388#include \"toplev.h\"\n\
5b7c7046 2389#include \"reload.h\"\n\
09051660
RH
2390\n");
2391
2392 puts ("\n\
2393/* `recog' contains a decision tree that recognizes whether the rtx\n\
2394 X0 is a valid instruction.\n\
2395\n\
2396 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2397 returns a nonnegative number which is the insn code number for the\n\
2398 pattern that matched. This is the same as the order in the machine\n\
2399 description of the entry that matched. This number can be used as an\n\
3f6790bf
KG
2400 index into `insn_data' and other tables.\n");
2401 puts ("\
09051660
RH
2402 The third argument to recog is an optional pointer to an int. If\n\
2403 present, recog will accept a pattern if it matches except for missing\n\
2404 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2405 the optional pointer will be set to the number of CLOBBERs that need\n\
3f6790bf
KG
2406 to be added (it should be initialized to zero by the caller). If it");
2407 puts ("\
09051660
RH
2408 is set nonzero, the caller should allocate a PARALLEL of the\n\
2409 appropriate size, copy the initial entries, and call add_clobbers\n\
2410 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2411");
2412
2413 puts ("\n\
2414 The function split_insns returns 0 if the rtl could not\n\
2f937369 2415 be split or the split rtl as an INSN list if it can be.\n\
09051660
RH
2416\n\
2417 The function peephole2_insns returns 0 if the rtl could not\n\
2f937369 2418 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
09051660
RH
2419 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2420*/\n\n");
2421}
ec65fa66 2422
09051660
RH
2423\f
2424/* Construct and return a sequence of decisions
2425 that will recognize INSN.
ec65fa66 2426
09051660
RH
2427 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2428
2429static struct decision_head
3d7aafde 2430make_insn_sequence (rtx insn, enum routine_type type)
09051660
RH
2431{
2432 rtx x;
2433 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2199e5fa 2434 int truth = maybe_eval_c_test (c_test);
09051660
RH
2435 struct decision *last;
2436 struct decision_test *test, **place;
2437 struct decision_head head;
3b304f5b 2438 char c_test_pos[2];
09051660 2439
2199e5fa
ZW
2440 /* We should never see an insn whose C test is false at compile time. */
2441 if (truth == 0)
2442 abort ();
2443
09051660
RH
2444 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2445
3b304f5b 2446 c_test_pos[0] = '\0';
09051660 2447 if (type == PEEPHOLE2)
ec65fa66 2448 {
09051660
RH
2449 int i, j;
2450
2451 /* peephole2 gets special treatment:
2452 - X always gets an outer parallel even if it's only one entry
2453 - we remove all traces of outer-level match_scratch and match_dup
2454 expressions here. */
2455 x = rtx_alloc (PARALLEL);
2456 PUT_MODE (x, VOIDmode);
2457 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2458 for (i = j = 0; i < XVECLEN (insn, 0); i++)
ede7cd44 2459 {
09051660
RH
2460 rtx tmp = XVECEXP (insn, 0, i);
2461 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2462 {
2463 XVECEXP (x, 0, j) = tmp;
2464 j++;
2465 }
2466 }
2467 XVECLEN (x, 0) = j;
4e9887c7 2468
4e9887c7
RH
2469 c_test_pos[0] = 'A' + j - 1;
2470 c_test_pos[1] = '\0';
09051660
RH
2471 }
2472 else if (XVECLEN (insn, type == RECOG) == 1)
2473 x = XVECEXP (insn, type == RECOG, 0);
2474 else
2475 {
2476 x = rtx_alloc (PARALLEL);
2477 XVEC (x, 0) = XVEC (insn, type == RECOG);
2478 PUT_MODE (x, VOIDmode);
2479 }
2480
7297e9fc 2481 validate_pattern (x, insn, NULL_RTX, 0);
bcdaba58 2482
09051660
RH
2483 memset(&head, 0, sizeof(head));
2484 last = add_to_sequence (x, &head, "", type, 1);
2485
2486 /* Find the end of the test chain on the last node. */
2487 for (test = last->tests; test->next; test = test->next)
2488 continue;
2489 place = &test->next;
2490
2199e5fa
ZW
2491 /* Skip the C test if it's known to be true at compile time. */
2492 if (truth == -1)
09051660
RH
2493 {
2494 /* Need a new node if we have another test to add. */
2495 if (test->type == DT_accept_op)
2496 {
4e9887c7 2497 last = new_decision (c_test_pos, &last->success);
09051660
RH
2498 place = &last->tests;
2499 }
2500 test = new_decision_test (DT_c_test, &place);
2501 test->u.c_test = c_test;
2502 }
2503
2504 test = new_decision_test (DT_accept_insn, &place);
2505 test->u.insn.code_number = next_insn_code;
bcdaba58 2506 test->u.insn.lineno = pattern_lineno;
09051660
RH
2507 test->u.insn.num_clobbers_to_add = 0;
2508
2509 switch (type)
2510 {
2511 case RECOG:
b20b352b 2512 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
09051660
RH
2513 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2514 If so, set up to recognize the pattern without these CLOBBERs. */
2515
2516 if (GET_CODE (x) == PARALLEL)
2517 {
2518 int i;
2519
2520 /* Find the last non-clobber in the parallel. */
2521 for (i = XVECLEN (x, 0); i > 0; i--)
ede7cd44 2522 {
09051660
RH
2523 rtx y = XVECEXP (x, 0, i - 1);
2524 if (GET_CODE (y) != CLOBBER
2525 || (GET_CODE (XEXP (y, 0)) != REG
2526 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2527 break;
ede7cd44 2528 }
09051660
RH
2529
2530 if (i != XVECLEN (x, 0))
ede7cd44 2531 {
09051660
RH
2532 rtx new;
2533 struct decision_head clobber_head;
ede7cd44 2534
09051660
RH
2535 /* Build a similar insn without the clobbers. */
2536 if (i == 1)
2537 new = XVECEXP (x, 0, 0);
ede7cd44 2538 else
09051660
RH
2539 {
2540 int j;
2541
2542 new = rtx_alloc (PARALLEL);
2543 XVEC (new, 0) = rtvec_alloc (i);
2544 for (j = i - 1; j >= 0; j--)
2545 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2546 }
2547
2548 /* Recognize it. */
2549 memset (&clobber_head, 0, sizeof(clobber_head));
2550 last = add_to_sequence (new, &clobber_head, "", type, 1);
ede7cd44 2551
09051660
RH
2552 /* Find the end of the test chain on the last node. */
2553 for (test = last->tests; test->next; test = test->next)
2554 continue;
2555
2556 /* We definitely have a new test to add -- create a new
2557 node if needed. */
2558 place = &test->next;
2559 if (test->type == DT_accept_op)
2560 {
2561 last = new_decision ("", &last->success);
2562 place = &last->tests;
2563 }
2564
2199e5fa
ZW
2565 /* Skip the C test if it's known to be true at compile
2566 time. */
2567 if (truth == -1)
09051660
RH
2568 {
2569 test = new_decision_test (DT_c_test, &place);
2570 test->u.c_test = c_test;
2571 }
2572
2573 test = new_decision_test (DT_accept_insn, &place);
2574 test->u.insn.code_number = next_insn_code;
bcdaba58 2575 test->u.insn.lineno = pattern_lineno;
09051660
RH
2576 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2577
2578 merge_trees (&head, &clobber_head);
ede7cd44 2579 }
ede7cd44 2580 }
09051660
RH
2581 break;
2582
2583 case SPLIT:
2584 /* Define the subroutine we will call below and emit in genemit. */
a406f566 2585 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
09051660
RH
2586 break;
2587
2588 case PEEPHOLE2:
2589 /* Define the subroutine we will call below and emit in genemit. */
3d7aafde 2590 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
09051660
RH
2591 next_insn_code);
2592 break;
ec65fa66 2593 }
e0689256 2594
09051660 2595 return head;
ec65fa66
RK
2596}
2597
09051660 2598static void
3d7aafde 2599process_tree (struct decision_head *head, enum routine_type subroutine_type)
ec65fa66 2600{
4dc320a5
RH
2601 if (head->first == NULL)
2602 {
2603 /* We can elide peephole2_insns, but not recog or split_insns. */
2604 if (subroutine_type == PEEPHOLE2)
2605 return;
2606 }
2607 else
e8f9b13a
RH
2608 {
2609 factor_tests (head);
ec65fa66 2610
e8f9b13a
RH
2611 next_subroutine_number = 0;
2612 break_out_subroutines (head, 1);
2613 find_afterward (head, NULL);
c1b59dce 2614
4dc320a5
RH
2615 /* We run this after find_afterward, because find_afterward needs
2616 the redundant DT_mode tests on predicates to determine whether
2617 two tests can both be true or not. */
2618 simplify_tests(head);
2619
e8f9b13a
RH
2620 write_subroutines (head, subroutine_type);
2621 }
4dc320a5 2622
09051660
RH
2623 write_subroutine (head, subroutine_type);
2624}
2625\f
3d7aafde 2626extern int main (int, char **);
36f0e0a6 2627
ec65fa66 2628int
3d7aafde 2629main (int argc, char **argv)
ec65fa66
RK
2630{
2631 rtx desc;
09051660 2632 struct decision_head recog_tree, split_tree, peephole2_tree, h;
ec65fa66 2633
f8b6598e 2634 progname = "genrecog";
09051660
RH
2635
2636 memset (&recog_tree, 0, sizeof recog_tree);
2637 memset (&split_tree, 0, sizeof split_tree);
2638 memset (&peephole2_tree, 0, sizeof peephole2_tree);
ec65fa66
RK
2639
2640 if (argc <= 1)
1f978f5f 2641 fatal ("no input file name");
ec65fa66 2642
04d8aa70 2643 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
c88c0d42 2644 return (FATAL_EXIT_CODE);
ec65fa66 2645
ec65fa66
RK
2646 next_insn_code = 0;
2647 next_index = 0;
2648
09051660 2649 write_header ();
ec65fa66
RK
2650
2651 /* Read the machine description. */
2652
2653 while (1)
2654 {
c88c0d42
CP
2655 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2656 if (desc == NULL)
ec65fa66 2657 break;
ec65fa66 2658
ec65fa66 2659 if (GET_CODE (desc) == DEFINE_INSN)
09051660
RH
2660 {
2661 h = make_insn_sequence (desc, RECOG);
2662 merge_trees (&recog_tree, &h);
2663 }
ec65fa66 2664 else if (GET_CODE (desc) == DEFINE_SPLIT)
09051660
RH
2665 {
2666 h = make_insn_sequence (desc, SPLIT);
2667 merge_trees (&split_tree, &h);
2668 }
ede7cd44 2669 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
09051660
RH
2670 {
2671 h = make_insn_sequence (desc, PEEPHOLE2);
2672 merge_trees (&peephole2_tree, &h);
2673 }
5b7c7046 2674
ec65fa66
RK
2675 next_index++;
2676 }
2677
bcdaba58
RH
2678 if (error_count)
2679 return FATAL_EXIT_CODE;
2680
09051660 2681 puts ("\n\n");
ec65fa66 2682
09051660
RH
2683 process_tree (&recog_tree, RECOG);
2684 process_tree (&split_tree, SPLIT);
2685 process_tree (&peephole2_tree, PEEPHOLE2);
ede7cd44 2686
ec65fa66 2687 fflush (stdout);
c1b59dce 2688 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
ec65fa66 2689}
09051660 2690\f
a995e389
RH
2691/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2692const char *
3d7aafde 2693get_insn_name (int code)
a995e389
RH
2694{
2695 if (code < insn_name_ptr_size)
2696 return insn_name_ptr[code];
2697 else
2698 return NULL;
2699}
09051660
RH
2700
2701static void
3d7aafde 2702record_insn_name (int code, const char *name)
09051660
RH
2703{
2704 static const char *last_real_name = "insn";
2705 static int last_real_code = 0;
2706 char *new;
2707
2708 if (insn_name_ptr_size <= code)
2709 {
2710 int new_size;
2711 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
703ad42b 2712 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
5b7c7046 2713 memset (insn_name_ptr + insn_name_ptr_size, 0,
09051660
RH
2714 sizeof(char *) * (new_size - insn_name_ptr_size));
2715 insn_name_ptr_size = new_size;
2716 }
2717
2718 if (!name || name[0] == '\0')
2719 {
2720 new = xmalloc (strlen (last_real_name) + 10);
2721 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2722 }
2723 else
2724 {
2725 last_real_name = new = xstrdup (name);
2726 last_real_code = code;
2727 }
5b7c7046 2728
09051660 2729 insn_name_ptr[code] = new;
5b7c7046 2730}
09051660 2731\f
09051660 2732static void
3d7aafde 2733debug_decision_2 (struct decision_test *test)
09051660
RH
2734{
2735 switch (test->type)
2736 {
2737 case DT_mode:
2738 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2739 break;
2740 case DT_code:
2741 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2742 break;
2743 case DT_veclen:
2744 fprintf (stderr, "veclen=%d", test->u.veclen);
2745 break;
2746 case DT_elt_zero_int:
2747 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2748 break;
2749 case DT_elt_one_int:
2750 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2751 break;
2752 case DT_elt_zero_wide:
90ff44cf 2753 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
09051660 2754 break;
070ef6f4 2755 case DT_elt_zero_wide_safe:
90ff44cf 2756 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
070ef6f4 2757 break;
521b9224
RH
2758 case DT_veclen_ge:
2759 fprintf (stderr, "veclen>=%d", test->u.veclen);
2760 break;
09051660
RH
2761 case DT_dup:
2762 fprintf (stderr, "dup=%d", test->u.dup);
2763 break;
2764 case DT_pred:
2765 fprintf (stderr, "pred=(%s,%s)",
2766 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2767 break;
2768 case DT_c_test:
2769 {
2770 char sub[16+4];
2771 strncpy (sub, test->u.c_test, sizeof(sub));
2772 memcpy (sub+16, "...", 4);
2773 fprintf (stderr, "c_test=\"%s\"", sub);
2774 }
2775 break;
2776 case DT_accept_op:
2777 fprintf (stderr, "A_op=%d", test->u.opno);
2778 break;
2779 case DT_accept_insn:
5b7c7046 2780 fprintf (stderr, "A_insn=(%d,%d)",
09051660
RH
2781 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2782 break;
2783
2784 default:
2785 abort ();
2786 }
2787}
2788
2789static void
3d7aafde 2790debug_decision_1 (struct decision *d, int indent)
09051660
RH
2791{
2792 int i;
2793 struct decision_test *test;
2794
2795 if (d == NULL)
2796 {
2797 for (i = 0; i < indent; ++i)
2798 putc (' ', stderr);
2799 fputs ("(nil)\n", stderr);
2800 return;
2801 }
2802
2803 for (i = 0; i < indent; ++i)
2804 putc (' ', stderr);
2805
2806 putc ('{', stderr);
2807 test = d->tests;
2808 if (test)
2809 {
2810 debug_decision_2 (test);
2811 while ((test = test->next) != NULL)
2812 {
2813 fputs (" + ", stderr);
2814 debug_decision_2 (test);
2815 }
2816 }
4dc320a5
RH
2817 fprintf (stderr, "} %d n %d a %d\n", d->number,
2818 (d->next ? d->next->number : -1),
2819 (d->afterward ? d->afterward->number : -1));
09051660
RH
2820}
2821
2822static void
3d7aafde 2823debug_decision_0 (struct decision *d, int indent, int maxdepth)
09051660
RH
2824{
2825 struct decision *n;
2826 int i;
2827
2828 if (maxdepth < 0)
2829 return;
2830 if (d == NULL)
2831 {
2832 for (i = 0; i < indent; ++i)
2833 putc (' ', stderr);
2834 fputs ("(nil)\n", stderr);
2835 return;
2836 }
2837
2838 debug_decision_1 (d, indent);
2839 for (n = d->success.first; n ; n = n->next)
2840 debug_decision_0 (n, indent + 2, maxdepth - 1);
2841}
2842
2843void
3d7aafde 2844debug_decision (struct decision *d)
09051660
RH
2845{
2846 debug_decision_0 (d, 0, 1000000);
2847}
ec1c89e6
RH
2848
2849void
3d7aafde 2850debug_decision_list (struct decision *d)
ec1c89e6
RH
2851{
2852 while (d)
2853 {
2854 debug_decision_0 (d, 0, 0);
2855 d = d->next;
2856 }
2857}