]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
Don't crash declaring a function named "_".
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
e440a328 24
25#ifndef ENABLE_BUILD_WITH_CXX
26}
27#endif
28
29#include "go-c.h"
30#include "gogo.h"
31#include "types.h"
32#include "export.h"
33#include "import.h"
34#include "statements.h"
35#include "lex.h"
36#include "expressions.h"
37
38// Class Expression.
39
40Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43{
44}
45
46Expression::~Expression()
47{
48}
49
50// If this expression has a constant integer value, return it.
51
52bool
53Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55{
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58}
59
60// If this expression has a constant floating point value, return it.
61
62bool
63Expression::float_constant_value(mpfr_t val, Type** ptype) const
64{
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81}
82
83// If this expression has a constant complex value, return it.
84
85bool
86Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88{
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99}
100
101// Traverse the expressions.
102
103int
104Expression::traverse(Expression** pexpr, Traverse* traverse)
105{
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116}
117
118// Traverse subexpressions of this expression.
119
120int
121Expression::traverse_subexpressions(Traverse* traverse)
122{
123 return this->do_traverse(traverse);
124}
125
126// Default implementation for do_traverse for child classes.
127
128int
129Expression::do_traverse(Traverse*)
130{
131 return TRAVERSE_CONTINUE;
132}
133
134// This virtual function is called by the parser if the value of this
135// expression is being discarded. By default, we warn. Expressions
136// with side effects override.
137
138void
139Expression::do_discarding_value()
140{
141 this->warn_about_unused_value();
142}
143
144// This virtual function is called to export expressions. This will
145// only be used by expressions which may be constant.
146
147void
148Expression::do_export(Export*) const
149{
150 gcc_unreachable();
151}
152
153// Warn that the value of the expression is not used.
154
155void
156Expression::warn_about_unused_value()
157{
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159}
160
161// Note that this expression is an error. This is called by children
162// when they discover an error.
163
164void
165Expression::set_is_error()
166{
167 this->classification_ = EXPRESSION_ERROR;
168}
169
170// For children to call to report an error conveniently.
171
172void
173Expression::report_error(const char* msg)
174{
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177}
178
179// Set types of variables and constants. This is implemented by the
180// child class.
181
182void
183Expression::determine_type(const Type_context* context)
184{
185 this->do_determine_type(context);
186}
187
188// Set types when there is no context.
189
190void
191Expression::determine_type_no_context()
192{
193 Type_context context;
194 this->do_determine_type(&context);
195}
196
197// Return a tree handling any conversions which must be done during
198// assignment.
199
200tree
201Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204{
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308}
309
310// Return a tree for a conversion from a non-interface type to an
311// interface type.
312
313tree
314Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317{
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
84b7d3c6 365 if (first_field_value == error_mark_node)
366 return error_mark_node;
e440a328 367
368 // Start building a constructor for the value we will return.
369
370 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
371
372 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
373 tree field = TYPE_FIELDS(lhs_type_tree);
374 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
375 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
376 elt->index = field;
377 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
378
379 elt = VEC_quick_push(constructor_elt, init, NULL);
380 field = DECL_CHAIN(field);
381 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
382 elt->index = field;
383
384 if (rhs_type->points_to() != NULL)
385 {
386 // We are assigning a pointer to the interface; the interface
387 // holds the pointer itself.
388 elt->value = rhs_tree;
389 return build_constructor(lhs_type_tree, init);
390 }
391
392 // We are assigning a non-pointer value to the interface; the
393 // interface gets a copy of the value in the heap.
394
395 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
396
397 tree space = gogo->allocate_memory(rhs_type, object_size, location);
398 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
399 space);
400 space = save_expr(space);
401
402 tree ref = build_fold_indirect_ref_loc(location, space);
403 TREE_THIS_NOTRAP(ref) = 1;
404 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
405 ref, rhs_tree);
406
407 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
408
409 return build2(COMPOUND_EXPR, lhs_type_tree, set,
410 build_constructor(lhs_type_tree, init));
411}
412
413// Return a tree for the type descriptor of RHS_TREE, which has
414// interface type RHS_TYPE. If RHS_TREE is nil the result will be
415// NULL.
416
417tree
418Expression::get_interface_type_descriptor(Translate_context*,
419 Type* rhs_type, tree rhs_tree,
420 source_location location)
421{
422 tree rhs_type_tree = TREE_TYPE(rhs_tree);
423 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
424 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
425 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
426 NULL_TREE);
427 if (rhs_type->interface_type()->is_empty())
428 {
429 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
430 "__type_descriptor") == 0);
431 return v;
432 }
433
434 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
435 == 0);
436 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
437 v = save_expr(v);
438 tree v1 = build_fold_indirect_ref_loc(location, v);
439 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
440 tree f = TYPE_FIELDS(TREE_TYPE(v1));
441 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
442 == 0);
443 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
444
445 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
446 fold_convert_loc(location, TREE_TYPE(v),
447 null_pointer_node));
448 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
449 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
450 eq, n, v1);
451}
452
453// Return a tree for the conversion of an interface type to an
454// interface type.
455
456tree
457Expression::convert_interface_to_interface(Translate_context* context,
458 Type *lhs_type, Type *rhs_type,
459 tree rhs_tree, bool for_type_guard,
460 source_location location)
461{
462 Gogo* gogo = context->gogo();
463 Interface_type* lhs_interface_type = lhs_type->interface_type();
464 bool lhs_is_empty = lhs_interface_type->is_empty();
465
466 tree lhs_type_tree = lhs_type->get_tree(gogo);
467 if (lhs_type_tree == error_mark_node)
468 return error_mark_node;
469
470 // In the general case this requires runtime examination of the type
471 // method table to match it up with the interface methods.
472
473 // FIXME: If all of the methods in the right hand side interface
474 // also appear in the left hand side interface, then we don't need
475 // to do a runtime check, although we still need to build a new
476 // method table.
477
478 // Get the type descriptor for the right hand side. This will be
479 // NULL for a nil interface.
480
481 if (!DECL_P(rhs_tree))
482 rhs_tree = save_expr(rhs_tree);
483
484 tree rhs_type_descriptor =
485 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
486 location);
487
488 // The result is going to be a two element constructor.
489
490 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
491
492 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
493 tree field = TYPE_FIELDS(lhs_type_tree);
494 elt->index = field;
495
496 if (for_type_guard)
497 {
498 // A type assertion fails when converting a nil interface.
499 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
500 static tree assert_interface_decl;
501 tree call = Gogo::call_builtin(&assert_interface_decl,
502 location,
503 "__go_assert_interface",
504 2,
505 ptr_type_node,
506 TREE_TYPE(lhs_type_descriptor),
507 lhs_type_descriptor,
508 TREE_TYPE(rhs_type_descriptor),
509 rhs_type_descriptor);
5fb82b5e 510 if (call == error_mark_node)
511 return error_mark_node;
e440a328 512 // This will panic if the interface conversion fails.
513 TREE_NOTHROW(assert_interface_decl) = 0;
514 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
515 }
516 else if (lhs_is_empty)
517 {
518 // A convertion to an empty interface always succeeds, and the
519 // first field is just the type descriptor of the object.
520 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
521 "__type_descriptor") == 0);
522 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
523 elt->value = rhs_type_descriptor;
524 }
525 else
526 {
527 // A conversion to a non-empty interface may fail, but unlike a
528 // type assertion converting nil will always succeed.
529 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
530 == 0);
531 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
532 static tree convert_interface_decl;
533 tree call = Gogo::call_builtin(&convert_interface_decl,
534 location,
535 "__go_convert_interface",
536 2,
537 ptr_type_node,
538 TREE_TYPE(lhs_type_descriptor),
539 lhs_type_descriptor,
540 TREE_TYPE(rhs_type_descriptor),
541 rhs_type_descriptor);
5fb82b5e 542 if (call == error_mark_node)
543 return error_mark_node;
e440a328 544 // This will panic if the interface conversion fails.
545 TREE_NOTHROW(convert_interface_decl) = 0;
546 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
547 }
548
549 // The second field is simply the object pointer.
550
551 elt = VEC_quick_push(constructor_elt, init, NULL);
552 field = DECL_CHAIN(field);
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
554 elt->index = field;
555
556 tree rhs_type_tree = TREE_TYPE(rhs_tree);
557 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
558 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
559 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
560 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
561 NULL_TREE);
562
563 return build_constructor(lhs_type_tree, init);
564}
565
566// Return a tree for the conversion of an interface type to a
567// non-interface type.
568
569tree
570Expression::convert_interface_to_type(Translate_context* context,
571 Type *lhs_type, Type* rhs_type,
572 tree rhs_tree, source_location location)
573{
574 Gogo* gogo = context->gogo();
575 tree rhs_type_tree = TREE_TYPE(rhs_tree);
576
577 tree lhs_type_tree = lhs_type->get_tree(gogo);
578 if (lhs_type_tree == error_mark_node)
579 return error_mark_node;
580
581 // Call a function to check that the type is valid. The function
582 // will panic with an appropriate runtime type error if the type is
583 // not valid.
584
585 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
586
587 if (!DECL_P(rhs_tree))
588 rhs_tree = save_expr(rhs_tree);
589
590 tree rhs_type_descriptor =
591 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
592 location);
593
594 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
595
596 static tree check_interface_type_decl;
597 tree call = Gogo::call_builtin(&check_interface_type_decl,
598 location,
599 "__go_check_interface_type",
600 3,
601 void_type_node,
602 TREE_TYPE(lhs_type_descriptor),
603 lhs_type_descriptor,
604 TREE_TYPE(rhs_type_descriptor),
605 rhs_type_descriptor,
606 TREE_TYPE(rhs_inter_descriptor),
607 rhs_inter_descriptor);
5fb82b5e 608 if (call == error_mark_node)
609 return error_mark_node;
e440a328 610 // This call will panic if the conversion is invalid.
611 TREE_NOTHROW(check_interface_type_decl) = 0;
612
613 // If the call succeeds, pull out the value.
614 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
615 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
616 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
617 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
618 NULL_TREE);
619
620 // If the value is a pointer, then it is the value we want.
621 // Otherwise it points to the value.
622 if (lhs_type->points_to() == NULL)
623 {
624 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
625 val = build_fold_indirect_ref_loc(location, val);
626 }
627
628 return build2(COMPOUND_EXPR, lhs_type_tree, call,
629 fold_convert_loc(location, lhs_type_tree, val));
630}
631
632// Convert an expression to a tree. This is implemented by the child
633// class. Not that it is not in general safe to call this multiple
634// times for a single expression, but that we don't catch such errors.
635
636tree
637Expression::get_tree(Translate_context* context)
638{
639 // The child may have marked this expression as having an error.
640 if (this->classification_ == EXPRESSION_ERROR)
641 return error_mark_node;
642
643 return this->do_get_tree(context);
644}
645
646// Return a tree for VAL in TYPE.
647
648tree
649Expression::integer_constant_tree(mpz_t val, tree type)
650{
651 if (type == error_mark_node)
652 return error_mark_node;
653 else if (TREE_CODE(type) == INTEGER_TYPE)
654 return double_int_to_tree(type,
655 mpz_get_double_int(type, val, true));
656 else if (TREE_CODE(type) == REAL_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree ret = Expression::float_constant_tree(fval, type);
661 mpfr_clear(fval);
662 return ret;
663 }
664 else if (TREE_CODE(type) == COMPLEX_TYPE)
665 {
666 mpfr_t fval;
667 mpfr_init_set_z(fval, val, GMP_RNDN);
668 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
669 mpfr_clear(fval);
670 tree imag = build_real_from_int_cst(TREE_TYPE(type),
671 integer_zero_node);
672 return build_complex(type, real, imag);
673 }
674 else
675 gcc_unreachable();
676}
677
678// Return a tree for VAL in TYPE.
679
680tree
681Expression::float_constant_tree(mpfr_t val, tree type)
682{
683 if (type == error_mark_node)
684 return error_mark_node;
685 else if (TREE_CODE(type) == INTEGER_TYPE)
686 {
687 mpz_t ival;
688 mpz_init(ival);
689 mpfr_get_z(ival, val, GMP_RNDN);
690 tree ret = Expression::integer_constant_tree(ival, type);
691 mpz_clear(ival);
692 return ret;
693 }
694 else if (TREE_CODE(type) == REAL_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, type, GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(type), &r1);
700 return build_real(type, r2);
701 }
702 else if (TREE_CODE(type) == COMPLEX_TYPE)
703 {
704 REAL_VALUE_TYPE r1;
705 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
706 REAL_VALUE_TYPE r2;
707 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
708 tree imag = build_real_from_int_cst(TREE_TYPE(type),
709 integer_zero_node);
710 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
711 }
712 else
713 gcc_unreachable();
714}
715
716// Return a tree for REAL/IMAG in TYPE.
717
718tree
719Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
720{
f690b0bb 721 if (type == error_mark_node)
722 return error_mark_node;
723 else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
724 return Expression::float_constant_tree(real, type);
725 else if (TREE_CODE(type) == COMPLEX_TYPE)
e440a328 726 {
727 REAL_VALUE_TYPE r1;
728 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
729 REAL_VALUE_TYPE r2;
730 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
731
732 REAL_VALUE_TYPE r3;
733 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
734 REAL_VALUE_TYPE r4;
735 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
736
737 return build_complex(type, build_real(TREE_TYPE(type), r2),
738 build_real(TREE_TYPE(type), r4));
739 }
740 else
741 gcc_unreachable();
742}
743
744// Return a tree which evaluates to true if VAL, of arbitrary integer
745// type, is negative or is more than the maximum value of BOUND_TYPE.
746// If SOFAR is not NULL, it is or'red into the result. The return
747// value may be NULL if SOFAR is NULL.
748
749tree
750Expression::check_bounds(tree val, tree bound_type, tree sofar,
751 source_location loc)
752{
753 tree val_type = TREE_TYPE(val);
754 tree ret = NULL_TREE;
755
756 if (!TYPE_UNSIGNED(val_type))
757 {
758 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
759 build_int_cst(val_type, 0));
760 if (ret == boolean_false_node)
761 ret = NULL_TREE;
762 }
763
764 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
765 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
766 {
767 tree max = TYPE_MAX_VALUE(bound_type);
768 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
769 fold_convert_loc(loc, val_type, max));
770 if (big == boolean_false_node)
771 ;
772 else if (ret == NULL_TREE)
773 ret = big;
774 else
775 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
776 ret, big);
777 }
778
779 if (ret == NULL_TREE)
780 return sofar;
781 else if (sofar == NULL_TREE)
782 return ret;
783 else
784 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
785 sofar, ret);
786}
787
788// Error expressions. This are used to avoid cascading errors.
789
790class Error_expression : public Expression
791{
792 public:
793 Error_expression(source_location location)
794 : Expression(EXPRESSION_ERROR, location)
795 { }
796
797 protected:
798 bool
799 do_is_constant() const
800 { return true; }
801
802 bool
803 do_integer_constant_value(bool, mpz_t val, Type**) const
804 {
805 mpz_set_ui(val, 0);
806 return true;
807 }
808
809 bool
810 do_float_constant_value(mpfr_t val, Type**) const
811 {
812 mpfr_set_ui(val, 0, GMP_RNDN);
813 return true;
814 }
815
816 bool
817 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
818 {
819 mpfr_set_ui(real, 0, GMP_RNDN);
820 mpfr_set_ui(imag, 0, GMP_RNDN);
821 return true;
822 }
823
824 void
825 do_discarding_value()
826 { }
827
828 Type*
829 do_type()
830 { return Type::make_error_type(); }
831
832 void
833 do_determine_type(const Type_context*)
834 { }
835
836 Expression*
837 do_copy()
838 { return this; }
839
840 bool
841 do_is_addressable() const
842 { return true; }
843
844 tree
845 do_get_tree(Translate_context*)
846 { return error_mark_node; }
847};
848
849Expression*
850Expression::make_error(source_location location)
851{
852 return new Error_expression(location);
853}
854
855// An expression which is really a type. This is used during parsing.
856// It is an error if these survive after lowering.
857
858class
859Type_expression : public Expression
860{
861 public:
862 Type_expression(Type* type, source_location location)
863 : Expression(EXPRESSION_TYPE, location),
864 type_(type)
865 { }
866
867 protected:
868 int
869 do_traverse(Traverse* traverse)
870 { return Type::traverse(this->type_, traverse); }
871
872 Type*
873 do_type()
874 { return this->type_; }
875
876 void
877 do_determine_type(const Type_context*)
878 { }
879
880 void
881 do_check_types(Gogo*)
882 { this->report_error(_("invalid use of type")); }
883
884 Expression*
885 do_copy()
886 { return this; }
887
888 tree
889 do_get_tree(Translate_context*)
890 { gcc_unreachable(); }
891
892 private:
893 // The type which we are representing as an expression.
894 Type* type_;
895};
896
897Expression*
898Expression::make_type(Type* type, source_location location)
899{
900 return new Type_expression(type, location);
901}
902
e03bdf36 903// Class Parser_expression.
904
905Type*
906Parser_expression::do_type()
907{
908 // We should never really ask for the type of a Parser_expression.
909 // However, it can happen, at least when we have an invalid const
910 // whose initializer refers to the const itself. In that case we
911 // may ask for the type when lowering the const itself.
912 gcc_assert(saw_errors());
913 return Type::make_error_type();
914}
915
e440a328 916// Class Var_expression.
917
918// Lower a variable expression. Here we just make sure that the
919// initialization expression of the variable has been lowered. This
920// ensures that we will be able to determine the type of the variable
921// if necessary.
922
923Expression*
924Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
925{
926 if (this->variable_->is_variable())
927 {
928 Variable* var = this->variable_->var_value();
929 // This is either a local variable or a global variable. A
930 // reference to a variable which is local to an enclosing
931 // function will be a reference to a field in a closure.
932 if (var->is_global())
933 function = NULL;
934 var->lower_init_expression(gogo, function);
935 }
936 return this;
937}
938
939// Return the name of the variable.
940
941const std::string&
942Var_expression::name() const
943{
944 return this->variable_->name();
945}
946
947// Return the type of a reference to a variable.
948
949Type*
950Var_expression::do_type()
951{
952 if (this->variable_->is_variable())
953 return this->variable_->var_value()->type();
954 else if (this->variable_->is_result_variable())
955 return this->variable_->result_var_value()->type();
956 else
957 gcc_unreachable();
958}
959
960// Something takes the address of this variable. This means that we
961// may want to move the variable onto the heap.
962
963void
964Var_expression::do_address_taken(bool escapes)
965{
966 if (!escapes)
967 ;
968 else if (this->variable_->is_variable())
969 this->variable_->var_value()->set_address_taken();
970 else if (this->variable_->is_result_variable())
971 this->variable_->result_var_value()->set_address_taken();
972 else
973 gcc_unreachable();
974}
975
976// Get the tree for a reference to a variable.
977
978tree
979Var_expression::do_get_tree(Translate_context* context)
980{
981 return this->variable_->get_tree(context->gogo(), context->function());
982}
983
984// Make a reference to a variable in an expression.
985
986Expression*
987Expression::make_var_reference(Named_object* var, source_location location)
988{
989 if (var->is_sink())
990 return Expression::make_sink(location);
991
992 // FIXME: Creating a new object for each reference to a variable is
993 // wasteful.
994 return new Var_expression(var, location);
995}
996
997// Class Temporary_reference_expression.
998
999// The type.
1000
1001Type*
1002Temporary_reference_expression::do_type()
1003{
1004 return this->statement_->type();
1005}
1006
1007// Called if something takes the address of this temporary variable.
1008// We never have to move temporary variables to the heap, but we do
1009// need to know that they must live in the stack rather than in a
1010// register.
1011
1012void
1013Temporary_reference_expression::do_address_taken(bool)
1014{
1015 this->statement_->set_is_address_taken();
1016}
1017
1018// Get a tree referring to the variable.
1019
1020tree
1021Temporary_reference_expression::do_get_tree(Translate_context*)
1022{
1023 return this->statement_->get_decl();
1024}
1025
1026// Make a reference to a temporary variable.
1027
1028Expression*
1029Expression::make_temporary_reference(Temporary_statement* statement,
1030 source_location location)
1031{
1032 return new Temporary_reference_expression(statement, location);
1033}
1034
1035// A sink expression--a use of the blank identifier _.
1036
1037class Sink_expression : public Expression
1038{
1039 public:
1040 Sink_expression(source_location location)
1041 : Expression(EXPRESSION_SINK, location),
1042 type_(NULL), var_(NULL_TREE)
1043 { }
1044
1045 protected:
1046 void
1047 do_discarding_value()
1048 { }
1049
1050 Type*
1051 do_type();
1052
1053 void
1054 do_determine_type(const Type_context*);
1055
1056 Expression*
1057 do_copy()
1058 { return new Sink_expression(this->location()); }
1059
1060 tree
1061 do_get_tree(Translate_context*);
1062
1063 private:
1064 // The type of this sink variable.
1065 Type* type_;
1066 // The temporary variable we generate.
1067 tree var_;
1068};
1069
1070// Return the type of a sink expression.
1071
1072Type*
1073Sink_expression::do_type()
1074{
1075 if (this->type_ == NULL)
1076 return Type::make_sink_type();
1077 return this->type_;
1078}
1079
1080// Determine the type of a sink expression.
1081
1082void
1083Sink_expression::do_determine_type(const Type_context* context)
1084{
1085 if (context->type != NULL)
1086 this->type_ = context->type;
1087}
1088
1089// Return a temporary variable for a sink expression. This will
1090// presumably be a write-only variable which the middle-end will drop.
1091
1092tree
1093Sink_expression::do_get_tree(Translate_context* context)
1094{
1095 if (this->var_ == NULL_TREE)
1096 {
1097 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1098 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1099 "blank");
1100 }
1101 return this->var_;
1102}
1103
1104// Make a sink expression.
1105
1106Expression*
1107Expression::make_sink(source_location location)
1108{
1109 return new Sink_expression(location);
1110}
1111
1112// Class Func_expression.
1113
1114// FIXME: Can a function expression appear in a constant expression?
1115// The value is unchanging. Initializing a constant to the address of
1116// a function seems like it could work, though there might be little
1117// point to it.
1118
1119// Return the name of the function.
1120
1121const std::string&
1122Func_expression::name() const
1123{
1124 return this->function_->name();
1125}
1126
1127// Traversal.
1128
1129int
1130Func_expression::do_traverse(Traverse* traverse)
1131{
1132 return (this->closure_ == NULL
1133 ? TRAVERSE_CONTINUE
1134 : Expression::traverse(&this->closure_, traverse));
1135}
1136
1137// Return the type of a function expression.
1138
1139Type*
1140Func_expression::do_type()
1141{
1142 if (this->function_->is_function())
1143 return this->function_->func_value()->type();
1144 else if (this->function_->is_function_declaration())
1145 return this->function_->func_declaration_value()->type();
1146 else
1147 gcc_unreachable();
1148}
1149
1150// Get the tree for a function expression without evaluating the
1151// closure.
1152
1153tree
1154Func_expression::get_tree_without_closure(Gogo* gogo)
1155{
1156 Function_type* fntype;
1157 if (this->function_->is_function())
1158 fntype = this->function_->func_value()->type();
1159 else if (this->function_->is_function_declaration())
1160 fntype = this->function_->func_declaration_value()->type();
1161 else
1162 gcc_unreachable();
1163
1164 // Builtin functions are handled specially by Call_expression. We
1165 // can't take their address.
1166 if (fntype->is_builtin())
1167 {
1168 error_at(this->location(), "invalid use of special builtin function %qs",
1169 this->function_->name().c_str());
1170 return error_mark_node;
1171 }
1172
1173 Named_object* no = this->function_;
9d6f3721 1174
1175 tree id = no->get_id(gogo);
1176 if (id == error_mark_node)
1177 return error_mark_node;
1178
e440a328 1179 tree fndecl;
1180 if (no->is_function())
1181 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1182 else if (no->is_function_declaration())
1183 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1184 else
1185 gcc_unreachable();
1186
9d6f3721 1187 if (fndecl == error_mark_node)
1188 return error_mark_node;
1189
e440a328 1190 return build_fold_addr_expr_loc(this->location(), fndecl);
1191}
1192
1193// Get the tree for a function expression. This is used when we take
1194// the address of a function rather than simply calling it. If the
1195// function has a closure, we must use a trampoline.
1196
1197tree
1198Func_expression::do_get_tree(Translate_context* context)
1199{
1200 Gogo* gogo = context->gogo();
1201
1202 tree fnaddr = this->get_tree_without_closure(gogo);
1203 if (fnaddr == error_mark_node)
1204 return error_mark_node;
1205
1206 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1207 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1208 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1209
1210 // For a normal non-nested function call, that is all we have to do.
1211 if (!this->function_->is_function()
1212 || this->function_->func_value()->enclosing() == NULL)
1213 {
1214 gcc_assert(this->closure_ == NULL);
1215 return fnaddr;
1216 }
1217
1218 // For a nested function call, we have to always allocate a
1219 // trampoline. If we don't always allocate, then closures will not
1220 // be reliably distinct.
1221 Expression* closure = this->closure_;
1222 tree closure_tree;
1223 if (closure == NULL)
1224 closure_tree = null_pointer_node;
1225 else
1226 {
1227 // Get the value of the closure. This will be a pointer to
1228 // space allocated on the heap.
1229 closure_tree = closure->get_tree(context);
1230 if (closure_tree == error_mark_node)
1231 return error_mark_node;
1232 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1233 }
1234
1235 // Now we need to build some code on the heap. This code will load
1236 // the static chain pointer with the closure and then jump to the
1237 // body of the function. The normal gcc approach is to build the
1238 // code on the stack. Unfortunately we can not do that, as Go
1239 // permits us to return the function pointer.
1240
1241 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1242}
1243
1244// Make a reference to a function in an expression.
1245
1246Expression*
1247Expression::make_func_reference(Named_object* function, Expression* closure,
1248 source_location location)
1249{
1250 return new Func_expression(function, closure, location);
1251}
1252
1253// Class Unknown_expression.
1254
1255// Return the name of an unknown expression.
1256
1257const std::string&
1258Unknown_expression::name() const
1259{
1260 return this->named_object_->name();
1261}
1262
1263// Lower a reference to an unknown name.
1264
1265Expression*
1266Unknown_expression::do_lower(Gogo*, Named_object*, int)
1267{
1268 source_location location = this->location();
1269 Named_object* no = this->named_object_;
deded542 1270 Named_object* real;
1271 if (!no->is_unknown())
1272 real = no;
1273 else
e440a328 1274 {
deded542 1275 real = no->unknown_value()->real_named_object();
1276 if (real == NULL)
1277 {
1278 if (this->is_composite_literal_key_)
1279 return this;
1280 error_at(location, "reference to undefined name %qs",
1281 this->named_object_->message_name().c_str());
1282 return Expression::make_error(location);
1283 }
e440a328 1284 }
1285 switch (real->classification())
1286 {
1287 case Named_object::NAMED_OBJECT_CONST:
1288 return Expression::make_const_reference(real, location);
1289 case Named_object::NAMED_OBJECT_TYPE:
1290 return Expression::make_type(real->type_value(), location);
1291 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1292 if (this->is_composite_literal_key_)
1293 return this;
1294 error_at(location, "reference to undefined type %qs",
1295 real->message_name().c_str());
1296 return Expression::make_error(location);
1297 case Named_object::NAMED_OBJECT_VAR:
1298 return Expression::make_var_reference(real, location);
1299 case Named_object::NAMED_OBJECT_FUNC:
1300 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1301 return Expression::make_func_reference(real, NULL, location);
1302 case Named_object::NAMED_OBJECT_PACKAGE:
1303 if (this->is_composite_literal_key_)
1304 return this;
1305 error_at(location, "unexpected reference to package");
1306 return Expression::make_error(location);
1307 default:
1308 gcc_unreachable();
1309 }
1310}
1311
1312// Make a reference to an unknown name.
1313
1314Expression*
1315Expression::make_unknown_reference(Named_object* no, source_location location)
1316{
1317 gcc_assert(no->resolve()->is_unknown());
1318 return new Unknown_expression(no, location);
1319}
1320
1321// A boolean expression.
1322
1323class Boolean_expression : public Expression
1324{
1325 public:
1326 Boolean_expression(bool val, source_location location)
1327 : Expression(EXPRESSION_BOOLEAN, location),
1328 val_(val), type_(NULL)
1329 { }
1330
1331 static Expression*
1332 do_import(Import*);
1333
1334 protected:
1335 bool
1336 do_is_constant() const
1337 { return true; }
1338
1339 Type*
1340 do_type();
1341
1342 void
1343 do_determine_type(const Type_context*);
1344
1345 Expression*
1346 do_copy()
1347 { return this; }
1348
1349 tree
1350 do_get_tree(Translate_context*)
1351 { return this->val_ ? boolean_true_node : boolean_false_node; }
1352
1353 void
1354 do_export(Export* exp) const
1355 { exp->write_c_string(this->val_ ? "true" : "false"); }
1356
1357 private:
1358 // The constant.
1359 bool val_;
1360 // The type as determined by context.
1361 Type* type_;
1362};
1363
1364// Get the type.
1365
1366Type*
1367Boolean_expression::do_type()
1368{
1369 if (this->type_ == NULL)
1370 this->type_ = Type::make_boolean_type();
1371 return this->type_;
1372}
1373
1374// Set the type from the context.
1375
1376void
1377Boolean_expression::do_determine_type(const Type_context* context)
1378{
1379 if (this->type_ != NULL && !this->type_->is_abstract())
1380 ;
1381 else if (context->type != NULL && context->type->is_boolean_type())
1382 this->type_ = context->type;
1383 else if (!context->may_be_abstract)
1384 this->type_ = Type::lookup_bool_type();
1385}
1386
1387// Import a boolean constant.
1388
1389Expression*
1390Boolean_expression::do_import(Import* imp)
1391{
1392 if (imp->peek_char() == 't')
1393 {
1394 imp->require_c_string("true");
1395 return Expression::make_boolean(true, imp->location());
1396 }
1397 else
1398 {
1399 imp->require_c_string("false");
1400 return Expression::make_boolean(false, imp->location());
1401 }
1402}
1403
1404// Make a boolean expression.
1405
1406Expression*
1407Expression::make_boolean(bool val, source_location location)
1408{
1409 return new Boolean_expression(val, location);
1410}
1411
1412// Class String_expression.
1413
1414// Get the type.
1415
1416Type*
1417String_expression::do_type()
1418{
1419 if (this->type_ == NULL)
1420 this->type_ = Type::make_string_type();
1421 return this->type_;
1422}
1423
1424// Set the type from the context.
1425
1426void
1427String_expression::do_determine_type(const Type_context* context)
1428{
1429 if (this->type_ != NULL && !this->type_->is_abstract())
1430 ;
1431 else if (context->type != NULL && context->type->is_string_type())
1432 this->type_ = context->type;
1433 else if (!context->may_be_abstract)
1434 this->type_ = Type::lookup_string_type();
1435}
1436
1437// Build a string constant.
1438
1439tree
1440String_expression::do_get_tree(Translate_context* context)
1441{
1442 return context->gogo()->go_string_constant_tree(this->val_);
1443}
1444
1445// Export a string expression.
1446
1447void
1448String_expression::do_export(Export* exp) const
1449{
1450 std::string s;
1451 s.reserve(this->val_.length() * 4 + 2);
1452 s += '"';
1453 for (std::string::const_iterator p = this->val_.begin();
1454 p != this->val_.end();
1455 ++p)
1456 {
1457 if (*p == '\\' || *p == '"')
1458 {
1459 s += '\\';
1460 s += *p;
1461 }
1462 else if (*p >= 0x20 && *p < 0x7f)
1463 s += *p;
1464 else if (*p == '\n')
1465 s += "\\n";
1466 else if (*p == '\t')
1467 s += "\\t";
1468 else
1469 {
1470 s += "\\x";
1471 unsigned char c = *p;
1472 unsigned int dig = c >> 4;
1473 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1474 dig = c & 0xf;
1475 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1476 }
1477 }
1478 s += '"';
1479 exp->write_string(s);
1480}
1481
1482// Import a string expression.
1483
1484Expression*
1485String_expression::do_import(Import* imp)
1486{
1487 imp->require_c_string("\"");
1488 std::string val;
1489 while (true)
1490 {
1491 int c = imp->get_char();
1492 if (c == '"' || c == -1)
1493 break;
1494 if (c != '\\')
1495 val += static_cast<char>(c);
1496 else
1497 {
1498 c = imp->get_char();
1499 if (c == '\\' || c == '"')
1500 val += static_cast<char>(c);
1501 else if (c == 'n')
1502 val += '\n';
1503 else if (c == 't')
1504 val += '\t';
1505 else if (c == 'x')
1506 {
1507 c = imp->get_char();
1508 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1509 c = imp->get_char();
1510 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1511 char v = (vh << 4) | vl;
1512 val += v;
1513 }
1514 else
1515 {
1516 error_at(imp->location(), "bad string constant");
1517 return Expression::make_error(imp->location());
1518 }
1519 }
1520 }
1521 return Expression::make_string(val, imp->location());
1522}
1523
1524// Make a string expression.
1525
1526Expression*
1527Expression::make_string(const std::string& val, source_location location)
1528{
1529 return new String_expression(val, location);
1530}
1531
1532// Make an integer expression.
1533
1534class Integer_expression : public Expression
1535{
1536 public:
1537 Integer_expression(const mpz_t* val, Type* type, source_location location)
1538 : Expression(EXPRESSION_INTEGER, location),
1539 type_(type)
1540 { mpz_init_set(this->val_, *val); }
1541
1542 static Expression*
1543 do_import(Import*);
1544
1545 // Return whether VAL fits in the type.
1546 static bool
1547 check_constant(mpz_t val, Type*, source_location);
1548
1549 // Write VAL to export data.
1550 static void
1551 export_integer(Export* exp, const mpz_t val);
1552
1553 protected:
1554 bool
1555 do_is_constant() const
1556 { return true; }
1557
1558 bool
1559 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1560
1561 Type*
1562 do_type();
1563
1564 void
1565 do_determine_type(const Type_context* context);
1566
1567 void
1568 do_check_types(Gogo*);
1569
1570 tree
1571 do_get_tree(Translate_context*);
1572
1573 Expression*
1574 do_copy()
1575 { return Expression::make_integer(&this->val_, this->type_,
1576 this->location()); }
1577
1578 void
1579 do_export(Export*) const;
1580
1581 private:
1582 // The integer value.
1583 mpz_t val_;
1584 // The type so far.
1585 Type* type_;
1586};
1587
1588// Return an integer constant value.
1589
1590bool
1591Integer_expression::do_integer_constant_value(bool, mpz_t val,
1592 Type** ptype) const
1593{
1594 if (this->type_ != NULL)
1595 *ptype = this->type_;
1596 mpz_set(val, this->val_);
1597 return true;
1598}
1599
1600// Return the current type. If we haven't set the type yet, we return
1601// an abstract integer type.
1602
1603Type*
1604Integer_expression::do_type()
1605{
1606 if (this->type_ == NULL)
1607 this->type_ = Type::make_abstract_integer_type();
1608 return this->type_;
1609}
1610
1611// Set the type of the integer value. Here we may switch from an
1612// abstract type to a real type.
1613
1614void
1615Integer_expression::do_determine_type(const Type_context* context)
1616{
1617 if (this->type_ != NULL && !this->type_->is_abstract())
1618 ;
1619 else if (context->type != NULL
1620 && (context->type->integer_type() != NULL
1621 || context->type->float_type() != NULL
1622 || context->type->complex_type() != NULL))
1623 this->type_ = context->type;
1624 else if (!context->may_be_abstract)
1625 this->type_ = Type::lookup_integer_type("int");
1626}
1627
1628// Return true if the integer VAL fits in the range of the type TYPE.
1629// Otherwise give an error and return false. TYPE may be NULL.
1630
1631bool
1632Integer_expression::check_constant(mpz_t val, Type* type,
1633 source_location location)
1634{
1635 if (type == NULL)
1636 return true;
1637 Integer_type* itype = type->integer_type();
1638 if (itype == NULL || itype->is_abstract())
1639 return true;
1640
1641 int bits = mpz_sizeinbase(val, 2);
1642
1643 if (itype->is_unsigned())
1644 {
1645 // For an unsigned type we can only accept a nonnegative number,
1646 // and we must be able to represent at least BITS.
1647 if (mpz_sgn(val) >= 0
1648 && bits <= itype->bits())
1649 return true;
1650 }
1651 else
1652 {
1653 // For a signed type we need an extra bit to indicate the sign.
1654 // We have to handle the most negative integer specially.
1655 if (bits + 1 <= itype->bits()
1656 || (bits <= itype->bits()
1657 && mpz_sgn(val) < 0
1658 && (mpz_scan1(val, 0)
1659 == static_cast<unsigned long>(itype->bits() - 1))
1660 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1661 return true;
1662 }
1663
1664 error_at(location, "integer constant overflow");
1665 return false;
1666}
1667
1668// Check the type of an integer constant.
1669
1670void
1671Integer_expression::do_check_types(Gogo*)
1672{
1673 if (this->type_ == NULL)
1674 return;
1675 if (!Integer_expression::check_constant(this->val_, this->type_,
1676 this->location()))
1677 this->set_is_error();
1678}
1679
1680// Get a tree for an integer constant.
1681
1682tree
1683Integer_expression::do_get_tree(Translate_context* context)
1684{
1685 Gogo* gogo = context->gogo();
1686 tree type;
1687 if (this->type_ != NULL && !this->type_->is_abstract())
1688 type = this->type_->get_tree(gogo);
1689 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1690 {
1691 // We are converting to an abstract floating point type.
1692 type = Type::lookup_float_type("float64")->get_tree(gogo);
1693 }
1694 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1695 {
1696 // We are converting to an abstract complex type.
1697 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1698 }
1699 else
1700 {
1701 // If we still have an abstract type here, then this is being
1702 // used in a constant expression which didn't get reduced for
1703 // some reason. Use a type which will fit the value. We use <,
1704 // not <=, because we need an extra bit for the sign bit.
1705 int bits = mpz_sizeinbase(this->val_, 2);
1706 if (bits < INT_TYPE_SIZE)
1707 type = Type::lookup_integer_type("int")->get_tree(gogo);
1708 else if (bits < 64)
1709 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1710 else
1711 type = long_long_integer_type_node;
1712 }
1713 return Expression::integer_constant_tree(this->val_, type);
1714}
1715
1716// Write VAL to export data.
1717
1718void
1719Integer_expression::export_integer(Export* exp, const mpz_t val)
1720{
1721 char* s = mpz_get_str(NULL, 10, val);
1722 exp->write_c_string(s);
1723 free(s);
1724}
1725
1726// Export an integer in a constant expression.
1727
1728void
1729Integer_expression::do_export(Export* exp) const
1730{
1731 Integer_expression::export_integer(exp, this->val_);
1732 // A trailing space lets us reliably identify the end of the number.
1733 exp->write_c_string(" ");
1734}
1735
1736// Import an integer, floating point, or complex value. This handles
1737// all these types because they all start with digits.
1738
1739Expression*
1740Integer_expression::do_import(Import* imp)
1741{
1742 std::string num = imp->read_identifier();
1743 imp->require_c_string(" ");
1744 if (!num.empty() && num[num.length() - 1] == 'i')
1745 {
1746 mpfr_t real;
1747 size_t plus_pos = num.find('+', 1);
1748 size_t minus_pos = num.find('-', 1);
1749 size_t pos;
1750 if (plus_pos == std::string::npos)
1751 pos = minus_pos;
1752 else if (minus_pos == std::string::npos)
1753 pos = plus_pos;
1754 else
1755 {
1756 error_at(imp->location(), "bad number in import data: %qs",
1757 num.c_str());
1758 return Expression::make_error(imp->location());
1759 }
1760 if (pos == std::string::npos)
1761 mpfr_set_ui(real, 0, GMP_RNDN);
1762 else
1763 {
1764 std::string real_str = num.substr(0, pos);
1765 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1766 {
1767 error_at(imp->location(), "bad number in import data: %qs",
1768 real_str.c_str());
1769 return Expression::make_error(imp->location());
1770 }
1771 }
1772
1773 std::string imag_str;
1774 if (pos == std::string::npos)
1775 imag_str = num;
1776 else
1777 imag_str = num.substr(pos);
1778 imag_str = imag_str.substr(0, imag_str.size() - 1);
1779 mpfr_t imag;
1780 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1781 {
1782 error_at(imp->location(), "bad number in import data: %qs",
1783 imag_str.c_str());
1784 return Expression::make_error(imp->location());
1785 }
1786 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1787 imp->location());
1788 mpfr_clear(real);
1789 mpfr_clear(imag);
1790 return ret;
1791 }
1792 else if (num.find('.') == std::string::npos
1793 && num.find('E') == std::string::npos)
1794 {
1795 mpz_t val;
1796 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1797 {
1798 error_at(imp->location(), "bad number in import data: %qs",
1799 num.c_str());
1800 return Expression::make_error(imp->location());
1801 }
1802 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1803 mpz_clear(val);
1804 return ret;
1805 }
1806 else
1807 {
1808 mpfr_t val;
1809 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1810 {
1811 error_at(imp->location(), "bad number in import data: %qs",
1812 num.c_str());
1813 return Expression::make_error(imp->location());
1814 }
1815 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1816 mpfr_clear(val);
1817 return ret;
1818 }
1819}
1820
1821// Build a new integer value.
1822
1823Expression*
1824Expression::make_integer(const mpz_t* val, Type* type,
1825 source_location location)
1826{
1827 return new Integer_expression(val, type, location);
1828}
1829
1830// Floats.
1831
1832class Float_expression : public Expression
1833{
1834 public:
1835 Float_expression(const mpfr_t* val, Type* type, source_location location)
1836 : Expression(EXPRESSION_FLOAT, location),
1837 type_(type)
1838 {
1839 mpfr_init_set(this->val_, *val, GMP_RNDN);
1840 }
1841
1842 // Constrain VAL to fit into TYPE.
1843 static void
1844 constrain_float(mpfr_t val, Type* type);
1845
1846 // Return whether VAL fits in the type.
1847 static bool
1848 check_constant(mpfr_t val, Type*, source_location);
1849
1850 // Write VAL to export data.
1851 static void
1852 export_float(Export* exp, const mpfr_t val);
1853
1854 protected:
1855 bool
1856 do_is_constant() const
1857 { return true; }
1858
1859 bool
1860 do_float_constant_value(mpfr_t val, Type**) const;
1861
1862 Type*
1863 do_type();
1864
1865 void
1866 do_determine_type(const Type_context*);
1867
1868 void
1869 do_check_types(Gogo*);
1870
1871 Expression*
1872 do_copy()
1873 { return Expression::make_float(&this->val_, this->type_,
1874 this->location()); }
1875
1876 tree
1877 do_get_tree(Translate_context*);
1878
1879 void
1880 do_export(Export*) const;
1881
1882 private:
1883 // The floating point value.
1884 mpfr_t val_;
1885 // The type so far.
1886 Type* type_;
1887};
1888
1889// Constrain VAL to fit into TYPE.
1890
1891void
1892Float_expression::constrain_float(mpfr_t val, Type* type)
1893{
1894 Float_type* ftype = type->float_type();
1895 if (ftype != NULL && !ftype->is_abstract())
1896 {
1897 tree type_tree = ftype->type_tree();
1898 REAL_VALUE_TYPE rvt;
1899 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1900 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1901 mpfr_from_real(val, &rvt, GMP_RNDN);
1902 }
1903}
1904
1905// Return a floating point constant value.
1906
1907bool
1908Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1909{
1910 if (this->type_ != NULL)
1911 *ptype = this->type_;
1912 mpfr_set(val, this->val_, GMP_RNDN);
1913 return true;
1914}
1915
1916// Return the current type. If we haven't set the type yet, we return
1917// an abstract float type.
1918
1919Type*
1920Float_expression::do_type()
1921{
1922 if (this->type_ == NULL)
1923 this->type_ = Type::make_abstract_float_type();
1924 return this->type_;
1925}
1926
1927// Set the type of the float value. Here we may switch from an
1928// abstract type to a real type.
1929
1930void
1931Float_expression::do_determine_type(const Type_context* context)
1932{
1933 if (this->type_ != NULL && !this->type_->is_abstract())
1934 ;
1935 else if (context->type != NULL
1936 && (context->type->integer_type() != NULL
1937 || context->type->float_type() != NULL
1938 || context->type->complex_type() != NULL))
1939 this->type_ = context->type;
1940 else if (!context->may_be_abstract)
48080209 1941 this->type_ = Type::lookup_float_type("float64");
e440a328 1942}
1943
1944// Return true if the floating point value VAL fits in the range of
1945// the type TYPE. Otherwise give an error and return false. TYPE may
1946// be NULL.
1947
1948bool
1949Float_expression::check_constant(mpfr_t val, Type* type,
1950 source_location location)
1951{
1952 if (type == NULL)
1953 return true;
1954 Float_type* ftype = type->float_type();
1955 if (ftype == NULL || ftype->is_abstract())
1956 return true;
1957
1958 // A NaN or Infinity always fits in the range of the type.
1959 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1960 return true;
1961
1962 mp_exp_t exp = mpfr_get_exp(val);
1963 mp_exp_t max_exp;
1964 switch (ftype->bits())
1965 {
1966 case 32:
1967 max_exp = 128;
1968 break;
1969 case 64:
1970 max_exp = 1024;
1971 break;
1972 default:
1973 gcc_unreachable();
1974 }
1975 if (exp > max_exp)
1976 {
1977 error_at(location, "floating point constant overflow");
1978 return false;
1979 }
1980 return true;
1981}
1982
1983// Check the type of a float value.
1984
1985void
1986Float_expression::do_check_types(Gogo*)
1987{
1988 if (this->type_ == NULL)
1989 return;
1990
1991 if (!Float_expression::check_constant(this->val_, this->type_,
1992 this->location()))
1993 this->set_is_error();
1994
1995 Integer_type* integer_type = this->type_->integer_type();
1996 if (integer_type != NULL)
1997 {
1998 if (!mpfr_integer_p(this->val_))
1999 this->report_error(_("floating point constant truncated to integer"));
2000 else
2001 {
2002 gcc_assert(!integer_type->is_abstract());
2003 mpz_t ival;
2004 mpz_init(ival);
2005 mpfr_get_z(ival, this->val_, GMP_RNDN);
2006 Integer_expression::check_constant(ival, integer_type,
2007 this->location());
2008 mpz_clear(ival);
2009 }
2010 }
2011}
2012
2013// Get a tree for a float constant.
2014
2015tree
2016Float_expression::do_get_tree(Translate_context* context)
2017{
2018 Gogo* gogo = context->gogo();
2019 tree type;
2020 if (this->type_ != NULL && !this->type_->is_abstract())
2021 type = this->type_->get_tree(gogo);
2022 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2023 {
2024 // We have an abstract integer type. We just hope for the best.
2025 type = Type::lookup_integer_type("int")->get_tree(gogo);
2026 }
2027 else
2028 {
2029 // If we still have an abstract type here, then this is being
2030 // used in a constant expression which didn't get reduced. We
2031 // just use float64 and hope for the best.
2032 type = Type::lookup_float_type("float64")->get_tree(gogo);
2033 }
2034 return Expression::float_constant_tree(this->val_, type);
2035}
2036
2037// Write a floating point number to export data.
2038
2039void
2040Float_expression::export_float(Export *exp, const mpfr_t val)
2041{
2042 mp_exp_t exponent;
2043 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2044 if (*s == '-')
2045 exp->write_c_string("-");
2046 exp->write_c_string("0.");
2047 exp->write_c_string(*s == '-' ? s + 1 : s);
2048 mpfr_free_str(s);
2049 char buf[30];
2050 snprintf(buf, sizeof buf, "E%ld", exponent);
2051 exp->write_c_string(buf);
2052}
2053
2054// Export a floating point number in a constant expression.
2055
2056void
2057Float_expression::do_export(Export* exp) const
2058{
2059 Float_expression::export_float(exp, this->val_);
2060 // A trailing space lets us reliably identify the end of the number.
2061 exp->write_c_string(" ");
2062}
2063
2064// Make a float expression.
2065
2066Expression*
2067Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2068{
2069 return new Float_expression(val, type, location);
2070}
2071
2072// Complex numbers.
2073
2074class Complex_expression : public Expression
2075{
2076 public:
2077 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2078 source_location location)
2079 : Expression(EXPRESSION_COMPLEX, location),
2080 type_(type)
2081 {
2082 mpfr_init_set(this->real_, *real, GMP_RNDN);
2083 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2084 }
2085
2086 // Constrain REAL/IMAG to fit into TYPE.
2087 static void
2088 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2089
2090 // Return whether REAL/IMAG fits in the type.
2091 static bool
2092 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2093
2094 // Write REAL/IMAG to export data.
2095 static void
2096 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2097
2098 protected:
2099 bool
2100 do_is_constant() const
2101 { return true; }
2102
2103 bool
2104 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2105
2106 Type*
2107 do_type();
2108
2109 void
2110 do_determine_type(const Type_context*);
2111
2112 void
2113 do_check_types(Gogo*);
2114
2115 Expression*
2116 do_copy()
2117 {
2118 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2119 this->location());
2120 }
2121
2122 tree
2123 do_get_tree(Translate_context*);
2124
2125 void
2126 do_export(Export*) const;
2127
2128 private:
2129 // The real part.
2130 mpfr_t real_;
2131 // The imaginary part;
2132 mpfr_t imag_;
2133 // The type if known.
2134 Type* type_;
2135};
2136
2137// Constrain REAL/IMAG to fit into TYPE.
2138
2139void
2140Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2141{
2142 Complex_type* ctype = type->complex_type();
2143 if (ctype != NULL && !ctype->is_abstract())
2144 {
2145 tree type_tree = ctype->type_tree();
2146
2147 REAL_VALUE_TYPE rvt;
2148 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2149 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2150 mpfr_from_real(real, &rvt, GMP_RNDN);
2151
2152 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2153 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2154 mpfr_from_real(imag, &rvt, GMP_RNDN);
2155 }
2156}
2157
2158// Return a complex constant value.
2159
2160bool
2161Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2162 Type** ptype) const
2163{
2164 if (this->type_ != NULL)
2165 *ptype = this->type_;
2166 mpfr_set(real, this->real_, GMP_RNDN);
2167 mpfr_set(imag, this->imag_, GMP_RNDN);
2168 return true;
2169}
2170
2171// Return the current type. If we haven't set the type yet, we return
2172// an abstract complex type.
2173
2174Type*
2175Complex_expression::do_type()
2176{
2177 if (this->type_ == NULL)
2178 this->type_ = Type::make_abstract_complex_type();
2179 return this->type_;
2180}
2181
2182// Set the type of the complex value. Here we may switch from an
2183// abstract type to a real type.
2184
2185void
2186Complex_expression::do_determine_type(const Type_context* context)
2187{
2188 if (this->type_ != NULL && !this->type_->is_abstract())
2189 ;
2190 else if (context->type != NULL
2191 && context->type->complex_type() != NULL)
2192 this->type_ = context->type;
2193 else if (!context->may_be_abstract)
48080209 2194 this->type_ = Type::lookup_complex_type("complex128");
e440a328 2195}
2196
2197// Return true if the complex value REAL/IMAG fits in the range of the
2198// type TYPE. Otherwise give an error and return false. TYPE may be
2199// NULL.
2200
2201bool
2202Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2203 source_location location)
2204{
2205 if (type == NULL)
2206 return true;
2207 Complex_type* ctype = type->complex_type();
2208 if (ctype == NULL || ctype->is_abstract())
2209 return true;
2210
2211 mp_exp_t max_exp;
2212 switch (ctype->bits())
2213 {
2214 case 64:
2215 max_exp = 128;
2216 break;
2217 case 128:
2218 max_exp = 1024;
2219 break;
2220 default:
2221 gcc_unreachable();
2222 }
2223
2224 // A NaN or Infinity always fits in the range of the type.
2225 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2226 {
2227 if (mpfr_get_exp(real) > max_exp)
2228 {
2229 error_at(location, "complex real part constant overflow");
2230 return false;
2231 }
2232 }
2233
2234 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2235 {
2236 if (mpfr_get_exp(imag) > max_exp)
2237 {
2238 error_at(location, "complex imaginary part constant overflow");
2239 return false;
2240 }
2241 }
2242
2243 return true;
2244}
2245
2246// Check the type of a complex value.
2247
2248void
2249Complex_expression::do_check_types(Gogo*)
2250{
2251 if (this->type_ == NULL)
2252 return;
2253
2254 if (!Complex_expression::check_constant(this->real_, this->imag_,
2255 this->type_, this->location()))
2256 this->set_is_error();
2257}
2258
2259// Get a tree for a complex constant.
2260
2261tree
2262Complex_expression::do_get_tree(Translate_context* context)
2263{
2264 Gogo* gogo = context->gogo();
2265 tree type;
2266 if (this->type_ != NULL && !this->type_->is_abstract())
2267 type = this->type_->get_tree(gogo);
2268 else
2269 {
2270 // If we still have an abstract type here, this this is being
2271 // used in a constant expression which didn't get reduced. We
2272 // just use complex128 and hope for the best.
2273 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2274 }
2275 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2276}
2277
2278// Write REAL/IMAG to export data.
2279
2280void
2281Complex_expression::export_complex(Export* exp, const mpfr_t real,
2282 const mpfr_t imag)
2283{
2284 if (!mpfr_zero_p(real))
2285 {
2286 Float_expression::export_float(exp, real);
2287 if (mpfr_sgn(imag) > 0)
2288 exp->write_c_string("+");
2289 }
2290 Float_expression::export_float(exp, imag);
2291 exp->write_c_string("i");
2292}
2293
2294// Export a complex number in a constant expression.
2295
2296void
2297Complex_expression::do_export(Export* exp) const
2298{
2299 Complex_expression::export_complex(exp, this->real_, this->imag_);
2300 // A trailing space lets us reliably identify the end of the number.
2301 exp->write_c_string(" ");
2302}
2303
2304// Make a complex expression.
2305
2306Expression*
2307Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2308 source_location location)
2309{
2310 return new Complex_expression(real, imag, type, location);
2311}
2312
d5b605df 2313// Find a named object in an expression.
2314
2315class Find_named_object : public Traverse
2316{
2317 public:
2318 Find_named_object(Named_object* no)
2319 : Traverse(traverse_expressions),
2320 no_(no), found_(false)
2321 { }
2322
2323 // Whether we found the object.
2324 bool
2325 found() const
2326 { return this->found_; }
2327
2328 protected:
2329 int
2330 expression(Expression**);
2331
2332 private:
2333 // The object we are looking for.
2334 Named_object* no_;
2335 // Whether we found it.
2336 bool found_;
2337};
2338
e440a328 2339// A reference to a const in an expression.
2340
2341class Const_expression : public Expression
2342{
2343 public:
2344 Const_expression(Named_object* constant, source_location location)
2345 : Expression(EXPRESSION_CONST_REFERENCE, location),
13e818f5 2346 constant_(constant), type_(NULL), seen_(false)
e440a328 2347 { }
2348
d5b605df 2349 Named_object*
2350 named_object()
2351 { return this->constant_; }
2352
e440a328 2353 const std::string&
2354 name() const
2355 { return this->constant_->name(); }
2356
a7f064d5 2357 // Check that the initializer does not refer to the constant itself.
2358 void
2359 check_for_init_loop();
2360
e440a328 2361 protected:
ba4aedd4 2362 int
2363 do_traverse(Traverse*);
2364
e440a328 2365 Expression*
2366 do_lower(Gogo*, Named_object*, int);
2367
2368 bool
2369 do_is_constant() const
2370 { return true; }
2371
2372 bool
2373 do_integer_constant_value(bool, mpz_t val, Type**) const;
2374
2375 bool
2376 do_float_constant_value(mpfr_t val, Type**) const;
2377
2378 bool
2379 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2380
2381 bool
2382 do_string_constant_value(std::string* val) const
2383 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2384
2385 Type*
2386 do_type();
2387
2388 // The type of a const is set by the declaration, not the use.
2389 void
2390 do_determine_type(const Type_context*);
2391
2392 void
2393 do_check_types(Gogo*);
2394
2395 Expression*
2396 do_copy()
2397 { return this; }
2398
2399 tree
2400 do_get_tree(Translate_context* context);
2401
2402 // When exporting a reference to a const as part of a const
2403 // expression, we export the value. We ignore the fact that it has
2404 // a name.
2405 void
2406 do_export(Export* exp) const
2407 { this->constant_->const_value()->expr()->export_expression(exp); }
2408
2409 private:
2410 // The constant.
2411 Named_object* constant_;
2412 // The type of this reference. This is used if the constant has an
2413 // abstract type.
2414 Type* type_;
13e818f5 2415 // Used to prevent infinite recursion when a constant incorrectly
2416 // refers to itself.
2417 mutable bool seen_;
e440a328 2418};
2419
ba4aedd4 2420// Traversal.
2421
2422int
2423Const_expression::do_traverse(Traverse* traverse)
2424{
2425 if (this->type_ != NULL)
2426 return Type::traverse(this->type_, traverse);
2427 return TRAVERSE_CONTINUE;
2428}
2429
e440a328 2430// Lower a constant expression. This is where we convert the
2431// predeclared constant iota into an integer value.
2432
2433Expression*
2434Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2435{
2436 if (this->constant_->const_value()->expr()->classification()
2437 == EXPRESSION_IOTA)
2438 {
2439 if (iota_value == -1)
2440 {
2441 error_at(this->location(),
2442 "iota is only defined in const declarations");
2443 iota_value = 0;
2444 }
2445 mpz_t val;
2446 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2447 Expression* ret = Expression::make_integer(&val, NULL,
2448 this->location());
2449 mpz_clear(val);
2450 return ret;
2451 }
2452
2453 // Make sure that the constant itself has been lowered.
2454 gogo->lower_constant(this->constant_);
2455
2456 return this;
2457}
2458
2459// Return an integer constant value.
2460
2461bool
2462Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2463 Type** ptype) const
2464{
13e818f5 2465 if (this->seen_)
2466 return false;
2467
e440a328 2468 Type* ctype;
2469 if (this->type_ != NULL)
2470 ctype = this->type_;
2471 else
2472 ctype = this->constant_->const_value()->type();
2473 if (ctype != NULL && ctype->integer_type() == NULL)
2474 return false;
2475
2476 Expression* e = this->constant_->const_value()->expr();
13e818f5 2477
2478 this->seen_ = true;
2479
e440a328 2480 Type* t;
2481 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2482
13e818f5 2483 this->seen_ = false;
2484
e440a328 2485 if (r
2486 && ctype != NULL
2487 && !Integer_expression::check_constant(val, ctype, this->location()))
2488 return false;
2489
2490 *ptype = ctype != NULL ? ctype : t;
2491 return r;
2492}
2493
2494// Return a floating point constant value.
2495
2496bool
2497Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2498{
13e818f5 2499 if (this->seen_)
2500 return false;
2501
e440a328 2502 Type* ctype;
2503 if (this->type_ != NULL)
2504 ctype = this->type_;
2505 else
2506 ctype = this->constant_->const_value()->type();
2507 if (ctype != NULL && ctype->float_type() == NULL)
2508 return false;
2509
13e818f5 2510 this->seen_ = true;
2511
e440a328 2512 Type* t;
2513 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2514 &t);
13e818f5 2515
2516 this->seen_ = false;
2517
e440a328 2518 if (r && ctype != NULL)
2519 {
2520 if (!Float_expression::check_constant(val, ctype, this->location()))
2521 return false;
2522 Float_expression::constrain_float(val, ctype);
2523 }
2524 *ptype = ctype != NULL ? ctype : t;
2525 return r;
2526}
2527
2528// Return a complex constant value.
2529
2530bool
2531Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2532 Type **ptype) const
2533{
13e818f5 2534 if (this->seen_)
2535 return false;
2536
e440a328 2537 Type* ctype;
2538 if (this->type_ != NULL)
2539 ctype = this->type_;
2540 else
2541 ctype = this->constant_->const_value()->type();
2542 if (ctype != NULL && ctype->complex_type() == NULL)
2543 return false;
2544
13e818f5 2545 this->seen_ = true;
2546
e440a328 2547 Type *t;
2548 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2549 imag,
2550 &t);
13e818f5 2551
2552 this->seen_ = false;
2553
e440a328 2554 if (r && ctype != NULL)
2555 {
2556 if (!Complex_expression::check_constant(real, imag, ctype,
2557 this->location()))
2558 return false;
2559 Complex_expression::constrain_complex(real, imag, ctype);
2560 }
2561 *ptype = ctype != NULL ? ctype : t;
2562 return r;
2563}
2564
2565// Return the type of the const reference.
2566
2567Type*
2568Const_expression::do_type()
2569{
2570 if (this->type_ != NULL)
2571 return this->type_;
13e818f5 2572
2f78f012 2573 Named_constant* nc = this->constant_->const_value();
2574
2575 if (this->seen_ || nc->lowering())
13e818f5 2576 {
2577 this->report_error(_("constant refers to itself"));
2578 this->type_ = Type::make_error_type();
2579 return this->type_;
2580 }
2581
2582 this->seen_ = true;
2583
e440a328 2584 Type* ret = nc->type();
13e818f5 2585
e440a328 2586 if (ret != NULL)
13e818f5 2587 {
2588 this->seen_ = false;
2589 return ret;
2590 }
2591
e440a328 2592 // During parsing, a named constant may have a NULL type, but we
2593 // must not return a NULL type here.
13e818f5 2594 ret = nc->expr()->type();
2595
2596 this->seen_ = false;
2597
2598 return ret;
e440a328 2599}
2600
2601// Set the type of the const reference.
2602
2603void
2604Const_expression::do_determine_type(const Type_context* context)
2605{
2606 Type* ctype = this->constant_->const_value()->type();
2607 Type* cetype = (ctype != NULL
2608 ? ctype
2609 : this->constant_->const_value()->expr()->type());
2610 if (ctype != NULL && !ctype->is_abstract())
2611 ;
2612 else if (context->type != NULL
2613 && (context->type->integer_type() != NULL
2614 || context->type->float_type() != NULL
2615 || context->type->complex_type() != NULL)
2616 && (cetype->integer_type() != NULL
2617 || cetype->float_type() != NULL
2618 || cetype->complex_type() != NULL))
2619 this->type_ = context->type;
2620 else if (context->type != NULL
2621 && context->type->is_string_type()
2622 && cetype->is_string_type())
2623 this->type_ = context->type;
2624 else if (context->type != NULL
2625 && context->type->is_boolean_type()
2626 && cetype->is_boolean_type())
2627 this->type_ = context->type;
2628 else if (!context->may_be_abstract)
2629 {
2630 if (cetype->is_abstract())
2631 cetype = cetype->make_non_abstract_type();
2632 this->type_ = cetype;
2633 }
2634}
2635
a7f064d5 2636// Check for a loop in which the initializer of a constant refers to
2637// the constant itself.
e440a328 2638
2639void
a7f064d5 2640Const_expression::check_for_init_loop()
e440a328 2641{
d5b605df 2642 if (this->type_ != NULL && this->type_->is_error_type())
2643 return;
2644
a7f064d5 2645 if (this->seen_)
2646 {
2647 this->report_error(_("constant refers to itself"));
2648 this->type_ = Type::make_error_type();
2649 return;
2650 }
2651
d5b605df 2652 Expression* init = this->constant_->const_value()->expr();
2653 Find_named_object find_named_object(this->constant_);
a7f064d5 2654
2655 this->seen_ = true;
d5b605df 2656 Expression::traverse(&init, &find_named_object);
a7f064d5 2657 this->seen_ = false;
2658
d5b605df 2659 if (find_named_object.found())
2660 {
a7f064d5 2661 if (this->type_ == NULL || !this->type_->is_error_type())
2662 {
2663 this->report_error(_("constant refers to itself"));
2664 this->type_ = Type::make_error_type();
2665 }
d5b605df 2666 return;
2667 }
a7f064d5 2668}
2669
2670// Check types of a const reference.
2671
2672void
2673Const_expression::do_check_types(Gogo*)
2674{
2675 if (this->type_ != NULL && this->type_->is_error_type())
2676 return;
2677
2678 this->check_for_init_loop();
d5b605df 2679
e440a328 2680 if (this->type_ == NULL || this->type_->is_abstract())
2681 return;
2682
2683 // Check for integer overflow.
2684 if (this->type_->integer_type() != NULL)
2685 {
2686 mpz_t ival;
2687 mpz_init(ival);
2688 Type* dummy;
2689 if (!this->integer_constant_value(true, ival, &dummy))
2690 {
2691 mpfr_t fval;
2692 mpfr_init(fval);
2693 Expression* cexpr = this->constant_->const_value()->expr();
2694 if (cexpr->float_constant_value(fval, &dummy))
2695 {
2696 if (!mpfr_integer_p(fval))
2697 this->report_error(_("floating point constant "
2698 "truncated to integer"));
2699 else
2700 {
2701 mpfr_get_z(ival, fval, GMP_RNDN);
2702 Integer_expression::check_constant(ival, this->type_,
2703 this->location());
2704 }
2705 }
2706 mpfr_clear(fval);
2707 }
2708 mpz_clear(ival);
2709 }
2710}
2711
2712// Return a tree for the const reference.
2713
2714tree
2715Const_expression::do_get_tree(Translate_context* context)
2716{
2717 Gogo* gogo = context->gogo();
2718 tree type_tree;
2719 if (this->type_ == NULL)
2720 type_tree = NULL_TREE;
2721 else
2722 {
2723 type_tree = this->type_->get_tree(gogo);
2724 if (type_tree == error_mark_node)
2725 return error_mark_node;
2726 }
2727
2728 // If the type has been set for this expression, but the underlying
2729 // object is an abstract int or float, we try to get the abstract
2730 // value. Otherwise we may lose something in the conversion.
2731 if (this->type_ != NULL
a68492b4 2732 && (this->constant_->const_value()->type() == NULL
2733 || this->constant_->const_value()->type()->is_abstract()))
e440a328 2734 {
2735 Expression* expr = this->constant_->const_value()->expr();
2736 mpz_t ival;
2737 mpz_init(ival);
2738 Type* t;
2739 if (expr->integer_constant_value(true, ival, &t))
2740 {
2741 tree ret = Expression::integer_constant_tree(ival, type_tree);
2742 mpz_clear(ival);
2743 return ret;
2744 }
2745 mpz_clear(ival);
2746
2747 mpfr_t fval;
2748 mpfr_init(fval);
2749 if (expr->float_constant_value(fval, &t))
2750 {
2751 tree ret = Expression::float_constant_tree(fval, type_tree);
2752 mpfr_clear(fval);
2753 return ret;
2754 }
2755
2756 mpfr_t imag;
2757 mpfr_init(imag);
2758 if (expr->complex_constant_value(fval, imag, &t))
2759 {
2760 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2761 mpfr_clear(fval);
2762 mpfr_clear(imag);
2763 return ret;
2764 }
2765 mpfr_clear(imag);
2766 mpfr_clear(fval);
2767 }
2768
2769 tree const_tree = this->constant_->get_tree(gogo, context->function());
2770 if (this->type_ == NULL
2771 || const_tree == error_mark_node
2772 || TREE_TYPE(const_tree) == error_mark_node)
2773 return const_tree;
2774
2775 tree ret;
2776 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2777 ret = fold_convert(type_tree, const_tree);
2778 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2779 ret = fold(convert_to_integer(type_tree, const_tree));
2780 else if (TREE_CODE(type_tree) == REAL_TYPE)
2781 ret = fold(convert_to_real(type_tree, const_tree));
2782 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2783 ret = fold(convert_to_complex(type_tree, const_tree));
2784 else
2785 gcc_unreachable();
2786 return ret;
2787}
2788
2789// Make a reference to a constant in an expression.
2790
2791Expression*
2792Expression::make_const_reference(Named_object* constant,
2793 source_location location)
2794{
2795 return new Const_expression(constant, location);
2796}
2797
d5b605df 2798// Find a named object in an expression.
2799
2800int
2801Find_named_object::expression(Expression** pexpr)
2802{
2803 switch ((*pexpr)->classification())
2804 {
2805 case Expression::EXPRESSION_CONST_REFERENCE:
a7f064d5 2806 {
2807 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2808 if (ce->named_object() == this->no_)
2809 break;
2810
2811 // We need to check a constant initializer explicitly, as
2812 // loops here will not be caught by the loop checking for
2813 // variable initializers.
2814 ce->check_for_init_loop();
2815
2816 return TRAVERSE_CONTINUE;
2817 }
2818
d5b605df 2819 case Expression::EXPRESSION_VAR_REFERENCE:
2820 if ((*pexpr)->var_expression()->named_object() == this->no_)
2821 break;
2822 return TRAVERSE_CONTINUE;
2823 case Expression::EXPRESSION_FUNC_REFERENCE:
2824 if ((*pexpr)->func_expression()->named_object() == this->no_)
2825 break;
2826 return TRAVERSE_CONTINUE;
2827 default:
2828 return TRAVERSE_CONTINUE;
2829 }
2830 this->found_ = true;
2831 return TRAVERSE_EXIT;
2832}
2833
e440a328 2834// The nil value.
2835
2836class Nil_expression : public Expression
2837{
2838 public:
2839 Nil_expression(source_location location)
2840 : Expression(EXPRESSION_NIL, location)
2841 { }
2842
2843 static Expression*
2844 do_import(Import*);
2845
2846 protected:
2847 bool
2848 do_is_constant() const
2849 { return true; }
2850
2851 Type*
2852 do_type()
2853 { return Type::make_nil_type(); }
2854
2855 void
2856 do_determine_type(const Type_context*)
2857 { }
2858
2859 Expression*
2860 do_copy()
2861 { return this; }
2862
2863 tree
2864 do_get_tree(Translate_context*)
2865 { return null_pointer_node; }
2866
2867 void
2868 do_export(Export* exp) const
2869 { exp->write_c_string("nil"); }
2870};
2871
2872// Import a nil expression.
2873
2874Expression*
2875Nil_expression::do_import(Import* imp)
2876{
2877 imp->require_c_string("nil");
2878 return Expression::make_nil(imp->location());
2879}
2880
2881// Make a nil expression.
2882
2883Expression*
2884Expression::make_nil(source_location location)
2885{
2886 return new Nil_expression(location);
2887}
2888
2889// The value of the predeclared constant iota. This is little more
2890// than a marker. This will be lowered to an integer in
2891// Const_expression::do_lower, which is where we know the value that
2892// it should have.
2893
2894class Iota_expression : public Parser_expression
2895{
2896 public:
2897 Iota_expression(source_location location)
2898 : Parser_expression(EXPRESSION_IOTA, location)
2899 { }
2900
2901 protected:
2902 Expression*
2903 do_lower(Gogo*, Named_object*, int)
2904 { gcc_unreachable(); }
2905
2906 // There should only ever be one of these.
2907 Expression*
2908 do_copy()
2909 { gcc_unreachable(); }
2910};
2911
2912// Make an iota expression. This is only called for one case: the
2913// value of the predeclared constant iota.
2914
2915Expression*
2916Expression::make_iota()
2917{
2918 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2919 return &iota_expression;
2920}
2921
2922// A type conversion expression.
2923
2924class Type_conversion_expression : public Expression
2925{
2926 public:
2927 Type_conversion_expression(Type* type, Expression* expr,
2928 source_location location)
2929 : Expression(EXPRESSION_CONVERSION, location),
2930 type_(type), expr_(expr), may_convert_function_types_(false)
2931 { }
2932
2933 // Return the type to which we are converting.
2934 Type*
2935 type() const
2936 { return this->type_; }
2937
2938 // Return the expression which we are converting.
2939 Expression*
2940 expr() const
2941 { return this->expr_; }
2942
2943 // Permit converting from one function type to another. This is
2944 // used internally for method expressions.
2945 void
2946 set_may_convert_function_types()
2947 {
2948 this->may_convert_function_types_ = true;
2949 }
2950
2951 // Import a type conversion expression.
2952 static Expression*
2953 do_import(Import*);
2954
2955 protected:
2956 int
2957 do_traverse(Traverse* traverse);
2958
2959 Expression*
2960 do_lower(Gogo*, Named_object*, int);
2961
2962 bool
2963 do_is_constant() const
2964 { return this->expr_->is_constant(); }
2965
2966 bool
2967 do_integer_constant_value(bool, mpz_t, Type**) const;
2968
2969 bool
2970 do_float_constant_value(mpfr_t, Type**) const;
2971
2972 bool
2973 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2974
2975 bool
2976 do_string_constant_value(std::string*) const;
2977
2978 Type*
2979 do_type()
2980 { return this->type_; }
2981
2982 void
2983 do_determine_type(const Type_context*)
2984 {
2985 Type_context subcontext(this->type_, false);
2986 this->expr_->determine_type(&subcontext);
2987 }
2988
2989 void
2990 do_check_types(Gogo*);
2991
2992 Expression*
2993 do_copy()
2994 {
2995 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2996 this->location());
2997 }
2998
2999 tree
3000 do_get_tree(Translate_context* context);
3001
3002 void
3003 do_export(Export*) const;
3004
3005 private:
3006 // The type to convert to.
3007 Type* type_;
3008 // The expression to convert.
3009 Expression* expr_;
3010 // True if this is permitted to convert function types. This is
3011 // used internally for method expressions.
3012 bool may_convert_function_types_;
3013};
3014
3015// Traversal.
3016
3017int
3018Type_conversion_expression::do_traverse(Traverse* traverse)
3019{
3020 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3021 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3022 return TRAVERSE_EXIT;
3023 return TRAVERSE_CONTINUE;
3024}
3025
3026// Convert to a constant at lowering time.
3027
3028Expression*
3029Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3030{
3031 Type* type = this->type_;
3032 Expression* val = this->expr_;
3033 source_location location = this->location();
3034
3035 if (type->integer_type() != NULL)
3036 {
3037 mpz_t ival;
3038 mpz_init(ival);
3039 Type* dummy;
3040 if (val->integer_constant_value(false, ival, &dummy))
3041 {
3042 if (!Integer_expression::check_constant(ival, type, location))
3043 mpz_set_ui(ival, 0);
3044 Expression* ret = Expression::make_integer(&ival, type, location);
3045 mpz_clear(ival);
3046 return ret;
3047 }
3048
3049 mpfr_t fval;
3050 mpfr_init(fval);
3051 if (val->float_constant_value(fval, &dummy))
3052 {
3053 if (!mpfr_integer_p(fval))
3054 {
3055 error_at(location,
3056 "floating point constant truncated to integer");
3057 return Expression::make_error(location);
3058 }
3059 mpfr_get_z(ival, fval, GMP_RNDN);
3060 if (!Integer_expression::check_constant(ival, type, location))
3061 mpz_set_ui(ival, 0);
3062 Expression* ret = Expression::make_integer(&ival, type, location);
3063 mpfr_clear(fval);
3064 mpz_clear(ival);
3065 return ret;
3066 }
3067 mpfr_clear(fval);
3068 mpz_clear(ival);
3069 }
3070
3071 if (type->float_type() != NULL)
3072 {
3073 mpfr_t fval;
3074 mpfr_init(fval);
3075 Type* dummy;
3076 if (val->float_constant_value(fval, &dummy))
3077 {
3078 if (!Float_expression::check_constant(fval, type, location))
3079 mpfr_set_ui(fval, 0, GMP_RNDN);
3080 Float_expression::constrain_float(fval, type);
3081 Expression *ret = Expression::make_float(&fval, type, location);
3082 mpfr_clear(fval);
3083 return ret;
3084 }
3085 mpfr_clear(fval);
3086 }
3087
3088 if (type->complex_type() != NULL)
3089 {
3090 mpfr_t real;
3091 mpfr_t imag;
3092 mpfr_init(real);
3093 mpfr_init(imag);
3094 Type* dummy;
3095 if (val->complex_constant_value(real, imag, &dummy))
3096 {
3097 if (!Complex_expression::check_constant(real, imag, type, location))
3098 {
3099 mpfr_set_ui(real, 0, GMP_RNDN);
3100 mpfr_set_ui(imag, 0, GMP_RNDN);
3101 }
3102 Complex_expression::constrain_complex(real, imag, type);
3103 Expression* ret = Expression::make_complex(&real, &imag, type,
3104 location);
3105 mpfr_clear(real);
3106 mpfr_clear(imag);
3107 return ret;
3108 }
3109 mpfr_clear(real);
3110 mpfr_clear(imag);
3111 }
3112
3113 if (type->is_open_array_type() && type->named_type() == NULL)
3114 {
3115 Type* element_type = type->array_type()->element_type()->forwarded();
3116 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3117 bool is_int = element_type == Type::lookup_integer_type("int");
3118 if (is_byte || is_int)
3119 {
3120 std::string s;
3121 if (val->string_constant_value(&s))
3122 {
3123 Expression_list* vals = new Expression_list();
3124 if (is_byte)
3125 {
3126 for (std::string::const_iterator p = s.begin();
3127 p != s.end();
3128 p++)
3129 {
3130 mpz_t val;
3131 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3132 Expression* v = Expression::make_integer(&val,
3133 element_type,
3134 location);
3135 vals->push_back(v);
3136 mpz_clear(val);
3137 }
3138 }
3139 else
3140 {
3141 const char *p = s.data();
3142 const char *pend = s.data() + s.length();
3143 while (p < pend)
3144 {
3145 unsigned int c;
3146 int adv = Lex::fetch_char(p, &c);
3147 if (adv == 0)
3148 {
3149 warning_at(this->location(), 0,
3150 "invalid UTF-8 encoding");
3151 adv = 1;
3152 }
3153 p += adv;
3154 mpz_t val;
3155 mpz_init_set_ui(val, c);
3156 Expression* v = Expression::make_integer(&val,
3157 element_type,
3158 location);
3159 vals->push_back(v);
3160 mpz_clear(val);
3161 }
3162 }
3163
3164 return Expression::make_slice_composite_literal(type, vals,
3165 location);
3166 }
3167 }
3168 }
3169
3170 return this;
3171}
3172
3173// Return the constant integer value if there is one.
3174
3175bool
3176Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3177 mpz_t val,
3178 Type** ptype) const
3179{
3180 if (this->type_->integer_type() == NULL)
3181 return false;
3182
3183 mpz_t ival;
3184 mpz_init(ival);
3185 Type* dummy;
3186 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3187 {
3188 if (!Integer_expression::check_constant(ival, this->type_,
3189 this->location()))
3190 {
3191 mpz_clear(ival);
3192 return false;
3193 }
3194 mpz_set(val, ival);
3195 mpz_clear(ival);
3196 *ptype = this->type_;
3197 return true;
3198 }
3199 mpz_clear(ival);
3200
3201 mpfr_t fval;
3202 mpfr_init(fval);
3203 if (this->expr_->float_constant_value(fval, &dummy))
3204 {
3205 mpfr_get_z(val, fval, GMP_RNDN);
3206 mpfr_clear(fval);
3207 if (!Integer_expression::check_constant(val, this->type_,
3208 this->location()))
3209 return false;
3210 *ptype = this->type_;
3211 return true;
3212 }
3213 mpfr_clear(fval);
3214
3215 return false;
3216}
3217
3218// Return the constant floating point value if there is one.
3219
3220bool
3221Type_conversion_expression::do_float_constant_value(mpfr_t val,
3222 Type** ptype) const
3223{
3224 if (this->type_->float_type() == NULL)
3225 return false;
3226
3227 mpfr_t fval;
3228 mpfr_init(fval);
3229 Type* dummy;
3230 if (this->expr_->float_constant_value(fval, &dummy))
3231 {
3232 if (!Float_expression::check_constant(fval, this->type_,
3233 this->location()))
3234 {
3235 mpfr_clear(fval);
3236 return false;
3237 }
3238 mpfr_set(val, fval, GMP_RNDN);
3239 mpfr_clear(fval);
3240 Float_expression::constrain_float(val, this->type_);
3241 *ptype = this->type_;
3242 return true;
3243 }
3244 mpfr_clear(fval);
3245
3246 return false;
3247}
3248
3249// Return the constant complex value if there is one.
3250
3251bool
3252Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3253 mpfr_t imag,
3254 Type **ptype) const
3255{
3256 if (this->type_->complex_type() == NULL)
3257 return false;
3258
3259 mpfr_t rval;
3260 mpfr_t ival;
3261 mpfr_init(rval);
3262 mpfr_init(ival);
3263 Type* dummy;
3264 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3265 {
3266 if (!Complex_expression::check_constant(rval, ival, this->type_,
3267 this->location()))
3268 {
3269 mpfr_clear(rval);
3270 mpfr_clear(ival);
3271 return false;
3272 }
3273 mpfr_set(real, rval, GMP_RNDN);
3274 mpfr_set(imag, ival, GMP_RNDN);
3275 mpfr_clear(rval);
3276 mpfr_clear(ival);
3277 Complex_expression::constrain_complex(real, imag, this->type_);
3278 *ptype = this->type_;
3279 return true;
3280 }
3281 mpfr_clear(rval);
3282 mpfr_clear(ival);
3283
3284 return false;
3285}
3286
3287// Return the constant string value if there is one.
3288
3289bool
3290Type_conversion_expression::do_string_constant_value(std::string* val) const
3291{
3292 if (this->type_->is_string_type()
3293 && this->expr_->type()->integer_type() != NULL)
3294 {
3295 mpz_t ival;
3296 mpz_init(ival);
3297 Type* dummy;
3298 if (this->expr_->integer_constant_value(false, ival, &dummy))
3299 {
3300 unsigned long ulval = mpz_get_ui(ival);
3301 if (mpz_cmp_ui(ival, ulval) == 0)
3302 {
3303 Lex::append_char(ulval, true, val, this->location());
3304 mpz_clear(ival);
3305 return true;
3306 }
3307 }
3308 mpz_clear(ival);
3309 }
3310
3311 // FIXME: Could handle conversion from const []int here.
3312
3313 return false;
3314}
3315
3316// Check that types are convertible.
3317
3318void
3319Type_conversion_expression::do_check_types(Gogo*)
3320{
3321 Type* type = this->type_;
3322 Type* expr_type = this->expr_->type();
3323 std::string reason;
3324
842f6425 3325 if (type->is_error_type()
3326 || type->is_undefined()
3327 || expr_type->is_error_type()
3328 || expr_type->is_undefined())
3329 {
3330 // Make sure we emit an error for an undefined type.
3331 type->base();
3332 expr_type->base();
3333 this->set_is_error();
3334 return;
3335 }
3336
e440a328 3337 if (this->may_convert_function_types_
3338 && type->function_type() != NULL
3339 && expr_type->function_type() != NULL)
3340 return;
3341
3342 if (Type::are_convertible(type, expr_type, &reason))
3343 return;
3344
3345 error_at(this->location(), "%s", reason.c_str());
3346 this->set_is_error();
3347}
3348
3349// Get a tree for a type conversion.
3350
3351tree
3352Type_conversion_expression::do_get_tree(Translate_context* context)
3353{
3354 Gogo* gogo = context->gogo();
3355 tree type_tree = this->type_->get_tree(gogo);
3356 tree expr_tree = this->expr_->get_tree(context);
3357
3358 if (type_tree == error_mark_node
3359 || expr_tree == error_mark_node
3360 || TREE_TYPE(expr_tree) == error_mark_node)
3361 return error_mark_node;
3362
3363 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3364 return fold_convert(type_tree, expr_tree);
3365
3366 Type* type = this->type_;
3367 Type* expr_type = this->expr_->type();
3368 tree ret;
3369 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3370 ret = Expression::convert_for_assignment(context, type, expr_type,
3371 expr_tree, this->location());
3372 else if (type->integer_type() != NULL)
3373 {
3374 if (expr_type->integer_type() != NULL
3375 || expr_type->float_type() != NULL
3376 || expr_type->is_unsafe_pointer_type())
3377 ret = fold(convert_to_integer(type_tree, expr_tree));
3378 else
3379 gcc_unreachable();
3380 }
3381 else if (type->float_type() != NULL)
3382 {
3383 if (expr_type->integer_type() != NULL
3384 || expr_type->float_type() != NULL)
3385 ret = fold(convert_to_real(type_tree, expr_tree));
3386 else
3387 gcc_unreachable();
3388 }
3389 else if (type->complex_type() != NULL)
3390 {
3391 if (expr_type->complex_type() != NULL)
3392 ret = fold(convert_to_complex(type_tree, expr_tree));
3393 else
3394 gcc_unreachable();
3395 }
3396 else if (type->is_string_type()
3397 && expr_type->integer_type() != NULL)
3398 {
3399 expr_tree = fold_convert(integer_type_node, expr_tree);
3400 if (host_integerp(expr_tree, 0))
3401 {
3402 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3403 std::string s;
3404 Lex::append_char(intval, true, &s, this->location());
3405 Expression* se = Expression::make_string(s, this->location());
3406 return se->get_tree(context);
3407 }
3408
3409 static tree int_to_string_fndecl;
3410 ret = Gogo::call_builtin(&int_to_string_fndecl,
3411 this->location(),
3412 "__go_int_to_string",
3413 1,
3414 type_tree,
3415 integer_type_node,
3416 fold_convert(integer_type_node, expr_tree));
3417 }
3418 else if (type->is_string_type()
3419 && (expr_type->array_type() != NULL
3420 || (expr_type->points_to() != NULL
3421 && expr_type->points_to()->array_type() != NULL)))
3422 {
3423 Type* t = expr_type;
3424 if (t->points_to() != NULL)
3425 {
3426 t = t->points_to();
3427 expr_tree = build_fold_indirect_ref(expr_tree);
3428 }
3429 if (!DECL_P(expr_tree))
3430 expr_tree = save_expr(expr_tree);
3431 Array_type* a = t->array_type();
3432 Type* e = a->element_type()->forwarded();
3433 gcc_assert(e->integer_type() != NULL);
3434 tree valptr = fold_convert(const_ptr_type_node,
3435 a->value_pointer_tree(gogo, expr_tree));
3436 tree len = a->length_tree(gogo, expr_tree);
3437 len = fold_convert_loc(this->location(), size_type_node, len);
3438 if (e->integer_type()->is_unsigned()
3439 && e->integer_type()->bits() == 8)
3440 {
3441 static tree byte_array_to_string_fndecl;
3442 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3443 this->location(),
3444 "__go_byte_array_to_string",
3445 2,
3446 type_tree,
3447 const_ptr_type_node,
3448 valptr,
3449 size_type_node,
3450 len);
3451 }
3452 else
3453 {
3454 gcc_assert(e == Type::lookup_integer_type("int"));
3455 static tree int_array_to_string_fndecl;
3456 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3457 this->location(),
3458 "__go_int_array_to_string",
3459 2,
3460 type_tree,
3461 const_ptr_type_node,
3462 valptr,
3463 size_type_node,
3464 len);
3465 }
3466 }
3467 else if (type->is_open_array_type() && expr_type->is_string_type())
3468 {
3469 Type* e = type->array_type()->element_type()->forwarded();
3470 gcc_assert(e->integer_type() != NULL);
3471 if (e->integer_type()->is_unsigned()
3472 && e->integer_type()->bits() == 8)
3473 {
3474 static tree string_to_byte_array_fndecl;
3475 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3476 this->location(),
3477 "__go_string_to_byte_array",
3478 1,
3479 type_tree,
3480 TREE_TYPE(expr_tree),
3481 expr_tree);
3482 }
3483 else
3484 {
3485 gcc_assert(e == Type::lookup_integer_type("int"));
3486 static tree string_to_int_array_fndecl;
3487 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3488 this->location(),
3489 "__go_string_to_int_array",
3490 1,
3491 type_tree,
3492 TREE_TYPE(expr_tree),
3493 expr_tree);
3494 }
3495 }
3496 else if ((type->is_unsafe_pointer_type()
3497 && expr_type->points_to() != NULL)
3498 || (expr_type->is_unsafe_pointer_type()
3499 && type->points_to() != NULL))
3500 ret = fold_convert(type_tree, expr_tree);
3501 else if (type->is_unsafe_pointer_type()
3502 && expr_type->integer_type() != NULL)
3503 ret = convert_to_pointer(type_tree, expr_tree);
3504 else if (this->may_convert_function_types_
3505 && type->function_type() != NULL
3506 && expr_type->function_type() != NULL)
3507 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3508 else
3509 ret = Expression::convert_for_assignment(context, type, expr_type,
3510 expr_tree, this->location());
3511
3512 return ret;
3513}
3514
3515// Output a type conversion in a constant expression.
3516
3517void
3518Type_conversion_expression::do_export(Export* exp) const
3519{
3520 exp->write_c_string("convert(");
3521 exp->write_type(this->type_);
3522 exp->write_c_string(", ");
3523 this->expr_->export_expression(exp);
3524 exp->write_c_string(")");
3525}
3526
3527// Import a type conversion or a struct construction.
3528
3529Expression*
3530Type_conversion_expression::do_import(Import* imp)
3531{
3532 imp->require_c_string("convert(");
3533 Type* type = imp->read_type();
3534 imp->require_c_string(", ");
3535 Expression* val = Expression::import_expression(imp);
3536 imp->require_c_string(")");
3537 return Expression::make_cast(type, val, imp->location());
3538}
3539
3540// Make a type cast expression.
3541
3542Expression*
3543Expression::make_cast(Type* type, Expression* val, source_location location)
3544{
3545 if (type->is_error_type() || val->is_error_expression())
3546 return Expression::make_error(location);
3547 return new Type_conversion_expression(type, val, location);
3548}
3549
3550// Unary expressions.
3551
3552class Unary_expression : public Expression
3553{
3554 public:
3555 Unary_expression(Operator op, Expression* expr, source_location location)
3556 : Expression(EXPRESSION_UNARY, location),
3557 op_(op), escapes_(true), expr_(expr)
3558 { }
3559
3560 // Return the operator.
3561 Operator
3562 op() const
3563 { return this->op_; }
3564
3565 // Return the operand.
3566 Expression*
3567 operand() const
3568 { return this->expr_; }
3569
3570 // Record that an address expression does not escape.
3571 void
3572 set_does_not_escape()
3573 {
3574 gcc_assert(this->op_ == OPERATOR_AND);
3575 this->escapes_ = false;
3576 }
3577
3578 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3579 // could be done, false if not.
3580 static bool
3581 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3582 source_location);
3583
3584 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3585 // could be done, false if not.
3586 static bool
3587 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3588
3589 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3590 // true if this could be done, false if not.
3591 static bool
3592 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3593 mpfr_t imag);
3594
3595 static Expression*
3596 do_import(Import*);
3597
3598 protected:
3599 int
3600 do_traverse(Traverse* traverse)
3601 { return Expression::traverse(&this->expr_, traverse); }
3602
3603 Expression*
3604 do_lower(Gogo*, Named_object*, int);
3605
3606 bool
3607 do_is_constant() const;
3608
3609 bool
3610 do_integer_constant_value(bool, mpz_t, Type**) const;
3611
3612 bool
3613 do_float_constant_value(mpfr_t, Type**) const;
3614
3615 bool
3616 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3617
3618 Type*
3619 do_type();
3620
3621 void
3622 do_determine_type(const Type_context*);
3623
3624 void
3625 do_check_types(Gogo*);
3626
3627 Expression*
3628 do_copy()
3629 {
3630 return Expression::make_unary(this->op_, this->expr_->copy(),
3631 this->location());
3632 }
3633
3634 bool
3635 do_is_addressable() const
3636 { return this->op_ == OPERATOR_MULT; }
3637
3638 tree
3639 do_get_tree(Translate_context*);
3640
3641 void
3642 do_export(Export*) const;
3643
3644 private:
3645 // The unary operator to apply.
3646 Operator op_;
3647 // Normally true. False if this is an address expression which does
3648 // not escape the current function.
3649 bool escapes_;
3650 // The operand.
3651 Expression* expr_;
3652};
3653
3654// If we are taking the address of a composite literal, and the
3655// contents are not constant, then we want to make a heap composite
3656// instead.
3657
3658Expression*
3659Unary_expression::do_lower(Gogo*, Named_object*, int)
3660{
3661 source_location loc = this->location();
3662 Operator op = this->op_;
3663 Expression* expr = this->expr_;
3664
3665 if (op == OPERATOR_MULT && expr->is_type_expression())
3666 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3667
3668 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3669 // moving x to the heap. FIXME: Is it worth doing a real escape
3670 // analysis here? This case is found in math/unsafe.go and is
3671 // therefore worth special casing.
3672 if (op == OPERATOR_MULT)
3673 {
3674 Expression* e = expr;
3675 while (e->classification() == EXPRESSION_CONVERSION)
3676 {
3677 Type_conversion_expression* te
3678 = static_cast<Type_conversion_expression*>(e);
3679 e = te->expr();
3680 }
3681
3682 if (e->classification() == EXPRESSION_UNARY)
3683 {
3684 Unary_expression* ue = static_cast<Unary_expression*>(e);
3685 if (ue->op_ == OPERATOR_AND)
3686 {
3687 if (e == expr)
3688 {
3689 // *&x == x.
3690 return ue->expr_;
3691 }
3692 ue->set_does_not_escape();
3693 }
3694 }
3695 }
3696
3697 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3698 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3699 {
3700 Expression* ret = NULL;
3701
3702 mpz_t eval;
3703 mpz_init(eval);
3704 Type* etype;
3705 if (expr->integer_constant_value(false, eval, &etype))
3706 {
3707 mpz_t val;
3708 mpz_init(val);
3709 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3710 ret = Expression::make_integer(&val, etype, loc);
3711 mpz_clear(val);
3712 }
3713 mpz_clear(eval);
3714 if (ret != NULL)
3715 return ret;
3716
3717 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3718 {
3719 mpfr_t fval;
3720 mpfr_init(fval);
3721 Type* ftype;
3722 if (expr->float_constant_value(fval, &ftype))
3723 {
3724 mpfr_t val;
3725 mpfr_init(val);
3726 if (Unary_expression::eval_float(op, fval, val))
3727 ret = Expression::make_float(&val, ftype, loc);
3728 mpfr_clear(val);
3729 }
3730 if (ret != NULL)
3731 {
3732 mpfr_clear(fval);
3733 return ret;
3734 }
3735
3736 mpfr_t ival;
3737 mpfr_init(ival);
3738 if (expr->complex_constant_value(fval, ival, &ftype))
3739 {
3740 mpfr_t real;
3741 mpfr_t imag;
3742 mpfr_init(real);
3743 mpfr_init(imag);
3744 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3745 ret = Expression::make_complex(&real, &imag, ftype, loc);
3746 mpfr_clear(real);
3747 mpfr_clear(imag);
3748 }
3749 mpfr_clear(ival);
3750 mpfr_clear(fval);
3751 if (ret != NULL)
3752 return ret;
3753 }
3754 }
3755
3756 return this;
3757}
3758
3759// Return whether a unary expression is a constant.
3760
3761bool
3762Unary_expression::do_is_constant() const
3763{
3764 if (this->op_ == OPERATOR_MULT)
3765 {
3766 // Indirecting through a pointer is only constant if the object
3767 // to which the expression points is constant, but we currently
3768 // have no way to determine that.
3769 return false;
3770 }
3771 else if (this->op_ == OPERATOR_AND)
3772 {
3773 // Taking the address of a variable is constant if it is a
3774 // global variable, not constant otherwise. In other cases
3775 // taking the address is probably not a constant.
3776 Var_expression* ve = this->expr_->var_expression();
3777 if (ve != NULL)
3778 {
3779 Named_object* no = ve->named_object();
3780 return no->is_variable() && no->var_value()->is_global();
3781 }
3782 return false;
3783 }
3784 else
3785 return this->expr_->is_constant();
3786}
3787
3788// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3789// UVAL, if known; it may be NULL. Return true if this could be done,
3790// false if not.
3791
3792bool
3793Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3794 source_location location)
3795{
3796 switch (op)
3797 {
3798 case OPERATOR_PLUS:
3799 mpz_set(val, uval);
3800 return true;
3801 case OPERATOR_MINUS:
3802 mpz_neg(val, uval);
3803 return Integer_expression::check_constant(val, utype, location);
3804 case OPERATOR_NOT:
3805 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3806 return true;
3807 case OPERATOR_XOR:
3808 if (utype == NULL
3809 || utype->integer_type() == NULL
3810 || utype->integer_type()->is_abstract())
3811 mpz_com(val, uval);
3812 else
3813 {
3814 // The number of HOST_WIDE_INTs that it takes to represent
3815 // UVAL.
3816 size_t count = ((mpz_sizeinbase(uval, 2)
3817 + HOST_BITS_PER_WIDE_INT
3818 - 1)
3819 / HOST_BITS_PER_WIDE_INT);
3820
3821 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3822 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3823
3824 size_t ecount;
3825 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3826 gcc_assert(ecount <= count);
3827
3828 // Trim down to the number of words required by the type.
3829 size_t obits = utype->integer_type()->bits();
3830 if (!utype->integer_type()->is_unsigned())
3831 ++obits;
3832 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3833 / HOST_BITS_PER_WIDE_INT);
3834 gcc_assert(ocount <= ocount);
3835
3836 for (size_t i = 0; i < ocount; ++i)
3837 phwi[i] = ~phwi[i];
3838
3839 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3840 if (clearbits != 0)
3841 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3842 >> clearbits);
3843
3844 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3845
3846 delete[] phwi;
3847 }
3848 return Integer_expression::check_constant(val, utype, location);
3849 case OPERATOR_AND:
3850 case OPERATOR_MULT:
3851 return false;
3852 default:
3853 gcc_unreachable();
3854 }
3855}
3856
3857// Apply unary opcode OP to UVAL, setting VAL. Return true if this
3858// could be done, false if not.
3859
3860bool
3861Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3862{
3863 switch (op)
3864 {
3865 case OPERATOR_PLUS:
3866 mpfr_set(val, uval, GMP_RNDN);
3867 return true;
3868 case OPERATOR_MINUS:
3869 mpfr_neg(val, uval, GMP_RNDN);
3870 return true;
3871 case OPERATOR_NOT:
3872 case OPERATOR_XOR:
3873 case OPERATOR_AND:
3874 case OPERATOR_MULT:
3875 return false;
3876 default:
3877 gcc_unreachable();
3878 }
3879}
3880
3881// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3882// if this could be done, false if not.
3883
3884bool
3885Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3886 mpfr_t real, mpfr_t imag)
3887{
3888 switch (op)
3889 {
3890 case OPERATOR_PLUS:
3891 mpfr_set(real, rval, GMP_RNDN);
3892 mpfr_set(imag, ival, GMP_RNDN);
3893 return true;
3894 case OPERATOR_MINUS:
3895 mpfr_neg(real, rval, GMP_RNDN);
3896 mpfr_neg(imag, ival, GMP_RNDN);
3897 return true;
3898 case OPERATOR_NOT:
3899 case OPERATOR_XOR:
3900 case OPERATOR_AND:
3901 case OPERATOR_MULT:
3902 return false;
3903 default:
3904 gcc_unreachable();
3905 }
3906}
3907
3908// Return the integral constant value of a unary expression, if it has one.
3909
3910bool
3911Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3912 Type** ptype) const
3913{
3914 mpz_t uval;
3915 mpz_init(uval);
3916 bool ret;
3917 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3918 ret = false;
3919 else
3920 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3921 this->location());
3922 mpz_clear(uval);
3923 return ret;
3924}
3925
3926// Return the floating point constant value of a unary expression, if
3927// it has one.
3928
3929bool
3930Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3931{
3932 mpfr_t uval;
3933 mpfr_init(uval);
3934 bool ret;
3935 if (!this->expr_->float_constant_value(uval, ptype))
3936 ret = false;
3937 else
3938 ret = Unary_expression::eval_float(this->op_, uval, val);
3939 mpfr_clear(uval);
3940 return ret;
3941}
3942
3943// Return the complex constant value of a unary expression, if it has
3944// one.
3945
3946bool
3947Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3948 Type** ptype) const
3949{
3950 mpfr_t rval;
3951 mpfr_t ival;
3952 mpfr_init(rval);
3953 mpfr_init(ival);
3954 bool ret;
3955 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3956 ret = false;
3957 else
3958 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3959 mpfr_clear(rval);
3960 mpfr_clear(ival);
3961 return ret;
3962}
3963
3964// Return the type of a unary expression.
3965
3966Type*
3967Unary_expression::do_type()
3968{
3969 switch (this->op_)
3970 {
3971 case OPERATOR_PLUS:
3972 case OPERATOR_MINUS:
3973 case OPERATOR_NOT:
3974 case OPERATOR_XOR:
3975 return this->expr_->type();
3976
3977 case OPERATOR_AND:
3978 return Type::make_pointer_type(this->expr_->type());
3979
3980 case OPERATOR_MULT:
3981 {
3982 Type* subtype = this->expr_->type();
3983 Type* points_to = subtype->points_to();
3984 if (points_to == NULL)
3985 return Type::make_error_type();
3986 return points_to;
3987 }
3988
3989 default:
3990 gcc_unreachable();
3991 }
3992}
3993
3994// Determine abstract types for a unary expression.
3995
3996void
3997Unary_expression::do_determine_type(const Type_context* context)
3998{
3999 switch (this->op_)
4000 {
4001 case OPERATOR_PLUS:
4002 case OPERATOR_MINUS:
4003 case OPERATOR_NOT:
4004 case OPERATOR_XOR:
4005 this->expr_->determine_type(context);
4006 break;
4007
4008 case OPERATOR_AND:
4009 // Taking the address of something.
4010 {
4011 Type* subtype = (context->type == NULL
4012 ? NULL
4013 : context->type->points_to());
4014 Type_context subcontext(subtype, false);
4015 this->expr_->determine_type(&subcontext);
4016 }
4017 break;
4018
4019 case OPERATOR_MULT:
4020 // Indirecting through a pointer.
4021 {
4022 Type* subtype = (context->type == NULL
4023 ? NULL
4024 : Type::make_pointer_type(context->type));
4025 Type_context subcontext(subtype, false);
4026 this->expr_->determine_type(&subcontext);
4027 }
4028 break;
4029
4030 default:
4031 gcc_unreachable();
4032 }
4033}
4034
4035// Check types for a unary expression.
4036
4037void
4038Unary_expression::do_check_types(Gogo*)
4039{
9fe897ef 4040 Type* type = this->expr_->type();
4041 if (type->is_error_type())
4042 {
4043 this->set_is_error();
4044 return;
4045 }
4046
e440a328 4047 switch (this->op_)
4048 {
4049 case OPERATOR_PLUS:
4050 case OPERATOR_MINUS:
9fe897ef 4051 if (type->integer_type() == NULL
4052 && type->float_type() == NULL
4053 && type->complex_type() == NULL)
4054 this->report_error(_("expected numeric type"));
e440a328 4055 break;
4056
4057 case OPERATOR_NOT:
4058 case OPERATOR_XOR:
9fe897ef 4059 if (type->integer_type() == NULL
4060 && !type->is_boolean_type())
4061 this->report_error(_("expected integer or boolean type"));
e440a328 4062 break;
4063
4064 case OPERATOR_AND:
4065 if (!this->expr_->is_addressable())
4066 this->report_error(_("invalid operand for unary %<&%>"));
4067 else
4068 this->expr_->address_taken(this->escapes_);
4069 break;
4070
4071 case OPERATOR_MULT:
4072 // Indirecting through a pointer.
9fe897ef 4073 if (type->points_to() == NULL)
4074 this->report_error(_("expected pointer"));
e440a328 4075 break;
4076
4077 default:
4078 gcc_unreachable();
4079 }
4080}
4081
4082// Get a tree for a unary expression.
4083
4084tree
4085Unary_expression::do_get_tree(Translate_context* context)
4086{
4087 tree expr = this->expr_->get_tree(context);
4088 if (expr == error_mark_node)
4089 return error_mark_node;
4090
4091 source_location loc = this->location();
4092 switch (this->op_)
4093 {
4094 case OPERATOR_PLUS:
4095 return expr;
4096
4097 case OPERATOR_MINUS:
4098 {
4099 tree type = TREE_TYPE(expr);
4100 tree compute_type = excess_precision_type(type);
4101 if (compute_type != NULL_TREE)
4102 expr = ::convert(compute_type, expr);
4103 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4104 (compute_type != NULL_TREE
4105 ? compute_type
4106 : type),
4107 expr);
4108 if (compute_type != NULL_TREE)
4109 ret = ::convert(type, ret);
4110 return ret;
4111 }
4112
4113 case OPERATOR_NOT:
4114 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4115 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4116 else
4117 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4118 build_int_cst(TREE_TYPE(expr), 0));
4119
4120 case OPERATOR_XOR:
4121 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4122
4123 case OPERATOR_AND:
4124 // We should not see a non-constant constructor here; cases
4125 // where we would see one should have been moved onto the heap
4126 // at parse time. Taking the address of a nonconstant
4127 // constructor will not do what the programmer expects.
4128 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4129 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4130
4131 // Build a decl for a constant constructor.
4132 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4133 {
4134 tree decl = build_decl(this->location(), VAR_DECL,
4135 create_tmp_var_name("C"), TREE_TYPE(expr));
4136 DECL_EXTERNAL(decl) = 0;
4137 TREE_PUBLIC(decl) = 0;
4138 TREE_READONLY(decl) = 1;
4139 TREE_CONSTANT(decl) = 1;
4140 TREE_STATIC(decl) = 1;
4141 TREE_ADDRESSABLE(decl) = 1;
4142 DECL_ARTIFICIAL(decl) = 1;
4143 DECL_INITIAL(decl) = expr;
4144 rest_of_decl_compilation(decl, 1, 0);
4145 expr = decl;
4146 }
4147
4148 return build_fold_addr_expr_loc(loc, expr);
4149
4150 case OPERATOR_MULT:
4151 {
4152 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4153
4154 // If we are dereferencing the pointer to a large struct, we
4155 // need to check for nil. We don't bother to check for small
4156 // structs because we expect the system to crash on a nil
4157 // pointer dereference.
4158 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4159 if (s == -1 || s >= 4096)
4160 {
4161 if (!DECL_P(expr))
4162 expr = save_expr(expr);
4163 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4164 expr,
4165 fold_convert(TREE_TYPE(expr),
4166 null_pointer_node));
4167 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4168 loc);
4169 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4170 build3(COND_EXPR, void_type_node,
4171 compare, crash, NULL_TREE),
4172 expr);
4173 }
4174
4175 // If the type of EXPR is a recursive pointer type, then we
4176 // need to insert a cast before indirecting.
4177 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4178 {
4179 Type* pt = this->expr_->type()->points_to();
4180 tree ind = pt->get_tree(context->gogo());
4181 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4182 }
4183
4184 return build_fold_indirect_ref_loc(loc, expr);
4185 }
4186
4187 default:
4188 gcc_unreachable();
4189 }
4190}
4191
4192// Export a unary expression.
4193
4194void
4195Unary_expression::do_export(Export* exp) const
4196{
4197 switch (this->op_)
4198 {
4199 case OPERATOR_PLUS:
4200 exp->write_c_string("+ ");
4201 break;
4202 case OPERATOR_MINUS:
4203 exp->write_c_string("- ");
4204 break;
4205 case OPERATOR_NOT:
4206 exp->write_c_string("! ");
4207 break;
4208 case OPERATOR_XOR:
4209 exp->write_c_string("^ ");
4210 break;
4211 case OPERATOR_AND:
4212 case OPERATOR_MULT:
4213 default:
4214 gcc_unreachable();
4215 }
4216 this->expr_->export_expression(exp);
4217}
4218
4219// Import a unary expression.
4220
4221Expression*
4222Unary_expression::do_import(Import* imp)
4223{
4224 Operator op;
4225 switch (imp->get_char())
4226 {
4227 case '+':
4228 op = OPERATOR_PLUS;
4229 break;
4230 case '-':
4231 op = OPERATOR_MINUS;
4232 break;
4233 case '!':
4234 op = OPERATOR_NOT;
4235 break;
4236 case '^':
4237 op = OPERATOR_XOR;
4238 break;
4239 default:
4240 gcc_unreachable();
4241 }
4242 imp->require_c_string(" ");
4243 Expression* expr = Expression::import_expression(imp);
4244 return Expression::make_unary(op, expr, imp->location());
4245}
4246
4247// Make a unary expression.
4248
4249Expression*
4250Expression::make_unary(Operator op, Expression* expr, source_location location)
4251{
4252 return new Unary_expression(op, expr, location);
4253}
4254
4255// If this is an indirection through a pointer, return the expression
4256// being pointed through. Otherwise return this.
4257
4258Expression*
4259Expression::deref()
4260{
4261 if (this->classification_ == EXPRESSION_UNARY)
4262 {
4263 Unary_expression* ue = static_cast<Unary_expression*>(this);
4264 if (ue->op() == OPERATOR_MULT)
4265 return ue->operand();
4266 }
4267 return this;
4268}
4269
4270// Class Binary_expression.
4271
4272// Traversal.
4273
4274int
4275Binary_expression::do_traverse(Traverse* traverse)
4276{
4277 int t = Expression::traverse(&this->left_, traverse);
4278 if (t == TRAVERSE_EXIT)
4279 return TRAVERSE_EXIT;
4280 return Expression::traverse(&this->right_, traverse);
4281}
4282
4283// Compare integer constants according to OP.
4284
4285bool
4286Binary_expression::compare_integer(Operator op, mpz_t left_val,
4287 mpz_t right_val)
4288{
4289 int i = mpz_cmp(left_val, right_val);
4290 switch (op)
4291 {
4292 case OPERATOR_EQEQ:
4293 return i == 0;
4294 case OPERATOR_NOTEQ:
4295 return i != 0;
4296 case OPERATOR_LT:
4297 return i < 0;
4298 case OPERATOR_LE:
4299 return i <= 0;
4300 case OPERATOR_GT:
4301 return i > 0;
4302 case OPERATOR_GE:
4303 return i >= 0;
4304 default:
4305 gcc_unreachable();
4306 }
4307}
4308
4309// Compare floating point constants according to OP.
4310
4311bool
4312Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4313 mpfr_t right_val)
4314{
4315 int i;
4316 if (type == NULL)
4317 i = mpfr_cmp(left_val, right_val);
4318 else
4319 {
4320 mpfr_t lv;
4321 mpfr_init_set(lv, left_val, GMP_RNDN);
4322 mpfr_t rv;
4323 mpfr_init_set(rv, right_val, GMP_RNDN);
4324 Float_expression::constrain_float(lv, type);
4325 Float_expression::constrain_float(rv, type);
4326 i = mpfr_cmp(lv, rv);
4327 mpfr_clear(lv);
4328 mpfr_clear(rv);
4329 }
4330 switch (op)
4331 {
4332 case OPERATOR_EQEQ:
4333 return i == 0;
4334 case OPERATOR_NOTEQ:
4335 return i != 0;
4336 case OPERATOR_LT:
4337 return i < 0;
4338 case OPERATOR_LE:
4339 return i <= 0;
4340 case OPERATOR_GT:
4341 return i > 0;
4342 case OPERATOR_GE:
4343 return i >= 0;
4344 default:
4345 gcc_unreachable();
4346 }
4347}
4348
4349// Compare complex constants according to OP. Complex numbers may
4350// only be compared for equality.
4351
4352bool
4353Binary_expression::compare_complex(Operator op, Type* type,
4354 mpfr_t left_real, mpfr_t left_imag,
4355 mpfr_t right_real, mpfr_t right_imag)
4356{
4357 bool is_equal;
4358 if (type == NULL)
4359 is_equal = (mpfr_cmp(left_real, right_real) == 0
4360 && mpfr_cmp(left_imag, right_imag) == 0);
4361 else
4362 {
4363 mpfr_t lr;
4364 mpfr_t li;
4365 mpfr_init_set(lr, left_real, GMP_RNDN);
4366 mpfr_init_set(li, left_imag, GMP_RNDN);
4367 mpfr_t rr;
4368 mpfr_t ri;
4369 mpfr_init_set(rr, right_real, GMP_RNDN);
4370 mpfr_init_set(ri, right_imag, GMP_RNDN);
4371 Complex_expression::constrain_complex(lr, li, type);
4372 Complex_expression::constrain_complex(rr, ri, type);
4373 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4374 mpfr_clear(lr);
4375 mpfr_clear(li);
4376 mpfr_clear(rr);
4377 mpfr_clear(ri);
4378 }
4379 switch (op)
4380 {
4381 case OPERATOR_EQEQ:
4382 return is_equal;
4383 case OPERATOR_NOTEQ:
4384 return !is_equal;
4385 default:
4386 gcc_unreachable();
4387 }
4388}
4389
4390// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4391// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4392// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4393// this could be done, false if not.
4394
4395bool
4396Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4397 Type* right_type, mpz_t right_val,
4398 source_location location, mpz_t val)
4399{
4400 bool is_shift_op = false;
4401 switch (op)
4402 {
4403 case OPERATOR_OROR:
4404 case OPERATOR_ANDAND:
4405 case OPERATOR_EQEQ:
4406 case OPERATOR_NOTEQ:
4407 case OPERATOR_LT:
4408 case OPERATOR_LE:
4409 case OPERATOR_GT:
4410 case OPERATOR_GE:
4411 // These return boolean values. We should probably handle them
4412 // anyhow in case a type conversion is used on the result.
4413 return false;
4414 case OPERATOR_PLUS:
4415 mpz_add(val, left_val, right_val);
4416 break;
4417 case OPERATOR_MINUS:
4418 mpz_sub(val, left_val, right_val);
4419 break;
4420 case OPERATOR_OR:
4421 mpz_ior(val, left_val, right_val);
4422 break;
4423 case OPERATOR_XOR:
4424 mpz_xor(val, left_val, right_val);
4425 break;
4426 case OPERATOR_MULT:
4427 mpz_mul(val, left_val, right_val);
4428 break;
4429 case OPERATOR_DIV:
4430 if (mpz_sgn(right_val) != 0)
4431 mpz_tdiv_q(val, left_val, right_val);
4432 else
4433 {
4434 error_at(location, "division by zero");
4435 mpz_set_ui(val, 0);
4436 return true;
4437 }
4438 break;
4439 case OPERATOR_MOD:
4440 if (mpz_sgn(right_val) != 0)
4441 mpz_tdiv_r(val, left_val, right_val);
4442 else
4443 {
4444 error_at(location, "division by zero");
4445 mpz_set_ui(val, 0);
4446 return true;
4447 }
4448 break;
4449 case OPERATOR_LSHIFT:
4450 {
4451 unsigned long shift = mpz_get_ui(right_val);
a28c1598 4452 if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
e440a328 4453 {
4454 error_at(location, "shift count overflow");
4455 mpz_set_ui(val, 0);
4456 return true;
4457 }
4458 mpz_mul_2exp(val, left_val, shift);
4459 is_shift_op = true;
4460 break;
4461 }
4462 break;
4463 case OPERATOR_RSHIFT:
4464 {
4465 unsigned long shift = mpz_get_ui(right_val);
4466 if (mpz_cmp_ui(right_val, shift) != 0)
4467 {
4468 error_at(location, "shift count overflow");
4469 mpz_set_ui(val, 0);
4470 return true;
4471 }
4472 if (mpz_cmp_ui(left_val, 0) >= 0)
4473 mpz_tdiv_q_2exp(val, left_val, shift);
4474 else
4475 mpz_fdiv_q_2exp(val, left_val, shift);
4476 is_shift_op = true;
4477 break;
4478 }
4479 break;
4480 case OPERATOR_AND:
4481 mpz_and(val, left_val, right_val);
4482 break;
4483 case OPERATOR_BITCLEAR:
4484 {
4485 mpz_t tval;
4486 mpz_init(tval);
4487 mpz_com(tval, right_val);
4488 mpz_and(val, left_val, tval);
4489 mpz_clear(tval);
4490 }
4491 break;
4492 default:
4493 gcc_unreachable();
4494 }
4495
4496 Type* type = left_type;
4497 if (!is_shift_op)
4498 {
4499 if (type == NULL)
4500 type = right_type;
4501 else if (type != right_type && right_type != NULL)
4502 {
4503 if (type->is_abstract())
4504 type = right_type;
4505 else if (!right_type->is_abstract())
4506 {
4507 // This look like a type error which should be diagnosed
4508 // elsewhere. Don't do anything here, to avoid an
4509 // unhelpful chain of error messages.
4510 return true;
4511 }
4512 }
4513 }
4514
4515 if (type != NULL && !type->is_abstract())
4516 {
4517 // We have to check the operands too, as we have implicitly
4518 // coerced them to TYPE.
4519 if ((type != left_type
4520 && !Integer_expression::check_constant(left_val, type, location))
4521 || (!is_shift_op
4522 && type != right_type
4523 && !Integer_expression::check_constant(right_val, type,
4524 location))
4525 || !Integer_expression::check_constant(val, type, location))
4526 mpz_set_ui(val, 0);
4527 }
4528
4529 return true;
4530}
4531
4532// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4533// Return true if this could be done, false if not.
4534
4535bool
4536Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4537 Type* right_type, mpfr_t right_val,
4538 mpfr_t val, source_location location)
4539{
4540 switch (op)
4541 {
4542 case OPERATOR_OROR:
4543 case OPERATOR_ANDAND:
4544 case OPERATOR_EQEQ:
4545 case OPERATOR_NOTEQ:
4546 case OPERATOR_LT:
4547 case OPERATOR_LE:
4548 case OPERATOR_GT:
4549 case OPERATOR_GE:
4550 // These return boolean values. We should probably handle them
4551 // anyhow in case a type conversion is used on the result.
4552 return false;
4553 case OPERATOR_PLUS:
4554 mpfr_add(val, left_val, right_val, GMP_RNDN);
4555 break;
4556 case OPERATOR_MINUS:
4557 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4558 break;
4559 case OPERATOR_OR:
4560 case OPERATOR_XOR:
4561 case OPERATOR_AND:
4562 case OPERATOR_BITCLEAR:
4563 return false;
4564 case OPERATOR_MULT:
4565 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4566 break;
4567 case OPERATOR_DIV:
4568 if (mpfr_zero_p(right_val))
4569 error_at(location, "division by zero");
4570 mpfr_div(val, left_val, right_val, GMP_RNDN);
4571 break;
4572 case OPERATOR_MOD:
4573 return false;
4574 case OPERATOR_LSHIFT:
4575 case OPERATOR_RSHIFT:
4576 return false;
4577 default:
4578 gcc_unreachable();
4579 }
4580
4581 Type* type = left_type;
4582 if (type == NULL)
4583 type = right_type;
4584 else if (type != right_type && right_type != NULL)
4585 {
4586 if (type->is_abstract())
4587 type = right_type;
4588 else if (!right_type->is_abstract())
4589 {
4590 // This looks like a type error which should be diagnosed
4591 // elsewhere. Don't do anything here, to avoid an unhelpful
4592 // chain of error messages.
4593 return true;
4594 }
4595 }
4596
4597 if (type != NULL && !type->is_abstract())
4598 {
4599 if ((type != left_type
4600 && !Float_expression::check_constant(left_val, type, location))
4601 || (type != right_type
4602 && !Float_expression::check_constant(right_val, type,
4603 location))
4604 || !Float_expression::check_constant(val, type, location))
4605 mpfr_set_ui(val, 0, GMP_RNDN);
4606 }
4607
4608 return true;
4609}
4610
4611// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4612// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4613// could be done, false if not.
4614
4615bool
4616Binary_expression::eval_complex(Operator op, Type* left_type,
4617 mpfr_t left_real, mpfr_t left_imag,
4618 Type *right_type,
4619 mpfr_t right_real, mpfr_t right_imag,
4620 mpfr_t real, mpfr_t imag,
4621 source_location location)
4622{
4623 switch (op)
4624 {
4625 case OPERATOR_OROR:
4626 case OPERATOR_ANDAND:
4627 case OPERATOR_EQEQ:
4628 case OPERATOR_NOTEQ:
4629 case OPERATOR_LT:
4630 case OPERATOR_LE:
4631 case OPERATOR_GT:
4632 case OPERATOR_GE:
4633 // These return boolean values and must be handled differently.
4634 return false;
4635 case OPERATOR_PLUS:
4636 mpfr_add(real, left_real, right_real, GMP_RNDN);
4637 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4638 break;
4639 case OPERATOR_MINUS:
4640 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4641 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4642 break;
4643 case OPERATOR_OR:
4644 case OPERATOR_XOR:
4645 case OPERATOR_AND:
4646 case OPERATOR_BITCLEAR:
4647 return false;
4648 case OPERATOR_MULT:
4649 {
4650 // You might think that multiplying two complex numbers would
4651 // be simple, and you would be right, until you start to think
4652 // about getting the right answer for infinity. If one
4653 // operand here is infinity and the other is anything other
4654 // than zero or NaN, then we are going to wind up subtracting
4655 // two infinity values. That will give us a NaN, but the
4656 // correct answer is infinity.
4657
4658 mpfr_t lrrr;
4659 mpfr_init(lrrr);
4660 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4661
4662 mpfr_t lrri;
4663 mpfr_init(lrri);
4664 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4665
4666 mpfr_t lirr;
4667 mpfr_init(lirr);
4668 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4669
4670 mpfr_t liri;
4671 mpfr_init(liri);
4672 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4673
4674 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4675 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4676
4677 // If we get NaN on both sides, check whether it should really
4678 // be infinity. The rule is that if either side of the
4679 // complex number is infinity, then the whole value is
4680 // infinity, even if the other side is NaN. So the only case
4681 // we have to fix is the one in which both sides are NaN.
4682 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4683 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4684 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4685 {
4686 bool is_infinity = false;
4687
4688 mpfr_t lr;
4689 mpfr_t li;
4690 mpfr_init_set(lr, left_real, GMP_RNDN);
4691 mpfr_init_set(li, left_imag, GMP_RNDN);
4692
4693 mpfr_t rr;
4694 mpfr_t ri;
4695 mpfr_init_set(rr, right_real, GMP_RNDN);
4696 mpfr_init_set(ri, right_imag, GMP_RNDN);
4697
4698 // If the left side is infinity, then the result is
4699 // infinity.
4700 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4701 {
4702 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4703 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4704 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4705 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4706 if (mpfr_nan_p(rr))
4707 {
4708 mpfr_set_ui(rr, 0, GMP_RNDN);
4709 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4710 }
4711 if (mpfr_nan_p(ri))
4712 {
4713 mpfr_set_ui(ri, 0, GMP_RNDN);
4714 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4715 }
4716 is_infinity = true;
4717 }
4718
4719 // If the right side is infinity, then the result is
4720 // infinity.
4721 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4722 {
4723 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4724 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4725 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4726 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4727 if (mpfr_nan_p(lr))
4728 {
4729 mpfr_set_ui(lr, 0, GMP_RNDN);
4730 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4731 }
4732 if (mpfr_nan_p(li))
4733 {
4734 mpfr_set_ui(li, 0, GMP_RNDN);
4735 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4736 }
4737 is_infinity = true;
4738 }
4739
4740 // If we got an overflow in the intermediate computations,
4741 // then the result is infinity.
4742 if (!is_infinity
4743 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4744 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4745 {
4746 if (mpfr_nan_p(lr))
4747 {
4748 mpfr_set_ui(lr, 0, GMP_RNDN);
4749 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4750 }
4751 if (mpfr_nan_p(li))
4752 {
4753 mpfr_set_ui(li, 0, GMP_RNDN);
4754 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4755 }
4756 if (mpfr_nan_p(rr))
4757 {
4758 mpfr_set_ui(rr, 0, GMP_RNDN);
4759 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4760 }
4761 if (mpfr_nan_p(ri))
4762 {
4763 mpfr_set_ui(ri, 0, GMP_RNDN);
4764 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4765 }
4766 is_infinity = true;
4767 }
4768
4769 if (is_infinity)
4770 {
4771 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4772 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4773 mpfr_mul(lirr, li, rr, GMP_RNDN);
4774 mpfr_mul(liri, li, ri, GMP_RNDN);
4775 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4776 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4777 mpfr_set_inf(real, mpfr_sgn(real));
4778 mpfr_set_inf(imag, mpfr_sgn(imag));
4779 }
4780
4781 mpfr_clear(lr);
4782 mpfr_clear(li);
4783 mpfr_clear(rr);
4784 mpfr_clear(ri);
4785 }
4786
4787 mpfr_clear(lrrr);
4788 mpfr_clear(lrri);
4789 mpfr_clear(lirr);
4790 mpfr_clear(liri);
4791 }
4792 break;
4793 case OPERATOR_DIV:
4794 {
4795 // For complex division we want to avoid having an
4796 // intermediate overflow turn the whole result in a NaN. We
4797 // scale the values to try to avoid this.
4798
4799 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4800 error_at(location, "division by zero");
4801
4802 mpfr_t rra;
4803 mpfr_t ria;
4804 mpfr_init(rra);
4805 mpfr_init(ria);
4806 mpfr_abs(rra, right_real, GMP_RNDN);
4807 mpfr_abs(ria, right_imag, GMP_RNDN);
4808 mpfr_t t;
4809 mpfr_init(t);
4810 mpfr_max(t, rra, ria, GMP_RNDN);
4811
4812 mpfr_t rr;
4813 mpfr_t ri;
4814 mpfr_init_set(rr, right_real, GMP_RNDN);
4815 mpfr_init_set(ri, right_imag, GMP_RNDN);
4816 long ilogbw = 0;
4817 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4818 {
4819 ilogbw = mpfr_get_exp(t);
4820 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4821 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4822 }
4823
4824 mpfr_t denom;
4825 mpfr_init(denom);
4826 mpfr_mul(denom, rr, rr, GMP_RNDN);
4827 mpfr_mul(t, ri, ri, GMP_RNDN);
4828 mpfr_add(denom, denom, t, GMP_RNDN);
4829
4830 mpfr_mul(real, left_real, rr, GMP_RNDN);
4831 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4832 mpfr_add(real, real, t, GMP_RNDN);
4833 mpfr_div(real, real, denom, GMP_RNDN);
4834 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4835
4836 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4837 mpfr_mul(t, left_real, ri, GMP_RNDN);
4838 mpfr_sub(imag, imag, t, GMP_RNDN);
4839 mpfr_div(imag, imag, denom, GMP_RNDN);
4840 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4841
4842 // If we wind up with NaN on both sides, check whether we
4843 // should really have infinity. The rule is that if either
4844 // side of the complex number is infinity, then the whole
4845 // value is infinity, even if the other side is NaN. So the
4846 // only case we have to fix is the one in which both sides are
4847 // NaN.
4848 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4849 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4850 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4851 {
4852 if (mpfr_zero_p(denom))
4853 {
4854 mpfr_set_inf(real, mpfr_sgn(rr));
4855 mpfr_mul(real, real, left_real, GMP_RNDN);
4856 mpfr_set_inf(imag, mpfr_sgn(rr));
4857 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4858 }
4859 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4860 && mpfr_number_p(rr) && mpfr_number_p(ri))
4861 {
4862 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4863 mpfr_copysign(t, t, left_real, GMP_RNDN);
4864
4865 mpfr_t t2;
4866 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4867 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4868
4869 mpfr_t t3;
4870 mpfr_init(t3);
4871 mpfr_mul(t3, t, rr, GMP_RNDN);
4872
4873 mpfr_t t4;
4874 mpfr_init(t4);
4875 mpfr_mul(t4, t2, ri, GMP_RNDN);
4876
4877 mpfr_add(t3, t3, t4, GMP_RNDN);
4878 mpfr_set_inf(real, mpfr_sgn(t3));
4879
4880 mpfr_mul(t3, t2, rr, GMP_RNDN);
4881 mpfr_mul(t4, t, ri, GMP_RNDN);
4882 mpfr_sub(t3, t3, t4, GMP_RNDN);
4883 mpfr_set_inf(imag, mpfr_sgn(t3));
4884
4885 mpfr_clear(t2);
4886 mpfr_clear(t3);
4887 mpfr_clear(t4);
4888 }
4889 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4890 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4891 {
4892 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4893 mpfr_copysign(t, t, rr, GMP_RNDN);
4894
4895 mpfr_t t2;
4896 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4897 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4898
4899 mpfr_t t3;
4900 mpfr_init(t3);
4901 mpfr_mul(t3, left_real, t, GMP_RNDN);
4902
4903 mpfr_t t4;
4904 mpfr_init(t4);
4905 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4906
4907 mpfr_add(t3, t3, t4, GMP_RNDN);
4908 mpfr_set_ui(real, 0, GMP_RNDN);
4909 mpfr_mul(real, real, t3, GMP_RNDN);
4910
4911 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4912 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4913 mpfr_sub(t3, t3, t4, GMP_RNDN);
4914 mpfr_set_ui(imag, 0, GMP_RNDN);
4915 mpfr_mul(imag, imag, t3, GMP_RNDN);
4916
4917 mpfr_clear(t2);
4918 mpfr_clear(t3);
4919 mpfr_clear(t4);
4920 }
4921 }
4922
4923 mpfr_clear(denom);
4924 mpfr_clear(rr);
4925 mpfr_clear(ri);
4926 mpfr_clear(t);
4927 mpfr_clear(rra);
4928 mpfr_clear(ria);
4929 }
4930 break;
4931 case OPERATOR_MOD:
4932 return false;
4933 case OPERATOR_LSHIFT:
4934 case OPERATOR_RSHIFT:
4935 return false;
4936 default:
4937 gcc_unreachable();
4938 }
4939
4940 Type* type = left_type;
4941 if (type == NULL)
4942 type = right_type;
4943 else if (type != right_type && right_type != NULL)
4944 {
4945 if (type->is_abstract())
4946 type = right_type;
4947 else if (!right_type->is_abstract())
4948 {
4949 // This looks like a type error which should be diagnosed
4950 // elsewhere. Don't do anything here, to avoid an unhelpful
4951 // chain of error messages.
4952 return true;
4953 }
4954 }
4955
4956 if (type != NULL && !type->is_abstract())
4957 {
4958 if ((type != left_type
4959 && !Complex_expression::check_constant(left_real, left_imag,
4960 type, location))
4961 || (type != right_type
4962 && !Complex_expression::check_constant(right_real, right_imag,
4963 type, location))
4964 || !Complex_expression::check_constant(real, imag, type,
4965 location))
4966 {
4967 mpfr_set_ui(real, 0, GMP_RNDN);
4968 mpfr_set_ui(imag, 0, GMP_RNDN);
4969 }
4970 }
4971
4972 return true;
4973}
4974
4975// Lower a binary expression. We have to evaluate constant
4976// expressions now, in order to implement Go's unlimited precision
4977// constants.
4978
4979Expression*
4980Binary_expression::do_lower(Gogo*, Named_object*, int)
4981{
4982 source_location location = this->location();
4983 Operator op = this->op_;
4984 Expression* left = this->left_;
4985 Expression* right = this->right_;
4986
4987 const bool is_comparison = (op == OPERATOR_EQEQ
4988 || op == OPERATOR_NOTEQ
4989 || op == OPERATOR_LT
4990 || op == OPERATOR_LE
4991 || op == OPERATOR_GT
4992 || op == OPERATOR_GE);
4993
4994 // Integer constant expressions.
4995 {
4996 mpz_t left_val;
4997 mpz_init(left_val);
4998 Type* left_type;
4999 mpz_t right_val;
5000 mpz_init(right_val);
5001 Type* right_type;
5002 if (left->integer_constant_value(false, left_val, &left_type)
5003 && right->integer_constant_value(false, right_val, &right_type))
5004 {
5005 Expression* ret = NULL;
5006 if (left_type != right_type
5007 && left_type != NULL
5008 && right_type != NULL
5009 && left_type->base() != right_type->base()
5010 && op != OPERATOR_LSHIFT
5011 && op != OPERATOR_RSHIFT)
5012 {
5013 // May be a type error--let it be diagnosed later.
5014 }
5015 else if (is_comparison)
5016 {
5017 bool b = Binary_expression::compare_integer(op, left_val,
5018 right_val);
5019 ret = Expression::make_cast(Type::lookup_bool_type(),
5020 Expression::make_boolean(b, location),
5021 location);
5022 }
5023 else
5024 {
5025 mpz_t val;
5026 mpz_init(val);
5027
5028 if (Binary_expression::eval_integer(op, left_type, left_val,
5029 right_type, right_val,
5030 location, val))
5031 {
5032 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5033 Type* type;
5034 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5035 type = left_type;
5036 else if (left_type == NULL)
5037 type = right_type;
5038 else if (right_type == NULL)
5039 type = left_type;
5040 else if (!left_type->is_abstract()
5041 && left_type->named_type() != NULL)
5042 type = left_type;
5043 else if (!right_type->is_abstract()
5044 && right_type->named_type() != NULL)
5045 type = right_type;
5046 else if (!left_type->is_abstract())
5047 type = left_type;
5048 else if (!right_type->is_abstract())
5049 type = right_type;
5050 else if (left_type->float_type() != NULL)
5051 type = left_type;
5052 else if (right_type->float_type() != NULL)
5053 type = right_type;
5054 else if (left_type->complex_type() != NULL)
5055 type = left_type;
5056 else if (right_type->complex_type() != NULL)
5057 type = right_type;
5058 else
5059 type = left_type;
5060 ret = Expression::make_integer(&val, type, location);
5061 }
5062
5063 mpz_clear(val);
5064 }
5065
5066 if (ret != NULL)
5067 {
5068 mpz_clear(right_val);
5069 mpz_clear(left_val);
5070 return ret;
5071 }
5072 }
5073 mpz_clear(right_val);
5074 mpz_clear(left_val);
5075 }
5076
5077 // Floating point constant expressions.
5078 {
5079 mpfr_t left_val;
5080 mpfr_init(left_val);
5081 Type* left_type;
5082 mpfr_t right_val;
5083 mpfr_init(right_val);
5084 Type* right_type;
5085 if (left->float_constant_value(left_val, &left_type)
5086 && right->float_constant_value(right_val, &right_type))
5087 {
5088 Expression* ret = NULL;
5089 if (left_type != right_type
5090 && left_type != NULL
5091 && right_type != NULL
5092 && left_type->base() != right_type->base()
5093 && op != OPERATOR_LSHIFT
5094 && op != OPERATOR_RSHIFT)
5095 {
5096 // May be a type error--let it be diagnosed later.
5097 }
5098 else if (is_comparison)
5099 {
5100 bool b = Binary_expression::compare_float(op,
5101 (left_type != NULL
5102 ? left_type
5103 : right_type),
5104 left_val, right_val);
5105 ret = Expression::make_boolean(b, location);
5106 }
5107 else
5108 {
5109 mpfr_t val;
5110 mpfr_init(val);
5111
5112 if (Binary_expression::eval_float(op, left_type, left_val,
5113 right_type, right_val, val,
5114 location))
5115 {
5116 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5117 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5118 Type* type;
5119 if (left_type == NULL)
5120 type = right_type;
5121 else if (right_type == NULL)
5122 type = left_type;
5123 else if (!left_type->is_abstract()
5124 && left_type->named_type() != NULL)
5125 type = left_type;
5126 else if (!right_type->is_abstract()
5127 && right_type->named_type() != NULL)
5128 type = right_type;
5129 else if (!left_type->is_abstract())
5130 type = left_type;
5131 else if (!right_type->is_abstract())
5132 type = right_type;
5133 else if (left_type->float_type() != NULL)
5134 type = left_type;
5135 else if (right_type->float_type() != NULL)
5136 type = right_type;
5137 else
5138 type = left_type;
5139 ret = Expression::make_float(&val, type, location);
5140 }
5141
5142 mpfr_clear(val);
5143 }
5144
5145 if (ret != NULL)
5146 {
5147 mpfr_clear(right_val);
5148 mpfr_clear(left_val);
5149 return ret;
5150 }
5151 }
5152 mpfr_clear(right_val);
5153 mpfr_clear(left_val);
5154 }
5155
5156 // Complex constant expressions.
5157 {
5158 mpfr_t left_real;
5159 mpfr_t left_imag;
5160 mpfr_init(left_real);
5161 mpfr_init(left_imag);
5162 Type* left_type;
5163
5164 mpfr_t right_real;
5165 mpfr_t right_imag;
5166 mpfr_init(right_real);
5167 mpfr_init(right_imag);
5168 Type* right_type;
5169
5170 if (left->complex_constant_value(left_real, left_imag, &left_type)
5171 && right->complex_constant_value(right_real, right_imag, &right_type))
5172 {
5173 Expression* ret = NULL;
5174 if (left_type != right_type
5175 && left_type != NULL
5176 && right_type != NULL
5177 && left_type->base() != right_type->base())
5178 {
5179 // May be a type error--let it be diagnosed later.
5180 }
3b59603e 5181 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
e440a328 5182 {
5183 bool b = Binary_expression::compare_complex(op,
5184 (left_type != NULL
5185 ? left_type
5186 : right_type),
5187 left_real,
5188 left_imag,
5189 right_real,
5190 right_imag);
5191 ret = Expression::make_boolean(b, location);
5192 }
5193 else
5194 {
5195 mpfr_t real;
5196 mpfr_t imag;
5197 mpfr_init(real);
5198 mpfr_init(imag);
5199
5200 if (Binary_expression::eval_complex(op, left_type,
5201 left_real, left_imag,
5202 right_type,
5203 right_real, right_imag,
5204 real, imag,
5205 location))
5206 {
5207 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5208 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5209 Type* type;
5210 if (left_type == NULL)
5211 type = right_type;
5212 else if (right_type == NULL)
5213 type = left_type;
5214 else if (!left_type->is_abstract()
5215 && left_type->named_type() != NULL)
5216 type = left_type;
5217 else if (!right_type->is_abstract()
5218 && right_type->named_type() != NULL)
5219 type = right_type;
5220 else if (!left_type->is_abstract())
5221 type = left_type;
5222 else if (!right_type->is_abstract())
5223 type = right_type;
5224 else if (left_type->complex_type() != NULL)
5225 type = left_type;
5226 else if (right_type->complex_type() != NULL)
5227 type = right_type;
5228 else
5229 type = left_type;
5230 ret = Expression::make_complex(&real, &imag, type,
5231 location);
5232 }
5233 mpfr_clear(real);
5234 mpfr_clear(imag);
5235 }
5236
5237 if (ret != NULL)
5238 {
5239 mpfr_clear(left_real);
5240 mpfr_clear(left_imag);
5241 mpfr_clear(right_real);
5242 mpfr_clear(right_imag);
5243 return ret;
5244 }
5245 }
5246
5247 mpfr_clear(left_real);
5248 mpfr_clear(left_imag);
5249 mpfr_clear(right_real);
5250 mpfr_clear(right_imag);
5251 }
5252
5253 // String constant expressions.
5254 if (op == OPERATOR_PLUS
5255 && left->type()->is_string_type()
5256 && right->type()->is_string_type())
5257 {
5258 std::string left_string;
5259 std::string right_string;
5260 if (left->string_constant_value(&left_string)
5261 && right->string_constant_value(&right_string))
5262 return Expression::make_string(left_string + right_string, location);
5263 }
5264
5265 return this;
5266}
5267
5268// Return the integer constant value, if it has one.
5269
5270bool
5271Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5272 Type** ptype) const
5273{
5274 mpz_t left_val;
5275 mpz_init(left_val);
5276 Type* left_type;
5277 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5278 &left_type))
5279 {
5280 mpz_clear(left_val);
5281 return false;
5282 }
5283
5284 mpz_t right_val;
5285 mpz_init(right_val);
5286 Type* right_type;
5287 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5288 &right_type))
5289 {
5290 mpz_clear(right_val);
5291 mpz_clear(left_val);
5292 return false;
5293 }
5294
5295 bool ret;
5296 if (left_type != right_type
5297 && left_type != NULL
5298 && right_type != NULL
5299 && left_type->base() != right_type->base()
5300 && this->op_ != OPERATOR_RSHIFT
5301 && this->op_ != OPERATOR_LSHIFT)
5302 ret = false;
5303 else
5304 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5305 right_type, right_val,
5306 this->location(), val);
5307
5308 mpz_clear(right_val);
5309 mpz_clear(left_val);
5310
5311 if (ret)
5312 *ptype = left_type;
5313
5314 return ret;
5315}
5316
5317// Return the floating point constant value, if it has one.
5318
5319bool
5320Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5321{
5322 mpfr_t left_val;
5323 mpfr_init(left_val);
5324 Type* left_type;
5325 if (!this->left_->float_constant_value(left_val, &left_type))
5326 {
5327 mpfr_clear(left_val);
5328 return false;
5329 }
5330
5331 mpfr_t right_val;
5332 mpfr_init(right_val);
5333 Type* right_type;
5334 if (!this->right_->float_constant_value(right_val, &right_type))
5335 {
5336 mpfr_clear(right_val);
5337 mpfr_clear(left_val);
5338 return false;
5339 }
5340
5341 bool ret;
5342 if (left_type != right_type
5343 && left_type != NULL
5344 && right_type != NULL
5345 && left_type->base() != right_type->base())
5346 ret = false;
5347 else
5348 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5349 right_type, right_val,
5350 val, this->location());
5351
5352 mpfr_clear(left_val);
5353 mpfr_clear(right_val);
5354
5355 if (ret)
5356 *ptype = left_type;
5357
5358 return ret;
5359}
5360
5361// Return the complex constant value, if it has one.
5362
5363bool
5364Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5365 Type** ptype) const
5366{
5367 mpfr_t left_real;
5368 mpfr_t left_imag;
5369 mpfr_init(left_real);
5370 mpfr_init(left_imag);
5371 Type* left_type;
5372 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5373 {
5374 mpfr_clear(left_real);
5375 mpfr_clear(left_imag);
5376 return false;
5377 }
5378
5379 mpfr_t right_real;
5380 mpfr_t right_imag;
5381 mpfr_init(right_real);
5382 mpfr_init(right_imag);
5383 Type* right_type;
5384 if (!this->right_->complex_constant_value(right_real, right_imag,
5385 &right_type))
5386 {
5387 mpfr_clear(left_real);
5388 mpfr_clear(left_imag);
5389 mpfr_clear(right_real);
5390 mpfr_clear(right_imag);
5391 return false;
5392 }
5393
5394 bool ret;
5395 if (left_type != right_type
5396 && left_type != NULL
5397 && right_type != NULL
5398 && left_type->base() != right_type->base())
5399 ret = false;
5400 else
5401 ret = Binary_expression::eval_complex(this->op_, left_type,
5402 left_real, left_imag,
5403 right_type,
5404 right_real, right_imag,
5405 real, imag,
5406 this->location());
5407 mpfr_clear(left_real);
5408 mpfr_clear(left_imag);
5409 mpfr_clear(right_real);
5410 mpfr_clear(right_imag);
5411
5412 if (ret)
5413 *ptype = left_type;
5414
5415 return ret;
5416}
5417
5418// Note that the value is being discarded.
5419
5420void
5421Binary_expression::do_discarding_value()
5422{
5423 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5424 this->right_->discarding_value();
5425 else
5426 this->warn_about_unused_value();
5427}
5428
5429// Get type.
5430
5431Type*
5432Binary_expression::do_type()
5433{
5f5fea79 5434 if (this->classification() == EXPRESSION_ERROR)
5435 return Type::make_error_type();
5436
e440a328 5437 switch (this->op_)
5438 {
5439 case OPERATOR_OROR:
5440 case OPERATOR_ANDAND:
5441 case OPERATOR_EQEQ:
5442 case OPERATOR_NOTEQ:
5443 case OPERATOR_LT:
5444 case OPERATOR_LE:
5445 case OPERATOR_GT:
5446 case OPERATOR_GE:
5447 return Type::lookup_bool_type();
5448
5449 case OPERATOR_PLUS:
5450 case OPERATOR_MINUS:
5451 case OPERATOR_OR:
5452 case OPERATOR_XOR:
5453 case OPERATOR_MULT:
5454 case OPERATOR_DIV:
5455 case OPERATOR_MOD:
5456 case OPERATOR_AND:
5457 case OPERATOR_BITCLEAR:
5458 {
5459 Type* left_type = this->left_->type();
5460 Type* right_type = this->right_->type();
a5fe8571 5461 if (left_type->is_error_type())
5462 return left_type;
5463 else if (right_type->is_error_type())
5464 return right_type;
5f5fea79 5465 else if (!Type::are_compatible_for_binop(left_type, right_type))
5466 {
5467 this->report_error(_("incompatible types in binary expression"));
5468 return Type::make_error_type();
5469 }
a5fe8571 5470 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
e440a328 5471 return left_type;
5472 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5473 return right_type;
5474 else if (!left_type->is_abstract())
5475 return left_type;
5476 else if (!right_type->is_abstract())
5477 return right_type;
5478 else if (left_type->complex_type() != NULL)
5479 return left_type;
5480 else if (right_type->complex_type() != NULL)
5481 return right_type;
5482 else if (left_type->float_type() != NULL)
5483 return left_type;
5484 else if (right_type->float_type() != NULL)
5485 return right_type;
5486 else
5487 return left_type;
5488 }
5489
5490 case OPERATOR_LSHIFT:
5491 case OPERATOR_RSHIFT:
5492 return this->left_->type();
5493
5494 default:
5495 gcc_unreachable();
5496 }
5497}
5498
5499// Set type for a binary expression.
5500
5501void
5502Binary_expression::do_determine_type(const Type_context* context)
5503{
5504 Type* tleft = this->left_->type();
5505 Type* tright = this->right_->type();
5506
5507 // Both sides should have the same type, except for the shift
5508 // operations. For a comparison, we should ignore the incoming
5509 // type.
5510
5511 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5512 || this->op_ == OPERATOR_RSHIFT);
5513
5514 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5515 || this->op_ == OPERATOR_NOTEQ
5516 || this->op_ == OPERATOR_LT
5517 || this->op_ == OPERATOR_LE
5518 || this->op_ == OPERATOR_GT
5519 || this->op_ == OPERATOR_GE);
5520
5521 Type_context subcontext(*context);
5522
5523 if (is_comparison)
5524 {
5525 // In a comparison, the context does not determine the types of
5526 // the operands.
5527 subcontext.type = NULL;
5528 }
5529
5530 // Set the context for the left hand operand.
5531 if (is_shift_op)
5532 {
5533 // The right hand operand plays no role in determining the type
5534 // of the left hand operand. A shift of an abstract integer in
5535 // a string context gets special treatment, which may be a
5536 // language bug.
5537 if (subcontext.type != NULL
5538 && subcontext.type->is_string_type()
5539 && tleft->is_abstract())
5540 error_at(this->location(), "shift of non-integer operand");
5541 }
5542 else if (!tleft->is_abstract())
5543 subcontext.type = tleft;
5544 else if (!tright->is_abstract())
5545 subcontext.type = tright;
5546 else if (subcontext.type == NULL)
5547 {
5548 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5549 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5550 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5551 {
5552 // Both sides have an abstract integer, abstract float, or
5553 // abstract complex type. Just let CONTEXT determine
5554 // whether they may remain abstract or not.
5555 }
5556 else if (tleft->complex_type() != NULL)
5557 subcontext.type = tleft;
5558 else if (tright->complex_type() != NULL)
5559 subcontext.type = tright;
5560 else if (tleft->float_type() != NULL)
5561 subcontext.type = tleft;
5562 else if (tright->float_type() != NULL)
5563 subcontext.type = tright;
5564 else
5565 subcontext.type = tleft;
f58a23ae 5566
5567 if (subcontext.type != NULL && !context->may_be_abstract)
5568 subcontext.type = subcontext.type->make_non_abstract_type();
e440a328 5569 }
5570
5571 this->left_->determine_type(&subcontext);
5572
5573 // The context for the right hand operand is the same as for the
5574 // left hand operand, except for a shift operator.
5575 if (is_shift_op)
5576 {
5577 subcontext.type = Type::lookup_integer_type("uint");
5578 subcontext.may_be_abstract = false;
5579 }
5580
5581 this->right_->determine_type(&subcontext);
5582}
5583
5584// Report an error if the binary operator OP does not support TYPE.
5585// Return whether the operation is OK. This should not be used for
5586// shift.
5587
5588bool
5589Binary_expression::check_operator_type(Operator op, Type* type,
5590 source_location location)
5591{
5592 switch (op)
5593 {
5594 case OPERATOR_OROR:
5595 case OPERATOR_ANDAND:
5596 if (!type->is_boolean_type())
5597 {
5598 error_at(location, "expected boolean type");
5599 return false;
5600 }
5601 break;
5602
5603 case OPERATOR_EQEQ:
5604 case OPERATOR_NOTEQ:
5605 if (type->integer_type() == NULL
5606 && type->float_type() == NULL
5607 && type->complex_type() == NULL
5608 && !type->is_string_type()
5609 && type->points_to() == NULL
5610 && !type->is_nil_type()
5611 && !type->is_boolean_type()
5612 && type->interface_type() == NULL
5613 && (type->array_type() == NULL
5614 || type->array_type()->length() != NULL)
5615 && type->map_type() == NULL
5616 && type->channel_type() == NULL
5617 && type->function_type() == NULL)
5618 {
5619 error_at(location,
5620 ("expected integer, floating, complex, string, pointer, "
5621 "boolean, interface, slice, map, channel, "
5622 "or function type"));
5623 return false;
5624 }
5625 break;
5626
5627 case OPERATOR_LT:
5628 case OPERATOR_LE:
5629 case OPERATOR_GT:
5630 case OPERATOR_GE:
5631 if (type->integer_type() == NULL
5632 && type->float_type() == NULL
5633 && !type->is_string_type())
5634 {
5635 error_at(location, "expected integer, floating, or string type");
5636 return false;
5637 }
5638 break;
5639
5640 case OPERATOR_PLUS:
5641 case OPERATOR_PLUSEQ:
5642 if (type->integer_type() == NULL
5643 && type->float_type() == NULL
5644 && type->complex_type() == NULL
5645 && !type->is_string_type())
5646 {
5647 error_at(location,
5648 "expected integer, floating, complex, or string type");
5649 return false;
5650 }
5651 break;
5652
5653 case OPERATOR_MINUS:
5654 case OPERATOR_MINUSEQ:
5655 case OPERATOR_MULT:
5656 case OPERATOR_MULTEQ:
5657 case OPERATOR_DIV:
5658 case OPERATOR_DIVEQ:
5659 if (type->integer_type() == NULL
5660 && type->float_type() == NULL
5661 && type->complex_type() == NULL)
5662 {
5663 error_at(location, "expected integer, floating, or complex type");
5664 return false;
5665 }
5666 break;
5667
5668 case OPERATOR_MOD:
5669 case OPERATOR_MODEQ:
5670 case OPERATOR_OR:
5671 case OPERATOR_OREQ:
5672 case OPERATOR_AND:
5673 case OPERATOR_ANDEQ:
5674 case OPERATOR_XOR:
5675 case OPERATOR_XOREQ:
5676 case OPERATOR_BITCLEAR:
5677 case OPERATOR_BITCLEAREQ:
5678 if (type->integer_type() == NULL)
5679 {
5680 error_at(location, "expected integer type");
5681 return false;
5682 }
5683 break;
5684
5685 default:
5686 gcc_unreachable();
5687 }
5688
5689 return true;
5690}
5691
5692// Check types.
5693
5694void
5695Binary_expression::do_check_types(Gogo*)
5696{
5f5fea79 5697 if (this->classification() == EXPRESSION_ERROR)
5698 return;
5699
e440a328 5700 Type* left_type = this->left_->type();
5701 Type* right_type = this->right_->type();
5702 if (left_type->is_error_type() || right_type->is_error_type())
9fe897ef 5703 {
5704 this->set_is_error();
5705 return;
5706 }
e440a328 5707
5708 if (this->op_ == OPERATOR_EQEQ
5709 || this->op_ == OPERATOR_NOTEQ
5710 || this->op_ == OPERATOR_LT
5711 || this->op_ == OPERATOR_LE
5712 || this->op_ == OPERATOR_GT
5713 || this->op_ == OPERATOR_GE)
5714 {
5715 if (!Type::are_assignable(left_type, right_type, NULL)
5716 && !Type::are_assignable(right_type, left_type, NULL))
5717 {
5718 this->report_error(_("incompatible types in binary expression"));
5719 return;
5720 }
5721 if (!Binary_expression::check_operator_type(this->op_, left_type,
5722 this->location())
5723 || !Binary_expression::check_operator_type(this->op_, right_type,
5724 this->location()))
5725 {
5726 this->set_is_error();
5727 return;
5728 }
5729 }
5730 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5731 {
5732 if (!Type::are_compatible_for_binop(left_type, right_type))
5733 {
5734 this->report_error(_("incompatible types in binary expression"));
5735 return;
5736 }
5737 if (!Binary_expression::check_operator_type(this->op_, left_type,
5738 this->location()))
5739 {
5740 this->set_is_error();
5741 return;
5742 }
5743 }
5744 else
5745 {
5746 if (left_type->integer_type() == NULL)
5747 this->report_error(_("shift of non-integer operand"));
5748
5749 if (!right_type->is_abstract()
5750 && (right_type->integer_type() == NULL
5751 || !right_type->integer_type()->is_unsigned()))
5752 this->report_error(_("shift count not unsigned integer"));
5753 else
5754 {
5755 mpz_t val;
5756 mpz_init(val);
5757 Type* type;
5758 if (this->right_->integer_constant_value(true, val, &type))
5759 {
5760 if (mpz_sgn(val) < 0)
5761 this->report_error(_("negative shift count"));
5762 }
5763 mpz_clear(val);
5764 }
5765 }
5766}
5767
5768// Get a tree for a binary expression.
5769
5770tree
5771Binary_expression::do_get_tree(Translate_context* context)
5772{
5773 tree left = this->left_->get_tree(context);
5774 tree right = this->right_->get_tree(context);
5775
5776 if (left == error_mark_node || right == error_mark_node)
5777 return error_mark_node;
5778
5779 enum tree_code code;
5780 bool use_left_type = true;
5781 bool is_shift_op = false;
5782 switch (this->op_)
5783 {
5784 case OPERATOR_EQEQ:
5785 case OPERATOR_NOTEQ:
5786 case OPERATOR_LT:
5787 case OPERATOR_LE:
5788 case OPERATOR_GT:
5789 case OPERATOR_GE:
5790 return Expression::comparison_tree(context, this->op_,
5791 this->left_->type(), left,
5792 this->right_->type(), right,
5793 this->location());
5794
5795 case OPERATOR_OROR:
5796 code = TRUTH_ORIF_EXPR;
5797 use_left_type = false;
5798 break;
5799 case OPERATOR_ANDAND:
5800 code = TRUTH_ANDIF_EXPR;
5801 use_left_type = false;
5802 break;
5803 case OPERATOR_PLUS:
5804 code = PLUS_EXPR;
5805 break;
5806 case OPERATOR_MINUS:
5807 code = MINUS_EXPR;
5808 break;
5809 case OPERATOR_OR:
5810 code = BIT_IOR_EXPR;
5811 break;
5812 case OPERATOR_XOR:
5813 code = BIT_XOR_EXPR;
5814 break;
5815 case OPERATOR_MULT:
5816 code = MULT_EXPR;
5817 break;
5818 case OPERATOR_DIV:
5819 {
5820 Type *t = this->left_->type();
5821 if (t->float_type() != NULL || t->complex_type() != NULL)
5822 code = RDIV_EXPR;
5823 else
5824 code = TRUNC_DIV_EXPR;
5825 }
5826 break;
5827 case OPERATOR_MOD:
5828 code = TRUNC_MOD_EXPR;
5829 break;
5830 case OPERATOR_LSHIFT:
5831 code = LSHIFT_EXPR;
5832 is_shift_op = true;
5833 break;
5834 case OPERATOR_RSHIFT:
5835 code = RSHIFT_EXPR;
5836 is_shift_op = true;
5837 break;
5838 case OPERATOR_AND:
5839 code = BIT_AND_EXPR;
5840 break;
5841 case OPERATOR_BITCLEAR:
5842 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5843 code = BIT_AND_EXPR;
5844 break;
5845 default:
5846 gcc_unreachable();
5847 }
5848
5849 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5850
5851 if (this->left_->type()->is_string_type())
5852 {
5853 gcc_assert(this->op_ == OPERATOR_PLUS);
5854 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5855 static tree string_plus_decl;
5856 return Gogo::call_builtin(&string_plus_decl,
5857 this->location(),
5858 "__go_string_plus",
5859 2,
5860 string_type,
5861 string_type,
5862 left,
5863 string_type,
5864 right);
5865 }
5866
5867 tree compute_type = excess_precision_type(type);
5868 if (compute_type != NULL_TREE)
5869 {
5870 left = ::convert(compute_type, left);
5871 right = ::convert(compute_type, right);
5872 }
5873
5874 tree eval_saved = NULL_TREE;
5875 if (is_shift_op)
5876 {
e440a328 5877 // Make sure the values are evaluated.
a7a70f31 5878 if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
5879 {
5880 left = save_expr(left);
5881 eval_saved = left;
5882 }
5883 if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
5884 {
5885 right = save_expr(right);
5886 if (eval_saved == NULL_TREE)
5887 eval_saved = right;
5888 else
5889 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5890 void_type_node, eval_saved, right);
5891 }
e440a328 5892 }
5893
5894 tree ret = fold_build2_loc(this->location(),
5895 code,
5896 compute_type != NULL_TREE ? compute_type : type,
5897 left, right);
5898
5899 if (compute_type != NULL_TREE)
5900 ret = ::convert(type, ret);
5901
5902 // In Go, a shift larger than the size of the type is well-defined.
5903 // This is not true in GENERIC, so we need to insert a conditional.
5904 if (is_shift_op)
5905 {
5906 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5907 gcc_assert(this->left_->type()->integer_type() != NULL);
5908 int bits = TYPE_PRECISION(TREE_TYPE(left));
5909
5910 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5911 build_int_cst_type(TREE_TYPE(right), bits));
5912
5913 tree overflow_result = fold_convert_loc(this->location(),
5914 TREE_TYPE(left),
5915 integer_zero_node);
5916 if (this->op_ == OPERATOR_RSHIFT
5917 && !this->left_->type()->integer_type()->is_unsigned())
5918 {
5919 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5920 boolean_type_node, left,
5921 fold_convert_loc(this->location(),
5922 TREE_TYPE(left),
5923 integer_zero_node));
5924 tree neg_one = fold_build2_loc(this->location(),
5925 MINUS_EXPR, TREE_TYPE(left),
5926 fold_convert_loc(this->location(),
5927 TREE_TYPE(left),
5928 integer_zero_node),
5929 fold_convert_loc(this->location(),
5930 TREE_TYPE(left),
5931 integer_one_node));
5932 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5933 TREE_TYPE(left), neg, neg_one,
5934 overflow_result);
5935 }
5936
5937 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5938 compare, ret, overflow_result);
5939
a7a70f31 5940 if (eval_saved != NULL_TREE)
5941 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5942 TREE_TYPE(ret), eval_saved, ret);
e440a328 5943 }
5944
5945 return ret;
5946}
5947
5948// Export a binary expression.
5949
5950void
5951Binary_expression::do_export(Export* exp) const
5952{
5953 exp->write_c_string("(");
5954 this->left_->export_expression(exp);
5955 switch (this->op_)
5956 {
5957 case OPERATOR_OROR:
5958 exp->write_c_string(" || ");
5959 break;
5960 case OPERATOR_ANDAND:
5961 exp->write_c_string(" && ");
5962 break;
5963 case OPERATOR_EQEQ:
5964 exp->write_c_string(" == ");
5965 break;
5966 case OPERATOR_NOTEQ:
5967 exp->write_c_string(" != ");
5968 break;
5969 case OPERATOR_LT:
5970 exp->write_c_string(" < ");
5971 break;
5972 case OPERATOR_LE:
5973 exp->write_c_string(" <= ");
5974 break;
5975 case OPERATOR_GT:
5976 exp->write_c_string(" > ");
5977 break;
5978 case OPERATOR_GE:
5979 exp->write_c_string(" >= ");
5980 break;
5981 case OPERATOR_PLUS:
5982 exp->write_c_string(" + ");
5983 break;
5984 case OPERATOR_MINUS:
5985 exp->write_c_string(" - ");
5986 break;
5987 case OPERATOR_OR:
5988 exp->write_c_string(" | ");
5989 break;
5990 case OPERATOR_XOR:
5991 exp->write_c_string(" ^ ");
5992 break;
5993 case OPERATOR_MULT:
5994 exp->write_c_string(" * ");
5995 break;
5996 case OPERATOR_DIV:
5997 exp->write_c_string(" / ");
5998 break;
5999 case OPERATOR_MOD:
6000 exp->write_c_string(" % ");
6001 break;
6002 case OPERATOR_LSHIFT:
6003 exp->write_c_string(" << ");
6004 break;
6005 case OPERATOR_RSHIFT:
6006 exp->write_c_string(" >> ");
6007 break;
6008 case OPERATOR_AND:
6009 exp->write_c_string(" & ");
6010 break;
6011 case OPERATOR_BITCLEAR:
6012 exp->write_c_string(" &^ ");
6013 break;
6014 default:
6015 gcc_unreachable();
6016 }
6017 this->right_->export_expression(exp);
6018 exp->write_c_string(")");
6019}
6020
6021// Import a binary expression.
6022
6023Expression*
6024Binary_expression::do_import(Import* imp)
6025{
6026 imp->require_c_string("(");
6027
6028 Expression* left = Expression::import_expression(imp);
6029
6030 Operator op;
6031 if (imp->match_c_string(" || "))
6032 {
6033 op = OPERATOR_OROR;
6034 imp->advance(4);
6035 }
6036 else if (imp->match_c_string(" && "))
6037 {
6038 op = OPERATOR_ANDAND;
6039 imp->advance(4);
6040 }
6041 else if (imp->match_c_string(" == "))
6042 {
6043 op = OPERATOR_EQEQ;
6044 imp->advance(4);
6045 }
6046 else if (imp->match_c_string(" != "))
6047 {
6048 op = OPERATOR_NOTEQ;
6049 imp->advance(4);
6050 }
6051 else if (imp->match_c_string(" < "))
6052 {
6053 op = OPERATOR_LT;
6054 imp->advance(3);
6055 }
6056 else if (imp->match_c_string(" <= "))
6057 {
6058 op = OPERATOR_LE;
6059 imp->advance(4);
6060 }
6061 else if (imp->match_c_string(" > "))
6062 {
6063 op = OPERATOR_GT;
6064 imp->advance(3);
6065 }
6066 else if (imp->match_c_string(" >= "))
6067 {
6068 op = OPERATOR_GE;
6069 imp->advance(4);
6070 }
6071 else if (imp->match_c_string(" + "))
6072 {
6073 op = OPERATOR_PLUS;
6074 imp->advance(3);
6075 }
6076 else if (imp->match_c_string(" - "))
6077 {
6078 op = OPERATOR_MINUS;
6079 imp->advance(3);
6080 }
6081 else if (imp->match_c_string(" | "))
6082 {
6083 op = OPERATOR_OR;
6084 imp->advance(3);
6085 }
6086 else if (imp->match_c_string(" ^ "))
6087 {
6088 op = OPERATOR_XOR;
6089 imp->advance(3);
6090 }
6091 else if (imp->match_c_string(" * "))
6092 {
6093 op = OPERATOR_MULT;
6094 imp->advance(3);
6095 }
6096 else if (imp->match_c_string(" / "))
6097 {
6098 op = OPERATOR_DIV;
6099 imp->advance(3);
6100 }
6101 else if (imp->match_c_string(" % "))
6102 {
6103 op = OPERATOR_MOD;
6104 imp->advance(3);
6105 }
6106 else if (imp->match_c_string(" << "))
6107 {
6108 op = OPERATOR_LSHIFT;
6109 imp->advance(4);
6110 }
6111 else if (imp->match_c_string(" >> "))
6112 {
6113 op = OPERATOR_RSHIFT;
6114 imp->advance(4);
6115 }
6116 else if (imp->match_c_string(" & "))
6117 {
6118 op = OPERATOR_AND;
6119 imp->advance(3);
6120 }
6121 else if (imp->match_c_string(" &^ "))
6122 {
6123 op = OPERATOR_BITCLEAR;
6124 imp->advance(4);
6125 }
6126 else
6127 {
6128 error_at(imp->location(), "unrecognized binary operator");
6129 return Expression::make_error(imp->location());
6130 }
6131
6132 Expression* right = Expression::import_expression(imp);
6133
6134 imp->require_c_string(")");
6135
6136 return Expression::make_binary(op, left, right, imp->location());
6137}
6138
6139// Make a binary expression.
6140
6141Expression*
6142Expression::make_binary(Operator op, Expression* left, Expression* right,
6143 source_location location)
6144{
6145 return new Binary_expression(op, left, right, location);
6146}
6147
6148// Implement a comparison.
6149
6150tree
6151Expression::comparison_tree(Translate_context* context, Operator op,
6152 Type* left_type, tree left_tree,
6153 Type* right_type, tree right_tree,
6154 source_location location)
6155{
6156 enum tree_code code;
6157 switch (op)
6158 {
6159 case OPERATOR_EQEQ:
6160 code = EQ_EXPR;
6161 break;
6162 case OPERATOR_NOTEQ:
6163 code = NE_EXPR;
6164 break;
6165 case OPERATOR_LT:
6166 code = LT_EXPR;
6167 break;
6168 case OPERATOR_LE:
6169 code = LE_EXPR;
6170 break;
6171 case OPERATOR_GT:
6172 code = GT_EXPR;
6173 break;
6174 case OPERATOR_GE:
6175 code = GE_EXPR;
6176 break;
6177 default:
6178 gcc_unreachable();
6179 }
6180
15c67ee2 6181 if (left_type->is_string_type() && right_type->is_string_type())
e440a328 6182 {
e440a328 6183 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6184 static tree string_compare_decl;
6185 left_tree = Gogo::call_builtin(&string_compare_decl,
6186 location,
6187 "__go_strcmp",
6188 2,
6189 integer_type_node,
6190 string_type,
6191 left_tree,
6192 string_type,
6193 right_tree);
6194 right_tree = build_int_cst_type(integer_type_node, 0);
6195 }
15c67ee2 6196 else if ((left_type->interface_type() != NULL
6197 && right_type->interface_type() == NULL
6198 && !right_type->is_nil_type())
6199 || (left_type->interface_type() == NULL
6200 && !left_type->is_nil_type()
6201 && right_type->interface_type() != NULL))
e440a328 6202 {
6203 // Comparing an interface value to a non-interface value.
6204 if (left_type->interface_type() == NULL)
6205 {
6206 std::swap(left_type, right_type);
6207 std::swap(left_tree, right_tree);
6208 }
6209
6210 // The right operand is not an interface. We need to take its
6211 // address if it is not a pointer.
6212 tree make_tmp;
6213 tree arg;
6214 if (right_type->points_to() != NULL)
6215 {
6216 make_tmp = NULL_TREE;
6217 arg = right_tree;
6218 }
6219 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6220 {
6221 make_tmp = NULL_TREE;
6222 arg = build_fold_addr_expr_loc(location, right_tree);
6223 if (DECL_P(right_tree))
6224 TREE_ADDRESSABLE(right_tree) = 1;
6225 }
6226 else
6227 {
6228 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6229 get_name(right_tree));
6230 DECL_IGNORED_P(tmp) = 0;
6231 DECL_INITIAL(tmp) = right_tree;
6232 TREE_ADDRESSABLE(tmp) = 1;
6233 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6234 SET_EXPR_LOCATION(make_tmp, location);
6235 arg = build_fold_addr_expr_loc(location, tmp);
6236 }
6237 arg = fold_convert_loc(location, ptr_type_node, arg);
6238
6239 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6240
6241 if (left_type->interface_type()->is_empty())
6242 {
6243 static tree empty_interface_value_compare_decl;
6244 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6245 location,
6246 "__go_empty_interface_value_compare",
6247 3,
6248 integer_type_node,
6249 TREE_TYPE(left_tree),
6250 left_tree,
6251 TREE_TYPE(descriptor),
6252 descriptor,
6253 ptr_type_node,
6254 arg);
5fb82b5e 6255 if (left_tree == error_mark_node)
6256 return error_mark_node;
e440a328 6257 // This can panic if the type is not comparable.
6258 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6259 }
6260 else
6261 {
6262 static tree interface_value_compare_decl;
6263 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6264 location,
6265 "__go_interface_value_compare",
6266 3,
6267 integer_type_node,
6268 TREE_TYPE(left_tree),
6269 left_tree,
6270 TREE_TYPE(descriptor),
6271 descriptor,
6272 ptr_type_node,
6273 arg);
5fb82b5e 6274 if (left_tree == error_mark_node)
6275 return error_mark_node;
e440a328 6276 // This can panic if the type is not comparable.
6277 TREE_NOTHROW(interface_value_compare_decl) = 0;
6278 }
6279 right_tree = build_int_cst_type(integer_type_node, 0);
6280
6281 if (make_tmp != NULL_TREE)
6282 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6283 left_tree);
6284 }
6285 else if (left_type->interface_type() != NULL
6286 && right_type->interface_type() != NULL)
6287 {
739bad04 6288 if (left_type->interface_type()->is_empty()
6289 && right_type->interface_type()->is_empty())
e440a328 6290 {
e440a328 6291 static tree empty_interface_compare_decl;
6292 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6293 location,
6294 "__go_empty_interface_compare",
6295 2,
6296 integer_type_node,
6297 TREE_TYPE(left_tree),
6298 left_tree,
6299 TREE_TYPE(right_tree),
6300 right_tree);
5fb82b5e 6301 if (left_tree == error_mark_node)
6302 return error_mark_node;
e440a328 6303 // This can panic if the type is uncomparable.
6304 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6305 }
739bad04 6306 else if (!left_type->interface_type()->is_empty()
6307 && !right_type->interface_type()->is_empty())
e440a328 6308 {
e440a328 6309 static tree interface_compare_decl;
6310 left_tree = Gogo::call_builtin(&interface_compare_decl,
6311 location,
6312 "__go_interface_compare",
6313 2,
6314 integer_type_node,
6315 TREE_TYPE(left_tree),
6316 left_tree,
6317 TREE_TYPE(right_tree),
6318 right_tree);
5fb82b5e 6319 if (left_tree == error_mark_node)
6320 return error_mark_node;
e440a328 6321 // This can panic if the type is uncomparable.
6322 TREE_NOTHROW(interface_compare_decl) = 0;
6323 }
739bad04 6324 else
6325 {
6326 if (left_type->interface_type()->is_empty())
6327 {
6328 gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
6329 std::swap(left_type, right_type);
6330 std::swap(left_tree, right_tree);
6331 }
6332 gcc_assert(!left_type->interface_type()->is_empty());
6333 gcc_assert(right_type->interface_type()->is_empty());
6334 static tree interface_empty_compare_decl;
6335 left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
6336 location,
6337 "__go_interface_empty_compare",
6338 2,
6339 integer_type_node,
6340 TREE_TYPE(left_tree),
6341 left_tree,
6342 TREE_TYPE(right_tree),
6343 right_tree);
6344 if (left_tree == error_mark_node)
6345 return error_mark_node;
6346 // This can panic if the type is uncomparable.
6347 TREE_NOTHROW(interface_empty_compare_decl) = 0;
6348 }
6349
e440a328 6350 right_tree = build_int_cst_type(integer_type_node, 0);
6351 }
6352
6353 if (left_type->is_nil_type()
6354 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6355 {
6356 std::swap(left_type, right_type);
6357 std::swap(left_tree, right_tree);
6358 }
6359
6360 if (right_type->is_nil_type())
6361 {
6362 if (left_type->array_type() != NULL
6363 && left_type->array_type()->length() == NULL)
6364 {
6365 Array_type* at = left_type->array_type();
6366 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6367 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6368 }
6369 else if (left_type->interface_type() != NULL)
6370 {
6371 // An interface is nil if the first field is nil.
6372 tree left_type_tree = TREE_TYPE(left_tree);
6373 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6374 tree field = TYPE_FIELDS(left_type_tree);
6375 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6376 field, NULL_TREE);
6377 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6378 }
6379 else
6380 {
6381 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6382 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6383 }
6384 }
6385
d8ccb1e3 6386 if (left_tree == error_mark_node || right_tree == error_mark_node)
6387 return error_mark_node;
6388
e440a328 6389 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6390 if (CAN_HAVE_LOCATION_P(ret))
6391 SET_EXPR_LOCATION(ret, location);
6392 return ret;
6393}
6394
6395// Class Bound_method_expression.
6396
6397// Traversal.
6398
6399int
6400Bound_method_expression::do_traverse(Traverse* traverse)
6401{
6402 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6403 return TRAVERSE_EXIT;
6404 return Expression::traverse(&this->method_, traverse);
6405}
6406
6407// Return the type of a bound method expression. The type of this
6408// object is really the type of the method with no receiver. We
6409// should be able to get away with just returning the type of the
6410// method.
6411
6412Type*
6413Bound_method_expression::do_type()
6414{
6415 return this->method_->type();
6416}
6417
6418// Determine the types of a method expression.
6419
6420void
6421Bound_method_expression::do_determine_type(const Type_context*)
6422{
6423 this->method_->determine_type_no_context();
6424 Type* mtype = this->method_->type();
6425 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6426 if (fntype == NULL || !fntype->is_method())
6427 this->expr_->determine_type_no_context();
6428 else
6429 {
6430 Type_context subcontext(fntype->receiver()->type(), false);
6431 this->expr_->determine_type(&subcontext);
6432 }
6433}
6434
6435// Check the types of a method expression.
6436
6437void
6438Bound_method_expression::do_check_types(Gogo*)
6439{
6440 Type* type = this->method_->type()->deref();
6441 if (type == NULL
6442 || type->function_type() == NULL
6443 || !type->function_type()->is_method())
6444 this->report_error(_("object is not a method"));
6445 else
6446 {
6447 Type* rtype = type->function_type()->receiver()->type()->deref();
6448 Type* etype = (this->expr_type_ != NULL
6449 ? this->expr_type_
6450 : this->expr_->type());
6451 etype = etype->deref();
07ba8be5 6452 if (!Type::are_identical(rtype, etype, true, NULL))
e440a328 6453 this->report_error(_("method type does not match object type"));
6454 }
6455}
6456
6457// Get the tree for a method expression. There is no standard tree
6458// representation for this. The only places it may currently be used
6459// are in a Call_expression or a Go_statement, which will take it
6460// apart directly. So this has nothing to do at present.
6461
6462tree
6463Bound_method_expression::do_get_tree(Translate_context*)
6464{
d40405e2 6465 error_at(this->location(), "reference to method other than calling it");
6466 return error_mark_node;
e440a328 6467}
6468
6469// Make a method expression.
6470
6471Bound_method_expression*
6472Expression::make_bound_method(Expression* expr, Expression* method,
6473 source_location location)
6474{
6475 return new Bound_method_expression(expr, method, location);
6476}
6477
6478// Class Builtin_call_expression. This is used for a call to a
6479// builtin function.
6480
6481class Builtin_call_expression : public Call_expression
6482{
6483 public:
6484 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6485 bool is_varargs, source_location location);
6486
6487 protected:
6488 // This overrides Call_expression::do_lower.
6489 Expression*
6490 do_lower(Gogo*, Named_object*, int);
6491
6492 bool
6493 do_is_constant() const;
6494
6495 bool
6496 do_integer_constant_value(bool, mpz_t, Type**) const;
6497
6498 bool
6499 do_float_constant_value(mpfr_t, Type**) const;
6500
6501 bool
6502 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6503
6504 Type*
6505 do_type();
6506
6507 void
6508 do_determine_type(const Type_context*);
6509
6510 void
6511 do_check_types(Gogo*);
6512
6513 Expression*
6514 do_copy()
6515 {
6516 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6517 this->args()->copy(),
6518 this->is_varargs(),
6519 this->location());
6520 }
6521
6522 tree
6523 do_get_tree(Translate_context*);
6524
6525 void
6526 do_export(Export*) const;
6527
6528 virtual bool
6529 do_is_recover_call() const;
6530
6531 virtual void
6532 do_set_recover_arg(Expression*);
6533
6534 private:
6535 // The builtin functions.
6536 enum Builtin_function_code
6537 {
6538 BUILTIN_INVALID,
6539
6540 // Predeclared builtin functions.
6541 BUILTIN_APPEND,
6542 BUILTIN_CAP,
6543 BUILTIN_CLOSE,
6544 BUILTIN_CLOSED,
48080209 6545 BUILTIN_COMPLEX,
e440a328 6546 BUILTIN_COPY,
6547 BUILTIN_IMAG,
6548 BUILTIN_LEN,
6549 BUILTIN_MAKE,
6550 BUILTIN_NEW,
6551 BUILTIN_PANIC,
6552 BUILTIN_PRINT,
6553 BUILTIN_PRINTLN,
6554 BUILTIN_REAL,
6555 BUILTIN_RECOVER,
6556
6557 // Builtin functions from the unsafe package.
6558 BUILTIN_ALIGNOF,
6559 BUILTIN_OFFSETOF,
6560 BUILTIN_SIZEOF
6561 };
6562
6563 Expression*
6564 one_arg() const;
6565
6566 bool
6567 check_one_arg();
6568
6569 static Type*
6570 real_imag_type(Type*);
6571
6572 static Type*
48080209 6573 complex_type(Type*);
e440a328 6574
6575 // A pointer back to the general IR structure. This avoids a global
6576 // variable, or passing it around everywhere.
6577 Gogo* gogo_;
6578 // The builtin function being called.
6579 Builtin_function_code code_;
0f914071 6580 // Used to stop endless loops when the length of an array uses len
6581 // or cap of the array itself.
6582 mutable bool seen_;
e440a328 6583};
6584
6585Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6586 Expression* fn,
6587 Expression_list* args,
6588 bool is_varargs,
6589 source_location location)
6590 : Call_expression(fn, args, is_varargs, location),
0f914071 6591 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
e440a328 6592{
6593 Func_expression* fnexp = this->fn()->func_expression();
6594 gcc_assert(fnexp != NULL);
6595 const std::string& name(fnexp->named_object()->name());
6596 if (name == "append")
6597 this->code_ = BUILTIN_APPEND;
6598 else if (name == "cap")
6599 this->code_ = BUILTIN_CAP;
6600 else if (name == "close")
6601 this->code_ = BUILTIN_CLOSE;
6602 else if (name == "closed")
6603 this->code_ = BUILTIN_CLOSED;
48080209 6604 else if (name == "complex")
6605 this->code_ = BUILTIN_COMPLEX;
e440a328 6606 else if (name == "copy")
6607 this->code_ = BUILTIN_COPY;
6608 else if (name == "imag")
6609 this->code_ = BUILTIN_IMAG;
6610 else if (name == "len")
6611 this->code_ = BUILTIN_LEN;
6612 else if (name == "make")
6613 this->code_ = BUILTIN_MAKE;
6614 else if (name == "new")
6615 this->code_ = BUILTIN_NEW;
6616 else if (name == "panic")
6617 this->code_ = BUILTIN_PANIC;
6618 else if (name == "print")
6619 this->code_ = BUILTIN_PRINT;
6620 else if (name == "println")
6621 this->code_ = BUILTIN_PRINTLN;
6622 else if (name == "real")
6623 this->code_ = BUILTIN_REAL;
6624 else if (name == "recover")
6625 this->code_ = BUILTIN_RECOVER;
6626 else if (name == "Alignof")
6627 this->code_ = BUILTIN_ALIGNOF;
6628 else if (name == "Offsetof")
6629 this->code_ = BUILTIN_OFFSETOF;
6630 else if (name == "Sizeof")
6631 this->code_ = BUILTIN_SIZEOF;
6632 else
6633 gcc_unreachable();
6634}
6635
6636// Return whether this is a call to recover. This is a virtual
6637// function called from the parent class.
6638
6639bool
6640Builtin_call_expression::do_is_recover_call() const
6641{
6642 if (this->classification() == EXPRESSION_ERROR)
6643 return false;
6644 return this->code_ == BUILTIN_RECOVER;
6645}
6646
6647// Set the argument for a call to recover.
6648
6649void
6650Builtin_call_expression::do_set_recover_arg(Expression* arg)
6651{
6652 const Expression_list* args = this->args();
6653 gcc_assert(args == NULL || args->empty());
6654 Expression_list* new_args = new Expression_list();
6655 new_args->push_back(arg);
6656 this->set_args(new_args);
6657}
6658
6659// A traversal class which looks for a call expression.
6660
6661class Find_call_expression : public Traverse
6662{
6663 public:
6664 Find_call_expression()
6665 : Traverse(traverse_expressions),
6666 found_(false)
6667 { }
6668
6669 int
6670 expression(Expression**);
6671
6672 bool
6673 found()
6674 { return this->found_; }
6675
6676 private:
6677 bool found_;
6678};
6679
6680int
6681Find_call_expression::expression(Expression** pexpr)
6682{
6683 if ((*pexpr)->call_expression() != NULL)
6684 {
6685 this->found_ = true;
6686 return TRAVERSE_EXIT;
6687 }
6688 return TRAVERSE_CONTINUE;
6689}
6690
6691// Lower a builtin call expression. This turns new and make into
6692// specific expressions. We also convert to a constant if we can.
6693
6694Expression*
6695Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6696{
6697 if (this->code_ == BUILTIN_NEW)
6698 {
6699 const Expression_list* args = this->args();
6700 if (args == NULL || args->size() < 1)
6701 this->report_error(_("not enough arguments"));
6702 else if (args->size() > 1)
6703 this->report_error(_("too many arguments"));
6704 else
6705 {
6706 Expression* arg = args->front();
6707 if (!arg->is_type_expression())
6708 {
6709 error_at(arg->location(), "expected type");
6710 this->set_is_error();
6711 }
6712 else
6713 return Expression::make_allocation(arg->type(), this->location());
6714 }
6715 }
6716 else if (this->code_ == BUILTIN_MAKE)
6717 {
6718 const Expression_list* args = this->args();
6719 if (args == NULL || args->size() < 1)
6720 this->report_error(_("not enough arguments"));
6721 else
6722 {
6723 Expression* arg = args->front();
6724 if (!arg->is_type_expression())
6725 {
6726 error_at(arg->location(), "expected type");
6727 this->set_is_error();
6728 }
6729 else
6730 {
6731 Expression_list* newargs;
6732 if (args->size() == 1)
6733 newargs = NULL;
6734 else
6735 {
6736 newargs = new Expression_list();
6737 Expression_list::const_iterator p = args->begin();
6738 ++p;
6739 for (; p != args->end(); ++p)
6740 newargs->push_back(*p);
6741 }
6742 return Expression::make_make(arg->type(), newargs,
6743 this->location());
6744 }
6745 }
6746 }
6747 else if (this->is_constant())
6748 {
6749 // We can only lower len and cap if there are no function calls
6750 // in the arguments. Otherwise we have to make the call.
6751 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6752 {
6753 Expression* arg = this->one_arg();
6754 if (!arg->is_constant())
6755 {
6756 Find_call_expression find_call;
6757 Expression::traverse(&arg, &find_call);
6758 if (find_call.found())
6759 return this;
6760 }
6761 }
6762
6763 mpz_t ival;
6764 mpz_init(ival);
6765 Type* type;
6766 if (this->integer_constant_value(true, ival, &type))
6767 {
6768 Expression* ret = Expression::make_integer(&ival, type,
6769 this->location());
6770 mpz_clear(ival);
6771 return ret;
6772 }
6773 mpz_clear(ival);
6774
6775 mpfr_t rval;
6776 mpfr_init(rval);
6777 if (this->float_constant_value(rval, &type))
6778 {
6779 Expression* ret = Expression::make_float(&rval, type,
6780 this->location());
6781 mpfr_clear(rval);
6782 return ret;
6783 }
6784
6785 mpfr_t imag;
6786 mpfr_init(imag);
6787 if (this->complex_constant_value(rval, imag, &type))
6788 {
6789 Expression* ret = Expression::make_complex(&rval, &imag, type,
6790 this->location());
6791 mpfr_clear(rval);
6792 mpfr_clear(imag);
6793 return ret;
6794 }
6795 mpfr_clear(rval);
6796 mpfr_clear(imag);
6797 }
6798 else if (this->code_ == BUILTIN_RECOVER)
6799 {
6800 if (function != NULL)
6801 function->func_value()->set_calls_recover();
6802 else
6803 {
6804 // Calling recover outside of a function always returns the
6805 // nil empty interface.
6806 Type* eface = Type::make_interface_type(NULL, this->location());
6807 return Expression::make_cast(eface,
6808 Expression::make_nil(this->location()),
6809 this->location());
6810 }
6811 }
6812 else if (this->code_ == BUILTIN_APPEND)
6813 {
6814 // Lower the varargs.
6815 const Expression_list* args = this->args();
6816 if (args == NULL || args->empty())
6817 return this;
6818 Type* slice_type = args->front()->type();
6819 if (!slice_type->is_open_array_type())
6820 {
6821 error_at(args->front()->location(), "argument 1 must be a slice");
6822 this->set_is_error();
6823 return this;
6824 }
6825 return this->lower_varargs(gogo, function, slice_type, 2);
6826 }
6827
6828 return this;
6829}
6830
6831// Return the type of the real or imag functions, given the type of
6832// the argument. We need to map complex to float, complex64 to
6833// float32, and complex128 to float64, so it has to be done by name.
6834// This returns NULL if it can't figure out the type.
6835
6836Type*
6837Builtin_call_expression::real_imag_type(Type* arg_type)
6838{
6839 if (arg_type == NULL || arg_type->is_abstract())
6840 return NULL;
6841 Named_type* nt = arg_type->named_type();
6842 if (nt == NULL)
6843 return NULL;
6844 while (nt->real_type()->named_type() != NULL)
6845 nt = nt->real_type()->named_type();
48080209 6846 if (nt->name() == "complex64")
e440a328 6847 return Type::lookup_float_type("float32");
6848 else if (nt->name() == "complex128")
6849 return Type::lookup_float_type("float64");
6850 else
6851 return NULL;
6852}
6853
48080209 6854// Return the type of the complex function, given the type of one of the
e440a328 6855// argments. Like real_imag_type, we have to map by name.
6856
6857Type*
48080209 6858Builtin_call_expression::complex_type(Type* arg_type)
e440a328 6859{
6860 if (arg_type == NULL || arg_type->is_abstract())
6861 return NULL;
6862 Named_type* nt = arg_type->named_type();
6863 if (nt == NULL)
6864 return NULL;
6865 while (nt->real_type()->named_type() != NULL)
6866 nt = nt->real_type()->named_type();
48080209 6867 if (nt->name() == "float32")
e440a328 6868 return Type::lookup_complex_type("complex64");
6869 else if (nt->name() == "float64")
6870 return Type::lookup_complex_type("complex128");
6871 else
6872 return NULL;
6873}
6874
6875// Return a single argument, or NULL if there isn't one.
6876
6877Expression*
6878Builtin_call_expression::one_arg() const
6879{
6880 const Expression_list* args = this->args();
6881 if (args->size() != 1)
6882 return NULL;
6883 return args->front();
6884}
6885
6886// Return whether this is constant: len of a string, or len or cap of
6887// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6888
6889bool
6890Builtin_call_expression::do_is_constant() const
6891{
6892 switch (this->code_)
6893 {
6894 case BUILTIN_LEN:
6895 case BUILTIN_CAP:
6896 {
0f914071 6897 if (this->seen_)
6898 return false;
6899
e440a328 6900 Expression* arg = this->one_arg();
6901 if (arg == NULL)
6902 return false;
6903 Type* arg_type = arg->type();
6904
6905 if (arg_type->points_to() != NULL
6906 && arg_type->points_to()->array_type() != NULL
6907 && !arg_type->points_to()->is_open_array_type())
6908 arg_type = arg_type->points_to();
6909
6910 if (arg_type->array_type() != NULL
6911 && arg_type->array_type()->length() != NULL)
0f914071 6912 return true;
e440a328 6913
6914 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
0f914071 6915 {
6916 this->seen_ = true;
6917 bool ret = arg->is_constant();
6918 this->seen_ = false;
6919 return ret;
6920 }
e440a328 6921 }
6922 break;
6923
6924 case BUILTIN_SIZEOF:
6925 case BUILTIN_ALIGNOF:
6926 return this->one_arg() != NULL;
6927
6928 case BUILTIN_OFFSETOF:
6929 {
6930 Expression* arg = this->one_arg();
6931 if (arg == NULL)
6932 return false;
6933 return arg->field_reference_expression() != NULL;
6934 }
6935
48080209 6936 case BUILTIN_COMPLEX:
e440a328 6937 {
6938 const Expression_list* args = this->args();
6939 if (args != NULL && args->size() == 2)
6940 return args->front()->is_constant() && args->back()->is_constant();
6941 }
6942 break;
6943
6944 case BUILTIN_REAL:
6945 case BUILTIN_IMAG:
6946 {
6947 Expression* arg = this->one_arg();
6948 return arg != NULL && arg->is_constant();
6949 }
6950
6951 default:
6952 break;
6953 }
6954
6955 return false;
6956}
6957
6958// Return an integer constant value if possible.
6959
6960bool
6961Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6962 mpz_t val,
6963 Type** ptype) const
6964{
6965 if (this->code_ == BUILTIN_LEN
6966 || this->code_ == BUILTIN_CAP)
6967 {
6968 Expression* arg = this->one_arg();
6969 if (arg == NULL)
6970 return false;
6971 Type* arg_type = arg->type();
6972
6973 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6974 {
6975 std::string sval;
6976 if (arg->string_constant_value(&sval))
6977 {
6978 mpz_set_ui(val, sval.length());
6979 *ptype = Type::lookup_integer_type("int");
6980 return true;
6981 }
6982 }
6983
6984 if (arg_type->points_to() != NULL
6985 && arg_type->points_to()->array_type() != NULL
6986 && !arg_type->points_to()->is_open_array_type())
6987 arg_type = arg_type->points_to();
6988
6989 if (arg_type->array_type() != NULL
6990 && arg_type->array_type()->length() != NULL)
6991 {
0f914071 6992 if (this->seen_)
6993 return false;
e440a328 6994 Expression* e = arg_type->array_type()->length();
0f914071 6995 this->seen_ = true;
6996 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6997 this->seen_ = false;
6998 if (r)
e440a328 6999 {
7000 *ptype = Type::lookup_integer_type("int");
7001 return true;
7002 }
7003 }
7004 }
7005 else if (this->code_ == BUILTIN_SIZEOF
7006 || this->code_ == BUILTIN_ALIGNOF)
7007 {
7008 Expression* arg = this->one_arg();
7009 if (arg == NULL)
7010 return false;
7011 Type* arg_type = arg->type();
ef3f552a 7012 if (arg_type->is_error_type() || arg_type->is_undefined())
e440a328 7013 return false;
7014 if (arg_type->is_abstract())
7015 return false;
9aa9e2df 7016 if (arg_type->named_type() != NULL)
7017 arg_type->named_type()->convert(this->gogo_);
e440a328 7018 tree arg_type_tree = arg_type->get_tree(this->gogo_);
f690b0bb 7019 if (arg_type_tree == error_mark_node)
7020 return false;
e440a328 7021 unsigned long val_long;
7022 if (this->code_ == BUILTIN_SIZEOF)
7023 {
7024 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
7025 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
7026 if (TREE_INT_CST_HIGH(type_size) != 0)
7027 return false;
7028 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
7029 val_long = static_cast<unsigned long>(val_wide);
7030 if (val_long != val_wide)
7031 return false;
7032 }
7033 else if (this->code_ == BUILTIN_ALIGNOF)
7034 {
637bd3af 7035 if (arg->field_reference_expression() == NULL)
7036 val_long = go_type_alignment(arg_type_tree);
7037 else
e440a328 7038 {
7039 // Calling unsafe.Alignof(s.f) returns the alignment of
7040 // the type of f when it is used as a field in a struct.
637bd3af 7041 val_long = go_field_alignment(arg_type_tree);
e440a328 7042 }
e440a328 7043 }
7044 else
7045 gcc_unreachable();
7046 mpz_set_ui(val, val_long);
7047 *ptype = NULL;
7048 return true;
7049 }
7050 else if (this->code_ == BUILTIN_OFFSETOF)
7051 {
7052 Expression* arg = this->one_arg();
7053 if (arg == NULL)
7054 return false;
7055 Field_reference_expression* farg = arg->field_reference_expression();
7056 if (farg == NULL)
7057 return false;
7058 Expression* struct_expr = farg->expr();
7059 Type* st = struct_expr->type();
7060 if (st->struct_type() == NULL)
7061 return false;
9aa9e2df 7062 if (st->named_type() != NULL)
7063 st->named_type()->convert(this->gogo_);
e440a328 7064 tree struct_tree = st->get_tree(this->gogo_);
7065 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
7066 tree field = TYPE_FIELDS(struct_tree);
7067 for (unsigned int index = farg->field_index(); index > 0; --index)
7068 {
7069 field = DECL_CHAIN(field);
7070 gcc_assert(field != NULL_TREE);
7071 }
7072 HOST_WIDE_INT offset_wide = int_byte_position (field);
7073 if (offset_wide < 0)
7074 return false;
7075 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7076 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7077 return false;
7078 mpz_set_ui(val, offset_long);
7079 return true;
7080 }
7081 return false;
7082}
7083
7084// Return a floating point constant value if possible.
7085
7086bool
7087Builtin_call_expression::do_float_constant_value(mpfr_t val,
7088 Type** ptype) const
7089{
7090 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7091 {
7092 Expression* arg = this->one_arg();
7093 if (arg == NULL)
7094 return false;
7095
7096 mpfr_t real;
7097 mpfr_t imag;
7098 mpfr_init(real);
7099 mpfr_init(imag);
7100
7101 bool ret = false;
7102 Type* type;
7103 if (arg->complex_constant_value(real, imag, &type))
7104 {
7105 if (this->code_ == BUILTIN_REAL)
7106 mpfr_set(val, real, GMP_RNDN);
7107 else
7108 mpfr_set(val, imag, GMP_RNDN);
7109 *ptype = Builtin_call_expression::real_imag_type(type);
7110 ret = true;
7111 }
7112
7113 mpfr_clear(real);
7114 mpfr_clear(imag);
7115 return ret;
7116 }
7117
7118 return false;
7119}
7120
7121// Return a complex constant value if possible.
7122
7123bool
7124Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7125 Type** ptype) const
7126{
48080209 7127 if (this->code_ == BUILTIN_COMPLEX)
e440a328 7128 {
7129 const Expression_list* args = this->args();
7130 if (args == NULL || args->size() != 2)
7131 return false;
7132
7133 mpfr_t r;
7134 mpfr_init(r);
7135 Type* rtype;
7136 if (!args->front()->float_constant_value(r, &rtype))
7137 {
7138 mpfr_clear(r);
7139 return false;
7140 }
7141
7142 mpfr_t i;
7143 mpfr_init(i);
7144
7145 bool ret = false;
7146 Type* itype;
7147 if (args->back()->float_constant_value(i, &itype)
07ba8be5 7148 && Type::are_identical(rtype, itype, false, NULL))
e440a328 7149 {
7150 mpfr_set(real, r, GMP_RNDN);
7151 mpfr_set(imag, i, GMP_RNDN);
48080209 7152 *ptype = Builtin_call_expression::complex_type(rtype);
e440a328 7153 ret = true;
7154 }
7155
7156 mpfr_clear(r);
7157 mpfr_clear(i);
7158
7159 return ret;
7160 }
7161
7162 return false;
7163}
7164
7165// Return the type.
7166
7167Type*
7168Builtin_call_expression::do_type()
7169{
7170 switch (this->code_)
7171 {
7172 case BUILTIN_INVALID:
7173 default:
7174 gcc_unreachable();
7175
7176 case BUILTIN_NEW:
7177 case BUILTIN_MAKE:
7178 {
7179 const Expression_list* args = this->args();
7180 if (args == NULL || args->empty())
7181 return Type::make_error_type();
7182 return Type::make_pointer_type(args->front()->type());
7183 }
7184
7185 case BUILTIN_CAP:
7186 case BUILTIN_COPY:
7187 case BUILTIN_LEN:
7188 case BUILTIN_ALIGNOF:
7189 case BUILTIN_OFFSETOF:
7190 case BUILTIN_SIZEOF:
7191 return Type::lookup_integer_type("int");
7192
7193 case BUILTIN_CLOSE:
7194 case BUILTIN_PANIC:
7195 case BUILTIN_PRINT:
7196 case BUILTIN_PRINTLN:
7197 return Type::make_void_type();
7198
7199 case BUILTIN_CLOSED:
7200 return Type::lookup_bool_type();
7201
7202 case BUILTIN_RECOVER:
7203 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7204
7205 case BUILTIN_APPEND:
7206 {
7207 const Expression_list* args = this->args();
7208 if (args == NULL || args->empty())
7209 return Type::make_error_type();
7210 return args->front()->type();
7211 }
7212
7213 case BUILTIN_REAL:
7214 case BUILTIN_IMAG:
7215 {
7216 Expression* arg = this->one_arg();
7217 if (arg == NULL)
7218 return Type::make_error_type();
7219 Type* t = arg->type();
7220 if (t->is_abstract())
7221 t = t->make_non_abstract_type();
7222 t = Builtin_call_expression::real_imag_type(t);
7223 if (t == NULL)
7224 t = Type::make_error_type();
7225 return t;
7226 }
7227
48080209 7228 case BUILTIN_COMPLEX:
e440a328 7229 {
7230 const Expression_list* args = this->args();
7231 if (args == NULL || args->size() != 2)
7232 return Type::make_error_type();
7233 Type* t = args->front()->type();
7234 if (t->is_abstract())
7235 {
7236 t = args->back()->type();
7237 if (t->is_abstract())
7238 t = t->make_non_abstract_type();
7239 }
48080209 7240 t = Builtin_call_expression::complex_type(t);
e440a328 7241 if (t == NULL)
7242 t = Type::make_error_type();
7243 return t;
7244 }
7245 }
7246}
7247
7248// Determine the type.
7249
7250void
7251Builtin_call_expression::do_determine_type(const Type_context* context)
7252{
7253 this->fn()->determine_type_no_context();
7254
7255 const Expression_list* args = this->args();
7256
7257 bool is_print;
7258 Type* arg_type = NULL;
7259 switch (this->code_)
7260 {
7261 case BUILTIN_PRINT:
7262 case BUILTIN_PRINTLN:
7263 // Do not force a large integer constant to "int".
7264 is_print = true;
7265 break;
7266
7267 case BUILTIN_REAL:
7268 case BUILTIN_IMAG:
48080209 7269 arg_type = Builtin_call_expression::complex_type(context->type);
e440a328 7270 is_print = false;
7271 break;
7272
48080209 7273 case BUILTIN_COMPLEX:
e440a328 7274 {
48080209 7275 // For the complex function the type of one operand can
e440a328 7276 // determine the type of the other, as in a binary expression.
7277 arg_type = Builtin_call_expression::real_imag_type(context->type);
7278 if (args != NULL && args->size() == 2)
7279 {
7280 Type* t1 = args->front()->type();
7281 Type* t2 = args->front()->type();
7282 if (!t1->is_abstract())
7283 arg_type = t1;
7284 else if (!t2->is_abstract())
7285 arg_type = t2;
7286 }
7287 is_print = false;
7288 }
7289 break;
7290
7291 default:
7292 is_print = false;
7293 break;
7294 }
7295
7296 if (args != NULL)
7297 {
7298 for (Expression_list::const_iterator pa = args->begin();
7299 pa != args->end();
7300 ++pa)
7301 {
7302 Type_context subcontext;
7303 subcontext.type = arg_type;
7304
7305 if (is_print)
7306 {
7307 // We want to print large constants, we so can't just
7308 // use the appropriate nonabstract type. Use uint64 for
7309 // an integer if we know it is nonnegative, otherwise
7310 // use int64 for a integer, otherwise use float64 for a
7311 // float or complex128 for a complex.
7312 Type* want_type = NULL;
7313 Type* atype = (*pa)->type();
7314 if (atype->is_abstract())
7315 {
7316 if (atype->integer_type() != NULL)
7317 {
7318 mpz_t val;
7319 mpz_init(val);
7320 Type* dummy;
7321 if (this->integer_constant_value(true, val, &dummy)
7322 && mpz_sgn(val) >= 0)
7323 want_type = Type::lookup_integer_type("uint64");
7324 else
7325 want_type = Type::lookup_integer_type("int64");
7326 mpz_clear(val);
7327 }
7328 else if (atype->float_type() != NULL)
7329 want_type = Type::lookup_float_type("float64");
7330 else if (atype->complex_type() != NULL)
7331 want_type = Type::lookup_complex_type("complex128");
7332 else if (atype->is_abstract_string_type())
7333 want_type = Type::lookup_string_type();
7334 else if (atype->is_abstract_boolean_type())
7335 want_type = Type::lookup_bool_type();
7336 else
7337 gcc_unreachable();
7338 subcontext.type = want_type;
7339 }
7340 }
7341
7342 (*pa)->determine_type(&subcontext);
7343 }
7344 }
7345}
7346
7347// If there is exactly one argument, return true. Otherwise give an
7348// error message and return false.
7349
7350bool
7351Builtin_call_expression::check_one_arg()
7352{
7353 const Expression_list* args = this->args();
7354 if (args == NULL || args->size() < 1)
7355 {
7356 this->report_error(_("not enough arguments"));
7357 return false;
7358 }
7359 else if (args->size() > 1)
7360 {
7361 this->report_error(_("too many arguments"));
7362 return false;
7363 }
7364 if (args->front()->is_error_expression()
4c0f874c 7365 || args->front()->type()->is_error_type()
7366 || args->front()->type()->is_undefined())
e440a328 7367 {
7368 this->set_is_error();
7369 return false;
7370 }
7371 return true;
7372}
7373
7374// Check argument types for a builtin function.
7375
7376void
7377Builtin_call_expression::do_check_types(Gogo*)
7378{
7379 switch (this->code_)
7380 {
7381 case BUILTIN_INVALID:
7382 case BUILTIN_NEW:
7383 case BUILTIN_MAKE:
7384 return;
7385
7386 case BUILTIN_LEN:
7387 case BUILTIN_CAP:
7388 {
7389 // The single argument may be either a string or an array or a
7390 // map or a channel, or a pointer to a closed array.
7391 if (this->check_one_arg())
7392 {
7393 Type* arg_type = this->one_arg()->type();
7394 if (arg_type->points_to() != NULL
7395 && arg_type->points_to()->array_type() != NULL
7396 && !arg_type->points_to()->is_open_array_type())
7397 arg_type = arg_type->points_to();
7398 if (this->code_ == BUILTIN_CAP)
7399 {
7400 if (!arg_type->is_error_type()
7401 && arg_type->array_type() == NULL
7402 && arg_type->channel_type() == NULL)
7403 this->report_error(_("argument must be array or slice "
7404 "or channel"));
7405 }
7406 else
7407 {
7408 if (!arg_type->is_error_type()
7409 && !arg_type->is_string_type()
7410 && arg_type->array_type() == NULL
7411 && arg_type->map_type() == NULL
7412 && arg_type->channel_type() == NULL)
7413 this->report_error(_("argument must be string or "
7414 "array or slice or map or channel"));
7415 }
7416 }
7417 }
7418 break;
7419
7420 case BUILTIN_PRINT:
7421 case BUILTIN_PRINTLN:
7422 {
7423 const Expression_list* args = this->args();
7424 if (args == NULL)
7425 {
7426 if (this->code_ == BUILTIN_PRINT)
7427 warning_at(this->location(), 0,
7428 "no arguments for builtin function %<%s%>",
7429 (this->code_ == BUILTIN_PRINT
7430 ? "print"
7431 : "println"));
7432 }
7433 else
7434 {
7435 for (Expression_list::const_iterator p = args->begin();
7436 p != args->end();
7437 ++p)
7438 {
7439 Type* type = (*p)->type();
7440 if (type->is_error_type()
7441 || type->is_string_type()
7442 || type->integer_type() != NULL
7443 || type->float_type() != NULL
7444 || type->complex_type() != NULL
7445 || type->is_boolean_type()
7446 || type->points_to() != NULL
7447 || type->interface_type() != NULL
7448 || type->channel_type() != NULL
7449 || type->map_type() != NULL
7450 || type->function_type() != NULL
7451 || type->is_open_array_type())
7452 ;
7453 else
7454 this->report_error(_("unsupported argument type to "
7455 "builtin function"));
7456 }
7457 }
7458 }
7459 break;
7460
7461 case BUILTIN_CLOSE:
7462 case BUILTIN_CLOSED:
7463 if (this->check_one_arg())
7464 {
7465 if (this->one_arg()->type()->channel_type() == NULL)
7466 this->report_error(_("argument must be channel"));
7467 }
7468 break;
7469
7470 case BUILTIN_PANIC:
7471 case BUILTIN_SIZEOF:
7472 case BUILTIN_ALIGNOF:
7473 this->check_one_arg();
7474 break;
7475
7476 case BUILTIN_RECOVER:
7477 if (this->args() != NULL && !this->args()->empty())
7478 this->report_error(_("too many arguments"));
7479 break;
7480
7481 case BUILTIN_OFFSETOF:
7482 if (this->check_one_arg())
7483 {
7484 Expression* arg = this->one_arg();
7485 if (arg->field_reference_expression() == NULL)
7486 this->report_error(_("argument must be a field reference"));
7487 }
7488 break;
7489
7490 case BUILTIN_COPY:
7491 {
7492 const Expression_list* args = this->args();
7493 if (args == NULL || args->size() < 2)
7494 {
7495 this->report_error(_("not enough arguments"));
7496 break;
7497 }
7498 else if (args->size() > 2)
7499 {
7500 this->report_error(_("too many arguments"));
7501 break;
7502 }
7503 Type* arg1_type = args->front()->type();
7504 Type* arg2_type = args->back()->type();
7505 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7506 break;
7507
7508 Type* e1;
7509 if (arg1_type->is_open_array_type())
7510 e1 = arg1_type->array_type()->element_type();
7511 else
7512 {
7513 this->report_error(_("left argument must be a slice"));
7514 break;
7515 }
7516
7517 Type* e2;
7518 if (arg2_type->is_open_array_type())
7519 e2 = arg2_type->array_type()->element_type();
7520 else if (arg2_type->is_string_type())
7521 e2 = Type::lookup_integer_type("uint8");
7522 else
7523 {
7524 this->report_error(_("right argument must be a slice or a string"));
7525 break;
7526 }
7527
07ba8be5 7528 if (!Type::are_identical(e1, e2, true, NULL))
e440a328 7529 this->report_error(_("element types must be the same"));
7530 }
7531 break;
7532
7533 case BUILTIN_APPEND:
7534 {
7535 const Expression_list* args = this->args();
b0d311a1 7536 if (args == NULL || args->size() < 2)
e440a328 7537 {
7538 this->report_error(_("not enough arguments"));
7539 break;
7540 }
0b7755ec 7541 if (args->size() > 2)
7542 {
7543 this->report_error(_("too many arguments"));
7544 break;
7545 }
e440a328 7546 std::string reason;
7547 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7548 &reason))
7549 {
7550 if (reason.empty())
7551 this->report_error(_("arguments 1 and 2 have different types"));
7552 else
7553 {
7554 error_at(this->location(),
7555 "arguments 1 and 2 have different types (%s)",
7556 reason.c_str());
7557 this->set_is_error();
7558 }
7559 }
7560 break;
7561 }
7562
7563 case BUILTIN_REAL:
7564 case BUILTIN_IMAG:
7565 if (this->check_one_arg())
7566 {
7567 if (this->one_arg()->type()->complex_type() == NULL)
7568 this->report_error(_("argument must have complex type"));
7569 }
7570 break;
7571
48080209 7572 case BUILTIN_COMPLEX:
e440a328 7573 {
7574 const Expression_list* args = this->args();
7575 if (args == NULL || args->size() < 2)
7576 this->report_error(_("not enough arguments"));
7577 else if (args->size() > 2)
7578 this->report_error(_("too many arguments"));
7579 else if (args->front()->is_error_expression()
7580 || args->front()->type()->is_error_type()
7581 || args->back()->is_error_expression()
7582 || args->back()->type()->is_error_type())
7583 this->set_is_error();
7584 else if (!Type::are_identical(args->front()->type(),
07ba8be5 7585 args->back()->type(), true, NULL))
48080209 7586 this->report_error(_("complex arguments must have identical types"));
e440a328 7587 else if (args->front()->type()->float_type() == NULL)
48080209 7588 this->report_error(_("complex arguments must have "
e440a328 7589 "floating-point type"));
7590 }
7591 break;
7592
7593 default:
7594 gcc_unreachable();
7595 }
7596}
7597
7598// Return the tree for a builtin function.
7599
7600tree
7601Builtin_call_expression::do_get_tree(Translate_context* context)
7602{
7603 Gogo* gogo = context->gogo();
7604 source_location location = this->location();
7605 switch (this->code_)
7606 {
7607 case BUILTIN_INVALID:
7608 case BUILTIN_NEW:
7609 case BUILTIN_MAKE:
7610 gcc_unreachable();
7611
7612 case BUILTIN_LEN:
7613 case BUILTIN_CAP:
7614 {
7615 const Expression_list* args = this->args();
7616 gcc_assert(args != NULL && args->size() == 1);
7617 Expression* arg = *args->begin();
7618 Type* arg_type = arg->type();
0f914071 7619
7620 if (this->seen_)
7621 {
7622 gcc_assert(saw_errors());
7623 return error_mark_node;
7624 }
7625 this->seen_ = true;
7626
e440a328 7627 tree arg_tree = arg->get_tree(context);
0f914071 7628
7629 this->seen_ = false;
7630
e440a328 7631 if (arg_tree == error_mark_node)
7632 return error_mark_node;
7633
7634 if (arg_type->points_to() != NULL)
7635 {
7636 arg_type = arg_type->points_to();
7637 gcc_assert(arg_type->array_type() != NULL
7638 && !arg_type->is_open_array_type());
7639 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7640 arg_tree = build_fold_indirect_ref(arg_tree);
7641 }
7642
7643 tree val_tree;
7644 if (this->code_ == BUILTIN_LEN)
7645 {
7646 if (arg_type->is_string_type())
7647 val_tree = String_type::length_tree(gogo, arg_tree);
7648 else if (arg_type->array_type() != NULL)
0f914071 7649 {
7650 if (this->seen_)
7651 {
7652 gcc_assert(saw_errors());
7653 return error_mark_node;
7654 }
7655 this->seen_ = true;
7656 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7657 this->seen_ = false;
7658 }
e440a328 7659 else if (arg_type->map_type() != NULL)
7660 {
7661 static tree map_len_fndecl;
7662 val_tree = Gogo::call_builtin(&map_len_fndecl,
7663 location,
7664 "__go_map_len",
7665 1,
7666 sizetype,
7667 arg_type->get_tree(gogo),
7668 arg_tree);
7669 }
7670 else if (arg_type->channel_type() != NULL)
7671 {
7672 static tree chan_len_fndecl;
7673 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7674 location,
7675 "__go_chan_len",
7676 1,
7677 sizetype,
7678 arg_type->get_tree(gogo),
7679 arg_tree);
7680 }
7681 else
7682 gcc_unreachable();
7683 }
7684 else
7685 {
7686 if (arg_type->array_type() != NULL)
0f914071 7687 {
7688 if (this->seen_)
7689 {
7690 gcc_assert(saw_errors());
7691 return error_mark_node;
7692 }
7693 this->seen_ = true;
7694 val_tree = arg_type->array_type()->capacity_tree(gogo,
7695 arg_tree);
7696 this->seen_ = false;
7697 }
e440a328 7698 else if (arg_type->channel_type() != NULL)
7699 {
7700 static tree chan_cap_fndecl;
7701 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7702 location,
7703 "__go_chan_cap",
7704 1,
7705 sizetype,
7706 arg_type->get_tree(gogo),
7707 arg_tree);
7708 }
7709 else
7710 gcc_unreachable();
7711 }
7712
d8ccb1e3 7713 if (val_tree == error_mark_node)
7714 return error_mark_node;
7715
e440a328 7716 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7717 if (type_tree == TREE_TYPE(val_tree))
7718 return val_tree;
7719 else
7720 return fold(convert_to_integer(type_tree, val_tree));
7721 }
7722
7723 case BUILTIN_PRINT:
7724 case BUILTIN_PRINTLN:
7725 {
7726 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7727 tree stmt_list = NULL_TREE;
7728
7729 const Expression_list* call_args = this->args();
7730 if (call_args != NULL)
7731 {
7732 for (Expression_list::const_iterator p = call_args->begin();
7733 p != call_args->end();
7734 ++p)
7735 {
7736 if (is_ln && p != call_args->begin())
7737 {
7738 static tree print_space_fndecl;
7739 tree call = Gogo::call_builtin(&print_space_fndecl,
7740 location,
7741 "__go_print_space",
7742 0,
7743 void_type_node);
5fb82b5e 7744 if (call == error_mark_node)
7745 return error_mark_node;
e440a328 7746 append_to_statement_list(call, &stmt_list);
7747 }
7748
7749 Type* type = (*p)->type();
7750
7751 tree arg = (*p)->get_tree(context);
7752 if (arg == error_mark_node)
7753 return error_mark_node;
7754
7755 tree* pfndecl;
7756 const char* fnname;
7757 if (type->is_string_type())
7758 {
7759 static tree print_string_fndecl;
7760 pfndecl = &print_string_fndecl;
7761 fnname = "__go_print_string";
7762 }
7763 else if (type->integer_type() != NULL
7764 && type->integer_type()->is_unsigned())
7765 {
7766 static tree print_uint64_fndecl;
7767 pfndecl = &print_uint64_fndecl;
7768 fnname = "__go_print_uint64";
7769 Type* itype = Type::lookup_integer_type("uint64");
7770 arg = fold_convert_loc(location, itype->get_tree(gogo),
7771 arg);
7772 }
7773 else if (type->integer_type() != NULL)
7774 {
7775 static tree print_int64_fndecl;
7776 pfndecl = &print_int64_fndecl;
7777 fnname = "__go_print_int64";
7778 Type* itype = Type::lookup_integer_type("int64");
7779 arg = fold_convert_loc(location, itype->get_tree(gogo),
7780 arg);
7781 }
7782 else if (type->float_type() != NULL)
7783 {
7784 static tree print_double_fndecl;
7785 pfndecl = &print_double_fndecl;
7786 fnname = "__go_print_double";
7787 arg = fold_convert_loc(location, double_type_node, arg);
7788 }
7789 else if (type->complex_type() != NULL)
7790 {
7791 static tree print_complex_fndecl;
7792 pfndecl = &print_complex_fndecl;
7793 fnname = "__go_print_complex";
7794 arg = fold_convert_loc(location, complex_double_type_node,
7795 arg);
7796 }
7797 else if (type->is_boolean_type())
7798 {
7799 static tree print_bool_fndecl;
7800 pfndecl = &print_bool_fndecl;
7801 fnname = "__go_print_bool";
7802 }
7803 else if (type->points_to() != NULL
7804 || type->channel_type() != NULL
7805 || type->map_type() != NULL
7806 || type->function_type() != NULL)
7807 {
7808 static tree print_pointer_fndecl;
7809 pfndecl = &print_pointer_fndecl;
7810 fnname = "__go_print_pointer";
7811 arg = fold_convert_loc(location, ptr_type_node, arg);
7812 }
7813 else if (type->interface_type() != NULL)
7814 {
7815 if (type->interface_type()->is_empty())
7816 {
7817 static tree print_empty_interface_fndecl;
7818 pfndecl = &print_empty_interface_fndecl;
7819 fnname = "__go_print_empty_interface";
7820 }
7821 else
7822 {
7823 static tree print_interface_fndecl;
7824 pfndecl = &print_interface_fndecl;
7825 fnname = "__go_print_interface";
7826 }
7827 }
7828 else if (type->is_open_array_type())
7829 {
7830 static tree print_slice_fndecl;
7831 pfndecl = &print_slice_fndecl;
7832 fnname = "__go_print_slice";
7833 }
7834 else
7835 gcc_unreachable();
7836
7837 tree call = Gogo::call_builtin(pfndecl,
7838 location,
7839 fnname,
7840 1,
7841 void_type_node,
7842 TREE_TYPE(arg),
7843 arg);
5fb82b5e 7844 if (call == error_mark_node)
7845 return error_mark_node;
7846 append_to_statement_list(call, &stmt_list);
e440a328 7847 }
7848 }
7849
7850 if (is_ln)
7851 {
7852 static tree print_nl_fndecl;
7853 tree call = Gogo::call_builtin(&print_nl_fndecl,
7854 location,
7855 "__go_print_nl",
7856 0,
7857 void_type_node);
5fb82b5e 7858 if (call == error_mark_node)
7859 return error_mark_node;
e440a328 7860 append_to_statement_list(call, &stmt_list);
7861 }
7862
7863 return stmt_list;
7864 }
7865
7866 case BUILTIN_PANIC:
7867 {
7868 const Expression_list* args = this->args();
7869 gcc_assert(args != NULL && args->size() == 1);
7870 Expression* arg = args->front();
7871 tree arg_tree = arg->get_tree(context);
7872 if (arg_tree == error_mark_node)
7873 return error_mark_node;
7874 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7875 arg_tree = Expression::convert_for_assignment(context, empty,
7876 arg->type(),
7877 arg_tree, location);
7878 static tree panic_fndecl;
7879 tree call = Gogo::call_builtin(&panic_fndecl,
7880 location,
7881 "__go_panic",
7882 1,
7883 void_type_node,
7884 TREE_TYPE(arg_tree),
7885 arg_tree);
5fb82b5e 7886 if (call == error_mark_node)
7887 return error_mark_node;
e440a328 7888 // This function will throw an exception.
7889 TREE_NOTHROW(panic_fndecl) = 0;
7890 // This function will not return.
7891 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7892 return call;
7893 }
7894
7895 case BUILTIN_RECOVER:
7896 {
7897 // The argument is set when building recover thunks. It's a
7898 // boolean value which is true if we can recover a value now.
7899 const Expression_list* args = this->args();
7900 gcc_assert(args != NULL && args->size() == 1);
7901 Expression* arg = args->front();
7902 tree arg_tree = arg->get_tree(context);
7903 if (arg_tree == error_mark_node)
7904 return error_mark_node;
7905
7906 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7907 tree empty_tree = empty->get_tree(context->gogo());
7908
7909 Type* nil_type = Type::make_nil_type();
7910 Expression* nil = Expression::make_nil(location);
7911 tree nil_tree = nil->get_tree(context);
7912 tree empty_nil_tree = Expression::convert_for_assignment(context,
7913 empty,
7914 nil_type,
7915 nil_tree,
7916 location);
7917
7918 // We need to handle a deferred call to recover specially,
7919 // because it changes whether it can recover a panic or not.
7920 // See test7 in test/recover1.go.
7921 tree call;
7922 if (this->is_deferred())
7923 {
7924 static tree deferred_recover_fndecl;
7925 call = Gogo::call_builtin(&deferred_recover_fndecl,
7926 location,
7927 "__go_deferred_recover",
7928 0,
7929 empty_tree);
7930 }
7931 else
7932 {
7933 static tree recover_fndecl;
7934 call = Gogo::call_builtin(&recover_fndecl,
7935 location,
7936 "__go_recover",
7937 0,
7938 empty_tree);
7939 }
5fb82b5e 7940 if (call == error_mark_node)
7941 return error_mark_node;
e440a328 7942 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7943 call, empty_nil_tree);
7944 }
7945
7946 case BUILTIN_CLOSE:
7947 case BUILTIN_CLOSED:
7948 {
7949 const Expression_list* args = this->args();
7950 gcc_assert(args != NULL && args->size() == 1);
7951 Expression* arg = args->front();
7952 tree arg_tree = arg->get_tree(context);
7953 if (arg_tree == error_mark_node)
7954 return error_mark_node;
7955 if (this->code_ == BUILTIN_CLOSE)
7956 {
7957 static tree close_fndecl;
7958 return Gogo::call_builtin(&close_fndecl,
7959 location,
7960 "__go_builtin_close",
7961 1,
7962 void_type_node,
7963 TREE_TYPE(arg_tree),
7964 arg_tree);
7965 }
7966 else
7967 {
7968 static tree closed_fndecl;
7969 return Gogo::call_builtin(&closed_fndecl,
7970 location,
7971 "__go_builtin_closed",
7972 1,
7973 boolean_type_node,
7974 TREE_TYPE(arg_tree),
7975 arg_tree);
7976 }
7977 }
7978
7979 case BUILTIN_SIZEOF:
7980 case BUILTIN_OFFSETOF:
7981 case BUILTIN_ALIGNOF:
7982 {
7983 mpz_t val;
7984 mpz_init(val);
7985 Type* dummy;
7986 bool b = this->integer_constant_value(true, val, &dummy);
7f1d9abd 7987 if (!b)
7988 {
7989 gcc_assert(saw_errors());
7990 return error_mark_node;
7991 }
e440a328 7992 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7993 tree ret = Expression::integer_constant_tree(val, type);
7994 mpz_clear(val);
7995 return ret;
7996 }
7997
7998 case BUILTIN_COPY:
7999 {
8000 const Expression_list* args = this->args();
8001 gcc_assert(args != NULL && args->size() == 2);
8002 Expression* arg1 = args->front();
8003 Expression* arg2 = args->back();
8004
8005 tree arg1_tree = arg1->get_tree(context);
8006 tree arg2_tree = arg2->get_tree(context);
8007 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8008 return error_mark_node;
8009
8010 Type* arg1_type = arg1->type();
8011 Array_type* at = arg1_type->array_type();
8012 arg1_tree = save_expr(arg1_tree);
8013 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
8014 tree arg1_len = at->length_tree(gogo, arg1_tree);
d8ccb1e3 8015 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
8016 return error_mark_node;
e440a328 8017
8018 Type* arg2_type = arg2->type();
8019 tree arg2_val;
8020 tree arg2_len;
8021 if (arg2_type->is_open_array_type())
8022 {
8023 at = arg2_type->array_type();
8024 arg2_tree = save_expr(arg2_tree);
8025 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8026 arg2_len = at->length_tree(gogo, arg2_tree);
8027 }
8028 else
8029 {
8030 arg2_tree = save_expr(arg2_tree);
8031 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
8032 arg2_len = String_type::length_tree(gogo, arg2_tree);
8033 }
d8ccb1e3 8034 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8035 return error_mark_node;
e440a328 8036
8037 arg1_len = save_expr(arg1_len);
8038 arg2_len = save_expr(arg2_len);
8039 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
8040 fold_build2_loc(location, LT_EXPR,
8041 boolean_type_node,
8042 arg1_len, arg2_len),
8043 arg1_len, arg2_len);
8044 len = save_expr(len);
8045
8046 Type* element_type = at->element_type();
8047 tree element_type_tree = element_type->get_tree(gogo);
d8ccb1e3 8048 if (element_type_tree == error_mark_node)
8049 return error_mark_node;
e440a328 8050 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8051 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
8052 len);
8053 bytecount = fold_build2_loc(location, MULT_EXPR,
8054 TREE_TYPE(element_size),
8055 bytecount, element_size);
8056 bytecount = fold_convert_loc(location, size_type_node, bytecount);
8057
3991cb03 8058 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
8059 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8060
8061 static tree copy_fndecl;
8062 tree call = Gogo::call_builtin(&copy_fndecl,
8063 location,
8064 "__go_copy",
8065 3,
8066 void_type_node,
8067 ptr_type_node,
8068 arg1_val,
8069 ptr_type_node,
8070 arg2_val,
8071 size_type_node,
8072 bytecount);
8073 if (call == error_mark_node)
8074 return error_mark_node;
e440a328 8075
8076 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8077 call, len);
8078 }
8079
8080 case BUILTIN_APPEND:
8081 {
8082 const Expression_list* args = this->args();
8083 gcc_assert(args != NULL && args->size() == 2);
8084 Expression* arg1 = args->front();
8085 Expression* arg2 = args->back();
8086
8087 tree arg1_tree = arg1->get_tree(context);
8088 tree arg2_tree = arg2->get_tree(context);
8089 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8090 return error_mark_node;
8091
9d44fbe3 8092 Array_type* at = arg1->type()->array_type();
8093 Type* element_type = at->element_type();
8094
ed64c8e5 8095 arg2_tree = Expression::convert_for_assignment(context, at,
8096 arg2->type(),
8097 arg2_tree,
8098 location);
8099 if (arg2_tree == error_mark_node)
8100 return error_mark_node;
8101
3991cb03 8102 arg2_tree = save_expr(arg2_tree);
ed64c8e5 8103 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8104 tree arg2_len = at->length_tree(gogo, arg2_tree);
3991cb03 8105 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8106 return error_mark_node;
8107 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8108 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8109
8110 tree element_type_tree = element_type->get_tree(gogo);
8111 if (element_type_tree == error_mark_node)
8112 return error_mark_node;
8113 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8114 element_size = fold_convert_loc(location, size_type_node,
8115 element_size);
e440a328 8116
8117 // We rebuild the decl each time since the slice types may
8118 // change.
8119 tree append_fndecl = NULL_TREE;
8120 return Gogo::call_builtin(&append_fndecl,
8121 location,
8122 "__go_append",
3991cb03 8123 4,
e440a328 8124 TREE_TYPE(arg1_tree),
e440a328 8125 TREE_TYPE(arg1_tree),
8126 arg1_tree,
3991cb03 8127 ptr_type_node,
8128 arg2_val,
8129 size_type_node,
8130 arg2_len,
8131 size_type_node,
8132 element_size);
e440a328 8133 }
8134
8135 case BUILTIN_REAL:
8136 case BUILTIN_IMAG:
8137 {
8138 const Expression_list* args = this->args();
8139 gcc_assert(args != NULL && args->size() == 1);
8140 Expression* arg = args->front();
8141 tree arg_tree = arg->get_tree(context);
8142 if (arg_tree == error_mark_node)
8143 return error_mark_node;
8144 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8145 if (this->code_ == BUILTIN_REAL)
8146 return fold_build1_loc(location, REALPART_EXPR,
8147 TREE_TYPE(TREE_TYPE(arg_tree)),
8148 arg_tree);
8149 else
8150 return fold_build1_loc(location, IMAGPART_EXPR,
8151 TREE_TYPE(TREE_TYPE(arg_tree)),
8152 arg_tree);
8153 }
8154
48080209 8155 case BUILTIN_COMPLEX:
e440a328 8156 {
8157 const Expression_list* args = this->args();
8158 gcc_assert(args != NULL && args->size() == 2);
8159 tree r = args->front()->get_tree(context);
8160 tree i = args->back()->get_tree(context);
8161 if (r == error_mark_node || i == error_mark_node)
8162 return error_mark_node;
8163 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8164 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8165 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8166 return fold_build2_loc(location, COMPLEX_EXPR,
8167 build_complex_type(TREE_TYPE(r)),
8168 r, i);
8169 }
8170
8171 default:
8172 gcc_unreachable();
8173 }
8174}
8175
8176// We have to support exporting a builtin call expression, because
8177// code can set a constant to the result of a builtin expression.
8178
8179void
8180Builtin_call_expression::do_export(Export* exp) const
8181{
8182 bool ok = false;
8183
8184 mpz_t val;
8185 mpz_init(val);
8186 Type* dummy;
8187 if (this->integer_constant_value(true, val, &dummy))
8188 {
8189 Integer_expression::export_integer(exp, val);
8190 ok = true;
8191 }
8192 mpz_clear(val);
8193
8194 if (!ok)
8195 {
8196 mpfr_t fval;
8197 mpfr_init(fval);
8198 if (this->float_constant_value(fval, &dummy))
8199 {
8200 Float_expression::export_float(exp, fval);
8201 ok = true;
8202 }
8203 mpfr_clear(fval);
8204 }
8205
8206 if (!ok)
8207 {
8208 mpfr_t real;
8209 mpfr_t imag;
8210 mpfr_init(real);
8211 mpfr_init(imag);
8212 if (this->complex_constant_value(real, imag, &dummy))
8213 {
8214 Complex_expression::export_complex(exp, real, imag);
8215 ok = true;
8216 }
8217 mpfr_clear(real);
8218 mpfr_clear(imag);
8219 }
8220
8221 if (!ok)
8222 {
8223 error_at(this->location(), "value is not constant");
8224 return;
8225 }
8226
8227 // A trailing space lets us reliably identify the end of the number.
8228 exp->write_c_string(" ");
8229}
8230
8231// Class Call_expression.
8232
8233// Traversal.
8234
8235int
8236Call_expression::do_traverse(Traverse* traverse)
8237{
8238 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8239 return TRAVERSE_EXIT;
8240 if (this->args_ != NULL)
8241 {
8242 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8243 return TRAVERSE_EXIT;
8244 }
8245 return TRAVERSE_CONTINUE;
8246}
8247
8248// Lower a call statement.
8249
8250Expression*
8251Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8252{
8253 // A type case can look like a function call.
8254 if (this->fn_->is_type_expression()
8255 && this->args_ != NULL
8256 && this->args_->size() == 1)
8257 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8258 this->location());
8259
8260 // Recognize a call to a builtin function.
8261 Func_expression* fne = this->fn_->func_expression();
8262 if (fne != NULL
8263 && fne->named_object()->is_function_declaration()
8264 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8265 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8266 this->is_varargs_, this->location());
8267
8268 // Handle an argument which is a call to a function which returns
8269 // multiple results.
8270 if (this->args_ != NULL
8271 && this->args_->size() == 1
8272 && this->args_->front()->call_expression() != NULL
8273 && this->fn_->type()->function_type() != NULL)
8274 {
8275 Function_type* fntype = this->fn_->type()->function_type();
8276 size_t rc = this->args_->front()->call_expression()->result_count();
8277 if (rc > 1
8278 && fntype->parameters() != NULL
8279 && (fntype->parameters()->size() == rc
8280 || (fntype->is_varargs()
8281 && fntype->parameters()->size() - 1 <= rc)))
8282 {
8283 Call_expression* call = this->args_->front()->call_expression();
8284 Expression_list* args = new Expression_list;
8285 for (size_t i = 0; i < rc; ++i)
8286 args->push_back(Expression::make_call_result(call, i));
8287 // We can't return a new call expression here, because this
42535814 8288 // one may be referenced by Call_result expressions. We
8289 // also can't delete the old arguments, because we may still
8290 // traverse them somewhere up the call stack. FIXME.
e440a328 8291 this->args_ = args;
8292 }
8293 }
8294
8295 // Handle a call to a varargs function by packaging up the extra
8296 // parameters.
8297 if (this->fn_->type()->function_type() != NULL
8298 && this->fn_->type()->function_type()->is_varargs())
8299 {
8300 Function_type* fntype = this->fn_->type()->function_type();
8301 const Typed_identifier_list* parameters = fntype->parameters();
8302 gcc_assert(parameters != NULL && !parameters->empty());
8303 Type* varargs_type = parameters->back().type();
8304 return this->lower_varargs(gogo, function, varargs_type,
8305 parameters->size());
8306 }
8307
8308 return this;
8309}
8310
8311// Lower a call to a varargs function. FUNCTION is the function in
8312// which the call occurs--it's not the function we are calling.
8313// VARARGS_TYPE is the type of the varargs parameter, a slice type.
8314// PARAM_COUNT is the number of parameters of the function we are
8315// calling; the last of these parameters will be the varargs
8316// parameter.
8317
8318Expression*
8319Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8320 Type* varargs_type, size_t param_count)
8321{
8322 if (this->varargs_are_lowered_)
8323 return this;
8324
8325 source_location loc = this->location();
8326
8327 gcc_assert(param_count > 0);
8328 gcc_assert(varargs_type->is_open_array_type());
8329
8330 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8331 if (arg_count < param_count - 1)
8332 {
8333 // Not enough arguments; will be caught in check_types.
8334 return this;
8335 }
8336
8337 Expression_list* old_args = this->args_;
8338 Expression_list* new_args = new Expression_list();
8339 bool push_empty_arg = false;
8340 if (old_args == NULL || old_args->empty())
8341 {
8342 gcc_assert(param_count == 1);
8343 push_empty_arg = true;
8344 }
8345 else
8346 {
8347 Expression_list::const_iterator pa;
8348 int i = 1;
8349 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8350 {
8351 if (static_cast<size_t>(i) == param_count)
8352 break;
8353 new_args->push_back(*pa);
8354 }
8355
8356 // We have reached the varargs parameter.
8357
8358 bool issued_error = false;
8359 if (pa == old_args->end())
8360 push_empty_arg = true;
8361 else if (pa + 1 == old_args->end() && this->is_varargs_)
8362 new_args->push_back(*pa);
8363 else if (this->is_varargs_)
8364 {
8365 this->report_error(_("too many arguments"));
8366 return this;
8367 }
e440a328 8368 else
8369 {
8370 Type* element_type = varargs_type->array_type()->element_type();
8371 Expression_list* vals = new Expression_list;
8372 for (; pa != old_args->end(); ++pa, ++i)
8373 {
8374 // Check types here so that we get a better message.
8375 Type* patype = (*pa)->type();
8376 source_location paloc = (*pa)->location();
8377 if (!this->check_argument_type(i, element_type, patype,
8378 paloc, issued_error))
8379 continue;
8380 vals->push_back(*pa);
8381 }
8382 Expression* val =
8383 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8384 new_args->push_back(val);
8385 }
8386 }
8387
8388 if (push_empty_arg)
8389 new_args->push_back(Expression::make_nil(loc));
8390
8391 // We can't return a new call expression here, because this one may
8392 // be referenced by Call_result expressions. FIXME.
8393 if (old_args != NULL)
8394 delete old_args;
8395 this->args_ = new_args;
8396 this->varargs_are_lowered_ = true;
8397
8398 // Lower all the new subexpressions.
8399 Expression* ret = this;
8400 gogo->lower_expression(function, &ret);
8401 gcc_assert(ret == this);
8402 return ret;
8403}
8404
e440a328 8405// Get the function type. Returns NULL if we don't know the type. If
8406// this returns NULL, and if_ERROR is true, issues an error.
8407
8408Function_type*
8409Call_expression::get_function_type() const
8410{
8411 return this->fn_->type()->function_type();
8412}
8413
8414// Return the number of values which this call will return.
8415
8416size_t
8417Call_expression::result_count() const
8418{
8419 const Function_type* fntype = this->get_function_type();
8420 if (fntype == NULL)
8421 return 0;
8422 if (fntype->results() == NULL)
8423 return 0;
8424 return fntype->results()->size();
8425}
8426
8427// Return whether this is a call to the predeclared function recover.
8428
8429bool
8430Call_expression::is_recover_call() const
8431{
8432 return this->do_is_recover_call();
8433}
8434
8435// Set the argument to the recover function.
8436
8437void
8438Call_expression::set_recover_arg(Expression* arg)
8439{
8440 this->do_set_recover_arg(arg);
8441}
8442
8443// Virtual functions also implemented by Builtin_call_expression.
8444
8445bool
8446Call_expression::do_is_recover_call() const
8447{
8448 return false;
8449}
8450
8451void
8452Call_expression::do_set_recover_arg(Expression*)
8453{
8454 gcc_unreachable();
8455}
8456
8457// Get the type.
8458
8459Type*
8460Call_expression::do_type()
8461{
8462 if (this->type_ != NULL)
8463 return this->type_;
8464
8465 Type* ret;
8466 Function_type* fntype = this->get_function_type();
8467 if (fntype == NULL)
8468 return Type::make_error_type();
8469
8470 const Typed_identifier_list* results = fntype->results();
8471 if (results == NULL)
8472 ret = Type::make_void_type();
8473 else if (results->size() == 1)
8474 ret = results->begin()->type();
8475 else
8476 ret = Type::make_call_multiple_result_type(this);
8477
8478 this->type_ = ret;
8479
8480 return this->type_;
8481}
8482
8483// Determine types for a call expression. We can use the function
8484// parameter types to set the types of the arguments.
8485
8486void
8487Call_expression::do_determine_type(const Type_context*)
8488{
8489 this->fn_->determine_type_no_context();
8490 Function_type* fntype = this->get_function_type();
8491 const Typed_identifier_list* parameters = NULL;
8492 if (fntype != NULL)
8493 parameters = fntype->parameters();
8494 if (this->args_ != NULL)
8495 {
8496 Typed_identifier_list::const_iterator pt;
8497 if (parameters != NULL)
8498 pt = parameters->begin();
8499 for (Expression_list::const_iterator pa = this->args_->begin();
8500 pa != this->args_->end();
8501 ++pa)
8502 {
8503 if (parameters != NULL && pt != parameters->end())
8504 {
8505 Type_context subcontext(pt->type(), false);
8506 (*pa)->determine_type(&subcontext);
8507 ++pt;
8508 }
8509 else
8510 (*pa)->determine_type_no_context();
8511 }
8512 }
8513}
8514
8515// Check types for parameter I.
8516
8517bool
8518Call_expression::check_argument_type(int i, const Type* parameter_type,
8519 const Type* argument_type,
8520 source_location argument_location,
8521 bool issued_error)
8522{
8523 std::string reason;
8524 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8525 {
8526 if (!issued_error)
8527 {
8528 if (reason.empty())
8529 error_at(argument_location, "argument %d has incompatible type", i);
8530 else
8531 error_at(argument_location,
8532 "argument %d has incompatible type (%s)",
8533 i, reason.c_str());
8534 }
8535 this->set_is_error();
8536 return false;
8537 }
8538 return true;
8539}
8540
8541// Check types.
8542
8543void
8544Call_expression::do_check_types(Gogo*)
8545{
8546 Function_type* fntype = this->get_function_type();
8547 if (fntype == NULL)
8548 {
8549 if (!this->fn_->type()->is_error_type())
8550 this->report_error(_("expected function"));
8551 return;
8552 }
8553
8554 if (fntype->is_method())
8555 {
8556 // We don't support pointers to methods, so the function has to
8557 // be a bound method expression.
8558 Bound_method_expression* bme = this->fn_->bound_method_expression();
8559 if (bme == NULL)
8560 {
8561 this->report_error(_("method call without object"));
8562 return;
8563 }
8564 Type* first_arg_type = bme->first_argument()->type();
8565 if (first_arg_type->points_to() == NULL)
8566 {
8567 // When passing a value, we need to check that we are
8568 // permitted to copy it.
8569 std::string reason;
8570 if (!Type::are_assignable(fntype->receiver()->type(),
8571 first_arg_type, &reason))
8572 {
8573 if (reason.empty())
8574 this->report_error(_("incompatible type for receiver"));
8575 else
8576 {
8577 error_at(this->location(),
8578 "incompatible type for receiver (%s)",
8579 reason.c_str());
8580 this->set_is_error();
8581 }
8582 }
8583 }
8584 }
8585
8586 // Note that varargs was handled by the lower_varargs() method, so
8587 // we don't have to worry about it here.
8588
8589 const Typed_identifier_list* parameters = fntype->parameters();
8590 if (this->args_ == NULL)
8591 {
8592 if (parameters != NULL && !parameters->empty())
8593 this->report_error(_("not enough arguments"));
8594 }
8595 else if (parameters == NULL)
8596 this->report_error(_("too many arguments"));
8597 else
8598 {
8599 int i = 0;
8600 Typed_identifier_list::const_iterator pt = parameters->begin();
8601 for (Expression_list::const_iterator pa = this->args_->begin();
8602 pa != this->args_->end();
8603 ++pa, ++pt, ++i)
8604 {
8605 if (pt == parameters->end())
8606 {
8607 this->report_error(_("too many arguments"));
8608 return;
8609 }
8610 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8611 (*pa)->location(), false);
8612 }
8613 if (pt != parameters->end())
8614 this->report_error(_("not enough arguments"));
8615 }
8616}
8617
8618// Return whether we have to use a temporary variable to ensure that
8619// we evaluate this call expression in order. If the call returns no
8620// results then it will inevitably be executed last. If the call
8621// returns more than one result then it will be used with Call_result
8622// expressions. So we only have to use a temporary variable if the
8623// call returns exactly one result.
8624
8625bool
8626Call_expression::do_must_eval_in_order() const
8627{
8628 return this->result_count() == 1;
8629}
8630
8631// Get the function and the first argument to use when calling a bound
8632// method.
8633
8634tree
8635Call_expression::bound_method_function(Translate_context* context,
8636 Bound_method_expression* bound_method,
8637 tree* first_arg_ptr)
8638{
8639 Expression* first_argument = bound_method->first_argument();
8640 tree first_arg = first_argument->get_tree(context);
8641 if (first_arg == error_mark_node)
8642 return error_mark_node;
8643
8644 // We always pass a pointer to the first argument when calling a
8645 // method.
8646 if (first_argument->type()->points_to() == NULL)
8647 {
8648 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8649 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8650 || DECL_P(first_arg)
8651 || TREE_CODE(first_arg) == INDIRECT_REF
8652 || TREE_CODE(first_arg) == COMPONENT_REF)
8653 {
8654 first_arg = build_fold_addr_expr(first_arg);
8655 if (DECL_P(first_arg))
8656 TREE_ADDRESSABLE(first_arg) = 1;
8657 }
8658 else
8659 {
8660 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8661 get_name(first_arg));
8662 DECL_IGNORED_P(tmp) = 0;
8663 DECL_INITIAL(tmp) = first_arg;
8664 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8665 build1(DECL_EXPR, void_type_node, tmp),
8666 build_fold_addr_expr(tmp));
8667 TREE_ADDRESSABLE(tmp) = 1;
8668 }
8669 if (first_arg == error_mark_node)
8670 return error_mark_node;
8671 }
8672
8673 Type* fatype = bound_method->first_argument_type();
8674 if (fatype != NULL)
8675 {
8676 if (fatype->points_to() == NULL)
8677 fatype = Type::make_pointer_type(fatype);
8678 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8679 if (first_arg == error_mark_node
8680 || TREE_TYPE(first_arg) == error_mark_node)
8681 return error_mark_node;
8682 }
8683
8684 *first_arg_ptr = first_arg;
8685
8686 return bound_method->method()->get_tree(context);
8687}
8688
8689// Get the function and the first argument to use when calling an
8690// interface method.
8691
8692tree
8693Call_expression::interface_method_function(
8694 Translate_context* context,
8695 Interface_field_reference_expression* interface_method,
8696 tree* first_arg_ptr)
8697{
8698 tree expr = interface_method->expr()->get_tree(context);
8699 if (expr == error_mark_node)
8700 return error_mark_node;
8701 expr = save_expr(expr);
8702 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8703 if (first_arg == error_mark_node)
8704 return error_mark_node;
8705 *first_arg_ptr = first_arg;
8706 return interface_method->get_function_tree(context, expr);
8707}
8708
8709// Build the call expression.
8710
8711tree
8712Call_expression::do_get_tree(Translate_context* context)
8713{
8714 if (this->tree_ != NULL_TREE)
8715 return this->tree_;
8716
8717 Function_type* fntype = this->get_function_type();
8718 if (fntype == NULL)
8719 return error_mark_node;
8720
8721 if (this->fn_->is_error_expression())
8722 return error_mark_node;
8723
8724 Gogo* gogo = context->gogo();
8725 source_location location = this->location();
8726
8727 Func_expression* func = this->fn_->func_expression();
8728 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8729 Interface_field_reference_expression* interface_method =
8730 this->fn_->interface_field_reference_expression();
8731 const bool has_closure = func != NULL && func->closure() != NULL;
8732 const bool is_method = bound_method != NULL || interface_method != NULL;
8733 gcc_assert(!fntype->is_method() || is_method);
8734
8735 int nargs;
8736 tree* args;
8737 if (this->args_ == NULL || this->args_->empty())
8738 {
8739 nargs = is_method ? 1 : 0;
8740 args = nargs == 0 ? NULL : new tree[nargs];
8741 }
8742 else
8743 {
8744 const Typed_identifier_list* params = fntype->parameters();
8745 gcc_assert(params != NULL);
8746
8747 nargs = this->args_->size();
8748 int i = is_method ? 1 : 0;
8749 nargs += i;
8750 args = new tree[nargs];
8751
8752 Typed_identifier_list::const_iterator pp = params->begin();
8753 Expression_list::const_iterator pe;
8754 for (pe = this->args_->begin();
8755 pe != this->args_->end();
8756 ++pe, ++pp, ++i)
8757 {
a805a149 8758 gcc_assert(pp != params->end());
e440a328 8759 tree arg_val = (*pe)->get_tree(context);
8760 args[i] = Expression::convert_for_assignment(context,
8761 pp->type(),
8762 (*pe)->type(),
8763 arg_val,
8764 location);
8765 if (args[i] == error_mark_node)
cf609de4 8766 {
8767 delete[] args;
8768 return error_mark_node;
8769 }
e440a328 8770 }
8771 gcc_assert(pp == params->end());
8772 gcc_assert(i == nargs);
8773 }
8774
8775 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8776 if (rettype == error_mark_node)
cf609de4 8777 {
8778 delete[] args;
8779 return error_mark_node;
8780 }
e440a328 8781
8782 tree fn;
8783 if (has_closure)
8784 fn = func->get_tree_without_closure(gogo);
8785 else if (!is_method)
8786 fn = this->fn_->get_tree(context);
8787 else if (bound_method != NULL)
8788 fn = this->bound_method_function(context, bound_method, &args[0]);
8789 else if (interface_method != NULL)
8790 fn = this->interface_method_function(context, interface_method, &args[0]);
8791 else
8792 gcc_unreachable();
8793
8794 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
cf609de4 8795 {
8796 delete[] args;
8797 return error_mark_node;
8798 }
e440a328 8799
e440a328 8800 tree fndecl = fn;
8801 if (TREE_CODE(fndecl) == ADDR_EXPR)
8802 fndecl = TREE_OPERAND(fndecl, 0);
9aa9e2df 8803
8804 // Add a type cast in case the type of the function is a recursive
8805 // type which refers to itself.
8806 if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
8807 {
8808 tree fnt = fntype->get_tree(gogo);
8809 if (fnt == error_mark_node)
8810 return error_mark_node;
8811 fn = fold_convert_loc(location, fnt, fn);
8812 }
8813
8814 // This is to support builtin math functions when using 80387 math.
e440a328 8815 tree excess_type = NULL_TREE;
8816 if (DECL_P(fndecl)
8817 && DECL_IS_BUILTIN(fndecl)
8818 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8819 && nargs > 0
8820 && ((SCALAR_FLOAT_TYPE_P(rettype)
8821 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8822 || (COMPLEX_FLOAT_TYPE_P(rettype)
8823 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8824 {
8825 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8826 if (excess_type != NULL_TREE)
8827 {
8828 tree excess_fndecl = mathfn_built_in(excess_type,
8829 DECL_FUNCTION_CODE(fndecl));
8830 if (excess_fndecl == NULL_TREE)
8831 excess_type = NULL_TREE;
8832 else
8833 {
8834 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8835 for (int i = 0; i < nargs; ++i)
8836 args[i] = ::convert(excess_type, args[i]);
8837 }
8838 }
8839 }
8840
8841 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8842 fn, nargs, args);
8843 delete[] args;
8844
8845 SET_EXPR_LOCATION(ret, location);
8846
8847 if (has_closure)
8848 {
8849 tree closure_tree = func->closure()->get_tree(context);
8850 if (closure_tree != error_mark_node)
8851 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8852 }
8853
8854 // If this is a recursive function type which returns itself, as in
8855 // type F func() F
8856 // we have used ptr_type_node for the return type. Add a cast here
8857 // to the correct type.
8858 if (TREE_TYPE(ret) == ptr_type_node)
8859 {
9aa9e2df 8860 tree t = this->type()->base()->get_tree(gogo);
e440a328 8861 ret = fold_convert_loc(location, t, ret);
8862 }
8863
8864 if (excess_type != NULL_TREE)
8865 {
8866 // Calling convert here can undo our excess precision change.
8867 // That may or may not be a bug in convert_to_real.
8868 ret = build1(NOP_EXPR, rettype, ret);
8869 }
8870
8871 // If there is more than one result, we will refer to the call
8872 // multiple times.
8873 if (fntype->results() != NULL && fntype->results()->size() > 1)
8874 ret = save_expr(ret);
8875
8876 this->tree_ = ret;
8877
8878 return ret;
8879}
8880
8881// Make a call expression.
8882
8883Call_expression*
8884Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8885 source_location location)
8886{
8887 return new Call_expression(fn, args, is_varargs, location);
8888}
8889
8890// A single result from a call which returns multiple results.
8891
8892class Call_result_expression : public Expression
8893{
8894 public:
8895 Call_result_expression(Call_expression* call, unsigned int index)
8896 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8897 call_(call), index_(index)
8898 { }
8899
8900 protected:
8901 int
8902 do_traverse(Traverse*);
8903
8904 Type*
8905 do_type();
8906
8907 void
8908 do_determine_type(const Type_context*);
8909
8910 void
8911 do_check_types(Gogo*);
8912
8913 Expression*
8914 do_copy()
8915 {
8916 return new Call_result_expression(this->call_->call_expression(),
8917 this->index_);
8918 }
8919
8920 bool
8921 do_must_eval_in_order() const
8922 { return true; }
8923
8924 tree
8925 do_get_tree(Translate_context*);
8926
8927 private:
8928 // The underlying call expression.
8929 Expression* call_;
8930 // Which result we want.
8931 unsigned int index_;
8932};
8933
8934// Traverse a call result.
8935
8936int
8937Call_result_expression::do_traverse(Traverse* traverse)
8938{
8939 if (traverse->remember_expression(this->call_))
8940 {
8941 // We have already traversed the call expression.
8942 return TRAVERSE_CONTINUE;
8943 }
8944 return Expression::traverse(&this->call_, traverse);
8945}
8946
8947// Get the type.
8948
8949Type*
8950Call_result_expression::do_type()
8951{
425dd051 8952 if (this->classification() == EXPRESSION_ERROR)
8953 return Type::make_error_type();
8954
e440a328 8955 // THIS->CALL_ can be replaced with a temporary reference due to
8956 // Call_expression::do_must_eval_in_order when there is an error.
8957 Call_expression* ce = this->call_->call_expression();
8958 if (ce == NULL)
5e85f268 8959 {
8960 this->set_is_error();
8961 return Type::make_error_type();
8962 }
e440a328 8963 Function_type* fntype = ce->get_function_type();
8964 if (fntype == NULL)
5e85f268 8965 {
8966 this->set_is_error();
8967 return Type::make_error_type();
8968 }
e440a328 8969 const Typed_identifier_list* results = fntype->results();
7b8d861f 8970 if (results == NULL)
8971 {
8972 this->report_error(_("number of results does not match "
8973 "number of values"));
8974 return Type::make_error_type();
8975 }
e440a328 8976 Typed_identifier_list::const_iterator pr = results->begin();
8977 for (unsigned int i = 0; i < this->index_; ++i)
8978 {
8979 if (pr == results->end())
425dd051 8980 break;
e440a328 8981 ++pr;
8982 }
8983 if (pr == results->end())
425dd051 8984 {
8985 this->report_error(_("number of results does not match "
8986 "number of values"));
8987 return Type::make_error_type();
8988 }
e440a328 8989 return pr->type();
8990}
8991
425dd051 8992// Check the type. Just make sure that we trigger the warning in
8993// do_type.
e440a328 8994
8995void
8996Call_result_expression::do_check_types(Gogo*)
8997{
425dd051 8998 this->type();
e440a328 8999}
9000
9001// Determine the type. We have nothing to do here, but the 0 result
9002// needs to pass down to the caller.
9003
9004void
9005Call_result_expression::do_determine_type(const Type_context*)
9006{
9007 if (this->index_ == 0)
9008 this->call_->determine_type_no_context();
9009}
9010
9011// Return the tree.
9012
9013tree
9014Call_result_expression::do_get_tree(Translate_context* context)
9015{
9016 tree call_tree = this->call_->get_tree(context);
9017 if (call_tree == error_mark_node)
9018 return error_mark_node;
5e85f268 9019 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9020 {
9021 gcc_assert(saw_errors());
9022 return error_mark_node;
9023 }
e440a328 9024 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9025 for (unsigned int i = 0; i < this->index_; ++i)
9026 {
9027 gcc_assert(field != NULL_TREE);
9028 field = DECL_CHAIN(field);
9029 }
9030 gcc_assert(field != NULL_TREE);
9031 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9032}
9033
9034// Make a reference to a single result of a call which returns
9035// multiple results.
9036
9037Expression*
9038Expression::make_call_result(Call_expression* call, unsigned int index)
9039{
9040 return new Call_result_expression(call, index);
9041}
9042
9043// Class Index_expression.
9044
9045// Traversal.
9046
9047int
9048Index_expression::do_traverse(Traverse* traverse)
9049{
9050 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9051 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9052 || (this->end_ != NULL
9053 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9054 return TRAVERSE_EXIT;
9055 return TRAVERSE_CONTINUE;
9056}
9057
9058// Lower an index expression. This converts the generic index
9059// expression into an array index, a string index, or a map index.
9060
9061Expression*
9062Index_expression::do_lower(Gogo*, Named_object*, int)
9063{
9064 source_location location = this->location();
9065 Expression* left = this->left_;
9066 Expression* start = this->start_;
9067 Expression* end = this->end_;
9068
9069 Type* type = left->type();
9070 if (type->is_error_type())
9071 return Expression::make_error(location);
b0cf7ddd 9072 else if (left->is_type_expression())
9073 {
9074 error_at(location, "attempt to index type expression");
9075 return Expression::make_error(location);
9076 }
e440a328 9077 else if (type->array_type() != NULL)
9078 return Expression::make_array_index(left, start, end, location);
9079 else if (type->points_to() != NULL
9080 && type->points_to()->array_type() != NULL
9081 && !type->points_to()->is_open_array_type())
9082 {
9083 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9084 location);
9085 return Expression::make_array_index(deref, start, end, location);
9086 }
9087 else if (type->is_string_type())
9088 return Expression::make_string_index(left, start, end, location);
9089 else if (type->map_type() != NULL)
9090 {
9091 if (end != NULL)
9092 {
9093 error_at(location, "invalid slice of map");
9094 return Expression::make_error(location);
9095 }
9096 Map_index_expression* ret= Expression::make_map_index(left, start,
9097 location);
9098 if (this->is_lvalue_)
9099 ret->set_is_lvalue();
9100 return ret;
9101 }
9102 else
9103 {
9104 error_at(location,
9105 "attempt to index object which is not array, string, or map");
9106 return Expression::make_error(location);
9107 }
9108}
9109
9110// Make an index expression.
9111
9112Expression*
9113Expression::make_index(Expression* left, Expression* start, Expression* end,
9114 source_location location)
9115{
9116 return new Index_expression(left, start, end, location);
9117}
9118
9119// An array index. This is used for both indexing and slicing.
9120
9121class Array_index_expression : public Expression
9122{
9123 public:
9124 Array_index_expression(Expression* array, Expression* start,
9125 Expression* end, source_location location)
9126 : Expression(EXPRESSION_ARRAY_INDEX, location),
9127 array_(array), start_(start), end_(end), type_(NULL)
9128 { }
9129
9130 protected:
9131 int
9132 do_traverse(Traverse*);
9133
9134 Type*
9135 do_type();
9136
9137 void
9138 do_determine_type(const Type_context*);
9139
9140 void
9141 do_check_types(Gogo*);
9142
9143 Expression*
9144 do_copy()
9145 {
9146 return Expression::make_array_index(this->array_->copy(),
9147 this->start_->copy(),
9148 (this->end_ == NULL
9149 ? NULL
9150 : this->end_->copy()),
9151 this->location());
9152 }
9153
9154 bool
9155 do_is_addressable() const;
9156
9157 void
9158 do_address_taken(bool escapes)
9159 { this->array_->address_taken(escapes); }
9160
9161 tree
9162 do_get_tree(Translate_context*);
9163
9164 private:
9165 // The array we are getting a value from.
9166 Expression* array_;
9167 // The start or only index.
9168 Expression* start_;
9169 // The end index of a slice. This may be NULL for a simple array
9170 // index, or it may be a nil expression for the length of the array.
9171 Expression* end_;
9172 // The type of the expression.
9173 Type* type_;
9174};
9175
9176// Array index traversal.
9177
9178int
9179Array_index_expression::do_traverse(Traverse* traverse)
9180{
9181 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9182 return TRAVERSE_EXIT;
9183 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9184 return TRAVERSE_EXIT;
9185 if (this->end_ != NULL)
9186 {
9187 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9188 return TRAVERSE_EXIT;
9189 }
9190 return TRAVERSE_CONTINUE;
9191}
9192
9193// Return the type of an array index.
9194
9195Type*
9196Array_index_expression::do_type()
9197{
9198 if (this->type_ == NULL)
9199 {
9200 Array_type* type = this->array_->type()->array_type();
9201 if (type == NULL)
9202 this->type_ = Type::make_error_type();
9203 else if (this->end_ == NULL)
9204 this->type_ = type->element_type();
9205 else if (type->is_open_array_type())
9206 {
9207 // A slice of a slice has the same type as the original
9208 // slice.
9209 this->type_ = this->array_->type()->deref();
9210 }
9211 else
9212 {
9213 // A slice of an array is a slice.
9214 this->type_ = Type::make_array_type(type->element_type(), NULL);
9215 }
9216 }
9217 return this->type_;
9218}
9219
9220// Set the type of an array index.
9221
9222void
9223Array_index_expression::do_determine_type(const Type_context*)
9224{
9225 this->array_->determine_type_no_context();
7917ad68 9226 this->start_->determine_type_no_context();
e440a328 9227 if (this->end_ != NULL)
7917ad68 9228 this->end_->determine_type_no_context();
e440a328 9229}
9230
9231// Check types of an array index.
9232
9233void
9234Array_index_expression::do_check_types(Gogo*)
9235{
9236 if (this->start_->type()->integer_type() == NULL)
9237 this->report_error(_("index must be integer"));
9238 if (this->end_ != NULL
9239 && this->end_->type()->integer_type() == NULL
9240 && !this->end_->is_nil_expression())
9241 this->report_error(_("slice end must be integer"));
9242
9243 Array_type* array_type = this->array_->type()->array_type();
f9c68f17 9244 if (array_type == NULL)
9245 {
9246 gcc_assert(this->array_->type()->is_error_type());
9247 return;
9248 }
e440a328 9249
9250 unsigned int int_bits =
9251 Type::lookup_integer_type("int")->integer_type()->bits();
9252
9253 Type* dummy;
9254 mpz_t lval;
9255 mpz_init(lval);
9256 bool lval_valid = (array_type->length() != NULL
9257 && array_type->length()->integer_constant_value(true,
9258 lval,
9259 &dummy));
9260 mpz_t ival;
9261 mpz_init(ival);
9262 if (this->start_->integer_constant_value(true, ival, &dummy))
9263 {
9264 if (mpz_sgn(ival) < 0
9265 || mpz_sizeinbase(ival, 2) >= int_bits
9266 || (lval_valid
9267 && (this->end_ == NULL
9268 ? mpz_cmp(ival, lval) >= 0
9269 : mpz_cmp(ival, lval) > 0)))
9270 {
9271 error_at(this->start_->location(), "array index out of bounds");
9272 this->set_is_error();
9273 }
9274 }
9275 if (this->end_ != NULL && !this->end_->is_nil_expression())
9276 {
9277 if (this->end_->integer_constant_value(true, ival, &dummy))
9278 {
9279 if (mpz_sgn(ival) < 0
9280 || mpz_sizeinbase(ival, 2) >= int_bits
9281 || (lval_valid && mpz_cmp(ival, lval) > 0))
9282 {
9283 error_at(this->end_->location(), "array index out of bounds");
9284 this->set_is_error();
9285 }
9286 }
9287 }
9288 mpz_clear(ival);
9289 mpz_clear(lval);
9290
9291 // A slice of an array requires an addressable array. A slice of a
9292 // slice is always possible.
9293 if (this->end_ != NULL
9294 && !array_type->is_open_array_type()
9295 && !this->array_->is_addressable())
9296 this->report_error(_("array is not addressable"));
9297}
9298
9299// Return whether this expression is addressable.
9300
9301bool
9302Array_index_expression::do_is_addressable() const
9303{
9304 // A slice expression is not addressable.
9305 if (this->end_ != NULL)
9306 return false;
9307
9308 // An index into a slice is addressable.
9309 if (this->array_->type()->is_open_array_type())
9310 return true;
9311
9312 // An index into an array is addressable if the array is
9313 // addressable.
9314 return this->array_->is_addressable();
9315}
9316
9317// Get a tree for an array index.
9318
9319tree
9320Array_index_expression::do_get_tree(Translate_context* context)
9321{
9322 Gogo* gogo = context->gogo();
9323 source_location loc = this->location();
9324
9325 Array_type* array_type = this->array_->type()->array_type();
d8cd8e2d 9326 if (array_type == NULL)
9327 {
9328 gcc_assert(this->array_->type()->is_error_type());
9329 return error_mark_node;
9330 }
e440a328 9331
9332 tree type_tree = array_type->get_tree(gogo);
c65212a0 9333 if (type_tree == error_mark_node)
9334 return error_mark_node;
e440a328 9335
9336 tree array_tree = this->array_->get_tree(context);
9337 if (array_tree == error_mark_node)
9338 return error_mark_node;
9339
9340 if (array_type->length() == NULL && !DECL_P(array_tree))
9341 array_tree = save_expr(array_tree);
9342 tree length_tree = array_type->length_tree(gogo, array_tree);
c65212a0 9343 if (length_tree == error_mark_node)
9344 return error_mark_node;
e440a328 9345 length_tree = save_expr(length_tree);
9346 tree length_type = TREE_TYPE(length_tree);
9347
9348 tree bad_index = boolean_false_node;
9349
9350 tree start_tree = this->start_->get_tree(context);
9351 if (start_tree == error_mark_node)
9352 return error_mark_node;
9353 if (!DECL_P(start_tree))
9354 start_tree = save_expr(start_tree);
9355 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9356 start_tree = convert_to_integer(length_type, start_tree);
9357
9358 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9359 loc);
9360
9361 start_tree = fold_convert_loc(loc, length_type, start_tree);
9362 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9363 fold_build2_loc(loc,
9364 (this->end_ == NULL
9365 ? GE_EXPR
9366 : GT_EXPR),
9367 boolean_type_node, start_tree,
9368 length_tree));
9369
9370 int code = (array_type->length() != NULL
9371 ? (this->end_ == NULL
9372 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9373 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9374 : (this->end_ == NULL
9375 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9376 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9377 tree crash = Gogo::runtime_error(code, loc);
9378
9379 if (this->end_ == NULL)
9380 {
9381 // Simple array indexing. This has to return an l-value, so
9382 // wrap the index check into START_TREE.
9383 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9384 build3(COND_EXPR, void_type_node,
9385 bad_index, crash, NULL_TREE),
9386 start_tree);
9387 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9388
9389 if (array_type->length() != NULL)
9390 {
9391 // Fixed array.
9392 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9393 start_tree, NULL_TREE, NULL_TREE);
9394 }
9395 else
9396 {
9397 // Open array.
9398 tree values = array_type->value_pointer_tree(gogo, array_tree);
9399 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9400 if (element_type_tree == error_mark_node)
9401 return error_mark_node;
e440a328 9402 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9403 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9404 start_tree, element_size);
9405 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9406 TREE_TYPE(values), values, offset);
9407 return build_fold_indirect_ref(ptr);
9408 }
9409 }
9410
9411 // Array slice.
9412
9413 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
c65212a0 9414 if (capacity_tree == error_mark_node)
9415 return error_mark_node;
e440a328 9416 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9417
9418 tree end_tree;
9419 if (this->end_->is_nil_expression())
9420 end_tree = length_tree;
9421 else
9422 {
9423 end_tree = this->end_->get_tree(context);
9424 if (end_tree == error_mark_node)
9425 return error_mark_node;
9426 if (!DECL_P(end_tree))
9427 end_tree = save_expr(end_tree);
9428 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9429 end_tree = convert_to_integer(length_type, end_tree);
9430
9431 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9432 loc);
9433
9434 end_tree = fold_convert_loc(loc, length_type, end_tree);
9435
9436 capacity_tree = save_expr(capacity_tree);
9437 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9438 fold_build2_loc(loc, LT_EXPR,
9439 boolean_type_node,
9440 end_tree, start_tree),
9441 fold_build2_loc(loc, GT_EXPR,
9442 boolean_type_node,
9443 end_tree, capacity_tree));
9444 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9445 bad_index, bad_end);
9446 }
9447
9448 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9449 if (element_type_tree == error_mark_node)
9450 return error_mark_node;
e440a328 9451 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9452
9453 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9454 fold_convert_loc(loc, sizetype, start_tree),
9455 element_size);
9456
9457 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
c65212a0 9458 if (value_pointer == error_mark_node)
9459 return error_mark_node;
e440a328 9460
9461 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9462 TREE_TYPE(value_pointer),
9463 value_pointer, offset);
9464
9465 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9466 end_tree, start_tree);
9467
9468 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9469 capacity_tree, start_tree);
9470
9471 tree struct_tree = this->type()->get_tree(gogo);
9472 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9473
9474 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9475
9476 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9477 tree field = TYPE_FIELDS(struct_tree);
9478 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9479 elt->index = field;
9480 elt->value = value_pointer;
9481
9482 elt = VEC_quick_push(constructor_elt, init, NULL);
9483 field = DECL_CHAIN(field);
9484 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9485 elt->index = field;
9486 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9487
9488 elt = VEC_quick_push(constructor_elt, init, NULL);
9489 field = DECL_CHAIN(field);
9490 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9491 elt->index = field;
9492 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9493
9494 tree constructor = build_constructor(struct_tree, init);
9495
9496 if (TREE_CONSTANT(value_pointer)
9497 && TREE_CONSTANT(result_length_tree)
9498 && TREE_CONSTANT(result_capacity_tree))
9499 TREE_CONSTANT(constructor) = 1;
9500
9501 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9502 build3(COND_EXPR, void_type_node,
9503 bad_index, crash, NULL_TREE),
9504 constructor);
9505}
9506
9507// Make an array index expression. END may be NULL.
9508
9509Expression*
9510Expression::make_array_index(Expression* array, Expression* start,
9511 Expression* end, source_location location)
9512{
9513 // Taking a slice of a composite literal requires moving the literal
9514 // onto the heap.
9515 if (end != NULL && array->is_composite_literal())
9516 {
9517 array = Expression::make_heap_composite(array, location);
9518 array = Expression::make_unary(OPERATOR_MULT, array, location);
9519 }
9520 return new Array_index_expression(array, start, end, location);
9521}
9522
9523// A string index. This is used for both indexing and slicing.
9524
9525class String_index_expression : public Expression
9526{
9527 public:
9528 String_index_expression(Expression* string, Expression* start,
9529 Expression* end, source_location location)
9530 : Expression(EXPRESSION_STRING_INDEX, location),
9531 string_(string), start_(start), end_(end)
9532 { }
9533
9534 protected:
9535 int
9536 do_traverse(Traverse*);
9537
9538 Type*
9539 do_type();
9540
9541 void
9542 do_determine_type(const Type_context*);
9543
9544 void
9545 do_check_types(Gogo*);
9546
9547 Expression*
9548 do_copy()
9549 {
9550 return Expression::make_string_index(this->string_->copy(),
9551 this->start_->copy(),
9552 (this->end_ == NULL
9553 ? NULL
9554 : this->end_->copy()),
9555 this->location());
9556 }
9557
9558 tree
9559 do_get_tree(Translate_context*);
9560
9561 private:
9562 // The string we are getting a value from.
9563 Expression* string_;
9564 // The start or only index.
9565 Expression* start_;
9566 // The end index of a slice. This may be NULL for a single index,
9567 // or it may be a nil expression for the length of the string.
9568 Expression* end_;
9569};
9570
9571// String index traversal.
9572
9573int
9574String_index_expression::do_traverse(Traverse* traverse)
9575{
9576 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9577 return TRAVERSE_EXIT;
9578 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9579 return TRAVERSE_EXIT;
9580 if (this->end_ != NULL)
9581 {
9582 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9583 return TRAVERSE_EXIT;
9584 }
9585 return TRAVERSE_CONTINUE;
9586}
9587
9588// Return the type of a string index.
9589
9590Type*
9591String_index_expression::do_type()
9592{
9593 if (this->end_ == NULL)
9594 return Type::lookup_integer_type("uint8");
9595 else
7672d35f 9596 return this->string_->type();
e440a328 9597}
9598
9599// Determine the type of a string index.
9600
9601void
9602String_index_expression::do_determine_type(const Type_context*)
9603{
9604 this->string_->determine_type_no_context();
93000773 9605 this->start_->determine_type_no_context();
e440a328 9606 if (this->end_ != NULL)
93000773 9607 this->end_->determine_type_no_context();
e440a328 9608}
9609
9610// Check types of a string index.
9611
9612void
9613String_index_expression::do_check_types(Gogo*)
9614{
9615 if (this->start_->type()->integer_type() == NULL)
9616 this->report_error(_("index must be integer"));
9617 if (this->end_ != NULL
9618 && this->end_->type()->integer_type() == NULL
9619 && !this->end_->is_nil_expression())
9620 this->report_error(_("slice end must be integer"));
9621
9622 std::string sval;
9623 bool sval_valid = this->string_->string_constant_value(&sval);
9624
9625 mpz_t ival;
9626 mpz_init(ival);
9627 Type* dummy;
9628 if (this->start_->integer_constant_value(true, ival, &dummy))
9629 {
9630 if (mpz_sgn(ival) < 0
9631 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9632 {
9633 error_at(this->start_->location(), "string index out of bounds");
9634 this->set_is_error();
9635 }
9636 }
9637 if (this->end_ != NULL && !this->end_->is_nil_expression())
9638 {
9639 if (this->end_->integer_constant_value(true, ival, &dummy))
9640 {
9641 if (mpz_sgn(ival) < 0
9642 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9643 {
9644 error_at(this->end_->location(), "string index out of bounds");
9645 this->set_is_error();
9646 }
9647 }
9648 }
9649 mpz_clear(ival);
9650}
9651
9652// Get a tree for a string index.
9653
9654tree
9655String_index_expression::do_get_tree(Translate_context* context)
9656{
9657 source_location loc = this->location();
9658
9659 tree string_tree = this->string_->get_tree(context);
9660 if (string_tree == error_mark_node)
9661 return error_mark_node;
9662
9663 if (this->string_->type()->points_to() != NULL)
9664 string_tree = build_fold_indirect_ref(string_tree);
9665 if (!DECL_P(string_tree))
9666 string_tree = save_expr(string_tree);
9667 tree string_type = TREE_TYPE(string_tree);
9668
9669 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9670 length_tree = save_expr(length_tree);
9671 tree length_type = TREE_TYPE(length_tree);
9672
9673 tree bad_index = boolean_false_node;
9674
9675 tree start_tree = this->start_->get_tree(context);
9676 if (start_tree == error_mark_node)
9677 return error_mark_node;
9678 if (!DECL_P(start_tree))
9679 start_tree = save_expr(start_tree);
9680 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9681 start_tree = convert_to_integer(length_type, start_tree);
9682
9683 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9684 loc);
9685
9686 start_tree = fold_convert_loc(loc, length_type, start_tree);
9687
9688 int code = (this->end_ == NULL
9689 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9690 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9691 tree crash = Gogo::runtime_error(code, loc);
9692
9693 if (this->end_ == NULL)
9694 {
9695 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9696 bad_index,
9697 fold_build2_loc(loc, GE_EXPR,
9698 boolean_type_node,
9699 start_tree, length_tree));
9700
9701 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9702 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9703 bytes_tree,
9704 fold_convert_loc(loc, sizetype, start_tree));
9705 tree index = build_fold_indirect_ref_loc(loc, ptr);
9706
9707 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9708 build3(COND_EXPR, void_type_node,
9709 bad_index, crash, NULL_TREE),
9710 index);
9711 }
9712 else
9713 {
9714 tree end_tree;
9715 if (this->end_->is_nil_expression())
9716 end_tree = build_int_cst(length_type, -1);
9717 else
9718 {
9719 end_tree = this->end_->get_tree(context);
9720 if (end_tree == error_mark_node)
9721 return error_mark_node;
9722 if (!DECL_P(end_tree))
9723 end_tree = save_expr(end_tree);
9724 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9725 end_tree = convert_to_integer(length_type, end_tree);
9726
9727 bad_index = Expression::check_bounds(end_tree, length_type,
9728 bad_index, loc);
9729
9730 end_tree = fold_convert_loc(loc, length_type, end_tree);
9731 }
9732
9733 static tree strslice_fndecl;
9734 tree ret = Gogo::call_builtin(&strslice_fndecl,
9735 loc,
9736 "__go_string_slice",
9737 3,
9738 string_type,
9739 string_type,
9740 string_tree,
9741 length_type,
9742 start_tree,
9743 length_type,
9744 end_tree);
5fb82b5e 9745 if (ret == error_mark_node)
9746 return error_mark_node;
e440a328 9747 // This will panic if the bounds are out of range for the
9748 // string.
9749 TREE_NOTHROW(strslice_fndecl) = 0;
9750
9751 if (bad_index == boolean_false_node)
9752 return ret;
9753 else
9754 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9755 build3(COND_EXPR, void_type_node,
9756 bad_index, crash, NULL_TREE),
9757 ret);
9758 }
9759}
9760
9761// Make a string index expression. END may be NULL.
9762
9763Expression*
9764Expression::make_string_index(Expression* string, Expression* start,
9765 Expression* end, source_location location)
9766{
9767 return new String_index_expression(string, start, end, location);
9768}
9769
9770// Class Map_index.
9771
9772// Get the type of the map.
9773
9774Map_type*
9775Map_index_expression::get_map_type() const
9776{
9777 Map_type* mt = this->map_->type()->deref()->map_type();
c7524fae 9778 if (mt == NULL)
9779 gcc_assert(saw_errors());
e440a328 9780 return mt;
9781}
9782
9783// Map index traversal.
9784
9785int
9786Map_index_expression::do_traverse(Traverse* traverse)
9787{
9788 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9789 return TRAVERSE_EXIT;
9790 return Expression::traverse(&this->index_, traverse);
9791}
9792
9793// Return the type of a map index.
9794
9795Type*
9796Map_index_expression::do_type()
9797{
c7524fae 9798 Map_type* mt = this->get_map_type();
9799 if (mt == NULL)
9800 return Type::make_error_type();
9801 Type* type = mt->val_type();
e440a328 9802 // If this map index is in a tuple assignment, we actually return a
9803 // pointer to the value type. Tuple_map_assignment_statement is
9804 // responsible for handling this correctly. We need to get the type
9805 // right in case this gets assigned to a temporary variable.
9806 if (this->is_in_tuple_assignment_)
9807 type = Type::make_pointer_type(type);
9808 return type;
9809}
9810
9811// Fix the type of a map index.
9812
9813void
9814Map_index_expression::do_determine_type(const Type_context*)
9815{
9816 this->map_->determine_type_no_context();
c7524fae 9817 Map_type* mt = this->get_map_type();
9818 Type* key_type = mt == NULL ? NULL : mt->key_type();
9819 Type_context subcontext(key_type, false);
e440a328 9820 this->index_->determine_type(&subcontext);
9821}
9822
9823// Check types of a map index.
9824
9825void
9826Map_index_expression::do_check_types(Gogo*)
9827{
9828 std::string reason;
c7524fae 9829 Map_type* mt = this->get_map_type();
9830 if (mt == NULL)
9831 return;
9832 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
e440a328 9833 {
9834 if (reason.empty())
9835 this->report_error(_("incompatible type for map index"));
9836 else
9837 {
9838 error_at(this->location(), "incompatible type for map index (%s)",
9839 reason.c_str());
9840 this->set_is_error();
9841 }
9842 }
9843}
9844
9845// Get a tree for a map index.
9846
9847tree
9848Map_index_expression::do_get_tree(Translate_context* context)
9849{
9850 Map_type* type = this->get_map_type();
c7524fae 9851 if (type == NULL)
9852 return error_mark_node;
e440a328 9853
9854 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9855 if (valptr == error_mark_node)
9856 return error_mark_node;
9857 valptr = save_expr(valptr);
9858
9859 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9860
9861 if (this->is_lvalue_)
9862 return build_fold_indirect_ref(valptr);
9863 else if (this->is_in_tuple_assignment_)
9864 {
9865 // Tuple_map_assignment_statement is responsible for using this
9866 // appropriately.
9867 return valptr;
9868 }
9869 else
9870 {
9871 return fold_build3(COND_EXPR, val_type_tree,
9872 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9873 fold_convert(TREE_TYPE(valptr),
9874 null_pointer_node)),
9875 type->val_type()->get_init_tree(context->gogo(),
9876 false),
9877 build_fold_indirect_ref(valptr));
9878 }
9879}
9880
9881// Get a tree for the map index. This returns a tree which evaluates
9882// to a pointer to a value. The pointer will be NULL if the key is
9883// not in the map.
9884
9885tree
9886Map_index_expression::get_value_pointer(Translate_context* context,
9887 bool insert)
9888{
9889 Map_type* type = this->get_map_type();
c7524fae 9890 if (type == NULL)
9891 return error_mark_node;
e440a328 9892
9893 tree map_tree = this->map_->get_tree(context);
9894 tree index_tree = this->index_->get_tree(context);
9895 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9896 this->index_->type(),
9897 index_tree,
9898 this->location());
9899 if (map_tree == error_mark_node || index_tree == error_mark_node)
9900 return error_mark_node;
9901
9902 if (this->map_->type()->points_to() != NULL)
9903 map_tree = build_fold_indirect_ref(map_tree);
9904
9905 // We need to pass in a pointer to the key, so stuff it into a
9906 // variable.
746d2e73 9907 tree tmp;
9908 tree make_tmp;
9909 if (current_function_decl != NULL)
9910 {
9911 tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9912 DECL_IGNORED_P(tmp) = 0;
9913 DECL_INITIAL(tmp) = index_tree;
9914 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9915 TREE_ADDRESSABLE(tmp) = 1;
9916 }
9917 else
9918 {
9919 tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"),
9920 TREE_TYPE(index_tree));
9921 DECL_EXTERNAL(tmp) = 0;
9922 TREE_PUBLIC(tmp) = 0;
9923 TREE_STATIC(tmp) = 1;
9924 DECL_ARTIFICIAL(tmp) = 1;
9925 if (!TREE_CONSTANT(index_tree))
9926 make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node,
9927 tmp, index_tree);
9928 else
9929 {
9930 TREE_READONLY(tmp) = 1;
9931 TREE_CONSTANT(tmp) = 1;
9932 DECL_INITIAL(tmp) = index_tree;
9933 make_tmp = NULL_TREE;
9934 }
9935 rest_of_decl_compilation(tmp, 1, 0);
9936 }
9937 tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node,
9938 build_fold_addr_expr_loc(this->location(),
9939 tmp));
e440a328 9940
9941 static tree map_index_fndecl;
9942 tree call = Gogo::call_builtin(&map_index_fndecl,
9943 this->location(),
9944 "__go_map_index",
9945 3,
9946 const_ptr_type_node,
9947 TREE_TYPE(map_tree),
9948 map_tree,
9949 const_ptr_type_node,
9950 tmpref,
9951 boolean_type_node,
9952 (insert
9953 ? boolean_true_node
9954 : boolean_false_node));
5fb82b5e 9955 if (call == error_mark_node)
9956 return error_mark_node;
e440a328 9957 // This can panic on a map of interface type if the interface holds
9958 // an uncomparable or unhashable type.
9959 TREE_NOTHROW(map_index_fndecl) = 0;
9960
9961 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9962 if (val_type_tree == error_mark_node)
9963 return error_mark_node;
9964 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9965
746d2e73 9966 tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call);
9967 if (make_tmp != NULL_TREE)
9968 ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
9969 return ret;
e440a328 9970}
9971
9972// Make a map index expression.
9973
9974Map_index_expression*
9975Expression::make_map_index(Expression* map, Expression* index,
9976 source_location location)
9977{
9978 return new Map_index_expression(map, index, location);
9979}
9980
9981// Class Field_reference_expression.
9982
9983// Return the type of a field reference.
9984
9985Type*
9986Field_reference_expression::do_type()
9987{
b0e628fb 9988 Type* type = this->expr_->type();
9989 if (type->is_error_type())
9990 return type;
9991 Struct_type* struct_type = type->struct_type();
e440a328 9992 gcc_assert(struct_type != NULL);
9993 return struct_type->field(this->field_index_)->type();
9994}
9995
9996// Check the types for a field reference.
9997
9998void
9999Field_reference_expression::do_check_types(Gogo*)
10000{
b0e628fb 10001 Type* type = this->expr_->type();
10002 if (type->is_error_type())
10003 return;
10004 Struct_type* struct_type = type->struct_type();
e440a328 10005 gcc_assert(struct_type != NULL);
10006 gcc_assert(struct_type->field(this->field_index_) != NULL);
10007}
10008
10009// Get a tree for a field reference.
10010
10011tree
10012Field_reference_expression::do_get_tree(Translate_context* context)
10013{
10014 tree struct_tree = this->expr_->get_tree(context);
10015 if (struct_tree == error_mark_node
10016 || TREE_TYPE(struct_tree) == error_mark_node)
10017 return error_mark_node;
10018 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
10019 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
b1d655d5 10020 if (field == NULL_TREE)
10021 {
10022 // This can happen for a type which refers to itself indirectly
10023 // and then turns out to be erroneous.
10024 gcc_assert(saw_errors());
10025 return error_mark_node;
10026 }
e440a328 10027 for (unsigned int i = this->field_index_; i > 0; --i)
10028 {
10029 field = DECL_CHAIN(field);
10030 gcc_assert(field != NULL_TREE);
10031 }
c35179ff 10032 if (TREE_TYPE(field) == error_mark_node)
10033 return error_mark_node;
e440a328 10034 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
10035 NULL_TREE);
10036}
10037
10038// Make a reference to a qualified identifier in an expression.
10039
10040Field_reference_expression*
10041Expression::make_field_reference(Expression* expr, unsigned int field_index,
10042 source_location location)
10043{
10044 return new Field_reference_expression(expr, field_index, location);
10045}
10046
10047// Class Interface_field_reference_expression.
10048
10049// Return a tree for the pointer to the function to call.
10050
10051tree
10052Interface_field_reference_expression::get_function_tree(Translate_context*,
10053 tree expr)
10054{
10055 if (this->expr_->type()->points_to() != NULL)
10056 expr = build_fold_indirect_ref(expr);
10057
10058 tree expr_type = TREE_TYPE(expr);
10059 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10060
10061 tree field = TYPE_FIELDS(expr_type);
10062 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10063
10064 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10065 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10066
10067 table = build_fold_indirect_ref(table);
10068 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10069
10070 std::string name = Gogo::unpack_hidden_name(this->name_);
10071 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10072 field != NULL_TREE;
10073 field = DECL_CHAIN(field))
10074 {
10075 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10076 break;
10077 }
10078 gcc_assert(field != NULL_TREE);
10079
10080 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10081}
10082
10083// Return a tree for the first argument to pass to the interface
10084// function.
10085
10086tree
10087Interface_field_reference_expression::get_underlying_object_tree(
10088 Translate_context*,
10089 tree expr)
10090{
10091 if (this->expr_->type()->points_to() != NULL)
10092 expr = build_fold_indirect_ref(expr);
10093
10094 tree expr_type = TREE_TYPE(expr);
10095 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10096
10097 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10098 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10099
10100 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10101}
10102
10103// Traversal.
10104
10105int
10106Interface_field_reference_expression::do_traverse(Traverse* traverse)
10107{
10108 return Expression::traverse(&this->expr_, traverse);
10109}
10110
10111// Return the type of an interface field reference.
10112
10113Type*
10114Interface_field_reference_expression::do_type()
10115{
10116 Type* expr_type = this->expr_->type();
10117
10118 Type* points_to = expr_type->points_to();
10119 if (points_to != NULL)
10120 expr_type = points_to;
10121
10122 Interface_type* interface_type = expr_type->interface_type();
10123 if (interface_type == NULL)
10124 return Type::make_error_type();
10125
10126 const Typed_identifier* method = interface_type->find_method(this->name_);
10127 if (method == NULL)
10128 return Type::make_error_type();
10129
10130 return method->type();
10131}
10132
10133// Determine types.
10134
10135void
10136Interface_field_reference_expression::do_determine_type(const Type_context*)
10137{
10138 this->expr_->determine_type_no_context();
10139}
10140
10141// Check the types for an interface field reference.
10142
10143void
10144Interface_field_reference_expression::do_check_types(Gogo*)
10145{
10146 Type* type = this->expr_->type();
10147
10148 Type* points_to = type->points_to();
10149 if (points_to != NULL)
10150 type = points_to;
10151
10152 Interface_type* interface_type = type->interface_type();
10153 if (interface_type == NULL)
10154 this->report_error(_("expected interface or pointer to interface"));
10155 else
10156 {
10157 const Typed_identifier* method =
10158 interface_type->find_method(this->name_);
10159 if (method == NULL)
10160 {
10161 error_at(this->location(), "method %qs not in interface",
10162 Gogo::message_name(this->name_).c_str());
10163 this->set_is_error();
10164 }
10165 }
10166}
10167
10168// Get a tree for a reference to a field in an interface. There is no
10169// standard tree type representation for this: it's a function
10170// attached to its first argument, like a Bound_method_expression.
10171// The only places it may currently be used are in a Call_expression
10172// or a Go_statement, which will take it apart directly. So this has
10173// nothing to do at present.
10174
10175tree
10176Interface_field_reference_expression::do_get_tree(Translate_context*)
10177{
10178 gcc_unreachable();
10179}
10180
10181// Make a reference to a field in an interface.
10182
10183Expression*
10184Expression::make_interface_field_reference(Expression* expr,
10185 const std::string& field,
10186 source_location location)
10187{
10188 return new Interface_field_reference_expression(expr, field, location);
10189}
10190
10191// A general selector. This is a Parser_expression for LEFT.NAME. It
10192// is lowered after we know the type of the left hand side.
10193
10194class Selector_expression : public Parser_expression
10195{
10196 public:
10197 Selector_expression(Expression* left, const std::string& name,
10198 source_location location)
10199 : Parser_expression(EXPRESSION_SELECTOR, location),
10200 left_(left), name_(name)
10201 { }
10202
10203 protected:
10204 int
10205 do_traverse(Traverse* traverse)
10206 { return Expression::traverse(&this->left_, traverse); }
10207
10208 Expression*
10209 do_lower(Gogo*, Named_object*, int);
10210
10211 Expression*
10212 do_copy()
10213 {
10214 return new Selector_expression(this->left_->copy(), this->name_,
10215 this->location());
10216 }
10217
10218 private:
10219 Expression*
10220 lower_method_expression(Gogo*);
10221
10222 // The expression on the left hand side.
10223 Expression* left_;
10224 // The name on the right hand side.
10225 std::string name_;
10226};
10227
10228// Lower a selector expression once we know the real type of the left
10229// hand side.
10230
10231Expression*
10232Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10233{
10234 Expression* left = this->left_;
10235 if (left->is_type_expression())
10236 return this->lower_method_expression(gogo);
10237 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10238 this->location());
10239}
10240
10241// Lower a method expression T.M or (*T).M. We turn this into a
10242// function literal.
10243
10244Expression*
10245Selector_expression::lower_method_expression(Gogo* gogo)
10246{
10247 source_location location = this->location();
10248 Type* type = this->left_->type();
10249 const std::string& name(this->name_);
10250
10251 bool is_pointer;
10252 if (type->points_to() == NULL)
10253 is_pointer = false;
10254 else
10255 {
10256 is_pointer = true;
10257 type = type->points_to();
10258 }
10259 Named_type* nt = type->named_type();
10260 if (nt == NULL)
10261 {
10262 error_at(location,
10263 ("method expression requires named type or "
10264 "pointer to named type"));
10265 return Expression::make_error(location);
10266 }
10267
10268 bool is_ambiguous;
10269 Method* method = nt->method_function(name, &is_ambiguous);
10270 if (method == NULL)
10271 {
10272 if (!is_ambiguous)
10273 error_at(location, "type %<%s%> has no method %<%s%>",
10274 nt->message_name().c_str(),
10275 Gogo::message_name(name).c_str());
10276 else
10277 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10278 Gogo::message_name(name).c_str(),
10279 nt->message_name().c_str());
10280 return Expression::make_error(location);
10281 }
10282
10283 if (!is_pointer && !method->is_value_method())
10284 {
10285 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10286 nt->message_name().c_str(),
10287 Gogo::message_name(name).c_str());
10288 return Expression::make_error(location);
10289 }
10290
10291 // Build a new function type in which the receiver becomes the first
10292 // argument.
10293 Function_type* method_type = method->type();
10294 gcc_assert(method_type->is_method());
10295
10296 const char* const receiver_name = "$this";
10297 Typed_identifier_list* parameters = new Typed_identifier_list();
10298 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10299 location));
10300
10301 const Typed_identifier_list* method_parameters = method_type->parameters();
10302 if (method_parameters != NULL)
10303 {
10304 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10305 p != method_parameters->end();
10306 ++p)
10307 parameters->push_back(*p);
10308 }
10309
10310 const Typed_identifier_list* method_results = method_type->results();
10311 Typed_identifier_list* results;
10312 if (method_results == NULL)
10313 results = NULL;
10314 else
10315 {
10316 results = new Typed_identifier_list();
10317 for (Typed_identifier_list::const_iterator p = method_results->begin();
10318 p != method_results->end();
10319 ++p)
10320 results->push_back(*p);
10321 }
10322
10323 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10324 location);
10325 if (method_type->is_varargs())
10326 fntype->set_is_varargs();
10327
10328 // We generate methods which always takes a pointer to the receiver
10329 // as their first argument. If this is for a pointer type, we can
10330 // simply reuse the existing function. We use an internal hack to
10331 // get the right type.
10332
10333 if (is_pointer)
10334 {
10335 Named_object* mno = (method->needs_stub_method()
10336 ? method->stub_object()
10337 : method->named_object());
10338 Expression* f = Expression::make_func_reference(mno, NULL, location);
10339 f = Expression::make_cast(fntype, f, location);
10340 Type_conversion_expression* tce =
10341 static_cast<Type_conversion_expression*>(f);
10342 tce->set_may_convert_function_types();
10343 return f;
10344 }
10345
10346 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10347 location);
10348
10349 Named_object* vno = gogo->lookup(receiver_name, NULL);
10350 gcc_assert(vno != NULL);
10351 Expression* ve = Expression::make_var_reference(vno, location);
10352 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
f690b0bb 10353
10354 // Even though we found the method above, if it has an error type we
10355 // may see an error here.
10356 if (bm->is_error_expression())
463fe805 10357 {
10358 gogo->finish_function(location);
10359 return bm;
10360 }
e440a328 10361
10362 Expression_list* args;
10363 if (method_parameters == NULL)
10364 args = NULL;
10365 else
10366 {
10367 args = new Expression_list();
10368 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10369 p != method_parameters->end();
10370 ++p)
10371 {
10372 vno = gogo->lookup(p->name(), NULL);
10373 gcc_assert(vno != NULL);
10374 args->push_back(Expression::make_var_reference(vno, location));
10375 }
10376 }
10377
10378 Call_expression* call = Expression::make_call(bm, args,
10379 method_type->is_varargs(),
10380 location);
10381
10382 size_t count = call->result_count();
10383 Statement* s;
10384 if (count == 0)
10385 s = Statement::make_statement(call);
10386 else
10387 {
10388 Expression_list* retvals = new Expression_list();
10389 if (count <= 1)
10390 retvals->push_back(call);
10391 else
10392 {
10393 for (size_t i = 0; i < count; ++i)
10394 retvals->push_back(Expression::make_call_result(call, i));
10395 }
10396 s = Statement::make_return_statement(no->func_value()->type()->results(),
10397 retvals, location);
10398 }
10399 gogo->add_statement(s);
10400
10401 gogo->finish_function(location);
10402
10403 return Expression::make_func_reference(no, NULL, location);
10404}
10405
10406// Make a selector expression.
10407
10408Expression*
10409Expression::make_selector(Expression* left, const std::string& name,
10410 source_location location)
10411{
10412 return new Selector_expression(left, name, location);
10413}
10414
10415// Implement the builtin function new.
10416
10417class Allocation_expression : public Expression
10418{
10419 public:
10420 Allocation_expression(Type* type, source_location location)
10421 : Expression(EXPRESSION_ALLOCATION, location),
10422 type_(type)
10423 { }
10424
10425 protected:
10426 int
10427 do_traverse(Traverse* traverse)
10428 { return Type::traverse(this->type_, traverse); }
10429
10430 Type*
10431 do_type()
10432 { return Type::make_pointer_type(this->type_); }
10433
10434 void
10435 do_determine_type(const Type_context*)
10436 { }
10437
10438 void
10439 do_check_types(Gogo*);
10440
10441 Expression*
10442 do_copy()
10443 { return new Allocation_expression(this->type_, this->location()); }
10444
10445 tree
10446 do_get_tree(Translate_context*);
10447
10448 private:
10449 // The type we are allocating.
10450 Type* type_;
10451};
10452
10453// Check the type of an allocation expression.
10454
10455void
10456Allocation_expression::do_check_types(Gogo*)
10457{
10458 if (this->type_->function_type() != NULL)
10459 this->report_error(_("invalid new of function type"));
10460}
10461
10462// Return a tree for an allocation expression.
10463
10464tree
10465Allocation_expression::do_get_tree(Translate_context* context)
10466{
10467 tree type_tree = this->type_->get_tree(context->gogo());
19824ddb 10468 if (type_tree == error_mark_node)
10469 return error_mark_node;
e440a328 10470 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10471 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10472 this->location());
19824ddb 10473 if (space == error_mark_node)
10474 return error_mark_node;
e440a328 10475 return fold_convert(build_pointer_type(type_tree), space);
10476}
10477
10478// Make an allocation expression.
10479
10480Expression*
10481Expression::make_allocation(Type* type, source_location location)
10482{
10483 return new Allocation_expression(type, location);
10484}
10485
10486// Implement the builtin function make.
10487
10488class Make_expression : public Expression
10489{
10490 public:
10491 Make_expression(Type* type, Expression_list* args, source_location location)
10492 : Expression(EXPRESSION_MAKE, location),
10493 type_(type), args_(args)
10494 { }
10495
10496 protected:
10497 int
10498 do_traverse(Traverse* traverse);
10499
10500 Type*
10501 do_type()
10502 { return this->type_; }
10503
10504 void
10505 do_determine_type(const Type_context*);
10506
10507 void
10508 do_check_types(Gogo*);
10509
10510 Expression*
10511 do_copy()
10512 {
10513 return new Make_expression(this->type_, this->args_->copy(),
10514 this->location());
10515 }
10516
10517 tree
10518 do_get_tree(Translate_context*);
10519
10520 private:
10521 // The type we are making.
10522 Type* type_;
10523 // The arguments to pass to the make routine.
10524 Expression_list* args_;
10525};
10526
10527// Traversal.
10528
10529int
10530Make_expression::do_traverse(Traverse* traverse)
10531{
10532 if (this->args_ != NULL
10533 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10534 return TRAVERSE_EXIT;
10535 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10536 return TRAVERSE_EXIT;
10537 return TRAVERSE_CONTINUE;
10538}
10539
10540// Set types of arguments.
10541
10542void
10543Make_expression::do_determine_type(const Type_context*)
10544{
10545 if (this->args_ != NULL)
10546 {
10547 Type_context context(Type::lookup_integer_type("int"), false);
10548 for (Expression_list::const_iterator pe = this->args_->begin();
10549 pe != this->args_->end();
10550 ++pe)
10551 (*pe)->determine_type(&context);
10552 }
10553}
10554
10555// Check types for a make expression.
10556
10557void
10558Make_expression::do_check_types(Gogo*)
10559{
10560 if (this->type_->channel_type() == NULL
10561 && this->type_->map_type() == NULL
10562 && (this->type_->array_type() == NULL
10563 || this->type_->array_type()->length() != NULL))
10564 this->report_error(_("invalid type for make function"));
10565 else if (!this->type_->check_make_expression(this->args_, this->location()))
10566 this->set_is_error();
10567}
10568
10569// Return a tree for a make expression.
10570
10571tree
10572Make_expression::do_get_tree(Translate_context* context)
10573{
10574 return this->type_->make_expression_tree(context, this->args_,
10575 this->location());
10576}
10577
10578// Make a make expression.
10579
10580Expression*
10581Expression::make_make(Type* type, Expression_list* args,
10582 source_location location)
10583{
10584 return new Make_expression(type, args, location);
10585}
10586
10587// Construct a struct.
10588
10589class Struct_construction_expression : public Expression
10590{
10591 public:
10592 Struct_construction_expression(Type* type, Expression_list* vals,
10593 source_location location)
10594 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10595 type_(type), vals_(vals)
10596 { }
10597
10598 // Return whether this is a constant initializer.
10599 bool
10600 is_constant_struct() const;
10601
10602 protected:
10603 int
10604 do_traverse(Traverse* traverse);
10605
10606 Type*
10607 do_type()
10608 { return this->type_; }
10609
10610 void
10611 do_determine_type(const Type_context*);
10612
10613 void
10614 do_check_types(Gogo*);
10615
10616 Expression*
10617 do_copy()
10618 {
10619 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10620 this->location());
10621 }
10622
10623 bool
10624 do_is_addressable() const
10625 { return true; }
10626
10627 tree
10628 do_get_tree(Translate_context*);
10629
10630 void
10631 do_export(Export*) const;
10632
10633 private:
10634 // The type of the struct to construct.
10635 Type* type_;
10636 // The list of values, in order of the fields in the struct. A NULL
10637 // entry means that the field should be zero-initialized.
10638 Expression_list* vals_;
10639};
10640
10641// Traversal.
10642
10643int
10644Struct_construction_expression::do_traverse(Traverse* traverse)
10645{
10646 if (this->vals_ != NULL
10647 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10648 return TRAVERSE_EXIT;
10649 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10650 return TRAVERSE_EXIT;
10651 return TRAVERSE_CONTINUE;
10652}
10653
10654// Return whether this is a constant initializer.
10655
10656bool
10657Struct_construction_expression::is_constant_struct() const
10658{
10659 if (this->vals_ == NULL)
10660 return true;
10661 for (Expression_list::const_iterator pv = this->vals_->begin();
10662 pv != this->vals_->end();
10663 ++pv)
10664 {
10665 if (*pv != NULL
10666 && !(*pv)->is_constant()
10667 && (!(*pv)->is_composite_literal()
10668 || (*pv)->is_nonconstant_composite_literal()))
10669 return false;
10670 }
10671
10672 const Struct_field_list* fields = this->type_->struct_type()->fields();
10673 for (Struct_field_list::const_iterator pf = fields->begin();
10674 pf != fields->end();
10675 ++pf)
10676 {
10677 // There are no constant constructors for interfaces.
10678 if (pf->type()->interface_type() != NULL)
10679 return false;
10680 }
10681
10682 return true;
10683}
10684
10685// Final type determination.
10686
10687void
10688Struct_construction_expression::do_determine_type(const Type_context*)
10689{
10690 if (this->vals_ == NULL)
10691 return;
10692 const Struct_field_list* fields = this->type_->struct_type()->fields();
10693 Expression_list::const_iterator pv = this->vals_->begin();
10694 for (Struct_field_list::const_iterator pf = fields->begin();
10695 pf != fields->end();
10696 ++pf, ++pv)
10697 {
10698 if (pv == this->vals_->end())
10699 return;
10700 if (*pv != NULL)
10701 {
10702 Type_context subcontext(pf->type(), false);
10703 (*pv)->determine_type(&subcontext);
10704 }
10705 }
a6cb4c0e 10706 // Extra values are an error we will report elsewhere; we still want
10707 // to determine the type to avoid knockon errors.
10708 for (; pv != this->vals_->end(); ++pv)
10709 (*pv)->determine_type_no_context();
e440a328 10710}
10711
10712// Check types.
10713
10714void
10715Struct_construction_expression::do_check_types(Gogo*)
10716{
10717 if (this->vals_ == NULL)
10718 return;
10719
10720 Struct_type* st = this->type_->struct_type();
10721 if (this->vals_->size() > st->field_count())
10722 {
10723 this->report_error(_("too many expressions for struct"));
10724 return;
10725 }
10726
10727 const Struct_field_list* fields = st->fields();
10728 Expression_list::const_iterator pv = this->vals_->begin();
10729 int i = 0;
10730 for (Struct_field_list::const_iterator pf = fields->begin();
10731 pf != fields->end();
10732 ++pf, ++pv, ++i)
10733 {
10734 if (pv == this->vals_->end())
10735 {
10736 this->report_error(_("too few expressions for struct"));
10737 break;
10738 }
10739
10740 if (*pv == NULL)
10741 continue;
10742
10743 std::string reason;
10744 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10745 {
10746 if (reason.empty())
10747 error_at((*pv)->location(),
10748 "incompatible type for field %d in struct construction",
10749 i + 1);
10750 else
10751 error_at((*pv)->location(),
10752 ("incompatible type for field %d in "
10753 "struct construction (%s)"),
10754 i + 1, reason.c_str());
10755 this->set_is_error();
10756 }
10757 }
10758 gcc_assert(pv == this->vals_->end());
10759}
10760
10761// Return a tree for constructing a struct.
10762
10763tree
10764Struct_construction_expression::do_get_tree(Translate_context* context)
10765{
10766 Gogo* gogo = context->gogo();
10767
10768 if (this->vals_ == NULL)
10769 return this->type_->get_init_tree(gogo, false);
10770
10771 tree type_tree = this->type_->get_tree(gogo);
10772 if (type_tree == error_mark_node)
10773 return error_mark_node;
10774 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10775
10776 bool is_constant = true;
10777 const Struct_field_list* fields = this->type_->struct_type()->fields();
10778 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10779 fields->size());
10780 Struct_field_list::const_iterator pf = fields->begin();
10781 Expression_list::const_iterator pv = this->vals_->begin();
10782 for (tree field = TYPE_FIELDS(type_tree);
10783 field != NULL_TREE;
10784 field = DECL_CHAIN(field), ++pf)
10785 {
10786 gcc_assert(pf != fields->end());
10787
10788 tree val;
10789 if (pv == this->vals_->end())
10790 val = pf->type()->get_init_tree(gogo, false);
10791 else if (*pv == NULL)
10792 {
10793 val = pf->type()->get_init_tree(gogo, false);
10794 ++pv;
10795 }
10796 else
10797 {
10798 val = Expression::convert_for_assignment(context, pf->type(),
10799 (*pv)->type(),
10800 (*pv)->get_tree(context),
10801 this->location());
10802 ++pv;
10803 }
10804
10805 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10806 return error_mark_node;
10807
10808 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10809 elt->index = field;
10810 elt->value = val;
10811 if (!TREE_CONSTANT(val))
10812 is_constant = false;
10813 }
10814 gcc_assert(pf == fields->end());
10815
10816 tree ret = build_constructor(type_tree, elts);
10817 if (is_constant)
10818 TREE_CONSTANT(ret) = 1;
10819 return ret;
10820}
10821
10822// Export a struct construction.
10823
10824void
10825Struct_construction_expression::do_export(Export* exp) const
10826{
10827 exp->write_c_string("convert(");
10828 exp->write_type(this->type_);
10829 for (Expression_list::const_iterator pv = this->vals_->begin();
10830 pv != this->vals_->end();
10831 ++pv)
10832 {
10833 exp->write_c_string(", ");
10834 if (*pv != NULL)
10835 (*pv)->export_expression(exp);
10836 }
10837 exp->write_c_string(")");
10838}
10839
10840// Make a struct composite literal. This used by the thunk code.
10841
10842Expression*
10843Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10844 source_location location)
10845{
10846 gcc_assert(type->struct_type() != NULL);
10847 return new Struct_construction_expression(type, vals, location);
10848}
10849
10850// Construct an array. This class is not used directly; instead we
10851// use the child classes, Fixed_array_construction_expression and
10852// Open_array_construction_expression.
10853
10854class Array_construction_expression : public Expression
10855{
10856 protected:
10857 Array_construction_expression(Expression_classification classification,
10858 Type* type, Expression_list* vals,
10859 source_location location)
10860 : Expression(classification, location),
10861 type_(type), vals_(vals)
10862 { }
10863
10864 public:
10865 // Return whether this is a constant initializer.
10866 bool
10867 is_constant_array() const;
10868
10869 // Return the number of elements.
10870 size_t
10871 element_count() const
10872 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10873
10874protected:
10875 int
10876 do_traverse(Traverse* traverse);
10877
10878 Type*
10879 do_type()
10880 { return this->type_; }
10881
10882 void
10883 do_determine_type(const Type_context*);
10884
10885 void
10886 do_check_types(Gogo*);
10887
10888 bool
10889 do_is_addressable() const
10890 { return true; }
10891
10892 void
10893 do_export(Export*) const;
10894
10895 // The list of values.
10896 Expression_list*
10897 vals()
10898 { return this->vals_; }
10899
10900 // Get a constructor tree for the array values.
10901 tree
10902 get_constructor_tree(Translate_context* context, tree type_tree);
10903
10904 private:
10905 // The type of the array to construct.
10906 Type* type_;
10907 // The list of values.
10908 Expression_list* vals_;
10909};
10910
10911// Traversal.
10912
10913int
10914Array_construction_expression::do_traverse(Traverse* traverse)
10915{
10916 if (this->vals_ != NULL
10917 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10918 return TRAVERSE_EXIT;
10919 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10920 return TRAVERSE_EXIT;
10921 return TRAVERSE_CONTINUE;
10922}
10923
10924// Return whether this is a constant initializer.
10925
10926bool
10927Array_construction_expression::is_constant_array() const
10928{
10929 if (this->vals_ == NULL)
10930 return true;
10931
10932 // There are no constant constructors for interfaces.
10933 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10934 return false;
10935
10936 for (Expression_list::const_iterator pv = this->vals_->begin();
10937 pv != this->vals_->end();
10938 ++pv)
10939 {
10940 if (*pv != NULL
10941 && !(*pv)->is_constant()
10942 && (!(*pv)->is_composite_literal()
10943 || (*pv)->is_nonconstant_composite_literal()))
10944 return false;
10945 }
10946 return true;
10947}
10948
10949// Final type determination.
10950
10951void
10952Array_construction_expression::do_determine_type(const Type_context*)
10953{
10954 if (this->vals_ == NULL)
10955 return;
10956 Type_context subcontext(this->type_->array_type()->element_type(), false);
10957 for (Expression_list::const_iterator pv = this->vals_->begin();
10958 pv != this->vals_->end();
10959 ++pv)
10960 {
10961 if (*pv != NULL)
10962 (*pv)->determine_type(&subcontext);
10963 }
10964}
10965
10966// Check types.
10967
10968void
10969Array_construction_expression::do_check_types(Gogo*)
10970{
10971 if (this->vals_ == NULL)
10972 return;
10973
10974 Array_type* at = this->type_->array_type();
10975 int i = 0;
10976 Type* element_type = at->element_type();
10977 for (Expression_list::const_iterator pv = this->vals_->begin();
10978 pv != this->vals_->end();
10979 ++pv, ++i)
10980 {
10981 if (*pv != NULL
10982 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10983 {
10984 error_at((*pv)->location(),
10985 "incompatible type for element %d in composite literal",
10986 i + 1);
10987 this->set_is_error();
10988 }
10989 }
10990
10991 Expression* length = at->length();
10992 if (length != NULL)
10993 {
10994 mpz_t val;
10995 mpz_init(val);
10996 Type* type;
10997 if (at->length()->integer_constant_value(true, val, &type))
10998 {
10999 if (this->vals_->size() > mpz_get_ui(val))
11000 this->report_error(_("too many elements in composite literal"));
11001 }
11002 mpz_clear(val);
11003 }
11004}
11005
11006// Get a constructor tree for the array values.
11007
11008tree
11009Array_construction_expression::get_constructor_tree(Translate_context* context,
11010 tree type_tree)
11011{
11012 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11013 (this->vals_ == NULL
11014 ? 0
11015 : this->vals_->size()));
11016 Type* element_type = this->type_->array_type()->element_type();
11017 bool is_constant = true;
11018 if (this->vals_ != NULL)
11019 {
11020 size_t i = 0;
11021 for (Expression_list::const_iterator pv = this->vals_->begin();
11022 pv != this->vals_->end();
11023 ++pv, ++i)
11024 {
11025 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
11026 elt->index = size_int(i);
11027 if (*pv == NULL)
11028 elt->value = element_type->get_init_tree(context->gogo(), false);
11029 else
11030 {
11031 tree value_tree = (*pv)->get_tree(context);
11032 elt->value = Expression::convert_for_assignment(context,
11033 element_type,
11034 (*pv)->type(),
11035 value_tree,
11036 this->location());
11037 }
11038 if (elt->value == error_mark_node)
11039 return error_mark_node;
11040 if (!TREE_CONSTANT(elt->value))
11041 is_constant = false;
11042 }
11043 }
11044
11045 tree ret = build_constructor(type_tree, values);
11046 if (is_constant)
11047 TREE_CONSTANT(ret) = 1;
11048 return ret;
11049}
11050
11051// Export an array construction.
11052
11053void
11054Array_construction_expression::do_export(Export* exp) const
11055{
11056 exp->write_c_string("convert(");
11057 exp->write_type(this->type_);
11058 if (this->vals_ != NULL)
11059 {
11060 for (Expression_list::const_iterator pv = this->vals_->begin();
11061 pv != this->vals_->end();
11062 ++pv)
11063 {
11064 exp->write_c_string(", ");
11065 if (*pv != NULL)
11066 (*pv)->export_expression(exp);
11067 }
11068 }
11069 exp->write_c_string(")");
11070}
11071
11072// Construct a fixed array.
11073
11074class Fixed_array_construction_expression :
11075 public Array_construction_expression
11076{
11077 public:
11078 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11079 source_location location)
11080 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11081 type, vals, location)
11082 {
11083 gcc_assert(type->array_type() != NULL
11084 && type->array_type()->length() != NULL);
11085 }
11086
11087 protected:
11088 Expression*
11089 do_copy()
11090 {
11091 return new Fixed_array_construction_expression(this->type(),
11092 (this->vals() == NULL
11093 ? NULL
11094 : this->vals()->copy()),
11095 this->location());
11096 }
11097
11098 tree
11099 do_get_tree(Translate_context*);
11100};
11101
11102// Return a tree for constructing a fixed array.
11103
11104tree
11105Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11106{
11107 return this->get_constructor_tree(context,
11108 this->type()->get_tree(context->gogo()));
11109}
11110
11111// Construct an open array.
11112
11113class Open_array_construction_expression : public Array_construction_expression
11114{
11115 public:
11116 Open_array_construction_expression(Type* type, Expression_list* vals,
11117 source_location location)
11118 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11119 type, vals, location)
11120 {
11121 gcc_assert(type->array_type() != NULL
11122 && type->array_type()->length() == NULL);
11123 }
11124
11125 protected:
11126 // Note that taking the address of an open array literal is invalid.
11127
11128 Expression*
11129 do_copy()
11130 {
11131 return new Open_array_construction_expression(this->type(),
11132 (this->vals() == NULL
11133 ? NULL
11134 : this->vals()->copy()),
11135 this->location());
11136 }
11137
11138 tree
11139 do_get_tree(Translate_context*);
11140};
11141
11142// Return a tree for constructing an open array.
11143
11144tree
11145Open_array_construction_expression::do_get_tree(Translate_context* context)
11146{
f9c68f17 11147 Array_type* array_type = this->type()->array_type();
11148 if (array_type == NULL)
11149 {
11150 gcc_assert(this->type()->is_error_type());
11151 return error_mark_node;
11152 }
11153
11154 Type* element_type = array_type->element_type();
e440a328 11155 tree element_type_tree = element_type->get_tree(context->gogo());
3d60812e 11156 if (element_type_tree == error_mark_node)
11157 return error_mark_node;
11158
e440a328 11159 tree values;
11160 tree length_tree;
11161 if (this->vals() == NULL || this->vals()->empty())
11162 {
11163 // We need to create a unique value.
11164 tree max = size_int(0);
11165 tree constructor_type = build_array_type(element_type_tree,
11166 build_index_type(max));
11167 if (constructor_type == error_mark_node)
11168 return error_mark_node;
11169 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11170 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11171 elt->index = size_int(0);
11172 elt->value = element_type->get_init_tree(context->gogo(), false);
11173 values = build_constructor(constructor_type, vec);
11174 if (TREE_CONSTANT(elt->value))
11175 TREE_CONSTANT(values) = 1;
11176 length_tree = size_int(0);
11177 }
11178 else
11179 {
11180 tree max = size_int(this->vals()->size() - 1);
11181 tree constructor_type = build_array_type(element_type_tree,
11182 build_index_type(max));
11183 if (constructor_type == error_mark_node)
11184 return error_mark_node;
11185 values = this->get_constructor_tree(context, constructor_type);
11186 length_tree = size_int(this->vals()->size());
11187 }
11188
11189 if (values == error_mark_node)
11190 return error_mark_node;
11191
11192 bool is_constant_initializer = TREE_CONSTANT(values);
d8829beb 11193
11194 // We have to copy the initial values into heap memory if we are in
11195 // a function or if the values are not constants. We also have to
11196 // copy them if they may contain pointers in a non-constant context,
11197 // as otherwise the garbage collector won't see them.
11198 bool copy_to_heap = (context->function() != NULL
11199 || !is_constant_initializer
11200 || (element_type->has_pointer()
11201 && !context->is_const()));
e440a328 11202
11203 if (is_constant_initializer)
11204 {
11205 tree tmp = build_decl(this->location(), VAR_DECL,
11206 create_tmp_var_name("C"), TREE_TYPE(values));
11207 DECL_EXTERNAL(tmp) = 0;
11208 TREE_PUBLIC(tmp) = 0;
11209 TREE_STATIC(tmp) = 1;
11210 DECL_ARTIFICIAL(tmp) = 1;
d8829beb 11211 if (copy_to_heap)
e440a328 11212 {
d8829beb 11213 // If we are not copying the value to the heap, we will only
11214 // initialize the value once, so we can use this directly
11215 // rather than copying it. In that case we can't make it
11216 // read-only, because the program is permitted to change it.
e440a328 11217 TREE_READONLY(tmp) = 1;
11218 TREE_CONSTANT(tmp) = 1;
11219 }
11220 DECL_INITIAL(tmp) = values;
11221 rest_of_decl_compilation(tmp, 1, 0);
11222 values = tmp;
11223 }
11224
11225 tree space;
11226 tree set;
d8829beb 11227 if (!copy_to_heap)
e440a328 11228 {
d8829beb 11229 // the initializer will only run once.
e440a328 11230 space = build_fold_addr_expr(values);
11231 set = NULL_TREE;
11232 }
11233 else
11234 {
11235 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11236 space = context->gogo()->allocate_memory(element_type, memsize,
11237 this->location());
11238 space = save_expr(space);
11239
11240 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11241 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11242 TREE_THIS_NOTRAP(ref) = 1;
11243 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11244 }
11245
11246 // Build a constructor for the open array.
11247
11248 tree type_tree = this->type()->get_tree(context->gogo());
3d60812e 11249 if (type_tree == error_mark_node)
11250 return error_mark_node;
e440a328 11251 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11252
11253 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11254
11255 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11256 tree field = TYPE_FIELDS(type_tree);
11257 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11258 elt->index = field;
11259 elt->value = fold_convert(TREE_TYPE(field), space);
11260
11261 elt = VEC_quick_push(constructor_elt, init, NULL);
11262 field = DECL_CHAIN(field);
11263 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11264 elt->index = field;
11265 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11266
11267 elt = VEC_quick_push(constructor_elt, init, NULL);
11268 field = DECL_CHAIN(field);
11269 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11270 elt->index = field;
11271 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11272
11273 tree constructor = build_constructor(type_tree, init);
3d60812e 11274 if (constructor == error_mark_node)
11275 return error_mark_node;
d8829beb 11276 if (!copy_to_heap)
e440a328 11277 TREE_CONSTANT(constructor) = 1;
11278
11279 if (set == NULL_TREE)
11280 return constructor;
11281 else
11282 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11283}
11284
11285// Make a slice composite literal. This is used by the type
11286// descriptor code.
11287
11288Expression*
11289Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11290 source_location location)
11291{
11292 gcc_assert(type->is_open_array_type());
11293 return new Open_array_construction_expression(type, vals, location);
11294}
11295
11296// Construct a map.
11297
11298class Map_construction_expression : public Expression
11299{
11300 public:
11301 Map_construction_expression(Type* type, Expression_list* vals,
11302 source_location location)
11303 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11304 type_(type), vals_(vals)
11305 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11306
11307 protected:
11308 int
11309 do_traverse(Traverse* traverse);
11310
11311 Type*
11312 do_type()
11313 { return this->type_; }
11314
11315 void
11316 do_determine_type(const Type_context*);
11317
11318 void
11319 do_check_types(Gogo*);
11320
11321 Expression*
11322 do_copy()
11323 {
11324 return new Map_construction_expression(this->type_, this->vals_->copy(),
11325 this->location());
11326 }
11327
11328 tree
11329 do_get_tree(Translate_context*);
11330
11331 void
11332 do_export(Export*) const;
11333
11334 private:
11335 // The type of the map to construct.
11336 Type* type_;
11337 // The list of values.
11338 Expression_list* vals_;
11339};
11340
11341// Traversal.
11342
11343int
11344Map_construction_expression::do_traverse(Traverse* traverse)
11345{
11346 if (this->vals_ != NULL
11347 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11348 return TRAVERSE_EXIT;
11349 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11350 return TRAVERSE_EXIT;
11351 return TRAVERSE_CONTINUE;
11352}
11353
11354// Final type determination.
11355
11356void
11357Map_construction_expression::do_determine_type(const Type_context*)
11358{
11359 if (this->vals_ == NULL)
11360 return;
11361
11362 Map_type* mt = this->type_->map_type();
11363 Type_context key_context(mt->key_type(), false);
11364 Type_context val_context(mt->val_type(), false);
11365 for (Expression_list::const_iterator pv = this->vals_->begin();
11366 pv != this->vals_->end();
11367 ++pv)
11368 {
11369 (*pv)->determine_type(&key_context);
11370 ++pv;
11371 (*pv)->determine_type(&val_context);
11372 }
11373}
11374
11375// Check types.
11376
11377void
11378Map_construction_expression::do_check_types(Gogo*)
11379{
11380 if (this->vals_ == NULL)
11381 return;
11382
11383 Map_type* mt = this->type_->map_type();
11384 int i = 0;
11385 Type* key_type = mt->key_type();
11386 Type* val_type = mt->val_type();
11387 for (Expression_list::const_iterator pv = this->vals_->begin();
11388 pv != this->vals_->end();
11389 ++pv, ++i)
11390 {
11391 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11392 {
11393 error_at((*pv)->location(),
11394 "incompatible type for element %d key in map construction",
11395 i + 1);
11396 this->set_is_error();
11397 }
11398 ++pv;
11399 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11400 {
11401 error_at((*pv)->location(),
11402 ("incompatible type for element %d value "
11403 "in map construction"),
11404 i + 1);
11405 this->set_is_error();
11406 }
11407 }
11408}
11409
11410// Return a tree for constructing a map.
11411
11412tree
11413Map_construction_expression::do_get_tree(Translate_context* context)
11414{
11415 Gogo* gogo = context->gogo();
11416 source_location loc = this->location();
11417
11418 Map_type* mt = this->type_->map_type();
11419
11420 // Build a struct to hold the key and value.
11421 tree struct_type = make_node(RECORD_TYPE);
11422
11423 Type* key_type = mt->key_type();
11424 tree id = get_identifier("__key");
5845bde6 11425 tree key_type_tree = key_type->get_tree(gogo);
11426 if (key_type_tree == error_mark_node)
11427 return error_mark_node;
11428 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
e440a328 11429 DECL_CONTEXT(key_field) = struct_type;
11430 TYPE_FIELDS(struct_type) = key_field;
11431
11432 Type* val_type = mt->val_type();
11433 id = get_identifier("__val");
5845bde6 11434 tree val_type_tree = val_type->get_tree(gogo);
11435 if (val_type_tree == error_mark_node)
11436 return error_mark_node;
11437 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
e440a328 11438 DECL_CONTEXT(val_field) = struct_type;
11439 DECL_CHAIN(key_field) = val_field;
11440
11441 layout_type(struct_type);
11442
11443 bool is_constant = true;
11444 size_t i = 0;
11445 tree valaddr;
11446 tree make_tmp;
11447
11448 if (this->vals_ == NULL || this->vals_->empty())
11449 {
11450 valaddr = null_pointer_node;
11451 make_tmp = NULL_TREE;
11452 }
11453 else
11454 {
11455 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11456 this->vals_->size() / 2);
11457
11458 for (Expression_list::const_iterator pv = this->vals_->begin();
11459 pv != this->vals_->end();
11460 ++pv, ++i)
11461 {
11462 bool one_is_constant = true;
11463
11464 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11465
11466 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11467 elt->index = key_field;
11468 tree val_tree = (*pv)->get_tree(context);
11469 elt->value = Expression::convert_for_assignment(context, key_type,
11470 (*pv)->type(),
11471 val_tree, loc);
11472 if (elt->value == error_mark_node)
11473 return error_mark_node;
11474 if (!TREE_CONSTANT(elt->value))
11475 one_is_constant = false;
11476
11477 ++pv;
11478
11479 elt = VEC_quick_push(constructor_elt, one, NULL);
11480 elt->index = val_field;
11481 val_tree = (*pv)->get_tree(context);
11482 elt->value = Expression::convert_for_assignment(context, val_type,
11483 (*pv)->type(),
11484 val_tree, loc);
11485 if (elt->value == error_mark_node)
11486 return error_mark_node;
11487 if (!TREE_CONSTANT(elt->value))
11488 one_is_constant = false;
11489
11490 elt = VEC_quick_push(constructor_elt, values, NULL);
11491 elt->index = size_int(i);
11492 elt->value = build_constructor(struct_type, one);
11493 if (one_is_constant)
11494 TREE_CONSTANT(elt->value) = 1;
11495 else
11496 is_constant = false;
11497 }
11498
11499 tree index_type = build_index_type(size_int(i - 1));
11500 tree array_type = build_array_type(struct_type, index_type);
11501 tree init = build_constructor(array_type, values);
11502 if (is_constant)
11503 TREE_CONSTANT(init) = 1;
11504 tree tmp;
11505 if (current_function_decl != NULL)
11506 {
11507 tmp = create_tmp_var(array_type, get_name(array_type));
11508 DECL_INITIAL(tmp) = init;
11509 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11510 TREE_ADDRESSABLE(tmp) = 1;
11511 }
11512 else
11513 {
11514 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11515 DECL_EXTERNAL(tmp) = 0;
11516 TREE_PUBLIC(tmp) = 0;
11517 TREE_STATIC(tmp) = 1;
11518 DECL_ARTIFICIAL(tmp) = 1;
11519 if (!TREE_CONSTANT(init))
11520 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11521 init);
11522 else
11523 {
11524 TREE_READONLY(tmp) = 1;
11525 TREE_CONSTANT(tmp) = 1;
11526 DECL_INITIAL(tmp) = init;
11527 make_tmp = NULL_TREE;
11528 }
11529 rest_of_decl_compilation(tmp, 1, 0);
11530 }
11531
11532 valaddr = build_fold_addr_expr(tmp);
11533 }
11534
11535 tree descriptor = gogo->map_descriptor(mt);
11536
11537 tree type_tree = this->type_->get_tree(gogo);
5845bde6 11538 if (type_tree == error_mark_node)
11539 return error_mark_node;
e440a328 11540
11541 static tree construct_map_fndecl;
11542 tree call = Gogo::call_builtin(&construct_map_fndecl,
11543 loc,
11544 "__go_construct_map",
11545 6,
11546 type_tree,
11547 TREE_TYPE(descriptor),
11548 descriptor,
11549 sizetype,
11550 size_int(i),
11551 sizetype,
11552 TYPE_SIZE_UNIT(struct_type),
11553 sizetype,
11554 byte_position(val_field),
11555 sizetype,
11556 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11557 const_ptr_type_node,
11558 fold_convert(const_ptr_type_node, valaddr));
5fb82b5e 11559 if (call == error_mark_node)
11560 return error_mark_node;
e440a328 11561
11562 tree ret;
11563 if (make_tmp == NULL)
11564 ret = call;
11565 else
11566 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11567 return ret;
11568}
11569
11570// Export an array construction.
11571
11572void
11573Map_construction_expression::do_export(Export* exp) const
11574{
11575 exp->write_c_string("convert(");
11576 exp->write_type(this->type_);
11577 for (Expression_list::const_iterator pv = this->vals_->begin();
11578 pv != this->vals_->end();
11579 ++pv)
11580 {
11581 exp->write_c_string(", ");
11582 (*pv)->export_expression(exp);
11583 }
11584 exp->write_c_string(")");
11585}
11586
11587// A general composite literal. This is lowered to a type specific
11588// version.
11589
11590class Composite_literal_expression : public Parser_expression
11591{
11592 public:
11593 Composite_literal_expression(Type* type, int depth, bool has_keys,
11594 Expression_list* vals, source_location location)
11595 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11596 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11597 { }
11598
11599 protected:
11600 int
11601 do_traverse(Traverse* traverse);
11602
11603 Expression*
11604 do_lower(Gogo*, Named_object*, int);
11605
11606 Expression*
11607 do_copy()
11608 {
11609 return new Composite_literal_expression(this->type_, this->depth_,
11610 this->has_keys_,
11611 (this->vals_ == NULL
11612 ? NULL
11613 : this->vals_->copy()),
11614 this->location());
11615 }
11616
11617 private:
11618 Expression*
11619 lower_struct(Type*);
11620
11621 Expression*
11622 lower_array(Type*);
11623
11624 Expression*
11625 make_array(Type*, Expression_list*);
11626
11627 Expression*
a287720d 11628 lower_map(Gogo*, Named_object*, Type*);
e440a328 11629
11630 // The type of the composite literal.
11631 Type* type_;
11632 // The depth within a list of composite literals within a composite
11633 // literal, when the type is omitted.
11634 int depth_;
11635 // The values to put in the composite literal.
11636 Expression_list* vals_;
11637 // If this is true, then VALS_ is a list of pairs: a key and a
11638 // value. In an array initializer, a missing key will be NULL.
11639 bool has_keys_;
11640};
11641
11642// Traversal.
11643
11644int
11645Composite_literal_expression::do_traverse(Traverse* traverse)
11646{
11647 if (this->vals_ != NULL
11648 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11649 return TRAVERSE_EXIT;
11650 return Type::traverse(this->type_, traverse);
11651}
11652
11653// Lower a generic composite literal into a specific version based on
11654// the type.
11655
11656Expression*
a287720d 11657Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
e440a328 11658{
11659 Type* type = this->type_;
11660
11661 for (int depth = this->depth_; depth > 0; --depth)
11662 {
11663 if (type->array_type() != NULL)
11664 type = type->array_type()->element_type();
11665 else if (type->map_type() != NULL)
11666 type = type->map_type()->val_type();
11667 else
11668 {
11669 if (!type->is_error_type())
11670 error_at(this->location(),
11671 ("may only omit types within composite literals "
11672 "of slice, array, or map type"));
11673 return Expression::make_error(this->location());
11674 }
11675 }
11676
11677 if (type->is_error_type())
11678 return Expression::make_error(this->location());
11679 else if (type->struct_type() != NULL)
11680 return this->lower_struct(type);
11681 else if (type->array_type() != NULL)
11682 return this->lower_array(type);
11683 else if (type->map_type() != NULL)
a287720d 11684 return this->lower_map(gogo, function, type);
e440a328 11685 else
11686 {
11687 error_at(this->location(),
11688 ("expected struct, slice, array, or map type "
11689 "for composite literal"));
11690 return Expression::make_error(this->location());
11691 }
11692}
11693
11694// Lower a struct composite literal.
11695
11696Expression*
11697Composite_literal_expression::lower_struct(Type* type)
11698{
11699 source_location location = this->location();
11700 Struct_type* st = type->struct_type();
11701 if (this->vals_ == NULL || !this->has_keys_)
11702 return new Struct_construction_expression(type, this->vals_, location);
11703
11704 size_t field_count = st->field_count();
11705 std::vector<Expression*> vals(field_count);
11706 Expression_list::const_iterator p = this->vals_->begin();
11707 while (p != this->vals_->end())
11708 {
11709 Expression* name_expr = *p;
11710
11711 ++p;
11712 gcc_assert(p != this->vals_->end());
11713 Expression* val = *p;
11714
11715 ++p;
11716
11717 if (name_expr == NULL)
11718 {
11719 error_at(val->location(), "mixture of field and value initializers");
11720 return Expression::make_error(location);
11721 }
11722
11723 bool bad_key = false;
11724 std::string name;
11725 switch (name_expr->classification())
11726 {
11727 case EXPRESSION_UNKNOWN_REFERENCE:
11728 name = name_expr->unknown_expression()->name();
11729 break;
11730
11731 case EXPRESSION_CONST_REFERENCE:
11732 name = static_cast<Const_expression*>(name_expr)->name();
11733 break;
11734
11735 case EXPRESSION_TYPE:
11736 {
11737 Type* t = name_expr->type();
11738 Named_type* nt = t->named_type();
11739 if (nt == NULL)
11740 bad_key = true;
11741 else
11742 name = nt->name();
11743 }
11744 break;
11745
11746 case EXPRESSION_VAR_REFERENCE:
11747 name = name_expr->var_expression()->name();
11748 break;
11749
11750 case EXPRESSION_FUNC_REFERENCE:
11751 name = name_expr->func_expression()->name();
11752 break;
11753
11754 case EXPRESSION_UNARY:
11755 // If there is a local variable around with the same name as
11756 // the field, and this occurs in the closure, then the
11757 // parser may turn the field reference into an indirection
11758 // through the closure. FIXME: This is a mess.
11759 {
11760 bad_key = true;
11761 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11762 if (ue->op() == OPERATOR_MULT)
11763 {
11764 Field_reference_expression* fre =
11765 ue->operand()->field_reference_expression();
11766 if (fre != NULL)
11767 {
11768 Struct_type* st =
11769 fre->expr()->type()->deref()->struct_type();
11770 if (st != NULL)
11771 {
11772 const Struct_field* sf = st->field(fre->field_index());
11773 name = sf->field_name();
11774 char buf[20];
11775 snprintf(buf, sizeof buf, "%u", fre->field_index());
11776 size_t buflen = strlen(buf);
11777 if (name.compare(name.length() - buflen, buflen, buf)
11778 == 0)
11779 {
11780 name = name.substr(0, name.length() - buflen);
11781 bad_key = false;
11782 }
11783 }
11784 }
11785 }
11786 }
11787 break;
11788
11789 default:
11790 bad_key = true;
11791 break;
11792 }
11793 if (bad_key)
11794 {
11795 error_at(name_expr->location(), "expected struct field name");
11796 return Expression::make_error(location);
11797 }
11798
11799 unsigned int index;
11800 const Struct_field* sf = st->find_local_field(name, &index);
11801 if (sf == NULL)
11802 {
11803 error_at(name_expr->location(), "unknown field %qs in %qs",
11804 Gogo::message_name(name).c_str(),
11805 (type->named_type() != NULL
11806 ? type->named_type()->message_name().c_str()
11807 : "unnamed struct"));
11808 return Expression::make_error(location);
11809 }
11810 if (vals[index] != NULL)
11811 {
11812 error_at(name_expr->location(),
11813 "duplicate value for field %qs in %qs",
11814 Gogo::message_name(name).c_str(),
11815 (type->named_type() != NULL
11816 ? type->named_type()->message_name().c_str()
11817 : "unnamed struct"));
11818 return Expression::make_error(location);
11819 }
11820
11821 vals[index] = val;
11822 }
11823
11824 Expression_list* list = new Expression_list;
11825 list->reserve(field_count);
11826 for (size_t i = 0; i < field_count; ++i)
11827 list->push_back(vals[i]);
11828
11829 return new Struct_construction_expression(type, list, location);
11830}
11831
11832// Lower an array composite literal.
11833
11834Expression*
11835Composite_literal_expression::lower_array(Type* type)
11836{
11837 source_location location = this->location();
11838 if (this->vals_ == NULL || !this->has_keys_)
11839 return this->make_array(type, this->vals_);
11840
11841 std::vector<Expression*> vals;
11842 vals.reserve(this->vals_->size());
11843 unsigned long index = 0;
11844 Expression_list::const_iterator p = this->vals_->begin();
11845 while (p != this->vals_->end())
11846 {
11847 Expression* index_expr = *p;
11848
11849 ++p;
11850 gcc_assert(p != this->vals_->end());
11851 Expression* val = *p;
11852
11853 ++p;
11854
11855 if (index_expr != NULL)
11856 {
11857 mpz_t ival;
11858 mpz_init(ival);
11859 Type* dummy;
11860 if (!index_expr->integer_constant_value(true, ival, &dummy))
11861 {
11862 mpz_clear(ival);
11863 error_at(index_expr->location(),
11864 "index expression is not integer constant");
11865 return Expression::make_error(location);
11866 }
11867 if (mpz_sgn(ival) < 0)
11868 {
11869 mpz_clear(ival);
11870 error_at(index_expr->location(), "index expression is negative");
11871 return Expression::make_error(location);
11872 }
11873 index = mpz_get_ui(ival);
11874 if (mpz_cmp_ui(ival, index) != 0)
11875 {
11876 mpz_clear(ival);
11877 error_at(index_expr->location(), "index value overflow");
11878 return Expression::make_error(location);
11879 }
11880 mpz_clear(ival);
11881 }
11882
11883 if (index == vals.size())
11884 vals.push_back(val);
11885 else
11886 {
11887 if (index > vals.size())
11888 {
11889 vals.reserve(index + 32);
11890 vals.resize(index + 1, static_cast<Expression*>(NULL));
11891 }
11892 if (vals[index] != NULL)
11893 {
11894 error_at((index_expr != NULL
11895 ? index_expr->location()
11896 : val->location()),
11897 "duplicate value for index %lu",
11898 index);
11899 return Expression::make_error(location);
11900 }
11901 vals[index] = val;
11902 }
11903
11904 ++index;
11905 }
11906
11907 size_t size = vals.size();
11908 Expression_list* list = new Expression_list;
11909 list->reserve(size);
11910 for (size_t i = 0; i < size; ++i)
11911 list->push_back(vals[i]);
11912
11913 return this->make_array(type, list);
11914}
11915
11916// Actually build the array composite literal. This handles
11917// [...]{...}.
11918
11919Expression*
11920Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11921{
11922 source_location location = this->location();
11923 Array_type* at = type->array_type();
11924 if (at->length() != NULL && at->length()->is_nil_expression())
11925 {
11926 size_t size = vals == NULL ? 0 : vals->size();
11927 mpz_t vlen;
11928 mpz_init_set_ui(vlen, size);
11929 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11930 mpz_clear(vlen);
11931 at = Type::make_array_type(at->element_type(), elen);
11932 type = at;
11933 }
11934 if (at->length() != NULL)
11935 return new Fixed_array_construction_expression(type, vals, location);
11936 else
11937 return new Open_array_construction_expression(type, vals, location);
11938}
11939
11940// Lower a map composite literal.
11941
11942Expression*
a287720d 11943Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11944 Type* type)
e440a328 11945{
11946 source_location location = this->location();
11947 if (this->vals_ != NULL)
11948 {
11949 if (!this->has_keys_)
11950 {
11951 error_at(location, "map composite literal must have keys");
11952 return Expression::make_error(location);
11953 }
11954
a287720d 11955 for (Expression_list::iterator p = this->vals_->begin();
e440a328 11956 p != this->vals_->end();
11957 p += 2)
11958 {
11959 if (*p == NULL)
11960 {
11961 ++p;
11962 error_at((*p)->location(),
11963 "map composite literal must have keys for every value");
11964 return Expression::make_error(location);
11965 }
a287720d 11966 // Make sure we have lowered the key; it may not have been
11967 // lowered in order to handle keys for struct composite
11968 // literals. Lower it now to get the right error message.
11969 if ((*p)->unknown_expression() != NULL)
11970 {
11971 (*p)->unknown_expression()->clear_is_composite_literal_key();
11972 gogo->lower_expression(function, &*p);
11973 gcc_assert((*p)->is_error_expression());
11974 return Expression::make_error(location);
11975 }
e440a328 11976 }
11977 }
11978
11979 return new Map_construction_expression(type, this->vals_, location);
11980}
11981
11982// Make a composite literal expression.
11983
11984Expression*
11985Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11986 Expression_list* vals,
11987 source_location location)
11988{
11989 return new Composite_literal_expression(type, depth, has_keys, vals,
11990 location);
11991}
11992
11993// Return whether this expression is a composite literal.
11994
11995bool
11996Expression::is_composite_literal() const
11997{
11998 switch (this->classification_)
11999 {
12000 case EXPRESSION_COMPOSITE_LITERAL:
12001 case EXPRESSION_STRUCT_CONSTRUCTION:
12002 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
12003 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12004 case EXPRESSION_MAP_CONSTRUCTION:
12005 return true;
12006 default:
12007 return false;
12008 }
12009}
12010
12011// Return whether this expression is a composite literal which is not
12012// constant.
12013
12014bool
12015Expression::is_nonconstant_composite_literal() const
12016{
12017 switch (this->classification_)
12018 {
12019 case EXPRESSION_STRUCT_CONSTRUCTION:
12020 {
12021 const Struct_construction_expression *psce =
12022 static_cast<const Struct_construction_expression*>(this);
12023 return !psce->is_constant_struct();
12024 }
12025 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
12026 {
12027 const Fixed_array_construction_expression *pace =
12028 static_cast<const Fixed_array_construction_expression*>(this);
12029 return !pace->is_constant_array();
12030 }
12031 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12032 {
12033 const Open_array_construction_expression *pace =
12034 static_cast<const Open_array_construction_expression*>(this);
12035 return !pace->is_constant_array();
12036 }
12037 case EXPRESSION_MAP_CONSTRUCTION:
12038 return true;
12039 default:
12040 return false;
12041 }
12042}
12043
12044// Return true if this is a reference to a local variable.
12045
12046bool
12047Expression::is_local_variable() const
12048{
12049 const Var_expression* ve = this->var_expression();
12050 if (ve == NULL)
12051 return false;
12052 const Named_object* no = ve->named_object();
12053 return (no->is_result_variable()
12054 || (no->is_variable() && !no->var_value()->is_global()));
12055}
12056
12057// Class Type_guard_expression.
12058
12059// Traversal.
12060
12061int
12062Type_guard_expression::do_traverse(Traverse* traverse)
12063{
12064 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12065 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12066 return TRAVERSE_EXIT;
12067 return TRAVERSE_CONTINUE;
12068}
12069
12070// Check types of a type guard expression. The expression must have
12071// an interface type, but the actual type conversion is checked at run
12072// time.
12073
12074void
12075Type_guard_expression::do_check_types(Gogo*)
12076{
12077 // 6g permits using a type guard with unsafe.pointer; we are
12078 // compatible.
12079 Type* expr_type = this->expr_->type();
12080 if (expr_type->is_unsafe_pointer_type())
12081 {
12082 if (this->type_->points_to() == NULL
12083 && (this->type_->integer_type() == NULL
12084 || (this->type_->forwarded()
12085 != Type::lookup_integer_type("uintptr"))))
12086 this->report_error(_("invalid unsafe.Pointer conversion"));
12087 }
12088 else if (this->type_->is_unsafe_pointer_type())
12089 {
12090 if (expr_type->points_to() == NULL
12091 && (expr_type->integer_type() == NULL
12092 || (expr_type->forwarded()
12093 != Type::lookup_integer_type("uintptr"))))
12094 this->report_error(_("invalid unsafe.Pointer conversion"));
12095 }
12096 else if (expr_type->interface_type() == NULL)
f725ade8 12097 {
12098 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12099 this->report_error(_("type assertion only valid for interface types"));
12100 this->set_is_error();
12101 }
e440a328 12102 else if (this->type_->interface_type() == NULL)
12103 {
12104 std::string reason;
12105 if (!expr_type->interface_type()->implements_interface(this->type_,
12106 &reason))
12107 {
f725ade8 12108 if (!this->type_->is_error_type())
e440a328 12109 {
f725ade8 12110 if (reason.empty())
12111 this->report_error(_("impossible type assertion: "
12112 "type does not implement interface"));
12113 else
12114 error_at(this->location(),
12115 ("impossible type assertion: "
12116 "type does not implement interface (%s)"),
12117 reason.c_str());
e440a328 12118 }
f725ade8 12119 this->set_is_error();
e440a328 12120 }
12121 }
12122}
12123
12124// Return a tree for a type guard expression.
12125
12126tree
12127Type_guard_expression::do_get_tree(Translate_context* context)
12128{
12129 Gogo* gogo = context->gogo();
12130 tree expr_tree = this->expr_->get_tree(context);
12131 if (expr_tree == error_mark_node)
12132 return error_mark_node;
12133 Type* expr_type = this->expr_->type();
12134 if ((this->type_->is_unsafe_pointer_type()
12135 && (expr_type->points_to() != NULL
12136 || expr_type->integer_type() != NULL))
12137 || (expr_type->is_unsafe_pointer_type()
12138 && this->type_->points_to() != NULL))
12139 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12140 else if (expr_type->is_unsafe_pointer_type()
12141 && this->type_->integer_type() != NULL)
12142 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12143 else if (this->type_->interface_type() != NULL)
12144 return Expression::convert_interface_to_interface(context, this->type_,
12145 this->expr_->type(),
12146 expr_tree, true,
12147 this->location());
12148 else
12149 return Expression::convert_for_assignment(context, this->type_,
12150 this->expr_->type(), expr_tree,
12151 this->location());
12152}
12153
12154// Make a type guard expression.
12155
12156Expression*
12157Expression::make_type_guard(Expression* expr, Type* type,
12158 source_location location)
12159{
12160 return new Type_guard_expression(expr, type, location);
12161}
12162
12163// Class Heap_composite_expression.
12164
12165// When you take the address of a composite literal, it is allocated
12166// on the heap. This class implements that.
12167
12168class Heap_composite_expression : public Expression
12169{
12170 public:
12171 Heap_composite_expression(Expression* expr, source_location location)
12172 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12173 expr_(expr)
12174 { }
12175
12176 protected:
12177 int
12178 do_traverse(Traverse* traverse)
12179 { return Expression::traverse(&this->expr_, traverse); }
12180
12181 Type*
12182 do_type()
12183 { return Type::make_pointer_type(this->expr_->type()); }
12184
12185 void
12186 do_determine_type(const Type_context*)
12187 { this->expr_->determine_type_no_context(); }
12188
12189 Expression*
12190 do_copy()
12191 {
12192 return Expression::make_heap_composite(this->expr_->copy(),
12193 this->location());
12194 }
12195
12196 tree
12197 do_get_tree(Translate_context*);
12198
12199 // We only export global objects, and the parser does not generate
12200 // this in global scope.
12201 void
12202 do_export(Export*) const
12203 { gcc_unreachable(); }
12204
12205 private:
12206 // The composite literal which is being put on the heap.
12207 Expression* expr_;
12208};
12209
12210// Return a tree which allocates a composite literal on the heap.
12211
12212tree
12213Heap_composite_expression::do_get_tree(Translate_context* context)
12214{
12215 tree expr_tree = this->expr_->get_tree(context);
12216 if (expr_tree == error_mark_node)
12217 return error_mark_node;
12218 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12219 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12220 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12221 expr_size, this->location());
12222 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12223 space = save_expr(space);
12224 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12225 TREE_THIS_NOTRAP(ref) = 1;
12226 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12227 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12228 space);
12229 SET_EXPR_LOCATION(ret, this->location());
12230 return ret;
12231}
12232
12233// Allocate a composite literal on the heap.
12234
12235Expression*
12236Expression::make_heap_composite(Expression* expr, source_location location)
12237{
12238 return new Heap_composite_expression(expr, location);
12239}
12240
12241// Class Receive_expression.
12242
12243// Return the type of a receive expression.
12244
12245Type*
12246Receive_expression::do_type()
12247{
12248 Channel_type* channel_type = this->channel_->type()->channel_type();
12249 if (channel_type == NULL)
12250 return Type::make_error_type();
12251 return channel_type->element_type();
12252}
12253
12254// Check types for a receive expression.
12255
12256void
12257Receive_expression::do_check_types(Gogo*)
12258{
12259 Type* type = this->channel_->type();
12260 if (type->is_error_type())
12261 {
12262 this->set_is_error();
12263 return;
12264 }
12265 if (type->channel_type() == NULL)
12266 {
12267 this->report_error(_("expected channel"));
12268 return;
12269 }
12270 if (!type->channel_type()->may_receive())
12271 {
12272 this->report_error(_("invalid receive on send-only channel"));
12273 return;
12274 }
12275}
12276
12277// Get a tree for a receive expression.
12278
12279tree
12280Receive_expression::do_get_tree(Translate_context* context)
12281{
12282 Channel_type* channel_type = this->channel_->type()->channel_type();
5b8368f4 12283 if (channel_type == NULL)
12284 {
12285 gcc_assert(this->channel_->type()->is_error_type());
12286 return error_mark_node;
12287 }
e440a328 12288 Type* element_type = channel_type->element_type();
12289 tree element_type_tree = element_type->get_tree(context->gogo());
12290
12291 tree channel = this->channel_->get_tree(context);
12292 if (element_type_tree == error_mark_node || channel == error_mark_node)
12293 return error_mark_node;
12294
12295 return Gogo::receive_from_channel(element_type_tree, channel,
12296 this->for_select_, this->location());
12297}
12298
12299// Make a receive expression.
12300
12301Receive_expression*
12302Expression::make_receive(Expression* channel, source_location location)
12303{
12304 return new Receive_expression(channel, location);
12305}
12306
12307// Class Send_expression.
12308
12309// Traversal.
12310
12311int
12312Send_expression::do_traverse(Traverse* traverse)
12313{
12314 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12315 return TRAVERSE_EXIT;
12316 return Expression::traverse(&this->val_, traverse);
12317}
12318
12319// Get the type.
12320
12321Type*
12322Send_expression::do_type()
12323{
ee041e33 12324 if (this->is_value_discarded_)
12325 return Type::make_void_type();
12326 else
12327 return Type::lookup_bool_type();
e440a328 12328}
12329
12330// Set types.
12331
12332void
12333Send_expression::do_determine_type(const Type_context*)
12334{
12335 this->channel_->determine_type_no_context();
12336
12337 Type* type = this->channel_->type();
12338 Type_context subcontext;
12339 if (type->channel_type() != NULL)
12340 subcontext.type = type->channel_type()->element_type();
12341 this->val_->determine_type(&subcontext);
12342}
12343
12344// Check types.
12345
12346void
12347Send_expression::do_check_types(Gogo*)
12348{
12349 Type* type = this->channel_->type();
12350 if (type->is_error_type())
12351 {
12352 this->set_is_error();
12353 return;
12354 }
12355 Channel_type* channel_type = type->channel_type();
12356 if (channel_type == NULL)
12357 {
12358 error_at(this->location(), "left operand of %<<-%> must be channel");
12359 this->set_is_error();
12360 return;
12361 }
12362 Type* element_type = channel_type->element_type();
12363 if (element_type != NULL
12364 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12365 {
12366 this->report_error(_("incompatible types in send"));
12367 return;
12368 }
12369 if (!channel_type->may_send())
12370 {
12371 this->report_error(_("invalid send on receive-only channel"));
12372 return;
12373 }
12374}
12375
12376// Get a tree for a send expression.
12377
12378tree
12379Send_expression::do_get_tree(Translate_context* context)
12380{
12381 tree channel = this->channel_->get_tree(context);
12382 tree val = this->val_->get_tree(context);
12383 if (channel == error_mark_node || val == error_mark_node)
12384 return error_mark_node;
12385 Channel_type* channel_type = this->channel_->type()->channel_type();
12386 val = Expression::convert_for_assignment(context,
12387 channel_type->element_type(),
12388 this->val_->type(),
12389 val,
12390 this->location());
12391 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12392 this->for_select_, this->location());
12393}
12394
12395// Make a send expression
12396
12397Send_expression*
12398Expression::make_send(Expression* channel, Expression* val,
12399 source_location location)
12400{
12401 return new Send_expression(channel, val, location);
12402}
12403
12404// An expression which evaluates to a pointer to the type descriptor
12405// of a type.
12406
12407class Type_descriptor_expression : public Expression
12408{
12409 public:
12410 Type_descriptor_expression(Type* type, source_location location)
12411 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12412 type_(type)
12413 { }
12414
12415 protected:
12416 Type*
12417 do_type()
12418 { return Type::make_type_descriptor_ptr_type(); }
12419
12420 void
12421 do_determine_type(const Type_context*)
12422 { }
12423
12424 Expression*
12425 do_copy()
12426 { return this; }
12427
12428 tree
12429 do_get_tree(Translate_context* context)
12430 { return this->type_->type_descriptor_pointer(context->gogo()); }
12431
12432 private:
12433 // The type for which this is the descriptor.
12434 Type* type_;
12435};
12436
12437// Make a type descriptor expression.
12438
12439Expression*
12440Expression::make_type_descriptor(Type* type, source_location location)
12441{
12442 return new Type_descriptor_expression(type, location);
12443}
12444
12445// An expression which evaluates to some characteristic of a type.
12446// This is only used to initialize fields of a type descriptor. Using
12447// a new expression class is slightly inefficient but gives us a good
12448// separation between the frontend and the middle-end with regard to
12449// how types are laid out.
12450
12451class Type_info_expression : public Expression
12452{
12453 public:
12454 Type_info_expression(Type* type, Type_info type_info)
12455 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12456 type_(type), type_info_(type_info)
12457 { }
12458
12459 protected:
12460 Type*
12461 do_type();
12462
12463 void
12464 do_determine_type(const Type_context*)
12465 { }
12466
12467 Expression*
12468 do_copy()
12469 { return this; }
12470
12471 tree
12472 do_get_tree(Translate_context* context);
12473
12474 private:
12475 // The type for which we are getting information.
12476 Type* type_;
12477 // What information we want.
12478 Type_info type_info_;
12479};
12480
12481// The type is chosen to match what the type descriptor struct
12482// expects.
12483
12484Type*
12485Type_info_expression::do_type()
12486{
12487 switch (this->type_info_)
12488 {
12489 case TYPE_INFO_SIZE:
12490 return Type::lookup_integer_type("uintptr");
12491 case TYPE_INFO_ALIGNMENT:
12492 case TYPE_INFO_FIELD_ALIGNMENT:
12493 return Type::lookup_integer_type("uint8");
12494 default:
12495 gcc_unreachable();
12496 }
12497}
12498
12499// Return type information in GENERIC.
12500
12501tree
12502Type_info_expression::do_get_tree(Translate_context* context)
12503{
12504 tree type_tree = this->type_->get_tree(context->gogo());
12505 if (type_tree == error_mark_node)
12506 return error_mark_node;
12507
12508 tree val_type_tree = this->type()->get_tree(context->gogo());
12509 gcc_assert(val_type_tree != error_mark_node);
12510
12511 if (this->type_info_ == TYPE_INFO_SIZE)
12512 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12513 TYPE_SIZE_UNIT(type_tree));
12514 else
12515 {
637bd3af 12516 unsigned int val;
e440a328 12517 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
637bd3af 12518 val = go_type_alignment(type_tree);
e440a328 12519 else
637bd3af 12520 val = go_field_alignment(type_tree);
e440a328 12521 return build_int_cstu(val_type_tree, val);
12522 }
12523}
12524
12525// Make a type info expression.
12526
12527Expression*
12528Expression::make_type_info(Type* type, Type_info type_info)
12529{
12530 return new Type_info_expression(type, type_info);
12531}
12532
12533// An expression which evaluates to the offset of a field within a
12534// struct. This, like Type_info_expression, q.v., is only used to
12535// initialize fields of a type descriptor.
12536
12537class Struct_field_offset_expression : public Expression
12538{
12539 public:
12540 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12541 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12542 type_(type), field_(field)
12543 { }
12544
12545 protected:
12546 Type*
12547 do_type()
12548 { return Type::lookup_integer_type("uintptr"); }
12549
12550 void
12551 do_determine_type(const Type_context*)
12552 { }
12553
12554 Expression*
12555 do_copy()
12556 { return this; }
12557
12558 tree
12559 do_get_tree(Translate_context* context);
12560
12561 private:
12562 // The type of the struct.
12563 Struct_type* type_;
12564 // The field.
12565 const Struct_field* field_;
12566};
12567
12568// Return a struct field offset in GENERIC.
12569
12570tree
12571Struct_field_offset_expression::do_get_tree(Translate_context* context)
12572{
12573 tree type_tree = this->type_->get_tree(context->gogo());
12574 if (type_tree == error_mark_node)
12575 return error_mark_node;
12576
12577 tree val_type_tree = this->type()->get_tree(context->gogo());
12578 gcc_assert(val_type_tree != error_mark_node);
12579
12580 const Struct_field_list* fields = this->type_->fields();
12581 tree struct_field_tree = TYPE_FIELDS(type_tree);
12582 Struct_field_list::const_iterator p;
12583 for (p = fields->begin();
12584 p != fields->end();
12585 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12586 {
12587 gcc_assert(struct_field_tree != NULL_TREE);
12588 if (&*p == this->field_)
12589 break;
12590 }
12591 gcc_assert(&*p == this->field_);
12592
12593 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12594 byte_position(struct_field_tree));
12595}
12596
12597// Make an expression for a struct field offset.
12598
12599Expression*
12600Expression::make_struct_field_offset(Struct_type* type,
12601 const Struct_field* field)
12602{
12603 return new Struct_field_offset_expression(type, field);
12604}
12605
12606// An expression which evaluates to the address of an unnamed label.
12607
12608class Label_addr_expression : public Expression
12609{
12610 public:
12611 Label_addr_expression(Label* label, source_location location)
12612 : Expression(EXPRESSION_LABEL_ADDR, location),
12613 label_(label)
12614 { }
12615
12616 protected:
12617 Type*
12618 do_type()
12619 { return Type::make_pointer_type(Type::make_void_type()); }
12620
12621 void
12622 do_determine_type(const Type_context*)
12623 { }
12624
12625 Expression*
12626 do_copy()
12627 { return new Label_addr_expression(this->label_, this->location()); }
12628
12629 tree
12630 do_get_tree(Translate_context*)
12631 { return this->label_->get_addr(this->location()); }
12632
12633 private:
12634 // The label whose address we are taking.
12635 Label* label_;
12636};
12637
12638// Make an expression for the address of an unnamed label.
12639
12640Expression*
12641Expression::make_label_addr(Label* label, source_location location)
12642{
12643 return new Label_addr_expression(label, location);
12644}
12645
12646// Import an expression. This comes at the end in order to see the
12647// various class definitions.
12648
12649Expression*
12650Expression::import_expression(Import* imp)
12651{
12652 int c = imp->peek_char();
12653 if (imp->match_c_string("- ")
12654 || imp->match_c_string("! ")
12655 || imp->match_c_string("^ "))
12656 return Unary_expression::do_import(imp);
12657 else if (c == '(')
12658 return Binary_expression::do_import(imp);
12659 else if (imp->match_c_string("true")
12660 || imp->match_c_string("false"))
12661 return Boolean_expression::do_import(imp);
12662 else if (c == '"')
12663 return String_expression::do_import(imp);
12664 else if (c == '-' || (c >= '0' && c <= '9'))
12665 {
12666 // This handles integers, floats and complex constants.
12667 return Integer_expression::do_import(imp);
12668 }
12669 else if (imp->match_c_string("nil"))
12670 return Nil_expression::do_import(imp);
12671 else if (imp->match_c_string("convert"))
12672 return Type_conversion_expression::do_import(imp);
12673 else
12674 {
12675 error_at(imp->location(), "import error: expected expression");
12676 return Expression::make_error(imp->location());
12677 }
12678}
12679
12680// Class Expression_list.
12681
12682// Traverse the list.
12683
12684int
12685Expression_list::traverse(Traverse* traverse)
12686{
12687 for (Expression_list::iterator p = this->begin();
12688 p != this->end();
12689 ++p)
12690 {
12691 if (*p != NULL)
12692 {
12693 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12694 return TRAVERSE_EXIT;
12695 }
12696 }
12697 return TRAVERSE_CONTINUE;
12698}
12699
12700// Copy the list.
12701
12702Expression_list*
12703Expression_list::copy()
12704{
12705 Expression_list* ret = new Expression_list();
12706 for (Expression_list::iterator p = this->begin();
12707 p != this->end();
12708 ++p)
12709 {
12710 if (*p == NULL)
12711 ret->push_back(NULL);
12712 else
12713 ret->push_back((*p)->copy());
12714 }
12715 return ret;
12716}
12717
12718// Return whether an expression list has an error expression.
12719
12720bool
12721Expression_list::contains_error() const
12722{
12723 for (Expression_list::const_iterator p = this->begin();
12724 p != this->end();
12725 ++p)
12726 if (*p != NULL && (*p)->is_error_expression())
12727 return true;
12728 return false;
12729}