]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/hash-table.h
* doc/extend.texi (Common Function Attributes): Clarify
[thirdparty/gcc.git] / gcc / hash-table.h
CommitLineData
2b15d2ba 1/* A type-safe hash table template.
fbd26352 2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
2b15d2ba 3 Contributed by Lawrence Crowl <crowl@google.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21
22/* This file implements a typed hash table.
c580da87 23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
3445be6e 40 (or 'const value_type &') and returns a hashval_t value.
c580da87 41
3445be6e 42 - A typedef named 'compare_type' that is used to test when a value
c580da87 43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
3445be6e 48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
c580da87 50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
99378011 56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
c580da87 66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
3445be6e 72 parameterized on the value type. It provides two functions:
c580da87 73
c580da87 74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
eae1ecb4 95 hash-traits.h provides class templates for the four most common
b594087e 96 policies:
c580da87 97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
b594087e 104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
eae1ecb4 109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
c580da87 116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
3445be6e 124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
c580da87 127
3445be6e 128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
c580da87 134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
770ff93b 140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
c580da87 142 // nothing. This choice is good for raw values.
143 {
c580da87 144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
47ae02b7 166 You can then use any of the functions in hash_table's public interface.
c580da87 167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
067e9a50 170 If a hash table is used only in some rare cases, it is possible
171 to construct the hash_table lazily before first use. This is done
172 through:
173
174 hash_table <some_type_hasher, true> some_type_hash_table;
175
176 which will cause whatever methods actually need the allocated entries
177 array to allocate it later.
178
c580da87 179
180 EASY DESCRIPTORS FOR POINTERS
181
3445be6e 182 There are four descriptors for pointer elements, one for each of
183 the removal policies above:
184
185 * nofree_ptr_hash (based on typed_noop_remove)
186 * free_ptr_hash (based on typed_free_remove)
187 * ggc_ptr_hash (based on ggc_remove)
188 * ggc_cache_ptr_hash (based on ggc_cache_remove)
189
190 These descriptors hash and compare elements by their pointer value,
191 rather than what they point to. So, to instantiate a hash table over
192 pointers to whatever_type, without freeing the whatever_types, use:
c580da87 193
3445be6e 194 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
c580da87 195
3e871d4d 196
197 HASH TABLE ITERATORS
198
199 The hash table provides standard C++ iterators. For example, consider a
200 hash table of some_info. We wish to consume each element of the table:
201
202 extern void consume (some_info *);
203
204 We define a convenience typedef and the hash table:
205
206 typedef hash_table <some_info_hasher> info_table_type;
207 info_table_type info_table;
208
209 Then we write the loop in typical C++ style:
210
211 for (info_table_type::iterator iter = info_table.begin ();
212 iter != info_table.end ();
213 ++iter)
214 if ((*iter).status == INFO_READY)
215 consume (&*iter);
216
217 Or with common sub-expression elimination:
218
219 for (info_table_type::iterator iter = info_table.begin ();
220 iter != info_table.end ();
221 ++iter)
222 {
223 some_info &elem = *iter;
224 if (elem.status == INFO_READY)
225 consume (&elem);
226 }
227
228 One can also use a more typical GCC style:
229
230 typedef some_info *some_info_p;
231 some_info *elem_ptr;
232 info_table_type::iterator iter;
233 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
234 if (elem_ptr->status == INFO_READY)
235 consume (elem_ptr);
236
c580da87 237*/
2b15d2ba 238
239
240#ifndef TYPED_HASHTAB_H
241#define TYPED_HASHTAB_H
242
64486212 243#include "statistics.h"
8f359205 244#include "ggc.h"
64486212 245#include "vec.h"
2b15d2ba 246#include "hashtab.h"
64486212 247#include "inchash.h"
0ff42de5 248#include "mem-stats-traits.h"
142dd62a 249#include "hash-traits.h"
64486212 250#include "hash-map-traits.h"
2b15d2ba 251
8f359205 252template<typename, typename, typename> class hash_map;
067e9a50 253template<typename, bool, typename> class hash_set;
2b15d2ba 254
255/* The ordinary memory allocator. */
256/* FIXME (crowl): This allocator may be extracted for wider sharing later. */
257
258template <typename Type>
259struct xcallocator
260{
2b15d2ba 261 static Type *data_alloc (size_t count);
2b15d2ba 262 static void data_free (Type *memory);
263};
264
265
c580da87 266/* Allocate memory for COUNT data blocks. */
2b15d2ba 267
268template <typename Type>
269inline Type *
270xcallocator <Type>::data_alloc (size_t count)
271{
272 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
273}
274
275
2b15d2ba 276/* Free memory for data blocks. */
277
278template <typename Type>
279inline void
280xcallocator <Type>::data_free (Type *memory)
281{
282 return ::free (memory);
283}
284
285
2b15d2ba 286/* Table of primes and their inversion information. */
287
288struct prime_ent
289{
290 hashval_t prime;
291 hashval_t inv;
292 hashval_t inv_m2; /* inverse of prime-2 */
293 hashval_t shift;
294};
295
296extern struct prime_ent const prime_tab[];
297
c2880a00 298/* Limit number of comparisons when calling hash_table<>::verify. */
299extern unsigned int hash_table_sanitize_eq_limit;
2b15d2ba 300
301/* Functions for computing hash table indexes. */
302
e2afa5c1 303extern unsigned int hash_table_higher_prime_index (unsigned long n)
304 ATTRIBUTE_PURE;
305
306/* Return X % Y using multiplicative inverse values INV and SHIFT.
307
308 The multiplicative inverses computed above are for 32-bit types,
309 and requires that we be able to compute a highpart multiply.
310
311 FIX: I am not at all convinced that
312 3 loads, 2 multiplications, 3 shifts, and 3 additions
313 will be faster than
314 1 load and 1 modulus
315 on modern systems running a compiler. */
316
317inline hashval_t
318mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
319{
320 hashval_t t1, t2, t3, t4, q, r;
321
322 t1 = ((uint64_t)x * inv) >> 32;
323 t2 = x - t1;
324 t3 = t2 >> 1;
325 t4 = t1 + t3;
326 q = t4 >> shift;
327 r = x - (q * y);
328
329 return r;
330}
331
332/* Compute the primary table index for HASH given current prime index. */
333
334inline hashval_t
335hash_table_mod1 (hashval_t hash, unsigned int index)
336{
337 const struct prime_ent *p = &prime_tab[index];
338 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
3fd918e6 339 return mul_mod (hash, p->prime, p->inv, p->shift);
e2afa5c1 340}
341
342/* Compute the secondary table index for HASH given current prime index. */
343
344inline hashval_t
345hash_table_mod2 (hashval_t hash, unsigned int index)
346{
347 const struct prime_ent *p = &prime_tab[index];
348 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
349 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
350}
2b15d2ba 351
0ff42de5 352class mem_usage;
353
2b15d2ba 354/* User-facing hash table type.
355
3445be6e 356 The table stores elements of type Descriptor::value_type and uses
357 the static descriptor functions described at the top of the file
358 to hash, compare and remove elements.
2b15d2ba 359
c580da87 360 Specify the template Allocator to allocate and free memory.
2b15d2ba 361 The default is xcallocator.
362
2933f7af 363 Storage is an implementation detail and should not be used outside the
364 hash table code.
365
2b15d2ba 366*/
067e9a50 367template <typename Descriptor, bool Lazy = false,
368 template<typename Type> class Allocator = xcallocator>
2b15d2ba 369class hash_table
2933f7af 370{
371 typedef typename Descriptor::value_type value_type;
372 typedef typename Descriptor::compare_type compare_type;
373
374public:
e3343fd6 375 explicit hash_table (size_t, bool ggc = false,
c2880a00 376 bool sanitize_eq_and_hash = true,
e3343fd6 377 bool gather_mem_stats = GATHER_STATISTICS,
a80feb6c 378 mem_alloc_origin origin = HASH_TABLE_ORIGIN
0ff42de5 379 CXX_MEM_STAT_INFO);
3404c48b 380 explicit hash_table (const hash_table &, bool ggc = false,
c2880a00 381 bool sanitize_eq_and_hash = true,
3404c48b 382 bool gather_mem_stats = GATHER_STATISTICS,
383 mem_alloc_origin origin = HASH_TABLE_ORIGIN
384 CXX_MEM_STAT_INFO);
2933f7af 385 ~hash_table ();
386
2ef51f0e 387 /* Create a hash_table in gc memory. */
2ef51f0e 388 static hash_table *
64940dfc 389 create_ggc (size_t n, bool sanitize_eq_and_hash = true CXX_MEM_STAT_INFO)
2ef51f0e 390 {
391 hash_table *table = ggc_alloc<hash_table> ();
64940dfc 392 new (table) hash_table (n, true, sanitize_eq_and_hash, GATHER_STATISTICS,
e3343fd6 393 HASH_TABLE_ORIGIN PASS_MEM_STAT);
2ef51f0e 394 return table;
395 }
396
2933f7af 397 /* Current size (in entries) of the hash table. */
398 size_t size () const { return m_size; }
399
400 /* Return the current number of elements in this hash table. */
401 size_t elements () const { return m_n_elements - m_n_deleted; }
402
403 /* Return the current number of elements in this hash table. */
404 size_t elements_with_deleted () const { return m_n_elements; }
405
a94ab168 406 /* This function clears all entries in this hash table. */
407 void empty () { if (elements ()) empty_slow (); }
2933f7af 408
9a78b979 409 /* Return true when there are no elements in this hash table. */
410 bool is_empty () const { return elements () == 0; }
411
2933f7af 412 /* This function clears a specified SLOT in a hash table. It is
413 useful when you've already done the lookup and don't want to do it
414 again. */
2933f7af 415 void clear_slot (value_type *);
416
417 /* This function searches for a hash table entry equal to the given
418 COMPARABLE element starting with the given HASH value. It cannot
419 be used to insert or delete an element. */
420 value_type &find_with_hash (const compare_type &, hashval_t);
421
3445be6e 422 /* Like find_slot_with_hash, but compute the hash value from the element. */
2933f7af 423 value_type &find (const value_type &value)
424 {
425 return find_with_hash (value, Descriptor::hash (value));
426 }
427
428 value_type *find_slot (const value_type &value, insert_option insert)
429 {
430 return find_slot_with_hash (value, Descriptor::hash (value), insert);
431 }
432
433 /* This function searches for a hash table slot containing an entry
434 equal to the given COMPARABLE element and starting with the given
435 HASH. To delete an entry, call this with insert=NO_INSERT, then
436 call clear_slot on the slot returned (possibly after doing some
437 checks). To insert an entry, call this with insert=INSERT, then
438 write the value you want into the returned slot. When inserting an
439 entry, NULL may be returned if memory allocation fails. */
440 value_type *find_slot_with_hash (const compare_type &comparable,
067e9a50 441 hashval_t hash, enum insert_option insert);
2933f7af 442
443 /* This function deletes an element with the given COMPARABLE value
444 from hash table starting with the given HASH. If there is no
445 matching element in the hash table, this function does nothing. */
446 void remove_elt_with_hash (const compare_type &, hashval_t);
447
3445be6e 448 /* Like remove_elt_with_hash, but compute the hash value from the
449 element. */
2933f7af 450 void remove_elt (const value_type &value)
451 {
452 remove_elt_with_hash (value, Descriptor::hash (value));
453 }
454
455 /* This function scans over the entire hash table calling CALLBACK for
456 each live entry. If CALLBACK returns false, the iteration stops.
457 ARGUMENT is passed as CALLBACK's second argument. */
458 template <typename Argument,
459 int (*Callback) (value_type *slot, Argument argument)>
460 void traverse_noresize (Argument argument);
461
462 /* Like traverse_noresize, but does resize the table when it is too empty
463 to improve effectivity of subsequent calls. */
464 template <typename Argument,
465 int (*Callback) (value_type *slot, Argument argument)>
466 void traverse (Argument argument);
467
468 class iterator
469 {
470 public:
471 iterator () : m_slot (NULL), m_limit (NULL) {}
472
473 iterator (value_type *slot, value_type *limit) :
474 m_slot (slot), m_limit (limit) {}
475
476 inline value_type &operator * () { return *m_slot; }
477 void slide ();
478 inline iterator &operator ++ ();
479 bool operator != (const iterator &other) const
480 {
481 return m_slot != other.m_slot || m_limit != other.m_limit;
482 }
483
484 private:
485 value_type *m_slot;
486 value_type *m_limit;
487 };
488
489 iterator begin () const
490 {
067e9a50 491 if (Lazy && m_entries == NULL)
492 return iterator ();
2933f7af 493 iterator iter (m_entries, m_entries + m_size);
494 iter.slide ();
495 return iter;
496 }
497
498 iterator end () const { return iterator (); }
499
500 double collisions () const
501 {
502 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
503 }
504
505private:
8f359205 506 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
507 template<typename T> friend void gt_pch_nx (hash_table<T> *);
2ef51f0e 508 template<typename T> friend void
509 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
510 template<typename T, typename U, typename V> friend void
511 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
067e9a50 512 template<typename T, typename U>
513 friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
2ef51f0e 514 template<typename T> friend void gt_pch_nx (hash_table<T> *,
515 gt_pointer_operator, void *);
2933f7af 516
99378011 517 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
518
a94ab168 519 void empty_slow ();
520
e7826ae1 521 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
2933f7af 522 value_type *find_empty_slot_for_expand (hashval_t);
c2880a00 523 void verify (const compare_type &comparable, hashval_t hash);
f0c3cf64 524 bool too_empty_p (unsigned int);
2933f7af 525 void expand ();
526 static bool is_deleted (value_type &v)
ac549b40 527 {
528 return Descriptor::is_deleted (v);
529 }
530
2933f7af 531 static bool is_empty (value_type &v)
ac549b40 532 {
533 return Descriptor::is_empty (v);
534 }
2933f7af 535
536 static void mark_deleted (value_type &v)
ac549b40 537 {
538 Descriptor::mark_deleted (v);
539 }
2933f7af 540
541 static void mark_empty (value_type &v)
ac549b40 542 {
543 Descriptor::mark_empty (v);
544 }
2933f7af 545
546 /* Table itself. */
547 typename Descriptor::value_type *m_entries;
548
549 size_t m_size;
550
551 /* Current number of elements including also deleted elements. */
552 size_t m_n_elements;
553
554 /* Current number of deleted elements in the table. */
555 size_t m_n_deleted;
556
557 /* The following member is used for debugging. Its value is number
558 of all calls of `htab_find_slot' for the hash table. */
559 unsigned int m_searches;
560
561 /* The following member is used for debugging. Its value is number
562 of collisions fixed for time of work with the hash table. */
563 unsigned int m_collisions;
564
565 /* Current size (in entries) of the hash table, as an index into the
566 table of primes. */
567 unsigned int m_size_prime_index;
8f359205 568
569 /* if m_entries is stored in ggc memory. */
570 bool m_ggc;
0ff42de5 571
c2880a00 572 /* True if the table should be sanitized for equal and hash functions. */
573 bool m_sanitize_eq_and_hash;
574
0ff42de5 575 /* If we should gather memory statistics for the table. */
42ae70fa 576#if GATHER_STATISTICS
0ff42de5 577 bool m_gather_mem_stats;
42ae70fa 578#else
579 static const bool m_gather_mem_stats = false;
580#endif
2933f7af 581};
582
0ff42de5 583/* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
584 mem-stats.h after hash_table declaration. */
585
586#include "mem-stats.h"
587#include "hash-map.h"
0ff42de5 588
70e2fd2f 589extern mem_alloc_description<mem_usage>& hash_table_usage (void);
0ff42de5 590
591/* Support function for statistics. */
592extern void dump_hash_table_loc_statistics (void);
593
067e9a50 594template<typename Descriptor, bool Lazy,
595 template<typename Type> class Allocator>
596hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
c2880a00 597 bool sanitize_eq_and_hash,
42ae70fa 598 bool gather_mem_stats
599 ATTRIBUTE_UNUSED,
067e9a50 600 mem_alloc_origin origin
601 MEM_STAT_DECL) :
8f359205 602 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
c2880a00 603 m_ggc (ggc), m_sanitize_eq_and_hash (sanitize_eq_and_hash)
42ae70fa 604#if GATHER_STATISTICS
605 , m_gather_mem_stats (gather_mem_stats)
606#endif
2933f7af 607{
608 unsigned int size_prime_index;
609
610 size_prime_index = hash_table_higher_prime_index (size);
611 size = prime_tab[size_prime_index].prime;
612
0ff42de5 613 if (m_gather_mem_stats)
70e2fd2f 614 hash_table_usage ().register_descriptor (this, origin, ggc
067e9a50 615 FINAL_PASS_MEM_STAT);
0ff42de5 616
067e9a50 617 if (Lazy)
618 m_entries = NULL;
619 else
620 m_entries = alloc_entries (size PASS_MEM_STAT);
2933f7af 621 m_size = size;
622 m_size_prime_index = size_prime_index;
623}
624
067e9a50 625template<typename Descriptor, bool Lazy,
626 template<typename Type> class Allocator>
627hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
628 bool ggc,
c2880a00 629 bool sanitize_eq_and_hash,
42ae70fa 630 bool gather_mem_stats
631 ATTRIBUTE_UNUSED,
067e9a50 632 mem_alloc_origin origin
633 MEM_STAT_DECL) :
f8f37521 634 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
c2880a00 635 m_searches (0), m_collisions (0), m_ggc (ggc),
636 m_sanitize_eq_and_hash (sanitize_eq_and_hash)
42ae70fa 637#if GATHER_STATISTICS
638 , m_gather_mem_stats (gather_mem_stats)
639#endif
f8f37521 640{
641 size_t size = h.m_size;
642
643 if (m_gather_mem_stats)
70e2fd2f 644 hash_table_usage ().register_descriptor (this, origin, ggc
f8f37521 645 FINAL_PASS_MEM_STAT);
646
067e9a50 647 if (Lazy && h.m_entries == NULL)
648 m_entries = NULL;
649 else
f8f37521 650 {
067e9a50 651 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
652 for (size_t i = 0; i < size; ++i)
653 {
654 value_type &entry = h.m_entries[i];
655 if (is_deleted (entry))
656 mark_deleted (nentries[i]);
657 else if (!is_empty (entry))
658 nentries[i] = entry;
659 }
660 m_entries = nentries;
f8f37521 661 }
f8f37521 662 m_size = size;
663 m_size_prime_index = h.m_size_prime_index;
664}
665
067e9a50 666template<typename Descriptor, bool Lazy,
667 template<typename Type> class Allocator>
668hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
2933f7af 669{
067e9a50 670 if (!Lazy || m_entries)
671 {
672 for (size_t i = m_size - 1; i < m_size; i--)
673 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
674 Descriptor::remove (m_entries[i]);
2933f7af 675
067e9a50 676 if (!m_ggc)
677 Allocator <value_type> ::data_free (m_entries);
678 else
679 ggc_free (m_entries);
bcc45766 680 if (m_gather_mem_stats)
681 hash_table_usage ().release_instance_overhead (this,
682 sizeof (value_type)
683 * m_size, true);
067e9a50 684 }
bcc45766 685 else if (m_gather_mem_stats)
686 hash_table_usage ().unregister_descriptor (this);
2933f7af 687}
688
74800550 689/* This function returns an array of empty hash table elements. */
690
067e9a50 691template<typename Descriptor, bool Lazy,
692 template<typename Type> class Allocator>
693inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
694hash_table<Descriptor, Lazy,
695 Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
74800550 696{
697 value_type *nentries;
698
0ff42de5 699 if (m_gather_mem_stats)
70e2fd2f 700 hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
0ff42de5 701
74800550 702 if (!m_ggc)
703 nentries = Allocator <value_type> ::data_alloc (n);
704 else
e7826ae1 705 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
74800550 706
707 gcc_assert (nentries != NULL);
708 for (size_t i = 0; i < n; i++)
709 mark_empty (nentries[i]);
710
711 return nentries;
712}
713
2933f7af 714/* Similar to find_slot, but without several unwanted side effects:
715 - Does not call equal when it finds an existing entry.
716 - Does not change the count of elements/searches/collisions in the
717 hash table.
718 This function also assumes there are no deleted entries in the table.
719 HASH is the hash value for the element to be inserted. */
720
067e9a50 721template<typename Descriptor, bool Lazy,
722 template<typename Type> class Allocator>
723typename hash_table<Descriptor, Lazy, Allocator>::value_type *
724hash_table<Descriptor, Lazy,
725 Allocator>::find_empty_slot_for_expand (hashval_t hash)
2933f7af 726{
727 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
728 size_t size = m_size;
729 value_type *slot = m_entries + index;
730 hashval_t hash2;
731
732 if (is_empty (*slot))
733 return slot;
e2afa5c1 734 gcc_checking_assert (!is_deleted (*slot));
2933f7af 735
736 hash2 = hash_table_mod2 (hash, m_size_prime_index);
737 for (;;)
738 {
739 index += hash2;
740 if (index >= size)
741 index -= size;
742
743 slot = m_entries + index;
744 if (is_empty (*slot))
745 return slot;
e2afa5c1 746 gcc_checking_assert (!is_deleted (*slot));
2933f7af 747 }
748}
749
f0c3cf64 750/* Return true if the current table is excessively big for ELTS elements. */
751
067e9a50 752template<typename Descriptor, bool Lazy,
753 template<typename Type> class Allocator>
f0c3cf64 754inline bool
067e9a50 755hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
f0c3cf64 756{
757 return elts * 8 < m_size && m_size > 32;
758}
759
2933f7af 760/* The following function changes size of memory allocated for the
761 entries and repeatedly inserts the table elements. The occupancy
762 of the table after the call will be about 50%. Naturally the hash
763 table must already exist. Remember also that the place of the
764 table entries is changed. If memory allocation fails, this function
765 will abort. */
766
067e9a50 767template<typename Descriptor, bool Lazy,
768 template<typename Type> class Allocator>
2933f7af 769void
067e9a50 770hash_table<Descriptor, Lazy, Allocator>::expand ()
2933f7af 771{
772 value_type *oentries = m_entries;
773 unsigned int oindex = m_size_prime_index;
774 size_t osize = size ();
775 value_type *olimit = oentries + osize;
776 size_t elts = elements ();
777
778 /* Resize only when table after removal of unused elements is either
779 too full or too empty. */
780 unsigned int nindex;
781 size_t nsize;
f0c3cf64 782 if (elts * 2 > osize || too_empty_p (elts))
2933f7af 783 {
784 nindex = hash_table_higher_prime_index (elts * 2);
785 nsize = prime_tab[nindex].prime;
786 }
787 else
788 {
789 nindex = oindex;
790 nsize = osize;
791 }
792
74800550 793 value_type *nentries = alloc_entries (nsize);
0ff42de5 794
795 if (m_gather_mem_stats)
70e2fd2f 796 hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
0ff42de5 797 * osize);
798
2933f7af 799 m_entries = nentries;
800 m_size = nsize;
801 m_size_prime_index = nindex;
802 m_n_elements -= m_n_deleted;
803 m_n_deleted = 0;
804
805 value_type *p = oentries;
806 do
807 {
808 value_type &x = *p;
809
810 if (!is_empty (x) && !is_deleted (x))
811 {
812 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
813
814 *q = x;
815 }
816
817 p++;
818 }
819 while (p < olimit);
820
8f359205 821 if (!m_ggc)
822 Allocator <value_type> ::data_free (oentries);
823 else
824 ggc_free (oentries);
2933f7af 825}
826
a94ab168 827/* Implements empty() in cases where it isn't a no-op. */
828
067e9a50 829template<typename Descriptor, bool Lazy,
830 template<typename Type> class Allocator>
2933f7af 831void
067e9a50 832hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
2933f7af 833{
834 size_t size = m_size;
f0c3cf64 835 size_t nsize = size;
2933f7af 836 value_type *entries = m_entries;
837 int i;
838
839 for (i = size - 1; i >= 0; i--)
840 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
841 Descriptor::remove (entries[i]);
842
843 /* Instead of clearing megabyte, downsize the table. */
f0c3cf64 844 if (size > 1024*1024 / sizeof (value_type))
845 nsize = 1024 / sizeof (value_type);
846 else if (too_empty_p (m_n_elements))
847 nsize = m_n_elements * 2;
848
849 if (nsize != size)
2933f7af 850 {
f0c3cf64 851 int nindex = hash_table_higher_prime_index (nsize);
2933f7af 852 int nsize = prime_tab[nindex].prime;
853
8f359205 854 if (!m_ggc)
74800550 855 Allocator <value_type> ::data_free (m_entries);
8f359205 856 else
74800550 857 ggc_free (m_entries);
8f359205 858
74800550 859 m_entries = alloc_entries (nsize);
2933f7af 860 m_size = nsize;
861 m_size_prime_index = nindex;
862 }
863 else
a324786b 864 {
e0573431 865#ifndef BROKEN_VALUE_INITIALIZATION
a324786b 866 for ( ; size; ++entries, --size)
867 *entries = value_type ();
e0573431 868#else
869 memset (entries, 0, size * sizeof (value_type));
870#endif
a324786b 871 }
2933f7af 872 m_n_deleted = 0;
873 m_n_elements = 0;
874}
875
876/* This function clears a specified SLOT in a hash table. It is
877 useful when you've already done the lookup and don't want to do it
878 again. */
879
067e9a50 880template<typename Descriptor, bool Lazy,
881 template<typename Type> class Allocator>
2933f7af 882void
067e9a50 883hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
2933f7af 884{
e2afa5c1 885 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
886 || is_empty (*slot) || is_deleted (*slot)));
2933f7af 887
888 Descriptor::remove (*slot);
889
890 mark_deleted (*slot);
891 m_n_deleted++;
892}
893
894/* This function searches for a hash table entry equal to the given
895 COMPARABLE element starting with the given HASH value. It cannot
896 be used to insert or delete an element. */
897
067e9a50 898template<typename Descriptor, bool Lazy,
899 template<typename Type> class Allocator>
900typename hash_table<Descriptor, Lazy, Allocator>::value_type &
901hash_table<Descriptor, Lazy, Allocator>
2933f7af 902::find_with_hash (const compare_type &comparable, hashval_t hash)
903{
904 m_searches++;
905 size_t size = m_size;
906 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
907
067e9a50 908 if (Lazy && m_entries == NULL)
909 m_entries = alloc_entries (size);
2933f7af 910 value_type *entry = &m_entries[index];
911 if (is_empty (*entry)
912 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
913 return *entry;
914
915 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
916 for (;;)
917 {
918 m_collisions++;
919 index += hash2;
920 if (index >= size)
921 index -= size;
922
923 entry = &m_entries[index];
924 if (is_empty (*entry)
925 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
c2880a00 926 {
927#if CHECKING_P
928 if (m_sanitize_eq_and_hash)
929 verify (comparable, hash);
930#endif
931 return *entry;
932 }
2933f7af 933 }
934}
935
936/* This function searches for a hash table slot containing an entry
937 equal to the given COMPARABLE element and starting with the given
938 HASH. To delete an entry, call this with insert=NO_INSERT, then
939 call clear_slot on the slot returned (possibly after doing some
940 checks). To insert an entry, call this with insert=INSERT, then
941 write the value you want into the returned slot. When inserting an
942 entry, NULL may be returned if memory allocation fails. */
943
067e9a50 944template<typename Descriptor, bool Lazy,
945 template<typename Type> class Allocator>
946typename hash_table<Descriptor, Lazy, Allocator>::value_type *
947hash_table<Descriptor, Lazy, Allocator>
2933f7af 948::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
949 enum insert_option insert)
950{
067e9a50 951 if (Lazy && m_entries == NULL)
952 {
953 if (insert == INSERT)
954 m_entries = alloc_entries (m_size);
955 else
956 return NULL;
957 }
2933f7af 958 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
959 expand ();
960
c2880a00 961#if CHECKING_P
962 if (m_sanitize_eq_and_hash)
963 verify (comparable, hash);
964#endif
2933f7af 965
c2880a00 966 m_searches++;
2933f7af 967 value_type *first_deleted_slot = NULL;
968 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
969 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
970 value_type *entry = &m_entries[index];
971 size_t size = m_size;
972 if (is_empty (*entry))
973 goto empty_entry;
974 else if (is_deleted (*entry))
975 first_deleted_slot = &m_entries[index];
976 else if (Descriptor::equal (*entry, comparable))
977 return &m_entries[index];
978
979 for (;;)
980 {
981 m_collisions++;
982 index += hash2;
983 if (index >= size)
984 index -= size;
985
986 entry = &m_entries[index];
987 if (is_empty (*entry))
988 goto empty_entry;
989 else if (is_deleted (*entry))
990 {
991 if (!first_deleted_slot)
992 first_deleted_slot = &m_entries[index];
993 }
994 else if (Descriptor::equal (*entry, comparable))
995 return &m_entries[index];
996 }
997
998 empty_entry:
999 if (insert == NO_INSERT)
1000 return NULL;
1001
1002 if (first_deleted_slot)
1003 {
1004 m_n_deleted--;
1005 mark_empty (*first_deleted_slot);
1006 return first_deleted_slot;
1007 }
1008
1009 m_n_elements++;
1010 return &m_entries[index];
1011}
1012
c2880a00 1013/* Report a hash table checking error. */
1014
1015ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1016static void
1017hashtab_chk_error ()
1018{
1019 fprintf (stderr, "hash table checking failed: "
1020 "equal operator returns true for a pair "
1021 "of values with a different hash value\n");
1022 gcc_unreachable ();
1023}
1024
1025/* Verify that all existing elements in th hash table which are
1026 equal to COMPARABLE have an equal HASH value provided as argument. */
1027
1028template<typename Descriptor, bool Lazy,
1029 template<typename Type> class Allocator>
1030void
1031hash_table<Descriptor, Lazy, Allocator>
1032::verify (const compare_type &comparable, hashval_t hash)
1033{
1034 for (size_t i = 0; i < MIN (hash_table_sanitize_eq_limit, m_size); i++)
1035 {
1036 value_type *entry = &m_entries[i];
1037 if (!is_empty (*entry) && !is_deleted (*entry)
1038 && hash != Descriptor::hash (*entry)
1039 && Descriptor::equal (*entry, comparable))
1040 hashtab_chk_error ();
1041 }
1042}
1043
2933f7af 1044/* This function deletes an element with the given COMPARABLE value
1045 from hash table starting with the given HASH. If there is no
1046 matching element in the hash table, this function does nothing. */
1047
067e9a50 1048template<typename Descriptor, bool Lazy,
1049 template<typename Type> class Allocator>
2933f7af 1050void
067e9a50 1051hash_table<Descriptor, Lazy, Allocator>
2933f7af 1052::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
1053{
1054 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
41a2340f 1055 if (slot == NULL)
2933f7af 1056 return;
1057
1058 Descriptor::remove (*slot);
1059
1060 mark_deleted (*slot);
1061 m_n_deleted++;
1062}
1063
1064/* This function scans over the entire hash table calling CALLBACK for
1065 each live entry. If CALLBACK returns false, the iteration stops.
1066 ARGUMENT is passed as CALLBACK's second argument. */
1067
067e9a50 1068template<typename Descriptor, bool Lazy,
2933f7af 1069 template<typename Type> class Allocator>
1070template<typename Argument,
067e9a50 1071 int (*Callback)
1072 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1073 Argument argument)>
2933f7af 1074void
067e9a50 1075hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
2933f7af 1076{
067e9a50 1077 if (Lazy && m_entries == NULL)
1078 return;
1079
2933f7af 1080 value_type *slot = m_entries;
1081 value_type *limit = slot + size ();
1082
1083 do
1084 {
1085 value_type &x = *slot;
1086
1087 if (!is_empty (x) && !is_deleted (x))
1088 if (! Callback (slot, argument))
1089 break;
1090 }
1091 while (++slot < limit);
1092}
1093
1094/* Like traverse_noresize, but does resize the table when it is too empty
1095 to improve effectivity of subsequent calls. */
1096
067e9a50 1097template <typename Descriptor, bool Lazy,
2933f7af 1098 template <typename Type> class Allocator>
1099template <typename Argument,
9969c043 1100 int (*Callback)
067e9a50 1101 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1102 Argument argument)>
2933f7af 1103void
067e9a50 1104hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
2933f7af 1105{
067e9a50 1106 if (too_empty_p (elements ()) && (!Lazy || m_entries))
2933f7af 1107 expand ();
1108
1109 traverse_noresize <Argument, Callback> (argument);
1110}
1111
1112/* Slide down the iterator slots until an active entry is found. */
1113
067e9a50 1114template<typename Descriptor, bool Lazy,
1115 template<typename Type> class Allocator>
2933f7af 1116void
067e9a50 1117hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
2933f7af 1118{
1119 for ( ; m_slot < m_limit; ++m_slot )
1120 {
1121 value_type &x = *m_slot;
1122 if (!is_empty (x) && !is_deleted (x))
1123 return;
1124 }
1125 m_slot = NULL;
1126 m_limit = NULL;
1127}
1128
1129/* Bump the iterator. */
1130
067e9a50 1131template<typename Descriptor, bool Lazy,
1132 template<typename Type> class Allocator>
1133inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
1134hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
3e871d4d 1135{
ae84f584 1136 ++m_slot;
3e871d4d 1137 slide ();
1138 return *this;
1139}
1140
3e871d4d 1141
1142/* Iterate through the elements of hash_table HTAB,
1143 using hash_table <....>::iterator ITER,
f6d8a42a 1144 storing each element in RESULT, which is of type TYPE. */
3e871d4d 1145
1146#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1147 for ((ITER) = (HTAB).begin (); \
2933f7af 1148 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
3e871d4d 1149 ++(ITER))
1150
8f359205 1151/* ggc walking routines. */
1152
1153template<typename E>
1154static inline void
1155gt_ggc_mx (hash_table<E> *h)
1156{
1157 typedef hash_table<E> table;
1158
1159 if (!ggc_test_and_set_mark (h->m_entries))
1160 return;
1161
1162 for (size_t i = 0; i < h->m_size; i++)
1163 {
1164 if (table::is_empty (h->m_entries[i])
1165 || table::is_deleted (h->m_entries[i]))
1166 continue;
1167
8bcf9382 1168 /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1169 mark in gt_cleare_cache if appropriate. */
1170 E::ggc_maybe_mx (h->m_entries[i]);
8f359205 1171 }
1172}
1173
1174template<typename D>
1175static inline void
1176hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1177 void *cookie)
1178{
1179 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1180 gcc_checking_assert (map->m_entries == obj);
1181 for (size_t i = 0; i < map->m_size; i++)
1182 {
1183 typedef hash_table<D> table;
1184 if (table::is_empty (map->m_entries[i])
1185 || table::is_deleted (map->m_entries[i]))
1186 continue;
1187
1188 D::pch_nx (map->m_entries[i], op, cookie);
1189 }
1190}
1191
1192template<typename D>
1193static void
1194gt_pch_nx (hash_table<D> *h)
1195{
2ef51f0e 1196 bool success
e7246521 1197 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1198 gcc_checking_assert (success);
8f359205 1199 for (size_t i = 0; i < h->m_size; i++)
1200 {
1201 if (hash_table<D>::is_empty (h->m_entries[i])
1202 || hash_table<D>::is_deleted (h->m_entries[i]))
1203 continue;
1204
1205 D::pch_nx (h->m_entries[i]);
1206 }
1207}
1208
2ef51f0e 1209template<typename D>
1210static inline void
1211gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1212{
1213 op (&h->m_entries, cookie);
1214}
1215
f863a586 1216template<typename H>
1217inline void
1218gt_cleare_cache (hash_table<H> *h)
1219{
99378011 1220 typedef hash_table<H> table;
f863a586 1221 if (!h)
1222 return;
1223
99378011 1224 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1225 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1226 {
1227 int res = H::keep_cache_entry (*iter);
1228 if (res == 0)
1229 h->clear_slot (&*iter);
1230 else if (res != -1)
8bcf9382 1231 H::ggc_mx (*iter);
99378011 1232 }
f863a586 1233}
1234
2b15d2ba 1235#endif /* TYPED_HASHTAB_H */