]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/loop-iv.c
Update copyright years.
[thirdparty/gcc.git] / gcc / loop-iv.c
CommitLineData
50654f6c 1/* Rtl-level induction variable analysis.
7adcbafe 2 Copyright (C) 2004-2022 Free Software Foundation, Inc.
b8698a0f 3
50654f6c 4This file is part of GCC.
b8698a0f 5
50654f6c
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
50654f6c 9later version.
b8698a0f 10
50654f6c
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
50654f6c 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
50654f6c 19
03fd2215
ZD
20/* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
2b49e1a0
KZ
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
03fd2215
ZD
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
b8698a0f 37
3d88d1cd
RS
38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
03fd2215
ZD
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
3d88d1cd 46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
4bdf1e53 47 corresponding to expression EXPR evaluated at INSN. All registers used by
3d88d1cd 48 EXPR must also be used in INSN. MODE is the mode of EXPR.
6fb5fa3c 49*/
50654f6c
ZD
50
51#include "config.h"
52#include "system.h"
53#include "coretypes.h"
c7131fb2 54#include "backend.h"
50654f6c 55#include "rtl.h"
c7131fb2 56#include "df.h"
4d0cdd0c 57#include "memmodel.h"
957060b5
AM
58#include "emit-rtl.h"
59#include "diagnostic-core.h"
50654f6c 60#include "cfgloop.h"
f9cc1a70 61#include "intl.h"
7ee2468b 62#include "dumpfile.h"
4ca29add 63#include "rtl-iter.h"
ce3ad45c 64#include "tree-ssa-loop-niter.h"
5c64181d
RS
65#include "regs.h"
66#include "function-abi.h"
50654f6c 67
03fd2215 68/* Possible return values of iv_get_reaching_def. */
50654f6c 69
03fd2215 70enum iv_grd_result
50654f6c 71{
03fd2215
ZD
72 /* More than one reaching def, or reaching def that does not
73 dominate the use. */
74 GRD_INVALID,
50654f6c 75
03fd2215
ZD
76 /* The use is trivial invariant of the loop, i.e. is not changed
77 inside the loop. */
78 GRD_INVARIANT,
50654f6c 79
03fd2215
ZD
80 /* The use is reached by initial value and a value from the
81 previous iteration. */
82 GRD_MAYBE_BIV,
83
84 /* The use has single dominating def. */
85 GRD_SINGLE_DOM
86};
87
88/* Information about a biv. */
89
6c1dae73 90class biv_entry
03fd2215 91{
6c1dae73 92public:
03fd2215 93 unsigned regno; /* The register of the biv. */
99b1c316 94 class rtx_iv iv; /* Value of the biv. */
50654f6c
ZD
95};
96
6fb5fa3c
DB
97static bool clean_slate = true;
98
99static unsigned int iv_ref_table_size = 0;
100
101/* Table of rtx_ivs indexed by the df_ref uid field. */
99b1c316 102static class rtx_iv ** iv_ref_table;
6fb5fa3c 103
03fd2215 104/* Induction variable stored at the reference. */
c3284718
RS
105#define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
106#define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
50654f6c 107
03fd2215 108/* The current loop. */
50654f6c 109
99b1c316 110static class loop *current_loop;
50654f6c 111
4a8fb1a1
LC
112/* Hashtable helper. */
113
95fbe13e 114struct biv_entry_hasher : free_ptr_hash <biv_entry>
4a8fb1a1 115{
67f58944
TS
116 typedef rtx_def *compare_type;
117 static inline hashval_t hash (const biv_entry *);
118 static inline bool equal (const biv_entry *, const rtx_def *);
4a8fb1a1
LC
119};
120
121/* Returns hash value for biv B. */
122
123inline hashval_t
67f58944 124biv_entry_hasher::hash (const biv_entry *b)
4a8fb1a1
LC
125{
126 return b->regno;
127}
128
129/* Compares biv B and register R. */
130
131inline bool
67f58944 132biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
4a8fb1a1
LC
133{
134 return b->regno == REGNO (r);
135}
136
03fd2215 137/* Bivs of the current loop. */
50654f6c 138
c203e8a7 139static hash_table<biv_entry_hasher> *bivs;
50654f6c 140
99b1c316 141static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, class rtx_iv *);
50654f6c 142
1c1ad7bb
SB
143/* Return the RTX code corresponding to the IV extend code EXTEND. */
144static inline enum rtx_code
145iv_extend_to_rtx_code (enum iv_extend_code extend)
146{
147 switch (extend)
148 {
149 case IV_SIGN_EXTEND:
150 return SIGN_EXTEND;
151 case IV_ZERO_EXTEND:
152 return ZERO_EXTEND;
153 case IV_UNKNOWN_EXTEND:
154 return UNKNOWN;
155 }
156 gcc_unreachable ();
157}
158
50654f6c
ZD
159/* Dumps information about IV to FILE. */
160
99b1c316 161extern void dump_iv_info (FILE *, class rtx_iv *);
50654f6c 162void
99b1c316 163dump_iv_info (FILE *file, class rtx_iv *iv)
50654f6c
ZD
164{
165 if (!iv->base)
166 {
167 fprintf (file, "not simple");
168 return;
169 }
170
6797f908
ZD
171 if (iv->step == const0_rtx
172 && !iv->first_special)
173 fprintf (file, "invariant ");
50654f6c
ZD
174
175 print_rtl (file, iv->base);
6797f908
ZD
176 if (iv->step != const0_rtx)
177 {
178 fprintf (file, " + ");
179 print_rtl (file, iv->step);
180 fprintf (file, " * iteration");
181 }
50654f6c
ZD
182 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
183
184 if (iv->mode != iv->extend_mode)
185 fprintf (file, " %s to %s",
1c1ad7bb 186 rtx_name[iv_extend_to_rtx_code (iv->extend)],
50654f6c
ZD
187 GET_MODE_NAME (iv->extend_mode));
188
189 if (iv->mult != const1_rtx)
190 {
191 fprintf (file, " * ");
192 print_rtl (file, iv->mult);
193 }
194 if (iv->delta != const0_rtx)
195 {
196 fprintf (file, " + ");
197 print_rtl (file, iv->delta);
198 }
199 if (iv->first_special)
200 fprintf (file, " (first special)");
201}
202
b8698a0f 203static void
6fb5fa3c
DB
204check_iv_ref_table_size (void)
205{
c3284718 206 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
6fb5fa3c
DB
207 {
208 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
99b1c316 209 iv_ref_table = XRESIZEVEC (class rtx_iv *, iv_ref_table, new_size);
b8698a0f 210 memset (&iv_ref_table[iv_ref_table_size], 0,
99b1c316 211 (new_size - iv_ref_table_size) * sizeof (class rtx_iv *));
6fb5fa3c
DB
212 iv_ref_table_size = new_size;
213 }
214}
215
216
50654f6c
ZD
217/* Checks whether REG is a well-behaved register. */
218
219static bool
220simple_reg_p (rtx reg)
221{
222 unsigned r;
223
224 if (GET_CODE (reg) == SUBREG)
225 {
226 if (!subreg_lowpart_p (reg))
227 return false;
228 reg = SUBREG_REG (reg);
229 }
230
231 if (!REG_P (reg))
232 return false;
233
234 r = REGNO (reg);
235 if (HARD_REGISTER_NUM_P (r))
236 return false;
237
238 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
239 return false;
240
50654f6c
ZD
241 return true;
242}
243
03fd2215 244/* Clears the information about ivs stored in df. */
50654f6c 245
03fd2215
ZD
246static void
247clear_iv_info (void)
50654f6c 248{
6fb5fa3c 249 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
99b1c316 250 class rtx_iv *iv;
50654f6c 251
6fb5fa3c 252 check_iv_ref_table_size ();
03fd2215 253 for (i = 0; i < n_defs; i++)
50654f6c 254 {
6fb5fa3c
DB
255 iv = iv_ref_table[i];
256 if (iv)
257 {
258 free (iv);
259 iv_ref_table[i] = NULL;
260 }
50654f6c 261 }
50654f6c 262
c203e8a7 263 bivs->empty ();
50654f6c
ZD
264}
265
50654f6c
ZD
266
267/* Prepare the data for an induction variable analysis of a LOOP. */
268
269void
99b1c316 270iv_analysis_loop_init (class loop *loop)
50654f6c 271{
03fd2215 272 current_loop = loop;
50654f6c 273
03fd2215 274 /* Clear the information from the analysis of the previous loop. */
6fb5fa3c 275 if (clean_slate)
7faaba28 276 {
6fb5fa3c 277 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
c203e8a7 278 bivs = new hash_table<biv_entry_hasher> (10);
6fb5fa3c 279 clean_slate = false;
7faaba28
ZD
280 }
281 else
282 clear_iv_info ();
50654f6c 283
6fb5fa3c
DB
284 /* Get rid of the ud chains before processing the rescans. Then add
285 the problem back. */
286 df_remove_problem (df_chain);
287 df_process_deferred_rescans ();
7b19209f 288 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
6fb5fa3c 289 df_chain_add_problem (DF_UD_CHAIN);
c580edc8 290 df_note_add_problem ();
7be64667 291 df_analyze_loop (loop);
6fb5fa3c 292 if (dump_file)
ffd640ed 293 df_dump_region (dump_file);
6fb5fa3c
DB
294
295 check_iv_ref_table_size ();
50654f6c
ZD
296}
297
03fd2215
ZD
298/* Finds the definition of REG that dominates loop latch and stores
299 it to DEF. Returns false if there is not a single definition
7002f3bd 300 dominating the latch. If REG has no definition in loop, DEF
03fd2215 301 is set to NULL and true is returned. */
50654f6c 302
03fd2215 303static bool
57512f53 304latch_dominating_def (rtx reg, df_ref *def)
50654f6c 305{
57512f53 306 df_ref single_rd = NULL, adef;
7002f3bd 307 unsigned regno = REGNO (reg);
99b1c316 308 class df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
50654f6c 309
57512f53 310 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
50654f6c 311 {
57512f53 312 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
b33a91c9 313 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
03fd2215
ZD
314 continue;
315
7002f3bd 316 /* More than one reaching definition. */
03fd2215 317 if (single_rd)
7002f3bd
IZ
318 return false;
319
320 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
321 return false;
03fd2215
ZD
322
323 single_rd = adef;
50654f6c 324 }
50654f6c 325
03fd2215
ZD
326 *def = single_rd;
327 return true;
328}
50654f6c 329
03fd2215 330/* Gets definition of REG reaching its use in INSN and stores it to DEF. */
50654f6c 331
03fd2215 332static enum iv_grd_result
1b20d55a 333iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
03fd2215 334{
7002f3bd 335 df_ref use, adef;
03fd2215 336 basic_block def_bb, use_bb;
1b20d55a 337 rtx_insn *def_insn;
7002f3bd 338 bool dom_p;
b8698a0f 339
03fd2215
ZD
340 *def = NULL;
341 if (!simple_reg_p (reg))
342 return GRD_INVALID;
343 if (GET_CODE (reg) == SUBREG)
344 reg = SUBREG_REG (reg);
345 gcc_assert (REG_P (reg));
50654f6c 346
6fb5fa3c 347 use = df_find_use (insn, reg);
03fd2215 348 gcc_assert (use != NULL);
50654f6c 349
03fd2215
ZD
350 if (!DF_REF_CHAIN (use))
351 return GRD_INVARIANT;
50654f6c 352
7002f3bd 353 /* More than one reaching def. */
03fd2215 354 if (DF_REF_CHAIN (use)->next)
7002f3bd 355 return GRD_INVALID;
dfd3a76c 356
7002f3bd 357 adef = DF_REF_CHAIN (use)->ref;
6848da6a
ZD
358
359 /* We do not handle setting only part of the register. */
bc2a7ceb 360 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
6848da6a
ZD
361 return GRD_INVALID;
362
03fd2215
ZD
363 def_insn = DF_REF_INSN (adef);
364 def_bb = DF_REF_BB (adef);
365 use_bb = BLOCK_FOR_INSN (insn);
50654f6c 366
03fd2215 367 if (use_bb == def_bb)
6fb5fa3c 368 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
03fd2215
ZD
369 else
370 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
50654f6c 371
03fd2215
ZD
372 if (dom_p)
373 {
374 *def = adef;
375 return GRD_SINGLE_DOM;
50654f6c 376 }
03fd2215
ZD
377
378 /* The definition does not dominate the use. This is still OK if
379 this may be a use of a biv, i.e. if the def_bb dominates loop
7002f3bd
IZ
380 latch. */
381 if (just_once_each_iteration_p (current_loop, def_bb))
03fd2215
ZD
382 return GRD_MAYBE_BIV;
383
384 return GRD_INVALID;
50654f6c
ZD
385}
386
387/* Sets IV to invariant CST in MODE. Always returns true (just for
388 consistency with other iv manipulation functions that may fail). */
389
390static bool
99b1c316 391iv_constant (class rtx_iv *iv, scalar_int_mode mode, rtx cst)
50654f6c 392{
50654f6c
ZD
393 iv->mode = mode;
394 iv->base = cst;
395 iv->step = const0_rtx;
396 iv->first_special = false;
1c1ad7bb 397 iv->extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
398 iv->extend_mode = iv->mode;
399 iv->delta = const0_rtx;
400 iv->mult = const1_rtx;
401
402 return true;
403}
404
405/* Evaluates application of subreg to MODE on IV. */
406
407static bool
99b1c316 408iv_subreg (class rtx_iv *iv, scalar_int_mode mode)
50654f6c 409{
6797f908
ZD
410 /* If iv is invariant, just calculate the new value. */
411 if (iv->step == const0_rtx
412 && !iv->first_special)
413 {
414 rtx val = get_iv_value (iv, const0_rtx);
50fae5a6
JJ
415 val = lowpart_subreg (mode, val,
416 iv->extend == IV_UNKNOWN_EXTEND
417 ? iv->mode : iv->extend_mode);
6797f908
ZD
418
419 iv->base = val;
1c1ad7bb 420 iv->extend = IV_UNKNOWN_EXTEND;
6797f908
ZD
421 iv->mode = iv->extend_mode = mode;
422 iv->delta = const0_rtx;
423 iv->mult = const1_rtx;
424 return true;
425 }
426
50654f6c
ZD
427 if (iv->extend_mode == mode)
428 return true;
429
430 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
431 return false;
432
1c1ad7bb 433 iv->extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
434 iv->mode = mode;
435
436 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
437 simplify_gen_binary (MULT, iv->extend_mode,
438 iv->base, iv->mult));
439 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
440 iv->mult = const1_rtx;
441 iv->delta = const0_rtx;
442 iv->first_special = false;
443
444 return true;
445}
446
447/* Evaluates application of EXTEND to MODE on IV. */
448
449static bool
99b1c316 450iv_extend (class rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
50654f6c 451{
6797f908
ZD
452 /* If iv is invariant, just calculate the new value. */
453 if (iv->step == const0_rtx
454 && !iv->first_special)
455 {
456 rtx val = get_iv_value (iv, const0_rtx);
50fae5a6
JJ
457 if (iv->extend_mode != iv->mode
458 && iv->extend != IV_UNKNOWN_EXTEND
459 && iv->extend != extend)
460 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1c1ad7bb 461 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
50fae5a6
JJ
462 val,
463 iv->extend == extend
464 ? iv->extend_mode : iv->mode);
6797f908 465 iv->base = val;
1c1ad7bb 466 iv->extend = IV_UNKNOWN_EXTEND;
6797f908
ZD
467 iv->mode = iv->extend_mode = mode;
468 iv->delta = const0_rtx;
469 iv->mult = const1_rtx;
470 return true;
471 }
472
50654f6c
ZD
473 if (mode != iv->extend_mode)
474 return false;
475
1c1ad7bb 476 if (iv->extend != IV_UNKNOWN_EXTEND
50654f6c
ZD
477 && iv->extend != extend)
478 return false;
479
480 iv->extend = extend;
481
482 return true;
483}
484
485/* Evaluates negation of IV. */
486
487static bool
99b1c316 488iv_neg (class rtx_iv *iv)
50654f6c 489{
1c1ad7bb 490 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
491 {
492 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
493 iv->base, iv->extend_mode);
494 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
495 iv->step, iv->extend_mode);
496 }
497 else
498 {
499 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->delta, iv->extend_mode);
501 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
502 iv->mult, iv->extend_mode);
503 }
504
505 return true;
506}
507
508/* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
509
510static bool
99b1c316 511iv_add (class rtx_iv *iv0, class rtx_iv *iv1, enum rtx_code op)
50654f6c 512{
3d88d1cd 513 scalar_int_mode mode;
50654f6c
ZD
514 rtx arg;
515
a1105617 516 /* Extend the constant to extend_mode of the other operand if necessary. */
1c1ad7bb 517 if (iv0->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
518 && iv0->mode == iv0->extend_mode
519 && iv0->step == const0_rtx
520 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
521 {
522 iv0->extend_mode = iv1->extend_mode;
523 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
524 iv0->base, iv0->mode);
525 }
1c1ad7bb 526 if (iv1->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
527 && iv1->mode == iv1->extend_mode
528 && iv1->step == const0_rtx
529 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
530 {
531 iv1->extend_mode = iv0->extend_mode;
532 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
533 iv1->base, iv1->mode);
534 }
535
536 mode = iv0->extend_mode;
537 if (mode != iv1->extend_mode)
538 return false;
539
1c1ad7bb
SB
540 if (iv0->extend == IV_UNKNOWN_EXTEND
541 && iv1->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
542 {
543 if (iv0->mode != iv1->mode)
544 return false;
545
546 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
547 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
548
549 return true;
550 }
551
552 /* Handle addition of constant. */
1c1ad7bb 553 if (iv1->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
554 && iv1->mode == mode
555 && iv1->step == const0_rtx)
556 {
557 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
558 return true;
559 }
560
1c1ad7bb 561 if (iv0->extend == IV_UNKNOWN_EXTEND
50654f6c
ZD
562 && iv0->mode == mode
563 && iv0->step == const0_rtx)
564 {
565 arg = iv0->base;
566 *iv0 = *iv1;
567 if (op == MINUS
568 && !iv_neg (iv0))
569 return false;
570
571 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
572 return true;
573 }
574
575 return false;
576}
577
578/* Evaluates multiplication of IV by constant CST. */
579
580static bool
99b1c316 581iv_mult (class rtx_iv *iv, rtx mby)
50654f6c 582{
3d88d1cd 583 scalar_int_mode mode = iv->extend_mode;
50654f6c
ZD
584
585 if (GET_MODE (mby) != VOIDmode
586 && GET_MODE (mby) != mode)
587 return false;
588
1c1ad7bb 589 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
590 {
591 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
592 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
593 }
594 else
595 {
596 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
597 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
598 }
599
600 return true;
601}
602
abe0d774
RE
603/* Evaluates shift of IV by constant CST. */
604
605static bool
99b1c316 606iv_shift (class rtx_iv *iv, rtx mby)
abe0d774 607{
3d88d1cd 608 scalar_int_mode mode = iv->extend_mode;
abe0d774
RE
609
610 if (GET_MODE (mby) != VOIDmode
611 && GET_MODE (mby) != mode)
612 return false;
613
1c1ad7bb 614 if (iv->extend == IV_UNKNOWN_EXTEND)
abe0d774
RE
615 {
616 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
617 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
618 }
619 else
620 {
621 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
622 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
623 }
624
625 return true;
626}
627
50654f6c 628/* The recursive part of get_biv_step. Gets the value of the single value
03fd2215 629 defined by DEF wrto initial value of REG inside loop, in shape described
50654f6c
ZD
630 at get_biv_step. */
631
632static bool
3d88d1cd
RS
633get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
634 rtx *inner_step, scalar_int_mode *inner_mode,
635 enum iv_extend_code *extend,
50654f6c
ZD
636 rtx *outer_step)
637{
3c3f4b56 638 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
6b4db501 639 rtx next, nextr;
50654f6c 640 enum rtx_code code;
1b20d55a 641 rtx_insn *insn = DF_REF_INSN (def);
57512f53 642 df_ref next_def;
03fd2215 643 enum iv_grd_result res;
50654f6c
ZD
644
645 set = single_set (insn);
03fd2215
ZD
646 if (!set)
647 return false;
648
50654f6c 649 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
650 if (rhs)
651 rhs = XEXP (rhs, 0);
652 else
50654f6c 653 rhs = SET_SRC (set);
50654f6c
ZD
654
655 code = GET_CODE (rhs);
656 switch (code)
657 {
658 case SUBREG:
659 case REG:
660 next = rhs;
661 break;
662
663 case PLUS:
664 case MINUS:
665 op0 = XEXP (rhs, 0);
666 op1 = XEXP (rhs, 1);
667
668 if (code == PLUS && CONSTANT_P (op0))
6b4db501 669 std::swap (op0, op1);
50654f6c
ZD
670
671 if (!simple_reg_p (op0)
672 || !CONSTANT_P (op1))
673 return false;
674
675 if (GET_MODE (rhs) != outer_mode)
676 {
677 /* ppc64 uses expressions like
678
679 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
680
681 this is equivalent to
682
683 (set x':DI (plus:DI y:DI 1))
684 (set x:SI (subreg:SI (x':DI)). */
685 if (GET_CODE (op0) != SUBREG)
686 return false;
687 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
688 return false;
689 }
690
691 next = op0;
692 break;
693
694 case SIGN_EXTEND:
695 case ZERO_EXTEND:
696 if (GET_MODE (rhs) != outer_mode)
697 return false;
698
699 op0 = XEXP (rhs, 0);
700 if (!simple_reg_p (op0))
701 return false;
702
703 next = op0;
704 break;
705
706 default:
707 return false;
708 }
709
710 if (GET_CODE (next) == SUBREG)
711 {
712 if (!subreg_lowpart_p (next))
713 return false;
714
715 nextr = SUBREG_REG (next);
716 if (GET_MODE (nextr) != outer_mode)
717 return false;
718 }
719 else
720 nextr = next;
721
03fd2215
ZD
722 res = iv_get_reaching_def (insn, nextr, &next_def);
723
724 if (res == GRD_INVALID || res == GRD_INVARIANT)
50654f6c
ZD
725 return false;
726
03fd2215 727 if (res == GRD_MAYBE_BIV)
50654f6c
ZD
728 {
729 if (!rtx_equal_p (nextr, reg))
730 return false;
731
732 *inner_step = const0_rtx;
1c1ad7bb 733 *extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
734 *inner_mode = outer_mode;
735 *outer_step = const0_rtx;
736 }
3d88d1cd
RS
737 else if (!get_biv_step_1 (next_def, outer_mode, reg,
738 inner_step, inner_mode, extend,
50654f6c
ZD
739 outer_step))
740 return false;
741
742 if (GET_CODE (next) == SUBREG)
743 {
6b9c3dec
RS
744 scalar_int_mode amode;
745 if (!is_a <scalar_int_mode> (GET_MODE (next), &amode)
746 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
50654f6c
ZD
747 return false;
748
749 *inner_mode = amode;
750 *inner_step = simplify_gen_binary (PLUS, outer_mode,
751 *inner_step, *outer_step);
752 *outer_step = const0_rtx;
1c1ad7bb 753 *extend = IV_UNKNOWN_EXTEND;
50654f6c
ZD
754 }
755
756 switch (code)
757 {
758 case REG:
759 case SUBREG:
760 break;
761
762 case PLUS:
763 case MINUS:
764 if (*inner_mode == outer_mode
765 /* See comment in previous switch. */
766 || GET_MODE (rhs) != outer_mode)
767 *inner_step = simplify_gen_binary (code, outer_mode,
768 *inner_step, op1);
769 else
770 *outer_step = simplify_gen_binary (code, outer_mode,
771 *outer_step, op1);
772 break;
773
774 case SIGN_EXTEND:
775 case ZERO_EXTEND:
b5e624c6 776 gcc_assert (GET_MODE (op0) == *inner_mode
1c1ad7bb 777 && *extend == IV_UNKNOWN_EXTEND
b5e624c6 778 && *outer_step == const0_rtx);
50654f6c 779
1c1ad7bb 780 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
50654f6c
ZD
781 break;
782
783 default:
03fd2215 784 return false;
50654f6c
ZD
785 }
786
787 return true;
788}
789
790/* Gets the operation on register REG inside loop, in shape
791
792 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
793
03fd2215
ZD
794 If the operation cannot be described in this shape, return false.
795 LAST_DEF is the definition of REG that dominates loop latch. */
50654f6c
ZD
796
797static bool
3d88d1cd
RS
798get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
799 rtx *inner_step, scalar_int_mode *inner_mode,
800 enum iv_extend_code *extend, rtx *outer_step)
50654f6c 801{
3d88d1cd
RS
802 if (!get_biv_step_1 (last_def, outer_mode, reg,
803 inner_step, inner_mode, extend,
50654f6c
ZD
804 outer_step))
805 return false;
806
3d88d1cd
RS
807 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
808 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx);
50654f6c
ZD
809
810 return true;
811}
812
03fd2215
ZD
813/* Records information that DEF is induction variable IV. */
814
815static void
99b1c316 816record_iv (df_ref def, class rtx_iv *iv)
03fd2215 817{
99b1c316 818 class rtx_iv *recorded_iv = XNEW (class rtx_iv);
03fd2215
ZD
819
820 *recorded_iv = *iv;
6fb5fa3c 821 check_iv_ref_table_size ();
03fd2215
ZD
822 DF_REF_IV_SET (def, recorded_iv);
823}
824
825/* If DEF was already analyzed for bivness, store the description of the biv to
826 IV and return true. Otherwise return false. */
827
828static bool
99b1c316 829analyzed_for_bivness_p (rtx def, class rtx_iv *iv)
03fd2215 830{
99b1c316 831 class biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
03fd2215
ZD
832
833 if (!biv)
834 return false;
835
836 *iv = biv->iv;
837 return true;
838}
839
840static void
99b1c316 841record_biv (rtx def, class rtx_iv *iv)
03fd2215 842{
99b1c316 843 class biv_entry *biv = XNEW (class biv_entry);
c203e8a7 844 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
03fd2215
ZD
845
846 biv->regno = REGNO (def);
847 biv->iv = *iv;
848 gcc_assert (!*slot);
849 *slot = biv;
850}
851
50654f6c 852/* Determines whether DEF is a biv and if so, stores its description
3d88d1cd 853 to *IV. OUTER_MODE is the mode of DEF. */
50654f6c
ZD
854
855static bool
99b1c316 856iv_analyze_biv (scalar_int_mode outer_mode, rtx def, class rtx_iv *iv)
50654f6c 857{
50654f6c 858 rtx inner_step, outer_step;
3d88d1cd 859 scalar_int_mode inner_mode;
1c1ad7bb 860 enum iv_extend_code extend;
57512f53 861 df_ref last_def;
50654f6c 862
c263766c 863 if (dump_file)
50654f6c 864 {
cc9795d4 865 fprintf (dump_file, "Analyzing ");
c263766c
RH
866 print_rtl (dump_file, def);
867 fprintf (dump_file, " for bivness.\n");
50654f6c 868 }
b8698a0f 869
50654f6c
ZD
870 if (!REG_P (def))
871 {
872 if (!CONSTANT_P (def))
873 return false;
874
3d88d1cd 875 return iv_constant (iv, outer_mode, def);
50654f6c
ZD
876 }
877
03fd2215 878 if (!latch_dominating_def (def, &last_def))
50654f6c 879 {
c263766c
RH
880 if (dump_file)
881 fprintf (dump_file, " not simple.\n");
50654f6c
ZD
882 return false;
883 }
884
03fd2215 885 if (!last_def)
3d88d1cd 886 return iv_constant (iv, outer_mode, def);
03fd2215
ZD
887
888 if (analyzed_for_bivness_p (def, iv))
50654f6c 889 {
c263766c
RH
890 if (dump_file)
891 fprintf (dump_file, " already analysed.\n");
50654f6c
ZD
892 return iv->base != NULL_RTX;
893 }
894
3d88d1cd
RS
895 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
896 &extend, &outer_step))
50654f6c
ZD
897 {
898 iv->base = NULL_RTX;
899 goto end;
900 }
901
902 /* Loop transforms base to es (base + inner_step) + outer_step,
903 where es means extend of subreg between inner_mode and outer_mode.
904 The corresponding induction variable is
905
906 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
907
908 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
909 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
910 iv->mode = inner_mode;
911 iv->extend_mode = outer_mode;
912 iv->extend = extend;
913 iv->mult = const1_rtx;
914 iv->delta = outer_step;
915 iv->first_special = inner_mode != outer_mode;
916
c263766c
RH
917 end:
918 if (dump_file)
50654f6c 919 {
c263766c
RH
920 fprintf (dump_file, " ");
921 dump_iv_info (dump_file, iv);
922 fprintf (dump_file, "\n");
50654f6c
ZD
923 }
924
03fd2215 925 record_biv (def, iv);
50654f6c
ZD
926 return iv->base != NULL_RTX;
927}
928
b8698a0f 929/* Analyzes expression RHS used at INSN and stores the result to *IV.
03fd2215 930 The mode of the induction variable is MODE. */
50654f6c 931
03fd2215 932bool
3d88d1cd 933iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
99b1c316 934 class rtx_iv *iv)
50654f6c 935{
fab27f52 936 rtx mby = NULL_RTX;
03fd2215 937 rtx op0 = NULL_RTX, op1 = NULL_RTX;
99b1c316 938 class rtx_iv iv0, iv1;
03fd2215 939 enum rtx_code code = GET_CODE (rhs);
3d88d1cd 940 scalar_int_mode omode = mode;
50654f6c 941
03fd2215
ZD
942 iv->base = NULL_RTX;
943 iv->step = NULL_RTX;
50654f6c 944
03fd2215 945 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
50654f6c 946
03fd2215
ZD
947 if (CONSTANT_P (rhs)
948 || REG_P (rhs)
949 || code == SUBREG)
3d88d1cd 950 return iv_analyze_op (insn, mode, rhs, iv);
50654f6c 951
03fd2215 952 switch (code)
50654f6c 953 {
03fd2215
ZD
954 case REG:
955 op0 = rhs;
956 break;
50654f6c 957
03fd2215
ZD
958 case SIGN_EXTEND:
959 case ZERO_EXTEND:
960 case NEG:
961 op0 = XEXP (rhs, 0);
3d88d1cd
RS
962 /* We don't know how many bits there are in a sign-extended constant. */
963 if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode))
964 return false;
03fd2215
ZD
965 break;
966
967 case PLUS:
968 case MINUS:
969 op0 = XEXP (rhs, 0);
970 op1 = XEXP (rhs, 1);
971 break;
972
973 case MULT:
974 op0 = XEXP (rhs, 0);
975 mby = XEXP (rhs, 1);
976 if (!CONSTANT_P (mby))
fab27f52 977 std::swap (op0, mby);
03fd2215
ZD
978 if (!CONSTANT_P (mby))
979 return false;
980 break;
50654f6c 981
03fd2215
ZD
982 case ASHIFT:
983 op0 = XEXP (rhs, 0);
984 mby = XEXP (rhs, 1);
985 if (!CONSTANT_P (mby))
986 return false;
987 break;
988
989 default:
50654f6c
ZD
990 return false;
991 }
992
03fd2215 993 if (op0
3d88d1cd 994 && !iv_analyze_expr (insn, omode, op0, &iv0))
03fd2215 995 return false;
50654f6c 996
03fd2215 997 if (op1
3d88d1cd 998 && !iv_analyze_expr (insn, omode, op1, &iv1))
50654f6c
ZD
999 return false;
1000
03fd2215 1001 switch (code)
50654f6c 1002 {
03fd2215 1003 case SIGN_EXTEND:
1c1ad7bb
SB
1004 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1005 return false;
1006 break;
1007
03fd2215 1008 case ZERO_EXTEND:
1c1ad7bb 1009 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
03fd2215
ZD
1010 return false;
1011 break;
1012
1013 case NEG:
1014 if (!iv_neg (&iv0))
50654f6c 1015 return false;
03fd2215 1016 break;
50654f6c 1017
03fd2215
ZD
1018 case PLUS:
1019 case MINUS:
1020 if (!iv_add (&iv0, &iv1, code))
50654f6c 1021 return false;
03fd2215 1022 break;
50654f6c 1023
03fd2215
ZD
1024 case MULT:
1025 if (!iv_mult (&iv0, mby))
1026 return false;
1027 break;
1028
1029 case ASHIFT:
1030 if (!iv_shift (&iv0, mby))
1031 return false;
1032 break;
1033
1034 default:
1035 break;
50654f6c
ZD
1036 }
1037
03fd2215
ZD
1038 *iv = iv0;
1039 return iv->base != NULL_RTX;
1040}
1041
1042/* Analyzes iv DEF and stores the result to *IV. */
1043
1044static bool
99b1c316 1045iv_analyze_def (df_ref def, class rtx_iv *iv)
03fd2215 1046{
1b20d55a 1047 rtx_insn *insn = DF_REF_INSN (def);
03fd2215
ZD
1048 rtx reg = DF_REF_REG (def);
1049 rtx set, rhs;
50654f6c 1050
c263766c 1051 if (dump_file)
50654f6c 1052 {
4dad0aca 1053 fprintf (dump_file, "Analyzing def of ");
03fd2215 1054 print_rtl (dump_file, reg);
c263766c
RH
1055 fprintf (dump_file, " in insn ");
1056 print_rtl_single (dump_file, insn);
50654f6c 1057 }
b8698a0f 1058
6fb5fa3c 1059 check_iv_ref_table_size ();
03fd2215 1060 if (DF_REF_IV (def))
50654f6c 1061 {
c263766c
RH
1062 if (dump_file)
1063 fprintf (dump_file, " already analysed.\n");
03fd2215 1064 *iv = *DF_REF_IV (def);
50654f6c
ZD
1065 return iv->base != NULL_RTX;
1066 }
1067
50654f6c
ZD
1068 iv->base = NULL_RTX;
1069 iv->step = NULL_RTX;
1070
3d88d1cd
RS
1071 scalar_int_mode mode;
1072 if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode))
6fb5fa3c
DB
1073 return false;
1074
50654f6c 1075 set = single_set (insn);
6fb5fa3c
DB
1076 if (!set)
1077 return false;
1078
1079 if (!REG_P (SET_DEST (set)))
03fd2215
ZD
1080 return false;
1081
6fb5fa3c 1082 gcc_assert (SET_DEST (set) == reg);
50654f6c 1083 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
1084 if (rhs)
1085 rhs = XEXP (rhs, 0);
1086 else
50654f6c 1087 rhs = SET_SRC (set);
50654f6c 1088
3d88d1cd 1089 iv_analyze_expr (insn, mode, rhs, iv);
03fd2215
ZD
1090 record_iv (def, iv);
1091
1092 if (dump_file)
50654f6c 1093 {
03fd2215
ZD
1094 print_rtl (dump_file, reg);
1095 fprintf (dump_file, " in insn ");
1096 print_rtl_single (dump_file, insn);
1097 fprintf (dump_file, " is ");
1098 dump_iv_info (dump_file, iv);
1099 fprintf (dump_file, "\n");
50654f6c 1100 }
50654f6c 1101
03fd2215
ZD
1102 return iv->base != NULL_RTX;
1103}
50654f6c 1104
3d88d1cd
RS
1105/* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1106 mode of OP. */
50654f6c 1107
03fd2215 1108static bool
99b1c316 1109iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, class rtx_iv *iv)
03fd2215 1110{
57512f53 1111 df_ref def = NULL;
03fd2215 1112 enum iv_grd_result res;
abe0d774 1113
03fd2215
ZD
1114 if (dump_file)
1115 {
4dad0aca 1116 fprintf (dump_file, "Analyzing operand ");
03fd2215
ZD
1117 print_rtl (dump_file, op);
1118 fprintf (dump_file, " of insn ");
1119 print_rtl_single (dump_file, insn);
1120 }
abe0d774 1121
cdf1bf8b 1122 if (function_invariant_p (op))
03fd2215
ZD
1123 res = GRD_INVARIANT;
1124 else if (GET_CODE (op) == SUBREG)
1125 {
3d88d1cd
RS
1126 scalar_int_mode inner_mode;
1127 if (!subreg_lowpart_p (op)
1128 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode))
03fd2215 1129 return false;
50654f6c 1130
3d88d1cd 1131 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv))
03fd2215 1132 return false;
50654f6c 1133
3d88d1cd 1134 return iv_subreg (iv, mode);
03fd2215
ZD
1135 }
1136 else
50654f6c 1137 {
03fd2215
ZD
1138 res = iv_get_reaching_def (insn, op, &def);
1139 if (res == GRD_INVALID)
50654f6c 1140 {
03fd2215
ZD
1141 if (dump_file)
1142 fprintf (dump_file, " not simple.\n");
1143 return false;
50654f6c
ZD
1144 }
1145 }
1146
03fd2215 1147 if (res == GRD_INVARIANT)
50654f6c 1148 {
3d88d1cd 1149 iv_constant (iv, mode, op);
50654f6c 1150
03fd2215 1151 if (dump_file)
50654f6c 1152 {
03fd2215
ZD
1153 fprintf (dump_file, " ");
1154 dump_iv_info (dump_file, iv);
1155 fprintf (dump_file, "\n");
50654f6c 1156 }
03fd2215 1157 return true;
50654f6c
ZD
1158 }
1159
03fd2215 1160 if (res == GRD_MAYBE_BIV)
3d88d1cd 1161 return iv_analyze_biv (mode, op, iv);
50654f6c 1162
03fd2215
ZD
1163 return iv_analyze_def (def, iv);
1164}
50654f6c 1165
3d88d1cd
RS
1166/* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1167 mode of VAL. */
50654f6c 1168
03fd2215 1169bool
99b1c316 1170iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, class rtx_iv *iv)
03fd2215
ZD
1171{
1172 rtx reg;
50654f6c 1173
03fd2215
ZD
1174 /* We must find the insn in that val is used, so that we get to UD chains.
1175 Since the function is sometimes called on result of get_condition,
1176 this does not necessarily have to be directly INSN; scan also the
1177 following insns. */
1178 if (simple_reg_p (val))
1179 {
1180 if (GET_CODE (val) == SUBREG)
1181 reg = SUBREG_REG (val);
1182 else
1183 reg = val;
abe0d774 1184
6fb5fa3c 1185 while (!df_find_use (insn, reg))
03fd2215 1186 insn = NEXT_INSN (insn);
50654f6c
ZD
1187 }
1188
3d88d1cd 1189 return iv_analyze_op (insn, mode, val, iv);
03fd2215 1190}
50654f6c 1191
03fd2215 1192/* Analyzes definition of DEF in INSN and stores the result to IV. */
50654f6c 1193
03fd2215 1194bool
99b1c316 1195iv_analyze_result (rtx_insn *insn, rtx def, class rtx_iv *iv)
03fd2215 1196{
57512f53 1197 df_ref adef;
50654f6c 1198
6fb5fa3c 1199 adef = df_find_def (insn, def);
03fd2215
ZD
1200 if (!adef)
1201 return false;
1202
1203 return iv_analyze_def (adef, iv);
50654f6c
ZD
1204}
1205
03fd2215 1206/* Checks whether definition of register REG in INSN is a basic induction
3d88d1cd
RS
1207 variable. MODE is the mode of REG.
1208
1209 IV analysis must have been initialized (via a call to
113d659a
ZD
1210 iv_analysis_loop_init) for this function to produce a result. */
1211
1212bool
3d88d1cd 1213biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
113d659a 1214{
99b1c316 1215 class rtx_iv iv;
57512f53 1216 df_ref def, last_def;
113d659a 1217
03fd2215 1218 if (!simple_reg_p (reg))
113d659a
ZD
1219 return false;
1220
6fb5fa3c 1221 def = df_find_def (insn, reg);
03fd2215
ZD
1222 gcc_assert (def != NULL);
1223 if (!latch_dominating_def (reg, &last_def))
1224 return false;
1225 if (last_def != def)
113d659a
ZD
1226 return false;
1227
3d88d1cd 1228 if (!iv_analyze_biv (mode, reg, &iv))
03fd2215
ZD
1229 return false;
1230
1231 return iv.step != const0_rtx;
113d659a
ZD
1232}
1233
50654f6c
ZD
1234/* Calculates value of IV at ITERATION-th iteration. */
1235
1236rtx
99b1c316 1237get_iv_value (class rtx_iv *iv, rtx iteration)
50654f6c
ZD
1238{
1239 rtx val;
1240
1241 /* We would need to generate some if_then_else patterns, and so far
1242 it is not needed anywhere. */
b5e624c6 1243 gcc_assert (!iv->first_special);
50654f6c
ZD
1244
1245 if (iv->step != const0_rtx && iteration != const0_rtx)
1246 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1247 simplify_gen_binary (MULT, iv->extend_mode,
1248 iv->step, iteration));
1249 else
1250 val = iv->base;
1251
1252 if (iv->extend_mode == iv->mode)
1253 return val;
1254
6c3b938d 1255 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
50654f6c 1256
1c1ad7bb 1257 if (iv->extend == IV_UNKNOWN_EXTEND)
50654f6c
ZD
1258 return val;
1259
1c1ad7bb
SB
1260 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1261 iv->extend_mode, val, iv->mode);
50654f6c
ZD
1262 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1263 simplify_gen_binary (MULT, iv->extend_mode,
1264 iv->mult, val));
1265
1266 return val;
1267}
1268
1269/* Free the data for an induction variable analysis. */
1270
1271void
1272iv_analysis_done (void)
1273{
6fb5fa3c 1274 if (!clean_slate)
50654f6c 1275 {
03fd2215 1276 clear_iv_info ();
6fb5fa3c 1277 clean_slate = true;
0d475361 1278 df_finish_pass (true);
c203e8a7
TS
1279 delete bivs;
1280 bivs = NULL;
6fb5fa3c
DB
1281 free (iv_ref_table);
1282 iv_ref_table = NULL;
1283 iv_ref_table_size = 0;
50654f6c
ZD
1284 }
1285}
1286
1287/* Computes inverse to X modulo (1 << MOD). */
1288
a9243bfc
RB
1289static uint64_t
1290inverse (uint64_t x, int mod)
50654f6c 1291{
a9243bfc
RB
1292 uint64_t mask =
1293 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1294 uint64_t rslt = 1;
50654f6c
ZD
1295 int i;
1296
1297 for (i = 0; i < mod - 1; i++)
1298 {
1299 rslt = (rslt * x) & mask;
1300 x = (x * x) & mask;
1301 }
1302
1303 return rslt;
1304}
1305
b42b06e6 1306/* Checks whether any register in X is in set ALT. */
50654f6c 1307
b42b06e6
RS
1308static bool
1309altered_reg_used (const_rtx x, bitmap alt)
50654f6c 1310{
b42b06e6
RS
1311 subrtx_iterator::array_type array;
1312 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1313 {
1314 const_rtx x = *iter;
1315 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1316 return true;
1317 }
1318 return false;
50654f6c
ZD
1319}
1320
1321/* Marks registers altered by EXPR in set ALT. */
1322
1323static void
7bc980e1 1324mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
50654f6c
ZD
1325{
1326 if (GET_CODE (expr) == SUBREG)
1327 expr = SUBREG_REG (expr);
1328 if (!REG_P (expr))
1329 return;
1330
d3bfe4de 1331 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
50654f6c
ZD
1332}
1333
1334/* Checks whether RHS is simple enough to process. */
1335
1336static bool
1337simple_rhs_p (rtx rhs)
1338{
1339 rtx op0, op1;
1340
cdf1bf8b 1341 if (function_invariant_p (rhs)
4aa97413 1342 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
50654f6c
ZD
1343 return true;
1344
1345 switch (GET_CODE (rhs))
1346 {
1347 case PLUS:
1348 case MINUS:
b30321cd 1349 case AND:
50654f6c
ZD
1350 op0 = XEXP (rhs, 0);
1351 op1 = XEXP (rhs, 1);
b30321cd 1352 /* Allow reg OP const and reg OP reg. */
dc5b3407 1353 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
ce72fe6c 1354 && !function_invariant_p (op0))
dc5b3407
ZD
1355 return false;
1356 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
ce72fe6c 1357 && !function_invariant_p (op1))
dc5b3407 1358 return false;
50654f6c 1359
dc5b3407
ZD
1360 return true;
1361
1362 case ASHIFT:
b30321cd
BS
1363 case ASHIFTRT:
1364 case LSHIFTRT:
1365 case MULT:
dc5b3407
ZD
1366 op0 = XEXP (rhs, 0);
1367 op1 = XEXP (rhs, 1);
b30321cd 1368 /* Allow reg OP const. */
dc5b3407
ZD
1369 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1370 return false;
ce72fe6c 1371 if (!function_invariant_p (op1))
dc5b3407
ZD
1372 return false;
1373
1374 return true;
50654f6c
ZD
1375
1376 default:
1377 return false;
1378 }
1379}
1380
4ca29add
RS
1381/* If REGNO has a single definition, return its known value, otherwise return
1382 null. */
60081874 1383
4ca29add
RS
1384static rtx
1385find_single_def_src (unsigned int regno)
60081874 1386{
5a6e28b5 1387 rtx src = NULL_RTX;
60081874 1388
5a6e28b5
JJ
1389 /* Don't look through unbounded number of single definition REG copies,
1390 there might be loops for sources with uninitialized variables. */
1391 for (int cnt = 0; cnt < 128; cnt++)
f63426af 1392 {
5a6e28b5 1393 df_ref adef = DF_REG_DEF_CHAIN (regno);
f63426af 1394 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
4ca29add
RS
1395 || DF_REF_IS_ARTIFICIAL (adef))
1396 return NULL_RTX;
f63426af 1397
5a6e28b5 1398 rtx set = single_set (DF_REF_INSN (adef));
f63426af
BS
1399 if (set == NULL || !REG_P (SET_DEST (set))
1400 || REGNO (SET_DEST (set)) != regno)
4ca29add 1401 return NULL_RTX;
60081874 1402
5a6e28b5 1403 rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
f63426af
BS
1404 if (note && function_invariant_p (XEXP (note, 0)))
1405 {
1406 src = XEXP (note, 0);
1407 break;
1408 }
1409 src = SET_SRC (set);
1410
1411 if (REG_P (src))
1412 {
1413 regno = REGNO (src);
1414 continue;
1415 }
1416 break;
1417 }
1418 if (!function_invariant_p (src))
4ca29add
RS
1419 return NULL_RTX;
1420
1421 return src;
1422}
1423
1424/* If any registers in *EXPR that have a single definition, try to replace
1425 them with the known-equivalent values. */
60081874 1426
4ca29add
RS
1427static void
1428replace_single_def_regs (rtx *expr)
1429{
1430 subrtx_var_iterator::array_type array;
1431 repeat:
1432 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1433 {
1434 rtx x = *iter;
1435 if (REG_P (x))
1436 if (rtx new_x = find_single_def_src (REGNO (x)))
1437 {
1438 *expr = simplify_replace_rtx (*expr, x, new_x);
1439 goto repeat;
1440 }
1441 }
60081874
BS
1442}
1443
ed853664
BS
1444/* A subroutine of simplify_using_initial_values, this function examines INSN
1445 to see if it contains a suitable set that we can use to make a replacement.
1446 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1447 the set; return false otherwise. */
50654f6c 1448
ed853664 1449static bool
1b20d55a 1450suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
50654f6c
ZD
1451{
1452 rtx set = single_set (insn);
cddbddb7 1453 rtx lhs = NULL_RTX, rhs;
50654f6c 1454
ed853664
BS
1455 if (!set)
1456 return false;
50654f6c 1457
ed853664
BS
1458 lhs = SET_DEST (set);
1459 if (!REG_P (lhs))
1460 return false;
50654f6c
ZD
1461
1462 rhs = find_reg_equal_equiv_note (insn);
0aea6467
ZD
1463 if (rhs)
1464 rhs = XEXP (rhs, 0);
1465 else
50654f6c
ZD
1466 rhs = SET_SRC (set);
1467
1468 if (!simple_rhs_p (rhs))
ed853664 1469 return false;
50654f6c 1470
ed853664
BS
1471 *dest = lhs;
1472 *src = rhs;
1473 return true;
50654f6c
ZD
1474}
1475
60081874
BS
1476/* Using the data returned by suitable_set_for_replacement, replace DEST
1477 with SRC in *EXPR and return the new expression. Also call
1478 replace_single_def_regs if the replacement changed something. */
1479static void
1480replace_in_expr (rtx *expr, rtx dest, rtx src)
1481{
1482 rtx old = *expr;
1483 *expr = simplify_replace_rtx (*expr, dest, src);
1484 if (old == *expr)
1485 return;
4ca29add 1486 replace_single_def_regs (expr);
60081874
BS
1487}
1488
50654f6c
ZD
1489/* Checks whether A implies B. */
1490
1491static bool
1492implies_p (rtx a, rtx b)
1493{
fab27f52 1494 rtx op0, op1, opb0, opb1;
ef4bddc2 1495 machine_mode mode;
50654f6c 1496
cca1130d
BS
1497 if (rtx_equal_p (a, b))
1498 return true;
1499
50654f6c
ZD
1500 if (GET_CODE (a) == EQ)
1501 {
1502 op0 = XEXP (a, 0);
1503 op1 = XEXP (a, 1);
1504
cca1130d
BS
1505 if (REG_P (op0)
1506 || (GET_CODE (op0) == SUBREG
1507 && REG_P (SUBREG_REG (op0))))
50654f6c 1508 {
fab27f52 1509 rtx r = simplify_replace_rtx (b, op0, op1);
50654f6c
ZD
1510 if (r == const_true_rtx)
1511 return true;
1512 }
1513
cca1130d
BS
1514 if (REG_P (op1)
1515 || (GET_CODE (op1) == SUBREG
1516 && REG_P (SUBREG_REG (op1))))
50654f6c 1517 {
fab27f52 1518 rtx r = simplify_replace_rtx (b, op1, op0);
50654f6c
ZD
1519 if (r == const_true_rtx)
1520 return true;
1521 }
1522 }
1523
60683019
BS
1524 if (b == const_true_rtx)
1525 return true;
1526
1527 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1528 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1529 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1530 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1531 return false;
1532
1533 op0 = XEXP (a, 0);
1534 op1 = XEXP (a, 1);
1535 opb0 = XEXP (b, 0);
1536 opb1 = XEXP (b, 1);
1537
1538 mode = GET_MODE (op0);
1539 if (mode != GET_MODE (opb0))
1540 mode = VOIDmode;
1541 else if (mode == VOIDmode)
1542 {
1543 mode = GET_MODE (op1);
1544 if (mode != GET_MODE (opb1))
1545 mode = VOIDmode;
1546 }
1547
0aea6467
ZD
1548 /* A < B implies A + 1 <= B. */
1549 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1550 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1551 {
0aea6467
ZD
1552
1553 if (GET_CODE (a) == GT)
fab27f52 1554 std::swap (op0, op1);
0aea6467
ZD
1555
1556 if (GET_CODE (b) == GE)
fab27f52 1557 std::swap (opb0, opb1);
0aea6467 1558
d4538829 1559 if (SCALAR_INT_MODE_P (mode)
0aea6467
ZD
1560 && rtx_equal_p (op1, opb1)
1561 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1562 return true;
60683019
BS
1563 return false;
1564 }
1565
1566 /* A < B or A > B imply A != B. TODO: Likewise
1567 A + n < B implies A != B + n if neither wraps. */
1568 if (GET_CODE (b) == NE
1569 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1570 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1571 {
1572 if (rtx_equal_p (op0, opb0)
1573 && rtx_equal_p (op1, opb1))
1574 return true;
0aea6467
ZD
1575 }
1576
60683019
BS
1577 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1578 if (GET_CODE (a) == NE
1579 && op1 == const0_rtx)
1580 {
1581 if ((GET_CODE (b) == GTU
1582 && opb1 == const0_rtx)
1583 || (GET_CODE (b) == GEU
1584 && opb1 == const1_rtx))
1585 return rtx_equal_p (op0, opb0);
1586 }
1587
1588 /* A != N is equivalent to A - (N + 1) <u -1. */
1589 if (GET_CODE (a) == NE
481683e1 1590 && CONST_INT_P (op1)
60683019
BS
1591 && GET_CODE (b) == LTU
1592 && opb1 == constm1_rtx
1593 && GET_CODE (opb0) == PLUS
481683e1 1594 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1595 /* Avoid overflows. */
1596 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1597 != ((unsigned HOST_WIDE_INT)1
1598 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1599 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1600 return rtx_equal_p (op0, XEXP (opb0, 0));
1601
1602 /* Likewise, A != N implies A - N > 0. */
1603 if (GET_CODE (a) == NE
481683e1 1604 && CONST_INT_P (op1))
60683019
BS
1605 {
1606 if (GET_CODE (b) == GTU
1607 && GET_CODE (opb0) == PLUS
1608 && opb1 == const0_rtx
481683e1 1609 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1610 /* Avoid overflows. */
1611 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
fecfbfa4 1612 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
60683019
BS
1613 && rtx_equal_p (XEXP (opb0, 0), op0))
1614 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1615 if (GET_CODE (b) == GEU
1616 && GET_CODE (opb0) == PLUS
1617 && opb1 == const1_rtx
481683e1 1618 && CONST_INT_P (XEXP (opb0, 1))
60683019
BS
1619 /* Avoid overflows. */
1620 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
fecfbfa4 1621 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
60683019
BS
1622 && rtx_equal_p (XEXP (opb0, 0), op0))
1623 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1624 }
1625
1626 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1627 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
481683e1 1628 && CONST_INT_P (op1)
60683019
BS
1629 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1630 || INTVAL (op1) >= 0)
1631 && GET_CODE (b) == LTU
481683e1 1632 && CONST_INT_P (opb1)
b1c92d54 1633 && rtx_equal_p (op0, opb0))
60683019
BS
1634 return INTVAL (opb1) < 0;
1635
50654f6c
ZD
1636 return false;
1637}
1638
1639/* Canonicalizes COND so that
1640
1641 (1) Ensure that operands are ordered according to
1642 swap_commutative_operands_p.
1643 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1644 for GE, GEU, and LEU. */
1645
1646rtx
1647canon_condition (rtx cond)
1648{
50654f6c
ZD
1649 rtx op0, op1;
1650 enum rtx_code code;
ef4bddc2 1651 machine_mode mode;
50654f6c
ZD
1652
1653 code = GET_CODE (cond);
1654 op0 = XEXP (cond, 0);
1655 op1 = XEXP (cond, 1);
1656
1657 if (swap_commutative_operands_p (op0, op1))
1658 {
1659 code = swap_condition (code);
fab27f52 1660 std::swap (op0, op1);
50654f6c
ZD
1661 }
1662
1663 mode = GET_MODE (op0);
1664 if (mode == VOIDmode)
1665 mode = GET_MODE (op1);
b5e624c6 1666 gcc_assert (mode != VOIDmode);
50654f6c 1667
674dd710 1668 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC)
50654f6c 1669 {
674dd710 1670 rtx_mode_t const_val (op1, mode);
50654f6c
ZD
1671
1672 switch (code)
1673 {
1674 case LE:
674dd710
RS
1675 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1676 {
1677 code = LT;
1678 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1679 }
50654f6c
ZD
1680 break;
1681
50654f6c 1682 case GE:
674dd710
RS
1683 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1684 {
1685 code = GT;
1686 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1687 }
50654f6c
ZD
1688 break;
1689
1690 case LEU:
674dd710
RS
1691 if (wi::ne_p (const_val, -1))
1692 {
1693 code = LTU;
1694 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1695 }
50654f6c
ZD
1696 break;
1697
1698 case GEU:
674dd710
RS
1699 if (wi::ne_p (const_val, 0))
1700 {
1701 code = GTU;
1702 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1703 }
50654f6c
ZD
1704 break;
1705
1706 default:
1707 break;
1708 }
1709 }
1710
1711 if (op0 != XEXP (cond, 0)
1712 || op1 != XEXP (cond, 1)
1713 || code != GET_CODE (cond)
1714 || GET_MODE (cond) != SImode)
1715 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1716
1717 return cond;
1718}
1719
da4cfeac
RB
1720/* Reverses CONDition; returns NULL if we cannot. */
1721
1722static rtx
1723reversed_condition (rtx cond)
1724{
1725 enum rtx_code reversed;
1726 reversed = reversed_comparison_code (cond, NULL);
1727 if (reversed == UNKNOWN)
1728 return NULL_RTX;
1729 else
1730 return gen_rtx_fmt_ee (reversed,
1731 GET_MODE (cond), XEXP (cond, 0),
1732 XEXP (cond, 1));
1733}
1734
50654f6c
ZD
1735/* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1736 set of altered regs. */
1737
1738void
1739simplify_using_condition (rtx cond, rtx *expr, regset altered)
1740{
1741 rtx rev, reve, exp = *expr;
1742
50654f6c
ZD
1743 /* If some register gets altered later, we do not really speak about its
1744 value at the time of comparison. */
b42b06e6 1745 if (altered && altered_reg_used (cond, altered))
50654f6c
ZD
1746 return;
1747
1569e190
BS
1748 if (GET_CODE (cond) == EQ
1749 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1750 {
1751 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1752 return;
1753 }
1754
1755 if (!COMPARISON_P (exp))
1756 return;
1757
50654f6c
ZD
1758 rev = reversed_condition (cond);
1759 reve = reversed_condition (exp);
1760
1761 cond = canon_condition (cond);
1762 exp = canon_condition (exp);
1763 if (rev)
1764 rev = canon_condition (rev);
1765 if (reve)
1766 reve = canon_condition (reve);
1767
1768 if (rtx_equal_p (exp, cond))
1769 {
1770 *expr = const_true_rtx;
1771 return;
1772 }
1773
50654f6c
ZD
1774 if (rev && rtx_equal_p (exp, rev))
1775 {
1776 *expr = const0_rtx;
1777 return;
1778 }
1779
1780 if (implies_p (cond, exp))
1781 {
1782 *expr = const_true_rtx;
1783 return;
1784 }
b8698a0f 1785
50654f6c
ZD
1786 if (reve && implies_p (cond, reve))
1787 {
1788 *expr = const0_rtx;
1789 return;
1790 }
1791
1792 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1793 be false. */
1794 if (rev && implies_p (exp, rev))
1795 {
1796 *expr = const0_rtx;
1797 return;
1798 }
1799
1800 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1801 if (rev && reve && implies_p (reve, rev))
1802 {
1803 *expr = const_true_rtx;
1804 return;
1805 }
1806
1807 /* We would like to have some other tests here. TODO. */
1808
1809 return;
1810}
1811
1812/* Use relationship between A and *B to eventually eliminate *B.
1813 OP is the operation we consider. */
1814
1815static void
1816eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1817{
b5e624c6 1818 switch (op)
50654f6c 1819 {
b5e624c6 1820 case AND:
50654f6c
ZD
1821 /* If A implies *B, we may replace *B by true. */
1822 if (implies_p (a, *b))
1823 *b = const_true_rtx;
b5e624c6
NS
1824 break;
1825
1826 case IOR:
50654f6c
ZD
1827 /* If *B implies A, we may replace *B by false. */
1828 if (implies_p (*b, a))
1829 *b = const0_rtx;
b5e624c6
NS
1830 break;
1831
1832 default:
1833 gcc_unreachable ();
50654f6c 1834 }
50654f6c
ZD
1835}
1836
1837/* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1838 operation we consider. */
1839
1840static void
1841eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1842{
1843 rtx elt;
1844
1845 for (elt = tail; elt; elt = XEXP (elt, 1))
1846 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1847 for (elt = tail; elt; elt = XEXP (elt, 1))
1848 eliminate_implied_condition (op, XEXP (elt, 0), head);
1849}
1850
1851/* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1852 is a list, its elements are assumed to be combined using OP. */
1853
1854static void
99b1c316 1855simplify_using_initial_values (class loop *loop, enum rtx_code op, rtx *expr)
50654f6c 1856{
ed853664 1857 bool expression_valid;
2f33ff0a
DM
1858 rtx head, tail, last_valid_expr;
1859 rtx_expr_list *cond_list;
1b20d55a 1860 rtx_insn *insn;
50654f6c 1861 rtx neutral, aggr;
ed853664 1862 regset altered, this_altered;
50654f6c
ZD
1863 edge e;
1864
1865 if (!*expr)
1866 return;
1867
1868 if (CONSTANT_P (*expr))
1869 return;
1870
1871 if (GET_CODE (*expr) == EXPR_LIST)
1872 {
1873 head = XEXP (*expr, 0);
1874 tail = XEXP (*expr, 1);
1875
1876 eliminate_implied_conditions (op, &head, tail);
1877
b5e624c6 1878 switch (op)
50654f6c 1879 {
b5e624c6 1880 case AND:
50654f6c
ZD
1881 neutral = const_true_rtx;
1882 aggr = const0_rtx;
b5e624c6
NS
1883 break;
1884
1885 case IOR:
50654f6c
ZD
1886 neutral = const0_rtx;
1887 aggr = const_true_rtx;
b5e624c6 1888 break;
50654f6c 1889
b5e624c6
NS
1890 default:
1891 gcc_unreachable ();
1892 }
b8698a0f 1893
f822d252 1894 simplify_using_initial_values (loop, UNKNOWN, &head);
50654f6c
ZD
1895 if (head == aggr)
1896 {
1897 XEXP (*expr, 0) = aggr;
1898 XEXP (*expr, 1) = NULL_RTX;
1899 return;
1900 }
1901 else if (head == neutral)
1902 {
1903 *expr = tail;
1904 simplify_using_initial_values (loop, op, expr);
1905 return;
1906 }
1907 simplify_using_initial_values (loop, op, &tail);
1908
1909 if (tail && XEXP (tail, 0) == aggr)
1910 {
1911 *expr = tail;
1912 return;
1913 }
b8698a0f 1914
50654f6c
ZD
1915 XEXP (*expr, 0) = head;
1916 XEXP (*expr, 1) = tail;
1917 return;
1918 }
1919
b5e624c6 1920 gcc_assert (op == UNKNOWN);
50654f6c 1921
4ca29add 1922 replace_single_def_regs (expr);
60081874
BS
1923 if (CONSTANT_P (*expr))
1924 return;
1925
50654f6c 1926 e = loop_preheader_edge (loop);
fefa31b5 1927 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
50654f6c
ZD
1928 return;
1929
04389919 1930 altered = ALLOC_REG_SET (&reg_obstack);
ed853664 1931 this_altered = ALLOC_REG_SET (&reg_obstack);
50654f6c 1932
ed853664
BS
1933 expression_valid = true;
1934 last_valid_expr = *expr;
2f33ff0a 1935 cond_list = NULL;
50654f6c
ZD
1936 while (1)
1937 {
1938 insn = BB_END (e->src);
a2bd4e52 1939 if (any_condjump_p (insn) && onlyjump_p (insn))
50654f6c 1940 {
45d09c02 1941 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1569e190 1942
50654f6c
ZD
1943 if (cond && (e->flags & EDGE_FALLTHRU))
1944 cond = reversed_condition (cond);
1945 if (cond)
1946 {
1569e190 1947 rtx old = *expr;
50654f6c 1948 simplify_using_condition (cond, expr, altered);
1569e190
BS
1949 if (old != *expr)
1950 {
1951 rtx note;
1952 if (CONSTANT_P (*expr))
1953 goto out;
1954 for (note = cond_list; note; note = XEXP (note, 1))
1955 {
1956 simplify_using_condition (XEXP (note, 0), expr, altered);
1957 if (CONSTANT_P (*expr))
1958 goto out;
1959 }
1960 }
1961 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
50654f6c
ZD
1962 }
1963 }
1964
1965 FOR_BB_INSNS_REVERSE (e->src, insn)
1966 {
ed853664 1967 rtx src, dest;
1569e190 1968 rtx old = *expr;
ed853664 1969
50654f6c
ZD
1970 if (!INSN_P (insn))
1971 continue;
ed853664
BS
1972
1973 CLEAR_REG_SET (this_altered);
e8448ba5 1974 note_stores (insn, mark_altered, this_altered);
ed853664 1975 if (CALL_P (insn))
5c64181d
RS
1976 {
1977 /* Kill all registers that might be clobbered by the call.
1978 We don't track modes of hard registers, so we need to be
1979 conservative and assume that partial kills are full kills. */
1980 function_abi callee_abi = insn_callee_abi (insn);
1981 IOR_REG_SET_HRS (this_altered,
1982 callee_abi.full_and_partial_reg_clobbers ());
1983 }
ed853664
BS
1984
1985 if (suitable_set_for_replacement (insn, &dest, &src))
48982394 1986 {
2f33ff0a 1987 rtx_expr_list **pnote, **pnote_next;
1569e190 1988
60081874 1989 replace_in_expr (expr, dest, src);
ed853664
BS
1990 if (CONSTANT_P (*expr))
1991 goto out;
1569e190
BS
1992
1993 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1994 {
e67d1102 1995 rtx_expr_list *note = *pnote;
1569e190
BS
1996 rtx old_cond = XEXP (note, 0);
1997
2f33ff0a 1998 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
60081874
BS
1999 replace_in_expr (&XEXP (note, 0), dest, src);
2000
1569e190
BS
2001 /* We can no longer use a condition that has been simplified
2002 to a constant, and simplify_using_condition will abort if
2003 we try. */
2004 if (CONSTANT_P (XEXP (note, 0)))
2005 {
2006 *pnote = *pnote_next;
2007 pnote_next = pnote;
2008 free_EXPR_LIST_node (note);
2009 }
2010 /* Retry simplifications with this condition if either the
2011 expression or the condition changed. */
2012 else if (old_cond != XEXP (note, 0) || old != *expr)
2013 simplify_using_condition (XEXP (note, 0), expr, altered);
2014 }
48982394 2015 }
ed853664 2016 else
4fc2e37d 2017 {
2f33ff0a 2018 rtx_expr_list **pnote, **pnote_next;
4fc2e37d
EB
2019
2020 /* If we did not use this insn to make a replacement, any overlap
2021 between stores in this insn and our expression will cause the
2022 expression to become invalid. */
b42b06e6 2023 if (altered_reg_used (*expr, this_altered))
4fc2e37d
EB
2024 goto out;
2025
2026 /* Likewise for the conditions. */
2027 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2028 {
e67d1102 2029 rtx_expr_list *note = *pnote;
4fc2e37d
EB
2030 rtx old_cond = XEXP (note, 0);
2031
2f33ff0a 2032 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
b42b06e6 2033 if (altered_reg_used (old_cond, this_altered))
4fc2e37d
EB
2034 {
2035 *pnote = *pnote_next;
2036 pnote_next = pnote;
2037 free_EXPR_LIST_node (note);
2038 }
2039 }
2040 }
ed853664 2041
1569e190
BS
2042 if (CONSTANT_P (*expr))
2043 goto out;
2044
ed853664
BS
2045 IOR_REG_SET (altered, this_altered);
2046
2047 /* If the expression now contains regs that have been altered, we
2048 can't return it to the caller. However, it is still valid for
2049 further simplification, so keep searching to see if we can
2050 eventually turn it into a constant. */
b42b06e6 2051 if (altered_reg_used (*expr, altered))
ed853664
BS
2052 expression_valid = false;
2053 if (expression_valid)
2054 last_valid_expr = *expr;
50654f6c
ZD
2055 }
2056
c5cbcccf 2057 if (!single_pred_p (e->src)
fefa31b5 2058 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
50654f6c 2059 break;
c5cbcccf 2060 e = single_pred_edge (e->src);
50654f6c
ZD
2061 }
2062
ed853664 2063 out:
1569e190 2064 free_EXPR_LIST_list (&cond_list);
ed853664
BS
2065 if (!CONSTANT_P (*expr))
2066 *expr = last_valid_expr;
50654f6c 2067 FREE_REG_SET (altered);
ed853664 2068 FREE_REG_SET (this_altered);
50654f6c
ZD
2069}
2070
2071/* Transforms invariant IV into MODE. Adds assumptions based on the fact
2072 that IV occurs as left operands of comparison COND and its signedness
2073 is SIGNED_P to DESC. */
2074
2075static void
99b1c316
MS
2076shorten_into_mode (class rtx_iv *iv, scalar_int_mode mode,
2077 enum rtx_code cond, bool signed_p, class niter_desc *desc)
50654f6c
ZD
2078{
2079 rtx mmin, mmax, cond_over, cond_under;
2080
0aea6467 2081 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
50654f6c
ZD
2082 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2083 iv->base, mmin);
2084 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2085 iv->base, mmax);
2086
2087 switch (cond)
2088 {
2089 case LE:
2090 case LT:
2091 case LEU:
2092 case LTU:
2093 if (cond_under != const0_rtx)
2094 desc->infinite =
2095 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2096 if (cond_over != const0_rtx)
2097 desc->noloop_assumptions =
2098 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2099 break;
2100
2101 case GE:
2102 case GT:
2103 case GEU:
2104 case GTU:
2105 if (cond_over != const0_rtx)
2106 desc->infinite =
2107 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2108 if (cond_under != const0_rtx)
2109 desc->noloop_assumptions =
2110 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2111 break;
2112
2113 case NE:
2114 if (cond_over != const0_rtx)
2115 desc->infinite =
2116 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2117 if (cond_under != const0_rtx)
2118 desc->infinite =
2119 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2120 break;
2121
2122 default:
b5e624c6 2123 gcc_unreachable ();
50654f6c
ZD
2124 }
2125
2126 iv->mode = mode;
1c1ad7bb 2127 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
50654f6c
ZD
2128}
2129
2130/* Transforms IV0 and IV1 compared by COND so that they are both compared as
a1105617 2131 subregs of the same mode if possible (sometimes it is necessary to add
50654f6c
ZD
2132 some assumptions to DESC). */
2133
2134static bool
99b1c316
MS
2135canonicalize_iv_subregs (class rtx_iv *iv0, class rtx_iv *iv1,
2136 enum rtx_code cond, class niter_desc *desc)
50654f6c 2137{
3d88d1cd 2138 scalar_int_mode comp_mode;
50654f6c
ZD
2139 bool signed_p;
2140
2141 /* If the ivs behave specially in the first iteration, or are
2142 added/multiplied after extending, we ignore them. */
2143 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2144 return false;
2145 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2146 return false;
2147
2148 /* If there is some extend, it must match signedness of the comparison. */
2149 switch (cond)
2150 {
2151 case LE:
2152 case LT:
1c1ad7bb
SB
2153 if (iv0->extend == IV_ZERO_EXTEND
2154 || iv1->extend == IV_ZERO_EXTEND)
50654f6c
ZD
2155 return false;
2156 signed_p = true;
2157 break;
2158
2159 case LEU:
2160 case LTU:
1c1ad7bb
SB
2161 if (iv0->extend == IV_SIGN_EXTEND
2162 || iv1->extend == IV_SIGN_EXTEND)
50654f6c
ZD
2163 return false;
2164 signed_p = false;
2165 break;
2166
2167 case NE:
1c1ad7bb
SB
2168 if (iv0->extend != IV_UNKNOWN_EXTEND
2169 && iv1->extend != IV_UNKNOWN_EXTEND
50654f6c
ZD
2170 && iv0->extend != iv1->extend)
2171 return false;
2172
2173 signed_p = false;
1c1ad7bb
SB
2174 if (iv0->extend != IV_UNKNOWN_EXTEND)
2175 signed_p = iv0->extend == IV_SIGN_EXTEND;
2176 if (iv1->extend != IV_UNKNOWN_EXTEND)
2177 signed_p = iv1->extend == IV_SIGN_EXTEND;
50654f6c
ZD
2178 break;
2179
2180 default:
b5e624c6 2181 gcc_unreachable ();
50654f6c
ZD
2182 }
2183
2184 /* Values of both variables should be computed in the same mode. These
2185 might indeed be different, if we have comparison like
2186
2187 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2188
2189 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2190 in different modes. This does not seem impossible to handle, but
2191 it hardly ever occurs in practice.
b8698a0f 2192
50654f6c
ZD
2193 The only exception is the case when one of operands is invariant.
2194 For example pentium 3 generates comparisons like
2195 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2196 definitely do not want this prevent the optimization. */
2197 comp_mode = iv0->extend_mode;
2198 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2199 comp_mode = iv1->extend_mode;
2200
2201 if (iv0->extend_mode != comp_mode)
2202 {
2203 if (iv0->mode != iv0->extend_mode
2204 || iv0->step != const0_rtx)
2205 return false;
2206
2207 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2208 comp_mode, iv0->base, iv0->mode);
2209 iv0->extend_mode = comp_mode;
2210 }
2211
2212 if (iv1->extend_mode != comp_mode)
2213 {
2214 if (iv1->mode != iv1->extend_mode
2215 || iv1->step != const0_rtx)
2216 return false;
2217
2218 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2219 comp_mode, iv1->base, iv1->mode);
2220 iv1->extend_mode = comp_mode;
2221 }
2222
2223 /* Check that both ivs belong to a range of a single mode. If one of the
2224 operands is an invariant, we may need to shorten it into the common
2225 mode. */
2226 if (iv0->mode == iv0->extend_mode
2227 && iv0->step == const0_rtx
2228 && iv0->mode != iv1->mode)
2229 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2230
2231 if (iv1->mode == iv1->extend_mode
2232 && iv1->step == const0_rtx
2233 && iv0->mode != iv1->mode)
2234 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2235
2236 if (iv0->mode != iv1->mode)
2237 return false;
2238
2239 desc->mode = iv0->mode;
2240 desc->signed_p = signed_p;
2241
2242 return true;
2243}
2244
daa57386
RG
2245/* Tries to estimate the maximum number of iterations in LOOP, and return the
2246 result. This function is called from iv_number_of_iterations with
28af33b0
BS
2247 a number of fields in DESC already filled in. OLD_NITER is the original
2248 expression for the number of iterations, before we tried to simplify it. */
c67dc1a3 2249
a9243bfc 2250static uint64_t
99b1c316 2251determine_max_iter (class loop *loop, class niter_desc *desc, rtx old_niter)
c67dc1a3
BS
2252{
2253 rtx niter = desc->niter_expr;
60683019 2254 rtx mmin, mmax, cmp;
a9243bfc
RB
2255 uint64_t nmax, inc;
2256 uint64_t andmax = 0;
43ffba00
JH
2257
2258 /* We used to look for constant operand 0 of AND,
2259 but canonicalization should always make this impossible. */
2260 gcc_checking_assert (GET_CODE (niter) != AND
2261 || !CONST_INT_P (XEXP (niter, 0)));
c67dc1a3
BS
2262
2263 if (GET_CODE (niter) == AND
43ffba00 2264 && CONST_INT_P (XEXP (niter, 1)))
c67dc1a3 2265 {
43ffba00
JH
2266 andmax = UINTVAL (XEXP (niter, 1));
2267 niter = XEXP (niter, 0);
c67dc1a3
BS
2268 }
2269
2270 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
d7ca26e4 2271 nmax = UINTVAL (mmax) - UINTVAL (mmin);
c67dc1a3
BS
2272
2273 if (GET_CODE (niter) == UDIV)
2274 {
481683e1 2275 if (!CONST_INT_P (XEXP (niter, 1)))
daa57386 2276 return nmax;
c67dc1a3
BS
2277 inc = INTVAL (XEXP (niter, 1));
2278 niter = XEXP (niter, 0);
2279 }
2280 else
2281 inc = 1;
2282
60683019
BS
2283 /* We could use a binary search here, but for now improving the upper
2284 bound by just one eliminates one important corner case. */
28af33b0
BS
2285 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2286 desc->mode, old_niter, mmax);
60683019
BS
2287 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2288 if (cmp == const_true_rtx)
c67dc1a3 2289 {
60683019 2290 nmax--;
c67dc1a3 2291
60683019
BS
2292 if (dump_file)
2293 fprintf (dump_file, ";; improved upper bound by one.\n");
c67dc1a3 2294 }
43ffba00
JH
2295 nmax /= inc;
2296 if (andmax)
2297 nmax = MIN (nmax, andmax);
2298 if (dump_file)
16998094 2299 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n",
43ffba00
JH
2300 nmax);
2301 return nmax;
c67dc1a3
BS
2302}
2303
50654f6c
ZD
2304/* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2305 the result into DESC. Very similar to determine_number_of_iterations
2306 (basically its rtl version), complicated by things like subregs. */
2307
e3715ebd 2308static void
99b1c316
MS
2309iv_number_of_iterations (class loop *loop, rtx_insn *insn, rtx condition,
2310 class niter_desc *desc)
50654f6c 2311{
03fd2215 2312 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
99b1c316 2313 class rtx_iv iv0, iv1;
0aea6467 2314 rtx assumption, may_not_xform;
50654f6c 2315 enum rtx_code cond;
3d88d1cd
RS
2316 machine_mode nonvoid_mode;
2317 scalar_int_mode comp_mode;
0aea6467 2318 rtx mmin, mmax, mode_mmin, mode_mmax;
f5dffc0b
MT
2319 uint64_t s, size, d, inv, max, up, down;
2320 int64_t inc, step_val;
50654f6c 2321 int was_sharp = false;
fe3f617f 2322 rtx old_niter;
6b9b7b4c 2323 bool step_is_pow2;
50654f6c
ZD
2324
2325 /* The meaning of these assumptions is this:
2326 if !assumptions
2327 then the rest of information does not have to be valid
2328 if noloop_assumptions then the loop does not roll
2329 if infinite then this exit is never used */
2330
2331 desc->assumptions = NULL_RTX;
2332 desc->noloop_assumptions = NULL_RTX;
2333 desc->infinite = NULL_RTX;
2334 desc->simple_p = true;
2335
2336 desc->const_iter = false;
2337 desc->niter_expr = NULL_RTX;
50654f6c
ZD
2338
2339 cond = GET_CODE (condition);
b5e624c6 2340 gcc_assert (COMPARISON_P (condition));
50654f6c 2341
3d88d1cd
RS
2342 nonvoid_mode = GET_MODE (XEXP (condition, 0));
2343 if (nonvoid_mode == VOIDmode)
2344 nonvoid_mode = GET_MODE (XEXP (condition, 1));
50654f6c 2345 /* The constant comparisons should be folded. */
3d88d1cd 2346 gcc_assert (nonvoid_mode != VOIDmode);
50654f6c
ZD
2347
2348 /* We only handle integers or pointers. */
3d88d1cd
RS
2349 scalar_int_mode mode;
2350 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
50654f6c
ZD
2351 goto fail;
2352
2353 op0 = XEXP (condition, 0);
3d88d1cd 2354 if (!iv_analyze (insn, mode, op0, &iv0))
50654f6c 2355 goto fail;
b8698a0f 2356
50654f6c 2357 op1 = XEXP (condition, 1);
3d88d1cd 2358 if (!iv_analyze (insn, mode, op1, &iv1))
50654f6c 2359 goto fail;
50654f6c
ZD
2360
2361 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2362 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2363 goto fail;
2364
2365 /* Check condition and normalize it. */
2366
2367 switch (cond)
2368 {
2369 case GE:
2370 case GT:
2371 case GEU:
2372 case GTU:
6b4db501 2373 std::swap (iv0, iv1);
50654f6c
ZD
2374 cond = swap_condition (cond);
2375 break;
2376 case NE:
2377 case LE:
2378 case LEU:
2379 case LT:
2380 case LTU:
2381 break;
2382 default:
2383 goto fail;
2384 }
2385
2386 /* Handle extends. This is relatively nontrivial, so we only try in some
2387 easy cases, when we can canonicalize the ivs (possibly by adding some
2388 assumptions) to shape subreg (base + i * step). This function also fills
2389 in desc->mode and desc->signed_p. */
2390
2391 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2392 goto fail;
2393
2394 comp_mode = iv0.extend_mode;
2395 mode = iv0.mode;
50b6ee8b 2396 size = GET_MODE_PRECISION (mode);
0aea6467 2397 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
6c3b938d
RS
2398 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2399 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
50654f6c 2400
481683e1 2401 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
50654f6c
ZD
2402 goto fail;
2403
2404 /* We can take care of the case of two induction variables chasing each other
2405 if the test is NE. I have never seen a loop using it, but still it is
2406 cool. */
2407 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2408 {
2409 if (cond != NE)
2410 goto fail;
2411
2412 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2413 iv1.step = const0_rtx;
2414 }
2415
3461a16e
JJ
2416 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2417 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2418
50654f6c
ZD
2419 /* This is either infinite loop or the one that ends immediately, depending
2420 on initial values. Unswitching should remove this kind of conditions. */
2421 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2422 goto fail;
2423
6b9b7b4c
ZD
2424 if (cond != NE)
2425 {
2426 if (iv0.step == const0_rtx)
2427 step_val = -INTVAL (iv1.step);
2428 else
6e17f9c1 2429 step_val = INTVAL (iv0.step);
6b9b7b4c
ZD
2430
2431 /* Ignore loops of while (i-- < 10) type. */
2432 if (step_val < 0)
2433 goto fail;
2434
2435 step_is_pow2 = !(step_val & (step_val - 1));
2436 }
2437 else
2438 {
2439 /* We do not care about whether the step is power of two in this
2440 case. */
2441 step_is_pow2 = false;
2442 step_val = 0;
2443 }
50654f6c
ZD
2444
2445 /* Some more condition normalization. We must record some assumptions
2446 due to overflows. */
2447 switch (cond)
2448 {
2449 case LT:
2450 case LTU:
2451 /* We want to take care only of non-sharp relationals; this is easy,
2452 as in cases the overflow would make the transformation unsafe
2453 the loop does not roll. Seemingly it would make more sense to want
2454 to take care of sharp relationals instead, as NE is more similar to
2455 them, but the problem is that here the transformation would be more
2456 difficult due to possibly infinite loops. */
2457 if (iv0.step == const0_rtx)
2458 {
6c3b938d 2459 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
0aea6467
ZD
2460 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2461 mode_mmax);
50654f6c 2462 if (assumption == const_true_rtx)
4fbe4f91 2463 goto zero_iter_simplify;
50654f6c
ZD
2464 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2465 iv0.base, const1_rtx);
2466 }
2467 else
2468 {
6c3b938d 2469 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
0aea6467
ZD
2470 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2471 mode_mmin);
50654f6c 2472 if (assumption == const_true_rtx)
4fbe4f91 2473 goto zero_iter_simplify;
50654f6c
ZD
2474 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2475 iv1.base, constm1_rtx);
2476 }
2477
2478 if (assumption != const0_rtx)
2479 desc->noloop_assumptions =
2480 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2481 cond = (cond == LT) ? LE : LEU;
2482
2483 /* It will be useful to be able to tell the difference once more in
2484 LE -> NE reduction. */
2485 was_sharp = true;
2486 break;
2487 default: ;
2488 }
2489
2490 /* Take care of trivially infinite loops. */
2491 if (cond != NE)
2492 {
2493 if (iv0.step == const0_rtx)
2494 {
6c3b938d 2495 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
0aea6467 2496 if (rtx_equal_p (tmp, mode_mmin))
50654f6c
ZD
2497 {
2498 desc->infinite =
2499 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
4fbe4f91
ZD
2500 /* Fill in the remaining fields somehow. */
2501 goto zero_iter_simplify;
50654f6c
ZD
2502 }
2503 }
2504 else
2505 {
6c3b938d 2506 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
0aea6467 2507 if (rtx_equal_p (tmp, mode_mmax))
50654f6c
ZD
2508 {
2509 desc->infinite =
2510 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
4fbe4f91
ZD
2511 /* Fill in the remaining fields somehow. */
2512 goto zero_iter_simplify;
50654f6c
ZD
2513 }
2514 }
2515 }
2516
2517 /* If we can we want to take care of NE conditions instead of size
2518 comparisons, as they are much more friendly (most importantly
2519 this takes care of special handling of loops with step 1). We can
2520 do it if we first check that upper bound is greater or equal to
2521 lower bound, their difference is constant c modulo step and that
2522 there is not an overflow. */
2523 if (cond != NE)
2524 {
2525 if (iv0.step == const0_rtx)
2526 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2527 else
2528 step = iv0.step;
3461a16e 2529 step = lowpart_subreg (mode, step, comp_mode);
50654f6c 2530 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
6c3b938d 2531 delta = lowpart_subreg (mode, delta, comp_mode);
50654f6c
ZD
2532 delta = simplify_gen_binary (UMOD, mode, delta, step);
2533 may_xform = const0_rtx;
0aea6467 2534 may_not_xform = const_true_rtx;
50654f6c 2535
481683e1 2536 if (CONST_INT_P (delta))
50654f6c
ZD
2537 {
2538 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2539 {
2540 /* A special case. We have transformed condition of type
2541 for (i = 0; i < 4; i += 4)
2542 into
2543 for (i = 0; i <= 3; i += 4)
2544 obviously if the test for overflow during that transformation
2545 passed, we cannot overflow here. Most importantly any
2546 loop with sharp end condition and step 1 falls into this
a1105617 2547 category, so handling this case specially is definitely
50654f6c
ZD
2548 worth the troubles. */
2549 may_xform = const_true_rtx;
2550 }
2551 else if (iv0.step == const0_rtx)
2552 {
2553 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2554 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
6c3b938d
RS
2555 bound = lowpart_subreg (mode, bound, comp_mode);
2556 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
50654f6c
ZD
2557 may_xform = simplify_gen_relational (cond, SImode, mode,
2558 bound, tmp);
0aea6467
ZD
2559 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2560 SImode, mode,
2561 bound, tmp);
50654f6c
ZD
2562 }
2563 else
2564 {
2565 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2566 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
6c3b938d
RS
2567 bound = lowpart_subreg (mode, bound, comp_mode);
2568 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c
ZD
2569 may_xform = simplify_gen_relational (cond, SImode, mode,
2570 tmp, bound);
0aea6467
ZD
2571 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2572 SImode, mode,
2573 tmp, bound);
50654f6c
ZD
2574 }
2575 }
2576
2577 if (may_xform != const0_rtx)
2578 {
2579 /* We perform the transformation always provided that it is not
2580 completely senseless. This is OK, as we would need this assumption
2581 to determine the number of iterations anyway. */
2582 if (may_xform != const_true_rtx)
0aea6467
ZD
2583 {
2584 /* If the step is a power of two and the final value we have
2585 computed overflows, the cycle is infinite. Otherwise it
2586 is nontrivial to compute the number of iterations. */
6b9b7b4c 2587 if (step_is_pow2)
0aea6467
ZD
2588 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2589 desc->infinite);
2590 else
2591 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2592 desc->assumptions);
2593 }
50654f6c
ZD
2594
2595 /* We are going to lose some information about upper bound on
2596 number of iterations in this step, so record the information
2597 here. */
2598 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
481683e1 2599 if (CONST_INT_P (iv1.base))
50654f6c
ZD
2600 up = INTVAL (iv1.base);
2601 else
0aea6467 2602 up = INTVAL (mode_mmax) - inc;
481683e1 2603 down = INTVAL (CONST_INT_P (iv0.base)
0aea6467
ZD
2604 ? iv0.base
2605 : mode_mmin);
f5dffc0b 2606 max = (up - down) / inc + 1;
bcd8d322
JH
2607 if (!desc->infinite
2608 && !desc->assumptions)
807e902e 2609 record_niter_bound (loop, max, false, true);
50654f6c
ZD
2610
2611 if (iv0.step == const0_rtx)
2612 {
2613 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2614 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2615 }
2616 else
2617 {
2618 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2619 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2620 }
2621
6c3b938d
RS
2622 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2623 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c
ZD
2624 assumption = simplify_gen_relational (reverse_condition (cond),
2625 SImode, mode, tmp0, tmp1);
2626 if (assumption == const_true_rtx)
4fbe4f91 2627 goto zero_iter_simplify;
50654f6c
ZD
2628 else if (assumption != const0_rtx)
2629 desc->noloop_assumptions =
2630 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2631 cond = NE;
2632 }
2633 }
2634
2635 /* Count the number of iterations. */
2636 if (cond == NE)
2637 {
2638 /* Everything we do here is just arithmetics modulo size of mode. This
2639 makes us able to do more involved computations of number of iterations
2640 than in other cases. First transform the condition into shape
2641 s * i <> c, with s positive. */
2642 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2643 iv0.base = const0_rtx;
2644 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2645 iv1.step = const0_rtx;
2646 if (INTVAL (iv0.step) < 0)
2647 {
807e902e
KZ
2648 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2649 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
50654f6c 2650 }
6c3b938d 2651 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
50654f6c
ZD
2652
2653 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2654 is infinite. Otherwise, the number of iterations is
2655 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2656 s = INTVAL (iv0.step); d = 1;
2657 while (s % 2 != 1)
2658 {
2659 s /= 2;
2660 d *= 2;
2661 size--;
2662 }
a9243bfc 2663 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
50654f6c 2664
6c3b938d 2665 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
69a59f0f 2666 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
50654f6c
ZD
2667 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2668 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2669
69a59f0f 2670 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
0aea6467 2671 inv = inverse (s, size);
bb80db7b 2672 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
50654f6c
ZD
2673 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2674 }
2675 else
2676 {
2677 if (iv1.step == const0_rtx)
2678 /* Condition in shape a + s * i <= b
2679 We must know that b + s does not overflow and a <= b + s and then we
2680 can compute number of iterations as (b + s - a) / s. (It might
2681 seem that we in fact could be more clever about testing the b + s
2682 overflow condition using some information about b - a mod s,
2683 but it was already taken into account during LE -> NE transform). */
2684 {
2685 step = iv0.step;
6c3b938d
RS
2686 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2687 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c 2688
0aea6467 2689 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
6c3b938d
RS
2690 lowpart_subreg (mode, step,
2691 comp_mode));
6b9b7b4c
ZD
2692 if (step_is_pow2)
2693 {
2694 rtx t0, t1;
2695
2696 /* If s is power of 2, we know that the loop is infinite if
2697 a % s <= b % s and b + s overflows. */
2698 assumption = simplify_gen_relational (reverse_condition (cond),
2699 SImode, mode,
2700 tmp1, bound);
2701
2702 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2703 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2704 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2705 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2706 desc->infinite =
2707 alloc_EXPR_LIST (0, assumption, desc->infinite);
2708 }
2709 else
2710 {
2711 assumption = simplify_gen_relational (cond, SImode, mode,
2712 tmp1, bound);
2713 desc->assumptions =
2714 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2715 }
50654f6c
ZD
2716
2717 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
6c3b938d 2718 tmp = lowpart_subreg (mode, tmp, comp_mode);
50654f6c
ZD
2719 assumption = simplify_gen_relational (reverse_condition (cond),
2720 SImode, mode, tmp0, tmp);
2721
2722 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2723 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2724 }
2725 else
2726 {
2727 /* Condition in shape a <= b - s * i
2728 We must know that a - s does not overflow and a - s <= b and then
2729 we can again compute number of iterations as (b - (a - s)) / s. */
2730 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
6c3b938d
RS
2731 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2732 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
50654f6c 2733
c9eb8097 2734 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
6c3b938d 2735 lowpart_subreg (mode, step, comp_mode));
6b9b7b4c
ZD
2736 if (step_is_pow2)
2737 {
2738 rtx t0, t1;
2739
2740 /* If s is power of 2, we know that the loop is infinite if
2741 a % s <= b % s and a - s overflows. */
2742 assumption = simplify_gen_relational (reverse_condition (cond),
2743 SImode, mode,
2744 bound, tmp0);
2745
2746 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2747 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2748 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2749 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2750 desc->infinite =
2751 alloc_EXPR_LIST (0, assumption, desc->infinite);
2752 }
2753 else
2754 {
2755 assumption = simplify_gen_relational (cond, SImode, mode,
2756 bound, tmp0);
2757 desc->assumptions =
2758 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2759 }
50654f6c
ZD
2760
2761 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
6c3b938d 2762 tmp = lowpart_subreg (mode, tmp, comp_mode);
50654f6c
ZD
2763 assumption = simplify_gen_relational (reverse_condition (cond),
2764 SImode, mode,
2765 tmp, tmp1);
2766 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2767 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2768 }
2769 if (assumption == const_true_rtx)
4fbe4f91 2770 goto zero_iter_simplify;
50654f6c
ZD
2771 else if (assumption != const0_rtx)
2772 desc->noloop_assumptions =
2773 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2774 delta = simplify_gen_binary (UDIV, mode, delta, step);
2775 desc->niter_expr = delta;
2776 }
2777
fe3f617f
ZD
2778 old_niter = desc->niter_expr;
2779
50654f6c
ZD
2780 simplify_using_initial_values (loop, AND, &desc->assumptions);
2781 if (desc->assumptions
2782 && XEXP (desc->assumptions, 0) == const0_rtx)
2783 goto fail;
2784 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2785 simplify_using_initial_values (loop, IOR, &desc->infinite);
f822d252 2786 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
50654f6c
ZD
2787
2788 /* Rerun the simplification. Consider code (created by copying loop headers)
2789
2790 i = 0;
2791
2792 if (0 < n)
2793 {
2794 do
2795 {
2796 i++;
2797 } while (i < n);
2798 }
2799
2800 The first pass determines that i = 0, the second pass uses it to eliminate
2801 noloop assumption. */
2802
2803 simplify_using_initial_values (loop, AND, &desc->assumptions);
2804 if (desc->assumptions
2805 && XEXP (desc->assumptions, 0) == const0_rtx)
2806 goto fail;
2807 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2808 simplify_using_initial_values (loop, IOR, &desc->infinite);
f822d252 2809 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
50654f6c 2810
689ba89d
ZD
2811 if (desc->noloop_assumptions
2812 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2813 goto zero_iter;
2814
481683e1 2815 if (CONST_INT_P (desc->niter_expr))
50654f6c 2816 {
a9243bfc 2817 uint64_t val = INTVAL (desc->niter_expr);
50654f6c
ZD
2818
2819 desc->const_iter = true;
e3a8f1fa 2820 desc->niter = val & GET_MODE_MASK (desc->mode);
bcd8d322
JH
2821 if (!desc->infinite
2822 && !desc->assumptions)
807e902e 2823 record_niter_bound (loop, desc->niter, false, true);
50654f6c 2824 }
fe3f617f
ZD
2825 else
2826 {
daa57386 2827 max = determine_max_iter (loop, desc, old_niter);
8386a7ea
JH
2828 if (!max)
2829 goto zero_iter_simplify;
bcd8d322
JH
2830 if (!desc->infinite
2831 && !desc->assumptions)
807e902e 2832 record_niter_bound (loop, max, false, true);
fe3f617f
ZD
2833
2834 /* simplify_using_initial_values does a copy propagation on the registers
2835 in the expression for the number of iterations. This prolongs life
2836 ranges of registers and increases register pressure, and usually
2837 brings no gain (and if it happens to do, the cse pass will take care
2838 of it anyway). So prevent this behavior, unless it enabled us to
2839 derive that the number of iterations is a constant. */
2840 desc->niter_expr = old_niter;
2841 }
50654f6c
ZD
2842
2843 return;
2844
4fbe4f91
ZD
2845zero_iter_simplify:
2846 /* Simplify the assumptions. */
2847 simplify_using_initial_values (loop, AND, &desc->assumptions);
2848 if (desc->assumptions
2849 && XEXP (desc->assumptions, 0) == const0_rtx)
2850 goto fail;
2851 simplify_using_initial_values (loop, IOR, &desc->infinite);
50654f6c 2852
4fbe4f91 2853 /* Fallthru. */
50654f6c
ZD
2854zero_iter:
2855 desc->const_iter = true;
2856 desc->niter = 0;
807e902e 2857 record_niter_bound (loop, 0, true, true);
4fbe4f91 2858 desc->noloop_assumptions = NULL_RTX;
50654f6c
ZD
2859 desc->niter_expr = const0_rtx;
2860 return;
4fbe4f91
ZD
2861
2862fail:
2863 desc->simple_p = false;
2864 return;
50654f6c
ZD
2865}
2866
2867/* Checks whether E is a simple exit from LOOP and stores its description
f2dca510 2868 into DESC. */
50654f6c
ZD
2869
2870static void
99b1c316 2871check_simple_exit (class loop *loop, edge e, class niter_desc *desc)
50654f6c
ZD
2872{
2873 basic_block exit_bb;
61aa0978
DM
2874 rtx condition;
2875 rtx_insn *at;
628f6a4e 2876 edge ein;
50654f6c
ZD
2877
2878 exit_bb = e->src;
2879 desc->simple_p = false;
2880
2881 /* It must belong directly to the loop. */
2882 if (exit_bb->loop_father != loop)
2883 return;
2884
2885 /* It must be tested (at least) once during any iteration. */
7002f3bd 2886 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
50654f6c
ZD
2887 return;
2888
2889 /* It must end in a simple conditional jump. */
a2bd4e52 2890 if (!any_condjump_p (BB_END (exit_bb)) || !onlyjump_p (BB_END (exit_bb)))
50654f6c
ZD
2891 return;
2892
628f6a4e
BE
2893 ein = EDGE_SUCC (exit_bb, 0);
2894 if (ein == e)
2895 ein = EDGE_SUCC (exit_bb, 1);
50654f6c
ZD
2896
2897 desc->out_edge = e;
628f6a4e 2898 desc->in_edge = ein;
50654f6c
ZD
2899
2900 /* Test whether the condition is suitable. */
628f6a4e 2901 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
50654f6c
ZD
2902 return;
2903
628f6a4e 2904 if (ein->flags & EDGE_FALLTHRU)
50654f6c
ZD
2905 {
2906 condition = reversed_condition (condition);
2907 if (!condition)
2908 return;
2909 }
2910
2911 /* Check that we are able to determine number of iterations and fill
2912 in information about it. */
61aa0978 2913 iv_number_of_iterations (loop, at, condition, desc);
50654f6c
ZD
2914}
2915
f2dca510 2916/* Finds a simple exit of LOOP and stores its description into DESC. */
50654f6c 2917
b888a051 2918static void
99b1c316 2919find_simple_exit (class loop *loop, class niter_desc *desc)
50654f6c
ZD
2920{
2921 unsigned i;
2922 basic_block *body;
2923 edge e;
99b1c316 2924 class niter_desc act;
50654f6c 2925 bool any = false;
628f6a4e 2926 edge_iterator ei;
50654f6c
ZD
2927
2928 desc->simple_p = false;
2929 body = get_loop_body (loop);
2930
2931 for (i = 0; i < loop->num_nodes; i++)
2932 {
628f6a4e 2933 FOR_EACH_EDGE (e, ei, body[i]->succs)
50654f6c
ZD
2934 {
2935 if (flow_bb_inside_loop_p (loop, e->dest))
2936 continue;
b8698a0f 2937
50654f6c
ZD
2938 check_simple_exit (loop, e, &act);
2939 if (!act.simple_p)
2940 continue;
2941
50654f6c
ZD
2942 if (!any)
2943 any = true;
4fbe4f91
ZD
2944 else
2945 {
2946 /* Prefer constant iterations; the less the better. */
2947 if (!act.const_iter
2948 || (desc->const_iter && act.niter >= desc->niter))
2949 continue;
2950
2951 /* Also if the actual exit may be infinite, while the old one
2952 not, prefer the old one. */
2953 if (act.infinite && !desc->infinite)
2954 continue;
2955 }
b8698a0f 2956
50654f6c
ZD
2957 *desc = act;
2958 }
2959 }
2960
c263766c 2961 if (dump_file)
50654f6c
ZD
2962 {
2963 if (desc->simple_p)
2964 {
c263766c
RH
2965 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2966 fprintf (dump_file, " simple exit %d -> %d\n",
50654f6c
ZD
2967 desc->out_edge->src->index,
2968 desc->out_edge->dest->index);
2969 if (desc->assumptions)
2970 {
c263766c
RH
2971 fprintf (dump_file, " assumptions: ");
2972 print_rtl (dump_file, desc->assumptions);
2973 fprintf (dump_file, "\n");
50654f6c
ZD
2974 }
2975 if (desc->noloop_assumptions)
2976 {
c263766c
RH
2977 fprintf (dump_file, " does not roll if: ");
2978 print_rtl (dump_file, desc->noloop_assumptions);
2979 fprintf (dump_file, "\n");
50654f6c
ZD
2980 }
2981 if (desc->infinite)
2982 {
c263766c
RH
2983 fprintf (dump_file, " infinite if: ");
2984 print_rtl (dump_file, desc->infinite);
2985 fprintf (dump_file, "\n");
50654f6c
ZD
2986 }
2987
c263766c
RH
2988 fprintf (dump_file, " number of iterations: ");
2989 print_rtl (dump_file, desc->niter_expr);
2990 fprintf (dump_file, "\n");
50654f6c 2991
e3a8f1fa 2992 fprintf (dump_file, " upper bound: %li\n",
1ef88893 2993 (long)get_max_loop_iterations_int (loop));
8c383600
JH
2994 fprintf (dump_file, " likely upper bound: %li\n",
2995 (long)get_likely_max_loop_iterations_int (loop));
e3a8f1fa 2996 fprintf (dump_file, " realistic bound: %li\n",
1ef88893 2997 (long)get_estimated_loop_iterations_int (loop));
50654f6c
ZD
2998 }
2999 else
c263766c 3000 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
50654f6c
ZD
3001 }
3002
ce3ad45c
KL
3003 /* Fix up the finiteness if possible. We can only do it for single exit,
3004 since the loop is finite, but it's possible that we predicate one loop
3005 exit to be finite which can not be determined as finite in middle-end as
3006 well. It results in incorrect predicate information on the exit condition
3007 expression. For example, if says [(int) _1 + -8, + , -8] != 0 finite,
3008 it means _1 can exactly divide -8. */
b5b31291 3009 if (desc->infinite && single_exit (loop) && finite_loop_p (loop))
ce3ad45c
KL
3010 {
3011 desc->infinite = NULL_RTX;
3012 if (dump_file)
3013 fprintf (dump_file, " infinite updated to finite.\n");
3014 }
3015
50654f6c
ZD
3016 free (body);
3017}
3018
3019/* Creates a simple loop description of LOOP if it was not computed
3020 already. */
3021
99b1c316
MS
3022class niter_desc *
3023get_simple_loop_desc (class loop *loop)
50654f6c 3024{
99b1c316 3025 class niter_desc *desc = simple_loop_desc (loop);
50654f6c
ZD
3026
3027 if (desc)
3028 return desc;
3029
1242bc9d
R
3030 /* At least desc->infinite is not always initialized by
3031 find_simple_loop_exit. */
766090c2 3032 desc = ggc_cleared_alloc<niter_desc> ();
50654f6c
ZD
3033 iv_analysis_loop_init (loop);
3034 find_simple_exit (loop, desc);
ef23e6a2 3035 loop->simple_loop_desc = desc;
50654f6c
ZD
3036 return desc;
3037}
3038
3039/* Releases simple loop description for LOOP. */
3040
3041void
99b1c316 3042free_simple_loop_desc (class loop *loop)
50654f6c 3043{
99b1c316 3044 class niter_desc *desc = simple_loop_desc (loop);
50654f6c
ZD
3045
3046 if (!desc)
3047 return;
3048
ef23e6a2
RB
3049 ggc_free (desc);
3050 loop->simple_loop_desc = NULL;
50654f6c 3051}