]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/rtlanal.c
Daily bump.
[thirdparty/gcc.git] / gcc / rtlanal.c
CommitLineData
af082de3 1/* Analyze RTL for GNU compiler.
23a5b65a 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
2c88418c 3
1322177d 4This file is part of GCC.
2c88418c 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
2c88418c 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
2c88418c
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
2c88418c
RS
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
3335f1d9 26#include "hard-reg-set.h"
9f02e6a5 27#include "rtl.h"
bc204393
RH
28#include "insn-config.h"
29#include "recog.h"
f894b69b
PB
30#include "target.h"
31#include "output.h"
91ea4f8d 32#include "tm_p.h"
f5eb5fd0 33#include "flags.h"
66fd46b6 34#include "regs.h"
2f93eea8 35#include "function.h"
6fb5fa3c 36#include "df.h"
7ffb5e78 37#include "tree.h"
5936d944 38#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
277f65de 39#include "addresses.h"
476dd0ce 40#include "rtl-iter.h"
2c88418c 41
e2373f95 42/* Forward declarations */
7bc980e1 43static void set_of_1 (rtx, const_rtx, void *);
f7d504c2
KG
44static bool covers_regno_p (const_rtx, unsigned int);
45static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
f7d504c2 46static int computed_jump_p_1 (const_rtx);
7bc980e1 47static void parms_set (rtx, const_rtx, void *);
2a1777af 48
fa233e34
KG
49static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
2f93eea8 51 unsigned HOST_WIDE_INT);
fa233e34
KG
52static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
2f93eea8 54 unsigned HOST_WIDE_INT);
fa233e34 55static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
2f93eea8
PB
56 enum machine_mode,
57 unsigned int);
fa233e34 58static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
2f93eea8
PB
59 enum machine_mode, unsigned int);
60
cf94b0fc
PB
61/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63static int non_rtx_starting_operands[NUM_RTX_CODE];
64
476dd0ce
RS
65rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
66rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
67
b12cbf2c
AN
68/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
69 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
70 SIGN_EXTEND then while narrowing we also have to enforce the
71 representation and sign-extend the value to mode DESTINATION_REP.
72
73 If the value is already sign-extended to DESTINATION_REP mode we
74 can just switch to DESTINATION mode on it. For each pair of
75 integral modes SOURCE and DESTINATION, when truncating from SOURCE
76 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
77 contains the number of high-order bits in SOURCE that have to be
78 copies of the sign-bit so that we can do this mode-switch to
79 DESTINATION. */
80
81static unsigned int
82num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
2c88418c 83\f
476dd0ce
RS
84/* Store X into index I of ARRAY. ARRAY is known to have at least I
85 elements. Return the new base of ARRAY. */
86
87template <typename T>
88typename T::value_type *
89generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
90 value_type *base,
91 size_t i, value_type x)
92{
93 if (base == array.stack)
94 {
95 if (i < LOCAL_ELEMS)
96 {
97 base[i] = x;
98 return base;
99 }
100 gcc_checking_assert (i == LOCAL_ELEMS);
101 vec_safe_grow (array.heap, i + 1);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
106 }
107 unsigned int length = array.heap->length ();
108 if (length > i)
109 {
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
113 }
114 else
115 {
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
119 }
120}
121
122/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
124
125template <typename T>
126size_t
127generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
130{
131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
132 size_t orig_end = end;
133 for (int i = 0; format[i]; ++i)
134 if (format[i] == 'e')
135 {
136 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
137 if (__builtin_expect (end < LOCAL_ELEMS, true))
138 base[end++] = subx;
139 else
140 base = add_single_to_queue (array, base, end++, subx);
141 }
142 else if (format[i] == 'E')
143 {
144 int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
145 rtx *vec = x->u.fld[i].rt_rtvec->elem;
146 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
147 for (int j = 0; j < length; j++)
148 base[end++] = T::get_value (vec[j]);
149 else
150 for (int j = 0; j < length; j++)
151 base = add_single_to_queue (array, base, end++,
152 T::get_value (vec[j]));
153 }
154 return end - orig_end;
155}
156
157template <typename T>
158void
159generic_subrtx_iterator <T>::free_array (array_type &array)
160{
161 vec_free (array.heap);
162}
163
164template <typename T>
165const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
166
167template class generic_subrtx_iterator <const_rtx_accessor>;
168template class generic_subrtx_iterator <rtx_var_accessor>;
169template class generic_subrtx_iterator <rtx_ptr_accessor>;
170
2c88418c
RS
171/* Return 1 if the value of X is unstable
172 (would be different at a different point in the program).
173 The frame pointer, arg pointer, etc. are considered stable
174 (within one function) and so is anything marked `unchanging'. */
175
176int
f7d504c2 177rtx_unstable_p (const_rtx x)
2c88418c 178{
f7d504c2 179 const RTX_CODE code = GET_CODE (x);
b3694847
SS
180 int i;
181 const char *fmt;
2c88418c 182
ae0fb1b9
JW
183 switch (code)
184 {
185 case MEM:
389fdba0 186 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
2c88418c 187
ae0fb1b9 188 case CONST:
d8116890 189 CASE_CONST_ANY:
ae0fb1b9
JW
190 case SYMBOL_REF:
191 case LABEL_REF:
192 return 0;
2c88418c 193
ae0fb1b9
JW
194 case REG:
195 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
c0fc376b 196 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9 197 /* The arg pointer varies if it is not a fixed register. */
389fdba0 198 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 199 return 0;
c0fc376b
RH
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up local-alloc
202 into believing that the restore is not needed. */
f8fe0a4a 203 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
c0fc376b 204 return 0;
c0fc376b 205 return 1;
ae0fb1b9
JW
206
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
210
5d3cc252 211 /* Fall through. */
ae0fb1b9
JW
212
213 default:
214 break;
215 }
2c88418c
RS
216
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
9c82ac6b
JW
220 {
221 if (rtx_unstable_p (XEXP (x, i)))
222 return 1;
223 }
224 else if (fmt[i] == 'E')
225 {
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_unstable_p (XVECEXP (x, i, j)))
229 return 1;
230 }
231
2c88418c
RS
232 return 0;
233}
234
235/* Return 1 if X has a value that can vary even between two
236 executions of the program. 0 means X can be compared reliably
237 against certain constants or near-constants.
e38fe8e0
BS
238 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
239 zero, we are slightly more conservative.
2c88418c
RS
240 The frame pointer and the arg pointer are considered constant. */
241
4f588890
KG
242bool
243rtx_varies_p (const_rtx x, bool for_alias)
2c88418c 244{
e978d62e 245 RTX_CODE code;
b3694847
SS
246 int i;
247 const char *fmt;
2c88418c 248
e978d62e
PB
249 if (!x)
250 return 0;
251
252 code = GET_CODE (x);
2c88418c
RS
253 switch (code)
254 {
255 case MEM:
389fdba0 256 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
55efb413 257
2c88418c 258 case CONST:
d8116890 259 CASE_CONST_ANY:
2c88418c
RS
260 case SYMBOL_REF:
261 case LABEL_REF:
262 return 0;
263
264 case REG:
265 /* Note that we have to test for the actual rtx used for the frame
266 and arg pointers and not just the register number in case we have
267 eliminated the frame and/or arg pointer and are using it
268 for pseudos. */
c0fc376b 269 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9
JL
270 /* The arg pointer varies if it is not a fixed register. */
271 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 272 return 0;
e38fe8e0 273 if (x == pic_offset_table_rtx
e38fe8e0
BS
274 /* ??? When call-clobbered, the value is stable modulo the restore
275 that must happen after a call. This currently screws up
276 local-alloc into believing that the restore is not needed, so we
277 must return 0 only if we are called from alias analysis. */
f8fe0a4a 278 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
e38fe8e0 279 return 0;
c0fc376b 280 return 1;
2c88418c
RS
281
282 case LO_SUM:
283 /* The operand 0 of a LO_SUM is considered constant
e7d96a83
JW
284 (in fact it is related specifically to operand 1)
285 during alias analysis. */
286 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
287 || rtx_varies_p (XEXP (x, 1), for_alias);
a6a2274a 288
ae0fb1b9
JW
289 case ASM_OPERANDS:
290 if (MEM_VOLATILE_P (x))
291 return 1;
292
5d3cc252 293 /* Fall through. */
ae0fb1b9 294
e9a25f70
JL
295 default:
296 break;
2c88418c
RS
297 }
298
299 fmt = GET_RTX_FORMAT (code);
300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
301 if (fmt[i] == 'e')
9c82ac6b 302 {
e38fe8e0 303 if (rtx_varies_p (XEXP (x, i), for_alias))
9c82ac6b
JW
304 return 1;
305 }
306 else if (fmt[i] == 'E')
307 {
308 int j;
309 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 310 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
9c82ac6b
JW
311 return 1;
312 }
313
2c88418c
RS
314 return 0;
315}
316
c7e30a96
EB
317/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
318 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
319 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
320 references on strict alignment machines. */
2c88418c 321
2358ff91 322static int
48e8382e
PB
323rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
324 enum machine_mode mode, bool unaligned_mems)
2c88418c 325{
b3694847 326 enum rtx_code code = GET_CODE (x);
2c88418c 327
c7e30a96
EB
328 /* The offset must be a multiple of the mode size if we are considering
329 unaligned memory references on strict alignment machines. */
330 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
48e8382e
PB
331 {
332 HOST_WIDE_INT actual_offset = offset;
c7e30a96 333
48e8382e
PB
334#ifdef SPARC_STACK_BOUNDARY_HACK
335 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
336 the real alignment of %sp. However, when it does this, the
337 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
338 if (SPARC_STACK_BOUNDARY_HACK
339 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
340 actual_offset -= STACK_POINTER_OFFSET;
341#endif
342
65a74b5d
PB
343 if (actual_offset % GET_MODE_SIZE (mode) != 0)
344 return 1;
48e8382e
PB
345 }
346
2c88418c
RS
347 switch (code)
348 {
349 case SYMBOL_REF:
48e8382e
PB
350 if (SYMBOL_REF_WEAK (x))
351 return 1;
352 if (!CONSTANT_POOL_ADDRESS_P (x))
353 {
354 tree decl;
355 HOST_WIDE_INT decl_size;
356
357 if (offset < 0)
358 return 1;
359 if (size == 0)
360 size = GET_MODE_SIZE (mode);
361 if (size == 0)
362 return offset != 0;
363
364 /* If the size of the access or of the symbol is unknown,
365 assume the worst. */
366 decl = SYMBOL_REF_DECL (x);
367
368 /* Else check that the access is in bounds. TODO: restructure
71c00b5c 369 expr_size/tree_expr_size/int_expr_size and just use the latter. */
48e8382e
PB
370 if (!decl)
371 decl_size = -1;
372 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
9541ffee 373 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
9439e9a1 374 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
48e8382e
PB
375 : -1);
376 else if (TREE_CODE (decl) == STRING_CST)
377 decl_size = TREE_STRING_LENGTH (decl);
378 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
379 decl_size = int_size_in_bytes (TREE_TYPE (decl));
380 else
381 decl_size = -1;
382
383 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
384 }
385
386 return 0;
ff0b6b99 387
2c88418c 388 case LABEL_REF:
2c88418c
RS
389 return 0;
390
391 case REG:
c7e30a96
EB
392 /* Stack references are assumed not to trap, but we need to deal with
393 nonsensical offsets. */
394 if (x == frame_pointer_rtx)
395 {
396 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (FRAME_GROWS_DOWNWARD)
400 {
401 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
402 return 1;
403 }
404 else
405 {
406 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
407 return 1;
408 }
409 return 0;
410 }
411 /* ??? Need to add a similar guard for nonsensical offsets. */
412 if (x == hard_frame_pointer_rtx
4f73495e
RH
413 || x == stack_pointer_rtx
414 /* The arg pointer varies if it is not a fixed register. */
415 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
416 return 0;
417 /* All of the virtual frame registers are stack references. */
418 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
419 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
420 return 0;
421 return 1;
2c88418c
RS
422
423 case CONST:
48e8382e
PB
424 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
425 mode, unaligned_mems);
2c88418c
RS
426
427 case PLUS:
2358ff91 428 /* An address is assumed not to trap if:
48e8382e
PB
429 - it is the pic register plus a constant. */
430 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
431 return 0;
432
c7e30a96 433 /* - or it is an address that can't trap plus a constant integer. */
481683e1 434 if (CONST_INT_P (XEXP (x, 1))
48e8382e
PB
435 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
436 size, mode, unaligned_mems))
2358ff91
EB
437 return 0;
438
439 return 1;
2c88418c
RS
440
441 case LO_SUM:
4f73495e 442 case PRE_MODIFY:
48e8382e
PB
443 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
444 mode, unaligned_mems);
4f73495e
RH
445
446 case PRE_DEC:
447 case PRE_INC:
448 case POST_DEC:
449 case POST_INC:
450 case POST_MODIFY:
48e8382e
PB
451 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
452 mode, unaligned_mems);
4f73495e 453
e9a25f70
JL
454 default:
455 break;
2c88418c
RS
456 }
457
458 /* If it isn't one of the case above, it can cause a trap. */
459 return 1;
460}
461
2358ff91
EB
462/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
463
464int
f7d504c2 465rtx_addr_can_trap_p (const_rtx x)
2358ff91 466{
48e8382e 467 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
2358ff91
EB
468}
469
4977bab6
ZW
470/* Return true if X is an address that is known to not be zero. */
471
472bool
f7d504c2 473nonzero_address_p (const_rtx x)
4977bab6 474{
f7d504c2 475 const enum rtx_code code = GET_CODE (x);
4977bab6
ZW
476
477 switch (code)
478 {
479 case SYMBOL_REF:
480 return !SYMBOL_REF_WEAK (x);
481
482 case LABEL_REF:
483 return true;
484
4977bab6
ZW
485 case REG:
486 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
487 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
488 || x == stack_pointer_rtx
489 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
490 return true;
491 /* All of the virtual frame registers are stack references. */
492 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
493 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
494 return true;
495 return false;
496
497 case CONST:
498 return nonzero_address_p (XEXP (x, 0));
499
500 case PLUS:
4977bab6 501 /* Handle PIC references. */
bc2164e8 502 if (XEXP (x, 0) == pic_offset_table_rtx
4977bab6
ZW
503 && CONSTANT_P (XEXP (x, 1)))
504 return true;
505 return false;
506
507 case PRE_MODIFY:
508 /* Similar to the above; allow positive offsets. Further, since
509 auto-inc is only allowed in memories, the register must be a
510 pointer. */
481683e1 511 if (CONST_INT_P (XEXP (x, 1))
4977bab6
ZW
512 && INTVAL (XEXP (x, 1)) > 0)
513 return true;
514 return nonzero_address_p (XEXP (x, 0));
515
516 case PRE_INC:
517 /* Similarly. Further, the offset is always positive. */
518 return true;
519
520 case PRE_DEC:
521 case POST_DEC:
522 case POST_INC:
523 case POST_MODIFY:
524 return nonzero_address_p (XEXP (x, 0));
525
526 case LO_SUM:
527 return nonzero_address_p (XEXP (x, 1));
528
529 default:
530 break;
531 }
532
533 /* If it isn't one of the case above, might be zero. */
534 return false;
535}
536
a6a2274a 537/* Return 1 if X refers to a memory location whose address
2c88418c 538 cannot be compared reliably with constant addresses,
a6a2274a 539 or if X refers to a BLKmode memory object.
e38fe8e0
BS
540 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
541 zero, we are slightly more conservative. */
2c88418c 542
4f588890
KG
543bool
544rtx_addr_varies_p (const_rtx x, bool for_alias)
2c88418c 545{
b3694847
SS
546 enum rtx_code code;
547 int i;
548 const char *fmt;
2c88418c
RS
549
550 if (x == 0)
551 return 0;
552
553 code = GET_CODE (x);
554 if (code == MEM)
e38fe8e0 555 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
2c88418c
RS
556
557 fmt = GET_RTX_FORMAT (code);
558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559 if (fmt[i] == 'e')
833c0b26 560 {
e38fe8e0 561 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
833c0b26
RK
562 return 1;
563 }
564 else if (fmt[i] == 'E')
565 {
566 int j;
567 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 568 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
833c0b26
RK
569 return 1;
570 }
2c88418c
RS
571 return 0;
572}
573\f
da4fdf2d
SB
574/* Return the CALL in X if there is one. */
575
576rtx
577get_call_rtx_from (rtx x)
578{
579 if (INSN_P (x))
580 x = PATTERN (x);
581 if (GET_CODE (x) == PARALLEL)
582 x = XVECEXP (x, 0, 0);
583 if (GET_CODE (x) == SET)
584 x = SET_SRC (x);
585 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
586 return x;
587 return NULL_RTX;
588}
589\f
2c88418c
RS
590/* Return the value of the integer term in X, if one is apparent;
591 otherwise return 0.
592 Only obvious integer terms are detected.
3ef42a0c 593 This is used in cse.c with the `related_value' field. */
2c88418c 594
c166a311 595HOST_WIDE_INT
f7d504c2 596get_integer_term (const_rtx x)
2c88418c
RS
597{
598 if (GET_CODE (x) == CONST)
599 x = XEXP (x, 0);
600
601 if (GET_CODE (x) == MINUS
481683e1 602 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
603 return - INTVAL (XEXP (x, 1));
604 if (GET_CODE (x) == PLUS
481683e1 605 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
606 return INTVAL (XEXP (x, 1));
607 return 0;
608}
609
610/* If X is a constant, return the value sans apparent integer term;
611 otherwise return 0.
612 Only obvious integer terms are detected. */
613
614rtx
f7d504c2 615get_related_value (const_rtx x)
2c88418c
RS
616{
617 if (GET_CODE (x) != CONST)
618 return 0;
619 x = XEXP (x, 0);
620 if (GET_CODE (x) == PLUS
481683e1 621 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
622 return XEXP (x, 0);
623 else if (GET_CODE (x) == MINUS
481683e1 624 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
625 return XEXP (x, 0);
626 return 0;
627}
628\f
7ffb5e78
RS
629/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
630 to somewhere in the same object or object_block as SYMBOL. */
631
632bool
f7d504c2 633offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
7ffb5e78
RS
634{
635 tree decl;
636
637 if (GET_CODE (symbol) != SYMBOL_REF)
638 return false;
639
640 if (offset == 0)
641 return true;
642
643 if (offset > 0)
644 {
645 if (CONSTANT_POOL_ADDRESS_P (symbol)
646 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
647 return true;
648
649 decl = SYMBOL_REF_DECL (symbol);
650 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
651 return true;
652 }
653
654 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
655 && SYMBOL_REF_BLOCK (symbol)
656 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
657 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
658 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
659 return true;
660
661 return false;
662}
663
664/* Split X into a base and a constant offset, storing them in *BASE_OUT
665 and *OFFSET_OUT respectively. */
666
667void
668split_const (rtx x, rtx *base_out, rtx *offset_out)
669{
670 if (GET_CODE (x) == CONST)
671 {
672 x = XEXP (x, 0);
481683e1 673 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
7ffb5e78
RS
674 {
675 *base_out = XEXP (x, 0);
676 *offset_out = XEXP (x, 1);
677 return;
678 }
679 }
680 *base_out = x;
681 *offset_out = const0_rtx;
682}
683\f
4b983fdc
RH
684/* Return the number of places FIND appears within X. If COUNT_DEST is
685 zero, we do not count occurrences inside the destination of a SET. */
686
687int
f7d504c2 688count_occurrences (const_rtx x, const_rtx find, int count_dest)
4b983fdc
RH
689{
690 int i, j;
691 enum rtx_code code;
692 const char *format_ptr;
693 int count;
694
695 if (x == find)
696 return 1;
697
698 code = GET_CODE (x);
699
700 switch (code)
701 {
702 case REG:
d8116890 703 CASE_CONST_ANY:
4b983fdc
RH
704 case SYMBOL_REF:
705 case CODE_LABEL:
706 case PC:
707 case CC0:
708 return 0;
709
2372a062
BS
710 case EXPR_LIST:
711 count = count_occurrences (XEXP (x, 0), find, count_dest);
712 if (XEXP (x, 1))
713 count += count_occurrences (XEXP (x, 1), find, count_dest);
714 return count;
b8698a0f 715
4b983fdc 716 case MEM:
3c0cb5de 717 if (MEM_P (find) && rtx_equal_p (x, find))
4b983fdc
RH
718 return 1;
719 break;
720
721 case SET:
722 if (SET_DEST (x) == find && ! count_dest)
723 return count_occurrences (SET_SRC (x), find, count_dest);
724 break;
725
726 default:
727 break;
728 }
729
730 format_ptr = GET_RTX_FORMAT (code);
731 count = 0;
732
733 for (i = 0; i < GET_RTX_LENGTH (code); i++)
734 {
735 switch (*format_ptr++)
736 {
737 case 'e':
738 count += count_occurrences (XEXP (x, i), find, count_dest);
739 break;
740
741 case 'E':
742 for (j = 0; j < XVECLEN (x, i); j++)
743 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
744 break;
745 }
746 }
747 return count;
748}
6fb5fa3c 749
7bc14a04
PB
750\f
751/* Return TRUE if OP is a register or subreg of a register that
752 holds an unsigned quantity. Otherwise, return FALSE. */
753
754bool
755unsigned_reg_p (rtx op)
756{
757 if (REG_P (op)
758 && REG_EXPR (op)
759 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
760 return true;
761
762 if (GET_CODE (op) == SUBREG
362d42dc 763 && SUBREG_PROMOTED_SIGN (op))
7bc14a04
PB
764 return true;
765
766 return false;
767}
768
4b983fdc 769\f
2c88418c
RS
770/* Nonzero if register REG appears somewhere within IN.
771 Also works if REG is not a register; in this case it checks
772 for a subexpression of IN that is Lisp "equal" to REG. */
773
774int
f7d504c2 775reg_mentioned_p (const_rtx reg, const_rtx in)
2c88418c 776{
b3694847
SS
777 const char *fmt;
778 int i;
779 enum rtx_code code;
2c88418c
RS
780
781 if (in == 0)
782 return 0;
783
784 if (reg == in)
785 return 1;
786
787 if (GET_CODE (in) == LABEL_REF)
a827d9b1 788 return reg == LABEL_REF_LABEL (in);
2c88418c
RS
789
790 code = GET_CODE (in);
791
792 switch (code)
793 {
794 /* Compare registers by number. */
795 case REG:
f8cfc6aa 796 return REG_P (reg) && REGNO (in) == REGNO (reg);
2c88418c
RS
797
798 /* These codes have no constituent expressions
799 and are unique. */
800 case SCRATCH:
801 case CC0:
802 case PC:
803 return 0;
804
d8116890 805 CASE_CONST_ANY:
2c88418c
RS
806 /* These are kept unique for a given value. */
807 return 0;
a6a2274a 808
e9a25f70
JL
809 default:
810 break;
2c88418c
RS
811 }
812
813 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
814 return 1;
815
816 fmt = GET_RTX_FORMAT (code);
817
818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
819 {
820 if (fmt[i] == 'E')
821 {
b3694847 822 int j;
2c88418c
RS
823 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
824 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
825 return 1;
826 }
827 else if (fmt[i] == 'e'
828 && reg_mentioned_p (reg, XEXP (in, i)))
829 return 1;
830 }
831 return 0;
832}
833\f
834/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
835 no CODE_LABEL insn. */
836
837int
b32d5189 838no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
2c88418c 839{
b32d5189 840 rtx_insn *p;
978f547f
JH
841 if (beg == end)
842 return 0;
2c88418c 843 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
4b4bf941 844 if (LABEL_P (p))
2c88418c
RS
845 return 0;
846 return 1;
847}
848
849/* Nonzero if register REG is used in an insn between
850 FROM_INSN and TO_INSN (exclusive of those two). */
851
852int
b32d5189
DM
853reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
854 const rtx_insn *to_insn)
2c88418c 855{
1bbbc4a3 856 rtx_insn *insn;
2c88418c
RS
857
858 if (from_insn == to_insn)
859 return 0;
860
861 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
b5b8b0ac 862 if (NONDEBUG_INSN_P (insn)
8f3e7a26 863 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
76dd5923 864 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
2c88418c
RS
865 return 1;
866 return 0;
867}
868\f
869/* Nonzero if the old value of X, a register, is referenced in BODY. If X
870 is entirely replaced by a new value and the only use is as a SET_DEST,
871 we do not consider it a reference. */
872
873int
f7d504c2 874reg_referenced_p (const_rtx x, const_rtx body)
2c88418c
RS
875{
876 int i;
877
878 switch (GET_CODE (body))
879 {
880 case SET:
881 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
882 return 1;
883
884 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
885 of a REG that occupies all of the REG, the insn references X if
886 it is mentioned in the destination. */
887 if (GET_CODE (SET_DEST (body)) != CC0
888 && GET_CODE (SET_DEST (body)) != PC
f8cfc6aa 889 && !REG_P (SET_DEST (body))
2c88418c 890 && ! (GET_CODE (SET_DEST (body)) == SUBREG
f8cfc6aa 891 && REG_P (SUBREG_REG (SET_DEST (body)))
2c88418c
RS
892 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
893 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
894 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
895 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
896 && reg_overlap_mentioned_p (x, SET_DEST (body)))
897 return 1;
e9a25f70 898 return 0;
2c88418c
RS
899
900 case ASM_OPERANDS:
901 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
902 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
903 return 1;
e9a25f70 904 return 0;
2c88418c
RS
905
906 case CALL:
907 case USE:
14a774a9 908 case IF_THEN_ELSE:
2c88418c
RS
909 return reg_overlap_mentioned_p (x, body);
910
911 case TRAP_IF:
912 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
913
21b8482a
JJ
914 case PREFETCH:
915 return reg_overlap_mentioned_p (x, XEXP (body, 0));
916
2ac4fed0
RK
917 case UNSPEC:
918 case UNSPEC_VOLATILE:
2f9fb4c2
R
919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
920 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
921 return 1;
922 return 0;
923
2c88418c
RS
924 case PARALLEL:
925 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
926 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
927 return 1;
e9a25f70 928 return 0;
a6a2274a 929
0d3ffb5a 930 case CLOBBER:
3c0cb5de 931 if (MEM_P (XEXP (body, 0)))
0d3ffb5a
GK
932 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
933 return 1;
934 return 0;
935
0c99ec5c
RH
936 case COND_EXEC:
937 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
938 return 1;
939 return reg_referenced_p (x, COND_EXEC_CODE (body));
940
e9a25f70
JL
941 default:
942 return 0;
2c88418c 943 }
2c88418c 944}
2c88418c
RS
945\f
946/* Nonzero if register REG is set or clobbered in an insn between
947 FROM_INSN and TO_INSN (exclusive of those two). */
948
949int
a5d567ec
DM
950reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
951 const rtx_insn *to_insn)
2c88418c 952{
1bbbc4a3 953 const rtx_insn *insn;
2c88418c
RS
954
955 if (from_insn == to_insn)
956 return 0;
957
958 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
2c3c49de 959 if (INSN_P (insn) && reg_set_p (reg, insn))
2c88418c
RS
960 return 1;
961 return 0;
962}
963
964/* Internals of reg_set_between_p. */
2c88418c 965int
ed7a4b4b 966reg_set_p (const_rtx reg, const_rtx insn)
2c88418c 967{
2c88418c
RS
968 /* We can be passed an insn or part of one. If we are passed an insn,
969 check if a side-effect of the insn clobbers REG. */
4977bab6
ZW
970 if (INSN_P (insn)
971 && (FIND_REG_INC_NOTE (insn, reg)
4b4bf941 972 || (CALL_P (insn)
f8cfc6aa 973 && ((REG_P (reg)
4f1605d2 974 && REGNO (reg) < FIRST_PSEUDO_REGISTER
5da20cfe
RS
975 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
976 GET_MODE (reg), REGNO (reg)))
3c0cb5de 977 || MEM_P (reg)
4977bab6
ZW
978 || find_reg_fusage (insn, CLOBBER, reg)))))
979 return 1;
2c88418c 980
91b2d119 981 return set_of (reg, insn) != NULL_RTX;
2c88418c
RS
982}
983
984/* Similar to reg_set_between_p, but check all registers in X. Return 0
985 only if none of them are modified between START and END. Return 1 if
fa10beec 986 X contains a MEM; this routine does use memory aliasing. */
2c88418c
RS
987
988int
8f6bce51 989modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
2c88418c 990{
9678086d 991 const enum rtx_code code = GET_CODE (x);
6f7d635c 992 const char *fmt;
f8163c92 993 int i, j;
1bbbc4a3 994 rtx_insn *insn;
7b52eede
JH
995
996 if (start == end)
997 return 0;
2c88418c
RS
998
999 switch (code)
1000 {
d8116890 1001 CASE_CONST_ANY:
2c88418c
RS
1002 case CONST:
1003 case SYMBOL_REF:
1004 case LABEL_REF:
1005 return 0;
1006
1007 case PC:
1008 case CC0:
1009 return 1;
1010
1011 case MEM:
7b52eede 1012 if (modified_between_p (XEXP (x, 0), start, end))
2c88418c 1013 return 1;
550b7784
KK
1014 if (MEM_READONLY_P (x))
1015 return 0;
7b52eede
JH
1016 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1017 if (memory_modified_in_insn_p (x, insn))
1018 return 1;
1019 return 0;
2c88418c
RS
1020 break;
1021
1022 case REG:
1023 return reg_set_between_p (x, start, end);
a6a2274a 1024
e9a25f70
JL
1025 default:
1026 break;
2c88418c
RS
1027 }
1028
1029 fmt = GET_RTX_FORMAT (code);
1030 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
f8163c92
RK
1031 {
1032 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1033 return 1;
1034
d4757e6a 1035 else if (fmt[i] == 'E')
f8163c92
RK
1036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1037 if (modified_between_p (XVECEXP (x, i, j), start, end))
1038 return 1;
1039 }
1040
1041 return 0;
1042}
1043
1044/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1045 of them are modified in INSN. Return 1 if X contains a MEM; this routine
7b52eede 1046 does use memory aliasing. */
f8163c92
RK
1047
1048int
9678086d 1049modified_in_p (const_rtx x, const_rtx insn)
f8163c92 1050{
9678086d 1051 const enum rtx_code code = GET_CODE (x);
6f7d635c 1052 const char *fmt;
f8163c92
RK
1053 int i, j;
1054
1055 switch (code)
1056 {
d8116890 1057 CASE_CONST_ANY:
f8163c92
RK
1058 case CONST:
1059 case SYMBOL_REF:
1060 case LABEL_REF:
1061 return 0;
1062
1063 case PC:
1064 case CC0:
2c88418c
RS
1065 return 1;
1066
f8163c92 1067 case MEM:
7b52eede 1068 if (modified_in_p (XEXP (x, 0), insn))
f8163c92 1069 return 1;
550b7784
KK
1070 if (MEM_READONLY_P (x))
1071 return 0;
7b52eede
JH
1072 if (memory_modified_in_insn_p (x, insn))
1073 return 1;
1074 return 0;
f8163c92
RK
1075 break;
1076
1077 case REG:
1078 return reg_set_p (x, insn);
e9a25f70
JL
1079
1080 default:
1081 break;
f8163c92
RK
1082 }
1083
1084 fmt = GET_RTX_FORMAT (code);
1085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1086 {
1087 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1088 return 1;
1089
d4757e6a 1090 else if (fmt[i] == 'E')
f8163c92
RK
1091 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1092 if (modified_in_p (XVECEXP (x, i, j), insn))
1093 return 1;
1094 }
1095
2c88418c
RS
1096 return 0;
1097}
1098\f
91b2d119
JH
1099/* Helper function for set_of. */
1100struct set_of_data
1101 {
7bc980e1
KG
1102 const_rtx found;
1103 const_rtx pat;
91b2d119
JH
1104 };
1105
1106static void
7bc980e1 1107set_of_1 (rtx x, const_rtx pat, void *data1)
91b2d119 1108{
7bc980e1
KG
1109 struct set_of_data *const data = (struct set_of_data *) (data1);
1110 if (rtx_equal_p (x, data->pat)
1111 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1112 data->found = pat;
91b2d119
JH
1113}
1114
1115/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
eaec9b3d 1116 (either directly or via STRICT_LOW_PART and similar modifiers). */
7bc980e1
KG
1117const_rtx
1118set_of (const_rtx pat, const_rtx insn)
91b2d119
JH
1119{
1120 struct set_of_data data;
1121 data.found = NULL_RTX;
1122 data.pat = pat;
1123 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1124 return data.found;
1125}
e2724e63 1126
f7d0b0fc
RS
1127/* Add all hard register in X to *PSET. */
1128void
1129find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1130{
1131 subrtx_iterator::array_type array;
1132 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1133 {
1134 const_rtx x = *iter;
1135 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1136 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1137 }
1138}
1139
e2724e63
BS
1140/* This function, called through note_stores, collects sets and
1141 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1142 by DATA. */
1143void
1144record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1145{
1146 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1147 if (REG_P (x) && HARD_REGISTER_P (x))
1148 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1149}
1150
1151/* Examine INSN, and compute the set of hard registers written by it.
1152 Store it in *PSET. Should only be called after reload. */
1153void
356bf593 1154find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
e2724e63
BS
1155{
1156 rtx link;
1157
1158 CLEAR_HARD_REG_SET (*pset);
1159 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
3ee634fd
TV
1160 if (CALL_P (insn))
1161 {
1162 if (implicit)
1163 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1164
1165 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1166 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1167 }
e2724e63
BS
1168 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1169 if (REG_NOTE_KIND (link) == REG_INC)
1170 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1171}
1172
e2724e63
BS
1173/* Like record_hard_reg_sets, but called through note_uses. */
1174void
1175record_hard_reg_uses (rtx *px, void *data)
1176{
f7d0b0fc 1177 find_all_hard_regs (*px, (HARD_REG_SET *) data);
e2724e63 1178}
91b2d119 1179\f
2c88418c
RS
1180/* Given an INSN, return a SET expression if this insn has only a single SET.
1181 It may also have CLOBBERs, USEs, or SET whose output
1182 will not be used, which we ignore. */
1183
1184rtx
e8a54173 1185single_set_2 (const rtx_insn *insn, const_rtx pat)
2c88418c 1186{
c9b89a21
JH
1187 rtx set = NULL;
1188 int set_verified = 1;
2c88418c 1189 int i;
c9b89a21 1190
b1cdafbb 1191 if (GET_CODE (pat) == PARALLEL)
2c88418c 1192 {
c9b89a21 1193 for (i = 0; i < XVECLEN (pat, 0); i++)
b1cdafbb 1194 {
c9b89a21
JH
1195 rtx sub = XVECEXP (pat, 0, i);
1196 switch (GET_CODE (sub))
1197 {
1198 case USE:
1199 case CLOBBER:
1200 break;
1201
1202 case SET:
1203 /* We can consider insns having multiple sets, where all
1204 but one are dead as single set insns. In common case
1205 only single set is present in the pattern so we want
f63d1bf7 1206 to avoid checking for REG_UNUSED notes unless necessary.
c9b89a21
JH
1207
1208 When we reach set first time, we just expect this is
1209 the single set we are looking for and only when more
1210 sets are found in the insn, we check them. */
1211 if (!set_verified)
1212 {
1213 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1214 && !side_effects_p (set))
1215 set = NULL;
1216 else
1217 set_verified = 1;
1218 }
1219 if (!set)
1220 set = sub, set_verified = 0;
1221 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1222 || side_effects_p (sub))
1223 return NULL_RTX;
1224 break;
1225
1226 default:
1227 return NULL_RTX;
1228 }
787ccee0 1229 }
2c88418c 1230 }
c9b89a21 1231 return set;
2c88418c 1232}
941c63ac
JL
1233
1234/* Given an INSN, return nonzero if it has more than one SET, else return
1235 zero. */
1236
5f7d3786 1237int
f7d504c2 1238multiple_sets (const_rtx insn)
941c63ac 1239{
cae8acdd 1240 int found;
941c63ac 1241 int i;
a6a2274a 1242
941c63ac 1243 /* INSN must be an insn. */
2c3c49de 1244 if (! INSN_P (insn))
941c63ac
JL
1245 return 0;
1246
1247 /* Only a PARALLEL can have multiple SETs. */
1248 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1249 {
1250 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1251 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1252 {
1253 /* If we have already found a SET, then return now. */
1254 if (found)
1255 return 1;
1256 else
1257 found = 1;
1258 }
1259 }
a6a2274a 1260
941c63ac
JL
1261 /* Either zero or one SET. */
1262 return 0;
1263}
2c88418c 1264\f
7142e318
JW
1265/* Return nonzero if the destination of SET equals the source
1266 and there are no side effects. */
1267
1268int
f7d504c2 1269set_noop_p (const_rtx set)
7142e318
JW
1270{
1271 rtx src = SET_SRC (set);
1272 rtx dst = SET_DEST (set);
1273
371b8fc0
JH
1274 if (dst == pc_rtx && src == pc_rtx)
1275 return 1;
1276
3c0cb5de 1277 if (MEM_P (dst) && MEM_P (src))
cd648cec
JH
1278 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1279
46d096a3 1280 if (GET_CODE (dst) == ZERO_EXTRACT)
7142e318 1281 return rtx_equal_p (XEXP (dst, 0), src)
cd648cec
JH
1282 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1283 && !side_effects_p (src);
7142e318
JW
1284
1285 if (GET_CODE (dst) == STRICT_LOW_PART)
1286 dst = XEXP (dst, 0);
1287
1288 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1289 {
1290 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1291 return 0;
1292 src = SUBREG_REG (src);
1293 dst = SUBREG_REG (dst);
1294 }
1295
8c895291
TB
1296 /* It is a NOOP if destination overlaps with selected src vector
1297 elements. */
1298 if (GET_CODE (src) == VEC_SELECT
1299 && REG_P (XEXP (src, 0)) && REG_P (dst)
1300 && HARD_REGISTER_P (XEXP (src, 0))
1301 && HARD_REGISTER_P (dst))
1302 {
1303 int i;
1304 rtx par = XEXP (src, 1);
1305 rtx src0 = XEXP (src, 0);
1306 int c0 = INTVAL (XVECEXP (par, 0, 0));
1307 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1308
1309 for (i = 1; i < XVECLEN (par, 0); i++)
1310 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1311 return 0;
1312 return
1313 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1314 offset, GET_MODE (dst)) == (int) REGNO (dst);
1315 }
1316
f8cfc6aa 1317 return (REG_P (src) && REG_P (dst)
7142e318
JW
1318 && REGNO (src) == REGNO (dst));
1319}
0005550b
JH
1320\f
1321/* Return nonzero if an insn consists only of SETs, each of which only sets a
1322 value to itself. */
1323
1324int
fa233e34 1325noop_move_p (const_rtx insn)
0005550b
JH
1326{
1327 rtx pat = PATTERN (insn);
1328
b5832b43
JH
1329 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1330 return 1;
1331
0005550b
JH
1332 /* Insns carrying these notes are useful later on. */
1333 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1334 return 0;
1335
8f7e6e33
BC
1336 /* Check the code to be executed for COND_EXEC. */
1337 if (GET_CODE (pat) == COND_EXEC)
1338 pat = COND_EXEC_CODE (pat);
1339
0005550b
JH
1340 if (GET_CODE (pat) == SET && set_noop_p (pat))
1341 return 1;
1342
1343 if (GET_CODE (pat) == PARALLEL)
1344 {
1345 int i;
1346 /* If nothing but SETs of registers to themselves,
1347 this insn can also be deleted. */
1348 for (i = 0; i < XVECLEN (pat, 0); i++)
1349 {
1350 rtx tem = XVECEXP (pat, 0, i);
1351
1352 if (GET_CODE (tem) == USE
1353 || GET_CODE (tem) == CLOBBER)
1354 continue;
1355
1356 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1357 return 0;
1358 }
1359
1360 return 1;
1361 }
1362 return 0;
1363}
1364\f
7142e318 1365
2c88418c
RS
1366/* Return nonzero if register in range [REGNO, ENDREGNO)
1367 appears either explicitly or implicitly in X
1368 other than being stored into.
1369
1370 References contained within the substructure at LOC do not count.
1371 LOC may be zero, meaning don't ignore anything. */
1372
1373int
f7d504c2 1374refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
0c20a65f 1375 rtx *loc)
2c88418c 1376{
770ae6cc
RK
1377 int i;
1378 unsigned int x_regno;
1379 RTX_CODE code;
1380 const char *fmt;
2c88418c
RS
1381
1382 repeat:
1383 /* The contents of a REG_NONNEG note is always zero, so we must come here
1384 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1385 if (x == 0)
1386 return 0;
1387
1388 code = GET_CODE (x);
1389
1390 switch (code)
1391 {
1392 case REG:
770ae6cc 1393 x_regno = REGNO (x);
f8163c92
RK
1394
1395 /* If we modifying the stack, frame, or argument pointer, it will
1396 clobber a virtual register. In fact, we could be more precise,
1397 but it isn't worth it. */
770ae6cc 1398 if ((x_regno == STACK_POINTER_REGNUM
f8163c92 1399#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
770ae6cc 1400 || x_regno == ARG_POINTER_REGNUM
f8163c92 1401#endif
770ae6cc 1402 || x_regno == FRAME_POINTER_REGNUM)
f8163c92
RK
1403 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1404 return 1;
1405
09e18274 1406 return endregno > x_regno && regno < END_REGNO (x);
2c88418c
RS
1407
1408 case SUBREG:
1409 /* If this is a SUBREG of a hard reg, we can see exactly which
1410 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 1411 if (REG_P (SUBREG_REG (x))
2c88418c
RS
1412 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1413 {
ddef6bc7 1414 unsigned int inner_regno = subreg_regno (x);
770ae6cc 1415 unsigned int inner_endregno
403c659c 1416 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 1417 ? subreg_nregs (x) : 1);
2c88418c
RS
1418
1419 return endregno > inner_regno && regno < inner_endregno;
1420 }
1421 break;
1422
1423 case CLOBBER:
1424 case SET:
1425 if (&SET_DEST (x) != loc
1426 /* Note setting a SUBREG counts as referring to the REG it is in for
1427 a pseudo but not for hard registers since we can
1428 treat each word individually. */
1429 && ((GET_CODE (SET_DEST (x)) == SUBREG
1430 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 1431 && REG_P (SUBREG_REG (SET_DEST (x)))
2c88418c
RS
1432 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1433 && refers_to_regno_p (regno, endregno,
1434 SUBREG_REG (SET_DEST (x)), loc))
f8cfc6aa 1435 || (!REG_P (SET_DEST (x))
2c88418c
RS
1436 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1437 return 1;
1438
1439 if (code == CLOBBER || loc == &SET_SRC (x))
1440 return 0;
1441 x = SET_SRC (x);
1442 goto repeat;
e9a25f70
JL
1443
1444 default:
1445 break;
2c88418c
RS
1446 }
1447
1448 /* X does not match, so try its subexpressions. */
1449
1450 fmt = GET_RTX_FORMAT (code);
1451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1452 {
1453 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1454 {
1455 if (i == 0)
1456 {
1457 x = XEXP (x, 0);
1458 goto repeat;
1459 }
1460 else
1461 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1462 return 1;
1463 }
1464 else if (fmt[i] == 'E')
1465 {
b3694847 1466 int j;
6a87d634 1467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2c88418c
RS
1468 if (loc != &XVECEXP (x, i, j)
1469 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1470 return 1;
1471 }
1472 }
1473 return 0;
1474}
1475
1476/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1477 we check if any register number in X conflicts with the relevant register
1478 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1479 contains a MEM (we don't bother checking for memory addresses that can't
1480 conflict because we expect this to be a rare case. */
1481
1482int
f7d504c2 1483reg_overlap_mentioned_p (const_rtx x, const_rtx in)
2c88418c 1484{
770ae6cc 1485 unsigned int regno, endregno;
2c88418c 1486
6f626d1b
PB
1487 /* If either argument is a constant, then modifying X can not
1488 affect IN. Here we look at IN, we can profitably combine
1489 CONSTANT_P (x) with the switch statement below. */
1490 if (CONSTANT_P (in))
b98b49ac 1491 return 0;
0c99ec5c 1492
6f626d1b 1493 recurse:
0c99ec5c 1494 switch (GET_CODE (x))
2c88418c 1495 {
6f626d1b
PB
1496 case STRICT_LOW_PART:
1497 case ZERO_EXTRACT:
1498 case SIGN_EXTRACT:
1499 /* Overly conservative. */
1500 x = XEXP (x, 0);
1501 goto recurse;
1502
0c99ec5c 1503 case SUBREG:
2c88418c
RS
1504 regno = REGNO (SUBREG_REG (x));
1505 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 1506 regno = subreg_regno (x);
f1f4e530
JM
1507 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1508 ? subreg_nregs (x) : 1);
0c99ec5c 1509 goto do_reg;
2c88418c 1510
0c99ec5c
RH
1511 case REG:
1512 regno = REGNO (x);
09e18274 1513 endregno = END_REGNO (x);
f1f4e530 1514 do_reg:
8e2e89f7 1515 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
2c88418c 1516
0c99ec5c
RH
1517 case MEM:
1518 {
1519 const char *fmt;
1520 int i;
2c88418c 1521
3c0cb5de 1522 if (MEM_P (in))
2c88418c
RS
1523 return 1;
1524
0c99ec5c
RH
1525 fmt = GET_RTX_FORMAT (GET_CODE (in));
1526 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
3b009185
RH
1527 if (fmt[i] == 'e')
1528 {
1529 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1530 return 1;
1531 }
1532 else if (fmt[i] == 'E')
1533 {
1534 int j;
1535 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1536 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1537 return 1;
1538 }
c0222c21 1539
0c99ec5c
RH
1540 return 0;
1541 }
1542
1543 case SCRATCH:
1544 case PC:
1545 case CC0:
1546 return reg_mentioned_p (x, in);
1547
1548 case PARALLEL:
37ceff9d 1549 {
90d036a0 1550 int i;
37ceff9d
RH
1551
1552 /* If any register in here refers to it we return true. */
7193d1dc
RK
1553 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1554 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1555 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
6f626d1b 1556 return 1;
7193d1dc 1557 return 0;
37ceff9d 1558 }
2c88418c 1559
0c99ec5c 1560 default:
41374e13 1561 gcc_assert (CONSTANT_P (x));
6f626d1b
PB
1562 return 0;
1563 }
2c88418c
RS
1564}
1565\f
2c88418c 1566/* Call FUN on each register or MEM that is stored into or clobbered by X.
c3a1ef9d
MM
1567 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1568 ignored by note_stores, but passed to FUN.
1569
1570 FUN receives three arguments:
1571 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1572 2. the SET or CLOBBER rtx that does the store,
1573 3. the pointer DATA provided to note_stores.
2c88418c
RS
1574
1575 If the item being stored in or clobbered is a SUBREG of a hard register,
1576 the SUBREG will be passed. */
a6a2274a 1577
2c88418c 1578void
7bc980e1 1579note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
2c88418c 1580{
aa317c97 1581 int i;
90d036a0 1582
aa317c97
KG
1583 if (GET_CODE (x) == COND_EXEC)
1584 x = COND_EXEC_CODE (x);
90d036a0 1585
aa317c97
KG
1586 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1587 {
1588 rtx dest = SET_DEST (x);
1589
1590 while ((GET_CODE (dest) == SUBREG
1591 && (!REG_P (SUBREG_REG (dest))
1592 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1593 || GET_CODE (dest) == ZERO_EXTRACT
1594 || GET_CODE (dest) == STRICT_LOW_PART)
1595 dest = XEXP (dest, 0);
1596
1597 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1598 each of whose first operand is a register. */
1599 if (GET_CODE (dest) == PARALLEL)
1600 {
1601 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1602 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1603 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1604 }
1605 else
1606 (*fun) (dest, x, data);
1607 }
770ae6cc 1608
aa317c97
KG
1609 else if (GET_CODE (x) == PARALLEL)
1610 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1611 note_stores (XVECEXP (x, 0, i), fun, data);
1612}
2c88418c 1613\f
e2373f95
RK
1614/* Like notes_stores, but call FUN for each expression that is being
1615 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1616 FUN for each expression, not any interior subexpressions. FUN receives a
1617 pointer to the expression and the DATA passed to this function.
1618
1619 Note that this is not quite the same test as that done in reg_referenced_p
1620 since that considers something as being referenced if it is being
1621 partially set, while we do not. */
1622
1623void
0c20a65f 1624note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
e2373f95
RK
1625{
1626 rtx body = *pbody;
1627 int i;
1628
1629 switch (GET_CODE (body))
1630 {
1631 case COND_EXEC:
1632 (*fun) (&COND_EXEC_TEST (body), data);
1633 note_uses (&COND_EXEC_CODE (body), fun, data);
1634 return;
1635
1636 case PARALLEL:
1637 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1638 note_uses (&XVECEXP (body, 0, i), fun, data);
1639 return;
1640
bbbc206e
BS
1641 case SEQUENCE:
1642 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1643 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1644 return;
1645
e2373f95
RK
1646 case USE:
1647 (*fun) (&XEXP (body, 0), data);
1648 return;
1649
1650 case ASM_OPERANDS:
1651 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1652 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1653 return;
1654
1655 case TRAP_IF:
1656 (*fun) (&TRAP_CONDITION (body), data);
1657 return;
1658
21b8482a
JJ
1659 case PREFETCH:
1660 (*fun) (&XEXP (body, 0), data);
1661 return;
1662
e2373f95
RK
1663 case UNSPEC:
1664 case UNSPEC_VOLATILE:
1665 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1666 (*fun) (&XVECEXP (body, 0, i), data);
1667 return;
1668
1669 case CLOBBER:
3c0cb5de 1670 if (MEM_P (XEXP (body, 0)))
e2373f95
RK
1671 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1672 return;
1673
1674 case SET:
1675 {
1676 rtx dest = SET_DEST (body);
1677
1678 /* For sets we replace everything in source plus registers in memory
1679 expression in store and operands of a ZERO_EXTRACT. */
1680 (*fun) (&SET_SRC (body), data);
1681
1682 if (GET_CODE (dest) == ZERO_EXTRACT)
1683 {
1684 (*fun) (&XEXP (dest, 1), data);
1685 (*fun) (&XEXP (dest, 2), data);
1686 }
1687
1688 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1689 dest = XEXP (dest, 0);
1690
3c0cb5de 1691 if (MEM_P (dest))
e2373f95
RK
1692 (*fun) (&XEXP (dest, 0), data);
1693 }
1694 return;
1695
1696 default:
1697 /* All the other possibilities never store. */
1698 (*fun) (pbody, data);
1699 return;
1700 }
1701}
1702\f
2c88418c
RS
1703/* Return nonzero if X's old contents don't survive after INSN.
1704 This will be true if X is (cc0) or if X is a register and
1705 X dies in INSN or because INSN entirely sets X.
1706
46d096a3
SB
1707 "Entirely set" means set directly and not through a SUBREG, or
1708 ZERO_EXTRACT, so no trace of the old contents remains.
2c88418c
RS
1709 Likewise, REG_INC does not count.
1710
1711 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1712 but for this use that makes no difference, since regs don't overlap
1713 during their lifetimes. Therefore, this function may be used
6fb5fa3c 1714 at any time after deaths have been computed.
2c88418c
RS
1715
1716 If REG is a hard reg that occupies multiple machine registers, this
1717 function will only return 1 if each of those registers will be replaced
1718 by INSN. */
1719
1720int
f7d504c2 1721dead_or_set_p (const_rtx insn, const_rtx x)
2c88418c 1722{
09e18274 1723 unsigned int regno, end_regno;
770ae6cc 1724 unsigned int i;
2c88418c
RS
1725
1726 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1727 if (GET_CODE (x) == CC0)
1728 return 1;
1729
41374e13 1730 gcc_assert (REG_P (x));
2c88418c
RS
1731
1732 regno = REGNO (x);
09e18274
RS
1733 end_regno = END_REGNO (x);
1734 for (i = regno; i < end_regno; i++)
2c88418c
RS
1735 if (! dead_or_set_regno_p (insn, i))
1736 return 0;
1737
1738 return 1;
1739}
1740
194acded
HPN
1741/* Return TRUE iff DEST is a register or subreg of a register and
1742 doesn't change the number of words of the inner register, and any
1743 part of the register is TEST_REGNO. */
1744
1745static bool
f7d504c2 1746covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1747{
1748 unsigned int regno, endregno;
1749
1750 if (GET_CODE (dest) == SUBREG
1751 && (((GET_MODE_SIZE (GET_MODE (dest))
1752 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1753 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1754 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1755 dest = SUBREG_REG (dest);
1756
1757 if (!REG_P (dest))
1758 return false;
1759
1760 regno = REGNO (dest);
09e18274 1761 endregno = END_REGNO (dest);
194acded
HPN
1762 return (test_regno >= regno && test_regno < endregno);
1763}
1764
1765/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1766 any member matches the covers_regno_no_parallel_p criteria. */
1767
1768static bool
f7d504c2 1769covers_regno_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1770{
1771 if (GET_CODE (dest) == PARALLEL)
1772 {
1773 /* Some targets place small structures in registers for return
1774 values of functions, and those registers are wrapped in
1775 PARALLELs that we may see as the destination of a SET. */
1776 int i;
1777
1778 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1779 {
1780 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1781 if (inner != NULL_RTX
1782 && covers_regno_no_parallel_p (inner, test_regno))
1783 return true;
1784 }
1785
1786 return false;
1787 }
1788 else
1789 return covers_regno_no_parallel_p (dest, test_regno);
1790}
1791
6fb5fa3c 1792/* Utility function for dead_or_set_p to check an individual register. */
2c88418c
RS
1793
1794int
f7d504c2 1795dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2c88418c 1796{
f7d504c2 1797 const_rtx pattern;
2c88418c 1798
0a2287bf
RH
1799 /* See if there is a death note for something that includes TEST_REGNO. */
1800 if (find_regno_note (insn, REG_DEAD, test_regno))
1801 return 1;
2c88418c 1802
4b4bf941 1803 if (CALL_P (insn)
8f3e7a26
RK
1804 && find_regno_fusage (insn, CLOBBER, test_regno))
1805 return 1;
1806
0c99ec5c
RH
1807 pattern = PATTERN (insn);
1808
10439b59 1809 /* If a COND_EXEC is not executed, the value survives. */
0c99ec5c 1810 if (GET_CODE (pattern) == COND_EXEC)
10439b59 1811 return 0;
0c99ec5c
RH
1812
1813 if (GET_CODE (pattern) == SET)
194acded 1814 return covers_regno_p (SET_DEST (pattern), test_regno);
0c99ec5c 1815 else if (GET_CODE (pattern) == PARALLEL)
2c88418c 1816 {
b3694847 1817 int i;
2c88418c 1818
0c99ec5c 1819 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2c88418c 1820 {
0c99ec5c
RH
1821 rtx body = XVECEXP (pattern, 0, i);
1822
1823 if (GET_CODE (body) == COND_EXEC)
1824 body = COND_EXEC_CODE (body);
2c88418c 1825
194acded
HPN
1826 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1827 && covers_regno_p (SET_DEST (body), test_regno))
1828 return 1;
2c88418c
RS
1829 }
1830 }
1831
1832 return 0;
1833}
1834
1835/* Return the reg-note of kind KIND in insn INSN, if there is one.
1836 If DATUM is nonzero, look for one whose datum is DATUM. */
1837
1838rtx
f7d504c2 1839find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2c88418c 1840{
b3694847 1841 rtx link;
2c88418c 1842
7a40b8b1 1843 gcc_checking_assert (insn);
af082de3 1844
ae78d276 1845 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 1846 if (! INSN_P (insn))
ae78d276 1847 return 0;
cd798543
AP
1848 if (datum == 0)
1849 {
1850 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1851 if (REG_NOTE_KIND (link) == kind)
1852 return link;
1853 return 0;
1854 }
ae78d276 1855
2c88418c 1856 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cd798543 1857 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2c88418c
RS
1858 return link;
1859 return 0;
1860}
1861
1862/* Return the reg-note of kind KIND in insn INSN which applies to register
99309f3b
RK
1863 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1864 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1865 it might be the case that the note overlaps REGNO. */
2c88418c
RS
1866
1867rtx
f7d504c2 1868find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2c88418c 1869{
b3694847 1870 rtx link;
2c88418c 1871
ae78d276 1872 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 1873 if (! INSN_P (insn))
ae78d276
MM
1874 return 0;
1875
2c88418c
RS
1876 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1877 if (REG_NOTE_KIND (link) == kind
1878 /* Verify that it is a register, so that scratch and MEM won't cause a
1879 problem here. */
f8cfc6aa 1880 && REG_P (XEXP (link, 0))
99309f3b 1881 && REGNO (XEXP (link, 0)) <= regno
09e18274 1882 && END_REGNO (XEXP (link, 0)) > regno)
2c88418c
RS
1883 return link;
1884 return 0;
1885}
8f3e7a26 1886
d9c695ff
RK
1887/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1888 has such a note. */
1889
1890rtx
f7d504c2 1891find_reg_equal_equiv_note (const_rtx insn)
d9c695ff 1892{
cd648cec 1893 rtx link;
d9c695ff 1894
cd648cec 1895 if (!INSN_P (insn))
d9c695ff 1896 return 0;
ea8f106d 1897
cd648cec
JH
1898 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1899 if (REG_NOTE_KIND (link) == REG_EQUAL
1900 || REG_NOTE_KIND (link) == REG_EQUIV)
1901 {
ea8f106d
SB
1902 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1903 insns that have multiple sets. Checking single_set to
1904 make sure of this is not the proper check, as explained
1905 in the comment in set_unique_reg_note.
1906
1907 This should be changed into an assert. */
1908 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
cd648cec
JH
1909 return 0;
1910 return link;
1911 }
1912 return NULL;
d9c695ff
RK
1913}
1914
2a450639
RS
1915/* Check whether INSN is a single_set whose source is known to be
1916 equivalent to a constant. Return that constant if so, otherwise
1917 return null. */
1918
1919rtx
68a1a6c0 1920find_constant_src (const rtx_insn *insn)
2a450639
RS
1921{
1922 rtx note, set, x;
1923
1924 set = single_set (insn);
1925 if (set)
1926 {
1927 x = avoid_constant_pool_reference (SET_SRC (set));
1928 if (CONSTANT_P (x))
1929 return x;
1930 }
1931
1932 note = find_reg_equal_equiv_note (insn);
1933 if (note && CONSTANT_P (XEXP (note, 0)))
1934 return XEXP (note, 0);
1935
1936 return NULL_RTX;
1937}
1938
8f3e7a26
RK
1939/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1940 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1941
1942int
f7d504c2 1943find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
8f3e7a26
RK
1944{
1945 /* If it's not a CALL_INSN, it can't possibly have a
1946 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
4b4bf941 1947 if (!CALL_P (insn))
8f3e7a26
RK
1948 return 0;
1949
41374e13 1950 gcc_assert (datum);
8f3e7a26 1951
f8cfc6aa 1952 if (!REG_P (datum))
8f3e7a26 1953 {
b3694847 1954 rtx link;
8f3e7a26
RK
1955
1956 for (link = CALL_INSN_FUNCTION_USAGE (insn);
a6a2274a 1957 link;
8f3e7a26 1958 link = XEXP (link, 1))
a6a2274a 1959 if (GET_CODE (XEXP (link, 0)) == code
cc863bea 1960 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
a6a2274a 1961 return 1;
8f3e7a26
RK
1962 }
1963 else
1964 {
770ae6cc 1965 unsigned int regno = REGNO (datum);
8f3e7a26
RK
1966
1967 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1968 to pseudo registers, so don't bother checking. */
1969
1970 if (regno < FIRST_PSEUDO_REGISTER)
a6a2274a 1971 {
09e18274 1972 unsigned int end_regno = END_HARD_REGNO (datum);
770ae6cc 1973 unsigned int i;
8f3e7a26
RK
1974
1975 for (i = regno; i < end_regno; i++)
1976 if (find_regno_fusage (insn, code, i))
1977 return 1;
a6a2274a 1978 }
8f3e7a26
RK
1979 }
1980
1981 return 0;
1982}
1983
1984/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1985 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1986
1987int
f7d504c2 1988find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
8f3e7a26 1989{
b3694847 1990 rtx link;
8f3e7a26
RK
1991
1992 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1993 to pseudo registers, so don't bother checking. */
1994
1995 if (regno >= FIRST_PSEUDO_REGISTER
4b4bf941 1996 || !CALL_P (insn) )
8f3e7a26
RK
1997 return 0;
1998
1999 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
83ab3839 2000 {
770ae6cc 2001 rtx op, reg;
83ab3839
RH
2002
2003 if (GET_CODE (op = XEXP (link, 0)) == code
f8cfc6aa 2004 && REG_P (reg = XEXP (op, 0))
09e18274
RS
2005 && REGNO (reg) <= regno
2006 && END_HARD_REGNO (reg) > regno)
83ab3839
RH
2007 return 1;
2008 }
8f3e7a26
RK
2009
2010 return 0;
2011}
a6a063b8 2012
2c88418c 2013\f
e5af9ddd
RS
2014/* Return true if KIND is an integer REG_NOTE. */
2015
2016static bool
2017int_reg_note_p (enum reg_note kind)
2018{
2019 return kind == REG_BR_PROB;
2020}
2021
efc0b2bd
ILT
2022/* Allocate a register note with kind KIND and datum DATUM. LIST is
2023 stored as the pointer to the next register note. */
65c5f2a6 2024
efc0b2bd
ILT
2025rtx
2026alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
65c5f2a6
ILT
2027{
2028 rtx note;
2029
e5af9ddd 2030 gcc_checking_assert (!int_reg_note_p (kind));
65c5f2a6
ILT
2031 switch (kind)
2032 {
2033 case REG_CC_SETTER:
2034 case REG_CC_USER:
2035 case REG_LABEL_TARGET:
2036 case REG_LABEL_OPERAND:
0a35513e 2037 case REG_TM:
65c5f2a6
ILT
2038 /* These types of register notes use an INSN_LIST rather than an
2039 EXPR_LIST, so that copying is done right and dumps look
2040 better. */
efc0b2bd 2041 note = alloc_INSN_LIST (datum, list);
65c5f2a6
ILT
2042 PUT_REG_NOTE_KIND (note, kind);
2043 break;
2044
2045 default:
efc0b2bd 2046 note = alloc_EXPR_LIST (kind, datum, list);
65c5f2a6
ILT
2047 break;
2048 }
2049
efc0b2bd
ILT
2050 return note;
2051}
2052
2053/* Add register note with kind KIND and datum DATUM to INSN. */
2054
2055void
2056add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2057{
2058 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
65c5f2a6
ILT
2059}
2060
e5af9ddd
RS
2061/* Add an integer register note with kind KIND and datum DATUM to INSN. */
2062
2063void
2064add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2065{
2066 gcc_checking_assert (int_reg_note_p (kind));
2067 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2068 datum, REG_NOTES (insn));
2069}
2070
2071/* Add a register note like NOTE to INSN. */
2072
2073void
2074add_shallow_copy_of_reg_note (rtx insn, rtx note)
2075{
2076 if (GET_CODE (note) == INT_LIST)
2077 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2078 else
2079 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2080}
2081
2c88418c
RS
2082/* Remove register note NOTE from the REG_NOTES of INSN. */
2083
2084void
f7d504c2 2085remove_note (rtx insn, const_rtx note)
2c88418c 2086{
b3694847 2087 rtx link;
2c88418c 2088
49c3bb12
RH
2089 if (note == NULL_RTX)
2090 return;
2091
2c88418c 2092 if (REG_NOTES (insn) == note)
6fb5fa3c
DB
2093 REG_NOTES (insn) = XEXP (note, 1);
2094 else
2095 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2096 if (XEXP (link, 1) == note)
2097 {
2098 XEXP (link, 1) = XEXP (note, 1);
2099 break;
2100 }
2101
2102 switch (REG_NOTE_KIND (note))
2c88418c 2103 {
6fb5fa3c
DB
2104 case REG_EQUAL:
2105 case REG_EQUIV:
b2908ba6 2106 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
2107 break;
2108 default:
2109 break;
2c88418c 2110 }
2c88418c 2111}
55a98783 2112
7cd689bc
SB
2113/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2114
2115void
2116remove_reg_equal_equiv_notes (rtx insn)
2117{
2118 rtx *loc;
2119
2120 loc = &REG_NOTES (insn);
2121 while (*loc)
2122 {
2123 enum reg_note kind = REG_NOTE_KIND (*loc);
2124 if (kind == REG_EQUAL || kind == REG_EQUIV)
2125 *loc = XEXP (*loc, 1);
2126 else
2127 loc = &XEXP (*loc, 1);
2128 }
2129}
885c9b5d
EB
2130
2131/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2132
2133void
2134remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2135{
2136 df_ref eq_use;
2137
2138 if (!df)
2139 return;
2140
2141 /* This loop is a little tricky. We cannot just go down the chain because
2142 it is being modified by some actions in the loop. So we just iterate
2143 over the head. We plan to drain the list anyway. */
2144 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2145 {
1bbbc4a3 2146 rtx_insn *insn = DF_REF_INSN (eq_use);
885c9b5d
EB
2147 rtx note = find_reg_equal_equiv_note (insn);
2148
2149 /* This assert is generally triggered when someone deletes a REG_EQUAL
2150 or REG_EQUIV note by hacking the list manually rather than calling
2151 remove_note. */
2152 gcc_assert (note);
2153
2154 remove_note (insn, note);
2155 }
2156}
7cd689bc 2157
5f0d2358
RK
2158/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2159 return 1 if it is found. A simple equality test is used to determine if
2160 NODE matches. */
2161
2162int
f7d504c2 2163in_expr_list_p (const_rtx listp, const_rtx node)
5f0d2358 2164{
f7d504c2 2165 const_rtx x;
5f0d2358
RK
2166
2167 for (x = listp; x; x = XEXP (x, 1))
2168 if (node == XEXP (x, 0))
2169 return 1;
2170
2171 return 0;
2172}
2173
dd248abd
RK
2174/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2175 remove that entry from the list if it is found.
55a98783 2176
dd248abd 2177 A simple equality test is used to determine if NODE matches. */
55a98783
JL
2178
2179void
2382940b 2180remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
55a98783 2181{
2382940b 2182 rtx_expr_list *temp = *listp;
55a98783
JL
2183 rtx prev = NULL_RTX;
2184
2185 while (temp)
2186 {
2382940b 2187 if (node == temp->element ())
55a98783
JL
2188 {
2189 /* Splice the node out of the list. */
2190 if (prev)
2382940b 2191 XEXP (prev, 1) = temp->next ();
55a98783 2192 else
2382940b 2193 *listp = temp->next ();
55a98783
JL
2194
2195 return;
2196 }
dd248abd
RK
2197
2198 prev = temp;
2382940b 2199 temp = temp->next ();
55a98783
JL
2200 }
2201}
b5241a5a
DM
2202
2203/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2204 remove that entry from the list if it is found.
2205
2206 A simple equality test is used to determine if NODE matches. */
2207
2208void
2209remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2210{
2211 rtx_insn_list *temp = *listp;
2212 rtx prev = NULL;
2213
2214 while (temp)
2215 {
2216 if (node == temp->insn ())
2217 {
2218 /* Splice the node out of the list. */
2219 if (prev)
2220 XEXP (prev, 1) = temp->next ();
2221 else
2222 *listp = temp->next ();
2223
2224 return;
2225 }
2226
2227 prev = temp;
2228 temp = temp->next ();
2229 }
2230}
2c88418c 2231\f
2b067faf
RS
2232/* Nonzero if X contains any volatile instructions. These are instructions
2233 which may cause unpredictable machine state instructions, and thus no
adddc347
HPN
2234 instructions or register uses should be moved or combined across them.
2235 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2b067faf
RS
2236
2237int
f7d504c2 2238volatile_insn_p (const_rtx x)
2b067faf 2239{
f7d504c2 2240 const RTX_CODE code = GET_CODE (x);
2b067faf
RS
2241 switch (code)
2242 {
2243 case LABEL_REF:
2244 case SYMBOL_REF:
2b067faf 2245 case CONST:
d8116890 2246 CASE_CONST_ANY:
2b067faf
RS
2247 case CC0:
2248 case PC:
2249 case REG:
2250 case SCRATCH:
2251 case CLOBBER:
2b067faf
RS
2252 case ADDR_VEC:
2253 case ADDR_DIFF_VEC:
2254 case CALL:
2255 case MEM:
2256 return 0;
2257
2258 case UNSPEC_VOLATILE:
2b067faf
RS
2259 return 1;
2260
4c46ea23 2261 case ASM_INPUT:
2b067faf
RS
2262 case ASM_OPERANDS:
2263 if (MEM_VOLATILE_P (x))
2264 return 1;
e9a25f70
JL
2265
2266 default:
2267 break;
2b067faf
RS
2268 }
2269
2270 /* Recursively scan the operands of this expression. */
2271
2272 {
f7d504c2 2273 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2274 int i;
a6a2274a 2275
2b067faf
RS
2276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2277 {
2278 if (fmt[i] == 'e')
2279 {
31001f72 2280 if (volatile_insn_p (XEXP (x, i)))
2b067faf
RS
2281 return 1;
2282 }
d4757e6a 2283 else if (fmt[i] == 'E')
2b067faf 2284 {
b3694847 2285 int j;
2b067faf 2286 for (j = 0; j < XVECLEN (x, i); j++)
31001f72 2287 if (volatile_insn_p (XVECEXP (x, i, j)))
2b067faf
RS
2288 return 1;
2289 }
2290 }
2291 }
2292 return 0;
2293}
2294
2c88418c 2295/* Nonzero if X contains any volatile memory references
2ac4fed0 2296 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2c88418c
RS
2297
2298int
f7d504c2 2299volatile_refs_p (const_rtx x)
2c88418c 2300{
f7d504c2 2301 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2302 switch (code)
2303 {
2304 case LABEL_REF:
2305 case SYMBOL_REF:
2c88418c 2306 case CONST:
d8116890 2307 CASE_CONST_ANY:
2c88418c
RS
2308 case CC0:
2309 case PC:
2310 case REG:
2311 case SCRATCH:
2312 case CLOBBER:
2c88418c
RS
2313 case ADDR_VEC:
2314 case ADDR_DIFF_VEC:
2315 return 0;
2316
2ac4fed0 2317 case UNSPEC_VOLATILE:
2c88418c
RS
2318 return 1;
2319
2320 case MEM:
4c46ea23 2321 case ASM_INPUT:
2c88418c
RS
2322 case ASM_OPERANDS:
2323 if (MEM_VOLATILE_P (x))
2324 return 1;
e9a25f70
JL
2325
2326 default:
2327 break;
2c88418c
RS
2328 }
2329
2330 /* Recursively scan the operands of this expression. */
2331
2332 {
f7d504c2 2333 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2334 int i;
a6a2274a 2335
2c88418c
RS
2336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2337 {
2338 if (fmt[i] == 'e')
2339 {
2340 if (volatile_refs_p (XEXP (x, i)))
2341 return 1;
2342 }
d4757e6a 2343 else if (fmt[i] == 'E')
2c88418c 2344 {
b3694847 2345 int j;
2c88418c
RS
2346 for (j = 0; j < XVECLEN (x, i); j++)
2347 if (volatile_refs_p (XVECEXP (x, i, j)))
2348 return 1;
2349 }
2350 }
2351 }
2352 return 0;
2353}
2354
2355/* Similar to above, except that it also rejects register pre- and post-
2356 incrementing. */
2357
2358int
f7d504c2 2359side_effects_p (const_rtx x)
2c88418c 2360{
f7d504c2 2361 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2362 switch (code)
2363 {
2364 case LABEL_REF:
2365 case SYMBOL_REF:
2c88418c 2366 case CONST:
d8116890 2367 CASE_CONST_ANY:
2c88418c
RS
2368 case CC0:
2369 case PC:
2370 case REG:
2371 case SCRATCH:
2c88418c
RS
2372 case ADDR_VEC:
2373 case ADDR_DIFF_VEC:
b5b8b0ac 2374 case VAR_LOCATION:
2c88418c
RS
2375 return 0;
2376
2377 case CLOBBER:
2378 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2379 when some combination can't be done. If we see one, don't think
2380 that we can simplify the expression. */
2381 return (GET_MODE (x) != VOIDmode);
2382
2383 case PRE_INC:
2384 case PRE_DEC:
2385 case POST_INC:
2386 case POST_DEC:
1fb9c5cd
MH
2387 case PRE_MODIFY:
2388 case POST_MODIFY:
2c88418c 2389 case CALL:
2ac4fed0 2390 case UNSPEC_VOLATILE:
2c88418c
RS
2391 return 1;
2392
2393 case MEM:
4c46ea23 2394 case ASM_INPUT:
2c88418c
RS
2395 case ASM_OPERANDS:
2396 if (MEM_VOLATILE_P (x))
2397 return 1;
e9a25f70
JL
2398
2399 default:
2400 break;
2c88418c
RS
2401 }
2402
2403 /* Recursively scan the operands of this expression. */
2404
2405 {
b3694847
SS
2406 const char *fmt = GET_RTX_FORMAT (code);
2407 int i;
a6a2274a 2408
2c88418c
RS
2409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2410 {
2411 if (fmt[i] == 'e')
2412 {
2413 if (side_effects_p (XEXP (x, i)))
2414 return 1;
2415 }
d4757e6a 2416 else if (fmt[i] == 'E')
2c88418c 2417 {
b3694847 2418 int j;
2c88418c
RS
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 if (side_effects_p (XVECEXP (x, i, j)))
2421 return 1;
2422 }
2423 }
2424 }
2425 return 0;
2426}
2427\f
e755fcf5 2428/* Return nonzero if evaluating rtx X might cause a trap.
48e8382e
PB
2429 FLAGS controls how to consider MEMs. A nonzero means the context
2430 of the access may have changed from the original, such that the
2431 address may have become invalid. */
2c88418c 2432
215b063c 2433int
f7d504c2 2434may_trap_p_1 (const_rtx x, unsigned flags)
2c88418c
RS
2435{
2436 int i;
2437 enum rtx_code code;
6f7d635c 2438 const char *fmt;
48e8382e
PB
2439
2440 /* We make no distinction currently, but this function is part of
2441 the internal target-hooks ABI so we keep the parameter as
2442 "unsigned flags". */
2443 bool code_changed = flags != 0;
2c88418c
RS
2444
2445 if (x == 0)
2446 return 0;
2447 code = GET_CODE (x);
2448 switch (code)
2449 {
2450 /* Handle these cases quickly. */
d8116890 2451 CASE_CONST_ANY:
2c88418c
RS
2452 case SYMBOL_REF:
2453 case LABEL_REF:
2454 case CONST:
2455 case PC:
2456 case CC0:
2457 case REG:
2458 case SCRATCH:
2459 return 0;
2460
215b063c 2461 case UNSPEC:
215b063c
PB
2462 return targetm.unspec_may_trap_p (x, flags);
2463
c84a808e 2464 case UNSPEC_VOLATILE:
215b063c 2465 case ASM_INPUT:
2c88418c
RS
2466 case TRAP_IF:
2467 return 1;
2468
22aa60a1
RH
2469 case ASM_OPERANDS:
2470 return MEM_VOLATILE_P (x);
2471
2c88418c
RS
2472 /* Memory ref can trap unless it's a static var or a stack slot. */
2473 case MEM:
d809253a
EB
2474 /* Recognize specific pattern of stack checking probes. */
2475 if (flag_stack_check
2476 && MEM_VOLATILE_P (x)
2477 && XEXP (x, 0) == stack_pointer_rtx)
2478 return 1;
e755fcf5 2479 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
48e8382e
PB
2480 reference; moving it out of context such as when moving code
2481 when optimizing, might cause its address to become invalid. */
2482 code_changed
2483 || !MEM_NOTRAP_P (x))
2484 {
f5541398 2485 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
48e8382e
PB
2486 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2487 GET_MODE (x), code_changed);
2488 }
2489
2490 return 0;
2c88418c
RS
2491
2492 /* Division by a non-constant might trap. */
2493 case DIV:
2494 case MOD:
2495 case UDIV:
2496 case UMOD:
52bfebf0
RS
2497 if (HONOR_SNANS (GET_MODE (x)))
2498 return 1;
3d8bf70f 2499 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
f9013075
DE
2500 return flag_trapping_math;
2501 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2c88418c 2502 return 1;
e9a25f70
JL
2503 break;
2504
b278301b
RK
2505 case EXPR_LIST:
2506 /* An EXPR_LIST is used to represent a function call. This
2507 certainly may trap. */
2508 return 1;
e9a25f70 2509
734508ea
JW
2510 case GE:
2511 case GT:
2512 case LE:
2513 case LT:
19aec195 2514 case LTGT:
55143861 2515 case COMPARE:
734508ea 2516 /* Some floating point comparisons may trap. */
f5eb5fd0
JH
2517 if (!flag_trapping_math)
2518 break;
734508ea
JW
2519 /* ??? There is no machine independent way to check for tests that trap
2520 when COMPARE is used, though many targets do make this distinction.
2521 For instance, sparc uses CCFPE for compares which generate exceptions
2522 and CCFP for compares which do not generate exceptions. */
52bfebf0 2523 if (HONOR_NANS (GET_MODE (x)))
55143861
JJ
2524 return 1;
2525 /* But often the compare has some CC mode, so check operand
2526 modes as well. */
52bfebf0
RS
2527 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2528 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2529 return 1;
2530 break;
2531
2532 case EQ:
2533 case NE:
2534 if (HONOR_SNANS (GET_MODE (x)))
2535 return 1;
2536 /* Often comparison is CC mode, so check operand modes. */
2537 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2538 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
55143861
JJ
2539 return 1;
2540 break;
2541
22fd5743
FH
2542 case FIX:
2543 /* Conversion of floating point might trap. */
2544 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2545 return 1;
2546 break;
2547
05cc23e8
RH
2548 case NEG:
2549 case ABS:
e3947b34 2550 case SUBREG:
05cc23e8
RH
2551 /* These operations don't trap even with floating point. */
2552 break;
2553
2c88418c
RS
2554 default:
2555 /* Any floating arithmetic may trap. */
c84a808e 2556 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2c88418c
RS
2557 return 1;
2558 }
2559
2560 fmt = GET_RTX_FORMAT (code);
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 {
2563 if (fmt[i] == 'e')
2564 {
e755fcf5 2565 if (may_trap_p_1 (XEXP (x, i), flags))
2c88418c
RS
2566 return 1;
2567 }
2568 else if (fmt[i] == 'E')
2569 {
b3694847 2570 int j;
2c88418c 2571 for (j = 0; j < XVECLEN (x, i); j++)
e755fcf5 2572 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2c88418c
RS
2573 return 1;
2574 }
2575 }
2576 return 0;
2577}
2358ff91
EB
2578
2579/* Return nonzero if evaluating rtx X might cause a trap. */
2580
2581int
f7d504c2 2582may_trap_p (const_rtx x)
2358ff91 2583{
e755fcf5
ZD
2584 return may_trap_p_1 (x, 0);
2585}
2586
c0220ea4 2587/* Same as above, but additionally return nonzero if evaluating rtx X might
2358ff91
EB
2588 cause a fault. We define a fault for the purpose of this function as a
2589 erroneous execution condition that cannot be encountered during the normal
2590 execution of a valid program; the typical example is an unaligned memory
2591 access on a strict alignment machine. The compiler guarantees that it
2592 doesn't generate code that will fault from a valid program, but this
2593 guarantee doesn't mean anything for individual instructions. Consider
2594 the following example:
2595
2596 struct S { int d; union { char *cp; int *ip; }; };
2597
2598 int foo(struct S *s)
2599 {
2600 if (s->d == 1)
2601 return *s->ip;
2602 else
2603 return *s->cp;
2604 }
2605
2606 on a strict alignment machine. In a valid program, foo will never be
2607 invoked on a structure for which d is equal to 1 and the underlying
2608 unique field of the union not aligned on a 4-byte boundary, but the
2609 expression *s->ip might cause a fault if considered individually.
2610
2611 At the RTL level, potentially problematic expressions will almost always
2612 verify may_trap_p; for example, the above dereference can be emitted as
2613 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2614 However, suppose that foo is inlined in a caller that causes s->cp to
2615 point to a local character variable and guarantees that s->d is not set
2616 to 1; foo may have been effectively translated into pseudo-RTL as:
2617
2618 if ((reg:SI) == 1)
2619 (set (reg:SI) (mem:SI (%fp - 7)))
2620 else
2621 (set (reg:QI) (mem:QI (%fp - 7)))
2622
2623 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2624 memory reference to a stack slot, but it will certainly cause a fault
2625 on a strict alignment machine. */
2626
2627int
f7d504c2 2628may_trap_or_fault_p (const_rtx x)
2358ff91 2629{
48e8382e 2630 return may_trap_p_1 (x, 1);
2358ff91 2631}
2c88418c
RS
2632\f
2633/* Return nonzero if X contains a comparison that is not either EQ or NE,
2634 i.e., an inequality. */
2635
2636int
f7d504c2 2637inequality_comparisons_p (const_rtx x)
2c88418c 2638{
b3694847
SS
2639 const char *fmt;
2640 int len, i;
f7d504c2 2641 const enum rtx_code code = GET_CODE (x);
2c88418c
RS
2642
2643 switch (code)
2644 {
2645 case REG:
2646 case SCRATCH:
2647 case PC:
2648 case CC0:
d8116890 2649 CASE_CONST_ANY:
2c88418c
RS
2650 case CONST:
2651 case LABEL_REF:
2652 case SYMBOL_REF:
2653 return 0;
2654
2655 case LT:
2656 case LTU:
2657 case GT:
2658 case GTU:
2659 case LE:
2660 case LEU:
2661 case GE:
2662 case GEU:
2663 return 1;
a6a2274a 2664
e9a25f70
JL
2665 default:
2666 break;
2c88418c
RS
2667 }
2668
2669 len = GET_RTX_LENGTH (code);
2670 fmt = GET_RTX_FORMAT (code);
2671
2672 for (i = 0; i < len; i++)
2673 {
2674 if (fmt[i] == 'e')
2675 {
2676 if (inequality_comparisons_p (XEXP (x, i)))
2677 return 1;
2678 }
2679 else if (fmt[i] == 'E')
2680 {
b3694847 2681 int j;
2c88418c
RS
2682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2683 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2684 return 1;
2685 }
2686 }
a6a2274a 2687
2c88418c
RS
2688 return 0;
2689}
2690\f
1ed0205e
VM
2691/* Replace any occurrence of FROM in X with TO. The function does
2692 not enter into CONST_DOUBLE for the replace.
2c88418c
RS
2693
2694 Note that copying is not done so X must not be shared unless all copies
2695 are to be modified. */
2696
2697rtx
0c20a65f 2698replace_rtx (rtx x, rtx from, rtx to)
2c88418c 2699{
b3694847
SS
2700 int i, j;
2701 const char *fmt;
2c88418c
RS
2702
2703 if (x == from)
2704 return to;
2705
2706 /* Allow this function to make replacements in EXPR_LISTs. */
2707 if (x == 0)
2708 return 0;
2709
9dd791c8
AO
2710 if (GET_CODE (x) == SUBREG)
2711 {
55d796da 2712 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
9dd791c8 2713
481683e1 2714 if (CONST_INT_P (new_rtx))
9dd791c8 2715 {
55d796da 2716 x = simplify_subreg (GET_MODE (x), new_rtx,
9dd791c8
AO
2717 GET_MODE (SUBREG_REG (x)),
2718 SUBREG_BYTE (x));
41374e13 2719 gcc_assert (x);
9dd791c8
AO
2720 }
2721 else
55d796da 2722 SUBREG_REG (x) = new_rtx;
9dd791c8
AO
2723
2724 return x;
2725 }
2726 else if (GET_CODE (x) == ZERO_EXTEND)
2727 {
55d796da 2728 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
9dd791c8 2729
481683e1 2730 if (CONST_INT_P (new_rtx))
9dd791c8
AO
2731 {
2732 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
55d796da 2733 new_rtx, GET_MODE (XEXP (x, 0)));
41374e13 2734 gcc_assert (x);
9dd791c8
AO
2735 }
2736 else
55d796da 2737 XEXP (x, 0) = new_rtx;
9dd791c8
AO
2738
2739 return x;
2740 }
2741
2c88418c
RS
2742 fmt = GET_RTX_FORMAT (GET_CODE (x));
2743 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2744 {
2745 if (fmt[i] == 'e')
2746 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2747 else if (fmt[i] == 'E')
2748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2749 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2750 }
2751
2752 return x;
a6a2274a 2753}
2c88418c 2754\f
a2b7026c
RS
2755/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2756 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
39811184 2757
a2b7026c
RS
2758void
2759replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
39811184 2760{
a2b7026c
RS
2761 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2762 rtx x = *loc;
2763 if (JUMP_TABLE_DATA_P (x))
4af16369 2764 {
a2b7026c
RS
2765 x = PATTERN (x);
2766 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2767 int len = GET_NUM_ELEM (vec);
2768 for (int i = 0; i < len; ++i)
4af16369 2769 {
a2b7026c
RS
2770 rtx ref = RTVEC_ELT (vec, i);
2771 if (XEXP (ref, 0) == old_label)
2772 {
2773 XEXP (ref, 0) = new_label;
2774 if (update_label_nuses)
2775 {
2776 ++LABEL_NUSES (new_label);
2777 --LABEL_NUSES (old_label);
2778 }
2779 }
4af16369 2780 }
a2b7026c 2781 return;
4af16369
JZ
2782 }
2783
39811184 2784 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
a2b7026c 2785 field. This is not handled by the iterator because it doesn't
39811184 2786 handle unprinted ('0') fields. */
a2b7026c
RS
2787 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2788 JUMP_LABEL (x) = new_label;
39811184 2789
a2b7026c
RS
2790 subrtx_ptr_iterator::array_type array;
2791 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
4af16369 2792 {
a2b7026c
RS
2793 rtx *loc = *iter;
2794 if (rtx x = *loc)
4af16369 2795 {
a2b7026c
RS
2796 if (GET_CODE (x) == SYMBOL_REF
2797 && CONSTANT_POOL_ADDRESS_P (x))
2798 {
2799 rtx c = get_pool_constant (x);
2800 if (rtx_referenced_p (old_label, c))
2801 {
2802 /* Create a copy of constant C; replace the label inside
2803 but do not update LABEL_NUSES because uses in constant pool
2804 are not counted. */
2805 rtx new_c = copy_rtx (c);
2806 replace_label (&new_c, old_label, new_label, false);
2807
2808 /* Add the new constant NEW_C to constant pool and replace
2809 the old reference to constant by new reference. */
2810 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2811 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2812 }
2813 }
2814
2815 if ((GET_CODE (x) == LABEL_REF
2816 || GET_CODE (x) == INSN_LIST)
2817 && XEXP (x, 0) == old_label)
2818 {
2819 XEXP (x, 0) = new_label;
2820 if (update_label_nuses)
2821 {
2822 ++LABEL_NUSES (new_label);
2823 --LABEL_NUSES (old_label);
2824 }
2825 }
4af16369 2826 }
4af16369 2827 }
a2b7026c 2828}
39811184 2829
a2b7026c
RS
2830void
2831replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2832 bool update_label_nuses)
2833{
2834 rtx insn_as_rtx = insn;
2835 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2836 gcc_checking_assert (insn_as_rtx == insn);
39811184
JZ
2837}
2838
e08cf836 2839/* Return true if X is referenced in BODY. */
39811184 2840
e08cf836
RS
2841bool
2842rtx_referenced_p (const_rtx x, const_rtx body)
39811184 2843{
e08cf836
RS
2844 subrtx_iterator::array_type array;
2845 FOR_EACH_SUBRTX (iter, array, body, ALL)
2846 if (const_rtx y = *iter)
2847 {
2848 /* Check if a label_ref Y refers to label X. */
a827d9b1
DM
2849 if (GET_CODE (y) == LABEL_REF
2850 && LABEL_P (x)
2851 && LABEL_REF_LABEL (y) == x)
e08cf836 2852 return true;
39811184 2853
e08cf836
RS
2854 if (rtx_equal_p (x, y))
2855 return true;
39811184 2856
e08cf836
RS
2857 /* If Y is a reference to pool constant traverse the constant. */
2858 if (GET_CODE (y) == SYMBOL_REF
2859 && CONSTANT_POOL_ADDRESS_P (y))
2860 iter.substitute (get_pool_constant (y));
2861 }
2862 return false;
39811184
JZ
2863}
2864
ee735eef
JZ
2865/* If INSN is a tablejump return true and store the label (before jump table) to
2866 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
39811184
JZ
2867
2868bool
c5241a21 2869tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
39811184 2870{
ee735eef
JZ
2871 rtx label, table;
2872
dc0ff1c8
BS
2873 if (!JUMP_P (insn))
2874 return false;
2875
2876 label = JUMP_LABEL (insn);
2877 if (label != NULL_RTX && !ANY_RETURN_P (label)
b32d5189 2878 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
481683e1 2879 && JUMP_TABLE_DATA_P (table))
39811184 2880 {
ee735eef
JZ
2881 if (labelp)
2882 *labelp = label;
2883 if (tablep)
8942ee0f 2884 *tablep = as_a <rtx_jump_table_data *> (table);
39811184
JZ
2885 return true;
2886 }
2887 return false;
2888}
2889
fce7e199
RH
2890/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2891 constant that is not in the constant pool and not in the condition
2892 of an IF_THEN_ELSE. */
2a1777af
JL
2893
2894static int
f7d504c2 2895computed_jump_p_1 (const_rtx x)
2a1777af 2896{
f7d504c2 2897 const enum rtx_code code = GET_CODE (x);
2a1777af 2898 int i, j;
6f7d635c 2899 const char *fmt;
2a1777af
JL
2900
2901 switch (code)
2902 {
2a1777af
JL
2903 case LABEL_REF:
2904 case PC:
2905 return 0;
2906
fce7e199 2907 case CONST:
d8116890 2908 CASE_CONST_ANY:
fce7e199 2909 case SYMBOL_REF:
2a1777af
JL
2910 case REG:
2911 return 1;
2912
2913 case MEM:
2914 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2915 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2916
2917 case IF_THEN_ELSE:
fce7e199
RH
2918 return (computed_jump_p_1 (XEXP (x, 1))
2919 || computed_jump_p_1 (XEXP (x, 2)));
1d300e19
KG
2920
2921 default:
2922 break;
2a1777af
JL
2923 }
2924
2925 fmt = GET_RTX_FORMAT (code);
2926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2927 {
2928 if (fmt[i] == 'e'
fce7e199 2929 && computed_jump_p_1 (XEXP (x, i)))
2a1777af
JL
2930 return 1;
2931
d4757e6a 2932 else if (fmt[i] == 'E')
2a1777af 2933 for (j = 0; j < XVECLEN (x, i); j++)
fce7e199 2934 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2a1777af
JL
2935 return 1;
2936 }
2937
2938 return 0;
2939}
2940
2941/* Return nonzero if INSN is an indirect jump (aka computed jump).
2942
2943 Tablejumps and casesi insns are not considered indirect jumps;
4eb00163 2944 we can recognize them by a (use (label_ref)). */
2a1777af
JL
2945
2946int
f7d504c2 2947computed_jump_p (const_rtx insn)
2a1777af
JL
2948{
2949 int i;
4b4bf941 2950 if (JUMP_P (insn))
2a1777af
JL
2951 {
2952 rtx pat = PATTERN (insn);
2a1777af 2953
cf7c4aa6
HPN
2954 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2955 if (JUMP_LABEL (insn) != NULL)
f759eb8b 2956 return 0;
cf7c4aa6
HPN
2957
2958 if (GET_CODE (pat) == PARALLEL)
2a1777af
JL
2959 {
2960 int len = XVECLEN (pat, 0);
2961 int has_use_labelref = 0;
2962
2963 for (i = len - 1; i >= 0; i--)
2964 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2965 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2966 == LABEL_REF))
c7b3b99f
PCC
2967 {
2968 has_use_labelref = 1;
2969 break;
2970 }
2a1777af
JL
2971
2972 if (! has_use_labelref)
2973 for (i = len - 1; i >= 0; i--)
2974 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2975 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
fce7e199 2976 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2a1777af
JL
2977 return 1;
2978 }
2979 else if (GET_CODE (pat) == SET
2980 && SET_DEST (pat) == pc_rtx
fce7e199 2981 && computed_jump_p_1 (SET_SRC (pat)))
2a1777af
JL
2982 return 1;
2983 }
2984 return 0;
2985}
ccc2d6d0 2986
cf94b0fc
PB
2987/* Optimized loop of for_each_rtx, trying to avoid useless recursive
2988 calls. Processes the subexpressions of EXP and passes them to F. */
2989static int
2990for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2991{
2992 int result, i, j;
2993 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2994 rtx *x;
2995
2996 for (; format[n] != '\0'; n++)
2997 {
2998 switch (format[n])
2999 {
3000 case 'e':
3001 /* Call F on X. */
3002 x = &XEXP (exp, n);
3003 result = (*f) (x, data);
3004 if (result == -1)
3005 /* Do not traverse sub-expressions. */
3006 continue;
3007 else if (result != 0)
3008 /* Stop the traversal. */
3009 return result;
b8698a0f 3010
cf94b0fc
PB
3011 if (*x == NULL_RTX)
3012 /* There are no sub-expressions. */
3013 continue;
b8698a0f 3014
cf94b0fc
PB
3015 i = non_rtx_starting_operands[GET_CODE (*x)];
3016 if (i >= 0)
3017 {
3018 result = for_each_rtx_1 (*x, i, f, data);
3019 if (result != 0)
3020 return result;
3021 }
3022 break;
3023
3024 case 'V':
3025 case 'E':
3026 if (XVEC (exp, n) == 0)
3027 continue;
3028 for (j = 0; j < XVECLEN (exp, n); ++j)
3029 {
3030 /* Call F on X. */
3031 x = &XVECEXP (exp, n, j);
3032 result = (*f) (x, data);
3033 if (result == -1)
3034 /* Do not traverse sub-expressions. */
3035 continue;
3036 else if (result != 0)
3037 /* Stop the traversal. */
3038 return result;
b8698a0f 3039
cf94b0fc
PB
3040 if (*x == NULL_RTX)
3041 /* There are no sub-expressions. */
3042 continue;
b8698a0f 3043
cf94b0fc
PB
3044 i = non_rtx_starting_operands[GET_CODE (*x)];
3045 if (i >= 0)
3046 {
3047 result = for_each_rtx_1 (*x, i, f, data);
3048 if (result != 0)
3049 return result;
3050 }
3051 }
3052 break;
3053
3054 default:
3055 /* Nothing to do. */
3056 break;
3057 }
3058 }
3059
3060 return 0;
3061}
3062
ccc2d6d0
MM
3063/* Traverse X via depth-first search, calling F for each
3064 sub-expression (including X itself). F is also passed the DATA.
3065 If F returns -1, do not traverse sub-expressions, but continue
3066 traversing the rest of the tree. If F ever returns any other
40f03658 3067 nonzero value, stop the traversal, and return the value returned
ccc2d6d0
MM
3068 by F. Otherwise, return 0. This function does not traverse inside
3069 tree structure that contains RTX_EXPRs, or into sub-expressions
3070 whose format code is `0' since it is not known whether or not those
3071 codes are actually RTL.
3072
3073 This routine is very general, and could (should?) be used to
3074 implement many of the other routines in this file. */
3075
ae0b51ef 3076int
0c20a65f 3077for_each_rtx (rtx *x, rtx_function f, void *data)
ccc2d6d0
MM
3078{
3079 int result;
ccc2d6d0
MM
3080 int i;
3081
3082 /* Call F on X. */
b987f237 3083 result = (*f) (x, data);
ccc2d6d0
MM
3084 if (result == -1)
3085 /* Do not traverse sub-expressions. */
3086 return 0;
3087 else if (result != 0)
3088 /* Stop the traversal. */
3089 return result;
3090
3091 if (*x == NULL_RTX)
3092 /* There are no sub-expressions. */
3093 return 0;
3094
cf94b0fc
PB
3095 i = non_rtx_starting_operands[GET_CODE (*x)];
3096 if (i < 0)
3097 return 0;
ccc2d6d0 3098
cf94b0fc 3099 return for_each_rtx_1 (*x, i, f, data);
ccc2d6d0 3100}
3ec2b590 3101
70e7f57d
DM
3102/* Like "for_each_rtx", but for calling on an rtx_insn **. */
3103
3104int
3105for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3106{
3107 rtx insn_as_rtx = *insn;
3108 int result;
3109
3110 result = for_each_rtx (&insn_as_rtx, f, data);
3111
3112 if (insn_as_rtx != *insn)
3113 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3114
3115 return result;
3116}
3117
4deef538
AO
3118\f
3119
8d8e205b
RS
3120/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3121 the equivalent add insn and pass the result to FN, using DATA as the
3122 final argument. */
4deef538
AO
3123
3124static int
8d8e205b 3125for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
4deef538 3126{
8d8e205b 3127 rtx x = XEXP (mem, 0);
4deef538
AO
3128 switch (GET_CODE (x))
3129 {
3130 case PRE_INC:
3131 case POST_INC:
3132 {
8d8e205b 3133 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3134 rtx r1 = XEXP (x, 0);
3135 rtx c = gen_int_mode (size, GET_MODE (r1));
8d8e205b 3136 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3137 }
3138
3139 case PRE_DEC:
3140 case POST_DEC:
3141 {
8d8e205b 3142 int size = GET_MODE_SIZE (GET_MODE (mem));
4deef538
AO
3143 rtx r1 = XEXP (x, 0);
3144 rtx c = gen_int_mode (-size, GET_MODE (r1));
8d8e205b 3145 return fn (mem, x, r1, r1, c, data);
4deef538
AO
3146 }
3147
3148 case PRE_MODIFY:
3149 case POST_MODIFY:
3150 {
3151 rtx r1 = XEXP (x, 0);
3152 rtx add = XEXP (x, 1);
8d8e205b 3153 return fn (mem, x, r1, add, NULL, data);
4deef538
AO
3154 }
3155
3156 default:
8d8e205b 3157 gcc_unreachable ();
4deef538
AO
3158 }
3159}
3160
8d8e205b
RS
3161/* Traverse *LOC looking for MEMs that have autoinc addresses.
3162 For each such autoinc operation found, call FN, passing it
4deef538
AO
3163 the innermost enclosing MEM, the operation itself, the RTX modified
3164 by the operation, two RTXs (the second may be NULL) that, once
3165 added, represent the value to be held by the modified RTX
8d8e205b
RS
3166 afterwards, and DATA. FN is to return 0 to continue the
3167 traversal or any other value to have it returned to the caller of
4deef538
AO
3168 for_each_inc_dec. */
3169
3170int
8d8e205b 3171for_each_inc_dec (rtx x,
4deef538 3172 for_each_inc_dec_fn fn,
8d8e205b 3173 void *data)
4deef538 3174{
8d8e205b
RS
3175 subrtx_var_iterator::array_type array;
3176 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3177 {
3178 rtx mem = *iter;
3179 if (mem
3180 && MEM_P (mem)
3181 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3182 {
3183 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3184 if (res != 0)
3185 return res;
3186 iter.skip_subrtxes ();
3187 }
3188 }
3189 return 0;
4deef538
AO
3190}
3191
3192\f
777b1b71
RH
3193/* Searches X for any reference to REGNO, returning the rtx of the
3194 reference found if any. Otherwise, returns NULL_RTX. */
3195
3196rtx
0c20a65f 3197regno_use_in (unsigned int regno, rtx x)
777b1b71 3198{
b3694847 3199 const char *fmt;
777b1b71
RH
3200 int i, j;
3201 rtx tem;
3202
f8cfc6aa 3203 if (REG_P (x) && REGNO (x) == regno)
777b1b71
RH
3204 return x;
3205
3206 fmt = GET_RTX_FORMAT (GET_CODE (x));
3207 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3208 {
3209 if (fmt[i] == 'e')
3210 {
3211 if ((tem = regno_use_in (regno, XEXP (x, i))))
3212 return tem;
3213 }
3214 else if (fmt[i] == 'E')
3215 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3216 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3217 return tem;
3218 }
3219
3220 return NULL_RTX;
3221}
2dfa9a87 3222
e5c56fd9
JH
3223/* Return a value indicating whether OP, an operand of a commutative
3224 operation, is preferred as the first or second operand. The higher
3225 the value, the stronger the preference for being the first operand.
3226 We use negative values to indicate a preference for the first operand
3227 and positive values for the second operand. */
3228
9b3bd424 3229int
0c20a65f 3230commutative_operand_precedence (rtx op)
e5c56fd9 3231{
e3d6e740 3232 enum rtx_code code = GET_CODE (op);
b8698a0f 3233
e5c56fd9 3234 /* Constants always come the second operand. Prefer "nice" constants. */
e3d6e740 3235 if (code == CONST_INT)
7e0b4eae 3236 return -8;
807e902e
KZ
3237 if (code == CONST_WIDE_INT)
3238 return -8;
e3d6e740 3239 if (code == CONST_DOUBLE)
7e0b4eae 3240 return -7;
091a3ac7
CF
3241 if (code == CONST_FIXED)
3242 return -7;
9ce79a7a 3243 op = avoid_constant_pool_reference (op);
79b82df3 3244 code = GET_CODE (op);
ec8e098d
PB
3245
3246 switch (GET_RTX_CLASS (code))
3247 {
3248 case RTX_CONST_OBJ:
3249 if (code == CONST_INT)
7e0b4eae 3250 return -6;
807e902e
KZ
3251 if (code == CONST_WIDE_INT)
3252 return -6;
ec8e098d 3253 if (code == CONST_DOUBLE)
7e0b4eae 3254 return -5;
091a3ac7
CF
3255 if (code == CONST_FIXED)
3256 return -5;
7e0b4eae 3257 return -4;
ec8e098d
PB
3258
3259 case RTX_EXTRA:
3260 /* SUBREGs of objects should come second. */
3261 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
7e0b4eae 3262 return -3;
6fb5fa3c 3263 return 0;
ec8e098d
PB
3264
3265 case RTX_OBJ:
3266 /* Complex expressions should be the first, so decrease priority
7e0b4eae
PB
3267 of objects. Prefer pointer objects over non pointer objects. */
3268 if ((REG_P (op) && REG_POINTER (op))
3269 || (MEM_P (op) && MEM_POINTER (op)))
3270 return -1;
3271 return -2;
ec8e098d
PB
3272
3273 case RTX_COMM_ARITH:
3274 /* Prefer operands that are themselves commutative to be first.
3275 This helps to make things linear. In particular,
3276 (and (and (reg) (reg)) (not (reg))) is canonical. */
3277 return 4;
3278
3279 case RTX_BIN_ARITH:
3280 /* If only one operand is a binary expression, it will be the first
3281 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3282 is canonical, although it will usually be further simplified. */
3283 return 2;
b8698a0f 3284
ec8e098d
PB
3285 case RTX_UNARY:
3286 /* Then prefer NEG and NOT. */
3287 if (code == NEG || code == NOT)
3288 return 1;
e5c56fd9 3289
ec8e098d
PB
3290 default:
3291 return 0;
3292 }
e5c56fd9
JH
3293}
3294
f63d1bf7 3295/* Return 1 iff it is necessary to swap operands of commutative operation
e5c56fd9
JH
3296 in order to canonicalize expression. */
3297
7e0b4eae 3298bool
0c20a65f 3299swap_commutative_operands_p (rtx x, rtx y)
e5c56fd9 3300{
9b3bd424
RH
3301 return (commutative_operand_precedence (x)
3302 < commutative_operand_precedence (y));
e5c56fd9 3303}
2dfa9a87
MH
3304
3305/* Return 1 if X is an autoincrement side effect and the register is
3306 not the stack pointer. */
3307int
f7d504c2 3308auto_inc_p (const_rtx x)
2dfa9a87
MH
3309{
3310 switch (GET_CODE (x))
3311 {
3312 case PRE_INC:
3313 case POST_INC:
3314 case PRE_DEC:
3315 case POST_DEC:
3316 case PRE_MODIFY:
3317 case POST_MODIFY:
3318 /* There are no REG_INC notes for SP. */
3319 if (XEXP (x, 0) != stack_pointer_rtx)
3320 return 1;
3321 default:
3322 break;
3323 }
3324 return 0;
3325}
3b10cf4b 3326
f9da5064 3327/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
db7ba742 3328int
f7d504c2 3329loc_mentioned_in_p (rtx *loc, const_rtx in)
db7ba742 3330{
a52b023a
PB
3331 enum rtx_code code;
3332 const char *fmt;
db7ba742
R
3333 int i, j;
3334
a52b023a
PB
3335 if (!in)
3336 return 0;
3337
3338 code = GET_CODE (in);
3339 fmt = GET_RTX_FORMAT (code);
db7ba742
R
3340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3341 {
db7ba742
R
3342 if (fmt[i] == 'e')
3343 {
e0651058 3344 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
db7ba742
R
3345 return 1;
3346 }
3347 else if (fmt[i] == 'E')
3348 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
e0651058
AO
3349 if (loc == &XVECEXP (in, i, j)
3350 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
db7ba742
R
3351 return 1;
3352 }
3353 return 0;
3354}
ddef6bc7 3355
bb51e270
RS
3356/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3357 and SUBREG_BYTE, return the bit offset where the subreg begins
3358 (counting from the least significant bit of the operand). */
33aceff2
JW
3359
3360unsigned int
bb51e270
RS
3361subreg_lsb_1 (enum machine_mode outer_mode,
3362 enum machine_mode inner_mode,
3363 unsigned int subreg_byte)
33aceff2 3364{
33aceff2
JW
3365 unsigned int bitpos;
3366 unsigned int byte;
3367 unsigned int word;
3368
3369 /* A paradoxical subreg begins at bit position 0. */
5511bc5a 3370 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
33aceff2
JW
3371 return 0;
3372
3373 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3374 /* If the subreg crosses a word boundary ensure that
3375 it also begins and ends on a word boundary. */
41374e13
NS
3376 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3377 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3378 && (subreg_byte % UNITS_PER_WORD
3379 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
33aceff2
JW
3380
3381 if (WORDS_BIG_ENDIAN)
3382 word = (GET_MODE_SIZE (inner_mode)
bb51e270 3383 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
33aceff2 3384 else
bb51e270 3385 word = subreg_byte / UNITS_PER_WORD;
33aceff2
JW
3386 bitpos = word * BITS_PER_WORD;
3387
3388 if (BYTES_BIG_ENDIAN)
3389 byte = (GET_MODE_SIZE (inner_mode)
bb51e270 3390 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
33aceff2 3391 else
bb51e270 3392 byte = subreg_byte % UNITS_PER_WORD;
33aceff2
JW
3393 bitpos += byte * BITS_PER_UNIT;
3394
3395 return bitpos;
3396}
3397
bb51e270
RS
3398/* Given a subreg X, return the bit offset where the subreg begins
3399 (counting from the least significant bit of the reg). */
3400
3401unsigned int
f7d504c2 3402subreg_lsb (const_rtx x)
bb51e270
RS
3403{
3404 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3405 SUBREG_BYTE (x));
3406}
3407
f1f4e530 3408/* Fill in information about a subreg of a hard register.
ddef6bc7
JJ
3409 xregno - A regno of an inner hard subreg_reg (or what will become one).
3410 xmode - The mode of xregno.
3411 offset - The byte offset.
3412 ymode - The mode of a top level SUBREG (or what may become one).
0cb07998
RS
3413 info - Pointer to structure to fill in.
3414
3415 Rather than considering one particular inner register (and thus one
3416 particular "outer" register) in isolation, this function really uses
3417 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3418 function does not check whether adding INFO->offset to XREGNO gives
3419 a valid hard register; even if INFO->offset + XREGNO is out of range,
3420 there might be another register of the same type that is in range.
3421 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3422 register, since that can depend on things like whether the final
3423 register number is even or odd. Callers that want to check whether
3424 this particular subreg can be replaced by a simple (reg ...) should
3425 use simplify_subreg_regno. */
3426
c619e982 3427void
f1f4e530
JM
3428subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3429 unsigned int offset, enum machine_mode ymode,
3430 struct subreg_info *info)
04c5580f 3431{
8521c414 3432 int nregs_xmode, nregs_ymode;
04c5580f 3433 int mode_multiple, nregs_multiple;
f1f4e530 3434 int offset_adj, y_offset, y_offset_adj;
8521c414 3435 int regsize_xmode, regsize_ymode;
f1f4e530 3436 bool rknown;
04c5580f 3437
41374e13 3438 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
04c5580f 3439
f1f4e530
JM
3440 rknown = false;
3441
dd79bb7e
GK
3442 /* If there are holes in a non-scalar mode in registers, we expect
3443 that it is made up of its units concatenated together. */
8521c414 3444 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
dd79bb7e 3445 {
8521c414
JM
3446 enum machine_mode xmode_unit;
3447
3448 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3449 if (GET_MODE_INNER (xmode) == VOIDmode)
3450 xmode_unit = xmode;
3451 else
3452 xmode_unit = GET_MODE_INNER (xmode);
3453 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3454 gcc_assert (nregs_xmode
3455 == (GET_MODE_NUNITS (xmode)
3456 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3457 gcc_assert (hard_regno_nregs[xregno][xmode]
3458 == (hard_regno_nregs[xregno][xmode_unit]
3459 * GET_MODE_NUNITS (xmode)));
dd79bb7e
GK
3460
3461 /* You can only ask for a SUBREG of a value with holes in the middle
3462 if you don't cross the holes. (Such a SUBREG should be done by
3463 picking a different register class, or doing it in memory if
3464 necessary.) An example of a value with holes is XCmode on 32-bit
3465 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
b8698a0f 3466 3 for each part, but in memory it's two 128-bit parts.
dd79bb7e
GK
3467 Padding is assumed to be at the end (not necessarily the 'high part')
3468 of each unit. */
b8698a0f 3469 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
8521c414
JM
3470 < GET_MODE_NUNITS (xmode))
3471 && (offset / GET_MODE_SIZE (xmode_unit)
dd79bb7e 3472 != ((offset + GET_MODE_SIZE (ymode) - 1)
8521c414 3473 / GET_MODE_SIZE (xmode_unit))))
f1f4e530
JM
3474 {
3475 info->representable_p = false;
3476 rknown = true;
3477 }
dd79bb7e
GK
3478 }
3479 else
3480 nregs_xmode = hard_regno_nregs[xregno][xmode];
b8698a0f 3481
66fd46b6 3482 nregs_ymode = hard_regno_nregs[xregno][ymode];
04c5580f 3483
dd79bb7e 3484 /* Paradoxical subregs are otherwise valid. */
f1f4e530
JM
3485 if (!rknown
3486 && offset == 0
5511bc5a 3487 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
f1f4e530
JM
3488 {
3489 info->representable_p = true;
3490 /* If this is a big endian paradoxical subreg, which uses more
3491 actual hard registers than the original register, we must
3492 return a negative offset so that we find the proper highpart
3493 of the register. */
3494 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
c0a6a1ef 3495 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f1f4e530
JM
3496 info->offset = nregs_xmode - nregs_ymode;
3497 else
3498 info->offset = 0;
3499 info->nregs = nregs_ymode;
3500 return;
3501 }
04c5580f 3502
8521c414
JM
3503 /* If registers store different numbers of bits in the different
3504 modes, we cannot generally form this subreg. */
f1f4e530 3505 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
5f7fc2b8
JM
3506 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3507 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3508 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
f1f4e530
JM
3509 {
3510 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
f1f4e530 3511 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
f1f4e530
JM
3512 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3513 {
3514 info->representable_p = false;
3515 info->nregs
3516 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3517 info->offset = offset / regsize_xmode;
3518 return;
3519 }
3520 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3521 {
3522 info->representable_p = false;
3523 info->nregs
3524 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3525 info->offset = offset / regsize_xmode;
3526 return;
3527 }
3528 }
8521c414 3529
dd79bb7e 3530 /* Lowpart subregs are otherwise valid. */
f1f4e530
JM
3531 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3532 {
3533 info->representable_p = true;
3534 rknown = true;
a446b4e8
JM
3535
3536 if (offset == 0 || nregs_xmode == nregs_ymode)
3537 {
3538 info->offset = 0;
3539 info->nregs = nregs_ymode;
3540 return;
3541 }
f1f4e530 3542 }
04c5580f 3543
dd79bb7e
GK
3544 /* This should always pass, otherwise we don't know how to verify
3545 the constraint. These conditions may be relaxed but
3546 subreg_regno_offset would need to be redesigned. */
41374e13 3547 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
41374e13 3548 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
04c5580f 3549
c0a6a1ef
BS
3550 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3551 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3552 {
3553 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3554 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3555 HOST_WIDE_INT off_low = offset & (ysize - 1);
3556 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3557 offset = (xsize - ysize - off_high) | off_low;
3558 }
b20b352b 3559 /* The XMODE value can be seen as a vector of NREGS_XMODE
dcc24678 3560 values. The subreg must represent a lowpart of given field.
04c5580f 3561 Compute what field it is. */
f1f4e530
JM
3562 offset_adj = offset;
3563 offset_adj -= subreg_lowpart_offset (ymode,
3564 mode_for_size (GET_MODE_BITSIZE (xmode)
3565 / nregs_xmode,
3566 MODE_INT, 0));
04c5580f 3567
dd79bb7e 3568 /* Size of ymode must not be greater than the size of xmode. */
04c5580f 3569 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
41374e13 3570 gcc_assert (mode_multiple != 0);
04c5580f
JH
3571
3572 y_offset = offset / GET_MODE_SIZE (ymode);
f1f4e530
JM
3573 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3574 nregs_multiple = nregs_xmode / nregs_ymode;
41374e13 3575
f1f4e530 3576 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
41374e13
NS
3577 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3578
f1f4e530
JM
3579 if (!rknown)
3580 {
3581 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3582 rknown = true;
3583 }
3584 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3585 info->nregs = nregs_ymode;
3586}
3587
3588/* This function returns the regno offset of a subreg expression.
3589 xregno - A regno of an inner hard subreg_reg (or what will become one).
3590 xmode - The mode of xregno.
3591 offset - The byte offset.
3592 ymode - The mode of a top level SUBREG (or what may become one).
3593 RETURN - The regno offset which would be used. */
3594unsigned int
3595subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3596 unsigned int offset, enum machine_mode ymode)
3597{
3598 struct subreg_info info;
3599 subreg_get_info (xregno, xmode, offset, ymode, &info);
3600 return info.offset;
3601}
3602
3603/* This function returns true when the offset is representable via
3604 subreg_offset in the given regno.
3605 xregno - A regno of an inner hard subreg_reg (or what will become one).
3606 xmode - The mode of xregno.
3607 offset - The byte offset.
3608 ymode - The mode of a top level SUBREG (or what may become one).
3609 RETURN - Whether the offset is representable. */
3610bool
3611subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3612 unsigned int offset, enum machine_mode ymode)
3613{
3614 struct subreg_info info;
3615 subreg_get_info (xregno, xmode, offset, ymode, &info);
05cee290 3616 return info.representable_p;
04c5580f
JH
3617}
3618
eef302d2
RS
3619/* Return the number of a YMODE register to which
3620
3621 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3622
3623 can be simplified. Return -1 if the subreg can't be simplified.
3624
3625 XREGNO is a hard register number. */
3626
3627int
3628simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3629 unsigned int offset, enum machine_mode ymode)
3630{
3631 struct subreg_info info;
3632 unsigned int yregno;
3633
3634#ifdef CANNOT_CHANGE_MODE_CLASS
3635 /* Give the backend a chance to disallow the mode change. */
3636 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3637 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
55a2c322
VM
3638 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3639 /* We can use mode change in LRA for some transformations. */
3640 && ! lra_in_progress)
eef302d2
RS
3641 return -1;
3642#endif
3643
3644 /* We shouldn't simplify stack-related registers. */
3645 if ((!reload_completed || frame_pointer_needed)
d4e0d036 3646 && xregno == FRAME_POINTER_REGNUM)
eef302d2
RS
3647 return -1;
3648
3649 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
98072ee5 3650 && xregno == ARG_POINTER_REGNUM)
eef302d2
RS
3651 return -1;
3652
55a2c322
VM
3653 if (xregno == STACK_POINTER_REGNUM
3654 /* We should convert hard stack register in LRA if it is
3655 possible. */
3656 && ! lra_in_progress)
eef302d2
RS
3657 return -1;
3658
3659 /* Try to get the register offset. */
3660 subreg_get_info (xregno, xmode, offset, ymode, &info);
3661 if (!info.representable_p)
3662 return -1;
3663
3664 /* Make sure that the offsetted register value is in range. */
3665 yregno = xregno + info.offset;
3666 if (!HARD_REGISTER_NUM_P (yregno))
3667 return -1;
3668
3669 /* See whether (reg:YMODE YREGNO) is valid.
3670
3671 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
eb93b31f
EB
3672 This is a kludge to work around how complex FP arguments are passed
3673 on IA-64 and should be fixed. See PR target/49226. */
eef302d2
RS
3674 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3675 && HARD_REGNO_MODE_OK (xregno, xmode))
3676 return -1;
3677
3678 return (int) yregno;
3679}
3680
dc297297 3681/* Return the final regno that a subreg expression refers to. */
a6a2274a 3682unsigned int
f7d504c2 3683subreg_regno (const_rtx x)
ddef6bc7
JJ
3684{
3685 unsigned int ret;
3686 rtx subreg = SUBREG_REG (x);
3687 int regno = REGNO (subreg);
3688
a6a2274a
KH
3689 ret = regno + subreg_regno_offset (regno,
3690 GET_MODE (subreg),
ddef6bc7
JJ
3691 SUBREG_BYTE (x),
3692 GET_MODE (x));
3693 return ret;
3694
3695}
f1f4e530
JM
3696
3697/* Return the number of registers that a subreg expression refers
3698 to. */
3699unsigned int
f7d504c2 3700subreg_nregs (const_rtx x)
ba49cb7b
KZ
3701{
3702 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3703}
3704
3705/* Return the number of registers that a subreg REG with REGNO
3706 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3707 changed so that the regno can be passed in. */
3708
3709unsigned int
3710subreg_nregs_with_regno (unsigned int regno, const_rtx x)
f1f4e530
JM
3711{
3712 struct subreg_info info;
3713 rtx subreg = SUBREG_REG (x);
f1f4e530
JM
3714
3715 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3716 &info);
3717 return info.nregs;
3718}
3719
ba49cb7b 3720
833366d6
JH
3721struct parms_set_data
3722{
3723 int nregs;
3724 HARD_REG_SET regs;
3725};
3726
3727/* Helper function for noticing stores to parameter registers. */
3728static void
7bc980e1 3729parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
833366d6 3730{
1634b18f 3731 struct parms_set_data *const d = (struct parms_set_data *) data;
833366d6
JH
3732 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3733 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3734 {
3735 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3736 d->nregs--;
3737 }
3738}
3739
a6a2274a 3740/* Look backward for first parameter to be loaded.
b2df20b4
DJ
3741 Note that loads of all parameters will not necessarily be
3742 found if CSE has eliminated some of them (e.g., an argument
3743 to the outer function is passed down as a parameter).
833366d6 3744 Do not skip BOUNDARY. */
62fc98cc 3745rtx_insn *
9321cf00 3746find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
833366d6
JH
3747{
3748 struct parms_set_data parm;
9321cf00
DM
3749 rtx p;
3750 rtx_insn *before, *first_set;
833366d6
JH
3751
3752 /* Since different machines initialize their parameter registers
3753 in different orders, assume nothing. Collect the set of all
3754 parameter registers. */
3755 CLEAR_HARD_REG_SET (parm.regs);
3756 parm.nregs = 0;
3757 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3758 if (GET_CODE (XEXP (p, 0)) == USE
f8cfc6aa 3759 && REG_P (XEXP (XEXP (p, 0), 0)))
833366d6 3760 {
41374e13 3761 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
833366d6
JH
3762
3763 /* We only care about registers which can hold function
3764 arguments. */
3765 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3766 continue;
3767
3768 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3769 parm.nregs++;
3770 }
3771 before = call_insn;
b2df20b4 3772 first_set = call_insn;
833366d6
JH
3773
3774 /* Search backward for the first set of a register in this set. */
3775 while (parm.nregs && before != boundary)
3776 {
3777 before = PREV_INSN (before);
3778
3779 /* It is possible that some loads got CSEed from one call to
3780 another. Stop in that case. */
4b4bf941 3781 if (CALL_P (before))
833366d6
JH
3782 break;
3783
dbc1a163 3784 /* Our caller needs either ensure that we will find all sets
833366d6 3785 (in case code has not been optimized yet), or take care
eaec9b3d 3786 for possible labels in a way by setting boundary to preceding
833366d6 3787 CODE_LABEL. */
4b4bf941 3788 if (LABEL_P (before))
dbc1a163 3789 {
41374e13 3790 gcc_assert (before == boundary);
dbc1a163
RH
3791 break;
3792 }
833366d6 3793
0d025d43 3794 if (INSN_P (before))
b2df20b4
DJ
3795 {
3796 int nregs_old = parm.nregs;
3797 note_stores (PATTERN (before), parms_set, &parm);
3798 /* If we found something that did not set a parameter reg,
3799 we're done. Do not keep going, as that might result
3800 in hoisting an insn before the setting of a pseudo
3801 that is used by the hoisted insn. */
3802 if (nregs_old != parm.nregs)
3803 first_set = before;
3804 else
3805 break;
3806 }
833366d6 3807 }
9321cf00 3808 return first_set;
833366d6 3809}
3dec4024 3810
14b493d6 3811/* Return true if we should avoid inserting code between INSN and preceding
3dec4024
JH
3812 call instruction. */
3813
3814bool
e4685bc8 3815keep_with_call_p (const rtx_insn *insn)
3dec4024
JH
3816{
3817 rtx set;
3818
3819 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3820 {
f8cfc6aa 3821 if (REG_P (SET_DEST (set))
5df533b3 3822 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3dec4024
JH
3823 && fixed_regs[REGNO (SET_DEST (set))]
3824 && general_operand (SET_SRC (set), VOIDmode))
3825 return true;
f8cfc6aa 3826 if (REG_P (SET_SRC (set))
82f81f18 3827 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
f8cfc6aa 3828 && REG_P (SET_DEST (set))
3dec4024
JH
3829 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3830 return true;
bc204393
RH
3831 /* There may be a stack pop just after the call and before the store
3832 of the return register. Search for the actual store when deciding
3833 if we can break or not. */
3dec4024
JH
3834 if (SET_DEST (set) == stack_pointer_rtx)
3835 {
75547801 3836 /* This CONST_CAST is okay because next_nonnote_insn just
4e9b57fa 3837 returns its argument and we assign it to a const_rtx
75547801 3838 variable. */
e4685bc8
TS
3839 const rtx_insn *i2
3840 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
bc204393 3841 if (i2 && keep_with_call_p (i2))
3dec4024
JH
3842 return true;
3843 }
3844 }
3845 return false;
3846}
71d2c5bd 3847
432f982f
JH
3848/* Return true if LABEL is a target of JUMP_INSN. This applies only
3849 to non-complex jumps. That is, direct unconditional, conditional,
3850 and tablejumps, but not computed jumps or returns. It also does
3851 not apply to the fallthru case of a conditional jump. */
3852
3853bool
c5241a21 3854label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
432f982f
JH
3855{
3856 rtx tmp = JUMP_LABEL (jump_insn);
8942ee0f 3857 rtx_jump_table_data *table;
432f982f
JH
3858
3859 if (label == tmp)
3860 return true;
3861
8942ee0f 3862 if (tablejump_p (jump_insn, NULL, &table))
432f982f 3863 {
95c43227 3864 rtvec vec = table->get_labels ();
432f982f
JH
3865 int i, veclen = GET_NUM_ELEM (vec);
3866
3867 for (i = 0; i < veclen; ++i)
3868 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3869 return true;
3870 }
3871
cb2f563b
HPN
3872 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3873 return true;
3874
432f982f
JH
3875 return false;
3876}
3877
f894b69b
PB
3878\f
3879/* Return an estimate of the cost of computing rtx X.
3880 One use is in cse, to decide which expression to keep in the hash table.
3881 Another is in rtl generation, to pick the cheapest way to multiply.
b8698a0f 3882 Other uses like the latter are expected in the future.
f40751dd 3883
68f932c4
RS
3884 X appears as operand OPNO in an expression with code OUTER_CODE.
3885 SPEED specifies whether costs optimized for speed or size should
f40751dd 3886 be returned. */
f894b69b
PB
3887
3888int
68f932c4 3889rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
f894b69b
PB
3890{
3891 int i, j;
3892 enum rtx_code code;
3893 const char *fmt;
3894 int total;
e098c169 3895 int factor;
f894b69b
PB
3896
3897 if (x == 0)
3898 return 0;
3899
e098c169
HPN
3900 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3901 many insns, taking N times as long. */
3902 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3903 if (factor == 0)
3904 factor = 1;
3905
f894b69b
PB
3906 /* Compute the default costs of certain things.
3907 Note that targetm.rtx_costs can override the defaults. */
3908
3909 code = GET_CODE (x);
3910 switch (code)
3911 {
3912 case MULT:
e098c169
HPN
3913 /* Multiplication has time-complexity O(N*N), where N is the
3914 number of units (translated from digits) when using
3915 schoolbook long multiplication. */
3916 total = factor * factor * COSTS_N_INSNS (5);
f894b69b
PB
3917 break;
3918 case DIV:
3919 case UDIV:
3920 case MOD:
3921 case UMOD:
e098c169
HPN
3922 /* Similarly, complexity for schoolbook long division. */
3923 total = factor * factor * COSTS_N_INSNS (7);
f894b69b
PB
3924 break;
3925 case USE:
db3edc20 3926 /* Used in combine.c as a marker. */
f894b69b
PB
3927 total = 0;
3928 break;
e098c169
HPN
3929 case SET:
3930 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3931 the mode for the factor. */
3932 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3933 if (factor == 0)
3934 factor = 1;
3935 /* Pass through. */
f894b69b 3936 default:
e098c169 3937 total = factor * COSTS_N_INSNS (1);
f894b69b
PB
3938 }
3939
3940 switch (code)
3941 {
3942 case REG:
3943 return 0;
3944
3945 case SUBREG:
edb81165 3946 total = 0;
f894b69b
PB
3947 /* If we can't tie these modes, make this expensive. The larger
3948 the mode, the more expensive it is. */
3949 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
e098c169 3950 return COSTS_N_INSNS (2 + factor);
f894b69b
PB
3951 break;
3952
3953 default:
68f932c4 3954 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
f894b69b
PB
3955 return total;
3956 break;
3957 }
3958
3959 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3960 which is already in total. */
3961
3962 fmt = GET_RTX_FORMAT (code);
3963 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3964 if (fmt[i] == 'e')
68f932c4 3965 total += rtx_cost (XEXP (x, i), code, i, speed);
f894b69b
PB
3966 else if (fmt[i] == 'E')
3967 for (j = 0; j < XVECLEN (x, i); j++)
68f932c4 3968 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
f894b69b
PB
3969
3970 return total;
3971}
22939744
BS
3972
3973/* Fill in the structure C with information about both speed and size rtx
68f932c4 3974 costs for X, which is operand OPNO in an expression with code OUTER. */
22939744
BS
3975
3976void
68f932c4
RS
3977get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3978 struct full_rtx_costs *c)
22939744 3979{
68f932c4
RS
3980 c->speed = rtx_cost (x, outer, opno, true);
3981 c->size = rtx_cost (x, outer, opno, false);
22939744
BS
3982}
3983
f894b69b
PB
3984\f
3985/* Return cost of address expression X.
b8698a0f 3986 Expect that X is properly formed address reference.
f40751dd
JH
3987
3988 SPEED parameter specify whether costs optimized for speed or size should
3989 be returned. */
f894b69b
PB
3990
3991int
09e881c9 3992address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
f894b69b 3993{
f894b69b
PB
3994 /* We may be asked for cost of various unusual addresses, such as operands
3995 of push instruction. It is not worthwhile to complicate writing
3996 of the target hook by such cases. */
3997
09e881c9 3998 if (!memory_address_addr_space_p (mode, x, as))
f894b69b
PB
3999 return 1000;
4000
b413068c 4001 return targetm.address_cost (x, mode, as, speed);
f894b69b
PB
4002}
4003
4004/* If the target doesn't override, compute the cost as with arithmetic. */
4005
4006int
b413068c 4007default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
f894b69b 4008{
68f932c4 4009 return rtx_cost (x, MEM, 0, speed);
f894b69b 4010}
2f93eea8
PB
4011\f
4012
4013unsigned HOST_WIDE_INT
fa233e34 4014nonzero_bits (const_rtx x, enum machine_mode mode)
2f93eea8
PB
4015{
4016 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4017}
4018
4019unsigned int
fa233e34 4020num_sign_bit_copies (const_rtx x, enum machine_mode mode)
2f93eea8
PB
4021{
4022 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4023}
4024
4025/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4026 It avoids exponential behavior in nonzero_bits1 when X has
4027 identical subexpressions on the first or the second level. */
4028
4029static unsigned HOST_WIDE_INT
fa233e34 4030cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4031 enum machine_mode known_mode,
4032 unsigned HOST_WIDE_INT known_ret)
4033{
4034 if (x == known_x && mode == known_mode)
4035 return known_ret;
4036
4037 /* Try to find identical subexpressions. If found call
4038 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4039 precomputed value for the subexpression as KNOWN_RET. */
4040
4041 if (ARITHMETIC_P (x))
4042 {
4043 rtx x0 = XEXP (x, 0);
4044 rtx x1 = XEXP (x, 1);
4045
4046 /* Check the first level. */
4047 if (x0 == x1)
4048 return nonzero_bits1 (x, mode, x0, mode,
4049 cached_nonzero_bits (x0, mode, known_x,
4050 known_mode, known_ret));
4051
4052 /* Check the second level. */
4053 if (ARITHMETIC_P (x0)
4054 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4055 return nonzero_bits1 (x, mode, x1, mode,
4056 cached_nonzero_bits (x1, mode, known_x,
4057 known_mode, known_ret));
4058
4059 if (ARITHMETIC_P (x1)
4060 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4061 return nonzero_bits1 (x, mode, x0, mode,
4062 cached_nonzero_bits (x0, mode, known_x,
4063 known_mode, known_ret));
4064 }
4065
4066 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4067}
4068
4069/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4070 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4071 is less useful. We can't allow both, because that results in exponential
4072 run time recursion. There is a nullstone testcase that triggered
4073 this. This macro avoids accidental uses of num_sign_bit_copies. */
4074#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4075
4076/* Given an expression, X, compute which bits in X can be nonzero.
4077 We don't care about bits outside of those defined in MODE.
4078
4079 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4080 an arithmetic operation, we can do better. */
4081
4082static unsigned HOST_WIDE_INT
fa233e34 4083nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4084 enum machine_mode known_mode,
4085 unsigned HOST_WIDE_INT known_ret)
4086{
4087 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4088 unsigned HOST_WIDE_INT inner_nz;
4089 enum rtx_code code;
2d0c270f 4090 enum machine_mode inner_mode;
5511bc5a 4091 unsigned int mode_width = GET_MODE_PRECISION (mode);
2f93eea8 4092
ff596cd2
RL
4093 /* For floating-point and vector values, assume all bits are needed. */
4094 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4095 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4096 return nonzero;
4097
4098 /* If X is wider than MODE, use its mode instead. */
5511bc5a 4099 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
2f93eea8
PB
4100 {
4101 mode = GET_MODE (x);
4102 nonzero = GET_MODE_MASK (mode);
5511bc5a 4103 mode_width = GET_MODE_PRECISION (mode);
2f93eea8
PB
4104 }
4105
4106 if (mode_width > HOST_BITS_PER_WIDE_INT)
4107 /* Our only callers in this case look for single bit values. So
4108 just return the mode mask. Those tests will then be false. */
4109 return nonzero;
4110
4111#ifndef WORD_REGISTER_OPERATIONS
4112 /* If MODE is wider than X, but both are a single word for both the host
4113 and target machines, we can compute this from which bits of the
4114 object might be nonzero in its own mode, taking into account the fact
4115 that on many CISC machines, accessing an object in a wider mode
4116 causes the high-order bits to become undefined. So they are
4117 not known to be zero. */
4118
4119 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
5511bc5a
BS
4120 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4121 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4122 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4123 {
4124 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4125 known_x, known_mode, known_ret);
4126 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4127 return nonzero;
4128 }
4129#endif
4130
4131 code = GET_CODE (x);
4132 switch (code)
4133 {
4134 case REG:
4135#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4136 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4137 all the bits above ptr_mode are known to be zero. */
5932a4d4 4138 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4139 we can do this only if the target does not support different pointer
4140 or address modes depending on the address space. */
4141 if (target_default_pointer_address_modes_p ()
4142 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2f93eea8
PB
4143 && REG_POINTER (x))
4144 nonzero &= GET_MODE_MASK (ptr_mode);
4145#endif
4146
4147 /* Include declared information about alignment of pointers. */
4148 /* ??? We don't properly preserve REG_POINTER changes across
4149 pointer-to-integer casts, so we can't trust it except for
4150 things that we know must be pointers. See execute/960116-1.c. */
4151 if ((x == stack_pointer_rtx
4152 || x == frame_pointer_rtx
4153 || x == arg_pointer_rtx)
4154 && REGNO_POINTER_ALIGN (REGNO (x)))
4155 {
4156 unsigned HOST_WIDE_INT alignment
4157 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4158
4159#ifdef PUSH_ROUNDING
4160 /* If PUSH_ROUNDING is defined, it is possible for the
4161 stack to be momentarily aligned only to that amount,
4162 so we pick the least alignment. */
4163 if (x == stack_pointer_rtx && PUSH_ARGS)
4164 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4165 alignment);
4166#endif
4167
4168 nonzero &= ~(alignment - 1);
4169 }
4170
4171 {
4172 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
55d796da 4173 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
2f93eea8
PB
4174 known_mode, known_ret,
4175 &nonzero_for_hook);
4176
55d796da
KG
4177 if (new_rtx)
4178 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
2f93eea8
PB
4179 known_mode, known_ret);
4180
4181 return nonzero_for_hook;
4182 }
4183
4184 case CONST_INT:
4185#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4186 /* If X is negative in MODE, sign-extend the value. */
c04fc4f0
EB
4187 if (INTVAL (x) > 0
4188 && mode_width < BITS_PER_WORD
4189 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4190 != 0)
0cadbfaa 4191 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
2f93eea8
PB
4192#endif
4193
c04fc4f0 4194 return UINTVAL (x);
2f93eea8
PB
4195
4196 case MEM:
4197#ifdef LOAD_EXTEND_OP
4198 /* In many, if not most, RISC machines, reading a byte from memory
4199 zeros the rest of the register. Noticing that fact saves a lot
4200 of extra zero-extends. */
4201 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4202 nonzero &= GET_MODE_MASK (GET_MODE (x));
4203#endif
4204 break;
4205
4206 case EQ: case NE:
4207 case UNEQ: case LTGT:
4208 case GT: case GTU: case UNGT:
4209 case LT: case LTU: case UNLT:
4210 case GE: case GEU: case UNGE:
4211 case LE: case LEU: case UNLE:
4212 case UNORDERED: case ORDERED:
2f93eea8
PB
4213 /* If this produces an integer result, we know which bits are set.
4214 Code here used to clear bits outside the mode of X, but that is
4215 now done above. */
b8698a0f
L
4216 /* Mind that MODE is the mode the caller wants to look at this
4217 operation in, and not the actual operation mode. We can wind
505ac507
RH
4218 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4219 that describes the results of a vector compare. */
4220 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
2f93eea8
PB
4221 && mode_width <= HOST_BITS_PER_WIDE_INT)
4222 nonzero = STORE_FLAG_VALUE;
4223 break;
4224
4225 case NEG:
4226#if 0
4227 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4228 and num_sign_bit_copies. */
4229 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4230 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4231 nonzero = 1;
4232#endif
4233
86cdf393 4234 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
2f93eea8
PB
4235 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4236 break;
4237
4238 case ABS:
4239#if 0
4240 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4241 and num_sign_bit_copies. */
4242 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5511bc5a 4243 == GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4244 nonzero = 1;
4245#endif
4246 break;
4247
4248 case TRUNCATE:
4249 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4250 known_x, known_mode, known_ret)
4251 & GET_MODE_MASK (mode));
4252 break;
4253
4254 case ZERO_EXTEND:
4255 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4256 known_x, known_mode, known_ret);
4257 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4258 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4259 break;
4260
4261 case SIGN_EXTEND:
4262 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4263 Otherwise, show all the bits in the outer mode but not the inner
4264 may be nonzero. */
4265 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4266 known_x, known_mode, known_ret);
4267 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4268 {
4269 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
2d0c270f 4270 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
2f93eea8
PB
4271 inner_nz |= (GET_MODE_MASK (mode)
4272 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4273 }
4274
4275 nonzero &= inner_nz;
4276 break;
4277
4278 case AND:
4279 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4280 known_x, known_mode, known_ret)
4281 & cached_nonzero_bits (XEXP (x, 1), mode,
4282 known_x, known_mode, known_ret);
4283 break;
4284
4285 case XOR: case IOR:
4286 case UMIN: case UMAX: case SMIN: case SMAX:
4287 {
c04fc4f0
EB
4288 unsigned HOST_WIDE_INT nonzero0
4289 = cached_nonzero_bits (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
2f93eea8
PB
4291
4292 /* Don't call nonzero_bits for the second time if it cannot change
4293 anything. */
4294 if ((nonzero & nonzero0) != nonzero)
4295 nonzero &= nonzero0
4296 | cached_nonzero_bits (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4298 }
4299 break;
4300
4301 case PLUS: case MINUS:
4302 case MULT:
4303 case DIV: case UDIV:
4304 case MOD: case UMOD:
4305 /* We can apply the rules of arithmetic to compute the number of
4306 high- and low-order zero bits of these operations. We start by
4307 computing the width (position of the highest-order nonzero bit)
4308 and the number of low-order zero bits for each value. */
4309 {
c04fc4f0
EB
4310 unsigned HOST_WIDE_INT nz0
4311 = cached_nonzero_bits (XEXP (x, 0), mode,
4312 known_x, known_mode, known_ret);
4313 unsigned HOST_WIDE_INT nz1
4314 = cached_nonzero_bits (XEXP (x, 1), mode,
4315 known_x, known_mode, known_ret);
5511bc5a 4316 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
2f93eea8
PB
4317 int width0 = floor_log2 (nz0) + 1;
4318 int width1 = floor_log2 (nz1) + 1;
4319 int low0 = floor_log2 (nz0 & -nz0);
4320 int low1 = floor_log2 (nz1 & -nz1);
c04fc4f0
EB
4321 unsigned HOST_WIDE_INT op0_maybe_minusp
4322 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4323 unsigned HOST_WIDE_INT op1_maybe_minusp
4324 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
2f93eea8
PB
4325 unsigned int result_width = mode_width;
4326 int result_low = 0;
4327
4328 switch (code)
4329 {
4330 case PLUS:
4331 result_width = MAX (width0, width1) + 1;
4332 result_low = MIN (low0, low1);
4333 break;
4334 case MINUS:
4335 result_low = MIN (low0, low1);
4336 break;
4337 case MULT:
4338 result_width = width0 + width1;
4339 result_low = low0 + low1;
4340 break;
4341 case DIV:
4342 if (width1 == 0)
4343 break;
c04fc4f0 4344 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4345 result_width = width0;
4346 break;
4347 case UDIV:
4348 if (width1 == 0)
4349 break;
4350 result_width = width0;
4351 break;
4352 case MOD:
4353 if (width1 == 0)
4354 break;
c04fc4f0 4355 if (!op0_maybe_minusp && !op1_maybe_minusp)
2f93eea8
PB
4356 result_width = MIN (width0, width1);
4357 result_low = MIN (low0, low1);
4358 break;
4359 case UMOD:
4360 if (width1 == 0)
4361 break;
4362 result_width = MIN (width0, width1);
4363 result_low = MIN (low0, low1);
4364 break;
4365 default:
41374e13 4366 gcc_unreachable ();
2f93eea8
PB
4367 }
4368
4369 if (result_width < mode_width)
c04fc4f0 4370 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
2f93eea8
PB
4371
4372 if (result_low > 0)
c04fc4f0 4373 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
2f93eea8
PB
4374 }
4375 break;
4376
4377 case ZERO_EXTRACT:
481683e1 4378 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4379 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
c04fc4f0 4380 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
2f93eea8
PB
4381 break;
4382
4383 case SUBREG:
4384 /* If this is a SUBREG formed for a promoted variable that has
4385 been zero-extended, we know that at least the high-order bits
4386 are zero, though others might be too. */
4387
362d42dc 4388 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
2f93eea8
PB
4389 nonzero = GET_MODE_MASK (GET_MODE (x))
4390 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4391 known_x, known_mode, known_ret);
4392
2d0c270f 4393 inner_mode = GET_MODE (SUBREG_REG (x));
2f93eea8
PB
4394 /* If the inner mode is a single word for both the host and target
4395 machines, we can compute this from which bits of the inner
4396 object might be nonzero. */
5511bc5a
BS
4397 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4398 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
2f93eea8
PB
4399 {
4400 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4401 known_x, known_mode, known_ret);
4402
4403#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4404 /* If this is a typical RISC machine, we only have to worry
4405 about the way loads are extended. */
2d0c270f
BS
4406 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4407 ? val_signbit_known_set_p (inner_mode, nonzero)
4408 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
3c0cb5de 4409 || !MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4410#endif
4411 {
4412 /* On many CISC machines, accessing an object in a wider mode
4413 causes the high-order bits to become undefined. So they are
4414 not known to be zero. */
5511bc5a
BS
4415 if (GET_MODE_PRECISION (GET_MODE (x))
4416 > GET_MODE_PRECISION (inner_mode))
2f93eea8 4417 nonzero |= (GET_MODE_MASK (GET_MODE (x))
2d0c270f 4418 & ~GET_MODE_MASK (inner_mode));
2f93eea8
PB
4419 }
4420 }
4421 break;
4422
4423 case ASHIFTRT:
4424 case LSHIFTRT:
4425 case ASHIFT:
4426 case ROTATE:
4427 /* The nonzero bits are in two classes: any bits within MODE
4428 that aren't in GET_MODE (x) are always significant. The rest of the
4429 nonzero bits are those that are significant in the operand of
4430 the shift when shifted the appropriate number of bits. This
4431 shows that high-order bits are cleared by the right shift and
4432 low-order bits by left shifts. */
481683e1 4433 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4434 && INTVAL (XEXP (x, 1)) >= 0
39b2ac74 4435 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5511bc5a 4436 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4437 {
4438 enum machine_mode inner_mode = GET_MODE (x);
5511bc5a 4439 unsigned int width = GET_MODE_PRECISION (inner_mode);
2f93eea8
PB
4440 int count = INTVAL (XEXP (x, 1));
4441 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
c04fc4f0
EB
4442 unsigned HOST_WIDE_INT op_nonzero
4443 = cached_nonzero_bits (XEXP (x, 0), mode,
4444 known_x, known_mode, known_ret);
2f93eea8
PB
4445 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4446 unsigned HOST_WIDE_INT outer = 0;
4447
4448 if (mode_width > width)
4449 outer = (op_nonzero & nonzero & ~mode_mask);
4450
4451 if (code == LSHIFTRT)
4452 inner >>= count;
4453 else if (code == ASHIFTRT)
4454 {
4455 inner >>= count;
4456
4457 /* If the sign bit may have been nonzero before the shift, we
4458 need to mark all the places it could have been copied to
4459 by the shift as possibly nonzero. */
c04fc4f0
EB
4460 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4461 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4462 << (width - count);
2f93eea8
PB
4463 }
4464 else if (code == ASHIFT)
4465 inner <<= count;
4466 else
4467 inner = ((inner << (count % width)
4468 | (inner >> (width - (count % width)))) & mode_mask);
4469
4470 nonzero &= (outer | inner);
4471 }
4472 break;
4473
4474 case FFS:
4475 case POPCOUNT:
4476 /* This is at most the number of bits in the mode. */
c04fc4f0 4477 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4478 break;
4479
4480 case CLZ:
4481 /* If CLZ has a known value at zero, then the nonzero bits are
4482 that value, plus the number of bits in the mode minus one. */
4483 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4484 nonzero
4485 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4486 else
4487 nonzero = -1;
4488 break;
4489
4490 case CTZ:
4491 /* If CTZ has a known value at zero, then the nonzero bits are
4492 that value, plus the number of bits in the mode minus one. */
4493 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
c04fc4f0
EB
4494 nonzero
4495 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
2f93eea8
PB
4496 else
4497 nonzero = -1;
4498 break;
4499
8840ae2b
JJ
4500 case CLRSB:
4501 /* This is at most the number of bits in the mode minus 1. */
4502 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4503 break;
4504
2f93eea8
PB
4505 case PARITY:
4506 nonzero = 1;
4507 break;
4508
4509 case IF_THEN_ELSE:
4510 {
c04fc4f0
EB
4511 unsigned HOST_WIDE_INT nonzero_true
4512 = cached_nonzero_bits (XEXP (x, 1), mode,
4513 known_x, known_mode, known_ret);
2f93eea8
PB
4514
4515 /* Don't call nonzero_bits for the second time if it cannot change
4516 anything. */
4517 if ((nonzero & nonzero_true) != nonzero)
4518 nonzero &= nonzero_true
4519 | cached_nonzero_bits (XEXP (x, 2), mode,
4520 known_x, known_mode, known_ret);
4521 }
4522 break;
4523
4524 default:
4525 break;
4526 }
4527
4528 return nonzero;
4529}
4530
4531/* See the macro definition above. */
4532#undef cached_num_sign_bit_copies
4533
4534\f
4535/* The function cached_num_sign_bit_copies is a wrapper around
4536 num_sign_bit_copies1. It avoids exponential behavior in
4537 num_sign_bit_copies1 when X has identical subexpressions on the
4538 first or the second level. */
4539
4540static unsigned int
fa233e34 4541cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4542 enum machine_mode known_mode,
4543 unsigned int known_ret)
4544{
4545 if (x == known_x && mode == known_mode)
4546 return known_ret;
4547
4548 /* Try to find identical subexpressions. If found call
4549 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4550 the precomputed value for the subexpression as KNOWN_RET. */
4551
4552 if (ARITHMETIC_P (x))
4553 {
4554 rtx x0 = XEXP (x, 0);
4555 rtx x1 = XEXP (x, 1);
4556
4557 /* Check the first level. */
4558 if (x0 == x1)
4559 return
4560 num_sign_bit_copies1 (x, mode, x0, mode,
4561 cached_num_sign_bit_copies (x0, mode, known_x,
4562 known_mode,
4563 known_ret));
4564
4565 /* Check the second level. */
4566 if (ARITHMETIC_P (x0)
4567 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4568 return
4569 num_sign_bit_copies1 (x, mode, x1, mode,
4570 cached_num_sign_bit_copies (x1, mode, known_x,
4571 known_mode,
4572 known_ret));
4573
4574 if (ARITHMETIC_P (x1)
4575 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4576 return
4577 num_sign_bit_copies1 (x, mode, x0, mode,
4578 cached_num_sign_bit_copies (x0, mode, known_x,
4579 known_mode,
4580 known_ret));
4581 }
4582
4583 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4584}
4585
4586/* Return the number of bits at the high-order end of X that are known to
4587 be equal to the sign bit. X will be used in mode MODE; if MODE is
4588 VOIDmode, X will be used in its own mode. The returned value will always
4589 be between 1 and the number of bits in MODE. */
4590
4591static unsigned int
fa233e34 4592num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4593 enum machine_mode known_mode,
4594 unsigned int known_ret)
4595{
4596 enum rtx_code code = GET_CODE (x);
5511bc5a 4597 unsigned int bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
4598 int num0, num1, result;
4599 unsigned HOST_WIDE_INT nonzero;
4600
4601 /* If we weren't given a mode, use the mode of X. If the mode is still
4602 VOIDmode, we don't know anything. Likewise if one of the modes is
4603 floating-point. */
4604
4605 if (mode == VOIDmode)
4606 mode = GET_MODE (x);
4607
ff596cd2
RL
4608 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4609 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4610 return 1;
4611
4612 /* For a smaller object, just ignore the high bits. */
5511bc5a 4613 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4614 {
4615 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4616 known_x, known_mode, known_ret);
4617 return MAX (1,
5511bc5a 4618 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
2f93eea8
PB
4619 }
4620
5511bc5a 4621 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4622 {
4623#ifndef WORD_REGISTER_OPERATIONS
5511bc5a
BS
4624 /* If this machine does not do all register operations on the entire
4625 register and MODE is wider than the mode of X, we can say nothing
4626 at all about the high-order bits. */
2f93eea8
PB
4627 return 1;
4628#else
4629 /* Likewise on machines that do, if the mode of the object is smaller
4630 than a word and loads of that size don't sign extend, we can say
4631 nothing about the high order bits. */
5511bc5a 4632 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
2f93eea8
PB
4633#ifdef LOAD_EXTEND_OP
4634 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4635#endif
4636 )
4637 return 1;
4638#endif
4639 }
4640
4641 switch (code)
4642 {
4643 case REG:
4644
4645#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4646 /* If pointers extend signed and this is a pointer in Pmode, say that
4647 all the bits above ptr_mode are known to be sign bit copies. */
5932a4d4 4648 /* As we do not know which address space the pointer is referring to,
d4ebfa65
BE
4649 we can do this only if the target does not support different pointer
4650 or address modes depending on the address space. */
4651 if (target_default_pointer_address_modes_p ()
4652 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4653 && mode == Pmode && REG_POINTER (x))
5511bc5a 4654 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
2f93eea8
PB
4655#endif
4656
4657 {
4658 unsigned int copies_for_hook = 1, copies = 1;
55d796da 4659 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
2f93eea8
PB
4660 known_mode, known_ret,
4661 &copies_for_hook);
4662
55d796da
KG
4663 if (new_rtx)
4664 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
2f93eea8
PB
4665 known_mode, known_ret);
4666
4667 if (copies > 1 || copies_for_hook > 1)
4668 return MAX (copies, copies_for_hook);
4669
4670 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4671 }
4672 break;
4673
4674 case MEM:
4675#ifdef LOAD_EXTEND_OP
4676 /* Some RISC machines sign-extend all loads of smaller than a word. */
4677 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4678 return MAX (1, ((int) bitwidth
5511bc5a 4679 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
2f93eea8
PB
4680#endif
4681 break;
4682
4683 case CONST_INT:
4684 /* If the constant is negative, take its 1's complement and remask.
4685 Then see how many zero bits we have. */
c04fc4f0 4686 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
2f93eea8 4687 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 4688 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
4689 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4690
4691 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4692
4693 case SUBREG:
4694 /* If this is a SUBREG for a promoted object that is sign-extended
4695 and we are looking at it in a wider mode, we know that at least the
4696 high-order bits are known to be sign bit copies. */
4697
362d42dc 4698 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
2f93eea8
PB
4699 {
4700 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4701 known_x, known_mode, known_ret);
4702 return MAX ((int) bitwidth
5511bc5a 4703 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
2f93eea8
PB
4704 num0);
4705 }
4706
4707 /* For a smaller object, just ignore the high bits. */
5511bc5a 4708 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
2f93eea8
PB
4709 {
4710 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4711 known_x, known_mode, known_ret);
4712 return MAX (1, (num0
5511bc5a 4713 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
2f93eea8
PB
4714 - bitwidth)));
4715 }
4716
4717#ifdef WORD_REGISTER_OPERATIONS
4718#ifdef LOAD_EXTEND_OP
4719 /* For paradoxical SUBREGs on machines where all register operations
4720 affect the entire register, just look inside. Note that we are
4721 passing MODE to the recursive call, so the number of sign bit copies
4722 will remain relative to that mode, not the inner mode. */
4723
4724 /* This works only if loads sign extend. Otherwise, if we get a
4725 reload for the inner part, it may be loaded from the stack, and
4726 then we lose all sign bit copies that existed before the store
4727 to the stack. */
4728
6a4bdc79 4729 if (paradoxical_subreg_p (x)
2f93eea8 4730 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3c0cb5de 4731 && MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4732 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4733 known_x, known_mode, known_ret);
4734#endif
4735#endif
4736 break;
4737
4738 case SIGN_EXTRACT:
481683e1 4739 if (CONST_INT_P (XEXP (x, 1)))
2f93eea8
PB
4740 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4741 break;
4742
4743 case SIGN_EXTEND:
5511bc5a 4744 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4745 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4746 known_x, known_mode, known_ret));
4747
4748 case TRUNCATE:
4749 /* For a smaller object, just ignore the high bits. */
4750 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4751 known_x, known_mode, known_ret);
5511bc5a 4752 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
2f93eea8
PB
4753 - bitwidth)));
4754
4755 case NOT:
4756 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4757 known_x, known_mode, known_ret);
4758
4759 case ROTATE: case ROTATERT:
4760 /* If we are rotating left by a number of bits less than the number
4761 of sign bit copies, we can just subtract that amount from the
4762 number. */
481683e1 4763 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4764 && INTVAL (XEXP (x, 1)) >= 0
4765 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4766 {
4767 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4768 known_x, known_mode, known_ret);
4769 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4770 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4771 }
4772 break;
4773
4774 case NEG:
4775 /* In general, this subtracts one sign bit copy. But if the value
4776 is known to be positive, the number of sign bit copies is the
4777 same as that of the input. Finally, if the input has just one bit
4778 that might be nonzero, all the bits are copies of the sign bit. */
4779 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4780 known_x, known_mode, known_ret);
4781 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4782 return num0 > 1 ? num0 - 1 : 1;
4783
4784 nonzero = nonzero_bits (XEXP (x, 0), mode);
4785 if (nonzero == 1)
4786 return bitwidth;
4787
4788 if (num0 > 1
c04fc4f0 4789 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
2f93eea8
PB
4790 num0--;
4791
4792 return num0;
4793
4794 case IOR: case AND: case XOR:
4795 case SMIN: case SMAX: case UMIN: case UMAX:
4796 /* Logical operations will preserve the number of sign-bit copies.
4797 MIN and MAX operations always return one of the operands. */
4798 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4799 known_x, known_mode, known_ret);
4800 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4801 known_x, known_mode, known_ret);
22761ec3
AN
4802
4803 /* If num1 is clearing some of the top bits then regardless of
4804 the other term, we are guaranteed to have at least that many
4805 high-order zero bits. */
4806 if (code == AND
4807 && num1 > 1
4808 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4809 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4810 && (UINTVAL (XEXP (x, 1))
4811 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
22761ec3
AN
4812 return num1;
4813
4814 /* Similarly for IOR when setting high-order bits. */
4815 if (code == IOR
4816 && num1 > 1
4817 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4818 && CONST_INT_P (XEXP (x, 1))
c04fc4f0
EB
4819 && (UINTVAL (XEXP (x, 1))
4820 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
22761ec3
AN
4821 return num1;
4822
2f93eea8
PB
4823 return MIN (num0, num1);
4824
4825 case PLUS: case MINUS:
4826 /* For addition and subtraction, we can have a 1-bit carry. However,
4827 if we are subtracting 1 from a positive number, there will not
4828 be such a carry. Furthermore, if the positive number is known to
4829 be 0 or 1, we know the result is either -1 or 0. */
4830
4831 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4832 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4833 {
4834 nonzero = nonzero_bits (XEXP (x, 0), mode);
c04fc4f0 4835 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
2f93eea8
PB
4836 return (nonzero == 1 || nonzero == 0 ? bitwidth
4837 : bitwidth - floor_log2 (nonzero) - 1);
4838 }
4839
4840 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4841 known_x, known_mode, known_ret);
4842 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4843 known_x, known_mode, known_ret);
4844 result = MAX (1, MIN (num0, num1) - 1);
4845
2f93eea8
PB
4846 return result;
4847
4848 case MULT:
4849 /* The number of bits of the product is the sum of the number of
4850 bits of both terms. However, unless one of the terms if known
4851 to be positive, we must allow for an additional bit since negating
4852 a negative number can remove one sign bit copy. */
4853
4854 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4855 known_x, known_mode, known_ret);
4856 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4857 known_x, known_mode, known_ret);
4858
4859 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4860 if (result > 0
4861 && (bitwidth > HOST_BITS_PER_WIDE_INT
4862 || (((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 4863 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8 4864 && ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0
EB
4865 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4866 != 0))))
2f93eea8
PB
4867 result--;
4868
4869 return MAX (1, result);
4870
4871 case UDIV:
4872 /* The result must be <= the first operand. If the first operand
4873 has the high bit set, we know nothing about the number of sign
4874 bit copies. */
4875 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4876 return 1;
4877 else if ((nonzero_bits (XEXP (x, 0), mode)
c04fc4f0 4878 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
4879 return 1;
4880 else
4881 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4882 known_x, known_mode, known_ret);
4883
4884 case UMOD:
24d179b4
JJ
4885 /* The result must be <= the second operand. If the second operand
4886 has (or just might have) the high bit set, we know nothing about
4887 the number of sign bit copies. */
4888 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4889 return 1;
4890 else if ((nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 4891 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
24d179b4
JJ
4892 return 1;
4893 else
4894 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
2f93eea8
PB
4895 known_x, known_mode, known_ret);
4896
4897 case DIV:
4898 /* Similar to unsigned division, except that we have to worry about
4899 the case where the divisor is negative, in which case we have
4900 to add 1. */
4901 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4902 known_x, known_mode, known_ret);
4903 if (result > 1
4904 && (bitwidth > HOST_BITS_PER_WIDE_INT
4905 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 4906 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
4907 result--;
4908
4909 return result;
4910
4911 case MOD:
4912 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4913 known_x, known_mode, known_ret);
4914 if (result > 1
4915 && (bitwidth > HOST_BITS_PER_WIDE_INT
4916 || (nonzero_bits (XEXP (x, 1), mode)
c04fc4f0 4917 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
2f93eea8
PB
4918 result--;
4919
4920 return result;
4921
4922 case ASHIFTRT:
4923 /* Shifts by a constant add to the number of bits equal to the
4924 sign bit. */
4925 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4926 known_x, known_mode, known_ret);
481683e1 4927 if (CONST_INT_P (XEXP (x, 1))
39b2ac74 4928 && INTVAL (XEXP (x, 1)) > 0
5511bc5a 4929 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4930 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4931
4932 return num0;
4933
4934 case ASHIFT:
4935 /* Left shifts destroy copies. */
481683e1 4936 if (!CONST_INT_P (XEXP (x, 1))
2f93eea8 4937 || INTVAL (XEXP (x, 1)) < 0
39b2ac74 4938 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5511bc5a 4939 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
2f93eea8
PB
4940 return 1;
4941
4942 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4943 known_x, known_mode, known_ret);
4944 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4945
4946 case IF_THEN_ELSE:
4947 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4948 known_x, known_mode, known_ret);
4949 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4950 known_x, known_mode, known_ret);
4951 return MIN (num0, num1);
4952
4953 case EQ: case NE: case GE: case GT: case LE: case LT:
4954 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4955 case GEU: case GTU: case LEU: case LTU:
4956 case UNORDERED: case ORDERED:
4957 /* If the constant is negative, take its 1's complement and remask.
4958 Then see how many zero bits we have. */
4959 nonzero = STORE_FLAG_VALUE;
4960 if (bitwidth <= HOST_BITS_PER_WIDE_INT
c04fc4f0 4961 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
2f93eea8
PB
4962 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4963
4964 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4965
4966 default:
4967 break;
4968 }
4969
4970 /* If we haven't been able to figure it out by one of the above rules,
4971 see if some of the high-order bits are known to be zero. If so,
4972 count those bits and return one less than that amount. If we can't
4973 safely compute the mask for this mode, always return BITWIDTH. */
4974
5511bc5a 4975 bitwidth = GET_MODE_PRECISION (mode);
2f93eea8
PB
4976 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4977 return 1;
4978
4979 nonzero = nonzero_bits (x, mode);
c04fc4f0 4980 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
2f93eea8
PB
4981 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4982}
6fd21094
RS
4983
4984/* Calculate the rtx_cost of a single instruction. A return value of
4985 zero indicates an instruction pattern without a known cost. */
4986
4987int
f40751dd 4988insn_rtx_cost (rtx pat, bool speed)
6fd21094
RS
4989{
4990 int i, cost;
4991 rtx set;
4992
4993 /* Extract the single set rtx from the instruction pattern.
4994 We can't use single_set since we only have the pattern. */
4995 if (GET_CODE (pat) == SET)
4996 set = pat;
4997 else if (GET_CODE (pat) == PARALLEL)
4998 {
4999 set = NULL_RTX;
5000 for (i = 0; i < XVECLEN (pat, 0); i++)
5001 {
5002 rtx x = XVECEXP (pat, 0, i);
5003 if (GET_CODE (x) == SET)
5004 {
5005 if (set)
5006 return 0;
5007 set = x;
5008 }
5009 }
5010 if (!set)
5011 return 0;
5012 }
5013 else
5014 return 0;
5015
5e8f01f4 5016 cost = set_src_cost (SET_SRC (set), speed);
6fd21094
RS
5017 return cost > 0 ? cost : COSTS_N_INSNS (1);
5018}
75473b02
SB
5019
5020/* Given an insn INSN and condition COND, return the condition in a
5021 canonical form to simplify testing by callers. Specifically:
5022
5023 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5024 (2) Both operands will be machine operands; (cc0) will have been replaced.
5025 (3) If an operand is a constant, it will be the second operand.
5026 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5027 for GE, GEU, and LEU.
5028
5029 If the condition cannot be understood, or is an inequality floating-point
5030 comparison which needs to be reversed, 0 will be returned.
5031
5032 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5033
5034 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5035 insn used in locating the condition was found. If a replacement test
5036 of the condition is desired, it should be placed in front of that
5037 insn and we will be sure that the inputs are still valid.
5038
5039 If WANT_REG is nonzero, we wish the condition to be relative to that
5040 register, if possible. Therefore, do not canonicalize the condition
b8698a0f 5041 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
75473b02
SB
5042 to be a compare to a CC mode register.
5043
5044 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5045 and at INSN. */
5046
5047rtx
61aa0978
DM
5048canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5049 rtx_insn **earliest,
75473b02
SB
5050 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5051{
5052 enum rtx_code code;
61aa0978 5053 rtx_insn *prev = insn;
f7d504c2 5054 const_rtx set;
75473b02
SB
5055 rtx tem;
5056 rtx op0, op1;
5057 int reverse_code = 0;
5058 enum machine_mode mode;
569f8d98 5059 basic_block bb = BLOCK_FOR_INSN (insn);
75473b02
SB
5060
5061 code = GET_CODE (cond);
5062 mode = GET_MODE (cond);
5063 op0 = XEXP (cond, 0);
5064 op1 = XEXP (cond, 1);
5065
5066 if (reverse)
5067 code = reversed_comparison_code (cond, insn);
5068 if (code == UNKNOWN)
5069 return 0;
5070
5071 if (earliest)
5072 *earliest = insn;
5073
5074 /* If we are comparing a register with zero, see if the register is set
5075 in the previous insn to a COMPARE or a comparison operation. Perform
5076 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5077 in cse.c */
5078
5079 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5080 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5081 && op1 == CONST0_RTX (GET_MODE (op0))
5082 && op0 != want_reg)
5083 {
5084 /* Set nonzero when we find something of interest. */
5085 rtx x = 0;
5086
5087#ifdef HAVE_cc0
5088 /* If comparison with cc0, import actual comparison from compare
5089 insn. */
5090 if (op0 == cc0_rtx)
5091 {
5092 if ((prev = prev_nonnote_insn (prev)) == 0
5093 || !NONJUMP_INSN_P (prev)
5094 || (set = single_set (prev)) == 0
5095 || SET_DEST (set) != cc0_rtx)
5096 return 0;
5097
5098 op0 = SET_SRC (set);
5099 op1 = CONST0_RTX (GET_MODE (op0));
5100 if (earliest)
5101 *earliest = prev;
5102 }
5103#endif
5104
5105 /* If this is a COMPARE, pick up the two things being compared. */
5106 if (GET_CODE (op0) == COMPARE)
5107 {
5108 op1 = XEXP (op0, 1);
5109 op0 = XEXP (op0, 0);
5110 continue;
5111 }
5112 else if (!REG_P (op0))
5113 break;
5114
5115 /* Go back to the previous insn. Stop if it is not an INSN. We also
5116 stop if it isn't a single set or if it has a REG_INC note because
5117 we don't want to bother dealing with it. */
5118
f0fc0803 5119 prev = prev_nonnote_nondebug_insn (prev);
b5b8b0ac
AO
5120
5121 if (prev == 0
75473b02 5122 || !NONJUMP_INSN_P (prev)
569f8d98
ZD
5123 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5124 /* In cfglayout mode, there do not have to be labels at the
5125 beginning of a block, or jumps at the end, so the previous
5126 conditions would not stop us when we reach bb boundary. */
5127 || BLOCK_FOR_INSN (prev) != bb)
75473b02
SB
5128 break;
5129
5130 set = set_of (op0, prev);
5131
5132 if (set
5133 && (GET_CODE (set) != SET
5134 || !rtx_equal_p (SET_DEST (set), op0)))
5135 break;
5136
5137 /* If this is setting OP0, get what it sets it to if it looks
5138 relevant. */
5139 if (set)
5140 {
5141 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5142#ifdef FLOAT_STORE_FLAG_VALUE
5143 REAL_VALUE_TYPE fsfv;
5144#endif
5145
5146 /* ??? We may not combine comparisons done in a CCmode with
5147 comparisons not done in a CCmode. This is to aid targets
5148 like Alpha that have an IEEE compliant EQ instruction, and
5149 a non-IEEE compliant BEQ instruction. The use of CCmode is
5150 actually artificial, simply to prevent the combination, but
5151 should not affect other platforms.
5152
5153 However, we must allow VOIDmode comparisons to match either
5154 CCmode or non-CCmode comparison, because some ports have
5155 modeless comparisons inside branch patterns.
5156
5157 ??? This mode check should perhaps look more like the mode check
5158 in simplify_comparison in combine. */
2c8798a2
RS
5159 if (((GET_MODE_CLASS (mode) == MODE_CC)
5160 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5161 && mode != VOIDmode
5162 && inner_mode != VOIDmode)
5163 break;
5164 if (GET_CODE (SET_SRC (set)) == COMPARE
5165 || (((code == NE
5166 || (code == LT
5167 && val_signbit_known_set_p (inner_mode,
5168 STORE_FLAG_VALUE))
75473b02 5169#ifdef FLOAT_STORE_FLAG_VALUE
2c8798a2
RS
5170 || (code == LT
5171 && SCALAR_FLOAT_MODE_P (inner_mode)
5172 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5173 REAL_VALUE_NEGATIVE (fsfv)))
75473b02 5174#endif
2c8798a2
RS
5175 ))
5176 && COMPARISON_P (SET_SRC (set))))
75473b02
SB
5177 x = SET_SRC (set);
5178 else if (((code == EQ
5179 || (code == GE
2d0c270f
BS
5180 && val_signbit_known_set_p (inner_mode,
5181 STORE_FLAG_VALUE))
75473b02
SB
5182#ifdef FLOAT_STORE_FLAG_VALUE
5183 || (code == GE
3d8bf70f 5184 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
5185 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5186 REAL_VALUE_NEGATIVE (fsfv)))
5187#endif
5188 ))
2c8798a2 5189 && COMPARISON_P (SET_SRC (set)))
75473b02
SB
5190 {
5191 reverse_code = 1;
5192 x = SET_SRC (set);
5193 }
2c8798a2
RS
5194 else if ((code == EQ || code == NE)
5195 && GET_CODE (SET_SRC (set)) == XOR)
5196 /* Handle sequences like:
5197
5198 (set op0 (xor X Y))
5199 ...(eq|ne op0 (const_int 0))...
5200
5201 in which case:
5202
5203 (eq op0 (const_int 0)) reduces to (eq X Y)
5204 (ne op0 (const_int 0)) reduces to (ne X Y)
5205
5206 This is the form used by MIPS16, for example. */
5207 x = SET_SRC (set);
75473b02
SB
5208 else
5209 break;
5210 }
5211
5212 else if (reg_set_p (op0, prev))
5213 /* If this sets OP0, but not directly, we have to give up. */
5214 break;
5215
5216 if (x)
5217 {
5218 /* If the caller is expecting the condition to be valid at INSN,
5219 make sure X doesn't change before INSN. */
5220 if (valid_at_insn_p)
5221 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5222 break;
5223 if (COMPARISON_P (x))
5224 code = GET_CODE (x);
5225 if (reverse_code)
5226 {
5227 code = reversed_comparison_code (x, prev);
5228 if (code == UNKNOWN)
5229 return 0;
5230 reverse_code = 0;
5231 }
5232
5233 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5234 if (earliest)
5235 *earliest = prev;
5236 }
5237 }
5238
5239 /* If constant is first, put it last. */
5240 if (CONSTANT_P (op0))
5241 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5242
5243 /* If OP0 is the result of a comparison, we weren't able to find what
5244 was really being compared, so fail. */
5245 if (!allow_cc_mode
5246 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5247 return 0;
5248
5249 /* Canonicalize any ordered comparison with integers involving equality
5250 if we can do computations in the relevant mode and we do not
5251 overflow. */
5252
5253 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
481683e1 5254 && CONST_INT_P (op1)
75473b02 5255 && GET_MODE (op0) != VOIDmode
5511bc5a 5256 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
75473b02
SB
5257 {
5258 HOST_WIDE_INT const_val = INTVAL (op1);
5259 unsigned HOST_WIDE_INT uconst_val = const_val;
5260 unsigned HOST_WIDE_INT max_val
5261 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5262
5263 switch (code)
5264 {
5265 case LE:
5266 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5267 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5268 break;
5269
5270 /* When cross-compiling, const_val might be sign-extended from
5271 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5272 case GE:
c04fc4f0
EB
5273 if ((const_val & max_val)
5274 != ((unsigned HOST_WIDE_INT) 1
5511bc5a 5275 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
75473b02
SB
5276 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5277 break;
5278
5279 case LEU:
5280 if (uconst_val < max_val)
5281 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5282 break;
5283
5284 case GEU:
5285 if (uconst_val != 0)
5286 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5287 break;
5288
5289 default:
5290 break;
5291 }
5292 }
5293
5294 /* Never return CC0; return zero instead. */
5295 if (CC0_P (op0))
5296 return 0;
5297
5298 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5299}
5300
5301/* Given a jump insn JUMP, return the condition that will cause it to branch
5302 to its JUMP_LABEL. If the condition cannot be understood, or is an
5303 inequality floating-point comparison which needs to be reversed, 0 will
5304 be returned.
5305
5306 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5307 insn used in locating the condition was found. If a replacement test
5308 of the condition is desired, it should be placed in front of that
5309 insn and we will be sure that the inputs are still valid. If EARLIEST
5310 is null, the returned condition will be valid at INSN.
5311
5312 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5313 compare CC mode register.
5314
5315 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5316
5317rtx
61aa0978
DM
5318get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5319 int valid_at_insn_p)
75473b02
SB
5320{
5321 rtx cond;
5322 int reverse;
5323 rtx set;
5324
5325 /* If this is not a standard conditional jump, we can't parse it. */
5326 if (!JUMP_P (jump)
5327 || ! any_condjump_p (jump))
5328 return 0;
5329 set = pc_set (jump);
5330
5331 cond = XEXP (SET_SRC (set), 0);
5332
5333 /* If this branches to JUMP_LABEL when the condition is false, reverse
5334 the condition. */
5335 reverse
5336 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
a827d9b1 5337 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
75473b02
SB
5338
5339 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5340 allow_cc_mode, valid_at_insn_p);
5341}
5342
b12cbf2c
AN
5343/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5344 TARGET_MODE_REP_EXTENDED.
5345
5346 Note that we assume that the property of
5347 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5348 narrower than mode B. I.e., if A is a mode narrower than B then in
5349 order to be able to operate on it in mode B, mode A needs to
5350 satisfy the requirements set by the representation of mode B. */
5351
5352static void
5353init_num_sign_bit_copies_in_rep (void)
5354{
5355 enum machine_mode mode, in_mode;
5356
5357 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5358 in_mode = GET_MODE_WIDER_MODE (mode))
5359 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5360 mode = GET_MODE_WIDER_MODE (mode))
5361 {
5362 enum machine_mode i;
5363
5364 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5365 extends to the next widest mode. */
5366 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5367 || GET_MODE_WIDER_MODE (mode) == in_mode);
5368
5369 /* We are in in_mode. Count how many bits outside of mode
5370 have to be copies of the sign-bit. */
5371 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5372 {
5373 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5374
5375 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5376 /* We can only check sign-bit copies starting from the
5377 top-bit. In order to be able to check the bits we
5378 have already seen we pretend that subsequent bits
5379 have to be sign-bit copies too. */
5380 || num_sign_bit_copies_in_rep [in_mode][mode])
5381 num_sign_bit_copies_in_rep [in_mode][mode]
5511bc5a 5382 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
b12cbf2c
AN
5383 }
5384 }
5385}
5386
d3b72690
PB
5387/* Suppose that truncation from the machine mode of X to MODE is not a
5388 no-op. See if there is anything special about X so that we can
5389 assume it already contains a truncated value of MODE. */
5390
5391bool
fa233e34 5392truncated_to_mode (enum machine_mode mode, const_rtx x)
d3b72690 5393{
b12cbf2c
AN
5394 /* This register has already been used in MODE without explicit
5395 truncation. */
5396 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5397 return true;
5398
5399 /* See if we already satisfy the requirements of MODE. If yes we
5400 can just switch to MODE. */
5401 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5402 && (num_sign_bit_copies (x, GET_MODE (x))
5403 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5404 return true;
d3b72690 5405
b12cbf2c
AN
5406 return false;
5407}
cf94b0fc 5408\f
476dd0ce
RS
5409/* Return true if RTX code CODE has a single sequence of zero or more
5410 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5411 entry in that case. */
5412
5413static bool
5414setup_reg_subrtx_bounds (unsigned int code)
5415{
5416 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5417 unsigned int i = 0;
5418 for (; format[i] != 'e'; ++i)
5419 {
5420 if (!format[i])
5421 /* No subrtxes. Leave start and count as 0. */
5422 return true;
5423 if (format[i] == 'E' || format[i] == 'V')
5424 return false;
5425 }
5426
5427 /* Record the sequence of 'e's. */
5428 rtx_all_subrtx_bounds[code].start = i;
5429 do
5430 ++i;
5431 while (format[i] == 'e');
5432 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5433 /* rtl-iter.h relies on this. */
5434 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5435
5436 for (; format[i]; ++i)
5437 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5438 return false;
5439
5440 return true;
5441}
5442
cf94b0fc 5443/* Initialize non_rtx_starting_operands, which is used to speed up
476dd0ce 5444 for_each_rtx, and rtx_all_subrtx_bounds. */
cf94b0fc
PB
5445void
5446init_rtlanal (void)
5447{
5448 int i;
5449 for (i = 0; i < NUM_RTX_CODE; i++)
5450 {
5451 const char *format = GET_RTX_FORMAT (i);
5452 const char *first = strpbrk (format, "eEV");
5453 non_rtx_starting_operands[i] = first ? first - format : -1;
476dd0ce
RS
5454 if (!setup_reg_subrtx_bounds (i))
5455 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5456 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5457 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
cf94b0fc 5458 }
b12cbf2c
AN
5459
5460 init_num_sign_bit_copies_in_rep ();
cf94b0fc 5461}
3d8504ac
RS
5462\f
5463/* Check whether this is a constant pool constant. */
5464bool
5465constant_pool_constant_p (rtx x)
5466{
5467 x = avoid_constant_pool_reference (x);
48175537 5468 return CONST_DOUBLE_P (x);
3d8504ac 5469}
842e098c
AN
5470\f
5471/* If M is a bitmask that selects a field of low-order bits within an item but
5472 not the entire word, return the length of the field. Return -1 otherwise.
5473 M is used in machine mode MODE. */
5474
5475int
5476low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5477{
5478 if (mode != VOIDmode)
5479 {
5511bc5a 5480 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
842e098c
AN
5481 return -1;
5482 m &= GET_MODE_MASK (mode);
5483 }
5484
5485 return exact_log2 (m + 1);
5486}
372d6395
RS
5487
5488/* Return the mode of MEM's address. */
5489
5490enum machine_mode
5491get_address_mode (rtx mem)
5492{
5493 enum machine_mode mode;
5494
5495 gcc_assert (MEM_P (mem));
5496 mode = GET_MODE (XEXP (mem, 0));
5497 if (mode != VOIDmode)
5498 return mode;
5499 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5500}
ca3f2950
SB
5501\f
5502/* Split up a CONST_DOUBLE or integer constant rtx
5503 into two rtx's for single words,
5504 storing in *FIRST the word that comes first in memory in the target
807e902e
KZ
5505 and in *SECOND the other.
5506
5507 TODO: This function needs to be rewritten to work on any size
5508 integer. */
ca3f2950
SB
5509
5510void
5511split_double (rtx value, rtx *first, rtx *second)
5512{
5513 if (CONST_INT_P (value))
5514 {
5515 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5516 {
5517 /* In this case the CONST_INT holds both target words.
5518 Extract the bits from it into two word-sized pieces.
5519 Sign extend each half to HOST_WIDE_INT. */
5520 unsigned HOST_WIDE_INT low, high;
5521 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5522 unsigned bits_per_word = BITS_PER_WORD;
5523
5524 /* Set sign_bit to the most significant bit of a word. */
5525 sign_bit = 1;
5526 sign_bit <<= bits_per_word - 1;
5527
5528 /* Set mask so that all bits of the word are set. We could
5529 have used 1 << BITS_PER_WORD instead of basing the
5530 calculation on sign_bit. However, on machines where
5531 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5532 compiler warning, even though the code would never be
5533 executed. */
5534 mask = sign_bit << 1;
5535 mask--;
5536
5537 /* Set sign_extend as any remaining bits. */
5538 sign_extend = ~mask;
5539
5540 /* Pick the lower word and sign-extend it. */
5541 low = INTVAL (value);
5542 low &= mask;
5543 if (low & sign_bit)
5544 low |= sign_extend;
5545
5546 /* Pick the higher word, shifted to the least significant
5547 bits, and sign-extend it. */
5548 high = INTVAL (value);
5549 high >>= bits_per_word - 1;
5550 high >>= 1;
5551 high &= mask;
5552 if (high & sign_bit)
5553 high |= sign_extend;
5554
5555 /* Store the words in the target machine order. */
5556 if (WORDS_BIG_ENDIAN)
5557 {
5558 *first = GEN_INT (high);
5559 *second = GEN_INT (low);
5560 }
5561 else
5562 {
5563 *first = GEN_INT (low);
5564 *second = GEN_INT (high);
5565 }
5566 }
5567 else
5568 {
5569 /* The rule for using CONST_INT for a wider mode
5570 is that we regard the value as signed.
5571 So sign-extend it. */
5572 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5573 if (WORDS_BIG_ENDIAN)
5574 {
5575 *first = high;
5576 *second = value;
5577 }
5578 else
5579 {
5580 *first = value;
5581 *second = high;
5582 }
5583 }
5584 }
807e902e
KZ
5585 else if (GET_CODE (value) == CONST_WIDE_INT)
5586 {
5587 /* All of this is scary code and needs to be converted to
5588 properly work with any size integer. */
5589 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5590 if (WORDS_BIG_ENDIAN)
5591 {
5592 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5593 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5594 }
5595 else
5596 {
5597 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5598 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5599 }
5600 }
48175537 5601 else if (!CONST_DOUBLE_P (value))
ca3f2950
SB
5602 {
5603 if (WORDS_BIG_ENDIAN)
5604 {
5605 *first = const0_rtx;
5606 *second = value;
5607 }
5608 else
5609 {
5610 *first = value;
5611 *second = const0_rtx;
5612 }
5613 }
5614 else if (GET_MODE (value) == VOIDmode
5615 /* This is the old way we did CONST_DOUBLE integers. */
5616 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5617 {
5618 /* In an integer, the words are defined as most and least significant.
5619 So order them by the target's convention. */
5620 if (WORDS_BIG_ENDIAN)
5621 {
5622 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5623 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5624 }
5625 else
5626 {
5627 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5628 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5629 }
5630 }
5631 else
5632 {
5633 REAL_VALUE_TYPE r;
5634 long l[2];
5635 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5636
5637 /* Note, this converts the REAL_VALUE_TYPE to the target's
5638 format, splits up the floating point double and outputs
5639 exactly 32 bits of it into each of l[0] and l[1] --
5640 not necessarily BITS_PER_WORD bits. */
5641 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5642
5643 /* If 32 bits is an entire word for the target, but not for the host,
5644 then sign-extend on the host so that the number will look the same
5645 way on the host that it would on the target. See for instance
5646 simplify_unary_operation. The #if is needed to avoid compiler
5647 warnings. */
5648
5649#if HOST_BITS_PER_LONG > 32
5650 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5651 {
5652 if (l[0] & ((long) 1 << 31))
5653 l[0] |= ((long) (-1) << 32);
5654 if (l[1] & ((long) 1 << 31))
5655 l[1] |= ((long) (-1) << 32);
5656 }
5657#endif
5658
5659 *first = GEN_INT (l[0]);
5660 *second = GEN_INT (l[1]);
5661 }
5662}
5663
3936bafc
YR
5664/* Return true if X is a sign_extract or zero_extract from the least
5665 significant bit. */
5666
5667static bool
5668lsb_bitfield_op_p (rtx x)
5669{
5670 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5671 {
5672 enum machine_mode mode = GET_MODE (XEXP (x, 0));
a9195970 5673 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
3936bafc
YR
5674 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5675
5676 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5677 }
5678 return false;
5679}
5680
277f65de
RS
5681/* Strip outer address "mutations" from LOC and return a pointer to the
5682 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5683 stripped expression there.
5684
5685 "Mutations" either convert between modes or apply some kind of
3936bafc 5686 extension, truncation or alignment. */
277f65de
RS
5687
5688rtx *
5689strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5690{
5691 for (;;)
5692 {
5693 enum rtx_code code = GET_CODE (*loc);
5694 if (GET_RTX_CLASS (code) == RTX_UNARY)
5695 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5696 used to convert between pointer sizes. */
5697 loc = &XEXP (*loc, 0);
3936bafc
YR
5698 else if (lsb_bitfield_op_p (*loc))
5699 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5700 acts as a combined truncation and extension. */
5701 loc = &XEXP (*loc, 0);
277f65de
RS
5702 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5703 /* (and ... (const_int -X)) is used to align to X bytes. */
5704 loc = &XEXP (*loc, 0);
163497f1
VM
5705 else if (code == SUBREG
5706 && !OBJECT_P (SUBREG_REG (*loc))
5707 && subreg_lowpart_p (*loc))
5708 /* (subreg (operator ...) ...) inside and is used for mode
5709 conversion too. */
99a0106f 5710 loc = &SUBREG_REG (*loc);
277f65de
RS
5711 else
5712 return loc;
5713 if (outer_code)
5714 *outer_code = code;
5715 }
5716}
5717
ec5a3504
RS
5718/* Return true if CODE applies some kind of scale. The scaled value is
5719 is the first operand and the scale is the second. */
277f65de
RS
5720
5721static bool
ec5a3504 5722binary_scale_code_p (enum rtx_code code)
277f65de 5723{
ec5a3504
RS
5724 return (code == MULT
5725 || code == ASHIFT
5726 /* Needed by ARM targets. */
5727 || code == ASHIFTRT
5728 || code == LSHIFTRT
5729 || code == ROTATE
5730 || code == ROTATERT);
277f65de
RS
5731}
5732
ec5a3504
RS
5733/* If *INNER can be interpreted as a base, return a pointer to the inner term
5734 (see address_info). Return null otherwise. */
277f65de 5735
ec5a3504
RS
5736static rtx *
5737get_base_term (rtx *inner)
277f65de 5738{
ec5a3504
RS
5739 if (GET_CODE (*inner) == LO_SUM)
5740 inner = strip_address_mutations (&XEXP (*inner, 0));
5741 if (REG_P (*inner)
5742 || MEM_P (*inner)
5743 || GET_CODE (*inner) == SUBREG)
5744 return inner;
5745 return 0;
5746}
5747
5748/* If *INNER can be interpreted as an index, return a pointer to the inner term
5749 (see address_info). Return null otherwise. */
5750
5751static rtx *
5752get_index_term (rtx *inner)
5753{
5754 /* At present, only constant scales are allowed. */
5755 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5756 inner = strip_address_mutations (&XEXP (*inner, 0));
5757 if (REG_P (*inner)
5758 || MEM_P (*inner)
5759 || GET_CODE (*inner) == SUBREG)
5760 return inner;
5761 return 0;
277f65de
RS
5762}
5763
5764/* Set the segment part of address INFO to LOC, given that INNER is the
5765 unmutated value. */
5766
5767static void
5768set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5769{
277f65de
RS
5770 gcc_assert (!info->segment);
5771 info->segment = loc;
5772 info->segment_term = inner;
5773}
5774
5775/* Set the base part of address INFO to LOC, given that INNER is the
5776 unmutated value. */
5777
5778static void
5779set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5780{
277f65de
RS
5781 gcc_assert (!info->base);
5782 info->base = loc;
5783 info->base_term = inner;
5784}
5785
5786/* Set the index part of address INFO to LOC, given that INNER is the
5787 unmutated value. */
5788
5789static void
5790set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5791{
277f65de
RS
5792 gcc_assert (!info->index);
5793 info->index = loc;
5794 info->index_term = inner;
5795}
5796
5797/* Set the displacement part of address INFO to LOC, given that INNER
5798 is the constant term. */
5799
5800static void
5801set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5802{
277f65de
RS
5803 gcc_assert (!info->disp);
5804 info->disp = loc;
5805 info->disp_term = inner;
5806}
5807
5808/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5809 rest of INFO accordingly. */
5810
5811static void
5812decompose_incdec_address (struct address_info *info)
5813{
5814 info->autoinc_p = true;
5815
5816 rtx *base = &XEXP (*info->inner, 0);
5817 set_address_base (info, base, base);
5818 gcc_checking_assert (info->base == info->base_term);
5819
5820 /* These addresses are only valid when the size of the addressed
5821 value is known. */
5822 gcc_checking_assert (info->mode != VOIDmode);
5823}
5824
5825/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5826 of INFO accordingly. */
5827
5828static void
5829decompose_automod_address (struct address_info *info)
5830{
5831 info->autoinc_p = true;
5832
5833 rtx *base = &XEXP (*info->inner, 0);
5834 set_address_base (info, base, base);
5835 gcc_checking_assert (info->base == info->base_term);
5836
5837 rtx plus = XEXP (*info->inner, 1);
5838 gcc_assert (GET_CODE (plus) == PLUS);
5839
5840 info->base_term2 = &XEXP (plus, 0);
5841 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5842
5843 rtx *step = &XEXP (plus, 1);
5844 rtx *inner_step = strip_address_mutations (step);
5845 if (CONSTANT_P (*inner_step))
5846 set_address_disp (info, step, inner_step);
5847 else
5848 set_address_index (info, step, inner_step);
5849}
5850
5851/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5852 values in [PTR, END). Return a pointer to the end of the used array. */
5853
5854static rtx **
5855extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5856{
5857 rtx x = *loc;
5858 if (GET_CODE (x) == PLUS)
5859 {
5860 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5861 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5862 }
5863 else
5864 {
5865 gcc_assert (ptr != end);
5866 *ptr++ = loc;
5867 }
5868 return ptr;
5869}
5870
5871/* Evaluate the likelihood of X being a base or index value, returning
5872 positive if it is likely to be a base, negative if it is likely to be
5873 an index, and 0 if we can't tell. Make the magnitude of the return
5874 value reflect the amount of confidence we have in the answer.
5875
5876 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5877
5878static int
5879baseness (rtx x, enum machine_mode mode, addr_space_t as,
5880 enum rtx_code outer_code, enum rtx_code index_code)
5881{
277f65de
RS
5882 /* Believe *_POINTER unless the address shape requires otherwise. */
5883 if (REG_P (x) && REG_POINTER (x))
5884 return 2;
5885 if (MEM_P (x) && MEM_POINTER (x))
5886 return 2;
5887
5888 if (REG_P (x) && HARD_REGISTER_P (x))
5889 {
5890 /* X is a hard register. If it only fits one of the base
5891 or index classes, choose that interpretation. */
5892 int regno = REGNO (x);
5893 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5894 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5895 if (base_p != index_p)
5896 return base_p ? 1 : -1;
5897 }
5898 return 0;
5899}
5900
5901/* INFO->INNER describes a normal, non-automodified address.
5902 Fill in the rest of INFO accordingly. */
5903
5904static void
5905decompose_normal_address (struct address_info *info)
5906{
5907 /* Treat the address as the sum of up to four values. */
5908 rtx *ops[4];
5909 size_t n_ops = extract_plus_operands (info->inner, ops,
5910 ops + ARRAY_SIZE (ops)) - ops;
5911
5912 /* If there is more than one component, any base component is in a PLUS. */
5913 if (n_ops > 1)
5914 info->base_outer_code = PLUS;
5915
ec5a3504
RS
5916 /* Try to classify each sum operand now. Leave those that could be
5917 either a base or an index in OPS. */
277f65de
RS
5918 rtx *inner_ops[4];
5919 size_t out = 0;
5920 for (size_t in = 0; in < n_ops; ++in)
5921 {
5922 rtx *loc = ops[in];
5923 rtx *inner = strip_address_mutations (loc);
5924 if (CONSTANT_P (*inner))
5925 set_address_disp (info, loc, inner);
5926 else if (GET_CODE (*inner) == UNSPEC)
5927 set_address_segment (info, loc, inner);
5928 else
5929 {
ec5a3504
RS
5930 /* The only other possibilities are a base or an index. */
5931 rtx *base_term = get_base_term (inner);
5932 rtx *index_term = get_index_term (inner);
5933 gcc_assert (base_term || index_term);
5934 if (!base_term)
5935 set_address_index (info, loc, index_term);
5936 else if (!index_term)
5937 set_address_base (info, loc, base_term);
5938 else
5939 {
5940 gcc_assert (base_term == index_term);
5941 ops[out] = loc;
5942 inner_ops[out] = base_term;
5943 ++out;
5944 }
277f65de
RS
5945 }
5946 }
5947
5948 /* Classify the remaining OPS members as bases and indexes. */
5949 if (out == 1)
5950 {
ec5a3504
RS
5951 /* If we haven't seen a base or an index yet, assume that this is
5952 the base. If we were confident that another term was the base
5953 or index, treat the remaining operand as the other kind. */
5954 if (!info->base)
277f65de
RS
5955 set_address_base (info, ops[0], inner_ops[0]);
5956 else
5957 set_address_index (info, ops[0], inner_ops[0]);
5958 }
5959 else if (out == 2)
5960 {
5961 /* In the event of a tie, assume the base comes first. */
5962 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5963 GET_CODE (*ops[1]))
5964 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5965 GET_CODE (*ops[0])))
5966 {
5967 set_address_base (info, ops[0], inner_ops[0]);
5968 set_address_index (info, ops[1], inner_ops[1]);
5969 }
5970 else
5971 {
5972 set_address_base (info, ops[1], inner_ops[1]);
5973 set_address_index (info, ops[0], inner_ops[0]);
5974 }
5975 }
5976 else
5977 gcc_assert (out == 0);
5978}
5979
5980/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5981 or VOIDmode if not known. AS is the address space associated with LOC.
5982 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5983
5984void
5985decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5986 addr_space_t as, enum rtx_code outer_code)
5987{
5988 memset (info, 0, sizeof (*info));
5989 info->mode = mode;
5990 info->as = as;
5991 info->addr_outer_code = outer_code;
5992 info->outer = loc;
5993 info->inner = strip_address_mutations (loc, &outer_code);
5994 info->base_outer_code = outer_code;
5995 switch (GET_CODE (*info->inner))
5996 {
5997 case PRE_DEC:
5998 case PRE_INC:
5999 case POST_DEC:
6000 case POST_INC:
6001 decompose_incdec_address (info);
6002 break;
6003
6004 case PRE_MODIFY:
6005 case POST_MODIFY:
6006 decompose_automod_address (info);
6007 break;
6008
6009 default:
6010 decompose_normal_address (info);
6011 break;
6012 }
6013}
6014
6015/* Describe address operand LOC in INFO. */
6016
6017void
6018decompose_lea_address (struct address_info *info, rtx *loc)
6019{
6020 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6021}
6022
6023/* Describe the address of MEM X in INFO. */
6024
6025void
6026decompose_mem_address (struct address_info *info, rtx x)
6027{
6028 gcc_assert (MEM_P (x));
6029 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6030 MEM_ADDR_SPACE (x), MEM);
6031}
6032
6033/* Update INFO after a change to the address it describes. */
6034
6035void
6036update_address (struct address_info *info)
6037{
6038 decompose_address (info, info->outer, info->mode, info->as,
6039 info->addr_outer_code);
6040}
6041
6042/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6043 more complicated than that. */
6044
6045HOST_WIDE_INT
6046get_index_scale (const struct address_info *info)
6047{
6048 rtx index = *info->index;
6049 if (GET_CODE (index) == MULT
6050 && CONST_INT_P (XEXP (index, 1))
6051 && info->index_term == &XEXP (index, 0))
6052 return INTVAL (XEXP (index, 1));
6053
6054 if (GET_CODE (index) == ASHIFT
6055 && CONST_INT_P (XEXP (index, 1))
6056 && info->index_term == &XEXP (index, 0))
6057 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6058
6059 if (info->index == info->index_term)
6060 return 1;
6061
6062 return 0;
6063}
6064
6065/* Return the "index code" of INFO, in the form required by
6066 ok_for_base_p_1. */
6067
6068enum rtx_code
6069get_index_code (const struct address_info *info)
6070{
6071 if (info->index)
6072 return GET_CODE (*info->index);
6073
6074 if (info->disp)
6075 return GET_CODE (*info->disp);
6076
6077 return SCRATCH;
6078}
093a6c99 6079
093a6c99
RS
6080/* Return true if X contains a thread-local symbol. */
6081
6082bool
6180e3d8 6083tls_referenced_p (const_rtx x)
093a6c99
RS
6084{
6085 if (!targetm.have_tls)
6086 return false;
6087
6180e3d8 6088 subrtx_iterator::array_type array;
ebd3cb12 6089 FOR_EACH_SUBRTX (iter, array, x, ALL)
6180e3d8
RS
6090 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6091 return true;
6092 return false;
093a6c99 6093}