]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
libgo: update to Go 1.12.2
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
b9d73ea6 1/* Scalar evolution detector.
fbd26352 2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
b9d73ea6 3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
b9d73ea6 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
b9d73ea6 20
48e1416a 21/*
22 Description:
23
c2c3fd24 24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
48e1416a 44
c2c3fd24 45 A short sketch of the algorithm is:
48e1416a 46
c2c3fd24 47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
48e1416a 49
75a70cf9 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
c2c3fd24 51 (RHS) of the definition cannot be statically analyzed, the answer
48e1416a 52 of the analyzer is: "don't know".
c2c3fd24 53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
48e1416a 74
c2c3fd24 75 Example 1: Illustration of the basic algorithm.
48e1416a 76
c2c3fd24 77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
48e1416a 83
c2c3fd24 84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
afd80ffb 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
c2c3fd24 105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
48e1416a 114
c2c3fd24 115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
48e1416a 118
119 or in terms of a C program:
120
c2c3fd24 121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
48e1416a 127
afd80ffb 128 Example 2a: Illustration of the algorithm on nested loops.
48e1416a 129
c2c3fd24 130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
48e1416a 138
c2c3fd24 139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
48e1416a 141 loop-phi-node, and its analysis as in Example 1, gives:
142
c2c3fd24 143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
48e1416a 145
c2c3fd24 146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
48e1416a 152 equal to "+32", and the result is:
153
c2c3fd24 154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
afd80ffb 156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
089aa668 177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
afd80ffb 179
c2c3fd24 180 Example 3: Higher degree polynomials.
48e1416a 181
c2c3fd24 182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
48e1416a 188
c2c3fd24 189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
48e1416a 193
afd80ffb 194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
48e1416a 196
c2c3fd24 197 Example 4: Lucas, Fibonacci, or mixers in general.
48e1416a 198
c2c3fd24 199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
48e1416a 205
c2c3fd24 206 a -> (1, c)_1
207 c -> {3, +, a}_1
48e1416a 208
c2c3fd24 209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
48e1416a 214
c2c3fd24 215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
48e1416a 217
c2c3fd24 218 Example 5: Flip-flops, or exchangers.
48e1416a 219
c2c3fd24 220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
48e1416a 226
c2c3fd24 227 a -> (1, c)_1
228 c -> (3, a)_1
48e1416a 229
c2c3fd24 230 Based on these symbolic chrecs, it is possible to refine this
48e1416a 231 information into the more precise PERIODIC_CHRECs:
232
c2c3fd24 233 a -> |1, 3|_1
234 c -> |3, 1|_1
48e1416a 235
c2c3fd24 236 This transformation is not yet implemented.
48e1416a 237
c2c3fd24 238 Further readings:
48e1416a 239
c2c3fd24 240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
48e1416a 247
c2c3fd24 248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
b9d73ea6 256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
9ef16211 259#include "backend.h"
3469de37 260#include "target.h"
7c29e30e 261#include "rtl.h"
3469de37 262#include "optabs-query.h"
0d9585ca 263#include "tree.h"
9ef16211 264#include "gimple.h"
9ef16211 265#include "ssa.h"
7c29e30e 266#include "gimple-pretty-print.h"
9ef16211 267#include "fold-const.h"
a8783bee 268#include "gimplify.h"
dcf1a1ec 269#include "gimple-iterator.h"
e795d6e1 270#include "gimplify-me.h"
073c1fd5 271#include "tree-cfg.h"
05d9c18a 272#include "tree-ssa-loop-ivopts.h"
273#include "tree-ssa-loop-manip.h"
274#include "tree-ssa-loop-niter.h"
073c1fd5 275#include "tree-ssa-loop.h"
69ee5dbb 276#include "tree-ssa.h"
b9d73ea6 277#include "cfgloop.h"
278#include "tree-chrec.h"
c03531c4 279#include "tree-affine.h"
b9d73ea6 280#include "tree-scalar-evolution.h"
b9ed1410 281#include "dumpfile.h"
d1de0ec2 282#include "params.h"
0f4161b1 283#include "tree-ssa-propagate.h"
f6a34e3f 284#include "gimple-fold.h"
307f73ba 285#include "tree-into-ssa.h"
c71993fc 286#include "builtins.h"
3469de37 287#include "case-cfn-macros.h"
c2c3fd24 288
c3f8ce55 289static tree analyze_scalar_evolution_1 (struct loop *, tree);
62bc06ea 290static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
291 tree var);
c2c3fd24 292
cbb69ef1 293/* The cached information about an SSA name with version NAME_VERSION,
294 claiming that below basic block with index INSTANTIATED_BELOW, the
295 value of the SSA name can be expressed as CHREC. */
c2c3fd24 296
9f9f871f 297struct GTY((for_user)) scev_info_str {
cbb69ef1 298 unsigned int name_version;
299 int instantiated_below;
c2c3fd24 300 tree chrec;
301};
302
303/* Counters for the scev database. */
304static unsigned nb_set_scev = 0;
305static unsigned nb_get_scev = 0;
306
307/* The following trees are unique elements. Thus the comparison of
308 another element to these elements should be done on the pointer to
309 these trees, and not on their value. */
310
311/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
312tree chrec_not_analyzed_yet;
313
314/* Reserved to the cases where the analyzer has detected an
315 undecidable property at compile time. */
316tree chrec_dont_know;
317
318/* When the analyzer has detected that a property will never
319 happen, then it qualifies it with chrec_known. */
320tree chrec_known;
321
b594087e 322struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
9f9f871f 323{
324 static hashval_t hash (scev_info_str *i);
325 static bool equal (const scev_info_str *a, const scev_info_str *b);
326};
327
328static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
c2c3fd24 329
330\f
089aa668 331/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
c2c3fd24 332
333static inline struct scev_info_str *
089aa668 334new_scev_info_str (basic_block instantiated_below, tree var)
c2c3fd24 335{
336 struct scev_info_str *res;
48e1416a 337
25a27413 338 res = ggc_alloc<scev_info_str> ();
cbb69ef1 339 res->name_version = SSA_NAME_VERSION (var);
c2c3fd24 340 res->chrec = chrec_not_analyzed_yet;
cbb69ef1 341 res->instantiated_below = instantiated_below->index;
089aa668 342
c2c3fd24 343 return res;
344}
345
346/* Computes a hash function for database element ELT. */
347
9f9f871f 348hashval_t
349scev_info_hasher::hash (scev_info_str *elt)
c2c3fd24 350{
cbb69ef1 351 return elt->name_version ^ elt->instantiated_below;
c2c3fd24 352}
353
354/* Compares database elements E1 and E2. */
355
9f9f871f 356bool
357scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
c2c3fd24 358{
cbb69ef1 359 return (elt1->name_version == elt2->name_version
089aa668 360 && elt1->instantiated_below == elt2->instantiated_below);
c2c3fd24 361}
362
089aa668 363/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
364 A first query on VAR returns chrec_not_analyzed_yet. */
c2c3fd24 365
366static tree *
089aa668 367find_var_scev_info (basic_block instantiated_below, tree var)
c2c3fd24 368{
369 struct scev_info_str *res;
370 struct scev_info_str tmp;
c2c3fd24 371
cbb69ef1 372 tmp.name_version = SSA_NAME_VERSION (var);
373 tmp.instantiated_below = instantiated_below->index;
9f9f871f 374 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
c2c3fd24 375
376 if (!*slot)
089aa668 377 *slot = new_scev_info_str (instantiated_below, var);
9f9f871f 378 res = *slot;
c2c3fd24 379
380 return &res->chrec;
381}
382
b02075cf 383
384/* Hashtable helpers for a temporary hash-table used when
385 analyzing a scalar evolution, instantiating a CHREC or
386 resolving mixers. */
387
388struct instantiate_cache_type
389{
390 htab_t map;
391 vec<scev_info_str> entries;
392
393 instantiate_cache_type () : map (NULL), entries (vNULL) {}
394 ~instantiate_cache_type ();
395 tree get (unsigned slot) { return entries[slot].chrec; }
396 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
397};
398
399instantiate_cache_type::~instantiate_cache_type ()
400{
401 if (map != NULL)
402 {
403 htab_delete (map);
404 entries.release ();
405 }
406}
407
408/* Cache to avoid infinite recursion when instantiating an SSA name.
409 Live during the outermost analyze_scalar_evolution, instantiate_scev
410 or resolve_mixers call. */
411static instantiate_cache_type *global_cache;
412
413
c2c3fd24 414/* Return true when CHREC contains symbolic names defined in
415 LOOP_NB. */
416
48e1416a 417bool
7ecb5bb2 418chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
c2c3fd24 419{
c2f47e15 420 int i, n;
421
c2c3fd24 422 if (chrec == NULL_TREE)
423 return false;
424
71d9af81 425 if (is_gimple_min_invariant (chrec))
c2c3fd24 426 return false;
427
c2c3fd24 428 if (TREE_CODE (chrec) == SSA_NAME)
429 {
42acab1c 430 gimple *def;
a05095f9 431 loop_p def_loop, loop;
432
433 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
434 return false;
435
436 def = SSA_NAME_DEF_STMT (chrec);
437 def_loop = loop_containing_stmt (def);
41f75a99 438 loop = get_loop (cfun, loop_nb);
c2c3fd24 439
440 if (def_loop == NULL)
441 return false;
442
443 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
444 return true;
445
446 return false;
447 }
448
c2f47e15 449 n = TREE_OPERAND_LENGTH (chrec);
450 for (i = 0; i < n; i++)
48e1416a 451 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
c2f47e15 452 loop_nb))
453 return true;
454 return false;
c2c3fd24 455}
456
457/* Return true when PHI is a loop-phi-node. */
458
459static bool
42acab1c 460loop_phi_node_p (gimple *phi)
c2c3fd24 461{
462 /* The implementation of this function is based on the following
463 property: "all the loop-phi-nodes of a loop are contained in the
464 loop's header basic block". */
465
75a70cf9 466 return loop_containing_stmt (phi)->header == gimple_bb (phi);
c2c3fd24 467}
468
469/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
470 In general, in the case of multivariate evolutions we want to get
471 the evolution in different loops. LOOP specifies the level for
472 which to get the evolution.
48e1416a 473
c2c3fd24 474 Example:
48e1416a 475
c2c3fd24 476 | for (j = 0; j < 100; j++)
477 | {
478 | for (k = 0; k < 100; k++)
479 | {
48e1416a 480 | i = k + j; - Here the value of i is a function of j, k.
c2c3fd24 481 | }
48e1416a 482 | ... = i - Here the value of i is a function of j.
c2c3fd24 483 | }
48e1416a 484 | ... = i - Here the value of i is a scalar.
485
486 Example:
487
c2c3fd24 488 | i_0 = ...
489 | loop_1 10 times
490 | i_1 = phi (i_0, i_2)
491 | i_2 = i_1 + 2
492 | endloop
48e1416a 493
c2c3fd24 494 This loop has the same effect as:
495 LOOP_1 has the same effect as:
48e1416a 496
c2c3fd24 497 | i_1 = i_0 + 20
48e1416a 498
499 The overall effect of the loop, "i_0 + 20" in the previous example,
500 is obtained by passing in the parameters: LOOP = 1,
c2c3fd24 501 EVOLUTION_FN = {i_0, +, 2}_1.
502*/
48e1416a 503
524bc988 504tree
c2c3fd24 505compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
506{
507 bool val = false;
508
509 if (evolution_fn == chrec_dont_know)
510 return chrec_dont_know;
511
512 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
513 {
3bbbcdff 514 struct loop *inner_loop = get_chrec_loop (evolution_fn);
515
516 if (inner_loop == loop
517 || flow_loop_nested_p (loop, inner_loop))
c2c3fd24 518 {
0c3c2e56 519 tree nb_iter = number_of_latch_executions (inner_loop);
c2c3fd24 520
521 if (nb_iter == chrec_dont_know)
522 return chrec_dont_know;
523 else
524 {
525 tree res;
526
c2c3fd24 527 /* evolution_fn is the evolution function in LOOP. Get
528 its value in the nb_iter-th iteration. */
529 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
524bc988 530
531 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
532 res = instantiate_parameters (loop, res);
533
fbf0afd1 534 /* Continue the computation until ending on a parent of LOOP. */
c2c3fd24 535 return compute_overall_effect_of_inner_loop (loop, res);
536 }
537 }
538 else
539 return evolution_fn;
540 }
48e1416a 541
c2c3fd24 542 /* If the evolution function is an invariant, there is nothing to do. */
543 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
544 return evolution_fn;
48e1416a 545
c2c3fd24 546 else
547 return chrec_dont_know;
548}
549
c2c3fd24 550/* Associate CHREC to SCALAR. */
551
552static void
089aa668 553set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
c2c3fd24 554{
555 tree *scalar_info;
48e1416a 556
c2c3fd24 557 if (TREE_CODE (scalar) != SSA_NAME)
558 return;
559
089aa668 560 scalar_info = find_var_scev_info (instantiated_below, scalar);
48e1416a 561
c2c3fd24 562 if (dump_file)
563 {
487a9bc1 564 if (dump_flags & TDF_SCEV)
c2c3fd24 565 {
566 fprintf (dump_file, "(set_scalar_evolution \n");
089aa668 567 fprintf (dump_file, " instantiated_below = %d \n",
568 instantiated_below->index);
c2c3fd24 569 fprintf (dump_file, " (scalar = ");
1ffa4346 570 print_generic_expr (dump_file, scalar);
c2c3fd24 571 fprintf (dump_file, ")\n (scalar_evolution = ");
1ffa4346 572 print_generic_expr (dump_file, chrec);
c2c3fd24 573 fprintf (dump_file, "))\n");
574 }
575 if (dump_flags & TDF_STATS)
576 nb_set_scev++;
577 }
48e1416a 578
c2c3fd24 579 *scalar_info = chrec;
580}
581
089aa668 582/* Retrieve the chrec associated to SCALAR instantiated below
583 INSTANTIATED_BELOW block. */
c2c3fd24 584
585static tree
089aa668 586get_scalar_evolution (basic_block instantiated_below, tree scalar)
c2c3fd24 587{
588 tree res;
48e1416a 589
c2c3fd24 590 if (dump_file)
591 {
487a9bc1 592 if (dump_flags & TDF_SCEV)
c2c3fd24 593 {
594 fprintf (dump_file, "(get_scalar_evolution \n");
595 fprintf (dump_file, " (scalar = ");
1ffa4346 596 print_generic_expr (dump_file, scalar);
c2c3fd24 597 fprintf (dump_file, ")\n");
598 }
599 if (dump_flags & TDF_STATS)
600 nb_get_scev++;
601 }
48e1416a 602
f1528ccd 603 if (VECTOR_TYPE_P (TREE_TYPE (scalar))
604 || TREE_CODE (TREE_TYPE (scalar)) == COMPLEX_TYPE)
605 /* For chrec_dont_know we keep the symbolic form. */
606 res = scalar;
607 else
608 switch (TREE_CODE (scalar))
609 {
610 case SSA_NAME:
611 if (SSA_NAME_IS_DEFAULT_DEF (scalar))
612 res = scalar;
613 else
614 res = *find_var_scev_info (instantiated_below, scalar);
615 break;
c2c3fd24 616
f1528ccd 617 case REAL_CST:
618 case FIXED_CST:
619 case INTEGER_CST:
620 res = scalar;
621 break;
c2c3fd24 622
f1528ccd 623 default:
624 res = chrec_not_analyzed_yet;
625 break;
626 }
48e1416a 627
487a9bc1 628 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 629 {
630 fprintf (dump_file, " (scalar_evolution = ");
1ffa4346 631 print_generic_expr (dump_file, res);
c2c3fd24 632 fprintf (dump_file, "))\n");
633 }
48e1416a 634
c2c3fd24 635 return res;
636}
637
638/* Helper function for add_to_evolution. Returns the evolution
639 function for an assignment of the form "a = b + c", where "a" and
640 "b" are on the strongly connected component. CHREC_BEFORE is the
641 information that we already have collected up to this point.
48e1416a 642 TO_ADD is the evolution of "c".
643
c2c3fd24 644 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
645 evolution the expression TO_ADD, otherwise construct an evolution
646 part for this loop. */
647
648static tree
f84a688a 649add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
42acab1c 650 gimple *at_stmt)
c2c3fd24 651{
f84a688a 652 tree type, left, right;
41f75a99 653 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
f84a688a 654
c2c3fd24 655 switch (TREE_CODE (chrec_before))
656 {
657 case POLYNOMIAL_CHREC:
3bbbcdff 658 chloop = get_chrec_loop (chrec_before);
659 if (chloop == loop
660 || flow_loop_nested_p (chloop, loop))
c2c3fd24 661 {
662 unsigned var;
f84a688a 663
664 type = chrec_type (chrec_before);
48e1416a 665
c2c3fd24 666 /* When there is no evolution part in this loop, build it. */
3bbbcdff 667 if (chloop != loop)
c2c3fd24 668 {
669 var = loop_nb;
670 left = chrec_before;
eb105b17 671 right = SCALAR_FLOAT_TYPE_P (type)
672 ? build_real (type, dconst0)
673 : build_int_cst (type, 0);
c2c3fd24 674 }
675 else
676 {
677 var = CHREC_VARIABLE (chrec_before);
678 left = CHREC_LEFT (chrec_before);
679 right = CHREC_RIGHT (chrec_before);
680 }
681
f84a688a 682 to_add = chrec_convert (type, to_add, at_stmt);
0de36bdb 683 right = chrec_convert_rhs (type, right, at_stmt);
684 right = chrec_fold_plus (chrec_type (right), right, to_add);
f84a688a 685 return build_polynomial_chrec (var, left, right);
c2c3fd24 686 }
687 else
f84a688a 688 {
3bbbcdff 689 gcc_assert (flow_loop_nested_p (loop, chloop));
690
f84a688a 691 /* Search the evolution in LOOP_NB. */
692 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
693 to_add, at_stmt);
694 right = CHREC_RIGHT (chrec_before);
0de36bdb 695 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
f84a688a 696 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
697 left, right);
698 }
48e1416a 699
c2c3fd24 700 default:
701 /* These nodes do not depend on a loop. */
702 if (chrec_before == chrec_dont_know)
703 return chrec_dont_know;
f84a688a 704
705 left = chrec_before;
0de36bdb 706 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
f84a688a 707 return build_polynomial_chrec (loop_nb, left, right);
c2c3fd24 708 }
709}
710
711/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
48e1416a 712 of LOOP_NB.
713
c2c3fd24 714 Description (provided for completeness, for those who read code in
715 a plane, and for my poor 62 bytes brain that would have forgotten
716 all this in the next two or three months):
48e1416a 717
c2c3fd24 718 The algorithm of translation of programs from the SSA representation
719 into the chrecs syntax is based on a pattern matching. After having
720 reconstructed the overall tree expression for a loop, there are only
721 two cases that can arise:
48e1416a 722
c2c3fd24 723 1. a = loop-phi (init, a + expr)
724 2. a = loop-phi (init, expr)
48e1416a 725
c2c3fd24 726 where EXPR is either a scalar constant with respect to the analyzed
727 loop (this is a degree 0 polynomial), or an expression containing
728 other loop-phi definitions (these are higher degree polynomials).
48e1416a 729
c2c3fd24 730 Examples:
48e1416a 731
732 1.
c2c3fd24 733 | init = ...
734 | loop_1
735 | a = phi (init, a + 5)
736 | endloop
48e1416a 737
738 2.
c2c3fd24 739 | inita = ...
740 | initb = ...
741 | loop_1
742 | a = phi (inita, 2 * b + 3)
743 | b = phi (initb, b + 1)
744 | endloop
48e1416a 745
746 For the first case, the semantics of the SSA representation is:
747
c2c3fd24 748 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 749
c2c3fd24 750 that is, there is a loop index "x" that determines the scalar value
751 of the variable during the loop execution. During the first
752 iteration, the value is that of the initial condition INIT, while
753 during the subsequent iterations, it is the sum of the initial
754 condition with the sum of all the values of EXPR from the initial
48e1416a 755 iteration to the before last considered iteration.
756
c2c3fd24 757 For the second case, the semantics of the SSA program is:
48e1416a 758
c2c3fd24 759 | a (x) = init, if x = 0;
760 | expr (x - 1), otherwise.
48e1416a 761
c2c3fd24 762 The second case corresponds to the PEELED_CHREC, whose syntax is
48e1416a 763 close to the syntax of a loop-phi-node:
764
c2c3fd24 765 | phi (init, expr) vs. (init, expr)_x
48e1416a 766
c2c3fd24 767 The proof of the translation algorithm for the first case is a
48e1416a 768 proof by structural induction based on the degree of EXPR.
769
c2c3fd24 770 Degree 0:
771 When EXPR is a constant with respect to the analyzed loop, or in
772 other words when EXPR is a polynomial of degree 0, the evolution of
773 the variable A in the loop is an affine function with an initial
774 condition INIT, and a step EXPR. In order to show this, we start
775 from the semantics of the SSA representation:
48e1416a 776
c2c3fd24 777 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 778
c2c3fd24 779 and since "expr (j)" is a constant with respect to "j",
48e1416a 780
781 f (x) = init + x * expr
782
c2c3fd24 783 Finally, based on the semantics of the pure sum chrecs, by
784 identification we get the corresponding chrecs syntax:
48e1416a 785
786 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
c2c3fd24 787 f (x) -> {init, +, expr}_x
48e1416a 788
c2c3fd24 789 Higher degree:
790 Suppose that EXPR is a polynomial of degree N with respect to the
791 analyzed loop_x for which we have already determined that it is
792 written under the chrecs syntax:
48e1416a 793
c2c3fd24 794 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
48e1416a 795
c2c3fd24 796 We start from the semantics of the SSA program:
48e1416a 797
c2c3fd24 798 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
799 |
48e1416a 800 | f (x) = init + \sum_{j = 0}^{x - 1}
c2c3fd24 801 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
802 |
48e1416a 803 | f (x) = init + \sum_{j = 0}^{x - 1}
804 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
c2c3fd24 805 |
48e1416a 806 | f (x) = init + \sum_{k = 0}^{n - 1}
807 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
c2c3fd24 808 |
48e1416a 809 | f (x) = init + \sum_{k = 0}^{n - 1}
810 | (b_k * \binom{x}{k + 1})
c2c3fd24 811 |
48e1416a 812 | f (x) = init + b_0 * \binom{x}{1} + ...
813 | + b_{n-1} * \binom{x}{n}
c2c3fd24 814 |
48e1416a 815 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
816 | + b_{n-1} * \binom{x}{n}
c2c3fd24 817 |
48e1416a 818
c2c3fd24 819 And finally from the definition of the chrecs syntax, we identify:
48e1416a 820 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
821
c2c3fd24 822 This shows the mechanism that stands behind the add_to_evolution
823 function. An important point is that the use of symbolic
824 parameters avoids the need of an analysis schedule.
48e1416a 825
c2c3fd24 826 Example:
48e1416a 827
c2c3fd24 828 | inita = ...
829 | initb = ...
48e1416a 830 | loop_1
c2c3fd24 831 | a = phi (inita, a + 2 + b)
832 | b = phi (initb, b + 1)
833 | endloop
48e1416a 834
c2c3fd24 835 When analyzing "a", the algorithm keeps "b" symbolically:
48e1416a 836
c2c3fd24 837 | a -> {inita, +, 2 + b}_1
48e1416a 838
c2c3fd24 839 Then, after instantiation, the analyzer ends on the evolution:
48e1416a 840
c2c3fd24 841 | a -> {inita, +, 2 + initb, +, 1}_1
842
843*/
844
48e1416a 845static tree
f84a688a 846add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
42acab1c 847 tree to_add, gimple *at_stmt)
c2c3fd24 848{
849 tree type = chrec_type (to_add);
850 tree res = NULL_TREE;
48e1416a 851
c2c3fd24 852 if (to_add == NULL_TREE)
853 return chrec_before;
48e1416a 854
c2c3fd24 855 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
856 instantiated at this point. */
857 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
858 /* This should not happen. */
859 return chrec_dont_know;
48e1416a 860
487a9bc1 861 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 862 {
863 fprintf (dump_file, "(add_to_evolution \n");
864 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
865 fprintf (dump_file, " (chrec_before = ");
1ffa4346 866 print_generic_expr (dump_file, chrec_before);
c2c3fd24 867 fprintf (dump_file, ")\n (to_add = ");
1ffa4346 868 print_generic_expr (dump_file, to_add);
c2c3fd24 869 fprintf (dump_file, ")\n");
870 }
871
872 if (code == MINUS_EXPR)
4a1dfa2c 873 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
874 ? build_real (type, dconstm1)
875 : build_int_cst_type (type, -1));
c2c3fd24 876
f84a688a 877 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
c2c3fd24 878
487a9bc1 879 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 880 {
881 fprintf (dump_file, " (res = ");
1ffa4346 882 print_generic_expr (dump_file, res);
c2c3fd24 883 fprintf (dump_file, "))\n");
884 }
885
886 return res;
887}
888
c2c3fd24 889\f
890
891/* This section selects the loops that will be good candidates for the
892 scalar evolution analysis. For the moment, greedily select all the
893 loop nests we could analyze. */
894
c2c3fd24 895/* For a loop with a single exit edge, return the COND_EXPR that
896 guards the exit edge. If the expression is too difficult to
897 analyze, then give up. */
898
1a91d914 899gcond *
1f1872fd 900get_loop_exit_condition (const struct loop *loop)
c2c3fd24 901{
1a91d914 902 gcond *res = NULL;
d9e7e1a2 903 edge exit_edge = single_exit (loop);
48e1416a 904
487a9bc1 905 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 906 fprintf (dump_file, "(get_loop_exit_condition \n ");
48e1416a 907
bb445479 908 if (exit_edge)
c2c3fd24 909 {
42acab1c 910 gimple *stmt;
48e1416a 911
75a70cf9 912 stmt = last_stmt (exit_edge->src);
54f60b15 913 if (gcond *cond_stmt = safe_dyn_cast <gcond *> (stmt))
1a91d914 914 res = cond_stmt;
c2c3fd24 915 }
48e1416a 916
487a9bc1 917 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 918 {
1ffa4346 919 print_gimple_stmt (dump_file, res, 0);
c2c3fd24 920 fprintf (dump_file, ")\n");
921 }
48e1416a 922
c2c3fd24 923 return res;
924}
925
c2c3fd24 926\f
927/* Depth first search algorithm. */
928
6dc50383 929enum t_bool {
d1de0ec2 930 t_false,
931 t_true,
932 t_dont_know
6dc50383 933};
d1de0ec2 934
935
42acab1c 936static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *,
1a91d914 937 tree *, int);
c2c3fd24 938
75a70cf9 939/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
c2c3fd24 940 Return true if the strongly connected component has been found. */
941
d1de0ec2 942static t_bool
42acab1c 943follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt,
75a70cf9 944 tree type, tree rhs0, enum tree_code code, tree rhs1,
1a91d914 945 gphi *halting_phi, tree *evolution_of_loop,
946 int limit)
c2c3fd24 947{
d1de0ec2 948 t_bool res = t_false;
8c9d86fd 949 tree evol;
75a70cf9 950
0de36bdb 951 switch (code)
c2c3fd24 952 {
0de36bdb 953 case POINTER_PLUS_EXPR:
c2c3fd24 954 case PLUS_EXPR:
c2c3fd24 955 if (TREE_CODE (rhs0) == SSA_NAME)
956 {
957 if (TREE_CODE (rhs1) == SSA_NAME)
958 {
48e1416a 959 /* Match an assignment under the form:
c2c3fd24 960 "a = b + c". */
48e1416a 961
de39d8ad 962 /* We want only assignments of form "name + name" contribute to
963 LIMIT, as the other cases do not necessarily contribute to
964 the complexity of the expression. */
965 limit++;
966
8c9d86fd 967 evol = *evolution_of_loop;
dabc0f79 968 evol = add_to_evolution
48e1416a 969 (loop->num,
970 chrec_convert (type, evol, at_stmt),
0de36bdb 971 code, rhs1, at_stmt);
dabc0f79 972 res = follow_ssa_edge
973 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
974 if (res == t_true)
975 *evolution_of_loop = evol;
d1de0ec2 976 else if (res == t_false)
c2c3fd24 977 {
dabc0f79 978 *evolution_of_loop = add_to_evolution
979 (loop->num,
980 chrec_convert (type, *evolution_of_loop, at_stmt),
981 code, rhs0, at_stmt);
48e1416a 982 res = follow_ssa_edge
983 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 984 evolution_of_loop, limit);
d1de0ec2 985 if (res == t_true)
dabc0f79 986 ;
d1de0ec2 987 else if (res == t_dont_know)
988 *evolution_of_loop = chrec_dont_know;
c2c3fd24 989 }
d1de0ec2 990
991 else if (res == t_dont_know)
992 *evolution_of_loop = chrec_dont_know;
c2c3fd24 993 }
48e1416a 994
c2c3fd24 995 else
996 {
48e1416a 997 /* Match an assignment under the form:
c2c3fd24 998 "a = b + ...". */
dabc0f79 999 *evolution_of_loop = add_to_evolution
1000 (loop->num, chrec_convert (type, *evolution_of_loop,
1001 at_stmt),
1002 code, rhs1, at_stmt);
48e1416a 1003 res = follow_ssa_edge
1004 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 1005 evolution_of_loop, limit);
1006 if (res == t_true)
dabc0f79 1007 ;
d1de0ec2 1008 else if (res == t_dont_know)
1009 *evolution_of_loop = chrec_dont_know;
c2c3fd24 1010 }
1011 }
48e1416a 1012
c2c3fd24 1013 else if (TREE_CODE (rhs1) == SSA_NAME)
1014 {
48e1416a 1015 /* Match an assignment under the form:
c2c3fd24 1016 "a = ... + c". */
dabc0f79 1017 *evolution_of_loop = add_to_evolution
1018 (loop->num, chrec_convert (type, *evolution_of_loop,
1019 at_stmt),
1020 code, rhs0, at_stmt);
48e1416a 1021 res = follow_ssa_edge
1022 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 1023 evolution_of_loop, limit);
1024 if (res == t_true)
dabc0f79 1025 ;
d1de0ec2 1026 else if (res == t_dont_know)
1027 *evolution_of_loop = chrec_dont_know;
c2c3fd24 1028 }
1029
1030 else
48e1416a 1031 /* Otherwise, match an assignment under the form:
c2c3fd24 1032 "a = ... + ...". */
1033 /* And there is nothing to do. */
d1de0ec2 1034 res = t_false;
c2c3fd24 1035 break;
48e1416a 1036
c2c3fd24 1037 case MINUS_EXPR:
1038 /* This case is under the form "opnd0 = rhs0 - rhs1". */
c2c3fd24 1039 if (TREE_CODE (rhs0) == SSA_NAME)
c2c3fd24 1040 {
48e1416a 1041 /* Match an assignment under the form:
11541659 1042 "a = b - ...". */
de39d8ad 1043
1044 /* We want only assignments of form "name - name" contribute to
1045 LIMIT, as the other cases do not necessarily contribute to
1046 the complexity of the expression. */
1047 if (TREE_CODE (rhs1) == SSA_NAME)
1048 limit++;
1049
dabc0f79 1050 *evolution_of_loop = add_to_evolution
1051 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1052 MINUS_EXPR, rhs1, at_stmt);
48e1416a 1053 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 1054 evolution_of_loop, limit);
1055 if (res == t_true)
dabc0f79 1056 ;
d1de0ec2 1057 else if (res == t_dont_know)
1058 *evolution_of_loop = chrec_dont_know;
c2c3fd24 1059 }
c2c3fd24 1060 else
48e1416a 1061 /* Otherwise, match an assignment under the form:
c2c3fd24 1062 "a = ... - ...". */
1063 /* And there is nothing to do. */
d1de0ec2 1064 res = t_false;
c2c3fd24 1065 break;
75a70cf9 1066
1067 default:
1068 res = t_false;
1069 }
1070
1071 return res;
1072}
48e1416a 1073
75a70cf9 1074/* Follow the ssa edge into the expression EXPR.
1075 Return true if the strongly connected component has been found. */
1076
1077static t_bool
42acab1c 1078follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr,
1a91d914 1079 gphi *halting_phi, tree *evolution_of_loop,
1080 int limit)
75a70cf9 1081{
191bdb6e 1082 enum tree_code code = TREE_CODE (expr);
1083 tree type = TREE_TYPE (expr), rhs0, rhs1;
1084 t_bool res;
1085
75a70cf9 1086 /* The EXPR is one of the following cases:
48e1416a 1087 - an SSA_NAME,
75a70cf9 1088 - an INTEGER_CST,
48e1416a 1089 - a PLUS_EXPR,
1090 - a POINTER_PLUS_EXPR,
75a70cf9 1091 - a MINUS_EXPR,
1092 - an ASSERT_EXPR,
1093 - other cases are not yet handled. */
191bdb6e 1094
75a70cf9 1095 switch (code)
1096 {
191bdb6e 1097 CASE_CONVERT:
75a70cf9 1098 /* This assignment is under the form "a_1 = (cast) rhs. */
1099 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1100 halting_phi, evolution_of_loop, limit);
1101 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1102 break;
1103
1104 case INTEGER_CST:
1105 /* This assignment is under the form "a_1 = 7". */
1106 res = t_false;
1107 break;
191bdb6e 1108
75a70cf9 1109 case SSA_NAME:
1110 /* This assignment is under the form: "a_1 = b_2". */
48e1416a 1111 res = follow_ssa_edge
75a70cf9 1112 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1113 break;
191bdb6e 1114
75a70cf9 1115 case POINTER_PLUS_EXPR:
1116 case PLUS_EXPR:
1117 case MINUS_EXPR:
1118 /* This case is under the form "rhs0 +- rhs1". */
1119 rhs0 = TREE_OPERAND (expr, 0);
1120 rhs1 = TREE_OPERAND (expr, 1);
191bdb6e 1121 type = TREE_TYPE (rhs0);
1122 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1123 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1124 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1125 halting_phi, evolution_of_loop, limit);
1126 break;
75a70cf9 1127
182cf5a9 1128 case ADDR_EXPR:
1129 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1130 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1131 {
1132 expr = TREE_OPERAND (expr, 0);
1133 rhs0 = TREE_OPERAND (expr, 0);
1134 rhs1 = TREE_OPERAND (expr, 1);
1135 type = TREE_TYPE (rhs0);
1136 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1137 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1138 res = follow_ssa_edge_binary (loop, at_stmt, type,
1139 rhs0, POINTER_PLUS_EXPR, rhs1,
1140 halting_phi, evolution_of_loop, limit);
1141 }
1142 else
1143 res = t_false;
1144 break;
1145
88dbf20f 1146 case ASSERT_EXPR:
191bdb6e 1147 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1148 It must be handled as a copy assignment of the form a_1 = a_2. */
1149 rhs0 = ASSERT_EXPR_VAR (expr);
1150 if (TREE_CODE (rhs0) == SSA_NAME)
1151 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1152 halting_phi, evolution_of_loop, limit);
1153 else
1154 res = t_false;
1155 break;
88dbf20f 1156
c2c3fd24 1157 default:
d1de0ec2 1158 res = t_false;
c2c3fd24 1159 break;
1160 }
191bdb6e 1161
c2c3fd24 1162 return res;
1163}
1164
75a70cf9 1165/* Follow the ssa edge into the right hand side of an assignment STMT.
1166 Return true if the strongly connected component has been found. */
1167
1168static t_bool
42acab1c 1169follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt,
1a91d914 1170 gphi *halting_phi, tree *evolution_of_loop,
1171 int limit)
75a70cf9 1172{
75a70cf9 1173 enum tree_code code = gimple_assign_rhs_code (stmt);
191bdb6e 1174 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1175 t_bool res;
75a70cf9 1176
191bdb6e 1177 switch (code)
75a70cf9 1178 {
191bdb6e 1179 CASE_CONVERT:
1180 /* This assignment is under the form "a_1 = (cast) rhs. */
1181 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1182 halting_phi, evolution_of_loop, limit);
1183 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1184 break;
1185
1186 case POINTER_PLUS_EXPR:
1187 case PLUS_EXPR:
1188 case MINUS_EXPR:
1189 rhs1 = gimple_assign_rhs1 (stmt);
1190 rhs2 = gimple_assign_rhs2 (stmt);
1191 type = TREE_TYPE (rhs1);
1192 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
d7e5a0b1 1193 halting_phi, evolution_of_loop, limit);
191bdb6e 1194 break;
d7e5a0b1 1195
75a70cf9 1196 default:
191bdb6e 1197 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1198 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1199 halting_phi, evolution_of_loop, limit);
1200 else
1201 res = t_false;
1202 break;
75a70cf9 1203 }
191bdb6e 1204
1205 return res;
75a70cf9 1206}
1207
c2c3fd24 1208/* Checks whether the I-th argument of a PHI comes from a backedge. */
1209
1210static bool
1a91d914 1211backedge_phi_arg_p (gphi *phi, int i)
c2c3fd24 1212{
75a70cf9 1213 const_edge e = gimple_phi_arg_edge (phi, i);
c2c3fd24 1214
1215 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1216 about updating it anywhere, and this should work as well most of the
1217 time. */
1218 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1219 return true;
1220
1221 return false;
1222}
1223
1224/* Helper function for one branch of the condition-phi-node. Return
1225 true if the strongly connected component has been found following
1226 this path. */
1227
d1de0ec2 1228static inline t_bool
c2c3fd24 1229follow_ssa_edge_in_condition_phi_branch (int i,
48e1416a 1230 struct loop *loop,
1a91d914 1231 gphi *condition_phi,
1232 gphi *halting_phi,
c2c3fd24 1233 tree *evolution_of_branch,
d1de0ec2 1234 tree init_cond, int limit)
c2c3fd24 1235{
1236 tree branch = PHI_ARG_DEF (condition_phi, i);
1237 *evolution_of_branch = chrec_dont_know;
1238
1239 /* Do not follow back edges (they must belong to an irreducible loop, which
1240 we really do not want to worry about). */
1241 if (backedge_phi_arg_p (condition_phi, i))
d1de0ec2 1242 return t_false;
c2c3fd24 1243
1244 if (TREE_CODE (branch) == SSA_NAME)
1245 {
1246 *evolution_of_branch = init_cond;
48e1416a 1247 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
d1de0ec2 1248 evolution_of_branch, limit);
c2c3fd24 1249 }
1250
48e1416a 1251 /* This case occurs when one of the condition branches sets
5c9dae64 1252 the variable to a constant: i.e. a phi-node like
48e1416a 1253 "a_2 = PHI <a_7(5), 2(6)>;".
1254
1255 FIXME: This case have to be refined correctly:
c2c3fd24 1256 in some cases it is possible to say something better than
1257 chrec_dont_know, for example using a wrap-around notation. */
d1de0ec2 1258 return t_false;
c2c3fd24 1259}
1260
1261/* This function merges the branches of a condition-phi-node in a
1262 loop. */
1263
d1de0ec2 1264static t_bool
c2c3fd24 1265follow_ssa_edge_in_condition_phi (struct loop *loop,
1a91d914 1266 gphi *condition_phi,
1267 gphi *halting_phi,
d1de0ec2 1268 tree *evolution_of_loop, int limit)
c2c3fd24 1269{
75a70cf9 1270 int i, n;
c2c3fd24 1271 tree init = *evolution_of_loop;
1272 tree evolution_of_branch;
d1de0ec2 1273 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1274 halting_phi,
1275 &evolution_of_branch,
1276 init, limit);
1277 if (res == t_false || res == t_dont_know)
1278 return res;
c2c3fd24 1279
c2c3fd24 1280 *evolution_of_loop = evolution_of_branch;
1281
75a70cf9 1282 n = gimple_phi_num_args (condition_phi);
75a70cf9 1283 for (i = 1; i < n; i++)
c2c3fd24 1284 {
c4485791 1285 /* Quickly give up when the evolution of one of the branches is
1286 not known. */
1287 if (*evolution_of_loop == chrec_dont_know)
d1de0ec2 1288 return t_true;
c4485791 1289
aebe538b 1290 /* Increase the limit by the PHI argument number to avoid exponential
1291 time and memory complexity. */
d1de0ec2 1292 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1293 halting_phi,
1294 &evolution_of_branch,
aebe538b 1295 init, limit + i);
d1de0ec2 1296 if (res == t_false || res == t_dont_know)
1297 return res;
c2c3fd24 1298
1299 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1300 evolution_of_branch);
1301 }
48e1416a 1302
d1de0ec2 1303 return t_true;
c2c3fd24 1304}
1305
1306/* Follow an SSA edge in an inner loop. It computes the overall
1307 effect of the loop, and following the symbolic initial conditions,
1308 it follows the edges in the parent loop. The inner loop is
1309 considered as a single statement. */
1310
d1de0ec2 1311static t_bool
c2c3fd24 1312follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1a91d914 1313 gphi *loop_phi_node,
1314 gphi *halting_phi,
d1de0ec2 1315 tree *evolution_of_loop, int limit)
c2c3fd24 1316{
1317 struct loop *loop = loop_containing_stmt (loop_phi_node);
1318 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1319
1320 /* Sometimes, the inner loop is too difficult to analyze, and the
1321 result of the analysis is a symbolic parameter. */
1322 if (ev == PHI_RESULT (loop_phi_node))
1323 {
d1de0ec2 1324 t_bool res = t_false;
75a70cf9 1325 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1326
75a70cf9 1327 for (i = 0; i < n; i++)
c2c3fd24 1328 {
1329 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1330 basic_block bb;
1331
1332 /* Follow the edges that exit the inner loop. */
75a70cf9 1333 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1334 if (!flow_bb_inside_loop_p (loop, bb))
75a70cf9 1335 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1336 arg, halting_phi,
1337 evolution_of_loop, limit);
d1de0ec2 1338 if (res == t_true)
1339 break;
c2c3fd24 1340 }
1341
1342 /* If the path crosses this loop-phi, give up. */
d1de0ec2 1343 if (res == t_true)
c2c3fd24 1344 *evolution_of_loop = chrec_dont_know;
1345
1346 return res;
1347 }
1348
1349 /* Otherwise, compute the overall effect of the inner loop. */
1350 ev = compute_overall_effect_of_inner_loop (loop, ev);
75a70cf9 1351 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1352 evolution_of_loop, limit);
c2c3fd24 1353}
1354
1355/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1356 path that is analyzed on the return walk. */
1357
d1de0ec2 1358static t_bool
42acab1c 1359follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi,
d1de0ec2 1360 tree *evolution_of_loop, int limit)
c2c3fd24 1361{
1362 struct loop *def_loop;
48e1416a 1363
75a70cf9 1364 if (gimple_nop_p (def))
d1de0ec2 1365 return t_false;
48e1416a 1366
d1de0ec2 1367 /* Give up if the path is longer than the MAX that we allow. */
99df7432 1368 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
d1de0ec2 1369 return t_dont_know;
48e1416a 1370
c2c3fd24 1371 def_loop = loop_containing_stmt (def);
48e1416a 1372
75a70cf9 1373 switch (gimple_code (def))
c2c3fd24 1374 {
75a70cf9 1375 case GIMPLE_PHI:
c2c3fd24 1376 if (!loop_phi_node_p (def))
1377 /* DEF is a condition-phi-node. Follow the branches, and
1378 record their evolutions. Finally, merge the collected
1379 information and set the approximation to the main
1380 variable. */
48e1416a 1381 return follow_ssa_edge_in_condition_phi
1a91d914 1382 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1383 limit);
c2c3fd24 1384
1385 /* When the analyzed phi is the halting_phi, the
1386 depth-first search is over: we have found a path from
1387 the halting_phi to itself in the loop. */
1388 if (def == halting_phi)
d1de0ec2 1389 return t_true;
48e1416a 1390
c2c3fd24 1391 /* Otherwise, the evolution of the HALTING_PHI depends
5c9dae64 1392 on the evolution of another loop-phi-node, i.e. the
c2c3fd24 1393 evolution function is a higher degree polynomial. */
1394 if (def_loop == loop)
d1de0ec2 1395 return t_false;
48e1416a 1396
c2c3fd24 1397 /* Inner loop. */
1398 if (flow_loop_nested_p (loop, def_loop))
48e1416a 1399 return follow_ssa_edge_inner_loop_phi
1a91d914 1400 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1401 limit + 1);
c2c3fd24 1402
1403 /* Outer loop. */
d1de0ec2 1404 return t_false;
c2c3fd24 1405
75a70cf9 1406 case GIMPLE_ASSIGN:
48e1416a 1407 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
d1de0ec2 1408 evolution_of_loop, limit);
48e1416a 1409
c2c3fd24 1410 default:
1411 /* At this level of abstraction, the program is just a set
75a70cf9 1412 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
c2c3fd24 1413 other node to be handled. */
d1de0ec2 1414 return t_false;
c2c3fd24 1415 }
1416}
1417
1418\f
c03531c4 1419/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1420 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1421
1422 # i_17 = PHI <i_13(5), 0(3)>
1423 # _20 = PHI <_5(5), start_4(D)(3)>
1424 ...
1425 i_13 = i_17 + 1;
1426 _5 = start_4(D) + i_13;
1427
1428 Though variable _20 appears as a PEELED_CHREC in the form of
1429 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1430
1431 See PR41488. */
1432
1433static tree
1434simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond)
1435{
1436 aff_tree aff1, aff2;
1437 tree ev, left, right, type, step_val;
5f8841a5 1438 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
c03531c4 1439
1440 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1441 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1442 return chrec_dont_know;
1443
1444 left = CHREC_LEFT (ev);
1445 right = CHREC_RIGHT (ev);
1446 type = TREE_TYPE (left);
1447 step_val = chrec_fold_plus (type, init_cond, right);
1448
1449 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1450 if "left" equals to "init + right". */
1451 if (operand_equal_p (left, step_val, 0))
1452 {
1453 if (dump_file && (dump_flags & TDF_SCEV))
1454 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1455
1456 return build_polynomial_chrec (loop->num, init_cond, right);
1457 }
1458
69485abe 1459 /* The affine code only deals with pointer and integer types. */
1460 if (!POINTER_TYPE_P (type)
1461 && !INTEGRAL_TYPE_P (type))
1462 return chrec_dont_know;
1463
c03531c4 1464 /* Try harder to check if they are equal. */
1465 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1466 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1467 free_affine_expand_cache (&peeled_chrec_map);
a2d59721 1468 aff_combination_scale (&aff2, -1);
c03531c4 1469 aff_combination_add (&aff1, &aff2);
1470
1471 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1472 if "left" equals to "init + right". */
1473 if (aff_combination_zero_p (&aff1))
1474 {
1475 if (dump_file && (dump_flags & TDF_SCEV))
1476 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1477
1478 return build_polynomial_chrec (loop->num, init_cond, right);
1479 }
1480 return chrec_dont_know;
1481}
c2c3fd24 1482
1483/* Given a LOOP_PHI_NODE, this function determines the evolution
1484 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1485
1486static tree
1a91d914 1487analyze_evolution_in_loop (gphi *loop_phi_node,
c2c3fd24 1488 tree init_cond)
1489{
75a70cf9 1490 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1491 tree evolution_function = chrec_not_analyzed_yet;
1492 struct loop *loop = loop_containing_stmt (loop_phi_node);
1493 basic_block bb;
c03531c4 1494 static bool simplify_peeled_chrec_p = true;
48e1416a 1495
487a9bc1 1496 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1497 {
1498 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1499 fprintf (dump_file, " (loop_phi_node = ");
1ffa4346 1500 print_gimple_stmt (dump_file, loop_phi_node, 0);
c2c3fd24 1501 fprintf (dump_file, ")\n");
1502 }
48e1416a 1503
75a70cf9 1504 for (i = 0; i < n; i++)
c2c3fd24 1505 {
1506 tree arg = PHI_ARG_DEF (loop_phi_node, i);
42acab1c 1507 gimple *ssa_chain;
75a70cf9 1508 tree ev_fn;
1aa768f0 1509 t_bool res;
c2c3fd24 1510
1511 /* Select the edges that enter the loop body. */
75a70cf9 1512 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1513 if (!flow_bb_inside_loop_p (loop, bb))
1514 continue;
8da11536 1515
c2c3fd24 1516 if (TREE_CODE (arg) == SSA_NAME)
1517 {
8da11536 1518 bool val = false;
1519
c2c3fd24 1520 ssa_chain = SSA_NAME_DEF_STMT (arg);
1521
1522 /* Pass in the initial condition to the follow edge function. */
1523 ev_fn = init_cond;
d1de0ec2 1524 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
8da11536 1525
1526 /* If ev_fn has no evolution in the inner loop, and the
1527 init_cond is not equal to ev_fn, then we have an
1528 ambiguity between two possible values, as we cannot know
1529 the number of iterations at this point. */
1530 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1531 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1532 && !operand_equal_p (init_cond, ev_fn, 0))
1533 ev_fn = chrec_dont_know;
c2c3fd24 1534 }
1535 else
1aa768f0 1536 res = t_false;
8da11536 1537
c2c3fd24 1538 /* When it is impossible to go back on the same
1539 loop_phi_node by following the ssa edges, the
5c9dae64 1540 evolution is represented by a peeled chrec, i.e. the
c2c3fd24 1541 first iteration, EV_FN has the value INIT_COND, then
48e1416a 1542 all the other iterations it has the value of ARG.
c2c3fd24 1543 For the moment, PEELED_CHREC nodes are not built. */
1aa768f0 1544 if (res != t_true)
c03531c4 1545 {
1546 ev_fn = chrec_dont_know;
1547 /* Try to recognize POLYNOMIAL_CHREC which appears in
1548 the form of PEELED_CHREC, but guard the process with
1549 a bool variable to keep the analyzer from infinite
1550 recurrence for real PEELED_RECs. */
1551 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1552 {
1553 simplify_peeled_chrec_p = false;
1554 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1555 simplify_peeled_chrec_p = true;
1556 }
1557 }
48e1416a 1558
c2c3fd24 1559 /* When there are multiple back edges of the loop (which in fact never
fbf0afd1 1560 happens currently, but nevertheless), merge their evolutions. */
c2c3fd24 1561 evolution_function = chrec_merge (evolution_function, ev_fn);
81cf35e4 1562
1563 if (evolution_function == chrec_dont_know)
1564 break;
c2c3fd24 1565 }
48e1416a 1566
487a9bc1 1567 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1568 {
1569 fprintf (dump_file, " (evolution_function = ");
1ffa4346 1570 print_generic_expr (dump_file, evolution_function);
c2c3fd24 1571 fprintf (dump_file, "))\n");
1572 }
48e1416a 1573
c2c3fd24 1574 return evolution_function;
1575}
1576
c45a20be 1577/* Looks to see if VAR is a copy of a constant (via straightforward assignments
1578 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1579
1580static tree
1581follow_copies_to_constant (tree var)
1582{
1583 tree res = var;
307f73ba 1584 while (TREE_CODE (res) == SSA_NAME
1585 /* We face not updated SSA form in multiple places and this walk
1586 may end up in sibling loops so we have to guard it. */
1587 && !name_registered_for_update_p (res))
c45a20be 1588 {
1589 gimple *def = SSA_NAME_DEF_STMT (res);
1590 if (gphi *phi = dyn_cast <gphi *> (def))
1591 {
1592 if (tree rhs = degenerate_phi_result (phi))
1593 res = rhs;
1594 else
1595 break;
1596 }
1597 else if (gimple_assign_single_p (def))
1598 /* Will exit loop if not an SSA_NAME. */
1599 res = gimple_assign_rhs1 (def);
1600 else
1601 break;
1602 }
1603 if (CONSTANT_CLASS_P (res))
1604 return res;
1605 return var;
1606}
1607
c2c3fd24 1608/* Given a loop-phi-node, return the initial conditions of the
1609 variable on entry of the loop. When the CCP has propagated
1610 constants into the loop-phi-node, the initial condition is
1611 instantiated, otherwise the initial condition is kept symbolic.
1612 This analyzer does not analyze the evolution outside the current
1613 loop, and leaves this task to the on-demand tree reconstructor. */
1614
48e1416a 1615static tree
1a91d914 1616analyze_initial_condition (gphi *loop_phi_node)
c2c3fd24 1617{
75a70cf9 1618 int i, n;
c2c3fd24 1619 tree init_cond = chrec_not_analyzed_yet;
75a70cf9 1620 struct loop *loop = loop_containing_stmt (loop_phi_node);
48e1416a 1621
487a9bc1 1622 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1623 {
1624 fprintf (dump_file, "(analyze_initial_condition \n");
1625 fprintf (dump_file, " (loop_phi_node = \n");
1ffa4346 1626 print_gimple_stmt (dump_file, loop_phi_node, 0);
c2c3fd24 1627 fprintf (dump_file, ")\n");
1628 }
48e1416a 1629
75a70cf9 1630 n = gimple_phi_num_args (loop_phi_node);
1631 for (i = 0; i < n; i++)
c2c3fd24 1632 {
1633 tree branch = PHI_ARG_DEF (loop_phi_node, i);
75a70cf9 1634 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
48e1416a 1635
c2c3fd24 1636 /* When the branch is oriented to the loop's body, it does
1637 not contribute to the initial condition. */
1638 if (flow_bb_inside_loop_p (loop, bb))
1639 continue;
1640
1641 if (init_cond == chrec_not_analyzed_yet)
1642 {
1643 init_cond = branch;
1644 continue;
1645 }
1646
1647 if (TREE_CODE (branch) == SSA_NAME)
1648 {
1649 init_cond = chrec_dont_know;
1650 break;
1651 }
1652
1653 init_cond = chrec_merge (init_cond, branch);
1654 }
1655
1656 /* Ooops -- a loop without an entry??? */
1657 if (init_cond == chrec_not_analyzed_yet)
1658 init_cond = chrec_dont_know;
1659
c45a20be 1660 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1661 to not miss important early loop unrollings. */
1662 init_cond = follow_copies_to_constant (init_cond);
ac9b13de 1663
487a9bc1 1664 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1665 {
1666 fprintf (dump_file, " (init_cond = ");
1ffa4346 1667 print_generic_expr (dump_file, init_cond);
c2c3fd24 1668 fprintf (dump_file, "))\n");
1669 }
48e1416a 1670
c2c3fd24 1671 return init_cond;
1672}
1673
1674/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1675
48e1416a 1676static tree
1a91d914 1677interpret_loop_phi (struct loop *loop, gphi *loop_phi_node)
c2c3fd24 1678{
1679 tree res;
1680 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1681 tree init_cond;
48e1416a 1682
f1528ccd 1683 gcc_assert (phi_loop == loop);
c2c3fd24 1684
1685 /* Otherwise really interpret the loop phi. */
1686 init_cond = analyze_initial_condition (loop_phi_node);
1687 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1688
ce00c150 1689 /* Verify we maintained the correct initial condition throughout
1690 possible conversions in the SSA chain. */
1691 if (res != chrec_dont_know)
1692 {
1693 tree new_init = res;
1694 if (CONVERT_EXPR_P (res)
1695 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1696 new_init = fold_convert (TREE_TYPE (res),
1697 CHREC_LEFT (TREE_OPERAND (res, 0)));
1698 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1699 new_init = CHREC_LEFT (res);
1700 STRIP_USELESS_TYPE_CONVERSION (new_init);
7624240a 1701 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1702 || !operand_equal_p (init_cond, new_init, 0))
ce00c150 1703 return chrec_dont_know;
1704 }
1705
c2c3fd24 1706 return res;
1707}
1708
1709/* This function merges the branches of a condition-phi-node,
1710 contained in the outermost loop, and whose arguments are already
1711 analyzed. */
1712
1713static tree
1a91d914 1714interpret_condition_phi (struct loop *loop, gphi *condition_phi)
c2c3fd24 1715{
75a70cf9 1716 int i, n = gimple_phi_num_args (condition_phi);
c2c3fd24 1717 tree res = chrec_not_analyzed_yet;
48e1416a 1718
75a70cf9 1719 for (i = 0; i < n; i++)
c2c3fd24 1720 {
1721 tree branch_chrec;
48e1416a 1722
c2c3fd24 1723 if (backedge_phi_arg_p (condition_phi, i))
1724 {
1725 res = chrec_dont_know;
1726 break;
1727 }
1728
1729 branch_chrec = analyze_scalar_evolution
1730 (loop, PHI_ARG_DEF (condition_phi, i));
48e1416a 1731
c2c3fd24 1732 res = chrec_merge (res, branch_chrec);
81cf35e4 1733 if (res == chrec_dont_know)
1734 break;
c2c3fd24 1735 }
1736
1737 return res;
1738}
1739
75a70cf9 1740/* Interpret the operation RHS1 OP RHS2. If we didn't
0b94b8c8 1741 analyze this node before, follow the definitions until ending
75a70cf9 1742 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
c2c3fd24 1743 return path, this function propagates evolutions (ala constant copy
1744 propagation). OPND1 is not a GIMPLE expression because we could
1745 analyze the effect of an inner loop: see interpret_loop_phi. */
1746
1747static tree
42acab1c 1748interpret_rhs_expr (struct loop *loop, gimple *at_stmt,
75a70cf9 1749 tree type, tree rhs1, enum tree_code code, tree rhs2)
c2c3fd24 1750{
596070e8 1751 tree res, chrec1, chrec2, ctype;
42acab1c 1752 gimple *def;
75a70cf9 1753
1754 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1755 {
1756 if (is_gimple_min_invariant (rhs1))
1757 return chrec_convert (type, rhs1, at_stmt);
1758
1759 if (code == SSA_NAME)
1760 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1761 at_stmt);
b3786ab3 1762
75a70cf9 1763 if (code == ASSERT_EXPR)
1764 {
1765 rhs1 = ASSERT_EXPR_VAR (rhs1);
1766 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1767 at_stmt);
1768 }
75a70cf9 1769 }
b3786ab3 1770
75a70cf9 1771 switch (code)
c2c3fd24 1772 {
1214c397 1773 case ADDR_EXPR:
62bc06ea 1774 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1775 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1776 {
3754d046 1777 machine_mode mode;
81bc0f0f 1778 poly_int64 bitsize, bitpos;
292237f3 1779 int unsignedp, reversep;
62bc06ea 1780 int volatilep = 0;
1781 tree base, offset;
1782 tree chrec3;
1783 tree unitpos;
1784
1785 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
292237f3 1786 &bitsize, &bitpos, &offset, &mode,
b3b6e4b5 1787 &unsignedp, &reversep, &volatilep);
62bc06ea 1788
1789 if (TREE_CODE (base) == MEM_REF)
1790 {
1791 rhs2 = TREE_OPERAND (base, 1);
1792 rhs1 = TREE_OPERAND (base, 0);
1793
1794 chrec1 = analyze_scalar_evolution (loop, rhs1);
1795 chrec2 = analyze_scalar_evolution (loop, rhs2);
1796 chrec1 = chrec_convert (type, chrec1, at_stmt);
1797 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1798 chrec1 = instantiate_parameters (loop, chrec1);
1799 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1800 res = chrec_fold_plus (type, chrec1, chrec2);
1801 }
1802 else
1803 {
1804 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1805 chrec1 = chrec_convert (type, chrec1, at_stmt);
1806 res = chrec1;
1807 }
1214c397 1808
62bc06ea 1809 if (offset != NULL_TREE)
1810 {
1811 chrec2 = analyze_scalar_evolution (loop, offset);
1812 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
32e31826 1813 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1814 res = chrec_fold_plus (type, res, chrec2);
1815 }
1816
81bc0f0f 1817 if (maybe_ne (bitpos, 0))
62bc06ea 1818 {
81bc0f0f 1819 unitpos = size_int (exact_div (bitpos, BITS_PER_UNIT));
62bc06ea 1820 chrec3 = analyze_scalar_evolution (loop, unitpos);
1821 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
32e31826 1822 chrec3 = instantiate_parameters (loop, chrec3);
62bc06ea 1823 res = chrec_fold_plus (type, res, chrec3);
1824 }
1825 }
1826 else
1827 res = chrec_dont_know;
1828 break;
1214c397 1829
0de36bdb 1830 case POINTER_PLUS_EXPR:
75a70cf9 1831 chrec1 = analyze_scalar_evolution (loop, rhs1);
1832 chrec2 = analyze_scalar_evolution (loop, rhs2);
1833 chrec1 = chrec_convert (type, chrec1, at_stmt);
a0553bff 1834 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1835 chrec1 = instantiate_parameters (loop, chrec1);
1836 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1837 res = chrec_fold_plus (type, chrec1, chrec2);
0de36bdb 1838 break;
1839
c2c3fd24 1840 case PLUS_EXPR:
75a70cf9 1841 chrec1 = analyze_scalar_evolution (loop, rhs1);
1842 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1843 ctype = type;
1844 /* When the stmt is conditionally executed re-write the CHREC
1845 into a form that has well-defined behavior on overflow. */
1846 if (at_stmt
1847 && INTEGRAL_TYPE_P (type)
1848 && ! TYPE_OVERFLOW_WRAPS (type)
1849 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1850 gimple_bb (at_stmt)))
1851 ctype = unsigned_type_for (type);
1852 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1853 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1854 chrec1 = instantiate_parameters (loop, chrec1);
1855 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1856 res = chrec_fold_plus (ctype, chrec1, chrec2);
1857 if (type != ctype)
1858 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1859 break;
48e1416a 1860
c2c3fd24 1861 case MINUS_EXPR:
75a70cf9 1862 chrec1 = analyze_scalar_evolution (loop, rhs1);
1863 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1864 ctype = type;
1865 /* When the stmt is conditionally executed re-write the CHREC
1866 into a form that has well-defined behavior on overflow. */
1867 if (at_stmt
1868 && INTEGRAL_TYPE_P (type)
1869 && ! TYPE_OVERFLOW_WRAPS (type)
1870 && ! dominated_by_p (CDI_DOMINATORS,
1871 loop->latch, gimple_bb (at_stmt)))
1872 ctype = unsigned_type_for (type);
1873 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1874 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1875 chrec1 = instantiate_parameters (loop, chrec1);
1876 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1877 res = chrec_fold_minus (ctype, chrec1, chrec2);
1878 if (type != ctype)
1879 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1880 break;
1881
1882 case NEGATE_EXPR:
75a70cf9 1883 chrec1 = analyze_scalar_evolution (loop, rhs1);
596070e8 1884 ctype = type;
1885 /* When the stmt is conditionally executed re-write the CHREC
1886 into a form that has well-defined behavior on overflow. */
1887 if (at_stmt
1888 && INTEGRAL_TYPE_P (type)
1889 && ! TYPE_OVERFLOW_WRAPS (type)
1890 && ! dominated_by_p (CDI_DOMINATORS,
1891 loop->latch, gimple_bb (at_stmt)))
1892 ctype = unsigned_type_for (type);
1893 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
560af66a 1894 /* TYPE may be integer, real or complex, so use fold_convert. */
32e31826 1895 chrec1 = instantiate_parameters (loop, chrec1);
596070e8 1896 res = chrec_fold_multiply (ctype, chrec1,
1897 fold_convert (ctype, integer_minus_one_node));
1898 if (type != ctype)
1899 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1900 break;
1901
b6eab06c 1902 case BIT_NOT_EXPR:
1903 /* Handle ~X as -1 - X. */
1904 chrec1 = analyze_scalar_evolution (loop, rhs1);
1905 chrec1 = chrec_convert (type, chrec1, at_stmt);
32e31826 1906 chrec1 = instantiate_parameters (loop, chrec1);
b6eab06c 1907 res = chrec_fold_minus (type,
1908 fold_convert (type, integer_minus_one_node),
1909 chrec1);
1910 break;
1911
c2c3fd24 1912 case MULT_EXPR:
75a70cf9 1913 chrec1 = analyze_scalar_evolution (loop, rhs1);
1914 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1915 ctype = type;
1916 /* When the stmt is conditionally executed re-write the CHREC
1917 into a form that has well-defined behavior on overflow. */
1918 if (at_stmt
1919 && INTEGRAL_TYPE_P (type)
1920 && ! TYPE_OVERFLOW_WRAPS (type)
1921 && ! dominated_by_p (CDI_DOMINATORS,
1922 loop->latch, gimple_bb (at_stmt)))
1923 ctype = unsigned_type_for (type);
1924 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1925 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1926 chrec1 = instantiate_parameters (loop, chrec1);
1927 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1928 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1929 if (type != ctype)
1930 res = chrec_convert (type, res, at_stmt);
88dbf20f 1931 break;
48e1416a 1932
7eef4085 1933 case LSHIFT_EXPR:
1934 {
1935 /* Handle A<<B as A * (1<<B). */
1936 tree uns = unsigned_type_for (type);
1937 chrec1 = analyze_scalar_evolution (loop, rhs1);
1938 chrec2 = analyze_scalar_evolution (loop, rhs2);
1939 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1940 chrec1 = instantiate_parameters (loop, chrec1);
1941 chrec2 = instantiate_parameters (loop, chrec2);
1942
1943 tree one = build_int_cst (uns, 1);
1944 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1945 res = chrec_fold_multiply (uns, chrec1, chrec2);
1946 res = chrec_convert (type, res, at_stmt);
1947 }
1948 break;
1949
72dd6141 1950 CASE_CONVERT:
3ef23449 1951 /* In case we have a truncation of a widened operation that in
1952 the truncated type has undefined overflow behavior analyze
1953 the operation done in an unsigned type of the same precision
1954 as the final truncation. We cannot derive a scalar evolution
1955 for the widened operation but for the truncated result. */
1956 if (TREE_CODE (type) == INTEGER_TYPE
1957 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1958 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1959 && TYPE_OVERFLOW_UNDEFINED (type)
1960 && TREE_CODE (rhs1) == SSA_NAME
1961 && (def = SSA_NAME_DEF_STMT (rhs1))
1962 && is_gimple_assign (def)
1963 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1964 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1965 {
1966 tree utype = unsigned_type_for (type);
1967 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1968 gimple_assign_rhs1 (def),
1969 gimple_assign_rhs_code (def),
1970 gimple_assign_rhs2 (def));
1971 }
1972 else
1973 chrec1 = analyze_scalar_evolution (loop, rhs1);
90261646 1974 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
c2c3fd24 1975 break;
4fb48737 1976
1977 case BIT_AND_EXPR:
1978 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1979 If A is SCEV and its value is in the range of representable set
1980 of type unsigned short, the result expression is a (no-overflow)
1981 SCEV. */
1982 res = chrec_dont_know;
1983 if (tree_fits_uhwi_p (rhs2))
1984 {
1985 int precision;
1986 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1987
1988 val ++;
1989 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1990 it's not the maximum value of a smaller type than rhs1. */
1991 if (val != 0
1992 && (precision = exact_log2 (val)) > 0
1993 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1994 {
1995 tree utype = build_nonstandard_integer_type (precision, 1);
1996
1997 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1998 {
1999 chrec1 = analyze_scalar_evolution (loop, rhs1);
2000 chrec1 = chrec_convert (utype, chrec1, at_stmt);
2001 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
2002 }
2003 }
2004 }
2005 break;
48e1416a 2006
c2c3fd24 2007 default:
2008 res = chrec_dont_know;
2009 break;
2010 }
48e1416a 2011
c2c3fd24 2012 return res;
2013}
2014
75a70cf9 2015/* Interpret the expression EXPR. */
2016
2017static tree
42acab1c 2018interpret_expr (struct loop *loop, gimple *at_stmt, tree expr)
75a70cf9 2019{
2020 enum tree_code code;
2021 tree type = TREE_TYPE (expr), op0, op1;
2022
2023 if (automatically_generated_chrec_p (expr))
2024 return expr;
2025
8a2caf10 2026 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
c71993fc 2027 || TREE_CODE (expr) == CALL_EXPR
8a2caf10 2028 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
75a70cf9 2029 return chrec_dont_know;
2030
2031 extract_ops_from_tree (expr, &code, &op0, &op1);
2032
2033 return interpret_rhs_expr (loop, at_stmt, type,
2034 op0, code, op1);
2035}
2036
2037/* Interpret the rhs of the assignment STMT. */
2038
2039static tree
42acab1c 2040interpret_gimple_assign (struct loop *loop, gimple *stmt)
75a70cf9 2041{
2042 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2043 enum tree_code code = gimple_assign_rhs_code (stmt);
2044
2045 return interpret_rhs_expr (loop, stmt, type,
2046 gimple_assign_rhs1 (stmt), code,
2047 gimple_assign_rhs2 (stmt));
2048}
2049
c2c3fd24 2050\f
2051
48e1416a 2052/* This section contains all the entry points:
c2c3fd24 2053 - number_of_iterations_in_loop,
2054 - analyze_scalar_evolution,
2055 - instantiate_parameters.
2056*/
2057
c2c3fd24 2058/* Helper recursive function. */
2059
2060static tree
c3f8ce55 2061analyze_scalar_evolution_1 (struct loop *loop, tree var)
c2c3fd24 2062{
42acab1c 2063 gimple *def;
c2c3fd24 2064 basic_block bb;
2065 struct loop *def_loop;
c3f8ce55 2066 tree res;
c2c3fd24 2067
c2c3fd24 2068 if (TREE_CODE (var) != SSA_NAME)
75a70cf9 2069 return interpret_expr (loop, NULL, var);
c2c3fd24 2070
2071 def = SSA_NAME_DEF_STMT (var);
75a70cf9 2072 bb = gimple_bb (def);
f1528ccd 2073 def_loop = bb->loop_father;
c2c3fd24 2074
f1528ccd 2075 if (!flow_bb_inside_loop_p (loop, bb))
c2c3fd24 2076 {
c45a20be 2077 /* Keep symbolic form, but look through obvious copies for constants. */
2078 res = follow_copies_to_constant (var);
c2c3fd24 2079 goto set_and_end;
2080 }
2081
c2c3fd24 2082 if (loop != def_loop)
2083 {
c3f8ce55 2084 res = analyze_scalar_evolution_1 (def_loop, var);
f1528ccd 2085 struct loop *loop_to_skip = superloop_at_depth (def_loop,
2086 loop_depth (loop) + 1);
2087 res = compute_overall_effect_of_inner_loop (loop_to_skip, res);
2088 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
2089 res = analyze_scalar_evolution_1 (loop, res);
c2c3fd24 2090 goto set_and_end;
2091 }
2092
75a70cf9 2093 switch (gimple_code (def))
c2c3fd24 2094 {
75a70cf9 2095 case GIMPLE_ASSIGN:
2096 res = interpret_gimple_assign (loop, def);
c2c3fd24 2097 break;
2098
75a70cf9 2099 case GIMPLE_PHI:
c2c3fd24 2100 if (loop_phi_node_p (def))
1a91d914 2101 res = interpret_loop_phi (loop, as_a <gphi *> (def));
c2c3fd24 2102 else
1a91d914 2103 res = interpret_condition_phi (loop, as_a <gphi *> (def));
c2c3fd24 2104 break;
2105
2106 default:
2107 res = chrec_dont_know;
2108 break;
2109 }
2110
2111 set_and_end:
2112
2113 /* Keep the symbolic form. */
2114 if (res == chrec_dont_know)
2115 res = var;
2116
2117 if (loop == def_loop)
089aa668 2118 set_scalar_evolution (block_before_loop (loop), var, res);
c2c3fd24 2119
2120 return res;
2121}
2122
8b7d09b4 2123/* Analyzes and returns the scalar evolution of the ssa_name VAR in
2124 LOOP. LOOP is the loop in which the variable is used.
48e1416a 2125
c2c3fd24 2126 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2127 pointer to the statement that uses this variable, in order to
2128 determine the evolution function of the variable, use the following
2129 calls:
48e1416a 2130
8b7d09b4 2131 loop_p loop = loop_containing_stmt (stmt);
2132 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
afd80ffb 2133 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
c2c3fd24 2134*/
2135
48e1416a 2136tree
c2c3fd24 2137analyze_scalar_evolution (struct loop *loop, tree var)
2138{
2139 tree res;
2140
453841f9 2141 /* ??? Fix callers. */
2142 if (! loop)
2143 return var;
2144
487a9bc1 2145 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2146 {
2147 fprintf (dump_file, "(analyze_scalar_evolution \n");
2148 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2149 fprintf (dump_file, " (scalar = ");
1ffa4346 2150 print_generic_expr (dump_file, var);
c2c3fd24 2151 fprintf (dump_file, ")\n");
2152 }
2153
089aa668 2154 res = get_scalar_evolution (block_before_loop (loop), var);
c3f8ce55 2155 if (res == chrec_not_analyzed_yet)
b02075cf 2156 {
2157 /* We'll recurse into instantiate_scev, avoid tearing down the
2158 instantiate cache repeatedly and keep it live from here. */
2159 bool destr = false;
2160 if (!global_cache)
2161 {
2162 global_cache = new instantiate_cache_type;
2163 destr = true;
2164 }
2165 res = analyze_scalar_evolution_1 (loop, var);
2166 if (destr)
2167 {
2168 delete global_cache;
2169 global_cache = NULL;
2170 }
2171 }
c2c3fd24 2172
487a9bc1 2173 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2174 fprintf (dump_file, ")\n");
2175
2176 return res;
2177}
2178
62bc06ea 2179/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2180
2181static tree
2182analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
2183{
2184 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2185}
2186
c2c3fd24 2187/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
76610704 2188 WRTO_LOOP (which should be a superloop of USE_LOOP)
553b9523 2189
2190 FOLDED_CASTS is set to true if resolve_mixers used
2191 chrec_convert_aggressive (TODO -- not really, we are way too conservative
48e1416a 2192 at the moment in order to keep things simple).
2193
76610704 2194 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2195 example:
2196
2197 for (i = 0; i < 100; i++) -- loop 1
2198 {
2199 for (j = 0; j < 100; j++) -- loop 2
2200 {
2201 k1 = i;
2202 k2 = j;
2203
2204 use2 (k1, k2);
2205
2206 for (t = 0; t < 100; t++) -- loop 3
2207 use3 (k1, k2);
2208
2209 }
2210 use1 (k1, k2);
2211 }
2212
2213 Both k1 and k2 are invariants in loop3, thus
2214 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2215 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2216
2217 As they are invariant, it does not matter whether we consider their
2218 usage in loop 3 or loop 2, hence
2219 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2220 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2221 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2222 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2223
2224 Similarly for their evolutions with respect to loop 1. The values of K2
2225 in the use in loop 2 vary independently on loop 1, thus we cannot express
2226 the evolution with respect to loop 1:
2227 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2228 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2229 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2230 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2231
2232 The value of k2 in the use in loop 1 is known, though:
2233 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2234 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2235 */
c2c3fd24 2236
2237static tree
2238analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
553b9523 2239 tree version, bool *folded_casts)
c2c3fd24 2240{
2241 bool val = false;
553b9523 2242 tree ev = version, tmp;
c2c3fd24 2243
48e1416a 2244 /* We cannot just do
76610704 2245
2246 tmp = analyze_scalar_evolution (use_loop, version);
5fe66b3c 2247 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
76610704 2248
2249 as resolve_mixers would query the scalar evolution with respect to
2250 wrto_loop. For example, in the situation described in the function
2251 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2252 version = k2. Then
2253
2254 analyze_scalar_evolution (use_loop, version) = k2
2255
5fe66b3c 2256 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2257 k2 in loop 1 is 100, which is a wrong result, since we are interested
2258 in the value in loop 3.
76610704 2259
2260 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2261 each time checking that there is no evolution in the inner loop. */
2262
553b9523 2263 if (folded_casts)
2264 *folded_casts = false;
c2c3fd24 2265 while (1)
2266 {
553b9523 2267 tmp = analyze_scalar_evolution (use_loop, ev);
5fe66b3c 2268 ev = resolve_mixers (use_loop, tmp, folded_casts);
c2c3fd24 2269
2270 if (use_loop == wrto_loop)
2271 return ev;
2272
2273 /* If the value of the use changes in the inner loop, we cannot express
2274 its value in the outer loop (we might try to return interval chrec,
2275 but we do not have a user for it anyway) */
2276 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2277 || !val)
2278 return chrec_dont_know;
2279
9e3536f4 2280 use_loop = loop_outer (use_loop);
c2c3fd24 2281 }
2282}
2283
15a951ca 2284
cbb69ef1 2285/* Computes a hash function for database element ELT. */
2286
2287static inline hashval_t
2288hash_idx_scev_info (const void *elt_)
2289{
2290 unsigned idx = ((size_t) elt_) - 2;
9f9f871f 2291 return scev_info_hasher::hash (&global_cache->entries[idx]);
cbb69ef1 2292}
2293
2294/* Compares database elements E1 and E2. */
2295
2296static inline int
2297eq_idx_scev_info (const void *e1, const void *e2)
2298{
2299 unsigned idx1 = ((size_t) e1) - 2;
9f9f871f 2300 return scev_info_hasher::equal (&global_cache->entries[idx1],
2301 (const scev_info_str *) e2);
cbb69ef1 2302}
2303
32e31826 2304/* Returns from CACHE the slot number of the cached chrec for NAME. */
e23d3784 2305
32e31826 2306static unsigned
cbb69ef1 2307get_instantiated_value_entry (instantiate_cache_type &cache,
453841f9 2308 tree name, edge instantiate_below)
e23d3784 2309{
32e31826 2310 if (!cache.map)
e23d3784 2311 {
cbb69ef1 2312 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
e23d3784 2313 cache.entries.create (10);
2314 }
48e1416a 2315
cbb69ef1 2316 scev_info_str e;
2317 e.name_version = SSA_NAME_VERSION (name);
453841f9 2318 e.instantiated_below = instantiate_below->dest->index;
cbb69ef1 2319 void **slot = htab_find_slot_with_hash (cache.map, &e,
9f9f871f 2320 scev_info_hasher::hash (&e), INSERT);
cbb69ef1 2321 if (!*slot)
e23d3784 2322 {
2323 e.chrec = chrec_not_analyzed_yet;
cbb69ef1 2324 *slot = (void *)(size_t)(cache.entries.length () + 2);
e23d3784 2325 cache.entries.safe_push (e);
e23d3784 2326 }
2327
cbb69ef1 2328 return ((size_t)*slot) - 2;
15a951ca 2329}
2330
32e31826 2331
9887dd18 2332/* Return the closed_loop_phi node for VAR. If there is none, return
2333 NULL_TREE. */
2334
2335static tree
2336loop_closed_phi_def (tree var)
2337{
2338 struct loop *loop;
2339 edge exit;
1a91d914 2340 gphi *phi;
2341 gphi_iterator psi;
9887dd18 2342
2343 if (var == NULL_TREE
2344 || TREE_CODE (var) != SSA_NAME)
2345 return NULL_TREE;
2346
2347 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
d9e7e1a2 2348 exit = single_exit (loop);
9887dd18 2349 if (!exit)
2350 return NULL_TREE;
2351
75a70cf9 2352 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2353 {
1a91d914 2354 phi = psi.phi ();
75a70cf9 2355 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2356 return PHI_RESULT (phi);
2357 }
9887dd18 2358
2359 return NULL_TREE;
2360}
2361
453841f9 2362static tree instantiate_scev_r (edge, struct loop *, struct loop *,
5fe66b3c 2363 tree, bool *, int);
0731d869 2364
2365/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2366 and EVOLUTION_LOOP, that were left under a symbolic form.
2367
5e803fbe 2368 CHREC is an SSA_NAME to be instantiated.
0731d869 2369
2370 CACHE is the cache of already instantiated values.
2371
5fe66b3c 2372 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2373 conversions that may wrap in signed/pointer type are folded, as long
2374 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2375 then we don't do such fold.
0731d869 2376
2377 SIZE_EXPR is used for computing the size of the expression to be
2378 instantiated, and to stop if it exceeds some limit. */
2379
2380static tree
453841f9 2381instantiate_scev_name (edge instantiate_below,
6ee802ad 2382 struct loop *evolution_loop, struct loop *inner_loop,
2383 tree chrec,
5fe66b3c 2384 bool *fold_conversions,
d9dd21a8 2385 int size_expr)
0731d869 2386{
5e803fbe 2387 tree res;
2388 struct loop *def_loop;
2389 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
c43f1e90 2390
44e2f332 2391 /* A parameter, nothing to do. */
5e803fbe 2392 if (!def_bb
44e2f332 2393 || !dominated_by_p (CDI_DOMINATORS, def_bb, instantiate_below->dest))
5e803fbe 2394 return chrec;
c43f1e90 2395
5e803fbe 2396 /* We cache the value of instantiated variable to avoid exponential
2397 time complexity due to reevaluations. We also store the convenient
2398 value in the cache in order to prevent infinite recursion -- we do
2399 not want to instantiate the SSA_NAME if it is in a mixer
2400 structure. This is used for avoiding the instantiation of
2401 recursively defined functions, such as:
0731d869 2402
5e803fbe 2403 | a_2 -> {0, +, 1, +, a_2}_1 */
c43f1e90 2404
cbb69ef1 2405 unsigned si = get_instantiated_value_entry (*global_cache,
2406 chrec, instantiate_below);
32e31826 2407 if (global_cache->get (si) != chrec_not_analyzed_yet)
2408 return global_cache->get (si);
c43f1e90 2409
e23d3784 2410 /* On recursion return chrec_dont_know. */
32e31826 2411 global_cache->set (si, chrec_dont_know);
0731d869 2412
5e803fbe 2413 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2414
453841f9 2415 if (! dominated_by_p (CDI_DOMINATORS,
2416 def_loop->header, instantiate_below->dest))
2417 {
2418 gimple *def = SSA_NAME_DEF_STMT (chrec);
2419 if (gassign *ass = dyn_cast <gassign *> (def))
2420 {
2421 switch (gimple_assign_rhs_class (ass))
2422 {
2423 case GIMPLE_UNARY_RHS:
2424 {
2425 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2426 inner_loop, gimple_assign_rhs1 (ass),
2427 fold_conversions, size_expr);
2428 if (op0 == chrec_dont_know)
2429 return chrec_dont_know;
2430 res = fold_build1 (gimple_assign_rhs_code (ass),
2431 TREE_TYPE (chrec), op0);
2432 break;
2433 }
2434 case GIMPLE_BINARY_RHS:
2435 {
2436 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2437 inner_loop, gimple_assign_rhs1 (ass),
2438 fold_conversions, size_expr);
2439 if (op0 == chrec_dont_know)
2440 return chrec_dont_know;
2441 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2442 inner_loop, gimple_assign_rhs2 (ass),
2443 fold_conversions, size_expr);
2444 if (op1 == chrec_dont_know)
2445 return chrec_dont_know;
2446 res = fold_build2 (gimple_assign_rhs_code (ass),
2447 TREE_TYPE (chrec), op0, op1);
2448 break;
2449 }
2450 default:
2451 res = chrec_dont_know;
2452 }
2453 }
2454 else
2455 res = chrec_dont_know;
2456 global_cache->set (si, res);
2457 return res;
2458 }
2459
0731d869 2460 /* If the analysis yields a parametric chrec, instantiate the
2461 result again. */
2462 res = analyze_scalar_evolution (def_loop, chrec);
2463
52f57b4e 2464 /* Don't instantiate default definitions. */
0731d869 2465 if (TREE_CODE (res) == SSA_NAME
52f57b4e 2466 && SSA_NAME_IS_DEFAULT_DEF (res))
2467 ;
2468
2469 /* Don't instantiate loop-closed-ssa phi nodes. */
2470 else if (TREE_CODE (res) == SSA_NAME
2471 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2472 > loop_depth (def_loop))
0731d869 2473 {
2474 if (res == chrec)
2475 res = loop_closed_phi_def (chrec);
2476 else
2477 res = chrec;
2478
dfeb6545 2479 /* When there is no loop_closed_phi_def, it means that the
2480 variable is not used after the loop: try to still compute the
2481 value of the variable when exiting the loop. */
2482 if (res == NULL_TREE)
2483 {
2484 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2485 res = analyze_scalar_evolution (loop, chrec);
2486 res = compute_overall_effect_of_inner_loop (loop, res);
6ee802ad 2487 res = instantiate_scev_r (instantiate_below, evolution_loop,
2488 inner_loop, res,
32e31826 2489 fold_conversions, size_expr);
dfeb6545 2490 }
453841f9 2491 else if (dominated_by_p (CDI_DOMINATORS,
2492 gimple_bb (SSA_NAME_DEF_STMT (res)),
2493 instantiate_below->dest))
0731d869 2494 res = chrec_dont_know;
2495 }
2496
2497 else if (res != chrec_dont_know)
6ee802ad 2498 {
2499 if (inner_loop
0c763224 2500 && def_bb->loop_father != inner_loop
6ee802ad 2501 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2502 /* ??? We could try to compute the overall effect of the loop here. */
2503 res = chrec_dont_know;
2504 else
2505 res = instantiate_scev_r (instantiate_below, evolution_loop,
2506 inner_loop, res,
32e31826 2507 fold_conversions, size_expr);
6ee802ad 2508 }
0731d869 2509
2510 /* Store the correct value to the cache. */
32e31826 2511 global_cache->set (si, res);
0731d869 2512 return res;
0731d869 2513}
2514
a819f845 2515/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2516 and EVOLUTION_LOOP, that were left under a symbolic form.
2517
2518 CHREC is a polynomial chain of recurrence to be instantiated.
2519
2520 CACHE is the cache of already instantiated values.
2521
5fe66b3c 2522 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2523 conversions that may wrap in signed/pointer type are folded, as long
2524 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2525 then we don't do such fold.
a819f845 2526
2527 SIZE_EXPR is used for computing the size of the expression to be
2528 instantiated, and to stop if it exceeds some limit. */
2529
2530static tree
453841f9 2531instantiate_scev_poly (edge instantiate_below,
6ee802ad 2532 struct loop *evolution_loop, struct loop *,
5fe66b3c 2533 tree chrec, bool *fold_conversions, int size_expr)
a819f845 2534{
2535 tree op1;
d91a99f1 2536 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2537 get_chrec_loop (chrec),
32e31826 2538 CHREC_LEFT (chrec), fold_conversions,
a819f845 2539 size_expr);
2540 if (op0 == chrec_dont_know)
2541 return chrec_dont_know;
2542
d91a99f1 2543 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2544 get_chrec_loop (chrec),
32e31826 2545 CHREC_RIGHT (chrec), fold_conversions,
a819f845 2546 size_expr);
2547 if (op1 == chrec_dont_know)
2548 return chrec_dont_know;
2549
2550 if (CHREC_LEFT (chrec) != op0
2551 || CHREC_RIGHT (chrec) != op1)
2552 {
2553 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
6ee802ad 2554 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
a819f845 2555 }
1d4dd1ed 2556
a819f845 2557 return chrec;
2558}
2559
5a10dfba 2560/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2561 and EVOLUTION_LOOP, that were left under a symbolic form.
2562
9e9aa0c6 2563 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
5a10dfba 2564
2565 CACHE is the cache of already instantiated values.
2566
5fe66b3c 2567 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2568 conversions that may wrap in signed/pointer type are folded, as long
2569 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2570 then we don't do such fold.
5a10dfba 2571
2572 SIZE_EXPR is used for computing the size of the expression to be
2573 instantiated, and to stop if it exceeds some limit. */
2574
2575static tree
453841f9 2576instantiate_scev_binary (edge instantiate_below,
6ee802ad 2577 struct loop *evolution_loop, struct loop *inner_loop,
2578 tree chrec, enum tree_code code,
9e9aa0c6 2579 tree type, tree c0, tree c1,
5fe66b3c 2580 bool *fold_conversions, int size_expr)
5a10dfba 2581{
2582 tree op1;
6ee802ad 2583 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
32e31826 2584 c0, fold_conversions, size_expr);
5a10dfba 2585 if (op0 == chrec_dont_know)
2586 return chrec_dont_know;
2587
b02075cf 2588 /* While we eventually compute the same op1 if c0 == c1 the process
2589 of doing this is expensive so the following short-cut prevents
2590 exponential compile-time behavior. */
2591 if (c0 != c1)
2592 {
2593 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2594 c1, fold_conversions, size_expr);
2595 if (op1 == chrec_dont_know)
2596 return chrec_dont_know;
2597 }
2598 else
2599 op1 = op0;
5a10dfba 2600
9e9aa0c6 2601 if (c0 != op0
2602 || c1 != op1)
5a10dfba 2603 {
5a10dfba 2604 op0 = chrec_convert (type, op0, NULL);
2605 op1 = chrec_convert_rhs (type, op1, NULL);
2606
9e9aa0c6 2607 switch (code)
5a10dfba 2608 {
2609 case POINTER_PLUS_EXPR:
2610 case PLUS_EXPR:
2611 return chrec_fold_plus (type, op0, op1);
2612
2613 case MINUS_EXPR:
2614 return chrec_fold_minus (type, op0, op1);
2615
2616 case MULT_EXPR:
2617 return chrec_fold_multiply (type, op0, op1);
2618
2619 default:
2620 gcc_unreachable ();
2621 }
2622 }
2623
9e9aa0c6 2624 return chrec ? chrec : fold_build2 (code, type, c0, c1);
5a10dfba 2625}
2626
089aa668 2627/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
7723692a 2628 and EVOLUTION_LOOP, that were left under a symbolic form.
2629
2630 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2631 instantiated.
2632
2633 CACHE is the cache of already instantiated values.
2634
5fe66b3c 2635 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2636 conversions that may wrap in signed/pointer type are folded, as long
2637 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2638 then we don't do such fold.
7723692a 2639
2640 SIZE_EXPR is used for computing the size of the expression to be
2641 instantiated, and to stop if it exceeds some limit. */
2642
2643static tree
453841f9 2644instantiate_scev_convert (edge instantiate_below,
6ee802ad 2645 struct loop *evolution_loop, struct loop *inner_loop,
32e31826 2646 tree chrec, tree type, tree op,
5fe66b3c 2647 bool *fold_conversions, int size_expr)
7723692a 2648{
6ee802ad 2649 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2650 inner_loop, op,
32e31826 2651 fold_conversions, size_expr);
7723692a 2652
2653 if (op0 == chrec_dont_know)
2654 return chrec_dont_know;
2655
2656 if (fold_conversions)
2657 {
5fe66b3c 2658 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
7723692a 2659 if (tmp)
2660 return tmp;
7723692a 2661
5fe66b3c 2662 /* If we used chrec_convert_aggressive, we can no longer assume that
2663 signed chrecs do not overflow, as chrec_convert does, so avoid
2664 calling it in that case. */
2665 if (*fold_conversions)
2666 {
2667 if (chrec && op0 == op)
2668 return chrec;
7723692a 2669
5fe66b3c 2670 return fold_convert (type, op0);
2671 }
2672 }
7723692a 2673
2674 return chrec_convert (type, op0, NULL);
2675}
2676
39251a91 2677/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2678 and EVOLUTION_LOOP, that were left under a symbolic form.
2679
9d206f16 2680 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
39251a91 2681 Handle ~X as -1 - X.
9d206f16 2682 Handle -X as -1 * X.
39251a91 2683
2684 CACHE is the cache of already instantiated values.
2685
5fe66b3c 2686 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2687 conversions that may wrap in signed/pointer type are folded, as long
2688 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2689 then we don't do such fold.
39251a91 2690
2691 SIZE_EXPR is used for computing the size of the expression to be
2692 instantiated, and to stop if it exceeds some limit. */
2693
2694static tree
453841f9 2695instantiate_scev_not (edge instantiate_below,
6ee802ad 2696 struct loop *evolution_loop, struct loop *inner_loop,
2697 tree chrec,
c43f1e90 2698 enum tree_code code, tree type, tree op,
5fe66b3c 2699 bool *fold_conversions, int size_expr)
39251a91 2700{
6ee802ad 2701 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2702 inner_loop, op,
32e31826 2703 fold_conversions, size_expr);
c43f1e90 2704
39251a91 2705 if (op0 == chrec_dont_know)
2706 return chrec_dont_know;
2707
c43f1e90 2708 if (op != op0)
39251a91 2709 {
2710 op0 = chrec_convert (type, op0, NULL);
9d206f16 2711
c43f1e90 2712 switch (code)
9d206f16 2713 {
2714 case BIT_NOT_EXPR:
2715 return chrec_fold_minus
2716 (type, fold_convert (type, integer_minus_one_node), op0);
2717
2718 case NEGATE_EXPR:
2719 return chrec_fold_multiply
2720 (type, fold_convert (type, integer_minus_one_node), op0);
2721
2722 default:
2723 gcc_unreachable ();
2724 }
39251a91 2725 }
9d206f16 2726
c43f1e90 2727 return chrec ? chrec : fold_build1 (code, type, op0);
39251a91 2728}
2729
d91a99f1 2730/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2731 and EVOLUTION_LOOP, that were left under a symbolic form.
2732
2733 CHREC is the scalar evolution to instantiate.
2734
2735 CACHE is the cache of already instantiated values.
88d02c9e 2736
5fe66b3c 2737 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2738 conversions that may wrap in signed/pointer type are folded, as long
2739 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2740 then we don't do such fold.
d91a99f1 2741
2742 SIZE_EXPR is used for computing the size of the expression to be
2743 instantiated, and to stop if it exceeds some limit. */
2744
2745static tree
453841f9 2746instantiate_scev_r (edge instantiate_below,
6ee802ad 2747 struct loop *evolution_loop, struct loop *inner_loop,
2748 tree chrec,
5fe66b3c 2749 bool *fold_conversions, int size_expr)
d91a99f1 2750{
8fb9f6fe 2751 /* Give up if the expression is larger than the MAX that we allow. */
2752 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2753 return chrec_dont_know;
2754
8491bc74 2755 if (chrec == NULL_TREE
2756 || automatically_generated_chrec_p (chrec)
903dae48 2757 || is_gimple_min_invariant (chrec))
c2c3fd24 2758 return chrec;
2759
2760 switch (TREE_CODE (chrec))
2761 {
2762 case SSA_NAME:
6ee802ad 2763 return instantiate_scev_name (instantiate_below, evolution_loop,
2764 inner_loop, chrec,
32e31826 2765 fold_conversions, size_expr);
c2c3fd24 2766
2767 case POLYNOMIAL_CHREC:
6ee802ad 2768 return instantiate_scev_poly (instantiate_below, evolution_loop,
2769 inner_loop, chrec,
32e31826 2770 fold_conversions, size_expr);
c2c3fd24 2771
0de36bdb 2772 case POINTER_PLUS_EXPR:
c2c3fd24 2773 case PLUS_EXPR:
c2c3fd24 2774 case MINUS_EXPR:
c2c3fd24 2775 case MULT_EXPR:
6ee802ad 2776 return instantiate_scev_binary (instantiate_below, evolution_loop,
2777 inner_loop, chrec,
9e9aa0c6 2778 TREE_CODE (chrec), chrec_type (chrec),
2779 TREE_OPERAND (chrec, 0),
2780 TREE_OPERAND (chrec, 1),
32e31826 2781 fold_conversions, size_expr);
c2c3fd24 2782
72dd6141 2783 CASE_CONVERT:
6ee802ad 2784 return instantiate_scev_convert (instantiate_below, evolution_loop,
2785 inner_loop, chrec,
7723692a 2786 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
32e31826 2787 fold_conversions, size_expr);
c2c3fd24 2788
9d206f16 2789 case NEGATE_EXPR:
b6eab06c 2790 case BIT_NOT_EXPR:
6ee802ad 2791 return instantiate_scev_not (instantiate_below, evolution_loop,
2792 inner_loop, chrec,
c43f1e90 2793 TREE_CODE (chrec), TREE_TYPE (chrec),
2794 TREE_OPERAND (chrec, 0),
32e31826 2795 fold_conversions, size_expr);
b6eab06c 2796
0d0cdcaa 2797 case ADDR_EXPR:
453841f9 2798 if (is_gimple_min_invariant (chrec))
2799 return chrec;
2800 /* Fallthru. */
c2c3fd24 2801 case SCEV_NOT_KNOWN:
2802 return chrec_dont_know;
2803
2804 case SCEV_KNOWN:
2805 return chrec_known;
5a10dfba 2806
c2c3fd24 2807 default:
453841f9 2808 if (CONSTANT_CLASS_P (chrec))
2809 return chrec;
2810 return chrec_dont_know;
c2c3fd24 2811 }
c2c3fd24 2812}
b9d73ea6 2813
2814/* Analyze all the parameters of the chrec that were left under a
089aa668 2815 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2816 recursive instantiation of parameters: a parameter is a variable
2817 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2818 a function parameter. */
b9d73ea6 2819
2820tree
453841f9 2821instantiate_scev (edge instantiate_below, struct loop *evolution_loop,
afd80ffb 2822 tree chrec)
b9d73ea6 2823{
c2c3fd24 2824 tree res;
2825
487a9bc1 2826 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2827 {
afd80ffb 2828 fprintf (dump_file, "(instantiate_scev \n");
453841f9 2829 fprintf (dump_file, " (instantiate_below = %d -> %d)\n",
2830 instantiate_below->src->index, instantiate_below->dest->index);
2831 if (evolution_loop)
2832 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
c2c3fd24 2833 fprintf (dump_file, " (chrec = ");
1ffa4346 2834 print_generic_expr (dump_file, chrec);
c2c3fd24 2835 fprintf (dump_file, ")\n");
2836 }
48e1416a 2837
32e31826 2838 bool destr = false;
2839 if (!global_cache)
2840 {
2841 global_cache = new instantiate_cache_type;
2842 destr = true;
2843 }
2844
6ee802ad 2845 res = instantiate_scev_r (instantiate_below, evolution_loop,
5fe66b3c 2846 NULL, chrec, NULL, 0);
32e31826 2847
2848 if (destr)
2849 {
2850 delete global_cache;
2851 global_cache = NULL;
2852 }
c2c3fd24 2853
487a9bc1 2854 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2855 {
2856 fprintf (dump_file, " (res = ");
1ffa4346 2857 print_generic_expr (dump_file, res);
c2c3fd24 2858 fprintf (dump_file, "))\n");
2859 }
15a951ca 2860
c2c3fd24 2861 return res;
2862}
2863
2864/* Similar to instantiate_parameters, but does not introduce the
88d02c9e 2865 evolutions in outer loops for LOOP invariants in CHREC, and does not
2866 care about causing overflows, as long as they do not affect value
2867 of an expression. */
c2c3fd24 2868
80bb306a 2869tree
5fe66b3c 2870resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts)
c2c3fd24 2871{
32e31826 2872 bool destr = false;
5fe66b3c 2873 bool fold_conversions = false;
32e31826 2874 if (!global_cache)
2875 {
2876 global_cache = new instantiate_cache_type;
2877 destr = true;
2878 }
2879
453841f9 2880 tree ret = instantiate_scev_r (loop_preheader_edge (loop), loop, NULL,
5fe66b3c 2881 chrec, &fold_conversions, 0);
2882
2883 if (folded_casts && !*folded_casts)
2884 *folded_casts = fold_conversions;
32e31826 2885
2886 if (destr)
2887 {
2888 delete global_cache;
2889 global_cache = NULL;
2890 }
2891
15a951ca 2892 return ret;
c2c3fd24 2893}
2894
48e1416a 2895/* Entry point for the analysis of the number of iterations pass.
c2c3fd24 2896 This function tries to safely approximate the number of iterations
2897 the loop will run. When this property is not decidable at compile
134c053e 2898 time, the result is chrec_dont_know. Otherwise the result is a
2899 scalar or a symbolic parameter. When the number of iterations may
2900 be equal to zero and the property cannot be determined at compile
2901 time, the result is a COND_EXPR that represents in a symbolic form
2902 the conditions under which the number of iterations is not zero.
48e1416a 2903
c2c3fd24 2904 Example of analysis: suppose that the loop has an exit condition:
48e1416a 2905
c2c3fd24 2906 "if (b > 49) goto end_loop;"
48e1416a 2907
c2c3fd24 2908 and that in a previous analysis we have determined that the
2909 variable 'b' has an evolution function:
48e1416a 2910
2911 "EF = {23, +, 5}_2".
2912
c2c3fd24 2913 When we evaluate the function at the point 5, i.e. the value of the
2914 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2915 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2916 the loop body has been executed 6 times. */
2917
48e1416a 2918tree
0c3c2e56 2919number_of_latch_executions (struct loop *loop)
c2c3fd24 2920{
c2c3fd24 2921 edge exit;
2922 struct tree_niter_desc niter_desc;
134c053e 2923 tree may_be_zero;
2924 tree res;
c2c3fd24 2925
134c053e 2926 /* Determine whether the number of iterations in loop has already
c2c3fd24 2927 been computed. */
2928 res = loop->nb_iterations;
2929 if (res)
2930 return res;
134c053e 2931
2932 may_be_zero = NULL_TREE;
c2c3fd24 2933
487a9bc1 2934 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 2935 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
48e1416a 2936
134c053e 2937 res = chrec_dont_know;
d9e7e1a2 2938 exit = single_exit (loop);
c2c3fd24 2939
134c053e 2940 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2941 {
2942 may_be_zero = niter_desc.may_be_zero;
2943 res = niter_desc.niter;
2944 }
2945
2946 if (res == chrec_dont_know
2947 || !may_be_zero
2948 || integer_zerop (may_be_zero))
2949 ;
2950 else if (integer_nonzerop (may_be_zero))
2951 res = build_int_cst (TREE_TYPE (res), 0);
c2c3fd24 2952
134c053e 2953 else if (COMPARISON_CLASS_P (may_be_zero))
2954 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2955 build_int_cst (TREE_TYPE (res), 0), res);
c2c3fd24 2956 else
2957 res = chrec_dont_know;
2958
487a9bc1 2959 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 2960 {
2961 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
1ffa4346 2962 print_generic_expr (dump_file, res);
134c053e 2963 fprintf (dump_file, "))\n");
2964 }
2965
2966 loop->nb_iterations = res;
2967 return res;
c2c3fd24 2968}
c2c3fd24 2969\f
2970
2971/* Counters for the stats. */
2972
48e1416a 2973struct chrec_stats
c2c3fd24 2974{
2975 unsigned nb_chrecs;
2976 unsigned nb_affine;
2977 unsigned nb_affine_multivar;
2978 unsigned nb_higher_poly;
2979 unsigned nb_chrec_dont_know;
2980 unsigned nb_undetermined;
2981};
2982
2983/* Reset the counters. */
2984
2985static inline void
2986reset_chrecs_counters (struct chrec_stats *stats)
2987{
2988 stats->nb_chrecs = 0;
2989 stats->nb_affine = 0;
2990 stats->nb_affine_multivar = 0;
2991 stats->nb_higher_poly = 0;
2992 stats->nb_chrec_dont_know = 0;
2993 stats->nb_undetermined = 0;
2994}
2995
2996/* Dump the contents of a CHREC_STATS structure. */
2997
2998static void
2999dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
3000{
3001 fprintf (file, "\n(\n");
3002 fprintf (file, "-----------------------------------------\n");
3003 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
3004 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
48e1416a 3005 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
c2c3fd24 3006 stats->nb_higher_poly);
3007 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
3008 fprintf (file, "-----------------------------------------\n");
3009 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
48e1416a 3010 fprintf (file, "%d\twith undetermined coefficients\n",
c2c3fd24 3011 stats->nb_undetermined);
3012 fprintf (file, "-----------------------------------------\n");
48e1416a 3013 fprintf (file, "%d\tchrecs in the scev database\n",
9f9f871f 3014 (int) scalar_evolution_info->elements ());
c2c3fd24 3015 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
3016 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
3017 fprintf (file, "-----------------------------------------\n");
3018 fprintf (file, ")\n\n");
3019}
3020
3021/* Gather statistics about CHREC. */
3022
3023static void
3024gather_chrec_stats (tree chrec, struct chrec_stats *stats)
3025{
3026 if (dump_file && (dump_flags & TDF_STATS))
3027 {
3028 fprintf (dump_file, "(classify_chrec ");
1ffa4346 3029 print_generic_expr (dump_file, chrec);
c2c3fd24 3030 fprintf (dump_file, "\n");
3031 }
48e1416a 3032
c2c3fd24 3033 stats->nb_chrecs++;
48e1416a 3034
c2c3fd24 3035 if (chrec == NULL_TREE)
3036 {
3037 stats->nb_undetermined++;
3038 return;
3039 }
48e1416a 3040
c2c3fd24 3041 switch (TREE_CODE (chrec))
3042 {
3043 case POLYNOMIAL_CHREC:
3044 if (evolution_function_is_affine_p (chrec))
3045 {
3046 if (dump_file && (dump_flags & TDF_STATS))
3047 fprintf (dump_file, " affine_univariate\n");
3048 stats->nb_affine++;
3049 }
9c77efff 3050 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
c2c3fd24 3051 {
3052 if (dump_file && (dump_flags & TDF_STATS))
3053 fprintf (dump_file, " affine_multivariate\n");
3054 stats->nb_affine_multivar++;
3055 }
3056 else
3057 {
3058 if (dump_file && (dump_flags & TDF_STATS))
3059 fprintf (dump_file, " higher_degree_polynomial\n");
3060 stats->nb_higher_poly++;
3061 }
48e1416a 3062
c2c3fd24 3063 break;
3064
3065 default:
3066 break;
3067 }
48e1416a 3068
c2c3fd24 3069 if (chrec_contains_undetermined (chrec))
3070 {
3071 if (dump_file && (dump_flags & TDF_STATS))
3072 fprintf (dump_file, " undetermined\n");
3073 stats->nb_undetermined++;
3074 }
48e1416a 3075
c2c3fd24 3076 if (dump_file && (dump_flags & TDF_STATS))
3077 fprintf (dump_file, ")\n");
3078}
3079
c2c3fd24 3080/* Classify the chrecs of the whole database. */
3081
48e1416a 3082void
c2c3fd24 3083gather_stats_on_scev_database (void)
3084{
3085 struct chrec_stats stats;
48e1416a 3086
c2c3fd24 3087 if (!dump_file)
3088 return;
48e1416a 3089
c2c3fd24 3090 reset_chrecs_counters (&stats);
48e1416a 3091
9f9f871f 3092 hash_table<scev_info_hasher>::iterator iter;
3093 scev_info_str *elt;
3094 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
3095 iter)
3096 gather_chrec_stats (elt->chrec, &stats);
c2c3fd24 3097
3098 dump_chrecs_stats (dump_file, &stats);
3099}
3100
3101\f
3102
3103/* Initializer. */
3104
3105static void
3106initialize_scalar_evolutions_analyzer (void)
3107{
3108 /* The elements below are unique. */
3109 if (chrec_dont_know == NULL_TREE)
3110 {
3111 chrec_not_analyzed_yet = NULL_TREE;
3112 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3113 chrec_known = make_node (SCEV_KNOWN);
f3830c7c 3114 TREE_TYPE (chrec_dont_know) = void_type_node;
3115 TREE_TYPE (chrec_known) = void_type_node;
c2c3fd24 3116 }
3117}
3118
3119/* Initialize the analysis of scalar evolutions for LOOPS. */
3120
3121void
7194de72 3122scev_initialize (void)
c2c3fd24 3123{
17519ba0 3124 struct loop *loop;
c2c3fd24 3125
c3f8ce55 3126 gcc_assert (! scev_initialized_p ());
3127
9f9f871f 3128 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
48e1416a 3129
c2c3fd24 3130 initialize_scalar_evolutions_analyzer ();
3131
f21d4d00 3132 FOR_EACH_LOOP (loop, 0)
17519ba0 3133 {
3134 loop->nb_iterations = NULL_TREE;
3135 }
c2c3fd24 3136}
3137
a9ef9877 3138/* Return true if SCEV is initialized. */
3139
3140bool
3141scev_initialized_p (void)
3142{
3143 return scalar_evolution_info != NULL;
3144}
3145
efe339e3 3146/* Cleans up the information cached by the scalar evolutions analysis
3147 in the hash table. */
3148
3149void
3150scev_reset_htab (void)
3151{
3152 if (!scalar_evolution_info)
3153 return;
3154
9f9f871f 3155 scalar_evolution_info->empty ();
efe339e3 3156}
3157
3158/* Cleans up the information cached by the scalar evolutions analysis
3159 in the hash table and in the loop->nb_iterations. */
c2c3fd24 3160
3161void
3162scev_reset (void)
3163{
c2c3fd24 3164 struct loop *loop;
3165
efe339e3 3166 scev_reset_htab ();
3167
f21d4d00 3168 FOR_EACH_LOOP (loop, 0)
c2c3fd24 3169 {
17519ba0 3170 loop->nb_iterations = NULL_TREE;
c2c3fd24 3171 }
b9d73ea6 3172}
3173
30a39817 3174/* Return true if the IV calculation in TYPE can overflow based on the knowledge
3175 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3176 of IV.
3177
3178 We do not use information whether TYPE can overflow so it is safe to
3179 use this test even for derived IVs not computed every iteration or
3180 hypotetical IVs to be inserted into code. */
3181
cd959806 3182bool
30a39817 3183iv_can_overflow_p (struct loop *loop, tree type, tree base, tree step)
3184{
3185 widest_int nit;
3186 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3187 signop sgn = TYPE_SIGN (type);
3188
3189 if (integer_zerop (step))
3190 return false;
3191
3192 if (TREE_CODE (base) == INTEGER_CST)
e3d0f65c 3193 base_min = base_max = wi::to_wide (base);
30a39817 3194 else if (TREE_CODE (base) == SSA_NAME
3195 && INTEGRAL_TYPE_P (TREE_TYPE (base))
3196 && get_range_info (base, &base_min, &base_max) == VR_RANGE)
3197 ;
3198 else
3199 return true;
3200
3201 if (TREE_CODE (step) == INTEGER_CST)
e3d0f65c 3202 step_min = step_max = wi::to_wide (step);
30a39817 3203 else if (TREE_CODE (step) == SSA_NAME
3204 && INTEGRAL_TYPE_P (TREE_TYPE (step))
3205 && get_range_info (step, &step_min, &step_max) == VR_RANGE)
3206 ;
3207 else
3208 return true;
3209
3210 if (!get_max_loop_iterations (loop, &nit))
3211 return true;
3212
3213 type_min = wi::min_value (type);
3214 type_max = wi::max_value (type);
3215
3216 /* Just sanity check that we don't see values out of the range of the type.
3217 In this case the arithmetics bellow would overflow. */
3218 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3219 && wi::le_p (base_max, type_max, sgn));
3220
3221 /* Account the possible increment in the last ieration. */
30b5769f 3222 wi::overflow_type overflow = wi::OVF_NONE;
30a39817 3223 nit = wi::add (nit, 1, SIGNED, &overflow);
3224 if (overflow)
3225 return true;
3226
3227 /* NIT is typeless and can exceed the precision of the type. In this case
3228 overflow is always possible, because we know STEP is non-zero. */
3229 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3230 return true;
3231 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3232
3233 /* If step can be positive, check that nit*step <= type_max-base.
3234 This can be done by unsigned arithmetic and we only need to watch overflow
3235 in the multiplication. The right hand side can always be represented in
3236 the type. */
3237 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3238 {
30b5769f 3239 wi::overflow_type overflow = wi::OVF_NONE;
30a39817 3240 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3241 type_max - base_max)
3242 || overflow)
3243 return true;
3244 }
3245 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3246 if (sgn == SIGNED && wi::neg_p (step_min))
3247 {
30b5769f 3248 wi::overflow_type overflow, overflow2;
3249 overflow = overflow2 = wi::OVF_NONE;
30a39817 3250 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3251 nit2, UNSIGNED, &overflow),
3252 base_min - type_min)
3253 || overflow || overflow2)
3254 return true;
3255 }
3256
3257 return false;
3258}
3259
a4d34e5e 3260/* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3261 function tries to derive condition under which it can be simplified
3262 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3263 the maximum number that inner iv can iterate. */
3264
3265static tree
3266derive_simple_iv_with_niters (tree ev, tree *niters)
3267{
3268 if (!CONVERT_EXPR_P (ev))
3269 return ev;
3270
3271 tree inner_ev = TREE_OPERAND (ev, 0);
3272 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3273 return ev;
3274
3275 tree init = CHREC_LEFT (inner_ev);
3276 tree step = CHREC_RIGHT (inner_ev);
3277 if (TREE_CODE (init) != INTEGER_CST
3278 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3279 return ev;
3280
3281 tree type = TREE_TYPE (ev);
3282 tree inner_type = TREE_TYPE (inner_ev);
3283 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3284 return ev;
3285
3286 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3287 folded only if inner iv won't overflow. We compute the maximum
3288 number the inner iv can iterate before overflowing and return the
3289 simplified affine iv. */
3290 tree delta;
3291 init = fold_convert (type, init);
3292 step = fold_convert (type, step);
3293 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3294 if (tree_int_cst_sign_bit (step))
3295 {
3296 tree bound = lower_bound_in_type (inner_type, inner_type);
3297 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3298 step = fold_build1 (NEGATE_EXPR, type, step);
3299 }
3300 else
3301 {
3302 tree bound = upper_bound_in_type (inner_type, inner_type);
3303 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3304 }
3305 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3306 return ev;
3307}
3308
76610704 3309/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3310 respect to WRTO_LOOP and returns its base and step in IV if possible
3311 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3312 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3313 invariant in LOOP. Otherwise we require it to be an integer constant.
48e1416a 3314
76610704 3315 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3316 because it is computed in signed arithmetics). Consequently, adding an
3317 induction variable
48e1416a 3318
76610704 3319 for (i = IV->base; ; i += IV->step)
3320
3321 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3322 false for the type of the induction variable, or you can prove that i does
3323 not wrap by some other argument. Otherwise, this might introduce undefined
3324 behavior, and
48e1416a 3325
a4d34e5e 3326 i = iv->base;
3327 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3328
3329 must be used instead.
3330
3331 When IV_NITERS is not NULL, this function also checks case in which OP
3332 is a conversion of an inner simple iv of below form:
3333
3334 (outer_type){inner_base, inner_step}_loop.
76610704 3335
a4d34e5e 3336 If type of inner iv has smaller precision than outer_type, it can't be
3337 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3338 the inner iv could overflow/wrap. In this case, we derive a condition
3339 under which the inner iv won't overflow/wrap and do the simplification.
3340 The derived condition normally is the maximum number the inner iv can
3341 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3342 analysis, to derive break conditions when a loop must terminate, when is
3343 infinite. */
b9d73ea6 3344
3345bool
a4d34e5e 3346simple_iv_with_niters (struct loop *wrto_loop, struct loop *use_loop,
3347 tree op, affine_iv *iv, tree *iv_niters,
3348 bool allow_nonconstant_step)
b9d73ea6 3349{
6c48ce84 3350 enum tree_code code;
6723abf5 3351 tree type, ev, base, e;
6c48ce84 3352 wide_int extreme;
30b5769f 3353 bool folded_casts;
c2c3fd24 3354
553b9523 3355 iv->base = NULL_TREE;
3356 iv->step = NULL_TREE;
3357 iv->no_overflow = false;
c2c3fd24 3358
3359 type = TREE_TYPE (op);
367113ea 3360 if (!POINTER_TYPE_P (type)
3361 && !INTEGRAL_TYPE_P (type))
c2c3fd24 3362 return false;
3363
76610704 3364 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
553b9523 3365 &folded_casts);
76610704 3366 if (chrec_contains_undetermined (ev)
3367 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
c2c3fd24 3368 return false;
3369
76610704 3370 if (tree_does_not_contain_chrecs (ev))
c2c3fd24 3371 {
553b9523 3372 iv->base = ev;
7a973feb 3373 iv->step = build_int_cst (TREE_TYPE (ev), 0);
553b9523 3374 iv->no_overflow = true;
c2c3fd24 3375 return true;
3376 }
3377
a4d34e5e 3378 /* If we can derive valid scalar evolution with assumptions. */
3379 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3380 ev = derive_simple_iv_with_niters (ev, iv_niters);
3381
3382 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3383 return false;
3384
3385 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
c2c3fd24 3386 return false;
3387
553b9523 3388 iv->step = CHREC_RIGHT (ev);
76610704 3389 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3390 || tree_contains_chrecs (iv->step, NULL))
c2c3fd24 3391 return false;
651874e1 3392
553b9523 3393 iv->base = CHREC_LEFT (ev);
76610704 3394 if (tree_contains_chrecs (iv->base, NULL))
c2c3fd24 3395 return false;
3396
4f37c011 3397 iv->no_overflow = !folded_casts && nowrap_type_p (type);
981eb798 3398
30a39817 3399 if (!iv->no_overflow
3400 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3401 iv->no_overflow = true;
3402
6c48ce84 3403 /* Try to simplify iv base:
3404
3405 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3406 == (signed T)(unsigned T)base + step
3407 == base + step
3408
3409 If we can prove operation (base + step) doesn't overflow or underflow.
3410 Specifically, we try to prove below conditions are satisfied:
3411
3412 base <= UPPER_BOUND (type) - step ;;step > 0
3413 base >= LOWER_BOUND (type) - step ;;step < 0
3414
3415 This is done by proving the reverse conditions are false using loop's
3416 initial conditions.
3417
3418 The is necessary to make loop niter, or iv overflow analysis easier
3419 for below example:
3420
3421 int foo (int *a, signed char s, signed char l)
3422 {
3423 signed char i;
3424 for (i = s; i < l; i++)
3425 a[i] = 0;
3426 return 0;
3427 }
3428
3429 Note variable I is firstly converted to type unsigned char, incremented,
3430 then converted back to type signed char. */
3431
3432 if (wrto_loop->num != use_loop->num)
3433 return true;
3434
3435 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3436 return true;
3437
3438 type = TREE_TYPE (iv->base);
3439 e = TREE_OPERAND (iv->base, 0);
3440 if (TREE_CODE (e) != PLUS_EXPR
3441 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3442 || !tree_int_cst_equal (iv->step,
3443 fold_convert (type, TREE_OPERAND (e, 1))))
3444 return true;
3445 e = TREE_OPERAND (e, 0);
3446 if (!CONVERT_EXPR_P (e))
3447 return true;
3448 base = TREE_OPERAND (e, 0);
3449 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3450 return true;
3451
3452 if (tree_int_cst_sign_bit (iv->step))
3453 {
3454 code = LT_EXPR;
3455 extreme = wi::min_value (type);
3456 }
3457 else
3458 {
3459 code = GT_EXPR;
3460 extreme = wi::max_value (type);
3461 }
30b5769f 3462 wi::overflow_type overflow = wi::OVF_NONE;
e3d0f65c 3463 extreme = wi::sub (extreme, wi::to_wide (iv->step),
3464 TYPE_SIGN (type), &overflow);
6c48ce84 3465 if (overflow)
3466 return true;
3467 e = fold_build2 (code, boolean_type_node, base,
3468 wide_int_to_tree (type, extreme));
6723abf5 3469 e = simplify_using_initial_conditions (use_loop, e);
6c48ce84 3470 if (!integer_zerop (e))
3471 return true;
3472
3473 if (POINTER_TYPE_P (TREE_TYPE (base)))
3474 code = POINTER_PLUS_EXPR;
3475 else
3476 code = PLUS_EXPR;
3477
3478 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
c2c3fd24 3479 return true;
3480}
3481
a4d34e5e 3482/* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3483 affine iv unconditionally. */
3484
3485bool
3486simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3487 affine_iv *iv, bool allow_nonconstant_step)
3488{
3489 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3490 NULL, allow_nonconstant_step);
3491}
3492
c2c3fd24 3493/* Finalize the scalar evolution analysis. */
3494
3495void
3496scev_finalize (void)
3497{
7a3bf727 3498 if (!scalar_evolution_info)
3499 return;
9f9f871f 3500 scalar_evolution_info->empty ();
d8a0d6b8 3501 scalar_evolution_info = NULL;
866da453 3502 free_numbers_of_iterations_estimates (cfun);
c2c3fd24 3503}
3504
590f8b68 3505/* Returns true if the expression EXPR is considered to be too expensive
3506 for scev_const_prop. */
3507
3508bool
3509expression_expensive_p (tree expr)
3510{
3511 enum tree_code code;
3512
3513 if (is_gimple_val (expr))
3514 return false;
3515
3516 code = TREE_CODE (expr);
3517 if (code == TRUNC_DIV_EXPR
3518 || code == CEIL_DIV_EXPR
3519 || code == FLOOR_DIV_EXPR
3520 || code == ROUND_DIV_EXPR
3521 || code == TRUNC_MOD_EXPR
3522 || code == CEIL_MOD_EXPR
3523 || code == FLOOR_MOD_EXPR
3524 || code == ROUND_MOD_EXPR
3525 || code == EXACT_DIV_EXPR)
3526 {
3527 /* Division by power of two is usually cheap, so we allow it.
3528 Forbid anything else. */
3529 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3530 return true;
3531 }
3532
c71993fc 3533 if (code == CALL_EXPR)
3534 {
3535 tree arg;
3536 call_expr_arg_iterator iter;
3469de37 3537 /* Even though is_inexpensive_builtin might say true, we will get a
3538 library call for popcount when backend does not have an instruction
3539 to do so. We consider this to be expenseive and generate
3540 __builtin_popcount only when backend defines it. */
3541 combined_fn cfn = get_call_combined_fn (expr);
3542 switch (cfn)
3543 {
3544 CASE_CFN_POPCOUNT:
3545 /* Check if opcode for popcount is available in the mode required. */
3546 if (optab_handler (popcount_optab,
3547 TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
3548 == CODE_FOR_nothing)
3549 {
3550 machine_mode mode;
3551 mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0)));
3552 scalar_int_mode int_mode;
3553
3554 /* If the mode is of 2 * UNITS_PER_WORD size, we can handle
3555 double-word popcount by emitting two single-word popcount
3556 instructions. */
3557 if (is_a <scalar_int_mode> (mode, &int_mode)
3558 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
3559 && (optab_handler (popcount_optab, word_mode)
3560 != CODE_FOR_nothing))
3561 break;
3562 return true;
3563 }
3564 default:
3565 break;
3566 }
c71993fc 3567
3568 if (!is_inexpensive_builtin (get_callee_fndecl (expr)))
3569 return true;
3570 FOR_EACH_CALL_EXPR_ARG (arg, iter, expr)
3571 if (expression_expensive_p (arg))
3572 return true;
3573 return false;
3574 }
3575
b88c2569 3576 if (code == COND_EXPR)
3577 return (expression_expensive_p (TREE_OPERAND (expr, 0))
3578 || (EXPR_P (TREE_OPERAND (expr, 1))
3579 && EXPR_P (TREE_OPERAND (expr, 2)))
3580 /* If either branch has side effects or could trap. */
3581 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
3582 || generic_expr_could_trap_p (TREE_OPERAND (expr, 1))
3583 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0))
3584 || generic_expr_could_trap_p (TREE_OPERAND (expr, 0))
3585 || expression_expensive_p (TREE_OPERAND (expr, 1))
3586 || expression_expensive_p (TREE_OPERAND (expr, 2)));
3587
590f8b68 3588 switch (TREE_CODE_CLASS (code))
3589 {
3590 case tcc_binary:
3591 case tcc_comparison:
3592 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3593 return true;
3594
3595 /* Fallthru. */
3596 case tcc_unary:
3597 return expression_expensive_p (TREE_OPERAND (expr, 0));
3598
3599 default:
3600 return true;
3601 }
3602}
3603
9498ccc6 3604/* Do final value replacement for LOOP, return true if we did anything. */
9e75a9b9 3605
9498ccc6 3606bool
9e75a9b9 3607final_value_replacement_loop (struct loop *loop)
3608{
3609 /* If we do not know exact number of iterations of the loop, we cannot
3610 replace the final value. */
3611 edge exit = single_exit (loop);
3612 if (!exit)
9498ccc6 3613 return false;
9e75a9b9 3614
3615 tree niter = number_of_latch_executions (loop);
3616 if (niter == chrec_dont_know)
9498ccc6 3617 return false;
9e75a9b9 3618
3619 /* Ensure that it is possible to insert new statements somewhere. */
3620 if (!single_pred_p (exit->dest))
3621 split_loop_exit_edge (exit);
3622
3623 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3624 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3625
3626 struct loop *ex_loop
3627 = superloop_at_depth (loop,
3628 loop_depth (exit->dest->loop_father) + 1);
3629
9498ccc6 3630 bool any = false;
9e75a9b9 3631 gphi_iterator psi;
3632 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3633 {
3634 gphi *phi = psi.phi ();
3635 tree rslt = PHI_RESULT (phi);
3636 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3637 if (virtual_operand_p (def))
3638 {
3639 gsi_next (&psi);
3640 continue;
3641 }
3642
3643 if (!POINTER_TYPE_P (TREE_TYPE (def))
3644 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3645 {
3646 gsi_next (&psi);
3647 continue;
3648 }
3649
3650 bool folded_casts;
3651 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3652 &folded_casts);
3653 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3654 if (!tree_does_not_contain_chrecs (def)
3655 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3656 /* Moving the computation from the loop may prolong life range
3657 of some ssa names, which may cause problems if they appear
3658 on abnormal edges. */
3659 || contains_abnormal_ssa_name_p (def)
3660 /* Do not emit expensive expressions. The rationale is that
3661 when someone writes a code like
3662
3663 while (n > 45) n -= 45;
3664
3665 he probably knows that n is not large, and does not want it
3666 to be turned into n %= 45. */
3667 || expression_expensive_p (def))
3668 {
3669 if (dump_file && (dump_flags & TDF_DETAILS))
3670 {
3671 fprintf (dump_file, "not replacing:\n ");
1ffa4346 3672 print_gimple_stmt (dump_file, phi, 0);
9e75a9b9 3673 fprintf (dump_file, "\n");
3674 }
3675 gsi_next (&psi);
3676 continue;
3677 }
3678
3679 /* Eliminate the PHI node and replace it by a computation outside
3680 the loop. */
3681 if (dump_file)
3682 {
3683 fprintf (dump_file, "\nfinal value replacement:\n ");
1ffa4346 3684 print_gimple_stmt (dump_file, phi, 0);
428c12fa 3685 fprintf (dump_file, " with expr: ");
3686 print_generic_expr (dump_file, def);
9e75a9b9 3687 }
9498ccc6 3688 any = true;
9e75a9b9 3689 def = unshare_expr (def);
3690 remove_phi_node (&psi, false);
3691
3692 /* If def's type has undefined overflow and there were folded
3693 casts, rewrite all stmts added for def into arithmetics
3694 with defined overflow behavior. */
3695 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3696 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3697 {
3698 gimple_seq stmts;
3699 gimple_stmt_iterator gsi2;
3700 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3701 gsi2 = gsi_start (stmts);
3702 while (!gsi_end_p (gsi2))
3703 {
3704 gimple *stmt = gsi_stmt (gsi2);
3705 gimple_stmt_iterator gsi3 = gsi2;
3706 gsi_next (&gsi2);
3707 gsi_remove (&gsi3, false);
3708 if (is_gimple_assign (stmt)
3709 && arith_code_with_undefined_signed_overflow
3710 (gimple_assign_rhs_code (stmt)))
3711 gsi_insert_seq_before (&gsi,
3712 rewrite_to_defined_overflow (stmt),
3713 GSI_SAME_STMT);
3714 else
3715 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3716 }
3717 }
3718 else
3719 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3720 true, GSI_SAME_STMT);
3721
3722 gassign *ass = gimple_build_assign (rslt, def);
3723 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3724 if (dump_file)
3725 {
428c12fa 3726 fprintf (dump_file, "\n final stmt:\n ");
1ffa4346 3727 print_gimple_stmt (dump_file, ass, 0);
9e75a9b9 3728 fprintf (dump_file, "\n");
3729 }
3730 }
5bacce6b 3731
9498ccc6 3732 return any;
10fec820 3733}
ccae4f9f 3734
3735#include "gt-tree-scalar-evolution.h"