]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-uncprop.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / tree-ssa-uncprop.c
CommitLineData
fef0657c 1/* Routines for discovering and unpropagating edge equivalences.
8d9254fc 2 Copyright (C) 2005-2020 Free Software Foundation, Inc.
fef0657c
JL
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
9dcd6f09 8the Free Software Foundation; either version 3, or (at your option)
fef0657c
JL
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
fef0657c
JL
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
fef0657c 24#include "tree.h"
c7131fb2 25#include "gimple.h"
957060b5 26#include "tree-pass.h"
c7131fb2 27#include "ssa.h"
40e23961 28#include "fold-const.h"
60393bbc 29#include "cfganal.h"
5be5c238 30#include "gimple-iterator.h"
442b4905 31#include "tree-cfg.h"
fef0657c 32#include "domwalk.h"
d6a818c5 33#include "tree-hash-traits.h"
1f9ceff1
AO
34#include "tree-ssa-live.h"
35#include "tree-ssa-coalesce.h"
fef0657c
JL
36
37/* The basic structure describing an equivalency created by traversing
38 an edge. Traversing the edge effectively means that we can assume
39 that we've seen an assignment LHS = RHS. */
40struct edge_equivalency
41{
42 tree rhs;
43 tree lhs;
44};
45
46/* This routine finds and records edge equivalences for every edge
47 in the CFG.
48
49 When complete, each edge that creates an equivalency will have an
b8698a0f 50 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
fef0657c
JL
51 The caller is responsible for freeing the AUX fields. */
52
53static void
54associate_equivalences_with_edges (void)
55{
56 basic_block bb;
57
58 /* Walk over each block. If the block ends with a control statement,
59 then it might create a useful equivalence. */
11cd3bed 60 FOR_EACH_BB_FN (bb, cfun)
fef0657c 61 {
726a989a 62 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 63 gimple *stmt;
fef0657c
JL
64
65 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
66 then there is nothing to do. */
726a989a 67 if (gsi_end_p (gsi))
fef0657c
JL
68 continue;
69
726a989a 70 stmt = gsi_stmt (gsi);
fef0657c
JL
71
72 if (!stmt)
73 continue;
74
75 /* A COND_EXPR may create an equivalency in a variety of different
76 ways. */
726a989a 77 if (gimple_code (stmt) == GIMPLE_COND)
fef0657c 78 {
fef0657c
JL
79 edge true_edge;
80 edge false_edge;
81 struct edge_equivalency *equivalency;
726a989a 82 enum tree_code code = gimple_cond_code (stmt);
fef0657c
JL
83
84 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
85
fef0657c 86 /* Equality tests may create one or two equivalences. */
726a989a 87 if (code == EQ_EXPR || code == NE_EXPR)
fef0657c 88 {
726a989a
RB
89 tree op0 = gimple_cond_lhs (stmt);
90 tree op1 = gimple_cond_rhs (stmt);
fef0657c
JL
91
92 /* Special case comparing booleans against a constant as we
93 know the value of OP0 on both arms of the branch. i.e., we
94 can record an equivalence for OP0 rather than COND. */
95 if (TREE_CODE (op0) == SSA_NAME
224b4faf 96 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
40c43aca 97 && ssa_name_has_boolean_range (op0)
e66f219b
JL
98 && is_gimple_min_invariant (op1)
99 && (integer_zerop (op1) || integer_onep (op1)))
fef0657c 100 {
40c43aca
JL
101 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
102 tree false_val = constant_boolean_node (false,
103 TREE_TYPE (op0));
726a989a 104 if (code == EQ_EXPR)
fef0657c 105 {
e1111e8e 106 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
107 equivalency->lhs = op0;
108 equivalency->rhs = (integer_zerop (op1)
40c43aca
JL
109 ? false_val
110 : true_val);
fef0657c
JL
111 true_edge->aux = equivalency;
112
e1111e8e 113 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
114 equivalency->lhs = op0;
115 equivalency->rhs = (integer_zerop (op1)
40c43aca
JL
116 ? true_val
117 : false_val);
fef0657c
JL
118 false_edge->aux = equivalency;
119 }
120 else
121 {
e1111e8e 122 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
123 equivalency->lhs = op0;
124 equivalency->rhs = (integer_zerop (op1)
40c43aca
JL
125 ? true_val
126 : false_val);
fef0657c
JL
127 true_edge->aux = equivalency;
128
e1111e8e 129 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
130 equivalency->lhs = op0;
131 equivalency->rhs = (integer_zerop (op1)
40c43aca
JL
132 ? false_val
133 : true_val);
fef0657c
JL
134 false_edge->aux = equivalency;
135 }
136 }
137
e49a540c
RG
138 else if (TREE_CODE (op0) == SSA_NAME
139 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
140 && (is_gimple_min_invariant (op1)
141 || (TREE_CODE (op1) == SSA_NAME
142 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
fef0657c
JL
143 {
144 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
145 the sign of a variable compared against zero. If
146 we're honoring signed zeros, then we cannot record
147 this value unless we know that the value is nonzero. */
3d3dbadd 148 if (HONOR_SIGNED_ZEROS (op0)
fef0657c 149 && (TREE_CODE (op1) != REAL_CST
624d31fe 150 || real_equal (&dconst0, &TREE_REAL_CST (op1))))
fef0657c
JL
151 continue;
152
e1111e8e 153 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
154 equivalency->lhs = op0;
155 equivalency->rhs = op1;
726a989a 156 if (code == EQ_EXPR)
fef0657c 157 true_edge->aux = equivalency;
b8698a0f 158 else
fef0657c
JL
159 false_edge->aux = equivalency;
160
161 }
162 }
163
164 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
165 }
166
167 /* For a SWITCH_EXPR, a case label which represents a single
168 value and which is the only case label which reaches the
169 target block creates an equivalence. */
726a989a 170 else if (gimple_code (stmt) == GIMPLE_SWITCH)
fef0657c 171 {
538dd0b7
DM
172 gswitch *switch_stmt = as_a <gswitch *> (stmt);
173 tree cond = gimple_switch_index (switch_stmt);
fef0657c 174
224b4faf
JL
175 if (TREE_CODE (cond) == SSA_NAME
176 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
fef0657c 177 {
538dd0b7 178 int i, n_labels = gimple_switch_num_labels (switch_stmt);
8b1c6fd7 179 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
fef0657c
JL
180
181 /* Walk over the case label vector. Record blocks
182 which are reached by a single case label which represents
183 a single value. */
184 for (i = 0; i < n_labels; i++)
185 {
538dd0b7 186 tree label = gimple_switch_label (switch_stmt, i);
61ff5d6f 187 basic_block bb = label_to_block (cfun, CASE_LABEL (label));
fef0657c 188
fef0657c
JL
189 if (CASE_HIGH (label)
190 || !CASE_LOW (label)
191 || info[bb->index])
192 info[bb->index] = error_mark_node;
193 else
194 info[bb->index] = label;
195 }
196
197 /* Now walk over the blocks to determine which ones were
198 marked as being reached by a useful case label. */
0cae8d31 199 for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
fef0657c
JL
200 {
201 tree node = info[i];
202
203 if (node != NULL
204 && node != error_mark_node)
205 {
206 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
207 struct edge_equivalency *equivalency;
208
209 /* Record an equivalency on the edge from BB to basic
210 block I. */
e1111e8e 211 equivalency = XNEW (struct edge_equivalency);
fef0657c
JL
212 equivalency->rhs = x;
213 equivalency->lhs = cond;
06e28de2
DM
214 find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
215 equivalency;
fef0657c
JL
216 }
217 }
218 free (info);
219 }
220 }
221
222 }
223}
224
225
226/* Translating out of SSA sometimes requires inserting copies and
227 constant initializations on edges to eliminate PHI nodes.
228
229 In some cases those copies and constant initializations are
230 redundant because the target already has the value on the
231 RHS of the assignment.
232
233 We previously tried to catch these cases after translating
234 out of SSA form. However, that code often missed cases. Worse
235 yet, the cases it missed were also often missed by the RTL
236 optimizers. Thus the resulting code had redundant instructions.
237
238 This pass attempts to detect these situations before translating
239 out of SSA form.
240
241 The key concept that this pass is built upon is that these
242 redundant copies and constant initializations often occur
243 due to constant/copy propagating equivalences resulting from
244 COND_EXPRs and SWITCH_EXPRs.
245
246 We want to do those propagations as they can sometimes allow
f0e4ea10 247 the SSA optimizers to do a better job. However, in the cases
fef0657c
JL
248 where such propagations do not result in further optimization,
249 we would like to "undo" the propagation to avoid the redundant
250 copies and constant initializations.
251
252 This pass works by first associating equivalences with edges in
253 the CFG. For example, the edge leading from a SWITCH_EXPR to
254 its associated CASE_LABEL will have an equivalency between
255 SWITCH_COND and the value in the case label.
256
257 Once we have found the edge equivalences, we proceed to walk
258 the CFG in dominator order. As we traverse edges we record
259 equivalences associated with those edges we traverse.
260
261 When we encounter a PHI node, we walk its arguments to see if we
262 have an equivalence for the PHI argument. If so, then we replace
263 the argument.
264
265 Equivalences are looked up based on their value (think of it as
266 the RHS of an assignment). A value may be an SSA_NAME or an
267 invariant. We may have several SSA_NAMEs with the same value,
268 so with each value we have a list of SSA_NAMEs that have the
269 same value. */
270
df35e0bd 271typedef hash_map<tree_operand_hash, auto_vec<tree> > val_ssa_equiv_t;
4a62f441 272
4a8fb1a1
LC
273/* Global hash table implementing a mapping from invariant values
274 to a list of SSA_NAMEs which have the same value. We might be
275 able to reuse tree-vn for this code. */
4a62f441 276val_ssa_equiv_t *val_ssa_equiv;
4a8fb1a1 277
4a8fb1a1
LC
278static void uncprop_into_successor_phis (basic_block);
279
fef0657c
JL
280/* Remove the most recently recorded equivalency for VALUE. */
281
282static void
283remove_equivalence (tree value)
284{
1eb68d2d 285 val_ssa_equiv->get (value)->pop ();
fef0657c
JL
286}
287
288/* Record EQUIVALENCE = VALUE into our hash table. */
289
290static void
291record_equiv (tree value, tree equivalence)
292{
1eb68d2d 293 val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
fef0657c
JL
294}
295
4d9192b5
TS
296class uncprop_dom_walker : public dom_walker
297{
298public:
07687835 299 uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
4d9192b5 300
3daacdcd 301 virtual edge before_dom_children (basic_block);
4d9192b5
TS
302 virtual void after_dom_children (basic_block);
303
304private:
305
65d3284b
RS
306 /* As we enter each block we record the value for any edge equivalency
307 leading to this block. If no such edge equivalency exists, then we
308 record NULL. These equivalences are live until we leave the dominator
309 subtree rooted at the block where we record the equivalency. */
00f96dc9 310 auto_vec<tree, 2> m_equiv_stack;
4d9192b5
TS
311};
312
fef0657c
JL
313/* We have finished processing the dominator children of BB, perform
314 any finalization actions in preparation for leaving this node in
315 the dominator tree. */
316
4d9192b5
TS
317void
318uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
fef0657c 319{
fef0657c 320 /* Pop the topmost value off the equiv stack. */
65d3284b 321 tree value = m_equiv_stack.pop ();
fef0657c
JL
322
323 /* If that value was non-null, then pop the topmost equivalency off
324 its equivalency stack. */
325 if (value != NULL)
326 remove_equivalence (value);
327}
328
329/* Unpropagate values from PHI nodes in successor blocks of BB. */
330
331static void
ccf5c864 332uncprop_into_successor_phis (basic_block bb)
fef0657c
JL
333{
334 edge e;
335 edge_iterator ei;
336
337 /* For each successor edge, first temporarily record any equivalence
338 on that edge. Then unpropagate values in any PHI nodes at the
339 destination of the edge. Then remove the temporary equivalence. */
340 FOR_EACH_EDGE (e, ei, bb->succs)
341 {
726a989a
RB
342 gimple_seq phis = phi_nodes (e->dest);
343 gimple_stmt_iterator gsi;
fef0657c
JL
344
345 /* If there are no PHI nodes in this destination, then there is
346 no sense in recording any equivalences. */
8eacd016 347 if (gimple_seq_empty_p (phis))
fef0657c
JL
348 continue;
349
350 /* Record any equivalency associated with E. */
351 if (e->aux)
352 {
e1111e8e 353 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
fef0657c
JL
354 record_equiv (equiv->rhs, equiv->lhs);
355 }
356
357 /* Walk over the PHI nodes, unpropagating values. */
726a989a 358 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
fef0657c 359 {
355fe088 360 gimple *phi = gsi_stmt (gsi);
fef0657c 361 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
70b5e7dc 362 tree res = PHI_RESULT (phi);
fef0657c 363
e91d0adb
JL
364 /* If the argument is not an invariant and can be potentially
365 coalesced with the result, then there's no point in
366 un-propagating the argument. */
fef0657c 367 if (!is_gimple_min_invariant (arg)
e91d0adb 368 && gimple_can_coalesce_p (arg, res))
fef0657c
JL
369 continue;
370
371 /* Lookup this argument's value in the hash table. */
1eb68d2d
TS
372 vec<tree> *equivalences = val_ssa_equiv->get (arg);
373 if (equivalences)
fef0657c 374 {
fef0657c 375 /* Walk every equivalence with the same value. If we find
e91d0adb 376 one that can potentially coalesce with the PHI rsult,
fef0657c 377 then replace the value in the argument with its equivalent
f0e4ea10 378 SSA_NAME. Use the most recent equivalence as hopefully
fef0657c 379 that results in shortest lifetimes. */
1eb68d2d 380 for (int j = equivalences->length () - 1; j >= 0; j--)
fef0657c 381 {
1eb68d2d 382 tree equiv = (*equivalences)[j];
fef0657c 383
e91d0adb 384 if (gimple_can_coalesce_p (equiv, res))
fef0657c
JL
385 {
386 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
387 break;
388 }
389 }
390 }
391 }
392
393 /* If we had an equivalence associated with this edge, remove it. */
394 if (e->aux)
395 {
e1111e8e 396 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
fef0657c
JL
397 remove_equivalence (equiv->rhs);
398 }
399 }
400}
401
3daacdcd 402edge
4d9192b5 403uncprop_dom_walker::before_dom_children (basic_block bb)
fef0657c
JL
404{
405 basic_block parent;
fef0657c
JL
406 bool recorded = false;
407
408 /* If this block is dominated by a single incoming edge and that edge
409 has an equivalency, then record the equivalency and push the
410 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
411 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
412 if (parent)
413 {
2965f127 414 edge e = single_pred_edge_ignoring_loop_edges (bb, false);
fef0657c
JL
415
416 if (e && e->src == parent && e->aux)
417 {
e1111e8e 418 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
fef0657c
JL
419
420 record_equiv (equiv->rhs, equiv->lhs);
65d3284b 421 m_equiv_stack.safe_push (equiv->rhs);
fef0657c
JL
422 recorded = true;
423 }
424 }
425
426 if (!recorded)
65d3284b 427 m_equiv_stack.safe_push (NULL_TREE);
ccf5c864
PB
428
429 uncprop_into_successor_phis (bb);
3daacdcd 430 return NULL;
fef0657c
JL
431}
432
27a4cd48
DM
433namespace {
434
435const pass_data pass_data_uncprop =
fef0657c 436{
27a4cd48
DM
437 GIMPLE_PASS, /* type */
438 "uncprop", /* name */
439 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
440 TV_TREE_SSA_UNCPROP, /* tv_id */
441 ( PROP_cfg | PROP_ssa ), /* properties_required */
442 0, /* properties_provided */
443 0, /* properties_destroyed */
444 0, /* todo_flags_start */
3bea341f 445 0, /* todo_flags_finish */
fef0657c 446};
27a4cd48
DM
447
448class pass_uncprop : public gimple_opt_pass
449{
450public:
c3284718
RS
451 pass_uncprop (gcc::context *ctxt)
452 : gimple_opt_pass (pass_data_uncprop, ctxt)
27a4cd48
DM
453 {}
454
455 /* opt_pass methods: */
65d3284b 456 opt_pass * clone () { return new pass_uncprop (m_ctxt); }
1a3d085c 457 virtual bool gate (function *) { return flag_tree_dom != 0; }
be55bfe6 458 virtual unsigned int execute (function *);
27a4cd48
DM
459
460}; // class pass_uncprop
461
be55bfe6
TS
462unsigned int
463pass_uncprop::execute (function *fun)
464{
465 basic_block bb;
466
467 associate_equivalences_with_edges ();
468
469 /* Create our global data structures. */
4a62f441 470 val_ssa_equiv = new val_ssa_equiv_t (1024);
be55bfe6
TS
471
472 /* We're going to do a dominator walk, so ensure that we have
473 dominance information. */
474 calculate_dominance_info (CDI_DOMINATORS);
475
476 /* Recursively walk the dominator tree undoing unprofitable
477 constant/copy propagations. */
478 uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
479
480 /* we just need to empty elements out of the hash table, and cleanup the
481 AUX field on the edges. */
c203e8a7
TS
482 delete val_ssa_equiv;
483 val_ssa_equiv = NULL;
be55bfe6
TS
484 FOR_EACH_BB_FN (bb, fun)
485 {
486 edge e;
487 edge_iterator ei;
488
489 FOR_EACH_EDGE (e, ei, bb->succs)
490 {
491 if (e->aux)
492 {
493 free (e->aux);
494 e->aux = NULL;
495 }
496 }
497 }
498 return 0;
499}
500
27a4cd48
DM
501} // anon namespace
502
503gimple_opt_pass *
504make_pass_uncprop (gcc::context *ctxt)
505{
506 return new pass_uncprop (ctxt);
507}