]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vectorizer.h
* config/i386/i386.md (and<mode>3): Generate zero-extends for
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
CommitLineData
fb85abff 1/* Vectorizer
fbd26352 2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
c91e8223 3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
c91e8223 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
c91e8223 20
21#ifndef GCC_TREE_VECTORIZER_H
22#define GCC_TREE_VECTORIZER_H
23
a477acc5 24typedef struct _stmt_vec_info *stmt_vec_info;
1cb23a78 25
fb85abff 26#include "tree-data-ref.h"
4f372c2c 27#include "tree-hash-traits.h"
f4ac3f3e 28#include "target.h"
fb85abff 29
c91e8223 30/* Used for naming of new temporaries. */
31enum vect_var_kind {
32 vect_simple_var,
ea8f3370 33 vect_pointer_var,
dab48979 34 vect_scalar_var,
35 vect_mask_var
c91e8223 36};
37
4a61a337 38/* Defines type of operation. */
c91e8223 39enum operation_type {
40 unary_op = 1,
4a61a337 41 binary_op,
42 ternary_op
c91e8223 43};
44
1a9b4618 45/* Define type of available alignment support. */
46enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
b0eb8c66 49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
1a9b4618 51 dr_aligned
52};
53
ce10738f 54/* Define type of def-use cross-iteration cycle. */
e12906b9 55enum vect_def_type {
bc620c5c 56 vect_uninitialized_def = 0,
f083cd24 57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
e12906b9 60 vect_induction_def,
61 vect_reduction_def,
7aa0d350 62 vect_double_reduction_def,
ade2ac53 63 vect_nested_cycle,
e12906b9 64 vect_unknown_def_type
65};
66
d09d8733 67/* Define type of reduction. */
68enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
b4552064 70 COND_REDUCTION,
56fb8e9d 71 INTEGER_INDUC_COND_REDUCTION,
3bf95150 72 CONST_COND_REDUCTION,
73
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
76
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
d77809a4 79 EXTRACT_LAST_REDUCTION,
80
81 /* Use a folding reduction within the loop to implement:
82
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
85
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
d09d8733 88};
89
07be02da 90#define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
93
4db2b577 94/* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
6dc50383 96struct stmt_info_for_cost {
4db2b577 97 int count;
98 enum vect_cost_for_stmt kind;
c863e35b 99 enum vect_cost_model_location where;
1aeaa139 100 stmt_vec_info stmt_info;
4db2b577 101 int misalign;
6dc50383 102};
4db2b577 103
f1f41a6c 104typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
4db2b577 105
4f372c2c 106/* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
110
c6895939 111/************************************************************************
112 SLP
113 ************************************************************************/
40bcc7c2 114typedef struct _slp_tree *slp_tree;
c6895939 115
b0f64919 116/* A computation tree of an SLP instance. Each node corresponds to a group of
c6895939 117 stmts to be packed in a SIMD stmt. */
40bcc7c2 118struct _slp_tree {
b0f64919 119 /* Nodes that contain def-stmts of this node statements operands. */
40bcc7c2 120 vec<slp_tree> children;
c6895939 121 /* A group of scalar stmts to be vectorized together. */
06bb64b8 122 vec<stmt_vec_info> stmts;
678e3d6e 123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
c6895939 126 /* Vectorized stmt/s. */
dc1fb456 127 vec<stmt_vec_info> vec_stmts;
48e1416a 128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
c6895939 131 divided by vector size. */
132 unsigned int vec_stmts_size;
f1c1105c 133 /* Reference count in the SLP graph. */
134 unsigned int refcnt;
66e30248 135 /* Whether the scalar computations use two different operators. */
136 bool two_operators;
6d37c111 137 /* The DEF type of this node. */
138 enum vect_def_type def_type;
40bcc7c2 139};
c6895939 140
141
142/* SLP instance is a sequence of stmts in a loop that can be packed into
143 SIMD stmts. */
144typedef struct _slp_instance {
145 /* The root of SLP tree. */
146 slp_tree root;
147
148 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
149 unsigned int group_size;
150
151 /* The unrolling factor required to vectorized this SLP instance. */
d75596cd 152 poly_uint64 unrolling_factor;
c6895939 153
a0515226 154 /* The group of nodes that contain loads of this SLP instance. */
f1f41a6c 155 vec<slp_tree> loads;
6154acba 156
157 /* The SLP node containing the reduction PHIs. */
158 slp_tree reduc_phis;
c6895939 159} *slp_instance;
160
c6895939 161
162/* Access Functions. */
163#define SLP_INSTANCE_TREE(S) (S)->root
164#define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
165#define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
a0515226 166#define SLP_INSTANCE_LOADS(S) (S)->loads
c6895939 167
b0f64919 168#define SLP_TREE_CHILDREN(S) (S)->children
c6895939 169#define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
170#define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
171#define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
678e3d6e 172#define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
66e30248 173#define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
6d37c111 174#define SLP_TREE_DEF_TYPE(S) (S)->def_type
b0f64919 175
b0f64919 176
0822b158 177
f68a7726 178/* Describes two objects whose addresses must be unequal for the vectorized
179 loop to be valid. */
180typedef std::pair<tree, tree> vec_object_pair;
181
e85b4a5e 182/* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
183 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
184struct vec_lower_bound {
185 vec_lower_bound () {}
186 vec_lower_bound (tree e, bool u, poly_uint64 m)
187 : expr (e), unsigned_p (u), min_value (m) {}
188
189 tree expr;
190 bool unsigned_p;
191 poly_uint64 min_value;
192};
193
a99aba41 194/* Vectorizer state shared between different analyses like vector sizes
195 of the same CFG region. */
196struct vec_info_shared {
197 vec_info_shared();
198 ~vec_info_shared();
199
200 void save_datarefs();
201 void check_datarefs();
202
203 /* All data references. Freed by free_data_refs, so not an auto_vec. */
204 vec<data_reference_p> datarefs;
205 vec<data_reference> datarefs_copy;
206
207 /* The loop nest in which the data dependences are computed. */
208 auto_vec<loop_p> loop_nest;
209
210 /* All data dependences. Freed by free_dependence_relations, so not
211 an auto_vec. */
212 vec<ddr_p> ddrs;
213};
214
e2c5c678 215/* Vectorizer state common between loop and basic-block vectorization. */
216struct vec_info {
e15e8a2a 217 enum vec_kind { bb, loop };
218
a99aba41 219 vec_info (vec_kind, void *, vec_info_shared *);
e15e8a2a 220 ~vec_info ();
221
04b2391d 222 stmt_vec_info add_stmt (gimple *);
03c0d666 223 stmt_vec_info lookup_stmt (gimple *);
9cfd4e76 224 stmt_vec_info lookup_def (tree);
aaac0b10 225 stmt_vec_info lookup_single_use (tree);
db72d3bf 226 struct dr_vec_info *lookup_dr (data_reference *);
5f02ee72 227 void move_dr (stmt_vec_info, stmt_vec_info);
f525c1af 228 void remove_stmt (stmt_vec_info);
a5071338 229 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
04b2391d 230
e15e8a2a 231 /* The type of vectorization. */
232 vec_kind kind;
e2c5c678 233
a99aba41 234 /* Shared vectorizer state. */
235 vec_info_shared *shared;
236
d8ef42d0 237 /* The mapping of GIMPLE UID to stmt_vec_info. */
1cb23a78 238 vec<stmt_vec_info> stmt_vec_infos;
d8ef42d0 239
e2c5c678 240 /* All SLP instances. */
e15e8a2a 241 auto_vec<slp_instance> slp_instances;
e2c5c678 242
4f372c2c 243 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
244 known alignment for that base. */
245 vec_base_alignments base_alignments;
246
e2c5c678 247 /* All interleaving chains of stores, represented by the first
248 stmt in the chain. */
14dca1d8 249 auto_vec<stmt_vec_info> grouped_stores;
e2c5c678 250
251 /* Cost data used by the target cost model. */
252 void *target_cost_data;
c626a338 253
254private:
255 stmt_vec_info new_stmt_vec_info (gimple *stmt);
256 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
257 void free_stmt_vec_infos ();
258 void free_stmt_vec_info (stmt_vec_info);
e2c5c678 259};
260
261struct _loop_vec_info;
262struct _bb_vec_info;
263
264template<>
265template<>
266inline bool
267is_a_helper <_loop_vec_info *>::test (vec_info *i)
268{
269 return i->kind == vec_info::loop;
270}
271
272template<>
273template<>
274inline bool
275is_a_helper <_bb_vec_info *>::test (vec_info *i)
276{
277 return i->kind == vec_info::bb;
278}
279
3e871d4d 280
60b29a7e 281/* In general, we can divide the vector statements in a vectorized loop
282 into related groups ("rgroups") and say that for each rgroup there is
283 some nS such that the rgroup operates on nS values from one scalar
284 iteration followed by nS values from the next. That is, if VF is the
285 vectorization factor of the loop, the rgroup operates on a sequence:
286
287 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
288
289 where (i,j) represents a scalar value with index j in a scalar
290 iteration with index i.
291
292 [ We use the term "rgroup" to emphasise that this grouping isn't
293 necessarily the same as the grouping of statements used elsewhere.
294 For example, if we implement a group of scalar loads using gather
295 loads, we'll use a separate gather load for each scalar load, and
296 thus each gather load will belong to its own rgroup. ]
297
298 In general this sequence will occupy nV vectors concatenated
299 together. If these vectors have nL lanes each, the total number
300 of scalar values N is given by:
301
302 N = nS * VF = nV * nL
303
304 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
305 are compile-time constants but VF and nL can be variable (if the target
306 supports variable-length vectors).
307
308 In classical vectorization, each iteration of the vector loop would
309 handle exactly VF iterations of the original scalar loop. However,
310 in a fully-masked loop, a particular iteration of the vector loop
311 might handle fewer than VF iterations of the scalar loop. The vector
312 lanes that correspond to iterations of the scalar loop are said to be
313 "active" and the other lanes are said to be "inactive".
314
315 In a fully-masked loop, many rgroups need to be masked to ensure that
316 they have no effect for the inactive lanes. Each such rgroup needs a
317 sequence of booleans in the same order as above, but with each (i,j)
318 replaced by a boolean that indicates whether iteration i is active.
319 This sequence occupies nV vector masks that again have nL lanes each.
320 Thus the mask sequence as a whole consists of VF independent booleans
321 that are each repeated nS times.
322
323 We make the simplifying assumption that if a sequence of nV masks is
324 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
325 VIEW_CONVERTing it. This holds for all current targets that support
326 fully-masked loops. For example, suppose the scalar loop is:
327
328 float *f;
329 double *d;
330 for (int i = 0; i < n; ++i)
331 {
332 f[i * 2 + 0] += 1.0f;
333 f[i * 2 + 1] += 2.0f;
334 d[i] += 3.0;
335 }
336
337 and suppose that vectors have 256 bits. The vectorized f accesses
338 will belong to one rgroup and the vectorized d access to another:
339
340 f rgroup: nS = 2, nV = 1, nL = 8
341 d rgroup: nS = 1, nV = 1, nL = 4
342 VF = 4
343
344 [ In this simple example the rgroups do correspond to the normal
345 SLP grouping scheme. ]
346
347 If only the first three lanes are active, the masks we need are:
348
349 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
350 d rgroup: 1 | 1 | 1 | 0
351
352 Here we can use a mask calculated for f's rgroup for d's, but not
353 vice versa.
354
355 Thus for each value of nV, it is enough to provide nV masks, with the
356 mask being calculated based on the highest nL (or, equivalently, based
357 on the highest nS) required by any rgroup with that nV. We therefore
358 represent the entire collection of masks as a two-level table, with the
359 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
360 the second being indexed by the mask index 0 <= i < nV. */
361
362/* The masks needed by rgroups with nV vectors, according to the
363 description above. */
364struct rgroup_masks {
365 /* The largest nS for all rgroups that use these masks. */
366 unsigned int max_nscalars_per_iter;
367
368 /* The type of mask to use, based on the highest nS recorded above. */
369 tree mask_type;
370
371 /* A vector of nV masks, in iteration order. */
372 vec<tree> masks;
373};
374
375typedef auto_vec<rgroup_masks> vec_loop_masks;
376
4e58562d 377/*-----------------------------------------------------------------*/
378/* Info on vectorized loops. */
379/*-----------------------------------------------------------------*/
e2c5c678 380typedef struct _loop_vec_info : public vec_info {
a99aba41 381 _loop_vec_info (struct loop *, vec_info_shared *);
e15e8a2a 382 ~_loop_vec_info ();
4e58562d 383
384 /* The loop to which this info struct refers to. */
385 struct loop *loop;
386
387 /* The loop basic blocks. */
388 basic_block *bbs;
389
796f6cba 390 /* Number of latch executions. */
391 tree num_itersm1;
4e58562d 392 /* Number of iterations. */
393 tree num_iters;
796f6cba 394 /* Number of iterations of the original loop. */
be53c6d4 395 tree num_iters_unchanged;
d5e80d93 396 /* Condition under which this loop is analyzed and versioned. */
397 tree num_iters_assumptions;
4e58562d 398
f92474f8 399 /* Threshold of number of iterations below which vectorization will not be
004a94a5 400 performed. It is calculated from MIN_PROFITABLE_ITERS and
401 PARAM_MIN_VECT_LOOP_BOUND. */
402 unsigned int th;
403
7456a7ea 404 /* When applying loop versioning, the vector form should only be used
405 if the number of scalar iterations is >= this value, on top of all
406 the other requirements. Ignored when loop versioning is not being
407 used. */
408 poly_uint64 versioning_threshold;
409
4e58562d 410 /* Unrolling factor */
d75596cd 411 poly_uint64 vectorization_factor;
4e58562d 412
4a85c0b1 413 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
414 if there is no particular limit. */
415 unsigned HOST_WIDE_INT max_vectorization_factor;
416
60b29a7e 417 /* The masks that a fully-masked loop should use to avoid operating
418 on inactive scalars. */
419 vec_loop_masks masks;
420
6753a4bf 421 /* If we are using a loop mask to align memory addresses, this variable
422 contains the number of vector elements that we should skip in the
423 first iteration of the vector loop (i.e. the number of leading
424 elements that should be false in the first mask). */
425 tree mask_skip_niters;
426
60b29a7e 427 /* Type of the variables to use in the WHILE_ULT call for fully-masked
428 loops. */
429 tree mask_compare_type;
430
1d86b8dc 431 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
432 the loop should not be vectorized, if constant non-zero, simd_if_cond
433 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
434 should be versioned on that condition, using scalar loop if the condition
435 is false and vectorized loop otherwise. */
436 tree simd_if_cond;
437
ef871d99 438 /* Type of the IV to use in the WHILE_ULT call for fully-masked
439 loops. */
440 tree iv_type;
441
4e58562d 442 /* Unknown DRs according to which loop was peeled. */
ec5bf0fb 443 struct dr_vec_info *unaligned_dr;
4e58562d 444
39b8f742 445 /* peeling_for_alignment indicates whether peeling for alignment will take
446 place, and what the peeling factor should be:
447 peeling_for_alignment = X means:
448 If X=0: Peeling for alignment will not be applied.
449 If X>0: Peel first X iterations.
450 If X=-1: Generate a runtime test to calculate the number of iterations
451 to be peeled, using the dataref recorded in the field
452 unaligned_dr. */
453 int peeling_for_alignment;
4e58562d 454
25e3c2e8 455 /* The mask used to check the alignment of pointers or arrays. */
456 int ptr_mask;
457
45b13dc3 458 /* Data Dependence Relations defining address ranges that are candidates
459 for a run-time aliasing check. */
e15e8a2a 460 auto_vec<ddr_p> may_alias_ddrs;
45b13dc3 461
8a7b0f48 462 /* Data Dependence Relations defining address ranges together with segment
463 lengths from which the run-time aliasing check is built. */
e15e8a2a 464 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
8a7b0f48 465
f68a7726 466 /* Check that the addresses of each pair of objects is unequal. */
e15e8a2a 467 auto_vec<vec_object_pair> check_unequal_addrs;
f68a7726 468
e85b4a5e 469 /* List of values that are required to be nonzero. This is used to check
470 whether things like "x[i * n] += 1;" are safe and eventually gets added
471 to the checks for lower bounds below. */
472 auto_vec<tree> check_nonzero;
473
474 /* List of values that need to be checked for a minimum value. */
475 auto_vec<vec_lower_bound> lower_bounds;
476
25e3c2e8 477 /* Statements in the loop that have data references that are candidates for a
478 runtime (loop versioning) misalignment check. */
ab98e625 479 auto_vec<stmt_vec_info> may_misalign_stmts;
25e3c2e8 480
eefa05c8 481 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
f4649a92 482 auto_vec<stmt_vec_info> reductions;
0822b158 483
39a5d6b1 484 /* All reduction chains in the loop, represented by the first
485 stmt in the chain. */
14dca1d8 486 auto_vec<stmt_vec_info> reduction_chains;
39a5d6b1 487
2a9a3444 488 /* Cost vector for a single scalar iteration. */
e15e8a2a 489 auto_vec<stmt_info_for_cost> scalar_cost_vec;
2a9a3444 490
f404501a 491 /* Map of IV base/step expressions to inserted name in the preheader. */
492 hash_map<tree_operand_hash, tree> *ivexpr_map;
493
487798e2 494 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
495 applied to the loop, i.e., no unrolling is needed, this is 1. */
d75596cd 496 poly_uint64 slp_unrolling_factor;
487798e2 497
2a9a3444 498 /* Cost of a single scalar iteration. */
499 int single_scalar_iteration_cost;
500
487798e2 501 /* Is the loop vectorizable? */
502 bool vectorizable;
503
60b29a7e 504 /* Records whether we still have the option of using a fully-masked loop. */
505 bool can_fully_mask_p;
506
507 /* True if have decided to use a fully-masked loop. */
508 bool fully_masked_p;
509
ee612634 510 /* When we have grouped data accesses with gaps, we may introduce invalid
a4ee7fac 511 memory accesses. We peel the last iteration of the loop to prevent
512 this. */
513 bool peeling_for_gaps;
514
36f39b2e 515 /* When the number of iterations is not a multiple of the vector size
516 we need to peel off iterations at the end to form an epilogue loop. */
517 bool peeling_for_niter;
518
ba69439f 519 /* Reductions are canonicalized so that the last operand is the reduction
520 operand. If this places a constant into RHS1, this decanonicalizes
521 GIMPLE for other phases, so we must track when this has occurred and
522 fix it up. */
523 bool operands_swapped;
524
c7a8722c 525 /* True if there are no loop carried data dependencies in the loop.
526 If loop->safelen <= 1, then this is always true, either the loop
527 didn't have any loop carried data dependencies, or the loop is being
528 vectorized guarded with some runtime alias checks, or couldn't
529 be vectorized at all, but then this field shouldn't be used.
530 For loop->safelen >= 2, the user has asserted that there are no
531 backward dependencies, but there still could be loop carried forward
532 dependencies in such loops. This flag will be false if normal
533 vectorizer data dependency analysis would fail or require versioning
534 for alias, but because of loop->safelen >= 2 it has been vectorized
535 even without versioning for alias. E.g. in:
536 #pragma omp simd
537 for (int i = 0; i < m; i++)
538 a[i] = a[i + k] * c;
539 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
540 DTRT even for k > 0 && k < m, but without safelen we would not
541 vectorize this, so this field would be false. */
542 bool no_data_dependencies;
543
487798e2 544 /* Mark loops having masked stores. */
545 bool has_mask_store;
546
c71d3c24 547 /* If if-conversion versioned this loop before conversion, this is the
548 loop version without if-conversion. */
549 struct loop *scalar_loop;
550
5b631e09 551 /* For loops being epilogues of already vectorized loops
552 this points to the original vectorized loop. Otherwise NULL. */
553 _loop_vec_info *orig_loop_info;
554
4e58562d 555} *loop_vec_info;
556
25e3c2e8 557/* Access Functions. */
10095225 558#define LOOP_VINFO_LOOP(L) (L)->loop
559#define LOOP_VINFO_BBS(L) (L)->bbs
796f6cba 560#define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
10095225 561#define LOOP_VINFO_NITERS(L) (L)->num_iters
796f6cba 562/* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
563 prologue peeling retain total unchanged scalar loop iterations for
564 cost model. */
10095225 565#define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
d5e80d93 566#define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
004a94a5 567#define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
7456a7ea 568#define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
10095225 569#define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
60b29a7e 570#define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
571#define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
10095225 572#define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
4a85c0b1 573#define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
60b29a7e 574#define LOOP_VINFO_MASKS(L) (L)->masks
6753a4bf 575#define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
60b29a7e 576#define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
ef871d99 577#define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
10095225 578#define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
a99aba41 579#define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
580#define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
581#define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
10095225 582#define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
313a5120 583#define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
10095225 584#define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
585#define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
10095225 586#define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
8a7b0f48 587#define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
f68a7726 588#define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
e85b4a5e 589#define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
590#define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
ee612634 591#define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
10095225 592#define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
c6895939 593#define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
eefa05c8 594#define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
39a5d6b1 595#define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
4db2b577 596#define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
a4ee7fac 597#define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
ba69439f 598#define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
313a5120 599#define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
c7a8722c 600#define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
c71d3c24 601#define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
cfd9ca84 602#define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
2a9a3444 603#define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
604#define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
5b631e09 605#define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
1d86b8dc 606#define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
4e58562d 607
d5e80d93 608#define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
72ffab3c 609 ((L)->may_misalign_stmts.length () > 0)
d5e80d93 610#define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
f68a7726 611 ((L)->comp_alias_ddrs.length () > 0 \
e85b4a5e 612 || (L)->check_unequal_addrs.length () > 0 \
613 || (L)->lower_bounds.length () > 0)
d5e80d93 614#define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
615 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
1d86b8dc 616#define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
617 (LOOP_VINFO_SIMD_IF_COND (L))
d5e80d93 618#define LOOP_REQUIRES_VERSIONING(L) \
619 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
620 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1d86b8dc 621 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
622 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
33bbe730 623
10095225 624#define LOOP_VINFO_NITERS_KNOWN_P(L) \
313a5120 625 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
4e58562d 626
5b631e09 627#define LOOP_VINFO_EPILOGUE_P(L) \
628 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
629
4a85c0b1 630#define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
631 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
5b631e09 632
ed9370cc 633/* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
634 value signifies success, and a NULL value signifies failure, supporting
635 propagating an opt_problem * describing the failure back up the call
636 stack. */
637typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
638
221e9a92 639static inline loop_vec_info
640loop_vec_info_for_loop (struct loop *loop)
641{
642 return (loop_vec_info) loop->aux;
643}
644
e2c5c678 645typedef struct _bb_vec_info : public vec_info
646{
a99aba41 647 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
e15e8a2a 648 ~_bb_vec_info ();
649
37545e54 650 basic_block bb;
4c7587f5 651 gimple_stmt_iterator region_begin;
652 gimple_stmt_iterator region_end;
37545e54 653} *bb_vec_info;
654
4db2b577 655#define BB_VINFO_BB(B) (B)->bb
656#define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
657#define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
a99aba41 658#define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
659#define BB_VINFO_DDRS(B) (B)->shared->ddrs
4db2b577 660#define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
37545e54 661
662static inline bb_vec_info
663vec_info_for_bb (basic_block bb)
664{
665 return (bb_vec_info) bb->aux;
666}
667
c91e8223 668/*-----------------------------------------------------------------*/
669/* Info on vectorized defs. */
670/*-----------------------------------------------------------------*/
671enum stmt_vec_info_type {
672 undef_vec_info_type = 0,
673 load_vec_info_type,
674 store_vec_info_type,
09e31a48 675 shift_vec_info_type,
c91e8223 676 op_vec_info_type,
22c2f6bd 677 call_vec_info_type,
d09768a4 678 call_simd_clone_vec_info_type,
e9705e7f 679 assignment_vec_info_type,
ea8f3370 680 condition_vec_info_type,
dab48979 681 comparison_vec_info_type,
c6c91d61 682 reduc_vec_info_type,
6fada017 683 induc_vec_info_type,
c6c91d61 684 type_promotion_vec_info_type,
9d8bf4aa 685 type_demotion_vec_info_type,
221e9a92 686 type_conversion_vec_info_type,
687 loop_exit_ctrl_vec_info_type
c6c91d61 688};
689
48e1416a 690/* Indicates whether/how a variable is used in the scope of loop/basic
f083cd24 691 block. */
c6c91d61 692enum vect_relevant {
f083cd24 693 vect_unused_in_scope = 0,
75aae5b4 694
695 /* The def is only used outside the loop. */
696 vect_used_only_live,
ade2ac53 697 /* The def is in the inner loop, and the use is in the outer loop, and the
698 use is a reduction stmt. */
221e9a92 699 vect_used_in_outer_by_reduction,
ade2ac53 700 /* The def is in the inner loop, and the use is in the outer loop (and is
701 not part of reduction). */
221e9a92 702 vect_used_in_outer,
bfe8bfe9 703
704 /* defs that feed computations that end up (only) in a reduction. These
48e1416a 705 defs may be used by non-reduction stmts, but eventually, any
706 computations/values that are affected by these defs are used to compute
707 a reduction (i.e. don't get stored to memory, for example). We use this
708 to identify computations that we can change the order in which they are
bfe8bfe9 709 computed. */
c6c91d61 710 vect_used_by_reduction,
bfe8bfe9 711
48e1416a 712 vect_used_in_scope
c91e8223 713};
714
c6895939 715/* The type of vectorization that can be applied to the stmt: regular loop-based
716 vectorization; pure SLP - the stmt is a part of SLP instances and does not
717 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
718 a part of SLP instance and also must be loop-based vectorized, since it has
48e1416a 719 uses outside SLP sequences.
720
721 In the loop context the meanings of pure and hybrid SLP are slightly
722 different. By saying that pure SLP is applied to the loop, we mean that we
723 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
724 vectorized without doing any conceptual unrolling, cause we don't pack
725 together stmts from different iterations, only within a single iteration.
726 Loop hybrid SLP means that we exploit both intra-iteration and
c6895939 727 inter-iteration parallelism (e.g., number of elements in the vector is 4
48e1416a 728 and the slp-group-size is 2, in which case we don't have enough parallelism
729 within an iteration, so we obtain the rest of the parallelism from subsequent
c6895939 730 iterations by unrolling the loop by 2). */
48e1416a 731enum slp_vect_type {
c6895939 732 loop_vect = 0,
733 pure_slp,
734 hybrid
735};
736
0f54e40f 737/* Says whether a statement is a load, a store of a vectorized statement
738 result, or a store of an invariant value. */
739enum vec_load_store_type {
740 VLS_LOAD,
741 VLS_STORE,
742 VLS_STORE_INVARIANT
743};
744
85b53a1f 745/* Describes how we're going to vectorize an individual load or store,
746 or a group of loads or stores. */
747enum vect_memory_access_type {
989ceec3 748 /* An access to an invariant address. This is used only for loads. */
749 VMAT_INVARIANT,
750
85b53a1f 751 /* A simple contiguous access. */
752 VMAT_CONTIGUOUS,
753
989ceec3 754 /* A contiguous access that goes down in memory rather than up,
755 with no additional permutation. This is used only for stores
756 of invariants. */
757 VMAT_CONTIGUOUS_DOWN,
758
85b53a1f 759 /* A simple contiguous access in which the elements need to be permuted
760 after loading or before storing. Only used for loop vectorization;
761 SLP uses separate permutes. */
762 VMAT_CONTIGUOUS_PERMUTE,
763
989ceec3 764 /* A simple contiguous access in which the elements need to be reversed
765 after loading or before storing. */
766 VMAT_CONTIGUOUS_REVERSE,
767
85b53a1f 768 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
769 VMAT_LOAD_STORE_LANES,
770
771 /* An access in which each scalar element is loaded or stored
772 individually. */
773 VMAT_ELEMENTWISE,
774
775 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
776 SLP accesses. Each unrolled iteration uses a contiguous load
777 or store for the whole group, but the groups from separate iterations
778 are combined in the same way as for VMAT_ELEMENTWISE. */
779 VMAT_STRIDED_SLP,
780
781 /* The access uses gather loads or scatter stores. */
782 VMAT_GATHER_SCATTER
783};
c6895939 784
5f02ee72 785struct dr_vec_info {
786 /* The data reference itself. */
787 data_reference *dr;
788 /* The statement that contains the data reference. */
789 stmt_vec_info stmt;
a99aba41 790 /* The misalignment in bytes of the reference, or -1 if not known. */
791 int misalignment;
792 /* The byte alignment that we'd ideally like the reference to have,
793 and the value that misalignment is measured against. */
e092c20e 794 poly_uint64 target_alignment;
a99aba41 795 /* If true the alignment of base_decl needs to be increased. */
796 bool base_misaligned;
797 tree base_decl;
798};
799
f1168a33 800typedef struct data_reference *dr_p;
f1168a33 801
04b2391d 802struct _stmt_vec_info {
c91e8223 803
804 enum stmt_vec_info_type type;
805
609c710b 806 /* Indicates whether this stmts is part of a computation whose result is
807 used outside the loop. */
808 bool live;
809
810 /* Stmt is part of some pattern (computation idiom) */
811 bool in_pattern_p;
812
e05b01ad 813 /* True if the statement was created during pattern recognition as
814 part of the replacement for RELATED_STMT. This implies that the
815 statement isn't part of any basic block, although for convenience
816 its gimple_bb is the same as for RELATED_STMT. */
817 bool pattern_stmt_p;
818
487798e2 819 /* Is this statement vectorizable or should it be skipped in (partial)
820 vectorization. */
821 bool vectorizable;
822
c91e8223 823 /* The stmt to which this info struct refers to. */
42acab1c 824 gimple *stmt;
c91e8223 825
e2c5c678 826 /* The vec_info with respect to which STMT is vectorized. */
827 vec_info *vinfo;
c91e8223 828
b334cbba 829 /* The vector type to be used for the LHS of this statement. */
c91e8223 830 tree vectype;
831
832 /* The vectorized version of the stmt. */
435515db 833 stmt_vec_info vectorized_stmt;
c91e8223 834
835
16ed3c2c 836 /* The following is relevant only for stmts that contain a non-scalar
48e1416a 837 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
16ed3c2c 838 at most one such data-ref. */
c91e8223 839
5f02ee72 840 dr_vec_info dr_aux;
a99aba41 841
b0eb8c66 842 /* Information about the data-ref relative to this loop
843 nest (the loop that is being considered for vectorization). */
9e879814 844 innermost_loop_behavior dr_wrt_vec_loop;
b0eb8c66 845
559260b3 846 /* For loop PHI nodes, the base and evolution part of it. This makes sure
86faead7 847 this information is still available in vect_update_ivs_after_vectorizer
848 where we may not be able to re-analyze the PHI nodes evolution as
849 peeling for the prologue loop can make it unanalyzable. The evolution
559260b3 850 part is still correct after peeling, but the base may have changed from
851 the version here. */
852 tree loop_phi_evolution_base_unchanged;
86faead7 853 tree loop_phi_evolution_part;
854
48e1416a 855 /* Used for various bookkeeping purposes, generally holding a pointer to
856 some other stmt S that is in some way "related" to this stmt.
4a61a337 857 Current use of this field is:
48e1416a 858 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
859 true): S is the "pattern stmt" that represents (and replaces) the
860 sequence of stmts that constitutes the pattern. Similarly, the
861 related_stmt of the "pattern stmt" points back to this stmt (which is
862 the last stmt in the original sequence of stmts that constitutes the
4a61a337 863 pattern). */
aebdbd31 864 stmt_vec_info related_stmt;
4a61a337 865
da611310 866 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
867 The sequence is attached to the original statement rather than the
868 pattern statement. */
18937389 869 gimple_seq pattern_def_seq;
45eea33f 870
f1168a33 871 /* List of datarefs that are known to have the same alignment as the dataref
872 of this stmt. */
f1f41a6c 873 vec<dr_p> same_align_refs;
f1168a33 874
295327ab 875 /* Selected SIMD clone's function info. First vector element
876 is SIMD clone's function decl, followed by a pair of trees (base + step)
877 for linear arguments (pair of NULLs for other arguments). */
878 vec<tree> simd_clone_info;
d09768a4 879
e12906b9 880 /* Classify the def of this stmt. */
881 enum vect_def_type def_type;
882
609c710b 883 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
884 enum slp_vect_type slp_type;
885
21009880 886 /* Interleaving and reduction chains info. */
887 /* First element in the group. */
cd24aa3c 888 stmt_vec_info first_element;
21009880 889 /* Pointer to the next element in the group. */
cd24aa3c 890 stmt_vec_info next_element;
21009880 891 /* The size of the group. */
6b8dbb53 892 unsigned int size;
893 /* For stores, number of stores from this group seen. We vectorize the last
894 one. */
895 unsigned int store_count;
896 /* For loads only, the gap from the previous load. For consecutive loads, GAP
897 is 1. */
898 unsigned int gap;
609c710b 899
a8cf7702 900 /* The minimum negative dependence distance this stmt participates in
901 or zero if none. */
902 unsigned int min_neg_dist;
903
609c710b 904 /* Not all stmts in the loop need to be vectorized. e.g, the increment
905 of the loop induction variable and computation of array indexes. relevant
906 indicates whether the stmt needs to be vectorized. */
907 enum vect_relevant relevant;
867c03eb 908
0bd6d857 909 /* For loads if this is a gather, for stores if this is a scatter. */
910 bool gather_scatter_p;
e1c75243 911
912 /* True if this is an access with loop-invariant stride. */
913 bool strided_p;
3d483a94 914
487798e2 915 /* For both loads and stores. */
916 bool simd_lane_access_p;
917
85b53a1f 918 /* Classifies how the load or store is going to be implemented
919 for loop vectorization. */
920 vect_memory_access_type memory_access_type;
921
d09d8733 922 /* For reduction loops, this is the type of reduction. */
923 enum vect_reduction_type v_reduc_type;
924
834a2c29 925 /* For CONST_COND_REDUCTION, record the reduc code. */
926 enum tree_code const_cond_reduc_code;
927
119a8852 928 /* On a reduction PHI the reduction type as detected by
929 vect_force_simple_reduction. */
930 enum vect_reduction_type reduc_type;
931
44b24fa0 932 /* On a reduction PHI the def returned by vect_force_simple_reduction.
933 On the def returned by vect_force_simple_reduction the
934 corresponding PHI. */
04eefad5 935 stmt_vec_info reduc_def;
119a8852 936
0d85be19 937 /* The number of scalar stmt references from active SLP instances. */
938 unsigned int num_slp_uses;
18bbd2f1 939
940 /* If nonzero, the lhs of the statement could be truncated to this
941 many bits without affecting any users of the result. */
942 unsigned int min_output_precision;
943
944 /* If nonzero, all non-boolean input operands have the same precision,
945 and they could each be truncated to this many bits without changing
946 the result. */
947 unsigned int min_input_precision;
948
949 /* If OPERATION_BITS is nonzero, the statement could be performed on
950 an integer with the sign and number of bits given by OPERATION_SIGN
951 and OPERATION_BITS without changing the result. */
952 unsigned int operation_precision;
953 signop operation_sign;
f92474f8 954
955 /* True if this is only suitable for SLP vectorization. */
956 bool slp_vect_only_p;
04b2391d 957};
c91e8223 958
cf60da07 959/* Information about a gather/scatter call. */
960struct gather_scatter_info {
1619606c 961 /* The internal function to use for the gather/scatter operation,
962 or IFN_LAST if a built-in function should be used instead. */
963 internal_fn ifn;
964
965 /* The FUNCTION_DECL for the built-in gather/scatter function,
966 or null if an internal function should be used instead. */
cf60da07 967 tree decl;
968
969 /* The loop-invariant base value. */
970 tree base;
971
972 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
973 tree offset;
974
975 /* Each offset element should be multiplied by this amount before
976 being added to the base. */
977 int scale;
978
979 /* The definition type for the vectorized offset. */
980 enum vect_def_type offset_dt;
981
982 /* The type of the vectorized offset. */
983 tree offset_vectype;
1619606c 984
985 /* The type of the scalar elements after loading or before storing. */
986 tree element_type;
987
988 /* The type of the scalar elements being loaded or stored. */
989 tree memory_type;
cf60da07 990};
991
c91e8223 992/* Access Functions. */
6b8dbb53 993#define STMT_VINFO_TYPE(S) (S)->type
994#define STMT_VINFO_STMT(S) (S)->stmt
e2c5c678 995inline loop_vec_info
996STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
997{
998 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
999 return loop_vinfo;
1000 return NULL;
1001}
1002inline bb_vec_info
1003STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1004{
1005 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1006 return bb_vinfo;
1007 return NULL;
1008}
6b8dbb53 1009#define STMT_VINFO_RELEVANT(S) (S)->relevant
1010#define STMT_VINFO_LIVE_P(S) (S)->live
1011#define STMT_VINFO_VECTYPE(S) (S)->vectype
1012#define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
6ea6a380 1013#define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
5f02ee72 1014#define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
0bd6d857 1015#define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
e1c75243 1016#define STMT_VINFO_STRIDED_P(S) (S)->strided_p
85b53a1f 1017#define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
3d483a94 1018#define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
d09d8733 1019#define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
834a2c29 1020#define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
b0eb8c66 1021
9e879814 1022#define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1023#define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1024#define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1025#define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1026#define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
a5456a6d 1027#define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1028#define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1029 (S)->dr_wrt_vec_loop.base_misalignment
a7e05ef2 1030#define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1031 (S)->dr_wrt_vec_loop.offset_alignment
668dd7dc 1032#define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1033 (S)->dr_wrt_vec_loop.step_alignment
b0eb8c66 1034
5f02ee72 1035#define STMT_VINFO_DR_INFO(S) \
1036 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1037
6b8dbb53 1038#define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1039#define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
18937389 1040#define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
6b8dbb53 1041#define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
295327ab 1042#define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
6b8dbb53 1043#define STMT_VINFO_DEF_TYPE(S) (S)->def_type
5f02ee72 1044#define STMT_VINFO_GROUPED_ACCESS(S) \
1045 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
559260b3 1046#define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
86faead7 1047#define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
a8cf7702 1048#define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
0d85be19 1049#define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
119a8852 1050#define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1051#define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
f92474f8 1052#define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
21009880 1053
5f02ee72 1054#define DR_GROUP_FIRST_ELEMENT(S) \
1055 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1056#define DR_GROUP_NEXT_ELEMENT(S) \
1057 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1058#define DR_GROUP_SIZE(S) \
1059 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1060#define DR_GROUP_STORE_COUNT(S) \
1061 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1062#define DR_GROUP_GAP(S) \
1063 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
5f02ee72 1064
1065#define REDUC_GROUP_FIRST_ELEMENT(S) \
1066 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1067#define REDUC_GROUP_NEXT_ELEMENT(S) \
1068 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1069#define REDUC_GROUP_SIZE(S) \
1070 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
c91e8223 1071
f083cd24 1072#define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
867c03eb 1073
c6895939 1074#define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1075#define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1076#define STMT_SLP_TYPE(S) (S)->slp_type
1077
0822b158 1078#define VECT_MAX_COST 1000
1079
862bb3cd 1080/* The maximum number of intermediate steps required in multi-step type
1081 conversion. */
1082#define MAX_INTERM_CVT_STEPS 3
1083
d75596cd 1084#define MAX_VECTORIZATION_FACTOR INT_MAX
91a74fc6 1085
69fcaae3 1086/* Nonzero if TYPE represents a (scalar) boolean type or type
1087 in the middle-end compatible with it (unsigned precision 1 integral
1088 types). Used to determine which types should be vectorized as
1089 VECTOR_BOOLEAN_TYPE_P. */
1090
1091#define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1092 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1093 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1094 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1095 && TYPE_PRECISION (TYPE) == 1 \
1096 && TYPE_UNSIGNED (TYPE)))
1097
ecc42a77 1098static inline bool
1099nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1100{
1101 return (loop->inner
1102 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1103}
1104
282bf14c 1105/* Return TRUE if a statement represented by STMT_INFO is a part of a
1106 pattern. */
1107
213448e9 1108static inline bool
1109is_pattern_stmt_p (stmt_vec_info stmt_info)
1110{
e05b01ad 1111 return stmt_info->pattern_stmt_p;
213448e9 1112}
1113
4a59791f 1114/* If STMT_INFO is a pattern statement, return the statement that it
1115 replaces, otherwise return STMT_INFO itself. */
1116
1117inline stmt_vec_info
1118vect_orig_stmt (stmt_vec_info stmt_info)
1119{
1120 if (is_pattern_stmt_p (stmt_info))
1121 return STMT_VINFO_RELATED_STMT (stmt_info);
1122 return stmt_info;
1123}
1124
eeab9fc5 1125/* Return the later statement between STMT1_INFO and STMT2_INFO. */
1126
1127static inline stmt_vec_info
1128get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1129{
1130 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1131 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1132 return stmt1_info;
1133 else
1134 return stmt2_info;
1135}
1136
0b7ea3a9 1137/* If STMT_INFO has been replaced by a pattern statement, return the
1138 replacement statement, otherwise return STMT_INFO itself. */
1139
1140inline stmt_vec_info
1141vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1142{
1143 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1144 return STMT_VINFO_RELATED_STMT (stmt_info);
1145 return stmt_info;
1146}
1147
282bf14c 1148/* Return true if BB is a loop header. */
1149
221e9a92 1150static inline bool
1151is_loop_header_bb_p (basic_block bb)
1152{
1153 if (bb == (bb->loop_father)->header)
1154 return true;
e95895ef 1155 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
221e9a92 1156 return false;
1157}
1158
282bf14c 1159/* Return pow2 (X). */
1160
862bb3cd 1161static inline int
1162vect_pow2 (int x)
1163{
1164 int i, res = 1;
1165
1166 for (i = 0; i < x; i++)
1167 res *= 2;
1168
1169 return res;
1170}
84a15e8f 1171
f97dec81 1172/* Alias targetm.vectorize.builtin_vectorization_cost. */
1173
1174static inline int
1175builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1176 tree vectype, int misalign)
1177{
1178 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1179 vectype, misalign);
1180}
1181
f4ac3f3e 1182/* Get cost by calling cost target builtin. */
1183
1184static inline
1185int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1186{
f97dec81 1187 return builtin_vectorization_cost (type_of_cost, NULL, 0);
f4ac3f3e 1188}
1189
4db2b577 1190/* Alias targetm.vectorize.init_cost. */
1191
1192static inline void *
1193init_cost (struct loop *loop_info)
1194{
1195 return targetm.vectorize.init_cost (loop_info);
1196}
1197
c863e35b 1198extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
524665d0 1199 stmt_vec_info, int, unsigned,
1200 enum vect_cost_model_location);
c863e35b 1201
4db2b577 1202/* Alias targetm.vectorize.add_stmt_cost. */
1203
1204static inline unsigned
1205add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
f97dec81 1206 stmt_vec_info stmt_info, int misalign,
1207 enum vect_cost_model_location where)
4db2b577 1208{
524665d0 1209 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1210 stmt_info, misalign, where);
c863e35b 1211 if (dump_file && (dump_flags & TDF_DETAILS))
524665d0 1212 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1213 cost, where);
1214 return cost;
4db2b577 1215}
1216
1217/* Alias targetm.vectorize.finish_cost. */
1218
f97dec81 1219static inline void
1220finish_cost (void *data, unsigned *prologue_cost,
1221 unsigned *body_cost, unsigned *epilogue_cost)
4db2b577 1222{
f97dec81 1223 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
4db2b577 1224}
1225
1226/* Alias targetm.vectorize.destroy_cost_data. */
1227
1228static inline void
1229destroy_cost_data (void *data)
1230{
1231 targetm.vectorize.destroy_cost_data (data);
1232}
1233
c863e35b 1234inline void
1235add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1236{
1237 stmt_info_for_cost *cost;
1238 unsigned i;
1239 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1aeaa139 1240 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
c863e35b 1241 cost->misalign, cost->where);
1242}
1243
c91e8223 1244/*-----------------------------------------------------------------*/
1245/* Info on data references alignment. */
1246/*-----------------------------------------------------------------*/
a99aba41 1247#define DR_MISALIGNMENT_UNKNOWN (-1)
1248#define DR_MISALIGNMENT_UNINITIALIZED (-2)
1249
23e1875f 1250inline void
abc9513d 1251set_dr_misalignment (dr_vec_info *dr_info, int val)
23e1875f 1252{
abc9513d 1253 dr_info->misalignment = val;
23e1875f 1254}
1255
1256inline int
abc9513d 1257dr_misalignment (dr_vec_info *dr_info)
23e1875f 1258{
abc9513d 1259 int misalign = dr_info->misalignment;
a99aba41 1260 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1261 return misalign;
23e1875f 1262}
c91e8223 1263
39b8f742 1264/* Reflects actual alignment of first access in the vectorized loop,
1265 taking into account peeling/versioning if applied. */
23e1875f 1266#define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1267#define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
c91e8223 1268
aec313e5 1269/* Only defined once DR_MISALIGNMENT is defined. */
abc9513d 1270#define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
aec313e5 1271
abc9513d 1272/* Return true if data access DR_INFO is aligned to its target alignment
aec313e5 1273 (which may be less than a full vector). */
282bf14c 1274
c91e8223 1275static inline bool
abc9513d 1276aligned_access_p (dr_vec_info *dr_info)
c91e8223 1277{
abc9513d 1278 return (DR_MISALIGNMENT (dr_info) == 0);
c91e8223 1279}
1280
282bf14c 1281/* Return TRUE if the alignment of the data access is known, and FALSE
1282 otherwise. */
1283
c91e8223 1284static inline bool
abc9513d 1285known_alignment_for_access_p (dr_vec_info *dr_info)
c91e8223 1286{
abc9513d 1287 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
c91e8223 1288}
1289
aec313e5 1290/* Return the minimum alignment in bytes that the vectorized version
abc9513d 1291 of DR_INFO is guaranteed to have. */
aec313e5 1292
1293static inline unsigned int
abc9513d 1294vect_known_alignment_in_bytes (dr_vec_info *dr_info)
aec313e5 1295{
abc9513d 1296 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1297 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1298 if (DR_MISALIGNMENT (dr_info) == 0)
e092c20e 1299 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
abc9513d 1300 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
aec313e5 1301}
1302
abc9513d 1303/* Return the behavior of DR_INFO with respect to the vectorization context
9e879814 1304 (which for outer loop vectorization might not be the behavior recorded
abc9513d 1305 in DR_INFO itself). */
9e879814 1306
1307static inline innermost_loop_behavior *
abc9513d 1308vect_dr_behavior (dr_vec_info *dr_info)
9e879814 1309{
abc9513d 1310 stmt_vec_info stmt_info = dr_info->stmt;
9e879814 1311 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1312 if (loop_vinfo == NULL
a73182ff 1313 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
abc9513d 1314 return &DR_INNERMOST (dr_info->dr);
9e879814 1315 else
1316 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1317}
1dbf9bd1 1318
1319/* Return true if the vect cost model is unlimited. */
1320static inline bool
3e398f5b 1321unlimited_cost_model (loop_p loop)
1dbf9bd1 1322{
4c73695b 1323 if (loop != NULL && loop->force_vectorize
3e398f5b 1324 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1325 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1326 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1dbf9bd1 1327}
1328
6753a4bf 1329/* Return true if the loop described by LOOP_VINFO is fully-masked and
1330 if the first iteration should use a partial mask in order to achieve
1331 alignment. */
1332
1333static inline bool
1334vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1335{
1336 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1337 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1338}
1339
d75596cd 1340/* Return the number of vectors of type VECTYPE that are needed to get
1341 NUNITS elements. NUNITS should be based on the vectorization factor,
1342 so it is always a known multiple of the number of elements in VECTYPE. */
1343
1344static inline unsigned int
1345vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1346{
1347 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1348}
1349
4eb17cb6 1350/* Return the number of copies needed for loop vectorization when
1351 a statement operates on vectors of type VECTYPE. This is the
1352 vectorization factor divided by the number of elements in
1353 VECTYPE and is always known at compile time. */
1354
1355static inline unsigned int
1356vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1357{
d75596cd 1358 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1359}
1360
1361/* Update maximum unit count *MAX_NUNITS so that it accounts for
1362 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1363 if we haven't yet recorded any vector types. */
1364
1365static inline void
1366vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1367{
1368 /* All unit counts have the form current_vector_size * X for some
1369 rational X, so two unit sizes must have a common multiple.
1370 Everything is a multiple of the initial value of 1. */
1371 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1372 *max_nunits = force_common_multiple (*max_nunits, nunits);
1373}
1374
1375/* Return the vectorization factor that should be used for costing
1376 purposes while vectorizing the loop described by LOOP_VINFO.
1377 Pick a reasonable estimate if the vectorization factor isn't
1378 known at compile time. */
1379
1380static inline unsigned int
1381vect_vf_for_cost (loop_vec_info loop_vinfo)
1382{
1383 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
4eb17cb6 1384}
1385
09de8b78 1386/* Estimate the number of elements in VEC_TYPE for costing purposes.
1387 Pick a reasonable estimate if the exact number isn't known at
1388 compile time. */
1389
1390static inline unsigned int
1391vect_nunits_for_cost (tree vec_type)
1392{
1393 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1394}
1395
60b29a7e 1396/* Return the maximum possible vectorization factor for LOOP_VINFO. */
1397
1398static inline unsigned HOST_WIDE_INT
1399vect_max_vf (loop_vec_info loop_vinfo)
1400{
1401 unsigned HOST_WIDE_INT vf;
1402 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1403 return vf;
1404 return MAX_VECTORIZATION_FACTOR;
1405}
1406
abc9513d 1407/* Return the size of the value accessed by unvectorized data reference
1408 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1409 for the associated gimple statement, since that guarantees that DR_INFO
1410 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1411 here includes things like V1SI, which can be vectorized in the same way
33482edf 1412 as a plain SI.) */
1413
1414inline unsigned int
abc9513d 1415vect_get_scalar_dr_size (dr_vec_info *dr_info)
33482edf 1416{
abc9513d 1417 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
33482edf 1418}
1419
c309657f 1420/* Source location + hotness information. */
1421extern dump_user_location_t vect_location;
fb85abff 1422
b18ceb23 1423/* A macro for calling:
1424 dump_begin_scope (MSG, vect_location);
1425 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1426 and then calling
1427 dump_end_scope ();
1428 once the object goes out of scope, thus capturing the nesting of
9ddd8fa7 1429 the scopes.
1430
1431 These scopes affect dump messages within them: dump messages at the
1432 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1433 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
88f6eb8f 1434
1435#define DUMP_VECT_SCOPE(MSG) \
b18ceb23 1436 AUTO_DUMP_SCOPE (MSG, vect_location)
88f6eb8f 1437
72ea15e5 1438/* A sentinel class for ensuring that the "vect_location" global gets
1439 reset at the end of a scope.
1440
1441 The "vect_location" global is used during dumping and contains a
1442 location_t, which could contain references to a tree block via the
1443 ad-hoc data. This data is used for tracking inlining information,
1444 but it's not a GC root; it's simply assumed that such locations never
1445 get accessed if the blocks are optimized away.
1446
1447 Hence we need to ensure that such locations are purged at the end
1448 of any operations using them (e.g. via this class). */
1449
1450class auto_purge_vect_location
1451{
1452 public:
1453 ~auto_purge_vect_location ();
1454};
1455
c91e8223 1456/*-----------------------------------------------------------------*/
1457/* Function prototypes. */
1458/*-----------------------------------------------------------------*/
1459
48e1416a 1460/* Simple loop peeling and versioning utilities for vectorizer's purposes -
fb85abff 1461 in tree-vect-loop-manip.c. */
60b29a7e 1462extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1463 tree, tree, tree, bool);
1f1872fd 1464extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
c71d3c24 1465struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1466 struct loop *, edge);
44245620 1467struct loop *vect_loop_versioning (loop_vec_info, unsigned int, bool,
1468 poly_uint64);
5b631e09 1469extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
cde959e7 1470 tree *, tree *, tree *, int, bool, bool);
6753a4bf 1471extern void vect_prepare_for_masked_peels (loop_vec_info);
c309657f 1472extern dump_user_location_t find_loop_location (struct loop *);
fb85abff 1473extern bool vect_can_advance_ivs_p (loop_vec_info);
c91e8223 1474
fb85abff 1475/* In tree-vect-stmts.c. */
3106770a 1476extern poly_uint64 current_vector_size;
f2983e95 1477extern tree get_vectype_for_scalar_type (tree);
41b4a935 1478extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
dab48979 1479extern tree get_mask_type_for_scalar_type (tree);
b334cbba 1480extern tree get_same_sized_vectype (tree, tree);
60b29a7e 1481extern bool vect_get_loop_mask_type (loop_vec_info);
bf8b3614 1482extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
bfa5bad6 1483 stmt_vec_info * = NULL, gimple ** = NULL);
bf8b3614 1484extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
bfa5bad6 1485 tree *, stmt_vec_info * = NULL,
1486 gimple ** = NULL);
ecc42a77 1487extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1488 tree, tree, enum tree_code *,
42acab1c 1489 enum tree_code *, int *,
1490 vec<tree> *);
b334cbba 1491extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1492 enum tree_code *,
f1f41a6c 1493 int *, vec<tree> *);
4db2b577 1494extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
f97dec81 1495 enum vect_cost_for_stmt, stmt_vec_info,
1496 int, enum vect_cost_model_location);
ecc42a77 1497extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1498extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
585ed623 1499 gimple_stmt_iterator *);
ed9370cc 1500extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info);
ecc42a77 1501extern tree vect_get_store_rhs (stmt_vec_info);
1502extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1503extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1504extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
44b24fa0 1505 vec<tree> *, slp_tree);
c0dd122a 1506extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
44b24fa0 1507 vec<tree> *, vec<tree> *);
ecc42a77 1508extern tree vect_init_vector (stmt_vec_info, tree, tree,
fb85abff 1509 gimple_stmt_iterator *);
c0dd122a 1510extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
ecc42a77 1511extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
9632f098 1512 slp_tree, slp_instance);
ecc42a77 1513extern void vect_remove_stores (stmt_vec_info);
ed9370cc 1514extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1515 slp_instance, stmt_vector_for_cost *);
ecc42a77 1516extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
98acf890 1517 stmt_vec_info *, bool, slp_tree,
c863e35b 1518 stmt_vector_for_cost *);
2fbb03c0 1519extern bool vectorizable_shift (stmt_vec_info, gimple_stmt_iterator *,
1520 stmt_vec_info *, slp_tree,
1521 stmt_vector_for_cost *);
1ce0a2db 1522extern void vect_get_load_cost (stmt_vec_info, int, bool,
4db2b577 1523 unsigned int *, unsigned int *,
f97dec81 1524 stmt_vector_for_cost *,
1525 stmt_vector_for_cost *, bool);
1ce0a2db 1526extern void vect_get_store_cost (stmt_vec_info, int,
4db2b577 1527 unsigned int *, stmt_vector_for_cost *);
45eea33f 1528extern bool vect_supportable_shift (enum tree_code, tree);
25eb7c31 1529extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1530extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
cfd9ca84 1531extern void optimize_mask_stores (struct loop*);
60b29a7e 1532extern gcall *vect_gen_while (tree, tree, tree);
6753a4bf 1533extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
ed9370cc 1534extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1535 tree *);
1536extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
48e1416a 1537
fb85abff 1538/* In tree-vect-data-refs.c. */
e092c20e 1539extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
fb85abff 1540extern enum dr_alignment_support vect_supportable_dr_alignment
abc9513d 1541 (dr_vec_info *, bool);
ecc42a77 1542extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
fb85abff 1543 HOST_WIDE_INT *);
ed9370cc 1544extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
c256513d 1545extern bool vect_slp_analyze_instance_dependence (slp_instance);
ed9370cc 1546extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1547extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1548extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
2f6fec15 1549extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
ed9370cc 1550extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1551extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1d2c127d 1552extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1553 signop, int, internal_fn *, tree *);
ecc42a77 1554extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
cf60da07 1555 gather_scatter_info *);
ed9370cc 1556extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1557 vec<data_reference_p> *);
1558extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *);
4f372c2c 1559extern void vect_record_base_alignments (vec_info *);
ecc42a77 1560extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
bd5ba09f 1561 tree *, gimple_stmt_iterator *,
3c8b7bc7 1562 gimple **, bool,
1f9a3b5c 1563 tree = NULL_TREE, tree = NULL_TREE);
ecc42a77 1564extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1565 stmt_vec_info, tree);
1c4c7e32 1566extern void vect_copy_ref_info (tree, tree);
fb85abff 1567extern tree vect_create_destination_var (tree, tree);
ee612634 1568extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2dd8e84c 1569extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
bc691ae4 1570extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2dd8e84c 1571extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
ecc42a77 1572extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
f1f41a6c 1573 gimple_stmt_iterator *, vec<tree> *);
ecc42a77 1574extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1575 tree *, enum dr_alignment_support, tree,
fb85abff 1576 struct loop **);
ecc42a77 1577extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
fb85abff 1578 gimple_stmt_iterator *);
ecc42a77 1579extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
fb85abff 1580extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
23ffec42 1581extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1582 const char * = NULL);
ecc42a77 1583extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
9e879814 1584 tree, tree = NULL_TREE);
fb85abff 1585
1586/* In tree-vect-loop.c. */
1587/* FORNOW: Used in tree-parloops.c. */
f4649a92 1588extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1589 bool *, bool);
ef871d99 1590extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
5051abaf 1591/* Used in gimple-loop-interchange.c. */
c309657f 1592extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
5051abaf 1593 enum tree_code);
fb85abff 1594/* Drive for loop analysis stage. */
ed9370cc 1595extern opt_loop_vec_info vect_analyze_loop (struct loop *,
1596 loop_vec_info,
1597 vec_info_shared *);
3a815241 1598extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
cde959e7 1599extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1600 tree *, bool);
60b29a7e 1601extern tree vect_halve_mask_nunits (tree);
1602extern tree vect_double_mask_nunits (tree);
1603extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1604 unsigned int, tree);
1605extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1606 unsigned int, tree, unsigned int);
1607
fb85abff 1608/* Drive for loop transformation stage. */
5b631e09 1609extern struct loop *vect_transform_loop (loop_vec_info);
ed9370cc 1610extern opt_loop_vec_info vect_analyze_loop_form (struct loop *,
1611 vec_info_shared *);
ecc42a77 1612extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
435515db 1613 slp_tree, int, stmt_vec_info *,
c863e35b 1614 stmt_vector_for_cost *);
ecc42a77 1615extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
435515db 1616 stmt_vec_info *, slp_tree, slp_instance,
c863e35b 1617 stmt_vector_for_cost *);
ecc42a77 1618extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
435515db 1619 stmt_vec_info *, slp_tree,
c863e35b 1620 stmt_vector_for_cost *);
ecc42a77 1621extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
fec8b6d0 1622extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
7a66d0cf 1623extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1624 stmt_vector_for_cost *,
f97dec81 1625 stmt_vector_for_cost *,
1626 stmt_vector_for_cost *);
f404501a 1627extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
4a61a337 1628
fb85abff 1629/* In tree-vect-slp.c. */
2068679d 1630extern void vect_free_slp_instance (slp_instance, bool);
678e3d6e 1631extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
d75596cd 1632 gimple_stmt_iterator *, poly_uint64,
1633 slp_instance, bool, unsigned *);
1c57101b 1634extern bool vect_slp_analyze_operations (vec_info *);
02e9bec2 1635extern void vect_schedule_slp (vec_info *);
ed9370cc 1636extern opt_result vect_analyze_slp (vec_info *, unsigned);
bc937a44 1637extern bool vect_make_slp_decision (loop_vec_info);
fb85abff 1638extern void vect_detect_hybrid_slp (loop_vec_info);
4f0d4cce 1639extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
0a08c1bc 1640extern bool vect_slp_bb (basic_block);
3d9c962c 1641extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
ecc42a77 1642extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
633af029 1643extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1644 unsigned int * = NULL,
1645 tree * = NULL, tree * = NULL);
1646extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1647 unsigned int, vec<tree> &);
ecc42a77 1648extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
fb85abff 1649
1650/* In tree-vect-patterns.c. */
4a61a337 1651/* Pattern recognition functions.
1652 Additional pattern recognition functions can (and will) be added
1653 in the future. */
e2c5c678 1654void vect_pattern_recog (vec_info *);
4a61a337 1655
10230637 1656/* In tree-vectorizer.c. */
1657unsigned vectorize_loops (void);
d5e80d93 1658void vect_free_loop_info_assumptions (struct loop *);
0decb676 1659gimple *vect_loop_vectorized_call (struct loop *, gcond **cond = NULL);
1660
c91e8223 1661
1662#endif /* GCC_TREE_VECTORIZER_H */