]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/config/libbid/bid64_compare.c
Update copyright years.
[thirdparty/gcc.git] / libgcc / config / libbid / bid64_compare.c
CommitLineData
7adcbafe 1/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
200359e8
L
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
748086b7 7Software Foundation; either version 3, or (at your option) any later
200359e8
L
8version.
9
200359e8
L
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13for more details.
14
748086b7
JJ
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22<http://www.gnu.org/licenses/>. */
200359e8
L
23
24#include "bid_internal.h"
25
26static const UINT64 mult_factor[16] = {
27 1ull, 10ull, 100ull, 1000ull,
28 10000ull, 100000ull, 1000000ull, 10000000ull,
29 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
30 1000000000000ull, 10000000000000ull,
31 100000000000000ull, 1000000000000000ull
32};
33
34#if DECIMAL_CALL_BY_REFERENCE
35void
b2a00c89 36bid64_quiet_equal (int *pres, UINT64 * px,
200359e8
L
37 UINT64 *
38 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
39 _EXC_INFO_PARAM) {
40 UINT64 x = *px;
41 UINT64 y = *py;
42#else
43int
b2a00c89 44bid64_quiet_equal (UINT64 x,
200359e8
L
45 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
46 _EXC_INFO_PARAM) {
47#endif
48 int res;
49 int exp_x, exp_y, exp_t;
50 UINT64 sig_x, sig_y, sig_t;
51 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
52
53 // NaN (CASE1)
54 // if either number is NAN, the comparison is unordered,
55 // rather than equal : return 0
56 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
57 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 58 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
59 }
60 res = 0;
61 BID_RETURN (res);
62 }
63 // SIMPLE (CASE2)
64 // if all the bits are the same, these numbers are equivalent.
65 if (x == y) {
66 res = 1;
67 BID_RETURN (res);
68 }
69 // INFINITY (CASE3)
70 if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
71 res = (((x ^ y) & MASK_SIGN) != MASK_SIGN);
72 BID_RETURN (res);
73 }
b2a00c89
L
74 // ONE INFINITY (CASE3')
75 if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) {
76 res = 0;
77 BID_RETURN (res);
78 }
200359e8
L
79 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
80 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
81 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
82 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
83 if (sig_x > 9999999999999999ull) {
84 non_canon_x = 1;
85 } else {
86 non_canon_x = 0;
87 }
88 } else {
89 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
90 sig_x = (x & MASK_BINARY_SIG1);
91 non_canon_x = 0;
92 }
93 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
94 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
95 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
96 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
97 if (sig_y > 9999999999999999ull) {
98 non_canon_y = 1;
99 } else {
100 non_canon_y = 0;
101 }
102 } else {
103 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
104 sig_y = (y & MASK_BINARY_SIG1);
105 non_canon_y = 0;
106 }
107 // ZERO (CASE4)
108 // some properties:
109 // (+ZERO==-ZERO) => therefore ignore the sign
110 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
111 // therefore ignore the exponent field
112 // (Any non-canonical # is considered 0)
113 if (non_canon_x || sig_x == 0) {
114 x_is_zero = 1;
115 }
116 if (non_canon_y || sig_y == 0) {
117 y_is_zero = 1;
118 }
119 if (x_is_zero && y_is_zero) {
120 res = 1;
121 BID_RETURN (res);
122 } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
123 res = 0;
124 BID_RETURN (res);
125 }
126 // OPPOSITE SIGN (CASE5)
127 // now, if the sign bits differ => not equal : return 0
128 if ((x ^ y) & MASK_SIGN) {
129 res = 0;
130 BID_RETURN (res);
131 }
132 // REDUNDANT REPRESENTATIONS (CASE6)
b2a00c89
L
133 if (exp_x > exp_y) { // to simplify the loop below,
134 SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
135 SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
200359e8
L
136 }
137 if (exp_y - exp_x > 15) {
b2a00c89 138 res = 0; // difference cannot be greater than 10^15
200359e8
L
139 BID_RETURN (res);
140 }
141 for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
142 // recalculate y's significand upwards
143 sig_y = sig_y * 10;
144 if (sig_y > 9999999999999999ull) {
145 res = 0;
146 BID_RETURN (res);
147 }
148 }
149 res = (sig_y == sig_x);
150 BID_RETURN (res);
151}
152
153#if DECIMAL_CALL_BY_REFERENCE
154void
b2a00c89 155bid64_quiet_greater (int *pres, UINT64 * px,
200359e8
L
156 UINT64 *
157 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
158 _EXC_INFO_PARAM) {
159 UINT64 x = *px;
160 UINT64 y = *py;
161#else
162int
b2a00c89 163bid64_quiet_greater (UINT64 x,
200359e8
L
164 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
165 _EXC_INFO_PARAM) {
166#endif
167 int res;
168 int exp_x, exp_y;
169 UINT64 sig_x, sig_y;
170 UINT128 sig_n_prime;
171 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
172
173 // NaN (CASE1)
174 // if either number is NAN, the comparison is unordered, rather than equal :
175 // return 0
176 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
177 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 178 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
179 }
180 res = 0;
181 BID_RETURN (res);
182 }
183 // SIMPLE (CASE2)
184 // if all the bits are the same, these numbers are equal (not Greater).
185 if (x == y) {
186 res = 0;
187 BID_RETURN (res);
188 }
189 // INFINITY (CASE3)
190 if ((x & MASK_INF) == MASK_INF) {
191 // if x is neg infinity, there is no way it is greater than y, return 0
192 if (((x & MASK_SIGN) == MASK_SIGN)) {
193 res = 0;
194 BID_RETURN (res);
195 } else {
196 // x is pos infinity, it is greater, unless y is positive
197 // infinity => return y!=pos_infinity
198 res = (((y & MASK_INF) != MASK_INF)
199 || ((y & MASK_SIGN) == MASK_SIGN));
200 BID_RETURN (res);
201 }
202 } else if ((y & MASK_INF) == MASK_INF) {
203 // x is finite, so if y is positive infinity, then x is less, return 0
204 // if y is negative infinity, then x is greater, return 1
205 res = ((y & MASK_SIGN) == MASK_SIGN);
206 BID_RETURN (res);
207 }
208 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
209 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
210 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
211 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
212 if (sig_x > 9999999999999999ull) {
213 non_canon_x = 1;
214 } else {
215 non_canon_x = 0;
216 }
217 } else {
218 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
219 sig_x = (x & MASK_BINARY_SIG1);
220 non_canon_x = 0;
221 }
222 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
223 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
224 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
225 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
226 if (sig_y > 9999999999999999ull) {
227 non_canon_y = 1;
228 } else {
229 non_canon_y = 0;
230 }
231 } else {
232 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
233 sig_y = (y & MASK_BINARY_SIG1);
234 non_canon_y = 0;
235 }
236 // ZERO (CASE4)
237 // some properties:
238 //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
239 //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the
240 // exponent field
241 // (Any non-canonical # is considered 0)
242 if (non_canon_x || sig_x == 0) {
243 x_is_zero = 1;
244 }
245 if (non_canon_y || sig_y == 0) {
246 y_is_zero = 1;
247 }
248 // if both numbers are zero, neither is greater => return NOTGREATERTHAN
249 if (x_is_zero && y_is_zero) {
250 res = 0;
251 BID_RETURN (res);
252 } else if (x_is_zero) {
253 // is x is zero, it is greater if Y is negative
254 res = ((y & MASK_SIGN) == MASK_SIGN);
255 BID_RETURN (res);
256 } else if (y_is_zero) {
257 // is y is zero, X is greater if it is positive
258 res = ((x & MASK_SIGN) != MASK_SIGN);
259 BID_RETURN (res);
260 }
261 // OPPOSITE SIGN (CASE5)
262 // now, if the sign bits differ, x is greater if y is negative
263 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
264 res = ((y & MASK_SIGN) == MASK_SIGN);
265 BID_RETURN (res);
266 }
267 // REDUNDANT REPRESENTATIONS (CASE6)
268 // if both components are either bigger or smaller,
269 // it is clear what needs to be done
270 if (sig_x > sig_y && exp_x > exp_y) {
271 res = ((x & MASK_SIGN) != MASK_SIGN);
272 BID_RETURN (res);
273 }
274 if (sig_x < sig_y && exp_x < exp_y) {
275 res = ((x & MASK_SIGN) == MASK_SIGN);
276 BID_RETURN (res);
277 }
278 // if exp_x is 15 greater than exp_y, no need for compensation
b2a00c89 279 if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15
200359e8
L
280 if (x & MASK_SIGN) // if both are negative
281 res = 0;
282 else // if both are positive
283 res = 1;
284 BID_RETURN (res);
285 }
286 // if exp_x is 15 less than exp_y, no need for compensation
287 if (exp_y - exp_x > 15) {
288 if (x & MASK_SIGN) // if both are negative
289 res = 1;
290 else // if both are positive
291 res = 0;
292 BID_RETURN (res);
293 }
294 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 295 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
296 // otherwise adjust the x significand upwards
297 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
298 mult_factor[exp_x - exp_y]);
299 // if postitive, return whichever significand is larger (converse if neg.)
300 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
301 res = 0;
302 BID_RETURN (res);
303 }
304 res = (((sig_n_prime.w[1] > 0)
305 || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
306 MASK_SIGN));
307 BID_RETURN (res);
308 }
309 // adjust the y significand upwards
310 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
311 mult_factor[exp_y - exp_x]);
312 // if postitive, return whichever significand is larger
313 // (converse if negative)
314 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
315 res = 0;
316 BID_RETURN (res);
317 }
318 res = (((sig_n_prime.w[1] == 0)
319 && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
320 MASK_SIGN));
321 BID_RETURN (res);
322}
323
324#if DECIMAL_CALL_BY_REFERENCE
325void
b2a00c89 326bid64_quiet_greater_equal (int *pres, UINT64 * px,
200359e8
L
327 UINT64 *
328 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
329 _EXC_INFO_PARAM) {
330 UINT64 x = *px;
331 UINT64 y = *py;
332#else
333int
b2a00c89 334bid64_quiet_greater_equal (UINT64 x,
200359e8
L
335 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
336 _EXC_INFO_PARAM) {
337#endif
338 int res;
339 int exp_x, exp_y;
340 UINT64 sig_x, sig_y;
341 UINT128 sig_n_prime;
342 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
343
344 // NaN (CASE1)
345 // if either number is NAN, the comparison is unordered : return 1
346 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
347 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 348 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
349 }
350 res = 0;
351 BID_RETURN (res);
352 }
353 // SIMPLE (CASE2)
354 // if all the bits are the same, these numbers are equal.
355 if (x == y) {
356 res = 1;
357 BID_RETURN (res);
358 }
359 // INFINITY (CASE3)
360 if ((x & MASK_INF) == MASK_INF) {
361 // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
362 if ((x & MASK_SIGN) == MASK_SIGN) {
363 // x is -inf, so it is less than y unless y is -inf
364 res = (((y & MASK_INF) == MASK_INF)
365 && (y & MASK_SIGN) == MASK_SIGN);
366 BID_RETURN (res);
b2a00c89 367 } else { // x is pos_inf, no way for it to be less than y
200359e8
L
368 res = 1;
369 BID_RETURN (res);
370 }
371 } else if ((y & MASK_INF) == MASK_INF) {
372 // x is finite, so:
373 // if y is +inf, x<y
374 // if y is -inf, x>y
375 res = ((y & MASK_SIGN) == MASK_SIGN);
376 BID_RETURN (res);
377 }
378 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
379 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
380 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
381 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
382 if (sig_x > 9999999999999999ull) {
383 non_canon_x = 1;
384 } else {
385 non_canon_x = 0;
386 }
387 } else {
388 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
389 sig_x = (x & MASK_BINARY_SIG1);
390 non_canon_x = 0;
391 }
392 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
393 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
394 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
395 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
396 if (sig_y > 9999999999999999ull) {
397 non_canon_y = 1;
398 } else {
399 non_canon_y = 0;
400 }
401 } else {
402 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
403 sig_y = (y & MASK_BINARY_SIG1);
404 non_canon_y = 0;
405 }
406 // ZERO (CASE4)
407 // some properties:
408 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
409 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
410 // therefore ignore the exponent field
411 // (Any non-canonical # is considered 0)
412 if (non_canon_x || sig_x == 0) {
413 x_is_zero = 1;
414 }
415 if (non_canon_y || sig_y == 0) {
416 y_is_zero = 1;
417 }
418 if (x_is_zero && y_is_zero) {
419 // if both numbers are zero, they are equal
420 res = 1;
421 BID_RETURN (res);
422 } else if (x_is_zero) {
423 // if x is zero, it is lessthan if Y is positive
424 res = ((y & MASK_SIGN) == MASK_SIGN);
425 BID_RETURN (res);
426 } else if (y_is_zero) {
427 // if y is zero, X is less if it is negative
428 res = ((x & MASK_SIGN) != MASK_SIGN);
429 BID_RETURN (res);
430 }
431 // OPPOSITE SIGN (CASE5)
432 // now, if the sign bits differ, x is less than if y is positive
433 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
434 res = ((y & MASK_SIGN) == MASK_SIGN);
435 BID_RETURN (res);
436 }
437 // REDUNDANT REPRESENTATIONS (CASE6)
438 // if both components are either bigger or smaller
439 if (sig_x > sig_y && exp_x >= exp_y) {
440 res = ((x & MASK_SIGN) != MASK_SIGN);
441 BID_RETURN (res);
442 }
443 if (sig_x < sig_y && exp_x <= exp_y) {
444 res = ((x & MASK_SIGN) == MASK_SIGN);
445 BID_RETURN (res);
446 }
447 // if exp_x is 15 greater than exp_y, no need for compensation
448 if (exp_x - exp_y > 15) {
449 res = ((x & MASK_SIGN) != MASK_SIGN);
450 // difference cannot be greater than 10^15
451 BID_RETURN (res);
452 }
453 // if exp_x is 15 less than exp_y, no need for compensation
454 if (exp_y - exp_x > 15) {
455 res = ((x & MASK_SIGN) == MASK_SIGN);
456 BID_RETURN (res);
457 }
458 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 459 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
460 // otherwise adjust the x significand upwards
461 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
462 mult_factor[exp_x - exp_y]);
463 // return 1 if values are equal
464 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
465 res = 1;
466 BID_RETURN (res);
467 }
468 // if postitive, return whichever significand abs is smaller
469 // (converse if negative)
470 res = (((sig_n_prime.w[1] == 0)
471 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
472 MASK_SIGN));
473 BID_RETURN (res);
474 }
475 // adjust the y significand upwards
476 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
477 mult_factor[exp_y - exp_x]);
478 // return 0 if values are equal
479 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
480 res = 1;
481 BID_RETURN (res);
482 }
483 // if positive, return whichever significand abs is smaller
484 // (converse if negative)
485 res = (((sig_n_prime.w[1] > 0)
486 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
487 MASK_SIGN));
488 BID_RETURN (res);
489}
490
491#if DECIMAL_CALL_BY_REFERENCE
492void
b2a00c89 493bid64_quiet_greater_unordered (int *pres, UINT64 * px,
200359e8
L
494 UINT64 *
495 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
496 _EXC_INFO_PARAM) {
497 UINT64 x = *px;
498 UINT64 y = *py;
499#else
500int
b2a00c89 501bid64_quiet_greater_unordered (UINT64 x,
200359e8
L
502 UINT64 y _EXC_FLAGS_PARAM
503 _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
504#endif
505 int res;
506 int exp_x, exp_y;
507 UINT64 sig_x, sig_y;
508 UINT128 sig_n_prime;
509 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
510
511 // NaN (CASE1)
512 // if either number is NAN, the comparison is unordered, rather than equal :
513 // return 0
514 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
515 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 516 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
517 }
518 res = 1;
519 BID_RETURN (res);
520 }
521 // SIMPLE (CASE2)
522 // if all the bits are the same, these numbers are equal (not Greater).
523 if (x == y) {
524 res = 0;
525 BID_RETURN (res);
526 }
527 // INFINITY (CASE3)
528 if ((x & MASK_INF) == MASK_INF) {
529 // if x is neg infinity, there is no way it is greater than y, return 0
530 if (((x & MASK_SIGN) == MASK_SIGN)) {
531 res = 0;
532 BID_RETURN (res);
533 } else {
534 // x is pos infinity, it is greater, unless y is positive infinity =>
535 // return y!=pos_infinity
536 res = (((y & MASK_INF) != MASK_INF)
537 || ((y & MASK_SIGN) == MASK_SIGN));
538 BID_RETURN (res);
539 }
540 } else if ((y & MASK_INF) == MASK_INF) {
541 // x is finite, so if y is positive infinity, then x is less, return 0
542 // if y is negative infinity, then x is greater, return 1
543 res = ((y & MASK_SIGN) == MASK_SIGN);
544 BID_RETURN (res);
545 }
546 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
547 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
548 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
549 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
550 if (sig_x > 9999999999999999ull) {
551 non_canon_x = 1;
552 } else {
553 non_canon_x = 0;
554 }
555 } else {
556 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
557 sig_x = (x & MASK_BINARY_SIG1);
558 non_canon_x = 0;
559 }
560 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
561 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
562 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
563 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
564 if (sig_y > 9999999999999999ull) {
565 non_canon_y = 1;
566 } else {
567 non_canon_y = 0;
568 }
569 } else {
570 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
571 sig_y = (y & MASK_BINARY_SIG1);
572 non_canon_y = 0;
573 }
574 // ZERO (CASE4)
575 // some properties:
576 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
577 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
578 // therefore ignore the exponent field
579 // (Any non-canonical # is considered 0)
580 if (non_canon_x || sig_x == 0) {
581 x_is_zero = 1;
582 }
583 if (non_canon_y || sig_y == 0) {
584 y_is_zero = 1;
585 }
586 // if both numbers are zero, neither is greater => return NOTGREATERTHAN
587 if (x_is_zero && y_is_zero) {
588 res = 0;
589 BID_RETURN (res);
590 } else if (x_is_zero) {
591 // is x is zero, it is greater if Y is negative
592 res = ((y & MASK_SIGN) == MASK_SIGN);
593 BID_RETURN (res);
594 } else if (y_is_zero) {
595 // is y is zero, X is greater if it is positive
596 res = ((x & MASK_SIGN) != MASK_SIGN);
597 BID_RETURN (res);
598 }
599 // OPPOSITE SIGN (CASE5)
600 // now, if the sign bits differ, x is greater if y is negative
601 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
602 res = ((y & MASK_SIGN) == MASK_SIGN);
603 BID_RETURN (res);
604 }
605 // REDUNDANT REPRESENTATIONS (CASE6)
606 // if both components are either bigger or smaller
607 if (sig_x > sig_y && exp_x >= exp_y) {
608 res = ((x & MASK_SIGN) != MASK_SIGN);
609 BID_RETURN (res);
610 }
611 if (sig_x < sig_y && exp_x <= exp_y) {
612 res = ((x & MASK_SIGN) == MASK_SIGN);
613 BID_RETURN (res);
614 }
615 // if exp_x is 15 greater than exp_y, no need for compensation
616 if (exp_x - exp_y > 15) {
617 // difference cannot be greater than 10^15
618 res = ((x & MASK_SIGN) != MASK_SIGN);
619 BID_RETURN (res);
620 }
621 // if exp_x is 15 less than exp_y, no need for compensation
622 if (exp_y - exp_x > 15) {
623 res = ((x & MASK_SIGN) == MASK_SIGN);
624 BID_RETURN (res);
625 }
626 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 627 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
628 // otherwise adjust the x significand upwards
629 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
630 mult_factor[exp_x - exp_y]);
631 // if postitive, return whichever significand is larger
632 // (converse if negative)
633 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
634 res = 0;
635 BID_RETURN (res);
636 }
637 res = (((sig_n_prime.w[1] > 0)
638 || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
639 MASK_SIGN));
640 BID_RETURN (res);
641 }
642 // adjust the y significand upwards
643 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
644 mult_factor[exp_y - exp_x]);
645 // if postitive, return whichever significand is larger (converse if negative)
646 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
647 res = 0;
648 BID_RETURN (res);
649 }
650 res = (((sig_n_prime.w[1] == 0)
651 && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
652 MASK_SIGN));
653 BID_RETURN (res);
654}
655
656#if DECIMAL_CALL_BY_REFERENCE
657void
b2a00c89 658bid64_quiet_less (int *pres, UINT64 * px,
200359e8
L
659 UINT64 *
660 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
661{
662 UINT64 x = *px;
663 UINT64 y = *py;
664#else
665int
b2a00c89 666bid64_quiet_less (UINT64 x,
200359e8
L
667 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
668 _EXC_INFO_PARAM) {
669#endif
670 int res;
671 int exp_x, exp_y;
672 UINT64 sig_x, sig_y;
673 UINT128 sig_n_prime;
674 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
675
676 // NaN (CASE1)
677 // if either number is NAN, the comparison is unordered : return 0
678 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
679 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 680 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
681 }
682 res = 0;
683 BID_RETURN (res);
684 }
685 // SIMPLE (CASE2)
686 // if all the bits are the same, these numbers are equal.
687 if (x == y) {
688 res = 0;
689 BID_RETURN (res);
690 }
691 // INFINITY (CASE3)
692 if ((x & MASK_INF) == MASK_INF) {
693 // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
694 if ((x & MASK_SIGN) == MASK_SIGN) {
695 // x is -inf, so it is less than y unless y is -inf
696 res = (((y & MASK_INF) != MASK_INF)
697 || (y & MASK_SIGN) != MASK_SIGN);
698 BID_RETURN (res);
699 } else {
700 // x is pos_inf, no way for it to be less than y
701 res = 0;
702 BID_RETURN (res);
703 }
704 } else if ((y & MASK_INF) == MASK_INF) {
705 // x is finite, so:
706 // if y is +inf, x<y
707 // if y is -inf, x>y
708 res = ((y & MASK_SIGN) != MASK_SIGN);
709 BID_RETURN (res);
710 }
711 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
712 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
713 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
714 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
715 if (sig_x > 9999999999999999ull) {
716 non_canon_x = 1;
717 } else {
718 non_canon_x = 0;
719 }
720 } else {
721 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
722 sig_x = (x & MASK_BINARY_SIG1);
723 non_canon_x = 0;
724 }
725 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
726 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
727 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
728 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
729 if (sig_y > 9999999999999999ull) {
730 non_canon_y = 1;
731 } else {
732 non_canon_y = 0;
733 }
734 } else {
735 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
736 sig_y = (y & MASK_BINARY_SIG1);
737 non_canon_y = 0;
738 }
739 // ZERO (CASE4)
740 // some properties:
741 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
742 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
743 // therefore ignore the exponent field
744 // (Any non-canonical # is considered 0)
745 if (non_canon_x || sig_x == 0) {
746 x_is_zero = 1;
747 }
748 if (non_canon_y || sig_y == 0) {
749 y_is_zero = 1;
750 }
751 if (x_is_zero && y_is_zero) {
752 // if both numbers are zero, they are equal
753 res = 0;
754 BID_RETURN (res);
755 } else if (x_is_zero) {
756 // if x is zero, it is lessthan if Y is positive
757 res = ((y & MASK_SIGN) != MASK_SIGN);
758 BID_RETURN (res);
759 } else if (y_is_zero) {
760 // if y is zero, X is less if it is negative
761 res = ((x & MASK_SIGN) == MASK_SIGN);
762 BID_RETURN (res);
763 }
764 // OPPOSITE SIGN (CASE5)
765 // now, if the sign bits differ, x is less than if y is positive
766 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
767 res = ((y & MASK_SIGN) != MASK_SIGN);
768 BID_RETURN (res);
769 }
770 // REDUNDANT REPRESENTATIONS (CASE6)
771 // if both components are either bigger or smaller,
772 // it is clear what needs to be done
773 if (sig_x > sig_y && exp_x >= exp_y) {
774 res = ((x & MASK_SIGN) == MASK_SIGN);
775 BID_RETURN (res);
776 }
777 if (sig_x < sig_y && exp_x <= exp_y) {
778 res = ((x & MASK_SIGN) != MASK_SIGN);
779 BID_RETURN (res);
780 }
781 // if exp_x is 15 greater than exp_y, no need for compensation
782 if (exp_x - exp_y > 15) {
783 res = ((x & MASK_SIGN) == MASK_SIGN);
784 // difference cannot be greater than 10^15
785 BID_RETURN (res);
786 }
787 // if exp_x is 15 less than exp_y, no need for compensation
788 if (exp_y - exp_x > 15) {
789 res = ((x & MASK_SIGN) != MASK_SIGN);
790 BID_RETURN (res);
791 }
792 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 793 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
794 // otherwise adjust the x significand upwards
795 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
796 mult_factor[exp_x - exp_y]);
797 // return 0 if values are equal
798 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
799 res = 0;
800 BID_RETURN (res);
801 }
802 // if postitive, return whichever significand abs is smaller
803 // (converse if negative)
804 res = (((sig_n_prime.w[1] == 0)
805 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
806 MASK_SIGN));
807 BID_RETURN (res);
808 }
809 // adjust the y significand upwards
810 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
811 mult_factor[exp_y - exp_x]);
812 // return 0 if values are equal
813 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
814 res = 0;
815 BID_RETURN (res);
816 }
817 // if positive, return whichever significand abs is smaller
818 // (converse if negative)
819 res = (((sig_n_prime.w[1] > 0)
820 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
821 MASK_SIGN));
822 BID_RETURN (res);
823}
824
825#if DECIMAL_CALL_BY_REFERENCE
826void
b2a00c89 827bid64_quiet_less_equal (int *pres, UINT64 * px,
200359e8
L
828 UINT64 *
829 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
830 _EXC_INFO_PARAM) {
831 UINT64 x = *px;
832 UINT64 y = *py;
833#else
834int
b2a00c89 835bid64_quiet_less_equal (UINT64 x,
200359e8
L
836 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
837 _EXC_INFO_PARAM) {
838#endif
839 int res;
840 int exp_x, exp_y;
841 UINT64 sig_x, sig_y;
842 UINT128 sig_n_prime;
843 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
844
845 // NaN (CASE1)
846 // if either number is NAN, the comparison is unordered, rather than equal :
847 // return 0
848 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
849 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 850 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
851 }
852 res = 0;
853 BID_RETURN (res);
854 }
855 // SIMPLE (CASE2)
856 // if all the bits are the same, these numbers are equal (LESSEQUAL).
857 if (x == y) {
858 res = 1;
859 BID_RETURN (res);
860 }
861 // INFINITY (CASE3)
862 if ((x & MASK_INF) == MASK_INF) {
863 if (((x & MASK_SIGN) == MASK_SIGN)) {
864 // if x is neg infinity, it must be lessthan or equal to y return 1
865 res = 1;
866 BID_RETURN (res);
867 } else {
868 // x is pos infinity, it is greater, unless y is positive infinity =>
869 // return y==pos_infinity
870 res = !(((y & MASK_INF) != MASK_INF)
871 || ((y & MASK_SIGN) == MASK_SIGN));
872 BID_RETURN (res);
873 }
874 } else if ((y & MASK_INF) == MASK_INF) {
875 // x is finite, so if y is positive infinity, then x is less, return 1
876 // if y is negative infinity, then x is greater, return 0
877 res = ((y & MASK_SIGN) != MASK_SIGN);
878 BID_RETURN (res);
879 }
880 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
881 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
882 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
883 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
884 if (sig_x > 9999999999999999ull) {
885 non_canon_x = 1;
886 } else {
887 non_canon_x = 0;
888 }
889 } else {
890 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
891 sig_x = (x & MASK_BINARY_SIG1);
892 non_canon_x = 0;
893 }
894 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
895 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
896 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
897 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
898 if (sig_y > 9999999999999999ull) {
899 non_canon_y = 1;
900 } else {
901 non_canon_y = 0;
902 }
903 } else {
904 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
905 sig_y = (y & MASK_BINARY_SIG1);
906 non_canon_y = 0;
907 }
908 // ZERO (CASE4)
909 // some properties:
910 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
911 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
912 // therefore ignore the exponent field
913 // (Any non-canonical # is considered 0)
914 if (non_canon_x || sig_x == 0) {
915 x_is_zero = 1;
916 }
917 if (non_canon_y || sig_y == 0) {
918 y_is_zero = 1;
919 }
920 if (x_is_zero && y_is_zero) {
921 // if both numbers are zero, they are equal -> return 1
922 res = 1;
923 BID_RETURN (res);
924 } else if (x_is_zero) {
925 // if x is zero, it is lessthan if Y is positive
926 res = ((y & MASK_SIGN) != MASK_SIGN);
927 BID_RETURN (res);
928 } else if (y_is_zero) {
929 // if y is zero, X is less if it is negative
930 res = ((x & MASK_SIGN) == MASK_SIGN);
931 BID_RETURN (res);
932 }
933 // OPPOSITE SIGN (CASE5)
934 // now, if the sign bits differ, x is less than if y is positive
935 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
936 res = ((y & MASK_SIGN) != MASK_SIGN);
937 BID_RETURN (res);
938 }
939 // REDUNDANT REPRESENTATIONS (CASE6)
940 // if both components are either bigger or smaller
941 if (sig_x > sig_y && exp_x >= exp_y) {
942 res = ((x & MASK_SIGN) == MASK_SIGN);
943 BID_RETURN (res);
944 }
945 if (sig_x < sig_y && exp_x <= exp_y) {
946 res = ((x & MASK_SIGN) != MASK_SIGN);
947 BID_RETURN (res);
948 }
949 // if exp_x is 15 greater than exp_y, no need for compensation
950 if (exp_x - exp_y > 15) {
951 res = ((x & MASK_SIGN) == MASK_SIGN);
952 // difference cannot be greater than 10^15
953 BID_RETURN (res);
954 }
955 // if exp_x is 15 less than exp_y, no need for compensation
956 if (exp_y - exp_x > 15) {
957 res = ((x & MASK_SIGN) != MASK_SIGN);
958 BID_RETURN (res);
959 }
960 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 961 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
962 // otherwise adjust the x significand upwards
963 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
964 mult_factor[exp_x - exp_y]);
965 // return 1 if values are equal
966 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
967 res = 1;
968 BID_RETURN (res);
969 }
970 // if postitive, return whichever significand abs is smaller
971 // (converse if negative)
972 res = (((sig_n_prime.w[1] == 0)
973 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
974 MASK_SIGN));
975 BID_RETURN (res);
976 }
977 // adjust the y significand upwards
978 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
979 mult_factor[exp_y - exp_x]);
980 // return 1 if values are equal
981 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
982 res = 1;
983 BID_RETURN (res);
984 }
985 // if positive, return whichever significand abs is smaller
986 // (converse if negative)
987 res = (((sig_n_prime.w[1] > 0)
988 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
989 MASK_SIGN));
990 BID_RETURN (res);
991}
992
993#if DECIMAL_CALL_BY_REFERENCE
994void
b2a00c89 995bid64_quiet_less_unordered (int *pres, UINT64 * px,
200359e8
L
996 UINT64 *
997 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
998 _EXC_INFO_PARAM) {
999 UINT64 x = *px;
1000 UINT64 y = *py;
1001#else
1002int
b2a00c89 1003bid64_quiet_less_unordered (UINT64 x,
200359e8
L
1004 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1005 _EXC_INFO_PARAM) {
1006#endif
1007 int res;
1008 int exp_x, exp_y;
1009 UINT64 sig_x, sig_y;
1010 UINT128 sig_n_prime;
1011 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
1012
1013 // NaN (CASE1)
1014 // if either number is NAN, the comparison is unordered : return 0
1015 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1016 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1017 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1018 }
1019 res = 1;
1020 BID_RETURN (res);
1021 }
1022 // SIMPLE (CASE2)
1023 // if all the bits are the same, these numbers are equal.
1024 if (x == y) {
1025 res = 0;
1026 BID_RETURN (res);
1027 }
1028 // INFINITY (CASE3)
1029 if ((x & MASK_INF) == MASK_INF) {
1030 // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
1031 if ((x & MASK_SIGN) == MASK_SIGN) {
1032 // x is -inf, so it is less than y unless y is -inf
1033 res = (((y & MASK_INF) != MASK_INF)
1034 || (y & MASK_SIGN) != MASK_SIGN);
1035 BID_RETURN (res);
1036 } else {
1037 // x is pos_inf, no way for it to be less than y
1038 res = 0;
1039 BID_RETURN (res);
1040 }
1041 } else if ((y & MASK_INF) == MASK_INF) {
1042 // x is finite, so:
1043 // if y is +inf, x<y
1044 // if y is -inf, x>y
1045 res = ((y & MASK_SIGN) != MASK_SIGN);
1046 BID_RETURN (res);
1047 }
1048 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1049 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1050 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1051 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1052 if (sig_x > 9999999999999999ull) {
1053 non_canon_x = 1;
1054 } else {
1055 non_canon_x = 0;
1056 }
1057 } else {
1058 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1059 sig_x = (x & MASK_BINARY_SIG1);
1060 non_canon_x = 0;
1061 }
1062 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1063 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1064 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1065 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1066 if (sig_y > 9999999999999999ull) {
1067 non_canon_y = 1;
1068 } else {
1069 non_canon_y = 0;
1070 }
1071 } else {
1072 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1073 sig_y = (y & MASK_BINARY_SIG1);
1074 non_canon_y = 0;
1075 }
1076 // ZERO (CASE4)
1077 // some properties:
1078 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
1079 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1080 // therefore ignore the exponent field
1081 // (Any non-canonical # is considered 0)
1082 if (non_canon_x || sig_x == 0) {
1083 x_is_zero = 1;
1084 }
1085 if (non_canon_y || sig_y == 0) {
1086 y_is_zero = 1;
1087 }
1088 if (x_is_zero && y_is_zero) {
1089 // if both numbers are zero, they are equal
1090 res = 0;
1091 BID_RETURN (res);
1092 } else if (x_is_zero) {
1093 // if x is zero, it is lessthan if Y is positive
1094 res = ((y & MASK_SIGN) != MASK_SIGN);
1095 BID_RETURN (res);
1096 } else if (y_is_zero) {
1097 // if y is zero, X is less if it is negative
1098 res = ((x & MASK_SIGN) == MASK_SIGN);
1099 BID_RETURN (res);
1100 }
1101 // OPPOSITE SIGN (CASE5)
1102 // now, if the sign bits differ, x is less than if y is positive
1103 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
1104 res = ((y & MASK_SIGN) != MASK_SIGN);
1105 BID_RETURN (res);
1106 }
1107 // REDUNDANT REPRESENTATIONS (CASE6)
1108 // if both components are either bigger or smaller
1109 if (sig_x > sig_y && exp_x >= exp_y) {
1110 res = ((x & MASK_SIGN) == MASK_SIGN);
1111 BID_RETURN (res);
1112 }
1113 if (sig_x < sig_y && exp_x <= exp_y) {
1114 res = ((x & MASK_SIGN) != MASK_SIGN);
1115 BID_RETURN (res);
1116 }
1117 // if exp_x is 15 greater than exp_y, no need for compensation
1118 if (exp_x - exp_y > 15) {
1119 res = ((x & MASK_SIGN) == MASK_SIGN);
1120 // difference cannot be greater than 10^15
1121 BID_RETURN (res);
1122 }
1123 // if exp_x is 15 less than exp_y, no need for compensation
1124 if (exp_y - exp_x > 15) {
1125 res = ((x & MASK_SIGN) != MASK_SIGN);
1126 BID_RETURN (res);
1127 }
1128 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 1129 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
1130 // otherwise adjust the x significand upwards
1131 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
1132 mult_factor[exp_x - exp_y]);
1133 // return 0 if values are equal
1134 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
1135 res = 0;
1136 BID_RETURN (res);
1137 }
1138 // if postitive, return whichever significand abs is smaller
1139 // (converse if negative)
1140 res = (((sig_n_prime.w[1] == 0)
1141 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
1142 MASK_SIGN));
1143 BID_RETURN (res);
1144 }
1145 // adjust the y significand upwards
1146 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
1147 mult_factor[exp_y - exp_x]);
1148 // return 0 if values are equal
1149 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
1150 res = 0;
1151 BID_RETURN (res);
1152 }
1153 // if positive, return whichever significand abs is smaller
1154 // (converse if negative)
1155 res = (((sig_n_prime.w[1] > 0)
1156 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
1157 MASK_SIGN));
1158 BID_RETURN (res);
1159}
1160
1161#if DECIMAL_CALL_BY_REFERENCE
1162void
b2a00c89 1163bid64_quiet_not_equal (int *pres, UINT64 * px,
200359e8
L
1164 UINT64 *
1165 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1166 _EXC_INFO_PARAM) {
1167 UINT64 x = *px;
1168 UINT64 y = *py;
1169#else
1170int
b2a00c89 1171bid64_quiet_not_equal (UINT64 x,
200359e8
L
1172 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1173 _EXC_INFO_PARAM) {
1174#endif
1175 int res;
1176 int exp_x, exp_y, exp_t;
1177 UINT64 sig_x, sig_y, sig_t;
1178 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
1179
1180 // NaN (CASE1)
1181 // if either number is NAN, the comparison is unordered,
1182 // rather than equal : return 1
1183 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1184 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1185 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1186 }
1187 res = 1;
1188 BID_RETURN (res);
1189 }
1190 // SIMPLE (CASE2)
1191 // if all the bits are the same, these numbers are equivalent.
1192 if (x == y) {
1193 res = 0;
1194 BID_RETURN (res);
1195 }
1196 // INFINITY (CASE3)
1197 if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
1198 res = (((x ^ y) & MASK_SIGN) == MASK_SIGN);
1199 BID_RETURN (res);
1200 }
b2a00c89
L
1201 // ONE INFINITY (CASE3')
1202 if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) {
1203 res = 1;
1204 BID_RETURN (res);
1205 }
200359e8
L
1206 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1207 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1208 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1209 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1210 if (sig_x > 9999999999999999ull) {
1211 non_canon_x = 1;
1212 } else {
1213 non_canon_x = 0;
1214 }
1215 } else {
1216 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1217 sig_x = (x & MASK_BINARY_SIG1);
1218 non_canon_x = 0;
1219 }
1220
1221 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1222 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1223 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1224 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1225 if (sig_y > 9999999999999999ull) {
1226 non_canon_y = 1;
1227 } else {
1228 non_canon_y = 0;
1229 }
1230 } else {
1231 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1232 sig_y = (y & MASK_BINARY_SIG1);
1233 non_canon_y = 0;
1234 }
1235
1236 // ZERO (CASE4)
1237 // some properties:
1238 // (+ZERO==-ZERO) => therefore ignore the sign
1239 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1240 // therefore ignore the exponent field
1241 // (Any non-canonical # is considered 0)
1242 if (non_canon_x || sig_x == 0) {
1243 x_is_zero = 1;
1244 }
1245 if (non_canon_y || sig_y == 0) {
1246 y_is_zero = 1;
1247 }
1248
1249 if (x_is_zero && y_is_zero) {
1250 res = 0;
1251 BID_RETURN (res);
1252 } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
1253 res = 1;
1254 BID_RETURN (res);
1255 }
1256 // OPPOSITE SIGN (CASE5)
1257 // now, if the sign bits differ => not equal : return 1
1258 if ((x ^ y) & MASK_SIGN) {
1259 res = 1;
1260 BID_RETURN (res);
1261 }
1262 // REDUNDANT REPRESENTATIONS (CASE6)
b2a00c89
L
1263 if (exp_x > exp_y) { // to simplify the loop below,
1264 SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
1265 SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
200359e8
L
1266 }
1267
1268 if (exp_y - exp_x > 15) {
1269 res = 1;
1270 BID_RETURN (res);
1271 }
1272 // difference cannot be greater than 10^16
1273
1274 for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
1275
1276 // recalculate y's significand upwards
1277 sig_y = sig_y * 10;
1278 if (sig_y > 9999999999999999ull) {
1279 res = 1;
1280 BID_RETURN (res);
1281 }
1282 }
1283
1284 {
1285 res = sig_y != sig_x;
1286 BID_RETURN (res);
1287 }
1288
1289}
1290
1291#if DECIMAL_CALL_BY_REFERENCE
1292void
b2a00c89 1293bid64_quiet_not_greater (int *pres, UINT64 * px,
200359e8
L
1294 UINT64 *
1295 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1296 _EXC_INFO_PARAM) {
1297 UINT64 x = *px;
1298 UINT64 y = *py;
1299#else
1300int
b2a00c89 1301bid64_quiet_not_greater (UINT64 x,
200359e8
L
1302 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1303 _EXC_INFO_PARAM) {
1304#endif
1305 int res;
1306 int exp_x, exp_y;
1307 UINT64 sig_x, sig_y;
1308 UINT128 sig_n_prime;
1309 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
1310
1311 // NaN (CASE1)
1312 // if either number is NAN, the comparison is unordered,
1313 // rather than equal : return 0
1314 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1315 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1316 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1317 }
1318 res = 1;
1319 BID_RETURN (res);
1320 }
1321 // SIMPLE (CASE2)
1322 // if all the bits are the same, these numbers are equal (LESSEQUAL).
1323 if (x == y) {
1324 res = 1;
1325 BID_RETURN (res);
1326 }
1327 // INFINITY (CASE3)
1328 if ((x & MASK_INF) == MASK_INF) {
1329 // if x is neg infinity, it must be lessthan or equal to y return 1
1330 if (((x & MASK_SIGN) == MASK_SIGN)) {
1331 res = 1;
1332 BID_RETURN (res);
1333 }
1334 // x is pos infinity, it is greater, unless y is positive
1335 // infinity => return y==pos_infinity
1336 else {
1337 res = !(((y & MASK_INF) != MASK_INF)
1338 || ((y & MASK_SIGN) == MASK_SIGN));
1339 BID_RETURN (res);
1340 }
1341 } else if ((y & MASK_INF) == MASK_INF) {
1342 // x is finite, so if y is positive infinity, then x is less, return 1
1343 // if y is negative infinity, then x is greater, return 0
1344 {
1345 res = ((y & MASK_SIGN) != MASK_SIGN);
1346 BID_RETURN (res);
1347 }
1348 }
1349 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1350 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1351 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1352 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1353 if (sig_x > 9999999999999999ull) {
1354 non_canon_x = 1;
1355 } else {
1356 non_canon_x = 0;
1357 }
1358 } else {
1359 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1360 sig_x = (x & MASK_BINARY_SIG1);
1361 non_canon_x = 0;
1362 }
1363
1364 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1365 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1366 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1367 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1368 if (sig_y > 9999999999999999ull) {
1369 non_canon_y = 1;
1370 } else {
1371 non_canon_y = 0;
1372 }
1373 } else {
1374 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1375 sig_y = (y & MASK_BINARY_SIG1);
1376 non_canon_y = 0;
1377 }
1378
1379 // ZERO (CASE4)
1380 // some properties:
1381 // (+ZERO==-ZERO) => therefore ignore the sign, and neither
1382 // number is greater
1383 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1384 // therefore ignore the exponent field
1385 // (Any non-canonical # is considered 0)
1386 if (non_canon_x || sig_x == 0) {
1387 x_is_zero = 1;
1388 }
1389 if (non_canon_y || sig_y == 0) {
1390 y_is_zero = 1;
1391 }
1392 // if both numbers are zero, they are equal -> return 1
1393 if (x_is_zero && y_is_zero) {
1394 res = 1;
1395 BID_RETURN (res);
1396 }
1397 // if x is zero, it is lessthan if Y is positive
1398 else if (x_is_zero) {
1399 res = ((y & MASK_SIGN) != MASK_SIGN);
1400 BID_RETURN (res);
1401 }
1402 // if y is zero, X is less if it is negative
1403 else if (y_is_zero) {
1404 res = ((x & MASK_SIGN) == MASK_SIGN);
1405 BID_RETURN (res);
1406 }
1407 // OPPOSITE SIGN (CASE5)
1408 // now, if the sign bits differ, x is less than if y is positive
1409 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
1410 res = ((y & MASK_SIGN) != MASK_SIGN);
1411 BID_RETURN (res);
1412 }
1413 // REDUNDANT REPRESENTATIONS (CASE6)
1414 // if both components are either bigger or smaller
1415 if (sig_x > sig_y && exp_x >= exp_y) {
1416 res = ((x & MASK_SIGN) == MASK_SIGN);
1417 BID_RETURN (res);
1418 }
1419 if (sig_x < sig_y && exp_x <= exp_y) {
1420 res = ((x & MASK_SIGN) != MASK_SIGN);
1421 BID_RETURN (res);
1422 }
1423 // if exp_x is 15 greater than exp_y, no need for compensation
1424 if (exp_x - exp_y > 15) {
1425 res = ((x & MASK_SIGN) == MASK_SIGN);
1426 BID_RETURN (res);
1427 }
1428 // difference cannot be greater than 10^15
1429
1430 // if exp_x is 15 less than exp_y, no need for compensation
1431 if (exp_y - exp_x > 15) {
1432 res = ((x & MASK_SIGN) != MASK_SIGN);
1433 BID_RETURN (res);
1434 }
1435 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 1436 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
1437
1438 // otherwise adjust the x significand upwards
1439 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
1440 mult_factor[exp_x - exp_y]);
1441
1442 // return 1 if values are equal
1443 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
1444 res = 1;
1445 BID_RETURN (res);
1446 }
1447 // if postitive, return whichever significand abs is smaller
1448 // (converse if negative)
1449 {
1450 res = (((sig_n_prime.w[1] == 0)
1451 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
1452 MASK_SIGN));
1453 BID_RETURN (res);
1454 }
1455 }
1456 // adjust the y significand upwards
1457 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
1458 mult_factor[exp_y - exp_x]);
1459
1460 // return 1 if values are equal
1461 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
1462 res = 1;
1463 BID_RETURN (res);
1464 }
1465 // if positive, return whichever significand abs is smaller
1466 // (converse if negative)
1467 {
1468 res = (((sig_n_prime.w[1] > 0)
1469 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
1470 MASK_SIGN));
1471 BID_RETURN (res);
1472 }
1473}
1474
1475#if DECIMAL_CALL_BY_REFERENCE
1476void
b2a00c89 1477bid64_quiet_not_less (int *pres, UINT64 * px,
200359e8
L
1478 UINT64 *
1479 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1480 _EXC_INFO_PARAM) {
1481 UINT64 x = *px;
1482 UINT64 y = *py;
1483#else
1484int
b2a00c89 1485bid64_quiet_not_less (UINT64 x,
200359e8
L
1486 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1487 _EXC_INFO_PARAM) {
1488#endif
1489 int res;
1490 int exp_x, exp_y;
1491 UINT64 sig_x, sig_y;
1492 UINT128 sig_n_prime;
1493 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
1494
1495 // NaN (CASE1)
1496 // if either number is NAN, the comparison is unordered : return 1
1497 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1498 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1499 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1500 }
1501 res = 1;
1502 BID_RETURN (res);
1503 }
1504 // SIMPLE (CASE2)
1505 // if all the bits are the same, these numbers are equal.
1506 if (x == y) {
1507 res = 1;
1508 BID_RETURN (res);
1509 }
1510 // INFINITY (CASE3)
1511 if ((x & MASK_INF) == MASK_INF) {
1512 // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
1513 if ((x & MASK_SIGN) == MASK_SIGN)
1514 // x is -inf, so it is less than y unless y is -inf
1515 {
1516 res = (((y & MASK_INF) == MASK_INF)
1517 && (y & MASK_SIGN) == MASK_SIGN);
1518 BID_RETURN (res);
1519 } else
1520 // x is pos_inf, no way for it to be less than y
1521 {
1522 res = 1;
1523 BID_RETURN (res);
1524 }
1525 } else if ((y & MASK_INF) == MASK_INF) {
1526 // x is finite, so:
1527 // if y is +inf, x<y
1528 // if y is -inf, x>y
1529 {
1530 res = ((y & MASK_SIGN) == MASK_SIGN);
1531 BID_RETURN (res);
1532 }
1533 }
1534 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1535 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1536 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1537 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1538 if (sig_x > 9999999999999999ull) {
1539 non_canon_x = 1;
1540 } else {
1541 non_canon_x = 0;
1542 }
1543 } else {
1544 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1545 sig_x = (x & MASK_BINARY_SIG1);
1546 non_canon_x = 0;
1547 }
1548
1549 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1550 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1551 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1552 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1553 if (sig_y > 9999999999999999ull) {
1554 non_canon_y = 1;
1555 } else {
1556 non_canon_y = 0;
1557 }
1558 } else {
1559 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1560 sig_y = (y & MASK_BINARY_SIG1);
1561 non_canon_y = 0;
1562 }
1563
1564 // ZERO (CASE4)
1565 // some properties:
1566 // (+ZERO==-ZERO) => therefore ignore the sign, and neither
1567 // number is greater
1568 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1569 // therefore ignore the exponent field
1570 // (Any non-canonical # is considered 0)
1571 if (non_canon_x || sig_x == 0) {
1572 x_is_zero = 1;
1573 }
1574 if (non_canon_y || sig_y == 0) {
1575 y_is_zero = 1;
1576 }
1577 // if both numbers are zero, they are equal
1578 if (x_is_zero && y_is_zero) {
1579 res = 1;
1580 BID_RETURN (res);
1581 }
1582 // if x is zero, it is lessthan if Y is positive
1583 else if (x_is_zero) {
1584 res = ((y & MASK_SIGN) == MASK_SIGN);
1585 BID_RETURN (res);
1586 }
1587 // if y is zero, X is less if it is negative
1588 else if (y_is_zero) {
1589 res = ((x & MASK_SIGN) != MASK_SIGN);
1590 BID_RETURN (res);
1591 }
1592 // OPPOSITE SIGN (CASE5)
1593 // now, if the sign bits differ, x is less than if y is positive
1594 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
1595 res = ((y & MASK_SIGN) == MASK_SIGN);
1596 BID_RETURN (res);
1597 }
1598 // REDUNDANT REPRESENTATIONS (CASE6)
1599 // if both components are either bigger or smaller
1600 if (sig_x > sig_y && exp_x >= exp_y) {
1601 res = ((x & MASK_SIGN) != MASK_SIGN);
1602 BID_RETURN (res);
1603 }
1604 if (sig_x < sig_y && exp_x <= exp_y) {
1605 res = ((x & MASK_SIGN) == MASK_SIGN);
1606 BID_RETURN (res);
1607 }
1608 // if exp_x is 15 greater than exp_y, no need for compensation
1609 if (exp_x - exp_y > 15) {
1610 res = ((x & MASK_SIGN) != MASK_SIGN);
1611 BID_RETURN (res);
1612 }
1613 // difference cannot be greater than 10^15
1614
1615 // if exp_x is 15 less than exp_y, no need for compensation
1616 if (exp_y - exp_x > 15) {
1617 res = ((x & MASK_SIGN) == MASK_SIGN);
1618 BID_RETURN (res);
1619 }
1620 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 1621 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
1622
1623 // otherwise adjust the x significand upwards
1624 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
1625 mult_factor[exp_x - exp_y]);
1626
1627 // return 0 if values are equal
1628 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
1629 res = 1;
1630 BID_RETURN (res);
1631 }
1632 // if postitive, return whichever significand abs is smaller
1633 // (converse if negative)
1634 {
1635 res = (((sig_n_prime.w[1] == 0)
1636 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
1637 MASK_SIGN));
1638 BID_RETURN (res);
1639 }
1640 }
1641 // adjust the y significand upwards
1642 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
1643 mult_factor[exp_y - exp_x]);
1644
1645 // return 0 if values are equal
1646 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
1647 res = 1;
1648 BID_RETURN (res);
1649 }
1650 // if positive, return whichever significand abs is smaller
1651 // (converse if negative)
1652 {
1653 res = (((sig_n_prime.w[1] > 0)
1654 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
1655 MASK_SIGN));
1656 BID_RETURN (res);
1657 }
1658}
1659
1660#if DECIMAL_CALL_BY_REFERENCE
1661void
b2a00c89 1662bid64_quiet_ordered (int *pres, UINT64 * px,
200359e8
L
1663 UINT64 *
1664 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1665 _EXC_INFO_PARAM) {
1666 UINT64 x = *px;
1667 UINT64 y = *py;
1668#else
1669int
b2a00c89 1670bid64_quiet_ordered (UINT64 x,
200359e8
L
1671 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1672 _EXC_INFO_PARAM) {
1673#endif
1674 int res;
1675
1676 // NaN (CASE1)
1677 // if either number is NAN, the comparison is ordered, rather than equal : return 0
1678 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1679 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1680 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1681 }
1682 res = 0;
1683 BID_RETURN (res);
1684 } else {
1685 res = 1;
1686 BID_RETURN (res);
1687 }
1688}
1689
1690#if DECIMAL_CALL_BY_REFERENCE
1691void
b2a00c89 1692bid64_quiet_unordered (int *pres, UINT64 * px,
200359e8
L
1693 UINT64 *
1694 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1695 _EXC_INFO_PARAM) {
1696 UINT64 x = *px;
1697 UINT64 y = *py;
1698#else
1699int
b2a00c89 1700bid64_quiet_unordered (UINT64 x,
200359e8
L
1701 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1702 _EXC_INFO_PARAM) {
1703#endif
1704 int res;
1705
1706 // NaN (CASE1)
1707 // if either number is NAN, the comparison is unordered,
1708 // rather than equal : return 0
1709 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
1710 if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
b2a00c89 1711 *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
200359e8
L
1712 }
1713 res = 1;
1714 BID_RETURN (res);
1715 } else {
1716 res = 0;
1717 BID_RETURN (res);
1718 }
1719}
1720
1721#if DECIMAL_CALL_BY_REFERENCE
1722void
b2a00c89 1723bid64_signaling_greater (int *pres, UINT64 * px,
200359e8
L
1724 UINT64 *
1725 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1726 _EXC_INFO_PARAM) {
1727 UINT64 x = *px;
1728 UINT64 y = *py;
1729#else
1730int
b2a00c89 1731bid64_signaling_greater (UINT64 x,
200359e8
L
1732 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1733 _EXC_INFO_PARAM) {
1734#endif
1735 int res;
1736 int exp_x, exp_y;
1737 UINT64 sig_x, sig_y;
1738 UINT128 sig_n_prime;
1739 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
1740
1741 // NaN (CASE1)
1742 // if either number is NAN, the comparison is unordered,
1743 // rather than equal : return 0
1744 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 1745 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
1746 res = 0;
1747 BID_RETURN (res);
1748 }
1749 // SIMPLE (CASE2)
1750 // if all the bits are the same, these numbers are equal (not Greater).
1751 if (x == y) {
1752 res = 0;
1753 BID_RETURN (res);
1754 }
1755 // INFINITY (CASE3)
1756 if ((x & MASK_INF) == MASK_INF) {
1757 // if x is neg infinity, there is no way it is greater than y, return 0
1758 if (((x & MASK_SIGN) == MASK_SIGN)) {
1759 res = 0;
1760 BID_RETURN (res);
1761 }
1762 // x is pos infinity, it is greater,
1763 // unless y is positive infinity => return y!=pos_infinity
1764 else {
1765 res = (((y & MASK_INF) != MASK_INF)
1766 || ((y & MASK_SIGN) == MASK_SIGN));
1767 BID_RETURN (res);
1768 }
1769 } else if ((y & MASK_INF) == MASK_INF) {
1770 // x is finite, so if y is positive infinity, then x is less, return 0
1771 // if y is negative infinity, then x is greater, return 1
1772 {
1773 res = ((y & MASK_SIGN) == MASK_SIGN);
1774 BID_RETURN (res);
1775 }
1776 }
1777 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1778 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1779 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1780 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1781 if (sig_x > 9999999999999999ull) {
1782 non_canon_x = 1;
1783 } else {
1784 non_canon_x = 0;
1785 }
1786 } else {
1787 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1788 sig_x = (x & MASK_BINARY_SIG1);
1789 non_canon_x = 0;
1790 }
1791
1792 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1793 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1794 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1795 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1796 if (sig_y > 9999999999999999ull) {
1797 non_canon_y = 1;
1798 } else {
1799 non_canon_y = 0;
1800 }
1801 } else {
1802 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1803 sig_y = (y & MASK_BINARY_SIG1);
1804 non_canon_y = 0;
1805 }
1806
1807 // ZERO (CASE4)
1808 // some properties:
1809 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
1810 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1811 // therefore ignore the exponent field
1812 // (Any non-canonical # is considered 0)
1813 if (non_canon_x || sig_x == 0) {
1814 x_is_zero = 1;
1815 }
1816 if (non_canon_y || sig_y == 0) {
1817 y_is_zero = 1;
1818 }
1819 // if both numbers are zero, neither is greater => return NOTGREATERTHAN
1820 if (x_is_zero && y_is_zero) {
1821 res = 0;
1822 BID_RETURN (res);
1823 }
1824 // is x is zero, it is greater if Y is negative
1825 else if (x_is_zero) {
1826 res = ((y & MASK_SIGN) == MASK_SIGN);
1827 BID_RETURN (res);
1828 }
1829 // is y is zero, X is greater if it is positive
1830 else if (y_is_zero) {
1831 res = ((x & MASK_SIGN) != MASK_SIGN);
1832 BID_RETURN (res);
1833 }
1834 // OPPOSITE SIGN (CASE5)
1835 // now, if the sign bits differ, x is greater if y is negative
1836 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
1837 res = ((y & MASK_SIGN) == MASK_SIGN);
1838 BID_RETURN (res);
1839 }
1840 // REDUNDANT REPRESENTATIONS (CASE6)
1841
1842 // if both components are either bigger or smaller
1843 if (sig_x > sig_y && exp_x >= exp_y) {
1844 res = ((x & MASK_SIGN) != MASK_SIGN);
1845 BID_RETURN (res);
1846 }
1847 if (sig_x < sig_y && exp_x <= exp_y) {
1848 res = ((x & MASK_SIGN) == MASK_SIGN);
1849 BID_RETURN (res);
1850 }
1851 // if exp_x is 15 greater than exp_y, no need for compensation
1852 if (exp_x - exp_y > 15) {
1853 res = ((x & MASK_SIGN) != MASK_SIGN);
1854 BID_RETURN (res);
1855 }
1856 // difference cannot be greater than 10^15
1857
1858 // if exp_x is 15 less than exp_y, no need for compensation
1859 if (exp_y - exp_x > 15) {
1860 res = ((x & MASK_SIGN) == MASK_SIGN);
1861 BID_RETURN (res);
1862 }
1863 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 1864 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
1865
1866 // otherwise adjust the x significand upwards
1867 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
1868 mult_factor[exp_x - exp_y]);
1869
1870
1871 // if postitive, return whichever significand is larger
1872 // (converse if negative)
1873 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
1874 res = 0;
1875 BID_RETURN (res);
1876 }
1877
1878 {
1879 res = (((sig_n_prime.w[1] > 0)
1880 || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
1881 MASK_SIGN));
1882 BID_RETURN (res);
1883 }
1884 }
1885 // adjust the y significand upwards
1886 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
1887 mult_factor[exp_y - exp_x]);
1888
1889 // if postitive, return whichever significand is larger
1890 // (converse if negative)
1891 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
1892 res = 0;
1893 BID_RETURN (res);
1894 }
1895 {
1896 res = (((sig_n_prime.w[1] == 0)
1897 && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
1898 MASK_SIGN));
1899 BID_RETURN (res);
1900 }
1901}
1902
1903#if DECIMAL_CALL_BY_REFERENCE
1904void
b2a00c89 1905bid64_signaling_greater_equal (int *pres, UINT64 * px,
200359e8
L
1906 UINT64 *
1907 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1908 _EXC_INFO_PARAM) {
1909 UINT64 x = *px;
1910 UINT64 y = *py;
1911#else
1912int
b2a00c89 1913bid64_signaling_greater_equal (UINT64 x,
200359e8
L
1914 UINT64 y _EXC_FLAGS_PARAM
1915 _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
1916#endif
1917 int res;
1918 int exp_x, exp_y;
1919 UINT64 sig_x, sig_y;
1920 UINT128 sig_n_prime;
1921 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
1922
1923 // NaN (CASE1)
1924 // if either number is NAN, the comparison is unordered : return 1
1925 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 1926 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
1927 res = 0;
1928 BID_RETURN (res);
1929 }
1930 // SIMPLE (CASE2)
1931 // if all the bits are the same, these numbers are equal.
1932 if (x == y) {
1933 res = 1;
1934 BID_RETURN (res);
1935 }
1936 // INFINITY (CASE3)
1937 if ((x & MASK_INF) == MASK_INF) {
1938 // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
1939 if ((x & MASK_SIGN) == MASK_SIGN)
1940 // x is -inf, so it is less than y unless y is -inf
1941 {
1942 res = (((y & MASK_INF) == MASK_INF)
1943 && (y & MASK_SIGN) == MASK_SIGN);
1944 BID_RETURN (res);
1945 } else
1946 // x is pos_inf, no way for it to be less than y
1947 {
1948 res = 1;
1949 BID_RETURN (res);
1950 }
1951 } else if ((y & MASK_INF) == MASK_INF) {
1952 // x is finite, so:
1953 // if y is +inf, x<y
1954 // if y is -inf, x>y
1955 {
1956 res = ((y & MASK_SIGN) == MASK_SIGN);
1957 BID_RETURN (res);
1958 }
1959 }
1960 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1961 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1962 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
1963 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1964 if (sig_x > 9999999999999999ull) {
1965 non_canon_x = 1;
1966 } else {
1967 non_canon_x = 0;
1968 }
1969 } else {
1970 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
1971 sig_x = (x & MASK_BINARY_SIG1);
1972 non_canon_x = 0;
1973 }
1974
1975 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1976 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1977 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
1978 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1979 if (sig_y > 9999999999999999ull) {
1980 non_canon_y = 1;
1981 } else {
1982 non_canon_y = 0;
1983 }
1984 } else {
1985 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
1986 sig_y = (y & MASK_BINARY_SIG1);
1987 non_canon_y = 0;
1988 }
1989
1990 // ZERO (CASE4)
1991 // some properties:
1992 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
1993 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
1994 // therefore ignore the exponent field
1995 // (Any non-canonical # is considered 0)
1996 if (non_canon_x || sig_x == 0) {
1997 x_is_zero = 1;
1998 }
1999 if (non_canon_y || sig_y == 0) {
2000 y_is_zero = 1;
2001 }
2002 // if both numbers are zero, they are equal
2003 if (x_is_zero && y_is_zero) {
2004 res = 1;
2005 BID_RETURN (res);
2006 }
2007 // if x is zero, it is lessthan if Y is positive
2008 else if (x_is_zero) {
2009 res = ((y & MASK_SIGN) == MASK_SIGN);
2010 BID_RETURN (res);
2011 }
2012 // if y is zero, X is less if it is negative
2013 else if (y_is_zero) {
2014 res = ((x & MASK_SIGN) != MASK_SIGN);
2015 BID_RETURN (res);
2016 }
2017 // OPPOSITE SIGN (CASE5)
2018 // now, if the sign bits differ, x is less than if y is positive
2019 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2020 res = ((y & MASK_SIGN) == MASK_SIGN);
2021 BID_RETURN (res);
2022 }
2023 // REDUNDANT REPRESENTATIONS (CASE6)
2024 // if both components are either bigger or smaller
2025 if (sig_x > sig_y && exp_x >= exp_y) {
2026 res = ((x & MASK_SIGN) != MASK_SIGN);
2027 BID_RETURN (res);
2028 }
2029 if (sig_x < sig_y && exp_x <= exp_y) {
2030 res = ((x & MASK_SIGN) == MASK_SIGN);
2031 BID_RETURN (res);
2032 }
2033 // if exp_x is 15 greater than exp_y, no need for compensation
2034 if (exp_x - exp_y > 15) {
2035 res = ((x & MASK_SIGN) != MASK_SIGN);
2036 BID_RETURN (res);
2037 }
2038 // difference cannot be greater than 10^15
2039
2040 // if exp_x is 15 less than exp_y, no need for compensation
2041 if (exp_y - exp_x > 15) {
2042 res = ((x & MASK_SIGN) == MASK_SIGN);
2043 BID_RETURN (res);
2044 }
2045 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2046 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2047
2048 // otherwise adjust the x significand upwards
2049 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2050 mult_factor[exp_x - exp_y]);
2051
2052 // return 1 if values are equal
2053 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2054 res = 1;
2055 BID_RETURN (res);
2056 }
2057 // if postitive, return whichever significand abs is smaller
2058 // (converse if negative)
2059 {
2060 res = (((sig_n_prime.w[1] == 0)
2061 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
2062 MASK_SIGN));
2063 BID_RETURN (res);
2064 }
2065 }
2066 // adjust the y significand upwards
2067 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2068 mult_factor[exp_y - exp_x]);
2069
2070 // return 0 if values are equal
2071 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2072 res = 1;
2073 BID_RETURN (res);
2074 }
2075 // if positive, return whichever significand abs is smaller
2076 // (converse if negative)
2077 {
2078 res = (((sig_n_prime.w[1] > 0)
2079 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
2080 MASK_SIGN));
2081 BID_RETURN (res);
2082 }
2083}
2084
2085#if DECIMAL_CALL_BY_REFERENCE
2086void
b2a00c89 2087bid64_signaling_greater_unordered (int *pres, UINT64 * px,
200359e8
L
2088 UINT64 *
2089 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2090 _EXC_INFO_PARAM) {
2091 UINT64 x = *px;
2092 UINT64 y = *py;
2093#else
2094int
b2a00c89 2095bid64_signaling_greater_unordered (UINT64 x,
200359e8
L
2096 UINT64 y _EXC_FLAGS_PARAM
2097 _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
2098#endif
2099 int res;
2100 int exp_x, exp_y;
2101 UINT64 sig_x, sig_y;
2102 UINT128 sig_n_prime;
2103 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
2104
2105 // NaN (CASE1)
2106 // if either number is NAN, the comparison is unordered,
2107 // rather than equal : return 0
2108 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 2109 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
2110 res = 1;
2111 BID_RETURN (res);
2112 }
2113 // SIMPLE (CASE2)
2114 // if all the bits are the same, these numbers are equal (not Greater).
2115 if (x == y) {
2116 res = 0;
2117 BID_RETURN (res);
2118 }
2119 // INFINITY (CASE3)
2120 if ((x & MASK_INF) == MASK_INF) {
2121 // if x is neg infinity, there is no way it is greater than y, return 0
2122 if (((x & MASK_SIGN) == MASK_SIGN)) {
2123 res = 0;
2124 BID_RETURN (res);
2125 }
2126 // x is pos infinity, it is greater,
2127 // unless y is positive infinity => return y!=pos_infinity
2128 else {
2129 res = (((y & MASK_INF) != MASK_INF)
2130 || ((y & MASK_SIGN) == MASK_SIGN));
2131 BID_RETURN (res);
2132 }
2133 } else if ((y & MASK_INF) == MASK_INF) {
2134 // x is finite, so if y is positive infinity, then x is less, return 0
2135 // if y is negative infinity, then x is greater, return 1
2136 {
2137 res = ((y & MASK_SIGN) == MASK_SIGN);
2138 BID_RETURN (res);
2139 }
2140 }
2141 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2142 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2143 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
2144 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2145 if (sig_x > 9999999999999999ull) {
2146 non_canon_x = 1;
2147 } else {
2148 non_canon_x = 0;
2149 }
2150 } else {
2151 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
2152 sig_x = (x & MASK_BINARY_SIG1);
2153 non_canon_x = 0;
2154 }
2155
2156 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2157 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2158 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
2159 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2160 if (sig_y > 9999999999999999ull) {
2161 non_canon_y = 1;
2162 } else {
2163 non_canon_y = 0;
2164 }
2165 } else {
2166 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
2167 sig_y = (y & MASK_BINARY_SIG1);
2168 non_canon_y = 0;
2169 }
2170
2171 // ZERO (CASE4)
2172 // some properties:
2173 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
2174 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
2175 // therefore ignore the exponent field
2176 // (Any non-canonical # is considered 0)
2177 if (non_canon_x || sig_x == 0) {
2178 x_is_zero = 1;
2179 }
2180 if (non_canon_y || sig_y == 0) {
2181 y_is_zero = 1;
2182 }
2183 // if both numbers are zero, neither is greater => return NOTGREATERTHAN
2184 if (x_is_zero && y_is_zero) {
2185 res = 0;
2186 BID_RETURN (res);
2187 }
2188 // is x is zero, it is greater if Y is negative
2189 else if (x_is_zero) {
2190 res = ((y & MASK_SIGN) == MASK_SIGN);
2191 BID_RETURN (res);
2192 }
2193 // is y is zero, X is greater if it is positive
2194 else if (y_is_zero) {
2195 res = ((x & MASK_SIGN) != MASK_SIGN);
2196 BID_RETURN (res);
2197 }
2198 // OPPOSITE SIGN (CASE5)
2199 // now, if the sign bits differ, x is greater if y is negative
2200 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2201 res = ((y & MASK_SIGN) == MASK_SIGN);
2202 BID_RETURN (res);
2203 }
2204 // REDUNDANT REPRESENTATIONS (CASE6)
2205
2206 // if both components are either bigger or smaller
2207 if (sig_x > sig_y && exp_x >= exp_y) {
2208 res = ((x & MASK_SIGN) != MASK_SIGN);
2209 BID_RETURN (res);
2210 }
2211 if (sig_x < sig_y && exp_x <= exp_y) {
2212 res = ((x & MASK_SIGN) == MASK_SIGN);
2213 BID_RETURN (res);
2214 }
2215 // if exp_x is 15 greater than exp_y, no need for compensation
2216 if (exp_x - exp_y > 15) {
2217 res = ((x & MASK_SIGN) != MASK_SIGN);
2218 BID_RETURN (res);
2219 }
2220 // difference cannot be greater than 10^15
2221
2222 // if exp_x is 15 less than exp_y, no need for compensation
2223 if (exp_y - exp_x > 15) {
2224 res = ((x & MASK_SIGN) == MASK_SIGN);
2225 BID_RETURN (res);
2226 }
2227 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2228 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2229
2230 // otherwise adjust the x significand upwards
2231 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2232 mult_factor[exp_x - exp_y]);
2233
2234 // if postitive, return whichever significand is larger
2235 // (converse if negative)
2236 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2237 res = 0;
2238 BID_RETURN (res);
2239 }
2240
2241 {
2242 res = (((sig_n_prime.w[1] > 0)
2243 || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
2244 MASK_SIGN));
2245 BID_RETURN (res);
2246 }
2247 }
2248 // adjust the y significand upwards
2249 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2250 mult_factor[exp_y - exp_x]);
2251
2252 // if postitive, return whichever significand is larger
2253 // (converse if negative)
2254 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2255 res = 0;
2256 BID_RETURN (res);
2257 }
2258 {
2259 res = (((sig_n_prime.w[1] == 0)
2260 && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
2261 MASK_SIGN));
2262 BID_RETURN (res);
2263 }
2264}
2265
2266#if DECIMAL_CALL_BY_REFERENCE
2267void
b2a00c89 2268bid64_signaling_less (int *pres, UINT64 * px,
200359e8
L
2269 UINT64 *
2270 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2271 _EXC_INFO_PARAM) {
2272 UINT64 x = *px;
2273 UINT64 y = *py;
2274#else
2275int
b2a00c89 2276bid64_signaling_less (UINT64 x,
200359e8
L
2277 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2278 _EXC_INFO_PARAM) {
2279#endif
2280 int res;
2281 int exp_x, exp_y;
2282 UINT64 sig_x, sig_y;
2283 UINT128 sig_n_prime;
2284 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
2285
2286 // NaN (CASE1)
2287 // if either number is NAN, the comparison is unordered : return 0
2288 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 2289 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
2290 res = 0;
2291 BID_RETURN (res);
2292 }
2293 // SIMPLE (CASE2)
2294 // if all the bits are the same, these numbers are equal.
2295 if (x == y) {
2296 res = 0;
2297 BID_RETURN (res);
2298 }
2299 // INFINITY (CASE3)
2300 if ((x & MASK_INF) == MASK_INF) {
2301 // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
2302 if ((x & MASK_SIGN) == MASK_SIGN)
2303 // x is -inf, so it is less than y unless y is -inf
2304 {
2305 res = (((y & MASK_INF) != MASK_INF)
2306 || (y & MASK_SIGN) != MASK_SIGN);
2307 BID_RETURN (res);
2308 } else
2309 // x is pos_inf, no way for it to be less than y
2310 {
2311 res = 0;
2312 BID_RETURN (res);
2313 }
2314 } else if ((y & MASK_INF) == MASK_INF) {
2315 // x is finite, so:
2316 // if y is +inf, x<y
2317 // if y is -inf, x>y
2318 {
2319 res = ((y & MASK_SIGN) != MASK_SIGN);
2320 BID_RETURN (res);
2321 }
2322 }
2323 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2324 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2325 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
2326 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2327 if (sig_x > 9999999999999999ull) {
2328 non_canon_x = 1;
2329 } else {
2330 non_canon_x = 0;
2331 }
2332 } else {
2333 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
2334 sig_x = (x & MASK_BINARY_SIG1);
2335 non_canon_x = 0;
2336 }
2337
2338 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2339 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2340 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
2341 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2342 if (sig_y > 9999999999999999ull) {
2343 non_canon_y = 1;
2344 } else {
2345 non_canon_y = 0;
2346 }
2347 } else {
2348 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
2349 sig_y = (y & MASK_BINARY_SIG1);
2350 non_canon_y = 0;
2351 }
2352
2353 // ZERO (CASE4)
2354 // some properties:
2355 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
2356 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
2357 // therefore ignore the exponent field
2358 // (Any non-canonical # is considered 0)
2359 if (non_canon_x || sig_x == 0) {
2360 x_is_zero = 1;
2361 }
2362 if (non_canon_y || sig_y == 0) {
2363 y_is_zero = 1;
2364 }
2365 // if both numbers are zero, they are equal
2366 if (x_is_zero && y_is_zero) {
2367 res = 0;
2368 BID_RETURN (res);
2369 }
2370 // if x is zero, it is lessthan if Y is positive
2371 else if (x_is_zero) {
2372 res = ((y & MASK_SIGN) != MASK_SIGN);
2373 BID_RETURN (res);
2374 }
2375 // if y is zero, X is less if it is negative
2376 else if (y_is_zero) {
2377 res = ((x & MASK_SIGN) == MASK_SIGN);
2378 BID_RETURN (res);
2379 }
2380 // OPPOSITE SIGN (CASE5)
2381 // now, if the sign bits differ, x is less than if y is positive
2382 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2383 res = ((y & MASK_SIGN) != MASK_SIGN);
2384 BID_RETURN (res);
2385 }
2386 // REDUNDANT REPRESENTATIONS (CASE6)
2387 // if both components are either bigger or smaller
2388 if (sig_x > sig_y && exp_x >= exp_y) {
2389 res = ((x & MASK_SIGN) == MASK_SIGN);
2390 BID_RETURN (res);
2391 }
2392 if (sig_x < sig_y && exp_x <= exp_y) {
2393 res = ((x & MASK_SIGN) != MASK_SIGN);
2394 BID_RETURN (res);
2395 }
2396 // if exp_x is 15 greater than exp_y, no need for compensation
2397 if (exp_x - exp_y > 15) {
2398 res = ((x & MASK_SIGN) == MASK_SIGN);
2399 BID_RETURN (res);
2400 }
2401 // difference cannot be greater than 10^15
2402
2403 // if exp_x is 15 less than exp_y, no need for compensation
2404 if (exp_y - exp_x > 15) {
2405 res = ((x & MASK_SIGN) != MASK_SIGN);
2406 BID_RETURN (res);
2407 }
2408 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2409 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2410
2411 // otherwise adjust the x significand upwards
2412 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2413 mult_factor[exp_x - exp_y]);
2414
2415 // return 0 if values are equal
2416 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2417 res = 0;
2418 BID_RETURN (res);
2419 }
2420 // if postitive, return whichever significand abs is smaller
2421 // (converse if negative)
2422 {
2423 res = (((sig_n_prime.w[1] == 0)
2424 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
2425 MASK_SIGN));
2426 BID_RETURN (res);
2427 }
2428 }
2429 // adjust the y significand upwards
2430 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2431 mult_factor[exp_y - exp_x]);
2432
2433 // return 0 if values are equal
2434 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2435 res = 0;
2436 BID_RETURN (res);
2437 }
2438 // if positive, return whichever significand abs is smaller
2439 // (converse if negative)
2440 {
2441 res = (((sig_n_prime.w[1] > 0)
2442 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
2443 MASK_SIGN));
2444 BID_RETURN (res);
2445 }
2446}
2447
2448#if DECIMAL_CALL_BY_REFERENCE
2449void
b2a00c89 2450bid64_signaling_less_equal (int *pres, UINT64 * px,
200359e8
L
2451 UINT64 *
2452 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2453 _EXC_INFO_PARAM) {
2454 UINT64 x = *px;
2455 UINT64 y = *py;
2456#else
2457int
b2a00c89 2458bid64_signaling_less_equal (UINT64 x,
200359e8
L
2459 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2460 _EXC_INFO_PARAM) {
2461#endif
2462 int res;
2463 int exp_x, exp_y;
2464 UINT64 sig_x, sig_y;
2465 UINT128 sig_n_prime;
2466 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
2467
2468 // NaN (CASE1)
2469 // if either number is NAN, the comparison is unordered,
2470 // rather than equal : return 0
2471 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 2472 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
2473 res = 0;
2474 BID_RETURN (res);
2475 }
2476 // SIMPLE (CASE2)
2477 // if all the bits are the same, these numbers are equal (LESSEQUAL).
2478 if (x == y) {
2479 res = 1;
2480 BID_RETURN (res);
2481 }
2482 // INFINITY (CASE3)
2483 if ((x & MASK_INF) == MASK_INF) {
2484 // if x is neg infinity, it must be lessthan or equal to y return 1
2485 if (((x & MASK_SIGN) == MASK_SIGN)) {
2486 res = 1;
2487 BID_RETURN (res);
2488 }
2489 // x is pos infinity, it is greater,
2490 // unless y is positive infinity => return y==pos_infinity
2491 else {
2492 res = !(((y & MASK_INF) != MASK_INF)
2493 || ((y & MASK_SIGN) == MASK_SIGN));
2494 BID_RETURN (res);
2495 }
2496 } else if ((y & MASK_INF) == MASK_INF) {
2497 // x is finite, so if y is positive infinity, then x is less, return 1
2498 // if y is negative infinity, then x is greater, return 0
2499 {
2500 res = ((y & MASK_SIGN) != MASK_SIGN);
2501 BID_RETURN (res);
2502 }
2503 }
2504 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2505 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2506 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
2507 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2508 if (sig_x > 9999999999999999ull) {
2509 non_canon_x = 1;
2510 } else {
2511 non_canon_x = 0;
2512 }
2513 } else {
2514 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
2515 sig_x = (x & MASK_BINARY_SIG1);
2516 non_canon_x = 0;
2517 }
2518
2519 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2520 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2521 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
2522 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2523 if (sig_y > 9999999999999999ull) {
2524 non_canon_y = 1;
2525 } else {
2526 non_canon_y = 0;
2527 }
2528 } else {
2529 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
2530 sig_y = (y & MASK_BINARY_SIG1);
2531 non_canon_y = 0;
2532 }
2533
2534 // ZERO (CASE4)
2535 // some properties:
2536 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
2537 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
2538 // therefore ignore the exponent field
2539 // (Any non-canonical # is considered 0)
2540 if (non_canon_x || sig_x == 0) {
2541 x_is_zero = 1;
2542 }
2543 if (non_canon_y || sig_y == 0) {
2544 y_is_zero = 1;
2545 }
2546 // if both numbers are zero, they are equal -> return 1
2547 if (x_is_zero && y_is_zero) {
2548 res = 1;
2549 BID_RETURN (res);
2550 }
2551 // if x is zero, it is lessthan if Y is positive
2552 else if (x_is_zero) {
2553 res = ((y & MASK_SIGN) != MASK_SIGN);
2554 BID_RETURN (res);
2555 }
2556 // if y is zero, X is less if it is negative
2557 else if (y_is_zero) {
2558 res = ((x & MASK_SIGN) == MASK_SIGN);
2559 BID_RETURN (res);
2560 }
2561 // OPPOSITE SIGN (CASE5)
2562 // now, if the sign bits differ, x is less than if y is positive
2563 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2564 res = ((y & MASK_SIGN) != MASK_SIGN);
2565 BID_RETURN (res);
2566 }
2567 // REDUNDANT REPRESENTATIONS (CASE6)
2568 // if both components are either bigger or smaller
2569 if (sig_x > sig_y && exp_x >= exp_y) {
2570 res = ((x & MASK_SIGN) == MASK_SIGN);
2571 BID_RETURN (res);
2572 }
2573 if (sig_x < sig_y && exp_x <= exp_y) {
2574 res = ((x & MASK_SIGN) != MASK_SIGN);
2575 BID_RETURN (res);
2576 }
2577 // if exp_x is 15 greater than exp_y, no need for compensation
2578 if (exp_x - exp_y > 15) {
2579 res = ((x & MASK_SIGN) == MASK_SIGN);
2580 BID_RETURN (res);
2581 }
2582 // difference cannot be greater than 10^15
2583
2584 // if exp_x is 15 less than exp_y, no need for compensation
2585 if (exp_y - exp_x > 15) {
2586 res = ((x & MASK_SIGN) != MASK_SIGN);
2587 BID_RETURN (res);
2588 }
2589 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2590 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2591
2592 // otherwise adjust the x significand upwards
2593 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2594 mult_factor[exp_x - exp_y]);
2595
2596 // return 1 if values are equal
2597 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2598 res = 1;
2599 BID_RETURN (res);
2600 }
2601 // if postitive, return whichever significand abs is smaller
2602 // (converse if negative)
2603 {
2604 res = (((sig_n_prime.w[1] == 0)
2605 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
2606 MASK_SIGN));
2607 BID_RETURN (res);
2608 }
2609 }
2610 // adjust the y significand upwards
2611 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2612 mult_factor[exp_y - exp_x]);
2613
2614 // return 1 if values are equal
2615 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2616 res = 1;
2617 BID_RETURN (res);
2618 }
2619 // if positive, return whichever significand abs is smaller
2620 // (converse if negative)
2621 {
2622 res = (((sig_n_prime.w[1] > 0)
2623 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
2624 MASK_SIGN));
2625 BID_RETURN (res);
2626 }
2627}
2628
2629#if DECIMAL_CALL_BY_REFERENCE
2630void
b2a00c89 2631bid64_signaling_less_unordered (int *pres, UINT64 * px,
200359e8
L
2632 UINT64 *
2633 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2634 _EXC_INFO_PARAM) {
2635 UINT64 x = *px;
2636 UINT64 y = *py;
2637#else
2638int
b2a00c89 2639bid64_signaling_less_unordered (UINT64 x,
200359e8
L
2640 UINT64 y _EXC_FLAGS_PARAM
2641 _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
2642#endif
2643 int res;
2644 int exp_x, exp_y;
2645 UINT64 sig_x, sig_y;
2646 UINT128 sig_n_prime;
2647 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
2648
2649 // NaN (CASE1)
2650 // if either number is NAN, the comparison is unordered : return 0
2651 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 2652 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
2653 res = 1;
2654 BID_RETURN (res);
2655 }
2656 // SIMPLE (CASE2)
2657 // if all the bits are the same, these numbers are equal.
2658 if (x == y) {
2659 res = 0;
2660 BID_RETURN (res);
2661 }
2662 // INFINITY (CASE3)
2663 if ((x & MASK_INF) == MASK_INF) {
2664 // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
2665 if ((x & MASK_SIGN) == MASK_SIGN)
2666 // x is -inf, so it is less than y unless y is -inf
2667 {
2668 res = (((y & MASK_INF) != MASK_INF)
2669 || (y & MASK_SIGN) != MASK_SIGN);
2670 BID_RETURN (res);
2671 } else
2672 // x is pos_inf, no way for it to be less than y
2673 {
2674 res = 0;
2675 BID_RETURN (res);
2676 }
2677 } else if ((y & MASK_INF) == MASK_INF) {
2678 // x is finite, so:
2679 // if y is +inf, x<y
2680 // if y is -inf, x>y
2681 {
2682 res = ((y & MASK_SIGN) != MASK_SIGN);
2683 BID_RETURN (res);
2684 }
2685 }
2686 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2687 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2688 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
2689 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2690 if (sig_x > 9999999999999999ull) {
2691 non_canon_x = 1;
2692 } else {
2693 non_canon_x = 0;
2694 }
2695 } else {
2696 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
2697 sig_x = (x & MASK_BINARY_SIG1);
2698 non_canon_x = 0;
2699 }
2700
2701 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2702 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2703 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
2704 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2705 if (sig_y > 9999999999999999ull) {
2706 non_canon_y = 1;
2707 } else {
2708 non_canon_y = 0;
2709 }
2710 } else {
2711 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
2712 sig_y = (y & MASK_BINARY_SIG1);
2713 non_canon_y = 0;
2714 }
2715
2716 // ZERO (CASE4)
2717 // some properties:
2718 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
2719 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
2720 // therefore ignore the exponent field
2721 // (Any non-canonical # is considered 0)
2722 if (non_canon_x || sig_x == 0) {
2723 x_is_zero = 1;
2724 }
2725 if (non_canon_y || sig_y == 0) {
2726 y_is_zero = 1;
2727 }
2728 // if both numbers are zero, they are equal
2729 if (x_is_zero && y_is_zero) {
2730 res = 0;
2731 BID_RETURN (res);
2732 }
2733 // if x is zero, it is lessthan if Y is positive
2734 else if (x_is_zero) {
2735 res = ((y & MASK_SIGN) != MASK_SIGN);
2736 BID_RETURN (res);
2737 }
2738 // if y is zero, X is less if it is negative
2739 else if (y_is_zero) {
2740 res = ((x & MASK_SIGN) == MASK_SIGN);
2741 BID_RETURN (res);
2742 }
2743 // OPPOSITE SIGN (CASE5)
2744 // now, if the sign bits differ, x is less than if y is positive
2745 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2746 res = ((y & MASK_SIGN) != MASK_SIGN);
2747 BID_RETURN (res);
2748 }
2749 // REDUNDANT REPRESENTATIONS (CASE6)
2750 // if both components are either bigger or smaller
2751 if (sig_x > sig_y && exp_x >= exp_y) {
2752 res = ((x & MASK_SIGN) == MASK_SIGN);
2753 BID_RETURN (res);
2754 }
2755 if (sig_x < sig_y && exp_x <= exp_y) {
2756 res = ((x & MASK_SIGN) != MASK_SIGN);
2757 BID_RETURN (res);
2758 }
2759 // if exp_x is 15 greater than exp_y, no need for compensation
2760 if (exp_x - exp_y > 15) {
2761 res = ((x & MASK_SIGN) == MASK_SIGN);
2762 BID_RETURN (res);
2763 }
2764 // difference cannot be greater than 10^15
2765
2766 // if exp_x is 15 less than exp_y, no need for compensation
2767 if (exp_y - exp_x > 15) {
2768 res = ((x & MASK_SIGN) != MASK_SIGN);
2769 BID_RETURN (res);
2770 }
2771 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2772 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2773
2774 // otherwise adjust the x significand upwards
2775 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2776 mult_factor[exp_x - exp_y]);
2777
2778 // return 0 if values are equal
2779 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2780 res = 0;
2781 BID_RETURN (res);
2782 }
2783 // if postitive, return whichever significand abs is smaller
2784 // (converse if negative)
2785 {
2786 res = (((sig_n_prime.w[1] == 0)
2787 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
2788 MASK_SIGN));
2789 BID_RETURN (res);
2790 }
2791 }
2792 // adjust the y significand upwards
2793 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2794 mult_factor[exp_y - exp_x]);
2795
2796 // return 0 if values are equal
2797 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2798 res = 0;
2799 BID_RETURN (res);
2800 }
2801 // if positive, return whichever significand abs is smaller
2802 // (converse if negative)
2803 {
2804 res = (((sig_n_prime.w[1] > 0)
2805 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
2806 MASK_SIGN));
2807 BID_RETURN (res);
2808 }
2809}
2810
2811#if DECIMAL_CALL_BY_REFERENCE
2812void
b2a00c89 2813bid64_signaling_not_greater (int *pres, UINT64 * px,
200359e8
L
2814 UINT64 *
2815 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2816 _EXC_INFO_PARAM) {
2817 UINT64 x = *px;
2818 UINT64 y = *py;
2819#else
2820int
b2a00c89 2821bid64_signaling_not_greater (UINT64 x,
200359e8
L
2822 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2823 _EXC_INFO_PARAM) {
2824#endif
2825 int res;
2826 int exp_x, exp_y;
2827 UINT64 sig_x, sig_y;
2828 UINT128 sig_n_prime;
2829 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
2830
2831 // NaN (CASE1)
2832 // if either number is NAN, the comparison is unordered,
2833 // rather than equal : return 0
2834 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 2835 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
2836 res = 1;
2837 BID_RETURN (res);
2838 }
2839 // SIMPLE (CASE2)
2840 // if all the bits are the same, these numbers are equal (LESSEQUAL).
2841 if (x == y) {
2842 res = 1;
2843 BID_RETURN (res);
2844 }
2845 // INFINITY (CASE3)
2846 if ((x & MASK_INF) == MASK_INF) {
2847 // if x is neg infinity, it must be lessthan or equal to y return 1
2848 if (((x & MASK_SIGN) == MASK_SIGN)) {
2849 res = 1;
2850 BID_RETURN (res);
2851 }
2852 // x is pos infinity, it is greater,
2853 // unless y is positive infinity => return y==pos_infinity
2854 else {
2855 res = !(((y & MASK_INF) != MASK_INF)
2856 || ((y & MASK_SIGN) == MASK_SIGN));
2857 BID_RETURN (res);
2858 }
2859 } else if ((y & MASK_INF) == MASK_INF) {
2860 // x is finite, so if y is positive infinity, then x is less, return 1
2861 // if y is negative infinity, then x is greater, return 0
2862 {
2863 res = ((y & MASK_SIGN) != MASK_SIGN);
2864 BID_RETURN (res);
2865 }
2866 }
2867 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2868 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2869 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
2870 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2871 if (sig_x > 9999999999999999ull) {
2872 non_canon_x = 1;
2873 } else {
2874 non_canon_x = 0;
2875 }
2876 } else {
2877 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
2878 sig_x = (x & MASK_BINARY_SIG1);
2879 non_canon_x = 0;
2880 }
2881
2882 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2883 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2884 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
2885 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2886 if (sig_y > 9999999999999999ull) {
2887 non_canon_y = 1;
2888 } else {
2889 non_canon_y = 0;
2890 }
2891 } else {
2892 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
2893 sig_y = (y & MASK_BINARY_SIG1);
2894 non_canon_y = 0;
2895 }
2896
2897 // ZERO (CASE4)
2898 // some properties:
2899 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
2900 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
2901 // therefore ignore the exponent field
2902 // (Any non-canonical # is considered 0)
2903 if (non_canon_x || sig_x == 0) {
2904 x_is_zero = 1;
2905 }
2906 if (non_canon_y || sig_y == 0) {
2907 y_is_zero = 1;
2908 }
2909 // if both numbers are zero, they are equal -> return 1
2910 if (x_is_zero && y_is_zero) {
2911 res = 1;
2912 BID_RETURN (res);
2913 }
2914 // if x is zero, it is lessthan if Y is positive
2915 else if (x_is_zero) {
2916 res = ((y & MASK_SIGN) != MASK_SIGN);
2917 BID_RETURN (res);
2918 }
2919 // if y is zero, X is less if it is negative
2920 else if (y_is_zero) {
2921 res = ((x & MASK_SIGN) == MASK_SIGN);
2922 BID_RETURN (res);
2923 }
2924 // OPPOSITE SIGN (CASE5)
2925 // now, if the sign bits differ, x is less than if y is positive
2926 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
2927 res = ((y & MASK_SIGN) != MASK_SIGN);
2928 BID_RETURN (res);
2929 }
2930 // REDUNDANT REPRESENTATIONS (CASE6)
2931 // if both components are either bigger or smaller
2932 if (sig_x > sig_y && exp_x >= exp_y) {
2933 res = ((x & MASK_SIGN) == MASK_SIGN);
2934 BID_RETURN (res);
2935 }
2936 if (sig_x < sig_y && exp_x <= exp_y) {
2937 res = ((x & MASK_SIGN) != MASK_SIGN);
2938 BID_RETURN (res);
2939 }
2940 // if exp_x is 15 greater than exp_y, no need for compensation
2941 if (exp_x - exp_y > 15) {
2942 res = ((x & MASK_SIGN) == MASK_SIGN);
2943 BID_RETURN (res);
2944 }
2945 // difference cannot be greater than 10^15
2946
2947 // if exp_x is 15 less than exp_y, no need for compensation
2948 if (exp_y - exp_x > 15) {
2949 res = ((x & MASK_SIGN) != MASK_SIGN);
2950 BID_RETURN (res);
2951 }
2952 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 2953 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
2954
2955 // otherwise adjust the x significand upwards
2956 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
2957 mult_factor[exp_x - exp_y]);
2958
2959 // return 1 if values are equal
2960 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
2961 res = 1;
2962 BID_RETURN (res);
2963 }
2964 // if postitive, return whichever significand abs is smaller
2965 // (converse if negative)
2966 {
2967 res = (((sig_n_prime.w[1] == 0)
2968 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
2969 MASK_SIGN));
2970 BID_RETURN (res);
2971 }
2972 }
2973 // adjust the y significand upwards
2974 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
2975 mult_factor[exp_y - exp_x]);
2976
2977 // return 1 if values are equal
2978 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
2979 res = 1;
2980 BID_RETURN (res);
2981 }
2982 // if positive, return whichever significand abs is smaller
2983 // (converse if negative)
2984 {
2985 res = (((sig_n_prime.w[1] > 0)
2986 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
2987 MASK_SIGN));
2988 BID_RETURN (res);
2989 }
2990}
2991
2992#if DECIMAL_CALL_BY_REFERENCE
2993void
b2a00c89 2994bid64_signaling_not_less (int *pres, UINT64 * px,
200359e8
L
2995 UINT64 *
2996 py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2997 _EXC_INFO_PARAM) {
2998 UINT64 x = *px;
2999 UINT64 y = *py;
3000#else
3001int
b2a00c89 3002bid64_signaling_not_less (UINT64 x,
200359e8
L
3003 UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
3004 _EXC_INFO_PARAM) {
3005#endif
3006 int res;
3007 int exp_x, exp_y;
3008 UINT64 sig_x, sig_y;
3009 UINT128 sig_n_prime;
3010 char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
3011
3012 // NaN (CASE1)
3013 // if either number is NAN, the comparison is unordered : return 1
3014 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
b2a00c89 3015 *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
200359e8
L
3016 res = 1;
3017 BID_RETURN (res);
3018 }
3019 // SIMPLE (CASE2)
3020 // if all the bits are the same, these numbers are equal.
3021 if (x == y) {
3022 res = 1;
3023 BID_RETURN (res);
3024 }
3025 // INFINITY (CASE3)
3026 if ((x & MASK_INF) == MASK_INF) {
3027 // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
3028 if ((x & MASK_SIGN) == MASK_SIGN)
3029 // x is -inf, so it is less than y unless y is -inf
3030 {
3031 res = (((y & MASK_INF) == MASK_INF)
3032 && (y & MASK_SIGN) == MASK_SIGN);
3033 BID_RETURN (res);
3034 } else
3035 // x is pos_inf, no way for it to be less than y
3036 {
3037 res = 1;
3038 BID_RETURN (res);
3039 }
3040 } else if ((y & MASK_INF) == MASK_INF) {
3041 // x is finite, so:
3042 // if y is +inf, x<y
3043 // if y is -inf, x>y
3044 {
3045 res = ((y & MASK_SIGN) == MASK_SIGN);
3046 BID_RETURN (res);
3047 }
3048 }
3049 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
3050 if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
3051 exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
3052 sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
3053 if (sig_x > 9999999999999999ull) {
3054 non_canon_x = 1;
3055 } else {
3056 non_canon_x = 0;
3057 }
3058 } else {
3059 exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
3060 sig_x = (x & MASK_BINARY_SIG1);
3061 non_canon_x = 0;
3062 }
3063
3064 // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
3065 if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
3066 exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
3067 sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
3068 if (sig_y > 9999999999999999ull) {
3069 non_canon_y = 1;
3070 } else {
3071 non_canon_y = 0;
3072 }
3073 } else {
3074 exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
3075 sig_y = (y & MASK_BINARY_SIG1);
3076 non_canon_y = 0;
3077 }
3078
3079 // ZERO (CASE4)
3080 // some properties:
3081 // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
3082 // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
3083 // therefore ignore the exponent field
3084 // (Any non-canonical # is considered 0)
3085 if (non_canon_x || sig_x == 0) {
3086 x_is_zero = 1;
3087 }
3088 if (non_canon_y || sig_y == 0) {
3089 y_is_zero = 1;
3090 }
3091 // if both numbers are zero, they are equal
3092 if (x_is_zero && y_is_zero) {
3093 res = 1;
3094 BID_RETURN (res);
3095 }
3096 // if x is zero, it is lessthan if Y is positive
3097 else if (x_is_zero) {
3098 res = ((y & MASK_SIGN) == MASK_SIGN);
3099 BID_RETURN (res);
3100 }
3101 // if y is zero, X is less if it is negative
3102 else if (y_is_zero) {
3103 res = ((x & MASK_SIGN) != MASK_SIGN);
3104 BID_RETURN (res);
3105 }
3106 // OPPOSITE SIGN (CASE5)
3107 // now, if the sign bits differ, x is less than if y is positive
3108 if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
3109 res = ((y & MASK_SIGN) == MASK_SIGN);
3110 BID_RETURN (res);
3111 }
3112 // REDUNDANT REPRESENTATIONS (CASE6)
3113 // if both components are either bigger or smaller
3114 if (sig_x > sig_y && exp_x >= exp_y) {
3115 res = ((x & MASK_SIGN) != MASK_SIGN);
3116 BID_RETURN (res);
3117 }
3118 if (sig_x < sig_y && exp_x <= exp_y) {
3119 res = ((x & MASK_SIGN) == MASK_SIGN);
3120 BID_RETURN (res);
3121 }
3122 // if exp_x is 15 greater than exp_y, no need for compensation
3123 if (exp_x - exp_y > 15) {
3124 res = ((x & MASK_SIGN) != MASK_SIGN);
3125 BID_RETURN (res);
3126 }
3127 // difference cannot be greater than 10^15
3128
3129 // if exp_x is 15 less than exp_y, no need for compensation
3130 if (exp_y - exp_x > 15) {
3131 res = ((x & MASK_SIGN) == MASK_SIGN);
3132 BID_RETURN (res);
3133 }
3134 // if |exp_x - exp_y| < 15, it comes down to the compensated significand
b2a00c89 3135 if (exp_x > exp_y) { // to simplify the loop below,
200359e8
L
3136
3137 // otherwise adjust the x significand upwards
3138 __mul_64x64_to_128MACH (sig_n_prime, sig_x,
3139 mult_factor[exp_x - exp_y]);
3140
3141 // return 0 if values are equal
3142 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
3143 res = 1;
3144 BID_RETURN (res);
3145 }
3146 // if postitive, return whichever significand abs is smaller
3147 // (converse if negative)
3148 {
3149 res = (((sig_n_prime.w[1] == 0)
3150 && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
3151 MASK_SIGN));
3152 BID_RETURN (res);
3153 }
3154 }
3155 // adjust the y significand upwards
3156 __mul_64x64_to_128MACH (sig_n_prime, sig_y,
3157 mult_factor[exp_y - exp_x]);
3158
3159 // return 0 if values are equal
3160 if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
3161 res = 1;
3162 BID_RETURN (res);
3163 }
3164 // if positive, return whichever significand abs is smaller
3165 // (converse if negative)
3166 {
3167 res = (((sig_n_prime.w[1] > 0)
3168 || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
3169 MASK_SIGN));
3170 BID_RETURN (res);
3171 }
3172}