]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/config/tilepro/atomic.h
testsuite, Darwin: Fix darwin-comm-1.c error messages for Darwin <= 10.
[thirdparty/gcc.git] / libgcc / config / tilepro / atomic.h
CommitLineData
dd552284 1/* Macros for atomic functionality for tile.
7adcbafe 2 Copyright (C) 2011-2022 Free Software Foundation, Inc.
dd552284
WL
3 Contributed by Walter Lee (walt@tilera.com)
4
5 This file is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the
7 Free Software Foundation; either version 3, or (at your option) any
8 later version.
9
10 This file is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 General Public License for more details.
14
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
18
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22 <http://www.gnu.org/licenses/>. */
23
24
25/* Provides macros for common atomic functionality. */
26
27#ifndef _ATOMIC_H_
28#define _ATOMIC_H_
29
30#ifdef __tilegx__
31/* Atomic instruction macros
32
33 The macros provided by atomic.h simplify access to the TILE-Gx
34 architecture's atomic instructions. The architecture provides a
35 variety of atomic instructions, including "exchange", "compare and
36 exchange", "fetch and ADD", "fetch and AND", "fetch and OR", and
37 "fetch and ADD if greater than or equal to zero".
38
39 No barrier or fence semantics are implied by any of the atomic
40 instructions for manipulating memory; you must specify the barriers
41 that you wish explicitly, using the provided macros.
42
43 Any integral 32- or 64-bit value can be used as the argument
44 to these macros, such as "int", "long long", "unsigned long", etc.
45 The pointers must be aligned to 4 or 8 bytes for 32- or 64-bit data.
46 The "exchange" and "compare and exchange" macros may also take
47 pointer values. We use the pseudo-type "VAL" in the documentation
48 to indicate the use of an appropriate type. */
49#else
50/* Atomic instruction macros
51
52 The macros provided by atomic.h simplify access to the Tile
53 architecture's atomic instructions. Since the architecture
54 supports test-and-set as its only in-silicon atomic operation, many
55 of the operations provided by this header are implemented as
56 fast-path calls to Linux emulation routines.
57
58 Using the kernel for atomic operations allows userspace to take
59 advantage of the kernel's existing atomic-integer support (managed
60 by a distributed array of locks). The kernel provides proper
61 ordering among simultaneous atomic operations on different cores,
67914693 62 and guarantees a process cannot be context-switched part way
dd552284
WL
63 through an atomic operation. By virtue of sharing the kernel
64 atomic implementation, the userspace atomic operations
65 are compatible with the atomic methods provided by the kernel's
66 futex() syscall API. Note that these operations never cause Linux
67 kernel scheduling, and are in fact invisible to the kernel; they
68 simply act as regular function calls but with an elevated privilege
69 level. Note that the kernel's distributed lock array is hashed by
70 using only VA bits from the atomic value's address (to avoid the
71 performance hit of page table locking and multiple page-table
72 lookups to get the PA) and only the VA bits that are below page
73 granularity (to properly lock simultaneous accesses to the same
74 page mapped at different VAs). As a result, simultaneous atomic
75 operations on values whose addresses are at the same offset on a
76 page will contend in the kernel for the same lock array element.
77
78 No barrier or fence semantics are implied by any of the atomic
79 instructions for manipulating memory; you must specify the barriers
80 that you wish explicitly, using the provided macros.
81
82 Any integral 32- or 64-bit value can be used as the argument
83 to these macros, such as "int", "long long", "unsigned long", etc.
84 The pointers must be aligned to 4 or 8 bytes for 32- or 64-bit data.
85 The "exchange" and "compare and exchange" macros may also take
86 pointer values. We use the pseudo-type "VAL" in the documentation
87 to indicate the use of an appropriate type.
88
89 The 32-bit routines are implemented using a single kernel fast
90 syscall, as is the 64-bit compare-and-exchange. The other 64-bit
91 routines are implemented by looping over the 64-bit
92 compare-and-exchange routine, so may be potentially less efficient. */
93#endif
94
dd552284 95#ifdef __tilegx__
ba6be749 96#define SPR_CMPEXCH_VALUE 0x2780
dd552284 97#else
ba6be749
WL
98#define __NR_FAST_cmpxchg -1
99#define __NR_FAST_atomic_update -2
100#define __NR_FAST_cmpxchg64 -3
dd552284
WL
101#endif
102
103
104/* 32-bit integer compare-and-exchange. */
105static __inline __attribute__ ((always_inline))
ef6c2c53
WL
106 int arch_atomic_val_compare_and_exchange_4 (volatile int *mem,
107 int oldval, int newval)
dd552284
WL
108{
109#ifdef __tilegx__
110 __insn_mtspr (SPR_CMPEXCH_VALUE, oldval);
111 return __insn_cmpexch4 (mem, newval);
112#else
113 int result;
114 __asm__ __volatile__ ("swint1":"=R00" (result),
115 "=m" (*mem):"R10" (__NR_FAST_cmpxchg), "R00" (mem),
116 "R01" (oldval), "R02" (newval), "m" (*mem):"r20",
117 "r21", "r22", "r23", "r24", "r25", "r26", "r27",
118 "r28", "r29", "memory");
119 return result;
120#endif
121}
122
123/* 64-bit integer compare-and-exchange. */
124static __inline __attribute__ ((always_inline))
776434d1
WL
125 long long arch_atomic_val_compare_and_exchange_8 (volatile long long
126 *mem, long long oldval,
127 long long newval)
dd552284
WL
128{
129#ifdef __tilegx__
130 __insn_mtspr (SPR_CMPEXCH_VALUE, oldval);
131 return __insn_cmpexch (mem, newval);
132#else
133 unsigned int result_lo, result_hi;
134 unsigned int oldval_lo = oldval & 0xffffffffu, oldval_hi = oldval >> 32;
135 unsigned int newval_lo = newval & 0xffffffffu, newval_hi = newval >> 32;
136 __asm__ __volatile__ ("swint1":"=R00" (result_lo), "=R01" (result_hi),
137 "=m" (*mem):"R10" (__NR_FAST_cmpxchg64), "R00" (mem),
138 "R02" (oldval_lo), "R03" (oldval_hi),
139 "R04" (newval_lo), "R05" (newval_hi),
140 "m" (*mem):"r20", "r21", "r22", "r23", "r24", "r25",
141 "r26", "r27", "r28", "r29", "memory");
776434d1 142 return ((long long) result_hi) << 32 | result_lo;
dd552284
WL
143#endif
144}
145
146/* This non-existent symbol is called for sizes other than "4" and "8",
147 indicating a bug in the caller. */
ef6c2c53 148extern int __arch_atomic_error_bad_argument_size (void)
dd552284
WL
149 __attribute__ ((warning ("sizeof atomic argument not 4 or 8")));
150
151
ef6c2c53 152#define arch_atomic_val_compare_and_exchange(mem, o, n) \
776434d1 153 __extension__ ({ \
dd552284
WL
154 (__typeof(*(mem)))(__typeof(*(mem)-*(mem))) \
155 ((sizeof(*(mem)) == 8) ? \
ef6c2c53 156 arch_atomic_val_compare_and_exchange_8( \
776434d1 157 (volatile long long*)(mem), (__typeof((o)-(o)))(o), \
dd552284
WL
158 (__typeof((n)-(n)))(n)) : \
159 (sizeof(*(mem)) == 4) ? \
ef6c2c53 160 arch_atomic_val_compare_and_exchange_4( \
dd552284
WL
161 (volatile int*)(mem), (__typeof((o)-(o)))(o), \
162 (__typeof((n)-(n)))(n)) : \
ef6c2c53 163 __arch_atomic_error_bad_argument_size()); \
dd552284
WL
164 })
165
ef6c2c53 166#define arch_atomic_bool_compare_and_exchange(mem, o, n) \
776434d1 167 __extension__ ({ \
dd552284
WL
168 __typeof(o) __o = (o); \
169 __builtin_expect( \
ef6c2c53 170 __o == arch_atomic_val_compare_and_exchange((mem), __o, (n)), 1); \
dd552284
WL
171 })
172
173
174/* Loop with compare_and_exchange until we guess the correct value.
175 Normally "expr" will be an expression using __old and __value. */
ef6c2c53 176#define __arch_atomic_update_cmpxchg(mem, value, expr) \
776434d1 177 __extension__ ({ \
dd552284
WL
178 __typeof(value) __value = (value); \
179 __typeof(*(mem)) *__mem = (mem), __old = *__mem, __guess; \
180 do { \
181 __guess = __old; \
ef6c2c53 182 __old = arch_atomic_val_compare_and_exchange(__mem, __old, (expr)); \
dd552284
WL
183 } while (__builtin_expect(__old != __guess, 0)); \
184 __old; \
185 })
186
187#ifdef __tilegx__
188
189/* Generic atomic op with 8- or 4-byte variant.
190 The _mask, _addend, and _expr arguments are ignored on tilegx. */
ef6c2c53 191#define __arch_atomic_update(mem, value, op, _mask, _addend, _expr) \
776434d1 192 __extension__ ({ \
dd552284
WL
193 ((__typeof(*(mem))) \
194 ((sizeof(*(mem)) == 8) ? (__typeof(*(mem)-*(mem)))__insn_##op( \
776434d1
WL
195 (volatile void *)(mem), \
196 (long long)(__typeof((value)-(value)))(value)) : \
dd552284 197 (sizeof(*(mem)) == 4) ? (int)__insn_##op##4( \
776434d1
WL
198 (volatile void *)(mem), \
199 (int)(__typeof((value)-(value)))(value)) : \
ef6c2c53 200 __arch_atomic_error_bad_argument_size())); \
dd552284
WL
201 })
202
203#else
204
205/* This uses TILEPro's fast syscall support to atomically compute:
206
207 int old = *ptr;
208 *ptr = (old & mask) + addend;
209 return old;
210
211 This primitive can be used for atomic exchange, add, or, and.
212 Only 32-bit support is provided. */
213static __inline __attribute__ ((always_inline))
214 int
ef6c2c53 215 __arch_atomic_update_4 (volatile int *mem, int mask, int addend)
dd552284
WL
216{
217 int result;
218 __asm__ __volatile__ ("swint1":"=R00" (result),
219 "=m" (*mem):"R10" (__NR_FAST_atomic_update),
220 "R00" (mem), "R01" (mask), "R02" (addend),
221 "m" (*mem):"r20", "r21", "r22", "r23", "r24", "r25",
222 "r26", "r27", "r28", "r29", "memory");
223 return result;
224}
225
226/* Generic atomic op with 8- or 4-byte variant.
227 The _op argument is ignored on tilepro. */
ef6c2c53 228#define __arch_atomic_update(mem, value, _op, mask, addend, expr) \
776434d1 229 __extension__ ({ \
dd552284
WL
230 (__typeof(*(mem)))(__typeof(*(mem)-*(mem))) \
231 ((sizeof(*(mem)) == 8) ? \
ef6c2c53 232 __arch_atomic_update_cmpxchg((mem), (value), (expr)) : \
dd552284 233 (sizeof(*(mem)) == 4) ? \
ef6c2c53
WL
234 __arch_atomic_update_4((volatile int*)(mem), \
235 (__typeof((mask)-(mask)))(mask), \
236 (__typeof((addend)-(addend)))(addend)) : \
237 __arch_atomic_error_bad_argument_size()); \
dd552284
WL
238 })
239
240#endif /* __tilegx__ */
241
242
ef6c2c53
WL
243#define arch_atomic_exchange(mem, newvalue) \
244 __arch_atomic_update(mem, newvalue, exch, 0, newvalue, __value)
dd552284 245
ef6c2c53
WL
246#define arch_atomic_add(mem, value) \
247 __arch_atomic_update(mem, value, fetchadd, -1, value, __old + __value)
dd552284 248
ef6c2c53 249#define arch_atomic_sub(mem, value) arch_atomic_add((mem), -(value))
dd552284 250
ef6c2c53 251#define arch_atomic_increment(mem) arch_atomic_add((mem), 1)
dd552284 252
ef6c2c53 253#define arch_atomic_decrement(mem) arch_atomic_add((mem), -1)
dd552284 254
ef6c2c53
WL
255#define arch_atomic_and(mem, mask) \
256 __arch_atomic_update(mem, mask, fetchand, mask, 0, __old & __value)
dd552284 257
ef6c2c53
WL
258#define arch_atomic_or(mem, mask) \
259 __arch_atomic_update(mem, mask, fetchor, ~mask, mask, __old | __value)
dd552284 260
ef6c2c53
WL
261#define arch_atomic_xor(mem, mask) \
262 __arch_atomic_update_cmpxchg(mem, mask, __old ^ __value)
263
264#define arch_atomic_nand(mem, mask) \
265 __arch_atomic_update_cmpxchg(mem, mask, ~(__old & __value))
266
267#define arch_atomic_bit_set(mem, bit) \
776434d1 268 __extension__ ({ \
dd552284 269 __typeof(*(mem)) __mask = (__typeof(*(mem)))1 << (bit); \
ef6c2c53 270 __mask & arch_atomic_or((mem), __mask); \
dd552284
WL
271 })
272
ef6c2c53 273#define arch_atomic_bit_clear(mem, bit) \
776434d1 274 __extension__ ({ \
dd552284 275 __typeof(*(mem)) __mask = (__typeof(*(mem)))1 << (bit); \
ef6c2c53 276 __mask & arch_atomic_and((mem), ~__mask); \
dd552284
WL
277 })
278
279#ifdef __tilegx__
280/* Atomically store a new value to memory.
281 Note that you can freely use types of any size here, unlike the
282 other atomic routines, which require 32- or 64-bit types.
283 This accessor is provided for compatibility with TILEPro, which
284 required an explicit atomic operation for stores that needed
285 to be atomic with respect to other atomic methods in this header. */
ef6c2c53 286#define arch_atomic_write(mem, value) ((void) (*(mem) = (value)))
dd552284 287#else
ef6c2c53 288#define arch_atomic_write(mem, value) \
dd552284
WL
289 do { \
290 __typeof(mem) __aw_mem = (mem); \
291 __typeof(value) __aw_val = (value); \
292 unsigned int *__aw_mem32, __aw_intval, __aw_val32, __aw_off, __aw_mask; \
293 __aw_intval = (__typeof((value) - (value)))__aw_val; \
294 switch (sizeof(*__aw_mem)) { \
295 case 8: \
ef6c2c53 296 __arch_atomic_update_cmpxchg(__aw_mem, __aw_val, __value); \
dd552284
WL
297 break; \
298 case 4: \
ef6c2c53 299 __arch_atomic_update_4((int *)__aw_mem, 0, __aw_intval); \
dd552284
WL
300 break; \
301 case 2: \
302 __aw_off = 8 * ((long)__aw_mem & 0x2); \
303 __aw_mask = 0xffffU << __aw_off; \
304 __aw_mem32 = (unsigned int *)((long)__aw_mem & ~0x2); \
305 __aw_val32 = (__aw_intval << __aw_off) & __aw_mask; \
ef6c2c53
WL
306 __arch_atomic_update_cmpxchg(__aw_mem32, __aw_val32, \
307 (__old & ~__aw_mask) | __value); \
dd552284
WL
308 break; \
309 case 1: \
310 __aw_off = 8 * ((long)__aw_mem & 0x3); \
311 __aw_mask = 0xffU << __aw_off; \
312 __aw_mem32 = (unsigned int *)((long)__aw_mem & ~0x3); \
313 __aw_val32 = (__aw_intval << __aw_off) & __aw_mask; \
ef6c2c53
WL
314 __arch_atomic_update_cmpxchg(__aw_mem32, __aw_val32, \
315 (__old & ~__aw_mask) | __value); \
dd552284
WL
316 break; \
317 } \
318 } while (0)
319#endif
320
321/* Compiler barrier.
322
323 This macro prevents loads or stores from being moved by the compiler
324 across the macro. Any loaded value that was loaded before this
325 macro must then be reloaded by the compiler. */
ef6c2c53 326#define arch_atomic_compiler_barrier() __asm__ __volatile__("" ::: "memory")
dd552284
WL
327
328/* Full memory barrier.
329
ef6c2c53 330 This macro has the semantics of arch_atomic_compiler_barrer(), but also
dd552284
WL
331 ensures that previous stores are visible to other cores, and that
332 all previous loaded values have been placed into their target
333 register on this core. */
ef6c2c53 334#define arch_atomic_full_barrier() __insn_mf()
dd552284
WL
335
336/* Read memory barrier.
337
338 Ensure that all reads by this processor that occurred prior to the
339 read memory barrier have completed, and that no reads that occur
340 after the read memory barrier on this processor are initiated
341 before the barrier.
342
343 On current TILE chips a read barrier is implemented as a full barrier,
344 but this may not be true in later versions of the architecture.
345
ef6c2c53 346 See also arch_atomic_acquire_barrier() for the appropriate idiom to use
dd552284 347 to ensure no reads are lifted above an atomic lock instruction. */
ef6c2c53 348#define arch_atomic_read_barrier() arch_atomic_full_barrier()
dd552284
WL
349
350/* Write memory barrier.
351
352 Ensure that all writes by this processor that occurred prior to the
353 write memory barrier have completed, and that no writes that occur
354 after the write memory barrier on this processor are initiated
355 before the barrier.
356
357 On current TILE chips a write barrier is implemented as a full barrier,
358 but this may not be true in later versions of the architecture.
359
ef6c2c53 360 See also arch_atomic_release_barrier() for the appropriate idiom to use
dd552284 361 to ensure all writes are complete prior to an atomic unlock instruction. */
ef6c2c53 362#define arch_atomic_write_barrier() arch_atomic_full_barrier()
dd552284
WL
363
364/* Lock acquisition barrier.
365
366 Ensure that no load operations that follow this macro in the
367 program can issue prior to the barrier. Without such a barrier,
368 the compiler can reorder them to issue earlier, or the hardware can
369 issue them speculatively. The latter is not currently done in the
370 Tile microarchitecture, but using this operation improves
371 portability to future implementations.
372
373 This operation is intended to be used as part of the "acquire"
374 path for locking, that is, when entering a critical section.
375 This should be done after the atomic operation that actually
376 acquires the lock, and in conjunction with a "control dependency"
377 that checks the atomic operation result to see if the lock was
ef6c2c53 378 in fact acquired. See the arch_atomic_read_barrier() macro
dd552284 379 for a heavier-weight barrier to use in certain unusual constructs,
ef6c2c53
WL
380 or arch_atomic_acquire_barrier_value() if no control dependency exists. */
381#define arch_atomic_acquire_barrier() arch_atomic_compiler_barrier()
dd552284
WL
382
383/* Lock release barrier.
384
385 Ensure that no store operations that precede this macro in the
386 program complete subsequent to the barrier. Without such a
387 barrier, the compiler can reorder stores to issue later, or stores
388 can be still outstanding in the memory network.
389
390 This operation is intended to be used as part of the "release" path
391 for locking, that is, when leaving a critical section. This should
392 be done before the operation (such as a store of zero) that
393 actually releases the lock. */
ef6c2c53 394#define arch_atomic_release_barrier() arch_atomic_write_barrier()
dd552284
WL
395
396/* Barrier until the read of a particular value is complete.
397
398 This is occasionally useful when constructing certain locking
399 scenarios. For example, you might write a routine that issues an
400 atomic instruction to enter a critical section, then reads one or
401 more values within the critical section without checking to see if
402 the critical section was in fact acquired, and only later checks
403 the atomic instruction result to see if the lock was acquired. If
404 so the routine could properly release the lock and know that the
405 values that were read were valid.
406
407 In this scenario, it is required to wait for the result of the
408 atomic instruction, even if the value itself is not checked. This
409 guarantees that if the atomic instruction succeeded in taking the lock,
410 the lock was held before any reads in the critical section issued. */
ef6c2c53 411#define arch_atomic_acquire_barrier_value(val) \
dd552284
WL
412 __asm__ __volatile__("move %0, %0" :: "r"(val))
413
414/* Access the given variable in memory exactly once.
415
416 In some contexts, an algorithm may need to force access to memory,
417 since otherwise the compiler may think it can optimize away a
418 memory load or store; for example, in a loop when polling memory to
419 see if another cpu has updated it yet. Generally this is only
420 required for certain very carefully hand-tuned algorithms; using it
421 unnecessarily may result in performance losses.
422
423 A related use of this macro is to ensure that the compiler does not
424 rematerialize the value of "x" by reloading it from memory
425 unexpectedly; the "volatile" marking will prevent the compiler from
426 being able to rematerialize. This is helpful if an algorithm needs
427 to read a variable without locking, but needs it to have the same
428 value if it ends up being used several times within the algorithm.
429
430 Note that multiple uses of this macro are guaranteed to be ordered,
431 i.e. the compiler will not reorder stores or loads that are wrapped
ef6c2c53
WL
432 in arch_atomic_access_once(). */
433#define arch_atomic_access_once(x) (*(volatile __typeof(x) *)&(x))
434
dd552284
WL
435
436
437#endif /* !_ATOMIC_H_ */