]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/dfp-bit.c
Update copyright years.
[thirdparty/gcc.git] / libgcc / dfp-bit.c
CommitLineData
2d8d5935 1/* This is a software decimal floating point library.
a945c346 2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
2d8d5935
RO
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23<http://www.gnu.org/licenses/>. */
24
25/* This implements IEEE 754 decimal floating point arithmetic, but
26 does not provide a mechanism for setting the rounding mode, or for
27 generating or handling exceptions. Conversions between decimal
28 floating point types and other types depend on C library functions.
29
30 Contributed by Ben Elliston <bje@au.ibm.com>. */
31
32#include <stdio.h>
33#include <stdlib.h>
34/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
35extern float strtof (const char *, char **);
36extern long double strtold (const char *, char **);
37#include <string.h>
38#include <limits.h>
39
40#include "dfp-bit.h"
41
42/* Forward declarations. */
43#if WIDTH == 32 || WIDTH_TO == 32
44void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
45void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
46#endif
47#if WIDTH == 64 || WIDTH_TO == 64
48void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
49void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
50#endif
51#if WIDTH == 128 || WIDTH_TO == 128
52void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
53void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
54#endif
55
56/* A pointer to a binary decFloat operation. */
57typedef decFloat* (*dfp_binary_func)
58 (decFloat *, const decFloat *, const decFloat *, decContext *);
59\f
60/* Binary operations. */
61
62/* Use a decFloat (decDouble or decQuad) function to perform a DFP
63 binary operation. */
64static inline decFloat
65dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
66{
67 decFloat result;
68 decContext context;
69
70 decContextDefault (&context, CONTEXT_INIT);
71 DFP_INIT_ROUNDMODE (context.round);
72
73 /* Perform the operation. */
74 op (&result, &arg_a, &arg_b, &context);
75
76 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
77 {
78 /* decNumber exception flags we care about here. */
79 int ieee_flags;
80 int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
81 | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
82 | DEC_IEEE_854_Underflow;
83 dec_flags &= context.status;
84 ieee_flags = DFP_IEEE_FLAGS (dec_flags);
85 if (ieee_flags != 0)
86 DFP_HANDLE_EXCEPTIONS (ieee_flags);
87 }
88
89 return result;
90}
91
92#if WIDTH == 32
93/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
94 convert to decDouble, use the operation for that, and convert back. */
95static inline _Decimal32
96d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
97{
98 union { _Decimal32 c; decSingle f; } a32, b32, res32;
99 decDouble a, b, res;
100 decContext context;
101
102 /* Widen the operands and perform the operation. */
103 a32.c = arg_a;
104 b32.c = arg_b;
105 decSingleToWider (&a32.f, &a);
106 decSingleToWider (&b32.f, &b);
107 res = dfp_binary_op (op, a, b);
108
109 /* Narrow the result, which might result in an underflow or overflow. */
110 decContextDefault (&context, CONTEXT_INIT);
111 DFP_INIT_ROUNDMODE (context.round);
112 decSingleFromWider (&res32.f, &res, &context);
113 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
114 {
115 /* decNumber exception flags we care about here. */
116 int ieee_flags;
117 int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
118 | DEC_IEEE_854_Underflow;
119 dec_flags &= context.status;
120 ieee_flags = DFP_IEEE_FLAGS (dec_flags);
121 if (ieee_flags != 0)
122 DFP_HANDLE_EXCEPTIONS (ieee_flags);
123 }
124
125 return res32.c;
126}
127#else
128/* decFloat operations are supported for decDouble (64 bits) and
129 decQuad (128 bits). The bit patterns for the types are the same. */
130static inline DFP_C_TYPE
131dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
132{
133 union { DFP_C_TYPE c; decFloat f; } a, b, result;
134
135 a.c = arg_a;
136 b.c = arg_b;
137 result.f = dfp_binary_op (op, a.f, b.f);
138 return result.c;
139}
140#endif
141
142/* Comparison operations. */
143
144/* Use a decFloat (decDouble or decQuad) function to perform a DFP
145 comparison. */
146static inline CMPtype
147dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
148{
149 decContext context;
150 decFloat res;
151 int result;
152
153 decContextDefault (&context, CONTEXT_INIT);
154 DFP_INIT_ROUNDMODE (context.round);
155
156 /* Perform the comparison. */
157 op (&res, &arg_a, &arg_b, &context);
158
159 if (DEC_FLOAT_IS_SIGNED (&res))
160 result = -1;
161 else if (DEC_FLOAT_IS_ZERO (&res))
162 result = 0;
163 else if (DEC_FLOAT_IS_NAN (&res))
164 result = -2;
165 else
166 result = 1;
167
168 return (CMPtype) result;
169}
170
171#if WIDTH == 32
172/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
173 convert to decDouble, use the operation for that, and convert back. */
174static inline CMPtype
175d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
176{
177 union { _Decimal32 c; decSingle f; } a32, b32;
178 decDouble a, b;
179
180 a32.c = arg_a;
181 b32.c = arg_b;
182 decSingleToWider (&a32.f, &a);
183 decSingleToWider (&b32.f, &b);
184 return dfp_compare_op (op, a, b);
185}
186#else
187/* decFloat comparisons are supported for decDouble (64 bits) and
188 decQuad (128 bits). The bit patterns for the types are the same. */
189static inline CMPtype
190dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
191{
192 union { DFP_C_TYPE c; decFloat f; } a, b;
193
194 a.c = arg_a;
195 b.c = arg_b;
196 return dfp_compare_op (op, a.f, b.f);
197}
198#endif
199\f
200#if defined(L_conv_sd)
201void
202__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
203{
204 memcpy (out, &in, 4);
205}
206
207void
208__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
209{
210 memcpy (out, &in, 4);
211}
212#endif /* L_conv_sd */
213
214#if defined(L_conv_dd)
215void
216__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
217{
218 memcpy (out, &in, 8);
219}
220
221void
222__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
223{
224 memcpy (out, &in, 8);
225}
226#endif /* L_conv_dd */
227
228#if defined(L_conv_td)
229void
230__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
231{
232 memcpy (out, &in, 16);
233}
234
235void
236__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
237{
238 memcpy (out, &in, 16);
239}
240#endif /* L_conv_td */
241
242#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
243DFP_C_TYPE
244DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
245{
246 return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
247}
248
249DFP_C_TYPE
250DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
251{
252 return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
253}
254#endif /* L_addsub */
255
256#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
257DFP_C_TYPE
258DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
259{
260 return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
261}
262#endif /* L_mul */
263
264#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
265DFP_C_TYPE
266DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
267{
268 return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
269}
270#endif /* L_div */
271
272#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
273CMPtype
274DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
275{
276 CMPtype stat;
277 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
278 /* For EQ return zero for true, nonzero for false. */
279 return stat != 0;
280}
281#endif /* L_eq */
282
283#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
284CMPtype
285DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
286{
287 int stat;
288 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
289 /* For NE return zero for true, nonzero for false. */
290 if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
291 return 1;
292 return stat != 0;
293}
294#endif /* L_ne */
295
296#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
297CMPtype
298DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
299{
300 int stat;
301 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
302 /* For LT return -1 (<0) for true, 1 for false. */
303 return (stat == -1) ? -1 : 1;
304}
305#endif /* L_lt */
306
307#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
308CMPtype
309DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
310{
311 int stat;
312 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
313 /* For GT return 1 (>0) for true, -1 for false. */
314 return (stat == 1) ? 1 : -1;
315}
316#endif
317
318#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
319CMPtype
320DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
321{
322 int stat;
323 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
324 /* For LE return 0 (<= 0) for true, 1 for false. */
325 if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
326 return 1;
327 return stat == 1;
328}
329#endif /* L_le */
330
331#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
332CMPtype
333DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
334{
335 int stat;
336 stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
337 /* For GE return 1 (>=0) for true, -1 for false. */
338 if (__builtin_expect (stat == -2, 0)) /* An operand is NaN. */
339 return -1;
340 return (stat != -1) ? 1 : -1;
341}
342#endif /* L_ge */
343
344#define BUFMAX 128
345
346/* Check for floating point exceptions that are relevant for conversions
347 between decimal float values and handle them. */
348static inline void
349dfp_conversion_exceptions (const int status)
350{
351 /* decNumber exception flags we care about here. */
352 int ieee_flags;
353 int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
354 | DEC_IEEE_854_Overflow;
355 dec_flags &= status;
356 ieee_flags = DFP_IEEE_FLAGS (dec_flags);
357 if (ieee_flags != 0)
358 DFP_HANDLE_EXCEPTIONS (ieee_flags);
359}
360
361#if defined (L_sd_to_dd)
362/* Use decNumber to convert directly from _Decimal32 to _Decimal64. */
363_Decimal64
364DFP_TO_DFP (_Decimal32 f_from)
365{
366 union { _Decimal32 c; decSingle f; } from;
367 union { _Decimal64 c; decDouble f; } to;
368
369 from.c = f_from;
370 to.f = *decSingleToWider (&from.f, &to.f);
371 return to.c;
372}
373#endif
374
375#if defined (L_sd_to_td)
376/* Use decNumber to convert directly from _Decimal32 to _Decimal128. */
377_Decimal128
378DFP_TO_DFP (_Decimal32 f_from)
379{
380 union { _Decimal32 c; decSingle f; } from;
381 union { _Decimal128 c; decQuad f; } to;
382 decDouble temp;
383
384 from.c = f_from;
385 temp = *decSingleToWider (&from.f, &temp);
386 to.f = *decDoubleToWider (&temp, &to.f);
387 return to.c;
388}
389#endif
390
391#if defined (L_dd_to_td)
392/* Use decNumber to convert directly from _Decimal64 to _Decimal128. */
393_Decimal128
394DFP_TO_DFP (_Decimal64 f_from)
395{
396 union { _Decimal64 c; decDouble f; } from;
397 union { _Decimal128 c; decQuad f; } to;
398
399 from.c = f_from;
400 to.f = *decDoubleToWider (&from.f, &to.f);
401 return to.c;
402}
403#endif
404
405#if defined (L_dd_to_sd)
406/* Use decNumber to convert directly from _Decimal64 to _Decimal32. */
407_Decimal32
408DFP_TO_DFP (_Decimal64 f_from)
409{
410 union { _Decimal32 c; decSingle f; } to;
411 union { _Decimal64 c; decDouble f; } from;
412 decContext context;
413
414 decContextDefault (&context, CONTEXT_INIT);
415 DFP_INIT_ROUNDMODE (context.round);
416 from.c = f_from;
417 to.f = *decSingleFromWider (&to.f, &from.f, &context);
418 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
419 dfp_conversion_exceptions (context.status);
420 return to.c;
421}
422#endif
423
424#if defined (L_td_to_sd)
425/* Use decNumber to convert directly from _Decimal128 to _Decimal32. */
426_Decimal32
427DFP_TO_DFP (_Decimal128 f_from)
428{
429 union { _Decimal32 c; decSingle f; } to;
430 union { _Decimal128 c; decQuad f; } from;
431 decDouble temp;
432 decContext context;
433
434 decContextDefault (&context, CONTEXT_INIT);
435 DFP_INIT_ROUNDMODE (context.round);
436 from.c = f_from;
437 temp = *decDoubleFromWider (&temp, &from.f, &context);
438 to.f = *decSingleFromWider (&to.f, &temp, &context);
439 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
440 dfp_conversion_exceptions (context.status);
441 return to.c;
442}
443#endif
444
445#if defined (L_td_to_dd)
446/* Use decNumber to convert directly from _Decimal128 to _Decimal64. */
447_Decimal64
448DFP_TO_DFP (_Decimal128 f_from)
449{
450 union { _Decimal64 c; decDouble f; } to;
451 union { _Decimal128 c; decQuad f; } from;
452 decContext context;
453
454 decContextDefault (&context, CONTEXT_INIT);
455 DFP_INIT_ROUNDMODE (context.round);
456 from.c = f_from;
457 to.f = *decDoubleFromWider (&to.f, &from.f, &context);
458 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
459 dfp_conversion_exceptions (context.status);
460 return to.c;
461}
462#endif
463
464#if defined (L_dd_to_si) || defined (L_td_to_si) \
465 || defined (L_dd_to_usi) || defined (L_td_to_usi)
466/* Use decNumber to convert directly from decimal float to integer types. */
467INT_TYPE
468DFP_TO_INT (DFP_C_TYPE x)
469{
470 union { DFP_C_TYPE c; decFloat f; } u;
471 decContext context;
472 INT_TYPE i;
473
474 decContextDefault (&context, DEC_INIT_DECIMAL128);
475 context.round = DEC_ROUND_DOWN;
476 u.c = x;
477 i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
478 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
479 dfp_conversion_exceptions (context.status);
480 return i;
481}
482#endif
483
484#if defined (L_sd_to_si) || (L_sd_to_usi)
485/* Use decNumber to convert directly from decimal float to integer types. */
486INT_TYPE
487DFP_TO_INT (_Decimal32 x)
488{
489 union { _Decimal32 c; decSingle f; } u32;
490 decDouble f64;
491 decContext context;
492 INT_TYPE i;
493
494 decContextDefault (&context, DEC_INIT_DECIMAL128);
495 context.round = DEC_ROUND_DOWN;
496 u32.c = x;
497 f64 = *decSingleToWider (&u32.f, &f64);
498 i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
499 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
500 dfp_conversion_exceptions (context.status);
501 return i;
502}
503#endif
504
505#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
506 || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
507/* decNumber doesn't provide support for conversions to 64-bit integer
508 types, so do it the hard way. */
509INT_TYPE
510DFP_TO_INT (DFP_C_TYPE x)
511{
512 /* decNumber's decimal* types have the same format as C's _Decimal*
513 types, but they have different calling conventions. */
514
515 /* TODO: Decimal float to integer conversions should raise FE_INVALID
516 if the result value does not fit into the result type. */
517
518 IEEE_TYPE s;
519 char buf[BUFMAX];
520 char *pos;
521 decNumber qval, n1, n2;
522 decContext context;
523
524 /* Use a large context to avoid losing precision. */
525 decContextDefault (&context, DEC_INIT_DECIMAL128);
526 /* Need non-default rounding mode here. */
527 context.round = DEC_ROUND_DOWN;
528
529 HOST_TO_IEEE (x, &s);
530 TO_INTERNAL (&s, &n1);
531 /* Rescale if the exponent is less than zero. */
532 decNumberToIntegralValue (&n2, &n1, &context);
533 /* Get a value to use for the quantize call. */
534 decNumberFromString (&qval, "1.", &context);
535 /* Force the exponent to zero. */
536 decNumberQuantize (&n1, &n2, &qval, &context);
537 /* Get a string, which at this point will not include an exponent. */
538 decNumberToString (&n1, buf);
539 /* Ignore the fractional part. */
540 pos = strchr (buf, '.');
541 if (pos)
542 *pos = 0;
543 /* Use a C library function to convert to the integral type. */
544 return STR_TO_INT (buf, NULL, 10);
545}
546#endif
547
548#if defined (L_si_to_dd) || defined (L_si_to_td) \
549 || defined (L_usi_to_dd) || defined (L_usi_to_td)
550/* Use decNumber to convert directly from integer to decimal float types. */
551DFP_C_TYPE
552INT_TO_DFP (INT_TYPE i)
553{
554 union { DFP_C_TYPE c; decFloat f; } u;
555
556 u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
557 return u.c;
558}
559#endif
560
561#if defined (L_si_to_sd) || defined (L_usi_to_sd)
562_Decimal32
563/* Use decNumber to convert directly from integer to decimal float types. */
564INT_TO_DFP (INT_TYPE i)
565{
566 union { _Decimal32 c; decSingle f; } u32;
567 decDouble f64;
568 decContext context;
569
570 decContextDefault (&context, DEC_INIT_DECIMAL128);
571 f64 = *DEC_FLOAT_FROM_INT (&f64, i);
572 u32.f = *decSingleFromWider (&u32.f, &f64, &context);
573 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
574 dfp_conversion_exceptions (context.status);
575 return u32.c;
576}
577#endif
578
579#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
580 || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
581/* decNumber doesn't provide support for conversions from 64-bit integer
582 types, so do it the hard way. */
583DFP_C_TYPE
584INT_TO_DFP (INT_TYPE i)
585{
586 DFP_C_TYPE f;
587 IEEE_TYPE s;
588 char buf[BUFMAX];
589 decContext context;
590
591 decContextDefault (&context, CONTEXT_INIT);
592 DFP_INIT_ROUNDMODE (context.round);
593
594 /* Use a C library function to get a floating point string. */
595 sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
596 /* Convert from the floating point string to a decimal* type. */
597 FROM_STRING (&s, buf, &context);
598 IEEE_TO_HOST (s, &f);
599
600 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
601 dfp_conversion_exceptions (context.status);
602
603 return f;
604}
605#endif
606
607#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
608 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
78118359 609 || defined (L_sd_to_kf) || defined (L_dd_to_kf) || defined (L_td_to_kf) \
2d8d5935
RO
610 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
611 && LONG_DOUBLE_HAS_XF_MODE) \
612 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
613 && LONG_DOUBLE_HAS_TF_MODE)
614BFP_TYPE
615DFP_TO_BFP (DFP_C_TYPE f)
616{
617 IEEE_TYPE s;
618 char buf[BUFMAX];
619
620 HOST_TO_IEEE (f, &s);
621 /* Write the value to a string. */
622 TO_STRING (&s, buf);
623 /* Read it as the binary floating point type and return that. */
624 return STR_TO_BFP (buf, NULL);
625}
626#endif
627
628#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
629 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
78118359 630 || defined (L_kf_to_sd) || defined (L_kf_to_dd) || defined (L_kf_to_td) \
2d8d5935
RO
631 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
632 && LONG_DOUBLE_HAS_XF_MODE) \
633 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
634 && LONG_DOUBLE_HAS_TF_MODE)
635DFP_C_TYPE
636BFP_TO_DFP (BFP_TYPE x)
637{
638 DFP_C_TYPE f;
639 IEEE_TYPE s;
640 char buf[BUFMAX];
641 decContext context;
642
643 decContextDefault (&context, CONTEXT_INIT);
644 DFP_INIT_ROUNDMODE (context.round);
645
692ba083
MM
646 /* Use the sprintf library function to write the floating point value to a
647 string.
78118359
MM
648
649 If we are handling the IEEE 128-bit floating point on PowerPC, use the
650 special function __sprintfkf instead of sprintf. This function allows us
651 to use __sprintfieee128 if we have a new enough GLIBC, and it can fall back
652 to using the traditional sprintf via conversion to IBM 128-bit if the glibc
653 is older. */
654 BFP_SPRINTF (buf, BFP_FMT, (BFP_VIA_TYPE) x);
2d8d5935
RO
655
656 /* Convert from the floating point string to a decimal* type. */
657 FROM_STRING (&s, buf, &context);
658 IEEE_TO_HOST (s, &f);
659
660 if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
661 {
662 /* decNumber exception flags we care about here. */
663 int ieee_flags;
664 int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
665 | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
666 dec_flags &= context.status;
667 ieee_flags = DFP_IEEE_FLAGS (dec_flags);
668 if (ieee_flags != 0)
669 DFP_HANDLE_EXCEPTIONS (ieee_flags);
670 }
671
672 return f;
673}
674#endif
675
676#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
677CMPtype
678DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
679{
680 decNumber arg1, arg2;
681 IEEE_TYPE a, b;
682
683 HOST_TO_IEEE (arg_a, &a);
684 HOST_TO_IEEE (arg_b, &b);
685 TO_INTERNAL (&a, &arg1);
686 TO_INTERNAL (&b, &arg2);
687 return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
688}
689#endif /* L_unord_sd || L_unord_dd || L_unord_td */