]> git.ipfire.org Git - thirdparty/gcc.git/blame - libgcc/generic-morestack.c
2019-06-16 Thomas Koenig <tkoenig@gcc.gnu.org>
[thirdparty/gcc.git] / libgcc / generic-morestack.c
CommitLineData
48b14f50 1/* Library support for -fsplit-stack. */
fbd26352 2/* Copyright (C) 2009-2019 Free Software Foundation, Inc.
48b14f50 3 Contributed by Ian Lance Taylor <iant@google.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
25
ec3f28c9 26/* powerpc 32-bit not supported. */
27#if !defined __powerpc__ || defined __powerpc64__
28
48b14f50 29#include "tconfig.h"
30#include "tsystem.h"
31#include "coretypes.h"
32#include "tm.h"
022a2799 33#include "libgcc_tm.h"
48b14f50 34
f4d3c071 35/* If inhibit_libc is defined, we cannot compile this file. The
48b14f50 36 effect is that people will not be able to use -fsplit-stack. That
37 is much better than failing the build particularly since people
38 will want to define inhibit_libc while building a compiler which
39 can build glibc. */
40
41#ifndef inhibit_libc
42
43#include <assert.h>
44#include <errno.h>
45#include <signal.h>
46#include <stdlib.h>
23371076 47#include <string.h>
48b14f50 48#include <unistd.h>
49#include <sys/mman.h>
50#include <sys/uio.h>
51
52#include "generic-morestack.h"
53
23371076 54typedef unsigned uintptr_type __attribute__ ((mode (pointer)));
55
48b14f50 56/* This file contains subroutines that are used by code compiled with
57 -fsplit-stack. */
58
59/* Declare functions to avoid warnings--there is no header file for
60 these internal functions. We give most of these functions the
61 flatten attribute in order to minimize their stack usage--here we
62 must minimize stack usage even at the cost of code size, and in
63 general inlining everything will do that. */
64
65extern void
66__generic_morestack_set_initial_sp (void *sp, size_t len)
67 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
68
69extern void *
70__generic_morestack (size_t *frame_size, void *old_stack, size_t param_size)
71 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
72
73extern void *
74__generic_releasestack (size_t *pavailable)
75 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
76
77extern void
78__morestack_block_signals (void)
79 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
80
81extern void
82__morestack_unblock_signals (void)
83 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
84
85extern size_t
86__generic_findstack (void *stack)
87 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
88
89extern void
90__morestack_load_mmap (void)
91 __attribute__ ((no_split_stack, visibility ("hidden")));
92
93extern void *
94__morestack_allocate_stack_space (size_t size)
95 __attribute__ ((visibility ("hidden")));
96
23371076 97/* These are functions which -fsplit-stack code can call. These are
98 not called by the compiler, and are not hidden. FIXME: These
99 should be in some header file somewhere, somehow. */
48b14f50 100
101extern void *
102__splitstack_find (void *, void *, size_t *, void **, void **, void **)
103 __attribute__ ((visibility ("default")));
104
23371076 105extern void
106__splitstack_block_signals (int *, int *)
107 __attribute__ ((visibility ("default")));
108
109extern void
110__splitstack_getcontext (void *context[10])
111 __attribute__ ((no_split_stack, visibility ("default")));
112
113extern void
114__splitstack_setcontext (void *context[10])
115 __attribute__ ((no_split_stack, visibility ("default")));
116
117extern void *
118__splitstack_makecontext (size_t, void *context[10], size_t *)
119 __attribute__ ((visibility ("default")));
120
bda4944f 121extern void *
122__splitstack_resetcontext (void *context[10], size_t *)
123 __attribute__ ((visibility ("default")));
124
125extern void
126__splitstack_releasecontext (void *context[10])
127 __attribute__ ((visibility ("default")));
128
23371076 129extern void
130__splitstack_block_signals_context (void *context[10], int *, int *)
131 __attribute__ ((visibility ("default")));
132
133extern void *
134__splitstack_find_context (void *context[10], size_t *, void **, void **,
135 void **)
136 __attribute__ ((visibility ("default")));
137
138/* These functions must be defined by the processor specific code. */
139
140extern void *__morestack_get_guard (void)
141 __attribute__ ((no_split_stack, visibility ("hidden")));
142
143extern void __morestack_set_guard (void *)
144 __attribute__ ((no_split_stack, visibility ("hidden")));
145
146extern void *__morestack_make_guard (void *, size_t)
147 __attribute__ ((no_split_stack, visibility ("hidden")));
148
48b14f50 149/* When we allocate a stack segment we put this header at the
150 start. */
151
152struct stack_segment
153{
154 /* The previous stack segment--when a function running on this stack
155 segment returns, it will run on the previous one. */
156 struct stack_segment *prev;
157 /* The next stack segment, if it has been allocated--when a function
158 is running on this stack segment, the next one is not being
159 used. */
160 struct stack_segment *next;
161 /* The total size of this stack segment. */
162 size_t size;
163 /* The stack address when this stack was created. This is used when
164 popping the stack. */
165 void *old_stack;
166 /* A list of memory blocks allocated by dynamic stack
167 allocation. */
168 struct dynamic_allocation_blocks *dynamic_allocation;
169 /* A list of dynamic memory blocks no longer needed. */
170 struct dynamic_allocation_blocks *free_dynamic_allocation;
171 /* An extra pointer in case we need some more information some
172 day. */
173 void *extra;
174};
175
176/* This structure holds the (approximate) initial stack pointer and
177 size for the system supplied stack for a thread. This is set when
178 the thread is created. We also store a sigset_t here to hold the
179 signal mask while splitting the stack, since we don't want to store
180 that on the stack. */
181
182struct initial_sp
183{
184 /* The initial stack pointer. */
185 void *sp;
186 /* The stack length. */
187 size_t len;
188 /* A signal mask, put here so that the thread can use it without
189 needing stack space. */
190 sigset_t mask;
23371076 191 /* Non-zero if we should not block signals. This is a reversed flag
192 so that the default zero value is the safe value. The type is
193 uintptr_type because it replaced one of the void * pointers in
194 extra. */
195 uintptr_type dont_block_signals;
48b14f50 196 /* Some extra space for later extensibility. */
23371076 197 void *extra[4];
48b14f50 198};
199
200/* A list of memory blocks allocated by dynamic stack allocation.
201 This is used for code that calls alloca or uses variably sized
202 arrays. */
203
204struct dynamic_allocation_blocks
205{
206 /* The next block in the list. */
207 struct dynamic_allocation_blocks *next;
208 /* The size of the allocated memory. */
209 size_t size;
210 /* The allocated memory. */
211 void *block;
212};
213
214/* These thread local global variables must be shared by all split
215 stack code across shared library boundaries. Therefore, they have
216 default visibility. They have extensibility fields if needed for
217 new versions. If more radical changes are needed, new code can be
218 written using new variable names, while still using the existing
219 variables in a backward compatible manner. Symbol versioning is
220 also used, although, since these variables are only referenced by
221 code in this file and generic-morestack-thread.c, it is likely that
222 simply using new names will suffice. */
223
224/* The first stack segment allocated for this thread. */
225
226__thread struct stack_segment *__morestack_segments
227 __attribute__ ((visibility ("default")));
228
229/* The stack segment that we think we are currently using. This will
230 be correct in normal usage, but will be incorrect if an exception
231 unwinds into a different stack segment or if longjmp jumps to a
232 different stack segment. */
233
234__thread struct stack_segment *__morestack_current_segment
235 __attribute__ ((visibility ("default")));
236
237/* The initial stack pointer and size for this thread. */
238
239__thread struct initial_sp __morestack_initial_sp
240 __attribute__ ((visibility ("default")));
241
242/* A static signal mask, to avoid taking up stack space. */
243
244static sigset_t __morestack_fullmask;
245
a9ee5a85 246/* Page size, as returned from getpagesize(). Set on startup. */
247static unsigned int static_pagesize;
248
249/* Set on startup to non-zero value if SPLIT_STACK_GUARD env var is set. */
250static int use_guard_page;
251
48b14f50 252/* Convert an integer to a decimal string without using much stack
253 space. Return a pointer to the part of the buffer to use. We this
254 instead of sprintf because sprintf will require too much stack
255 space. */
256
257static char *
258print_int (int val, char *buf, int buflen, size_t *print_len)
259{
260 int is_negative;
261 int i;
262 unsigned int uval;
263
264 uval = (unsigned int) val;
265 if (val >= 0)
266 is_negative = 0;
267 else
268 {
269 is_negative = 1;
270 uval = - uval;
271 }
272
273 i = buflen;
274 do
275 {
276 --i;
277 buf[i] = '0' + (uval % 10);
278 uval /= 10;
279 }
280 while (uval != 0 && i > 0);
281
282 if (is_negative)
283 {
284 if (i > 0)
285 --i;
286 buf[i] = '-';
287 }
288
289 *print_len = buflen - i;
290 return buf + i;
291}
292
293/* Print the string MSG/LEN, the errno number ERR, and a newline on
294 stderr. Then crash. */
295
296void
297__morestack_fail (const char *, size_t, int) __attribute__ ((noreturn));
298
299void
300__morestack_fail (const char *msg, size_t len, int err)
301{
302 char buf[24];
303 static const char nl[] = "\n";
304 struct iovec iov[3];
305 union { char *p; const char *cp; } const_cast;
306
307 const_cast.cp = msg;
308 iov[0].iov_base = const_cast.p;
309 iov[0].iov_len = len;
310 /* We can't call strerror, because it may try to translate the error
311 message, and that would use too much stack space. */
312 iov[1].iov_base = print_int (err, buf, sizeof buf, &iov[1].iov_len);
313 const_cast.cp = &nl[0];
314 iov[2].iov_base = const_cast.p;
315 iov[2].iov_len = sizeof nl - 1;
316 /* FIXME: On systems without writev we need to issue three write
317 calls, or punt on printing errno. For now this is irrelevant
318 since stack splitting only works on GNU/Linux anyhow. */
319 writev (2, iov, 3);
320 abort ();
321}
322
323/* Allocate a new stack segment. FRAME_SIZE is the required frame
324 size. */
325
326static struct stack_segment *
327allocate_segment (size_t frame_size)
328{
48b14f50 329 unsigned int pagesize;
330 unsigned int overhead;
331 unsigned int allocate;
332 void *space;
333 struct stack_segment *pss;
334
335 pagesize = static_pagesize;
48b14f50 336 overhead = sizeof (struct stack_segment);
337
338 allocate = pagesize;
339 if (allocate < MINSIGSTKSZ)
340 allocate = ((MINSIGSTKSZ + overhead + pagesize - 1)
341 & ~ (pagesize - 1));
342 if (allocate < frame_size)
343 allocate = ((frame_size + overhead + pagesize - 1)
344 & ~ (pagesize - 1));
345
346 if (use_guard_page)
347 allocate += pagesize;
348
349 /* FIXME: If this binary requires an executable stack, then we need
350 to set PROT_EXEC. Unfortunately figuring that out is complicated
351 and target dependent. We would need to use dl_iterate_phdr to
352 see if there is any object which does not have a PT_GNU_STACK
353 phdr, though only for architectures which use that mechanism. */
354 space = mmap (NULL, allocate, PROT_READ | PROT_WRITE,
355 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
356 if (space == MAP_FAILED)
357 {
358 static const char msg[] =
359 "unable to allocate additional stack space: errno ";
360 __morestack_fail (msg, sizeof msg - 1, errno);
361 }
362
363 if (use_guard_page)
364 {
365 void *guard;
366
325b8c3c 367#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 368 guard = space;
369 space = (char *) space + pagesize;
370#else
371 guard = space + allocate - pagesize;
372#endif
373
374 mprotect (guard, pagesize, PROT_NONE);
375 allocate -= pagesize;
376 }
377
378 pss = (struct stack_segment *) space;
379
23371076 380 pss->prev = NULL;
48b14f50 381 pss->next = NULL;
382 pss->size = allocate - overhead;
383 pss->dynamic_allocation = NULL;
384 pss->free_dynamic_allocation = NULL;
385 pss->extra = NULL;
386
48b14f50 387 return pss;
388}
389
390/* Free a list of dynamic blocks. */
391
392static void
393free_dynamic_blocks (struct dynamic_allocation_blocks *p)
394{
395 while (p != NULL)
396 {
397 struct dynamic_allocation_blocks *next;
398
399 next = p->next;
400 free (p->block);
401 free (p);
402 p = next;
403 }
404}
405
406/* Merge two lists of dynamic blocks. */
407
408static struct dynamic_allocation_blocks *
409merge_dynamic_blocks (struct dynamic_allocation_blocks *a,
410 struct dynamic_allocation_blocks *b)
411{
412 struct dynamic_allocation_blocks **pp;
413
414 if (a == NULL)
415 return b;
416 if (b == NULL)
417 return a;
418 for (pp = &a->next; *pp != NULL; pp = &(*pp)->next)
419 ;
420 *pp = b;
421 return a;
422}
423
424/* Release stack segments. If FREE_DYNAMIC is non-zero, we also free
425 any dynamic blocks. Otherwise we return them. */
426
427struct dynamic_allocation_blocks *
428__morestack_release_segments (struct stack_segment **pp, int free_dynamic)
429{
430 struct dynamic_allocation_blocks *ret;
431 struct stack_segment *pss;
432
433 ret = NULL;
434 pss = *pp;
435 while (pss != NULL)
436 {
437 struct stack_segment *next;
438 unsigned int allocate;
439
440 next = pss->next;
441
442 if (pss->dynamic_allocation != NULL
443 || pss->free_dynamic_allocation != NULL)
444 {
445 if (free_dynamic)
446 {
447 free_dynamic_blocks (pss->dynamic_allocation);
448 free_dynamic_blocks (pss->free_dynamic_allocation);
449 }
450 else
451 {
452 ret = merge_dynamic_blocks (pss->dynamic_allocation, ret);
453 ret = merge_dynamic_blocks (pss->free_dynamic_allocation, ret);
454 }
455 }
456
457 allocate = pss->size + sizeof (struct stack_segment);
458 if (munmap (pss, allocate) < 0)
459 {
460 static const char msg[] = "munmap of stack space failed: errno ";
461 __morestack_fail (msg, sizeof msg - 1, errno);
462 }
463
464 pss = next;
465 }
466 *pp = NULL;
467
468 return ret;
469}
470
471/* This function is called by a processor specific function to set the
472 initial stack pointer for a thread. The operating system will
473 always create a stack for a thread. Here we record a stack pointer
474 near the base of that stack. The size argument lets the processor
475 specific code estimate how much stack space is available on this
476 initial stack. */
477
478void
479__generic_morestack_set_initial_sp (void *sp, size_t len)
480{
481 /* The stack pointer most likely starts on a page boundary. Adjust
482 to the nearest 512 byte boundary. It's not essential that we be
483 precise here; getting it wrong will just leave some stack space
484 unused. */
325b8c3c 485#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 486 sp = (void *) ((((__UINTPTR_TYPE__) sp + 511U) / 512U) * 512U);
487#else
488 sp = (void *) ((((__UINTPTR_TYPE__) sp - 511U) / 512U) * 512U);
489#endif
490
491 __morestack_initial_sp.sp = sp;
492 __morestack_initial_sp.len = len;
493 sigemptyset (&__morestack_initial_sp.mask);
494
495 sigfillset (&__morestack_fullmask);
8d2259c8 496#if defined(__GLIBC__) && defined(__linux__)
3efc00f6 497 /* In glibc, the first two real time signals are used by the NPTL
48b14f50 498 threading library. By taking them out of the set of signals, we
499 avoiding copying the signal mask in pthread_sigmask. More
500 importantly, pthread_sigmask uses less stack space on x86_64. */
501 sigdelset (&__morestack_fullmask, __SIGRTMIN);
502 sigdelset (&__morestack_fullmask, __SIGRTMIN + 1);
503#endif
504}
505
506/* This function is called by a processor specific function which is
507 run in the prologue when more stack is needed. The processor
508 specific function handles the details of saving registers and
509 frobbing the actual stack pointer. This function is responsible
510 for allocating a new stack segment and for copying a parameter
511 block from the old stack to the new one. On function entry
512 *PFRAME_SIZE is the size of the required stack frame--the returned
513 stack must be at least this large. On function exit *PFRAME_SIZE
514 is the amount of space remaining on the allocated stack. OLD_STACK
515 points at the parameters the old stack (really the current one
516 while this function is running). OLD_STACK is saved so that it can
517 be returned by a later call to __generic_releasestack. PARAM_SIZE
518 is the size in bytes of parameters to copy to the new stack. This
519 function returns a pointer to the new stack segment, pointing to
520 the memory after the parameters have been copied. The returned
521 value minus the returned *PFRAME_SIZE (or plus if the stack grows
522 upward) is the first address on the stack which should not be used.
523
524 This function is running on the old stack and has only a limited
525 amount of stack space available. */
526
527void *
528__generic_morestack (size_t *pframe_size, void *old_stack, size_t param_size)
529{
530 size_t frame_size = *pframe_size;
531 struct stack_segment *current;
532 struct stack_segment **pp;
533 struct dynamic_allocation_blocks *dynamic;
534 char *from;
535 char *to;
536 void *ret;
537 size_t i;
20f6e7a3 538 size_t aligned;
48b14f50 539
540 current = __morestack_current_segment;
541
542 pp = current != NULL ? &current->next : &__morestack_segments;
543 if (*pp != NULL && (*pp)->size < frame_size)
544 dynamic = __morestack_release_segments (pp, 0);
545 else
546 dynamic = NULL;
547 current = *pp;
548
549 if (current == NULL)
23371076 550 {
551 current = allocate_segment (frame_size + param_size);
552 current->prev = __morestack_current_segment;
553 *pp = current;
554 }
48b14f50 555
556 current->old_stack = old_stack;
557
558 __morestack_current_segment = current;
559
560 if (dynamic != NULL)
561 {
562 /* Move the free blocks onto our list. We don't want to call
563 free here, as we are short on stack space. */
564 current->free_dynamic_allocation =
565 merge_dynamic_blocks (dynamic, current->free_dynamic_allocation);
566 }
567
568 *pframe_size = current->size - param_size;
569
20f6e7a3 570 /* Align the returned stack to a 32-byte boundary. */
571 aligned = (param_size + 31) & ~ (size_t) 31;
572
325b8c3c 573#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 574 {
575 char *bottom = (char *) (current + 1) + current->size;
20f6e7a3 576 to = bottom - aligned;
577 ret = bottom - aligned;
48b14f50 578 }
579#else
580 to = current + 1;
20f6e7a3 581 to += aligned - param_size;
582 ret = (char *) (current + 1) + aligned;
48b14f50 583#endif
584
585 /* We don't call memcpy to avoid worrying about the dynamic linker
586 trying to resolve it. */
587 from = (char *) old_stack;
588 for (i = 0; i < param_size; i++)
589 *to++ = *from++;
590
591 return ret;
592}
593
594/* This function is called by a processor specific function when it is
595 ready to release a stack segment. We don't actually release the
596 stack segment, we just move back to the previous one. The current
597 stack segment will still be available if we need it in
598 __generic_morestack. This returns a pointer to the new stack
599 segment to use, which is the one saved by a previous call to
600 __generic_morestack. The processor specific function is then
601 responsible for actually updating the stack pointer. This sets
602 *PAVAILABLE to the amount of stack space now available. */
603
604void *
605__generic_releasestack (size_t *pavailable)
606{
607 struct stack_segment *current;
608 void *old_stack;
609
610 current = __morestack_current_segment;
611 old_stack = current->old_stack;
612 current = current->prev;
613 __morestack_current_segment = current;
614
615 if (current != NULL)
616 {
325b8c3c 617#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 618 *pavailable = (char *) old_stack - (char *) (current + 1);
619#else
620 *pavailable = (char *) (current + 1) + current->size - (char *) old_stack;
621#endif
622 }
623 else
624 {
625 size_t used;
626
627 /* We have popped back to the original stack. */
325b8c3c 628#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 629 if ((char *) old_stack >= (char *) __morestack_initial_sp.sp)
630 used = 0;
631 else
632 used = (char *) __morestack_initial_sp.sp - (char *) old_stack;
633#else
634 if ((char *) old_stack <= (char *) __morestack_initial_sp.sp)
635 used = 0;
636 else
637 used = (char *) old_stack - (char *) __morestack_initial_sp.sp;
638#endif
639
640 if (used > __morestack_initial_sp.len)
641 *pavailable = 0;
642 else
643 *pavailable = __morestack_initial_sp.len - used;
644 }
645
646 return old_stack;
647}
648
649/* Block signals while splitting the stack. This avoids trouble if we
650 try to invoke a signal handler which itself wants to split the
651 stack. */
652
653extern int pthread_sigmask (int, const sigset_t *, sigset_t *)
654 __attribute__ ((weak));
655
656void
657__morestack_block_signals (void)
658{
23371076 659 if (__morestack_initial_sp.dont_block_signals)
660 ;
661 else if (pthread_sigmask)
48b14f50 662 pthread_sigmask (SIG_BLOCK, &__morestack_fullmask,
663 &__morestack_initial_sp.mask);
664 else
665 sigprocmask (SIG_BLOCK, &__morestack_fullmask,
666 &__morestack_initial_sp.mask);
667}
668
669/* Unblock signals while splitting the stack. */
670
671void
672__morestack_unblock_signals (void)
673{
23371076 674 if (__morestack_initial_sp.dont_block_signals)
675 ;
676 else if (pthread_sigmask)
48b14f50 677 pthread_sigmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
678 else
679 sigprocmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
680}
681
682/* This function is called to allocate dynamic stack space, for alloca
683 or a variably sized array. This is a regular function with
684 sufficient stack space, so we just use malloc to allocate the
685 space. We attach the allocated blocks to the current stack
686 segment, so that they will eventually be reused or freed. */
687
688void *
689__morestack_allocate_stack_space (size_t size)
690{
691 struct stack_segment *seg, *current;
692 struct dynamic_allocation_blocks *p;
693
694 /* We have to block signals to avoid getting confused if we get
695 interrupted by a signal whose handler itself uses alloca or a
696 variably sized array. */
697 __morestack_block_signals ();
698
699 /* Since we don't want to call free while we are low on stack space,
700 we may have a list of already allocated blocks waiting to be
701 freed. Release them all, unless we find one that is large
702 enough. We don't look at every block to see if one is large
703 enough, just the first one, because we aren't trying to build a
704 memory allocator here, we're just trying to speed up common
705 cases. */
706
707 current = __morestack_current_segment;
708 p = NULL;
709 for (seg = __morestack_segments; seg != NULL; seg = seg->next)
710 {
711 p = seg->free_dynamic_allocation;
712 if (p != NULL)
713 {
714 if (p->size >= size)
715 {
716 seg->free_dynamic_allocation = p->next;
717 break;
718 }
719
720 free_dynamic_blocks (p);
721 seg->free_dynamic_allocation = NULL;
722 p = NULL;
723 }
724 }
725
726 if (p == NULL)
727 {
728 /* We need to allocate additional memory. */
729 p = malloc (sizeof (*p));
730 if (p == NULL)
731 abort ();
732 p->size = size;
733 p->block = malloc (size);
734 if (p->block == NULL)
735 abort ();
736 }
737
738 /* If we are still on the initial stack, then we have a space leak.
739 FIXME. */
740 if (current != NULL)
741 {
742 p->next = current->dynamic_allocation;
743 current->dynamic_allocation = p;
744 }
745
746 __morestack_unblock_signals ();
747
748 return p->block;
749}
750
751/* Find the stack segment for STACK and return the amount of space
752 available. This is used when unwinding the stack because of an
753 exception, in order to reset the stack guard correctly. */
754
755size_t
756__generic_findstack (void *stack)
757{
758 struct stack_segment *pss;
759 size_t used;
760
761 for (pss = __morestack_current_segment; pss != NULL; pss = pss->prev)
762 {
763 if ((char *) pss < (char *) stack
764 && (char *) pss + pss->size > (char *) stack)
765 {
766 __morestack_current_segment = pss;
325b8c3c 767#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 768 return (char *) stack - (char *) (pss + 1);
769#else
770 return (char *) (pss + 1) + pss->size - (char *) stack;
771#endif
772 }
773 }
774
775 /* We have popped back to the original stack. */
23371076 776
777 if (__morestack_initial_sp.sp == NULL)
778 return 0;
779
325b8c3c 780#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 781 if ((char *) stack >= (char *) __morestack_initial_sp.sp)
782 used = 0;
783 else
784 used = (char *) __morestack_initial_sp.sp - (char *) stack;
785#else
786 if ((char *) stack <= (char *) __morestack_initial_sp.sp)
787 used = 0;
788 else
789 used = (char *) stack - (char *) __morestack_initial_sp.sp;
790#endif
791
792 if (used > __morestack_initial_sp.len)
793 return 0;
794 else
795 return __morestack_initial_sp.len - used;
796}
797
798/* This function is called at program startup time to make sure that
799 mmap, munmap, and getpagesize are resolved if linking dynamically.
800 We want to resolve them while we have enough stack for them, rather
a9ee5a85 801 than calling into the dynamic linker while low on stack space.
802 Similarly, invoke getenv here to check for split-stack related control
803 variables, since doing do as part of the __morestack path can result
804 in unwanted use of SSE/AVX registers (see GCC PR 86213). */
48b14f50 805
806void
807__morestack_load_mmap (void)
808{
809 /* Call with bogus values to run faster. We don't care if the call
810 fails. Pass __MORESTACK_CURRENT_SEGMENT to make sure that any
811 TLS accessor function is resolved. */
812 mmap (__morestack_current_segment, 0, PROT_READ, MAP_ANONYMOUS, -1, 0);
813 mprotect (NULL, 0, 0);
a9ee5a85 814 munmap (0, static_pagesize);
815
816 /* Initialize these values here, so as to avoid dynamic linker
817 activity as part of a __morestack call. */
818 static_pagesize = getpagesize();
819 use_guard_page = getenv ("SPLIT_STACK_GUARD") != 0;
48b14f50 820}
821
822/* This function may be used to iterate over the stack segments.
823 This can be called like this.
824 void *next_segment = NULL;
825 void *next_sp = NULL;
826 void *initial_sp = NULL;
827 void *stack;
828 size_t stack_size;
829 while ((stack = __splitstack_find (next_segment, next_sp, &stack_size,
830 &next_segment, &next_sp,
831 &initial_sp)) != NULL)
832 {
833 // Stack segment starts at stack and is stack_size bytes long.
834 }
835
836 There is no way to iterate over the stack segments of a different
837 thread. However, what is permitted is for one thread to call this
838 with the first two values NULL, to pass next_segment, next_sp, and
839 initial_sp to a different thread, and then to suspend one way or
840 another. A different thread may run the subsequent
841 __morestack_find iterations. Of course, this will only work if the
842 first thread is suspended during the __morestack_find iterations.
843 If not, the second thread will be looking at the stack while it is
844 changing, and anything could happen.
845
846 FIXME: This should be declared in some header file, but where? */
847
848void *
849__splitstack_find (void *segment_arg, void *sp, size_t *len,
850 void **next_segment, void **next_sp,
851 void **initial_sp)
852{
853 struct stack_segment *segment;
854 void *ret;
855 char *nsp;
856
23371076 857 if (segment_arg == (void *) (uintptr_type) 1)
48b14f50 858 {
859 char *isp = (char *) *initial_sp;
860
23371076 861 if (isp == NULL)
862 return NULL;
863
864 *next_segment = (void *) (uintptr_type) 2;
48b14f50 865 *next_sp = NULL;
325b8c3c 866#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 867 if ((char *) sp >= isp)
868 return NULL;
869 *len = (char *) isp - (char *) sp;
870 return sp;
871#else
872 if ((char *) sp <= (char *) isp)
873 return NULL;
874 *len = (char *) sp - (char *) isp;
875 return (void *) isp;
876#endif
877 }
23371076 878 else if (segment_arg == (void *) (uintptr_type) 2)
48b14f50 879 return NULL;
880 else if (segment_arg != NULL)
881 segment = (struct stack_segment *) segment_arg;
882 else
883 {
884 *initial_sp = __morestack_initial_sp.sp;
885 segment = __morestack_current_segment;
886 sp = (void *) &segment;
887 while (1)
888 {
889 if (segment == NULL)
23371076 890 return __splitstack_find ((void *) (uintptr_type) 1, sp, len,
891 next_segment, next_sp, initial_sp);
48b14f50 892 if ((char *) sp >= (char *) (segment + 1)
893 && (char *) sp <= (char *) (segment + 1) + segment->size)
894 break;
895 segment = segment->prev;
896 }
897 }
898
899 if (segment->prev == NULL)
23371076 900 *next_segment = (void *) (uintptr_type) 1;
48b14f50 901 else
902 *next_segment = segment->prev;
903
904 /* The old_stack value is the address of the function parameters of
905 the function which called __morestack. So if f1 called f2 which
906 called __morestack, the stack looks like this:
907
908 parameters <- old_stack
909 return in f1
910 return in f2
82c96609 911 registers pushed by __morestack
48b14f50 912
82c96609 913 The registers pushed by __morestack may not be visible on any
914 other stack, if we are being called by a signal handler
915 immediately after the call to __morestack_unblock_signals. We
916 want to adjust our return value to include those registers. This
917 is target dependent. */
48b14f50 918
919 nsp = (char *) segment->old_stack;
82c96609 920
bda4944f 921 if (nsp == NULL)
922 {
923 /* We've reached the top of the stack. */
924 *next_segment = (void *) (uintptr_type) 2;
925 }
926 else
927 {
82c96609 928#if defined (__x86_64__)
bda4944f 929 nsp -= 12 * sizeof (void *);
82c96609 930#elif defined (__i386__)
bda4944f 931 nsp -= 6 * sizeof (void *);
ec3f28c9 932#elif defined __powerpc64__
c6d481f7 933#elif defined __s390x__
934 nsp -= 2 * 160;
935#elif defined __s390__
936 nsp -= 2 * 96;
48b14f50 937#else
82c96609 938#error "unrecognized target"
48b14f50 939#endif
82c96609 940
bda4944f 941 *next_sp = (void *) nsp;
942 }
48b14f50 943
325b8c3c 944#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
48b14f50 945 *len = (char *) (segment + 1) + segment->size - (char *) sp;
946 ret = (void *) sp;
947#else
948 *len = (char *) sp - (char *) (segment + 1);
949 ret = (void *) (segment + 1);
950#endif
951
952 return ret;
953}
954
23371076 955/* Tell the split stack code whether it has to block signals while
956 manipulating the stack. This is for programs in which some threads
957 block all signals. If a thread already blocks signals, there is no
958 need for the split stack code to block them as well. If NEW is not
959 NULL, then if *NEW is non-zero signals will be blocked while
960 splitting the stack, otherwise they will not. If OLD is not NULL,
961 *OLD will be set to the old value. */
962
963void
964__splitstack_block_signals (int *new, int *old)
965{
966 if (old != NULL)
967 *old = __morestack_initial_sp.dont_block_signals ? 0 : 1;
968 if (new != NULL)
969 __morestack_initial_sp.dont_block_signals = *new ? 0 : 1;
970}
971
972/* The offsets into the arrays used by __splitstack_getcontext and
973 __splitstack_setcontext. */
974
975enum __splitstack_context_offsets
976{
977 MORESTACK_SEGMENTS = 0,
978 CURRENT_SEGMENT = 1,
979 CURRENT_STACK = 2,
980 STACK_GUARD = 3,
981 INITIAL_SP = 4,
982 INITIAL_SP_LEN = 5,
983 BLOCK_SIGNALS = 6,
984
985 NUMBER_OFFSETS = 10
986};
987
988/* Get the current split stack context. This may be used for
989 coroutine switching, similar to getcontext. The argument should
990 have at least 10 void *pointers for extensibility, although we
991 don't currently use all of them. This would normally be called
992 immediately before a call to getcontext or swapcontext or
993 setjmp. */
994
995void
996__splitstack_getcontext (void *context[NUMBER_OFFSETS])
997{
998 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
999 context[MORESTACK_SEGMENTS] = (void *) __morestack_segments;
1000 context[CURRENT_SEGMENT] = (void *) __morestack_current_segment;
1001 context[CURRENT_STACK] = (void *) &context;
1002 context[STACK_GUARD] = __morestack_get_guard ();
1003 context[INITIAL_SP] = (void *) __morestack_initial_sp.sp;
1004 context[INITIAL_SP_LEN] = (void *) (uintptr_type) __morestack_initial_sp.len;
1005 context[BLOCK_SIGNALS] = (void *) __morestack_initial_sp.dont_block_signals;
1006}
1007
1008/* Set the current split stack context. The argument should be a
1009 context previously passed to __splitstack_getcontext. This would
1010 normally be called immediately after a call to getcontext or
1011 swapcontext or setjmp if something jumped to it. */
1012
1013void
1014__splitstack_setcontext (void *context[NUMBER_OFFSETS])
1015{
1016 __morestack_segments = (struct stack_segment *) context[MORESTACK_SEGMENTS];
1017 __morestack_current_segment =
1018 (struct stack_segment *) context[CURRENT_SEGMENT];
1019 __morestack_set_guard (context[STACK_GUARD]);
1020 __morestack_initial_sp.sp = context[INITIAL_SP];
1021 __morestack_initial_sp.len = (size_t) context[INITIAL_SP_LEN];
1022 __morestack_initial_sp.dont_block_signals =
1023 (uintptr_type) context[BLOCK_SIGNALS];
1024}
1025
1026/* Create a new split stack context. This will allocate a new stack
1027 segment which may be used by a coroutine. STACK_SIZE is the
1028 minimum size of the new stack. The caller is responsible for
1029 actually setting the stack pointer. This would normally be called
1030 before a call to makecontext, and the returned stack pointer and
1031 size would be used to set the uc_stack field. A function called
1032 via makecontext on a stack created by __splitstack_makecontext may
1033 not return. Note that the returned pointer points to the lowest
1034 address in the stack space, and thus may not be the value to which
1035 to set the stack pointer. */
1036
1037void *
1038__splitstack_makecontext (size_t stack_size, void *context[NUMBER_OFFSETS],
1039 size_t *size)
1040{
1041 struct stack_segment *segment;
1042 void *initial_sp;
1043
1044 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
1045 segment = allocate_segment (stack_size);
1046 context[MORESTACK_SEGMENTS] = segment;
1047 context[CURRENT_SEGMENT] = segment;
325b8c3c 1048#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
23371076 1049 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1050#else
1051 initial_sp = (void *) (segment + 1);
1052#endif
1053 context[STACK_GUARD] = __morestack_make_guard (initial_sp, segment->size);
1054 context[INITIAL_SP] = NULL;
1055 context[INITIAL_SP_LEN] = 0;
1056 *size = segment->size;
1057 return (void *) (segment + 1);
1058}
1059
bda4944f 1060/* Given an existing split stack context, reset it back to the start
1061 of the stack. Return the stack pointer and size, appropriate for
1062 use with makecontext. This may be used if a coroutine exits, in
1063 order to reuse the stack segments for a new coroutine. */
1064
1065void *
1066__splitstack_resetcontext (void *context[10], size_t *size)
1067{
1068 struct stack_segment *segment;
1069 void *initial_sp;
1070 size_t initial_size;
1071 void *ret;
1072
1073 /* Reset the context assuming that MORESTACK_SEGMENTS, INITIAL_SP
1074 and INITIAL_SP_LEN are correct. */
1075
1076 segment = context[MORESTACK_SEGMENTS];
1077 context[CURRENT_SEGMENT] = segment;
1078 context[CURRENT_STACK] = NULL;
1079 if (segment == NULL)
1080 {
1081 initial_sp = context[INITIAL_SP];
1082 initial_size = (uintptr_type) context[INITIAL_SP_LEN];
1083 ret = initial_sp;
325b8c3c 1084#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
bda4944f 1085 ret = (void *) ((char *) ret - initial_size);
1086#endif
1087 }
1088 else
1089 {
325b8c3c 1090#ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
bda4944f 1091 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1092#else
1093 initial_sp = (void *) (segment + 1);
1094#endif
1095 initial_size = segment->size;
1096 ret = (void *) (segment + 1);
1097 }
1098 context[STACK_GUARD] = __morestack_make_guard (initial_sp, initial_size);
1099 context[BLOCK_SIGNALS] = NULL;
1100 *size = initial_size;
1101 return ret;
1102}
1103
1104/* Release all the memory associated with a splitstack context. This
1105 may be used if a coroutine exits and the associated stack should be
1106 freed. */
1107
1108void
1109__splitstack_releasecontext (void *context[10])
1110{
154b49cd 1111 __morestack_release_segments (((struct stack_segment **)
1112 &context[MORESTACK_SEGMENTS]),
1113 1);
bda4944f 1114}
1115
23371076 1116/* Like __splitstack_block_signals, but operating on CONTEXT, rather
1117 than on the current state. */
1118
1119void
1120__splitstack_block_signals_context (void *context[NUMBER_OFFSETS], int *new,
1121 int *old)
1122{
1123 if (old != NULL)
1124 *old = ((uintptr_type) context[BLOCK_SIGNALS]) != 0 ? 0 : 1;
1125 if (new != NULL)
1126 context[BLOCK_SIGNALS] = (void *) (uintptr_type) (*new ? 0 : 1);
1127}
1128
1129/* Find the stack segments associated with a split stack context.
1130 This will return the address of the first stack segment and set
1131 *STACK_SIZE to its size. It will set next_segment, next_sp, and
1132 initial_sp which may be passed to __splitstack_find to find the
1133 remaining segments. */
1134
1135void *
1136__splitstack_find_context (void *context[NUMBER_OFFSETS], size_t *stack_size,
1137 void **next_segment, void **next_sp,
1138 void **initial_sp)
1139{
1140 void *sp;
1141 struct stack_segment *segment;
1142
1143 *initial_sp = context[INITIAL_SP];
1144
1145 sp = context[CURRENT_STACK];
1146 if (sp == NULL)
1147 {
1148 /* Most likely this context was created but was never used. The
1149 value 2 is a code used by __splitstack_find to mean that we
1150 have reached the end of the list of stacks. */
1151 *next_segment = (void *) (uintptr_type) 2;
1152 *next_sp = NULL;
1153 *initial_sp = NULL;
1154 return NULL;
1155 }
1156
1157 segment = context[CURRENT_SEGMENT];
1158 if (segment == NULL)
1159 {
1160 /* Most likely this context was saved by a thread which was not
1161 created using __splistack_makecontext and which has never
1162 split the stack. The value 1 is a code used by
1163 __splitstack_find to look at the initial stack. */
1164 segment = (struct stack_segment *) (uintptr_type) 1;
1165 }
1166
1167 return __splitstack_find (segment, sp, stack_size, next_segment, next_sp,
1168 initial_sp);
1169}
1170
48b14f50 1171#endif /* !defined (inhibit_libc) */
ec3f28c9 1172#endif /* not powerpc 32-bit */