]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
Update to include R_XSTORMY16_FPTR16, R_XSTORMY16_LO16, R_XSTORMY16_HI16 and
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
74828682 2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
a2f945c6
VM
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
6de9b8ff
PDM
38#include <sys/types.h>
39
a2f945c6
VM
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47
36dd3a44
JL
48#include <stdio.h>
49
a2f945c6
VM
50#include "libiberty.h"
51#include "hashtab.h"
52
a2f945c6
VM
53/* This macro defines reserved value for empty table entry. */
54
35e9340f 55#define EMPTY_ENTRY ((PTR) 0)
a2f945c6
VM
56
57/* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
35e9340f 60#define DELETED_ENTRY ((PTR) 1)
a2f945c6 61
0194e877 62static unsigned long higher_prime_number PARAMS ((unsigned long));
18a94a2f
MM
63static hashval_t hash_pointer PARAMS ((const void *));
64static int eq_pointer PARAMS ((const void *, const void *));
d50d20ec 65static int htab_expand PARAMS ((htab_t));
35e9340f 66static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
18a94a2f
MM
67
68/* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71htab_hash htab_hash_pointer = hash_pointer;
72htab_eq htab_eq_pointer = eq_pointer;
0194e877 73
a4c9b97e
MM
74/* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
a2f945c6
VM
76
77static unsigned long
5194cf08
ZW
78higher_prime_number (n)
79 unsigned long n;
a2f945c6 80{
a4c9b97e
MM
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
0be6abca 83 static const unsigned long primes[] = {
f8a0ba8c
MM
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
6e8afa99 114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
a4c9b97e
MM
115 };
116
0be6abca
KG
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
a4c9b97e
MM
119
120 while (low != high)
121 {
0be6abca 122 const unsigned long *mid = low + (high - low) / 2;
a4c9b97e
MM
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
a2f945c6
VM
137}
138
18a94a2f
MM
139/* Returns a hash code for P. */
140
4feeaae3 141static hashval_t
18a94a2f 142hash_pointer (p)
35e9340f 143 const PTR p;
18a94a2f 144{
1d2da2e1 145 return (hashval_t) ((long)p >> 3);
18a94a2f
MM
146}
147
148/* Returns non-zero if P1 and P2 are equal. */
149
4feeaae3 150static int
18a94a2f 151eq_pointer (p1, p2)
35e9340f
HPN
152 const PTR p1;
153 const PTR p2;
18a94a2f
MM
154{
155 return p1 == p2;
156}
157
a2f945c6
VM
158/* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
e2500fed 161 created hash table, or NULL if memory allocation fails. */
a2f945c6 162
5194cf08 163htab_t
e2500fed 164htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
a2f945c6 165 size_t size;
5194cf08
ZW
166 htab_hash hash_f;
167 htab_eq eq_f;
5dc9cffd 168 htab_del del_f;
e2500fed
GK
169 htab_alloc alloc_f;
170 htab_free free_f;
a2f945c6 171{
5194cf08 172 htab_t result;
a2f945c6
VM
173
174 size = higher_prime_number (size);
e2500fed 175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
176 if (result == NULL)
177 return NULL;
e2500fed 178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
179 if (result->entries == NULL)
180 {
e2500fed
GK
181 if (free_f != NULL)
182 (*free_f) (result);
d50d20ec
HPN
183 return NULL;
184 }
d50d20ec
HPN
185 result->size = size;
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
e2500fed
GK
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
a2f945c6
VM
191 return result;
192}
193
74828682
DJ
194/* As above, but use the variants of alloc_f and free_f which accept
195 an extra argument. */
196
197htab_t
198htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
199 free_f)
200 size_t size;
201 htab_hash hash_f;
202 htab_eq eq_f;
203 htab_del del_f;
204 PTR alloc_arg;
205 htab_alloc_with_arg alloc_f;
206 htab_free_with_arg free_f;
207{
208 htab_t result;
209
210 size = higher_prime_number (size);
211 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
212 if (result == NULL)
213 return NULL;
214 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
215 if (result->entries == NULL)
216 {
217 if (free_f != NULL)
218 (*free_f) (alloc_arg, result);
219 return NULL;
220 }
221 result->size = size;
222 result->hash_f = hash_f;
223 result->eq_f = eq_f;
224 result->del_f = del_f;
225 result->alloc_arg = alloc_arg;
226 result->alloc_with_arg_f = alloc_f;
227 result->free_with_arg_f = free_f;
228 return result;
229}
230
231/* Update the function pointers and allocation parameter in the htab_t. */
232
233void
234htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
235 htab_t htab;
236 htab_hash hash_f;
237 htab_eq eq_f;
238 htab_del del_f;
239 PTR alloc_arg;
240 htab_alloc_with_arg alloc_f;
241 htab_free_with_arg free_f;
242{
243 htab->hash_f = hash_f;
244 htab->eq_f = eq_f;
245 htab->del_f = del_f;
246 htab->alloc_arg = alloc_arg;
247 htab->alloc_with_arg_f = alloc_f;
248 htab->free_with_arg_f = free_f;
249}
250
045b3a49
GK
251/* These functions exist solely for backward compatibility. */
252
253#undef htab_create
254htab_t
255htab_create (size, hash_f, eq_f, del_f)
256 size_t size;
257 htab_hash hash_f;
258 htab_eq eq_f;
259 htab_del del_f;
260{
261 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
262}
263
264htab_t
265htab_try_create (size, hash_f, eq_f, del_f)
266 size_t size;
267 htab_hash hash_f;
268 htab_eq eq_f;
269 htab_del del_f;
270{
271 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
272}
273
a2f945c6
VM
274/* This function frees all memory allocated for given hash table.
275 Naturally the hash table must already exist. */
276
277void
5194cf08
ZW
278htab_delete (htab)
279 htab_t htab;
a2f945c6 280{
5dc9cffd 281 int i;
e38992e8 282
5dc9cffd
ZW
283 if (htab->del_f)
284 for (i = htab->size - 1; i >= 0; i--)
e38992e8
RK
285 if (htab->entries[i] != EMPTY_ENTRY
286 && htab->entries[i] != DELETED_ENTRY)
287 (*htab->del_f) (htab->entries[i]);
5dc9cffd 288
e2500fed
GK
289 if (htab->free_f != NULL)
290 {
291 (*htab->free_f) (htab->entries);
292 (*htab->free_f) (htab);
293 }
74828682
DJ
294 else if (htab->free_with_arg_f != NULL)
295 {
296 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
297 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
298 }
a2f945c6
VM
299}
300
301/* This function clears all entries in the given hash table. */
302
303void
5194cf08
ZW
304htab_empty (htab)
305 htab_t htab;
a2f945c6 306{
5dc9cffd 307 int i;
e38992e8 308
5dc9cffd
ZW
309 if (htab->del_f)
310 for (i = htab->size - 1; i >= 0; i--)
e38992e8
RK
311 if (htab->entries[i] != EMPTY_ENTRY
312 && htab->entries[i] != DELETED_ENTRY)
313 (*htab->del_f) (htab->entries[i]);
5dc9cffd 314
35e9340f 315 memset (htab->entries, 0, htab->size * sizeof (PTR));
a2f945c6
VM
316}
317
8c5d513f
BS
318/* Similar to htab_find_slot, but without several unwanted side effects:
319 - Does not call htab->eq_f when it finds an existing entry.
320 - Does not change the count of elements/searches/collisions in the
321 hash table.
322 This function also assumes there are no deleted entries in the table.
323 HASH is the hash value for the element to be inserted. */
e38992e8 324
35e9340f 325static PTR *
8c5d513f
BS
326find_empty_slot_for_expand (htab, hash)
327 htab_t htab;
b13eb66b 328 hashval_t hash;
8c5d513f
BS
329{
330 size_t size = htab->size;
8c5d513f 331 unsigned int index = hash % size;
4fc4e478
RH
332 PTR *slot = htab->entries + index;
333 hashval_t hash2;
334
335 if (*slot == EMPTY_ENTRY)
336 return slot;
337 else if (*slot == DELETED_ENTRY)
338 abort ();
8c5d513f 339
4fc4e478 340 hash2 = 1 + hash % (size - 2);
8c5d513f
BS
341 for (;;)
342 {
4fc4e478
RH
343 index += hash2;
344 if (index >= size)
345 index -= size;
e38992e8 346
4fc4e478 347 slot = htab->entries + index;
8c5d513f
BS
348 if (*slot == EMPTY_ENTRY)
349 return slot;
e38992e8 350 else if (*slot == DELETED_ENTRY)
8c5d513f 351 abort ();
8c5d513f
BS
352 }
353}
354
a2f945c6
VM
355/* The following function changes size of memory allocated for the
356 entries and repeatedly inserts the table elements. The occupancy
357 of the table after the call will be about 50%. Naturally the hash
358 table must already exist. Remember also that the place of the
d50d20ec
HPN
359 table entries is changed. If memory allocation failures are allowed,
360 this function will return zero, indicating that the table could not be
361 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 362
d50d20ec 363static int
5194cf08
ZW
364htab_expand (htab)
365 htab_t htab;
a2f945c6 366{
35e9340f
HPN
367 PTR *oentries;
368 PTR *olimit;
369 PTR *p;
e2500fed 370 PTR *nentries;
120cdf68 371 size_t nsize;
5194cf08
ZW
372
373 oentries = htab->entries;
374 olimit = oentries + htab->size;
375
0a8e3de3
JH
376 /* Resize only when table after removal of unused elements is either
377 too full or too empty. */
378 if ((htab->n_elements - htab->n_deleted) * 2 > htab->size
cd22e4af
JH
379 || ((htab->n_elements - htab->n_deleted) * 8 < htab->size
380 && htab->size > 32))
0a8e3de3
JH
381 nsize = higher_prime_number ((htab->n_elements - htab->n_deleted) * 2);
382 else
383 nsize = htab->size;
d50d20ec 384
74828682
DJ
385 if (htab->alloc_with_arg_f != NULL)
386 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
387 sizeof (PTR *));
388 else
389 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
390 if (nentries == NULL)
391 return 0;
392 htab->entries = nentries;
120cdf68 393 htab->size = nsize;
5194cf08
ZW
394
395 htab->n_elements -= htab->n_deleted;
396 htab->n_deleted = 0;
397
398 p = oentries;
399 do
400 {
35e9340f 401 PTR x = *p;
e38992e8 402
5194cf08
ZW
403 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
404 {
35e9340f 405 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 406
5194cf08
ZW
407 *q = x;
408 }
e38992e8 409
5194cf08
ZW
410 p++;
411 }
412 while (p < olimit);
e38992e8 413
e2500fed
GK
414 if (htab->free_f != NULL)
415 (*htab->free_f) (oentries);
74828682
DJ
416 else if (htab->free_with_arg_f != NULL)
417 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 418 return 1;
a2f945c6
VM
419}
420
5194cf08
ZW
421/* This function searches for a hash table entry equal to the given
422 element. It cannot be used to insert or delete an element. */
423
35e9340f 424PTR
8c5d513f 425htab_find_with_hash (htab, element, hash)
5194cf08 426 htab_t htab;
35e9340f 427 const PTR element;
b13eb66b 428 hashval_t hash;
a2f945c6 429{
b13eb66b
MM
430 unsigned int index;
431 hashval_t hash2;
5194cf08 432 size_t size;
35e9340f 433 PTR entry;
5194cf08
ZW
434
435 htab->searches++;
436 size = htab->size;
5194cf08 437 index = hash % size;
a2f945c6 438
0194e877
ZW
439 entry = htab->entries[index];
440 if (entry == EMPTY_ENTRY
441 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
442 return entry;
443
444 hash2 = 1 + hash % (size - 2);
445
5194cf08 446 for (;;)
a2f945c6 447 {
5194cf08
ZW
448 htab->collisions++;
449 index += hash2;
450 if (index >= size)
451 index -= size;
0194e877
ZW
452
453 entry = htab->entries[index];
454 if (entry == EMPTY_ENTRY
455 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
456 return entry;
a2f945c6 457 }
5194cf08
ZW
458}
459
8c5d513f
BS
460/* Like htab_find_slot_with_hash, but compute the hash value from the
461 element. */
e38992e8 462
35e9340f 463PTR
8c5d513f
BS
464htab_find (htab, element)
465 htab_t htab;
35e9340f 466 const PTR element;
8c5d513f
BS
467{
468 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
469}
470
5194cf08
ZW
471/* This function searches for a hash table slot containing an entry
472 equal to the given element. To delete an entry, call this with
473 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
474 after doing some checks). To insert an entry, call this with
d50d20ec
HPN
475 INSERT = 1, then write the value you want into the returned slot.
476 When inserting an entry, NULL may be returned if memory allocation
477 fails. */
5194cf08 478
35e9340f 479PTR *
8c5d513f 480htab_find_slot_with_hash (htab, element, hash, insert)
5194cf08 481 htab_t htab;
35e9340f 482 const PTR element;
b13eb66b 483 hashval_t hash;
e38992e8 484 enum insert_option insert;
5194cf08 485{
35e9340f 486 PTR *first_deleted_slot;
b13eb66b
MM
487 unsigned int index;
488 hashval_t hash2;
5194cf08 489 size_t size;
4fc4e478 490 PTR entry;
5194cf08 491
d50d20ec
HPN
492 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
493 && htab_expand (htab) == 0)
494 return NULL;
5194cf08
ZW
495
496 size = htab->size;
5194cf08
ZW
497 index = hash % size;
498
a2f945c6 499 htab->searches++;
5194cf08
ZW
500 first_deleted_slot = NULL;
501
4fc4e478
RH
502 entry = htab->entries[index];
503 if (entry == EMPTY_ENTRY)
504 goto empty_entry;
505 else if (entry == DELETED_ENTRY)
506 first_deleted_slot = &htab->entries[index];
507 else if ((*htab->eq_f) (entry, element))
508 return &htab->entries[index];
509
510 hash2 = 1 + hash % (size - 2);
5194cf08 511 for (;;)
a2f945c6 512 {
4fc4e478
RH
513 htab->collisions++;
514 index += hash2;
515 if (index >= size)
516 index -= size;
517
518 entry = htab->entries[index];
5194cf08 519 if (entry == EMPTY_ENTRY)
4fc4e478
RH
520 goto empty_entry;
521 else if (entry == DELETED_ENTRY)
5194cf08
ZW
522 {
523 if (!first_deleted_slot)
524 first_deleted_slot = &htab->entries[index];
525 }
4fc4e478 526 else if ((*htab->eq_f) (entry, element))
e38992e8 527 return &htab->entries[index];
a2f945c6 528 }
4fc4e478
RH
529
530 empty_entry:
531 if (insert == NO_INSERT)
532 return NULL;
533
534 htab->n_elements++;
535
536 if (first_deleted_slot)
537 {
538 *first_deleted_slot = EMPTY_ENTRY;
539 return first_deleted_slot;
540 }
541
542 return &htab->entries[index];
a2f945c6
VM
543}
544
8c5d513f
BS
545/* Like htab_find_slot_with_hash, but compute the hash value from the
546 element. */
e38992e8 547
35e9340f 548PTR *
8c5d513f
BS
549htab_find_slot (htab, element, insert)
550 htab_t htab;
35e9340f 551 const PTR element;
e38992e8 552 enum insert_option insert;
8c5d513f
BS
553{
554 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
555 insert);
556}
557
5194cf08
ZW
558/* This function deletes an element with the given value from hash
559 table. If there is no matching element in the hash table, this
560 function does nothing. */
a2f945c6
VM
561
562void
5194cf08
ZW
563htab_remove_elt (htab, element)
564 htab_t htab;
35e9340f 565 PTR element;
a2f945c6 566{
35e9340f 567 PTR *slot;
a2f945c6 568
e38992e8 569 slot = htab_find_slot (htab, element, NO_INSERT);
5194cf08
ZW
570 if (*slot == EMPTY_ENTRY)
571 return;
572
5dc9cffd
ZW
573 if (htab->del_f)
574 (*htab->del_f) (*slot);
575
5194cf08
ZW
576 *slot = DELETED_ENTRY;
577 htab->n_deleted++;
a2f945c6
VM
578}
579
5194cf08
ZW
580/* This function clears a specified slot in a hash table. It is
581 useful when you've already done the lookup and don't want to do it
582 again. */
ed38f5d5
ZW
583
584void
5194cf08
ZW
585htab_clear_slot (htab, slot)
586 htab_t htab;
35e9340f 587 PTR *slot;
ed38f5d5
ZW
588{
589 if (slot < htab->entries || slot >= htab->entries + htab->size
590 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
591 abort ();
e38992e8 592
5dc9cffd
ZW
593 if (htab->del_f)
594 (*htab->del_f) (*slot);
e38992e8 595
ed38f5d5 596 *slot = DELETED_ENTRY;
5194cf08 597 htab->n_deleted++;
ed38f5d5
ZW
598}
599
600/* This function scans over the entire hash table calling
601 CALLBACK for each live entry. If CALLBACK returns false,
602 the iteration stops. INFO is passed as CALLBACK's second
603 argument. */
604
605void
dbccdc42 606htab_traverse_noresize (htab, callback, info)
5194cf08
ZW
607 htab_t htab;
608 htab_trav callback;
35e9340f 609 PTR info;
ed38f5d5 610{
0a8e3de3
JH
611 PTR *slot;
612 PTR *limit;
613
0a8e3de3
JH
614 slot = htab->entries;
615 limit = slot + htab->size;
e38992e8 616
5194cf08
ZW
617 do
618 {
35e9340f 619 PTR x = *slot;
e38992e8 620
5194cf08 621 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
8c5d513f 622 if (!(*callback) (slot, info))
5194cf08
ZW
623 break;
624 }
625 while (++slot < limit);
ed38f5d5
ZW
626}
627
dbccdc42
JH
628/* Like htab_traverse_noresize, but does resize the table when it is
629 too empty to improve effectivity of subsequent calls. */
630
631void
632htab_traverse (htab, callback, info)
633 htab_t htab;
634 htab_trav callback;
635 PTR info;
636{
dbccdc42
JH
637 if ((htab->n_elements - htab->n_deleted) * 8 < htab->size)
638 htab_expand (htab);
639
640 htab_traverse_noresize (htab, callback, info);
641}
642
e38992e8 643/* Return the current size of given hash table. */
a2f945c6
VM
644
645size_t
5194cf08
ZW
646htab_size (htab)
647 htab_t htab;
a2f945c6
VM
648{
649 return htab->size;
650}
651
e38992e8 652/* Return the current number of elements in given hash table. */
a2f945c6
VM
653
654size_t
5194cf08
ZW
655htab_elements (htab)
656 htab_t htab;
a2f945c6 657{
5194cf08 658 return htab->n_elements - htab->n_deleted;
a2f945c6
VM
659}
660
e38992e8
RK
661/* Return the fraction of fixed collisions during all work with given
662 hash table. */
a2f945c6 663
5194cf08
ZW
664double
665htab_collisions (htab)
666 htab_t htab;
a2f945c6 667{
e38992e8 668 if (htab->searches == 0)
5194cf08 669 return 0.0;
e38992e8
RK
670
671 return (double) htab->collisions / (double) htab->searches;
a2f945c6 672}
9e0ba685 673
0ed5305d
RH
674/* Hash P as a null-terminated string.
675
676 Copied from gcc/hashtable.c. Zack had the following to say with respect
677 to applicability, though note that unlike hashtable.c, this hash table
678 implementation re-hashes rather than chain buckets.
679
680 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
681 From: Zack Weinberg <zackw@panix.com>
682 Date: Fri, 17 Aug 2001 02:15:56 -0400
683
684 I got it by extracting all the identifiers from all the source code
685 I had lying around in mid-1999, and testing many recurrences of
686 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
687 prime numbers or the appropriate identity. This was the best one.
688 I don't remember exactly what constituted "best", except I was
689 looking at bucket-length distributions mostly.
690
691 So it should be very good at hashing identifiers, but might not be
692 as good at arbitrary strings.
693
694 I'll add that it thoroughly trounces the hash functions recommended
695 for this use at http://burtleburtle.net/bob/hash/index.html, both
696 on speed and bucket distribution. I haven't tried it against the
697 function they just started using for Perl's hashes. */
9e0ba685
RH
698
699hashval_t
700htab_hash_string (p)
701 const PTR p;
702{
703 const unsigned char *str = (const unsigned char *) p;
704 hashval_t r = 0;
705 unsigned char c;
706
707 while ((c = *str++) != 0)
708 r = r * 67 + c - 113;
709
710 return r;
711}