]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/regex.c
objalloc.c, [...]: Include "config.h" before "ansidecl.h" to avoid redeclaration...
[thirdparty/gcc.git] / libiberty / regex.c
CommitLineData
dd771632
JJ
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
65b91091 5 Copyright (C) 1993-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
27ffc806 6 This file is part of the GNU C Library.
dd771632
JJ
7
8 The GNU C Library is free software; you can redistribute it and/or
27ffc806
DD
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
dd771632
JJ
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27ffc806 16 Lesser General Public License for more details.
dd771632 17
27ffc806
DD
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
dd771632
JJ
22
23/* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27ffc806 27/* AIX requires this to be the first thing in the file. */
70c4e67a 28#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
dd771632
JJ
29 #pragma alloca
30#endif
31
32#undef _GNU_SOURCE
33#define _GNU_SOURCE
34
2d59754f
RS
35#ifndef INSIDE_RECURSION
36# ifdef HAVE_CONFIG_H
37# include <config.h>
38# endif
dd771632
JJ
39#endif
40
ef2a223f
MK
41#include <ansidecl.h>
42
dd771632
JJ
43#ifndef PARAMS
44# if defined __GNUC__ || (defined __STDC__ && __STDC__)
45# define PARAMS(args) args
46# else
47# define PARAMS(args) ()
48# endif /* GCC. */
49#endif /* Not PARAMS. */
50
51#ifndef INSIDE_RECURSION
52
53# if defined STDC_HEADERS && !defined emacs
54# include <stddef.h>
55# else
56/* We need this for `regex.h', and perhaps for the Emacs include files. */
57# include <sys/types.h>
58# endif
59
60# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
61
62/* For platform which support the ISO C amendement 1 functionality we
63 support user defined character classes. */
64# if defined _LIBC || WIDE_CHAR_SUPPORT
65/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
66# include <wchar.h>
67# include <wctype.h>
68# endif
69
70# ifdef _LIBC
71/* We have to keep the namespace clean. */
72# define regfree(preg) __regfree (preg)
73# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
74# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
75# define regerror(errcode, preg, errbuf, errbuf_size) \
76 __regerror(errcode, preg, errbuf, errbuf_size)
77# define re_set_registers(bu, re, nu, st, en) \
78 __re_set_registers (bu, re, nu, st, en)
79# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
80 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
81# define re_match(bufp, string, size, pos, regs) \
82 __re_match (bufp, string, size, pos, regs)
83# define re_search(bufp, string, size, startpos, range, regs) \
84 __re_search (bufp, string, size, startpos, range, regs)
85# define re_compile_pattern(pattern, length, bufp) \
86 __re_compile_pattern (pattern, length, bufp)
87# define re_set_syntax(syntax) __re_set_syntax (syntax)
88# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
89 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
90# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
91
92# define btowc __btowc
93
94/* We are also using some library internals. */
95# include <locale/localeinfo.h>
96# include <locale/elem-hash.h>
97# include <langinfo.h>
98# include <locale/coll-lookup.h>
99# endif
100
101/* This is for other GNU distributions with internationalized messages. */
2e683037 102# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
dd771632
JJ
103# include <libintl.h>
104# ifdef _LIBC
105# undef gettext
106# define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
107# endif
108# else
109# define gettext(msgid) (msgid)
110# endif
111
112# ifndef gettext_noop
113/* This define is so xgettext can find the internationalizable
114 strings. */
115# define gettext_noop(String) String
116# endif
117
118/* The `emacs' switch turns on certain matching commands
119 that make sense only in Emacs. */
120# ifdef emacs
121
122# include "lisp.h"
123# include "buffer.h"
124# include "syntax.h"
125
126# else /* not emacs */
127
128/* If we are not linking with Emacs proper,
129 we can't use the relocating allocator
130 even if config.h says that we can. */
131# undef REL_ALLOC
132
133# if defined STDC_HEADERS || defined _LIBC
134# include <stdlib.h>
135# else
136char *malloc ();
137char *realloc ();
138# endif
139
140/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
141 If nothing else has been done, use the method below. */
142# ifdef INHIBIT_STRING_HEADER
143# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
144# if !defined bzero && !defined bcopy
145# undef INHIBIT_STRING_HEADER
146# endif
147# endif
148# endif
149
150/* This is the normal way of making sure we have a bcopy and a bzero.
151 This is used in most programs--a few other programs avoid this
152 by defining INHIBIT_STRING_HEADER. */
153# ifndef INHIBIT_STRING_HEADER
154# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
155# include <string.h>
156# ifndef bzero
157# ifndef _LIBC
158# define bzero(s, n) (memset (s, '\0', n), (s))
159# else
160# define bzero(s, n) __bzero (s, n)
161# endif
162# endif
163# else
164# include <strings.h>
165# ifndef memcmp
166# define memcmp(s1, s2, n) bcmp (s1, s2, n)
167# endif
168# ifndef memcpy
169# define memcpy(d, s, n) (bcopy (s, d, n), (d))
170# endif
171# endif
172# endif
173
174/* Define the syntax stuff for \<, \>, etc. */
175
176/* This must be nonzero for the wordchar and notwordchar pattern
177 commands in re_match_2. */
178# ifndef Sword
179# define Sword 1
180# endif
181
182# ifdef SWITCH_ENUM_BUG
183# define SWITCH_ENUM_CAST(x) ((int)(x))
184# else
185# define SWITCH_ENUM_CAST(x) (x)
186# endif
187
188# endif /* not emacs */
189
190# if defined _LIBC || HAVE_LIMITS_H
191# include <limits.h>
192# endif
193
194# ifndef MB_LEN_MAX
195# define MB_LEN_MAX 1
196# endif
197\f
198/* Get the interface, including the syntax bits. */
199# include "xregex.h" /* change for libiberty */
200
201/* isalpha etc. are used for the character classes. */
202# include <ctype.h>
203
204/* Jim Meyering writes:
205
206 "... Some ctype macros are valid only for character codes that
207 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
208 using /bin/cc or gcc but without giving an ansi option). So, all
209 ctype uses should be through macros like ISPRINT... If
210 STDC_HEADERS is defined, then autoconf has verified that the ctype
211 macros don't need to be guarded with references to isascii. ...
212 Defining isascii to 1 should let any compiler worth its salt
213 eliminate the && through constant folding."
214 Solaris defines some of these symbols so we must undefine them first. */
215
216# undef ISASCII
217# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
218# define ISASCII(c) 1
219# else
220# define ISASCII(c) isascii(c)
221# endif
222
223# ifdef isblank
224# define ISBLANK(c) (ISASCII (c) && isblank (c))
225# else
226# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
227# endif
228# ifdef isgraph
229# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
230# else
231# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
232# endif
233
234# undef ISPRINT
235# define ISPRINT(c) (ISASCII (c) && isprint (c))
236# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
237# define ISALNUM(c) (ISASCII (c) && isalnum (c))
238# define ISALPHA(c) (ISASCII (c) && isalpha (c))
239# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
240# define ISLOWER(c) (ISASCII (c) && islower (c))
241# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
242# define ISSPACE(c) (ISASCII (c) && isspace (c))
243# define ISUPPER(c) (ISASCII (c) && isupper (c))
244# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
245
246# ifdef _tolower
247# define TOLOWER(c) _tolower(c)
248# else
249# define TOLOWER(c) tolower(c)
250# endif
251
252# ifndef NULL
253# define NULL (void *)0
254# endif
255
256/* We remove any previous definition of `SIGN_EXTEND_CHAR',
257 since ours (we hope) works properly with all combinations of
258 machines, compilers, `char' and `unsigned char' argument types.
259 (Per Bothner suggested the basic approach.) */
260# undef SIGN_EXTEND_CHAR
261# if __STDC__
262# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
263# else /* not __STDC__ */
264/* As in Harbison and Steele. */
265# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
266# endif
267\f
268# ifndef emacs
269/* How many characters in the character set. */
270# define CHAR_SET_SIZE 256
271
272# ifdef SYNTAX_TABLE
273
274extern char *re_syntax_table;
275
276# else /* not SYNTAX_TABLE */
277
278static char re_syntax_table[CHAR_SET_SIZE];
279
280static void init_syntax_once PARAMS ((void));
281
282static void
283init_syntax_once ()
284{
285 register int c;
286 static int done = 0;
287
288 if (done)
289 return;
290 bzero (re_syntax_table, sizeof re_syntax_table);
291
292 for (c = 0; c < CHAR_SET_SIZE; ++c)
293 if (ISALNUM (c))
294 re_syntax_table[c] = Sword;
295
296 re_syntax_table['_'] = Sword;
297
298 done = 1;
299}
300
301# endif /* not SYNTAX_TABLE */
302
303# define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
304
305# endif /* emacs */
306\f
307/* Integer type for pointers. */
d3982b71 308# if !defined _LIBC && !defined HAVE_UINTPTR_T
dd771632
JJ
309typedef unsigned long int uintptr_t;
310# endif
311
312/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
313 use `alloca' instead of `malloc'. This is because using malloc in
314 re_search* or re_match* could cause memory leaks when C-g is used in
315 Emacs; also, malloc is slower and causes storage fragmentation. On
316 the other hand, malloc is more portable, and easier to debug.
317
318 Because we sometimes use alloca, some routines have to be macros,
319 not functions -- `alloca'-allocated space disappears at the end of the
320 function it is called in. */
321
322# ifdef REGEX_MALLOC
323
324# define REGEX_ALLOCATE malloc
325# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
326# define REGEX_FREE free
327
328# else /* not REGEX_MALLOC */
329
330/* Emacs already defines alloca, sometimes. */
331# ifndef alloca
332
333/* Make alloca work the best possible way. */
334# ifdef __GNUC__
335# define alloca __builtin_alloca
336# else /* not __GNUC__ */
337# if HAVE_ALLOCA_H
338# include <alloca.h>
339# endif /* HAVE_ALLOCA_H */
340# endif /* not __GNUC__ */
341
342# endif /* not alloca */
343
344# define REGEX_ALLOCATE alloca
345
346/* Assumes a `char *destination' variable. */
347# define REGEX_REALLOCATE(source, osize, nsize) \
348 (destination = (char *) alloca (nsize), \
349 memcpy (destination, source, osize))
350
351/* No need to do anything to free, after alloca. */
352# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
353
354# endif /* not REGEX_MALLOC */
355
356/* Define how to allocate the failure stack. */
357
358# if defined REL_ALLOC && defined REGEX_MALLOC
359
360# define REGEX_ALLOCATE_STACK(size) \
361 r_alloc (&failure_stack_ptr, (size))
362# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
363 r_re_alloc (&failure_stack_ptr, (nsize))
364# define REGEX_FREE_STACK(ptr) \
365 r_alloc_free (&failure_stack_ptr)
366
367# else /* not using relocating allocator */
368
369# ifdef REGEX_MALLOC
370
371# define REGEX_ALLOCATE_STACK malloc
372# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
373# define REGEX_FREE_STACK free
374
375# else /* not REGEX_MALLOC */
376
377# define REGEX_ALLOCATE_STACK alloca
378
379# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
380 REGEX_REALLOCATE (source, osize, nsize)
381/* No need to explicitly free anything. */
382# define REGEX_FREE_STACK(arg)
383
384# endif /* not REGEX_MALLOC */
385# endif /* not using relocating allocator */
386
387
388/* True if `size1' is non-NULL and PTR is pointing anywhere inside
389 `string1' or just past its end. This works if PTR is NULL, which is
390 a good thing. */
391# define FIRST_STRING_P(ptr) \
392 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
393
394/* (Re)Allocate N items of type T using malloc, or fail. */
395# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
396# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
397# define RETALLOC_IF(addr, n, t) \
398 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
399# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
400
401# define BYTEWIDTH 8 /* In bits. */
402
403# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
404
405# undef MAX
406# undef MIN
407# define MAX(a, b) ((a) > (b) ? (a) : (b))
408# define MIN(a, b) ((a) < (b) ? (a) : (b))
409
410typedef char boolean;
411# define false 0
412# define true 1
413
414static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
415 reg_syntax_t syntax,
416 struct re_pattern_buffer *bufp));
dd771632
JJ
417
418static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
419 const char *string1, int size1,
420 const char *string2, int size2,
421 int pos,
422 struct re_registers *regs,
423 int stop));
c4b9cfe0
AJ
424static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
425 const char *string1, int size1,
426 const char *string2, int size2,
427 int startpos, int range,
428 struct re_registers *regs, int stop));
429static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
430
431#ifdef MBS_SUPPORT
432static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
433 reg_syntax_t syntax,
434 struct re_pattern_buffer *bufp));
435
436
dd771632
JJ
437static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
438 const char *cstring1, int csize1,
439 const char *cstring2, int csize2,
440 int pos,
441 struct re_registers *regs,
442 int stop,
443 wchar_t *string1, int size1,
444 wchar_t *string2, int size2,
445 int *mbs_offset1, int *mbs_offset2));
dd771632
JJ
446static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
447 const char *string1, int size1,
448 const char *string2, int size2,
449 int startpos, int range,
450 struct re_registers *regs, int stop));
dd771632 451static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
c4b9cfe0 452#endif
dd771632
JJ
453\f
454/* These are the command codes that appear in compiled regular
455 expressions. Some opcodes are followed by argument bytes. A
456 command code can specify any interpretation whatsoever for its
457 arguments. Zero bytes may appear in the compiled regular expression. */
458
459typedef enum
460{
461 no_op = 0,
462
463 /* Succeed right away--no more backtracking. */
464 succeed,
465
466 /* Followed by one byte giving n, then by n literal bytes. */
467 exactn,
468
469# ifdef MBS_SUPPORT
470 /* Same as exactn, but contains binary data. */
471 exactn_bin,
472# endif
473
474 /* Matches any (more or less) character. */
475 anychar,
476
477 /* Matches any one char belonging to specified set. First
478 following byte is number of bitmap bytes. Then come bytes
479 for a bitmap saying which chars are in. Bits in each byte
480 are ordered low-bit-first. A character is in the set if its
481 bit is 1. A character too large to have a bit in the map is
482 automatically not in the set. */
483 /* ifdef MBS_SUPPORT, following element is length of character
484 classes, length of collating symbols, length of equivalence
485 classes, length of character ranges, and length of characters.
486 Next, character class element, collating symbols elements,
487 equivalence class elements, range elements, and character
488 elements follow.
489 See regex_compile function. */
490 charset,
491
492 /* Same parameters as charset, but match any character that is
493 not one of those specified. */
494 charset_not,
495
496 /* Start remembering the text that is matched, for storing in a
497 register. Followed by one byte with the register number, in
498 the range 0 to one less than the pattern buffer's re_nsub
499 field. Then followed by one byte with the number of groups
500 inner to this one. (This last has to be part of the
501 start_memory only because we need it in the on_failure_jump
502 of re_match_2.) */
503 start_memory,
504
505 /* Stop remembering the text that is matched and store it in a
506 memory register. Followed by one byte with the register
507 number, in the range 0 to one less than `re_nsub' in the
508 pattern buffer, and one byte with the number of inner groups,
509 just like `start_memory'. (We need the number of inner
510 groups here because we don't have any easy way of finding the
511 corresponding start_memory when we're at a stop_memory.) */
512 stop_memory,
513
514 /* Match a duplicate of something remembered. Followed by one
515 byte containing the register number. */
516 duplicate,
517
518 /* Fail unless at beginning of line. */
519 begline,
520
521 /* Fail unless at end of line. */
522 endline,
523
524 /* Succeeds if at beginning of buffer (if emacs) or at beginning
525 of string to be matched (if not). */
526 begbuf,
527
528 /* Analogously, for end of buffer/string. */
529 endbuf,
530
531 /* Followed by two byte relative address to which to jump. */
532 jump,
533
534 /* Same as jump, but marks the end of an alternative. */
535 jump_past_alt,
536
537 /* Followed by two-byte relative address of place to resume at
538 in case of failure. */
539 /* ifdef MBS_SUPPORT, the size of address is 1. */
540 on_failure_jump,
541
542 /* Like on_failure_jump, but pushes a placeholder instead of the
543 current string position when executed. */
544 on_failure_keep_string_jump,
545
546 /* Throw away latest failure point and then jump to following
547 two-byte relative address. */
548 /* ifdef MBS_SUPPORT, the size of address is 1. */
549 pop_failure_jump,
550
551 /* Change to pop_failure_jump if know won't have to backtrack to
552 match; otherwise change to jump. This is used to jump
553 back to the beginning of a repeat. If what follows this jump
554 clearly won't match what the repeat does, such that we can be
555 sure that there is no use backtracking out of repetitions
556 already matched, then we change it to a pop_failure_jump.
557 Followed by two-byte address. */
558 /* ifdef MBS_SUPPORT, the size of address is 1. */
559 maybe_pop_jump,
560
561 /* Jump to following two-byte address, and push a dummy failure
562 point. This failure point will be thrown away if an attempt
563 is made to use it for a failure. A `+' construct makes this
564 before the first repeat. Also used as an intermediary kind
565 of jump when compiling an alternative. */
566 /* ifdef MBS_SUPPORT, the size of address is 1. */
567 dummy_failure_jump,
568
569 /* Push a dummy failure point and continue. Used at the end of
570 alternatives. */
571 push_dummy_failure,
572
573 /* Followed by two-byte relative address and two-byte number n.
574 After matching N times, jump to the address upon failure. */
575 /* ifdef MBS_SUPPORT, the size of address is 1. */
576 succeed_n,
577
578 /* Followed by two-byte relative address, and two-byte number n.
579 Jump to the address N times, then fail. */
580 /* ifdef MBS_SUPPORT, the size of address is 1. */
581 jump_n,
582
583 /* Set the following two-byte relative address to the
584 subsequent two-byte number. The address *includes* the two
585 bytes of number. */
586 /* ifdef MBS_SUPPORT, the size of address is 1. */
587 set_number_at,
588
589 wordchar, /* Matches any word-constituent character. */
590 notwordchar, /* Matches any char that is not a word-constituent. */
591
592 wordbeg, /* Succeeds if at word beginning. */
593 wordend, /* Succeeds if at word end. */
594
595 wordbound, /* Succeeds if at a word boundary. */
596 notwordbound /* Succeeds if not at a word boundary. */
597
598# ifdef emacs
599 ,before_dot, /* Succeeds if before point. */
600 at_dot, /* Succeeds if at point. */
601 after_dot, /* Succeeds if after point. */
602
603 /* Matches any character whose syntax is specified. Followed by
604 a byte which contains a syntax code, e.g., Sword. */
605 syntaxspec,
606
607 /* Matches any character whose syntax is not that specified. */
608 notsyntaxspec
609# endif /* emacs */
610} re_opcode_t;
611#endif /* not INSIDE_RECURSION */
612\f
613
614#ifdef BYTE
615# define CHAR_T char
616# define UCHAR_T unsigned char
617# define COMPILED_BUFFER_VAR bufp->buffer
618# define OFFSET_ADDRESS_SIZE 2
2c47b56b 619# if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
7ddfb651
JL
620# define PREFIX(name) byte_##name
621# else
622# define PREFIX(name) byte_/**/name
623# endif
dd771632
JJ
624# define ARG_PREFIX(name) name
625# define PUT_CHAR(c) putchar (c)
dd771632 626#else
c4b9cfe0
AJ
627# ifdef WCHAR
628# define CHAR_T wchar_t
629# define UCHAR_T wchar_t
630# define COMPILED_BUFFER_VAR wc_buffer
631# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
632# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
2c47b56b 633# if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
7ddfb651
JL
634# define PREFIX(name) wcs_##name
635# define ARG_PREFIX(name) c##name
636# else
637# define PREFIX(name) wcs_/**/name
638# define ARG_PREFIX(name) c/**/name
639# endif
c4b9cfe0
AJ
640/* Should we use wide stream?? */
641# define PUT_CHAR(c) printf ("%C", c);
642# define TRUE 1
643# define FALSE 0
644# else
645# ifdef MBS_SUPPORT
646# define WCHAR
647# define INSIDE_RECURSION
648# include "regex.c"
649# undef INSIDE_RECURSION
650# endif
651# define BYTE
dd771632
JJ
652# define INSIDE_RECURSION
653# include "regex.c"
654# undef INSIDE_RECURSION
655# endif
dd771632
JJ
656#endif
657
658#ifdef INSIDE_RECURSION
659/* Common operations on the compiled pattern. */
660
661/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
662/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
663
664# ifdef WCHAR
665# define STORE_NUMBER(destination, number) \
666 do { \
667 *(destination) = (UCHAR_T)(number); \
668 } while (0)
669# else /* BYTE */
670# define STORE_NUMBER(destination, number) \
671 do { \
672 (destination)[0] = (number) & 0377; \
673 (destination)[1] = (number) >> 8; \
674 } while (0)
675# endif /* WCHAR */
676
677/* Same as STORE_NUMBER, except increment DESTINATION to
678 the byte after where the number is stored. Therefore, DESTINATION
679 must be an lvalue. */
680/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
681
682# define STORE_NUMBER_AND_INCR(destination, number) \
683 do { \
684 STORE_NUMBER (destination, number); \
685 (destination) += OFFSET_ADDRESS_SIZE; \
686 } while (0)
687
688/* Put into DESTINATION a number stored in two contiguous bytes starting
689 at SOURCE. */
690/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
691
692# ifdef WCHAR
693# define EXTRACT_NUMBER(destination, source) \
694 do { \
695 (destination) = *(source); \
696 } while (0)
697# else /* BYTE */
698# define EXTRACT_NUMBER(destination, source) \
699 do { \
700 (destination) = *(source) & 0377; \
701 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
702 } while (0)
703# endif
704
705# ifdef DEBUG
706static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
707static void
708PREFIX(extract_number) (dest, source)
709 int *dest;
710 UCHAR_T *source;
711{
712# ifdef WCHAR
713 *dest = *source;
714# else /* BYTE */
715 int temp = SIGN_EXTEND_CHAR (*(source + 1));
716 *dest = *source & 0377;
717 *dest += temp << 8;
718# endif
719}
720
721# ifndef EXTRACT_MACROS /* To debug the macros. */
722# undef EXTRACT_NUMBER
723# define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
724# endif /* not EXTRACT_MACROS */
725
726# endif /* DEBUG */
727
728/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
729 SOURCE must be an lvalue. */
730
731# define EXTRACT_NUMBER_AND_INCR(destination, source) \
732 do { \
733 EXTRACT_NUMBER (destination, source); \
734 (source) += OFFSET_ADDRESS_SIZE; \
735 } while (0)
736
737# ifdef DEBUG
738static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
739 UCHAR_T **source));
740static void
741PREFIX(extract_number_and_incr) (destination, source)
742 int *destination;
743 UCHAR_T **source;
744{
745 PREFIX(extract_number) (destination, *source);
746 *source += OFFSET_ADDRESS_SIZE;
747}
748
749# ifndef EXTRACT_MACROS
750# undef EXTRACT_NUMBER_AND_INCR
751# define EXTRACT_NUMBER_AND_INCR(dest, src) \
752 PREFIX(extract_number_and_incr) (&dest, &src)
753# endif /* not EXTRACT_MACROS */
754
755# endif /* DEBUG */
756
757\f
758
759/* If DEBUG is defined, Regex prints many voluminous messages about what
760 it is doing (if the variable `debug' is nonzero). If linked with the
761 main program in `iregex.c', you can enter patterns and strings
762 interactively. And if linked with the main program in `main.c' and
763 the other test files, you can run the already-written tests. */
764
765# ifdef DEBUG
766
767# ifndef DEFINED_ONCE
768
769/* We use standard I/O for debugging. */
770# include <stdio.h>
771
772/* It is useful to test things that ``must'' be true when debugging. */
773# include <assert.h>
774
775static int debug;
776
777# define DEBUG_STATEMENT(e) e
778# define DEBUG_PRINT1(x) if (debug) printf (x)
779# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
780# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
781# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
782# endif /* not DEFINED_ONCE */
783
784# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
785 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
786# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
787 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
788
789
790/* Print the fastmap in human-readable form. */
791
792# ifndef DEFINED_ONCE
793void
794print_fastmap (fastmap)
795 char *fastmap;
796{
797 unsigned was_a_range = 0;
798 unsigned i = 0;
799
800 while (i < (1 << BYTEWIDTH))
801 {
802 if (fastmap[i++])
803 {
804 was_a_range = 0;
805 putchar (i - 1);
806 while (i < (1 << BYTEWIDTH) && fastmap[i])
807 {
808 was_a_range = 1;
809 i++;
810 }
811 if (was_a_range)
812 {
813 printf ("-");
814 putchar (i - 1);
815 }
816 }
817 }
818 putchar ('\n');
819}
820# endif /* not DEFINED_ONCE */
821
822
823/* Print a compiled pattern string in human-readable form, starting at
824 the START pointer into it and ending just before the pointer END. */
825
826void
827PREFIX(print_partial_compiled_pattern) (start, end)
828 UCHAR_T *start;
829 UCHAR_T *end;
830{
831 int mcnt, mcnt2;
832 UCHAR_T *p1;
833 UCHAR_T *p = start;
834 UCHAR_T *pend = end;
835
836 if (start == NULL)
837 {
838 printf ("(null)\n");
839 return;
840 }
841
842 /* Loop over pattern commands. */
843 while (p < pend)
844 {
845# ifdef _LIBC
846 printf ("%td:\t", p - start);
847# else
848 printf ("%ld:\t", (long int) (p - start));
849# endif
850
851 switch ((re_opcode_t) *p++)
852 {
853 case no_op:
854 printf ("/no_op");
855 break;
856
857 case exactn:
858 mcnt = *p++;
859 printf ("/exactn/%d", mcnt);
860 do
861 {
862 putchar ('/');
863 PUT_CHAR (*p++);
864 }
865 while (--mcnt);
866 break;
867
868# ifdef MBS_SUPPORT
869 case exactn_bin:
870 mcnt = *p++;
871 printf ("/exactn_bin/%d", mcnt);
872 do
873 {
874 printf("/%lx", (long int) *p++);
875 }
876 while (--mcnt);
877 break;
878# endif /* MBS_SUPPORT */
879
880 case start_memory:
881 mcnt = *p++;
882 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
883 break;
884
885 case stop_memory:
886 mcnt = *p++;
887 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
888 break;
889
890 case duplicate:
891 printf ("/duplicate/%ld", (long int) *p++);
892 break;
893
894 case anychar:
895 printf ("/anychar");
896 break;
897
898 case charset:
899 case charset_not:
900 {
901# ifdef WCHAR
902 int i, length;
903 wchar_t *workp = p;
904 printf ("/charset [%s",
905 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
906 p += 5;
907 length = *workp++; /* the length of char_classes */
908 for (i=0 ; i<length ; i++)
909 printf("[:%lx:]", (long int) *p++);
910 length = *workp++; /* the length of collating_symbol */
911 for (i=0 ; i<length ;)
912 {
913 printf("[.");
914 while(*p != 0)
915 PUT_CHAR((i++,*p++));
916 i++,p++;
917 printf(".]");
918 }
919 length = *workp++; /* the length of equivalence_class */
920 for (i=0 ; i<length ;)
921 {
922 printf("[=");
923 while(*p != 0)
924 PUT_CHAR((i++,*p++));
925 i++,p++;
926 printf("=]");
927 }
928 length = *workp++; /* the length of char_range */
929 for (i=0 ; i<length ; i++)
930 {
931 wchar_t range_start = *p++;
932 wchar_t range_end = *p++;
933 printf("%C-%C", range_start, range_end);
934 }
935 length = *workp++; /* the length of char */
936 for (i=0 ; i<length ; i++)
937 printf("%C", *p++);
938 putchar (']');
939# else
940 register int c, last = -100;
941 register int in_range = 0;
942
943 printf ("/charset [%s",
944 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
945
946 assert (p + *p < pend);
947
948 for (c = 0; c < 256; c++)
949 if (c / 8 < *p
950 && (p[1 + (c/8)] & (1 << (c % 8))))
951 {
952 /* Are we starting a range? */
953 if (last + 1 == c && ! in_range)
954 {
955 putchar ('-');
956 in_range = 1;
957 }
958 /* Have we broken a range? */
959 else if (last + 1 != c && in_range)
960 {
961 putchar (last);
962 in_range = 0;
963 }
964
965 if (! in_range)
966 putchar (c);
967
968 last = c;
969 }
970
971 if (in_range)
972 putchar (last);
973
974 putchar (']');
975
976 p += 1 + *p;
977# endif /* WCHAR */
978 }
979 break;
980
981 case begline:
982 printf ("/begline");
983 break;
984
985 case endline:
986 printf ("/endline");
987 break;
988
989 case on_failure_jump:
990 PREFIX(extract_number_and_incr) (&mcnt, &p);
991# ifdef _LIBC
992 printf ("/on_failure_jump to %td", p + mcnt - start);
993# else
994 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
995# endif
996 break;
997
998 case on_failure_keep_string_jump:
999 PREFIX(extract_number_and_incr) (&mcnt, &p);
1000# ifdef _LIBC
1001 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
1002# else
1003 printf ("/on_failure_keep_string_jump to %ld",
1004 (long int) (p + mcnt - start));
1005# endif
1006 break;
1007
1008 case dummy_failure_jump:
1009 PREFIX(extract_number_and_incr) (&mcnt, &p);
1010# ifdef _LIBC
1011 printf ("/dummy_failure_jump to %td", p + mcnt - start);
1012# else
1013 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1014# endif
1015 break;
1016
1017 case push_dummy_failure:
1018 printf ("/push_dummy_failure");
1019 break;
1020
1021 case maybe_pop_jump:
1022 PREFIX(extract_number_and_incr) (&mcnt, &p);
1023# ifdef _LIBC
1024 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1025# else
1026 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1027# endif
1028 break;
1029
1030 case pop_failure_jump:
1031 PREFIX(extract_number_and_incr) (&mcnt, &p);
1032# ifdef _LIBC
1033 printf ("/pop_failure_jump to %td", p + mcnt - start);
1034# else
1035 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1036# endif
1037 break;
1038
1039 case jump_past_alt:
1040 PREFIX(extract_number_and_incr) (&mcnt, &p);
1041# ifdef _LIBC
1042 printf ("/jump_past_alt to %td", p + mcnt - start);
1043# else
1044 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1045# endif
1046 break;
1047
1048 case jump:
1049 PREFIX(extract_number_and_incr) (&mcnt, &p);
1050# ifdef _LIBC
1051 printf ("/jump to %td", p + mcnt - start);
1052# else
1053 printf ("/jump to %ld", (long int) (p + mcnt - start));
1054# endif
1055 break;
1056
1057 case succeed_n:
1058 PREFIX(extract_number_and_incr) (&mcnt, &p);
1059 p1 = p + mcnt;
1060 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1061# ifdef _LIBC
1062 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1063# else
1064 printf ("/succeed_n to %ld, %d times",
1065 (long int) (p1 - start), mcnt2);
1066# endif
1067 break;
1068
1069 case jump_n:
1070 PREFIX(extract_number_and_incr) (&mcnt, &p);
1071 p1 = p + mcnt;
1072 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1073 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1074 break;
1075
1076 case set_number_at:
1077 PREFIX(extract_number_and_incr) (&mcnt, &p);
1078 p1 = p + mcnt;
1079 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1080# ifdef _LIBC
1081 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1082# else
1083 printf ("/set_number_at location %ld to %d",
1084 (long int) (p1 - start), mcnt2);
1085# endif
1086 break;
1087
1088 case wordbound:
1089 printf ("/wordbound");
1090 break;
1091
1092 case notwordbound:
1093 printf ("/notwordbound");
1094 break;
1095
1096 case wordbeg:
1097 printf ("/wordbeg");
1098 break;
1099
1100 case wordend:
1101 printf ("/wordend");
1102 break;
1103
1104# ifdef emacs
1105 case before_dot:
1106 printf ("/before_dot");
1107 break;
1108
1109 case at_dot:
1110 printf ("/at_dot");
1111 break;
1112
1113 case after_dot:
1114 printf ("/after_dot");
1115 break;
1116
1117 case syntaxspec:
1118 printf ("/syntaxspec");
1119 mcnt = *p++;
1120 printf ("/%d", mcnt);
1121 break;
1122
1123 case notsyntaxspec:
1124 printf ("/notsyntaxspec");
1125 mcnt = *p++;
1126 printf ("/%d", mcnt);
1127 break;
1128# endif /* emacs */
1129
1130 case wordchar:
1131 printf ("/wordchar");
1132 break;
1133
1134 case notwordchar:
1135 printf ("/notwordchar");
1136 break;
1137
1138 case begbuf:
1139 printf ("/begbuf");
1140 break;
1141
1142 case endbuf:
1143 printf ("/endbuf");
1144 break;
1145
1146 default:
1147 printf ("?%ld", (long int) *(p-1));
1148 }
1149
1150 putchar ('\n');
1151 }
1152
1153# ifdef _LIBC
1154 printf ("%td:\tend of pattern.\n", p - start);
1155# else
1156 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1157# endif
1158}
1159
1160
1161void
1162PREFIX(print_compiled_pattern) (bufp)
1163 struct re_pattern_buffer *bufp;
1164{
1165 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1166
1167 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1168 + bufp->used / sizeof(UCHAR_T));
1169 printf ("%ld bytes used/%ld bytes allocated.\n",
1170 bufp->used, bufp->allocated);
1171
1172 if (bufp->fastmap_accurate && bufp->fastmap)
1173 {
1174 printf ("fastmap: ");
1175 print_fastmap (bufp->fastmap);
1176 }
1177
1178# ifdef _LIBC
1179 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1180# else
1181 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1182# endif
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
1185 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1186 printf ("no_sub: %d\t", bufp->no_sub);
1187 printf ("not_bol: %d\t", bufp->not_bol);
1188 printf ("not_eol: %d\t", bufp->not_eol);
1189 printf ("syntax: %lx\n", bufp->syntax);
1190 /* Perhaps we should print the translate table? */
1191}
1192
1193
1194void
1195PREFIX(print_double_string) (where, string1, size1, string2, size2)
1196 const CHAR_T *where;
1197 const CHAR_T *string1;
1198 const CHAR_T *string2;
1199 int size1;
1200 int size2;
1201{
1202 int this_char;
1203
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
27ffc806
DD
1208 int cnt;
1209
dd771632
JJ
1210 if (FIRST_STRING_P (where))
1211 {
1212 for (this_char = where - string1; this_char < size1; this_char++)
1213 PUT_CHAR (string1[this_char]);
1214
1215 where = string2;
1216 }
1217
27ffc806 1218 cnt = 0;
dd771632 1219 for (this_char = where - string2; this_char < size2; this_char++)
27ffc806
DD
1220 {
1221 PUT_CHAR (string2[this_char]);
1222 if (++cnt > 100)
1223 {
1224 fputs ("...", stdout);
1225 break;
1226 }
1227 }
dd771632
JJ
1228 }
1229}
1230
1231# ifndef DEFINED_ONCE
1232void
1233printchar (c)
1234 int c;
1235{
1236 putc (c, stderr);
1237}
1238# endif
1239
1240# else /* not DEBUG */
1241
1242# ifndef DEFINED_ONCE
1243# undef assert
1244# define assert(e)
1245
1246# define DEBUG_STATEMENT(e)
1247# define DEBUG_PRINT1(x)
1248# define DEBUG_PRINT2(x1, x2)
1249# define DEBUG_PRINT3(x1, x2, x3)
1250# define DEBUG_PRINT4(x1, x2, x3, x4)
1251# endif /* not DEFINED_ONCE */
1252# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1253# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1254
1255# endif /* not DEBUG */
1256
1257\f
1258
1259# ifdef WCHAR
1260/* This convert a multibyte string to a wide character string.
1261 And write their correspondances to offset_buffer(see below)
1262 and write whether each wchar_t is binary data to is_binary.
1263 This assume invalid multibyte sequences as binary data.
1264 We assume offset_buffer and is_binary is already allocated
1265 enough space. */
1266
1267static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1268 size_t len, int *offset_buffer,
1269 char *is_binary);
1270static size_t
1271convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1272 CHAR_T *dest;
1273 const unsigned char* src;
1274 size_t len; /* the length of multibyte string. */
1275
1276 /* It hold correspondances between src(char string) and
1277 dest(wchar_t string) for optimization.
1278 e.g. src = "xxxyzz"
1279 dest = {'X', 'Y', 'Z'}
1280 (each "xxx", "y" and "zz" represent one multibyte character
1281 corresponding to 'X', 'Y' and 'Z'.)
1282 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1283 = {0, 3, 4, 6}
1284 */
1285 int *offset_buffer;
1286 char *is_binary;
1287{
1288 wchar_t *pdest = dest;
1289 const unsigned char *psrc = src;
1290 size_t wc_count = 0;
1291
1292 mbstate_t mbs;
1293 int i, consumed;
1294 size_t mb_remain = len;
1295 size_t mb_count = 0;
1296
1297 /* Initialize the conversion state. */
1298 memset (&mbs, 0, sizeof (mbstate_t));
1299
1300 offset_buffer[0] = 0;
1301 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1302 psrc += consumed)
1303 {
d0708dc1
UD
1304#ifdef _LIBC
1305 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1306#else
dd771632 1307 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
d0708dc1 1308#endif
dd771632
JJ
1309
1310 if (consumed <= 0)
1311 /* failed to convert. maybe src contains binary data.
1312 So we consume 1 byte manualy. */
1313 {
1314 *pdest = *psrc;
1315 consumed = 1;
1316 is_binary[wc_count] = TRUE;
1317 }
1318 else
1319 is_binary[wc_count] = FALSE;
1320 /* In sjis encoding, we use yen sign as escape character in
1321 place of reverse solidus. So we convert 0x5c(yen sign in
1322 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1323 solidus in UCS2). */
1324 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1325 *pdest = (wchar_t) *psrc;
1326
1327 offset_buffer[wc_count + 1] = mb_count += consumed;
1328 }
1329
1330 /* Fill remain of the buffer with sentinel. */
1331 for (i = wc_count + 1 ; i <= len ; i++)
1332 offset_buffer[i] = mb_count + 1;
1333
1334 return wc_count;
1335}
1336
1337# endif /* WCHAR */
1338
1339#else /* not INSIDE_RECURSION */
1340
1341/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1342 also be assigned to arbitrarily: each pattern buffer stores its own
1343 syntax, so it can be changed between regex compilations. */
1344/* This has no initializer because initialized variables in Emacs
1345 become read-only after dumping. */
1346reg_syntax_t re_syntax_options;
1347
1348
1349/* Specify the precise syntax of regexps for compilation. This provides
1350 for compatibility for various utilities which historically have
1351 different, incompatible syntaxes.
1352
1353 The argument SYNTAX is a bit mask comprised of the various bits
1354 defined in regex.h. We return the old syntax. */
1355
1356reg_syntax_t
1357re_set_syntax (syntax)
1358 reg_syntax_t syntax;
1359{
1360 reg_syntax_t ret = re_syntax_options;
1361
1362 re_syntax_options = syntax;
1363# ifdef DEBUG
1364 if (syntax & RE_DEBUG)
1365 debug = 1;
1366 else if (debug) /* was on but now is not */
1367 debug = 0;
1368# endif /* DEBUG */
1369 return ret;
1370}
1371# ifdef _LIBC
1372weak_alias (__re_set_syntax, re_set_syntax)
1373# endif
1374\f
1375/* This table gives an error message for each of the error codes listed
1376 in regex.h. Obviously the order here has to be same as there.
1377 POSIX doesn't require that we do anything for REG_NOERROR,
1378 but why not be nice? */
1379
65b91091 1380static const char *re_error_msgid[] =
dd771632 1381 {
65b91091
DD
1382 gettext_noop ("Success"), /* REG_NOERROR */
1383 gettext_noop ("No match"), /* REG_NOMATCH */
1384 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1385 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1386 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1387 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1388 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1389 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1390 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1391 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1392 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1393 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1394 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1395 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1396 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1397 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
dd771632
JJ
1398 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1399 };
dd771632
JJ
1400\f
1401#endif /* INSIDE_RECURSION */
1402
1403#ifndef DEFINED_ONCE
1404/* Avoiding alloca during matching, to placate r_alloc. */
1405
1406/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1407 searching and matching functions should not call alloca. On some
1408 systems, alloca is implemented in terms of malloc, and if we're
1409 using the relocating allocator routines, then malloc could cause a
1410 relocation, which might (if the strings being searched are in the
1411 ralloc heap) shift the data out from underneath the regexp
1412 routines.
1413
1414 Here's another reason to avoid allocation: Emacs
1415 processes input from X in a signal handler; processing X input may
1416 call malloc; if input arrives while a matching routine is calling
1417 malloc, then we're scrod. But Emacs can't just block input while
1418 calling matching routines; then we don't notice interrupts when
1419 they come in. So, Emacs blocks input around all regexp calls
1420 except the matching calls, which it leaves unprotected, in the
1421 faith that they will not malloc. */
1422
1423/* Normally, this is fine. */
1424# define MATCH_MAY_ALLOCATE
1425
1426/* When using GNU C, we are not REALLY using the C alloca, no matter
1427 what config.h may say. So don't take precautions for it. */
1428# ifdef __GNUC__
1429# undef C_ALLOCA
1430# endif
1431
1432/* The match routines may not allocate if (1) they would do it with malloc
1433 and (2) it's not safe for them to use malloc.
1434 Note that if REL_ALLOC is defined, matching would not use malloc for the
1435 failure stack, but we would still use it for the register vectors;
1436 so REL_ALLOC should not affect this. */
1437# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1438# undef MATCH_MAY_ALLOCATE
1439# endif
1440#endif /* not DEFINED_ONCE */
1441\f
1442#ifdef INSIDE_RECURSION
1443/* Failure stack declarations and macros; both re_compile_fastmap and
1444 re_match_2 use a failure stack. These have to be macros because of
1445 REGEX_ALLOCATE_STACK. */
1446
1447
1448/* Number of failure points for which to initially allocate space
1449 when matching. If this number is exceeded, we allocate more
1450 space, so it is not a hard limit. */
1451# ifndef INIT_FAILURE_ALLOC
1452# define INIT_FAILURE_ALLOC 5
1453# endif
1454
1455/* Roughly the maximum number of failure points on the stack. Would be
1456 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1457 This is a variable only so users of regex can assign to it; we never
1458 change it ourselves. */
1459
1460# ifdef INT_IS_16BIT
1461
1462# ifndef DEFINED_ONCE
1463# if defined MATCH_MAY_ALLOCATE
1464/* 4400 was enough to cause a crash on Alpha OSF/1,
1465 whose default stack limit is 2mb. */
1466long int re_max_failures = 4000;
1467# else
1468long int re_max_failures = 2000;
1469# endif
1470# endif
1471
1472union PREFIX(fail_stack_elt)
1473{
1474 UCHAR_T *pointer;
1475 long int integer;
1476};
1477
1478typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1479
1480typedef struct
1481{
1482 PREFIX(fail_stack_elt_t) *stack;
1483 unsigned long int size;
1484 unsigned long int avail; /* Offset of next open position. */
1485} PREFIX(fail_stack_type);
1486
1487# else /* not INT_IS_16BIT */
1488
1489# ifndef DEFINED_ONCE
1490# if defined MATCH_MAY_ALLOCATE
1491/* 4400 was enough to cause a crash on Alpha OSF/1,
1492 whose default stack limit is 2mb. */
1493int re_max_failures = 4000;
1494# else
1495int re_max_failures = 2000;
1496# endif
1497# endif
1498
1499union PREFIX(fail_stack_elt)
1500{
1501 UCHAR_T *pointer;
1502 int integer;
1503};
1504
1505typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1506
1507typedef struct
1508{
1509 PREFIX(fail_stack_elt_t) *stack;
1510 unsigned size;
1511 unsigned avail; /* Offset of next open position. */
1512} PREFIX(fail_stack_type);
1513
1514# endif /* INT_IS_16BIT */
1515
1516# ifndef DEFINED_ONCE
1517# define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1518# define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1519# define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1520# endif
1521
1522
1523/* Define macros to initialize and free the failure stack.
1524 Do `return -2' if the alloc fails. */
1525
1526# ifdef MATCH_MAY_ALLOCATE
1527# define INIT_FAIL_STACK() \
1528 do { \
1529 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1530 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1531 \
1532 if (fail_stack.stack == NULL) \
1533 return -2; \
1534 \
1535 fail_stack.size = INIT_FAILURE_ALLOC; \
1536 fail_stack.avail = 0; \
1537 } while (0)
1538
1539# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1540# else
1541# define INIT_FAIL_STACK() \
1542 do { \
1543 fail_stack.avail = 0; \
1544 } while (0)
1545
1546# define RESET_FAIL_STACK()
1547# endif
1548
1549
1550/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1551
1552 Return 1 if succeeds, and 0 if either ran out of memory
1553 allocating space for it or it was already too large.
1554
1555 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1556
1557# define DOUBLE_FAIL_STACK(fail_stack) \
1558 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1559 ? 0 \
1560 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1561 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1562 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1563 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1564 \
1565 (fail_stack).stack == NULL \
1566 ? 0 \
1567 : ((fail_stack).size <<= 1, \
1568 1)))
1569
1570
1571/* Push pointer POINTER on FAIL_STACK.
1572 Return 1 if was able to do so and 0 if ran out of memory allocating
1573 space to do so. */
1574# define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1575 ((FAIL_STACK_FULL () \
1576 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1577 ? 0 \
1578 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1579 1))
1580
1581/* Push a pointer value onto the failure stack.
1582 Assumes the variable `fail_stack'. Probably should only
1583 be called from within `PUSH_FAILURE_POINT'. */
1584# define PUSH_FAILURE_POINTER(item) \
1585 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1586
1587/* This pushes an integer-valued item onto the failure stack.
1588 Assumes the variable `fail_stack'. Probably should only
1589 be called from within `PUSH_FAILURE_POINT'. */
1590# define PUSH_FAILURE_INT(item) \
1591 fail_stack.stack[fail_stack.avail++].integer = (item)
1592
1593/* Push a fail_stack_elt_t value onto the failure stack.
1594 Assumes the variable `fail_stack'. Probably should only
1595 be called from within `PUSH_FAILURE_POINT'. */
1596# define PUSH_FAILURE_ELT(item) \
1597 fail_stack.stack[fail_stack.avail++] = (item)
1598
1599/* These three POP... operations complement the three PUSH... operations.
1600 All assume that `fail_stack' is nonempty. */
1601# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1602# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1603# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1604
1605/* Used to omit pushing failure point id's when we're not debugging. */
1606# ifdef DEBUG
1607# define DEBUG_PUSH PUSH_FAILURE_INT
1608# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1609# else
1610# define DEBUG_PUSH(item)
1611# define DEBUG_POP(item_addr)
1612# endif
1613
1614
1615/* Push the information about the state we will need
1616 if we ever fail back to it.
1617
1618 Requires variables fail_stack, regstart, regend, reg_info, and
1619 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1620 be declared.
1621
1622 Does `return FAILURE_CODE' if runs out of memory. */
1623
1624# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1625 do { \
1626 char *destination; \
1627 /* Must be int, so when we don't save any registers, the arithmetic \
1628 of 0 + -1 isn't done as unsigned. */ \
1629 /* Can't be int, since there is not a shred of a guarantee that int \
1630 is wide enough to hold a value of something to which pointer can \
1631 be assigned */ \
1632 active_reg_t this_reg; \
1633 \
1634 DEBUG_STATEMENT (failure_id++); \
1635 DEBUG_STATEMENT (nfailure_points_pushed++); \
1636 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1637 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1638 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1639 \
1640 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1641 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1642 \
1643 /* Ensure we have enough space allocated for what we will push. */ \
1644 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1645 { \
1646 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1647 return failure_code; \
1648 \
1649 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1650 (fail_stack).size); \
1651 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1652 } \
1653 \
1654 /* Push the info, starting with the registers. */ \
1655 DEBUG_PRINT1 ("\n"); \
1656 \
1657 if (1) \
1658 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1659 this_reg++) \
1660 { \
1661 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1662 DEBUG_STATEMENT (num_regs_pushed++); \
1663 \
1664 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1665 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1666 \
1667 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1668 PUSH_FAILURE_POINTER (regend[this_reg]); \
1669 \
1670 DEBUG_PRINT2 (" info: %p\n ", \
1671 reg_info[this_reg].word.pointer); \
1672 DEBUG_PRINT2 (" match_null=%d", \
1673 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1674 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1675 DEBUG_PRINT2 (" matched_something=%d", \
1676 MATCHED_SOMETHING (reg_info[this_reg])); \
1677 DEBUG_PRINT2 (" ever_matched=%d", \
1678 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1679 DEBUG_PRINT1 ("\n"); \
1680 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1681 } \
1682 \
1683 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1684 PUSH_FAILURE_INT (lowest_active_reg); \
1685 \
1686 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1687 PUSH_FAILURE_INT (highest_active_reg); \
1688 \
1689 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1690 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1691 PUSH_FAILURE_POINTER (pattern_place); \
1692 \
1693 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1694 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1695 size2); \
1696 DEBUG_PRINT1 ("'\n"); \
1697 PUSH_FAILURE_POINTER (string_place); \
1698 \
1699 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1700 DEBUG_PUSH (failure_id); \
1701 } while (0)
1702
1703# ifndef DEFINED_ONCE
1704/* This is the number of items that are pushed and popped on the stack
1705 for each register. */
1706# define NUM_REG_ITEMS 3
1707
1708/* Individual items aside from the registers. */
1709# ifdef DEBUG
1710# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1711# else
1712# define NUM_NONREG_ITEMS 4
1713# endif
1714
1715/* We push at most this many items on the stack. */
1716/* We used to use (num_regs - 1), which is the number of registers
1717 this regexp will save; but that was changed to 5
1718 to avoid stack overflow for a regexp with lots of parens. */
1719# define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1720
1721/* We actually push this many items. */
1722# define NUM_FAILURE_ITEMS \
1723 (((0 \
1724 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1725 * NUM_REG_ITEMS) \
1726 + NUM_NONREG_ITEMS)
1727
1728/* How many items can still be added to the stack without overflowing it. */
1729# define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1730# endif /* not DEFINED_ONCE */
1731
1732
1733/* Pops what PUSH_FAIL_STACK pushes.
1734
1735 We restore into the parameters, all of which should be lvalues:
1736 STR -- the saved data position.
1737 PAT -- the saved pattern position.
1738 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1739 REGSTART, REGEND -- arrays of string positions.
1740 REG_INFO -- array of information about each subexpression.
1741
1742 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1743 `pend', `string1', `size1', `string2', and `size2'. */
1744# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1745{ \
1746 DEBUG_STATEMENT (unsigned failure_id;) \
1747 active_reg_t this_reg; \
1748 const UCHAR_T *string_temp; \
1749 \
1750 assert (!FAIL_STACK_EMPTY ()); \
1751 \
1752 /* Remove failure points and point to how many regs pushed. */ \
1753 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1754 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1755 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1756 \
1757 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1758 \
1759 DEBUG_POP (&failure_id); \
1760 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1761 \
1762 /* If the saved string location is NULL, it came from an \
1763 on_failure_keep_string_jump opcode, and we want to throw away the \
1764 saved NULL, thus retaining our current position in the string. */ \
1765 string_temp = POP_FAILURE_POINTER (); \
1766 if (string_temp != NULL) \
1767 str = (const CHAR_T *) string_temp; \
1768 \
1769 DEBUG_PRINT2 (" Popping string %p: `", str); \
1770 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1771 DEBUG_PRINT1 ("'\n"); \
1772 \
1773 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1774 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1775 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1776 \
1777 /* Restore register info. */ \
1778 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1779 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1780 \
1781 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1782 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1783 \
1784 if (1) \
1785 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1786 { \
1787 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1788 \
1789 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1790 DEBUG_PRINT2 (" info: %p\n", \
1791 reg_info[this_reg].word.pointer); \
1792 \
1793 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1794 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1795 \
1796 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1797 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1798 } \
1799 else \
1800 { \
1801 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1802 { \
1803 reg_info[this_reg].word.integer = 0; \
1804 regend[this_reg] = 0; \
1805 regstart[this_reg] = 0; \
1806 } \
1807 highest_active_reg = high_reg; \
1808 } \
1809 \
1810 set_regs_matched_done = 0; \
1811 DEBUG_STATEMENT (nfailure_points_popped++); \
1812} /* POP_FAILURE_POINT */
1813\f
1814/* Structure for per-register (a.k.a. per-group) information.
1815 Other register information, such as the
1816 starting and ending positions (which are addresses), and the list of
1817 inner groups (which is a bits list) are maintained in separate
1818 variables.
1819
1820 We are making a (strictly speaking) nonportable assumption here: that
1821 the compiler will pack our bit fields into something that fits into
1822 the type of `word', i.e., is something that fits into one item on the
1823 failure stack. */
1824
1825
1826/* Declarations and macros for re_match_2. */
1827
1828typedef union
1829{
1830 PREFIX(fail_stack_elt_t) word;
1831 struct
1832 {
1833 /* This field is one if this group can match the empty string,
1834 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1835# define MATCH_NULL_UNSET_VALUE 3
1836 unsigned match_null_string_p : 2;
1837 unsigned is_active : 1;
1838 unsigned matched_something : 1;
1839 unsigned ever_matched_something : 1;
1840 } bits;
1841} PREFIX(register_info_type);
1842
1843# ifndef DEFINED_ONCE
1844# define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1845# define IS_ACTIVE(R) ((R).bits.is_active)
1846# define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1847# define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1848
1849
1850/* Call this when have matched a real character; it sets `matched' flags
1851 for the subexpressions which we are currently inside. Also records
1852 that those subexprs have matched. */
1853# define SET_REGS_MATCHED() \
1854 do \
1855 { \
1856 if (!set_regs_matched_done) \
1857 { \
1858 active_reg_t r; \
1859 set_regs_matched_done = 1; \
1860 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1861 { \
1862 MATCHED_SOMETHING (reg_info[r]) \
1863 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1864 = 1; \
1865 } \
1866 } \
1867 } \
1868 while (0)
1869# endif /* not DEFINED_ONCE */
1870
1871/* Registers are set to a sentinel when they haven't yet matched. */
1872static CHAR_T PREFIX(reg_unset_dummy);
1873# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1874# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1875
1876/* Subroutine declarations and macros for regex_compile. */
1877static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1878static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1879 int arg1, int arg2));
1880static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1881 int arg, UCHAR_T *end));
1882static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1883 int arg1, int arg2, UCHAR_T *end));
1884static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1885 const CHAR_T *p,
1886 reg_syntax_t syntax));
1887static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1888 const CHAR_T *pend,
1889 reg_syntax_t syntax));
1890# ifdef WCHAR
1891static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1892 const CHAR_T **p_ptr,
1893 const CHAR_T *pend,
1894 char *translate,
1895 reg_syntax_t syntax,
1896 UCHAR_T *b,
1897 CHAR_T *char_set));
1898static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1899# else /* BYTE */
1900static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1901 const char **p_ptr,
1902 const char *pend,
1903 char *translate,
1904 reg_syntax_t syntax,
1905 unsigned char *b));
1906# endif /* WCHAR */
1907
1908/* Fetch the next character in the uncompiled pattern---translating it
1909 if necessary. Also cast from a signed character in the constant
1910 string passed to us by the user to an unsigned char that we can use
1911 as an array index (in, e.g., `translate'). */
1912/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913 because it is impossible to allocate 4GB array for some encodings
1914 which have 4 byte character_set like UCS4. */
1915# ifndef PATFETCH
1916# ifdef WCHAR
1917# define PATFETCH(c) \
1918 do {if (p == pend) return REG_EEND; \
1919 c = (UCHAR_T) *p++; \
1920 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1921 } while (0)
1922# else /* BYTE */
1923# define PATFETCH(c) \
1924 do {if (p == pend) return REG_EEND; \
1925 c = (unsigned char) *p++; \
1926 if (translate) c = (unsigned char) translate[c]; \
1927 } while (0)
1928# endif /* WCHAR */
1929# endif
1930
1931/* Fetch the next character in the uncompiled pattern, with no
1932 translation. */
1933# define PATFETCH_RAW(c) \
1934 do {if (p == pend) return REG_EEND; \
1935 c = (UCHAR_T) *p++; \
1936 } while (0)
1937
1938/* Go backwards one character in the pattern. */
1939# define PATUNFETCH p--
1940
1941
1942/* If `translate' is non-null, return translate[D], else just D. We
1943 cast the subscript to translate because some data is declared as
1944 `char *', to avoid warnings when a string constant is passed. But
1945 when we use a character as a subscript we must make it unsigned. */
1946/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1947 because it is impossible to allocate 4GB array for some encodings
1948 which have 4 byte character_set like UCS4. */
1949
1950# ifndef TRANSLATE
1951# ifdef WCHAR
1952# define TRANSLATE(d) \
1953 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1954 ? (char) translate[(unsigned char) (d)] : (d))
1955# else /* BYTE */
1956# define TRANSLATE(d) \
1957 (translate ? (char) translate[(unsigned char) (d)] : (d))
1958# endif /* WCHAR */
1959# endif
1960
1961
1962/* Macros for outputting the compiled pattern into `buffer'. */
1963
1964/* If the buffer isn't allocated when it comes in, use this. */
1965# define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1966
1967/* Make sure we have at least N more bytes of space in buffer. */
1968# ifdef WCHAR
1969# define GET_BUFFER_SPACE(n) \
1970 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1971 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1972 EXTEND_BUFFER ()
1973# else /* BYTE */
1974# define GET_BUFFER_SPACE(n) \
1975 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1976 EXTEND_BUFFER ()
1977# endif /* WCHAR */
1978
1979/* Make sure we have one more byte of buffer space and then add C to it. */
1980# define BUF_PUSH(c) \
1981 do { \
1982 GET_BUFFER_SPACE (1); \
1983 *b++ = (UCHAR_T) (c); \
1984 } while (0)
1985
1986
1987/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1988# define BUF_PUSH_2(c1, c2) \
1989 do { \
1990 GET_BUFFER_SPACE (2); \
1991 *b++ = (UCHAR_T) (c1); \
1992 *b++ = (UCHAR_T) (c2); \
1993 } while (0)
1994
1995
1996/* As with BUF_PUSH_2, except for three bytes. */
1997# define BUF_PUSH_3(c1, c2, c3) \
1998 do { \
1999 GET_BUFFER_SPACE (3); \
2000 *b++ = (UCHAR_T) (c1); \
2001 *b++ = (UCHAR_T) (c2); \
2002 *b++ = (UCHAR_T) (c3); \
2003 } while (0)
2004
2005/* Store a jump with opcode OP at LOC to location TO. We store a
2006 relative address offset by the three bytes the jump itself occupies. */
2007# define STORE_JUMP(op, loc, to) \
2008 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2009
2010/* Likewise, for a two-argument jump. */
2011# define STORE_JUMP2(op, loc, to, arg) \
2012 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2013
2014/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2015# define INSERT_JUMP(op, loc, to) \
2016 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2017
2018/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2019# define INSERT_JUMP2(op, loc, to, arg) \
2020 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2021 arg, b)
2022
2023/* This is not an arbitrary limit: the arguments which represent offsets
2024 into the pattern are two bytes long. So if 2^16 bytes turns out to
2025 be too small, many things would have to change. */
2026/* Any other compiler which, like MSC, has allocation limit below 2^16
2027 bytes will have to use approach similar to what was done below for
2028 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2029 reallocating to 0 bytes. Such thing is not going to work too well.
2030 You have been warned!! */
2031# ifndef DEFINED_ONCE
2032# if defined _MSC_VER && !defined WIN32
2033/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2034 The REALLOC define eliminates a flurry of conversion warnings,
2035 but is not required. */
2036# define MAX_BUF_SIZE 65500L
2037# define REALLOC(p,s) realloc ((p), (size_t) (s))
2038# else
2039# define MAX_BUF_SIZE (1L << 16)
2040# define REALLOC(p,s) realloc ((p), (s))
2041# endif
2042
2043/* Extend the buffer by twice its current size via realloc and
2044 reset the pointers that pointed into the old block to point to the
2045 correct places in the new one. If extending the buffer results in it
2046 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2047# if __BOUNDED_POINTERS__
2048# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2049# define MOVE_BUFFER_POINTER(P) \
2050 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2051# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2052 else \
2053 { \
2054 SET_HIGH_BOUND (b); \
2055 SET_HIGH_BOUND (begalt); \
2056 if (fixup_alt_jump) \
2057 SET_HIGH_BOUND (fixup_alt_jump); \
2058 if (laststart) \
2059 SET_HIGH_BOUND (laststart); \
2060 if (pending_exact) \
2061 SET_HIGH_BOUND (pending_exact); \
2062 }
2063# else
2064# define MOVE_BUFFER_POINTER(P) (P) += incr
2065# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2066# endif
2067# endif /* not DEFINED_ONCE */
2068
2069# ifdef WCHAR
2070# define EXTEND_BUFFER() \
2071 do { \
2072 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2073 int wchar_count; \
2074 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2075 return REG_ESIZE; \
2076 bufp->allocated <<= 1; \
2077 if (bufp->allocated > MAX_BUF_SIZE) \
2078 bufp->allocated = MAX_BUF_SIZE; \
2079 /* How many characters the new buffer can have? */ \
2080 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2081 if (wchar_count == 0) wchar_count = 1; \
2082 /* Truncate the buffer to CHAR_T align. */ \
2083 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2084 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2085 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2086 if (COMPILED_BUFFER_VAR == NULL) \
2087 return REG_ESPACE; \
2088 /* If the buffer moved, move all the pointers into it. */ \
2089 if (old_buffer != COMPILED_BUFFER_VAR) \
2090 { \
2091 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2092 MOVE_BUFFER_POINTER (b); \
2093 MOVE_BUFFER_POINTER (begalt); \
2094 if (fixup_alt_jump) \
2095 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2096 if (laststart) \
2097 MOVE_BUFFER_POINTER (laststart); \
2098 if (pending_exact) \
2099 MOVE_BUFFER_POINTER (pending_exact); \
2100 } \
2101 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2102 } while (0)
2103# else /* BYTE */
2104# define EXTEND_BUFFER() \
2105 do { \
2106 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2107 if (bufp->allocated == MAX_BUF_SIZE) \
2108 return REG_ESIZE; \
2109 bufp->allocated <<= 1; \
2110 if (bufp->allocated > MAX_BUF_SIZE) \
2111 bufp->allocated = MAX_BUF_SIZE; \
2112 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2113 bufp->allocated); \
2114 if (COMPILED_BUFFER_VAR == NULL) \
2115 return REG_ESPACE; \
2116 /* If the buffer moved, move all the pointers into it. */ \
2117 if (old_buffer != COMPILED_BUFFER_VAR) \
2118 { \
2119 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2120 MOVE_BUFFER_POINTER (b); \
2121 MOVE_BUFFER_POINTER (begalt); \
2122 if (fixup_alt_jump) \
2123 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2124 if (laststart) \
2125 MOVE_BUFFER_POINTER (laststart); \
2126 if (pending_exact) \
2127 MOVE_BUFFER_POINTER (pending_exact); \
2128 } \
2129 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2130 } while (0)
2131# endif /* WCHAR */
2132
2133# ifndef DEFINED_ONCE
2134/* Since we have one byte reserved for the register number argument to
2135 {start,stop}_memory, the maximum number of groups we can report
2136 things about is what fits in that byte. */
2137# define MAX_REGNUM 255
2138
2139/* But patterns can have more than `MAX_REGNUM' registers. We just
2140 ignore the excess. */
2141typedef unsigned regnum_t;
2142
2143
2144/* Macros for the compile stack. */
2145
2146/* Since offsets can go either forwards or backwards, this type needs to
2147 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2148/* int may be not enough when sizeof(int) == 2. */
2149typedef long pattern_offset_t;
2150
2151typedef struct
2152{
2153 pattern_offset_t begalt_offset;
2154 pattern_offset_t fixup_alt_jump;
2155 pattern_offset_t inner_group_offset;
2156 pattern_offset_t laststart_offset;
2157 regnum_t regnum;
2158} compile_stack_elt_t;
2159
2160
2161typedef struct
2162{
2163 compile_stack_elt_t *stack;
2164 unsigned size;
2165 unsigned avail; /* Offset of next open position. */
2166} compile_stack_type;
2167
2168
2169# define INIT_COMPILE_STACK_SIZE 32
2170
2171# define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2172# define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2173
2174/* The next available element. */
2175# define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2176
2177# endif /* not DEFINED_ONCE */
2178
2179/* Set the bit for character C in a list. */
2180# ifndef DEFINED_ONCE
2181# define SET_LIST_BIT(c) \
2182 (b[((unsigned char) (c)) / BYTEWIDTH] \
2183 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2184# endif /* DEFINED_ONCE */
2185
2186/* Get the next unsigned number in the uncompiled pattern. */
2187# define GET_UNSIGNED_NUMBER(num) \
2188 { \
2189 while (p != pend) \
2190 { \
2191 PATFETCH (c); \
2192 if (c < '0' || c > '9') \
2193 break; \
2194 if (num <= RE_DUP_MAX) \
2195 { \
2196 if (num < 0) \
2197 num = 0; \
2198 num = num * 10 + c - '0'; \
2199 } \
2200 } \
2201 }
2202
2203# ifndef DEFINED_ONCE
2204# if defined _LIBC || WIDE_CHAR_SUPPORT
2205/* The GNU C library provides support for user-defined character classes
2206 and the functions from ISO C amendement 1. */
2207# ifdef CHARCLASS_NAME_MAX
2208# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2209# else
2210/* This shouldn't happen but some implementation might still have this
2211 problem. Use a reasonable default value. */
2212# define CHAR_CLASS_MAX_LENGTH 256
2213# endif
2214
2215# ifdef _LIBC
2216# define IS_CHAR_CLASS(string) __wctype (string)
2217# else
2218# define IS_CHAR_CLASS(string) wctype (string)
2219# endif
2220# else
2221# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2222
2223# define IS_CHAR_CLASS(string) \
2224 (STREQ (string, "alpha") || STREQ (string, "upper") \
2225 || STREQ (string, "lower") || STREQ (string, "digit") \
2226 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2227 || STREQ (string, "space") || STREQ (string, "print") \
2228 || STREQ (string, "punct") || STREQ (string, "graph") \
2229 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2230# endif
2231# endif /* DEFINED_ONCE */
2232\f
2233# ifndef MATCH_MAY_ALLOCATE
2234
2235/* If we cannot allocate large objects within re_match_2_internal,
2236 we make the fail stack and register vectors global.
2237 The fail stack, we grow to the maximum size when a regexp
2238 is compiled.
2239 The register vectors, we adjust in size each time we
2240 compile a regexp, according to the number of registers it needs. */
2241
2242static PREFIX(fail_stack_type) fail_stack;
2243
2244/* Size with which the following vectors are currently allocated.
2245 That is so we can make them bigger as needed,
2246 but never make them smaller. */
2247# ifdef DEFINED_ONCE
2248static int regs_allocated_size;
2249
2250static const char ** regstart, ** regend;
2251static const char ** old_regstart, ** old_regend;
2252static const char **best_regstart, **best_regend;
2253static const char **reg_dummy;
2254# endif /* DEFINED_ONCE */
2255
2256static PREFIX(register_info_type) *PREFIX(reg_info);
2257static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2258
2259/* Make the register vectors big enough for NUM_REGS registers,
2260 but don't make them smaller. */
2261
2262static void
2263PREFIX(regex_grow_registers) (num_regs)
2264 int num_regs;
2265{
2266 if (num_regs > regs_allocated_size)
2267 {
2268 RETALLOC_IF (regstart, num_regs, const char *);
2269 RETALLOC_IF (regend, num_regs, const char *);
2270 RETALLOC_IF (old_regstart, num_regs, const char *);
2271 RETALLOC_IF (old_regend, num_regs, const char *);
2272 RETALLOC_IF (best_regstart, num_regs, const char *);
2273 RETALLOC_IF (best_regend, num_regs, const char *);
2274 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2275 RETALLOC_IF (reg_dummy, num_regs, const char *);
2276 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2277
2278 regs_allocated_size = num_regs;
2279 }
2280}
2281
2282# endif /* not MATCH_MAY_ALLOCATE */
2283\f
2284# ifndef DEFINED_ONCE
2285static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2286 compile_stack,
2287 regnum_t regnum));
2288# endif /* not DEFINED_ONCE */
2289
2290/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2291 Returns one of error codes defined in `regex.h', or zero for success.
2292
2293 Assumes the `allocated' (and perhaps `buffer') and `translate'
2294 fields are set in BUFP on entry.
2295
2296 If it succeeds, results are put in BUFP (if it returns an error, the
2297 contents of BUFP are undefined):
2298 `buffer' is the compiled pattern;
2299 `syntax' is set to SYNTAX;
2300 `used' is set to the length of the compiled pattern;
2301 `fastmap_accurate' is zero;
2302 `re_nsub' is the number of subexpressions in PATTERN;
2303 `not_bol' and `not_eol' are zero;
2304
2305 The `fastmap' and `newline_anchor' fields are neither
2306 examined nor set. */
2307
2308/* Return, freeing storage we allocated. */
2309# ifdef WCHAR
2310# define FREE_STACK_RETURN(value) \
2311 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2312# else
2313# define FREE_STACK_RETURN(value) \
2314 return (free (compile_stack.stack), value)
2315# endif /* WCHAR */
2316
2317static reg_errcode_t
2318PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2319 const char *ARG_PREFIX(pattern);
2320 size_t ARG_PREFIX(size);
2321 reg_syntax_t syntax;
2322 struct re_pattern_buffer *bufp;
2323{
2324 /* We fetch characters from PATTERN here. Even though PATTERN is
2325 `char *' (i.e., signed), we declare these variables as unsigned, so
2326 they can be reliably used as array indices. */
2327 register UCHAR_T c, c1;
2328
2329#ifdef WCHAR
2330 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2331 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2332 size_t size;
2333 /* offset buffer for optimization. See convert_mbs_to_wc. */
2334 int *mbs_offset = NULL;
2335 /* It hold whether each wchar_t is binary data or not. */
2336 char *is_binary = NULL;
2337 /* A flag whether exactn is handling binary data or not. */
2338 char is_exactn_bin = FALSE;
2339#endif /* WCHAR */
2340
2341 /* A random temporary spot in PATTERN. */
2342 const CHAR_T *p1;
2343
2344 /* Points to the end of the buffer, where we should append. */
2345 register UCHAR_T *b;
2346
2347 /* Keeps track of unclosed groups. */
2348 compile_stack_type compile_stack;
2349
2350 /* Points to the current (ending) position in the pattern. */
2351#ifdef WCHAR
2352 const CHAR_T *p;
2353 const CHAR_T *pend;
2354#else /* BYTE */
2355 const CHAR_T *p = pattern;
2356 const CHAR_T *pend = pattern + size;
2357#endif /* WCHAR */
2358
2359 /* How to translate the characters in the pattern. */
2360 RE_TRANSLATE_TYPE translate = bufp->translate;
2361
2362 /* Address of the count-byte of the most recently inserted `exactn'
2363 command. This makes it possible to tell if a new exact-match
2364 character can be added to that command or if the character requires
2365 a new `exactn' command. */
2366 UCHAR_T *pending_exact = 0;
2367
2368 /* Address of start of the most recently finished expression.
2369 This tells, e.g., postfix * where to find the start of its
2370 operand. Reset at the beginning of groups and alternatives. */
2371 UCHAR_T *laststart = 0;
2372
2373 /* Address of beginning of regexp, or inside of last group. */
2374 UCHAR_T *begalt;
2375
2376 /* Address of the place where a forward jump should go to the end of
2377 the containing expression. Each alternative of an `or' -- except the
2378 last -- ends with a forward jump of this sort. */
2379 UCHAR_T *fixup_alt_jump = 0;
2380
2381 /* Counts open-groups as they are encountered. Remembered for the
2382 matching close-group on the compile stack, so the same register
2383 number is put in the stop_memory as the start_memory. */
2384 regnum_t regnum = 0;
2385
2386#ifdef WCHAR
2387 /* Initialize the wchar_t PATTERN and offset_buffer. */
2388 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2389 mbs_offset = TALLOC(csize + 1, int);
2390 is_binary = TALLOC(csize + 1, char);
2391 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2392 {
2393 free(pattern);
2394 free(mbs_offset);
2395 free(is_binary);
2396 return REG_ESPACE;
2397 }
2398 pattern[csize] = L'\0'; /* sentinel */
2399 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2400 pend = p + size;
2401 if (size < 0)
2402 {
2403 free(pattern);
2404 free(mbs_offset);
2405 free(is_binary);
2406 return REG_BADPAT;
2407 }
2408#endif
2409
2410#ifdef DEBUG
2411 DEBUG_PRINT1 ("\nCompiling pattern: ");
2412 if (debug)
2413 {
2414 unsigned debug_count;
2415
2416 for (debug_count = 0; debug_count < size; debug_count++)
2417 PUT_CHAR (pattern[debug_count]);
2418 putchar ('\n');
2419 }
2420#endif /* DEBUG */
2421
2422 /* Initialize the compile stack. */
2423 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2424 if (compile_stack.stack == NULL)
2425 {
2426#ifdef WCHAR
2427 free(pattern);
2428 free(mbs_offset);
2429 free(is_binary);
2430#endif
2431 return REG_ESPACE;
2432 }
2433
2434 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2435 compile_stack.avail = 0;
2436
2437 /* Initialize the pattern buffer. */
2438 bufp->syntax = syntax;
2439 bufp->fastmap_accurate = 0;
2440 bufp->not_bol = bufp->not_eol = 0;
2441
2442 /* Set `used' to zero, so that if we return an error, the pattern
2443 printer (for debugging) will think there's no pattern. We reset it
2444 at the end. */
2445 bufp->used = 0;
2446
2447 /* Always count groups, whether or not bufp->no_sub is set. */
2448 bufp->re_nsub = 0;
2449
2450#if !defined emacs && !defined SYNTAX_TABLE
2451 /* Initialize the syntax table. */
2452 init_syntax_once ();
2453#endif
2454
2455 if (bufp->allocated == 0)
2456 {
2457 if (bufp->buffer)
2458 { /* If zero allocated, but buffer is non-null, try to realloc
2459 enough space. This loses if buffer's address is bogus, but
2460 that is the user's responsibility. */
2461#ifdef WCHAR
2462 /* Free bufp->buffer and allocate an array for wchar_t pattern
2463 buffer. */
2464 free(bufp->buffer);
2465 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2466 UCHAR_T);
2467#else
2468 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2469#endif /* WCHAR */
2470 }
2471 else
2472 { /* Caller did not allocate a buffer. Do it for them. */
2473 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2474 UCHAR_T);
2475 }
2476
2477 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2478#ifdef WCHAR
2479 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2480#endif /* WCHAR */
2481 bufp->allocated = INIT_BUF_SIZE;
2482 }
2483#ifdef WCHAR
2484 else
2485 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2486#endif
2487
2488 begalt = b = COMPILED_BUFFER_VAR;
2489
2490 /* Loop through the uncompiled pattern until we're at the end. */
2491 while (p != pend)
2492 {
2493 PATFETCH (c);
2494
2495 switch (c)
2496 {
2497 case '^':
2498 {
2499 if ( /* If at start of pattern, it's an operator. */
2500 p == pattern + 1
2501 /* If context independent, it's an operator. */
2502 || syntax & RE_CONTEXT_INDEP_ANCHORS
2503 /* Otherwise, depends on what's come before. */
2504 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2505 BUF_PUSH (begline);
2506 else
2507 goto normal_char;
2508 }
2509 break;
2510
2511
2512 case '$':
2513 {
2514 if ( /* If at end of pattern, it's an operator. */
2515 p == pend
2516 /* If context independent, it's an operator. */
2517 || syntax & RE_CONTEXT_INDEP_ANCHORS
2518 /* Otherwise, depends on what's next. */
2519 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2520 BUF_PUSH (endline);
2521 else
2522 goto normal_char;
2523 }
2524 break;
2525
2526
2527 case '+':
2528 case '?':
2529 if ((syntax & RE_BK_PLUS_QM)
2530 || (syntax & RE_LIMITED_OPS))
2531 goto normal_char;
2532 handle_plus:
2533 case '*':
2534 /* If there is no previous pattern... */
2535 if (!laststart)
2536 {
2537 if (syntax & RE_CONTEXT_INVALID_OPS)
2538 FREE_STACK_RETURN (REG_BADRPT);
2539 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2540 goto normal_char;
2541 }
2542
2543 {
2544 /* Are we optimizing this jump? */
2545 boolean keep_string_p = false;
2546
2547 /* 1 means zero (many) matches is allowed. */
2548 char zero_times_ok = 0, many_times_ok = 0;
2549
2550 /* If there is a sequence of repetition chars, collapse it
2551 down to just one (the right one). We can't combine
2552 interval operators with these because of, e.g., `a{2}*',
2553 which should only match an even number of `a's. */
2554
2555 for (;;)
2556 {
2557 zero_times_ok |= c != '+';
2558 many_times_ok |= c != '?';
2559
2560 if (p == pend)
2561 break;
2562
2563 PATFETCH (c);
2564
2565 if (c == '*'
2566 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2567 ;
2568
2569 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2570 {
2571 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2572
2573 PATFETCH (c1);
2574 if (!(c1 == '+' || c1 == '?'))
2575 {
2576 PATUNFETCH;
2577 PATUNFETCH;
2578 break;
2579 }
2580
2581 c = c1;
2582 }
2583 else
2584 {
2585 PATUNFETCH;
2586 break;
2587 }
2588
2589 /* If we get here, we found another repeat character. */
2590 }
2591
2592 /* Star, etc. applied to an empty pattern is equivalent
2593 to an empty pattern. */
2594 if (!laststart)
2595 break;
2596
2597 /* Now we know whether or not zero matches is allowed
2598 and also whether or not two or more matches is allowed. */
2599 if (many_times_ok)
2600 { /* More than one repetition is allowed, so put in at the
2601 end a backward relative jump from `b' to before the next
2602 jump we're going to put in below (which jumps from
2603 laststart to after this jump).
2604
2605 But if we are at the `*' in the exact sequence `.*\n',
2606 insert an unconditional jump backwards to the .,
2607 instead of the beginning of the loop. This way we only
2608 push a failure point once, instead of every time
2609 through the loop. */
2610 assert (p - 1 > pattern);
2611
2612 /* Allocate the space for the jump. */
2613 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2614
2615 /* We know we are not at the first character of the pattern,
2616 because laststart was nonzero. And we've already
2617 incremented `p', by the way, to be the character after
2618 the `*'. Do we have to do something analogous here
2619 for null bytes, because of RE_DOT_NOT_NULL? */
2620 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2621 && zero_times_ok
2622 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2623 && !(syntax & RE_DOT_NEWLINE))
2624 { /* We have .*\n. */
2625 STORE_JUMP (jump, b, laststart);
2626 keep_string_p = true;
2627 }
2628 else
2629 /* Anything else. */
2630 STORE_JUMP (maybe_pop_jump, b, laststart -
2631 (1 + OFFSET_ADDRESS_SIZE));
2632
2633 /* We've added more stuff to the buffer. */
2634 b += 1 + OFFSET_ADDRESS_SIZE;
2635 }
2636
2637 /* On failure, jump from laststart to b + 3, which will be the
2638 end of the buffer after this jump is inserted. */
2639 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2640 'b + 3'. */
2641 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2642 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2643 : on_failure_jump,
2644 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2645 pending_exact = 0;
2646 b += 1 + OFFSET_ADDRESS_SIZE;
2647
2648 if (!zero_times_ok)
2649 {
2650 /* At least one repetition is required, so insert a
2651 `dummy_failure_jump' before the initial
2652 `on_failure_jump' instruction of the loop. This
2653 effects a skip over that instruction the first time
2654 we hit that loop. */
2655 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2656 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2657 2 + 2 * OFFSET_ADDRESS_SIZE);
2658 b += 1 + OFFSET_ADDRESS_SIZE;
2659 }
2660 }
2661 break;
2662
2663
2664 case '.':
2665 laststart = b;
2666 BUF_PUSH (anychar);
2667 break;
2668
2669
2670 case '[':
2671 {
2672 boolean had_char_class = false;
2673#ifdef WCHAR
2674 CHAR_T range_start = 0xffffffff;
2675#else
2676 unsigned int range_start = 0xffffffff;
2677#endif
2678 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2679
2680#ifdef WCHAR
2681 /* We assume a charset(_not) structure as a wchar_t array.
2682 charset[0] = (re_opcode_t) charset(_not)
2683 charset[1] = l (= length of char_classes)
2684 charset[2] = m (= length of collating_symbols)
2685 charset[3] = n (= length of equivalence_classes)
2686 charset[4] = o (= length of char_ranges)
2687 charset[5] = p (= length of chars)
2688
2689 charset[6] = char_class (wctype_t)
2690 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2691 ...
2692 charset[l+5] = char_class (wctype_t)
2693
2694 charset[l+6] = collating_symbol (wchar_t)
2695 ...
2696 charset[l+m+5] = collating_symbol (wchar_t)
2697 ifdef _LIBC we use the index if
2698 _NL_COLLATE_SYMB_EXTRAMB instead of
2699 wchar_t string.
2700
2701 charset[l+m+6] = equivalence_classes (wchar_t)
2702 ...
2703 charset[l+m+n+5] = equivalence_classes (wchar_t)
2704 ifdef _LIBC we use the index in
2705 _NL_COLLATE_WEIGHT instead of
2706 wchar_t string.
2707
2708 charset[l+m+n+6] = range_start
2709 charset[l+m+n+7] = range_end
2710 ...
2711 charset[l+m+n+2o+4] = range_start
2712 charset[l+m+n+2o+5] = range_end
2713 ifdef _LIBC we use the value looked up
2714 in _NL_COLLATE_COLLSEQ instead of
2715 wchar_t character.
2716
2717 charset[l+m+n+2o+6] = char
2718 ...
2719 charset[l+m+n+2o+p+5] = char
2720
2721 */
2722
2723 /* We need at least 6 spaces: the opcode, the length of
2724 char_classes, the length of collating_symbols, the length of
2725 equivalence_classes, the length of char_ranges, the length of
2726 chars. */
2727 GET_BUFFER_SPACE (6);
2728
2729 /* Save b as laststart. And We use laststart as the pointer
2730 to the first element of the charset here.
2731 In other words, laststart[i] indicates charset[i]. */
2732 laststart = b;
2733
2734 /* We test `*p == '^' twice, instead of using an if
2735 statement, so we only need one BUF_PUSH. */
2736 BUF_PUSH (*p == '^' ? charset_not : charset);
2737 if (*p == '^')
2738 p++;
2739
2740 /* Push the length of char_classes, the length of
2741 collating_symbols, the length of equivalence_classes, the
2742 length of char_ranges and the length of chars. */
2743 BUF_PUSH_3 (0, 0, 0);
2744 BUF_PUSH_2 (0, 0);
2745
2746 /* Remember the first position in the bracket expression. */
2747 p1 = p;
2748
2749 /* charset_not matches newline according to a syntax bit. */
2750 if ((re_opcode_t) b[-6] == charset_not
2751 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2752 {
2753 BUF_PUSH('\n');
2754 laststart[5]++; /* Update the length of characters */
2755 }
2756
2757 /* Read in characters and ranges, setting map bits. */
2758 for (;;)
2759 {
2760 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2761
2762 PATFETCH (c);
2763
2764 /* \ might escape characters inside [...] and [^...]. */
2765 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2766 {
2767 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2768
2769 PATFETCH (c1);
2770 BUF_PUSH(c1);
2771 laststart[5]++; /* Update the length of chars */
2772 range_start = c1;
2773 continue;
2774 }
2775
2776 /* Could be the end of the bracket expression. If it's
2777 not (i.e., when the bracket expression is `[]' so
2778 far), the ']' character bit gets set way below. */
2779 if (c == ']' && p != p1 + 1)
2780 break;
2781
2782 /* Look ahead to see if it's a range when the last thing
2783 was a character class. */
2784 if (had_char_class && c == '-' && *p != ']')
2785 FREE_STACK_RETURN (REG_ERANGE);
2786
2787 /* Look ahead to see if it's a range when the last thing
2788 was a character: if this is a hyphen not at the
2789 beginning or the end of a list, then it's the range
2790 operator. */
2791 if (c == '-'
2792 && !(p - 2 >= pattern && p[-2] == '[')
2793 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2794 && *p != ']')
2795 {
2796 reg_errcode_t ret;
2797 /* Allocate the space for range_start and range_end. */
2798 GET_BUFFER_SPACE (2);
2799 /* Update the pointer to indicate end of buffer. */
2800 b += 2;
2801 ret = wcs_compile_range (range_start, &p, pend, translate,
2802 syntax, b, laststart);
2803 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2804 range_start = 0xffffffff;
2805 }
2806 else if (p[0] == '-' && p[1] != ']')
2807 { /* This handles ranges made up of characters only. */
2808 reg_errcode_t ret;
2809
2810 /* Move past the `-'. */
2811 PATFETCH (c1);
2812 /* Allocate the space for range_start and range_end. */
2813 GET_BUFFER_SPACE (2);
2814 /* Update the pointer to indicate end of buffer. */
2815 b += 2;
2816 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2817 laststart);
2818 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2819 range_start = 0xffffffff;
2820 }
2821
2822 /* See if we're at the beginning of a possible character
2823 class. */
2824 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2825 { /* Leave room for the null. */
2826 char str[CHAR_CLASS_MAX_LENGTH + 1];
2827
2828 PATFETCH (c);
2829 c1 = 0;
2830
2831 /* If pattern is `[[:'. */
2832 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2833
2834 for (;;)
2835 {
2836 PATFETCH (c);
2837 if ((c == ':' && *p == ']') || p == pend)
2838 break;
2839 if (c1 < CHAR_CLASS_MAX_LENGTH)
2840 str[c1++] = c;
2841 else
2842 /* This is in any case an invalid class name. */
2843 str[0] = '\0';
2844 }
2845 str[c1] = '\0';
2846
2847 /* If isn't a word bracketed by `[:' and `:]':
2848 undo the ending character, the letters, and leave
2849 the leading `:' and `[' (but store them as character). */
2850 if (c == ':' && *p == ']')
2851 {
2852 wctype_t wt;
2853 uintptr_t alignedp;
2854
2855 /* Query the character class as wctype_t. */
2856 wt = IS_CHAR_CLASS (str);
2857 if (wt == 0)
2858 FREE_STACK_RETURN (REG_ECTYPE);
2859
2860 /* Throw away the ] at the end of the character
2861 class. */
2862 PATFETCH (c);
2863
2864 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2865
2866 /* Allocate the space for character class. */
2867 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2868 /* Update the pointer to indicate end of buffer. */
2869 b += CHAR_CLASS_SIZE;
2870 /* Move data which follow character classes
2871 not to violate the data. */
2872 insert_space(CHAR_CLASS_SIZE,
2873 laststart + 6 + laststart[1],
2874 b - 1);
2875 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2876 + __alignof__(wctype_t) - 1)
2877 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2878 /* Store the character class. */
2879 *((wctype_t*)alignedp) = wt;
2880 /* Update length of char_classes */
2881 laststart[1] += CHAR_CLASS_SIZE;
2882
2883 had_char_class = true;
2884 }
2885 else
2886 {
2887 c1++;
2888 while (c1--)
2889 PATUNFETCH;
2890 BUF_PUSH ('[');
2891 BUF_PUSH (':');
2892 laststart[5] += 2; /* Update the length of characters */
2893 range_start = ':';
2894 had_char_class = false;
2895 }
2896 }
2897 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2898 || *p == '.'))
2899 {
2900 CHAR_T str[128]; /* Should be large enough. */
2901 CHAR_T delim = *p; /* '=' or '.' */
2902# ifdef _LIBC
2903 uint32_t nrules =
2904 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2905# endif
2906 PATFETCH (c);
2907 c1 = 0;
2908
2909 /* If pattern is `[[=' or '[[.'. */
2910 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2911
2912 for (;;)
2913 {
2914 PATFETCH (c);
2915 if ((c == delim && *p == ']') || p == pend)
2916 break;
2917 if (c1 < sizeof (str) - 1)
2918 str[c1++] = c;
2919 else
2920 /* This is in any case an invalid class name. */
2921 str[0] = '\0';
2922 }
2923 str[c1] = '\0';
2924
2925 if (c == delim && *p == ']' && str[0] != '\0')
2926 {
2927 unsigned int i, offset;
2928 /* If we have no collation data we use the default
2929 collation in which each character is in a class
2930 by itself. It also means that ASCII is the
2931 character set and therefore we cannot have character
2932 with more than one byte in the multibyte
2933 representation. */
2934
2935 /* If not defined _LIBC, we push the name and
2936 `\0' for the sake of matching performance. */
2937 int datasize = c1 + 1;
2938
2939# ifdef _LIBC
2940 int32_t idx = 0;
2941 if (nrules == 0)
2942# endif
2943 {
2944 if (c1 != 1)
2945 FREE_STACK_RETURN (REG_ECOLLATE);
2946 }
2947# ifdef _LIBC
2948 else
2949 {
2950 const int32_t *table;
2951 const int32_t *weights;
2952 const int32_t *extra;
2953 const int32_t *indirect;
2954 wint_t *cp;
2955
2956 /* This #include defines a local function! */
2957# include <locale/weightwc.h>
2958
2959 if(delim == '=')
2960 {
2961 /* We push the index for equivalence class. */
2962 cp = (wint_t*)str;
2963
2964 table = (const int32_t *)
2965 _NL_CURRENT (LC_COLLATE,
2966 _NL_COLLATE_TABLEWC);
2967 weights = (const int32_t *)
2968 _NL_CURRENT (LC_COLLATE,
2969 _NL_COLLATE_WEIGHTWC);
2970 extra = (const int32_t *)
2971 _NL_CURRENT (LC_COLLATE,
2972 _NL_COLLATE_EXTRAWC);
2973 indirect = (const int32_t *)
2974 _NL_CURRENT (LC_COLLATE,
2975 _NL_COLLATE_INDIRECTWC);
2976
2977 idx = findidx ((const wint_t**)&cp);
2978 if (idx == 0 || cp < (wint_t*) str + c1)
2979 /* This is no valid character. */
2980 FREE_STACK_RETURN (REG_ECOLLATE);
2981
2982 str[0] = (wchar_t)idx;
2983 }
2984 else /* delim == '.' */
2985 {
2986 /* We push collation sequence value
2987 for collating symbol. */
2988 int32_t table_size;
2989 const int32_t *symb_table;
2990 const unsigned char *extra;
2991 int32_t idx;
2992 int32_t elem;
2993 int32_t second;
2994 int32_t hash;
2995 char char_str[c1];
2996
2997 /* We have to convert the name to a single-byte
2998 string. This is possible since the names
2999 consist of ASCII characters and the internal
3000 representation is UCS4. */
3001 for (i = 0; i < c1; ++i)
3002 char_str[i] = str[i];
3003
3004 table_size =
3005 _NL_CURRENT_WORD (LC_COLLATE,
3006 _NL_COLLATE_SYMB_HASH_SIZEMB);
3007 symb_table = (const int32_t *)
3008 _NL_CURRENT (LC_COLLATE,
3009 _NL_COLLATE_SYMB_TABLEMB);
3010 extra = (const unsigned char *)
3011 _NL_CURRENT (LC_COLLATE,
3012 _NL_COLLATE_SYMB_EXTRAMB);
3013
3014 /* Locate the character in the hashing table. */
3015 hash = elem_hash (char_str, c1);
3016
3017 idx = 0;
3018 elem = hash % table_size;
3019 second = hash % (table_size - 2);
3020 while (symb_table[2 * elem] != 0)
3021 {
3022 /* First compare the hashing value. */
3023 if (symb_table[2 * elem] == hash
3024 && c1 == extra[symb_table[2 * elem + 1]]
ccea0d85 3025 && memcmp (char_str,
dd771632
JJ
3026 &extra[symb_table[2 * elem + 1]
3027 + 1], c1) == 0)
3028 {
3029 /* Yep, this is the entry. */
3030 idx = symb_table[2 * elem + 1];
3031 idx += 1 + extra[idx];
3032 break;
3033 }
3034
3035 /* Next entry. */
3036 elem += second;
3037 }
3038
3039 if (symb_table[2 * elem] != 0)
3040 {
3041 /* Compute the index of the byte sequence
3042 in the table. */
3043 idx += 1 + extra[idx];
3044 /* Adjust for the alignment. */
ccea0d85 3045 idx = (idx + 3) & ~3;
dd771632
JJ
3046
3047 str[0] = (wchar_t) idx + 4;
3048 }
3049 else if (symb_table[2 * elem] == 0 && c1 == 1)
3050 {
3051 /* No valid character. Match it as a
3052 single byte character. */
3053 had_char_class = false;
3054 BUF_PUSH(str[0]);
3055 /* Update the length of characters */
3056 laststart[5]++;
3057 range_start = str[0];
3058
3059 /* Throw away the ] at the end of the
3060 collating symbol. */
3061 PATFETCH (c);
3062 /* exit from the switch block. */
3063 continue;
3064 }
3065 else
3066 FREE_STACK_RETURN (REG_ECOLLATE);
3067 }
3068 datasize = 1;
3069 }
3070# endif
3071 /* Throw away the ] at the end of the equivalence
3072 class (or collating symbol). */
3073 PATFETCH (c);
3074
3075 /* Allocate the space for the equivalence class
3076 (or collating symbol) (and '\0' if needed). */
3077 GET_BUFFER_SPACE(datasize);
3078 /* Update the pointer to indicate end of buffer. */
3079 b += datasize;
3080
3081 if (delim == '=')
3082 { /* equivalence class */
3083 /* Calculate the offset of char_ranges,
3084 which is next to equivalence_classes. */
3085 offset = laststart[1] + laststart[2]
3086 + laststart[3] +6;
3087 /* Insert space. */
3088 insert_space(datasize, laststart + offset, b - 1);
3089
3090 /* Write the equivalence_class and \0. */
3091 for (i = 0 ; i < datasize ; i++)
3092 laststart[offset + i] = str[i];
3093
3094 /* Update the length of equivalence_classes. */
3095 laststart[3] += datasize;
3096 had_char_class = true;
3097 }
3098 else /* delim == '.' */
3099 { /* collating symbol */
3100 /* Calculate the offset of the equivalence_classes,
3101 which is next to collating_symbols. */
3102 offset = laststart[1] + laststart[2] + 6;
3103 /* Insert space and write the collationg_symbol
3104 and \0. */
3105 insert_space(datasize, laststart + offset, b-1);
3106 for (i = 0 ; i < datasize ; i++)
3107 laststart[offset + i] = str[i];
3108
3109 /* In re_match_2_internal if range_start < -1, we
3110 assume -range_start is the offset of the
3111 collating symbol which is specified as
3112 the character of the range start. So we assign
3113 -(laststart[1] + laststart[2] + 6) to
3114 range_start. */
3115 range_start = -(laststart[1] + laststart[2] + 6);
3116 /* Update the length of collating_symbol. */
3117 laststart[2] += datasize;
3118 had_char_class = false;
3119 }
3120 }
3121 else
3122 {
3123 c1++;
3124 while (c1--)
3125 PATUNFETCH;
3126 BUF_PUSH ('[');
3127 BUF_PUSH (delim);
3128 laststart[5] += 2; /* Update the length of characters */
3129 range_start = delim;
3130 had_char_class = false;
3131 }
3132 }
3133 else
3134 {
3135 had_char_class = false;
3136 BUF_PUSH(c);
3137 laststart[5]++; /* Update the length of characters */
3138 range_start = c;
3139 }
3140 }
3141
3142#else /* BYTE */
3143 /* Ensure that we have enough space to push a charset: the
3144 opcode, the length count, and the bitset; 34 bytes in all. */
3145 GET_BUFFER_SPACE (34);
3146
3147 laststart = b;
3148
3149 /* We test `*p == '^' twice, instead of using an if
3150 statement, so we only need one BUF_PUSH. */
3151 BUF_PUSH (*p == '^' ? charset_not : charset);
3152 if (*p == '^')
3153 p++;
3154
3155 /* Remember the first position in the bracket expression. */
3156 p1 = p;
3157
3158 /* Push the number of bytes in the bitmap. */
3159 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3160
3161 /* Clear the whole map. */
3162 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3163
3164 /* charset_not matches newline according to a syntax bit. */
3165 if ((re_opcode_t) b[-2] == charset_not
3166 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3167 SET_LIST_BIT ('\n');
3168
3169 /* Read in characters and ranges, setting map bits. */
3170 for (;;)
3171 {
3172 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3173
3174 PATFETCH (c);
3175
3176 /* \ might escape characters inside [...] and [^...]. */
3177 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3178 {
3179 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3180
3181 PATFETCH (c1);
3182 SET_LIST_BIT (c1);
3183 range_start = c1;
3184 continue;
3185 }
3186
3187 /* Could be the end of the bracket expression. If it's
3188 not (i.e., when the bracket expression is `[]' so
3189 far), the ']' character bit gets set way below. */
3190 if (c == ']' && p != p1 + 1)
3191 break;
3192
3193 /* Look ahead to see if it's a range when the last thing
3194 was a character class. */
3195 if (had_char_class && c == '-' && *p != ']')
3196 FREE_STACK_RETURN (REG_ERANGE);
3197
3198 /* Look ahead to see if it's a range when the last thing
3199 was a character: if this is a hyphen not at the
3200 beginning or the end of a list, then it's the range
3201 operator. */
3202 if (c == '-'
3203 && !(p - 2 >= pattern && p[-2] == '[')
3204 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3205 && *p != ']')
3206 {
3207 reg_errcode_t ret
3208 = byte_compile_range (range_start, &p, pend, translate,
3209 syntax, b);
3210 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3211 range_start = 0xffffffff;
3212 }
3213
3214 else if (p[0] == '-' && p[1] != ']')
3215 { /* This handles ranges made up of characters only. */
3216 reg_errcode_t ret;
3217
3218 /* Move past the `-'. */
3219 PATFETCH (c1);
3220
3221 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3222 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3223 range_start = 0xffffffff;
3224 }
3225
3226 /* See if we're at the beginning of a possible character
3227 class. */
3228
3229 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3230 { /* Leave room for the null. */
3231 char str[CHAR_CLASS_MAX_LENGTH + 1];
3232
3233 PATFETCH (c);
3234 c1 = 0;
3235
3236 /* If pattern is `[[:'. */
3237 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3238
3239 for (;;)
3240 {
3241 PATFETCH (c);
3242 if ((c == ':' && *p == ']') || p == pend)
3243 break;
3244 if (c1 < CHAR_CLASS_MAX_LENGTH)
3245 str[c1++] = c;
3246 else
3247 /* This is in any case an invalid class name. */
3248 str[0] = '\0';
3249 }
3250 str[c1] = '\0';
3251
3252 /* If isn't a word bracketed by `[:' and `:]':
3253 undo the ending character, the letters, and leave
3254 the leading `:' and `[' (but set bits for them). */
3255 if (c == ':' && *p == ']')
3256 {
3257# if defined _LIBC || WIDE_CHAR_SUPPORT
3258 boolean is_lower = STREQ (str, "lower");
3259 boolean is_upper = STREQ (str, "upper");
3260 wctype_t wt;
3261 int ch;
3262
3263 wt = IS_CHAR_CLASS (str);
3264 if (wt == 0)
3265 FREE_STACK_RETURN (REG_ECTYPE);
3266
3267 /* Throw away the ] at the end of the character
3268 class. */
3269 PATFETCH (c);
3270
3271 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3272
3273 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3274 {
3275# ifdef _LIBC
3276 if (__iswctype (__btowc (ch), wt))
3277 SET_LIST_BIT (ch);
3278# else
3279 if (iswctype (btowc (ch), wt))
3280 SET_LIST_BIT (ch);
3281# endif
3282
3283 if (translate && (is_upper || is_lower)
3284 && (ISUPPER (ch) || ISLOWER (ch)))
3285 SET_LIST_BIT (ch);
3286 }
3287
3288 had_char_class = true;
3289# else
3290 int ch;
3291 boolean is_alnum = STREQ (str, "alnum");
3292 boolean is_alpha = STREQ (str, "alpha");
3293 boolean is_blank = STREQ (str, "blank");
3294 boolean is_cntrl = STREQ (str, "cntrl");
3295 boolean is_digit = STREQ (str, "digit");
3296 boolean is_graph = STREQ (str, "graph");
3297 boolean is_lower = STREQ (str, "lower");
3298 boolean is_print = STREQ (str, "print");
3299 boolean is_punct = STREQ (str, "punct");
3300 boolean is_space = STREQ (str, "space");
3301 boolean is_upper = STREQ (str, "upper");
3302 boolean is_xdigit = STREQ (str, "xdigit");
3303
3304 if (!IS_CHAR_CLASS (str))
3305 FREE_STACK_RETURN (REG_ECTYPE);
3306
3307 /* Throw away the ] at the end of the character
3308 class. */
3309 PATFETCH (c);
3310
3311 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3312
3313 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3314 {
3315 /* This was split into 3 if's to
3316 avoid an arbitrary limit in some compiler. */
3317 if ( (is_alnum && ISALNUM (ch))
3318 || (is_alpha && ISALPHA (ch))
3319 || (is_blank && ISBLANK (ch))
3320 || (is_cntrl && ISCNTRL (ch)))
3321 SET_LIST_BIT (ch);
3322 if ( (is_digit && ISDIGIT (ch))
3323 || (is_graph && ISGRAPH (ch))
3324 || (is_lower && ISLOWER (ch))
3325 || (is_print && ISPRINT (ch)))
3326 SET_LIST_BIT (ch);
3327 if ( (is_punct && ISPUNCT (ch))
3328 || (is_space && ISSPACE (ch))
3329 || (is_upper && ISUPPER (ch))
3330 || (is_xdigit && ISXDIGIT (ch)))
3331 SET_LIST_BIT (ch);
3332 if ( translate && (is_upper || is_lower)
3333 && (ISUPPER (ch) || ISLOWER (ch)))
3334 SET_LIST_BIT (ch);
3335 }
3336 had_char_class = true;
3337# endif /* libc || wctype.h */
3338 }
3339 else
3340 {
3341 c1++;
3342 while (c1--)
3343 PATUNFETCH;
3344 SET_LIST_BIT ('[');
3345 SET_LIST_BIT (':');
3346 range_start = ':';
3347 had_char_class = false;
3348 }
3349 }
3350 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3351 {
3352 unsigned char str[MB_LEN_MAX + 1];
3353# ifdef _LIBC
3354 uint32_t nrules =
3355 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3356# endif
3357
3358 PATFETCH (c);
3359 c1 = 0;
3360
3361 /* If pattern is `[[='. */
3362 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3363
3364 for (;;)
3365 {
3366 PATFETCH (c);
3367 if ((c == '=' && *p == ']') || p == pend)
3368 break;
3369 if (c1 < MB_LEN_MAX)
3370 str[c1++] = c;
3371 else
3372 /* This is in any case an invalid class name. */
3373 str[0] = '\0';
3374 }
3375 str[c1] = '\0';
3376
3377 if (c == '=' && *p == ']' && str[0] != '\0')
3378 {
3379 /* If we have no collation data we use the default
3380 collation in which each character is in a class
3381 by itself. It also means that ASCII is the
3382 character set and therefore we cannot have character
3383 with more than one byte in the multibyte
3384 representation. */
3385# ifdef _LIBC
3386 if (nrules == 0)
3387# endif
3388 {
3389 if (c1 != 1)
3390 FREE_STACK_RETURN (REG_ECOLLATE);
3391
3392 /* Throw away the ] at the end of the equivalence
3393 class. */
3394 PATFETCH (c);
3395
3396 /* Set the bit for the character. */
3397 SET_LIST_BIT (str[0]);
3398 }
3399# ifdef _LIBC
3400 else
3401 {
3402 /* Try to match the byte sequence in `str' against
3403 those known to the collate implementation.
3404 First find out whether the bytes in `str' are
3405 actually from exactly one character. */
3406 const int32_t *table;
3407 const unsigned char *weights;
3408 const unsigned char *extra;
3409 const int32_t *indirect;
3410 int32_t idx;
3411 const unsigned char *cp = str;
3412 int ch;
3413
3414 /* This #include defines a local function! */
3415# include <locale/weight.h>
3416
3417 table = (const int32_t *)
3418 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3419 weights = (const unsigned char *)
3420 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3421 extra = (const unsigned char *)
3422 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3423 indirect = (const int32_t *)
3424 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3425
3426 idx = findidx (&cp);
3427 if (idx == 0 || cp < str + c1)
3428 /* This is no valid character. */
3429 FREE_STACK_RETURN (REG_ECOLLATE);
3430
3431 /* Throw away the ] at the end of the equivalence
3432 class. */
3433 PATFETCH (c);
3434
3435 /* Now we have to go throught the whole table
3436 and find all characters which have the same
3437 first level weight.
3438
3439 XXX Note that this is not entirely correct.
3440 we would have to match multibyte sequences
3441 but this is not possible with the current
3442 implementation. */
3443 for (ch = 1; ch < 256; ++ch)
3444 /* XXX This test would have to be changed if we
3445 would allow matching multibyte sequences. */
3446 if (table[ch] > 0)
3447 {
3448 int32_t idx2 = table[ch];
3449 size_t len = weights[idx2];
3450
3451 /* Test whether the lenghts match. */
3452 if (weights[idx] == len)
3453 {
3454 /* They do. New compare the bytes of
3455 the weight. */
3456 size_t cnt = 0;
3457
3458 while (cnt < len
3459 && (weights[idx + 1 + cnt]
3460 == weights[idx2 + 1 + cnt]))
3461 ++cnt;
3462
3463 if (cnt == len)
3464 /* They match. Mark the character as
3465 acceptable. */
3466 SET_LIST_BIT (ch);
3467 }
3468 }
3469 }
3470# endif
3471 had_char_class = true;
3472 }
3473 else
3474 {
3475 c1++;
3476 while (c1--)
3477 PATUNFETCH;
3478 SET_LIST_BIT ('[');
3479 SET_LIST_BIT ('=');
3480 range_start = '=';
3481 had_char_class = false;
3482 }
3483 }
3484 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3485 {
3486 unsigned char str[128]; /* Should be large enough. */
3487# ifdef _LIBC
3488 uint32_t nrules =
3489 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3490# endif
3491
3492 PATFETCH (c);
3493 c1 = 0;
3494
3495 /* If pattern is `[[.'. */
3496 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3497
3498 for (;;)
3499 {
3500 PATFETCH (c);
3501 if ((c == '.' && *p == ']') || p == pend)
3502 break;
3503 if (c1 < sizeof (str))
3504 str[c1++] = c;
3505 else
3506 /* This is in any case an invalid class name. */
3507 str[0] = '\0';
3508 }
3509 str[c1] = '\0';
3510
3511 if (c == '.' && *p == ']' && str[0] != '\0')
3512 {
3513 /* If we have no collation data we use the default
3514 collation in which each character is the name
3515 for its own class which contains only the one
3516 character. It also means that ASCII is the
3517 character set and therefore we cannot have character
3518 with more than one byte in the multibyte
3519 representation. */
3520# ifdef _LIBC
3521 if (nrules == 0)
3522# endif
3523 {
3524 if (c1 != 1)
3525 FREE_STACK_RETURN (REG_ECOLLATE);
3526
3527 /* Throw away the ] at the end of the equivalence
3528 class. */
3529 PATFETCH (c);
3530
3531 /* Set the bit for the character. */
3532 SET_LIST_BIT (str[0]);
3533 range_start = ((const unsigned char *) str)[0];
3534 }
3535# ifdef _LIBC
3536 else
3537 {
3538 /* Try to match the byte sequence in `str' against
3539 those known to the collate implementation.
3540 First find out whether the bytes in `str' are
3541 actually from exactly one character. */
3542 int32_t table_size;
3543 const int32_t *symb_table;
3544 const unsigned char *extra;
3545 int32_t idx;
3546 int32_t elem;
3547 int32_t second;
3548 int32_t hash;
3549
3550 table_size =
3551 _NL_CURRENT_WORD (LC_COLLATE,
3552 _NL_COLLATE_SYMB_HASH_SIZEMB);
3553 symb_table = (const int32_t *)
3554 _NL_CURRENT (LC_COLLATE,
3555 _NL_COLLATE_SYMB_TABLEMB);
3556 extra = (const unsigned char *)
3557 _NL_CURRENT (LC_COLLATE,
3558 _NL_COLLATE_SYMB_EXTRAMB);
3559
3560 /* Locate the character in the hashing table. */
3561 hash = elem_hash (str, c1);
3562
3563 idx = 0;
3564 elem = hash % table_size;
3565 second = hash % (table_size - 2);
3566 while (symb_table[2 * elem] != 0)
3567 {
3568 /* First compare the hashing value. */
3569 if (symb_table[2 * elem] == hash
3570 && c1 == extra[symb_table[2 * elem + 1]]
3571 && memcmp (str,
3572 &extra[symb_table[2 * elem + 1]
3573 + 1],
3574 c1) == 0)
3575 {
3576 /* Yep, this is the entry. */
3577 idx = symb_table[2 * elem + 1];
3578 idx += 1 + extra[idx];
3579 break;
3580 }
3581
3582 /* Next entry. */
3583 elem += second;
3584 }
3585
3586 if (symb_table[2 * elem] == 0)
3587 /* This is no valid character. */
3588 FREE_STACK_RETURN (REG_ECOLLATE);
3589
3590 /* Throw away the ] at the end of the equivalence
3591 class. */
3592 PATFETCH (c);
3593
3594 /* Now add the multibyte character(s) we found
3595 to the accept list.
3596
3597 XXX Note that this is not entirely correct.
3598 we would have to match multibyte sequences
3599 but this is not possible with the current
3600 implementation. Also, we have to match
3601 collating symbols, which expand to more than
3602 one file, as a whole and not allow the
3603 individual bytes. */
3604 c1 = extra[idx++];
3605 if (c1 == 1)
3606 range_start = extra[idx];
3607 while (c1-- > 0)
3608 {
3609 SET_LIST_BIT (extra[idx]);
3610 ++idx;
3611 }
3612 }
3613# endif
3614 had_char_class = false;
3615 }
3616 else
3617 {
3618 c1++;
3619 while (c1--)
3620 PATUNFETCH;
3621 SET_LIST_BIT ('[');
3622 SET_LIST_BIT ('.');
3623 range_start = '.';
3624 had_char_class = false;
3625 }
3626 }
3627 else
3628 {
3629 had_char_class = false;
3630 SET_LIST_BIT (c);
3631 range_start = c;
3632 }
3633 }
3634
3635 /* Discard any (non)matching list bytes that are all 0 at the
3636 end of the map. Decrease the map-length byte too. */
3637 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3638 b[-1]--;
3639 b += b[-1];
3640#endif /* WCHAR */
3641 }
3642 break;
3643
3644
3645 case '(':
3646 if (syntax & RE_NO_BK_PARENS)
3647 goto handle_open;
3648 else
3649 goto normal_char;
3650
3651
3652 case ')':
3653 if (syntax & RE_NO_BK_PARENS)
3654 goto handle_close;
3655 else
3656 goto normal_char;
3657
3658
3659 case '\n':
3660 if (syntax & RE_NEWLINE_ALT)
3661 goto handle_alt;
3662 else
3663 goto normal_char;
3664
3665
3666 case '|':
3667 if (syntax & RE_NO_BK_VBAR)
3668 goto handle_alt;
3669 else
3670 goto normal_char;
3671
3672
3673 case '{':
3674 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3675 goto handle_interval;
3676 else
3677 goto normal_char;
3678
3679
3680 case '\\':
3681 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3682
3683 /* Do not translate the character after the \, so that we can
3684 distinguish, e.g., \B from \b, even if we normally would
3685 translate, e.g., B to b. */
3686 PATFETCH_RAW (c);
3687
3688 switch (c)
3689 {
3690 case '(':
3691 if (syntax & RE_NO_BK_PARENS)
3692 goto normal_backslash;
3693
3694 handle_open:
3695 bufp->re_nsub++;
3696 regnum++;
3697
3698 if (COMPILE_STACK_FULL)
3699 {
3700 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3701 compile_stack_elt_t);
3702 if (compile_stack.stack == NULL) return REG_ESPACE;
3703
3704 compile_stack.size <<= 1;
3705 }
3706
3707 /* These are the values to restore when we hit end of this
3708 group. They are all relative offsets, so that if the
3709 whole pattern moves because of realloc, they will still
3710 be valid. */
3711 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3712 COMPILE_STACK_TOP.fixup_alt_jump
3713 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3714 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3715 COMPILE_STACK_TOP.regnum = regnum;
3716
3717 /* We will eventually replace the 0 with the number of
3718 groups inner to this one. But do not push a
3719 start_memory for groups beyond the last one we can
3720 represent in the compiled pattern. */
3721 if (regnum <= MAX_REGNUM)
3722 {
3723 COMPILE_STACK_TOP.inner_group_offset = b
3724 - COMPILED_BUFFER_VAR + 2;
3725 BUF_PUSH_3 (start_memory, regnum, 0);
3726 }
3727
3728 compile_stack.avail++;
3729
3730 fixup_alt_jump = 0;
3731 laststart = 0;
3732 begalt = b;
3733 /* If we've reached MAX_REGNUM groups, then this open
3734 won't actually generate any code, so we'll have to
3735 clear pending_exact explicitly. */
3736 pending_exact = 0;
3737 break;
3738
3739
3740 case ')':
3741 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3742
3743 if (COMPILE_STACK_EMPTY)
3744 {
3745 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3746 goto normal_backslash;
3747 else
3748 FREE_STACK_RETURN (REG_ERPAREN);
3749 }
3750
3751 handle_close:
3752 if (fixup_alt_jump)
3753 { /* Push a dummy failure point at the end of the
3754 alternative for a possible future
3755 `pop_failure_jump' to pop. See comments at
3756 `push_dummy_failure' in `re_match_2'. */
3757 BUF_PUSH (push_dummy_failure);
3758
3759 /* We allocated space for this jump when we assigned
3760 to `fixup_alt_jump', in the `handle_alt' case below. */
3761 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3762 }
3763
3764 /* See similar code for backslashed left paren above. */
3765 if (COMPILE_STACK_EMPTY)
3766 {
3767 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3768 goto normal_char;
3769 else
3770 FREE_STACK_RETURN (REG_ERPAREN);
3771 }
3772
3773 /* Since we just checked for an empty stack above, this
3774 ``can't happen''. */
3775 assert (compile_stack.avail != 0);
3776 {
3777 /* We don't just want to restore into `regnum', because
3778 later groups should continue to be numbered higher,
3779 as in `(ab)c(de)' -- the second group is #2. */
3780 regnum_t this_group_regnum;
3781
3782 compile_stack.avail--;
3783 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3784 fixup_alt_jump
3785 = COMPILE_STACK_TOP.fixup_alt_jump
3786 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3787 : 0;
3788 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3789 this_group_regnum = COMPILE_STACK_TOP.regnum;
3790 /* If we've reached MAX_REGNUM groups, then this open
3791 won't actually generate any code, so we'll have to
3792 clear pending_exact explicitly. */
3793 pending_exact = 0;
3794
3795 /* We're at the end of the group, so now we know how many
3796 groups were inside this one. */
3797 if (this_group_regnum <= MAX_REGNUM)
3798 {
3799 UCHAR_T *inner_group_loc
3800 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3801
3802 *inner_group_loc = regnum - this_group_regnum;
3803 BUF_PUSH_3 (stop_memory, this_group_regnum,
3804 regnum - this_group_regnum);
3805 }
3806 }
3807 break;
3808
3809
3810 case '|': /* `\|'. */
3811 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3812 goto normal_backslash;
3813 handle_alt:
3814 if (syntax & RE_LIMITED_OPS)
3815 goto normal_char;
3816
3817 /* Insert before the previous alternative a jump which
3818 jumps to this alternative if the former fails. */
3819 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3820 INSERT_JUMP (on_failure_jump, begalt,
3821 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3822 pending_exact = 0;
3823 b += 1 + OFFSET_ADDRESS_SIZE;
3824
3825 /* The alternative before this one has a jump after it
3826 which gets executed if it gets matched. Adjust that
3827 jump so it will jump to this alternative's analogous
3828 jump (put in below, which in turn will jump to the next
3829 (if any) alternative's such jump, etc.). The last such
3830 jump jumps to the correct final destination. A picture:
3831 _____ _____
3832 | | | |
3833 | v | v
3834 a | b | c
3835
3836 If we are at `b', then fixup_alt_jump right now points to a
3837 three-byte space after `a'. We'll put in the jump, set
3838 fixup_alt_jump to right after `b', and leave behind three
3839 bytes which we'll fill in when we get to after `c'. */
3840
3841 if (fixup_alt_jump)
3842 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3843
3844 /* Mark and leave space for a jump after this alternative,
3845 to be filled in later either by next alternative or
3846 when know we're at the end of a series of alternatives. */
3847 fixup_alt_jump = b;
3848 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3849 b += 1 + OFFSET_ADDRESS_SIZE;
3850
3851 laststart = 0;
3852 begalt = b;
3853 break;
3854
3855
3856 case '{':
3857 /* If \{ is a literal. */
3858 if (!(syntax & RE_INTERVALS)
3859 /* If we're at `\{' and it's not the open-interval
3860 operator. */
3861 || (syntax & RE_NO_BK_BRACES))
3862 goto normal_backslash;
3863
3864 handle_interval:
3865 {
3866 /* If got here, then the syntax allows intervals. */
3867
3868 /* At least (most) this many matches must be made. */
3869 int lower_bound = -1, upper_bound = -1;
3870
3871 /* Place in the uncompiled pattern (i.e., just after
3872 the '{') to go back to if the interval is invalid. */
3873 const CHAR_T *beg_interval = p;
3874
3875 if (p == pend)
3876 goto invalid_interval;
3877
3878 GET_UNSIGNED_NUMBER (lower_bound);
3879
3880 if (c == ',')
3881 {
3882 GET_UNSIGNED_NUMBER (upper_bound);
3883 if (upper_bound < 0)
3884 upper_bound = RE_DUP_MAX;
3885 }
3886 else
3887 /* Interval such as `{1}' => match exactly once. */
3888 upper_bound = lower_bound;
3889
3890 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3891 goto invalid_interval;
3892
3893 if (!(syntax & RE_NO_BK_BRACES))
3894 {
3895 if (c != '\\' || p == pend)
3896 goto invalid_interval;
3897 PATFETCH (c);
3898 }
3899
3900 if (c != '}')
3901 goto invalid_interval;
3902
3903 /* If it's invalid to have no preceding re. */
3904 if (!laststart)
3905 {
3906 if (syntax & RE_CONTEXT_INVALID_OPS
3907 && !(syntax & RE_INVALID_INTERVAL_ORD))
3908 FREE_STACK_RETURN (REG_BADRPT);
3909 else if (syntax & RE_CONTEXT_INDEP_OPS)
3910 laststart = b;
3911 else
3912 goto unfetch_interval;
3913 }
3914
3915 /* We just parsed a valid interval. */
3916
3917 if (RE_DUP_MAX < upper_bound)
3918 FREE_STACK_RETURN (REG_BADBR);
3919
3920 /* If the upper bound is zero, don't want to succeed at
3921 all; jump from `laststart' to `b + 3', which will be
3922 the end of the buffer after we insert the jump. */
3923 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3924 instead of 'b + 3'. */
3925 if (upper_bound == 0)
3926 {
3927 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3928 INSERT_JUMP (jump, laststart, b + 1
3929 + OFFSET_ADDRESS_SIZE);
3930 b += 1 + OFFSET_ADDRESS_SIZE;
3931 }
3932
3933 /* Otherwise, we have a nontrivial interval. When
3934 we're all done, the pattern will look like:
3935 set_number_at <jump count> <upper bound>
3936 set_number_at <succeed_n count> <lower bound>
3937 succeed_n <after jump addr> <succeed_n count>
3938 <body of loop>
3939 jump_n <succeed_n addr> <jump count>
3940 (The upper bound and `jump_n' are omitted if
3941 `upper_bound' is 1, though.) */
3942 else
3943 { /* If the upper bound is > 1, we need to insert
3944 more at the end of the loop. */
3945 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3946 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3947
3948 GET_BUFFER_SPACE (nbytes);
3949
3950 /* Initialize lower bound of the `succeed_n', even
3951 though it will be set during matching by its
3952 attendant `set_number_at' (inserted next),
3953 because `re_compile_fastmap' needs to know.
3954 Jump to the `jump_n' we might insert below. */
3955 INSERT_JUMP2 (succeed_n, laststart,
3956 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3957 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3958 , lower_bound);
3959 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3960
3961 /* Code to initialize the lower bound. Insert
3962 before the `succeed_n'. The `5' is the last two
3963 bytes of this `set_number_at', plus 3 bytes of
3964 the following `succeed_n'. */
3965 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3966 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3967 of the following `succeed_n'. */
3968 PREFIX(insert_op2) (set_number_at, laststart, 1
3969 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3970 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3971
3972 if (upper_bound > 1)
3973 { /* More than one repetition is allowed, so
3974 append a backward jump to the `succeed_n'
3975 that starts this interval.
3976
3977 When we've reached this during matching,
3978 we'll have matched the interval once, so
3979 jump back only `upper_bound - 1' times. */
3980 STORE_JUMP2 (jump_n, b, laststart
3981 + 2 * OFFSET_ADDRESS_SIZE + 1,
3982 upper_bound - 1);
3983 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3984
3985 /* The location we want to set is the second
3986 parameter of the `jump_n'; that is `b-2' as
3987 an absolute address. `laststart' will be
3988 the `set_number_at' we're about to insert;
3989 `laststart+3' the number to set, the source
3990 for the relative address. But we are
3991 inserting into the middle of the pattern --
3992 so everything is getting moved up by 5.
3993 Conclusion: (b - 2) - (laststart + 3) + 5,
3994 i.e., b - laststart.
3995
3996 We insert this at the beginning of the loop
3997 so that if we fail during matching, we'll
3998 reinitialize the bounds. */
3999 PREFIX(insert_op2) (set_number_at, laststart,
4000 b - laststart,
4001 upper_bound - 1, b);
4002 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4003 }
4004 }
4005 pending_exact = 0;
4006 break;
4007
4008 invalid_interval:
4009 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4010 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4011 unfetch_interval:
4012 /* Match the characters as literals. */
4013 p = beg_interval;
4014 c = '{';
4015 if (syntax & RE_NO_BK_BRACES)
4016 goto normal_char;
4017 else
4018 goto normal_backslash;
4019 }
4020
4021#ifdef emacs
4022 /* There is no way to specify the before_dot and after_dot
4023 operators. rms says this is ok. --karl */
4024 case '=':
4025 BUF_PUSH (at_dot);
4026 break;
4027
4028 case 's':
4029 laststart = b;
4030 PATFETCH (c);
4031 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4032 break;
4033
4034 case 'S':
4035 laststart = b;
4036 PATFETCH (c);
4037 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4038 break;
4039#endif /* emacs */
4040
4041
4042 case 'w':
4043 if (syntax & RE_NO_GNU_OPS)
4044 goto normal_char;
4045 laststart = b;
4046 BUF_PUSH (wordchar);
4047 break;
4048
4049
4050 case 'W':
4051 if (syntax & RE_NO_GNU_OPS)
4052 goto normal_char;
4053 laststart = b;
4054 BUF_PUSH (notwordchar);
4055 break;
4056
4057
4058 case '<':
4059 if (syntax & RE_NO_GNU_OPS)
4060 goto normal_char;
4061 BUF_PUSH (wordbeg);
4062 break;
4063
4064 case '>':
4065 if (syntax & RE_NO_GNU_OPS)
4066 goto normal_char;
4067 BUF_PUSH (wordend);
4068 break;
4069
4070 case 'b':
4071 if (syntax & RE_NO_GNU_OPS)
4072 goto normal_char;
4073 BUF_PUSH (wordbound);
4074 break;
4075
4076 case 'B':
4077 if (syntax & RE_NO_GNU_OPS)
4078 goto normal_char;
4079 BUF_PUSH (notwordbound);
4080 break;
4081
4082 case '`':
4083 if (syntax & RE_NO_GNU_OPS)
4084 goto normal_char;
4085 BUF_PUSH (begbuf);
4086 break;
4087
4088 case '\'':
4089 if (syntax & RE_NO_GNU_OPS)
4090 goto normal_char;
4091 BUF_PUSH (endbuf);
4092 break;
4093
4094 case '1': case '2': case '3': case '4': case '5':
4095 case '6': case '7': case '8': case '9':
4096 if (syntax & RE_NO_BK_REFS)
4097 goto normal_char;
4098
4099 c1 = c - '0';
4100
4101 if (c1 > regnum)
4102 FREE_STACK_RETURN (REG_ESUBREG);
4103
4104 /* Can't back reference to a subexpression if inside of it. */
4105 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4106 goto normal_char;
4107
4108 laststart = b;
4109 BUF_PUSH_2 (duplicate, c1);
4110 break;
4111
4112
4113 case '+':
4114 case '?':
4115 if (syntax & RE_BK_PLUS_QM)
4116 goto handle_plus;
4117 else
4118 goto normal_backslash;
4119
4120 default:
4121 normal_backslash:
4122 /* You might think it would be useful for \ to mean
4123 not to translate; but if we don't translate it
4124 it will never match anything. */
4125 c = TRANSLATE (c);
4126 goto normal_char;
4127 }
4128 break;
4129
4130
4131 default:
4132 /* Expects the character in `c'. */
4133 normal_char:
4134 /* If no exactn currently being built. */
4135 if (!pending_exact
4136#ifdef WCHAR
4137 /* If last exactn handle binary(or character) and
4138 new exactn handle character(or binary). */
4139 || is_exactn_bin != is_binary[p - 1 - pattern]
4140#endif /* WCHAR */
4141
4142 /* If last exactn not at current position. */
4143 || pending_exact + *pending_exact + 1 != b
4144
4145 /* We have only one byte following the exactn for the count. */
4146 || *pending_exact == (1 << BYTEWIDTH) - 1
4147
4148 /* If followed by a repetition operator. */
4149 || *p == '*' || *p == '^'
4150 || ((syntax & RE_BK_PLUS_QM)
4151 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4152 : (*p == '+' || *p == '?'))
4153 || ((syntax & RE_INTERVALS)
4154 && ((syntax & RE_NO_BK_BRACES)
4155 ? *p == '{'
4156 : (p[0] == '\\' && p[1] == '{'))))
4157 {
4158 /* Start building a new exactn. */
4159
4160 laststart = b;
4161
4162#ifdef WCHAR
4163 /* Is this exactn binary data or character? */
4164 is_exactn_bin = is_binary[p - 1 - pattern];
4165 if (is_exactn_bin)
4166 BUF_PUSH_2 (exactn_bin, 0);
4167 else
4168 BUF_PUSH_2 (exactn, 0);
4169#else
4170 BUF_PUSH_2 (exactn, 0);
4171#endif /* WCHAR */
4172 pending_exact = b - 1;
4173 }
4174
4175 BUF_PUSH (c);
4176 (*pending_exact)++;
4177 break;
4178 } /* switch (c) */
4179 } /* while p != pend */
4180
4181
4182 /* Through the pattern now. */
4183
4184 if (fixup_alt_jump)
4185 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4186
4187 if (!COMPILE_STACK_EMPTY)
4188 FREE_STACK_RETURN (REG_EPAREN);
4189
4190 /* If we don't want backtracking, force success
4191 the first time we reach the end of the compiled pattern. */
4192 if (syntax & RE_NO_POSIX_BACKTRACKING)
4193 BUF_PUSH (succeed);
4194
4195#ifdef WCHAR
4196 free (pattern);
4197 free (mbs_offset);
4198 free (is_binary);
4199#endif
4200 free (compile_stack.stack);
4201
4202 /* We have succeeded; set the length of the buffer. */
4203#ifdef WCHAR
4204 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4205#else
4206 bufp->used = b - bufp->buffer;
4207#endif
4208
4209#ifdef DEBUG
4210 if (debug)
4211 {
4212 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4213 PREFIX(print_compiled_pattern) (bufp);
4214 }
4215#endif /* DEBUG */
4216
4217#ifndef MATCH_MAY_ALLOCATE
4218 /* Initialize the failure stack to the largest possible stack. This
4219 isn't necessary unless we're trying to avoid calling alloca in
4220 the search and match routines. */
4221 {
4222 int num_regs = bufp->re_nsub + 1;
4223
4224 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4225 is strictly greater than re_max_failures, the largest possible stack
4226 is 2 * re_max_failures failure points. */
4227 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4228 {
4229 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4230
4231# ifdef emacs
4232 if (! fail_stack.stack)
4233 fail_stack.stack
4234 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4235 * sizeof (PREFIX(fail_stack_elt_t)));
4236 else
4237 fail_stack.stack
4238 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4239 (fail_stack.size
4240 * sizeof (PREFIX(fail_stack_elt_t))));
4241# else /* not emacs */
4242 if (! fail_stack.stack)
4243 fail_stack.stack
4244 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4245 * sizeof (PREFIX(fail_stack_elt_t)));
4246 else
4247 fail_stack.stack
4248 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4249 (fail_stack.size
4250 * sizeof (PREFIX(fail_stack_elt_t))));
4251# endif /* not emacs */
4252 }
4253
4254 PREFIX(regex_grow_registers) (num_regs);
4255 }
4256#endif /* not MATCH_MAY_ALLOCATE */
4257
4258 return REG_NOERROR;
4259} /* regex_compile */
4260
4261/* Subroutines for `regex_compile'. */
4262
4263/* Store OP at LOC followed by two-byte integer parameter ARG. */
4264/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4265
4266static void
4267PREFIX(store_op1) (op, loc, arg)
4268 re_opcode_t op;
4269 UCHAR_T *loc;
4270 int arg;
4271{
4272 *loc = (UCHAR_T) op;
4273 STORE_NUMBER (loc + 1, arg);
4274}
4275
4276
4277/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4278/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4279
4280static void
4281PREFIX(store_op2) (op, loc, arg1, arg2)
4282 re_opcode_t op;
4283 UCHAR_T *loc;
4284 int arg1, arg2;
4285{
4286 *loc = (UCHAR_T) op;
4287 STORE_NUMBER (loc + 1, arg1);
4288 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4289}
4290
4291
4292/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4293 for OP followed by two-byte integer parameter ARG. */
4294/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4295
4296static void
4297PREFIX(insert_op1) (op, loc, arg, end)
4298 re_opcode_t op;
4299 UCHAR_T *loc;
4300 int arg;
4301 UCHAR_T *end;
4302{
4303 register UCHAR_T *pfrom = end;
4304 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4305
4306 while (pfrom != loc)
4307 *--pto = *--pfrom;
4308
4309 PREFIX(store_op1) (op, loc, arg);
4310}
4311
4312
4313/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4314/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4315
4316static void
4317PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4318 re_opcode_t op;
4319 UCHAR_T *loc;
4320 int arg1, arg2;
4321 UCHAR_T *end;
4322{
4323 register UCHAR_T *pfrom = end;
4324 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4325
4326 while (pfrom != loc)
4327 *--pto = *--pfrom;
4328
4329 PREFIX(store_op2) (op, loc, arg1, arg2);
4330}
4331
4332
4333/* P points to just after a ^ in PATTERN. Return true if that ^ comes
4334 after an alternative or a begin-subexpression. We assume there is at
4335 least one character before the ^. */
4336
4337static boolean
4338PREFIX(at_begline_loc_p) (pattern, p, syntax)
4339 const CHAR_T *pattern, *p;
4340 reg_syntax_t syntax;
4341{
4342 const CHAR_T *prev = p - 2;
4343 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4344
4345 return
4346 /* After a subexpression? */
4347 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4348 /* After an alternative? */
4349 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4350}
4351
4352
4353/* The dual of at_begline_loc_p. This one is for $. We assume there is
4354 at least one character after the $, i.e., `P < PEND'. */
4355
4356static boolean
4357PREFIX(at_endline_loc_p) (p, pend, syntax)
4358 const CHAR_T *p, *pend;
4359 reg_syntax_t syntax;
4360{
4361 const CHAR_T *next = p;
4362 boolean next_backslash = *next == '\\';
4363 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4364
4365 return
4366 /* Before a subexpression? */
4367 (syntax & RE_NO_BK_PARENS ? *next == ')'
4368 : next_backslash && next_next && *next_next == ')')
4369 /* Before an alternative? */
4370 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4371 : next_backslash && next_next && *next_next == '|');
4372}
4373
4374#else /* not INSIDE_RECURSION */
4375
4376/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4377 false if it's not. */
4378
4379static boolean
4380group_in_compile_stack (compile_stack, regnum)
4381 compile_stack_type compile_stack;
4382 regnum_t regnum;
4383{
4384 int this_element;
4385
4386 for (this_element = compile_stack.avail - 1;
4387 this_element >= 0;
4388 this_element--)
4389 if (compile_stack.stack[this_element].regnum == regnum)
4390 return true;
4391
4392 return false;
4393}
4394#endif /* not INSIDE_RECURSION */
4395
4396#ifdef INSIDE_RECURSION
4397
4398#ifdef WCHAR
4399/* This insert space, which size is "num", into the pattern at "loc".
4400 "end" must point the end of the allocated buffer. */
4401static void
4402insert_space (num, loc, end)
4403 int num;
4404 CHAR_T *loc;
4405 CHAR_T *end;
4406{
4407 register CHAR_T *pto = end;
4408 register CHAR_T *pfrom = end - num;
4409
4410 while (pfrom >= loc)
4411 *pto-- = *pfrom--;
4412}
4413#endif /* WCHAR */
4414
4415#ifdef WCHAR
4416static reg_errcode_t
4417wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4418 char_set)
4419 CHAR_T range_start_char;
4420 const CHAR_T **p_ptr, *pend;
4421 CHAR_T *char_set, *b;
4422 RE_TRANSLATE_TYPE translate;
4423 reg_syntax_t syntax;
4424{
4425 const CHAR_T *p = *p_ptr;
4426 CHAR_T range_start, range_end;
4427 reg_errcode_t ret;
4428# ifdef _LIBC
4429 uint32_t nrules;
4430 uint32_t start_val, end_val;
4431# endif
4432 if (p == pend)
4433 return REG_ERANGE;
4434
4435# ifdef _LIBC
4436 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4437 if (nrules != 0)
4438 {
4439 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4440 _NL_COLLATE_COLLSEQWC);
4441 const unsigned char *extra = (const unsigned char *)
4442 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4443
4444 if (range_start_char < -1)
4445 {
4446 /* range_start is a collating symbol. */
4447 int32_t *wextra;
4448 /* Retreive the index and get collation sequence value. */
4449 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4450 start_val = wextra[1 + *wextra];
4451 }
4452 else
4453 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4454
4455 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4456
4457 /* Report an error if the range is empty and the syntax prohibits
4458 this. */
4459 ret = ((syntax & RE_NO_EMPTY_RANGES)
4460 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4461
4462 /* Insert space to the end of the char_ranges. */
4463 insert_space(2, b - char_set[5] - 2, b - 1);
4464 *(b - char_set[5] - 2) = (wchar_t)start_val;
4465 *(b - char_set[5] - 1) = (wchar_t)end_val;
4466 char_set[4]++; /* ranges_index */
4467 }
4468 else
4469# endif
4470 {
4471 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4472 range_start_char;
4473 range_end = TRANSLATE (p[0]);
4474 /* Report an error if the range is empty and the syntax prohibits
4475 this. */
4476 ret = ((syntax & RE_NO_EMPTY_RANGES)
4477 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4478
4479 /* Insert space to the end of the char_ranges. */
4480 insert_space(2, b - char_set[5] - 2, b - 1);
4481 *(b - char_set[5] - 2) = range_start;
4482 *(b - char_set[5] - 1) = range_end;
4483 char_set[4]++; /* ranges_index */
4484 }
4485 /* Have to increment the pointer into the pattern string, so the
4486 caller isn't still at the ending character. */
4487 (*p_ptr)++;
4488
4489 return ret;
4490}
4491#else /* BYTE */
4492/* Read the ending character of a range (in a bracket expression) from the
4493 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4494 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4495 Then we set the translation of all bits between the starting and
4496 ending characters (inclusive) in the compiled pattern B.
4497
4498 Return an error code.
4499
4500 We use these short variable names so we can use the same macros as
4501 `regex_compile' itself. */
4502
4503static reg_errcode_t
4504byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4505 unsigned int range_start_char;
4506 const char **p_ptr, *pend;
4507 RE_TRANSLATE_TYPE translate;
4508 reg_syntax_t syntax;
4509 unsigned char *b;
4510{
4511 unsigned this_char;
4512 const char *p = *p_ptr;
4513 reg_errcode_t ret;
4514# if _LIBC
4515 const unsigned char *collseq;
4516 unsigned int start_colseq;
4517 unsigned int end_colseq;
4518# else
4519 unsigned end_char;
4520# endif
4521
4522 if (p == pend)
4523 return REG_ERANGE;
4524
4525 /* Have to increment the pointer into the pattern string, so the
4526 caller isn't still at the ending character. */
4527 (*p_ptr)++;
4528
4529 /* Report an error if the range is empty and the syntax prohibits this. */
4530 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4531
4532# if _LIBC
4533 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4534 _NL_COLLATE_COLLSEQMB);
4535
4536 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4537 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4538 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4539 {
4540 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4541
4542 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4543 {
4544 SET_LIST_BIT (TRANSLATE (this_char));
4545 ret = REG_NOERROR;
4546 }
4547 }
4548# else
4549 /* Here we see why `this_char' has to be larger than an `unsigned
4550 char' -- we would otherwise go into an infinite loop, since all
4551 characters <= 0xff. */
4552 range_start_char = TRANSLATE (range_start_char);
4553 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4554 and some compilers cast it to int implicitly, so following for_loop
4555 may fall to (almost) infinite loop.
4556 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4557 To avoid this, we cast p[0] to unsigned int and truncate it. */
4558 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4559
4560 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4561 {
4562 SET_LIST_BIT (TRANSLATE (this_char));
4563 ret = REG_NOERROR;
4564 }
4565# endif
4566
4567 return ret;
4568}
4569#endif /* WCHAR */
4570\f
4571/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4572 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4573 characters can start a string that matches the pattern. This fastmap
4574 is used by re_search to skip quickly over impossible starting points.
4575
4576 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4577 area as BUFP->fastmap.
4578
4579 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4580 the pattern buffer.
4581
4582 Returns 0 if we succeed, -2 if an internal error. */
4583
4584#ifdef WCHAR
4585/* local function for re_compile_fastmap.
4586 truncate wchar_t character to char. */
4587static unsigned char truncate_wchar (CHAR_T c);
4588
4589static unsigned char
4590truncate_wchar (c)
4591 CHAR_T c;
4592{
d0708dc1
UD
4593 unsigned char buf[MB_CUR_MAX];
4594 mbstate_t state;
4595 int retval;
4596 memset (&state, '\0', sizeof (state));
4597# ifdef _LIBC
4598 retval = __wcrtomb (buf, c, &state);
4599# else
4600 retval = wcrtomb (buf, c, &state);
4601# endif
4602 return retval > 0 ? buf[0] : (unsigned char) c;
dd771632
JJ
4603}
4604#endif /* WCHAR */
4605
4606static int
4607PREFIX(re_compile_fastmap) (bufp)
4608 struct re_pattern_buffer *bufp;
4609{
4610 int j, k;
4611#ifdef MATCH_MAY_ALLOCATE
4612 PREFIX(fail_stack_type) fail_stack;
4613#endif
4614#ifndef REGEX_MALLOC
4615 char *destination;
4616#endif
4617
4618 register char *fastmap = bufp->fastmap;
4619
4620#ifdef WCHAR
4621 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4622 pattern to (char*) in regex_compile. */
4623 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4624 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4625#else /* BYTE */
4626 UCHAR_T *pattern = bufp->buffer;
4627 register UCHAR_T *pend = pattern + bufp->used;
4628#endif /* WCHAR */
4629 UCHAR_T *p = pattern;
4630
4631#ifdef REL_ALLOC
4632 /* This holds the pointer to the failure stack, when
4633 it is allocated relocatably. */
4634 fail_stack_elt_t *failure_stack_ptr;
4635#endif
4636
4637 /* Assume that each path through the pattern can be null until
4638 proven otherwise. We set this false at the bottom of switch
4639 statement, to which we get only if a particular path doesn't
4640 match the empty string. */
4641 boolean path_can_be_null = true;
4642
4643 /* We aren't doing a `succeed_n' to begin with. */
4644 boolean succeed_n_p = false;
4645
4646 assert (fastmap != NULL && p != NULL);
4647
4648 INIT_FAIL_STACK ();
4649 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4650 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4651 bufp->can_be_null = 0;
4652
4653 while (1)
4654 {
f08b7eee 4655 if (p == pend || *p == (UCHAR_T) succeed)
dd771632
JJ
4656 {
4657 /* We have reached the (effective) end of pattern. */
4658 if (!FAIL_STACK_EMPTY ())
4659 {
4660 bufp->can_be_null |= path_can_be_null;
4661
4662 /* Reset for next path. */
4663 path_can_be_null = true;
4664
4665 p = fail_stack.stack[--fail_stack.avail].pointer;
4666
4667 continue;
4668 }
4669 else
4670 break;
4671 }
4672
4673 /* We should never be about to go beyond the end of the pattern. */
4674 assert (p < pend);
4675
4676 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4677 {
4678
4679 /* I guess the idea here is to simply not bother with a fastmap
4680 if a backreference is used, since it's too hard to figure out
4681 the fastmap for the corresponding group. Setting
4682 `can_be_null' stops `re_search_2' from using the fastmap, so
4683 that is all we do. */
4684 case duplicate:
4685 bufp->can_be_null = 1;
4686 goto done;
4687
4688
4689 /* Following are the cases which match a character. These end
4690 with `break'. */
4691
4692#ifdef WCHAR
4693 case exactn:
4694 fastmap[truncate_wchar(p[1])] = 1;
4695 break;
4696#else /* BYTE */
4697 case exactn:
4698 fastmap[p[1]] = 1;
4699 break;
4700#endif /* WCHAR */
4701#ifdef MBS_SUPPORT
4702 case exactn_bin:
4703 fastmap[p[1]] = 1;
4704 break;
4705#endif
4706
4707#ifdef WCHAR
4708 /* It is hard to distinguish fastmap from (multi byte) characters
4709 which depends on current locale. */
4710 case charset:
4711 case charset_not:
4712 case wordchar:
4713 case notwordchar:
4714 bufp->can_be_null = 1;
4715 goto done;
4716#else /* BYTE */
4717 case charset:
4718 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4719 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4720 fastmap[j] = 1;
4721 break;
4722
4723
4724 case charset_not:
4725 /* Chars beyond end of map must be allowed. */
4726 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4727 fastmap[j] = 1;
4728
4729 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4730 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4731 fastmap[j] = 1;
4732 break;
4733
4734
4735 case wordchar:
4736 for (j = 0; j < (1 << BYTEWIDTH); j++)
4737 if (SYNTAX (j) == Sword)
4738 fastmap[j] = 1;
4739 break;
4740
4741
4742 case notwordchar:
4743 for (j = 0; j < (1 << BYTEWIDTH); j++)
4744 if (SYNTAX (j) != Sword)
4745 fastmap[j] = 1;
4746 break;
4747#endif /* WCHAR */
4748
4749 case anychar:
4750 {
4751 int fastmap_newline = fastmap['\n'];
4752
4753 /* `.' matches anything ... */
4754 for (j = 0; j < (1 << BYTEWIDTH); j++)
4755 fastmap[j] = 1;
4756
4757 /* ... except perhaps newline. */
4758 if (!(bufp->syntax & RE_DOT_NEWLINE))
4759 fastmap['\n'] = fastmap_newline;
4760
4761 /* Return if we have already set `can_be_null'; if we have,
4762 then the fastmap is irrelevant. Something's wrong here. */
4763 else if (bufp->can_be_null)
4764 goto done;
4765
4766 /* Otherwise, have to check alternative paths. */
4767 break;
4768 }
4769
4770#ifdef emacs
4771 case syntaxspec:
4772 k = *p++;
4773 for (j = 0; j < (1 << BYTEWIDTH); j++)
4774 if (SYNTAX (j) == (enum syntaxcode) k)
4775 fastmap[j] = 1;
4776 break;
4777
4778
4779 case notsyntaxspec:
4780 k = *p++;
4781 for (j = 0; j < (1 << BYTEWIDTH); j++)
4782 if (SYNTAX (j) != (enum syntaxcode) k)
4783 fastmap[j] = 1;
4784 break;
4785
4786
4787 /* All cases after this match the empty string. These end with
4788 `continue'. */
4789
4790
4791 case before_dot:
4792 case at_dot:
4793 case after_dot:
4794 continue;
4795#endif /* emacs */
4796
4797
4798 case no_op:
4799 case begline:
4800 case endline:
4801 case begbuf:
4802 case endbuf:
4803 case wordbound:
4804 case notwordbound:
4805 case wordbeg:
4806 case wordend:
4807 case push_dummy_failure:
4808 continue;
4809
4810
4811 case jump_n:
4812 case pop_failure_jump:
4813 case maybe_pop_jump:
4814 case jump:
4815 case jump_past_alt:
4816 case dummy_failure_jump:
4817 EXTRACT_NUMBER_AND_INCR (j, p);
4818 p += j;
4819 if (j > 0)
4820 continue;
4821
4822 /* Jump backward implies we just went through the body of a
4823 loop and matched nothing. Opcode jumped to should be
4824 `on_failure_jump' or `succeed_n'. Just treat it like an
4825 ordinary jump. For a * loop, it has pushed its failure
4826 point already; if so, discard that as redundant. */
4827 if ((re_opcode_t) *p != on_failure_jump
4828 && (re_opcode_t) *p != succeed_n)
4829 continue;
4830
4831 p++;
4832 EXTRACT_NUMBER_AND_INCR (j, p);
4833 p += j;
4834
4835 /* If what's on the stack is where we are now, pop it. */
4836 if (!FAIL_STACK_EMPTY ()
4837 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4838 fail_stack.avail--;
4839
4840 continue;
4841
4842
4843 case on_failure_jump:
4844 case on_failure_keep_string_jump:
4845 handle_on_failure_jump:
4846 EXTRACT_NUMBER_AND_INCR (j, p);
4847
4848 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4849 end of the pattern. We don't want to push such a point,
4850 since when we restore it above, entering the switch will
4851 increment `p' past the end of the pattern. We don't need
4852 to push such a point since we obviously won't find any more
4853 fastmap entries beyond `pend'. Such a pattern can match
4854 the null string, though. */
4855 if (p + j < pend)
4856 {
4857 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4858 {
4859 RESET_FAIL_STACK ();
4860 return -2;
4861 }
4862 }
4863 else
4864 bufp->can_be_null = 1;
4865
4866 if (succeed_n_p)
4867 {
4868 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4869 succeed_n_p = false;
4870 }
4871
4872 continue;
4873
4874
4875 case succeed_n:
4876 /* Get to the number of times to succeed. */
4877 p += OFFSET_ADDRESS_SIZE;
4878
4879 /* Increment p past the n for when k != 0. */
4880 EXTRACT_NUMBER_AND_INCR (k, p);
4881 if (k == 0)
4882 {
4883 p -= 2 * OFFSET_ADDRESS_SIZE;
4884 succeed_n_p = true; /* Spaghetti code alert. */
4885 goto handle_on_failure_jump;
4886 }
4887 continue;
4888
4889
4890 case set_number_at:
4891 p += 2 * OFFSET_ADDRESS_SIZE;
4892 continue;
4893
4894
4895 case start_memory:
4896 case stop_memory:
4897 p += 2;
4898 continue;
4899
4900
4901 default:
4902 abort (); /* We have listed all the cases. */
4903 } /* switch *p++ */
4904
4905 /* Getting here means we have found the possible starting
4906 characters for one path of the pattern -- and that the empty
4907 string does not match. We need not follow this path further.
4908 Instead, look at the next alternative (remembered on the
4909 stack), or quit if no more. The test at the top of the loop
4910 does these things. */
4911 path_can_be_null = false;
4912 p = pend;
4913 } /* while p */
4914
4915 /* Set `can_be_null' for the last path (also the first path, if the
4916 pattern is empty). */
4917 bufp->can_be_null |= path_can_be_null;
4918
4919 done:
4920 RESET_FAIL_STACK ();
4921 return 0;
4922}
4923
4924#else /* not INSIDE_RECURSION */
4925
4926int
4927re_compile_fastmap (bufp)
4928 struct re_pattern_buffer *bufp;
4929{
4930# ifdef MBS_SUPPORT
4931 if (MB_CUR_MAX != 1)
4932 return wcs_re_compile_fastmap(bufp);
4933 else
4934# endif
4935 return byte_re_compile_fastmap(bufp);
4936} /* re_compile_fastmap */
4937#ifdef _LIBC
4938weak_alias (__re_compile_fastmap, re_compile_fastmap)
4939#endif
4940\f
4941
4942/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4943 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4944 this memory for recording register information. STARTS and ENDS
4945 must be allocated using the malloc library routine, and must each
4946 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4947
4948 If NUM_REGS == 0, then subsequent matches should allocate their own
4949 register data.
4950
4951 Unless this function is called, the first search or match using
4952 PATTERN_BUFFER will allocate its own register data, without
4953 freeing the old data. */
4954
4955void
4956re_set_registers (bufp, regs, num_regs, starts, ends)
4957 struct re_pattern_buffer *bufp;
4958 struct re_registers *regs;
4959 unsigned num_regs;
4960 regoff_t *starts, *ends;
4961{
4962 if (num_regs)
4963 {
4964 bufp->regs_allocated = REGS_REALLOCATE;
4965 regs->num_regs = num_regs;
4966 regs->start = starts;
4967 regs->end = ends;
4968 }
4969 else
4970 {
4971 bufp->regs_allocated = REGS_UNALLOCATED;
4972 regs->num_regs = 0;
4973 regs->start = regs->end = (regoff_t *) 0;
4974 }
4975}
4976#ifdef _LIBC
4977weak_alias (__re_set_registers, re_set_registers)
4978#endif
4979\f
4980/* Searching routines. */
4981
4982/* Like re_search_2, below, but only one string is specified, and
4983 doesn't let you say where to stop matching. */
4984
4985int
4986re_search (bufp, string, size, startpos, range, regs)
4987 struct re_pattern_buffer *bufp;
4988 const char *string;
4989 int size, startpos, range;
4990 struct re_registers *regs;
4991{
4992 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4993 regs, size);
4994}
4995#ifdef _LIBC
4996weak_alias (__re_search, re_search)
4997#endif
4998
4999
5000/* Using the compiled pattern in BUFP->buffer, first tries to match the
5001 virtual concatenation of STRING1 and STRING2, starting first at index
5002 STARTPOS, then at STARTPOS + 1, and so on.
5003
5004 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5005
5006 RANGE is how far to scan while trying to match. RANGE = 0 means try
5007 only at STARTPOS; in general, the last start tried is STARTPOS +
5008 RANGE.
5009
5010 In REGS, return the indices of the virtual concatenation of STRING1
5011 and STRING2 that matched the entire BUFP->buffer and its contained
5012 subexpressions.
5013
5014 Do not consider matching one past the index STOP in the virtual
5015 concatenation of STRING1 and STRING2.
5016
5017 We return either the position in the strings at which the match was
5018 found, -1 if no match, or -2 if error (such as failure
5019 stack overflow). */
5020
5021int
5022re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5023 struct re_pattern_buffer *bufp;
5024 const char *string1, *string2;
5025 int size1, size2;
5026 int startpos;
5027 int range;
5028 struct re_registers *regs;
5029 int stop;
5030{
5031# ifdef MBS_SUPPORT
5032 if (MB_CUR_MAX != 1)
5033 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5034 range, regs, stop);
5035 else
5036# endif
5037 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5038 range, regs, stop);
5039} /* re_search_2 */
5040#ifdef _LIBC
5041weak_alias (__re_search_2, re_search_2)
5042#endif
5043
5044#endif /* not INSIDE_RECURSION */
5045
5046#ifdef INSIDE_RECURSION
5047
5048#ifdef MATCH_MAY_ALLOCATE
5049# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5050#else
5051# define FREE_VAR(var) if (var) free (var); var = NULL
5052#endif
5053
5054#ifdef WCHAR
c4b9cfe0
AJ
5055# define MAX_ALLOCA_SIZE 2000
5056
5057# define FREE_WCS_BUFFERS() \
5058 do { \
5059 if (size1 > MAX_ALLOCA_SIZE) \
5060 { \
5061 free (wcs_string1); \
5062 free (mbs_offset1); \
5063 } \
5064 else \
5065 { \
5066 FREE_VAR (wcs_string1); \
5067 FREE_VAR (mbs_offset1); \
5068 } \
5069 if (size2 > MAX_ALLOCA_SIZE) \
5070 { \
5071 free (wcs_string2); \
5072 free (mbs_offset2); \
5073 } \
5074 else \
5075 { \
5076 FREE_VAR (wcs_string2); \
5077 FREE_VAR (mbs_offset2); \
5078 } \
dd771632
JJ
5079 } while (0)
5080
5081#endif
5082
c4b9cfe0 5083
dd771632
JJ
5084static int
5085PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5086 regs, stop)
5087 struct re_pattern_buffer *bufp;
5088 const char *string1, *string2;
5089 int size1, size2;
5090 int startpos;
5091 int range;
5092 struct re_registers *regs;
5093 int stop;
5094{
5095 int val;
5096 register char *fastmap = bufp->fastmap;
5097 register RE_TRANSLATE_TYPE translate = bufp->translate;
5098 int total_size = size1 + size2;
5099 int endpos = startpos + range;
5100#ifdef WCHAR
5101 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5102 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5103 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5104 int wcs_size1 = 0, wcs_size2 = 0;
5105 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5106 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5107 /* They hold whether each wchar_t is binary data or not. */
5108 char *is_binary = NULL;
5109#endif /* WCHAR */
5110
5111 /* Check for out-of-range STARTPOS. */
5112 if (startpos < 0 || startpos > total_size)
5113 return -1;
5114
5115 /* Fix up RANGE if it might eventually take us outside
5116 the virtual concatenation of STRING1 and STRING2.
5117 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5118 if (endpos < 0)
5119 range = 0 - startpos;
5120 else if (endpos > total_size)
5121 range = total_size - startpos;
5122
5123 /* If the search isn't to be a backwards one, don't waste time in a
5124 search for a pattern that must be anchored. */
5125 if (bufp->used > 0 && range > 0
5126 && ((re_opcode_t) bufp->buffer[0] == begbuf
5127 /* `begline' is like `begbuf' if it cannot match at newlines. */
5128 || ((re_opcode_t) bufp->buffer[0] == begline
5129 && !bufp->newline_anchor)))
5130 {
5131 if (startpos > 0)
5132 return -1;
5133 else
5134 range = 1;
5135 }
5136
5137#ifdef emacs
5138 /* In a forward search for something that starts with \=.
5139 don't keep searching past point. */
5140 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5141 {
5142 range = PT - startpos;
5143 if (range <= 0)
5144 return -1;
5145 }
5146#endif /* emacs */
5147
5148 /* Update the fastmap now if not correct already. */
5149 if (fastmap && !bufp->fastmap_accurate)
5150 if (re_compile_fastmap (bufp) == -2)
5151 return -2;
5152
5153#ifdef WCHAR
5154 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5155 fill them with converted string. */
5156 if (size1 != 0)
5157 {
c4b9cfe0
AJ
5158 if (size1 > MAX_ALLOCA_SIZE)
5159 {
5160 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5161 mbs_offset1 = TALLOC (size1 + 1, int);
5162 is_binary = TALLOC (size1 + 1, char);
5163 }
5164 else
5165 {
5166 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5167 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5168 is_binary = REGEX_TALLOC (size1 + 1, char);
5169 }
dd771632
JJ
5170 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5171 {
c4b9cfe0
AJ
5172 if (size1 > MAX_ALLOCA_SIZE)
5173 {
5174 free (wcs_string1);
5175 free (mbs_offset1);
5176 free (is_binary);
5177 }
5178 else
5179 {
5180 FREE_VAR (wcs_string1);
5181 FREE_VAR (mbs_offset1);
5182 FREE_VAR (is_binary);
5183 }
dd771632
JJ
5184 return -2;
5185 }
5186 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5187 mbs_offset1, is_binary);
5188 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
c4b9cfe0
AJ
5189 if (size1 > MAX_ALLOCA_SIZE)
5190 free (is_binary);
5191 else
5192 FREE_VAR (is_binary);
dd771632
JJ
5193 }
5194 if (size2 != 0)
5195 {
c4b9cfe0
AJ
5196 if (size2 > MAX_ALLOCA_SIZE)
5197 {
5198 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5199 mbs_offset2 = TALLOC (size2 + 1, int);
5200 is_binary = TALLOC (size2 + 1, char);
5201 }
5202 else
5203 {
5204 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5205 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5206 is_binary = REGEX_TALLOC (size2 + 1, char);
5207 }
dd771632
JJ
5208 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5209 {
5210 FREE_WCS_BUFFERS ();
c4b9cfe0
AJ
5211 if (size2 > MAX_ALLOCA_SIZE)
5212 free (is_binary);
5213 else
5214 FREE_VAR (is_binary);
dd771632
JJ
5215 return -2;
5216 }
5217 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5218 mbs_offset2, is_binary);
5219 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
c4b9cfe0
AJ
5220 if (size2 > MAX_ALLOCA_SIZE)
5221 free (is_binary);
5222 else
5223 FREE_VAR (is_binary);
dd771632
JJ
5224 }
5225#endif /* WCHAR */
5226
5227
5228 /* Loop through the string, looking for a place to start matching. */
5229 for (;;)
5230 {
5231 /* If a fastmap is supplied, skip quickly over characters that
5232 cannot be the start of a match. If the pattern can match the
5233 null string, however, we don't need to skip characters; we want
5234 the first null string. */
5235 if (fastmap && startpos < total_size && !bufp->can_be_null)
5236 {
5237 if (range > 0) /* Searching forwards. */
5238 {
5239 register const char *d;
5240 register int lim = 0;
5241 int irange = range;
5242
5243 if (startpos < size1 && startpos + range >= size1)
5244 lim = range - (size1 - startpos);
5245
5246 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5247
5248 /* Written out as an if-else to avoid testing `translate'
5249 inside the loop. */
5250 if (translate)
5251 while (range > lim
5252 && !fastmap[(unsigned char)
5253 translate[(unsigned char) *d++]])
5254 range--;
5255 else
5256 while (range > lim && !fastmap[(unsigned char) *d++])
5257 range--;
5258
5259 startpos += irange - range;
5260 }
5261 else /* Searching backwards. */
5262 {
5263 register CHAR_T c = (size1 == 0 || startpos >= size1
5264 ? string2[startpos - size1]
5265 : string1[startpos]);
5266
5267 if (!fastmap[(unsigned char) TRANSLATE (c)])
5268 goto advance;
5269 }
5270 }
5271
5272 /* If can't match the null string, and that's all we have left, fail. */
5273 if (range >= 0 && startpos == total_size && fastmap
5274 && !bufp->can_be_null)
5275 {
5276#ifdef WCHAR
5277 FREE_WCS_BUFFERS ();
5278#endif
5279 return -1;
5280 }
5281
5282#ifdef WCHAR
5283 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5284 size2, startpos, regs, stop,
5285 wcs_string1, wcs_size1,
5286 wcs_string2, wcs_size2,
5287 mbs_offset1, mbs_offset2);
5288#else /* BYTE */
5289 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5290 size2, startpos, regs, stop);
5291#endif /* BYTE */
5292
5293#ifndef REGEX_MALLOC
5294# ifdef C_ALLOCA
5295 alloca (0);
5296# endif
5297#endif
5298
5299 if (val >= 0)
5300 {
5301#ifdef WCHAR
5302 FREE_WCS_BUFFERS ();
5303#endif
5304 return startpos;
5305 }
5306
5307 if (val == -2)
5308 {
5309#ifdef WCHAR
5310 FREE_WCS_BUFFERS ();
5311#endif
5312 return -2;
5313 }
5314
5315 advance:
5316 if (!range)
5317 break;
5318 else if (range > 0)
5319 {
5320 range--;
5321 startpos++;
5322 }
5323 else
5324 {
5325 range++;
5326 startpos--;
5327 }
5328 }
5329#ifdef WCHAR
5330 FREE_WCS_BUFFERS ();
5331#endif
5332 return -1;
5333}
5334
5335#ifdef WCHAR
5336/* This converts PTR, a pointer into one of the search wchar_t strings
5337 `string1' and `string2' into an multibyte string offset from the
5338 beginning of that string. We use mbs_offset to optimize.
5339 See convert_mbs_to_wcs. */
5340# define POINTER_TO_OFFSET(ptr) \
5341 (FIRST_STRING_P (ptr) \
5342 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5343 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5344 + csize1)))
5345#else /* BYTE */
5346/* This converts PTR, a pointer into one of the search strings `string1'
5347 and `string2' into an offset from the beginning of that string. */
5348# define POINTER_TO_OFFSET(ptr) \
5349 (FIRST_STRING_P (ptr) \
5350 ? ((regoff_t) ((ptr) - string1)) \
5351 : ((regoff_t) ((ptr) - string2 + size1)))
5352#endif /* WCHAR */
5353
5354/* Macros for dealing with the split strings in re_match_2. */
5355
5356#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5357
5358/* Call before fetching a character with *d. This switches over to
5359 string2 if necessary. */
5360#define PREFETCH() \
5361 while (d == dend) \
5362 { \
5363 /* End of string2 => fail. */ \
5364 if (dend == end_match_2) \
5365 goto fail; \
5366 /* End of string1 => advance to string2. */ \
5367 d = string2; \
5368 dend = end_match_2; \
5369 }
5370
5371/* Test if at very beginning or at very end of the virtual concatenation
5372 of `string1' and `string2'. If only one string, it's `string2'. */
5373#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5374#define AT_STRINGS_END(d) ((d) == end2)
5375
5376
5377/* Test if D points to a character which is word-constituent. We have
5378 two special cases to check for: if past the end of string1, look at
5379 the first character in string2; and if before the beginning of
5380 string2, look at the last character in string1. */
5381#ifdef WCHAR
5382/* Use internationalized API instead of SYNTAX. */
5383# define WORDCHAR_P(d) \
5384 (iswalnum ((wint_t)((d) == end1 ? *string2 \
27ffc806
DD
5385 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5386 || ((d) == end1 ? *string2 \
5387 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
dd771632
JJ
5388#else /* BYTE */
5389# define WORDCHAR_P(d) \
5390 (SYNTAX ((d) == end1 ? *string2 \
5391 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5392 == Sword)
5393#endif /* WCHAR */
5394
5395/* Disabled due to a compiler bug -- see comment at case wordbound */
5396#if 0
5397/* Test if the character before D and the one at D differ with respect
5398 to being word-constituent. */
5399#define AT_WORD_BOUNDARY(d) \
5400 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5401 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5402#endif
5403
5404/* Free everything we malloc. */
5405#ifdef MATCH_MAY_ALLOCATE
5406# ifdef WCHAR
5407# define FREE_VARIABLES() \
5408 do { \
5409 REGEX_FREE_STACK (fail_stack.stack); \
5410 FREE_VAR (regstart); \
5411 FREE_VAR (regend); \
5412 FREE_VAR (old_regstart); \
5413 FREE_VAR (old_regend); \
5414 FREE_VAR (best_regstart); \
5415 FREE_VAR (best_regend); \
5416 FREE_VAR (reg_info); \
5417 FREE_VAR (reg_dummy); \
5418 FREE_VAR (reg_info_dummy); \
5419 if (!cant_free_wcs_buf) \
5420 { \
5421 FREE_VAR (string1); \
5422 FREE_VAR (string2); \
5423 FREE_VAR (mbs_offset1); \
5424 FREE_VAR (mbs_offset2); \
5425 } \
5426 } while (0)
5427# else /* BYTE */
5428# define FREE_VARIABLES() \
5429 do { \
5430 REGEX_FREE_STACK (fail_stack.stack); \
5431 FREE_VAR (regstart); \
5432 FREE_VAR (regend); \
5433 FREE_VAR (old_regstart); \
5434 FREE_VAR (old_regend); \
5435 FREE_VAR (best_regstart); \
5436 FREE_VAR (best_regend); \
5437 FREE_VAR (reg_info); \
5438 FREE_VAR (reg_dummy); \
5439 FREE_VAR (reg_info_dummy); \
5440 } while (0)
5441# endif /* WCHAR */
5442#else
5443# ifdef WCHAR
5444# define FREE_VARIABLES() \
5445 do { \
5446 if (!cant_free_wcs_buf) \
5447 { \
5448 FREE_VAR (string1); \
5449 FREE_VAR (string2); \
5450 FREE_VAR (mbs_offset1); \
5451 FREE_VAR (mbs_offset2); \
5452 } \
5453 } while (0)
5454# else /* BYTE */
5455# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5456# endif /* WCHAR */
5457#endif /* not MATCH_MAY_ALLOCATE */
5458
5459/* These values must meet several constraints. They must not be valid
5460 register values; since we have a limit of 255 registers (because
5461 we use only one byte in the pattern for the register number), we can
5462 use numbers larger than 255. They must differ by 1, because of
5463 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5464 be larger than the value for the highest register, so we do not try
5465 to actually save any registers when none are active. */
5466#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5467#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5468\f
5469#else /* not INSIDE_RECURSION */
5470/* Matching routines. */
5471
5472#ifndef emacs /* Emacs never uses this. */
5473/* re_match is like re_match_2 except it takes only a single string. */
5474
5475int
5476re_match (bufp, string, size, pos, regs)
5477 struct re_pattern_buffer *bufp;
5478 const char *string;
5479 int size, pos;
5480 struct re_registers *regs;
5481{
5482 int result;
5483# ifdef MBS_SUPPORT
5484 if (MB_CUR_MAX != 1)
5485 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5486 pos, regs, size,
5487 NULL, 0, NULL, 0, NULL, NULL);
5488 else
5489# endif
5490 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5491 pos, regs, size);
5492# ifndef REGEX_MALLOC
5493# ifdef C_ALLOCA
5494 alloca (0);
5495# endif
5496# endif
5497 return result;
5498}
5499# ifdef _LIBC
5500weak_alias (__re_match, re_match)
5501# endif
5502#endif /* not emacs */
5503
5504#endif /* not INSIDE_RECURSION */
5505
5506#ifdef INSIDE_RECURSION
5507static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5508 UCHAR_T *end,
5509 PREFIX(register_info_type) *reg_info));
5510static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5511 UCHAR_T *end,
5512 PREFIX(register_info_type) *reg_info));
5513static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5514 UCHAR_T *end,
5515 PREFIX(register_info_type) *reg_info));
5516static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5517 int len, char *translate));
5518#else /* not INSIDE_RECURSION */
5519
5520/* re_match_2 matches the compiled pattern in BUFP against the
5521 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5522 and SIZE2, respectively). We start matching at POS, and stop
5523 matching at STOP.
5524
5525 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5526 store offsets for the substring each group matched in REGS. See the
5527 documentation for exactly how many groups we fill.
5528
5529 We return -1 if no match, -2 if an internal error (such as the
5530 failure stack overflowing). Otherwise, we return the length of the
5531 matched substring. */
5532
5533int
5534re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5535 struct re_pattern_buffer *bufp;
5536 const char *string1, *string2;
5537 int size1, size2;
5538 int pos;
5539 struct re_registers *regs;
5540 int stop;
5541{
5542 int result;
5543# ifdef MBS_SUPPORT
5544 if (MB_CUR_MAX != 1)
5545 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5546 pos, regs, stop,
5547 NULL, 0, NULL, 0, NULL, NULL);
5548 else
5549# endif
5550 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5551 pos, regs, stop);
5552
5553#ifndef REGEX_MALLOC
5554# ifdef C_ALLOCA
5555 alloca (0);
5556# endif
5557#endif
5558 return result;
5559}
5560#ifdef _LIBC
5561weak_alias (__re_match_2, re_match_2)
5562#endif
5563
5564#endif /* not INSIDE_RECURSION */
5565
5566#ifdef INSIDE_RECURSION
5567
5568#ifdef WCHAR
5569static int count_mbs_length PARAMS ((int *, int));
5570
5571/* This check the substring (from 0, to length) of the multibyte string,
5572 to which offset_buffer correspond. And count how many wchar_t_characters
5573 the substring occupy. We use offset_buffer to optimization.
5574 See convert_mbs_to_wcs. */
5575
5576static int
5577count_mbs_length(offset_buffer, length)
5578 int *offset_buffer;
5579 int length;
5580{
5581 int upper, lower;
5582
5583 /* Check whether the size is valid. */
5584 if (length < 0)
5585 return -1;
5586
5587 if (offset_buffer == NULL)
5588 return 0;
5589
5590 /* If there are no multibyte character, offset_buffer[i] == i.
5591 Optmize for this case. */
5592 if (offset_buffer[length] == length)
5593 return length;
5594
5595 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5596 upper = length;
5597 lower = 0;
5598
5599 while (true)
5600 {
5601 int middle = (lower + upper) / 2;
5602 if (middle == lower || middle == upper)
5603 break;
5604 if (offset_buffer[middle] > length)
5605 upper = middle;
5606 else if (offset_buffer[middle] < length)
5607 lower = middle;
5608 else
5609 return middle;
5610 }
5611
5612 return -1;
5613}
5614#endif /* WCHAR */
5615
5616/* This is a separate function so that we can force an alloca cleanup
5617 afterwards. */
5618#ifdef WCHAR
5619static int
5620wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5621 regs, stop, string1, size1, string2, size2,
5622 mbs_offset1, mbs_offset2)
5623 struct re_pattern_buffer *bufp;
5624 const char *cstring1, *cstring2;
5625 int csize1, csize2;
5626 int pos;
5627 struct re_registers *regs;
5628 int stop;
5629 /* string1 == string2 == NULL means string1/2, size1/2 and
5630 mbs_offset1/2 need seting up in this function. */
5631 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5632 wchar_t *string1, *string2;
5633 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5634 int size1, size2;
5635 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5636 int *mbs_offset1, *mbs_offset2;
5637#else /* BYTE */
5638static int
5639byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5640 regs, stop)
5641 struct re_pattern_buffer *bufp;
5642 const char *string1, *string2;
5643 int size1, size2;
5644 int pos;
5645 struct re_registers *regs;
5646 int stop;
5647#endif /* BYTE */
5648{
5649 /* General temporaries. */
5650 int mcnt;
5651 UCHAR_T *p1;
5652#ifdef WCHAR
5653 /* They hold whether each wchar_t is binary data or not. */
5654 char *is_binary = NULL;
5655 /* If true, we can't free string1/2, mbs_offset1/2. */
5656 int cant_free_wcs_buf = 1;
5657#endif /* WCHAR */
5658
5659 /* Just past the end of the corresponding string. */
5660 const CHAR_T *end1, *end2;
5661
5662 /* Pointers into string1 and string2, just past the last characters in
5663 each to consider matching. */
5664 const CHAR_T *end_match_1, *end_match_2;
5665
5666 /* Where we are in the data, and the end of the current string. */
5667 const CHAR_T *d, *dend;
5668
5669 /* Where we are in the pattern, and the end of the pattern. */
5670#ifdef WCHAR
5671 UCHAR_T *pattern, *p;
5672 register UCHAR_T *pend;
5673#else /* BYTE */
5674 UCHAR_T *p = bufp->buffer;
5675 register UCHAR_T *pend = p + bufp->used;
5676#endif /* WCHAR */
5677
5678 /* Mark the opcode just after a start_memory, so we can test for an
5679 empty subpattern when we get to the stop_memory. */
5680 UCHAR_T *just_past_start_mem = 0;
5681
5682 /* We use this to map every character in the string. */
5683 RE_TRANSLATE_TYPE translate = bufp->translate;
5684
5685 /* Failure point stack. Each place that can handle a failure further
5686 down the line pushes a failure point on this stack. It consists of
5687 restart, regend, and reg_info for all registers corresponding to
5688 the subexpressions we're currently inside, plus the number of such
5689 registers, and, finally, two char *'s. The first char * is where
5690 to resume scanning the pattern; the second one is where to resume
5691 scanning the strings. If the latter is zero, the failure point is
5692 a ``dummy''; if a failure happens and the failure point is a dummy,
5693 it gets discarded and the next next one is tried. */
5694#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5695 PREFIX(fail_stack_type) fail_stack;
5696#endif
5697#ifdef DEBUG
5698 static unsigned failure_id;
5699 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5700#endif
5701
5702#ifdef REL_ALLOC
5703 /* This holds the pointer to the failure stack, when
5704 it is allocated relocatably. */
5705 fail_stack_elt_t *failure_stack_ptr;
5706#endif
5707
5708 /* We fill all the registers internally, independent of what we
5709 return, for use in backreferences. The number here includes
5710 an element for register zero. */
5711 size_t num_regs = bufp->re_nsub + 1;
5712
5713 /* The currently active registers. */
5714 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5715 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5716
5717 /* Information on the contents of registers. These are pointers into
5718 the input strings; they record just what was matched (on this
5719 attempt) by a subexpression part of the pattern, that is, the
5720 regnum-th regstart pointer points to where in the pattern we began
5721 matching and the regnum-th regend points to right after where we
5722 stopped matching the regnum-th subexpression. (The zeroth register
5723 keeps track of what the whole pattern matches.) */
5724#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5725 const CHAR_T **regstart, **regend;
5726#endif
5727
5728 /* If a group that's operated upon by a repetition operator fails to
5729 match anything, then the register for its start will need to be
5730 restored because it will have been set to wherever in the string we
5731 are when we last see its open-group operator. Similarly for a
5732 register's end. */
5733#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5734 const CHAR_T **old_regstart, **old_regend;
5735#endif
5736
5737 /* The is_active field of reg_info helps us keep track of which (possibly
5738 nested) subexpressions we are currently in. The matched_something
5739 field of reg_info[reg_num] helps us tell whether or not we have
5740 matched any of the pattern so far this time through the reg_num-th
5741 subexpression. These two fields get reset each time through any
5742 loop their register is in. */
5743#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5744 PREFIX(register_info_type) *reg_info;
5745#endif
5746
5747 /* The following record the register info as found in the above
5748 variables when we find a match better than any we've seen before.
5749 This happens as we backtrack through the failure points, which in
5750 turn happens only if we have not yet matched the entire string. */
5751 unsigned best_regs_set = false;
5752#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5753 const CHAR_T **best_regstart, **best_regend;
5754#endif
5755
5756 /* Logically, this is `best_regend[0]'. But we don't want to have to
5757 allocate space for that if we're not allocating space for anything
5758 else (see below). Also, we never need info about register 0 for
5759 any of the other register vectors, and it seems rather a kludge to
5760 treat `best_regend' differently than the rest. So we keep track of
5761 the end of the best match so far in a separate variable. We
5762 initialize this to NULL so that when we backtrack the first time
5763 and need to test it, it's not garbage. */
5764 const CHAR_T *match_end = NULL;
5765
5766 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5767 int set_regs_matched_done = 0;
5768
5769 /* Used when we pop values we don't care about. */
5770#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5771 const CHAR_T **reg_dummy;
5772 PREFIX(register_info_type) *reg_info_dummy;
5773#endif
5774
5775#ifdef DEBUG
5776 /* Counts the total number of registers pushed. */
5777 unsigned num_regs_pushed = 0;
5778#endif
5779
5780 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5781
5782 INIT_FAIL_STACK ();
5783
5784#ifdef MATCH_MAY_ALLOCATE
5785 /* Do not bother to initialize all the register variables if there are
5786 no groups in the pattern, as it takes a fair amount of time. If
5787 there are groups, we include space for register 0 (the whole
5788 pattern), even though we never use it, since it simplifies the
5789 array indexing. We should fix this. */
5790 if (bufp->re_nsub)
5791 {
5792 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5793 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5794 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5795 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5796 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5797 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5798 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5799 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5800 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5801
5802 if (!(regstart && regend && old_regstart && old_regend && reg_info
5803 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5804 {
5805 FREE_VARIABLES ();
5806 return -2;
5807 }
5808 }
5809 else
5810 {
5811 /* We must initialize all our variables to NULL, so that
5812 `FREE_VARIABLES' doesn't try to free them. */
5813 regstart = regend = old_regstart = old_regend = best_regstart
5814 = best_regend = reg_dummy = NULL;
5815 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5816 }
5817#endif /* MATCH_MAY_ALLOCATE */
5818
5819 /* The starting position is bogus. */
5820#ifdef WCHAR
5821 if (pos < 0 || pos > csize1 + csize2)
5822#else /* BYTE */
5823 if (pos < 0 || pos > size1 + size2)
5824#endif
5825 {
5826 FREE_VARIABLES ();
5827 return -1;
5828 }
5829
5830#ifdef WCHAR
5831 /* Allocate wchar_t array for string1 and string2 and
5832 fill them with converted string. */
5833 if (string1 == NULL && string2 == NULL)
5834 {
5835 /* We need seting up buffers here. */
5836
5837 /* We must free wcs buffers in this function. */
5838 cant_free_wcs_buf = 0;
5839
5840 if (csize1 != 0)
5841 {
5842 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5843 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5844 is_binary = REGEX_TALLOC (csize1 + 1, char);
5845 if (!string1 || !mbs_offset1 || !is_binary)
5846 {
5847 FREE_VAR (string1);
5848 FREE_VAR (mbs_offset1);
5849 FREE_VAR (is_binary);
5850 return -2;
5851 }
5852 }
5853 if (csize2 != 0)
5854 {
5855 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5856 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5857 is_binary = REGEX_TALLOC (csize2 + 1, char);
5858 if (!string2 || !mbs_offset2 || !is_binary)
5859 {
5860 FREE_VAR (string1);
5861 FREE_VAR (mbs_offset1);
5862 FREE_VAR (string2);
5863 FREE_VAR (mbs_offset2);
5864 FREE_VAR (is_binary);
5865 return -2;
5866 }
5867 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5868 mbs_offset2, is_binary);
5869 string2[size2] = L'\0'; /* for a sentinel */
5870 FREE_VAR (is_binary);
5871 }
5872 }
5873
5874 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5875 pattern to (char*) in regex_compile. */
5876 p = pattern = (CHAR_T*)bufp->buffer;
5877 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5878
5879#endif /* WCHAR */
5880
5881 /* Initialize subexpression text positions to -1 to mark ones that no
5882 start_memory/stop_memory has been seen for. Also initialize the
5883 register information struct. */
5884 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5885 {
5886 regstart[mcnt] = regend[mcnt]
5887 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5888
5889 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5890 IS_ACTIVE (reg_info[mcnt]) = 0;
5891 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5892 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5893 }
5894
5895 /* We move `string1' into `string2' if the latter's empty -- but not if
5896 `string1' is null. */
5897 if (size2 == 0 && string1 != NULL)
5898 {
5899 string2 = string1;
5900 size2 = size1;
5901 string1 = 0;
5902 size1 = 0;
5903#ifdef WCHAR
5904 mbs_offset2 = mbs_offset1;
5905 csize2 = csize1;
5906 mbs_offset1 = NULL;
5907 csize1 = 0;
5908#endif
5909 }
5910 end1 = string1 + size1;
5911 end2 = string2 + size2;
5912
5913 /* Compute where to stop matching, within the two strings. */
5914#ifdef WCHAR
5915 if (stop <= csize1)
5916 {
5917 mcnt = count_mbs_length(mbs_offset1, stop);
5918 end_match_1 = string1 + mcnt;
5919 end_match_2 = string2;
5920 }
5921 else
5922 {
5923 if (stop > csize1 + csize2)
5924 stop = csize1 + csize2;
5925 end_match_1 = end1;
5926 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5927 end_match_2 = string2 + mcnt;
5928 }
5929 if (mcnt < 0)
5930 { /* count_mbs_length return error. */
5931 FREE_VARIABLES ();
5932 return -1;
5933 }
5934#else
5935 if (stop <= size1)
5936 {
5937 end_match_1 = string1 + stop;
5938 end_match_2 = string2;
5939 }
5940 else
5941 {
5942 end_match_1 = end1;
5943 end_match_2 = string2 + stop - size1;
5944 }
5945#endif /* WCHAR */
5946
5947 /* `p' scans through the pattern as `d' scans through the data.
5948 `dend' is the end of the input string that `d' points within. `d'
5949 is advanced into the following input string whenever necessary, but
5950 this happens before fetching; therefore, at the beginning of the
5951 loop, `d' can be pointing at the end of a string, but it cannot
5952 equal `string2'. */
5953#ifdef WCHAR
5954 if (size1 > 0 && pos <= csize1)
5955 {
5956 mcnt = count_mbs_length(mbs_offset1, pos);
5957 d = string1 + mcnt;
5958 dend = end_match_1;
5959 }
5960 else
5961 {
5962 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5963 d = string2 + mcnt;
5964 dend = end_match_2;
5965 }
5966
5967 if (mcnt < 0)
5968 { /* count_mbs_length return error. */
5969 FREE_VARIABLES ();
5970 return -1;
5971 }
5972#else
5973 if (size1 > 0 && pos <= size1)
5974 {
5975 d = string1 + pos;
5976 dend = end_match_1;
5977 }
5978 else
5979 {
5980 d = string2 + pos - size1;
5981 dend = end_match_2;
5982 }
5983#endif /* WCHAR */
5984
5985 DEBUG_PRINT1 ("The compiled pattern is:\n");
5986 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5987 DEBUG_PRINT1 ("The string to match is: `");
5988 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5989 DEBUG_PRINT1 ("'\n");
5990
5991 /* This loops over pattern commands. It exits by returning from the
5992 function if the match is complete, or it drops through if the match
5993 fails at this starting point in the input data. */
5994 for (;;)
5995 {
5996#ifdef _LIBC
5997 DEBUG_PRINT2 ("\n%p: ", p);
5998#else
5999 DEBUG_PRINT2 ("\n0x%x: ", p);
6000#endif
6001
6002 if (p == pend)
6003 { /* End of pattern means we might have succeeded. */
6004 DEBUG_PRINT1 ("end of pattern ... ");
6005
6006 /* If we haven't matched the entire string, and we want the
6007 longest match, try backtracking. */
6008 if (d != end_match_2)
6009 {
6010 /* 1 if this match ends in the same string (string1 or string2)
6011 as the best previous match. */
6012 boolean same_str_p = (FIRST_STRING_P (match_end)
6013 == MATCHING_IN_FIRST_STRING);
6014 /* 1 if this match is the best seen so far. */
6015 boolean best_match_p;
6016
6017 /* AIX compiler got confused when this was combined
6018 with the previous declaration. */
6019 if (same_str_p)
6020 best_match_p = d > match_end;
6021 else
6022 best_match_p = !MATCHING_IN_FIRST_STRING;
6023
6024 DEBUG_PRINT1 ("backtracking.\n");
6025
6026 if (!FAIL_STACK_EMPTY ())
6027 { /* More failure points to try. */
6028
6029 /* If exceeds best match so far, save it. */
6030 if (!best_regs_set || best_match_p)
6031 {
6032 best_regs_set = true;
6033 match_end = d;
6034
6035 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6036
6037 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6038 {
6039 best_regstart[mcnt] = regstart[mcnt];
6040 best_regend[mcnt] = regend[mcnt];
6041 }
6042 }
6043 goto fail;
6044 }
6045
6046 /* If no failure points, don't restore garbage. And if
6047 last match is real best match, don't restore second
6048 best one. */
6049 else if (best_regs_set && !best_match_p)
6050 {
6051 restore_best_regs:
6052 /* Restore best match. It may happen that `dend ==
6053 end_match_1' while the restored d is in string2.
6054 For example, the pattern `x.*y.*z' against the
6055 strings `x-' and `y-z-', if the two strings are
6056 not consecutive in memory. */
6057 DEBUG_PRINT1 ("Restoring best registers.\n");
6058
6059 d = match_end;
6060 dend = ((d >= string1 && d <= end1)
6061 ? end_match_1 : end_match_2);
6062
6063 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6064 {
6065 regstart[mcnt] = best_regstart[mcnt];
6066 regend[mcnt] = best_regend[mcnt];
6067 }
6068 }
6069 } /* d != end_match_2 */
6070
6071 succeed_label:
6072 DEBUG_PRINT1 ("Accepting match.\n");
6073 /* If caller wants register contents data back, do it. */
6074 if (regs && !bufp->no_sub)
6075 {
6076 /* Have the register data arrays been allocated? */
6077 if (bufp->regs_allocated == REGS_UNALLOCATED)
6078 { /* No. So allocate them with malloc. We need one
6079 extra element beyond `num_regs' for the `-1' marker
6080 GNU code uses. */
6081 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6082 regs->start = TALLOC (regs->num_regs, regoff_t);
6083 regs->end = TALLOC (regs->num_regs, regoff_t);
6084 if (regs->start == NULL || regs->end == NULL)
6085 {
6086 FREE_VARIABLES ();
6087 return -2;
6088 }
6089 bufp->regs_allocated = REGS_REALLOCATE;
6090 }
6091 else if (bufp->regs_allocated == REGS_REALLOCATE)
6092 { /* Yes. If we need more elements than were already
6093 allocated, reallocate them. If we need fewer, just
6094 leave it alone. */
6095 if (regs->num_regs < num_regs + 1)
6096 {
6097 regs->num_regs = num_regs + 1;
6098 RETALLOC (regs->start, regs->num_regs, regoff_t);
6099 RETALLOC (regs->end, regs->num_regs, regoff_t);
6100 if (regs->start == NULL || regs->end == NULL)
6101 {
6102 FREE_VARIABLES ();
6103 return -2;
6104 }
6105 }
6106 }
6107 else
6108 {
6109 /* These braces fend off a "empty body in an else-statement"
6110 warning under GCC when assert expands to nothing. */
6111 assert (bufp->regs_allocated == REGS_FIXED);
6112 }
6113
6114 /* Convert the pointer data in `regstart' and `regend' to
6115 indices. Register zero has to be set differently,
6116 since we haven't kept track of any info for it. */
6117 if (regs->num_regs > 0)
6118 {
6119 regs->start[0] = pos;
6120#ifdef WCHAR
6121 if (MATCHING_IN_FIRST_STRING)
6122 regs->end[0] = mbs_offset1 != NULL ?
6123 mbs_offset1[d-string1] : 0;
6124 else
6125 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6126 mbs_offset2[d-string2] : 0);
6127#else
6128 regs->end[0] = (MATCHING_IN_FIRST_STRING
6129 ? ((regoff_t) (d - string1))
6130 : ((regoff_t) (d - string2 + size1)));
6131#endif /* WCHAR */
6132 }
6133
6134 /* Go through the first `min (num_regs, regs->num_regs)'
6135 registers, since that is all we initialized. */
6136 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6137 mcnt++)
6138 {
6139 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6140 regs->start[mcnt] = regs->end[mcnt] = -1;
6141 else
6142 {
6143 regs->start[mcnt]
6144 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6145 regs->end[mcnt]
6146 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6147 }
6148 }
6149
6150 /* If the regs structure we return has more elements than
6151 were in the pattern, set the extra elements to -1. If
6152 we (re)allocated the registers, this is the case,
6153 because we always allocate enough to have at least one
6154 -1 at the end. */
6155 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6156 regs->start[mcnt] = regs->end[mcnt] = -1;
6157 } /* regs && !bufp->no_sub */
6158
6159 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6160 nfailure_points_pushed, nfailure_points_popped,
6161 nfailure_points_pushed - nfailure_points_popped);
6162 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6163
6164#ifdef WCHAR
6165 if (MATCHING_IN_FIRST_STRING)
6166 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6167 else
6168 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6169 csize1;
6170 mcnt -= pos;
6171#else
6172 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6173 ? string1
6174 : string2 - size1);
6175#endif /* WCHAR */
6176
6177 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6178
6179 FREE_VARIABLES ();
6180 return mcnt;
6181 }
6182
6183 /* Otherwise match next pattern command. */
6184 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6185 {
6186 /* Ignore these. Used to ignore the n of succeed_n's which
6187 currently have n == 0. */
6188 case no_op:
6189 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6190 break;
6191
6192 case succeed:
6193 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6194 goto succeed_label;
6195
6196 /* Match the next n pattern characters exactly. The following
6197 byte in the pattern defines n, and the n bytes after that
6198 are the characters to match. */
6199 case exactn:
6200#ifdef MBS_SUPPORT
6201 case exactn_bin:
6202#endif
6203 mcnt = *p++;
6204 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6205
6206 /* This is written out as an if-else so we don't waste time
6207 testing `translate' inside the loop. */
6208 if (translate)
6209 {
6210 do
6211 {
6212 PREFETCH ();
6213#ifdef WCHAR
6214 if (*d <= 0xff)
6215 {
6216 if ((UCHAR_T) translate[(unsigned char) *d++]
6217 != (UCHAR_T) *p++)
6218 goto fail;
6219 }
6220 else
6221 {
6222 if (*d++ != (CHAR_T) *p++)
6223 goto fail;
6224 }
6225#else
6226 if ((UCHAR_T) translate[(unsigned char) *d++]
6227 != (UCHAR_T) *p++)
6228 goto fail;
6229#endif /* WCHAR */
6230 }
6231 while (--mcnt);
6232 }
6233 else
6234 {
6235 do
6236 {
6237 PREFETCH ();
6238 if (*d++ != (CHAR_T) *p++) goto fail;
6239 }
6240 while (--mcnt);
6241 }
6242 SET_REGS_MATCHED ();
6243 break;
6244
6245
6246 /* Match any character except possibly a newline or a null. */
6247 case anychar:
6248 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6249
6250 PREFETCH ();
6251
6252 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6253 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6254 goto fail;
6255
6256 SET_REGS_MATCHED ();
6257 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6258 d++;
6259 break;
6260
6261
6262 case charset:
6263 case charset_not:
6264 {
6265 register UCHAR_T c;
6266#ifdef WCHAR
6267 unsigned int i, char_class_length, coll_symbol_length,
6268 equiv_class_length, ranges_length, chars_length, length;
6269 CHAR_T *workp, *workp2, *charset_top;
6270#define WORK_BUFFER_SIZE 128
6271 CHAR_T str_buf[WORK_BUFFER_SIZE];
6272# ifdef _LIBC
6273 uint32_t nrules;
6274# endif /* _LIBC */
6275#endif /* WCHAR */
6276 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6277
6278 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6279 PREFETCH ();
6280 c = TRANSLATE (*d); /* The character to match. */
6281#ifdef WCHAR
6282# ifdef _LIBC
6283 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6284# endif /* _LIBC */
6285 charset_top = p - 1;
6286 char_class_length = *p++;
6287 coll_symbol_length = *p++;
6288 equiv_class_length = *p++;
6289 ranges_length = *p++;
6290 chars_length = *p++;
6291 /* p points charset[6], so the address of the next instruction
6292 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6293 where l=length of char_classes, m=length of collating_symbol,
6294 n=equivalence_class, o=length of char_range,
6295 p'=length of character. */
6296 workp = p;
6297 /* Update p to indicate the next instruction. */
6298 p += char_class_length + coll_symbol_length+ equiv_class_length +
6299 2*ranges_length + chars_length;
6300
6301 /* match with char_class? */
6302 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6303 {
6304 wctype_t wctype;
6305 uintptr_t alignedp = ((uintptr_t)workp
6306 + __alignof__(wctype_t) - 1)
6307 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6308 wctype = *((wctype_t*)alignedp);
6309 workp += CHAR_CLASS_SIZE;
d0708dc1
UD
6310# ifdef _LIBC
6311 if (__iswctype((wint_t)c, wctype))
6312 goto char_set_matched;
6313# else
dd771632
JJ
6314 if (iswctype((wint_t)c, wctype))
6315 goto char_set_matched;
d0708dc1 6316# endif
dd771632
JJ
6317 }
6318
6319 /* match with collating_symbol? */
6320# ifdef _LIBC
6321 if (nrules != 0)
6322 {
6323 const unsigned char *extra = (const unsigned char *)
6324 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6325
6326 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6327 workp++)
6328 {
6329 int32_t *wextra;
6330 wextra = (int32_t*)(extra + *workp++);
6331 for (i = 0; i < *wextra; ++i)
6332 if (TRANSLATE(d[i]) != wextra[1 + i])
6333 break;
6334
6335 if (i == *wextra)
6336 {
6337 /* Update d, however d will be incremented at
6338 char_set_matched:, we decrement d here. */
6339 d += i - 1;
6340 goto char_set_matched;
6341 }
6342 }
6343 }
6344 else /* (nrules == 0) */
6345# endif
6346 /* If we can't look up collation data, we use wcscoll
6347 instead. */
6348 {
6349 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6350 {
6351 const CHAR_T *backup_d = d, *backup_dend = dend;
d0708dc1
UD
6352# ifdef _LIBC
6353 length = __wcslen (workp);
6354# else
6355 length = wcslen (workp);
6356# endif
dd771632
JJ
6357
6358 /* If wcscoll(the collating symbol, whole string) > 0,
6359 any substring of the string never match with the
6360 collating symbol. */
d0708dc1
UD
6361# ifdef _LIBC
6362 if (__wcscoll (workp, d) > 0)
6363# else
6364 if (wcscoll (workp, d) > 0)
6365# endif
dd771632
JJ
6366 {
6367 workp += length + 1;
6368 continue;
6369 }
6370
6371 /* First, we compare the collating symbol with
6372 the first character of the string.
6373 If it don't match, we add the next character to
6374 the compare buffer in turn. */
6375 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6376 {
6377 int match;
6378 if (d == dend)
6379 {
6380 if (dend == end_match_2)
6381 break;
6382 d = string2;
6383 dend = end_match_2;
6384 }
6385
6386 /* add next character to the compare buffer. */
6387 str_buf[i] = TRANSLATE(*d);
6388 str_buf[i+1] = '\0';
6389
d0708dc1
UD
6390# ifdef _LIBC
6391 match = __wcscoll (workp, str_buf);
6392# else
6393 match = wcscoll (workp, str_buf);
6394# endif
dd771632
JJ
6395 if (match == 0)
6396 goto char_set_matched;
6397
6398 if (match < 0)
6399 /* (str_buf > workp) indicate (str_buf + X > workp),
6400 because for all X (str_buf + X > str_buf).
6401 So we don't need continue this loop. */
6402 break;
6403
6404 /* Otherwise(str_buf < workp),
6405 (str_buf+next_character) may equals (workp).
6406 So we continue this loop. */
6407 }
6408 /* not matched */
6409 d = backup_d;
6410 dend = backup_dend;
6411 workp += length + 1;
6412 }
6413 }
6414 /* match with equivalence_class? */
6415# ifdef _LIBC
6416 if (nrules != 0)
6417 {
6418 const CHAR_T *backup_d = d, *backup_dend = dend;
6419 /* Try to match the equivalence class against
6420 those known to the collate implementation. */
6421 const int32_t *table;
6422 const int32_t *weights;
6423 const int32_t *extra;
6424 const int32_t *indirect;
6425 int32_t idx, idx2;
6426 wint_t *cp;
6427 size_t len;
6428
6429 /* This #include defines a local function! */
6430# include <locale/weightwc.h>
6431
6432 table = (const int32_t *)
6433 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6434 weights = (const wint_t *)
6435 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6436 extra = (const wint_t *)
6437 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6438 indirect = (const int32_t *)
6439 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6440
6441 /* Write 1 collating element to str_buf, and
6442 get its index. */
6443 idx2 = 0;
6444
6445 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6446 {
6447 cp = (wint_t*)str_buf;
6448 if (d == dend)
6449 {
6450 if (dend == end_match_2)
6451 break;
6452 d = string2;
6453 dend = end_match_2;
6454 }
6455 str_buf[i] = TRANSLATE(*(d+i));
6456 str_buf[i+1] = '\0'; /* sentinel */
6457 idx2 = findidx ((const wint_t**)&cp);
6458 }
6459
6460 /* Update d, however d will be incremented at
6461 char_set_matched:, we decrement d here. */
6462 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6463 if (d >= dend)
6464 {
6465 if (dend == end_match_2)
6466 d = dend;
6467 else
6468 {
6469 d = string2;
6470 dend = end_match_2;
6471 }
6472 }
6473
6474 len = weights[idx2];
6475
6476 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6477 workp++)
6478 {
6479 idx = (int32_t)*workp;
6480 /* We already checked idx != 0 in regex_compile. */
6481
6482 if (idx2 != 0 && len == weights[idx])
6483 {
6484 int cnt = 0;
6485 while (cnt < len && (weights[idx + 1 + cnt]
6486 == weights[idx2 + 1 + cnt]))
6487 ++cnt;
6488
6489 if (cnt == len)
6490 goto char_set_matched;
6491 }
6492 }
6493 /* not matched */
6494 d = backup_d;
6495 dend = backup_dend;
6496 }
6497 else /* (nrules == 0) */
6498# endif
6499 /* If we can't look up collation data, we use wcscoll
6500 instead. */
6501 {
6502 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6503 {
6504 const CHAR_T *backup_d = d, *backup_dend = dend;
d0708dc1
UD
6505# ifdef _LIBC
6506 length = __wcslen (workp);
6507# else
6508 length = wcslen (workp);
6509# endif
dd771632
JJ
6510
6511 /* If wcscoll(the collating symbol, whole string) > 0,
6512 any substring of the string never match with the
6513 collating symbol. */
d0708dc1
UD
6514# ifdef _LIBC
6515 if (__wcscoll (workp, d) > 0)
6516# else
6517 if (wcscoll (workp, d) > 0)
6518# endif
dd771632
JJ
6519 {
6520 workp += length + 1;
6521 break;
6522 }
6523
6524 /* First, we compare the equivalence class with
6525 the first character of the string.
6526 If it don't match, we add the next character to
6527 the compare buffer in turn. */
6528 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6529 {
6530 int match;
6531 if (d == dend)
6532 {
6533 if (dend == end_match_2)
6534 break;
6535 d = string2;
6536 dend = end_match_2;
6537 }
6538
6539 /* add next character to the compare buffer. */
6540 str_buf[i] = TRANSLATE(*d);
6541 str_buf[i+1] = '\0';
6542
d0708dc1
UD
6543# ifdef _LIBC
6544 match = __wcscoll (workp, str_buf);
6545# else
6546 match = wcscoll (workp, str_buf);
6547# endif
dd771632
JJ
6548
6549 if (match == 0)
6550 goto char_set_matched;
6551
6552 if (match < 0)
6553 /* (str_buf > workp) indicate (str_buf + X > workp),
6554 because for all X (str_buf + X > str_buf).
6555 So we don't need continue this loop. */
6556 break;
6557
6558 /* Otherwise(str_buf < workp),
6559 (str_buf+next_character) may equals (workp).
6560 So we continue this loop. */
6561 }
6562 /* not matched */
6563 d = backup_d;
6564 dend = backup_dend;
6565 workp += length + 1;
6566 }
6567 }
6568
6569 /* match with char_range? */
d0708dc1 6570# ifdef _LIBC
dd771632
JJ
6571 if (nrules != 0)
6572 {
6573 uint32_t collseqval;
6574 const char *collseq = (const char *)
6575 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6576
6577 collseqval = collseq_table_lookup (collseq, c);
6578
6579 for (; workp < p - chars_length ;)
6580 {
6581 uint32_t start_val, end_val;
6582
6583 /* We already compute the collation sequence value
6584 of the characters (or collating symbols). */
6585 start_val = (uint32_t) *workp++; /* range_start */
6586 end_val = (uint32_t) *workp++; /* range_end */
6587
6588 if (start_val <= collseqval && collseqval <= end_val)
6589 goto char_set_matched;
6590 }
6591 }
6592 else
d0708dc1 6593# endif
dd771632
JJ
6594 {
6595 /* We set range_start_char at str_buf[0], range_end_char
6596 at str_buf[4], and compared char at str_buf[2]. */
6597 str_buf[1] = 0;
6598 str_buf[2] = c;
6599 str_buf[3] = 0;
6600 str_buf[5] = 0;
6601 for (; workp < p - chars_length ;)
6602 {
6603 wchar_t *range_start_char, *range_end_char;
6604
6605 /* match if (range_start_char <= c <= range_end_char). */
6606
6607 /* If range_start(or end) < 0, we assume -range_start(end)
6608 is the offset of the collating symbol which is specified
6609 as the character of the range start(end). */
6610
6611 /* range_start */
6612 if (*workp < 0)
6613 range_start_char = charset_top - (*workp++);
6614 else
6615 {
6616 str_buf[0] = *workp++;
6617 range_start_char = str_buf;
6618 }
6619
6620 /* range_end */
6621 if (*workp < 0)
6622 range_end_char = charset_top - (*workp++);
6623 else
6624 {
6625 str_buf[4] = *workp++;
6626 range_end_char = str_buf + 4;
6627 }
6628
d0708dc1
UD
6629# ifdef _LIBC
6630 if (__wcscoll (range_start_char, str_buf+2) <= 0
6631 && __wcscoll (str_buf+2, range_end_char) <= 0)
6632# else
6633 if (wcscoll (range_start_char, str_buf+2) <= 0
6634 && wcscoll (str_buf+2, range_end_char) <= 0)
6635# endif
dd771632
JJ
6636 goto char_set_matched;
6637 }
6638 }
6639
6640 /* match with char? */
6641 for (; workp < p ; workp++)
6642 if (c == *workp)
6643 goto char_set_matched;
6644
6645 not = !not;
6646
6647 char_set_matched:
6648 if (not) goto fail;
6649#else
6650 /* Cast to `unsigned' instead of `unsigned char' in case the
6651 bit list is a full 32 bytes long. */
6652 if (c < (unsigned) (*p * BYTEWIDTH)
6653 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6654 not = !not;
6655
6656 p += 1 + *p;
6657
6658 if (!not) goto fail;
6659#undef WORK_BUFFER_SIZE
6660#endif /* WCHAR */
6661 SET_REGS_MATCHED ();
6662 d++;
6663 break;
6664 }
6665
6666
6667 /* The beginning of a group is represented by start_memory.
6668 The arguments are the register number in the next byte, and the
6669 number of groups inner to this one in the next. The text
6670 matched within the group is recorded (in the internal
6671 registers data structure) under the register number. */
6672 case start_memory:
6673 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6674 (long int) *p, (long int) p[1]);
6675
6676 /* Find out if this group can match the empty string. */
6677 p1 = p; /* To send to group_match_null_string_p. */
6678
6679 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6680 REG_MATCH_NULL_STRING_P (reg_info[*p])
6681 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6682
6683 /* Save the position in the string where we were the last time
6684 we were at this open-group operator in case the group is
6685 operated upon by a repetition operator, e.g., with `(a*)*b'
6686 against `ab'; then we want to ignore where we are now in
6687 the string in case this attempt to match fails. */
6688 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6689 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6690 : regstart[*p];
6691 DEBUG_PRINT2 (" old_regstart: %d\n",
6692 POINTER_TO_OFFSET (old_regstart[*p]));
6693
6694 regstart[*p] = d;
6695 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6696
6697 IS_ACTIVE (reg_info[*p]) = 1;
6698 MATCHED_SOMETHING (reg_info[*p]) = 0;
6699
6700 /* Clear this whenever we change the register activity status. */
6701 set_regs_matched_done = 0;
6702
6703 /* This is the new highest active register. */
6704 highest_active_reg = *p;
6705
6706 /* If nothing was active before, this is the new lowest active
6707 register. */
6708 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6709 lowest_active_reg = *p;
6710
6711 /* Move past the register number and inner group count. */
6712 p += 2;
6713 just_past_start_mem = p;
6714
6715 break;
6716
6717
6718 /* The stop_memory opcode represents the end of a group. Its
6719 arguments are the same as start_memory's: the register
6720 number, and the number of inner groups. */
6721 case stop_memory:
6722 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6723 (long int) *p, (long int) p[1]);
6724
6725 /* We need to save the string position the last time we were at
6726 this close-group operator in case the group is operated
6727 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6728 against `aba'; then we want to ignore where we are now in
6729 the string in case this attempt to match fails. */
6730 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6731 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6732 : regend[*p];
6733 DEBUG_PRINT2 (" old_regend: %d\n",
6734 POINTER_TO_OFFSET (old_regend[*p]));
6735
6736 regend[*p] = d;
6737 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6738
6739 /* This register isn't active anymore. */
6740 IS_ACTIVE (reg_info[*p]) = 0;
6741
6742 /* Clear this whenever we change the register activity status. */
6743 set_regs_matched_done = 0;
6744
6745 /* If this was the only register active, nothing is active
6746 anymore. */
6747 if (lowest_active_reg == highest_active_reg)
6748 {
6749 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6750 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6751 }
6752 else
6753 { /* We must scan for the new highest active register, since
6754 it isn't necessarily one less than now: consider
6755 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6756 new highest active register is 1. */
6757 UCHAR_T r = *p - 1;
6758 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6759 r--;
6760
6761 /* If we end up at register zero, that means that we saved
6762 the registers as the result of an `on_failure_jump', not
6763 a `start_memory', and we jumped to past the innermost
6764 `stop_memory'. For example, in ((.)*) we save
6765 registers 1 and 2 as a result of the *, but when we pop
6766 back to the second ), we are at the stop_memory 1.
6767 Thus, nothing is active. */
6768 if (r == 0)
6769 {
6770 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6771 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6772 }
6773 else
6774 highest_active_reg = r;
6775 }
6776
6777 /* If just failed to match something this time around with a
6778 group that's operated on by a repetition operator, try to
6779 force exit from the ``loop'', and restore the register
6780 information for this group that we had before trying this
6781 last match. */
6782 if ((!MATCHED_SOMETHING (reg_info[*p])
6783 || just_past_start_mem == p - 1)
6784 && (p + 2) < pend)
6785 {
6786 boolean is_a_jump_n = false;
6787
6788 p1 = p + 2;
6789 mcnt = 0;
6790 switch ((re_opcode_t) *p1++)
6791 {
6792 case jump_n:
6793 is_a_jump_n = true;
6794 case pop_failure_jump:
6795 case maybe_pop_jump:
6796 case jump:
6797 case dummy_failure_jump:
6798 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6799 if (is_a_jump_n)
6800 p1 += OFFSET_ADDRESS_SIZE;
6801 break;
6802
6803 default:
6804 /* do nothing */ ;
6805 }
6806 p1 += mcnt;
6807
6808 /* If the next operation is a jump backwards in the pattern
6809 to an on_failure_jump right before the start_memory
6810 corresponding to this stop_memory, exit from the loop
6811 by forcing a failure after pushing on the stack the
6812 on_failure_jump's jump in the pattern, and d. */
6813 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6814 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6815 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6816 {
6817 /* If this group ever matched anything, then restore
6818 what its registers were before trying this last
6819 failed match, e.g., with `(a*)*b' against `ab' for
6820 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6821 against `aba' for regend[3].
6822
6823 Also restore the registers for inner groups for,
6824 e.g., `((a*)(b*))*' against `aba' (register 3 would
6825 otherwise get trashed). */
6826
6827 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6828 {
6829 unsigned r;
6830
6831 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6832
6833 /* Restore this and inner groups' (if any) registers. */
6834 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6835 r++)
6836 {
6837 regstart[r] = old_regstart[r];
6838
6839 /* xx why this test? */
6840 if (old_regend[r] >= regstart[r])
6841 regend[r] = old_regend[r];
6842 }
6843 }
6844 p1++;
6845 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6846 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6847
6848 goto fail;
6849 }
6850 }
6851
6852 /* Move past the register number and the inner group count. */
6853 p += 2;
6854 break;
6855
6856
6857 /* \<digit> has been turned into a `duplicate' command which is
6858 followed by the numeric value of <digit> as the register number. */
6859 case duplicate:
6860 {
6861 register const CHAR_T *d2, *dend2;
6862 int regno = *p++; /* Get which register to match against. */
6863 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6864
6865 /* Can't back reference a group which we've never matched. */
6866 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6867 goto fail;
6868
6869 /* Where in input to try to start matching. */
6870 d2 = regstart[regno];
6871
6872 /* Where to stop matching; if both the place to start and
6873 the place to stop matching are in the same string, then
6874 set to the place to stop, otherwise, for now have to use
6875 the end of the first string. */
6876
6877 dend2 = ((FIRST_STRING_P (regstart[regno])
6878 == FIRST_STRING_P (regend[regno]))
6879 ? regend[regno] : end_match_1);
6880 for (;;)
6881 {
6882 /* If necessary, advance to next segment in register
6883 contents. */
6884 while (d2 == dend2)
6885 {
6886 if (dend2 == end_match_2) break;
6887 if (dend2 == regend[regno]) break;
6888
6889 /* End of string1 => advance to string2. */
6890 d2 = string2;
6891 dend2 = regend[regno];
6892 }
6893 /* At end of register contents => success */
6894 if (d2 == dend2) break;
6895
6896 /* If necessary, advance to next segment in data. */
6897 PREFETCH ();
6898
6899 /* How many characters left in this segment to match. */
6900 mcnt = dend - d;
6901
6902 /* Want how many consecutive characters we can match in
6903 one shot, so, if necessary, adjust the count. */
6904 if (mcnt > dend2 - d2)
6905 mcnt = dend2 - d2;
6906
6907 /* Compare that many; failure if mismatch, else move
6908 past them. */
6909 if (translate
6910 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6911 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6912 goto fail;
6913 d += mcnt, d2 += mcnt;
6914
6915 /* Do this because we've match some characters. */
6916 SET_REGS_MATCHED ();
6917 }
6918 }
6919 break;
6920
6921
6922 /* begline matches the empty string at the beginning of the string
6923 (unless `not_bol' is set in `bufp'), and, if
6924 `newline_anchor' is set, after newlines. */
6925 case begline:
6926 DEBUG_PRINT1 ("EXECUTING begline.\n");
6927
6928 if (AT_STRINGS_BEG (d))
6929 {
6930 if (!bufp->not_bol) break;
6931 }
6932 else if (d[-1] == '\n' && bufp->newline_anchor)
6933 {
6934 break;
6935 }
6936 /* In all other cases, we fail. */
6937 goto fail;
6938
6939
6940 /* endline is the dual of begline. */
6941 case endline:
6942 DEBUG_PRINT1 ("EXECUTING endline.\n");
6943
6944 if (AT_STRINGS_END (d))
6945 {
6946 if (!bufp->not_eol) break;
6947 }
6948
6949 /* We have to ``prefetch'' the next character. */
6950 else if ((d == end1 ? *string2 : *d) == '\n'
6951 && bufp->newline_anchor)
6952 {
6953 break;
6954 }
6955 goto fail;
6956
6957
6958 /* Match at the very beginning of the data. */
6959 case begbuf:
6960 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6961 if (AT_STRINGS_BEG (d))
6962 break;
6963 goto fail;
6964
6965
6966 /* Match at the very end of the data. */
6967 case endbuf:
6968 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6969 if (AT_STRINGS_END (d))
6970 break;
6971 goto fail;
6972
6973
6974 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6975 pushes NULL as the value for the string on the stack. Then
6976 `pop_failure_point' will keep the current value for the
6977 string, instead of restoring it. To see why, consider
6978 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6979 then the . fails against the \n. But the next thing we want
6980 to do is match the \n against the \n; if we restored the
6981 string value, we would be back at the foo.
6982
6983 Because this is used only in specific cases, we don't need to
6984 check all the things that `on_failure_jump' does, to make
6985 sure the right things get saved on the stack. Hence we don't
6986 share its code. The only reason to push anything on the
6987 stack at all is that otherwise we would have to change
6988 `anychar's code to do something besides goto fail in this
6989 case; that seems worse than this. */
6990 case on_failure_keep_string_jump:
6991 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6992
6993 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6994#ifdef _LIBC
6995 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6996#else
6997 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6998#endif
6999
7000 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7001 break;
7002
7003
7004 /* Uses of on_failure_jump:
7005
7006 Each alternative starts with an on_failure_jump that points
7007 to the beginning of the next alternative. Each alternative
7008 except the last ends with a jump that in effect jumps past
7009 the rest of the alternatives. (They really jump to the
7010 ending jump of the following alternative, because tensioning
7011 these jumps is a hassle.)
7012
7013 Repeats start with an on_failure_jump that points past both
7014 the repetition text and either the following jump or
7015 pop_failure_jump back to this on_failure_jump. */
7016 case on_failure_jump:
7017 on_failure:
7018 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7019
7020 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7021#ifdef _LIBC
7022 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7023#else
7024 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7025#endif
7026
7027 /* If this on_failure_jump comes right before a group (i.e.,
7028 the original * applied to a group), save the information
7029 for that group and all inner ones, so that if we fail back
7030 to this point, the group's information will be correct.
7031 For example, in \(a*\)*\1, we need the preceding group,
7032 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7033
7034 /* We can't use `p' to check ahead because we push
7035 a failure point to `p + mcnt' after we do this. */
7036 p1 = p;
7037
7038 /* We need to skip no_op's before we look for the
7039 start_memory in case this on_failure_jump is happening as
7040 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7041 against aba. */
7042 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7043 p1++;
7044
7045 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7046 {
7047 /* We have a new highest active register now. This will
7048 get reset at the start_memory we are about to get to,
7049 but we will have saved all the registers relevant to
7050 this repetition op, as described above. */
7051 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7052 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7053 lowest_active_reg = *(p1 + 1);
7054 }
7055
7056 DEBUG_PRINT1 (":\n");
7057 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7058 break;
7059
7060
7061 /* A smart repeat ends with `maybe_pop_jump'.
7062 We change it to either `pop_failure_jump' or `jump'. */
7063 case maybe_pop_jump:
7064 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7065 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7066 {
7067 register UCHAR_T *p2 = p;
7068
7069 /* Compare the beginning of the repeat with what in the
7070 pattern follows its end. If we can establish that there
7071 is nothing that they would both match, i.e., that we
7072 would have to backtrack because of (as in, e.g., `a*a')
7073 then we can change to pop_failure_jump, because we'll
7074 never have to backtrack.
7075
7076 This is not true in the case of alternatives: in
7077 `(a|ab)*' we do need to backtrack to the `ab' alternative
7078 (e.g., if the string was `ab'). But instead of trying to
7079 detect that here, the alternative has put on a dummy
7080 failure point which is what we will end up popping. */
7081
7082 /* Skip over open/close-group commands.
7083 If what follows this loop is a ...+ construct,
7084 look at what begins its body, since we will have to
7085 match at least one of that. */
7086 while (1)
7087 {
7088 if (p2 + 2 < pend
7089 && ((re_opcode_t) *p2 == stop_memory
7090 || (re_opcode_t) *p2 == start_memory))
7091 p2 += 3;
7092 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7093 && (re_opcode_t) *p2 == dummy_failure_jump)
7094 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7095 else
7096 break;
7097 }
7098
7099 p1 = p + mcnt;
7100 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7101 to the `maybe_finalize_jump' of this case. Examine what
7102 follows. */
7103
7104 /* If we're at the end of the pattern, we can change. */
7105 if (p2 == pend)
7106 {
7107 /* Consider what happens when matching ":\(.*\)"
7108 against ":/". I don't really understand this code
7109 yet. */
7110 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7111 pop_failure_jump;
7112 DEBUG_PRINT1
7113 (" End of pattern: change to `pop_failure_jump'.\n");
7114 }
7115
7116 else if ((re_opcode_t) *p2 == exactn
7117#ifdef MBS_SUPPORT
7118 || (re_opcode_t) *p2 == exactn_bin
7119#endif
7120 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7121 {
7122 register UCHAR_T c
7123 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7124
7125 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7126#ifdef MBS_SUPPORT
7127 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7128#endif
7129 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7130 {
7131 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7132 pop_failure_jump;
7133#ifdef WCHAR
7134 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7135 (wint_t) c,
7136 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7137#else
7138 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7139 (char) c,
7140 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7141#endif
7142 }
7143
7144#ifndef WCHAR
7145 else if ((re_opcode_t) p1[3] == charset
7146 || (re_opcode_t) p1[3] == charset_not)
7147 {
7148 int not = (re_opcode_t) p1[3] == charset_not;
7149
7150 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7151 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7152 not = !not;
7153
7154 /* `not' is equal to 1 if c would match, which means
7155 that we can't change to pop_failure_jump. */
7156 if (!not)
7157 {
7158 p[-3] = (unsigned char) pop_failure_jump;
7159 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7160 }
7161 }
7162#endif /* not WCHAR */
7163 }
7164#ifndef WCHAR
7165 else if ((re_opcode_t) *p2 == charset)
7166 {
7167 /* We win if the first character of the loop is not part
7168 of the charset. */
7169 if ((re_opcode_t) p1[3] == exactn
7170 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7171 && (p2[2 + p1[5] / BYTEWIDTH]
7172 & (1 << (p1[5] % BYTEWIDTH)))))
7173 {
7174 p[-3] = (unsigned char) pop_failure_jump;
7175 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7176 }
7177
7178 else if ((re_opcode_t) p1[3] == charset_not)
7179 {
7180 int idx;
7181 /* We win if the charset_not inside the loop
7182 lists every character listed in the charset after. */
7183 for (idx = 0; idx < (int) p2[1]; idx++)
7184 if (! (p2[2 + idx] == 0
7185 || (idx < (int) p1[4]
7186 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7187 break;
7188
7189 if (idx == p2[1])
7190 {
7191 p[-3] = (unsigned char) pop_failure_jump;
7192 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7193 }
7194 }
7195 else if ((re_opcode_t) p1[3] == charset)
7196 {
7197 int idx;
7198 /* We win if the charset inside the loop
7199 has no overlap with the one after the loop. */
7200 for (idx = 0;
7201 idx < (int) p2[1] && idx < (int) p1[4];
7202 idx++)
7203 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7204 break;
7205
7206 if (idx == p2[1] || idx == p1[4])
7207 {
7208 p[-3] = (unsigned char) pop_failure_jump;
7209 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7210 }
7211 }
7212 }
7213#endif /* not WCHAR */
7214 }
7215 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7216 if ((re_opcode_t) p[-1] != pop_failure_jump)
7217 {
7218 p[-1] = (UCHAR_T) jump;
7219 DEBUG_PRINT1 (" Match => jump.\n");
7220 goto unconditional_jump;
7221 }
7222 /* Note fall through. */
7223
7224
7225 /* The end of a simple repeat has a pop_failure_jump back to
7226 its matching on_failure_jump, where the latter will push a
7227 failure point. The pop_failure_jump takes off failure
7228 points put on by this pop_failure_jump's matching
7229 on_failure_jump; we got through the pattern to here from the
7230 matching on_failure_jump, so didn't fail. */
7231 case pop_failure_jump:
7232 {
7233 /* We need to pass separate storage for the lowest and
7234 highest registers, even though we don't care about the
7235 actual values. Otherwise, we will restore only one
7236 register from the stack, since lowest will == highest in
7237 `pop_failure_point'. */
7238 active_reg_t dummy_low_reg, dummy_high_reg;
7239 UCHAR_T *pdummy = NULL;
7240 const CHAR_T *sdummy = NULL;
7241
7242 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7243 POP_FAILURE_POINT (sdummy, pdummy,
7244 dummy_low_reg, dummy_high_reg,
7245 reg_dummy, reg_dummy, reg_info_dummy);
7246 }
7247 /* Note fall through. */
7248
7249 unconditional_jump:
7250#ifdef _LIBC
7251 DEBUG_PRINT2 ("\n%p: ", p);
7252#else
7253 DEBUG_PRINT2 ("\n0x%x: ", p);
7254#endif
7255 /* Note fall through. */
7256
7257 /* Unconditionally jump (without popping any failure points). */
7258 case jump:
7259 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7260 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7261 p += mcnt; /* Do the jump. */
7262#ifdef _LIBC
7263 DEBUG_PRINT2 ("(to %p).\n", p);
7264#else
7265 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7266#endif
7267 break;
7268
7269
7270 /* We need this opcode so we can detect where alternatives end
7271 in `group_match_null_string_p' et al. */
7272 case jump_past_alt:
7273 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7274 goto unconditional_jump;
7275
7276
7277 /* Normally, the on_failure_jump pushes a failure point, which
7278 then gets popped at pop_failure_jump. We will end up at
7279 pop_failure_jump, also, and with a pattern of, say, `a+', we
7280 are skipping over the on_failure_jump, so we have to push
7281 something meaningless for pop_failure_jump to pop. */
7282 case dummy_failure_jump:
7283 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7284 /* It doesn't matter what we push for the string here. What
7285 the code at `fail' tests is the value for the pattern. */
7286 PUSH_FAILURE_POINT (NULL, NULL, -2);
7287 goto unconditional_jump;
7288
7289
7290 /* At the end of an alternative, we need to push a dummy failure
7291 point in case we are followed by a `pop_failure_jump', because
7292 we don't want the failure point for the alternative to be
7293 popped. For example, matching `(a|ab)*' against `aab'
7294 requires that we match the `ab' alternative. */
7295 case push_dummy_failure:
7296 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7297 /* See comments just above at `dummy_failure_jump' about the
7298 two zeroes. */
7299 PUSH_FAILURE_POINT (NULL, NULL, -2);
7300 break;
7301
7302 /* Have to succeed matching what follows at least n times.
7303 After that, handle like `on_failure_jump'. */
7304 case succeed_n:
7305 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7306 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7307
7308 assert (mcnt >= 0);
7309 /* Originally, this is how many times we HAVE to succeed. */
7310 if (mcnt > 0)
7311 {
7312 mcnt--;
7313 p += OFFSET_ADDRESS_SIZE;
7314 STORE_NUMBER_AND_INCR (p, mcnt);
7315#ifdef _LIBC
7316 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7317 , mcnt);
7318#else
7319 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7320 , mcnt);
7321#endif
7322 }
7323 else if (mcnt == 0)
7324 {
7325#ifdef _LIBC
7326 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7327 p + OFFSET_ADDRESS_SIZE);
7328#else
7329 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7330 p + OFFSET_ADDRESS_SIZE);
7331#endif /* _LIBC */
7332
7333#ifdef WCHAR
7334 p[1] = (UCHAR_T) no_op;
7335#else
7336 p[2] = (UCHAR_T) no_op;
7337 p[3] = (UCHAR_T) no_op;
7338#endif /* WCHAR */
7339 goto on_failure;
7340 }
7341 break;
7342
7343 case jump_n:
7344 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7345 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7346
7347 /* Originally, this is how many times we CAN jump. */
7348 if (mcnt)
7349 {
7350 mcnt--;
7351 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7352
7353#ifdef _LIBC
7354 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7355 mcnt);
7356#else
7357 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7358 mcnt);
7359#endif /* _LIBC */
7360 goto unconditional_jump;
7361 }
7362 /* If don't have to jump any more, skip over the rest of command. */
7363 else
7364 p += 2 * OFFSET_ADDRESS_SIZE;
7365 break;
7366
7367 case set_number_at:
7368 {
7369 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7370
7371 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7372 p1 = p + mcnt;
7373 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7374#ifdef _LIBC
7375 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7376#else
7377 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7378#endif
7379 STORE_NUMBER (p1, mcnt);
7380 break;
7381 }
7382
7383#if 0
7384 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7385 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7386 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7387 macro and introducing temporary variables works around the bug. */
7388
7389 case wordbound:
7390 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7391 if (AT_WORD_BOUNDARY (d))
7392 break;
7393 goto fail;
7394
7395 case notwordbound:
7396 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7397 if (AT_WORD_BOUNDARY (d))
7398 goto fail;
7399 break;
7400#else
7401 case wordbound:
7402 {
7403 boolean prevchar, thischar;
7404
7405 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7406 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7407 break;
7408
7409 prevchar = WORDCHAR_P (d - 1);
7410 thischar = WORDCHAR_P (d);
7411 if (prevchar != thischar)
7412 break;
7413 goto fail;
7414 }
7415
7416 case notwordbound:
7417 {
7418 boolean prevchar, thischar;
7419
7420 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7421 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7422 goto fail;
7423
7424 prevchar = WORDCHAR_P (d - 1);
7425 thischar = WORDCHAR_P (d);
7426 if (prevchar != thischar)
7427 goto fail;
7428 break;
7429 }
7430#endif
7431
7432 case wordbeg:
7433 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7434 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7435 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7436 break;
7437 goto fail;
7438
7439 case wordend:
7440 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7441 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7442 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7443 break;
7444 goto fail;
7445
7446#ifdef emacs
7447 case before_dot:
7448 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7449 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7450 goto fail;
7451 break;
7452
7453 case at_dot:
7454 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7455 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7456 goto fail;
7457 break;
7458
7459 case after_dot:
7460 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7461 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7462 goto fail;
7463 break;
7464
7465 case syntaxspec:
7466 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7467 mcnt = *p++;
7468 goto matchsyntax;
7469
7470 case wordchar:
7471 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7472 mcnt = (int) Sword;
7473 matchsyntax:
7474 PREFETCH ();
7475 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7476 d++;
7477 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7478 goto fail;
7479 SET_REGS_MATCHED ();
7480 break;
7481
7482 case notsyntaxspec:
7483 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7484 mcnt = *p++;
7485 goto matchnotsyntax;
7486
7487 case notwordchar:
7488 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7489 mcnt = (int) Sword;
7490 matchnotsyntax:
7491 PREFETCH ();
7492 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7493 d++;
7494 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7495 goto fail;
7496 SET_REGS_MATCHED ();
7497 break;
7498
7499#else /* not emacs */
7500 case wordchar:
7501 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7502 PREFETCH ();
7503 if (!WORDCHAR_P (d))
7504 goto fail;
7505 SET_REGS_MATCHED ();
7506 d++;
7507 break;
7508
7509 case notwordchar:
7510 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7511 PREFETCH ();
7512 if (WORDCHAR_P (d))
7513 goto fail;
7514 SET_REGS_MATCHED ();
7515 d++;
7516 break;
7517#endif /* not emacs */
7518
7519 default:
7520 abort ();
7521 }
7522 continue; /* Successfully executed one pattern command; keep going. */
7523
7524
7525 /* We goto here if a matching operation fails. */
7526 fail:
7527 if (!FAIL_STACK_EMPTY ())
7528 { /* A restart point is known. Restore to that state. */
7529 DEBUG_PRINT1 ("\nFAIL:\n");
7530 POP_FAILURE_POINT (d, p,
7531 lowest_active_reg, highest_active_reg,
7532 regstart, regend, reg_info);
7533
7534 /* If this failure point is a dummy, try the next one. */
7535 if (!p)
7536 goto fail;
7537
7538 /* If we failed to the end of the pattern, don't examine *p. */
7539 assert (p <= pend);
7540 if (p < pend)
7541 {
7542 boolean is_a_jump_n = false;
7543
7544 /* If failed to a backwards jump that's part of a repetition
7545 loop, need to pop this failure point and use the next one. */
7546 switch ((re_opcode_t) *p)
7547 {
7548 case jump_n:
7549 is_a_jump_n = true;
7550 case maybe_pop_jump:
7551 case pop_failure_jump:
7552 case jump:
7553 p1 = p + 1;
7554 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7555 p1 += mcnt;
7556
7557 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7558 || (!is_a_jump_n
7559 && (re_opcode_t) *p1 == on_failure_jump))
7560 goto fail;
7561 break;
7562 default:
7563 /* do nothing */ ;
7564 }
7565 }
7566
7567 if (d >= string1 && d <= end1)
7568 dend = end_match_1;
7569 }
7570 else
7571 break; /* Matching at this starting point really fails. */
7572 } /* for (;;) */
7573
7574 if (best_regs_set)
7575 goto restore_best_regs;
7576
7577 FREE_VARIABLES ();
7578
7579 return -1; /* Failure to match. */
7580} /* re_match_2 */
7581\f
7582/* Subroutine definitions for re_match_2. */
7583
7584
7585/* We are passed P pointing to a register number after a start_memory.
7586
7587 Return true if the pattern up to the corresponding stop_memory can
7588 match the empty string, and false otherwise.
7589
7590 If we find the matching stop_memory, sets P to point to one past its number.
7591 Otherwise, sets P to an undefined byte less than or equal to END.
7592
7593 We don't handle duplicates properly (yet). */
7594
7595static boolean
7596PREFIX(group_match_null_string_p) (p, end, reg_info)
7597 UCHAR_T **p, *end;
7598 PREFIX(register_info_type) *reg_info;
7599{
7600 int mcnt;
7601 /* Point to after the args to the start_memory. */
7602 UCHAR_T *p1 = *p + 2;
7603
7604 while (p1 < end)
7605 {
7606 /* Skip over opcodes that can match nothing, and return true or
7607 false, as appropriate, when we get to one that can't, or to the
7608 matching stop_memory. */
7609
7610 switch ((re_opcode_t) *p1)
7611 {
7612 /* Could be either a loop or a series of alternatives. */
7613 case on_failure_jump:
7614 p1++;
7615 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7616
7617 /* If the next operation is not a jump backwards in the
7618 pattern. */
7619
7620 if (mcnt >= 0)
7621 {
7622 /* Go through the on_failure_jumps of the alternatives,
7623 seeing if any of the alternatives cannot match nothing.
7624 The last alternative starts with only a jump,
7625 whereas the rest start with on_failure_jump and end
7626 with a jump, e.g., here is the pattern for `a|b|c':
7627
7628 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7629 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7630 /exactn/1/c
7631
7632 So, we have to first go through the first (n-1)
7633 alternatives and then deal with the last one separately. */
7634
7635
7636 /* Deal with the first (n-1) alternatives, which start
7637 with an on_failure_jump (see above) that jumps to right
7638 past a jump_past_alt. */
7639
7640 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7641 jump_past_alt)
7642 {
7643 /* `mcnt' holds how many bytes long the alternative
7644 is, including the ending `jump_past_alt' and
7645 its number. */
7646
7647 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7648 (1 + OFFSET_ADDRESS_SIZE),
7649 reg_info))
7650 return false;
7651
7652 /* Move to right after this alternative, including the
7653 jump_past_alt. */
7654 p1 += mcnt;
7655
7656 /* Break if it's the beginning of an n-th alternative
7657 that doesn't begin with an on_failure_jump. */
7658 if ((re_opcode_t) *p1 != on_failure_jump)
7659 break;
7660
7661 /* Still have to check that it's not an n-th
7662 alternative that starts with an on_failure_jump. */
7663 p1++;
7664 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7665 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7666 jump_past_alt)
7667 {
7668 /* Get to the beginning of the n-th alternative. */
7669 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7670 break;
7671 }
7672 }
7673
7674 /* Deal with the last alternative: go back and get number
7675 of the `jump_past_alt' just before it. `mcnt' contains
7676 the length of the alternative. */
7677 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7678
7679 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7680 return false;
7681
7682 p1 += mcnt; /* Get past the n-th alternative. */
7683 } /* if mcnt > 0 */
7684 break;
7685
7686
7687 case stop_memory:
7688 assert (p1[1] == **p);
7689 *p = p1 + 2;
7690 return true;
7691
7692
7693 default:
7694 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7695 return false;
7696 }
7697 } /* while p1 < end */
7698
7699 return false;
7700} /* group_match_null_string_p */
7701
7702
7703/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7704 It expects P to be the first byte of a single alternative and END one
7705 byte past the last. The alternative can contain groups. */
7706
7707static boolean
7708PREFIX(alt_match_null_string_p) (p, end, reg_info)
7709 UCHAR_T *p, *end;
7710 PREFIX(register_info_type) *reg_info;
7711{
7712 int mcnt;
7713 UCHAR_T *p1 = p;
7714
7715 while (p1 < end)
7716 {
7717 /* Skip over opcodes that can match nothing, and break when we get
7718 to one that can't. */
7719
7720 switch ((re_opcode_t) *p1)
7721 {
7722 /* It's a loop. */
7723 case on_failure_jump:
7724 p1++;
7725 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7726 p1 += mcnt;
7727 break;
7728
7729 default:
7730 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7731 return false;
7732 }
7733 } /* while p1 < end */
7734
7735 return true;
7736} /* alt_match_null_string_p */
7737
7738
7739/* Deals with the ops common to group_match_null_string_p and
7740 alt_match_null_string_p.
7741
7742 Sets P to one after the op and its arguments, if any. */
7743
7744static boolean
7745PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7746 UCHAR_T **p, *end;
7747 PREFIX(register_info_type) *reg_info;
7748{
7749 int mcnt;
7750 boolean ret;
7751 int reg_no;
7752 UCHAR_T *p1 = *p;
7753
7754 switch ((re_opcode_t) *p1++)
7755 {
7756 case no_op:
7757 case begline:
7758 case endline:
7759 case begbuf:
7760 case endbuf:
7761 case wordbeg:
7762 case wordend:
7763 case wordbound:
7764 case notwordbound:
7765#ifdef emacs
7766 case before_dot:
7767 case at_dot:
7768 case after_dot:
7769#endif
7770 break;
7771
7772 case start_memory:
7773 reg_no = *p1;
7774 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7775 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7776
7777 /* Have to set this here in case we're checking a group which
7778 contains a group and a back reference to it. */
7779
7780 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7781 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7782
7783 if (!ret)
7784 return false;
7785 break;
7786
7787 /* If this is an optimized succeed_n for zero times, make the jump. */
7788 case jump:
7789 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7790 if (mcnt >= 0)
7791 p1 += mcnt;
7792 else
7793 return false;
7794 break;
7795
7796 case succeed_n:
7797 /* Get to the number of times to succeed. */
7798 p1 += OFFSET_ADDRESS_SIZE;
7799 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7800
7801 if (mcnt == 0)
7802 {
7803 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7804 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7805 p1 += mcnt;
7806 }
7807 else
7808 return false;
7809 break;
7810
7811 case duplicate:
7812 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7813 return false;
7814 break;
7815
7816 case set_number_at:
7817 p1 += 2 * OFFSET_ADDRESS_SIZE;
7818
7819 default:
7820 /* All other opcodes mean we cannot match the empty string. */
7821 return false;
7822 }
7823
7824 *p = p1;
7825 return true;
7826} /* common_op_match_null_string_p */
7827
7828
7829/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7830 bytes; nonzero otherwise. */
7831
7832static int
7833PREFIX(bcmp_translate) (s1, s2, len, translate)
7834 const CHAR_T *s1, *s2;
7835 register int len;
7836 RE_TRANSLATE_TYPE translate;
7837{
7838 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7839 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7840 while (len)
7841 {
7842#ifdef WCHAR
7843 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7844 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7845 return 1;
7846#else /* BYTE */
7847 if (translate[*p1++] != translate[*p2++]) return 1;
7848#endif /* WCHAR */
7849 len--;
7850 }
7851 return 0;
7852}
7853\f
7854
7855#else /* not INSIDE_RECURSION */
7856
7857/* Entry points for GNU code. */
7858
7859/* re_compile_pattern is the GNU regular expression compiler: it
7860 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7861 Returns 0 if the pattern was valid, otherwise an error string.
7862
7863 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7864 are set in BUFP on entry.
7865
7866 We call regex_compile to do the actual compilation. */
7867
7868const char *
7869re_compile_pattern (pattern, length, bufp)
7870 const char *pattern;
7871 size_t length;
7872 struct re_pattern_buffer *bufp;
7873{
7874 reg_errcode_t ret;
7875
7876 /* GNU code is written to assume at least RE_NREGS registers will be set
7877 (and at least one extra will be -1). */
7878 bufp->regs_allocated = REGS_UNALLOCATED;
7879
7880 /* And GNU code determines whether or not to get register information
7881 by passing null for the REGS argument to re_match, etc., not by
7882 setting no_sub. */
7883 bufp->no_sub = 0;
7884
7885 /* Match anchors at newline. */
7886 bufp->newline_anchor = 1;
7887
7888# ifdef MBS_SUPPORT
7889 if (MB_CUR_MAX != 1)
7890 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7891 else
7892# endif
7893 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7894
7895 if (!ret)
7896 return NULL;
65b91091 7897 return gettext (re_error_msgid[(int) ret]);
dd771632
JJ
7898}
7899#ifdef _LIBC
7900weak_alias (__re_compile_pattern, re_compile_pattern)
7901#endif
7902\f
7903/* Entry points compatible with 4.2 BSD regex library. We don't define
7904 them unless specifically requested. */
7905
7906#if defined _REGEX_RE_COMP || defined _LIBC
7907
7908/* BSD has one and only one pattern buffer. */
7909static struct re_pattern_buffer re_comp_buf;
7910
7911char *
7912#ifdef _LIBC
7913/* Make these definitions weak in libc, so POSIX programs can redefine
7914 these names if they don't use our functions, and still use
7915 regcomp/regexec below without link errors. */
7916weak_function
7917#endif
7918re_comp (s)
7919 const char *s;
7920{
7921 reg_errcode_t ret;
7922
7923 if (!s)
7924 {
7925 if (!re_comp_buf.buffer)
7926 return gettext ("No previous regular expression");
7927 return 0;
7928 }
7929
7930 if (!re_comp_buf.buffer)
7931 {
7932 re_comp_buf.buffer = (unsigned char *) malloc (200);
7933 if (re_comp_buf.buffer == NULL)
65b91091 7934 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
dd771632
JJ
7935 re_comp_buf.allocated = 200;
7936
7937 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7938 if (re_comp_buf.fastmap == NULL)
65b91091 7939 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
dd771632
JJ
7940 }
7941
7942 /* Since `re_exec' always passes NULL for the `regs' argument, we
7943 don't need to initialize the pattern buffer fields which affect it. */
7944
7945 /* Match anchors at newlines. */
7946 re_comp_buf.newline_anchor = 1;
7947
7948# ifdef MBS_SUPPORT
7949 if (MB_CUR_MAX != 1)
7950 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7951 else
7952# endif
7953 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7954
7955 if (!ret)
7956 return NULL;
7957
7958 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
65b91091 7959 return (char *) gettext (re_error_msgid[(int) ret]);
dd771632
JJ
7960}
7961
7962
7963int
7964#ifdef _LIBC
7965weak_function
7966#endif
7967re_exec (s)
7968 const char *s;
7969{
7970 const int len = strlen (s);
7971 return
7972 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7973}
7974
7975#endif /* _REGEX_RE_COMP */
7976\f
7977/* POSIX.2 functions. Don't define these for Emacs. */
7978
7979#ifndef emacs
7980
7981/* regcomp takes a regular expression as a string and compiles it.
7982
7983 PREG is a regex_t *. We do not expect any fields to be initialized,
7984 since POSIX says we shouldn't. Thus, we set
7985
7986 `buffer' to the compiled pattern;
7987 `used' to the length of the compiled pattern;
7988 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7989 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7990 RE_SYNTAX_POSIX_BASIC;
7991 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7992 `fastmap' to an allocated space for the fastmap;
7993 `fastmap_accurate' to zero;
7994 `re_nsub' to the number of subexpressions in PATTERN.
7995
7996 PATTERN is the address of the pattern string.
7997
7998 CFLAGS is a series of bits which affect compilation.
7999
8000 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8001 use POSIX basic syntax.
8002
8003 If REG_NEWLINE is set, then . and [^...] don't match newline.
8004 Also, regexec will try a match beginning after every newline.
8005
8006 If REG_ICASE is set, then we considers upper- and lowercase
8007 versions of letters to be equivalent when matching.
8008
8009 If REG_NOSUB is set, then when PREG is passed to regexec, that
8010 routine will report only success or failure, and nothing about the
8011 registers.
8012
8013 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8014 the return codes and their meanings.) */
8015
8016int
8017regcomp (preg, pattern, cflags)
8018 regex_t *preg;
8019 const char *pattern;
8020 int cflags;
8021{
8022 reg_errcode_t ret;
8023 reg_syntax_t syntax
8024 = (cflags & REG_EXTENDED) ?
8025 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8026
8027 /* regex_compile will allocate the space for the compiled pattern. */
8028 preg->buffer = 0;
8029 preg->allocated = 0;
8030 preg->used = 0;
8031
8032 /* Try to allocate space for the fastmap. */
8033 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8034
8035 if (cflags & REG_ICASE)
8036 {
8037 unsigned i;
8038
8039 preg->translate
8040 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8041 * sizeof (*(RE_TRANSLATE_TYPE)0));
8042 if (preg->translate == NULL)
8043 return (int) REG_ESPACE;
8044
8045 /* Map uppercase characters to corresponding lowercase ones. */
8046 for (i = 0; i < CHAR_SET_SIZE; i++)
ef2a223f 8047 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : (int) i;
dd771632
JJ
8048 }
8049 else
8050 preg->translate = NULL;
8051
8052 /* If REG_NEWLINE is set, newlines are treated differently. */
8053 if (cflags & REG_NEWLINE)
8054 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8055 syntax &= ~RE_DOT_NEWLINE;
8056 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8057 /* It also changes the matching behavior. */
8058 preg->newline_anchor = 1;
8059 }
8060 else
8061 preg->newline_anchor = 0;
8062
8063 preg->no_sub = !!(cflags & REG_NOSUB);
8064
8065 /* POSIX says a null character in the pattern terminates it, so we
8066 can use strlen here in compiling the pattern. */
8067# ifdef MBS_SUPPORT
8068 if (MB_CUR_MAX != 1)
8069 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8070 else
8071# endif
8072 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8073
8074 /* POSIX doesn't distinguish between an unmatched open-group and an
8075 unmatched close-group: both are REG_EPAREN. */
8076 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8077
8078 if (ret == REG_NOERROR && preg->fastmap)
8079 {
8080 /* Compute the fastmap now, since regexec cannot modify the pattern
8081 buffer. */
8082 if (re_compile_fastmap (preg) == -2)
8083 {
8084 /* Some error occurred while computing the fastmap, just forget
8085 about it. */
8086 free (preg->fastmap);
8087 preg->fastmap = NULL;
8088 }
8089 }
8090
8091 return (int) ret;
8092}
8093#ifdef _LIBC
8094weak_alias (__regcomp, regcomp)
8095#endif
8096
8097
8098/* regexec searches for a given pattern, specified by PREG, in the
8099 string STRING.
8100
8101 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8102 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8103 least NMATCH elements, and we set them to the offsets of the
8104 corresponding matched substrings.
8105
8106 EFLAGS specifies `execution flags' which affect matching: if
8107 REG_NOTBOL is set, then ^ does not match at the beginning of the
8108 string; if REG_NOTEOL is set, then $ does not match at the end.
8109
8110 We return 0 if we find a match and REG_NOMATCH if not. */
8111
8112int
8113regexec (preg, string, nmatch, pmatch, eflags)
8114 const regex_t *preg;
8115 const char *string;
8116 size_t nmatch;
8117 regmatch_t pmatch[];
8118 int eflags;
8119{
8120 int ret;
8121 struct re_registers regs;
8122 regex_t private_preg;
8123 int len = strlen (string);
8124 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8125
8126 private_preg = *preg;
8127
8128 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8129 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8130
8131 /* The user has told us exactly how many registers to return
8132 information about, via `nmatch'. We have to pass that on to the
8133 matching routines. */
8134 private_preg.regs_allocated = REGS_FIXED;
8135
8136 if (want_reg_info)
8137 {
8138 regs.num_regs = nmatch;
8139 regs.start = TALLOC (nmatch * 2, regoff_t);
8140 if (regs.start == NULL)
8141 return (int) REG_NOMATCH;
8142 regs.end = regs.start + nmatch;
8143 }
8144
8145 /* Perform the searching operation. */
8146 ret = re_search (&private_preg, string, len,
8147 /* start: */ 0, /* range: */ len,
8148 want_reg_info ? &regs : (struct re_registers *) 0);
8149
8150 /* Copy the register information to the POSIX structure. */
8151 if (want_reg_info)
8152 {
8153 if (ret >= 0)
8154 {
8155 unsigned r;
8156
8157 for (r = 0; r < nmatch; r++)
8158 {
8159 pmatch[r].rm_so = regs.start[r];
8160 pmatch[r].rm_eo = regs.end[r];
8161 }
8162 }
8163
8164 /* If we needed the temporary register info, free the space now. */
8165 free (regs.start);
8166 }
8167
8168 /* We want zero return to mean success, unlike `re_search'. */
8169 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8170}
8171#ifdef _LIBC
8172weak_alias (__regexec, regexec)
8173#endif
8174
8175
8176/* Returns a message corresponding to an error code, ERRCODE, returned
8177 from either regcomp or regexec. We don't use PREG here. */
8178
8179size_t
8180regerror (errcode, preg, errbuf, errbuf_size)
8181 int errcode;
ef2a223f 8182 const regex_t *preg ATTRIBUTE_UNUSED;
dd771632
JJ
8183 char *errbuf;
8184 size_t errbuf_size;
8185{
8186 const char *msg;
8187 size_t msg_size;
8188
8189 if (errcode < 0
65b91091
DD
8190 || errcode >= (int) (sizeof (re_error_msgid)
8191 / sizeof (re_error_msgid[0])))
dd771632
JJ
8192 /* Only error codes returned by the rest of the code should be passed
8193 to this routine. If we are given anything else, or if other regex
8194 code generates an invalid error code, then the program has a bug.
8195 Dump core so we can fix it. */
8196 abort ();
8197
65b91091 8198 msg = gettext (re_error_msgid[errcode]);
dd771632
JJ
8199
8200 msg_size = strlen (msg) + 1; /* Includes the null. */
8201
8202 if (errbuf_size != 0)
8203 {
8204 if (msg_size > errbuf_size)
8205 {
8206#if defined HAVE_MEMPCPY || defined _LIBC
55adc7bd 8207 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
dd771632
JJ
8208#else
8209 memcpy (errbuf, msg, errbuf_size - 1);
8210 errbuf[errbuf_size - 1] = 0;
8211#endif
8212 }
8213 else
8214 memcpy (errbuf, msg, msg_size);
8215 }
8216
8217 return msg_size;
8218}
8219#ifdef _LIBC
8220weak_alias (__regerror, regerror)
8221#endif
8222
8223
8224/* Free dynamically allocated space used by PREG. */
8225
8226void
8227regfree (preg)
8228 regex_t *preg;
8229{
8230 if (preg->buffer != NULL)
8231 free (preg->buffer);
8232 preg->buffer = NULL;
8233
8234 preg->allocated = 0;
8235 preg->used = 0;
8236
8237 if (preg->fastmap != NULL)
8238 free (preg->fastmap);
8239 preg->fastmap = NULL;
8240 preg->fastmap_accurate = 0;
8241
8242 if (preg->translate != NULL)
8243 free (preg->translate);
8244 preg->translate = NULL;
8245}
8246#ifdef _LIBC
8247weak_alias (__regfree, regfree)
8248#endif
8249
8250#endif /* not emacs */
8251
8252#endif /* not INSIDE_RECURSION */
8253
8254\f
8255#undef STORE_NUMBER
8256#undef STORE_NUMBER_AND_INCR
8257#undef EXTRACT_NUMBER
8258#undef EXTRACT_NUMBER_AND_INCR
8259
8260#undef DEBUG_PRINT_COMPILED_PATTERN
8261#undef DEBUG_PRINT_DOUBLE_STRING
8262
8263#undef INIT_FAIL_STACK
8264#undef RESET_FAIL_STACK
8265#undef DOUBLE_FAIL_STACK
8266#undef PUSH_PATTERN_OP
8267#undef PUSH_FAILURE_POINTER
8268#undef PUSH_FAILURE_INT
8269#undef PUSH_FAILURE_ELT
8270#undef POP_FAILURE_POINTER
8271#undef POP_FAILURE_INT
8272#undef POP_FAILURE_ELT
8273#undef DEBUG_PUSH
8274#undef DEBUG_POP
8275#undef PUSH_FAILURE_POINT
8276#undef POP_FAILURE_POINT
8277
8278#undef REG_UNSET_VALUE
8279#undef REG_UNSET
8280
8281#undef PATFETCH
8282#undef PATFETCH_RAW
8283#undef PATUNFETCH
8284#undef TRANSLATE
8285
8286#undef INIT_BUF_SIZE
8287#undef GET_BUFFER_SPACE
8288#undef BUF_PUSH
8289#undef BUF_PUSH_2
8290#undef BUF_PUSH_3
8291#undef STORE_JUMP
8292#undef STORE_JUMP2
8293#undef INSERT_JUMP
8294#undef INSERT_JUMP2
8295#undef EXTEND_BUFFER
8296#undef GET_UNSIGNED_NUMBER
8297#undef FREE_STACK_RETURN
8298
8299# undef POINTER_TO_OFFSET
8300# undef MATCHING_IN_FRST_STRING
8301# undef PREFETCH
8302# undef AT_STRINGS_BEG
8303# undef AT_STRINGS_END
8304# undef WORDCHAR_P
8305# undef FREE_VAR
8306# undef FREE_VARIABLES
8307# undef NO_HIGHEST_ACTIVE_REG
8308# undef NO_LOWEST_ACTIVE_REG
8309
8310# undef CHAR_T
8311# undef UCHAR_T
8312# undef COMPILED_BUFFER_VAR
8313# undef OFFSET_ADDRESS_SIZE
8314# undef CHAR_CLASS_SIZE
8315# undef PREFIX
8316# undef ARG_PREFIX
8317# undef PUT_CHAR
8318# undef BYTE
8319# undef WCHAR
8320
8321# define DEFINED_ONCE