]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/exp_ch4.adb
66ebc531af7613d6828630e6639d102b7b224423
[thirdparty/gcc.git] / gcc / ada / exp_ch4.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Fixd; use Exp_Fixd;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Freeze; use Freeze;
46 with Inline; use Inline;
47 with Namet; use Namet;
48 with Nlists; use Nlists;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Par_SCO; use Par_SCO;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Res; use Sem_Res;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Sinfo; use Sinfo;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with SCIL_LL; use SCIL_LL;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73 with Urealp; use Urealp;
74 with Validsw; use Validsw;
75 with Warnsw; use Warnsw;
76
77 package body Exp_Ch4 is
78
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
82
83 procedure Binary_Op_Validity_Checks (N : Node_Id);
84 pragma Inline (Binary_Op_Validity_Checks);
85 -- Performs validity checks for a binary operator
86
87 procedure Build_Boolean_Array_Proc_Call
88 (N : Node_Id;
89 Op1 : Node_Id;
90 Op2 : Node_Id);
91 -- If a boolean array assignment can be done in place, build call to
92 -- corresponding library procedure.
93
94 procedure Displace_Allocator_Pointer (N : Node_Id);
95 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
96 -- Expand_Allocator_Expression. Allocating class-wide interface objects
97 -- this routine displaces the pointer to the allocated object to reference
98 -- the component referencing the corresponding secondary dispatch table.
99
100 procedure Expand_Allocator_Expression (N : Node_Id);
101 -- Subsidiary to Expand_N_Allocator, for the case when the expression
102 -- is a qualified expression or an aggregate.
103
104 procedure Expand_Array_Comparison (N : Node_Id);
105 -- This routine handles expansion of the comparison operators (N_Op_Lt,
106 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
107 -- code for these operators is similar, differing only in the details of
108 -- the actual comparison call that is made. Special processing (call a
109 -- run-time routine)
110
111 function Expand_Array_Equality
112 (Nod : Node_Id;
113 Lhs : Node_Id;
114 Rhs : Node_Id;
115 Bodies : List_Id;
116 Typ : Entity_Id) return Node_Id;
117 -- Expand an array equality into a call to a function implementing this
118 -- equality, and a call to it. Loc is the location for the generated nodes.
119 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
120 -- on which to attach bodies of local functions that are created in the
121 -- process. It is the responsibility of the caller to insert those bodies
122 -- at the right place. Nod provides the Sloc value for the generated code.
123 -- Normally the types used for the generated equality routine are taken
124 -- from Lhs and Rhs. However, in some situations of generated code, the
125 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
126 -- the type to be used for the formal parameters.
127
128 procedure Expand_Boolean_Operator (N : Node_Id);
129 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
130 -- case of array type arguments.
131
132 procedure Expand_Nonbinary_Modular_Op (N : Node_Id);
133 -- When generating C code, convert nonbinary modular arithmetic operations
134 -- into code that relies on the front-end expansion of operator Mod. No
135 -- expansion is performed if N is not a nonbinary modular operand.
136
137 procedure Expand_Short_Circuit_Operator (N : Node_Id);
138 -- Common expansion processing for short-circuit boolean operators
139
140 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
141 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
142 -- where we allow comparison of "out of range" values.
143
144 function Expand_Composite_Equality
145 (Nod : Node_Id;
146 Typ : Entity_Id;
147 Lhs : Node_Id;
148 Rhs : Node_Id;
149 Bodies : List_Id) return Node_Id;
150 -- Local recursive function used to expand equality for nested composite
151 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
152 -- to attach bodies of local functions that are created in the process. It
153 -- is the responsibility of the caller to insert those bodies at the right
154 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
155 -- the left and right sides for the comparison, and Typ is the type of the
156 -- objects to compare.
157
158 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
159 -- Routine to expand concatenation of a sequence of two or more operands
160 -- (in the list Operands) and replace node Cnode with the result of the
161 -- concatenation. The operands can be of any appropriate type, and can
162 -- include both arrays and singleton elements.
163
164 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
165 -- N is an N_In membership test mode, with the overflow check mode set to
166 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
167 -- integer type. This is a case where top level processing is required to
168 -- handle overflow checks in subtrees.
169
170 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
171 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
172 -- fixed. We do not have such a type at runtime, so the purpose of this
173 -- routine is to find the real type by looking up the tree. We also
174 -- determine if the operation must be rounded.
175
176 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
177 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
178 -- discriminants if it has a constrained nominal type, unless the object
179 -- is a component of an enclosing Unchecked_Union object that is subject
180 -- to a per-object constraint and the enclosing object lacks inferable
181 -- discriminants.
182 --
183 -- An expression of an Unchecked_Union type has inferable discriminants
184 -- if it is either a name of an object with inferable discriminants or a
185 -- qualified expression whose subtype mark denotes a constrained subtype.
186
187 procedure Insert_Dereference_Action (N : Node_Id);
188 -- N is an expression whose type is an access. When the type of the
189 -- associated storage pool is derived from Checked_Pool, generate a
190 -- call to the 'Dereference' primitive operation.
191
192 function Make_Array_Comparison_Op
193 (Typ : Entity_Id;
194 Nod : Node_Id) return Node_Id;
195 -- Comparisons between arrays are expanded in line. This function produces
196 -- the body of the implementation of (a > b), where a and b are one-
197 -- dimensional arrays of some discrete type. The original node is then
198 -- expanded into the appropriate call to this function. Nod provides the
199 -- Sloc value for the generated code.
200
201 function Make_Boolean_Array_Op
202 (Typ : Entity_Id;
203 N : Node_Id) return Node_Id;
204 -- Boolean operations on boolean arrays are expanded in line. This function
205 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
206 -- b). It is used only the normal case and not the packed case. The type
207 -- involved, Typ, is the Boolean array type, and the logical operations in
208 -- the body are simple boolean operations. Note that Typ is always a
209 -- constrained type (the caller has ensured this by using
210 -- Convert_To_Actual_Subtype if necessary).
211
212 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
213 -- For signed arithmetic operations when the current overflow mode is
214 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
215 -- as the first thing we do. We then return. We count on the recursive
216 -- apparatus for overflow checks to call us back with an equivalent
217 -- operation that is in CHECKED mode, avoiding a recursive entry into this
218 -- routine, and that is when we will proceed with the expansion of the
219 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
220 -- these optimizations without first making this check, since there may be
221 -- operands further down the tree that are relying on the recursive calls
222 -- triggered by the top level nodes to properly process overflow checking
223 -- and remaining expansion on these nodes. Note that this call back may be
224 -- skipped if the operation is done in Bignum mode but that's fine, since
225 -- the Bignum call takes care of everything.
226
227 procedure Optimize_Length_Comparison (N : Node_Id);
228 -- Given an expression, if it is of the form X'Length op N (or the other
229 -- way round), where N is known at compile time to be 0 or 1, and X is a
230 -- simple entity, and op is a comparison operator, optimizes it into a
231 -- comparison of First and Last.
232
233 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id);
234 -- Inspect and process statement list Stmt of if or case expression N for
235 -- transient objects. If such objects are found, the routine generates code
236 -- to clean them up when the context of the expression is evaluated.
237
238 procedure Process_Transient_In_Expression
239 (Obj_Decl : Node_Id;
240 Expr : Node_Id;
241 Stmts : List_Id);
242 -- Subsidiary routine to the expansion of expression_with_actions, if and
243 -- case expressions. Generate all necessary code to finalize a transient
244 -- object when the enclosing context is elaborated or evaluated. Obj_Decl
245 -- denotes the declaration of the transient object, which is usually the
246 -- result of a controlled function call. Expr denotes the expression with
247 -- actions, if expression, or case expression node. Stmts denotes the
248 -- statement list which contains Decl, either at the top level or within a
249 -- nested construct.
250
251 procedure Rewrite_Comparison (N : Node_Id);
252 -- If N is the node for a comparison whose outcome can be determined at
253 -- compile time, then the node N can be rewritten with True or False. If
254 -- the outcome cannot be determined at compile time, the call has no
255 -- effect. If N is a type conversion, then this processing is applied to
256 -- its expression. If N is neither comparison nor a type conversion, the
257 -- call has no effect.
258
259 procedure Tagged_Membership
260 (N : Node_Id;
261 SCIL_Node : out Node_Id;
262 Result : out Node_Id);
263 -- Construct the expression corresponding to the tagged membership test.
264 -- Deals with a second operand being (or not) a class-wide type.
265
266 function Safe_In_Place_Array_Op
267 (Lhs : Node_Id;
268 Op1 : Node_Id;
269 Op2 : Node_Id) return Boolean;
270 -- In the context of an assignment, where the right-hand side is a boolean
271 -- operation on arrays, check whether operation can be performed in place.
272
273 procedure Unary_Op_Validity_Checks (N : Node_Id);
274 pragma Inline (Unary_Op_Validity_Checks);
275 -- Performs validity checks for a unary operator
276
277 -------------------------------
278 -- Binary_Op_Validity_Checks --
279 -------------------------------
280
281 procedure Binary_Op_Validity_Checks (N : Node_Id) is
282 begin
283 if Validity_Checks_On and Validity_Check_Operands then
284 Ensure_Valid (Left_Opnd (N));
285 Ensure_Valid (Right_Opnd (N));
286 end if;
287 end Binary_Op_Validity_Checks;
288
289 ------------------------------------
290 -- Build_Boolean_Array_Proc_Call --
291 ------------------------------------
292
293 procedure Build_Boolean_Array_Proc_Call
294 (N : Node_Id;
295 Op1 : Node_Id;
296 Op2 : Node_Id)
297 is
298 Loc : constant Source_Ptr := Sloc (N);
299 Kind : constant Node_Kind := Nkind (Expression (N));
300 Target : constant Node_Id :=
301 Make_Attribute_Reference (Loc,
302 Prefix => Name (N),
303 Attribute_Name => Name_Address);
304
305 Arg1 : Node_Id := Op1;
306 Arg2 : Node_Id := Op2;
307 Call_Node : Node_Id;
308 Proc_Name : Entity_Id;
309
310 begin
311 if Kind = N_Op_Not then
312 if Nkind (Op1) in N_Binary_Op then
313
314 -- Use negated version of the binary operators
315
316 if Nkind (Op1) = N_Op_And then
317 Proc_Name := RTE (RE_Vector_Nand);
318
319 elsif Nkind (Op1) = N_Op_Or then
320 Proc_Name := RTE (RE_Vector_Nor);
321
322 else pragma Assert (Nkind (Op1) = N_Op_Xor);
323 Proc_Name := RTE (RE_Vector_Xor);
324 end if;
325
326 Call_Node :=
327 Make_Procedure_Call_Statement (Loc,
328 Name => New_Occurrence_Of (Proc_Name, Loc),
329
330 Parameter_Associations => New_List (
331 Target,
332 Make_Attribute_Reference (Loc,
333 Prefix => Left_Opnd (Op1),
334 Attribute_Name => Name_Address),
335
336 Make_Attribute_Reference (Loc,
337 Prefix => Right_Opnd (Op1),
338 Attribute_Name => Name_Address),
339
340 Make_Attribute_Reference (Loc,
341 Prefix => Left_Opnd (Op1),
342 Attribute_Name => Name_Length)));
343
344 else
345 Proc_Name := RTE (RE_Vector_Not);
346
347 Call_Node :=
348 Make_Procedure_Call_Statement (Loc,
349 Name => New_Occurrence_Of (Proc_Name, Loc),
350 Parameter_Associations => New_List (
351 Target,
352
353 Make_Attribute_Reference (Loc,
354 Prefix => Op1,
355 Attribute_Name => Name_Address),
356
357 Make_Attribute_Reference (Loc,
358 Prefix => Op1,
359 Attribute_Name => Name_Length)));
360 end if;
361
362 else
363 -- We use the following equivalences:
364
365 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
366 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
367 -- (not X) xor (not Y) = X xor Y
368 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
369
370 if Nkind (Op1) = N_Op_Not then
371 Arg1 := Right_Opnd (Op1);
372 Arg2 := Right_Opnd (Op2);
373
374 if Kind = N_Op_And then
375 Proc_Name := RTE (RE_Vector_Nor);
376 elsif Kind = N_Op_Or then
377 Proc_Name := RTE (RE_Vector_Nand);
378 else
379 Proc_Name := RTE (RE_Vector_Xor);
380 end if;
381
382 else
383 if Kind = N_Op_And then
384 Proc_Name := RTE (RE_Vector_And);
385 elsif Kind = N_Op_Or then
386 Proc_Name := RTE (RE_Vector_Or);
387 elsif Nkind (Op2) = N_Op_Not then
388 Proc_Name := RTE (RE_Vector_Nxor);
389 Arg2 := Right_Opnd (Op2);
390 else
391 Proc_Name := RTE (RE_Vector_Xor);
392 end if;
393 end if;
394
395 Call_Node :=
396 Make_Procedure_Call_Statement (Loc,
397 Name => New_Occurrence_Of (Proc_Name, Loc),
398 Parameter_Associations => New_List (
399 Target,
400 Make_Attribute_Reference (Loc,
401 Prefix => Arg1,
402 Attribute_Name => Name_Address),
403 Make_Attribute_Reference (Loc,
404 Prefix => Arg2,
405 Attribute_Name => Name_Address),
406 Make_Attribute_Reference (Loc,
407 Prefix => Arg1,
408 Attribute_Name => Name_Length)));
409 end if;
410
411 Rewrite (N, Call_Node);
412 Analyze (N);
413
414 exception
415 when RE_Not_Available =>
416 return;
417 end Build_Boolean_Array_Proc_Call;
418
419 -----------------------
420 -- Build_Eq_Call --
421 -----------------------
422
423 function Build_Eq_Call
424 (Typ : Entity_Id;
425 Loc : Source_Ptr;
426 Lhs : Node_Id;
427 Rhs : Node_Id) return Node_Id
428 is
429 Prim : Node_Id;
430 Prim_E : Elmt_Id;
431
432 begin
433 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
434 while Present (Prim_E) loop
435 Prim := Node (Prim_E);
436
437 -- Locate primitive equality with the right signature
438
439 if Chars (Prim) = Name_Op_Eq
440 and then Etype (First_Formal (Prim)) =
441 Etype (Next_Formal (First_Formal (Prim)))
442 and then Etype (Prim) = Standard_Boolean
443 then
444 if Is_Abstract_Subprogram (Prim) then
445 return
446 Make_Raise_Program_Error (Loc,
447 Reason => PE_Explicit_Raise);
448
449 else
450 return
451 Make_Function_Call (Loc,
452 Name => New_Occurrence_Of (Prim, Loc),
453 Parameter_Associations => New_List (Lhs, Rhs));
454 end if;
455 end if;
456
457 Next_Elmt (Prim_E);
458 end loop;
459
460 -- If not found, predefined operation will be used
461
462 return Empty;
463 end Build_Eq_Call;
464
465 --------------------------------
466 -- Displace_Allocator_Pointer --
467 --------------------------------
468
469 procedure Displace_Allocator_Pointer (N : Node_Id) is
470 Loc : constant Source_Ptr := Sloc (N);
471 Orig_Node : constant Node_Id := Original_Node (N);
472 Dtyp : Entity_Id;
473 Etyp : Entity_Id;
474 PtrT : Entity_Id;
475
476 begin
477 -- Do nothing in case of VM targets: the virtual machine will handle
478 -- interfaces directly.
479
480 if not Tagged_Type_Expansion then
481 return;
482 end if;
483
484 pragma Assert (Nkind (N) = N_Identifier
485 and then Nkind (Orig_Node) = N_Allocator);
486
487 PtrT := Etype (Orig_Node);
488 Dtyp := Available_View (Designated_Type (PtrT));
489 Etyp := Etype (Expression (Orig_Node));
490
491 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
492
493 -- If the type of the allocator expression is not an interface type
494 -- we can generate code to reference the record component containing
495 -- the pointer to the secondary dispatch table.
496
497 if not Is_Interface (Etyp) then
498 declare
499 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
500
501 begin
502 -- 1) Get access to the allocated object
503
504 Rewrite (N,
505 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
506 Set_Etype (N, Etyp);
507 Set_Analyzed (N);
508
509 -- 2) Add the conversion to displace the pointer to reference
510 -- the secondary dispatch table.
511
512 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
513 Analyze_And_Resolve (N, Dtyp);
514
515 -- 3) The 'access to the secondary dispatch table will be used
516 -- as the value returned by the allocator.
517
518 Rewrite (N,
519 Make_Attribute_Reference (Loc,
520 Prefix => Relocate_Node (N),
521 Attribute_Name => Name_Access));
522 Set_Etype (N, Saved_Typ);
523 Set_Analyzed (N);
524 end;
525
526 -- If the type of the allocator expression is an interface type we
527 -- generate a run-time call to displace "this" to reference the
528 -- component containing the pointer to the secondary dispatch table
529 -- or else raise Constraint_Error if the actual object does not
530 -- implement the target interface. This case corresponds to the
531 -- following example:
532
533 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
534 -- begin
535 -- return new Iface_2'Class'(Obj);
536 -- end Op;
537
538 else
539 Rewrite (N,
540 Unchecked_Convert_To (PtrT,
541 Make_Function_Call (Loc,
542 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
543 Parameter_Associations => New_List (
544 Unchecked_Convert_To (RTE (RE_Address),
545 Relocate_Node (N)),
546
547 New_Occurrence_Of
548 (Elists.Node
549 (First_Elmt
550 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
551 Loc)))));
552 Analyze_And_Resolve (N, PtrT);
553 end if;
554 end if;
555 end Displace_Allocator_Pointer;
556
557 ---------------------------------
558 -- Expand_Allocator_Expression --
559 ---------------------------------
560
561 procedure Expand_Allocator_Expression (N : Node_Id) is
562 Loc : constant Source_Ptr := Sloc (N);
563 Exp : constant Node_Id := Expression (Expression (N));
564 PtrT : constant Entity_Id := Etype (N);
565 DesigT : constant Entity_Id := Designated_Type (PtrT);
566
567 procedure Apply_Accessibility_Check
568 (Ref : Node_Id;
569 Built_In_Place : Boolean := False);
570 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
571 -- type, generate an accessibility check to verify that the level of the
572 -- type of the created object is not deeper than the level of the access
573 -- type. If the type of the qualified expression is class-wide, then
574 -- always generate the check (except in the case where it is known to be
575 -- unnecessary, see comment below). Otherwise, only generate the check
576 -- if the level of the qualified expression type is statically deeper
577 -- than the access type.
578 --
579 -- Although the static accessibility will generally have been performed
580 -- as a legality check, it won't have been done in cases where the
581 -- allocator appears in generic body, so a run-time check is needed in
582 -- general. One special case is when the access type is declared in the
583 -- same scope as the class-wide allocator, in which case the check can
584 -- never fail, so it need not be generated.
585 --
586 -- As an open issue, there seem to be cases where the static level
587 -- associated with the class-wide object's underlying type is not
588 -- sufficient to perform the proper accessibility check, such as for
589 -- allocators in nested subprograms or accept statements initialized by
590 -- class-wide formals when the actual originates outside at a deeper
591 -- static level. The nested subprogram case might require passing
592 -- accessibility levels along with class-wide parameters, and the task
593 -- case seems to be an actual gap in the language rules that needs to
594 -- be fixed by the ARG. ???
595
596 -------------------------------
597 -- Apply_Accessibility_Check --
598 -------------------------------
599
600 procedure Apply_Accessibility_Check
601 (Ref : Node_Id;
602 Built_In_Place : Boolean := False)
603 is
604 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
605 Cond : Node_Id;
606 Fin_Call : Node_Id;
607 Free_Stmt : Node_Id;
608 Obj_Ref : Node_Id;
609 Stmts : List_Id;
610
611 begin
612 if Ada_Version >= Ada_2005
613 and then Is_Class_Wide_Type (DesigT)
614 and then Tagged_Type_Expansion
615 and then not Scope_Suppress.Suppress (Accessibility_Check)
616 and then
617 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
618 or else
619 (Is_Class_Wide_Type (Etype (Exp))
620 and then Scope (PtrT) /= Current_Scope))
621 then
622 -- If the allocator was built in place, Ref is already a reference
623 -- to the access object initialized to the result of the allocator
624 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
625 -- Remove_Side_Effects for cases where the build-in-place call may
626 -- still be the prefix of the reference (to avoid generating
627 -- duplicate calls). Otherwise, it is the entity associated with
628 -- the object containing the address of the allocated object.
629
630 if Built_In_Place then
631 Remove_Side_Effects (Ref);
632 Obj_Ref := New_Copy_Tree (Ref);
633 else
634 Obj_Ref := New_Occurrence_Of (Ref, Loc);
635 end if;
636
637 -- For access to interface types we must generate code to displace
638 -- the pointer to the base of the object since the subsequent code
639 -- references components located in the TSD of the object (which
640 -- is associated with the primary dispatch table --see a-tags.ads)
641 -- and also generates code invoking Free, which requires also a
642 -- reference to the base of the unallocated object.
643
644 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
645 Obj_Ref :=
646 Unchecked_Convert_To (Etype (Obj_Ref),
647 Make_Function_Call (Loc,
648 Name =>
649 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
650 Parameter_Associations => New_List (
651 Unchecked_Convert_To (RTE (RE_Address),
652 New_Copy_Tree (Obj_Ref)))));
653 end if;
654
655 -- Step 1: Create the object clean up code
656
657 Stmts := New_List;
658
659 -- Deallocate the object if the accessibility check fails. This
660 -- is done only on targets or profiles that support deallocation.
661
662 -- Free (Obj_Ref);
663
664 if RTE_Available (RE_Free) then
665 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
666 Set_Storage_Pool (Free_Stmt, Pool_Id);
667
668 Append_To (Stmts, Free_Stmt);
669
670 -- The target or profile cannot deallocate objects
671
672 else
673 Free_Stmt := Empty;
674 end if;
675
676 -- Finalize the object if applicable. Generate:
677
678 -- [Deep_]Finalize (Obj_Ref.all);
679
680 if Needs_Finalization (DesigT)
681 and then not No_Heap_Finalization (PtrT)
682 then
683 Fin_Call :=
684 Make_Final_Call
685 (Obj_Ref =>
686 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
687 Typ => DesigT);
688
689 -- Guard against a missing [Deep_]Finalize when the designated
690 -- type was not properly frozen.
691
692 if No (Fin_Call) then
693 Fin_Call := Make_Null_Statement (Loc);
694 end if;
695
696 -- When the target or profile supports deallocation, wrap the
697 -- finalization call in a block to ensure proper deallocation
698 -- even if finalization fails. Generate:
699
700 -- begin
701 -- <Fin_Call>
702 -- exception
703 -- when others =>
704 -- <Free_Stmt>
705 -- raise;
706 -- end;
707
708 if Present (Free_Stmt) then
709 Fin_Call :=
710 Make_Block_Statement (Loc,
711 Handled_Statement_Sequence =>
712 Make_Handled_Sequence_Of_Statements (Loc,
713 Statements => New_List (Fin_Call),
714
715 Exception_Handlers => New_List (
716 Make_Exception_Handler (Loc,
717 Exception_Choices => New_List (
718 Make_Others_Choice (Loc)),
719 Statements => New_List (
720 New_Copy_Tree (Free_Stmt),
721 Make_Raise_Statement (Loc))))));
722 end if;
723
724 Prepend_To (Stmts, Fin_Call);
725 end if;
726
727 -- Signal the accessibility failure through a Program_Error
728
729 Append_To (Stmts,
730 Make_Raise_Program_Error (Loc,
731 Condition => New_Occurrence_Of (Standard_True, Loc),
732 Reason => PE_Accessibility_Check_Failed));
733
734 -- Step 2: Create the accessibility comparison
735
736 -- Generate:
737 -- Ref'Tag
738
739 Obj_Ref :=
740 Make_Attribute_Reference (Loc,
741 Prefix => Obj_Ref,
742 Attribute_Name => Name_Tag);
743
744 -- For tagged types, determine the accessibility level by looking
745 -- at the type specific data of the dispatch table. Generate:
746
747 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
748
749 if Tagged_Type_Expansion then
750 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
751
752 -- Use a runtime call to determine the accessibility level when
753 -- compiling on virtual machine targets. Generate:
754
755 -- Get_Access_Level (Ref'Tag)
756
757 else
758 Cond :=
759 Make_Function_Call (Loc,
760 Name =>
761 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
762 Parameter_Associations => New_List (Obj_Ref));
763 end if;
764
765 Cond :=
766 Make_Op_Gt (Loc,
767 Left_Opnd => Cond,
768 Right_Opnd =>
769 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
770
771 -- Due to the complexity and side effects of the check, utilize an
772 -- if statement instead of the regular Program_Error circuitry.
773
774 Insert_Action (N,
775 Make_Implicit_If_Statement (N,
776 Condition => Cond,
777 Then_Statements => Stmts));
778 end if;
779 end Apply_Accessibility_Check;
780
781 -- Local variables
782
783 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
784 Indic : constant Node_Id := Subtype_Mark (Expression (N));
785 T : constant Entity_Id := Entity (Indic);
786 Adj_Call : Node_Id;
787 Node : Node_Id;
788 Tag_Assign : Node_Id;
789 Temp : Entity_Id;
790 Temp_Decl : Node_Id;
791
792 TagT : Entity_Id := Empty;
793 -- Type used as source for tag assignment
794
795 TagR : Node_Id := Empty;
796 -- Target reference for tag assignment
797
798 -- Start of processing for Expand_Allocator_Expression
799
800 begin
801 -- Handle call to C++ constructor
802
803 if Is_CPP_Constructor_Call (Exp) then
804 Make_CPP_Constructor_Call_In_Allocator
805 (Allocator => N,
806 Function_Call => Exp);
807 return;
808 end if;
809
810 -- In the case of an Ada 2012 allocator whose initial value comes from a
811 -- function call, pass "the accessibility level determined by the point
812 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
813 -- Expand_Call but it couldn't be done there (because the Etype of the
814 -- allocator wasn't set then) so we generate the parameter here. See
815 -- the Boolean variable Defer in (a block within) Expand_Call.
816
817 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
818 declare
819 Subp : Entity_Id;
820
821 begin
822 if Nkind (Name (Exp)) = N_Explicit_Dereference then
823 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
824 else
825 Subp := Entity (Name (Exp));
826 end if;
827
828 Subp := Ultimate_Alias (Subp);
829
830 if Present (Extra_Accessibility_Of_Result (Subp)) then
831 Add_Extra_Actual_To_Call
832 (Subprogram_Call => Exp,
833 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
834 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
835 end if;
836 end;
837 end if;
838
839 -- Case of tagged type or type requiring finalization
840
841 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
842
843 -- Ada 2005 (AI-318-02): If the initialization expression is a call
844 -- to a build-in-place function, then access to the allocated object
845 -- must be passed to the function.
846
847 if Is_Build_In_Place_Function_Call (Exp) then
848 Make_Build_In_Place_Call_In_Allocator (N, Exp);
849 Apply_Accessibility_Check (N, Built_In_Place => True);
850 return;
851
852 -- Ada 2005 (AI-318-02): Specialization of the previous case for
853 -- expressions containing a build-in-place function call whose
854 -- returned object covers interface types, and Expr has calls to
855 -- Ada.Tags.Displace to displace the pointer to the returned build-
856 -- in-place object to reference the secondary dispatch table of a
857 -- covered interface type.
858
859 elsif Present (Unqual_BIP_Iface_Function_Call (Exp)) then
860 Make_Build_In_Place_Iface_Call_In_Allocator (N, Exp);
861 Apply_Accessibility_Check (N, Built_In_Place => True);
862 return;
863 end if;
864
865 -- Actions inserted before:
866 -- Temp : constant ptr_T := new T'(Expression);
867 -- Temp._tag = T'tag; -- when not class-wide
868 -- [Deep_]Adjust (Temp.all);
869
870 -- We analyze by hand the new internal allocator to avoid any
871 -- recursion and inappropriate call to Initialize.
872
873 -- We don't want to remove side effects when the expression must be
874 -- built in place. In the case of a build-in-place function call,
875 -- that could lead to a duplication of the call, which was already
876 -- substituted for the allocator.
877
878 if not Aggr_In_Place then
879 Remove_Side_Effects (Exp);
880 end if;
881
882 Temp := Make_Temporary (Loc, 'P', N);
883
884 -- For a class wide allocation generate the following code:
885
886 -- type Equiv_Record is record ... end record;
887 -- implicit subtype CW is <Class_Wide_Subytpe>;
888 -- temp : PtrT := new CW'(CW!(expr));
889
890 if Is_Class_Wide_Type (T) then
891 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
892
893 -- Ada 2005 (AI-251): If the expression is a class-wide interface
894 -- object we generate code to move up "this" to reference the
895 -- base of the object before allocating the new object.
896
897 -- Note that Exp'Address is recursively expanded into a call
898 -- to Base_Address (Exp.Tag)
899
900 if Is_Class_Wide_Type (Etype (Exp))
901 and then Is_Interface (Etype (Exp))
902 and then Tagged_Type_Expansion
903 then
904 Set_Expression
905 (Expression (N),
906 Unchecked_Convert_To (Entity (Indic),
907 Make_Explicit_Dereference (Loc,
908 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
909 Make_Attribute_Reference (Loc,
910 Prefix => Exp,
911 Attribute_Name => Name_Address)))));
912 else
913 Set_Expression
914 (Expression (N),
915 Unchecked_Convert_To (Entity (Indic), Exp));
916 end if;
917
918 Analyze_And_Resolve (Expression (N), Entity (Indic));
919 end if;
920
921 -- Processing for allocators returning non-interface types
922
923 if not Is_Interface (Directly_Designated_Type (PtrT)) then
924 if Aggr_In_Place then
925 Temp_Decl :=
926 Make_Object_Declaration (Loc,
927 Defining_Identifier => Temp,
928 Object_Definition => New_Occurrence_Of (PtrT, Loc),
929 Expression =>
930 Make_Allocator (Loc,
931 Expression =>
932 New_Occurrence_Of (Etype (Exp), Loc)));
933
934 -- Copy the Comes_From_Source flag for the allocator we just
935 -- built, since logically this allocator is a replacement of
936 -- the original allocator node. This is for proper handling of
937 -- restriction No_Implicit_Heap_Allocations.
938
939 Set_Comes_From_Source
940 (Expression (Temp_Decl), Comes_From_Source (N));
941
942 Set_No_Initialization (Expression (Temp_Decl));
943 Insert_Action (N, Temp_Decl);
944
945 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
946 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
947
948 else
949 Node := Relocate_Node (N);
950 Set_Analyzed (Node);
951
952 Temp_Decl :=
953 Make_Object_Declaration (Loc,
954 Defining_Identifier => Temp,
955 Constant_Present => True,
956 Object_Definition => New_Occurrence_Of (PtrT, Loc),
957 Expression => Node);
958
959 Insert_Action (N, Temp_Decl);
960 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
961 end if;
962
963 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
964 -- interface type. In this case we use the type of the qualified
965 -- expression to allocate the object.
966
967 else
968 declare
969 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
970 New_Decl : Node_Id;
971
972 begin
973 New_Decl :=
974 Make_Full_Type_Declaration (Loc,
975 Defining_Identifier => Def_Id,
976 Type_Definition =>
977 Make_Access_To_Object_Definition (Loc,
978 All_Present => True,
979 Null_Exclusion_Present => False,
980 Constant_Present =>
981 Is_Access_Constant (Etype (N)),
982 Subtype_Indication =>
983 New_Occurrence_Of (Etype (Exp), Loc)));
984
985 Insert_Action (N, New_Decl);
986
987 -- Inherit the allocation-related attributes from the original
988 -- access type.
989
990 Set_Finalization_Master
991 (Def_Id, Finalization_Master (PtrT));
992
993 Set_Associated_Storage_Pool
994 (Def_Id, Associated_Storage_Pool (PtrT));
995
996 -- Declare the object using the previous type declaration
997
998 if Aggr_In_Place then
999 Temp_Decl :=
1000 Make_Object_Declaration (Loc,
1001 Defining_Identifier => Temp,
1002 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1003 Expression =>
1004 Make_Allocator (Loc,
1005 New_Occurrence_Of (Etype (Exp), Loc)));
1006
1007 -- Copy the Comes_From_Source flag for the allocator we just
1008 -- built, since logically this allocator is a replacement of
1009 -- the original allocator node. This is for proper handling
1010 -- of restriction No_Implicit_Heap_Allocations.
1011
1012 Set_Comes_From_Source
1013 (Expression (Temp_Decl), Comes_From_Source (N));
1014
1015 Set_No_Initialization (Expression (Temp_Decl));
1016 Insert_Action (N, Temp_Decl);
1017
1018 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1019 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1020
1021 else
1022 Node := Relocate_Node (N);
1023 Set_Analyzed (Node);
1024
1025 Temp_Decl :=
1026 Make_Object_Declaration (Loc,
1027 Defining_Identifier => Temp,
1028 Constant_Present => True,
1029 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1030 Expression => Node);
1031
1032 Insert_Action (N, Temp_Decl);
1033 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1034 end if;
1035
1036 -- Generate an additional object containing the address of the
1037 -- returned object. The type of this second object declaration
1038 -- is the correct type required for the common processing that
1039 -- is still performed by this subprogram. The displacement of
1040 -- this pointer to reference the component associated with the
1041 -- interface type will be done at the end of common processing.
1042
1043 New_Decl :=
1044 Make_Object_Declaration (Loc,
1045 Defining_Identifier => Make_Temporary (Loc, 'P'),
1046 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1047 Expression =>
1048 Unchecked_Convert_To (PtrT,
1049 New_Occurrence_Of (Temp, Loc)));
1050
1051 Insert_Action (N, New_Decl);
1052
1053 Temp_Decl := New_Decl;
1054 Temp := Defining_Identifier (New_Decl);
1055 end;
1056 end if;
1057
1058 -- Generate the tag assignment
1059
1060 -- Suppress the tag assignment for VM targets because VM tags are
1061 -- represented implicitly in objects.
1062
1063 if not Tagged_Type_Expansion then
1064 null;
1065
1066 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1067 -- interface objects because in this case the tag does not change.
1068
1069 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1070 pragma Assert (Is_Class_Wide_Type
1071 (Directly_Designated_Type (Etype (N))));
1072 null;
1073
1074 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1075 TagT := T;
1076 TagR := New_Occurrence_Of (Temp, Loc);
1077
1078 elsif Is_Private_Type (T)
1079 and then Is_Tagged_Type (Underlying_Type (T))
1080 then
1081 TagT := Underlying_Type (T);
1082 TagR :=
1083 Unchecked_Convert_To (Underlying_Type (T),
1084 Make_Explicit_Dereference (Loc,
1085 Prefix => New_Occurrence_Of (Temp, Loc)));
1086 end if;
1087
1088 if Present (TagT) then
1089 declare
1090 Full_T : constant Entity_Id := Underlying_Type (TagT);
1091
1092 begin
1093 Tag_Assign :=
1094 Make_Assignment_Statement (Loc,
1095 Name =>
1096 Make_Selected_Component (Loc,
1097 Prefix => TagR,
1098 Selector_Name =>
1099 New_Occurrence_Of
1100 (First_Tag_Component (Full_T), Loc)),
1101
1102 Expression =>
1103 Unchecked_Convert_To (RTE (RE_Tag),
1104 New_Occurrence_Of
1105 (Elists.Node
1106 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1107 end;
1108
1109 -- The previous assignment has to be done in any case
1110
1111 Set_Assignment_OK (Name (Tag_Assign));
1112 Insert_Action (N, Tag_Assign);
1113 end if;
1114
1115 -- Generate an Adjust call if the object will be moved. In Ada 2005,
1116 -- the object may be inherently limited, in which case there is no
1117 -- Adjust procedure, and the object is built in place. In Ada 95, the
1118 -- object can be limited but not inherently limited if this allocator
1119 -- came from a return statement (we're allocating the result on the
1120 -- secondary stack). In that case, the object will be moved, so we do
1121 -- want to Adjust. However, if it's a nonlimited build-in-place
1122 -- function call, Adjust is not wanted.
1123
1124 if Needs_Finalization (DesigT)
1125 and then Needs_Finalization (T)
1126 and then not Aggr_In_Place
1127 and then not Is_Limited_View (T)
1128 and then not Alloc_For_BIP_Return (N)
1129 and then not Is_Build_In_Place_Function_Call (Expression (N))
1130 then
1131 -- An unchecked conversion is needed in the classwide case because
1132 -- the designated type can be an ancestor of the subtype mark of
1133 -- the allocator.
1134
1135 Adj_Call :=
1136 Make_Adjust_Call
1137 (Obj_Ref =>
1138 Unchecked_Convert_To (T,
1139 Make_Explicit_Dereference (Loc,
1140 Prefix => New_Occurrence_Of (Temp, Loc))),
1141 Typ => T);
1142
1143 if Present (Adj_Call) then
1144 Insert_Action (N, Adj_Call);
1145 end if;
1146 end if;
1147
1148 -- Note: the accessibility check must be inserted after the call to
1149 -- [Deep_]Adjust to ensure proper completion of the assignment.
1150
1151 Apply_Accessibility_Check (Temp);
1152
1153 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1154 Analyze_And_Resolve (N, PtrT);
1155
1156 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1157 -- component containing the secondary dispatch table of the interface
1158 -- type.
1159
1160 if Is_Interface (Directly_Designated_Type (PtrT)) then
1161 Displace_Allocator_Pointer (N);
1162 end if;
1163
1164 -- Always force the generation of a temporary for aggregates when
1165 -- generating C code, to simplify the work in the code generator.
1166
1167 elsif Aggr_In_Place
1168 or else (Modify_Tree_For_C and then Nkind (Exp) = N_Aggregate)
1169 then
1170 Temp := Make_Temporary (Loc, 'P', N);
1171 Temp_Decl :=
1172 Make_Object_Declaration (Loc,
1173 Defining_Identifier => Temp,
1174 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1175 Expression =>
1176 Make_Allocator (Loc,
1177 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
1178
1179 -- Copy the Comes_From_Source flag for the allocator we just built,
1180 -- since logically this allocator is a replacement of the original
1181 -- allocator node. This is for proper handling of restriction
1182 -- No_Implicit_Heap_Allocations.
1183
1184 Set_Comes_From_Source
1185 (Expression (Temp_Decl), Comes_From_Source (N));
1186
1187 Set_No_Initialization (Expression (Temp_Decl));
1188 Insert_Action (N, Temp_Decl);
1189
1190 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1191 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1192
1193 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1194 Analyze_And_Resolve (N, PtrT);
1195
1196 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
1197 Install_Null_Excluding_Check (Exp);
1198
1199 elsif Is_Access_Type (DesigT)
1200 and then Nkind (Exp) = N_Allocator
1201 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1202 then
1203 -- Apply constraint to designated subtype indication
1204
1205 Apply_Constraint_Check
1206 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
1207
1208 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1209
1210 -- Propagate constraint_error to enclosing allocator
1211
1212 Rewrite (Exp, New_Copy (Expression (Exp)));
1213 end if;
1214
1215 else
1216 Build_Allocate_Deallocate_Proc (N, True);
1217
1218 -- If we have:
1219 -- type A is access T1;
1220 -- X : A := new T2'(...);
1221 -- T1 and T2 can be different subtypes, and we might need to check
1222 -- both constraints. First check against the type of the qualified
1223 -- expression.
1224
1225 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1226
1227 if Do_Range_Check (Exp) then
1228 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1229 end if;
1230
1231 -- A check is also needed in cases where the designated subtype is
1232 -- constrained and differs from the subtype given in the qualified
1233 -- expression. Note that the check on the qualified expression does
1234 -- not allow sliding, but this check does (a relaxation from Ada 83).
1235
1236 if Is_Constrained (DesigT)
1237 and then not Subtypes_Statically_Match (T, DesigT)
1238 then
1239 Apply_Constraint_Check
1240 (Exp, DesigT, No_Sliding => False);
1241
1242 if Do_Range_Check (Exp) then
1243 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1244 end if;
1245 end if;
1246
1247 -- For an access to unconstrained packed array, GIGI needs to see an
1248 -- expression with a constrained subtype in order to compute the
1249 -- proper size for the allocator.
1250
1251 if Is_Array_Type (T)
1252 and then not Is_Constrained (T)
1253 and then Is_Packed (T)
1254 then
1255 declare
1256 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1257 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1258 begin
1259 Insert_Action (Exp,
1260 Make_Subtype_Declaration (Loc,
1261 Defining_Identifier => ConstrT,
1262 Subtype_Indication =>
1263 Make_Subtype_From_Expr (Internal_Exp, T)));
1264 Freeze_Itype (ConstrT, Exp);
1265 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1266 end;
1267 end if;
1268
1269 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1270 -- to a build-in-place function, then access to the allocated object
1271 -- must be passed to the function.
1272
1273 if Is_Build_In_Place_Function_Call (Exp) then
1274 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1275 end if;
1276 end if;
1277
1278 exception
1279 when RE_Not_Available =>
1280 return;
1281 end Expand_Allocator_Expression;
1282
1283 -----------------------------
1284 -- Expand_Array_Comparison --
1285 -----------------------------
1286
1287 -- Expansion is only required in the case of array types. For the unpacked
1288 -- case, an appropriate runtime routine is called. For packed cases, and
1289 -- also in some other cases where a runtime routine cannot be called, the
1290 -- form of the expansion is:
1291
1292 -- [body for greater_nn; boolean_expression]
1293
1294 -- The body is built by Make_Array_Comparison_Op, and the form of the
1295 -- Boolean expression depends on the operator involved.
1296
1297 procedure Expand_Array_Comparison (N : Node_Id) is
1298 Loc : constant Source_Ptr := Sloc (N);
1299 Op1 : Node_Id := Left_Opnd (N);
1300 Op2 : Node_Id := Right_Opnd (N);
1301 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1302 Ctyp : constant Entity_Id := Component_Type (Typ1);
1303
1304 Expr : Node_Id;
1305 Func_Body : Node_Id;
1306 Func_Name : Entity_Id;
1307
1308 Comp : RE_Id;
1309
1310 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1311 -- True for byte addressable target
1312
1313 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1314 -- Returns True if the length of the given operand is known to be less
1315 -- than 4. Returns False if this length is known to be four or greater
1316 -- or is not known at compile time.
1317
1318 ------------------------
1319 -- Length_Less_Than_4 --
1320 ------------------------
1321
1322 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1323 Otyp : constant Entity_Id := Etype (Opnd);
1324
1325 begin
1326 if Ekind (Otyp) = E_String_Literal_Subtype then
1327 return String_Literal_Length (Otyp) < 4;
1328
1329 else
1330 declare
1331 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1332 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1333 Hi : constant Node_Id := Type_High_Bound (Ityp);
1334 Lov : Uint;
1335 Hiv : Uint;
1336
1337 begin
1338 if Compile_Time_Known_Value (Lo) then
1339 Lov := Expr_Value (Lo);
1340 else
1341 return False;
1342 end if;
1343
1344 if Compile_Time_Known_Value (Hi) then
1345 Hiv := Expr_Value (Hi);
1346 else
1347 return False;
1348 end if;
1349
1350 return Hiv < Lov + 3;
1351 end;
1352 end if;
1353 end Length_Less_Than_4;
1354
1355 -- Start of processing for Expand_Array_Comparison
1356
1357 begin
1358 -- Deal first with unpacked case, where we can call a runtime routine
1359 -- except that we avoid this for targets for which are not addressable
1360 -- by bytes.
1361
1362 if not Is_Bit_Packed_Array (Typ1)
1363 and then Byte_Addressable
1364 then
1365 -- The call we generate is:
1366
1367 -- Compare_Array_xn[_Unaligned]
1368 -- (left'address, right'address, left'length, right'length) <op> 0
1369
1370 -- x = U for unsigned, S for signed
1371 -- n = 8,16,32,64 for component size
1372 -- Add _Unaligned if length < 4 and component size is 8.
1373 -- <op> is the standard comparison operator
1374
1375 if Component_Size (Typ1) = 8 then
1376 if Length_Less_Than_4 (Op1)
1377 or else
1378 Length_Less_Than_4 (Op2)
1379 then
1380 if Is_Unsigned_Type (Ctyp) then
1381 Comp := RE_Compare_Array_U8_Unaligned;
1382 else
1383 Comp := RE_Compare_Array_S8_Unaligned;
1384 end if;
1385
1386 else
1387 if Is_Unsigned_Type (Ctyp) then
1388 Comp := RE_Compare_Array_U8;
1389 else
1390 Comp := RE_Compare_Array_S8;
1391 end if;
1392 end if;
1393
1394 elsif Component_Size (Typ1) = 16 then
1395 if Is_Unsigned_Type (Ctyp) then
1396 Comp := RE_Compare_Array_U16;
1397 else
1398 Comp := RE_Compare_Array_S16;
1399 end if;
1400
1401 elsif Component_Size (Typ1) = 32 then
1402 if Is_Unsigned_Type (Ctyp) then
1403 Comp := RE_Compare_Array_U32;
1404 else
1405 Comp := RE_Compare_Array_S32;
1406 end if;
1407
1408 else pragma Assert (Component_Size (Typ1) = 64);
1409 if Is_Unsigned_Type (Ctyp) then
1410 Comp := RE_Compare_Array_U64;
1411 else
1412 Comp := RE_Compare_Array_S64;
1413 end if;
1414 end if;
1415
1416 if RTE_Available (Comp) then
1417
1418 -- Expand to a call only if the runtime function is available,
1419 -- otherwise fall back to inline code.
1420
1421 Remove_Side_Effects (Op1, Name_Req => True);
1422 Remove_Side_Effects (Op2, Name_Req => True);
1423
1424 Rewrite (Op1,
1425 Make_Function_Call (Sloc (Op1),
1426 Name => New_Occurrence_Of (RTE (Comp), Loc),
1427
1428 Parameter_Associations => New_List (
1429 Make_Attribute_Reference (Loc,
1430 Prefix => Relocate_Node (Op1),
1431 Attribute_Name => Name_Address),
1432
1433 Make_Attribute_Reference (Loc,
1434 Prefix => Relocate_Node (Op2),
1435 Attribute_Name => Name_Address),
1436
1437 Make_Attribute_Reference (Loc,
1438 Prefix => Relocate_Node (Op1),
1439 Attribute_Name => Name_Length),
1440
1441 Make_Attribute_Reference (Loc,
1442 Prefix => Relocate_Node (Op2),
1443 Attribute_Name => Name_Length))));
1444
1445 Rewrite (Op2,
1446 Make_Integer_Literal (Sloc (Op2),
1447 Intval => Uint_0));
1448
1449 Analyze_And_Resolve (Op1, Standard_Integer);
1450 Analyze_And_Resolve (Op2, Standard_Integer);
1451 return;
1452 end if;
1453 end if;
1454
1455 -- Cases where we cannot make runtime call
1456
1457 -- For (a <= b) we convert to not (a > b)
1458
1459 if Chars (N) = Name_Op_Le then
1460 Rewrite (N,
1461 Make_Op_Not (Loc,
1462 Right_Opnd =>
1463 Make_Op_Gt (Loc,
1464 Left_Opnd => Op1,
1465 Right_Opnd => Op2)));
1466 Analyze_And_Resolve (N, Standard_Boolean);
1467 return;
1468
1469 -- For < the Boolean expression is
1470 -- greater__nn (op2, op1)
1471
1472 elsif Chars (N) = Name_Op_Lt then
1473 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1474
1475 -- Switch operands
1476
1477 Op1 := Right_Opnd (N);
1478 Op2 := Left_Opnd (N);
1479
1480 -- For (a >= b) we convert to not (a < b)
1481
1482 elsif Chars (N) = Name_Op_Ge then
1483 Rewrite (N,
1484 Make_Op_Not (Loc,
1485 Right_Opnd =>
1486 Make_Op_Lt (Loc,
1487 Left_Opnd => Op1,
1488 Right_Opnd => Op2)));
1489 Analyze_And_Resolve (N, Standard_Boolean);
1490 return;
1491
1492 -- For > the Boolean expression is
1493 -- greater__nn (op1, op2)
1494
1495 else
1496 pragma Assert (Chars (N) = Name_Op_Gt);
1497 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1498 end if;
1499
1500 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1501 Expr :=
1502 Make_Function_Call (Loc,
1503 Name => New_Occurrence_Of (Func_Name, Loc),
1504 Parameter_Associations => New_List (Op1, Op2));
1505
1506 Insert_Action (N, Func_Body);
1507 Rewrite (N, Expr);
1508 Analyze_And_Resolve (N, Standard_Boolean);
1509 end Expand_Array_Comparison;
1510
1511 ---------------------------
1512 -- Expand_Array_Equality --
1513 ---------------------------
1514
1515 -- Expand an equality function for multi-dimensional arrays. Here is an
1516 -- example of such a function for Nb_Dimension = 2
1517
1518 -- function Enn (A : atyp; B : btyp) return boolean is
1519 -- begin
1520 -- if (A'length (1) = 0 or else A'length (2) = 0)
1521 -- and then
1522 -- (B'length (1) = 0 or else B'length (2) = 0)
1523 -- then
1524 -- return True; -- RM 4.5.2(22)
1525 -- end if;
1526
1527 -- if A'length (1) /= B'length (1)
1528 -- or else
1529 -- A'length (2) /= B'length (2)
1530 -- then
1531 -- return False; -- RM 4.5.2(23)
1532 -- end if;
1533
1534 -- declare
1535 -- A1 : Index_T1 := A'first (1);
1536 -- B1 : Index_T1 := B'first (1);
1537 -- begin
1538 -- loop
1539 -- declare
1540 -- A2 : Index_T2 := A'first (2);
1541 -- B2 : Index_T2 := B'first (2);
1542 -- begin
1543 -- loop
1544 -- if A (A1, A2) /= B (B1, B2) then
1545 -- return False;
1546 -- end if;
1547
1548 -- exit when A2 = A'last (2);
1549 -- A2 := Index_T2'succ (A2);
1550 -- B2 := Index_T2'succ (B2);
1551 -- end loop;
1552 -- end;
1553
1554 -- exit when A1 = A'last (1);
1555 -- A1 := Index_T1'succ (A1);
1556 -- B1 := Index_T1'succ (B1);
1557 -- end loop;
1558 -- end;
1559
1560 -- return true;
1561 -- end Enn;
1562
1563 -- Note on the formal types used (atyp and btyp). If either of the arrays
1564 -- is of a private type, we use the underlying type, and do an unchecked
1565 -- conversion of the actual. If either of the arrays has a bound depending
1566 -- on a discriminant, then we use the base type since otherwise we have an
1567 -- escaped discriminant in the function.
1568
1569 -- If both arrays are constrained and have the same bounds, we can generate
1570 -- a loop with an explicit iteration scheme using a 'Range attribute over
1571 -- the first array.
1572
1573 function Expand_Array_Equality
1574 (Nod : Node_Id;
1575 Lhs : Node_Id;
1576 Rhs : Node_Id;
1577 Bodies : List_Id;
1578 Typ : Entity_Id) return Node_Id
1579 is
1580 Loc : constant Source_Ptr := Sloc (Nod);
1581 Decls : constant List_Id := New_List;
1582 Index_List1 : constant List_Id := New_List;
1583 Index_List2 : constant List_Id := New_List;
1584
1585 First_Idx : Node_Id;
1586 Formals : List_Id;
1587 Func_Name : Entity_Id;
1588 Func_Body : Node_Id;
1589
1590 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1591 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1592
1593 Ltyp : Entity_Id;
1594 Rtyp : Entity_Id;
1595 -- The parameter types to be used for the formals
1596
1597 New_Lhs : Node_Id;
1598 New_Rhs : Node_Id;
1599 -- The LHS and RHS converted to the parameter types
1600
1601 function Arr_Attr
1602 (Arr : Entity_Id;
1603 Nam : Name_Id;
1604 Num : Int) return Node_Id;
1605 -- This builds the attribute reference Arr'Nam (Expr)
1606
1607 function Component_Equality (Typ : Entity_Id) return Node_Id;
1608 -- Create one statement to compare corresponding components, designated
1609 -- by a full set of indexes.
1610
1611 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1612 -- Given one of the arguments, computes the appropriate type to be used
1613 -- for that argument in the corresponding function formal
1614
1615 function Handle_One_Dimension
1616 (N : Int;
1617 Index : Node_Id) return Node_Id;
1618 -- This procedure returns the following code
1619 --
1620 -- declare
1621 -- Bn : Index_T := B'First (N);
1622 -- begin
1623 -- loop
1624 -- xxx
1625 -- exit when An = A'Last (N);
1626 -- An := Index_T'Succ (An)
1627 -- Bn := Index_T'Succ (Bn)
1628 -- end loop;
1629 -- end;
1630 --
1631 -- If both indexes are constrained and identical, the procedure
1632 -- returns a simpler loop:
1633 --
1634 -- for An in A'Range (N) loop
1635 -- xxx
1636 -- end loop
1637 --
1638 -- N is the dimension for which we are generating a loop. Index is the
1639 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1640 -- xxx statement is either the loop or declare for the next dimension
1641 -- or if this is the last dimension the comparison of corresponding
1642 -- components of the arrays.
1643 --
1644 -- The actual way the code works is to return the comparison of
1645 -- corresponding components for the N+1 call. That's neater.
1646
1647 function Test_Empty_Arrays return Node_Id;
1648 -- This function constructs the test for both arrays being empty
1649 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1650 -- and then
1651 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1652
1653 function Test_Lengths_Correspond return Node_Id;
1654 -- This function constructs the test for arrays having different lengths
1655 -- in at least one index position, in which case the resulting code is:
1656
1657 -- A'length (1) /= B'length (1)
1658 -- or else
1659 -- A'length (2) /= B'length (2)
1660 -- or else
1661 -- ...
1662
1663 --------------
1664 -- Arr_Attr --
1665 --------------
1666
1667 function Arr_Attr
1668 (Arr : Entity_Id;
1669 Nam : Name_Id;
1670 Num : Int) return Node_Id
1671 is
1672 begin
1673 return
1674 Make_Attribute_Reference (Loc,
1675 Attribute_Name => Nam,
1676 Prefix => New_Occurrence_Of (Arr, Loc),
1677 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1678 end Arr_Attr;
1679
1680 ------------------------
1681 -- Component_Equality --
1682 ------------------------
1683
1684 function Component_Equality (Typ : Entity_Id) return Node_Id is
1685 Test : Node_Id;
1686 L, R : Node_Id;
1687
1688 begin
1689 -- if a(i1...) /= b(j1...) then return false; end if;
1690
1691 L :=
1692 Make_Indexed_Component (Loc,
1693 Prefix => Make_Identifier (Loc, Chars (A)),
1694 Expressions => Index_List1);
1695
1696 R :=
1697 Make_Indexed_Component (Loc,
1698 Prefix => Make_Identifier (Loc, Chars (B)),
1699 Expressions => Index_List2);
1700
1701 Test := Expand_Composite_Equality
1702 (Nod, Component_Type (Typ), L, R, Decls);
1703
1704 -- If some (sub)component is an unchecked_union, the whole operation
1705 -- will raise program error.
1706
1707 if Nkind (Test) = N_Raise_Program_Error then
1708
1709 -- This node is going to be inserted at a location where a
1710 -- statement is expected: clear its Etype so analysis will set
1711 -- it to the expected Standard_Void_Type.
1712
1713 Set_Etype (Test, Empty);
1714 return Test;
1715
1716 else
1717 return
1718 Make_Implicit_If_Statement (Nod,
1719 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1720 Then_Statements => New_List (
1721 Make_Simple_Return_Statement (Loc,
1722 Expression => New_Occurrence_Of (Standard_False, Loc))));
1723 end if;
1724 end Component_Equality;
1725
1726 ------------------
1727 -- Get_Arg_Type --
1728 ------------------
1729
1730 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1731 T : Entity_Id;
1732 X : Node_Id;
1733
1734 begin
1735 T := Etype (N);
1736
1737 if No (T) then
1738 return Typ;
1739
1740 else
1741 T := Underlying_Type (T);
1742
1743 X := First_Index (T);
1744 while Present (X) loop
1745 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1746 or else
1747 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1748 then
1749 T := Base_Type (T);
1750 exit;
1751 end if;
1752
1753 Next_Index (X);
1754 end loop;
1755
1756 return T;
1757 end if;
1758 end Get_Arg_Type;
1759
1760 --------------------------
1761 -- Handle_One_Dimension --
1762 ---------------------------
1763
1764 function Handle_One_Dimension
1765 (N : Int;
1766 Index : Node_Id) return Node_Id
1767 is
1768 Need_Separate_Indexes : constant Boolean :=
1769 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
1770 -- If the index types are identical, and we are working with
1771 -- constrained types, then we can use the same index for both
1772 -- of the arrays.
1773
1774 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1775
1776 Bn : Entity_Id;
1777 Index_T : Entity_Id;
1778 Stm_List : List_Id;
1779 Loop_Stm : Node_Id;
1780
1781 begin
1782 if N > Number_Dimensions (Ltyp) then
1783 return Component_Equality (Ltyp);
1784 end if;
1785
1786 -- Case where we generate a loop
1787
1788 Index_T := Base_Type (Etype (Index));
1789
1790 if Need_Separate_Indexes then
1791 Bn := Make_Temporary (Loc, 'B');
1792 else
1793 Bn := An;
1794 end if;
1795
1796 Append (New_Occurrence_Of (An, Loc), Index_List1);
1797 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
1798
1799 Stm_List := New_List (
1800 Handle_One_Dimension (N + 1, Next_Index (Index)));
1801
1802 if Need_Separate_Indexes then
1803
1804 -- Generate guard for loop, followed by increments of indexes
1805
1806 Append_To (Stm_List,
1807 Make_Exit_Statement (Loc,
1808 Condition =>
1809 Make_Op_Eq (Loc,
1810 Left_Opnd => New_Occurrence_Of (An, Loc),
1811 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1812
1813 Append_To (Stm_List,
1814 Make_Assignment_Statement (Loc,
1815 Name => New_Occurrence_Of (An, Loc),
1816 Expression =>
1817 Make_Attribute_Reference (Loc,
1818 Prefix => New_Occurrence_Of (Index_T, Loc),
1819 Attribute_Name => Name_Succ,
1820 Expressions => New_List (
1821 New_Occurrence_Of (An, Loc)))));
1822
1823 Append_To (Stm_List,
1824 Make_Assignment_Statement (Loc,
1825 Name => New_Occurrence_Of (Bn, Loc),
1826 Expression =>
1827 Make_Attribute_Reference (Loc,
1828 Prefix => New_Occurrence_Of (Index_T, Loc),
1829 Attribute_Name => Name_Succ,
1830 Expressions => New_List (
1831 New_Occurrence_Of (Bn, Loc)))));
1832 end if;
1833
1834 -- If separate indexes, we need a declare block for An and Bn, and a
1835 -- loop without an iteration scheme.
1836
1837 if Need_Separate_Indexes then
1838 Loop_Stm :=
1839 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1840
1841 return
1842 Make_Block_Statement (Loc,
1843 Declarations => New_List (
1844 Make_Object_Declaration (Loc,
1845 Defining_Identifier => An,
1846 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1847 Expression => Arr_Attr (A, Name_First, N)),
1848
1849 Make_Object_Declaration (Loc,
1850 Defining_Identifier => Bn,
1851 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1852 Expression => Arr_Attr (B, Name_First, N))),
1853
1854 Handled_Statement_Sequence =>
1855 Make_Handled_Sequence_Of_Statements (Loc,
1856 Statements => New_List (Loop_Stm)));
1857
1858 -- If no separate indexes, return loop statement with explicit
1859 -- iteration scheme on its own.
1860
1861 else
1862 Loop_Stm :=
1863 Make_Implicit_Loop_Statement (Nod,
1864 Statements => Stm_List,
1865 Iteration_Scheme =>
1866 Make_Iteration_Scheme (Loc,
1867 Loop_Parameter_Specification =>
1868 Make_Loop_Parameter_Specification (Loc,
1869 Defining_Identifier => An,
1870 Discrete_Subtype_Definition =>
1871 Arr_Attr (A, Name_Range, N))));
1872 return Loop_Stm;
1873 end if;
1874 end Handle_One_Dimension;
1875
1876 -----------------------
1877 -- Test_Empty_Arrays --
1878 -----------------------
1879
1880 function Test_Empty_Arrays return Node_Id is
1881 Alist : Node_Id;
1882 Blist : Node_Id;
1883
1884 Atest : Node_Id;
1885 Btest : Node_Id;
1886
1887 begin
1888 Alist := Empty;
1889 Blist := Empty;
1890 for J in 1 .. Number_Dimensions (Ltyp) loop
1891 Atest :=
1892 Make_Op_Eq (Loc,
1893 Left_Opnd => Arr_Attr (A, Name_Length, J),
1894 Right_Opnd => Make_Integer_Literal (Loc, 0));
1895
1896 Btest :=
1897 Make_Op_Eq (Loc,
1898 Left_Opnd => Arr_Attr (B, Name_Length, J),
1899 Right_Opnd => Make_Integer_Literal (Loc, 0));
1900
1901 if No (Alist) then
1902 Alist := Atest;
1903 Blist := Btest;
1904
1905 else
1906 Alist :=
1907 Make_Or_Else (Loc,
1908 Left_Opnd => Relocate_Node (Alist),
1909 Right_Opnd => Atest);
1910
1911 Blist :=
1912 Make_Or_Else (Loc,
1913 Left_Opnd => Relocate_Node (Blist),
1914 Right_Opnd => Btest);
1915 end if;
1916 end loop;
1917
1918 return
1919 Make_And_Then (Loc,
1920 Left_Opnd => Alist,
1921 Right_Opnd => Blist);
1922 end Test_Empty_Arrays;
1923
1924 -----------------------------
1925 -- Test_Lengths_Correspond --
1926 -----------------------------
1927
1928 function Test_Lengths_Correspond return Node_Id is
1929 Result : Node_Id;
1930 Rtest : Node_Id;
1931
1932 begin
1933 Result := Empty;
1934 for J in 1 .. Number_Dimensions (Ltyp) loop
1935 Rtest :=
1936 Make_Op_Ne (Loc,
1937 Left_Opnd => Arr_Attr (A, Name_Length, J),
1938 Right_Opnd => Arr_Attr (B, Name_Length, J));
1939
1940 if No (Result) then
1941 Result := Rtest;
1942 else
1943 Result :=
1944 Make_Or_Else (Loc,
1945 Left_Opnd => Relocate_Node (Result),
1946 Right_Opnd => Rtest);
1947 end if;
1948 end loop;
1949
1950 return Result;
1951 end Test_Lengths_Correspond;
1952
1953 -- Start of processing for Expand_Array_Equality
1954
1955 begin
1956 Ltyp := Get_Arg_Type (Lhs);
1957 Rtyp := Get_Arg_Type (Rhs);
1958
1959 -- For now, if the argument types are not the same, go to the base type,
1960 -- since the code assumes that the formals have the same type. This is
1961 -- fixable in future ???
1962
1963 if Ltyp /= Rtyp then
1964 Ltyp := Base_Type (Ltyp);
1965 Rtyp := Base_Type (Rtyp);
1966 pragma Assert (Ltyp = Rtyp);
1967 end if;
1968
1969 -- If the array type is distinct from the type of the arguments, it
1970 -- is the full view of a private type. Apply an unchecked conversion
1971 -- to ensure that analysis of the code below succeeds.
1972
1973 if No (Etype (Lhs))
1974 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
1975 then
1976 New_Lhs := OK_Convert_To (Ltyp, Lhs);
1977 else
1978 New_Lhs := Lhs;
1979 end if;
1980
1981 if No (Etype (Rhs))
1982 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
1983 then
1984 New_Rhs := OK_Convert_To (Rtyp, Rhs);
1985 else
1986 New_Rhs := Rhs;
1987 end if;
1988
1989 First_Idx := First_Index (Ltyp);
1990
1991 -- If optimization is enabled and the array boils down to a couple of
1992 -- consecutive elements, generate a simple conjunction of comparisons
1993 -- which should be easier to optimize by the code generator.
1994
1995 if Optimization_Level > 0
1996 and then Ltyp = Rtyp
1997 and then Is_Constrained (Ltyp)
1998 and then Number_Dimensions (Ltyp) = 1
1999 and then Nkind (First_Idx) = N_Range
2000 and then Compile_Time_Known_Value (Low_Bound (First_Idx))
2001 and then Compile_Time_Known_Value (High_Bound (First_Idx))
2002 and then Expr_Value (High_Bound (First_Idx)) =
2003 Expr_Value (Low_Bound (First_Idx)) + 1
2004 then
2005 declare
2006 Ctyp : constant Entity_Id := Component_Type (Ltyp);
2007 L, R : Node_Id;
2008 TestL, TestH : Node_Id;
2009 Index_List : List_Id;
2010
2011 begin
2012 Index_List := New_List (New_Copy_Tree (Low_Bound (First_Idx)));
2013
2014 L :=
2015 Make_Indexed_Component (Loc,
2016 Prefix => New_Copy_Tree (New_Lhs),
2017 Expressions => Index_List);
2018
2019 R :=
2020 Make_Indexed_Component (Loc,
2021 Prefix => New_Copy_Tree (New_Rhs),
2022 Expressions => Index_List);
2023
2024 TestL := Expand_Composite_Equality (Nod, Ctyp, L, R, Bodies);
2025
2026 Index_List := New_List (New_Copy_Tree (High_Bound (First_Idx)));
2027
2028 L :=
2029 Make_Indexed_Component (Loc,
2030 Prefix => New_Lhs,
2031 Expressions => Index_List);
2032
2033 R :=
2034 Make_Indexed_Component (Loc,
2035 Prefix => New_Rhs,
2036 Expressions => Index_List);
2037
2038 TestH := Expand_Composite_Equality (Nod, Ctyp, L, R, Bodies);
2039
2040 return
2041 Make_And_Then (Loc, Left_Opnd => TestL, Right_Opnd => TestH);
2042 end;
2043 end if;
2044
2045 -- Build list of formals for function
2046
2047 Formals := New_List (
2048 Make_Parameter_Specification (Loc,
2049 Defining_Identifier => A,
2050 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
2051
2052 Make_Parameter_Specification (Loc,
2053 Defining_Identifier => B,
2054 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
2055
2056 Func_Name := Make_Temporary (Loc, 'E');
2057
2058 -- Build statement sequence for function
2059
2060 Func_Body :=
2061 Make_Subprogram_Body (Loc,
2062 Specification =>
2063 Make_Function_Specification (Loc,
2064 Defining_Unit_Name => Func_Name,
2065 Parameter_Specifications => Formals,
2066 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
2067
2068 Declarations => Decls,
2069
2070 Handled_Statement_Sequence =>
2071 Make_Handled_Sequence_Of_Statements (Loc,
2072 Statements => New_List (
2073
2074 Make_Implicit_If_Statement (Nod,
2075 Condition => Test_Empty_Arrays,
2076 Then_Statements => New_List (
2077 Make_Simple_Return_Statement (Loc,
2078 Expression =>
2079 New_Occurrence_Of (Standard_True, Loc)))),
2080
2081 Make_Implicit_If_Statement (Nod,
2082 Condition => Test_Lengths_Correspond,
2083 Then_Statements => New_List (
2084 Make_Simple_Return_Statement (Loc,
2085 Expression => New_Occurrence_Of (Standard_False, Loc)))),
2086
2087 Handle_One_Dimension (1, First_Idx),
2088
2089 Make_Simple_Return_Statement (Loc,
2090 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2091
2092 Set_Has_Completion (Func_Name, True);
2093 Set_Is_Inlined (Func_Name);
2094
2095 Append_To (Bodies, Func_Body);
2096
2097 return
2098 Make_Function_Call (Loc,
2099 Name => New_Occurrence_Of (Func_Name, Loc),
2100 Parameter_Associations => New_List (New_Lhs, New_Rhs));
2101 end Expand_Array_Equality;
2102
2103 -----------------------------
2104 -- Expand_Boolean_Operator --
2105 -----------------------------
2106
2107 -- Note that we first get the actual subtypes of the operands, since we
2108 -- always want to deal with types that have bounds.
2109
2110 procedure Expand_Boolean_Operator (N : Node_Id) is
2111 Typ : constant Entity_Id := Etype (N);
2112
2113 begin
2114 -- Special case of bit packed array where both operands are known to be
2115 -- properly aligned. In this case we use an efficient run time routine
2116 -- to carry out the operation (see System.Bit_Ops).
2117
2118 if Is_Bit_Packed_Array (Typ)
2119 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2120 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2121 then
2122 Expand_Packed_Boolean_Operator (N);
2123 return;
2124 end if;
2125
2126 -- For the normal non-packed case, the general expansion is to build
2127 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2128 -- and then inserting it into the tree. The original operator node is
2129 -- then rewritten as a call to this function. We also use this in the
2130 -- packed case if either operand is a possibly unaligned object.
2131
2132 declare
2133 Loc : constant Source_Ptr := Sloc (N);
2134 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2135 R : Node_Id := Relocate_Node (Right_Opnd (N));
2136 Func_Body : Node_Id;
2137 Func_Name : Entity_Id;
2138
2139 begin
2140 Convert_To_Actual_Subtype (L);
2141 Convert_To_Actual_Subtype (R);
2142 Ensure_Defined (Etype (L), N);
2143 Ensure_Defined (Etype (R), N);
2144 Apply_Length_Check (R, Etype (L));
2145
2146 if Nkind (N) = N_Op_Xor then
2147 R := Duplicate_Subexpr (R);
2148 Silly_Boolean_Array_Xor_Test (N, R, Etype (L));
2149 end if;
2150
2151 if Nkind (Parent (N)) = N_Assignment_Statement
2152 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2153 then
2154 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2155
2156 elsif Nkind (Parent (N)) = N_Op_Not
2157 and then Nkind (N) = N_Op_And
2158 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2159 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2160 then
2161 return;
2162 else
2163
2164 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2165 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2166 Insert_Action (N, Func_Body);
2167
2168 -- Now rewrite the expression with a call
2169
2170 Rewrite (N,
2171 Make_Function_Call (Loc,
2172 Name => New_Occurrence_Of (Func_Name, Loc),
2173 Parameter_Associations =>
2174 New_List (
2175 L,
2176 Make_Type_Conversion
2177 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
2178
2179 Analyze_And_Resolve (N, Typ);
2180 end if;
2181 end;
2182 end Expand_Boolean_Operator;
2183
2184 ------------------------------------------------
2185 -- Expand_Compare_Minimize_Eliminate_Overflow --
2186 ------------------------------------------------
2187
2188 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2189 Loc : constant Source_Ptr := Sloc (N);
2190
2191 Result_Type : constant Entity_Id := Etype (N);
2192 -- Capture result type (could be a derived boolean type)
2193
2194 Llo, Lhi : Uint;
2195 Rlo, Rhi : Uint;
2196
2197 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2198 -- Entity for Long_Long_Integer'Base
2199
2200 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
2201 -- Current overflow checking mode
2202
2203 procedure Set_True;
2204 procedure Set_False;
2205 -- These procedures rewrite N with an occurrence of Standard_True or
2206 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2207
2208 ---------------
2209 -- Set_False --
2210 ---------------
2211
2212 procedure Set_False is
2213 begin
2214 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2215 Warn_On_Known_Condition (N);
2216 end Set_False;
2217
2218 --------------
2219 -- Set_True --
2220 --------------
2221
2222 procedure Set_True is
2223 begin
2224 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2225 Warn_On_Known_Condition (N);
2226 end Set_True;
2227
2228 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2229
2230 begin
2231 -- Nothing to do unless we have a comparison operator with operands
2232 -- that are signed integer types, and we are operating in either
2233 -- MINIMIZED or ELIMINATED overflow checking mode.
2234
2235 if Nkind (N) not in N_Op_Compare
2236 or else Check not in Minimized_Or_Eliminated
2237 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2238 then
2239 return;
2240 end if;
2241
2242 -- OK, this is the case we are interested in. First step is to process
2243 -- our operands using the Minimize_Eliminate circuitry which applies
2244 -- this processing to the two operand subtrees.
2245
2246 Minimize_Eliminate_Overflows
2247 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
2248 Minimize_Eliminate_Overflows
2249 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
2250
2251 -- See if the range information decides the result of the comparison.
2252 -- We can only do this if we in fact have full range information (which
2253 -- won't be the case if either operand is bignum at this stage).
2254
2255 if Llo /= No_Uint and then Rlo /= No_Uint then
2256 case N_Op_Compare (Nkind (N)) is
2257 when N_Op_Eq =>
2258 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2259 Set_True;
2260 elsif Llo > Rhi or else Lhi < Rlo then
2261 Set_False;
2262 end if;
2263
2264 when N_Op_Ge =>
2265 if Llo >= Rhi then
2266 Set_True;
2267 elsif Lhi < Rlo then
2268 Set_False;
2269 end if;
2270
2271 when N_Op_Gt =>
2272 if Llo > Rhi then
2273 Set_True;
2274 elsif Lhi <= Rlo then
2275 Set_False;
2276 end if;
2277
2278 when N_Op_Le =>
2279 if Llo > Rhi then
2280 Set_False;
2281 elsif Lhi <= Rlo then
2282 Set_True;
2283 end if;
2284
2285 when N_Op_Lt =>
2286 if Llo >= Rhi then
2287 Set_False;
2288 elsif Lhi < Rlo then
2289 Set_True;
2290 end if;
2291
2292 when N_Op_Ne =>
2293 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2294 Set_False;
2295 elsif Llo > Rhi or else Lhi < Rlo then
2296 Set_True;
2297 end if;
2298 end case;
2299
2300 -- All done if we did the rewrite
2301
2302 if Nkind (N) not in N_Op_Compare then
2303 return;
2304 end if;
2305 end if;
2306
2307 -- Otherwise, time to do the comparison
2308
2309 declare
2310 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2311 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2312
2313 begin
2314 -- If the two operands have the same signed integer type we are
2315 -- all set, nothing more to do. This is the case where either
2316 -- both operands were unchanged, or we rewrote both of them to
2317 -- be Long_Long_Integer.
2318
2319 -- Note: Entity for the comparison may be wrong, but it's not worth
2320 -- the effort to change it, since the back end does not use it.
2321
2322 if Is_Signed_Integer_Type (Ltype)
2323 and then Base_Type (Ltype) = Base_Type (Rtype)
2324 then
2325 return;
2326
2327 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2328
2329 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2330 declare
2331 Left : Node_Id := Left_Opnd (N);
2332 Right : Node_Id := Right_Opnd (N);
2333 -- Bignum references for left and right operands
2334
2335 begin
2336 if not Is_RTE (Ltype, RE_Bignum) then
2337 Left := Convert_To_Bignum (Left);
2338 elsif not Is_RTE (Rtype, RE_Bignum) then
2339 Right := Convert_To_Bignum (Right);
2340 end if;
2341
2342 -- We rewrite our node with:
2343
2344 -- do
2345 -- Bnn : Result_Type;
2346 -- declare
2347 -- M : Mark_Id := SS_Mark;
2348 -- begin
2349 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2350 -- SS_Release (M);
2351 -- end;
2352 -- in
2353 -- Bnn
2354 -- end
2355
2356 declare
2357 Blk : constant Node_Id := Make_Bignum_Block (Loc);
2358 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2359 Ent : RE_Id;
2360
2361 begin
2362 case N_Op_Compare (Nkind (N)) is
2363 when N_Op_Eq => Ent := RE_Big_EQ;
2364 when N_Op_Ge => Ent := RE_Big_GE;
2365 when N_Op_Gt => Ent := RE_Big_GT;
2366 when N_Op_Le => Ent := RE_Big_LE;
2367 when N_Op_Lt => Ent := RE_Big_LT;
2368 when N_Op_Ne => Ent := RE_Big_NE;
2369 end case;
2370
2371 -- Insert assignment to Bnn into the bignum block
2372
2373 Insert_Before
2374 (First (Statements (Handled_Statement_Sequence (Blk))),
2375 Make_Assignment_Statement (Loc,
2376 Name => New_Occurrence_Of (Bnn, Loc),
2377 Expression =>
2378 Make_Function_Call (Loc,
2379 Name =>
2380 New_Occurrence_Of (RTE (Ent), Loc),
2381 Parameter_Associations => New_List (Left, Right))));
2382
2383 -- Now do the rewrite with expression actions
2384
2385 Rewrite (N,
2386 Make_Expression_With_Actions (Loc,
2387 Actions => New_List (
2388 Make_Object_Declaration (Loc,
2389 Defining_Identifier => Bnn,
2390 Object_Definition =>
2391 New_Occurrence_Of (Result_Type, Loc)),
2392 Blk),
2393 Expression => New_Occurrence_Of (Bnn, Loc)));
2394 Analyze_And_Resolve (N, Result_Type);
2395 end;
2396 end;
2397
2398 -- No bignums involved, but types are different, so we must have
2399 -- rewritten one of the operands as a Long_Long_Integer but not
2400 -- the other one.
2401
2402 -- If left operand is Long_Long_Integer, convert right operand
2403 -- and we are done (with a comparison of two Long_Long_Integers).
2404
2405 elsif Ltype = LLIB then
2406 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2407 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2408 return;
2409
2410 -- If right operand is Long_Long_Integer, convert left operand
2411 -- and we are done (with a comparison of two Long_Long_Integers).
2412
2413 -- This is the only remaining possibility
2414
2415 else pragma Assert (Rtype = LLIB);
2416 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2417 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2418 return;
2419 end if;
2420 end;
2421 end Expand_Compare_Minimize_Eliminate_Overflow;
2422
2423 -------------------------------
2424 -- Expand_Composite_Equality --
2425 -------------------------------
2426
2427 -- This function is only called for comparing internal fields of composite
2428 -- types when these fields are themselves composites. This is a special
2429 -- case because it is not possible to respect normal Ada visibility rules.
2430
2431 function Expand_Composite_Equality
2432 (Nod : Node_Id;
2433 Typ : Entity_Id;
2434 Lhs : Node_Id;
2435 Rhs : Node_Id;
2436 Bodies : List_Id) return Node_Id
2437 is
2438 Loc : constant Source_Ptr := Sloc (Nod);
2439 Full_Type : Entity_Id;
2440 Eq_Op : Entity_Id;
2441
2442 -- Start of processing for Expand_Composite_Equality
2443
2444 begin
2445 if Is_Private_Type (Typ) then
2446 Full_Type := Underlying_Type (Typ);
2447 else
2448 Full_Type := Typ;
2449 end if;
2450
2451 -- If the private type has no completion the context may be the
2452 -- expansion of a composite equality for a composite type with some
2453 -- still incomplete components. The expression will not be analyzed
2454 -- until the enclosing type is completed, at which point this will be
2455 -- properly expanded, unless there is a bona fide completion error.
2456
2457 if No (Full_Type) then
2458 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2459 end if;
2460
2461 Full_Type := Base_Type (Full_Type);
2462
2463 -- When the base type itself is private, use the full view to expand
2464 -- the composite equality.
2465
2466 if Is_Private_Type (Full_Type) then
2467 Full_Type := Underlying_Type (Full_Type);
2468 end if;
2469
2470 -- Case of array types
2471
2472 if Is_Array_Type (Full_Type) then
2473
2474 -- If the operand is an elementary type other than a floating-point
2475 -- type, then we can simply use the built-in block bitwise equality,
2476 -- since the predefined equality operators always apply and bitwise
2477 -- equality is fine for all these cases.
2478
2479 if Is_Elementary_Type (Component_Type (Full_Type))
2480 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2481 then
2482 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2483
2484 -- For composite component types, and floating-point types, use the
2485 -- expansion. This deals with tagged component types (where we use
2486 -- the applicable equality routine) and floating-point (where we
2487 -- need to worry about negative zeroes), and also the case of any
2488 -- composite type recursively containing such fields.
2489
2490 else
2491 declare
2492 Comp_Typ : Entity_Id;
2493 Hi : Node_Id;
2494 Indx : Node_Id;
2495 Ityp : Entity_Id;
2496 Lo : Node_Id;
2497
2498 begin
2499 -- Do the comparison in the type (or its full view) and not in
2500 -- its unconstrained base type, because the latter operation is
2501 -- more complex and would also require an unchecked conversion.
2502
2503 if Is_Private_Type (Typ) then
2504 Comp_Typ := Underlying_Type (Typ);
2505 else
2506 Comp_Typ := Typ;
2507 end if;
2508
2509 -- Except for the case where the bounds of the type depend on a
2510 -- discriminant, or else we would run into scoping issues.
2511
2512 Indx := First_Index (Comp_Typ);
2513 while Present (Indx) loop
2514 Ityp := Etype (Indx);
2515
2516 Lo := Type_Low_Bound (Ityp);
2517 Hi := Type_High_Bound (Ityp);
2518
2519 if (Nkind (Lo) = N_Identifier
2520 and then Ekind (Entity (Lo)) = E_Discriminant)
2521 or else
2522 (Nkind (Hi) = N_Identifier
2523 and then Ekind (Entity (Hi)) = E_Discriminant)
2524 then
2525 Comp_Typ := Full_Type;
2526 exit;
2527 end if;
2528
2529 Next_Index (Indx);
2530 end loop;
2531
2532 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Comp_Typ);
2533 end;
2534 end if;
2535
2536 -- Case of tagged record types
2537
2538 elsif Is_Tagged_Type (Full_Type) then
2539 Eq_Op := Find_Primitive_Eq (Typ);
2540 pragma Assert (Present (Eq_Op));
2541
2542 return
2543 Make_Function_Call (Loc,
2544 Name => New_Occurrence_Of (Eq_Op, Loc),
2545 Parameter_Associations =>
2546 New_List
2547 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2548 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2549
2550 -- Case of untagged record types
2551
2552 elsif Is_Record_Type (Full_Type) then
2553 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2554
2555 if Present (Eq_Op) then
2556 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2557
2558 -- Inherited equality from parent type. Convert the actuals to
2559 -- match signature of operation.
2560
2561 declare
2562 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2563
2564 begin
2565 return
2566 Make_Function_Call (Loc,
2567 Name => New_Occurrence_Of (Eq_Op, Loc),
2568 Parameter_Associations => New_List (
2569 OK_Convert_To (T, Lhs),
2570 OK_Convert_To (T, Rhs)));
2571 end;
2572
2573 else
2574 -- Comparison between Unchecked_Union components
2575
2576 if Is_Unchecked_Union (Full_Type) then
2577 declare
2578 Lhs_Type : Node_Id := Full_Type;
2579 Rhs_Type : Node_Id := Full_Type;
2580 Lhs_Discr_Val : Node_Id;
2581 Rhs_Discr_Val : Node_Id;
2582
2583 begin
2584 -- Lhs subtype
2585
2586 if Nkind (Lhs) = N_Selected_Component then
2587 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2588 end if;
2589
2590 -- Rhs subtype
2591
2592 if Nkind (Rhs) = N_Selected_Component then
2593 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2594 end if;
2595
2596 -- Lhs of the composite equality
2597
2598 if Is_Constrained (Lhs_Type) then
2599
2600 -- Since the enclosing record type can never be an
2601 -- Unchecked_Union (this code is executed for records
2602 -- that do not have variants), we may reference its
2603 -- discriminant(s).
2604
2605 if Nkind (Lhs) = N_Selected_Component
2606 and then Has_Per_Object_Constraint
2607 (Entity (Selector_Name (Lhs)))
2608 then
2609 Lhs_Discr_Val :=
2610 Make_Selected_Component (Loc,
2611 Prefix => Prefix (Lhs),
2612 Selector_Name =>
2613 New_Copy
2614 (Get_Discriminant_Value
2615 (First_Discriminant (Lhs_Type),
2616 Lhs_Type,
2617 Stored_Constraint (Lhs_Type))));
2618
2619 else
2620 Lhs_Discr_Val :=
2621 New_Copy
2622 (Get_Discriminant_Value
2623 (First_Discriminant (Lhs_Type),
2624 Lhs_Type,
2625 Stored_Constraint (Lhs_Type)));
2626
2627 end if;
2628 else
2629 -- It is not possible to infer the discriminant since
2630 -- the subtype is not constrained.
2631
2632 return
2633 Make_Raise_Program_Error (Loc,
2634 Reason => PE_Unchecked_Union_Restriction);
2635 end if;
2636
2637 -- Rhs of the composite equality
2638
2639 if Is_Constrained (Rhs_Type) then
2640 if Nkind (Rhs) = N_Selected_Component
2641 and then Has_Per_Object_Constraint
2642 (Entity (Selector_Name (Rhs)))
2643 then
2644 Rhs_Discr_Val :=
2645 Make_Selected_Component (Loc,
2646 Prefix => Prefix (Rhs),
2647 Selector_Name =>
2648 New_Copy
2649 (Get_Discriminant_Value
2650 (First_Discriminant (Rhs_Type),
2651 Rhs_Type,
2652 Stored_Constraint (Rhs_Type))));
2653
2654 else
2655 Rhs_Discr_Val :=
2656 New_Copy
2657 (Get_Discriminant_Value
2658 (First_Discriminant (Rhs_Type),
2659 Rhs_Type,
2660 Stored_Constraint (Rhs_Type)));
2661
2662 end if;
2663 else
2664 return
2665 Make_Raise_Program_Error (Loc,
2666 Reason => PE_Unchecked_Union_Restriction);
2667 end if;
2668
2669 -- Call the TSS equality function with the inferred
2670 -- discriminant values.
2671
2672 return
2673 Make_Function_Call (Loc,
2674 Name => New_Occurrence_Of (Eq_Op, Loc),
2675 Parameter_Associations => New_List (
2676 Lhs,
2677 Rhs,
2678 Lhs_Discr_Val,
2679 Rhs_Discr_Val));
2680 end;
2681
2682 -- All cases other than comparing Unchecked_Union types
2683
2684 else
2685 declare
2686 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2687 begin
2688 return
2689 Make_Function_Call (Loc,
2690 Name =>
2691 New_Occurrence_Of (Eq_Op, Loc),
2692 Parameter_Associations => New_List (
2693 OK_Convert_To (T, Lhs),
2694 OK_Convert_To (T, Rhs)));
2695 end;
2696 end if;
2697 end if;
2698
2699 -- Equality composes in Ada 2012 for untagged record types. It also
2700 -- composes for bounded strings, because they are part of the
2701 -- predefined environment. We could make it compose for bounded
2702 -- strings by making them tagged, or by making sure all subcomponents
2703 -- are set to the same value, even when not used. Instead, we have
2704 -- this special case in the compiler, because it's more efficient.
2705
2706 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
2707
2708 -- If no TSS has been created for the type, check whether there is
2709 -- a primitive equality declared for it.
2710
2711 declare
2712 Op : constant Node_Id := Build_Eq_Call (Typ, Loc, Lhs, Rhs);
2713
2714 begin
2715 -- Use user-defined primitive if it exists, otherwise use
2716 -- predefined equality.
2717
2718 if Present (Op) then
2719 return Op;
2720 else
2721 return Make_Op_Eq (Loc, Lhs, Rhs);
2722 end if;
2723 end;
2724
2725 else
2726 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2727 end if;
2728
2729 -- Non-composite types (always use predefined equality)
2730
2731 else
2732 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2733 end if;
2734 end Expand_Composite_Equality;
2735
2736 ------------------------
2737 -- Expand_Concatenate --
2738 ------------------------
2739
2740 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2741 Loc : constant Source_Ptr := Sloc (Cnode);
2742
2743 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2744 -- Result type of concatenation
2745
2746 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2747 -- Component type. Elements of this component type can appear as one
2748 -- of the operands of concatenation as well as arrays.
2749
2750 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2751 -- Index subtype
2752
2753 Ityp : constant Entity_Id := Base_Type (Istyp);
2754 -- Index type. This is the base type of the index subtype, and is used
2755 -- for all computed bounds (which may be out of range of Istyp in the
2756 -- case of null ranges).
2757
2758 Artyp : Entity_Id;
2759 -- This is the type we use to do arithmetic to compute the bounds and
2760 -- lengths of operands. The choice of this type is a little subtle and
2761 -- is discussed in a separate section at the start of the body code.
2762
2763 Concatenation_Error : exception;
2764 -- Raised if concatenation is sure to raise a CE
2765
2766 Result_May_Be_Null : Boolean := True;
2767 -- Reset to False if at least one operand is encountered which is known
2768 -- at compile time to be non-null. Used for handling the special case
2769 -- of setting the high bound to the last operand high bound for a null
2770 -- result, thus ensuring a proper high bound in the super-flat case.
2771
2772 N : constant Nat := List_Length (Opnds);
2773 -- Number of concatenation operands including possibly null operands
2774
2775 NN : Nat := 0;
2776 -- Number of operands excluding any known to be null, except that the
2777 -- last operand is always retained, in case it provides the bounds for
2778 -- a null result.
2779
2780 Opnd : Node_Id := Empty;
2781 -- Current operand being processed in the loop through operands. After
2782 -- this loop is complete, always contains the last operand (which is not
2783 -- the same as Operands (NN), since null operands are skipped).
2784
2785 -- Arrays describing the operands, only the first NN entries of each
2786 -- array are set (NN < N when we exclude known null operands).
2787
2788 Is_Fixed_Length : array (1 .. N) of Boolean;
2789 -- True if length of corresponding operand known at compile time
2790
2791 Operands : array (1 .. N) of Node_Id;
2792 -- Set to the corresponding entry in the Opnds list (but note that null
2793 -- operands are excluded, so not all entries in the list are stored).
2794
2795 Fixed_Length : array (1 .. N) of Uint;
2796 -- Set to length of operand. Entries in this array are set only if the
2797 -- corresponding entry in Is_Fixed_Length is True.
2798
2799 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2800 -- Set to lower bound of operand. Either an integer literal in the case
2801 -- where the bound is known at compile time, else actual lower bound.
2802 -- The operand low bound is of type Ityp.
2803
2804 Var_Length : array (1 .. N) of Entity_Id;
2805 -- Set to an entity of type Natural that contains the length of an
2806 -- operand whose length is not known at compile time. Entries in this
2807 -- array are set only if the corresponding entry in Is_Fixed_Length
2808 -- is False. The entity is of type Artyp.
2809
2810 Aggr_Length : array (0 .. N) of Node_Id;
2811 -- The J'th entry in an expression node that represents the total length
2812 -- of operands 1 through J. It is either an integer literal node, or a
2813 -- reference to a constant entity with the right value, so it is fine
2814 -- to just do a Copy_Node to get an appropriate copy. The extra zeroth
2815 -- entry always is set to zero. The length is of type Artyp.
2816
2817 Low_Bound : Node_Id := Empty;
2818 -- A tree node representing the low bound of the result (of type Ityp).
2819 -- This is either an integer literal node, or an identifier reference to
2820 -- a constant entity initialized to the appropriate value.
2821
2822 Last_Opnd_Low_Bound : Node_Id := Empty;
2823 -- A tree node representing the low bound of the last operand. This
2824 -- need only be set if the result could be null. It is used for the
2825 -- special case of setting the right low bound for a null result.
2826 -- This is of type Ityp.
2827
2828 Last_Opnd_High_Bound : Node_Id := Empty;
2829 -- A tree node representing the high bound of the last operand. This
2830 -- need only be set if the result could be null. It is used for the
2831 -- special case of setting the right high bound for a null result.
2832 -- This is of type Ityp.
2833
2834 High_Bound : Node_Id := Empty;
2835 -- A tree node representing the high bound of the result (of type Ityp)
2836
2837 Result : Node_Id := Empty;
2838 -- Result of the concatenation (of type Ityp)
2839
2840 Actions : constant List_Id := New_List;
2841 -- Collect actions to be inserted
2842
2843 Known_Non_Null_Operand_Seen : Boolean;
2844 -- Set True during generation of the assignments of operands into
2845 -- result once an operand known to be non-null has been seen.
2846
2847 function Library_Level_Target return Boolean;
2848 -- Return True if the concatenation is within the expression of the
2849 -- declaration of a library-level object.
2850
2851 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2852 -- This function makes an N_Integer_Literal node that is returned in
2853 -- analyzed form with the type set to Artyp. Importantly this literal
2854 -- is not flagged as static, so that if we do computations with it that
2855 -- result in statically detected out of range conditions, we will not
2856 -- generate error messages but instead warning messages.
2857
2858 function To_Artyp (X : Node_Id) return Node_Id;
2859 -- Given a node of type Ityp, returns the corresponding value of type
2860 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2861 -- For enum types, the Pos of the value is returned.
2862
2863 function To_Ityp (X : Node_Id) return Node_Id;
2864 -- The inverse function (uses Val in the case of enumeration types)
2865
2866 --------------------------
2867 -- Library_Level_Target --
2868 --------------------------
2869
2870 function Library_Level_Target return Boolean is
2871 P : Node_Id := Parent (Cnode);
2872
2873 begin
2874 while Present (P) loop
2875 if Nkind (P) = N_Object_Declaration then
2876 return Is_Library_Level_Entity (Defining_Identifier (P));
2877
2878 -- Prevent the search from going too far
2879
2880 elsif Is_Body_Or_Package_Declaration (P) then
2881 return False;
2882 end if;
2883
2884 P := Parent (P);
2885 end loop;
2886
2887 return False;
2888 end Library_Level_Target;
2889
2890 ------------------------
2891 -- Make_Artyp_Literal --
2892 ------------------------
2893
2894 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2895 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2896 begin
2897 Set_Etype (Result, Artyp);
2898 Set_Analyzed (Result, True);
2899 Set_Is_Static_Expression (Result, False);
2900 return Result;
2901 end Make_Artyp_Literal;
2902
2903 --------------
2904 -- To_Artyp --
2905 --------------
2906
2907 function To_Artyp (X : Node_Id) return Node_Id is
2908 begin
2909 if Ityp = Base_Type (Artyp) then
2910 return X;
2911
2912 elsif Is_Enumeration_Type (Ityp) then
2913 return
2914 Make_Attribute_Reference (Loc,
2915 Prefix => New_Occurrence_Of (Ityp, Loc),
2916 Attribute_Name => Name_Pos,
2917 Expressions => New_List (X));
2918
2919 else
2920 return Convert_To (Artyp, X);
2921 end if;
2922 end To_Artyp;
2923
2924 -------------
2925 -- To_Ityp --
2926 -------------
2927
2928 function To_Ityp (X : Node_Id) return Node_Id is
2929 begin
2930 if Is_Enumeration_Type (Ityp) then
2931 return
2932 Make_Attribute_Reference (Loc,
2933 Prefix => New_Occurrence_Of (Ityp, Loc),
2934 Attribute_Name => Name_Val,
2935 Expressions => New_List (X));
2936
2937 -- Case where we will do a type conversion
2938
2939 else
2940 if Ityp = Base_Type (Artyp) then
2941 return X;
2942 else
2943 return Convert_To (Ityp, X);
2944 end if;
2945 end if;
2946 end To_Ityp;
2947
2948 -- Local Declarations
2949
2950 Opnd_Typ : Entity_Id;
2951 Ent : Entity_Id;
2952 Len : Uint;
2953 J : Nat;
2954 Clen : Node_Id;
2955 Set : Boolean;
2956
2957 -- Start of processing for Expand_Concatenate
2958
2959 begin
2960 -- Choose an appropriate computational type
2961
2962 -- We will be doing calculations of lengths and bounds in this routine
2963 -- and computing one from the other in some cases, e.g. getting the high
2964 -- bound by adding the length-1 to the low bound.
2965
2966 -- We can't just use the index type, or even its base type for this
2967 -- purpose for two reasons. First it might be an enumeration type which
2968 -- is not suitable for computations of any kind, and second it may
2969 -- simply not have enough range. For example if the index type is
2970 -- -128..+127 then lengths can be up to 256, which is out of range of
2971 -- the type.
2972
2973 -- For enumeration types, we can simply use Standard_Integer, this is
2974 -- sufficient since the actual number of enumeration literals cannot
2975 -- possibly exceed the range of integer (remember we will be doing the
2976 -- arithmetic with POS values, not representation values).
2977
2978 if Is_Enumeration_Type (Ityp) then
2979 Artyp := Standard_Integer;
2980
2981 -- If index type is Positive, we use the standard unsigned type, to give
2982 -- more room on the top of the range, obviating the need for an overflow
2983 -- check when creating the upper bound. This is needed to avoid junk
2984 -- overflow checks in the common case of String types.
2985
2986 -- ??? Disabled for now
2987
2988 -- elsif Istyp = Standard_Positive then
2989 -- Artyp := Standard_Unsigned;
2990
2991 -- For modular types, we use a 32-bit modular type for types whose size
2992 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2993 -- identity type, and for larger unsigned types we use 64-bits.
2994
2995 elsif Is_Modular_Integer_Type (Ityp) then
2996 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
2997 Artyp := Standard_Unsigned;
2998 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
2999 Artyp := Ityp;
3000 else
3001 Artyp := RTE (RE_Long_Long_Unsigned);
3002 end if;
3003
3004 -- Similar treatment for signed types
3005
3006 else
3007 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
3008 Artyp := Standard_Integer;
3009 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
3010 Artyp := Ityp;
3011 else
3012 Artyp := Standard_Long_Long_Integer;
3013 end if;
3014 end if;
3015
3016 -- Supply dummy entry at start of length array
3017
3018 Aggr_Length (0) := Make_Artyp_Literal (0);
3019
3020 -- Go through operands setting up the above arrays
3021
3022 J := 1;
3023 while J <= N loop
3024 Opnd := Remove_Head (Opnds);
3025 Opnd_Typ := Etype (Opnd);
3026
3027 -- The parent got messed up when we put the operands in a list,
3028 -- so now put back the proper parent for the saved operand, that
3029 -- is to say the concatenation node, to make sure that each operand
3030 -- is seen as a subexpression, e.g. if actions must be inserted.
3031
3032 Set_Parent (Opnd, Cnode);
3033
3034 -- Set will be True when we have setup one entry in the array
3035
3036 Set := False;
3037
3038 -- Singleton element (or character literal) case
3039
3040 if Base_Type (Opnd_Typ) = Ctyp then
3041 NN := NN + 1;
3042 Operands (NN) := Opnd;
3043 Is_Fixed_Length (NN) := True;
3044 Fixed_Length (NN) := Uint_1;
3045 Result_May_Be_Null := False;
3046
3047 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3048 -- since we know that the result cannot be null).
3049
3050 Opnd_Low_Bound (NN) :=
3051 Make_Attribute_Reference (Loc,
3052 Prefix => New_Occurrence_Of (Istyp, Loc),
3053 Attribute_Name => Name_First);
3054
3055 Set := True;
3056
3057 -- String literal case (can only occur for strings of course)
3058
3059 elsif Nkind (Opnd) = N_String_Literal then
3060 Len := String_Literal_Length (Opnd_Typ);
3061
3062 if Len /= 0 then
3063 Result_May_Be_Null := False;
3064 end if;
3065
3066 -- Capture last operand low and high bound if result could be null
3067
3068 if J = N and then Result_May_Be_Null then
3069 Last_Opnd_Low_Bound :=
3070 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3071
3072 Last_Opnd_High_Bound :=
3073 Make_Op_Subtract (Loc,
3074 Left_Opnd =>
3075 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
3076 Right_Opnd => Make_Integer_Literal (Loc, 1));
3077 end if;
3078
3079 -- Skip null string literal
3080
3081 if J < N and then Len = 0 then
3082 goto Continue;
3083 end if;
3084
3085 NN := NN + 1;
3086 Operands (NN) := Opnd;
3087 Is_Fixed_Length (NN) := True;
3088
3089 -- Set length and bounds
3090
3091 Fixed_Length (NN) := Len;
3092
3093 Opnd_Low_Bound (NN) :=
3094 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3095
3096 Set := True;
3097
3098 -- All other cases
3099
3100 else
3101 -- Check constrained case with known bounds
3102
3103 if Is_Constrained (Opnd_Typ) then
3104 declare
3105 Index : constant Node_Id := First_Index (Opnd_Typ);
3106 Indx_Typ : constant Entity_Id := Etype (Index);
3107 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3108 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3109
3110 begin
3111 -- Fixed length constrained array type with known at compile
3112 -- time bounds is last case of fixed length operand.
3113
3114 if Compile_Time_Known_Value (Lo)
3115 and then
3116 Compile_Time_Known_Value (Hi)
3117 then
3118 declare
3119 Loval : constant Uint := Expr_Value (Lo);
3120 Hival : constant Uint := Expr_Value (Hi);
3121 Len : constant Uint :=
3122 UI_Max (Hival - Loval + 1, Uint_0);
3123
3124 begin
3125 if Len > 0 then
3126 Result_May_Be_Null := False;
3127 end if;
3128
3129 -- Capture last operand bounds if result could be null
3130
3131 if J = N and then Result_May_Be_Null then
3132 Last_Opnd_Low_Bound :=
3133 Convert_To (Ityp,
3134 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3135
3136 Last_Opnd_High_Bound :=
3137 Convert_To (Ityp,
3138 Make_Integer_Literal (Loc, Expr_Value (Hi)));
3139 end if;
3140
3141 -- Exclude null length case unless last operand
3142
3143 if J < N and then Len = 0 then
3144 goto Continue;
3145 end if;
3146
3147 NN := NN + 1;
3148 Operands (NN) := Opnd;
3149 Is_Fixed_Length (NN) := True;
3150 Fixed_Length (NN) := Len;
3151
3152 Opnd_Low_Bound (NN) :=
3153 To_Ityp
3154 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
3155 Set := True;
3156 end;
3157 end if;
3158 end;
3159 end if;
3160
3161 -- All cases where the length is not known at compile time, or the
3162 -- special case of an operand which is known to be null but has a
3163 -- lower bound other than 1 or is other than a string type.
3164
3165 if not Set then
3166 NN := NN + 1;
3167
3168 -- Capture operand bounds
3169
3170 Opnd_Low_Bound (NN) :=
3171 Make_Attribute_Reference (Loc,
3172 Prefix =>
3173 Duplicate_Subexpr (Opnd, Name_Req => True),
3174 Attribute_Name => Name_First);
3175
3176 -- Capture last operand bounds if result could be null
3177
3178 if J = N and Result_May_Be_Null then
3179 Last_Opnd_Low_Bound :=
3180 Convert_To (Ityp,
3181 Make_Attribute_Reference (Loc,
3182 Prefix =>
3183 Duplicate_Subexpr (Opnd, Name_Req => True),
3184 Attribute_Name => Name_First));
3185
3186 Last_Opnd_High_Bound :=
3187 Convert_To (Ityp,
3188 Make_Attribute_Reference (Loc,
3189 Prefix =>
3190 Duplicate_Subexpr (Opnd, Name_Req => True),
3191 Attribute_Name => Name_Last));
3192 end if;
3193
3194 -- Capture length of operand in entity
3195
3196 Operands (NN) := Opnd;
3197 Is_Fixed_Length (NN) := False;
3198
3199 Var_Length (NN) := Make_Temporary (Loc, 'L');
3200
3201 Append_To (Actions,
3202 Make_Object_Declaration (Loc,
3203 Defining_Identifier => Var_Length (NN),
3204 Constant_Present => True,
3205 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3206 Expression =>
3207 Make_Attribute_Reference (Loc,
3208 Prefix =>
3209 Duplicate_Subexpr (Opnd, Name_Req => True),
3210 Attribute_Name => Name_Length)));
3211 end if;
3212 end if;
3213
3214 -- Set next entry in aggregate length array
3215
3216 -- For first entry, make either integer literal for fixed length
3217 -- or a reference to the saved length for variable length.
3218
3219 if NN = 1 then
3220 if Is_Fixed_Length (1) then
3221 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
3222 else
3223 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
3224 end if;
3225
3226 -- If entry is fixed length and only fixed lengths so far, make
3227 -- appropriate new integer literal adding new length.
3228
3229 elsif Is_Fixed_Length (NN)
3230 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3231 then
3232 Aggr_Length (NN) :=
3233 Make_Integer_Literal (Loc,
3234 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3235
3236 -- All other cases, construct an addition node for the length and
3237 -- create an entity initialized to this length.
3238
3239 else
3240 Ent := Make_Temporary (Loc, 'L');
3241
3242 if Is_Fixed_Length (NN) then
3243 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3244 else
3245 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
3246 end if;
3247
3248 Append_To (Actions,
3249 Make_Object_Declaration (Loc,
3250 Defining_Identifier => Ent,
3251 Constant_Present => True,
3252 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3253 Expression =>
3254 Make_Op_Add (Loc,
3255 Left_Opnd => New_Copy_Tree (Aggr_Length (NN - 1)),
3256 Right_Opnd => Clen)));
3257
3258 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
3259 end if;
3260
3261 <<Continue>>
3262 J := J + 1;
3263 end loop;
3264
3265 -- If we have only skipped null operands, return the last operand
3266
3267 if NN = 0 then
3268 Result := Opnd;
3269 goto Done;
3270 end if;
3271
3272 -- If we have only one non-null operand, return it and we are done.
3273 -- There is one case in which this cannot be done, and that is when
3274 -- the sole operand is of the element type, in which case it must be
3275 -- converted to an array, and the easiest way of doing that is to go
3276 -- through the normal general circuit.
3277
3278 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
3279 Result := Operands (1);
3280 goto Done;
3281 end if;
3282
3283 -- Cases where we have a real concatenation
3284
3285 -- Next step is to find the low bound for the result array that we
3286 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3287
3288 -- If the ultimate ancestor of the index subtype is a constrained array
3289 -- definition, then the lower bound is that of the index subtype as
3290 -- specified by (RM 4.5.3(6)).
3291
3292 -- The right test here is to go to the root type, and then the ultimate
3293 -- ancestor is the first subtype of this root type.
3294
3295 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3296 Low_Bound :=
3297 Make_Attribute_Reference (Loc,
3298 Prefix =>
3299 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3300 Attribute_Name => Name_First);
3301
3302 -- If the first operand in the list has known length we know that
3303 -- the lower bound of the result is the lower bound of this operand.
3304
3305 elsif Is_Fixed_Length (1) then
3306 Low_Bound := Opnd_Low_Bound (1);
3307
3308 -- OK, we don't know the lower bound, we have to build a horrible
3309 -- if expression node of the form
3310
3311 -- if Cond1'Length /= 0 then
3312 -- Opnd1 low bound
3313 -- else
3314 -- if Opnd2'Length /= 0 then
3315 -- Opnd2 low bound
3316 -- else
3317 -- ...
3318
3319 -- The nesting ends either when we hit an operand whose length is known
3320 -- at compile time, or on reaching the last operand, whose low bound we
3321 -- take unconditionally whether or not it is null. It's easiest to do
3322 -- this with a recursive procedure:
3323
3324 else
3325 declare
3326 function Get_Known_Bound (J : Nat) return Node_Id;
3327 -- Returns the lower bound determined by operands J .. NN
3328
3329 ---------------------
3330 -- Get_Known_Bound --
3331 ---------------------
3332
3333 function Get_Known_Bound (J : Nat) return Node_Id is
3334 begin
3335 if Is_Fixed_Length (J) or else J = NN then
3336 return New_Copy_Tree (Opnd_Low_Bound (J));
3337
3338 else
3339 return
3340 Make_If_Expression (Loc,
3341 Expressions => New_List (
3342
3343 Make_Op_Ne (Loc,
3344 Left_Opnd =>
3345 New_Occurrence_Of (Var_Length (J), Loc),
3346 Right_Opnd =>
3347 Make_Integer_Literal (Loc, 0)),
3348
3349 New_Copy_Tree (Opnd_Low_Bound (J)),
3350 Get_Known_Bound (J + 1)));
3351 end if;
3352 end Get_Known_Bound;
3353
3354 begin
3355 Ent := Make_Temporary (Loc, 'L');
3356
3357 Append_To (Actions,
3358 Make_Object_Declaration (Loc,
3359 Defining_Identifier => Ent,
3360 Constant_Present => True,
3361 Object_Definition => New_Occurrence_Of (Ityp, Loc),
3362 Expression => Get_Known_Bound (1)));
3363
3364 Low_Bound := New_Occurrence_Of (Ent, Loc);
3365 end;
3366 end if;
3367
3368 pragma Assert (Present (Low_Bound));
3369
3370 -- Now we can safely compute the upper bound, normally
3371 -- Low_Bound + Length - 1.
3372
3373 High_Bound :=
3374 To_Ityp
3375 (Make_Op_Add (Loc,
3376 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3377 Right_Opnd =>
3378 Make_Op_Subtract (Loc,
3379 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3380 Right_Opnd => Make_Artyp_Literal (1))));
3381
3382 -- Note that calculation of the high bound may cause overflow in some
3383 -- very weird cases, so in the general case we need an overflow check on
3384 -- the high bound. We can avoid this for the common case of string types
3385 -- and other types whose index is Positive, since we chose a wider range
3386 -- for the arithmetic type. If checks are suppressed we do not set the
3387 -- flag, and possibly superfluous warnings will be omitted.
3388
3389 if Istyp /= Standard_Positive
3390 and then not Overflow_Checks_Suppressed (Istyp)
3391 then
3392 Activate_Overflow_Check (High_Bound);
3393 end if;
3394
3395 -- Handle the exceptional case where the result is null, in which case
3396 -- case the bounds come from the last operand (so that we get the proper
3397 -- bounds if the last operand is super-flat).
3398
3399 if Result_May_Be_Null then
3400 Low_Bound :=
3401 Make_If_Expression (Loc,
3402 Expressions => New_List (
3403 Make_Op_Eq (Loc,
3404 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3405 Right_Opnd => Make_Artyp_Literal (0)),
3406 Last_Opnd_Low_Bound,
3407 Low_Bound));
3408
3409 High_Bound :=
3410 Make_If_Expression (Loc,
3411 Expressions => New_List (
3412 Make_Op_Eq (Loc,
3413 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3414 Right_Opnd => Make_Artyp_Literal (0)),
3415 Last_Opnd_High_Bound,
3416 High_Bound));
3417 end if;
3418
3419 -- Here is where we insert the saved up actions
3420
3421 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3422
3423 -- Now we construct an array object with appropriate bounds. We mark
3424 -- the target as internal to prevent useless initialization when
3425 -- Initialize_Scalars is enabled. Also since this is the actual result
3426 -- entity, we make sure we have debug information for the result.
3427
3428 Ent := Make_Temporary (Loc, 'S');
3429 Set_Is_Internal (Ent);
3430 Set_Debug_Info_Needed (Ent);
3431
3432 -- If the bound is statically known to be out of range, we do not want
3433 -- to abort, we want a warning and a runtime constraint error. Note that
3434 -- we have arranged that the result will not be treated as a static
3435 -- constant, so we won't get an illegality during this insertion.
3436
3437 Insert_Action (Cnode,
3438 Make_Object_Declaration (Loc,
3439 Defining_Identifier => Ent,
3440 Object_Definition =>
3441 Make_Subtype_Indication (Loc,
3442 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3443 Constraint =>
3444 Make_Index_Or_Discriminant_Constraint (Loc,
3445 Constraints => New_List (
3446 Make_Range (Loc,
3447 Low_Bound => Low_Bound,
3448 High_Bound => High_Bound))))),
3449 Suppress => All_Checks);
3450
3451 -- If the result of the concatenation appears as the initializing
3452 -- expression of an object declaration, we can just rename the
3453 -- result, rather than copying it.
3454
3455 Set_OK_To_Rename (Ent);
3456
3457 -- Catch the static out of range case now
3458
3459 if Raises_Constraint_Error (High_Bound) then
3460 raise Concatenation_Error;
3461 end if;
3462
3463 -- Now we will generate the assignments to do the actual concatenation
3464
3465 -- There is one case in which we will not do this, namely when all the
3466 -- following conditions are met:
3467
3468 -- The result type is Standard.String
3469
3470 -- There are nine or fewer retained (non-null) operands
3471
3472 -- The optimization level is -O0 or the debug flag gnatd.C is set,
3473 -- and the debug flag gnatd.c is not set.
3474
3475 -- The corresponding System.Concat_n.Str_Concat_n routine is
3476 -- available in the run time.
3477
3478 -- If all these conditions are met then we generate a call to the
3479 -- relevant concatenation routine. The purpose of this is to avoid
3480 -- undesirable code bloat at -O0.
3481
3482 -- If the concatenation is within the declaration of a library-level
3483 -- object, we call the built-in concatenation routines to prevent code
3484 -- bloat, regardless of the optimization level. This is space efficient
3485 -- and prevents linking problems when units are compiled with different
3486 -- optimization levels.
3487
3488 if Atyp = Standard_String
3489 and then NN in 2 .. 9
3490 and then (((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3491 and then not Debug_Flag_Dot_C)
3492 or else Library_Level_Target)
3493 then
3494 declare
3495 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3496 (RE_Str_Concat_2,
3497 RE_Str_Concat_3,
3498 RE_Str_Concat_4,
3499 RE_Str_Concat_5,
3500 RE_Str_Concat_6,
3501 RE_Str_Concat_7,
3502 RE_Str_Concat_8,
3503 RE_Str_Concat_9);
3504
3505 begin
3506 if RTE_Available (RR (NN)) then
3507 declare
3508 Opnds : constant List_Id :=
3509 New_List (New_Occurrence_Of (Ent, Loc));
3510
3511 begin
3512 for J in 1 .. NN loop
3513 if Is_List_Member (Operands (J)) then
3514 Remove (Operands (J));
3515 end if;
3516
3517 if Base_Type (Etype (Operands (J))) = Ctyp then
3518 Append_To (Opnds,
3519 Make_Aggregate (Loc,
3520 Component_Associations => New_List (
3521 Make_Component_Association (Loc,
3522 Choices => New_List (
3523 Make_Integer_Literal (Loc, 1)),
3524 Expression => Operands (J)))));
3525
3526 else
3527 Append_To (Opnds, Operands (J));
3528 end if;
3529 end loop;
3530
3531 Insert_Action (Cnode,
3532 Make_Procedure_Call_Statement (Loc,
3533 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
3534 Parameter_Associations => Opnds));
3535
3536 Result := New_Occurrence_Of (Ent, Loc);
3537 goto Done;
3538 end;
3539 end if;
3540 end;
3541 end if;
3542
3543 -- Not special case so generate the assignments
3544
3545 Known_Non_Null_Operand_Seen := False;
3546
3547 for J in 1 .. NN loop
3548 declare
3549 Lo : constant Node_Id :=
3550 Make_Op_Add (Loc,
3551 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3552 Right_Opnd => Aggr_Length (J - 1));
3553
3554 Hi : constant Node_Id :=
3555 Make_Op_Add (Loc,
3556 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3557 Right_Opnd =>
3558 Make_Op_Subtract (Loc,
3559 Left_Opnd => Aggr_Length (J),
3560 Right_Opnd => Make_Artyp_Literal (1)));
3561
3562 begin
3563 -- Singleton case, simple assignment
3564
3565 if Base_Type (Etype (Operands (J))) = Ctyp then
3566 Known_Non_Null_Operand_Seen := True;
3567 Insert_Action (Cnode,
3568 Make_Assignment_Statement (Loc,
3569 Name =>
3570 Make_Indexed_Component (Loc,
3571 Prefix => New_Occurrence_Of (Ent, Loc),
3572 Expressions => New_List (To_Ityp (Lo))),
3573 Expression => Operands (J)),
3574 Suppress => All_Checks);
3575
3576 -- Array case, slice assignment, skipped when argument is fixed
3577 -- length and known to be null.
3578
3579 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3580 declare
3581 Assign : Node_Id :=
3582 Make_Assignment_Statement (Loc,
3583 Name =>
3584 Make_Slice (Loc,
3585 Prefix =>
3586 New_Occurrence_Of (Ent, Loc),
3587 Discrete_Range =>
3588 Make_Range (Loc,
3589 Low_Bound => To_Ityp (Lo),
3590 High_Bound => To_Ityp (Hi))),
3591 Expression => Operands (J));
3592 begin
3593 if Is_Fixed_Length (J) then
3594 Known_Non_Null_Operand_Seen := True;
3595
3596 elsif not Known_Non_Null_Operand_Seen then
3597
3598 -- Here if operand length is not statically known and no
3599 -- operand known to be non-null has been processed yet.
3600 -- If operand length is 0, we do not need to perform the
3601 -- assignment, and we must avoid the evaluation of the
3602 -- high bound of the slice, since it may underflow if the
3603 -- low bound is Ityp'First.
3604
3605 Assign :=
3606 Make_Implicit_If_Statement (Cnode,
3607 Condition =>
3608 Make_Op_Ne (Loc,
3609 Left_Opnd =>
3610 New_Occurrence_Of (Var_Length (J), Loc),
3611 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3612 Then_Statements => New_List (Assign));
3613 end if;
3614
3615 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3616 end;
3617 end if;
3618 end;
3619 end loop;
3620
3621 -- Finally we build the result, which is a reference to the array object
3622
3623 Result := New_Occurrence_Of (Ent, Loc);
3624
3625 <<Done>>
3626 pragma Assert (Present (Result));
3627 Rewrite (Cnode, Result);
3628 Analyze_And_Resolve (Cnode, Atyp);
3629
3630 exception
3631 when Concatenation_Error =>
3632
3633 -- Kill warning generated for the declaration of the static out of
3634 -- range high bound, and instead generate a Constraint_Error with
3635 -- an appropriate specific message.
3636
3637 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3638 Apply_Compile_Time_Constraint_Error
3639 (N => Cnode,
3640 Msg => "concatenation result upper bound out of range??",
3641 Reason => CE_Range_Check_Failed);
3642 end Expand_Concatenate;
3643
3644 ---------------------------------------------------
3645 -- Expand_Membership_Minimize_Eliminate_Overflow --
3646 ---------------------------------------------------
3647
3648 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3649 pragma Assert (Nkind (N) = N_In);
3650 -- Despite the name, this routine applies only to N_In, not to
3651 -- N_Not_In. The latter is always rewritten as not (X in Y).
3652
3653 Result_Type : constant Entity_Id := Etype (N);
3654 -- Capture result type, may be a derived boolean type
3655
3656 Loc : constant Source_Ptr := Sloc (N);
3657 Lop : constant Node_Id := Left_Opnd (N);
3658 Rop : constant Node_Id := Right_Opnd (N);
3659
3660 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3661 -- is thus tempting to capture these values, but due to the rewrites
3662 -- that occur as a result of overflow checking, these values change
3663 -- as we go along, and it is safe just to always use Etype explicitly.
3664
3665 Restype : constant Entity_Id := Etype (N);
3666 -- Save result type
3667
3668 Lo, Hi : Uint;
3669 -- Bounds in Minimize calls, not used currently
3670
3671 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3672 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3673
3674 begin
3675 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
3676
3677 -- If right operand is a subtype name, and the subtype name has no
3678 -- predicate, then we can just replace the right operand with an
3679 -- explicit range T'First .. T'Last, and use the explicit range code.
3680
3681 if Nkind (Rop) /= N_Range
3682 and then No (Predicate_Function (Etype (Rop)))
3683 then
3684 declare
3685 Rtyp : constant Entity_Id := Etype (Rop);
3686 begin
3687 Rewrite (Rop,
3688 Make_Range (Loc,
3689 Low_Bound =>
3690 Make_Attribute_Reference (Loc,
3691 Attribute_Name => Name_First,
3692 Prefix => New_Occurrence_Of (Rtyp, Loc)),
3693 High_Bound =>
3694 Make_Attribute_Reference (Loc,
3695 Attribute_Name => Name_Last,
3696 Prefix => New_Occurrence_Of (Rtyp, Loc))));
3697 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3698 end;
3699 end if;
3700
3701 -- Here for the explicit range case. Note that the bounds of the range
3702 -- have not been processed for minimized or eliminated checks.
3703
3704 if Nkind (Rop) = N_Range then
3705 Minimize_Eliminate_Overflows
3706 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
3707 Minimize_Eliminate_Overflows
3708 (High_Bound (Rop), Lo, Hi, Top_Level => False);
3709
3710 -- We have A in B .. C, treated as A >= B and then A <= C
3711
3712 -- Bignum case
3713
3714 if Is_RTE (Etype (Lop), RE_Bignum)
3715 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3716 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3717 then
3718 declare
3719 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3720 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3721 L : constant Entity_Id :=
3722 Make_Defining_Identifier (Loc, Name_uL);
3723 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3724 Lbound : constant Node_Id :=
3725 Convert_To_Bignum (Low_Bound (Rop));
3726 Hbound : constant Node_Id :=
3727 Convert_To_Bignum (High_Bound (Rop));
3728
3729 -- Now we rewrite the membership test node to look like
3730
3731 -- do
3732 -- Bnn : Result_Type;
3733 -- declare
3734 -- M : Mark_Id := SS_Mark;
3735 -- L : Bignum := Lopnd;
3736 -- begin
3737 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3738 -- SS_Release (M);
3739 -- end;
3740 -- in
3741 -- Bnn
3742 -- end
3743
3744 begin
3745 -- Insert declaration of L into declarations of bignum block
3746
3747 Insert_After
3748 (Last (Declarations (Blk)),
3749 Make_Object_Declaration (Loc,
3750 Defining_Identifier => L,
3751 Object_Definition =>
3752 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3753 Expression => Lopnd));
3754
3755 -- Insert assignment to Bnn into expressions of bignum block
3756
3757 Insert_Before
3758 (First (Statements (Handled_Statement_Sequence (Blk))),
3759 Make_Assignment_Statement (Loc,
3760 Name => New_Occurrence_Of (Bnn, Loc),
3761 Expression =>
3762 Make_And_Then (Loc,
3763 Left_Opnd =>
3764 Make_Function_Call (Loc,
3765 Name =>
3766 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
3767 Parameter_Associations => New_List (
3768 New_Occurrence_Of (L, Loc),
3769 Lbound)),
3770
3771 Right_Opnd =>
3772 Make_Function_Call (Loc,
3773 Name =>
3774 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3775 Parameter_Associations => New_List (
3776 New_Occurrence_Of (L, Loc),
3777 Hbound)))));
3778
3779 -- Now rewrite the node
3780
3781 Rewrite (N,
3782 Make_Expression_With_Actions (Loc,
3783 Actions => New_List (
3784 Make_Object_Declaration (Loc,
3785 Defining_Identifier => Bnn,
3786 Object_Definition =>
3787 New_Occurrence_Of (Result_Type, Loc)),
3788 Blk),
3789 Expression => New_Occurrence_Of (Bnn, Loc)));
3790 Analyze_And_Resolve (N, Result_Type);
3791 return;
3792 end;
3793
3794 -- Here if no bignums around
3795
3796 else
3797 -- Case where types are all the same
3798
3799 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
3800 and then
3801 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
3802 then
3803 null;
3804
3805 -- If types are not all the same, it means that we have rewritten
3806 -- at least one of them to be of type Long_Long_Integer, and we
3807 -- will convert the other operands to Long_Long_Integer.
3808
3809 else
3810 Convert_To_And_Rewrite (LLIB, Lop);
3811 Set_Analyzed (Lop, False);
3812 Analyze_And_Resolve (Lop, LLIB);
3813
3814 -- For the right operand, avoid unnecessary recursion into
3815 -- this routine, we know that overflow is not possible.
3816
3817 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3818 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3819 Set_Analyzed (Rop, False);
3820 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
3821 end if;
3822
3823 -- Now the three operands are of the same signed integer type,
3824 -- so we can use the normal expansion routine for membership,
3825 -- setting the flag to prevent recursion into this procedure.
3826
3827 Set_No_Minimize_Eliminate (N);
3828 Expand_N_In (N);
3829 end if;
3830
3831 -- Right operand is a subtype name and the subtype has a predicate. We
3832 -- have to make sure the predicate is checked, and for that we need to
3833 -- use the standard N_In circuitry with appropriate types.
3834
3835 else
3836 pragma Assert (Present (Predicate_Function (Etype (Rop))));
3837
3838 -- If types are "right", just call Expand_N_In preventing recursion
3839
3840 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
3841 Set_No_Minimize_Eliminate (N);
3842 Expand_N_In (N);
3843
3844 -- Bignum case
3845
3846 elsif Is_RTE (Etype (Lop), RE_Bignum) then
3847
3848 -- For X in T, we want to rewrite our node as
3849
3850 -- do
3851 -- Bnn : Result_Type;
3852
3853 -- declare
3854 -- M : Mark_Id := SS_Mark;
3855 -- Lnn : Long_Long_Integer'Base
3856 -- Nnn : Bignum;
3857
3858 -- begin
3859 -- Nnn := X;
3860
3861 -- if not Bignum_In_LLI_Range (Nnn) then
3862 -- Bnn := False;
3863 -- else
3864 -- Lnn := From_Bignum (Nnn);
3865 -- Bnn :=
3866 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3867 -- and then T'Base (Lnn) in T;
3868 -- end if;
3869
3870 -- SS_Release (M);
3871 -- end
3872 -- in
3873 -- Bnn
3874 -- end
3875
3876 -- A bit gruesome, but there doesn't seem to be a simpler way
3877
3878 declare
3879 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3880 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3881 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3882 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
3883 T : constant Entity_Id := Etype (Rop);
3884 TB : constant Entity_Id := Base_Type (T);
3885 Nin : Node_Id;
3886
3887 begin
3888 -- Mark the last membership operation to prevent recursion
3889
3890 Nin :=
3891 Make_In (Loc,
3892 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3893 Right_Opnd => New_Occurrence_Of (T, Loc));
3894 Set_No_Minimize_Eliminate (Nin);
3895
3896 -- Now decorate the block
3897
3898 Insert_After
3899 (Last (Declarations (Blk)),
3900 Make_Object_Declaration (Loc,
3901 Defining_Identifier => Lnn,
3902 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
3903
3904 Insert_After
3905 (Last (Declarations (Blk)),
3906 Make_Object_Declaration (Loc,
3907 Defining_Identifier => Nnn,
3908 Object_Definition =>
3909 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
3910
3911 Insert_List_Before
3912 (First (Statements (Handled_Statement_Sequence (Blk))),
3913 New_List (
3914 Make_Assignment_Statement (Loc,
3915 Name => New_Occurrence_Of (Nnn, Loc),
3916 Expression => Relocate_Node (Lop)),
3917
3918 Make_Implicit_If_Statement (N,
3919 Condition =>
3920 Make_Op_Not (Loc,
3921 Right_Opnd =>
3922 Make_Function_Call (Loc,
3923 Name =>
3924 New_Occurrence_Of
3925 (RTE (RE_Bignum_In_LLI_Range), Loc),
3926 Parameter_Associations => New_List (
3927 New_Occurrence_Of (Nnn, Loc)))),
3928
3929 Then_Statements => New_List (
3930 Make_Assignment_Statement (Loc,
3931 Name => New_Occurrence_Of (Bnn, Loc),
3932 Expression =>
3933 New_Occurrence_Of (Standard_False, Loc))),
3934
3935 Else_Statements => New_List (
3936 Make_Assignment_Statement (Loc,
3937 Name => New_Occurrence_Of (Lnn, Loc),
3938 Expression =>
3939 Make_Function_Call (Loc,
3940 Name =>
3941 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3942 Parameter_Associations => New_List (
3943 New_Occurrence_Of (Nnn, Loc)))),
3944
3945 Make_Assignment_Statement (Loc,
3946 Name => New_Occurrence_Of (Bnn, Loc),
3947 Expression =>
3948 Make_And_Then (Loc,
3949 Left_Opnd =>
3950 Make_In (Loc,
3951 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3952 Right_Opnd =>
3953 Make_Range (Loc,
3954 Low_Bound =>
3955 Convert_To (LLIB,
3956 Make_Attribute_Reference (Loc,
3957 Attribute_Name => Name_First,
3958 Prefix =>
3959 New_Occurrence_Of (TB, Loc))),
3960
3961 High_Bound =>
3962 Convert_To (LLIB,
3963 Make_Attribute_Reference (Loc,
3964 Attribute_Name => Name_Last,
3965 Prefix =>
3966 New_Occurrence_Of (TB, Loc))))),
3967
3968 Right_Opnd => Nin))))));
3969
3970 -- Now we can do the rewrite
3971
3972 Rewrite (N,
3973 Make_Expression_With_Actions (Loc,
3974 Actions => New_List (
3975 Make_Object_Declaration (Loc,
3976 Defining_Identifier => Bnn,
3977 Object_Definition =>
3978 New_Occurrence_Of (Result_Type, Loc)),
3979 Blk),
3980 Expression => New_Occurrence_Of (Bnn, Loc)));
3981 Analyze_And_Resolve (N, Result_Type);
3982 return;
3983 end;
3984
3985 -- Not bignum case, but types don't match (this means we rewrote the
3986 -- left operand to be Long_Long_Integer).
3987
3988 else
3989 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
3990
3991 -- We rewrite the membership test as (where T is the type with
3992 -- the predicate, i.e. the type of the right operand)
3993
3994 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3995 -- and then T'Base (Lop) in T
3996
3997 declare
3998 T : constant Entity_Id := Etype (Rop);
3999 TB : constant Entity_Id := Base_Type (T);
4000 Nin : Node_Id;
4001
4002 begin
4003 -- The last membership test is marked to prevent recursion
4004
4005 Nin :=
4006 Make_In (Loc,
4007 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4008 Right_Opnd => New_Occurrence_Of (T, Loc));
4009 Set_No_Minimize_Eliminate (Nin);
4010
4011 -- Now do the rewrite
4012
4013 Rewrite (N,
4014 Make_And_Then (Loc,
4015 Left_Opnd =>
4016 Make_In (Loc,
4017 Left_Opnd => Lop,
4018 Right_Opnd =>
4019 Make_Range (Loc,
4020 Low_Bound =>
4021 Convert_To (LLIB,
4022 Make_Attribute_Reference (Loc,
4023 Attribute_Name => Name_First,
4024 Prefix =>
4025 New_Occurrence_Of (TB, Loc))),
4026 High_Bound =>
4027 Convert_To (LLIB,
4028 Make_Attribute_Reference (Loc,
4029 Attribute_Name => Name_Last,
4030 Prefix =>
4031 New_Occurrence_Of (TB, Loc))))),
4032 Right_Opnd => Nin));
4033 Set_Analyzed (N, False);
4034 Analyze_And_Resolve (N, Restype);
4035 end;
4036 end if;
4037 end if;
4038 end Expand_Membership_Minimize_Eliminate_Overflow;
4039
4040 ---------------------------------
4041 -- Expand_Nonbinary_Modular_Op --
4042 ---------------------------------
4043
4044 procedure Expand_Nonbinary_Modular_Op (N : Node_Id) is
4045 Loc : constant Source_Ptr := Sloc (N);
4046 Typ : constant Entity_Id := Etype (N);
4047
4048 procedure Expand_Modular_Addition;
4049 -- Expand the modular addition, handling the special case of adding a
4050 -- constant.
4051
4052 procedure Expand_Modular_Op;
4053 -- Compute the general rule: (lhs OP rhs) mod Modulus
4054
4055 procedure Expand_Modular_Subtraction;
4056 -- Expand the modular addition, handling the special case of subtracting
4057 -- a constant.
4058
4059 -----------------------------
4060 -- Expand_Modular_Addition --
4061 -----------------------------
4062
4063 procedure Expand_Modular_Addition is
4064 begin
4065 -- If this is not the addition of a constant then compute it using
4066 -- the general rule: (lhs + rhs) mod Modulus
4067
4068 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4069 Expand_Modular_Op;
4070
4071 -- If this is an addition of a constant, convert it to a subtraction
4072 -- plus a conditional expression since we can compute it faster than
4073 -- computing the modulus.
4074
4075 -- modMinusRhs = Modulus - rhs
4076 -- if lhs < modMinusRhs then lhs + rhs
4077 -- else lhs - modMinusRhs
4078
4079 else
4080 declare
4081 Mod_Minus_Right : constant Uint :=
4082 Modulus (Typ) - Intval (Right_Opnd (N));
4083
4084 Exprs : constant List_Id := New_List;
4085 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4086 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4087 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4088 Loc);
4089 begin
4090 -- To prevent spurious visibility issues, convert all
4091 -- operands to Standard.Unsigned.
4092
4093 Set_Left_Opnd (Cond_Expr,
4094 Unchecked_Convert_To (Standard_Unsigned,
4095 New_Copy_Tree (Left_Opnd (N))));
4096 Set_Right_Opnd (Cond_Expr,
4097 Make_Integer_Literal (Loc, Mod_Minus_Right));
4098 Append_To (Exprs, Cond_Expr);
4099
4100 Set_Left_Opnd (Then_Expr,
4101 Unchecked_Convert_To (Standard_Unsigned,
4102 New_Copy_Tree (Left_Opnd (N))));
4103 Set_Right_Opnd (Then_Expr,
4104 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4105 Append_To (Exprs, Then_Expr);
4106
4107 Set_Left_Opnd (Else_Expr,
4108 Unchecked_Convert_To (Standard_Unsigned,
4109 New_Copy_Tree (Left_Opnd (N))));
4110 Set_Right_Opnd (Else_Expr,
4111 Make_Integer_Literal (Loc, Mod_Minus_Right));
4112 Append_To (Exprs, Else_Expr);
4113
4114 Rewrite (N,
4115 Unchecked_Convert_To (Typ,
4116 Make_If_Expression (Loc, Expressions => Exprs)));
4117 end;
4118 end if;
4119 end Expand_Modular_Addition;
4120
4121 -----------------------
4122 -- Expand_Modular_Op --
4123 -----------------------
4124
4125 procedure Expand_Modular_Op is
4126 Op_Expr : constant Node_Id := New_Op_Node (Nkind (N), Loc);
4127 Mod_Expr : constant Node_Id := New_Op_Node (N_Op_Mod, Loc);
4128
4129 Target_Type : Entity_Id;
4130
4131 begin
4132 -- Convert nonbinary modular type operands into integer values. Thus
4133 -- we avoid never-ending loops expanding them, and we also ensure
4134 -- the back end never receives nonbinary modular type expressions.
4135
4136 if Nkind_In (Nkind (N), N_Op_And, N_Op_Or, N_Op_Xor) then
4137 Set_Left_Opnd (Op_Expr,
4138 Unchecked_Convert_To (Standard_Unsigned,
4139 New_Copy_Tree (Left_Opnd (N))));
4140 Set_Right_Opnd (Op_Expr,
4141 Unchecked_Convert_To (Standard_Unsigned,
4142 New_Copy_Tree (Right_Opnd (N))));
4143 Set_Left_Opnd (Mod_Expr,
4144 Unchecked_Convert_To (Standard_Integer, Op_Expr));
4145
4146 else
4147 -- If the modulus of the type is larger than Integer'Last use a
4148 -- larger type for the operands, to prevent spurious constraint
4149 -- errors on large legal literals of the type.
4150
4151 if Modulus (Etype (N)) > UI_From_Int (Int (Integer'Last)) then
4152 Target_Type := Standard_Long_Integer;
4153 else
4154 Target_Type := Standard_Integer;
4155 end if;
4156
4157 Set_Left_Opnd (Op_Expr,
4158 Unchecked_Convert_To (Target_Type,
4159 New_Copy_Tree (Left_Opnd (N))));
4160 Set_Right_Opnd (Op_Expr,
4161 Unchecked_Convert_To (Target_Type,
4162 New_Copy_Tree (Right_Opnd (N))));
4163
4164 -- Link this node to the tree to analyze it
4165
4166 -- If the parent node is an expression with actions we link it to
4167 -- N since otherwise Force_Evaluation cannot identify if this node
4168 -- comes from the Expression and rejects generating the temporary.
4169
4170 if Nkind (Parent (N)) = N_Expression_With_Actions then
4171 Set_Parent (Op_Expr, N);
4172
4173 -- Common case
4174
4175 else
4176 Set_Parent (Op_Expr, Parent (N));
4177 end if;
4178
4179 Analyze (Op_Expr);
4180
4181 -- Force generating a temporary because in the expansion of this
4182 -- expression we may generate code that performs this computation
4183 -- several times.
4184
4185 Force_Evaluation (Op_Expr, Mode => Strict);
4186
4187 Set_Left_Opnd (Mod_Expr, Op_Expr);
4188 end if;
4189
4190 Set_Right_Opnd (Mod_Expr,
4191 Make_Integer_Literal (Loc, Modulus (Typ)));
4192
4193 Rewrite (N,
4194 Unchecked_Convert_To (Typ, Mod_Expr));
4195 end Expand_Modular_Op;
4196
4197 --------------------------------
4198 -- Expand_Modular_Subtraction --
4199 --------------------------------
4200
4201 procedure Expand_Modular_Subtraction is
4202 begin
4203 -- If this is not the addition of a constant then compute it using
4204 -- the general rule: (lhs + rhs) mod Modulus
4205
4206 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4207 Expand_Modular_Op;
4208
4209 -- If this is an addition of a constant, convert it to a subtraction
4210 -- plus a conditional expression since we can compute it faster than
4211 -- computing the modulus.
4212
4213 -- modMinusRhs = Modulus - rhs
4214 -- if lhs < rhs then lhs + modMinusRhs
4215 -- else lhs - rhs
4216
4217 else
4218 declare
4219 Mod_Minus_Right : constant Uint :=
4220 Modulus (Typ) - Intval (Right_Opnd (N));
4221
4222 Exprs : constant List_Id := New_List;
4223 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4224 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4225 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4226 Loc);
4227 begin
4228 Set_Left_Opnd (Cond_Expr,
4229 Unchecked_Convert_To (Standard_Unsigned,
4230 New_Copy_Tree (Left_Opnd (N))));
4231 Set_Right_Opnd (Cond_Expr,
4232 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4233 Append_To (Exprs, Cond_Expr);
4234
4235 Set_Left_Opnd (Then_Expr,
4236 Unchecked_Convert_To (Standard_Unsigned,
4237 New_Copy_Tree (Left_Opnd (N))));
4238 Set_Right_Opnd (Then_Expr,
4239 Make_Integer_Literal (Loc, Mod_Minus_Right));
4240 Append_To (Exprs, Then_Expr);
4241
4242 Set_Left_Opnd (Else_Expr,
4243 Unchecked_Convert_To (Standard_Unsigned,
4244 New_Copy_Tree (Left_Opnd (N))));
4245 Set_Right_Opnd (Else_Expr,
4246 Unchecked_Convert_To (Standard_Unsigned,
4247 New_Copy_Tree (Right_Opnd (N))));
4248 Append_To (Exprs, Else_Expr);
4249
4250 Rewrite (N,
4251 Unchecked_Convert_To (Typ,
4252 Make_If_Expression (Loc, Expressions => Exprs)));
4253 end;
4254 end if;
4255 end Expand_Modular_Subtraction;
4256
4257 -- Start of processing for Expand_Nonbinary_Modular_Op
4258
4259 begin
4260 -- No action needed if front-end expansion is not required or if we
4261 -- have a binary modular operand.
4262
4263 if not Expand_Nonbinary_Modular_Ops
4264 or else not Non_Binary_Modulus (Typ)
4265 then
4266 return;
4267 end if;
4268
4269 case Nkind (N) is
4270 when N_Op_Add =>
4271 Expand_Modular_Addition;
4272
4273 when N_Op_Subtract =>
4274 Expand_Modular_Subtraction;
4275
4276 when N_Op_Minus =>
4277
4278 -- Expand -expr into (0 - expr)
4279
4280 Rewrite (N,
4281 Make_Op_Subtract (Loc,
4282 Left_Opnd => Make_Integer_Literal (Loc, 0),
4283 Right_Opnd => Right_Opnd (N)));
4284 Analyze_And_Resolve (N, Typ);
4285
4286 when others =>
4287 Expand_Modular_Op;
4288 end case;
4289
4290 Analyze_And_Resolve (N, Typ);
4291 end Expand_Nonbinary_Modular_Op;
4292
4293 ------------------------
4294 -- Expand_N_Allocator --
4295 ------------------------
4296
4297 procedure Expand_N_Allocator (N : Node_Id) is
4298 Etyp : constant Entity_Id := Etype (Expression (N));
4299 Loc : constant Source_Ptr := Sloc (N);
4300 PtrT : constant Entity_Id := Etype (N);
4301
4302 procedure Rewrite_Coextension (N : Node_Id);
4303 -- Static coextensions have the same lifetime as the entity they
4304 -- constrain. Such occurrences can be rewritten as aliased objects
4305 -- and their unrestricted access used instead of the coextension.
4306
4307 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
4308 -- Given a constrained array type E, returns a node representing the
4309 -- code to compute a close approximation of the size in storage elements
4310 -- for the given type; for indexes that are modular types we compute
4311 -- 'Last - First (instead of 'Length) because for large arrays computing
4312 -- 'Last -'First + 1 causes overflow. This is done without using the
4313 -- attribute 'Size_In_Storage_Elements (which malfunctions for large
4314 -- sizes ???).
4315
4316 -------------------------
4317 -- Rewrite_Coextension --
4318 -------------------------
4319
4320 procedure Rewrite_Coextension (N : Node_Id) is
4321 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4322 Temp_Decl : Node_Id;
4323
4324 begin
4325 -- Generate:
4326 -- Cnn : aliased Etyp;
4327
4328 Temp_Decl :=
4329 Make_Object_Declaration (Loc,
4330 Defining_Identifier => Temp_Id,
4331 Aliased_Present => True,
4332 Object_Definition => New_Occurrence_Of (Etyp, Loc));
4333
4334 if Nkind (Expression (N)) = N_Qualified_Expression then
4335 Set_Expression (Temp_Decl, Expression (Expression (N)));
4336 end if;
4337
4338 Insert_Action (N, Temp_Decl);
4339 Rewrite (N,
4340 Make_Attribute_Reference (Loc,
4341 Prefix => New_Occurrence_Of (Temp_Id, Loc),
4342 Attribute_Name => Name_Unrestricted_Access));
4343
4344 Analyze_And_Resolve (N, PtrT);
4345 end Rewrite_Coextension;
4346
4347 ------------------------------
4348 -- Size_In_Storage_Elements --
4349 ------------------------------
4350
4351 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4352 begin
4353 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4354 -- However, the reason for the existence of this function is
4355 -- to construct a test for sizes too large, which means near the
4356 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4357 -- is that we get overflows when sizes are greater than 2**31.
4358
4359 -- So what we end up doing for array types is to use the expression:
4360
4361 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4362
4363 -- which avoids this problem. All this is a bit bogus, but it does
4364 -- mean we catch common cases of trying to allocate arrays that
4365 -- are too large, and which in the absence of a check results in
4366 -- undetected chaos ???
4367
4368 -- Note in particular that this is a pessimistic estimate in the
4369 -- case of packed array types, where an array element might occupy
4370 -- just a fraction of a storage element???
4371
4372 declare
4373 Idx : Node_Id := First_Index (E);
4374 Len : Node_Id;
4375 Res : Node_Id := Empty;
4376
4377 begin
4378 for J in 1 .. Number_Dimensions (E) loop
4379
4380 if not Is_Modular_Integer_Type (Etype (Idx)) then
4381 Len :=
4382 Make_Attribute_Reference (Loc,
4383 Prefix => New_Occurrence_Of (E, Loc),
4384 Attribute_Name => Name_Length,
4385 Expressions => New_List
4386 (Make_Integer_Literal (Loc, J)));
4387
4388 -- For indexes that are modular types we cannot generate code
4389 -- to compute 'Length since for large arrays 'Last -'First + 1
4390 -- causes overflow; therefore we compute 'Last - 'First (which
4391 -- is not the exact number of components but it is valid for
4392 -- the purpose of this runtime check on 32-bit targets).
4393
4394 else
4395 declare
4396 Len_Minus_1_Expr : Node_Id;
4397 Test_Gt : Node_Id;
4398
4399 begin
4400 Test_Gt :=
4401 Make_Op_Gt (Loc,
4402 Make_Attribute_Reference (Loc,
4403 Prefix => New_Occurrence_Of (E, Loc),
4404 Attribute_Name => Name_Last,
4405 Expressions =>
4406 New_List (Make_Integer_Literal (Loc, J))),
4407 Make_Attribute_Reference (Loc,
4408 Prefix => New_Occurrence_Of (E, Loc),
4409 Attribute_Name => Name_First,
4410 Expressions =>
4411 New_List (Make_Integer_Literal (Loc, J))));
4412
4413 Len_Minus_1_Expr :=
4414 Convert_To (Standard_Unsigned,
4415 Make_Op_Subtract (Loc,
4416 Make_Attribute_Reference (Loc,
4417 Prefix => New_Occurrence_Of (E, Loc),
4418 Attribute_Name => Name_Last,
4419 Expressions =>
4420 New_List
4421 (Make_Integer_Literal (Loc, J))),
4422 Make_Attribute_Reference (Loc,
4423 Prefix => New_Occurrence_Of (E, Loc),
4424 Attribute_Name => Name_First,
4425 Expressions =>
4426 New_List
4427 (Make_Integer_Literal (Loc, J)))));
4428
4429 -- Handle superflat arrays, i.e. arrays with such bounds
4430 -- as 4 .. 2, to ensure that the result is correct.
4431
4432 -- Generate:
4433 -- (if X'Last > X'First then X'Last - X'First else 0)
4434
4435 Len :=
4436 Make_If_Expression (Loc,
4437 Expressions => New_List (
4438 Test_Gt,
4439 Len_Minus_1_Expr,
4440 Make_Integer_Literal (Loc, Uint_0)));
4441 end;
4442 end if;
4443
4444 if J = 1 then
4445 Res := Len;
4446
4447 else
4448 pragma Assert (Present (Res));
4449 Res :=
4450 Make_Op_Multiply (Loc,
4451 Left_Opnd => Res,
4452 Right_Opnd => Len);
4453 end if;
4454
4455 Next_Index (Idx);
4456 end loop;
4457
4458 return
4459 Make_Op_Multiply (Loc,
4460 Left_Opnd => Len,
4461 Right_Opnd =>
4462 Make_Attribute_Reference (Loc,
4463 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4464 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4465 end;
4466 end Size_In_Storage_Elements;
4467
4468 -- Local variables
4469
4470 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
4471 Desig : Entity_Id;
4472 Nod : Node_Id;
4473 Pool : Entity_Id;
4474 Rel_Typ : Entity_Id;
4475 Temp : Entity_Id;
4476
4477 -- Start of processing for Expand_N_Allocator
4478
4479 begin
4480 -- Warn on the presence of an allocator of an anonymous access type when
4481 -- enabled, except when it's an object declaration at library level.
4482
4483 if Warn_On_Anonymous_Allocators
4484 and then Ekind (PtrT) = E_Anonymous_Access_Type
4485 and then not (Is_Library_Level_Entity (PtrT)
4486 and then Nkind (Associated_Node_For_Itype (PtrT)) =
4487 N_Object_Declaration)
4488 then
4489 Error_Msg_N ("?use of an anonymous access type allocator", N);
4490 end if;
4491
4492 -- RM E.2.3(22). We enforce that the expected type of an allocator
4493 -- shall not be a remote access-to-class-wide-limited-private type
4494
4495 -- Why is this being done at expansion time, seems clearly wrong ???
4496
4497 Validate_Remote_Access_To_Class_Wide_Type (N);
4498
4499 -- Processing for anonymous access-to-controlled types. These access
4500 -- types receive a special finalization master which appears in the
4501 -- declarations of the enclosing semantic unit. This expansion is done
4502 -- now to ensure that any additional types generated by this routine or
4503 -- Expand_Allocator_Expression inherit the proper type attributes.
4504
4505 if (Ekind (PtrT) = E_Anonymous_Access_Type
4506 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
4507 and then Needs_Finalization (Dtyp)
4508 then
4509 -- Detect the allocation of an anonymous controlled object where the
4510 -- type of the context is named. For example:
4511
4512 -- procedure Proc (Ptr : Named_Access_Typ);
4513 -- Proc (new Designated_Typ);
4514
4515 -- Regardless of the anonymous-to-named access type conversion, the
4516 -- lifetime of the object must be associated with the named access
4517 -- type. Use the finalization-related attributes of this type.
4518
4519 if Nkind_In (Parent (N), N_Type_Conversion,
4520 N_Unchecked_Type_Conversion)
4521 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4522 E_Access_Type,
4523 E_General_Access_Type)
4524 then
4525 Rel_Typ := Etype (Parent (N));
4526 else
4527 Rel_Typ := Empty;
4528 end if;
4529
4530 -- Anonymous access-to-controlled types allocate on the global pool.
4531 -- Note that this is a "root type only" attribute.
4532
4533 if No (Associated_Storage_Pool (PtrT)) then
4534 if Present (Rel_Typ) then
4535 Set_Associated_Storage_Pool
4536 (Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
4537 else
4538 Set_Associated_Storage_Pool
4539 (Root_Type (PtrT), RTE (RE_Global_Pool_Object));
4540 end if;
4541 end if;
4542
4543 -- The finalization master must be inserted and analyzed as part of
4544 -- the current semantic unit. Note that the master is updated when
4545 -- analysis changes current units. Note that this is a "root type
4546 -- only" attribute.
4547
4548 if Present (Rel_Typ) then
4549 Set_Finalization_Master
4550 (Root_Type (PtrT), Finalization_Master (Rel_Typ));
4551 else
4552 Build_Anonymous_Master (Root_Type (PtrT));
4553 end if;
4554 end if;
4555
4556 -- Set the storage pool and find the appropriate version of Allocate to
4557 -- call. Do not overwrite the storage pool if it is already set, which
4558 -- can happen for build-in-place function returns (see
4559 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4560
4561 if No (Storage_Pool (N)) then
4562 Pool := Associated_Storage_Pool (Root_Type (PtrT));
4563
4564 if Present (Pool) then
4565 Set_Storage_Pool (N, Pool);
4566
4567 if Is_RTE (Pool, RE_SS_Pool) then
4568 Check_Restriction (No_Secondary_Stack, N);
4569 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4570
4571 -- In the case of an allocator for a simple storage pool, locate
4572 -- and save a reference to the pool type's Allocate routine.
4573
4574 elsif Present (Get_Rep_Pragma
4575 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4576 then
4577 declare
4578 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
4579 Alloc_Op : Entity_Id;
4580 begin
4581 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
4582 while Present (Alloc_Op) loop
4583 if Scope (Alloc_Op) = Scope (Pool_Type)
4584 and then Present (First_Formal (Alloc_Op))
4585 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4586 then
4587 Set_Procedure_To_Call (N, Alloc_Op);
4588 exit;
4589 else
4590 Alloc_Op := Homonym (Alloc_Op);
4591 end if;
4592 end loop;
4593 end;
4594
4595 elsif Is_Class_Wide_Type (Etype (Pool)) then
4596 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4597
4598 else
4599 Set_Procedure_To_Call (N,
4600 Find_Prim_Op (Etype (Pool), Name_Allocate));
4601 end if;
4602 end if;
4603 end if;
4604
4605 -- Under certain circumstances we can replace an allocator by an access
4606 -- to statically allocated storage. The conditions, as noted in AARM
4607 -- 3.10 (10c) are as follows:
4608
4609 -- Size and initial value is known at compile time
4610 -- Access type is access-to-constant
4611
4612 -- The allocator is not part of a constraint on a record component,
4613 -- because in that case the inserted actions are delayed until the
4614 -- record declaration is fully analyzed, which is too late for the
4615 -- analysis of the rewritten allocator.
4616
4617 if Is_Access_Constant (PtrT)
4618 and then Nkind (Expression (N)) = N_Qualified_Expression
4619 and then Compile_Time_Known_Value (Expression (Expression (N)))
4620 and then Size_Known_At_Compile_Time
4621 (Etype (Expression (Expression (N))))
4622 and then not Is_Record_Type (Current_Scope)
4623 then
4624 -- Here we can do the optimization. For the allocator
4625
4626 -- new x'(y)
4627
4628 -- We insert an object declaration
4629
4630 -- Tnn : aliased x := y;
4631
4632 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4633 -- marked as requiring static allocation.
4634
4635 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
4636 Desig := Subtype_Mark (Expression (N));
4637
4638 -- If context is constrained, use constrained subtype directly,
4639 -- so that the constant is not labelled as having a nominally
4640 -- unconstrained subtype.
4641
4642 if Entity (Desig) = Base_Type (Dtyp) then
4643 Desig := New_Occurrence_Of (Dtyp, Loc);
4644 end if;
4645
4646 Insert_Action (N,
4647 Make_Object_Declaration (Loc,
4648 Defining_Identifier => Temp,
4649 Aliased_Present => True,
4650 Constant_Present => Is_Access_Constant (PtrT),
4651 Object_Definition => Desig,
4652 Expression => Expression (Expression (N))));
4653
4654 Rewrite (N,
4655 Make_Attribute_Reference (Loc,
4656 Prefix => New_Occurrence_Of (Temp, Loc),
4657 Attribute_Name => Name_Unrestricted_Access));
4658
4659 Analyze_And_Resolve (N, PtrT);
4660
4661 -- We set the variable as statically allocated, since we don't want
4662 -- it going on the stack of the current procedure.
4663
4664 Set_Is_Statically_Allocated (Temp);
4665 return;
4666 end if;
4667
4668 -- Same if the allocator is an access discriminant for a local object:
4669 -- instead of an allocator we create a local value and constrain the
4670 -- enclosing object with the corresponding access attribute.
4671
4672 if Is_Static_Coextension (N) then
4673 Rewrite_Coextension (N);
4674 return;
4675 end if;
4676
4677 -- Check for size too large, we do this because the back end misses
4678 -- proper checks here and can generate rubbish allocation calls when
4679 -- we are near the limit. We only do this for the 32-bit address case
4680 -- since that is from a practical point of view where we see a problem.
4681
4682 if System_Address_Size = 32
4683 and then not Storage_Checks_Suppressed (PtrT)
4684 and then not Storage_Checks_Suppressed (Dtyp)
4685 and then not Storage_Checks_Suppressed (Etyp)
4686 then
4687 -- The check we want to generate should look like
4688
4689 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4690 -- raise Storage_Error;
4691 -- end if;
4692
4693 -- where 3.5 gigabytes is a constant large enough to accommodate any
4694 -- reasonable request for. But we can't do it this way because at
4695 -- least at the moment we don't compute this attribute right, and
4696 -- can silently give wrong results when the result gets large. Since
4697 -- this is all about large results, that's bad, so instead we only
4698 -- apply the check for constrained arrays, and manually compute the
4699 -- value of the attribute ???
4700
4701 -- The check on No_Initialization is used here to prevent generating
4702 -- this runtime check twice when the allocator is locally replaced by
4703 -- the expander with another one.
4704
4705 if Is_Array_Type (Etyp) and then not No_Initialization (N) then
4706 declare
4707 Cond : Node_Id;
4708 Ins_Nod : Node_Id := N;
4709 Siz_Typ : Entity_Id := Etyp;
4710 Expr : Node_Id;
4711
4712 begin
4713 -- For unconstrained array types initialized with a qualified
4714 -- expression we use its type to perform this check
4715
4716 if not Is_Constrained (Etyp)
4717 and then not No_Initialization (N)
4718 and then Nkind (Expression (N)) = N_Qualified_Expression
4719 then
4720 Expr := Expression (Expression (N));
4721 Siz_Typ := Etype (Expression (Expression (N)));
4722
4723 -- If the qualified expression has been moved to an internal
4724 -- temporary (to remove side effects) then we must insert
4725 -- the runtime check before its declaration to ensure that
4726 -- the check is performed before the execution of the code
4727 -- computing the qualified expression.
4728
4729 if Nkind (Expr) = N_Identifier
4730 and then Is_Internal_Name (Chars (Expr))
4731 and then
4732 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
4733 then
4734 Ins_Nod := Parent (Entity (Expr));
4735 else
4736 Ins_Nod := Expr;
4737 end if;
4738 end if;
4739
4740 if Is_Constrained (Siz_Typ)
4741 and then Ekind (Siz_Typ) /= E_String_Literal_Subtype
4742 then
4743 -- For CCG targets, the largest array may have up to 2**31-1
4744 -- components (i.e. 2 gigabytes if each array component is
4745 -- one byte). This ensures that fat pointer fields do not
4746 -- overflow, since they are 32-bit integer types, and also
4747 -- ensures that 'Length can be computed at run time.
4748
4749 if Modify_Tree_For_C then
4750 Cond :=
4751 Make_Op_Gt (Loc,
4752 Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
4753 Right_Opnd => Make_Integer_Literal (Loc,
4754 Uint_2 ** 31 - Uint_1));
4755
4756 -- For native targets the largest object is 3.5 gigabytes
4757
4758 else
4759 Cond :=
4760 Make_Op_Gt (Loc,
4761 Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
4762 Right_Opnd => Make_Integer_Literal (Loc,
4763 Uint_7 * (Uint_2 ** 29)));
4764 end if;
4765
4766 Insert_Action (Ins_Nod,
4767 Make_Raise_Storage_Error (Loc,
4768 Condition => Cond,
4769 Reason => SE_Object_Too_Large));
4770
4771 if Entity (Cond) = Standard_True then
4772 Error_Msg_N
4773 ("object too large: Storage_Error will be raised at "
4774 & "run time??", N);
4775 end if;
4776 end if;
4777 end;
4778 end if;
4779 end if;
4780
4781 -- If no storage pool has been specified, or the storage pool
4782 -- is System.Pool_Global.Global_Pool_Object, and the restriction
4783 -- No_Standard_Allocators_After_Elaboration is present, then generate
4784 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4785
4786 if Nkind (N) = N_Allocator
4787 and then (No (Storage_Pool (N))
4788 or else Is_RTE (Storage_Pool (N), RE_Global_Pool_Object))
4789 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4790 then
4791 Insert_Action (N,
4792 Make_Procedure_Call_Statement (Loc,
4793 Name =>
4794 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4795 end if;
4796
4797 -- Handle case of qualified expression (other than optimization above)
4798 -- First apply constraint checks, because the bounds or discriminants
4799 -- in the aggregate might not match the subtype mark in the allocator.
4800
4801 if Nkind (Expression (N)) = N_Qualified_Expression then
4802 declare
4803 Exp : constant Node_Id := Expression (Expression (N));
4804 Typ : constant Entity_Id := Etype (Expression (N));
4805
4806 begin
4807 Apply_Constraint_Check (Exp, Typ);
4808 Apply_Predicate_Check (Exp, Typ);
4809 end;
4810
4811 Expand_Allocator_Expression (N);
4812 return;
4813 end if;
4814
4815 -- If the allocator is for a type which requires initialization, and
4816 -- there is no initial value (i.e. operand is a subtype indication
4817 -- rather than a qualified expression), then we must generate a call to
4818 -- the initialization routine using an expressions action node:
4819
4820 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4821
4822 -- Here ptr_T is the pointer type for the allocator, and T is the
4823 -- subtype of the allocator. A special case arises if the designated
4824 -- type of the access type is a task or contains tasks. In this case
4825 -- the call to Init (Temp.all ...) is replaced by code that ensures
4826 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4827 -- for details). In addition, if the type T is a task type, then the
4828 -- first argument to Init must be converted to the task record type.
4829
4830 declare
4831 T : constant Entity_Id := Etype (Expression (N));
4832 Args : List_Id;
4833 Decls : List_Id;
4834 Decl : Node_Id;
4835 Discr : Elmt_Id;
4836 Init : Entity_Id;
4837 Init_Arg1 : Node_Id;
4838 Init_Call : Node_Id;
4839 Temp_Decl : Node_Id;
4840 Temp_Type : Entity_Id;
4841
4842 begin
4843 if No_Initialization (N) then
4844
4845 -- Even though this might be a simple allocation, create a custom
4846 -- Allocate if the context requires it.
4847
4848 if Present (Finalization_Master (PtrT)) then
4849 Build_Allocate_Deallocate_Proc
4850 (N => N,
4851 Is_Allocate => True);
4852 end if;
4853
4854 -- Optimize the default allocation of an array object when pragma
4855 -- Initialize_Scalars or Normalize_Scalars is in effect. Construct an
4856 -- in-place initialization aggregate which may be convert into a fast
4857 -- memset by the backend.
4858
4859 elsif Init_Or_Norm_Scalars
4860 and then Is_Array_Type (T)
4861
4862 -- The array must lack atomic components because they are treated
4863 -- as non-static, and as a result the backend will not initialize
4864 -- the memory in one go.
4865
4866 and then not Has_Atomic_Components (T)
4867
4868 -- The array must not be packed because the invalid values in
4869 -- System.Scalar_Values are multiples of Storage_Unit.
4870
4871 and then not Is_Packed (T)
4872
4873 -- The array must have static non-empty ranges, otherwise the
4874 -- backend cannot initialize the memory in one go.
4875
4876 and then Has_Static_Non_Empty_Array_Bounds (T)
4877
4878 -- The optimization is only relevant for arrays of scalar types
4879
4880 and then Is_Scalar_Type (Component_Type (T))
4881
4882 -- Similar to regular array initialization using a type init proc,
4883 -- predicate checks are not performed because the initialization
4884 -- values are intentionally invalid, and may violate the predicate.
4885
4886 and then not Has_Predicates (Component_Type (T))
4887
4888 -- The component type must have a single initialization value
4889
4890 and then Needs_Simple_Initialization
4891 (Typ => Component_Type (T),
4892 Consider_IS => True)
4893 then
4894 Set_Analyzed (N);
4895 Temp := Make_Temporary (Loc, 'P');
4896
4897 -- Generate:
4898 -- Temp : Ptr_Typ := new ...;
4899
4900 Insert_Action
4901 (Assoc_Node => N,
4902 Ins_Action =>
4903 Make_Object_Declaration (Loc,
4904 Defining_Identifier => Temp,
4905 Object_Definition => New_Occurrence_Of (PtrT, Loc),
4906 Expression => Relocate_Node (N)),
4907 Suppress => All_Checks);
4908
4909 -- Generate:
4910 -- Temp.all := (others => ...);
4911
4912 Insert_Action
4913 (Assoc_Node => N,
4914 Ins_Action =>
4915 Make_Assignment_Statement (Loc,
4916 Name =>
4917 Make_Explicit_Dereference (Loc,
4918 Prefix => New_Occurrence_Of (Temp, Loc)),
4919 Expression =>
4920 Get_Simple_Init_Val
4921 (Typ => T,
4922 N => N,
4923 Size => Esize (Component_Type (T)))),
4924 Suppress => All_Checks);
4925
4926 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4927 Analyze_And_Resolve (N, PtrT);
4928
4929 -- Case of no initialization procedure present
4930
4931 elsif not Has_Non_Null_Base_Init_Proc (T) then
4932
4933 -- Case of simple initialization required
4934
4935 if Needs_Simple_Initialization (T) then
4936 Check_Restriction (No_Default_Initialization, N);
4937 Rewrite (Expression (N),
4938 Make_Qualified_Expression (Loc,
4939 Subtype_Mark => New_Occurrence_Of (T, Loc),
4940 Expression => Get_Simple_Init_Val (T, N)));
4941
4942 Analyze_And_Resolve (Expression (Expression (N)), T);
4943 Analyze_And_Resolve (Expression (N), T);
4944 Set_Paren_Count (Expression (Expression (N)), 1);
4945 Expand_N_Allocator (N);
4946
4947 -- No initialization required
4948
4949 else
4950 Build_Allocate_Deallocate_Proc
4951 (N => N,
4952 Is_Allocate => True);
4953 end if;
4954
4955 -- Case of initialization procedure present, must be called
4956
4957 -- NOTE: There is a *huge* amount of code duplication here from
4958 -- Build_Initialization_Call. We should probably refactor???
4959
4960 else
4961 Check_Restriction (No_Default_Initialization, N);
4962
4963 if not Restriction_Active (No_Default_Initialization) then
4964 Init := Base_Init_Proc (T);
4965 Nod := N;
4966 Temp := Make_Temporary (Loc, 'P');
4967
4968 -- Construct argument list for the initialization routine call
4969
4970 Init_Arg1 :=
4971 Make_Explicit_Dereference (Loc,
4972 Prefix =>
4973 New_Occurrence_Of (Temp, Loc));
4974
4975 Set_Assignment_OK (Init_Arg1);
4976 Temp_Type := PtrT;
4977
4978 -- The initialization procedure expects a specific type. if the
4979 -- context is access to class wide, indicate that the object
4980 -- being allocated has the right specific type.
4981
4982 if Is_Class_Wide_Type (Dtyp) then
4983 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
4984 end if;
4985
4986 -- If designated type is a concurrent type or if it is private
4987 -- type whose definition is a concurrent type, the first
4988 -- argument in the Init routine has to be unchecked conversion
4989 -- to the corresponding record type. If the designated type is
4990 -- a derived type, also convert the argument to its root type.
4991
4992 if Is_Concurrent_Type (T) then
4993 Init_Arg1 :=
4994 Unchecked_Convert_To (
4995 Corresponding_Record_Type (T), Init_Arg1);
4996
4997 elsif Is_Private_Type (T)
4998 and then Present (Full_View (T))
4999 and then Is_Concurrent_Type (Full_View (T))
5000 then
5001 Init_Arg1 :=
5002 Unchecked_Convert_To
5003 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
5004
5005 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
5006 declare
5007 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
5008
5009 begin
5010 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
5011 Set_Etype (Init_Arg1, Ftyp);
5012 end;
5013 end if;
5014
5015 Args := New_List (Init_Arg1);
5016
5017 -- For the task case, pass the Master_Id of the access type as
5018 -- the value of the _Master parameter, and _Chain as the value
5019 -- of the _Chain parameter (_Chain will be defined as part of
5020 -- the generated code for the allocator).
5021
5022 -- In Ada 2005, the context may be a function that returns an
5023 -- anonymous access type. In that case the Master_Id has been
5024 -- created when expanding the function declaration.
5025
5026 if Has_Task (T) then
5027 if No (Master_Id (Base_Type (PtrT))) then
5028
5029 -- The designated type was an incomplete type, and the
5030 -- access type did not get expanded. Salvage it now.
5031
5032 if not Restriction_Active (No_Task_Hierarchy) then
5033 if Present (Parent (Base_Type (PtrT))) then
5034 Expand_N_Full_Type_Declaration
5035 (Parent (Base_Type (PtrT)));
5036
5037 -- The only other possibility is an itype. For this
5038 -- case, the master must exist in the context. This is
5039 -- the case when the allocator initializes an access
5040 -- component in an init-proc.
5041
5042 else
5043 pragma Assert (Is_Itype (PtrT));
5044 Build_Master_Renaming (PtrT, N);
5045 end if;
5046 end if;
5047 end if;
5048
5049 -- If the context of the allocator is a declaration or an
5050 -- assignment, we can generate a meaningful image for it,
5051 -- even though subsequent assignments might remove the
5052 -- connection between task and entity. We build this image
5053 -- when the left-hand side is a simple variable, a simple
5054 -- indexed assignment or a simple selected component.
5055
5056 if Nkind (Parent (N)) = N_Assignment_Statement then
5057 declare
5058 Nam : constant Node_Id := Name (Parent (N));
5059
5060 begin
5061 if Is_Entity_Name (Nam) then
5062 Decls :=
5063 Build_Task_Image_Decls
5064 (Loc,
5065 New_Occurrence_Of
5066 (Entity (Nam), Sloc (Nam)), T);
5067
5068 elsif Nkind_In (Nam, N_Indexed_Component,
5069 N_Selected_Component)
5070 and then Is_Entity_Name (Prefix (Nam))
5071 then
5072 Decls :=
5073 Build_Task_Image_Decls
5074 (Loc, Nam, Etype (Prefix (Nam)));
5075 else
5076 Decls := Build_Task_Image_Decls (Loc, T, T);
5077 end if;
5078 end;
5079
5080 elsif Nkind (Parent (N)) = N_Object_Declaration then
5081 Decls :=
5082 Build_Task_Image_Decls
5083 (Loc, Defining_Identifier (Parent (N)), T);
5084
5085 else
5086 Decls := Build_Task_Image_Decls (Loc, T, T);
5087 end if;
5088
5089 if Restriction_Active (No_Task_Hierarchy) then
5090 Append_To (Args,
5091 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
5092 else
5093 Append_To (Args,
5094 New_Occurrence_Of
5095 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
5096 end if;
5097
5098 Append_To (Args, Make_Identifier (Loc, Name_uChain));
5099
5100 Decl := Last (Decls);
5101 Append_To (Args,
5102 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
5103
5104 -- Has_Task is false, Decls not used
5105
5106 else
5107 Decls := No_List;
5108 end if;
5109
5110 -- Add discriminants if discriminated type
5111
5112 declare
5113 Dis : Boolean := False;
5114 Typ : Entity_Id := Empty;
5115
5116 begin
5117 if Has_Discriminants (T) then
5118 Dis := True;
5119 Typ := T;
5120
5121 -- Type may be a private type with no visible discriminants
5122 -- in which case check full view if in scope, or the
5123 -- underlying_full_view if dealing with a type whose full
5124 -- view may be derived from a private type whose own full
5125 -- view has discriminants.
5126
5127 elsif Is_Private_Type (T) then
5128 if Present (Full_View (T))
5129 and then Has_Discriminants (Full_View (T))
5130 then
5131 Dis := True;
5132 Typ := Full_View (T);
5133
5134 elsif Present (Underlying_Full_View (T))
5135 and then Has_Discriminants (Underlying_Full_View (T))
5136 then
5137 Dis := True;
5138 Typ := Underlying_Full_View (T);
5139 end if;
5140 end if;
5141
5142 if Dis then
5143
5144 -- If the allocated object will be constrained by the
5145 -- default values for discriminants, then build a subtype
5146 -- with those defaults, and change the allocated subtype
5147 -- to that. Note that this happens in fewer cases in Ada
5148 -- 2005 (AI-363).
5149
5150 if not Is_Constrained (Typ)
5151 and then Present (Discriminant_Default_Value
5152 (First_Discriminant (Typ)))
5153 and then (Ada_Version < Ada_2005
5154 or else not
5155 Object_Type_Has_Constrained_Partial_View
5156 (Typ, Current_Scope))
5157 then
5158 Typ := Build_Default_Subtype (Typ, N);
5159 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
5160 end if;
5161
5162 Discr := First_Elmt (Discriminant_Constraint (Typ));
5163 while Present (Discr) loop
5164 Nod := Node (Discr);
5165 Append (New_Copy_Tree (Node (Discr)), Args);
5166
5167 -- AI-416: when the discriminant constraint is an
5168 -- anonymous access type make sure an accessibility
5169 -- check is inserted if necessary (3.10.2(22.q/2))
5170
5171 if Ada_Version >= Ada_2005
5172 and then
5173 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
5174 then
5175 Apply_Accessibility_Check
5176 (Nod, Typ, Insert_Node => Nod);
5177 end if;
5178
5179 Next_Elmt (Discr);
5180 end loop;
5181 end if;
5182 end;
5183
5184 -- We set the allocator as analyzed so that when we analyze
5185 -- the if expression node, we do not get an unwanted recursive
5186 -- expansion of the allocator expression.
5187
5188 Set_Analyzed (N, True);
5189 Nod := Relocate_Node (N);
5190
5191 -- Here is the transformation:
5192 -- input: new Ctrl_Typ
5193 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
5194 -- Ctrl_TypIP (Temp.all, ...);
5195 -- [Deep_]Initialize (Temp.all);
5196
5197 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
5198 -- is the subtype of the allocator.
5199
5200 Temp_Decl :=
5201 Make_Object_Declaration (Loc,
5202 Defining_Identifier => Temp,
5203 Constant_Present => True,
5204 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
5205 Expression => Nod);
5206
5207 Set_Assignment_OK (Temp_Decl);
5208 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
5209
5210 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
5211
5212 -- If the designated type is a task type or contains tasks,
5213 -- create block to activate created tasks, and insert
5214 -- declaration for Task_Image variable ahead of call.
5215
5216 if Has_Task (T) then
5217 declare
5218 L : constant List_Id := New_List;
5219 Blk : Node_Id;
5220 begin
5221 Build_Task_Allocate_Block (L, Nod, Args);
5222 Blk := Last (L);
5223 Insert_List_Before (First (Declarations (Blk)), Decls);
5224 Insert_Actions (N, L);
5225 end;
5226
5227 else
5228 Insert_Action (N,
5229 Make_Procedure_Call_Statement (Loc,
5230 Name => New_Occurrence_Of (Init, Loc),
5231 Parameter_Associations => Args));
5232 end if;
5233
5234 if Needs_Finalization (T) then
5235
5236 -- Generate:
5237 -- [Deep_]Initialize (Init_Arg1);
5238
5239 Init_Call :=
5240 Make_Init_Call
5241 (Obj_Ref => New_Copy_Tree (Init_Arg1),
5242 Typ => T);
5243
5244 -- Guard against a missing [Deep_]Initialize when the
5245 -- designated type was not properly frozen.
5246
5247 if Present (Init_Call) then
5248 Insert_Action (N, Init_Call);
5249 end if;
5250 end if;
5251
5252 Rewrite (N, New_Occurrence_Of (Temp, Loc));
5253 Analyze_And_Resolve (N, PtrT);
5254 end if;
5255 end if;
5256 end;
5257
5258 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
5259 -- object that has been rewritten as a reference, we displace "this"
5260 -- to reference properly its secondary dispatch table.
5261
5262 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
5263 Displace_Allocator_Pointer (N);
5264 end if;
5265
5266 exception
5267 when RE_Not_Available =>
5268 return;
5269 end Expand_N_Allocator;
5270
5271 -----------------------
5272 -- Expand_N_And_Then --
5273 -----------------------
5274
5275 procedure Expand_N_And_Then (N : Node_Id)
5276 renames Expand_Short_Circuit_Operator;
5277
5278 ------------------------------
5279 -- Expand_N_Case_Expression --
5280 ------------------------------
5281
5282 procedure Expand_N_Case_Expression (N : Node_Id) is
5283 function Is_Copy_Type (Typ : Entity_Id) return Boolean;
5284 -- Return True if we can copy objects of this type when expanding a case
5285 -- expression.
5286
5287 ------------------
5288 -- Is_Copy_Type --
5289 ------------------
5290
5291 function Is_Copy_Type (Typ : Entity_Id) return Boolean is
5292 begin
5293 -- If Minimize_Expression_With_Actions is True, we can afford to copy
5294 -- large objects, as long as they are constrained and not limited.
5295
5296 return
5297 Is_Elementary_Type (Underlying_Type (Typ))
5298 or else
5299 (Minimize_Expression_With_Actions
5300 and then Is_Constrained (Underlying_Type (Typ))
5301 and then not Is_Limited_Type (Underlying_Type (Typ)));
5302 end Is_Copy_Type;
5303
5304 -- Local variables
5305
5306 Loc : constant Source_Ptr := Sloc (N);
5307 Par : constant Node_Id := Parent (N);
5308 Typ : constant Entity_Id := Etype (N);
5309
5310 Acts : List_Id;
5311 Alt : Node_Id;
5312 Case_Stmt : Node_Id;
5313 Decl : Node_Id;
5314 Expr : Node_Id;
5315 Target : Entity_Id;
5316 Target_Typ : Entity_Id;
5317
5318 In_Predicate : Boolean := False;
5319 -- Flag set when the case expression appears within a predicate
5320
5321 Optimize_Return_Stmt : Boolean := False;
5322 -- Flag set when the case expression can be optimized in the context of
5323 -- a simple return statement.
5324
5325 -- Start of processing for Expand_N_Case_Expression
5326
5327 begin
5328 -- Check for MINIMIZED/ELIMINATED overflow mode
5329
5330 if Minimized_Eliminated_Overflow_Check (N) then
5331 Apply_Arithmetic_Overflow_Check (N);
5332 return;
5333 end if;
5334
5335 -- If the case expression is a predicate specification, and the type
5336 -- to which it applies has a static predicate aspect, do not expand,
5337 -- because it will be converted to the proper predicate form later.
5338
5339 if Ekind_In (Current_Scope, E_Function, E_Procedure)
5340 and then Is_Predicate_Function (Current_Scope)
5341 then
5342 In_Predicate := True;
5343
5344 if Has_Static_Predicate_Aspect (Etype (First_Entity (Current_Scope)))
5345 then
5346 return;
5347 end if;
5348 end if;
5349
5350 -- When the type of the case expression is elementary, expand
5351
5352 -- (case X is when A => AX, when B => BX ...)
5353
5354 -- into
5355
5356 -- do
5357 -- Target : Typ;
5358 -- case X is
5359 -- when A =>
5360 -- Target := AX;
5361 -- when B =>
5362 -- Target := BX;
5363 -- ...
5364 -- end case;
5365 -- in Target end;
5366
5367 -- In all other cases expand into
5368
5369 -- do
5370 -- type Ptr_Typ is access all Typ;
5371 -- Target : Ptr_Typ;
5372 -- case X is
5373 -- when A =>
5374 -- Target := AX'Unrestricted_Access;
5375 -- when B =>
5376 -- Target := BX'Unrestricted_Access;
5377 -- ...
5378 -- end case;
5379 -- in Target.all end;
5380
5381 -- This approach avoids extra copies of potentially large objects. It
5382 -- also allows handling of values of limited or unconstrained types.
5383 -- Note that we do the copy also for constrained, nonlimited types
5384 -- when minimizing expressions with actions (e.g. when generating C
5385 -- code) since it allows us to do the optimization below in more cases.
5386
5387 -- Small optimization: when the case expression appears in the context
5388 -- of a simple return statement, expand into
5389
5390 -- case X is
5391 -- when A =>
5392 -- return AX;
5393 -- when B =>
5394 -- return BX;
5395 -- ...
5396 -- end case;
5397
5398 Case_Stmt :=
5399 Make_Case_Statement (Loc,
5400 Expression => Expression (N),
5401 Alternatives => New_List);
5402
5403 -- Preserve the original context for which the case statement is being
5404 -- generated. This is needed by the finalization machinery to prevent
5405 -- the premature finalization of controlled objects found within the
5406 -- case statement.
5407
5408 Set_From_Conditional_Expression (Case_Stmt);
5409 Acts := New_List;
5410
5411 -- Scalar/Copy case
5412
5413 if Is_Copy_Type (Typ) then
5414 Target_Typ := Typ;
5415
5416 -- ??? Do not perform the optimization when the return statement is
5417 -- within a predicate function, as this causes spurious errors. Could
5418 -- this be a possible mismatch in handling this case somewhere else
5419 -- in semantic analysis?
5420
5421 Optimize_Return_Stmt :=
5422 Nkind (Par) = N_Simple_Return_Statement and then not In_Predicate;
5423
5424 -- Otherwise create an access type to handle the general case using
5425 -- 'Unrestricted_Access.
5426
5427 -- Generate:
5428 -- type Ptr_Typ is access all Typ;
5429
5430 else
5431 if Generate_C_Code then
5432
5433 -- We cannot ensure that correct C code will be generated if any
5434 -- temporary is created down the line (to e.g. handle checks or
5435 -- capture values) since we might end up with dangling references
5436 -- to local variables, so better be safe and reject the construct.
5437
5438 Error_Msg_N
5439 ("case expression too complex, use case statement instead", N);
5440 end if;
5441
5442 Target_Typ := Make_Temporary (Loc, 'P');
5443
5444 Append_To (Acts,
5445 Make_Full_Type_Declaration (Loc,
5446 Defining_Identifier => Target_Typ,
5447 Type_Definition =>
5448 Make_Access_To_Object_Definition (Loc,
5449 All_Present => True,
5450 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5451 end if;
5452
5453 -- Create the declaration of the target which captures the value of the
5454 -- expression.
5455
5456 -- Generate:
5457 -- Target : [Ptr_]Typ;
5458
5459 if not Optimize_Return_Stmt then
5460 Target := Make_Temporary (Loc, 'T');
5461
5462 Decl :=
5463 Make_Object_Declaration (Loc,
5464 Defining_Identifier => Target,
5465 Object_Definition => New_Occurrence_Of (Target_Typ, Loc));
5466 Set_No_Initialization (Decl);
5467
5468 Append_To (Acts, Decl);
5469 end if;
5470
5471 -- Process the alternatives
5472
5473 Alt := First (Alternatives (N));
5474 while Present (Alt) loop
5475 declare
5476 Alt_Expr : Node_Id := Expression (Alt);
5477 Alt_Loc : constant Source_Ptr := Sloc (Alt_Expr);
5478 LHS : Node_Id;
5479 Stmts : List_Id;
5480
5481 begin
5482 -- Take the unrestricted access of the expression value for non-
5483 -- scalar types. This approach avoids big copies and covers the
5484 -- limited and unconstrained cases.
5485
5486 -- Generate:
5487 -- AX'Unrestricted_Access
5488
5489 if not Is_Copy_Type (Typ) then
5490 Alt_Expr :=
5491 Make_Attribute_Reference (Alt_Loc,
5492 Prefix => Relocate_Node (Alt_Expr),
5493 Attribute_Name => Name_Unrestricted_Access);
5494 end if;
5495
5496 -- Generate:
5497 -- return AX['Unrestricted_Access];
5498
5499 if Optimize_Return_Stmt then
5500 Stmts := New_List (
5501 Make_Simple_Return_Statement (Alt_Loc,
5502 Expression => Alt_Expr));
5503
5504 -- Generate:
5505 -- Target := AX['Unrestricted_Access];
5506
5507 else
5508 LHS := New_Occurrence_Of (Target, Loc);
5509 Set_Assignment_OK (LHS);
5510
5511 Stmts := New_List (
5512 Make_Assignment_Statement (Alt_Loc,
5513 Name => LHS,
5514 Expression => Alt_Expr));
5515 end if;
5516
5517 -- Propagate declarations inserted in the node by Insert_Actions
5518 -- (for example, temporaries generated to remove side effects).
5519 -- These actions must remain attached to the alternative, given
5520 -- that they are generated by the corresponding expression.
5521
5522 if Present (Actions (Alt)) then
5523 Prepend_List (Actions (Alt), Stmts);
5524 end if;
5525
5526 -- Finalize any transient objects on exit from the alternative.
5527 -- This is done only in the return optimization case because
5528 -- otherwise the case expression is converted into an expression
5529 -- with actions which already contains this form of processing.
5530
5531 if Optimize_Return_Stmt then
5532 Process_If_Case_Statements (N, Stmts);
5533 end if;
5534
5535 Append_To
5536 (Alternatives (Case_Stmt),
5537 Make_Case_Statement_Alternative (Sloc (Alt),
5538 Discrete_Choices => Discrete_Choices (Alt),
5539 Statements => Stmts));
5540 end;
5541
5542 Next (Alt);
5543 end loop;
5544
5545 -- Rewrite the parent return statement as a case statement
5546
5547 if Optimize_Return_Stmt then
5548 Rewrite (Par, Case_Stmt);
5549 Analyze (Par);
5550
5551 -- Otherwise convert the case expression into an expression with actions
5552
5553 else
5554 Append_To (Acts, Case_Stmt);
5555
5556 if Is_Copy_Type (Typ) then
5557 Expr := New_Occurrence_Of (Target, Loc);
5558
5559 else
5560 Expr :=
5561 Make_Explicit_Dereference (Loc,
5562 Prefix => New_Occurrence_Of (Target, Loc));
5563 end if;
5564
5565 -- Generate:
5566 -- do
5567 -- ...
5568 -- in Target[.all] end;
5569
5570 Rewrite (N,
5571 Make_Expression_With_Actions (Loc,
5572 Expression => Expr,
5573 Actions => Acts));
5574
5575 Analyze_And_Resolve (N, Typ);
5576 end if;
5577 end Expand_N_Case_Expression;
5578
5579 -----------------------------------
5580 -- Expand_N_Explicit_Dereference --
5581 -----------------------------------
5582
5583 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5584 begin
5585 -- Insert explicit dereference call for the checked storage pool case
5586
5587 Insert_Dereference_Action (Prefix (N));
5588
5589 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5590 -- we set the atomic sync flag.
5591
5592 if Is_Atomic (Etype (N))
5593 and then not Atomic_Synchronization_Disabled (Etype (N))
5594 then
5595 Activate_Atomic_Synchronization (N);
5596 end if;
5597 end Expand_N_Explicit_Dereference;
5598
5599 --------------------------------------
5600 -- Expand_N_Expression_With_Actions --
5601 --------------------------------------
5602
5603 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
5604 Acts : constant List_Id := Actions (N);
5605
5606 procedure Force_Boolean_Evaluation (Expr : Node_Id);
5607 -- Force the evaluation of Boolean expression Expr
5608
5609 function Process_Action (Act : Node_Id) return Traverse_Result;
5610 -- Inspect and process a single action of an expression_with_actions for
5611 -- transient objects. If such objects are found, the routine generates
5612 -- code to clean them up when the context of the expression is evaluated
5613 -- or elaborated.
5614
5615 ------------------------------
5616 -- Force_Boolean_Evaluation --
5617 ------------------------------
5618
5619 procedure Force_Boolean_Evaluation (Expr : Node_Id) is
5620 Loc : constant Source_Ptr := Sloc (N);
5621 Flag_Decl : Node_Id;
5622 Flag_Id : Entity_Id;
5623
5624 begin
5625 -- Relocate the expression to the actions list by capturing its value
5626 -- in a Boolean flag. Generate:
5627 -- Flag : constant Boolean := Expr;
5628
5629 Flag_Id := Make_Temporary (Loc, 'F');
5630
5631 Flag_Decl :=
5632 Make_Object_Declaration (Loc,
5633 Defining_Identifier => Flag_Id,
5634 Constant_Present => True,
5635 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
5636 Expression => Relocate_Node (Expr));
5637
5638 Append (Flag_Decl, Acts);
5639 Analyze (Flag_Decl);
5640
5641 -- Replace the expression with a reference to the flag
5642
5643 Rewrite (Expression (N), New_Occurrence_Of (Flag_Id, Loc));
5644 Analyze (Expression (N));
5645 end Force_Boolean_Evaluation;
5646
5647 --------------------
5648 -- Process_Action --
5649 --------------------
5650
5651 function Process_Action (Act : Node_Id) return Traverse_Result is
5652 begin
5653 if Nkind (Act) = N_Object_Declaration
5654 and then Is_Finalizable_Transient (Act, N)
5655 then
5656 Process_Transient_In_Expression (Act, N, Acts);
5657 return Skip;
5658
5659 -- Avoid processing temporary function results multiple times when
5660 -- dealing with nested expression_with_actions.
5661
5662 elsif Nkind (Act) = N_Expression_With_Actions then
5663 return Abandon;
5664
5665 -- Do not process temporary function results in loops. This is done
5666 -- by Expand_N_Loop_Statement and Build_Finalizer.
5667
5668 elsif Nkind (Act) = N_Loop_Statement then
5669 return Abandon;
5670 end if;
5671
5672 return OK;
5673 end Process_Action;
5674
5675 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
5676
5677 -- Local variables
5678
5679 Act : Node_Id;
5680
5681 -- Start of processing for Expand_N_Expression_With_Actions
5682
5683 begin
5684 -- Do not evaluate the expression when it denotes an entity because the
5685 -- expression_with_actions node will be replaced by the reference.
5686
5687 if Is_Entity_Name (Expression (N)) then
5688 null;
5689
5690 -- Do not evaluate the expression when there are no actions because the
5691 -- expression_with_actions node will be replaced by the expression.
5692
5693 elsif No (Acts) or else Is_Empty_List (Acts) then
5694 null;
5695
5696 -- Force the evaluation of the expression by capturing its value in a
5697 -- temporary. This ensures that aliases of transient objects do not leak
5698 -- to the expression of the expression_with_actions node:
5699
5700 -- do
5701 -- Trans_Id : Ctrl_Typ := ...;
5702 -- Alias : ... := Trans_Id;
5703 -- in ... Alias ... end;
5704
5705 -- In the example above, Trans_Id cannot be finalized at the end of the
5706 -- actions list because this may affect the alias and the final value of
5707 -- the expression_with_actions. Forcing the evaluation encapsulates the
5708 -- reference to the Alias within the actions list:
5709
5710 -- do
5711 -- Trans_Id : Ctrl_Typ := ...;
5712 -- Alias : ... := Trans_Id;
5713 -- Val : constant Boolean := ... Alias ...;
5714 -- <finalize Trans_Id>
5715 -- in Val end;
5716
5717 -- Once this transformation is performed, it is safe to finalize the
5718 -- transient object at the end of the actions list.
5719
5720 -- Note that Force_Evaluation does not remove side effects in operators
5721 -- because it assumes that all operands are evaluated and side effect
5722 -- free. This is not the case when an operand depends implicitly on the
5723 -- transient object through the use of access types.
5724
5725 elsif Is_Boolean_Type (Etype (Expression (N))) then
5726 Force_Boolean_Evaluation (Expression (N));
5727
5728 -- The expression of an expression_with_actions node may not necessarily
5729 -- be Boolean when the node appears in an if expression. In this case do
5730 -- the usual forced evaluation to encapsulate potential aliasing.
5731
5732 else
5733 Force_Evaluation (Expression (N));
5734 end if;
5735
5736 -- Process all transient objects found within the actions of the EWA
5737 -- node.
5738
5739 Act := First (Acts);
5740 while Present (Act) loop
5741 Process_Single_Action (Act);
5742 Next (Act);
5743 end loop;
5744
5745 -- Deal with case where there are no actions. In this case we simply
5746 -- rewrite the node with its expression since we don't need the actions
5747 -- and the specification of this node does not allow a null action list.
5748
5749 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5750 -- the expanded tree and relying on being able to retrieve the original
5751 -- tree in cases like this. This raises a whole lot of issues of whether
5752 -- we have problems elsewhere, which will be addressed in the future???
5753
5754 if Is_Empty_List (Acts) then
5755 Rewrite (N, Relocate_Node (Expression (N)));
5756 end if;
5757 end Expand_N_Expression_With_Actions;
5758
5759 ----------------------------
5760 -- Expand_N_If_Expression --
5761 ----------------------------
5762
5763 -- Deal with limited types and condition actions
5764
5765 procedure Expand_N_If_Expression (N : Node_Id) is
5766 Cond : constant Node_Id := First (Expressions (N));
5767 Loc : constant Source_Ptr := Sloc (N);
5768 Thenx : constant Node_Id := Next (Cond);
5769 Elsex : constant Node_Id := Next (Thenx);
5770 Typ : constant Entity_Id := Etype (N);
5771
5772 Actions : List_Id;
5773 Decl : Node_Id;
5774 Expr : Node_Id;
5775 New_If : Node_Id;
5776 New_N : Node_Id;
5777
5778 begin
5779 -- Check for MINIMIZED/ELIMINATED overflow mode
5780
5781 if Minimized_Eliminated_Overflow_Check (N) then
5782 Apply_Arithmetic_Overflow_Check (N);
5783 return;
5784 end if;
5785
5786 -- Fold at compile time if condition known. We have already folded
5787 -- static if expressions, but it is possible to fold any case in which
5788 -- the condition is known at compile time, even though the result is
5789 -- non-static.
5790
5791 -- Note that we don't do the fold of such cases in Sem_Elab because
5792 -- it can cause infinite loops with the expander adding a conditional
5793 -- expression, and Sem_Elab circuitry removing it repeatedly.
5794
5795 if Compile_Time_Known_Value (Cond) then
5796 declare
5797 function Fold_Known_Value (Cond : Node_Id) return Boolean;
5798 -- Fold at compile time. Assumes condition known. Return True if
5799 -- folding occurred, meaning we're done.
5800
5801 ----------------------
5802 -- Fold_Known_Value --
5803 ----------------------
5804
5805 function Fold_Known_Value (Cond : Node_Id) return Boolean is
5806 begin
5807 if Is_True (Expr_Value (Cond)) then
5808 Expr := Thenx;
5809 Actions := Then_Actions (N);
5810 else
5811 Expr := Elsex;
5812 Actions := Else_Actions (N);
5813 end if;
5814
5815 Remove (Expr);
5816
5817 if Present (Actions) then
5818
5819 -- To minimize the use of Expression_With_Actions, just skip
5820 -- the optimization as it is not critical for correctness.
5821
5822 if Minimize_Expression_With_Actions then
5823 return False;
5824 end if;
5825
5826 Rewrite (N,
5827 Make_Expression_With_Actions (Loc,
5828 Expression => Relocate_Node (Expr),
5829 Actions => Actions));
5830 Analyze_And_Resolve (N, Typ);
5831
5832 else
5833 Rewrite (N, Relocate_Node (Expr));
5834 end if;
5835
5836 -- Note that the result is never static (legitimate cases of
5837 -- static if expressions were folded in Sem_Eval).
5838
5839 Set_Is_Static_Expression (N, False);
5840 return True;
5841 end Fold_Known_Value;
5842
5843 begin
5844 if Fold_Known_Value (Cond) then
5845 return;
5846 end if;
5847 end;
5848 end if;
5849
5850 -- If the type is limited, and the back end does not handle limited
5851 -- types, then we expand as follows to avoid the possibility of
5852 -- improper copying.
5853
5854 -- type Ptr is access all Typ;
5855 -- Cnn : Ptr;
5856 -- if cond then
5857 -- <<then actions>>
5858 -- Cnn := then-expr'Unrestricted_Access;
5859 -- else
5860 -- <<else actions>>
5861 -- Cnn := else-expr'Unrestricted_Access;
5862 -- end if;
5863
5864 -- and replace the if expression by a reference to Cnn.all.
5865
5866 -- This special case can be skipped if the back end handles limited
5867 -- types properly and ensures that no incorrect copies are made.
5868
5869 if Is_By_Reference_Type (Typ)
5870 and then not Back_End_Handles_Limited_Types
5871 then
5872 -- When the "then" or "else" expressions involve controlled function
5873 -- calls, generated temporaries are chained on the corresponding list
5874 -- of actions. These temporaries need to be finalized after the if
5875 -- expression is evaluated.
5876
5877 Process_If_Case_Statements (N, Then_Actions (N));
5878 Process_If_Case_Statements (N, Else_Actions (N));
5879
5880 declare
5881 Cnn : constant Entity_Id := Make_Temporary (Loc, 'C', N);
5882 Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
5883
5884 begin
5885 -- Generate:
5886 -- type Ann is access all Typ;
5887
5888 Insert_Action (N,
5889 Make_Full_Type_Declaration (Loc,
5890 Defining_Identifier => Ptr_Typ,
5891 Type_Definition =>
5892 Make_Access_To_Object_Definition (Loc,
5893 All_Present => True,
5894 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5895
5896 -- Generate:
5897 -- Cnn : Ann;
5898
5899 Decl :=
5900 Make_Object_Declaration (Loc,
5901 Defining_Identifier => Cnn,
5902 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
5903
5904 -- Generate:
5905 -- if Cond then
5906 -- Cnn := <Thenx>'Unrestricted_Access;
5907 -- else
5908 -- Cnn := <Elsex>'Unrestricted_Access;
5909 -- end if;
5910
5911 New_If :=
5912 Make_Implicit_If_Statement (N,
5913 Condition => Relocate_Node (Cond),
5914 Then_Statements => New_List (
5915 Make_Assignment_Statement (Sloc (Thenx),
5916 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5917 Expression =>
5918 Make_Attribute_Reference (Loc,
5919 Prefix => Relocate_Node (Thenx),
5920 Attribute_Name => Name_Unrestricted_Access))),
5921
5922 Else_Statements => New_List (
5923 Make_Assignment_Statement (Sloc (Elsex),
5924 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5925 Expression =>
5926 Make_Attribute_Reference (Loc,
5927 Prefix => Relocate_Node (Elsex),
5928 Attribute_Name => Name_Unrestricted_Access))));
5929
5930 -- Preserve the original context for which the if statement is
5931 -- being generated. This is needed by the finalization machinery
5932 -- to prevent the premature finalization of controlled objects
5933 -- found within the if statement.
5934
5935 Set_From_Conditional_Expression (New_If);
5936
5937 New_N :=
5938 Make_Explicit_Dereference (Loc,
5939 Prefix => New_Occurrence_Of (Cnn, Loc));
5940 end;
5941
5942 -- If the result is an unconstrained array and the if expression is in a
5943 -- context other than the initializing expression of the declaration of
5944 -- an object, then we pull out the if expression as follows:
5945
5946 -- Cnn : constant typ := if-expression
5947
5948 -- and then replace the if expression with an occurrence of Cnn. This
5949 -- avoids the need in the back end to create on-the-fly variable length
5950 -- temporaries (which it cannot do!)
5951
5952 -- Note that the test for being in an object declaration avoids doing an
5953 -- unnecessary expansion, and also avoids infinite recursion.
5954
5955 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5956 and then (Nkind (Parent (N)) /= N_Object_Declaration
5957 or else Expression (Parent (N)) /= N)
5958 then
5959 declare
5960 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5961
5962 begin
5963 Insert_Action (N,
5964 Make_Object_Declaration (Loc,
5965 Defining_Identifier => Cnn,
5966 Constant_Present => True,
5967 Object_Definition => New_Occurrence_Of (Typ, Loc),
5968 Expression => Relocate_Node (N),
5969 Has_Init_Expression => True));
5970
5971 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5972 return;
5973 end;
5974
5975 -- For other types, we only need to expand if there are other actions
5976 -- associated with either branch.
5977
5978 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
5979
5980 -- We now wrap the actions into the appropriate expression
5981
5982 if Minimize_Expression_With_Actions
5983 and then (Is_Elementary_Type (Underlying_Type (Typ))
5984 or else Is_Constrained (Underlying_Type (Typ)))
5985 then
5986 -- If we can't use N_Expression_With_Actions nodes, then we insert
5987 -- the following sequence of actions (using Insert_Actions):
5988
5989 -- Cnn : typ;
5990 -- if cond then
5991 -- <<then actions>>
5992 -- Cnn := then-expr;
5993 -- else
5994 -- <<else actions>>
5995 -- Cnn := else-expr
5996 -- end if;
5997
5998 -- and replace the if expression by a reference to Cnn
5999
6000 declare
6001 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
6002
6003 begin
6004 Decl :=
6005 Make_Object_Declaration (Loc,
6006 Defining_Identifier => Cnn,
6007 Object_Definition => New_Occurrence_Of (Typ, Loc));
6008
6009 New_If :=
6010 Make_Implicit_If_Statement (N,
6011 Condition => Relocate_Node (Cond),
6012
6013 Then_Statements => New_List (
6014 Make_Assignment_Statement (Sloc (Thenx),
6015 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
6016 Expression => Relocate_Node (Thenx))),
6017
6018 Else_Statements => New_List (
6019 Make_Assignment_Statement (Sloc (Elsex),
6020 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
6021 Expression => Relocate_Node (Elsex))));
6022
6023 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
6024 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
6025
6026 New_N := New_Occurrence_Of (Cnn, Loc);
6027 end;
6028
6029 -- Regular path using Expression_With_Actions
6030
6031 else
6032 if Present (Then_Actions (N)) then
6033 Rewrite (Thenx,
6034 Make_Expression_With_Actions (Sloc (Thenx),
6035 Actions => Then_Actions (N),
6036 Expression => Relocate_Node (Thenx)));
6037
6038 Set_Then_Actions (N, No_List);
6039 Analyze_And_Resolve (Thenx, Typ);
6040 end if;
6041
6042 if Present (Else_Actions (N)) then
6043 Rewrite (Elsex,
6044 Make_Expression_With_Actions (Sloc (Elsex),
6045 Actions => Else_Actions (N),
6046 Expression => Relocate_Node (Elsex)));
6047
6048 Set_Else_Actions (N, No_List);
6049 Analyze_And_Resolve (Elsex, Typ);
6050 end if;
6051
6052 return;
6053 end if;
6054
6055 -- If no actions then no expansion needed, gigi will handle it using the
6056 -- same approach as a C conditional expression.
6057
6058 else
6059 return;
6060 end if;
6061
6062 -- Fall through here for either the limited expansion, or the case of
6063 -- inserting actions for nonlimited types. In both these cases, we must
6064 -- move the SLOC of the parent If statement to the newly created one and
6065 -- change it to the SLOC of the expression which, after expansion, will
6066 -- correspond to what is being evaluated.
6067
6068 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
6069 Set_Sloc (New_If, Sloc (Parent (N)));
6070 Set_Sloc (Parent (N), Loc);
6071 end if;
6072
6073 -- Make sure Then_Actions and Else_Actions are appropriately moved
6074 -- to the new if statement.
6075
6076 if Present (Then_Actions (N)) then
6077 Insert_List_Before
6078 (First (Then_Statements (New_If)), Then_Actions (N));
6079 end if;
6080
6081 if Present (Else_Actions (N)) then
6082 Insert_List_Before
6083 (First (Else_Statements (New_If)), Else_Actions (N));
6084 end if;
6085
6086 Insert_Action (N, Decl);
6087 Insert_Action (N, New_If);
6088 Rewrite (N, New_N);
6089 Analyze_And_Resolve (N, Typ);
6090 end Expand_N_If_Expression;
6091
6092 -----------------
6093 -- Expand_N_In --
6094 -----------------
6095
6096 procedure Expand_N_In (N : Node_Id) is
6097 Loc : constant Source_Ptr := Sloc (N);
6098 Restyp : constant Entity_Id := Etype (N);
6099 Lop : constant Node_Id := Left_Opnd (N);
6100 Rop : constant Node_Id := Right_Opnd (N);
6101 Static : constant Boolean := Is_OK_Static_Expression (N);
6102
6103 procedure Substitute_Valid_Check;
6104 -- Replaces node N by Lop'Valid. This is done when we have an explicit
6105 -- test for the left operand being in range of its subtype.
6106
6107 ----------------------------
6108 -- Substitute_Valid_Check --
6109 ----------------------------
6110
6111 procedure Substitute_Valid_Check is
6112 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean;
6113 -- Determine whether arbitrary node Nod denotes a source object that
6114 -- may safely act as prefix of attribute 'Valid.
6115
6116 ----------------------------
6117 -- Is_OK_Object_Reference --
6118 ----------------------------
6119
6120 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean is
6121 Obj_Ref : Node_Id;
6122
6123 begin
6124 -- Inspect the original operand
6125
6126 Obj_Ref := Original_Node (Nod);
6127
6128 -- The object reference must be a source construct, otherwise the
6129 -- codefix suggestion may refer to nonexistent code from a user
6130 -- perspective.
6131
6132 if Comes_From_Source (Obj_Ref) then
6133
6134 -- Recover the actual object reference. There may be more cases
6135 -- to consider???
6136
6137 loop
6138 if Nkind_In (Obj_Ref, N_Type_Conversion,
6139 N_Unchecked_Type_Conversion)
6140 then
6141 Obj_Ref := Expression (Obj_Ref);
6142 else
6143 exit;
6144 end if;
6145 end loop;
6146
6147 return Is_Object_Reference (Obj_Ref);
6148 end if;
6149
6150 return False;
6151 end Is_OK_Object_Reference;
6152
6153 -- Start of processing for Substitute_Valid_Check
6154
6155 begin
6156 Rewrite (N,
6157 Make_Attribute_Reference (Loc,
6158 Prefix => Relocate_Node (Lop),
6159 Attribute_Name => Name_Valid));
6160
6161 Analyze_And_Resolve (N, Restyp);
6162
6163 -- Emit a warning when the left-hand operand of the membership test
6164 -- is a source object, otherwise the use of attribute 'Valid would be
6165 -- illegal. The warning is not given when overflow checking is either
6166 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
6167 -- eliminated above.
6168
6169 if Is_OK_Object_Reference (Lop)
6170 and then Overflow_Check_Mode not in Minimized_Or_Eliminated
6171 then
6172 Error_Msg_N
6173 ("??explicit membership test may be optimized away", N);
6174 Error_Msg_N -- CODEFIX
6175 ("\??use ''Valid attribute instead", N);
6176 end if;
6177 end Substitute_Valid_Check;
6178
6179 -- Local variables
6180
6181 Ltyp : Entity_Id;
6182 Rtyp : Entity_Id;
6183
6184 -- Start of processing for Expand_N_In
6185
6186 begin
6187 -- If set membership case, expand with separate procedure
6188
6189 if Present (Alternatives (N)) then
6190 Expand_Set_Membership (N);
6191 return;
6192 end if;
6193
6194 -- Not set membership, proceed with expansion
6195
6196 Ltyp := Etype (Left_Opnd (N));
6197 Rtyp := Etype (Right_Opnd (N));
6198
6199 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
6200 -- type, then expand with a separate procedure. Note the use of the
6201 -- flag No_Minimize_Eliminate to prevent infinite recursion.
6202
6203 if Overflow_Check_Mode in Minimized_Or_Eliminated
6204 and then Is_Signed_Integer_Type (Ltyp)
6205 and then not No_Minimize_Eliminate (N)
6206 then
6207 Expand_Membership_Minimize_Eliminate_Overflow (N);
6208 return;
6209 end if;
6210
6211 -- Check case of explicit test for an expression in range of its
6212 -- subtype. This is suspicious usage and we replace it with a 'Valid
6213 -- test and give a warning for scalar types.
6214
6215 if Is_Scalar_Type (Ltyp)
6216
6217 -- Only relevant for source comparisons
6218
6219 and then Comes_From_Source (N)
6220
6221 -- In floating-point this is a standard way to check for finite values
6222 -- and using 'Valid would typically be a pessimization.
6223
6224 and then not Is_Floating_Point_Type (Ltyp)
6225
6226 -- Don't give the message unless right operand is a type entity and
6227 -- the type of the left operand matches this type. Note that this
6228 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
6229 -- checks have changed the type of the left operand.
6230
6231 and then Nkind (Rop) in N_Has_Entity
6232 and then Ltyp = Entity (Rop)
6233
6234 -- Skip this for predicated types, where such expressions are a
6235 -- reasonable way of testing if something meets the predicate.
6236
6237 and then not Present (Predicate_Function (Ltyp))
6238 then
6239 Substitute_Valid_Check;
6240 return;
6241 end if;
6242
6243 -- Do validity check on operands
6244
6245 if Validity_Checks_On and Validity_Check_Operands then
6246 Ensure_Valid (Left_Opnd (N));
6247 Validity_Check_Range (Right_Opnd (N));
6248 end if;
6249
6250 -- Case of explicit range
6251
6252 if Nkind (Rop) = N_Range then
6253 declare
6254 Lo : constant Node_Id := Low_Bound (Rop);
6255 Hi : constant Node_Id := High_Bound (Rop);
6256
6257 Lo_Orig : constant Node_Id := Original_Node (Lo);
6258 Hi_Orig : constant Node_Id := Original_Node (Hi);
6259
6260 Lcheck : Compare_Result;
6261 Ucheck : Compare_Result;
6262
6263 Warn1 : constant Boolean :=
6264 Constant_Condition_Warnings
6265 and then Comes_From_Source (N)
6266 and then not In_Instance;
6267 -- This must be true for any of the optimization warnings, we
6268 -- clearly want to give them only for source with the flag on. We
6269 -- also skip these warnings in an instance since it may be the
6270 -- case that different instantiations have different ranges.
6271
6272 Warn2 : constant Boolean :=
6273 Warn1
6274 and then Nkind (Original_Node (Rop)) = N_Range
6275 and then Is_Integer_Type (Etype (Lo));
6276 -- For the case where only one bound warning is elided, we also
6277 -- insist on an explicit range and an integer type. The reason is
6278 -- that the use of enumeration ranges including an end point is
6279 -- common, as is the use of a subtype name, one of whose bounds is
6280 -- the same as the type of the expression.
6281
6282 begin
6283 -- If test is explicit x'First .. x'Last, replace by valid check
6284
6285 -- Could use some individual comments for this complex test ???
6286
6287 if Is_Scalar_Type (Ltyp)
6288
6289 -- And left operand is X'First where X matches left operand
6290 -- type (this eliminates cases of type mismatch, including
6291 -- the cases where ELIMINATED/MINIMIZED mode has changed the
6292 -- type of the left operand.
6293
6294 and then Nkind (Lo_Orig) = N_Attribute_Reference
6295 and then Attribute_Name (Lo_Orig) = Name_First
6296 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
6297 and then Entity (Prefix (Lo_Orig)) = Ltyp
6298
6299 -- Same tests for right operand
6300
6301 and then Nkind (Hi_Orig) = N_Attribute_Reference
6302 and then Attribute_Name (Hi_Orig) = Name_Last
6303 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
6304 and then Entity (Prefix (Hi_Orig)) = Ltyp
6305
6306 -- Relevant only for source cases
6307
6308 and then Comes_From_Source (N)
6309 then
6310 Substitute_Valid_Check;
6311 goto Leave;
6312 end if;
6313
6314 -- If bounds of type are known at compile time, and the end points
6315 -- are known at compile time and identical, this is another case
6316 -- for substituting a valid test. We only do this for discrete
6317 -- types, since it won't arise in practice for float types.
6318
6319 if Comes_From_Source (N)
6320 and then Is_Discrete_Type (Ltyp)
6321 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
6322 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
6323 and then Compile_Time_Known_Value (Lo)
6324 and then Compile_Time_Known_Value (Hi)
6325 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
6326 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
6327
6328 -- Kill warnings in instances, since they may be cases where we
6329 -- have a test in the generic that makes sense with some types
6330 -- and not with other types.
6331
6332 -- Similarly, do not rewrite membership as a validity check if
6333 -- within the predicate function for the type.
6334
6335 -- Finally, if the original bounds are type conversions, even
6336 -- if they have been folded into constants, there are different
6337 -- types involved and 'Valid is not appropriate.
6338
6339 then
6340 if In_Instance
6341 or else (Ekind (Current_Scope) = E_Function
6342 and then Is_Predicate_Function (Current_Scope))
6343 then
6344 null;
6345
6346 elsif Nkind (Lo_Orig) = N_Type_Conversion
6347 or else Nkind (Hi_Orig) = N_Type_Conversion
6348 then
6349 null;
6350
6351 else
6352 Substitute_Valid_Check;
6353 goto Leave;
6354 end if;
6355 end if;
6356
6357 -- If we have an explicit range, do a bit of optimization based on
6358 -- range analysis (we may be able to kill one or both checks).
6359
6360 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
6361 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
6362
6363 -- If either check is known to fail, replace result by False since
6364 -- the other check does not matter. Preserve the static flag for
6365 -- legality checks, because we are constant-folding beyond RM 4.9.
6366
6367 if Lcheck = LT or else Ucheck = GT then
6368 if Warn1 then
6369 Error_Msg_N ("?c?range test optimized away", N);
6370 Error_Msg_N ("\?c?value is known to be out of range", N);
6371 end if;
6372
6373 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6374 Analyze_And_Resolve (N, Restyp);
6375 Set_Is_Static_Expression (N, Static);
6376 goto Leave;
6377
6378 -- If both checks are known to succeed, replace result by True,
6379 -- since we know we are in range.
6380
6381 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
6382 if Warn1 then
6383 Error_Msg_N ("?c?range test optimized away", N);
6384 Error_Msg_N ("\?c?value is known to be in range", N);
6385 end if;
6386
6387 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
6388 Analyze_And_Resolve (N, Restyp);
6389 Set_Is_Static_Expression (N, Static);
6390 goto Leave;
6391
6392 -- If lower bound check succeeds and upper bound check is not
6393 -- known to succeed or fail, then replace the range check with
6394 -- a comparison against the upper bound.
6395
6396 elsif Lcheck in Compare_GE then
6397 if Warn2 and then not In_Instance then
6398 Error_Msg_N ("??lower bound test optimized away", Lo);
6399 Error_Msg_N ("\??value is known to be in range", Lo);
6400 end if;
6401
6402 Rewrite (N,
6403 Make_Op_Le (Loc,
6404 Left_Opnd => Lop,
6405 Right_Opnd => High_Bound (Rop)));
6406 Analyze_And_Resolve (N, Restyp);
6407 goto Leave;
6408
6409 -- If upper bound check succeeds and lower bound check is not
6410 -- known to succeed or fail, then replace the range check with
6411 -- a comparison against the lower bound.
6412
6413 elsif Ucheck in Compare_LE then
6414 if Warn2 and then not In_Instance then
6415 Error_Msg_N ("??upper bound test optimized away", Hi);
6416 Error_Msg_N ("\??value is known to be in range", Hi);
6417 end if;
6418
6419 Rewrite (N,
6420 Make_Op_Ge (Loc,
6421 Left_Opnd => Lop,
6422 Right_Opnd => Low_Bound (Rop)));
6423 Analyze_And_Resolve (N, Restyp);
6424 goto Leave;
6425 end if;
6426
6427 -- We couldn't optimize away the range check, but there is one
6428 -- more issue. If we are checking constant conditionals, then we
6429 -- see if we can determine the outcome assuming everything is
6430 -- valid, and if so give an appropriate warning.
6431
6432 if Warn1 and then not Assume_No_Invalid_Values then
6433 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
6434 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
6435
6436 -- Result is out of range for valid value
6437
6438 if Lcheck = LT or else Ucheck = GT then
6439 Error_Msg_N
6440 ("?c?value can only be in range if it is invalid", N);
6441
6442 -- Result is in range for valid value
6443
6444 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
6445 Error_Msg_N
6446 ("?c?value can only be out of range if it is invalid", N);
6447
6448 -- Lower bound check succeeds if value is valid
6449
6450 elsif Warn2 and then Lcheck in Compare_GE then
6451 Error_Msg_N
6452 ("?c?lower bound check only fails if it is invalid", Lo);
6453
6454 -- Upper bound check succeeds if value is valid
6455
6456 elsif Warn2 and then Ucheck in Compare_LE then
6457 Error_Msg_N
6458 ("?c?upper bound check only fails for invalid values", Hi);
6459 end if;
6460 end if;
6461 end;
6462
6463 -- For all other cases of an explicit range, nothing to be done
6464
6465 goto Leave;
6466
6467 -- Here right operand is a subtype mark
6468
6469 else
6470 declare
6471 Typ : Entity_Id := Etype (Rop);
6472 Is_Acc : constant Boolean := Is_Access_Type (Typ);
6473 Cond : Node_Id := Empty;
6474 New_N : Node_Id;
6475 Obj : Node_Id := Lop;
6476 SCIL_Node : Node_Id;
6477
6478 begin
6479 Remove_Side_Effects (Obj);
6480
6481 -- For tagged type, do tagged membership operation
6482
6483 if Is_Tagged_Type (Typ) then
6484
6485 -- No expansion will be performed for VM targets, as the VM
6486 -- back ends will handle the membership tests directly.
6487
6488 if Tagged_Type_Expansion then
6489 Tagged_Membership (N, SCIL_Node, New_N);
6490 Rewrite (N, New_N);
6491 Analyze_And_Resolve (N, Restyp, Suppress => All_Checks);
6492
6493 -- Update decoration of relocated node referenced by the
6494 -- SCIL node.
6495
6496 if Generate_SCIL and then Present (SCIL_Node) then
6497 Set_SCIL_Node (N, SCIL_Node);
6498 end if;
6499 end if;
6500
6501 goto Leave;
6502
6503 -- If type is scalar type, rewrite as x in t'First .. t'Last.
6504 -- This reason we do this is that the bounds may have the wrong
6505 -- type if they come from the original type definition. Also this
6506 -- way we get all the processing above for an explicit range.
6507
6508 -- Don't do this for predicated types, since in this case we
6509 -- want to check the predicate.
6510
6511 elsif Is_Scalar_Type (Typ) then
6512 if No (Predicate_Function (Typ)) then
6513 Rewrite (Rop,
6514 Make_Range (Loc,
6515 Low_Bound =>
6516 Make_Attribute_Reference (Loc,
6517 Attribute_Name => Name_First,
6518 Prefix => New_Occurrence_Of (Typ, Loc)),
6519
6520 High_Bound =>
6521 Make_Attribute_Reference (Loc,
6522 Attribute_Name => Name_Last,
6523 Prefix => New_Occurrence_Of (Typ, Loc))));
6524 Analyze_And_Resolve (N, Restyp);
6525 end if;
6526
6527 goto Leave;
6528
6529 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6530 -- a membership test if the subtype mark denotes a constrained
6531 -- Unchecked_Union subtype and the expression lacks inferable
6532 -- discriminants.
6533
6534 elsif Is_Unchecked_Union (Base_Type (Typ))
6535 and then Is_Constrained (Typ)
6536 and then not Has_Inferable_Discriminants (Lop)
6537 then
6538 Insert_Action (N,
6539 Make_Raise_Program_Error (Loc,
6540 Reason => PE_Unchecked_Union_Restriction));
6541
6542 -- Prevent Gigi from generating incorrect code by rewriting the
6543 -- test as False. What is this undocumented thing about ???
6544
6545 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6546 goto Leave;
6547 end if;
6548
6549 -- Here we have a non-scalar type
6550
6551 if Is_Acc then
6552 Typ := Designated_Type (Typ);
6553 end if;
6554
6555 if not Is_Constrained (Typ) then
6556 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
6557 Analyze_And_Resolve (N, Restyp);
6558
6559 -- For the constrained array case, we have to check the subscripts
6560 -- for an exact match if the lengths are non-zero (the lengths
6561 -- must match in any case).
6562
6563 elsif Is_Array_Type (Typ) then
6564 Check_Subscripts : declare
6565 function Build_Attribute_Reference
6566 (E : Node_Id;
6567 Nam : Name_Id;
6568 Dim : Nat) return Node_Id;
6569 -- Build attribute reference E'Nam (Dim)
6570
6571 -------------------------------
6572 -- Build_Attribute_Reference --
6573 -------------------------------
6574
6575 function Build_Attribute_Reference
6576 (E : Node_Id;
6577 Nam : Name_Id;
6578 Dim : Nat) return Node_Id
6579 is
6580 begin
6581 return
6582 Make_Attribute_Reference (Loc,
6583 Prefix => E,
6584 Attribute_Name => Nam,
6585 Expressions => New_List (
6586 Make_Integer_Literal (Loc, Dim)));
6587 end Build_Attribute_Reference;
6588
6589 -- Start of processing for Check_Subscripts
6590
6591 begin
6592 for J in 1 .. Number_Dimensions (Typ) loop
6593 Evolve_And_Then (Cond,
6594 Make_Op_Eq (Loc,
6595 Left_Opnd =>
6596 Build_Attribute_Reference
6597 (Duplicate_Subexpr_No_Checks (Obj),
6598 Name_First, J),
6599 Right_Opnd =>
6600 Build_Attribute_Reference
6601 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
6602
6603 Evolve_And_Then (Cond,
6604 Make_Op_Eq (Loc,
6605 Left_Opnd =>
6606 Build_Attribute_Reference
6607 (Duplicate_Subexpr_No_Checks (Obj),
6608 Name_Last, J),
6609 Right_Opnd =>
6610 Build_Attribute_Reference
6611 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
6612 end loop;
6613
6614 if Is_Acc then
6615 Cond :=
6616 Make_Or_Else (Loc,
6617 Left_Opnd =>
6618 Make_Op_Eq (Loc,
6619 Left_Opnd => Obj,
6620 Right_Opnd => Make_Null (Loc)),
6621 Right_Opnd => Cond);
6622 end if;
6623
6624 Rewrite (N, Cond);
6625 Analyze_And_Resolve (N, Restyp);
6626 end Check_Subscripts;
6627
6628 -- These are the cases where constraint checks may be required,
6629 -- e.g. records with possible discriminants
6630
6631 else
6632 -- Expand the test into a series of discriminant comparisons.
6633 -- The expression that is built is the negation of the one that
6634 -- is used for checking discriminant constraints.
6635
6636 Obj := Relocate_Node (Left_Opnd (N));
6637
6638 if Has_Discriminants (Typ) then
6639 Cond := Make_Op_Not (Loc,
6640 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
6641
6642 if Is_Acc then
6643 Cond := Make_Or_Else (Loc,
6644 Left_Opnd =>
6645 Make_Op_Eq (Loc,
6646 Left_Opnd => Obj,
6647 Right_Opnd => Make_Null (Loc)),
6648 Right_Opnd => Cond);
6649 end if;
6650
6651 else
6652 Cond := New_Occurrence_Of (Standard_True, Loc);
6653 end if;
6654
6655 Rewrite (N, Cond);
6656 Analyze_And_Resolve (N, Restyp);
6657 end if;
6658
6659 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6660 -- expression of an anonymous access type. This can involve an
6661 -- accessibility test and a tagged type membership test in the
6662 -- case of tagged designated types.
6663
6664 if Ada_Version >= Ada_2012
6665 and then Is_Acc
6666 and then Ekind (Ltyp) = E_Anonymous_Access_Type
6667 then
6668 declare
6669 Expr_Entity : Entity_Id := Empty;
6670 New_N : Node_Id;
6671 Param_Level : Node_Id;
6672 Type_Level : Node_Id;
6673
6674 begin
6675 if Is_Entity_Name (Lop) then
6676 Expr_Entity := Param_Entity (Lop);
6677
6678 if not Present (Expr_Entity) then
6679 Expr_Entity := Entity (Lop);
6680 end if;
6681 end if;
6682
6683 -- If a conversion of the anonymous access value to the
6684 -- tested type would be illegal, then the result is False.
6685
6686 if not Valid_Conversion
6687 (Lop, Rtyp, Lop, Report_Errs => False)
6688 then
6689 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6690 Analyze_And_Resolve (N, Restyp);
6691
6692 -- Apply an accessibility check if the access object has an
6693 -- associated access level and when the level of the type is
6694 -- less deep than the level of the access parameter. This
6695 -- only occur for access parameters and stand-alone objects
6696 -- of an anonymous access type.
6697
6698 else
6699 if Present (Expr_Entity)
6700 and then
6701 Present
6702 (Effective_Extra_Accessibility (Expr_Entity))
6703 and then UI_Gt (Object_Access_Level (Lop),
6704 Type_Access_Level (Rtyp))
6705 then
6706 Param_Level :=
6707 New_Occurrence_Of
6708 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6709
6710 Type_Level :=
6711 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6712
6713 -- Return True only if the accessibility level of the
6714 -- expression entity is not deeper than the level of
6715 -- the tested access type.
6716
6717 Rewrite (N,
6718 Make_And_Then (Loc,
6719 Left_Opnd => Relocate_Node (N),
6720 Right_Opnd => Make_Op_Le (Loc,
6721 Left_Opnd => Param_Level,
6722 Right_Opnd => Type_Level)));
6723
6724 Analyze_And_Resolve (N);
6725 end if;
6726
6727 -- If the designated type is tagged, do tagged membership
6728 -- operation.
6729
6730 -- *** NOTE: we have to check not null before doing the
6731 -- tagged membership test (but maybe that can be done
6732 -- inside Tagged_Membership?).
6733
6734 if Is_Tagged_Type (Typ) then
6735 Rewrite (N,
6736 Make_And_Then (Loc,
6737 Left_Opnd => Relocate_Node (N),
6738 Right_Opnd =>
6739 Make_Op_Ne (Loc,
6740 Left_Opnd => Obj,
6741 Right_Opnd => Make_Null (Loc))));
6742
6743 -- No expansion will be performed for VM targets, as
6744 -- the VM back ends will handle the membership tests
6745 -- directly.
6746
6747 if Tagged_Type_Expansion then
6748
6749 -- Note that we have to pass Original_Node, because
6750 -- the membership test might already have been
6751 -- rewritten by earlier parts of membership test.
6752
6753 Tagged_Membership
6754 (Original_Node (N), SCIL_Node, New_N);
6755
6756 -- Update decoration of relocated node referenced
6757 -- by the SCIL node.
6758
6759 if Generate_SCIL and then Present (SCIL_Node) then
6760 Set_SCIL_Node (New_N, SCIL_Node);
6761 end if;
6762
6763 Rewrite (N,
6764 Make_And_Then (Loc,
6765 Left_Opnd => Relocate_Node (N),
6766 Right_Opnd => New_N));
6767
6768 Analyze_And_Resolve (N, Restyp);
6769 end if;
6770 end if;
6771 end if;
6772 end;
6773 end if;
6774 end;
6775 end if;
6776
6777 -- At this point, we have done the processing required for the basic
6778 -- membership test, but not yet dealt with the predicate.
6779
6780 <<Leave>>
6781
6782 -- If a predicate is present, then we do the predicate test, but we
6783 -- most certainly want to omit this if we are within the predicate
6784 -- function itself, since otherwise we have an infinite recursion.
6785 -- The check should also not be emitted when testing against a range
6786 -- (the check is only done when the right operand is a subtype; see
6787 -- RM12-4.5.2 (28.1/3-30/3)).
6788
6789 Predicate_Check : declare
6790 function In_Range_Check return Boolean;
6791 -- Within an expanded range check that may raise Constraint_Error do
6792 -- not generate a predicate check as well. It is redundant because
6793 -- the context will add an explicit predicate check, and it will
6794 -- raise the wrong exception if it fails.
6795
6796 --------------------
6797 -- In_Range_Check --
6798 --------------------
6799
6800 function In_Range_Check return Boolean is
6801 P : Node_Id;
6802 begin
6803 P := Parent (N);
6804 while Present (P) loop
6805 if Nkind (P) = N_Raise_Constraint_Error then
6806 return True;
6807
6808 elsif Nkind (P) in N_Statement_Other_Than_Procedure_Call
6809 or else Nkind (P) = N_Procedure_Call_Statement
6810 or else Nkind (P) in N_Declaration
6811 then
6812 return False;
6813 end if;
6814
6815 P := Parent (P);
6816 end loop;
6817
6818 return False;
6819 end In_Range_Check;
6820
6821 -- Local variables
6822
6823 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
6824 R_Op : Node_Id;
6825
6826 -- Start of processing for Predicate_Check
6827
6828 begin
6829 if Present (PFunc)
6830 and then Current_Scope /= PFunc
6831 and then Nkind (Rop) /= N_Range
6832 then
6833 if not In_Range_Check then
6834 R_Op := Make_Predicate_Call (Rtyp, Lop, Mem => True);
6835 else
6836 R_Op := New_Occurrence_Of (Standard_True, Loc);
6837 end if;
6838
6839 Rewrite (N,
6840 Make_And_Then (Loc,
6841 Left_Opnd => Relocate_Node (N),
6842 Right_Opnd => R_Op));
6843
6844 -- Analyze new expression, mark left operand as analyzed to
6845 -- avoid infinite recursion adding predicate calls. Similarly,
6846 -- suppress further range checks on the call.
6847
6848 Set_Analyzed (Left_Opnd (N));
6849 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6850
6851 -- All done, skip attempt at compile time determination of result
6852
6853 return;
6854 end if;
6855 end Predicate_Check;
6856 end Expand_N_In;
6857
6858 --------------------------------
6859 -- Expand_N_Indexed_Component --
6860 --------------------------------
6861
6862 procedure Expand_N_Indexed_Component (N : Node_Id) is
6863 Loc : constant Source_Ptr := Sloc (N);
6864 Typ : constant Entity_Id := Etype (N);
6865 P : constant Node_Id := Prefix (N);
6866 T : constant Entity_Id := Etype (P);
6867 Atp : Entity_Id;
6868
6869 begin
6870 -- A special optimization, if we have an indexed component that is
6871 -- selecting from a slice, then we can eliminate the slice, since, for
6872 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6873 -- the range check required by the slice. The range check for the slice
6874 -- itself has already been generated. The range check for the
6875 -- subscripting operation is ensured by converting the subject to
6876 -- the subtype of the slice.
6877
6878 -- This optimization not only generates better code, avoiding slice
6879 -- messing especially in the packed case, but more importantly bypasses
6880 -- some problems in handling this peculiar case, for example, the issue
6881 -- of dealing specially with object renamings.
6882
6883 if Nkind (P) = N_Slice
6884
6885 -- This optimization is disabled for CodePeer because it can transform
6886 -- an index-check constraint_error into a range-check constraint_error
6887 -- and CodePeer cares about that distinction.
6888
6889 and then not CodePeer_Mode
6890 then
6891 Rewrite (N,
6892 Make_Indexed_Component (Loc,
6893 Prefix => Prefix (P),
6894 Expressions => New_List (
6895 Convert_To
6896 (Etype (First_Index (Etype (P))),
6897 First (Expressions (N))))));
6898 Analyze_And_Resolve (N, Typ);
6899 return;
6900 end if;
6901
6902 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6903 -- function, then additional actuals must be passed.
6904
6905 if Is_Build_In_Place_Function_Call (P) then
6906 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6907
6908 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
6909 -- containing build-in-place function calls whose returned object covers
6910 -- interface types.
6911
6912 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
6913 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
6914 end if;
6915
6916 -- If the prefix is an access type, then we unconditionally rewrite if
6917 -- as an explicit dereference. This simplifies processing for several
6918 -- cases, including packed array cases and certain cases in which checks
6919 -- must be generated. We used to try to do this only when it was
6920 -- necessary, but it cleans up the code to do it all the time.
6921
6922 if Is_Access_Type (T) then
6923 Insert_Explicit_Dereference (P);
6924 Analyze_And_Resolve (P, Designated_Type (T));
6925 Atp := Designated_Type (T);
6926 else
6927 Atp := T;
6928 end if;
6929
6930 -- Generate index and validity checks
6931
6932 Generate_Index_Checks (N);
6933
6934 if Validity_Checks_On and then Validity_Check_Subscripts then
6935 Apply_Subscript_Validity_Checks (N);
6936 end if;
6937
6938 -- If selecting from an array with atomic components, and atomic sync
6939 -- is not suppressed for this array type, set atomic sync flag.
6940
6941 if (Has_Atomic_Components (Atp)
6942 and then not Atomic_Synchronization_Disabled (Atp))
6943 or else (Is_Atomic (Typ)
6944 and then not Atomic_Synchronization_Disabled (Typ))
6945 or else (Is_Entity_Name (P)
6946 and then Has_Atomic_Components (Entity (P))
6947 and then not Atomic_Synchronization_Disabled (Entity (P)))
6948 then
6949 Activate_Atomic_Synchronization (N);
6950 end if;
6951
6952 -- All done if the prefix is not a packed array implemented specially
6953
6954 if not (Is_Packed (Etype (Prefix (N)))
6955 and then Present (Packed_Array_Impl_Type (Etype (Prefix (N)))))
6956 then
6957 return;
6958 end if;
6959
6960 -- For packed arrays that are not bit-packed (i.e. the case of an array
6961 -- with one or more index types with a non-contiguous enumeration type),
6962 -- we can always use the normal packed element get circuit.
6963
6964 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6965 Expand_Packed_Element_Reference (N);
6966 return;
6967 end if;
6968
6969 -- For a reference to a component of a bit packed array, we convert it
6970 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6971 -- want to do this for simple references, and not for:
6972
6973 -- Left side of assignment, or prefix of left side of assignment, or
6974 -- prefix of the prefix, to handle packed arrays of packed arrays,
6975 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6976
6977 -- Renaming objects in renaming associations
6978 -- This case is handled when a use of the renamed variable occurs
6979
6980 -- Actual parameters for a subprogram call
6981 -- This case is handled in Exp_Ch6.Expand_Actuals
6982
6983 -- The second expression in a 'Read attribute reference
6984
6985 -- The prefix of an address or bit or size attribute reference
6986
6987 -- The following circuit detects these exceptions. Note that we need to
6988 -- deal with implicit dereferences when climbing up the parent chain,
6989 -- with the additional difficulty that the type of parents may have yet
6990 -- to be resolved since prefixes are usually resolved first.
6991
6992 declare
6993 Child : Node_Id := N;
6994 Parnt : Node_Id := Parent (N);
6995
6996 begin
6997 loop
6998 if Nkind (Parnt) = N_Unchecked_Expression then
6999 null;
7000
7001 elsif Nkind (Parnt) = N_Object_Renaming_Declaration then
7002 return;
7003
7004 elsif Nkind (Parnt) in N_Subprogram_Call
7005 or else (Nkind (Parnt) = N_Parameter_Association
7006 and then Nkind (Parent (Parnt)) in N_Subprogram_Call)
7007 then
7008 return;
7009
7010 elsif Nkind (Parnt) = N_Attribute_Reference
7011 and then Nam_In (Attribute_Name (Parnt), Name_Address,
7012 Name_Bit,
7013 Name_Size)
7014 and then Prefix (Parnt) = Child
7015 then
7016 return;
7017
7018 elsif Nkind (Parnt) = N_Assignment_Statement
7019 and then Name (Parnt) = Child
7020 then
7021 return;
7022
7023 -- If the expression is an index of an indexed component, it must
7024 -- be expanded regardless of context.
7025
7026 elsif Nkind (Parnt) = N_Indexed_Component
7027 and then Child /= Prefix (Parnt)
7028 then
7029 Expand_Packed_Element_Reference (N);
7030 return;
7031
7032 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
7033 and then Name (Parent (Parnt)) = Parnt
7034 then
7035 return;
7036
7037 elsif Nkind (Parnt) = N_Attribute_Reference
7038 and then Attribute_Name (Parnt) = Name_Read
7039 and then Next (First (Expressions (Parnt))) = Child
7040 then
7041 return;
7042
7043 elsif Nkind (Parnt) = N_Indexed_Component
7044 and then Prefix (Parnt) = Child
7045 then
7046 null;
7047
7048 elsif Nkind (Parnt) = N_Selected_Component
7049 and then Prefix (Parnt) = Child
7050 and then not (Present (Etype (Selector_Name (Parnt)))
7051 and then
7052 Is_Access_Type (Etype (Selector_Name (Parnt))))
7053 then
7054 null;
7055
7056 -- If the parent is a dereference, either implicit or explicit,
7057 -- then the packed reference needs to be expanded.
7058
7059 else
7060 Expand_Packed_Element_Reference (N);
7061 return;
7062 end if;
7063
7064 -- Keep looking up tree for unchecked expression, or if we are the
7065 -- prefix of a possible assignment left side.
7066
7067 Child := Parnt;
7068 Parnt := Parent (Child);
7069 end loop;
7070 end;
7071 end Expand_N_Indexed_Component;
7072
7073 ---------------------
7074 -- Expand_N_Not_In --
7075 ---------------------
7076
7077 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
7078 -- can be done. This avoids needing to duplicate this expansion code.
7079
7080 procedure Expand_N_Not_In (N : Node_Id) is
7081 Loc : constant Source_Ptr := Sloc (N);
7082 Typ : constant Entity_Id := Etype (N);
7083 Cfs : constant Boolean := Comes_From_Source (N);
7084
7085 begin
7086 Rewrite (N,
7087 Make_Op_Not (Loc,
7088 Right_Opnd =>
7089 Make_In (Loc,
7090 Left_Opnd => Left_Opnd (N),
7091 Right_Opnd => Right_Opnd (N))));
7092
7093 -- If this is a set membership, preserve list of alternatives
7094
7095 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
7096
7097 -- We want this to appear as coming from source if original does (see
7098 -- transformations in Expand_N_In).
7099
7100 Set_Comes_From_Source (N, Cfs);
7101 Set_Comes_From_Source (Right_Opnd (N), Cfs);
7102
7103 -- Now analyze transformed node
7104
7105 Analyze_And_Resolve (N, Typ);
7106 end Expand_N_Not_In;
7107
7108 -------------------
7109 -- Expand_N_Null --
7110 -------------------
7111
7112 -- The only replacement required is for the case of a null of a type that
7113 -- is an access to protected subprogram, or a subtype thereof. We represent
7114 -- such access values as a record, and so we must replace the occurrence of
7115 -- null by the equivalent record (with a null address and a null pointer in
7116 -- it), so that the back end creates the proper value.
7117
7118 procedure Expand_N_Null (N : Node_Id) is
7119 Loc : constant Source_Ptr := Sloc (N);
7120 Typ : constant Entity_Id := Base_Type (Etype (N));
7121 Agg : Node_Id;
7122
7123 begin
7124 if Is_Access_Protected_Subprogram_Type (Typ) then
7125 Agg :=
7126 Make_Aggregate (Loc,
7127 Expressions => New_List (
7128 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
7129 Make_Null (Loc)));
7130
7131 Rewrite (N, Agg);
7132 Analyze_And_Resolve (N, Equivalent_Type (Typ));
7133
7134 -- For subsequent semantic analysis, the node must retain its type.
7135 -- Gigi in any case replaces this type by the corresponding record
7136 -- type before processing the node.
7137
7138 Set_Etype (N, Typ);
7139 end if;
7140
7141 exception
7142 when RE_Not_Available =>
7143 return;
7144 end Expand_N_Null;
7145
7146 ---------------------
7147 -- Expand_N_Op_Abs --
7148 ---------------------
7149
7150 procedure Expand_N_Op_Abs (N : Node_Id) is
7151 Loc : constant Source_Ptr := Sloc (N);
7152 Expr : constant Node_Id := Right_Opnd (N);
7153
7154 begin
7155 Unary_Op_Validity_Checks (N);
7156
7157 -- Check for MINIMIZED/ELIMINATED overflow mode
7158
7159 if Minimized_Eliminated_Overflow_Check (N) then
7160 Apply_Arithmetic_Overflow_Check (N);
7161 return;
7162 end if;
7163
7164 -- Deal with software overflow checking
7165
7166 if Is_Signed_Integer_Type (Etype (N))
7167 and then Do_Overflow_Check (N)
7168 then
7169 -- The only case to worry about is when the argument is equal to the
7170 -- largest negative number, so what we do is to insert the check:
7171
7172 -- [constraint_error when Expr = typ'Base'First]
7173
7174 -- with the usual Duplicate_Subexpr use coding for expr
7175
7176 Insert_Action (N,
7177 Make_Raise_Constraint_Error (Loc,
7178 Condition =>
7179 Make_Op_Eq (Loc,
7180 Left_Opnd => Duplicate_Subexpr (Expr),
7181 Right_Opnd =>
7182 Make_Attribute_Reference (Loc,
7183 Prefix =>
7184 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
7185 Attribute_Name => Name_First)),
7186 Reason => CE_Overflow_Check_Failed));
7187
7188 Set_Do_Overflow_Check (N, False);
7189 end if;
7190 end Expand_N_Op_Abs;
7191
7192 ---------------------
7193 -- Expand_N_Op_Add --
7194 ---------------------
7195
7196 procedure Expand_N_Op_Add (N : Node_Id) is
7197 Typ : constant Entity_Id := Etype (N);
7198
7199 begin
7200 Binary_Op_Validity_Checks (N);
7201
7202 -- Check for MINIMIZED/ELIMINATED overflow mode
7203
7204 if Minimized_Eliminated_Overflow_Check (N) then
7205 Apply_Arithmetic_Overflow_Check (N);
7206 return;
7207 end if;
7208
7209 -- N + 0 = 0 + N = N for integer types
7210
7211 if Is_Integer_Type (Typ) then
7212 if Compile_Time_Known_Value (Right_Opnd (N))
7213 and then Expr_Value (Right_Opnd (N)) = Uint_0
7214 then
7215 Rewrite (N, Left_Opnd (N));
7216 return;
7217
7218 elsif Compile_Time_Known_Value (Left_Opnd (N))
7219 and then Expr_Value (Left_Opnd (N)) = Uint_0
7220 then
7221 Rewrite (N, Right_Opnd (N));
7222 return;
7223 end if;
7224 end if;
7225
7226 -- Arithmetic overflow checks for signed integer/fixed point types
7227
7228 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
7229 Apply_Arithmetic_Overflow_Check (N);
7230 return;
7231 end if;
7232
7233 -- Overflow checks for floating-point if -gnateF mode active
7234
7235 Check_Float_Op_Overflow (N);
7236
7237 Expand_Nonbinary_Modular_Op (N);
7238 end Expand_N_Op_Add;
7239
7240 ---------------------
7241 -- Expand_N_Op_And --
7242 ---------------------
7243
7244 procedure Expand_N_Op_And (N : Node_Id) is
7245 Typ : constant Entity_Id := Etype (N);
7246
7247 begin
7248 Binary_Op_Validity_Checks (N);
7249
7250 if Is_Array_Type (Etype (N)) then
7251 Expand_Boolean_Operator (N);
7252
7253 elsif Is_Boolean_Type (Etype (N)) then
7254 Adjust_Condition (Left_Opnd (N));
7255 Adjust_Condition (Right_Opnd (N));
7256 Set_Etype (N, Standard_Boolean);
7257 Adjust_Result_Type (N, Typ);
7258
7259 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7260 Expand_Intrinsic_Call (N, Entity (N));
7261 end if;
7262
7263 Expand_Nonbinary_Modular_Op (N);
7264 end Expand_N_Op_And;
7265
7266 ------------------------
7267 -- Expand_N_Op_Concat --
7268 ------------------------
7269
7270 procedure Expand_N_Op_Concat (N : Node_Id) is
7271 Opnds : List_Id;
7272 -- List of operands to be concatenated
7273
7274 Cnode : Node_Id;
7275 -- Node which is to be replaced by the result of concatenating the nodes
7276 -- in the list Opnds.
7277
7278 begin
7279 -- Ensure validity of both operands
7280
7281 Binary_Op_Validity_Checks (N);
7282
7283 -- If we are the left operand of a concatenation higher up the tree,
7284 -- then do nothing for now, since we want to deal with a series of
7285 -- concatenations as a unit.
7286
7287 if Nkind (Parent (N)) = N_Op_Concat
7288 and then N = Left_Opnd (Parent (N))
7289 then
7290 return;
7291 end if;
7292
7293 -- We get here with a concatenation whose left operand may be a
7294 -- concatenation itself with a consistent type. We need to process
7295 -- these concatenation operands from left to right, which means
7296 -- from the deepest node in the tree to the highest node.
7297
7298 Cnode := N;
7299 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
7300 Cnode := Left_Opnd (Cnode);
7301 end loop;
7302
7303 -- Now Cnode is the deepest concatenation, and its parents are the
7304 -- concatenation nodes above, so now we process bottom up, doing the
7305 -- operands.
7306
7307 -- The outer loop runs more than once if more than one concatenation
7308 -- type is involved.
7309
7310 Outer : loop
7311 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
7312 Set_Parent (Opnds, N);
7313
7314 -- The inner loop gathers concatenation operands
7315
7316 Inner : while Cnode /= N
7317 and then Base_Type (Etype (Cnode)) =
7318 Base_Type (Etype (Parent (Cnode)))
7319 loop
7320 Cnode := Parent (Cnode);
7321 Append (Right_Opnd (Cnode), Opnds);
7322 end loop Inner;
7323
7324 -- Note: The following code is a temporary workaround for N731-034
7325 -- and N829-028 and will be kept until the general issue of internal
7326 -- symbol serialization is addressed. The workaround is kept under a
7327 -- debug switch to avoid permiating into the general case.
7328
7329 -- Wrap the node to concatenate into an expression actions node to
7330 -- keep it nicely packaged. This is useful in the case of an assert
7331 -- pragma with a concatenation where we want to be able to delete
7332 -- the concatenation and all its expansion stuff.
7333
7334 if Debug_Flag_Dot_H then
7335 declare
7336 Cnod : constant Node_Id := New_Copy_Tree (Cnode);
7337 Typ : constant Entity_Id := Base_Type (Etype (Cnode));
7338
7339 begin
7340 -- Note: use Rewrite rather than Replace here, so that for
7341 -- example Why_Not_Static can find the original concatenation
7342 -- node OK!
7343
7344 Rewrite (Cnode,
7345 Make_Expression_With_Actions (Sloc (Cnode),
7346 Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
7347 Expression => Cnod));
7348
7349 Expand_Concatenate (Cnod, Opnds);
7350 Analyze_And_Resolve (Cnode, Typ);
7351 end;
7352
7353 -- Default case
7354
7355 else
7356 Expand_Concatenate (Cnode, Opnds);
7357 end if;
7358
7359 exit Outer when Cnode = N;
7360 Cnode := Parent (Cnode);
7361 end loop Outer;
7362 end Expand_N_Op_Concat;
7363
7364 ------------------------
7365 -- Expand_N_Op_Divide --
7366 ------------------------
7367
7368 procedure Expand_N_Op_Divide (N : Node_Id) is
7369 Loc : constant Source_Ptr := Sloc (N);
7370 Lopnd : constant Node_Id := Left_Opnd (N);
7371 Ropnd : constant Node_Id := Right_Opnd (N);
7372 Ltyp : constant Entity_Id := Etype (Lopnd);
7373 Rtyp : constant Entity_Id := Etype (Ropnd);
7374 Typ : Entity_Id := Etype (N);
7375 Rknow : constant Boolean := Is_Integer_Type (Typ)
7376 and then
7377 Compile_Time_Known_Value (Ropnd);
7378 Rval : Uint;
7379
7380 begin
7381 Binary_Op_Validity_Checks (N);
7382
7383 -- Check for MINIMIZED/ELIMINATED overflow mode
7384
7385 if Minimized_Eliminated_Overflow_Check (N) then
7386 Apply_Arithmetic_Overflow_Check (N);
7387 return;
7388 end if;
7389
7390 -- Otherwise proceed with expansion of division
7391
7392 if Rknow then
7393 Rval := Expr_Value (Ropnd);
7394 end if;
7395
7396 -- N / 1 = N for integer types
7397
7398 if Rknow and then Rval = Uint_1 then
7399 Rewrite (N, Lopnd);
7400 return;
7401 end if;
7402
7403 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
7404 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7405 -- operand is an unsigned integer, as required for this to work.
7406
7407 if Nkind (Ropnd) = N_Op_Expon
7408 and then Is_Power_Of_2_For_Shift (Ropnd)
7409
7410 -- We cannot do this transformation in configurable run time mode if we
7411 -- have 64-bit integers and long shifts are not available.
7412
7413 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
7414 then
7415 Rewrite (N,
7416 Make_Op_Shift_Right (Loc,
7417 Left_Opnd => Lopnd,
7418 Right_Opnd =>
7419 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
7420 Analyze_And_Resolve (N, Typ);
7421 return;
7422 end if;
7423
7424 -- Do required fixup of universal fixed operation
7425
7426 if Typ = Universal_Fixed then
7427 Fixup_Universal_Fixed_Operation (N);
7428 Typ := Etype (N);
7429 end if;
7430
7431 -- Divisions with fixed-point results
7432
7433 if Is_Fixed_Point_Type (Typ) then
7434
7435 if Is_Integer_Type (Rtyp) then
7436 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
7437 else
7438 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
7439 end if;
7440
7441 -- Deal with divide-by-zero check if back end cannot handle them
7442 -- and the flag is set indicating that we need such a check. Note
7443 -- that we don't need to bother here with the case of mixed-mode
7444 -- (Right operand an integer type), since these will be rewritten
7445 -- with conversions to a divide with a fixed-point right operand.
7446
7447 if Nkind (N) = N_Op_Divide
7448 and then Do_Division_Check (N)
7449 and then not Backend_Divide_Checks_On_Target
7450 and then not Is_Integer_Type (Rtyp)
7451 then
7452 Set_Do_Division_Check (N, False);
7453 Insert_Action (N,
7454 Make_Raise_Constraint_Error (Loc,
7455 Condition =>
7456 Make_Op_Eq (Loc,
7457 Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
7458 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
7459 Reason => CE_Divide_By_Zero));
7460 end if;
7461
7462 -- Other cases of division of fixed-point operands
7463
7464 elsif Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp) then
7465 if Is_Integer_Type (Typ) then
7466 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
7467 else
7468 pragma Assert (Is_Floating_Point_Type (Typ));
7469 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
7470 end if;
7471
7472 -- Mixed-mode operations can appear in a non-static universal context,
7473 -- in which case the integer argument must be converted explicitly.
7474
7475 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
7476 Rewrite (Ropnd,
7477 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
7478
7479 Analyze_And_Resolve (Ropnd, Universal_Real);
7480
7481 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
7482 Rewrite (Lopnd,
7483 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
7484
7485 Analyze_And_Resolve (Lopnd, Universal_Real);
7486
7487 -- Non-fixed point cases, do integer zero divide and overflow checks
7488
7489 elsif Is_Integer_Type (Typ) then
7490 Apply_Divide_Checks (N);
7491 end if;
7492
7493 -- Overflow checks for floating-point if -gnateF mode active
7494
7495 Check_Float_Op_Overflow (N);
7496
7497 Expand_Nonbinary_Modular_Op (N);
7498 end Expand_N_Op_Divide;
7499
7500 --------------------
7501 -- Expand_N_Op_Eq --
7502 --------------------
7503
7504 procedure Expand_N_Op_Eq (N : Node_Id) is
7505 Loc : constant Source_Ptr := Sloc (N);
7506 Typ : constant Entity_Id := Etype (N);
7507 Lhs : constant Node_Id := Left_Opnd (N);
7508 Rhs : constant Node_Id := Right_Opnd (N);
7509 Bodies : constant List_Id := New_List;
7510 A_Typ : constant Entity_Id := Etype (Lhs);
7511
7512 procedure Build_Equality_Call (Eq : Entity_Id);
7513 -- If a constructed equality exists for the type or for its parent,
7514 -- build and analyze call, adding conversions if the operation is
7515 -- inherited.
7516
7517 function Is_Equality (Subp : Entity_Id;
7518 Typ : Entity_Id := Empty) return Boolean;
7519 -- Determine whether arbitrary Entity_Id denotes a function with the
7520 -- right name and profile for an equality op, specifically for the
7521 -- base type Typ if Typ is nonempty.
7522
7523 function Find_Equality (Prims : Elist_Id) return Entity_Id;
7524 -- Find a primitive equality function within primitive operation list
7525 -- Prims.
7526
7527 function User_Defined_Primitive_Equality_Op
7528 (Typ : Entity_Id) return Entity_Id;
7529 -- Find a user-defined primitive equality function for a given untagged
7530 -- record type, ignoring visibility. Return Empty if no such op found.
7531
7532 function Has_Unconstrained_UU_Component (Typ : Entity_Id) return Boolean;
7533 -- Determines whether a type has a subcomponent of an unconstrained
7534 -- Unchecked_Union subtype. Typ is a record type.
7535
7536 -------------------------
7537 -- Build_Equality_Call --
7538 -------------------------
7539
7540 procedure Build_Equality_Call (Eq : Entity_Id) is
7541 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
7542 L_Exp : Node_Id := Relocate_Node (Lhs);
7543 R_Exp : Node_Id := Relocate_Node (Rhs);
7544
7545 begin
7546 -- Adjust operands if necessary to comparison type
7547
7548 if Base_Type (Op_Type) /= Base_Type (A_Typ)
7549 and then not Is_Class_Wide_Type (A_Typ)
7550 then
7551 L_Exp := OK_Convert_To (Op_Type, L_Exp);
7552 R_Exp := OK_Convert_To (Op_Type, R_Exp);
7553 end if;
7554
7555 -- If we have an Unchecked_Union, we need to add the inferred
7556 -- discriminant values as actuals in the function call. At this
7557 -- point, the expansion has determined that both operands have
7558 -- inferable discriminants.
7559
7560 if Is_Unchecked_Union (Op_Type) then
7561 declare
7562 Lhs_Type : constant Node_Id := Etype (L_Exp);
7563 Rhs_Type : constant Node_Id := Etype (R_Exp);
7564
7565 Lhs_Discr_Vals : Elist_Id;
7566 -- List of inferred discriminant values for left operand.
7567
7568 Rhs_Discr_Vals : Elist_Id;
7569 -- List of inferred discriminant values for right operand.
7570
7571 Discr : Entity_Id;
7572
7573 begin
7574 Lhs_Discr_Vals := New_Elmt_List;
7575 Rhs_Discr_Vals := New_Elmt_List;
7576
7577 -- Per-object constrained selected components require special
7578 -- attention. If the enclosing scope of the component is an
7579 -- Unchecked_Union, we cannot reference its discriminants
7580 -- directly. This is why we use the extra parameters of the
7581 -- equality function of the enclosing Unchecked_Union.
7582
7583 -- type UU_Type (Discr : Integer := 0) is
7584 -- . . .
7585 -- end record;
7586 -- pragma Unchecked_Union (UU_Type);
7587
7588 -- 1. Unchecked_Union enclosing record:
7589
7590 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
7591 -- . . .
7592 -- Comp : UU_Type (Discr);
7593 -- . . .
7594 -- end Enclosing_UU_Type;
7595 -- pragma Unchecked_Union (Enclosing_UU_Type);
7596
7597 -- Obj1 : Enclosing_UU_Type;
7598 -- Obj2 : Enclosing_UU_Type (1);
7599
7600 -- [. . .] Obj1 = Obj2 [. . .]
7601
7602 -- Generated code:
7603
7604 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
7605
7606 -- A and B are the formal parameters of the equality function
7607 -- of Enclosing_UU_Type. The function always has two extra
7608 -- formals to capture the inferred discriminant values for
7609 -- each discriminant of the type.
7610
7611 -- 2. Non-Unchecked_Union enclosing record:
7612
7613 -- type
7614 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
7615 -- is record
7616 -- . . .
7617 -- Comp : UU_Type (Discr);
7618 -- . . .
7619 -- end Enclosing_Non_UU_Type;
7620
7621 -- Obj1 : Enclosing_Non_UU_Type;
7622 -- Obj2 : Enclosing_Non_UU_Type (1);
7623
7624 -- ... Obj1 = Obj2 ...
7625
7626 -- Generated code:
7627
7628 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
7629 -- obj1.discr, obj2.discr)) then
7630
7631 -- In this case we can directly reference the discriminants of
7632 -- the enclosing record.
7633
7634 -- Process left operand of equality
7635
7636 if Nkind (Lhs) = N_Selected_Component
7637 and then
7638 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
7639 then
7640 -- If enclosing record is an Unchecked_Union, use formals
7641 -- corresponding to each discriminant. The name of the
7642 -- formal is that of the discriminant, with added suffix,
7643 -- see Exp_Ch3.Build_Record_Equality for details.
7644
7645 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
7646 then
7647 Discr :=
7648 First_Discriminant
7649 (Scope (Entity (Selector_Name (Lhs))));
7650 while Present (Discr) loop
7651 Append_Elmt
7652 (Make_Identifier (Loc,
7653 Chars => New_External_Name (Chars (Discr), 'A')),
7654 To => Lhs_Discr_Vals);
7655 Next_Discriminant (Discr);
7656 end loop;
7657
7658 -- If enclosing record is of a non-Unchecked_Union type, it
7659 -- is possible to reference its discriminants directly.
7660
7661 else
7662 Discr := First_Discriminant (Lhs_Type);
7663 while Present (Discr) loop
7664 Append_Elmt
7665 (Make_Selected_Component (Loc,
7666 Prefix => Prefix (Lhs),
7667 Selector_Name =>
7668 New_Copy
7669 (Get_Discriminant_Value (Discr,
7670 Lhs_Type,
7671 Stored_Constraint (Lhs_Type)))),
7672 To => Lhs_Discr_Vals);
7673 Next_Discriminant (Discr);
7674 end loop;
7675 end if;
7676
7677 -- Otherwise operand is on object with a constrained type.
7678 -- Infer the discriminant values from the constraint.
7679
7680 else
7681 Discr := First_Discriminant (Lhs_Type);
7682 while Present (Discr) loop
7683 Append_Elmt
7684 (New_Copy
7685 (Get_Discriminant_Value (Discr,
7686 Lhs_Type,
7687 Stored_Constraint (Lhs_Type))),
7688 To => Lhs_Discr_Vals);
7689 Next_Discriminant (Discr);
7690 end loop;
7691 end if;
7692
7693 -- Similar processing for right operand of equality
7694
7695 if Nkind (Rhs) = N_Selected_Component
7696 and then
7697 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
7698 then
7699 if Is_Unchecked_Union
7700 (Scope (Entity (Selector_Name (Rhs))))
7701 then
7702 Discr :=
7703 First_Discriminant
7704 (Scope (Entity (Selector_Name (Rhs))));
7705 while Present (Discr) loop
7706 Append_Elmt
7707 (Make_Identifier (Loc,
7708 Chars => New_External_Name (Chars (Discr), 'B')),
7709 To => Rhs_Discr_Vals);
7710 Next_Discriminant (Discr);
7711 end loop;
7712
7713 else
7714 Discr := First_Discriminant (Rhs_Type);
7715 while Present (Discr) loop
7716 Append_Elmt
7717 (Make_Selected_Component (Loc,
7718 Prefix => Prefix (Rhs),
7719 Selector_Name =>
7720 New_Copy (Get_Discriminant_Value
7721 (Discr,
7722 Rhs_Type,
7723 Stored_Constraint (Rhs_Type)))),
7724 To => Rhs_Discr_Vals);
7725 Next_Discriminant (Discr);
7726 end loop;
7727 end if;
7728
7729 else
7730 Discr := First_Discriminant (Rhs_Type);
7731 while Present (Discr) loop
7732 Append_Elmt
7733 (New_Copy (Get_Discriminant_Value
7734 (Discr,
7735 Rhs_Type,
7736 Stored_Constraint (Rhs_Type))),
7737 To => Rhs_Discr_Vals);
7738 Next_Discriminant (Discr);
7739 end loop;
7740 end if;
7741
7742 -- Now merge the list of discriminant values so that values
7743 -- of corresponding discriminants are adjacent.
7744
7745 declare
7746 Params : List_Id;
7747 L_Elmt : Elmt_Id;
7748 R_Elmt : Elmt_Id;
7749
7750 begin
7751 Params := New_List (L_Exp, R_Exp);
7752 L_Elmt := First_Elmt (Lhs_Discr_Vals);
7753 R_Elmt := First_Elmt (Rhs_Discr_Vals);
7754 while Present (L_Elmt) loop
7755 Append_To (Params, Node (L_Elmt));
7756 Append_To (Params, Node (R_Elmt));
7757 Next_Elmt (L_Elmt);
7758 Next_Elmt (R_Elmt);
7759 end loop;
7760
7761 Rewrite (N,
7762 Make_Function_Call (Loc,
7763 Name => New_Occurrence_Of (Eq, Loc),
7764 Parameter_Associations => Params));
7765 end;
7766 end;
7767
7768 -- Normal case, not an unchecked union
7769
7770 else
7771 Rewrite (N,
7772 Make_Function_Call (Loc,
7773 Name => New_Occurrence_Of (Eq, Loc),
7774 Parameter_Associations => New_List (L_Exp, R_Exp)));
7775 end if;
7776
7777 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7778 end Build_Equality_Call;
7779
7780 -----------------
7781 -- Is_Equality --
7782 -----------------
7783
7784 function Is_Equality (Subp : Entity_Id;
7785 Typ : Entity_Id := Empty) return Boolean is
7786 Formal_1 : Entity_Id;
7787 Formal_2 : Entity_Id;
7788 begin
7789 -- The equality function carries name "=", returns Boolean, and has
7790 -- exactly two formal parameters of an identical type.
7791
7792 if Ekind (Subp) = E_Function
7793 and then Chars (Subp) = Name_Op_Eq
7794 and then Base_Type (Etype (Subp)) = Standard_Boolean
7795 then
7796 Formal_1 := First_Formal (Subp);
7797 Formal_2 := Empty;
7798
7799 if Present (Formal_1) then
7800 Formal_2 := Next_Formal (Formal_1);
7801 end if;
7802
7803 return
7804 Present (Formal_1)
7805 and then Present (Formal_2)
7806 and then No (Next_Formal (Formal_2))
7807 and then Base_Type (Etype (Formal_1)) =
7808 Base_Type (Etype (Formal_2))
7809 and then
7810 (not Present (Typ)
7811 or else Implementation_Base_Type (Etype (Formal_1)) = Typ);
7812 end if;
7813
7814 return False;
7815 end Is_Equality;
7816
7817 -------------------
7818 -- Find_Equality --
7819 -------------------
7820
7821 function Find_Equality (Prims : Elist_Id) return Entity_Id is
7822 function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id;
7823 -- Find an equality in a possible alias chain starting from primitive
7824 -- operation Prim.
7825
7826 ---------------------------
7827 -- Find_Aliased_Equality --
7828 ---------------------------
7829
7830 function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id is
7831 Candid : Entity_Id;
7832
7833 begin
7834 -- Inspect each candidate in the alias chain, checking whether it
7835 -- denotes an equality.
7836
7837 Candid := Prim;
7838 while Present (Candid) loop
7839 if Is_Equality (Candid) then
7840 return Candid;
7841 end if;
7842
7843 Candid := Alias (Candid);
7844 end loop;
7845
7846 return Empty;
7847 end Find_Aliased_Equality;
7848
7849 -- Local variables
7850
7851 Eq_Prim : Entity_Id;
7852 Prim_Elmt : Elmt_Id;
7853
7854 -- Start of processing for Find_Equality
7855
7856 begin
7857 -- Assume that the tagged type lacks an equality
7858
7859 Eq_Prim := Empty;
7860
7861 -- Inspect the list of primitives looking for a suitable equality
7862 -- within a possible chain of aliases.
7863
7864 Prim_Elmt := First_Elmt (Prims);
7865 while Present (Prim_Elmt) and then No (Eq_Prim) loop
7866 Eq_Prim := Find_Aliased_Equality (Node (Prim_Elmt));
7867
7868 Next_Elmt (Prim_Elmt);
7869 end loop;
7870
7871 -- A tagged type should always have an equality
7872
7873 pragma Assert (Present (Eq_Prim));
7874
7875 return Eq_Prim;
7876 end Find_Equality;
7877
7878 ----------------------------------------
7879 -- User_Defined_Primitive_Equality_Op --
7880 ----------------------------------------
7881
7882 function User_Defined_Primitive_Equality_Op
7883 (Typ : Entity_Id) return Entity_Id
7884 is
7885 Enclosing_Scope : constant Node_Id := Scope (Typ);
7886 E : Entity_Id;
7887 begin
7888 -- Prune this search by somehow not looking at decls that precede
7889 -- the declaration of the first view of Typ (which might be a partial
7890 -- view)???
7891
7892 for Private_Entities in Boolean loop
7893 if Private_Entities then
7894 if Ekind (Enclosing_Scope) /= E_Package then
7895 exit;
7896 end if;
7897 E := First_Private_Entity (Enclosing_Scope);
7898
7899 else
7900 E := First_Entity (Enclosing_Scope);
7901 end if;
7902
7903 while Present (E) loop
7904 if Is_Equality (E, Typ) then
7905 return E;
7906 end if;
7907 Next_Entity (E);
7908 end loop;
7909 end loop;
7910
7911 if Is_Derived_Type (Typ) then
7912 return User_Defined_Primitive_Equality_Op
7913 (Implementation_Base_Type (Etype (Typ)));
7914 end if;
7915
7916 return Empty;
7917 end User_Defined_Primitive_Equality_Op;
7918
7919 ------------------------------------
7920 -- Has_Unconstrained_UU_Component --
7921 ------------------------------------
7922
7923 function Has_Unconstrained_UU_Component
7924 (Typ : Entity_Id) return Boolean
7925 is
7926 Tdef : constant Node_Id :=
7927 Type_Definition (Declaration_Node (Base_Type (Typ)));
7928 Clist : Node_Id;
7929 Vpart : Node_Id;
7930
7931 function Component_Is_Unconstrained_UU
7932 (Comp : Node_Id) return Boolean;
7933 -- Determines whether the subtype of the component is an
7934 -- unconstrained Unchecked_Union.
7935
7936 function Variant_Is_Unconstrained_UU
7937 (Variant : Node_Id) return Boolean;
7938 -- Determines whether a component of the variant has an unconstrained
7939 -- Unchecked_Union subtype.
7940
7941 -----------------------------------
7942 -- Component_Is_Unconstrained_UU --
7943 -----------------------------------
7944
7945 function Component_Is_Unconstrained_UU
7946 (Comp : Node_Id) return Boolean
7947 is
7948 begin
7949 if Nkind (Comp) /= N_Component_Declaration then
7950 return False;
7951 end if;
7952
7953 declare
7954 Sindic : constant Node_Id :=
7955 Subtype_Indication (Component_Definition (Comp));
7956
7957 begin
7958 -- Unconstrained nominal type. In the case of a constraint
7959 -- present, the node kind would have been N_Subtype_Indication.
7960
7961 if Nkind (Sindic) = N_Identifier then
7962 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7963 end if;
7964
7965 return False;
7966 end;
7967 end Component_Is_Unconstrained_UU;
7968
7969 ---------------------------------
7970 -- Variant_Is_Unconstrained_UU --
7971 ---------------------------------
7972
7973 function Variant_Is_Unconstrained_UU
7974 (Variant : Node_Id) return Boolean
7975 is
7976 Clist : constant Node_Id := Component_List (Variant);
7977
7978 begin
7979 if Is_Empty_List (Component_Items (Clist)) then
7980 return False;
7981 end if;
7982
7983 -- We only need to test one component
7984
7985 declare
7986 Comp : Node_Id := First (Component_Items (Clist));
7987
7988 begin
7989 while Present (Comp) loop
7990 if Component_Is_Unconstrained_UU (Comp) then
7991 return True;
7992 end if;
7993
7994 Next (Comp);
7995 end loop;
7996 end;
7997
7998 -- None of the components withing the variant were of
7999 -- unconstrained Unchecked_Union type.
8000
8001 return False;
8002 end Variant_Is_Unconstrained_UU;
8003
8004 -- Start of processing for Has_Unconstrained_UU_Component
8005
8006 begin
8007 if Null_Present (Tdef) then
8008 return False;
8009 end if;
8010
8011 Clist := Component_List (Tdef);
8012 Vpart := Variant_Part (Clist);
8013
8014 -- Inspect available components
8015
8016 if Present (Component_Items (Clist)) then
8017 declare
8018 Comp : Node_Id := First (Component_Items (Clist));
8019
8020 begin
8021 while Present (Comp) loop
8022
8023 -- One component is sufficient
8024
8025 if Component_Is_Unconstrained_UU (Comp) then
8026 return True;
8027 end if;
8028
8029 Next (Comp);
8030 end loop;
8031 end;
8032 end if;
8033
8034 -- Inspect available components withing variants
8035
8036 if Present (Vpart) then
8037 declare
8038 Variant : Node_Id := First (Variants (Vpart));
8039
8040 begin
8041 while Present (Variant) loop
8042
8043 -- One component within a variant is sufficient
8044
8045 if Variant_Is_Unconstrained_UU (Variant) then
8046 return True;
8047 end if;
8048
8049 Next (Variant);
8050 end loop;
8051 end;
8052 end if;
8053
8054 -- Neither the available components, nor the components inside the
8055 -- variant parts were of an unconstrained Unchecked_Union subtype.
8056
8057 return False;
8058 end Has_Unconstrained_UU_Component;
8059
8060 -- Local variables
8061
8062 Typl : Entity_Id;
8063
8064 -- Start of processing for Expand_N_Op_Eq
8065
8066 begin
8067 Binary_Op_Validity_Checks (N);
8068
8069 -- Deal with private types
8070
8071 Typl := A_Typ;
8072
8073 if Ekind (Typl) = E_Private_Type then
8074 Typl := Underlying_Type (Typl);
8075
8076 elsif Ekind (Typl) = E_Private_Subtype then
8077 Typl := Underlying_Type (Base_Type (Typl));
8078 end if;
8079
8080 -- It may happen in error situations that the underlying type is not
8081 -- set. The error will be detected later, here we just defend the
8082 -- expander code.
8083
8084 if No (Typl) then
8085 return;
8086 end if;
8087
8088 -- Now get the implementation base type (note that plain Base_Type here
8089 -- might lead us back to the private type, which is not what we want!)
8090
8091 Typl := Implementation_Base_Type (Typl);
8092
8093 -- Equality between variant records results in a call to a routine
8094 -- that has conditional tests of the discriminant value(s), and hence
8095 -- violates the No_Implicit_Conditionals restriction.
8096
8097 if Has_Variant_Part (Typl) then
8098 declare
8099 Msg : Boolean;
8100
8101 begin
8102 Check_Restriction (Msg, No_Implicit_Conditionals, N);
8103
8104 if Msg then
8105 Error_Msg_N
8106 ("\comparison of variant records tests discriminants", N);
8107 return;
8108 end if;
8109 end;
8110 end if;
8111
8112 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8113 -- means we no longer have a comparison operation, we are all done.
8114
8115 Expand_Compare_Minimize_Eliminate_Overflow (N);
8116
8117 if Nkind (N) /= N_Op_Eq then
8118 return;
8119 end if;
8120
8121 -- Boolean types (requiring handling of non-standard case)
8122
8123 if Is_Boolean_Type (Typl) then
8124 Adjust_Condition (Left_Opnd (N));
8125 Adjust_Condition (Right_Opnd (N));
8126 Set_Etype (N, Standard_Boolean);
8127 Adjust_Result_Type (N, Typ);
8128
8129 -- Array types
8130
8131 elsif Is_Array_Type (Typl) then
8132
8133 -- If we are doing full validity checking, and it is possible for the
8134 -- array elements to be invalid then expand out array comparisons to
8135 -- make sure that we check the array elements.
8136
8137 if Validity_Check_Operands
8138 and then not Is_Known_Valid (Component_Type (Typl))
8139 then
8140 declare
8141 Save_Force_Validity_Checks : constant Boolean :=
8142 Force_Validity_Checks;
8143 begin
8144 Force_Validity_Checks := True;
8145 Rewrite (N,
8146 Expand_Array_Equality
8147 (N,
8148 Relocate_Node (Lhs),
8149 Relocate_Node (Rhs),
8150 Bodies,
8151 Typl));
8152 Insert_Actions (N, Bodies);
8153 Analyze_And_Resolve (N, Standard_Boolean);
8154 Force_Validity_Checks := Save_Force_Validity_Checks;
8155 end;
8156
8157 -- Packed case where both operands are known aligned
8158
8159 elsif Is_Bit_Packed_Array (Typl)
8160 and then not Is_Possibly_Unaligned_Object (Lhs)
8161 and then not Is_Possibly_Unaligned_Object (Rhs)
8162 then
8163 Expand_Packed_Eq (N);
8164
8165 -- Where the component type is elementary we can use a block bit
8166 -- comparison (if supported on the target) exception in the case
8167 -- of floating-point (negative zero issues require element by
8168 -- element comparison), and atomic/VFA types (where we must be sure
8169 -- to load elements independently) and possibly unaligned arrays.
8170
8171 elsif Is_Elementary_Type (Component_Type (Typl))
8172 and then not Is_Floating_Point_Type (Component_Type (Typl))
8173 and then not Is_Atomic_Or_VFA (Component_Type (Typl))
8174 and then not Is_Possibly_Unaligned_Object (Lhs)
8175 and then not Is_Possibly_Unaligned_Slice (Lhs)
8176 and then not Is_Possibly_Unaligned_Object (Rhs)
8177 and then not Is_Possibly_Unaligned_Slice (Rhs)
8178 and then Support_Composite_Compare_On_Target
8179 then
8180 null;
8181
8182 -- For composite and floating-point cases, expand equality loop to
8183 -- make sure of using proper comparisons for tagged types, and
8184 -- correctly handling the floating-point case.
8185
8186 else
8187 Rewrite (N,
8188 Expand_Array_Equality
8189 (N,
8190 Relocate_Node (Lhs),
8191 Relocate_Node (Rhs),
8192 Bodies,
8193 Typl));
8194 Insert_Actions (N, Bodies, Suppress => All_Checks);
8195 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
8196 end if;
8197
8198 -- Record Types
8199
8200 elsif Is_Record_Type (Typl) then
8201
8202 -- For tagged types, use the primitive "="
8203
8204 if Is_Tagged_Type (Typl) then
8205
8206 -- No need to do anything else compiling under restriction
8207 -- No_Dispatching_Calls. During the semantic analysis we
8208 -- already notified such violation.
8209
8210 if Restriction_Active (No_Dispatching_Calls) then
8211 return;
8212 end if;
8213
8214 -- If this is an untagged private type completed with a derivation
8215 -- of an untagged private type whose full view is a tagged type,
8216 -- we use the primitive operations of the private type (since it
8217 -- does not have a full view, and also because its equality
8218 -- primitive may have been overridden in its untagged full view).
8219
8220 if Inherits_From_Tagged_Full_View (A_Typ) then
8221 Build_Equality_Call
8222 (Find_Equality (Collect_Primitive_Operations (A_Typ)));
8223
8224 -- Find the type's predefined equality or an overriding
8225 -- user-defined equality. The reason for not simply calling
8226 -- Find_Prim_Op here is that there may be a user-defined
8227 -- overloaded equality op that precedes the equality that we
8228 -- want, so we have to explicitly search (e.g., there could be
8229 -- an equality with two different parameter types).
8230
8231 else
8232 if Is_Class_Wide_Type (Typl) then
8233 Typl := Find_Specific_Type (Typl);
8234 end if;
8235
8236 Build_Equality_Call
8237 (Find_Equality (Primitive_Operations (Typl)));
8238 end if;
8239
8240 -- See AI12-0101 (which only removes a legality rule) and then
8241 -- AI05-0123 (which then applies in the previously illegal case).
8242 -- AI12-0101 is a binding interpretation.
8243
8244 elsif Ada_Version >= Ada_2012
8245 and then Present (User_Defined_Primitive_Equality_Op (Typl))
8246 then
8247 Build_Equality_Call (User_Defined_Primitive_Equality_Op (Typl));
8248
8249 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
8250 -- predefined equality operator for a type which has a subcomponent
8251 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
8252
8253 elsif Has_Unconstrained_UU_Component (Typl) then
8254 Insert_Action (N,
8255 Make_Raise_Program_Error (Loc,
8256 Reason => PE_Unchecked_Union_Restriction));
8257
8258 -- Prevent Gigi from generating incorrect code by rewriting the
8259 -- equality as a standard False. (is this documented somewhere???)
8260
8261 Rewrite (N,
8262 New_Occurrence_Of (Standard_False, Loc));
8263
8264 elsif Is_Unchecked_Union (Typl) then
8265
8266 -- If we can infer the discriminants of the operands, we make a
8267 -- call to the TSS equality function.
8268
8269 if Has_Inferable_Discriminants (Lhs)
8270 and then
8271 Has_Inferable_Discriminants (Rhs)
8272 then
8273 Build_Equality_Call
8274 (TSS (Root_Type (Typl), TSS_Composite_Equality));
8275
8276 else
8277 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
8278 -- the predefined equality operator for an Unchecked_Union type
8279 -- if either of the operands lack inferable discriminants.
8280
8281 Insert_Action (N,
8282 Make_Raise_Program_Error (Loc,
8283 Reason => PE_Unchecked_Union_Restriction));
8284
8285 -- Emit a warning on source equalities only, otherwise the
8286 -- message may appear out of place due to internal use. The
8287 -- warning is unconditional because it is required by the
8288 -- language.
8289
8290 if Comes_From_Source (N) then
8291 Error_Msg_N
8292 ("Unchecked_Union discriminants cannot be determined??",
8293 N);
8294 Error_Msg_N
8295 ("\Program_Error will be raised for equality operation??",
8296 N);
8297 end if;
8298
8299 -- Prevent Gigi from generating incorrect code by rewriting
8300 -- the equality as a standard False (documented where???).
8301
8302 Rewrite (N,
8303 New_Occurrence_Of (Standard_False, Loc));
8304 end if;
8305
8306 -- If a type support function is present (for complex cases), use it
8307
8308 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
8309 Build_Equality_Call
8310 (TSS (Root_Type (Typl), TSS_Composite_Equality));
8311
8312 -- When comparing two Bounded_Strings, use the primitive equality of
8313 -- the root Super_String type.
8314
8315 elsif Is_Bounded_String (Typl) then
8316 Build_Equality_Call
8317 (Find_Equality
8318 (Collect_Primitive_Operations (Root_Type (Typl))));
8319
8320 -- Otherwise expand the component by component equality. Note that
8321 -- we never use block-bit comparisons for records, because of the
8322 -- problems with gaps. The back end will often be able to recombine
8323 -- the separate comparisons that we generate here.
8324
8325 else
8326 Remove_Side_Effects (Lhs);
8327 Remove_Side_Effects (Rhs);
8328 Rewrite (N,
8329 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
8330
8331 Insert_Actions (N, Bodies, Suppress => All_Checks);
8332 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
8333 end if;
8334
8335 -- If unnesting, handle elementary types whose Equivalent_Types are
8336 -- records because there may be padding or undefined fields.
8337
8338 elsif Unnest_Subprogram_Mode
8339 and then Ekind_In (Typl, E_Class_Wide_Type,
8340 E_Class_Wide_Subtype,
8341 E_Access_Subprogram_Type,
8342 E_Access_Protected_Subprogram_Type,
8343 E_Anonymous_Access_Protected_Subprogram_Type,
8344 E_Access_Subprogram_Type,
8345 E_Exception_Type)
8346 and then Present (Equivalent_Type (Typl))
8347 and then Is_Record_Type (Equivalent_Type (Typl))
8348 then
8349 Typl := Equivalent_Type (Typl);
8350 Remove_Side_Effects (Lhs);
8351 Remove_Side_Effects (Rhs);
8352 Rewrite (N,
8353 Expand_Record_Equality (N, Typl,
8354 Unchecked_Convert_To (Typl, Lhs),
8355 Unchecked_Convert_To (Typl, Rhs),
8356 Bodies));
8357
8358 Insert_Actions (N, Bodies, Suppress => All_Checks);
8359 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
8360 end if;
8361
8362 -- Test if result is known at compile time
8363
8364 Rewrite_Comparison (N);
8365
8366 -- Special optimization of length comparison
8367
8368 Optimize_Length_Comparison (N);
8369
8370 -- One more special case: if we have a comparison of X'Result = expr
8371 -- in floating-point, then if not already there, change expr to be
8372 -- f'Machine (expr) to eliminate surprise from extra precision.
8373
8374 if Is_Floating_Point_Type (Typl)
8375 and then Nkind (Original_Node (Lhs)) = N_Attribute_Reference
8376 and then Attribute_Name (Original_Node (Lhs)) = Name_Result
8377 then
8378 -- Stick in the Typ'Machine call if not already there
8379
8380 if Nkind (Rhs) /= N_Attribute_Reference
8381 or else Attribute_Name (Rhs) /= Name_Machine
8382 then
8383 Rewrite (Rhs,
8384 Make_Attribute_Reference (Loc,
8385 Prefix => New_Occurrence_Of (Typl, Loc),
8386 Attribute_Name => Name_Machine,
8387 Expressions => New_List (Relocate_Node (Rhs))));
8388 Analyze_And_Resolve (Rhs, Typl);
8389 end if;
8390 end if;
8391 end Expand_N_Op_Eq;
8392
8393 -----------------------
8394 -- Expand_N_Op_Expon --
8395 -----------------------
8396
8397 procedure Expand_N_Op_Expon (N : Node_Id) is
8398 Loc : constant Source_Ptr := Sloc (N);
8399 Ovflo : constant Boolean := Do_Overflow_Check (N);
8400 Typ : constant Entity_Id := Etype (N);
8401 Rtyp : constant Entity_Id := Root_Type (Typ);
8402
8403 Bastyp : Entity_Id;
8404
8405 function Wrap_MA (Exp : Node_Id) return Node_Id;
8406 -- Given an expression Exp, if the root type is Float or Long_Float,
8407 -- then wrap the expression in a call of Bastyp'Machine, to stop any
8408 -- extra precision. This is done to ensure that X**A = X**B when A is
8409 -- a static constant and B is a variable with the same value. For any
8410 -- other type, the node Exp is returned unchanged.
8411
8412 -------------
8413 -- Wrap_MA --
8414 -------------
8415
8416 function Wrap_MA (Exp : Node_Id) return Node_Id is
8417 Loc : constant Source_Ptr := Sloc (Exp);
8418
8419 begin
8420 if Rtyp = Standard_Float or else Rtyp = Standard_Long_Float then
8421 return
8422 Make_Attribute_Reference (Loc,
8423 Attribute_Name => Name_Machine,
8424 Prefix => New_Occurrence_Of (Bastyp, Loc),
8425 Expressions => New_List (Relocate_Node (Exp)));
8426 else
8427 return Exp;
8428 end if;
8429 end Wrap_MA;
8430
8431 -- Local variables
8432
8433 Base : Node_Id;
8434 Ent : Entity_Id;
8435 Etyp : Entity_Id;
8436 Exp : Node_Id;
8437 Exptyp : Entity_Id;
8438 Expv : Uint;
8439 Rent : RE_Id;
8440 Temp : Node_Id;
8441 Xnode : Node_Id;
8442
8443 -- Start of processing for Expand_N_Op_Expon
8444
8445 begin
8446 Binary_Op_Validity_Checks (N);
8447
8448 -- CodePeer wants to see the unexpanded N_Op_Expon node
8449
8450 if CodePeer_Mode then
8451 return;
8452 end if;
8453
8454 -- Relocation of left and right operands must be done after performing
8455 -- the validity checks since the generation of validation checks may
8456 -- remove side effects.
8457
8458 Base := Relocate_Node (Left_Opnd (N));
8459 Bastyp := Etype (Base);
8460 Exp := Relocate_Node (Right_Opnd (N));
8461 Exptyp := Etype (Exp);
8462
8463 -- If either operand is of a private type, then we have the use of an
8464 -- intrinsic operator, and we get rid of the privateness, by using root
8465 -- types of underlying types for the actual operation. Otherwise the
8466 -- private types will cause trouble if we expand multiplications or
8467 -- shifts etc. We also do this transformation if the result type is
8468 -- different from the base type.
8469
8470 if Is_Private_Type (Etype (Base))
8471 or else Is_Private_Type (Typ)
8472 or else Is_Private_Type (Exptyp)
8473 or else Rtyp /= Root_Type (Bastyp)
8474 then
8475 declare
8476 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
8477 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
8478 begin
8479 Rewrite (N,
8480 Unchecked_Convert_To (Typ,
8481 Make_Op_Expon (Loc,
8482 Left_Opnd => Unchecked_Convert_To (Bt, Base),
8483 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
8484 Analyze_And_Resolve (N, Typ);
8485 return;
8486 end;
8487 end if;
8488
8489 -- Check for MINIMIZED/ELIMINATED overflow mode
8490
8491 if Minimized_Eliminated_Overflow_Check (N) then
8492 Apply_Arithmetic_Overflow_Check (N);
8493 return;
8494 end if;
8495
8496 -- Test for case of known right argument where we can replace the
8497 -- exponentiation by an equivalent expression using multiplication.
8498
8499 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
8500 -- configurable run-time mode, we may not have the exponentiation
8501 -- routine available, and we don't want the legality of the program
8502 -- to depend on how clever the compiler is in knowing values.
8503
8504 if CRT_Safe_Compile_Time_Known_Value (Exp) then
8505 Expv := Expr_Value (Exp);
8506
8507 -- We only fold small non-negative exponents. You might think we
8508 -- could fold small negative exponents for the real case, but we
8509 -- can't because we are required to raise Constraint_Error for
8510 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
8511 -- See ACVC test C4A012B, and it is not worth generating the test.
8512
8513 -- For small negative exponents, we return the reciprocal of
8514 -- the folding of the exponentiation for the opposite (positive)
8515 -- exponent, as required by Ada RM 4.5.6(11/3).
8516
8517 if abs Expv <= 4 then
8518
8519 -- X ** 0 = 1 (or 1.0)
8520
8521 if Expv = 0 then
8522
8523 -- Call Remove_Side_Effects to ensure that any side effects
8524 -- in the ignored left operand (in particular function calls
8525 -- to user defined functions) are properly executed.
8526
8527 Remove_Side_Effects (Base);
8528
8529 if Ekind (Typ) in Integer_Kind then
8530 Xnode := Make_Integer_Literal (Loc, Intval => 1);
8531 else
8532 Xnode := Make_Real_Literal (Loc, Ureal_1);
8533 end if;
8534
8535 -- X ** 1 = X
8536
8537 elsif Expv = 1 then
8538 Xnode := Base;
8539
8540 -- X ** 2 = X * X
8541
8542 elsif Expv = 2 then
8543 Xnode :=
8544 Wrap_MA (
8545 Make_Op_Multiply (Loc,
8546 Left_Opnd => Duplicate_Subexpr (Base),
8547 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
8548
8549 -- X ** 3 = X * X * X
8550
8551 elsif Expv = 3 then
8552 Xnode :=
8553 Wrap_MA (
8554 Make_Op_Multiply (Loc,
8555 Left_Opnd =>
8556 Make_Op_Multiply (Loc,
8557 Left_Opnd => Duplicate_Subexpr (Base),
8558 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
8559 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
8560
8561 -- X ** 4 ->
8562
8563 -- do
8564 -- En : constant base'type := base * base;
8565 -- in
8566 -- En * En
8567
8568 elsif Expv = 4 then
8569 Temp := Make_Temporary (Loc, 'E', Base);
8570
8571 Xnode :=
8572 Make_Expression_With_Actions (Loc,
8573 Actions => New_List (
8574 Make_Object_Declaration (Loc,
8575 Defining_Identifier => Temp,
8576 Constant_Present => True,
8577 Object_Definition => New_Occurrence_Of (Typ, Loc),
8578 Expression =>
8579 Wrap_MA (
8580 Make_Op_Multiply (Loc,
8581 Left_Opnd =>
8582 Duplicate_Subexpr (Base),
8583 Right_Opnd =>
8584 Duplicate_Subexpr_No_Checks (Base))))),
8585
8586 Expression =>
8587 Wrap_MA (
8588 Make_Op_Multiply (Loc,
8589 Left_Opnd => New_Occurrence_Of (Temp, Loc),
8590 Right_Opnd => New_Occurrence_Of (Temp, Loc))));
8591
8592 -- X ** N = 1.0 / X ** (-N)
8593 -- N in -4 .. -1
8594
8595 else
8596 pragma Assert
8597 (Expv = -1 or Expv = -2 or Expv = -3 or Expv = -4);
8598
8599 Xnode :=
8600 Make_Op_Divide (Loc,
8601 Left_Opnd =>
8602 Make_Float_Literal (Loc,
8603 Radix => Uint_1,
8604 Significand => Uint_1,
8605 Exponent => Uint_0),
8606 Right_Opnd =>
8607 Make_Op_Expon (Loc,
8608 Left_Opnd => Duplicate_Subexpr (Base),
8609 Right_Opnd =>
8610 Make_Integer_Literal (Loc,
8611 Intval => -Expv)));
8612 end if;
8613
8614 Rewrite (N, Xnode);
8615 Analyze_And_Resolve (N, Typ);
8616 return;
8617 end if;
8618 end if;
8619
8620 -- Deal with optimizing 2 ** expression to shift where possible
8621
8622 -- Note: we used to check that Exptyp was an unsigned type. But that is
8623 -- an unnecessary check, since if Exp is negative, we have a run-time
8624 -- error that is either caught (so we get the right result) or we have
8625 -- suppressed the check, in which case the code is erroneous anyway.
8626
8627 if Is_Integer_Type (Rtyp)
8628
8629 -- The base value must be "safe compile-time known", and exactly 2
8630
8631 and then Nkind (Base) = N_Integer_Literal
8632 and then CRT_Safe_Compile_Time_Known_Value (Base)
8633 and then Expr_Value (Base) = Uint_2
8634
8635 -- We only handle cases where the right type is a integer
8636
8637 and then Is_Integer_Type (Root_Type (Exptyp))
8638 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
8639
8640 -- This transformation is not applicable for a modular type with a
8641 -- nonbinary modulus because we do not handle modular reduction in
8642 -- a correct manner if we attempt this transformation in this case.
8643
8644 and then not Non_Binary_Modulus (Typ)
8645 then
8646 -- Handle the cases where our parent is a division or multiplication
8647 -- specially. In these cases we can convert to using a shift at the
8648 -- parent level if we are not doing overflow checking, since it is
8649 -- too tricky to combine the overflow check at the parent level.
8650
8651 if not Ovflo
8652 and then Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply)
8653 then
8654 declare
8655 P : constant Node_Id := Parent (N);
8656 L : constant Node_Id := Left_Opnd (P);
8657 R : constant Node_Id := Right_Opnd (P);
8658
8659 begin
8660 if (Nkind (P) = N_Op_Multiply
8661 and then
8662 ((Is_Integer_Type (Etype (L)) and then R = N)
8663 or else
8664 (Is_Integer_Type (Etype (R)) and then L = N))
8665 and then not Do_Overflow_Check (P))
8666
8667 or else
8668 (Nkind (P) = N_Op_Divide
8669 and then Is_Integer_Type (Etype (L))
8670 and then Is_Unsigned_Type (Etype (L))
8671 and then R = N
8672 and then not Do_Overflow_Check (P))
8673 then
8674 Set_Is_Power_Of_2_For_Shift (N);
8675 return;
8676 end if;
8677 end;
8678
8679 -- Here we just have 2 ** N on its own, so we can convert this to a
8680 -- shift node. We are prepared to deal with overflow here, and we
8681 -- also have to handle proper modular reduction for binary modular.
8682
8683 else
8684 declare
8685 OK : Boolean;
8686 Lo : Uint;
8687 Hi : Uint;
8688
8689 MaxS : Uint;
8690 -- Maximum shift count with no overflow
8691
8692 TestS : Boolean;
8693 -- Set True if we must test the shift count
8694
8695 Test_Gt : Node_Id;
8696 -- Node for test against TestS
8697
8698 begin
8699 -- Compute maximum shift based on the underlying size. For a
8700 -- modular type this is one less than the size.
8701
8702 if Is_Modular_Integer_Type (Typ) then
8703
8704 -- For modular integer types, this is the size of the value
8705 -- being shifted minus one. Any larger values will cause
8706 -- modular reduction to a result of zero. Note that we do
8707 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
8708 -- of 6, since 2**7 should be reduced to zero).
8709
8710 MaxS := RM_Size (Rtyp) - 1;
8711
8712 -- For signed integer types, we use the size of the value
8713 -- being shifted minus 2. Larger values cause overflow.
8714
8715 else
8716 MaxS := Esize (Rtyp) - 2;
8717 end if;
8718
8719 -- Determine range to see if it can be larger than MaxS
8720
8721 Determine_Range
8722 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
8723 TestS := (not OK) or else Hi > MaxS;
8724
8725 -- Signed integer case
8726
8727 if Is_Signed_Integer_Type (Typ) then
8728
8729 -- Generate overflow check if overflow is active. Note that
8730 -- we can simply ignore the possibility of overflow if the
8731 -- flag is not set (means that overflow cannot happen or
8732 -- that overflow checks are suppressed).
8733
8734 if Ovflo and TestS then
8735 Insert_Action (N,
8736 Make_Raise_Constraint_Error (Loc,
8737 Condition =>
8738 Make_Op_Gt (Loc,
8739 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8740 Right_Opnd => Make_Integer_Literal (Loc, MaxS)),
8741 Reason => CE_Overflow_Check_Failed));
8742 end if;
8743
8744 -- Now rewrite node as Shift_Left (1, right-operand)
8745
8746 Rewrite (N,
8747 Make_Op_Shift_Left (Loc,
8748 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8749 Right_Opnd => Right_Opnd (N)));
8750
8751 -- Modular integer case
8752
8753 else pragma Assert (Is_Modular_Integer_Type (Typ));
8754
8755 -- If shift count can be greater than MaxS, we need to wrap
8756 -- the shift in a test that will reduce the result value to
8757 -- zero if this shift count is exceeded.
8758
8759 if TestS then
8760
8761 -- Note: build node for the comparison first, before we
8762 -- reuse the Right_Opnd, so that we have proper parents
8763 -- in place for the Duplicate_Subexpr call.
8764
8765 Test_Gt :=
8766 Make_Op_Gt (Loc,
8767 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8768 Right_Opnd => Make_Integer_Literal (Loc, MaxS));
8769
8770 Rewrite (N,
8771 Make_If_Expression (Loc,
8772 Expressions => New_List (
8773 Test_Gt,
8774 Make_Integer_Literal (Loc, Uint_0),
8775 Make_Op_Shift_Left (Loc,
8776 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8777 Right_Opnd => Right_Opnd (N)))));
8778
8779 -- If we know shift count cannot be greater than MaxS, then
8780 -- it is safe to just rewrite as a shift with no test.
8781
8782 else
8783 Rewrite (N,
8784 Make_Op_Shift_Left (Loc,
8785 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8786 Right_Opnd => Right_Opnd (N)));
8787 end if;
8788 end if;
8789
8790 Analyze_And_Resolve (N, Typ);
8791 return;
8792 end;
8793 end if;
8794 end if;
8795
8796 -- Fall through if exponentiation must be done using a runtime routine
8797
8798 -- First deal with modular case
8799
8800 if Is_Modular_Integer_Type (Rtyp) then
8801
8802 -- Nonbinary modular case, we call the special exponentiation
8803 -- routine for the nonbinary case, converting the argument to
8804 -- Long_Long_Integer and passing the modulus value. Then the
8805 -- result is converted back to the base type.
8806
8807 if Non_Binary_Modulus (Rtyp) then
8808 Rewrite (N,
8809 Convert_To (Typ,
8810 Make_Function_Call (Loc,
8811 Name =>
8812 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
8813 Parameter_Associations => New_List (
8814 Convert_To (RTE (RE_Unsigned), Base),
8815 Make_Integer_Literal (Loc, Modulus (Rtyp)),
8816 Exp))));
8817
8818 -- Binary modular case, in this case, we call one of two routines,
8819 -- either the unsigned integer case, or the unsigned long long
8820 -- integer case, with a final "and" operation to do the required mod.
8821
8822 else
8823 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
8824 Ent := RTE (RE_Exp_Unsigned);
8825 else
8826 Ent := RTE (RE_Exp_Long_Long_Unsigned);
8827 end if;
8828
8829 Rewrite (N,
8830 Convert_To (Typ,
8831 Make_Op_And (Loc,
8832 Left_Opnd =>
8833 Make_Function_Call (Loc,
8834 Name => New_Occurrence_Of (Ent, Loc),
8835 Parameter_Associations => New_List (
8836 Convert_To (Etype (First_Formal (Ent)), Base),
8837 Exp)),
8838 Right_Opnd =>
8839 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
8840
8841 end if;
8842
8843 -- Common exit point for modular type case
8844
8845 Analyze_And_Resolve (N, Typ);
8846 return;
8847
8848 -- Signed integer cases, done using either Integer or Long_Long_Integer.
8849 -- It is not worth having routines for Short_[Short_]Integer, since for
8850 -- most machines it would not help, and it would generate more code that
8851 -- might need certification when a certified run time is required.
8852
8853 -- In the integer cases, we have two routines, one for when overflow
8854 -- checks are required, and one when they are not required, since there
8855 -- is a real gain in omitting checks on many machines.
8856
8857 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
8858 or else (Rtyp = Base_Type (Standard_Long_Integer)
8859 and then
8860 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
8861 or else Rtyp = Universal_Integer
8862 then
8863 Etyp := Standard_Long_Long_Integer;
8864
8865 if Ovflo then
8866 Rent := RE_Exp_Long_Long_Integer;
8867 else
8868 Rent := RE_Exn_Long_Long_Integer;
8869 end if;
8870
8871 elsif Is_Signed_Integer_Type (Rtyp) then
8872 Etyp := Standard_Integer;
8873
8874 if Ovflo then
8875 Rent := RE_Exp_Integer;
8876 else
8877 Rent := RE_Exn_Integer;
8878 end if;
8879
8880 -- Floating-point cases. We do not need separate routines for the
8881 -- overflow case here, since in the case of floating-point, we generate
8882 -- infinities anyway as a rule (either that or we automatically trap
8883 -- overflow), and if there is an infinity generated and a range check
8884 -- is required, the check will fail anyway.
8885
8886 -- Historical note: we used to convert everything to Long_Long_Float
8887 -- and call a single common routine, but this had the undesirable effect
8888 -- of giving different results for small static exponent values and the
8889 -- same dynamic values.
8890
8891 else
8892 pragma Assert (Is_Floating_Point_Type (Rtyp));
8893
8894 if Rtyp = Standard_Float then
8895 Etyp := Standard_Float;
8896 Rent := RE_Exn_Float;
8897
8898 elsif Rtyp = Standard_Long_Float then
8899 Etyp := Standard_Long_Float;
8900 Rent := RE_Exn_Long_Float;
8901
8902 else
8903 Etyp := Standard_Long_Long_Float;
8904 Rent := RE_Exn_Long_Long_Float;
8905 end if;
8906 end if;
8907
8908 -- Common processing for integer cases and floating-point cases.
8909 -- If we are in the right type, we can call runtime routine directly
8910
8911 if Typ = Etyp
8912 and then Rtyp /= Universal_Integer
8913 and then Rtyp /= Universal_Real
8914 then
8915 Rewrite (N,
8916 Wrap_MA (
8917 Make_Function_Call (Loc,
8918 Name => New_Occurrence_Of (RTE (Rent), Loc),
8919 Parameter_Associations => New_List (Base, Exp))));
8920
8921 -- Otherwise we have to introduce conversions (conversions are also
8922 -- required in the universal cases, since the runtime routine is
8923 -- typed using one of the standard types).
8924
8925 else
8926 Rewrite (N,
8927 Convert_To (Typ,
8928 Make_Function_Call (Loc,
8929 Name => New_Occurrence_Of (RTE (Rent), Loc),
8930 Parameter_Associations => New_List (
8931 Convert_To (Etyp, Base),
8932 Exp))));
8933 end if;
8934
8935 Analyze_And_Resolve (N, Typ);
8936 return;
8937
8938 exception
8939 when RE_Not_Available =>
8940 return;
8941 end Expand_N_Op_Expon;
8942
8943 --------------------
8944 -- Expand_N_Op_Ge --
8945 --------------------
8946
8947 procedure Expand_N_Op_Ge (N : Node_Id) is
8948 Typ : constant Entity_Id := Etype (N);
8949 Op1 : constant Node_Id := Left_Opnd (N);
8950 Op2 : constant Node_Id := Right_Opnd (N);
8951 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8952
8953 begin
8954 Binary_Op_Validity_Checks (N);
8955
8956 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8957 -- means we no longer have a comparison operation, we are all done.
8958
8959 Expand_Compare_Minimize_Eliminate_Overflow (N);
8960
8961 if Nkind (N) /= N_Op_Ge then
8962 return;
8963 end if;
8964
8965 -- Array type case
8966
8967 if Is_Array_Type (Typ1) then
8968 Expand_Array_Comparison (N);
8969 return;
8970 end if;
8971
8972 -- Deal with boolean operands
8973
8974 if Is_Boolean_Type (Typ1) then
8975 Adjust_Condition (Op1);
8976 Adjust_Condition (Op2);
8977 Set_Etype (N, Standard_Boolean);
8978 Adjust_Result_Type (N, Typ);
8979 end if;
8980
8981 Rewrite_Comparison (N);
8982
8983 Optimize_Length_Comparison (N);
8984 end Expand_N_Op_Ge;
8985
8986 --------------------
8987 -- Expand_N_Op_Gt --
8988 --------------------
8989
8990 procedure Expand_N_Op_Gt (N : Node_Id) is
8991 Typ : constant Entity_Id := Etype (N);
8992 Op1 : constant Node_Id := Left_Opnd (N);
8993 Op2 : constant Node_Id := Right_Opnd (N);
8994 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8995
8996 begin
8997 Binary_Op_Validity_Checks (N);
8998
8999 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
9000 -- means we no longer have a comparison operation, we are all done.
9001
9002 Expand_Compare_Minimize_Eliminate_Overflow (N);
9003
9004 if Nkind (N) /= N_Op_Gt then
9005 return;
9006 end if;
9007
9008 -- Deal with array type operands
9009
9010 if Is_Array_Type (Typ1) then
9011 Expand_Array_Comparison (N);
9012 return;
9013 end if;
9014
9015 -- Deal with boolean type operands
9016
9017 if Is_Boolean_Type (Typ1) then
9018 Adjust_Condition (Op1);
9019 Adjust_Condition (Op2);
9020 Set_Etype (N, Standard_Boolean);
9021 Adjust_Result_Type (N, Typ);
9022 end if;
9023
9024 Rewrite_Comparison (N);
9025
9026 Optimize_Length_Comparison (N);
9027 end Expand_N_Op_Gt;
9028
9029 --------------------
9030 -- Expand_N_Op_Le --
9031 --------------------
9032
9033 procedure Expand_N_Op_Le (N : Node_Id) is
9034 Typ : constant Entity_Id := Etype (N);
9035 Op1 : constant Node_Id := Left_Opnd (N);
9036 Op2 : constant Node_Id := Right_Opnd (N);
9037 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
9038
9039 begin
9040 Binary_Op_Validity_Checks (N);
9041
9042 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
9043 -- means we no longer have a comparison operation, we are all done.
9044
9045 Expand_Compare_Minimize_Eliminate_Overflow (N);
9046
9047 if Nkind (N) /= N_Op_Le then
9048 return;
9049 end if;
9050
9051 -- Deal with array type operands
9052
9053 if Is_Array_Type (Typ1) then
9054 Expand_Array_Comparison (N);
9055 return;
9056 end if;
9057
9058 -- Deal with Boolean type operands
9059
9060 if Is_Boolean_Type (Typ1) then
9061 Adjust_Condition (Op1);
9062 Adjust_Condition (Op2);
9063 Set_Etype (N, Standard_Boolean);
9064 Adjust_Result_Type (N, Typ);
9065 end if;
9066
9067 Rewrite_Comparison (N);
9068
9069 Optimize_Length_Comparison (N);
9070 end Expand_N_Op_Le;
9071
9072 --------------------
9073 -- Expand_N_Op_Lt --
9074 --------------------
9075
9076 procedure Expand_N_Op_Lt (N : Node_Id) is
9077 Typ : constant Entity_Id := Etype (N);
9078 Op1 : constant Node_Id := Left_Opnd (N);
9079 Op2 : constant Node_Id := Right_Opnd (N);
9080 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
9081
9082 begin
9083 Binary_Op_Validity_Checks (N);
9084
9085 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
9086 -- means we no longer have a comparison operation, we are all done.
9087
9088 Expand_Compare_Minimize_Eliminate_Overflow (N);
9089
9090 if Nkind (N) /= N_Op_Lt then
9091 return;
9092 end if;
9093
9094 -- Deal with array type operands
9095
9096 if Is_Array_Type (Typ1) then
9097 Expand_Array_Comparison (N);
9098 return;
9099 end if;
9100
9101 -- Deal with Boolean type operands
9102
9103 if Is_Boolean_Type (Typ1) then
9104 Adjust_Condition (Op1);
9105 Adjust_Condition (Op2);
9106 Set_Etype (N, Standard_Boolean);
9107 Adjust_Result_Type (N, Typ);
9108 end if;
9109
9110 Rewrite_Comparison (N);
9111
9112 Optimize_Length_Comparison (N);
9113 end Expand_N_Op_Lt;
9114
9115 -----------------------
9116 -- Expand_N_Op_Minus --
9117 -----------------------
9118
9119 procedure Expand_N_Op_Minus (N : Node_Id) is
9120 Loc : constant Source_Ptr := Sloc (N);
9121 Typ : constant Entity_Id := Etype (N);
9122
9123 begin
9124 Unary_Op_Validity_Checks (N);
9125
9126 -- Check for MINIMIZED/ELIMINATED overflow mode
9127
9128 if Minimized_Eliminated_Overflow_Check (N) then
9129 Apply_Arithmetic_Overflow_Check (N);
9130 return;
9131 end if;
9132
9133 if not Backend_Overflow_Checks_On_Target
9134 and then Is_Signed_Integer_Type (Etype (N))
9135 and then Do_Overflow_Check (N)
9136 then
9137 -- Software overflow checking expands -expr into (0 - expr)
9138
9139 Rewrite (N,
9140 Make_Op_Subtract (Loc,
9141 Left_Opnd => Make_Integer_Literal (Loc, 0),
9142 Right_Opnd => Right_Opnd (N)));
9143
9144 Analyze_And_Resolve (N, Typ);
9145 end if;
9146
9147 Expand_Nonbinary_Modular_Op (N);
9148 end Expand_N_Op_Minus;
9149
9150 ---------------------
9151 -- Expand_N_Op_Mod --
9152 ---------------------
9153
9154 procedure Expand_N_Op_Mod (N : Node_Id) is
9155 Loc : constant Source_Ptr := Sloc (N);
9156 Typ : constant Entity_Id := Etype (N);
9157 DDC : constant Boolean := Do_Division_Check (N);
9158
9159 Left : Node_Id;
9160 Right : Node_Id;
9161
9162 LLB : Uint;
9163 Llo : Uint;
9164 Lhi : Uint;
9165 LOK : Boolean;
9166 Rlo : Uint;
9167 Rhi : Uint;
9168 ROK : Boolean;
9169
9170 pragma Warnings (Off, Lhi);
9171
9172 begin
9173 Binary_Op_Validity_Checks (N);
9174
9175 -- Check for MINIMIZED/ELIMINATED overflow mode
9176
9177 if Minimized_Eliminated_Overflow_Check (N) then
9178 Apply_Arithmetic_Overflow_Check (N);
9179 return;
9180 end if;
9181
9182 if Is_Integer_Type (Etype (N)) then
9183 Apply_Divide_Checks (N);
9184
9185 -- All done if we don't have a MOD any more, which can happen as a
9186 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9187
9188 if Nkind (N) /= N_Op_Mod then
9189 return;
9190 end if;
9191 end if;
9192
9193 -- Proceed with expansion of mod operator
9194
9195 Left := Left_Opnd (N);
9196 Right := Right_Opnd (N);
9197
9198 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
9199 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
9200
9201 -- Convert mod to rem if operands are both known to be non-negative, or
9202 -- both known to be non-positive (these are the cases in which rem and
9203 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
9204 -- likely that this will improve the quality of code, (the operation now
9205 -- corresponds to the hardware remainder), and it does not seem likely
9206 -- that it could be harmful. It also avoids some cases of the elaborate
9207 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
9208
9209 if (LOK and ROK)
9210 and then ((Llo >= 0 and then Rlo >= 0)
9211 or else
9212 (Lhi <= 0 and then Rhi <= 0))
9213 then
9214 Rewrite (N,
9215 Make_Op_Rem (Sloc (N),
9216 Left_Opnd => Left_Opnd (N),
9217 Right_Opnd => Right_Opnd (N)));
9218
9219 -- Instead of reanalyzing the node we do the analysis manually. This
9220 -- avoids anomalies when the replacement is done in an instance and
9221 -- is epsilon more efficient.
9222
9223 Set_Entity (N, Standard_Entity (S_Op_Rem));
9224 Set_Etype (N, Typ);
9225 Set_Do_Division_Check (N, DDC);
9226 Expand_N_Op_Rem (N);
9227 Set_Analyzed (N);
9228 return;
9229
9230 -- Otherwise, normal mod processing
9231
9232 else
9233 -- Apply optimization x mod 1 = 0. We don't really need that with
9234 -- gcc, but it is useful with other back ends and is certainly
9235 -- harmless.
9236
9237 if Is_Integer_Type (Etype (N))
9238 and then Compile_Time_Known_Value (Right)
9239 and then Expr_Value (Right) = Uint_1
9240 then
9241 -- Call Remove_Side_Effects to ensure that any side effects in
9242 -- the ignored left operand (in particular function calls to
9243 -- user defined functions) are properly executed.
9244
9245 Remove_Side_Effects (Left);
9246
9247 Rewrite (N, Make_Integer_Literal (Loc, 0));
9248 Analyze_And_Resolve (N, Typ);
9249 return;
9250 end if;
9251
9252 -- If we still have a mod operator and we are in Modify_Tree_For_C
9253 -- mode, and we have a signed integer type, then here is where we do
9254 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
9255 -- for the special handling of the annoying case of largest negative
9256 -- number mod minus one.
9257
9258 if Nkind (N) = N_Op_Mod
9259 and then Is_Signed_Integer_Type (Typ)
9260 and then Modify_Tree_For_C
9261 then
9262 -- In the general case, we expand A mod B as
9263
9264 -- Tnn : constant typ := A rem B;
9265 -- ..
9266 -- (if (A >= 0) = (B >= 0) then Tnn
9267 -- elsif Tnn = 0 then 0
9268 -- else Tnn + B)
9269
9270 -- The comparison can be written simply as A >= 0 if we know that
9271 -- B >= 0 which is a very common case.
9272
9273 -- An important optimization is when B is known at compile time
9274 -- to be 2**K for some constant. In this case we can simply AND
9275 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
9276 -- and that works for both the positive and negative cases.
9277
9278 declare
9279 P2 : constant Nat := Power_Of_Two (Right);
9280
9281 begin
9282 if P2 /= 0 then
9283 Rewrite (N,
9284 Unchecked_Convert_To (Typ,
9285 Make_Op_And (Loc,
9286 Left_Opnd =>
9287 Unchecked_Convert_To
9288 (Corresponding_Unsigned_Type (Typ), Left),
9289 Right_Opnd =>
9290 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
9291 Analyze_And_Resolve (N, Typ);
9292 return;
9293 end if;
9294 end;
9295
9296 -- Here for the full rewrite
9297
9298 declare
9299 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
9300 Cmp : Node_Id;
9301
9302 begin
9303 Cmp :=
9304 Make_Op_Ge (Loc,
9305 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9306 Right_Opnd => Make_Integer_Literal (Loc, 0));
9307
9308 if not LOK or else Rlo < 0 then
9309 Cmp :=
9310 Make_Op_Eq (Loc,
9311 Left_Opnd => Cmp,
9312 Right_Opnd =>
9313 Make_Op_Ge (Loc,
9314 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
9315 Right_Opnd => Make_Integer_Literal (Loc, 0)));
9316 end if;
9317
9318 Insert_Action (N,
9319 Make_Object_Declaration (Loc,
9320 Defining_Identifier => Tnn,
9321 Constant_Present => True,
9322 Object_Definition => New_Occurrence_Of (Typ, Loc),
9323 Expression =>
9324 Make_Op_Rem (Loc,
9325 Left_Opnd => Left,
9326 Right_Opnd => Right)));
9327
9328 Rewrite (N,
9329 Make_If_Expression (Loc,
9330 Expressions => New_List (
9331 Cmp,
9332 New_Occurrence_Of (Tnn, Loc),
9333 Make_If_Expression (Loc,
9334 Is_Elsif => True,
9335 Expressions => New_List (
9336 Make_Op_Eq (Loc,
9337 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
9338 Right_Opnd => Make_Integer_Literal (Loc, 0)),
9339 Make_Integer_Literal (Loc, 0),
9340 Make_Op_Add (Loc,
9341 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
9342 Right_Opnd =>
9343 Duplicate_Subexpr_No_Checks (Right)))))));
9344
9345 Analyze_And_Resolve (N, Typ);
9346 return;
9347 end;
9348 end if;
9349
9350 -- Deal with annoying case of largest negative number mod minus one.
9351 -- Gigi may not handle this case correctly, because on some targets,
9352 -- the mod value is computed using a divide instruction which gives
9353 -- an overflow trap for this case.
9354
9355 -- It would be a bit more efficient to figure out which targets
9356 -- this is really needed for, but in practice it is reasonable
9357 -- to do the following special check in all cases, since it means
9358 -- we get a clearer message, and also the overhead is minimal given
9359 -- that division is expensive in any case.
9360
9361 -- In fact the check is quite easy, if the right operand is -1, then
9362 -- the mod value is always 0, and we can just ignore the left operand
9363 -- completely in this case.
9364
9365 -- This only applies if we still have a mod operator. Skip if we
9366 -- have already rewritten this (e.g. in the case of eliminated
9367 -- overflow checks which have driven us into bignum mode).
9368
9369 if Nkind (N) = N_Op_Mod then
9370
9371 -- The operand type may be private (e.g. in the expansion of an
9372 -- intrinsic operation) so we must use the underlying type to get
9373 -- the bounds, and convert the literals explicitly.
9374
9375 LLB :=
9376 Expr_Value
9377 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
9378
9379 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
9380 and then ((not LOK) or else (Llo = LLB))
9381 then
9382 Rewrite (N,
9383 Make_If_Expression (Loc,
9384 Expressions => New_List (
9385 Make_Op_Eq (Loc,
9386 Left_Opnd => Duplicate_Subexpr (Right),
9387 Right_Opnd =>
9388 Unchecked_Convert_To (Typ,
9389 Make_Integer_Literal (Loc, -1))),
9390 Unchecked_Convert_To (Typ,
9391 Make_Integer_Literal (Loc, Uint_0)),
9392 Relocate_Node (N))));
9393
9394 Set_Analyzed (Next (Next (First (Expressions (N)))));
9395 Analyze_And_Resolve (N, Typ);
9396 end if;
9397 end if;
9398 end if;
9399 end Expand_N_Op_Mod;
9400
9401 --------------------------
9402 -- Expand_N_Op_Multiply --
9403 --------------------------
9404
9405 procedure Expand_N_Op_Multiply (N : Node_Id) is
9406 Loc : constant Source_Ptr := Sloc (N);
9407 Lop : constant Node_Id := Left_Opnd (N);
9408 Rop : constant Node_Id := Right_Opnd (N);
9409
9410 Lp2 : constant Boolean :=
9411 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
9412 Rp2 : constant Boolean :=
9413 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
9414
9415 Ltyp : constant Entity_Id := Etype (Lop);
9416 Rtyp : constant Entity_Id := Etype (Rop);
9417 Typ : Entity_Id := Etype (N);
9418
9419 begin
9420 Binary_Op_Validity_Checks (N);
9421
9422 -- Check for MINIMIZED/ELIMINATED overflow mode
9423
9424 if Minimized_Eliminated_Overflow_Check (N) then
9425 Apply_Arithmetic_Overflow_Check (N);
9426 return;
9427 end if;
9428
9429 -- Special optimizations for integer types
9430
9431 if Is_Integer_Type (Typ) then
9432
9433 -- N * 0 = 0 for integer types
9434
9435 if Compile_Time_Known_Value (Rop)
9436 and then Expr_Value (Rop) = Uint_0
9437 then
9438 -- Call Remove_Side_Effects to ensure that any side effects in
9439 -- the ignored left operand (in particular function calls to
9440 -- user defined functions) are properly executed.
9441
9442 Remove_Side_Effects (Lop);
9443
9444 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9445 Analyze_And_Resolve (N, Typ);
9446 return;
9447 end if;
9448
9449 -- Similar handling for 0 * N = 0
9450
9451 if Compile_Time_Known_Value (Lop)
9452 and then Expr_Value (Lop) = Uint_0
9453 then
9454 Remove_Side_Effects (Rop);
9455 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9456 Analyze_And_Resolve (N, Typ);
9457 return;
9458 end if;
9459
9460 -- N * 1 = 1 * N = N for integer types
9461
9462 -- This optimisation is not done if we are going to
9463 -- rewrite the product 1 * 2 ** N to a shift.
9464
9465 if Compile_Time_Known_Value (Rop)
9466 and then Expr_Value (Rop) = Uint_1
9467 and then not Lp2
9468 then
9469 Rewrite (N, Lop);
9470 return;
9471
9472 elsif Compile_Time_Known_Value (Lop)
9473 and then Expr_Value (Lop) = Uint_1
9474 and then not Rp2
9475 then
9476 Rewrite (N, Rop);
9477 return;
9478 end if;
9479 end if;
9480
9481 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
9482 -- Is_Power_Of_2_For_Shift is set means that we know that our left
9483 -- operand is an integer, as required for this to work.
9484
9485 if Rp2 then
9486 if Lp2 then
9487
9488 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
9489
9490 Rewrite (N,
9491 Make_Op_Expon (Loc,
9492 Left_Opnd => Make_Integer_Literal (Loc, 2),
9493 Right_Opnd =>
9494 Make_Op_Add (Loc,
9495 Left_Opnd => Right_Opnd (Lop),
9496 Right_Opnd => Right_Opnd (Rop))));
9497 Analyze_And_Resolve (N, Typ);
9498 return;
9499
9500 else
9501 -- If the result is modular, perform the reduction of the result
9502 -- appropriately.
9503
9504 if Is_Modular_Integer_Type (Typ)
9505 and then not Non_Binary_Modulus (Typ)
9506 then
9507 Rewrite (N,
9508 Make_Op_And (Loc,
9509 Left_Opnd =>
9510 Make_Op_Shift_Left (Loc,
9511 Left_Opnd => Lop,
9512 Right_Opnd =>
9513 Convert_To (Standard_Natural, Right_Opnd (Rop))),
9514 Right_Opnd =>
9515 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
9516
9517 else
9518 Rewrite (N,
9519 Make_Op_Shift_Left (Loc,
9520 Left_Opnd => Lop,
9521 Right_Opnd =>
9522 Convert_To (Standard_Natural, Right_Opnd (Rop))));
9523 end if;
9524
9525 Analyze_And_Resolve (N, Typ);
9526 return;
9527 end if;
9528
9529 -- Same processing for the operands the other way round
9530
9531 elsif Lp2 then
9532 if Is_Modular_Integer_Type (Typ)
9533 and then not Non_Binary_Modulus (Typ)
9534 then
9535 Rewrite (N,
9536 Make_Op_And (Loc,
9537 Left_Opnd =>
9538 Make_Op_Shift_Left (Loc,
9539 Left_Opnd => Rop,
9540 Right_Opnd =>
9541 Convert_To (Standard_Natural, Right_Opnd (Lop))),
9542 Right_Opnd =>
9543 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
9544
9545 else
9546 Rewrite (N,
9547 Make_Op_Shift_Left (Loc,
9548 Left_Opnd => Rop,
9549 Right_Opnd =>
9550 Convert_To (Standard_Natural, Right_Opnd (Lop))));
9551 end if;
9552
9553 Analyze_And_Resolve (N, Typ);
9554 return;
9555 end if;
9556
9557 -- Do required fixup of universal fixed operation
9558
9559 if Typ = Universal_Fixed then
9560 Fixup_Universal_Fixed_Operation (N);
9561 Typ := Etype (N);
9562 end if;
9563
9564 -- Multiplications with fixed-point results
9565
9566 if Is_Fixed_Point_Type (Typ) then
9567
9568 -- Case of fixed * integer => fixed
9569
9570 if Is_Integer_Type (Rtyp) then
9571 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
9572
9573 -- Case of integer * fixed => fixed
9574
9575 elsif Is_Integer_Type (Ltyp) then
9576 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
9577
9578 -- Case of fixed * fixed => fixed
9579
9580 else
9581 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
9582 end if;
9583
9584 -- Other cases of multiplication of fixed-point operands
9585
9586 elsif Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp) then
9587 if Is_Integer_Type (Typ) then
9588 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
9589 else
9590 pragma Assert (Is_Floating_Point_Type (Typ));
9591 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
9592 end if;
9593
9594 -- Mixed-mode operations can appear in a non-static universal context,
9595 -- in which case the integer argument must be converted explicitly.
9596
9597 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
9598 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
9599 Analyze_And_Resolve (Rop, Universal_Real);
9600
9601 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
9602 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
9603 Analyze_And_Resolve (Lop, Universal_Real);
9604
9605 -- Non-fixed point cases, check software overflow checking required
9606
9607 elsif Is_Signed_Integer_Type (Etype (N)) then
9608 Apply_Arithmetic_Overflow_Check (N);
9609 end if;
9610
9611 -- Overflow checks for floating-point if -gnateF mode active
9612
9613 Check_Float_Op_Overflow (N);
9614
9615 Expand_Nonbinary_Modular_Op (N);
9616 end Expand_N_Op_Multiply;
9617
9618 --------------------
9619 -- Expand_N_Op_Ne --
9620 --------------------
9621
9622 procedure Expand_N_Op_Ne (N : Node_Id) is
9623 Typ : constant Entity_Id := Etype (Left_Opnd (N));
9624
9625 begin
9626 -- Case of elementary type with standard operator. But if unnesting,
9627 -- handle elementary types whose Equivalent_Types are records because
9628 -- there may be padding or undefined fields.
9629
9630 if Is_Elementary_Type (Typ)
9631 and then Sloc (Entity (N)) = Standard_Location
9632 and then not (Ekind_In (Typ, E_Class_Wide_Type,
9633 E_Class_Wide_Subtype,
9634 E_Access_Subprogram_Type,
9635 E_Access_Protected_Subprogram_Type,
9636 E_Anonymous_Access_Protected_Subprogram_Type,
9637 E_Access_Subprogram_Type,
9638 E_Exception_Type)
9639 and then Present (Equivalent_Type (Typ))
9640 and then Is_Record_Type (Equivalent_Type (Typ)))
9641 then
9642 Binary_Op_Validity_Checks (N);
9643
9644 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
9645 -- means we no longer have a /= operation, we are all done.
9646
9647 Expand_Compare_Minimize_Eliminate_Overflow (N);
9648
9649 if Nkind (N) /= N_Op_Ne then
9650 return;
9651 end if;
9652
9653 -- Boolean types (requiring handling of non-standard case)
9654
9655 if Is_Boolean_Type (Typ) then
9656 Adjust_Condition (Left_Opnd (N));
9657 Adjust_Condition (Right_Opnd (N));
9658 Set_Etype (N, Standard_Boolean);
9659 Adjust_Result_Type (N, Typ);
9660 end if;
9661
9662 Rewrite_Comparison (N);
9663
9664 -- For all cases other than elementary types, we rewrite node as the
9665 -- negation of an equality operation, and reanalyze. The equality to be
9666 -- used is defined in the same scope and has the same signature. This
9667 -- signature must be set explicitly since in an instance it may not have
9668 -- the same visibility as in the generic unit. This avoids duplicating
9669 -- or factoring the complex code for record/array equality tests etc.
9670
9671 -- This case is also used for the minimal expansion performed in
9672 -- GNATprove mode.
9673
9674 else
9675 declare
9676 Loc : constant Source_Ptr := Sloc (N);
9677 Neg : Node_Id;
9678 Ne : constant Entity_Id := Entity (N);
9679
9680 begin
9681 Binary_Op_Validity_Checks (N);
9682
9683 Neg :=
9684 Make_Op_Not (Loc,
9685 Right_Opnd =>
9686 Make_Op_Eq (Loc,
9687 Left_Opnd => Left_Opnd (N),
9688 Right_Opnd => Right_Opnd (N)));
9689
9690 -- The level of parentheses is useless in GNATprove mode, and
9691 -- bumping its level here leads to wrong columns being used in
9692 -- check messages, hence skip it in this mode.
9693
9694 if not GNATprove_Mode then
9695 Set_Paren_Count (Right_Opnd (Neg), 1);
9696 end if;
9697
9698 if Scope (Ne) /= Standard_Standard then
9699 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
9700 end if;
9701
9702 -- For navigation purposes, we want to treat the inequality as an
9703 -- implicit reference to the corresponding equality. Preserve the
9704 -- Comes_From_ source flag to generate proper Xref entries.
9705
9706 Preserve_Comes_From_Source (Neg, N);
9707 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
9708 Rewrite (N, Neg);
9709 Analyze_And_Resolve (N, Standard_Boolean);
9710 end;
9711 end if;
9712
9713 -- No need for optimization in GNATprove mode, where we would rather see
9714 -- the original source expression.
9715
9716 if not GNATprove_Mode then
9717 Optimize_Length_Comparison (N);
9718 end if;
9719 end Expand_N_Op_Ne;
9720
9721 ---------------------
9722 -- Expand_N_Op_Not --
9723 ---------------------
9724
9725 -- If the argument is other than a Boolean array type, there is no special
9726 -- expansion required, except for dealing with validity checks, and non-
9727 -- standard boolean representations.
9728
9729 -- For the packed array case, we call the special routine in Exp_Pakd,
9730 -- except that if the component size is greater than one, we use the
9731 -- standard routine generating a gruesome loop (it is so peculiar to have
9732 -- packed arrays with non-standard Boolean representations anyway, so it
9733 -- does not matter that we do not handle this case efficiently).
9734
9735 -- For the unpacked array case (and for the special packed case where we
9736 -- have non standard Booleans, as discussed above), we generate and insert
9737 -- into the tree the following function definition:
9738
9739 -- function Nnnn (A : arr) is
9740 -- B : arr;
9741 -- begin
9742 -- for J in a'range loop
9743 -- B (J) := not A (J);
9744 -- end loop;
9745 -- return B;
9746 -- end Nnnn;
9747
9748 -- Here arr is the actual subtype of the parameter (and hence always
9749 -- constrained). Then we replace the not with a call to this function.
9750
9751 procedure Expand_N_Op_Not (N : Node_Id) is
9752 Loc : constant Source_Ptr := Sloc (N);
9753 Typ : constant Entity_Id := Etype (N);
9754 Opnd : Node_Id;
9755 Arr : Entity_Id;
9756 A : Entity_Id;
9757 B : Entity_Id;
9758 J : Entity_Id;
9759 A_J : Node_Id;
9760 B_J : Node_Id;
9761
9762 Func_Name : Entity_Id;
9763 Loop_Statement : Node_Id;
9764
9765 begin
9766 Unary_Op_Validity_Checks (N);
9767
9768 -- For boolean operand, deal with non-standard booleans
9769
9770 if Is_Boolean_Type (Typ) then
9771 Adjust_Condition (Right_Opnd (N));
9772 Set_Etype (N, Standard_Boolean);
9773 Adjust_Result_Type (N, Typ);
9774 return;
9775 end if;
9776
9777 -- Only array types need any other processing
9778
9779 if not Is_Array_Type (Typ) then
9780 return;
9781 end if;
9782
9783 -- Case of array operand. If bit packed with a component size of 1,
9784 -- handle it in Exp_Pakd if the operand is known to be aligned.
9785
9786 if Is_Bit_Packed_Array (Typ)
9787 and then Component_Size (Typ) = 1
9788 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
9789 then
9790 Expand_Packed_Not (N);
9791 return;
9792 end if;
9793
9794 -- Case of array operand which is not bit-packed. If the context is
9795 -- a safe assignment, call in-place operation, If context is a larger
9796 -- boolean expression in the context of a safe assignment, expansion is
9797 -- done by enclosing operation.
9798
9799 Opnd := Relocate_Node (Right_Opnd (N));
9800 Convert_To_Actual_Subtype (Opnd);
9801 Arr := Etype (Opnd);
9802 Ensure_Defined (Arr, N);
9803 Silly_Boolean_Array_Not_Test (N, Arr);
9804
9805 if Nkind (Parent (N)) = N_Assignment_Statement then
9806 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
9807 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9808 return;
9809
9810 -- Special case the negation of a binary operation
9811
9812 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
9813 and then Safe_In_Place_Array_Op
9814 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
9815 then
9816 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9817 return;
9818 end if;
9819
9820 elsif Nkind (Parent (N)) in N_Binary_Op
9821 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
9822 then
9823 declare
9824 Op1 : constant Node_Id := Left_Opnd (Parent (N));
9825 Op2 : constant Node_Id := Right_Opnd (Parent (N));
9826 Lhs : constant Node_Id := Name (Parent (Parent (N)));
9827
9828 begin
9829 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
9830
9831 -- (not A) op (not B) can be reduced to a single call
9832
9833 if N = Op1 and then Nkind (Op2) = N_Op_Not then
9834 return;
9835
9836 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
9837 return;
9838
9839 -- A xor (not B) can also be special-cased
9840
9841 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
9842 return;
9843 end if;
9844 end if;
9845 end;
9846 end if;
9847
9848 A := Make_Defining_Identifier (Loc, Name_uA);
9849 B := Make_Defining_Identifier (Loc, Name_uB);
9850 J := Make_Defining_Identifier (Loc, Name_uJ);
9851
9852 A_J :=
9853 Make_Indexed_Component (Loc,
9854 Prefix => New_Occurrence_Of (A, Loc),
9855 Expressions => New_List (New_Occurrence_Of (J, Loc)));
9856
9857 B_J :=
9858 Make_Indexed_Component (Loc,
9859 Prefix => New_Occurrence_Of (B, Loc),
9860 Expressions => New_List (New_Occurrence_Of (J, Loc)));
9861
9862 Loop_Statement :=
9863 Make_Implicit_Loop_Statement (N,
9864 Identifier => Empty,
9865
9866 Iteration_Scheme =>
9867 Make_Iteration_Scheme (Loc,
9868 Loop_Parameter_Specification =>
9869 Make_Loop_Parameter_Specification (Loc,
9870 Defining_Identifier => J,
9871 Discrete_Subtype_Definition =>
9872 Make_Attribute_Reference (Loc,
9873 Prefix => Make_Identifier (Loc, Chars (A)),
9874 Attribute_Name => Name_Range))),
9875
9876 Statements => New_List (
9877 Make_Assignment_Statement (Loc,
9878 Name => B_J,
9879 Expression => Make_Op_Not (Loc, A_J))));
9880
9881 Func_Name := Make_Temporary (Loc, 'N');
9882 Set_Is_Inlined (Func_Name);
9883
9884 Insert_Action (N,
9885 Make_Subprogram_Body (Loc,
9886 Specification =>
9887 Make_Function_Specification (Loc,
9888 Defining_Unit_Name => Func_Name,
9889 Parameter_Specifications => New_List (
9890 Make_Parameter_Specification (Loc,
9891 Defining_Identifier => A,
9892 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9893 Result_Definition => New_Occurrence_Of (Typ, Loc)),
9894
9895 Declarations => New_List (
9896 Make_Object_Declaration (Loc,
9897 Defining_Identifier => B,
9898 Object_Definition => New_Occurrence_Of (Arr, Loc))),
9899
9900 Handled_Statement_Sequence =>
9901 Make_Handled_Sequence_Of_Statements (Loc,
9902 Statements => New_List (
9903 Loop_Statement,
9904 Make_Simple_Return_Statement (Loc,
9905 Expression => Make_Identifier (Loc, Chars (B)))))));
9906
9907 Rewrite (N,
9908 Make_Function_Call (Loc,
9909 Name => New_Occurrence_Of (Func_Name, Loc),
9910 Parameter_Associations => New_List (Opnd)));
9911
9912 Analyze_And_Resolve (N, Typ);
9913 end Expand_N_Op_Not;
9914
9915 --------------------
9916 -- Expand_N_Op_Or --
9917 --------------------
9918
9919 procedure Expand_N_Op_Or (N : Node_Id) is
9920 Typ : constant Entity_Id := Etype (N);
9921
9922 begin
9923 Binary_Op_Validity_Checks (N);
9924
9925 if Is_Array_Type (Etype (N)) then
9926 Expand_Boolean_Operator (N);
9927
9928 elsif Is_Boolean_Type (Etype (N)) then
9929 Adjust_Condition (Left_Opnd (N));
9930 Adjust_Condition (Right_Opnd (N));
9931 Set_Etype (N, Standard_Boolean);
9932 Adjust_Result_Type (N, Typ);
9933
9934 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9935 Expand_Intrinsic_Call (N, Entity (N));
9936 end if;
9937
9938 Expand_Nonbinary_Modular_Op (N);
9939 end Expand_N_Op_Or;
9940
9941 ----------------------
9942 -- Expand_N_Op_Plus --
9943 ----------------------
9944
9945 procedure Expand_N_Op_Plus (N : Node_Id) is
9946 begin
9947 Unary_Op_Validity_Checks (N);
9948
9949 -- Check for MINIMIZED/ELIMINATED overflow mode
9950
9951 if Minimized_Eliminated_Overflow_Check (N) then
9952 Apply_Arithmetic_Overflow_Check (N);
9953 return;
9954 end if;
9955 end Expand_N_Op_Plus;
9956
9957 ---------------------
9958 -- Expand_N_Op_Rem --
9959 ---------------------
9960
9961 procedure Expand_N_Op_Rem (N : Node_Id) is
9962 Loc : constant Source_Ptr := Sloc (N);
9963 Typ : constant Entity_Id := Etype (N);
9964
9965 Left : Node_Id;
9966 Right : Node_Id;
9967
9968 Lo : Uint;
9969 Hi : Uint;
9970 OK : Boolean;
9971
9972 Lneg : Boolean;
9973 Rneg : Boolean;
9974 -- Set if corresponding operand can be negative
9975
9976 pragma Unreferenced (Hi);
9977
9978 begin
9979 Binary_Op_Validity_Checks (N);
9980
9981 -- Check for MINIMIZED/ELIMINATED overflow mode
9982
9983 if Minimized_Eliminated_Overflow_Check (N) then
9984 Apply_Arithmetic_Overflow_Check (N);
9985 return;
9986 end if;
9987
9988 if Is_Integer_Type (Etype (N)) then
9989 Apply_Divide_Checks (N);
9990
9991 -- All done if we don't have a REM any more, which can happen as a
9992 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9993
9994 if Nkind (N) /= N_Op_Rem then
9995 return;
9996 end if;
9997 end if;
9998
9999 -- Proceed with expansion of REM
10000
10001 Left := Left_Opnd (N);
10002 Right := Right_Opnd (N);
10003
10004 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
10005 -- but it is useful with other back ends, and is certainly harmless.
10006
10007 if Is_Integer_Type (Etype (N))
10008 and then Compile_Time_Known_Value (Right)
10009 and then Expr_Value (Right) = Uint_1
10010 then
10011 -- Call Remove_Side_Effects to ensure that any side effects in the
10012 -- ignored left operand (in particular function calls to user defined
10013 -- functions) are properly executed.
10014
10015 Remove_Side_Effects (Left);
10016
10017 Rewrite (N, Make_Integer_Literal (Loc, 0));
10018 Analyze_And_Resolve (N, Typ);
10019 return;
10020 end if;
10021
10022 -- Deal with annoying case of largest negative number remainder minus
10023 -- one. Gigi may not handle this case correctly, because on some
10024 -- targets, the mod value is computed using a divide instruction
10025 -- which gives an overflow trap for this case.
10026
10027 -- It would be a bit more efficient to figure out which targets this
10028 -- is really needed for, but in practice it is reasonable to do the
10029 -- following special check in all cases, since it means we get a clearer
10030 -- message, and also the overhead is minimal given that division is
10031 -- expensive in any case.
10032
10033 -- In fact the check is quite easy, if the right operand is -1, then
10034 -- the remainder is always 0, and we can just ignore the left operand
10035 -- completely in this case.
10036
10037 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
10038 Lneg := (not OK) or else Lo < 0;
10039
10040 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
10041 Rneg := (not OK) or else Lo < 0;
10042
10043 -- We won't mess with trying to find out if the left operand can really
10044 -- be the largest negative number (that's a pain in the case of private
10045 -- types and this is really marginal). We will just assume that we need
10046 -- the test if the left operand can be negative at all.
10047
10048 if Lneg and Rneg then
10049 Rewrite (N,
10050 Make_If_Expression (Loc,
10051 Expressions => New_List (
10052 Make_Op_Eq (Loc,
10053 Left_Opnd => Duplicate_Subexpr (Right),
10054 Right_Opnd =>
10055 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
10056
10057 Unchecked_Convert_To (Typ,
10058 Make_Integer_Literal (Loc, Uint_0)),
10059
10060 Relocate_Node (N))));
10061
10062 Set_Analyzed (Next (Next (First (Expressions (N)))));
10063 Analyze_And_Resolve (N, Typ);
10064 end if;
10065 end Expand_N_Op_Rem;
10066
10067 -----------------------------
10068 -- Expand_N_Op_Rotate_Left --
10069 -----------------------------
10070
10071 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
10072 begin
10073 Binary_Op_Validity_Checks (N);
10074
10075 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
10076 -- so we rewrite in terms of logical shifts
10077
10078 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
10079
10080 -- where Bits is the shift count mod Esize (the mod operation here
10081 -- deals with ludicrous large shift counts, which are apparently OK).
10082
10083 -- What about nonbinary modulus ???
10084
10085 declare
10086 Loc : constant Source_Ptr := Sloc (N);
10087 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
10088 Typ : constant Entity_Id := Etype (N);
10089
10090 begin
10091 if Modify_Tree_For_C then
10092 Rewrite (Right_Opnd (N),
10093 Make_Op_Rem (Loc,
10094 Left_Opnd => Relocate_Node (Right_Opnd (N)),
10095 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
10096
10097 Analyze_And_Resolve (Right_Opnd (N), Rtp);
10098
10099 Rewrite (N,
10100 Make_Op_Or (Loc,
10101 Left_Opnd =>
10102 Make_Op_Shift_Left (Loc,
10103 Left_Opnd => Left_Opnd (N),
10104 Right_Opnd => Right_Opnd (N)),
10105
10106 Right_Opnd =>
10107 Make_Op_Shift_Right (Loc,
10108 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
10109 Right_Opnd =>
10110 Make_Op_Subtract (Loc,
10111 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
10112 Right_Opnd =>
10113 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
10114
10115 Analyze_And_Resolve (N, Typ);
10116 end if;
10117 end;
10118 end Expand_N_Op_Rotate_Left;
10119
10120 ------------------------------
10121 -- Expand_N_Op_Rotate_Right --
10122 ------------------------------
10123
10124 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
10125 begin
10126 Binary_Op_Validity_Checks (N);
10127
10128 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
10129 -- so we rewrite in terms of logical shifts
10130
10131 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
10132
10133 -- where Bits is the shift count mod Esize (the mod operation here
10134 -- deals with ludicrous large shift counts, which are apparently OK).
10135
10136 -- What about nonbinary modulus ???
10137
10138 declare
10139 Loc : constant Source_Ptr := Sloc (N);
10140 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
10141 Typ : constant Entity_Id := Etype (N);
10142
10143 begin
10144 Rewrite (Right_Opnd (N),
10145 Make_Op_Rem (Loc,
10146 Left_Opnd => Relocate_Node (Right_Opnd (N)),
10147 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
10148
10149 Analyze_And_Resolve (Right_Opnd (N), Rtp);
10150
10151 if Modify_Tree_For_C then
10152 Rewrite (N,
10153 Make_Op_Or (Loc,
10154 Left_Opnd =>
10155 Make_Op_Shift_Right (Loc,
10156 Left_Opnd => Left_Opnd (N),
10157 Right_Opnd => Right_Opnd (N)),
10158
10159 Right_Opnd =>
10160 Make_Op_Shift_Left (Loc,
10161 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
10162 Right_Opnd =>
10163 Make_Op_Subtract (Loc,
10164 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
10165 Right_Opnd =>
10166 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
10167
10168 Analyze_And_Resolve (N, Typ);
10169 end if;
10170 end;
10171 end Expand_N_Op_Rotate_Right;
10172
10173 ----------------------------
10174 -- Expand_N_Op_Shift_Left --
10175 ----------------------------
10176
10177 -- Note: nothing in this routine depends on left as opposed to right shifts
10178 -- so we share the routine for expanding shift right operations.
10179
10180 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
10181 begin
10182 Binary_Op_Validity_Checks (N);
10183
10184 -- If we are in Modify_Tree_For_C mode, then ensure that the right
10185 -- operand is not greater than the word size (since that would not
10186 -- be defined properly by the corresponding C shift operator).
10187
10188 if Modify_Tree_For_C then
10189 declare
10190 Right : constant Node_Id := Right_Opnd (N);
10191 Loc : constant Source_Ptr := Sloc (Right);
10192 Typ : constant Entity_Id := Etype (N);
10193 Siz : constant Uint := Esize (Typ);
10194 Orig : Node_Id;
10195 OK : Boolean;
10196 Lo : Uint;
10197 Hi : Uint;
10198
10199 begin
10200 if Compile_Time_Known_Value (Right) then
10201 if Expr_Value (Right) >= Siz then
10202 Rewrite (N, Make_Integer_Literal (Loc, 0));
10203 Analyze_And_Resolve (N, Typ);
10204 end if;
10205
10206 -- Not compile time known, find range
10207
10208 else
10209 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
10210
10211 -- Nothing to do if known to be OK range, otherwise expand
10212
10213 if not OK or else Hi >= Siz then
10214
10215 -- Prevent recursion on copy of shift node
10216
10217 Orig := Relocate_Node (N);
10218 Set_Analyzed (Orig);
10219
10220 -- Now do the rewrite
10221
10222 Rewrite (N,
10223 Make_If_Expression (Loc,
10224 Expressions => New_List (
10225 Make_Op_Ge (Loc,
10226 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
10227 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
10228 Make_Integer_Literal (Loc, 0),
10229 Orig)));
10230 Analyze_And_Resolve (N, Typ);
10231 end if;
10232 end if;
10233 end;
10234 end if;
10235 end Expand_N_Op_Shift_Left;
10236
10237 -----------------------------
10238 -- Expand_N_Op_Shift_Right --
10239 -----------------------------
10240
10241 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
10242 begin
10243 -- Share shift left circuit
10244
10245 Expand_N_Op_Shift_Left (N);
10246 end Expand_N_Op_Shift_Right;
10247
10248 ----------------------------------------
10249 -- Expand_N_Op_Shift_Right_Arithmetic --
10250 ----------------------------------------
10251
10252 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
10253 begin
10254 Binary_Op_Validity_Checks (N);
10255
10256 -- If we are in Modify_Tree_For_C mode, there is no shift right
10257 -- arithmetic in C, so we rewrite in terms of logical shifts.
10258
10259 -- Shift_Right (Num, Bits) or
10260 -- (if Num >= Sign
10261 -- then not (Shift_Right (Mask, bits))
10262 -- else 0)
10263
10264 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
10265
10266 -- Note: in almost all C compilers it would work to just shift a
10267 -- signed integer right, but it's undefined and we cannot rely on it.
10268
10269 -- Note: the above works fine for shift counts greater than or equal
10270 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
10271 -- generates all 1'bits.
10272
10273 -- What about nonbinary modulus ???
10274
10275 declare
10276 Loc : constant Source_Ptr := Sloc (N);
10277 Typ : constant Entity_Id := Etype (N);
10278 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
10279 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
10280 Left : constant Node_Id := Left_Opnd (N);
10281 Right : constant Node_Id := Right_Opnd (N);
10282 Maskx : Node_Id;
10283
10284 begin
10285 if Modify_Tree_For_C then
10286
10287 -- Here if not (Shift_Right (Mask, bits)) can be computed at
10288 -- compile time as a single constant.
10289
10290 if Compile_Time_Known_Value (Right) then
10291 declare
10292 Val : constant Uint := Expr_Value (Right);
10293
10294 begin
10295 if Val >= Esize (Typ) then
10296 Maskx := Make_Integer_Literal (Loc, Mask);
10297
10298 else
10299 Maskx :=
10300 Make_Integer_Literal (Loc,
10301 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
10302 end if;
10303 end;
10304
10305 else
10306 Maskx :=
10307 Make_Op_Not (Loc,
10308 Right_Opnd =>
10309 Make_Op_Shift_Right (Loc,
10310 Left_Opnd => Make_Integer_Literal (Loc, Mask),
10311 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
10312 end if;
10313
10314 -- Now do the rewrite
10315
10316 Rewrite (N,
10317 Make_Op_Or (Loc,
10318 Left_Opnd =>
10319 Make_Op_Shift_Right (Loc,
10320 Left_Opnd => Left,
10321 Right_Opnd => Right),
10322 Right_Opnd =>
10323 Make_If_Expression (Loc,
10324 Expressions => New_List (
10325 Make_Op_Ge (Loc,
10326 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
10327 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
10328 Maskx,
10329 Make_Integer_Literal (Loc, 0)))));
10330 Analyze_And_Resolve (N, Typ);
10331 end if;
10332 end;
10333 end Expand_N_Op_Shift_Right_Arithmetic;
10334
10335 --------------------------
10336 -- Expand_N_Op_Subtract --
10337 --------------------------
10338
10339 procedure Expand_N_Op_Subtract (N : Node_Id) is
10340 Typ : constant Entity_Id := Etype (N);
10341
10342 begin
10343 Binary_Op_Validity_Checks (N);
10344
10345 -- Check for MINIMIZED/ELIMINATED overflow mode
10346
10347 if Minimized_Eliminated_Overflow_Check (N) then
10348 Apply_Arithmetic_Overflow_Check (N);
10349 return;
10350 end if;
10351
10352 -- N - 0 = N for integer types
10353
10354 if Is_Integer_Type (Typ)
10355 and then Compile_Time_Known_Value (Right_Opnd (N))
10356 and then Expr_Value (Right_Opnd (N)) = 0
10357 then
10358 Rewrite (N, Left_Opnd (N));
10359 return;
10360 end if;
10361
10362 -- Arithmetic overflow checks for signed integer/fixed point types
10363
10364 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
10365 Apply_Arithmetic_Overflow_Check (N);
10366 end if;
10367
10368 -- Overflow checks for floating-point if -gnateF mode active
10369
10370 Check_Float_Op_Overflow (N);
10371
10372 Expand_Nonbinary_Modular_Op (N);
10373 end Expand_N_Op_Subtract;
10374
10375 ---------------------
10376 -- Expand_N_Op_Xor --
10377 ---------------------
10378
10379 procedure Expand_N_Op_Xor (N : Node_Id) is
10380 Typ : constant Entity_Id := Etype (N);
10381
10382 begin
10383 Binary_Op_Validity_Checks (N);
10384
10385 if Is_Array_Type (Etype (N)) then
10386 Expand_Boolean_Operator (N);
10387
10388 elsif Is_Boolean_Type (Etype (N)) then
10389 Adjust_Condition (Left_Opnd (N));
10390 Adjust_Condition (Right_Opnd (N));
10391 Set_Etype (N, Standard_Boolean);
10392 Adjust_Result_Type (N, Typ);
10393
10394 elsif Is_Intrinsic_Subprogram (Entity (N)) then
10395 Expand_Intrinsic_Call (N, Entity (N));
10396 end if;
10397
10398 Expand_Nonbinary_Modular_Op (N);
10399 end Expand_N_Op_Xor;
10400
10401 ----------------------
10402 -- Expand_N_Or_Else --
10403 ----------------------
10404
10405 procedure Expand_N_Or_Else (N : Node_Id)
10406 renames Expand_Short_Circuit_Operator;
10407
10408 -----------------------------------
10409 -- Expand_N_Qualified_Expression --
10410 -----------------------------------
10411
10412 procedure Expand_N_Qualified_Expression (N : Node_Id) is
10413 Operand : constant Node_Id := Expression (N);
10414 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
10415
10416 begin
10417 -- Do validity check if validity checking operands
10418
10419 if Validity_Checks_On and Validity_Check_Operands then
10420 Ensure_Valid (Operand);
10421 end if;
10422
10423 -- Apply possible constraint check
10424
10425 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
10426
10427 if Do_Range_Check (Operand) then
10428 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
10429 end if;
10430 end Expand_N_Qualified_Expression;
10431
10432 ------------------------------------
10433 -- Expand_N_Quantified_Expression --
10434 ------------------------------------
10435
10436 -- We expand:
10437
10438 -- for all X in range => Cond
10439
10440 -- into:
10441
10442 -- T := True;
10443 -- for X in range loop
10444 -- if not Cond then
10445 -- T := False;
10446 -- exit;
10447 -- end if;
10448 -- end loop;
10449
10450 -- Similarly, an existentially quantified expression:
10451
10452 -- for some X in range => Cond
10453
10454 -- becomes:
10455
10456 -- T := False;
10457 -- for X in range loop
10458 -- if Cond then
10459 -- T := True;
10460 -- exit;
10461 -- end if;
10462 -- end loop;
10463
10464 -- In both cases, the iteration may be over a container in which case it is
10465 -- given by an iterator specification, not a loop parameter specification.
10466
10467 procedure Expand_N_Quantified_Expression (N : Node_Id) is
10468 Actions : constant List_Id := New_List;
10469 For_All : constant Boolean := All_Present (N);
10470 Iter_Spec : constant Node_Id := Iterator_Specification (N);
10471 Loc : constant Source_Ptr := Sloc (N);
10472 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
10473 Cond : Node_Id;
10474 Flag : Entity_Id;
10475 Scheme : Node_Id;
10476 Stmts : List_Id;
10477 Var : Entity_Id;
10478
10479 begin
10480 -- Ensure that the bound variable is properly frozen. We must do
10481 -- this before expansion because the expression is about to be
10482 -- converted into a loop, and resulting freeze nodes may end up
10483 -- in the wrong place in the tree.
10484
10485 if Present (Iter_Spec) then
10486 Var := Defining_Identifier (Iter_Spec);
10487 else
10488 Var := Defining_Identifier (Loop_Spec);
10489 end if;
10490
10491 declare
10492 P : Node_Id := Parent (N);
10493 begin
10494 while Nkind (P) in N_Subexpr loop
10495 P := Parent (P);
10496 end loop;
10497
10498 Freeze_Before (P, Etype (Var));
10499 end;
10500
10501 -- Create the declaration of the flag which tracks the status of the
10502 -- quantified expression. Generate:
10503
10504 -- Flag : Boolean := (True | False);
10505
10506 Flag := Make_Temporary (Loc, 'T', N);
10507
10508 Append_To (Actions,
10509 Make_Object_Declaration (Loc,
10510 Defining_Identifier => Flag,
10511 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
10512 Expression =>
10513 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
10514
10515 -- Construct the circuitry which tracks the status of the quantified
10516 -- expression. Generate:
10517
10518 -- if [not] Cond then
10519 -- Flag := (False | True);
10520 -- exit;
10521 -- end if;
10522
10523 Cond := Relocate_Node (Condition (N));
10524
10525 if For_All then
10526 Cond := Make_Op_Not (Loc, Cond);
10527 end if;
10528
10529 Stmts := New_List (
10530 Make_Implicit_If_Statement (N,
10531 Condition => Cond,
10532 Then_Statements => New_List (
10533 Make_Assignment_Statement (Loc,
10534 Name => New_Occurrence_Of (Flag, Loc),
10535 Expression =>
10536 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
10537 Make_Exit_Statement (Loc))));
10538
10539 -- Build the loop equivalent of the quantified expression
10540
10541 if Present (Iter_Spec) then
10542 Scheme :=
10543 Make_Iteration_Scheme (Loc,
10544 Iterator_Specification => Iter_Spec);
10545 else
10546 Scheme :=
10547 Make_Iteration_Scheme (Loc,
10548 Loop_Parameter_Specification => Loop_Spec);
10549 end if;
10550
10551 Append_To (Actions,
10552 Make_Loop_Statement (Loc,
10553 Iteration_Scheme => Scheme,
10554 Statements => Stmts,
10555 End_Label => Empty));
10556
10557 -- Transform the quantified expression
10558
10559 Rewrite (N,
10560 Make_Expression_With_Actions (Loc,
10561 Expression => New_Occurrence_Of (Flag, Loc),
10562 Actions => Actions));
10563 Analyze_And_Resolve (N, Standard_Boolean);
10564 end Expand_N_Quantified_Expression;
10565
10566 ---------------------------------
10567 -- Expand_N_Selected_Component --
10568 ---------------------------------
10569
10570 procedure Expand_N_Selected_Component (N : Node_Id) is
10571 Loc : constant Source_Ptr := Sloc (N);
10572 Par : constant Node_Id := Parent (N);
10573 P : constant Node_Id := Prefix (N);
10574 S : constant Node_Id := Selector_Name (N);
10575 Ptyp : Entity_Id := Underlying_Type (Etype (P));
10576 Disc : Entity_Id;
10577 New_N : Node_Id;
10578 Dcon : Elmt_Id;
10579 Dval : Node_Id;
10580
10581 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
10582 -- Gigi needs a temporary for prefixes that depend on a discriminant,
10583 -- unless the context of an assignment can provide size information.
10584 -- Don't we have a general routine that does this???
10585
10586 function Is_Subtype_Declaration return Boolean;
10587 -- The replacement of a discriminant reference by its value is required
10588 -- if this is part of the initialization of an temporary generated by a
10589 -- change of representation. This shows up as the construction of a
10590 -- discriminant constraint for a subtype declared at the same point as
10591 -- the entity in the prefix of the selected component. We recognize this
10592 -- case when the context of the reference is:
10593 -- subtype ST is T(Obj.D);
10594 -- where the entity for Obj comes from source, and ST has the same sloc.
10595
10596 -----------------------
10597 -- In_Left_Hand_Side --
10598 -----------------------
10599
10600 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
10601 begin
10602 return (Nkind (Parent (Comp)) = N_Assignment_Statement
10603 and then Comp = Name (Parent (Comp)))
10604 or else (Present (Parent (Comp))
10605 and then Nkind (Parent (Comp)) in N_Subexpr
10606 and then In_Left_Hand_Side (Parent (Comp)));
10607 end In_Left_Hand_Side;
10608
10609 -----------------------------
10610 -- Is_Subtype_Declaration --
10611 -----------------------------
10612
10613 function Is_Subtype_Declaration return Boolean is
10614 Par : constant Node_Id := Parent (N);
10615 begin
10616 return
10617 Nkind (Par) = N_Index_Or_Discriminant_Constraint
10618 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
10619 and then Comes_From_Source (Entity (Prefix (N)))
10620 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
10621 end Is_Subtype_Declaration;
10622
10623 -- Start of processing for Expand_N_Selected_Component
10624
10625 begin
10626 -- Insert explicit dereference if required
10627
10628 if Is_Access_Type (Ptyp) then
10629
10630 -- First set prefix type to proper access type, in case it currently
10631 -- has a private (non-access) view of this type.
10632
10633 Set_Etype (P, Ptyp);
10634
10635 Insert_Explicit_Dereference (P);
10636 Analyze_And_Resolve (P, Designated_Type (Ptyp));
10637
10638 Ptyp := Etype (P);
10639 end if;
10640
10641 -- Deal with discriminant check required
10642
10643 if Do_Discriminant_Check (N) then
10644 if Present (Discriminant_Checking_Func
10645 (Original_Record_Component (Entity (S))))
10646 then
10647 -- Present the discriminant checking function to the backend, so
10648 -- that it can inline the call to the function.
10649
10650 Add_Inlined_Body
10651 (Discriminant_Checking_Func
10652 (Original_Record_Component (Entity (S))),
10653 N);
10654
10655 -- Now reset the flag and generate the call
10656
10657 Set_Do_Discriminant_Check (N, False);
10658 Generate_Discriminant_Check (N);
10659
10660 -- In the case of Unchecked_Union, no discriminant checking is
10661 -- actually performed.
10662
10663 else
10664 Set_Do_Discriminant_Check (N, False);
10665 end if;
10666 end if;
10667
10668 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10669 -- function, then additional actuals must be passed.
10670
10671 if Is_Build_In_Place_Function_Call (P) then
10672 Make_Build_In_Place_Call_In_Anonymous_Context (P);
10673
10674 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10675 -- containing build-in-place function calls whose returned object covers
10676 -- interface types.
10677
10678 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
10679 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
10680 end if;
10681
10682 -- Gigi cannot handle unchecked conversions that are the prefix of a
10683 -- selected component with discriminants. This must be checked during
10684 -- expansion, because during analysis the type of the selector is not
10685 -- known at the point the prefix is analyzed. If the conversion is the
10686 -- target of an assignment, then we cannot force the evaluation.
10687
10688 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
10689 and then Has_Discriminants (Etype (N))
10690 and then not In_Left_Hand_Side (N)
10691 then
10692 Force_Evaluation (Prefix (N));
10693 end if;
10694
10695 -- Remaining processing applies only if selector is a discriminant
10696
10697 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
10698
10699 -- If the selector is a discriminant of a constrained record type,
10700 -- we may be able to rewrite the expression with the actual value
10701 -- of the discriminant, a useful optimization in some cases.
10702
10703 if Is_Record_Type (Ptyp)
10704 and then Has_Discriminants (Ptyp)
10705 and then Is_Constrained (Ptyp)
10706 then
10707 -- Do this optimization for discrete types only, and not for
10708 -- access types (access discriminants get us into trouble).
10709
10710 if not Is_Discrete_Type (Etype (N)) then
10711 null;
10712
10713 -- Don't do this on the left-hand side of an assignment statement.
10714 -- Normally one would think that references like this would not
10715 -- occur, but they do in generated code, and mean that we really
10716 -- do want to assign the discriminant.
10717
10718 elsif Nkind (Par) = N_Assignment_Statement
10719 and then Name (Par) = N
10720 then
10721 null;
10722
10723 -- Don't do this optimization for the prefix of an attribute or
10724 -- the name of an object renaming declaration since these are
10725 -- contexts where we do not want the value anyway.
10726
10727 elsif (Nkind (Par) = N_Attribute_Reference
10728 and then Prefix (Par) = N)
10729 or else Is_Renamed_Object (N)
10730 then
10731 null;
10732
10733 -- Don't do this optimization if we are within the code for a
10734 -- discriminant check, since the whole point of such a check may
10735 -- be to verify the condition on which the code below depends.
10736
10737 elsif Is_In_Discriminant_Check (N) then
10738 null;
10739
10740 -- Green light to see if we can do the optimization. There is
10741 -- still one condition that inhibits the optimization below but
10742 -- now is the time to check the particular discriminant.
10743
10744 else
10745 -- Loop through discriminants to find the matching discriminant
10746 -- constraint to see if we can copy it.
10747
10748 Disc := First_Discriminant (Ptyp);
10749 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
10750 Discr_Loop : while Present (Dcon) loop
10751 Dval := Node (Dcon);
10752
10753 -- Check if this is the matching discriminant and if the
10754 -- discriminant value is simple enough to make sense to
10755 -- copy. We don't want to copy complex expressions, and
10756 -- indeed to do so can cause trouble (before we put in
10757 -- this guard, a discriminant expression containing an
10758 -- AND THEN was copied, causing problems for coverage
10759 -- analysis tools).
10760
10761 -- However, if the reference is part of the initialization
10762 -- code generated for an object declaration, we must use
10763 -- the discriminant value from the subtype constraint,
10764 -- because the selected component may be a reference to the
10765 -- object being initialized, whose discriminant is not yet
10766 -- set. This only happens in complex cases involving changes
10767 -- or representation.
10768
10769 if Disc = Entity (Selector_Name (N))
10770 and then (Is_Entity_Name (Dval)
10771 or else Compile_Time_Known_Value (Dval)
10772 or else Is_Subtype_Declaration)
10773 then
10774 -- Here we have the matching discriminant. Check for
10775 -- the case of a discriminant of a component that is
10776 -- constrained by an outer discriminant, which cannot
10777 -- be optimized away.
10778
10779 if Denotes_Discriminant
10780 (Dval, Check_Concurrent => True)
10781 then
10782 exit Discr_Loop;
10783
10784 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
10785 and then
10786 Denotes_Discriminant
10787 (Selector_Name (Original_Node (Dval)), True)
10788 then
10789 exit Discr_Loop;
10790
10791 -- Do not retrieve value if constraint is not static. It
10792 -- is generally not useful, and the constraint may be a
10793 -- rewritten outer discriminant in which case it is in
10794 -- fact incorrect.
10795
10796 elsif Is_Entity_Name (Dval)
10797 and then
10798 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
10799 and then Present (Expression (Parent (Entity (Dval))))
10800 and then not
10801 Is_OK_Static_Expression
10802 (Expression (Parent (Entity (Dval))))
10803 then
10804 exit Discr_Loop;
10805
10806 -- In the context of a case statement, the expression may
10807 -- have the base type of the discriminant, and we need to
10808 -- preserve the constraint to avoid spurious errors on
10809 -- missing cases.
10810
10811 elsif Nkind (Parent (N)) = N_Case_Statement
10812 and then Etype (Dval) /= Etype (Disc)
10813 then
10814 Rewrite (N,
10815 Make_Qualified_Expression (Loc,
10816 Subtype_Mark =>
10817 New_Occurrence_Of (Etype (Disc), Loc),
10818 Expression =>
10819 New_Copy_Tree (Dval)));
10820 Analyze_And_Resolve (N, Etype (Disc));
10821
10822 -- In case that comes out as a static expression,
10823 -- reset it (a selected component is never static).
10824
10825 Set_Is_Static_Expression (N, False);
10826 return;
10827
10828 -- Otherwise we can just copy the constraint, but the
10829 -- result is certainly not static. In some cases the
10830 -- discriminant constraint has been analyzed in the
10831 -- context of the original subtype indication, but for
10832 -- itypes the constraint might not have been analyzed
10833 -- yet, and this must be done now.
10834
10835 else
10836 Rewrite (N, New_Copy_Tree (Dval));
10837 Analyze_And_Resolve (N);
10838 Set_Is_Static_Expression (N, False);
10839 return;
10840 end if;
10841 end if;
10842
10843 Next_Elmt (Dcon);
10844 Next_Discriminant (Disc);
10845 end loop Discr_Loop;
10846
10847 -- Note: the above loop should always find a matching
10848 -- discriminant, but if it does not, we just missed an
10849 -- optimization due to some glitch (perhaps a previous
10850 -- error), so ignore.
10851
10852 end if;
10853 end if;
10854
10855 -- The only remaining processing is in the case of a discriminant of
10856 -- a concurrent object, where we rewrite the prefix to denote the
10857 -- corresponding record type. If the type is derived and has renamed
10858 -- discriminants, use corresponding discriminant, which is the one
10859 -- that appears in the corresponding record.
10860
10861 if not Is_Concurrent_Type (Ptyp) then
10862 return;
10863 end if;
10864
10865 Disc := Entity (Selector_Name (N));
10866
10867 if Is_Derived_Type (Ptyp)
10868 and then Present (Corresponding_Discriminant (Disc))
10869 then
10870 Disc := Corresponding_Discriminant (Disc);
10871 end if;
10872
10873 New_N :=
10874 Make_Selected_Component (Loc,
10875 Prefix =>
10876 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
10877 New_Copy_Tree (P)),
10878 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
10879
10880 Rewrite (N, New_N);
10881 Analyze (N);
10882 end if;
10883
10884 -- Set Atomic_Sync_Required if necessary for atomic component
10885
10886 if Nkind (N) = N_Selected_Component then
10887 declare
10888 E : constant Entity_Id := Entity (Selector_Name (N));
10889 Set : Boolean;
10890
10891 begin
10892 -- If component is atomic, but type is not, setting depends on
10893 -- disable/enable state for the component.
10894
10895 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
10896 Set := not Atomic_Synchronization_Disabled (E);
10897
10898 -- If component is not atomic, but its type is atomic, setting
10899 -- depends on disable/enable state for the type.
10900
10901 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10902 Set := not Atomic_Synchronization_Disabled (Etype (E));
10903
10904 -- If both component and type are atomic, we disable if either
10905 -- component or its type have sync disabled.
10906
10907 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10908 Set := (not Atomic_Synchronization_Disabled (E))
10909 and then
10910 (not Atomic_Synchronization_Disabled (Etype (E)));
10911
10912 else
10913 Set := False;
10914 end if;
10915
10916 -- Set flag if required
10917
10918 if Set then
10919 Activate_Atomic_Synchronization (N);
10920 end if;
10921 end;
10922 end if;
10923 end Expand_N_Selected_Component;
10924
10925 --------------------
10926 -- Expand_N_Slice --
10927 --------------------
10928
10929 procedure Expand_N_Slice (N : Node_Id) is
10930 Loc : constant Source_Ptr := Sloc (N);
10931 Typ : constant Entity_Id := Etype (N);
10932
10933 function Is_Procedure_Actual (N : Node_Id) return Boolean;
10934 -- Check whether the argument is an actual for a procedure call, in
10935 -- which case the expansion of a bit-packed slice is deferred until the
10936 -- call itself is expanded. The reason this is required is that we might
10937 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10938 -- that copy out would be missed if we created a temporary here in
10939 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10940 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10941 -- is harmless to defer expansion in the IN case, since the call
10942 -- processing will still generate the appropriate copy in operation,
10943 -- which will take care of the slice.
10944
10945 procedure Make_Temporary_For_Slice;
10946 -- Create a named variable for the value of the slice, in cases where
10947 -- the back end cannot handle it properly, e.g. when packed types or
10948 -- unaligned slices are involved.
10949
10950 -------------------------
10951 -- Is_Procedure_Actual --
10952 -------------------------
10953
10954 function Is_Procedure_Actual (N : Node_Id) return Boolean is
10955 Par : Node_Id := Parent (N);
10956
10957 begin
10958 loop
10959 -- If our parent is a procedure call we can return
10960
10961 if Nkind (Par) = N_Procedure_Call_Statement then
10962 return True;
10963
10964 -- If our parent is a type conversion, keep climbing the tree,
10965 -- since a type conversion can be a procedure actual. Also keep
10966 -- climbing if parameter association or a qualified expression,
10967 -- since these are additional cases that do can appear on
10968 -- procedure actuals.
10969
10970 elsif Nkind_In (Par, N_Type_Conversion,
10971 N_Parameter_Association,
10972 N_Qualified_Expression)
10973 then
10974 Par := Parent (Par);
10975
10976 -- Any other case is not what we are looking for
10977
10978 else
10979 return False;
10980 end if;
10981 end loop;
10982 end Is_Procedure_Actual;
10983
10984 ------------------------------
10985 -- Make_Temporary_For_Slice --
10986 ------------------------------
10987
10988 procedure Make_Temporary_For_Slice is
10989 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
10990 Decl : Node_Id;
10991
10992 begin
10993 Decl :=
10994 Make_Object_Declaration (Loc,
10995 Defining_Identifier => Ent,
10996 Object_Definition => New_Occurrence_Of (Typ, Loc));
10997
10998 Set_No_Initialization (Decl);
10999
11000 Insert_Actions (N, New_List (
11001 Decl,
11002 Make_Assignment_Statement (Loc,
11003 Name => New_Occurrence_Of (Ent, Loc),
11004 Expression => Relocate_Node (N))));
11005
11006 Rewrite (N, New_Occurrence_Of (Ent, Loc));
11007 Analyze_And_Resolve (N, Typ);
11008 end Make_Temporary_For_Slice;
11009
11010 -- Local variables
11011
11012 Pref : constant Node_Id := Prefix (N);
11013 Pref_Typ : Entity_Id := Etype (Pref);
11014
11015 -- Start of processing for Expand_N_Slice
11016
11017 begin
11018 -- Special handling for access types
11019
11020 if Is_Access_Type (Pref_Typ) then
11021 Pref_Typ := Designated_Type (Pref_Typ);
11022
11023 Rewrite (Pref,
11024 Make_Explicit_Dereference (Sloc (N),
11025 Prefix => Relocate_Node (Pref)));
11026
11027 Analyze_And_Resolve (Pref, Pref_Typ);
11028 end if;
11029
11030 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
11031 -- function, then additional actuals must be passed.
11032
11033 if Is_Build_In_Place_Function_Call (Pref) then
11034 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
11035
11036 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
11037 -- containing build-in-place function calls whose returned object covers
11038 -- interface types.
11039
11040 elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
11041 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
11042 end if;
11043
11044 -- The remaining case to be handled is packed slices. We can leave
11045 -- packed slices as they are in the following situations:
11046
11047 -- 1. Right or left side of an assignment (we can handle this
11048 -- situation correctly in the assignment statement expansion).
11049
11050 -- 2. Prefix of indexed component (the slide is optimized away in this
11051 -- case, see the start of Expand_N_Slice.)
11052
11053 -- 3. Object renaming declaration, since we want the name of the
11054 -- slice, not the value.
11055
11056 -- 4. Argument to procedure call, since copy-in/copy-out handling may
11057 -- be required, and this is handled in the expansion of call
11058 -- itself.
11059
11060 -- 5. Prefix of an address attribute (this is an error which is caught
11061 -- elsewhere, and the expansion would interfere with generating the
11062 -- error message) or of a size attribute (because 'Size may change
11063 -- when applied to the temporary instead of the slice directly).
11064
11065 if not Is_Packed (Typ) then
11066
11067 -- Apply transformation for actuals of a function call, where
11068 -- Expand_Actuals is not used.
11069
11070 if Nkind (Parent (N)) = N_Function_Call
11071 and then Is_Possibly_Unaligned_Slice (N)
11072 then
11073 Make_Temporary_For_Slice;
11074 end if;
11075
11076 elsif Nkind (Parent (N)) = N_Assignment_Statement
11077 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
11078 and then Parent (N) = Name (Parent (Parent (N))))
11079 then
11080 return;
11081
11082 elsif Nkind (Parent (N)) = N_Indexed_Component
11083 or else Is_Renamed_Object (N)
11084 or else Is_Procedure_Actual (N)
11085 then
11086 return;
11087
11088 elsif Nkind (Parent (N)) = N_Attribute_Reference
11089 and then (Attribute_Name (Parent (N)) = Name_Address
11090 or else Attribute_Name (Parent (N)) = Name_Size)
11091 then
11092 return;
11093
11094 else
11095 Make_Temporary_For_Slice;
11096 end if;
11097 end Expand_N_Slice;
11098
11099 ------------------------------
11100 -- Expand_N_Type_Conversion --
11101 ------------------------------
11102
11103 procedure Expand_N_Type_Conversion (N : Node_Id) is
11104 Loc : constant Source_Ptr := Sloc (N);
11105 Operand : constant Node_Id := Expression (N);
11106 Operand_Acc : Node_Id := Operand;
11107 Target_Type : Entity_Id := Etype (N);
11108 Operand_Type : Entity_Id := Etype (Operand);
11109
11110 procedure Discrete_Range_Check;
11111 -- Handles generation of range check for discrete target value
11112
11113 procedure Handle_Changed_Representation;
11114 -- This is called in the case of record and array type conversions to
11115 -- see if there is a change of representation to be handled. Change of
11116 -- representation is actually handled at the assignment statement level,
11117 -- and what this procedure does is rewrite node N conversion as an
11118 -- assignment to temporary. If there is no change of representation,
11119 -- then the conversion node is unchanged.
11120
11121 procedure Raise_Accessibility_Error;
11122 -- Called when we know that an accessibility check will fail. Rewrites
11123 -- node N to an appropriate raise statement and outputs warning msgs.
11124 -- The Etype of the raise node is set to Target_Type. Note that in this
11125 -- case the rest of the processing should be skipped (i.e. the call to
11126 -- this procedure will be followed by "goto Done").
11127
11128 procedure Real_Range_Check;
11129 -- Handles generation of range check for real target value
11130
11131 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
11132 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
11133 -- evaluates to True.
11134
11135 --------------------------
11136 -- Discrete_Range_Check --
11137 --------------------------
11138
11139 -- Case of conversions to a discrete type. We let Generate_Range_Check
11140 -- do the heavy lifting, after converting a fixed-point operand to an
11141 -- appropriate integer type.
11142
11143 procedure Discrete_Range_Check is
11144 Expr : Node_Id;
11145 Ityp : Entity_Id;
11146
11147 procedure Generate_Temporary;
11148 -- Generate a temporary to facilitate in the C backend the code
11149 -- generation of the unchecked conversion since the size of the
11150 -- source type may differ from the size of the target type.
11151
11152 ------------------------
11153 -- Generate_Temporary --
11154 ------------------------
11155
11156 procedure Generate_Temporary is
11157 begin
11158 if Esize (Etype (Expr)) < Esize (Etype (Ityp)) then
11159 declare
11160 Exp_Type : constant Entity_Id := Ityp;
11161 Def_Id : constant Entity_Id :=
11162 Make_Temporary (Loc, 'R', Expr);
11163 E : Node_Id;
11164 Res : Node_Id;
11165
11166 begin
11167 Set_Is_Internal (Def_Id);
11168 Set_Etype (Def_Id, Exp_Type);
11169 Res := New_Occurrence_Of (Def_Id, Loc);
11170
11171 E :=
11172 Make_Object_Declaration (Loc,
11173 Defining_Identifier => Def_Id,
11174 Object_Definition => New_Occurrence_Of
11175 (Exp_Type, Loc),
11176 Constant_Present => True,
11177 Expression => Relocate_Node (Expr));
11178
11179 Set_Assignment_OK (E);
11180 Insert_Action (Expr, E);
11181
11182 Set_Assignment_OK (Res, Assignment_OK (Expr));
11183
11184 Rewrite (Expr, Res);
11185 Analyze_And_Resolve (Expr, Exp_Type);
11186 end;
11187 end if;
11188 end Generate_Temporary;
11189
11190 -- Start of processing for Discrete_Range_Check
11191
11192 begin
11193 -- Nothing to do if conversion was rewritten
11194
11195 if Nkind (N) /= N_Type_Conversion then
11196 return;
11197 end if;
11198
11199 Expr := Expression (N);
11200
11201 -- Nothing to do if range checks suppressed
11202
11203 if Range_Checks_Suppressed (Target_Type) then
11204 return;
11205 end if;
11206
11207 -- Nothing to do if expression is an entity on which checks have been
11208 -- suppressed.
11209
11210 if Is_Entity_Name (Expr)
11211 and then Range_Checks_Suppressed (Entity (Expr))
11212 then
11213 return;
11214 end if;
11215
11216 -- Before we do a range check, we have to deal with treating
11217 -- a fixed-point operand as an integer. The way we do this
11218 -- is simply to do an unchecked conversion to an appropriate
11219 -- integer type large enough to hold the result.
11220
11221 if Is_Fixed_Point_Type (Etype (Expr)) then
11222 if Esize (Base_Type (Etype (Expr))) > Esize (Standard_Integer) then
11223 Ityp := Standard_Long_Long_Integer;
11224 else
11225 Ityp := Standard_Integer;
11226 end if;
11227
11228 -- Generate a temporary with the large type to facilitate in the C
11229 -- backend the code generation for the unchecked conversion.
11230
11231 if Modify_Tree_For_C then
11232 Generate_Temporary;
11233 end if;
11234
11235 Set_Do_Range_Check (Expr, False);
11236 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
11237 end if;
11238
11239 -- Reset overflow flag, since the range check will include
11240 -- dealing with possible overflow, and generate the check.
11241
11242 Set_Do_Overflow_Check (N, False);
11243
11244 Generate_Range_Check (Expr, Target_Type, CE_Range_Check_Failed);
11245 end Discrete_Range_Check;
11246
11247 -----------------------------------
11248 -- Handle_Changed_Representation --
11249 -----------------------------------
11250
11251 procedure Handle_Changed_Representation is
11252 Temp : Entity_Id;
11253 Decl : Node_Id;
11254 Odef : Node_Id;
11255 N_Ix : Node_Id;
11256 Cons : List_Id;
11257
11258 begin
11259 -- Nothing else to do if no change of representation
11260
11261 if Same_Representation (Operand_Type, Target_Type) then
11262 return;
11263
11264 -- The real change of representation work is done by the assignment
11265 -- statement processing. So if this type conversion is appearing as
11266 -- the expression of an assignment statement, nothing needs to be
11267 -- done to the conversion.
11268
11269 elsif Nkind (Parent (N)) = N_Assignment_Statement then
11270 return;
11271
11272 -- Otherwise we need to generate a temporary variable, and do the
11273 -- change of representation assignment into that temporary variable.
11274 -- The conversion is then replaced by a reference to this variable.
11275
11276 else
11277 Cons := No_List;
11278
11279 -- If type is unconstrained we have to add a constraint, copied
11280 -- from the actual value of the left-hand side.
11281
11282 if not Is_Constrained (Target_Type) then
11283 if Has_Discriminants (Operand_Type) then
11284
11285 -- A change of representation can only apply to untagged
11286 -- types. We need to build the constraint that applies to
11287 -- the target type, using the constraints of the operand.
11288 -- The analysis is complicated if there are both inherited
11289 -- discriminants and constrained discriminants.
11290 -- We iterate over the discriminants of the target, and
11291 -- find the discriminant of the same name:
11292
11293 -- a) If there is a corresponding discriminant in the object
11294 -- then the value is a selected component of the operand.
11295
11296 -- b) Otherwise the value of a constrained discriminant is
11297 -- found in the stored constraint of the operand.
11298
11299 declare
11300 Stored : constant Elist_Id :=
11301 Stored_Constraint (Operand_Type);
11302
11303 Elmt : Elmt_Id;
11304
11305 Disc_O : Entity_Id;
11306 -- Discriminant of the operand type. Its value in the
11307 -- object is captured in a selected component.
11308
11309 Disc_S : Entity_Id;
11310 -- Stored discriminant of the operand. If present, it
11311 -- corresponds to a constrained discriminant of the
11312 -- parent type.
11313
11314 Disc_T : Entity_Id;
11315 -- Discriminant of the target type
11316
11317 begin
11318 Disc_T := First_Discriminant (Target_Type);
11319 Disc_O := First_Discriminant (Operand_Type);
11320 Disc_S := First_Stored_Discriminant (Operand_Type);
11321
11322 if Present (Stored) then
11323 Elmt := First_Elmt (Stored);
11324 else
11325 Elmt := No_Elmt; -- init to avoid warning
11326 end if;
11327
11328 Cons := New_List;
11329 while Present (Disc_T) loop
11330 if Present (Disc_O)
11331 and then Chars (Disc_T) = Chars (Disc_O)
11332 then
11333 Append_To (Cons,
11334 Make_Selected_Component (Loc,
11335 Prefix =>
11336 Duplicate_Subexpr_Move_Checks (Operand),
11337 Selector_Name =>
11338 Make_Identifier (Loc, Chars (Disc_O))));
11339 Next_Discriminant (Disc_O);
11340
11341 elsif Present (Disc_S) then
11342 Append_To (Cons, New_Copy_Tree (Node (Elmt)));
11343 Next_Elmt (Elmt);
11344 end if;
11345
11346 Next_Discriminant (Disc_T);
11347 end loop;
11348 end;
11349
11350 elsif Is_Array_Type (Operand_Type) then
11351 N_Ix := First_Index (Target_Type);
11352 Cons := New_List;
11353
11354 for J in 1 .. Number_Dimensions (Operand_Type) loop
11355
11356 -- We convert the bounds explicitly. We use an unchecked
11357 -- conversion because bounds checks are done elsewhere.
11358
11359 Append_To (Cons,
11360 Make_Range (Loc,
11361 Low_Bound =>
11362 Unchecked_Convert_To (Etype (N_Ix),
11363 Make_Attribute_Reference (Loc,
11364 Prefix =>
11365 Duplicate_Subexpr_No_Checks
11366 (Operand, Name_Req => True),
11367 Attribute_Name => Name_First,
11368 Expressions => New_List (
11369 Make_Integer_Literal (Loc, J)))),
11370
11371 High_Bound =>
11372 Unchecked_Convert_To (Etype (N_Ix),
11373 Make_Attribute_Reference (Loc,
11374 Prefix =>
11375 Duplicate_Subexpr_No_Checks
11376 (Operand, Name_Req => True),
11377 Attribute_Name => Name_Last,
11378 Expressions => New_List (
11379 Make_Integer_Literal (Loc, J))))));
11380
11381 Next_Index (N_Ix);
11382 end loop;
11383 end if;
11384 end if;
11385
11386 Odef := New_Occurrence_Of (Target_Type, Loc);
11387
11388 if Present (Cons) then
11389 Odef :=
11390 Make_Subtype_Indication (Loc,
11391 Subtype_Mark => Odef,
11392 Constraint =>
11393 Make_Index_Or_Discriminant_Constraint (Loc,
11394 Constraints => Cons));
11395 end if;
11396
11397 Temp := Make_Temporary (Loc, 'C');
11398 Decl :=
11399 Make_Object_Declaration (Loc,
11400 Defining_Identifier => Temp,
11401 Object_Definition => Odef);
11402
11403 Set_No_Initialization (Decl, True);
11404
11405 -- Insert required actions. It is essential to suppress checks
11406 -- since we have suppressed default initialization, which means
11407 -- that the variable we create may have no discriminants.
11408
11409 Insert_Actions (N,
11410 New_List (
11411 Decl,
11412 Make_Assignment_Statement (Loc,
11413 Name => New_Occurrence_Of (Temp, Loc),
11414 Expression => Relocate_Node (N))),
11415 Suppress => All_Checks);
11416
11417 Rewrite (N, New_Occurrence_Of (Temp, Loc));
11418 return;
11419 end if;
11420 end Handle_Changed_Representation;
11421
11422 -------------------------------
11423 -- Raise_Accessibility_Error --
11424 -------------------------------
11425
11426 procedure Raise_Accessibility_Error is
11427 begin
11428 Error_Msg_Warn := SPARK_Mode /= On;
11429 Rewrite (N,
11430 Make_Raise_Program_Error (Sloc (N),
11431 Reason => PE_Accessibility_Check_Failed));
11432 Set_Etype (N, Target_Type);
11433
11434 Error_Msg_N ("<<accessibility check failure", N);
11435 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
11436 end Raise_Accessibility_Error;
11437
11438 ----------------------
11439 -- Real_Range_Check --
11440 ----------------------
11441
11442 -- Case of conversions to floating-point or fixed-point. If range checks
11443 -- are enabled and the target type has a range constraint, we convert:
11444
11445 -- typ (x)
11446
11447 -- to
11448
11449 -- Tnn : typ'Base := typ'Base (x);
11450 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
11451 -- typ (Tnn)
11452
11453 -- This is necessary when there is a conversion of integer to float or
11454 -- to fixed-point to ensure that the correct checks are made. It is not
11455 -- necessary for the float-to-float case where it is enough to just set
11456 -- the Do_Range_Check flag on the expression.
11457
11458 procedure Real_Range_Check is
11459 Btyp : constant Entity_Id := Base_Type (Target_Type);
11460 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
11461 Hi : constant Node_Id := Type_High_Bound (Target_Type);
11462
11463 Conv : Node_Id;
11464 Hi_Arg : Node_Id;
11465 Hi_Val : Node_Id;
11466 Lo_Arg : Node_Id;
11467 Lo_Val : Node_Id;
11468 Expr : Entity_Id;
11469 Tnn : Entity_Id;
11470
11471 begin
11472 -- Nothing to do if conversion was rewritten
11473
11474 if Nkind (N) /= N_Type_Conversion then
11475 return;
11476 end if;
11477
11478 Expr := Expression (N);
11479
11480 -- Clear the flag once for all
11481
11482 Set_Do_Range_Check (Expr, False);
11483
11484 -- Nothing to do if range checks suppressed, or target has the same
11485 -- range as the base type (or is the base type).
11486
11487 if Range_Checks_Suppressed (Target_Type)
11488 or else (Lo = Type_Low_Bound (Btyp)
11489 and then
11490 Hi = Type_High_Bound (Btyp))
11491 then
11492 return;
11493 end if;
11494
11495 -- Nothing to do if expression is an entity on which checks have been
11496 -- suppressed.
11497
11498 if Is_Entity_Name (Expr)
11499 and then Range_Checks_Suppressed (Entity (Expr))
11500 then
11501 return;
11502 end if;
11503
11504 -- Nothing to do if expression was rewritten into a float-to-float
11505 -- conversion, since this kind of conversion is handled elsewhere.
11506
11507 if Is_Floating_Point_Type (Etype (Expr))
11508 and then Is_Floating_Point_Type (Target_Type)
11509 then
11510 return;
11511 end if;
11512
11513 -- Nothing to do if bounds are all static and we can tell that the
11514 -- expression is within the bounds of the target. Note that if the
11515 -- operand is of an unconstrained floating-point type, then we do
11516 -- not trust it to be in range (might be infinite)
11517
11518 declare
11519 S_Lo : constant Node_Id := Type_Low_Bound (Etype (Expr));
11520 S_Hi : constant Node_Id := Type_High_Bound (Etype (Expr));
11521
11522 begin
11523 if (not Is_Floating_Point_Type (Etype (Expr))
11524 or else Is_Constrained (Etype (Expr)))
11525 and then Compile_Time_Known_Value (S_Lo)
11526 and then Compile_Time_Known_Value (S_Hi)
11527 and then Compile_Time_Known_Value (Hi)
11528 and then Compile_Time_Known_Value (Lo)
11529 then
11530 declare
11531 D_Lov : constant Ureal := Expr_Value_R (Lo);
11532 D_Hiv : constant Ureal := Expr_Value_R (Hi);
11533 S_Lov : Ureal;
11534 S_Hiv : Ureal;
11535
11536 begin
11537 if Is_Real_Type (Etype (Expr)) then
11538 S_Lov := Expr_Value_R (S_Lo);
11539 S_Hiv := Expr_Value_R (S_Hi);
11540 else
11541 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
11542 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
11543 end if;
11544
11545 if D_Hiv > D_Lov
11546 and then S_Lov >= D_Lov
11547 and then S_Hiv <= D_Hiv
11548 then
11549 return;
11550 end if;
11551 end;
11552 end if;
11553 end;
11554
11555 -- Otherwise rewrite the conversion as described above
11556
11557 Conv := Convert_To (Btyp, Expr);
11558
11559 -- If a conversion is necessary, then copy the specific flags from
11560 -- the original one and also move the Do_Overflow_Check flag since
11561 -- this new conversion is to the base type.
11562
11563 if Nkind (Conv) = N_Type_Conversion then
11564 Set_Conversion_OK (Conv, Conversion_OK (N));
11565 Set_Float_Truncate (Conv, Float_Truncate (N));
11566 Set_Rounded_Result (Conv, Rounded_Result (N));
11567
11568 if Do_Overflow_Check (N) then
11569 Set_Do_Overflow_Check (Conv);
11570 Set_Do_Overflow_Check (N, False);
11571 end if;
11572 end if;
11573
11574 Tnn := Make_Temporary (Loc, 'T', Conv);
11575
11576 -- For a conversion from Float to Fixed where the bounds of the
11577 -- fixed-point type are static, we can obtain a more accurate
11578 -- fixed-point value by converting the result of the floating-
11579 -- point expression to an appropriate integer type, and then
11580 -- performing an unchecked conversion to the target fixed-point
11581 -- type. The range check can then use the corresponding integer
11582 -- value of the bounds instead of requiring further conversions.
11583 -- This preserves the identity:
11584
11585 -- Fix_Val = Fixed_Type (Float_Type (Fix_Val))
11586
11587 -- which used to fail when Fix_Val was a bound of the type and
11588 -- the 'Small was not a representable number.
11589 -- This transformation requires an integer type large enough to
11590 -- accommodate a fixed-point value. This will not be the case
11591 -- in systems where Duration is larger than Long_Integer.
11592
11593 if Is_Ordinary_Fixed_Point_Type (Target_Type)
11594 and then Is_Floating_Point_Type (Etype (Expr))
11595 and then RM_Size (Btyp) <= RM_Size (Standard_Long_Integer)
11596 and then Nkind (Lo) = N_Real_Literal
11597 and then Nkind (Hi) = N_Real_Literal
11598 then
11599 declare
11600 Expr_Id : constant Entity_Id := Make_Temporary (Loc, 'T', Conv);
11601 Int_Type : Entity_Id;
11602
11603 begin
11604 -- Find an integer type of the appropriate size to perform an
11605 -- unchecked conversion to the target fixed-point type.
11606
11607 if RM_Size (Btyp) > RM_Size (Standard_Integer) then
11608 Int_Type := Standard_Long_Integer;
11609
11610 elsif RM_Size (Btyp) > RM_Size (Standard_Short_Integer) then
11611 Int_Type := Standard_Integer;
11612
11613 else
11614 Int_Type := Standard_Short_Integer;
11615 end if;
11616
11617 -- Generate a temporary with the integer value. Required in the
11618 -- CCG compiler to ensure that run-time checks reference this
11619 -- integer expression (instead of the resulting fixed-point
11620 -- value because fixed-point values are handled by means of
11621 -- unsigned integer types).
11622
11623 Insert_Action (N,
11624 Make_Object_Declaration (Loc,
11625 Defining_Identifier => Expr_Id,
11626 Object_Definition => New_Occurrence_Of (Int_Type, Loc),
11627 Constant_Present => True,
11628 Expression =>
11629 Convert_To (Int_Type, Expression (Conv))));
11630
11631 -- Create integer objects for range checking of result.
11632
11633 Lo_Arg :=
11634 Unchecked_Convert_To
11635 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11636
11637 Lo_Val :=
11638 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Lo));
11639
11640 Hi_Arg :=
11641 Unchecked_Convert_To
11642 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11643
11644 Hi_Val :=
11645 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Hi));
11646
11647 -- Rewrite conversion as an integer conversion of the
11648 -- original floating-point expression, followed by an
11649 -- unchecked conversion to the target fixed-point type.
11650
11651 Conv :=
11652 Make_Unchecked_Type_Conversion (Loc,
11653 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
11654 Expression => New_Occurrence_Of (Expr_Id, Loc));
11655 end;
11656
11657 -- All other conversions
11658
11659 else
11660 Lo_Arg := New_Occurrence_Of (Tnn, Loc);
11661 Lo_Val :=
11662 Make_Attribute_Reference (Loc,
11663 Prefix => New_Occurrence_Of (Target_Type, Loc),
11664 Attribute_Name => Name_First);
11665
11666 Hi_Arg := New_Occurrence_Of (Tnn, Loc);
11667 Hi_Val :=
11668 Make_Attribute_Reference (Loc,
11669 Prefix => New_Occurrence_Of (Target_Type, Loc),
11670 Attribute_Name => Name_Last);
11671 end if;
11672
11673 -- Build code for range checking. Note that checks are suppressed
11674 -- here since we don't want a recursive range check popping up.
11675
11676 Insert_Actions (N, New_List (
11677 Make_Object_Declaration (Loc,
11678 Defining_Identifier => Tnn,
11679 Object_Definition => New_Occurrence_Of (Btyp, Loc),
11680 Constant_Present => True,
11681 Expression => Conv),
11682
11683 Make_Raise_Constraint_Error (Loc,
11684 Condition =>
11685 Make_Or_Else (Loc,
11686 Left_Opnd =>
11687 Make_Op_Lt (Loc,
11688 Left_Opnd => Lo_Arg,
11689 Right_Opnd => Lo_Val),
11690
11691 Right_Opnd =>
11692 Make_Op_Gt (Loc,
11693 Left_Opnd => Hi_Arg,
11694 Right_Opnd => Hi_Val)),
11695 Reason => CE_Range_Check_Failed)),
11696 Suppress => All_Checks);
11697
11698 Rewrite (Expr, New_Occurrence_Of (Tnn, Loc));
11699 end Real_Range_Check;
11700
11701 -----------------------------
11702 -- Has_Extra_Accessibility --
11703 -----------------------------
11704
11705 -- Returns true for a formal of an anonymous access type or for an Ada
11706 -- 2012-style stand-alone object of an anonymous access type.
11707
11708 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
11709 begin
11710 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
11711 return Present (Effective_Extra_Accessibility (Id));
11712 else
11713 return False;
11714 end if;
11715 end Has_Extra_Accessibility;
11716
11717 -- Start of processing for Expand_N_Type_Conversion
11718
11719 begin
11720 -- First remove check marks put by the semantic analysis on the type
11721 -- conversion between array types. We need these checks, and they will
11722 -- be generated by this expansion routine, but we do not depend on these
11723 -- flags being set, and since we do intend to expand the checks in the
11724 -- front end, we don't want them on the tree passed to the back end.
11725
11726 if Is_Array_Type (Target_Type) then
11727 if Is_Constrained (Target_Type) then
11728 Set_Do_Length_Check (N, False);
11729 else
11730 Set_Do_Range_Check (Operand, False);
11731 end if;
11732 end if;
11733
11734 -- Nothing at all to do if conversion is to the identical type so remove
11735 -- the conversion completely, it is useless, except that it may carry
11736 -- an Assignment_OK attribute, which must be propagated to the operand.
11737
11738 if Operand_Type = Target_Type then
11739 if Assignment_OK (N) then
11740 Set_Assignment_OK (Operand);
11741 end if;
11742
11743 Rewrite (N, Relocate_Node (Operand));
11744 goto Done;
11745 end if;
11746
11747 -- Nothing to do if this is the second argument of read. This is a
11748 -- "backwards" conversion that will be handled by the specialized code
11749 -- in attribute processing.
11750
11751 if Nkind (Parent (N)) = N_Attribute_Reference
11752 and then Attribute_Name (Parent (N)) = Name_Read
11753 and then Next (First (Expressions (Parent (N)))) = N
11754 then
11755 goto Done;
11756 end if;
11757
11758 -- Check for case of converting to a type that has an invariant
11759 -- associated with it. This requires an invariant check. We insert
11760 -- a call:
11761
11762 -- invariant_check (typ (expr))
11763
11764 -- in the code, after removing side effects from the expression.
11765 -- This is clearer than replacing the conversion into an expression
11766 -- with actions, because the context may impose additional actions
11767 -- (tag checks, membership tests, etc.) that conflict with this
11768 -- rewriting (used previously).
11769
11770 -- Note: the Comes_From_Source check, and then the resetting of this
11771 -- flag prevents what would otherwise be an infinite recursion.
11772
11773 if Has_Invariants (Target_Type)
11774 and then Present (Invariant_Procedure (Target_Type))
11775 and then Comes_From_Source (N)
11776 then
11777 Set_Comes_From_Source (N, False);
11778 Remove_Side_Effects (N);
11779 Insert_Action (N, Make_Invariant_Call (Duplicate_Subexpr (N)));
11780 goto Done;
11781 end if;
11782
11783 -- Here if we may need to expand conversion
11784
11785 -- If the operand of the type conversion is an arithmetic operation on
11786 -- signed integers, and the based type of the signed integer type in
11787 -- question is smaller than Standard.Integer, we promote both of the
11788 -- operands to type Integer.
11789
11790 -- For example, if we have
11791
11792 -- target-type (opnd1 + opnd2)
11793
11794 -- and opnd1 and opnd2 are of type short integer, then we rewrite
11795 -- this as:
11796
11797 -- target-type (integer(opnd1) + integer(opnd2))
11798
11799 -- We do this because we are always allowed to compute in a larger type
11800 -- if we do the right thing with the result, and in this case we are
11801 -- going to do a conversion which will do an appropriate check to make
11802 -- sure that things are in range of the target type in any case. This
11803 -- avoids some unnecessary intermediate overflows.
11804
11805 -- We might consider a similar transformation in the case where the
11806 -- target is a real type or a 64-bit integer type, and the operand
11807 -- is an arithmetic operation using a 32-bit integer type. However,
11808 -- we do not bother with this case, because it could cause significant
11809 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
11810 -- much cheaper, but we don't want different behavior on 32-bit and
11811 -- 64-bit machines. Note that the exclusion of the 64-bit case also
11812 -- handles the configurable run-time cases where 64-bit arithmetic
11813 -- may simply be unavailable.
11814
11815 -- Note: this circuit is partially redundant with respect to the circuit
11816 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
11817 -- the processing here. Also we still need the Checks circuit, since we
11818 -- have to be sure not to generate junk overflow checks in the first
11819 -- place, since it would be trick to remove them here.
11820
11821 if Integer_Promotion_Possible (N) then
11822
11823 -- All conditions met, go ahead with transformation
11824
11825 declare
11826 Opnd : Node_Id;
11827 L, R : Node_Id;
11828
11829 begin
11830 R :=
11831 Make_Type_Conversion (Loc,
11832 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
11833 Expression => Relocate_Node (Right_Opnd (Operand)));
11834
11835 Opnd := New_Op_Node (Nkind (Operand), Loc);
11836 Set_Right_Opnd (Opnd, R);
11837
11838 if Nkind (Operand) in N_Binary_Op then
11839 L :=
11840 Make_Type_Conversion (Loc,
11841 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
11842 Expression => Relocate_Node (Left_Opnd (Operand)));
11843
11844 Set_Left_Opnd (Opnd, L);
11845 end if;
11846
11847 Rewrite (N,
11848 Make_Type_Conversion (Loc,
11849 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
11850 Expression => Opnd));
11851
11852 Analyze_And_Resolve (N, Target_Type);
11853 goto Done;
11854 end;
11855 end if;
11856
11857 -- Do validity check if validity checking operands
11858
11859 if Validity_Checks_On and Validity_Check_Operands then
11860 Ensure_Valid (Operand);
11861 end if;
11862
11863 -- Special case of converting from non-standard boolean type
11864
11865 if Is_Boolean_Type (Operand_Type)
11866 and then (Nonzero_Is_True (Operand_Type))
11867 then
11868 Adjust_Condition (Operand);
11869 Set_Etype (Operand, Standard_Boolean);
11870 Operand_Type := Standard_Boolean;
11871 end if;
11872
11873 -- Case of converting to an access type
11874
11875 if Is_Access_Type (Target_Type) then
11876 -- In terms of accessibility rules, an anonymous access discriminant
11877 -- is not considered separate from its parent object.
11878
11879 if Nkind (Operand) = N_Selected_Component
11880 and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
11881 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
11882 then
11883 Operand_Acc := Original_Node (Prefix (Operand));
11884 end if;
11885
11886 -- If this type conversion was internally generated by the front end
11887 -- to displace the pointer to the object to reference an interface
11888 -- type and the original node was an Unrestricted_Access attribute,
11889 -- then skip applying accessibility checks (because, according to the
11890 -- GNAT Reference Manual, this attribute is similar to 'Access except
11891 -- that all accessibility and aliased view checks are omitted).
11892
11893 if not Comes_From_Source (N)
11894 and then Is_Interface (Designated_Type (Target_Type))
11895 and then Nkind (Original_Node (N)) = N_Attribute_Reference
11896 and then Attribute_Name (Original_Node (N)) =
11897 Name_Unrestricted_Access
11898 then
11899 null;
11900
11901 -- Apply an accessibility check when the conversion operand is an
11902 -- access parameter (or a renaming thereof), unless conversion was
11903 -- expanded from an Unchecked_ or Unrestricted_Access attribute,
11904 -- or for the actual of a class-wide interface parameter. Note that
11905 -- other checks may still need to be applied below (such as tagged
11906 -- type checks).
11907
11908 elsif Is_Entity_Name (Operand_Acc)
11909 and then Has_Extra_Accessibility (Entity (Operand_Acc))
11910 and then Ekind (Etype (Operand_Acc)) = E_Anonymous_Access_Type
11911 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
11912 or else Attribute_Name (Original_Node (N)) = Name_Access)
11913 then
11914 if not Comes_From_Source (N)
11915 and then Nkind_In (Parent (N), N_Function_Call,
11916 N_Parameter_Association,
11917 N_Procedure_Call_Statement)
11918 and then Is_Interface (Designated_Type (Target_Type))
11919 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
11920 then
11921 null;
11922
11923 else
11924 Apply_Accessibility_Check
11925 (Operand_Acc, Target_Type, Insert_Node => Operand);
11926 end if;
11927
11928 -- If the level of the operand type is statically deeper than the
11929 -- level of the target type, then force Program_Error. Note that this
11930 -- can only occur for cases where the attribute is within the body of
11931 -- an instantiation, otherwise the conversion will already have been
11932 -- rejected as illegal.
11933
11934 -- Note: warnings are issued by the analyzer for the instance cases
11935
11936 elsif In_Instance_Body
11937
11938 -- The case where the target type is an anonymous access type of
11939 -- a discriminant is excluded, because the level of such a type
11940 -- depends on the context and currently the level returned for such
11941 -- types is zero, resulting in warnings about check failures
11942 -- in certain legal cases involving class-wide interfaces as the
11943 -- designated type (some cases, such as return statements, are
11944 -- checked at run time, but not clear if these are handled right
11945 -- in general, see 3.10.2(12/2-12.5/3) ???).
11946
11947 and then
11948 not (Ekind (Target_Type) = E_Anonymous_Access_Type
11949 and then Present (Associated_Node_For_Itype (Target_Type))
11950 and then Nkind (Associated_Node_For_Itype (Target_Type)) =
11951 N_Discriminant_Specification)
11952 and then
11953 Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
11954 then
11955 Raise_Accessibility_Error;
11956 goto Done;
11957
11958 -- When the operand is a selected access discriminant the check needs
11959 -- to be made against the level of the object denoted by the prefix
11960 -- of the selected name. Force Program_Error for this case as well
11961 -- (this accessibility violation can only happen if within the body
11962 -- of an instantiation).
11963
11964 elsif In_Instance_Body
11965 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
11966 and then Nkind (Operand) = N_Selected_Component
11967 and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
11968 and then Object_Access_Level (Operand) >
11969 Type_Access_Level (Target_Type)
11970 then
11971 Raise_Accessibility_Error;
11972 goto Done;
11973 end if;
11974 end if;
11975
11976 -- Case of conversions of tagged types and access to tagged types
11977
11978 -- When needed, that is to say when the expression is class-wide, Add
11979 -- runtime a tag check for (strict) downward conversion by using the
11980 -- membership test, generating:
11981
11982 -- [constraint_error when Operand not in Target_Type'Class]
11983
11984 -- or in the access type case
11985
11986 -- [constraint_error
11987 -- when Operand /= null
11988 -- and then Operand.all not in
11989 -- Designated_Type (Target_Type)'Class]
11990
11991 if (Is_Access_Type (Target_Type)
11992 and then Is_Tagged_Type (Designated_Type (Target_Type)))
11993 or else Is_Tagged_Type (Target_Type)
11994 then
11995 -- Do not do any expansion in the access type case if the parent is a
11996 -- renaming, since this is an error situation which will be caught by
11997 -- Sem_Ch8, and the expansion can interfere with this error check.
11998
11999 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
12000 goto Done;
12001 end if;
12002
12003 -- Otherwise, proceed with processing tagged conversion
12004
12005 Tagged_Conversion : declare
12006 Actual_Op_Typ : Entity_Id;
12007 Actual_Targ_Typ : Entity_Id;
12008 Make_Conversion : Boolean := False;
12009 Root_Op_Typ : Entity_Id;
12010
12011 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
12012 -- Create a membership check to test whether Operand is a member
12013 -- of Targ_Typ. If the original Target_Type is an access, include
12014 -- a test for null value. The check is inserted at N.
12015
12016 --------------------
12017 -- Make_Tag_Check --
12018 --------------------
12019
12020 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
12021 Cond : Node_Id;
12022
12023 begin
12024 -- Generate:
12025 -- [Constraint_Error
12026 -- when Operand /= null
12027 -- and then Operand.all not in Targ_Typ]
12028
12029 if Is_Access_Type (Target_Type) then
12030 Cond :=
12031 Make_And_Then (Loc,
12032 Left_Opnd =>
12033 Make_Op_Ne (Loc,
12034 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
12035 Right_Opnd => Make_Null (Loc)),
12036
12037 Right_Opnd =>
12038 Make_Not_In (Loc,
12039 Left_Opnd =>
12040 Make_Explicit_Dereference (Loc,
12041 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
12042 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
12043
12044 -- Generate:
12045 -- [Constraint_Error when Operand not in Targ_Typ]
12046
12047 else
12048 Cond :=
12049 Make_Not_In (Loc,
12050 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
12051 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
12052 end if;
12053
12054 Insert_Action (N,
12055 Make_Raise_Constraint_Error (Loc,
12056 Condition => Cond,
12057 Reason => CE_Tag_Check_Failed),
12058 Suppress => All_Checks);
12059 end Make_Tag_Check;
12060
12061 -- Start of processing for Tagged_Conversion
12062
12063 begin
12064 -- Handle entities from the limited view
12065
12066 if Is_Access_Type (Operand_Type) then
12067 Actual_Op_Typ :=
12068 Available_View (Designated_Type (Operand_Type));
12069 else
12070 Actual_Op_Typ := Operand_Type;
12071 end if;
12072
12073 if Is_Access_Type (Target_Type) then
12074 Actual_Targ_Typ :=
12075 Available_View (Designated_Type (Target_Type));
12076 else
12077 Actual_Targ_Typ := Target_Type;
12078 end if;
12079
12080 Root_Op_Typ := Root_Type (Actual_Op_Typ);
12081
12082 -- Ada 2005 (AI-251): Handle interface type conversion
12083
12084 if Is_Interface (Actual_Op_Typ)
12085 or else
12086 Is_Interface (Actual_Targ_Typ)
12087 then
12088 Expand_Interface_Conversion (N);
12089 goto Done;
12090 end if;
12091
12092 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
12093
12094 -- Create a runtime tag check for a downward class-wide type
12095 -- conversion.
12096
12097 if Is_Class_Wide_Type (Actual_Op_Typ)
12098 and then Actual_Op_Typ /= Actual_Targ_Typ
12099 and then Root_Op_Typ /= Actual_Targ_Typ
12100 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
12101 Use_Full_View => True)
12102 then
12103 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
12104 Make_Conversion := True;
12105 end if;
12106
12107 -- AI05-0073: If the result subtype of the function is defined
12108 -- by an access_definition designating a specific tagged type
12109 -- T, a check is made that the result value is null or the tag
12110 -- of the object designated by the result value identifies T.
12111 -- Constraint_Error is raised if this check fails.
12112
12113 if Nkind (Parent (N)) = N_Simple_Return_Statement then
12114 declare
12115 Func : Entity_Id;
12116 Func_Typ : Entity_Id;
12117
12118 begin
12119 -- Climb scope stack looking for the enclosing function
12120
12121 Func := Current_Scope;
12122 while Present (Func)
12123 and then Ekind (Func) /= E_Function
12124 loop
12125 Func := Scope (Func);
12126 end loop;
12127
12128 -- The function's return subtype must be defined using
12129 -- an access definition.
12130
12131 if Nkind (Result_Definition (Parent (Func))) =
12132 N_Access_Definition
12133 then
12134 Func_Typ := Directly_Designated_Type (Etype (Func));
12135
12136 -- The return subtype denotes a specific tagged type,
12137 -- in other words, a non class-wide type.
12138
12139 if Is_Tagged_Type (Func_Typ)
12140 and then not Is_Class_Wide_Type (Func_Typ)
12141 then
12142 Make_Tag_Check (Actual_Targ_Typ);
12143 Make_Conversion := True;
12144 end if;
12145 end if;
12146 end;
12147 end if;
12148
12149 -- We have generated a tag check for either a class-wide type
12150 -- conversion or for AI05-0073.
12151
12152 if Make_Conversion then
12153 declare
12154 Conv : Node_Id;
12155 begin
12156 Conv :=
12157 Make_Unchecked_Type_Conversion (Loc,
12158 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
12159 Expression => Relocate_Node (Expression (N)));
12160 Rewrite (N, Conv);
12161 Analyze_And_Resolve (N, Target_Type);
12162 end;
12163 end if;
12164 end if;
12165 end Tagged_Conversion;
12166
12167 -- Case of other access type conversions
12168
12169 elsif Is_Access_Type (Target_Type) then
12170 Apply_Constraint_Check (Operand, Target_Type);
12171
12172 -- Case of conversions from a fixed-point type
12173
12174 -- These conversions require special expansion and processing, found in
12175 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
12176 -- since from a semantic point of view, these are simple integer
12177 -- conversions, which do not need further processing.
12178
12179 elsif Is_Fixed_Point_Type (Operand_Type)
12180 and then not Conversion_OK (N)
12181 then
12182 -- We should never see universal fixed at this case, since the
12183 -- expansion of the constituent divide or multiply should have
12184 -- eliminated the explicit mention of universal fixed.
12185
12186 pragma Assert (Operand_Type /= Universal_Fixed);
12187
12188 -- Check for special case of the conversion to universal real that
12189 -- occurs as a result of the use of a round attribute. In this case,
12190 -- the real type for the conversion is taken from the target type of
12191 -- the Round attribute and the result must be marked as rounded.
12192
12193 if Target_Type = Universal_Real
12194 and then Nkind (Parent (N)) = N_Attribute_Reference
12195 and then Attribute_Name (Parent (N)) = Name_Round
12196 then
12197 Set_Rounded_Result (N);
12198 Set_Etype (N, Etype (Parent (N)));
12199 Target_Type := Etype (N);
12200 end if;
12201
12202 if Is_Fixed_Point_Type (Target_Type) then
12203 Expand_Convert_Fixed_To_Fixed (N);
12204 Real_Range_Check;
12205
12206 elsif Is_Integer_Type (Target_Type) then
12207 Expand_Convert_Fixed_To_Integer (N);
12208 Discrete_Range_Check;
12209
12210 else
12211 pragma Assert (Is_Floating_Point_Type (Target_Type));
12212 Expand_Convert_Fixed_To_Float (N);
12213 Real_Range_Check;
12214 end if;
12215
12216 -- Case of conversions to a fixed-point type
12217
12218 -- These conversions require special expansion and processing, found in
12219 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
12220 -- since from a semantic point of view, these are simple integer
12221 -- conversions, which do not need further processing.
12222
12223 elsif Is_Fixed_Point_Type (Target_Type)
12224 and then not Conversion_OK (N)
12225 then
12226 if Is_Integer_Type (Operand_Type) then
12227 Expand_Convert_Integer_To_Fixed (N);
12228 Real_Range_Check;
12229 else
12230 pragma Assert (Is_Floating_Point_Type (Operand_Type));
12231 Expand_Convert_Float_To_Fixed (N);
12232 Real_Range_Check;
12233 end if;
12234
12235 -- Case of array conversions
12236
12237 -- Expansion of array conversions, add required length/range checks but
12238 -- only do this if there is no change of representation. For handling of
12239 -- this case, see Handle_Changed_Representation.
12240
12241 elsif Is_Array_Type (Target_Type) then
12242 if Is_Constrained (Target_Type) then
12243 Apply_Length_Check (Operand, Target_Type);
12244 else
12245 Apply_Range_Check (Operand, Target_Type);
12246 end if;
12247
12248 Handle_Changed_Representation;
12249
12250 -- Case of conversions of discriminated types
12251
12252 -- Add required discriminant checks if target is constrained. Again this
12253 -- change is skipped if we have a change of representation.
12254
12255 elsif Has_Discriminants (Target_Type)
12256 and then Is_Constrained (Target_Type)
12257 then
12258 Apply_Discriminant_Check (Operand, Target_Type);
12259 Handle_Changed_Representation;
12260
12261 -- Case of all other record conversions. The only processing required
12262 -- is to check for a change of representation requiring the special
12263 -- assignment processing.
12264
12265 elsif Is_Record_Type (Target_Type) then
12266
12267 -- Ada 2005 (AI-216): Program_Error is raised when converting from
12268 -- a derived Unchecked_Union type to an unconstrained type that is
12269 -- not Unchecked_Union if the operand lacks inferable discriminants.
12270
12271 if Is_Derived_Type (Operand_Type)
12272 and then Is_Unchecked_Union (Base_Type (Operand_Type))
12273 and then not Is_Constrained (Target_Type)
12274 and then not Is_Unchecked_Union (Base_Type (Target_Type))
12275 and then not Has_Inferable_Discriminants (Operand)
12276 then
12277 -- To prevent Gigi from generating illegal code, we generate a
12278 -- Program_Error node, but we give it the target type of the
12279 -- conversion (is this requirement documented somewhere ???)
12280
12281 declare
12282 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
12283 Reason => PE_Unchecked_Union_Restriction);
12284
12285 begin
12286 Set_Etype (PE, Target_Type);
12287 Rewrite (N, PE);
12288
12289 end;
12290 else
12291 Handle_Changed_Representation;
12292 end if;
12293
12294 -- Case of conversions of enumeration types
12295
12296 elsif Is_Enumeration_Type (Target_Type) then
12297
12298 -- Special processing is required if there is a change of
12299 -- representation (from enumeration representation clauses).
12300
12301 if not Same_Representation (Target_Type, Operand_Type) then
12302
12303 -- Convert: x(y) to x'val (ytyp'val (y))
12304
12305 Rewrite (N,
12306 Make_Attribute_Reference (Loc,
12307 Prefix => New_Occurrence_Of (Target_Type, Loc),
12308 Attribute_Name => Name_Val,
12309 Expressions => New_List (
12310 Make_Attribute_Reference (Loc,
12311 Prefix => New_Occurrence_Of (Operand_Type, Loc),
12312 Attribute_Name => Name_Pos,
12313 Expressions => New_List (Operand)))));
12314
12315 Analyze_And_Resolve (N, Target_Type);
12316 end if;
12317 end if;
12318
12319 -- At this stage, either the conversion node has been transformed into
12320 -- some other equivalent expression, or left as a conversion that can be
12321 -- handled by Gigi, in the following cases:
12322
12323 -- Conversions with no change of representation or type
12324
12325 -- Numeric conversions involving integer, floating- and fixed-point
12326 -- values. Fixed-point values are allowed only if Conversion_OK is
12327 -- set, i.e. if the fixed-point values are to be treated as integers.
12328
12329 -- No other conversions should be passed to Gigi
12330
12331 -- Check: are these rules stated in sinfo??? if so, why restate here???
12332
12333 -- The only remaining step is to generate a range check if we still have
12334 -- a type conversion at this stage and Do_Range_Check is set. Note that
12335 -- we need to deal with at most 8 out of the 9 possible cases of numeric
12336 -- conversions here, because the float-to-integer case is entirely dealt
12337 -- with by Apply_Float_Conversion_Check.
12338
12339 if Nkind (N) = N_Type_Conversion
12340 and then Do_Range_Check (Expression (N))
12341 then
12342 -- Float-to-float conversions
12343
12344 if Is_Floating_Point_Type (Target_Type)
12345 and then Is_Floating_Point_Type (Etype (Expression (N)))
12346 then
12347 -- Reset overflow flag, since the range check will include
12348 -- dealing with possible overflow, and generate the check.
12349
12350 Set_Do_Overflow_Check (N, False);
12351
12352 Generate_Range_Check
12353 (Expression (N), Target_Type, CE_Range_Check_Failed);
12354
12355 -- Discrete-to-discrete conversions or fixed-point-to-discrete
12356 -- conversions when Conversion_OK is set.
12357
12358 elsif Is_Discrete_Type (Target_Type)
12359 and then (Is_Discrete_Type (Etype (Expression (N)))
12360 or else (Is_Fixed_Point_Type (Etype (Expression (N)))
12361 and then Conversion_OK (N)))
12362 then
12363 -- If Address is either a source type or target type,
12364 -- suppress range check to avoid typing anomalies when
12365 -- it is a visible integer type.
12366
12367 if Is_Descendant_Of_Address (Etype (Expression (N)))
12368 or else Is_Descendant_Of_Address (Target_Type)
12369 then
12370 Set_Do_Range_Check (Expression (N), False);
12371 else
12372 Discrete_Range_Check;
12373 end if;
12374
12375 -- Conversions to floating- or fixed-point when Conversion_OK is set
12376
12377 elsif Is_Floating_Point_Type (Target_Type)
12378 or else (Is_Fixed_Point_Type (Target_Type)
12379 and then Conversion_OK (N))
12380 then
12381 Real_Range_Check;
12382 end if;
12383 end if;
12384
12385 -- Here at end of processing
12386
12387 <<Done>>
12388 -- Apply predicate check if required. Note that we can't just call
12389 -- Apply_Predicate_Check here, because the type looks right after
12390 -- the conversion and it would omit the check. The Comes_From_Source
12391 -- guard is necessary to prevent infinite recursions when we generate
12392 -- internal conversions for the purpose of checking predicates.
12393
12394 if Present (Predicate_Function (Target_Type))
12395 and then not Predicates_Ignored (Target_Type)
12396 and then Target_Type /= Operand_Type
12397 and then Comes_From_Source (N)
12398 then
12399 declare
12400 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
12401
12402 begin
12403 -- Avoid infinite recursion on the subsequent expansion of
12404 -- of the copy of the original type conversion. When needed,
12405 -- a range check has already been applied to the expression.
12406
12407 Set_Comes_From_Source (New_Expr, False);
12408 Insert_Action (N,
12409 Make_Predicate_Check (Target_Type, New_Expr),
12410 Suppress => Range_Check);
12411 end;
12412 end if;
12413 end Expand_N_Type_Conversion;
12414
12415 -----------------------------------
12416 -- Expand_N_Unchecked_Expression --
12417 -----------------------------------
12418
12419 -- Remove the unchecked expression node from the tree. Its job was simply
12420 -- to make sure that its constituent expression was handled with checks
12421 -- off, and now that is done, we can remove it from the tree, and indeed
12422 -- must, since Gigi does not expect to see these nodes.
12423
12424 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
12425 Exp : constant Node_Id := Expression (N);
12426 begin
12427 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
12428 Rewrite (N, Exp);
12429 end Expand_N_Unchecked_Expression;
12430
12431 ----------------------------------------
12432 -- Expand_N_Unchecked_Type_Conversion --
12433 ----------------------------------------
12434
12435 -- If this cannot be handled by Gigi and we haven't already made a
12436 -- temporary for it, do it now.
12437
12438 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
12439 Target_Type : constant Entity_Id := Etype (N);
12440 Operand : constant Node_Id := Expression (N);
12441 Operand_Type : constant Entity_Id := Etype (Operand);
12442
12443 begin
12444 -- Nothing at all to do if conversion is to the identical type so remove
12445 -- the conversion completely, it is useless, except that it may carry
12446 -- an Assignment_OK indication which must be propagated to the operand.
12447
12448 if Operand_Type = Target_Type then
12449
12450 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
12451
12452 if Assignment_OK (N) then
12453 Set_Assignment_OK (Operand);
12454 end if;
12455
12456 Rewrite (N, Relocate_Node (Operand));
12457 return;
12458 end if;
12459
12460 -- If we have a conversion of a compile time known value to a target
12461 -- type and the value is in range of the target type, then we can simply
12462 -- replace the construct by an integer literal of the correct type. We
12463 -- only apply this to integer types being converted. Possibly it may
12464 -- apply in other cases, but it is too much trouble to worry about.
12465
12466 -- Note that we do not do this transformation if the Kill_Range_Check
12467 -- flag is set, since then the value may be outside the expected range.
12468 -- This happens in the Normalize_Scalars case.
12469
12470 -- We also skip this if either the target or operand type is biased
12471 -- because in this case, the unchecked conversion is supposed to
12472 -- preserve the bit pattern, not the integer value.
12473
12474 if Is_Integer_Type (Target_Type)
12475 and then not Has_Biased_Representation (Target_Type)
12476 and then Is_Integer_Type (Operand_Type)
12477 and then not Has_Biased_Representation (Operand_Type)
12478 and then Compile_Time_Known_Value (Operand)
12479 and then not Kill_Range_Check (N)
12480 then
12481 declare
12482 Val : constant Uint := Expr_Value (Operand);
12483
12484 begin
12485 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
12486 and then
12487 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
12488 and then
12489 Val >= Expr_Value (Type_Low_Bound (Target_Type))
12490 and then
12491 Val <= Expr_Value (Type_High_Bound (Target_Type))
12492 then
12493 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
12494
12495 -- If Address is the target type, just set the type to avoid a
12496 -- spurious type error on the literal when Address is a visible
12497 -- integer type.
12498
12499 if Is_Descendant_Of_Address (Target_Type) then
12500 Set_Etype (N, Target_Type);
12501 else
12502 Analyze_And_Resolve (N, Target_Type);
12503 end if;
12504
12505 return;
12506 end if;
12507 end;
12508 end if;
12509
12510 -- Generate an extra temporary for cases unsupported by the C backend
12511
12512 if Modify_Tree_For_C then
12513 declare
12514 Source : constant Node_Id := Unqual_Conv (Expression (N));
12515 Source_Typ : Entity_Id := Get_Full_View (Etype (Source));
12516
12517 begin
12518 if Is_Packed_Array (Source_Typ) then
12519 Source_Typ := Packed_Array_Impl_Type (Source_Typ);
12520 end if;
12521
12522 if Nkind (Source) = N_Function_Call
12523 and then (Is_Composite_Type (Etype (Source))
12524 or else Is_Composite_Type (Target_Type))
12525 then
12526 Force_Evaluation (Source);
12527 end if;
12528 end;
12529 end if;
12530
12531 -- Nothing to do if conversion is safe
12532
12533 if Safe_Unchecked_Type_Conversion (N) then
12534 return;
12535 end if;
12536
12537 -- Otherwise force evaluation unless Assignment_OK flag is set (this
12538 -- flag indicates ??? More comments needed here)
12539
12540 if Assignment_OK (N) then
12541 null;
12542 else
12543 Force_Evaluation (N);
12544 end if;
12545 end Expand_N_Unchecked_Type_Conversion;
12546
12547 ----------------------------
12548 -- Expand_Record_Equality --
12549 ----------------------------
12550
12551 -- For non-variant records, Equality is expanded when needed into:
12552
12553 -- and then Lhs.Discr1 = Rhs.Discr1
12554 -- and then ...
12555 -- and then Lhs.Discrn = Rhs.Discrn
12556 -- and then Lhs.Cmp1 = Rhs.Cmp1
12557 -- and then ...
12558 -- and then Lhs.Cmpn = Rhs.Cmpn
12559
12560 -- The expression is folded by the back end for adjacent fields. This
12561 -- function is called for tagged record in only one occasion: for imple-
12562 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
12563 -- otherwise the primitive "=" is used directly.
12564
12565 function Expand_Record_Equality
12566 (Nod : Node_Id;
12567 Typ : Entity_Id;
12568 Lhs : Node_Id;
12569 Rhs : Node_Id;
12570 Bodies : List_Id) return Node_Id
12571 is
12572 Loc : constant Source_Ptr := Sloc (Nod);
12573
12574 Result : Node_Id;
12575 C : Entity_Id;
12576
12577 First_Time : Boolean := True;
12578
12579 function Element_To_Compare (C : Entity_Id) return Entity_Id;
12580 -- Return the next discriminant or component to compare, starting with
12581 -- C, skipping inherited components.
12582
12583 ------------------------
12584 -- Element_To_Compare --
12585 ------------------------
12586
12587 function Element_To_Compare (C : Entity_Id) return Entity_Id is
12588 Comp : Entity_Id;
12589
12590 begin
12591 Comp := C;
12592 loop
12593 -- Exit loop when the next element to be compared is found, or
12594 -- there is no more such element.
12595
12596 exit when No (Comp);
12597
12598 exit when Ekind_In (Comp, E_Discriminant, E_Component)
12599 and then not (
12600
12601 -- Skip inherited components
12602
12603 -- Note: for a tagged type, we always generate the "=" primitive
12604 -- for the base type (not on the first subtype), so the test for
12605 -- Comp /= Original_Record_Component (Comp) is True for
12606 -- inherited components only.
12607
12608 (Is_Tagged_Type (Typ)
12609 and then Comp /= Original_Record_Component (Comp))
12610
12611 -- Skip _Tag
12612
12613 or else Chars (Comp) = Name_uTag
12614
12615 -- Skip interface elements (secondary tags???)
12616
12617 or else Is_Interface (Etype (Comp)));
12618
12619 Next_Entity (Comp);
12620 end loop;
12621
12622 return Comp;
12623 end Element_To_Compare;
12624
12625 -- Start of processing for Expand_Record_Equality
12626
12627 begin
12628 -- Generates the following code: (assuming that Typ has one Discr and
12629 -- component C2 is also a record)
12630
12631 -- Lhs.Discr1 = Rhs.Discr1
12632 -- and then Lhs.C1 = Rhs.C1
12633 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
12634 -- and then ...
12635 -- and then Lhs.Cmpn = Rhs.Cmpn
12636
12637 Result := New_Occurrence_Of (Standard_True, Loc);
12638 C := Element_To_Compare (First_Entity (Typ));
12639 while Present (C) loop
12640 declare
12641 New_Lhs : Node_Id;
12642 New_Rhs : Node_Id;
12643 Check : Node_Id;
12644
12645 begin
12646 if First_Time then
12647 New_Lhs := Lhs;
12648 New_Rhs := Rhs;
12649 else
12650 New_Lhs := New_Copy_Tree (Lhs);
12651 New_Rhs := New_Copy_Tree (Rhs);
12652 end if;
12653
12654 Check :=
12655 Expand_Composite_Equality (Nod, Etype (C),
12656 Lhs =>
12657 Make_Selected_Component (Loc,
12658 Prefix => New_Lhs,
12659 Selector_Name => New_Occurrence_Of (C, Loc)),
12660 Rhs =>
12661 Make_Selected_Component (Loc,
12662 Prefix => New_Rhs,
12663 Selector_Name => New_Occurrence_Of (C, Loc)),
12664 Bodies => Bodies);
12665
12666 -- If some (sub)component is an unchecked_union, the whole
12667 -- operation will raise program error.
12668
12669 if Nkind (Check) = N_Raise_Program_Error then
12670 Result := Check;
12671 Set_Etype (Result, Standard_Boolean);
12672 exit;
12673 else
12674 if First_Time then
12675 Result := Check;
12676
12677 -- Generate logical "and" for CodePeer to simplify the
12678 -- generated code and analysis.
12679
12680 elsif CodePeer_Mode then
12681 Result :=
12682 Make_Op_And (Loc,
12683 Left_Opnd => Result,
12684 Right_Opnd => Check);
12685
12686 else
12687 Result :=
12688 Make_And_Then (Loc,
12689 Left_Opnd => Result,
12690 Right_Opnd => Check);
12691 end if;
12692 end if;
12693 end;
12694
12695 First_Time := False;
12696 C := Element_To_Compare (Next_Entity (C));
12697 end loop;
12698
12699 return Result;
12700 end Expand_Record_Equality;
12701
12702 ---------------------------
12703 -- Expand_Set_Membership --
12704 ---------------------------
12705
12706 procedure Expand_Set_Membership (N : Node_Id) is
12707 Lop : constant Node_Id := Left_Opnd (N);
12708 Alt : Node_Id;
12709 Res : Node_Id;
12710
12711 function Make_Cond (Alt : Node_Id) return Node_Id;
12712 -- If the alternative is a subtype mark, create a simple membership
12713 -- test. Otherwise create an equality test for it.
12714
12715 ---------------
12716 -- Make_Cond --
12717 ---------------
12718
12719 function Make_Cond (Alt : Node_Id) return Node_Id is
12720 Cond : Node_Id;
12721 L : constant Node_Id := New_Copy_Tree (Lop);
12722 R : constant Node_Id := Relocate_Node (Alt);
12723
12724 begin
12725 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
12726 or else Nkind (Alt) = N_Range
12727 then
12728 Cond :=
12729 Make_In (Sloc (Alt),
12730 Left_Opnd => L,
12731 Right_Opnd => R);
12732 else
12733 Cond :=
12734 Make_Op_Eq (Sloc (Alt),
12735 Left_Opnd => L,
12736 Right_Opnd => R);
12737 end if;
12738
12739 return Cond;
12740 end Make_Cond;
12741
12742 -- Start of processing for Expand_Set_Membership
12743
12744 begin
12745 Remove_Side_Effects (Lop);
12746
12747 Alt := Last (Alternatives (N));
12748 Res := Make_Cond (Alt);
12749
12750 Prev (Alt);
12751 while Present (Alt) loop
12752 Res :=
12753 Make_Or_Else (Sloc (Alt),
12754 Left_Opnd => Make_Cond (Alt),
12755 Right_Opnd => Res);
12756 Prev (Alt);
12757 end loop;
12758
12759 Rewrite (N, Res);
12760 Analyze_And_Resolve (N, Standard_Boolean);
12761 end Expand_Set_Membership;
12762
12763 -----------------------------------
12764 -- Expand_Short_Circuit_Operator --
12765 -----------------------------------
12766
12767 -- Deal with special expansion if actions are present for the right operand
12768 -- and deal with optimizing case of arguments being True or False. We also
12769 -- deal with the special case of non-standard boolean values.
12770
12771 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
12772 Loc : constant Source_Ptr := Sloc (N);
12773 Typ : constant Entity_Id := Etype (N);
12774 Left : constant Node_Id := Left_Opnd (N);
12775 Right : constant Node_Id := Right_Opnd (N);
12776 LocR : constant Source_Ptr := Sloc (Right);
12777 Actlist : List_Id;
12778
12779 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
12780 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
12781 -- If Left = Shortcut_Value then Right need not be evaluated
12782
12783 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
12784 -- For Opnd a boolean expression, return a Boolean expression equivalent
12785 -- to Opnd /= Shortcut_Value.
12786
12787 function Useful (Actions : List_Id) return Boolean;
12788 -- Return True if Actions is not empty and contains useful nodes to
12789 -- process.
12790
12791 --------------------
12792 -- Make_Test_Expr --
12793 --------------------
12794
12795 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
12796 begin
12797 if Shortcut_Value then
12798 return Make_Op_Not (Sloc (Opnd), Opnd);
12799 else
12800 return Opnd;
12801 end if;
12802 end Make_Test_Expr;
12803
12804 ------------
12805 -- Useful --
12806 ------------
12807
12808 function Useful (Actions : List_Id) return Boolean is
12809 L : Node_Id;
12810 begin
12811 if Present (Actions) then
12812 L := First (Actions);
12813
12814 -- For now "useful" means not N_Variable_Reference_Marker.
12815 -- Consider stripping other nodes in the future.
12816
12817 while Present (L) loop
12818 if Nkind (L) /= N_Variable_Reference_Marker then
12819 return True;
12820 end if;
12821
12822 Next (L);
12823 end loop;
12824 end if;
12825
12826 return False;
12827 end Useful;
12828
12829 -- Local variables
12830
12831 Op_Var : Entity_Id;
12832 -- Entity for a temporary variable holding the value of the operator,
12833 -- used for expansion in the case where actions are present.
12834
12835 -- Start of processing for Expand_Short_Circuit_Operator
12836
12837 begin
12838 -- Deal with non-standard booleans
12839
12840 if Is_Boolean_Type (Typ) then
12841 Adjust_Condition (Left);
12842 Adjust_Condition (Right);
12843 Set_Etype (N, Standard_Boolean);
12844 end if;
12845
12846 -- Check for cases where left argument is known to be True or False
12847
12848 if Compile_Time_Known_Value (Left) then
12849
12850 -- Mark SCO for left condition as compile time known
12851
12852 if Generate_SCO and then Comes_From_Source (Left) then
12853 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
12854 end if;
12855
12856 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
12857 -- Any actions associated with Right will be executed unconditionally
12858 -- and can thus be inserted into the tree unconditionally.
12859
12860 if Expr_Value_E (Left) /= Shortcut_Ent then
12861 if Present (Actions (N)) then
12862 Insert_Actions (N, Actions (N));
12863 end if;
12864
12865 Rewrite (N, Right);
12866
12867 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
12868 -- In this case we can forget the actions associated with Right,
12869 -- since they will never be executed.
12870
12871 else
12872 Kill_Dead_Code (Right);
12873 Kill_Dead_Code (Actions (N));
12874 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12875 end if;
12876
12877 Adjust_Result_Type (N, Typ);
12878 return;
12879 end if;
12880
12881 -- If Actions are present for the right operand, we have to do some
12882 -- special processing. We can't just let these actions filter back into
12883 -- code preceding the short circuit (which is what would have happened
12884 -- if we had not trapped them in the short-circuit form), since they
12885 -- must only be executed if the right operand of the short circuit is
12886 -- executed and not otherwise.
12887
12888 if Useful (Actions (N)) then
12889 Actlist := Actions (N);
12890
12891 -- The old approach is to expand:
12892
12893 -- left AND THEN right
12894
12895 -- into
12896
12897 -- C : Boolean := False;
12898 -- IF left THEN
12899 -- Actions;
12900 -- IF right THEN
12901 -- C := True;
12902 -- END IF;
12903 -- END IF;
12904
12905 -- and finally rewrite the operator into a reference to C. Similarly
12906 -- for left OR ELSE right, with negated values. Note that this
12907 -- rewrite causes some difficulties for coverage analysis because
12908 -- of the introduction of the new variable C, which obscures the
12909 -- structure of the test.
12910
12911 -- We use this "old approach" if Minimize_Expression_With_Actions
12912 -- is True.
12913
12914 if Minimize_Expression_With_Actions then
12915 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
12916
12917 Insert_Action (N,
12918 Make_Object_Declaration (Loc,
12919 Defining_Identifier => Op_Var,
12920 Object_Definition =>
12921 New_Occurrence_Of (Standard_Boolean, Loc),
12922 Expression =>
12923 New_Occurrence_Of (Shortcut_Ent, Loc)));
12924
12925 Append_To (Actlist,
12926 Make_Implicit_If_Statement (Right,
12927 Condition => Make_Test_Expr (Right),
12928 Then_Statements => New_List (
12929 Make_Assignment_Statement (LocR,
12930 Name => New_Occurrence_Of (Op_Var, LocR),
12931 Expression =>
12932 New_Occurrence_Of
12933 (Boolean_Literals (not Shortcut_Value), LocR)))));
12934
12935 Insert_Action (N,
12936 Make_Implicit_If_Statement (Left,
12937 Condition => Make_Test_Expr (Left),
12938 Then_Statements => Actlist));
12939
12940 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
12941 Analyze_And_Resolve (N, Standard_Boolean);
12942
12943 -- The new approach (the default) is to use an
12944 -- Expression_With_Actions node for the right operand of the
12945 -- short-circuit form. Note that this solves the traceability
12946 -- problems for coverage analysis.
12947
12948 else
12949 Rewrite (Right,
12950 Make_Expression_With_Actions (LocR,
12951 Expression => Relocate_Node (Right),
12952 Actions => Actlist));
12953
12954 Set_Actions (N, No_List);
12955 Analyze_And_Resolve (Right, Standard_Boolean);
12956 end if;
12957
12958 Adjust_Result_Type (N, Typ);
12959 return;
12960 end if;
12961
12962 -- No actions present, check for cases of right argument True/False
12963
12964 if Compile_Time_Known_Value (Right) then
12965
12966 -- Mark SCO for left condition as compile time known
12967
12968 if Generate_SCO and then Comes_From_Source (Right) then
12969 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
12970 end if;
12971
12972 -- Change (Left and then True), (Left or else False) to Left. Note
12973 -- that we know there are no actions associated with the right
12974 -- operand, since we just checked for this case above.
12975
12976 if Expr_Value_E (Right) /= Shortcut_Ent then
12977 Rewrite (N, Left);
12978
12979 -- Change (Left and then False), (Left or else True) to Right,
12980 -- making sure to preserve any side effects associated with the Left
12981 -- operand.
12982
12983 else
12984 Remove_Side_Effects (Left);
12985 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12986 end if;
12987 end if;
12988
12989 Adjust_Result_Type (N, Typ);
12990 end Expand_Short_Circuit_Operator;
12991
12992 ------------------------------------
12993 -- Fixup_Universal_Fixed_Operation --
12994 -------------------------------------
12995
12996 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
12997 Conv : constant Node_Id := Parent (N);
12998
12999 begin
13000 -- We must have a type conversion immediately above us
13001
13002 pragma Assert (Nkind (Conv) = N_Type_Conversion);
13003
13004 -- Normally the type conversion gives our target type. The exception
13005 -- occurs in the case of the Round attribute, where the conversion
13006 -- will be to universal real, and our real type comes from the Round
13007 -- attribute (as well as an indication that we must round the result)
13008
13009 if Nkind (Parent (Conv)) = N_Attribute_Reference
13010 and then Attribute_Name (Parent (Conv)) = Name_Round
13011 then
13012 Set_Etype (N, Base_Type (Etype (Parent (Conv))));
13013 Set_Rounded_Result (N);
13014
13015 -- Normal case where type comes from conversion above us
13016
13017 else
13018 Set_Etype (N, Base_Type (Etype (Conv)));
13019 end if;
13020 end Fixup_Universal_Fixed_Operation;
13021
13022 ---------------------------------
13023 -- Has_Inferable_Discriminants --
13024 ---------------------------------
13025
13026 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
13027
13028 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
13029 -- Determines whether the left-most prefix of a selected component is a
13030 -- formal parameter in a subprogram. Assumes N is a selected component.
13031
13032 --------------------------------
13033 -- Prefix_Is_Formal_Parameter --
13034 --------------------------------
13035
13036 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
13037 Sel_Comp : Node_Id;
13038
13039 begin
13040 -- Move to the left-most prefix by climbing up the tree
13041
13042 Sel_Comp := N;
13043 while Present (Parent (Sel_Comp))
13044 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
13045 loop
13046 Sel_Comp := Parent (Sel_Comp);
13047 end loop;
13048
13049 return Is_Formal (Entity (Prefix (Sel_Comp)));
13050 end Prefix_Is_Formal_Parameter;
13051
13052 -- Start of processing for Has_Inferable_Discriminants
13053
13054 begin
13055 -- For selected components, the subtype of the selector must be a
13056 -- constrained Unchecked_Union. If the component is subject to a
13057 -- per-object constraint, then the enclosing object must have inferable
13058 -- discriminants.
13059
13060 if Nkind (N) = N_Selected_Component then
13061 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
13062
13063 -- A small hack. If we have a per-object constrained selected
13064 -- component of a formal parameter, return True since we do not
13065 -- know the actual parameter association yet.
13066
13067 if Prefix_Is_Formal_Parameter (N) then
13068 return True;
13069
13070 -- Otherwise, check the enclosing object and the selector
13071
13072 else
13073 return Has_Inferable_Discriminants (Prefix (N))
13074 and then Has_Inferable_Discriminants (Selector_Name (N));
13075 end if;
13076
13077 -- The call to Has_Inferable_Discriminants will determine whether
13078 -- the selector has a constrained Unchecked_Union nominal type.
13079
13080 else
13081 return Has_Inferable_Discriminants (Selector_Name (N));
13082 end if;
13083
13084 -- A qualified expression has inferable discriminants if its subtype
13085 -- mark is a constrained Unchecked_Union subtype.
13086
13087 elsif Nkind (N) = N_Qualified_Expression then
13088 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
13089 and then Is_Constrained (Etype (Subtype_Mark (N)));
13090
13091 -- For all other names, it is sufficient to have a constrained
13092 -- Unchecked_Union nominal subtype.
13093
13094 else
13095 return Is_Unchecked_Union (Base_Type (Etype (N)))
13096 and then Is_Constrained (Etype (N));
13097 end if;
13098 end Has_Inferable_Discriminants;
13099
13100 -------------------------------
13101 -- Insert_Dereference_Action --
13102 -------------------------------
13103
13104 procedure Insert_Dereference_Action (N : Node_Id) is
13105 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
13106 -- Return true if type of P is derived from Checked_Pool;
13107
13108 -----------------------------
13109 -- Is_Checked_Storage_Pool --
13110 -----------------------------
13111
13112 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
13113 T : Entity_Id;
13114
13115 begin
13116 if No (P) then
13117 return False;
13118 end if;
13119
13120 T := Etype (P);
13121 while T /= Etype (T) loop
13122 if Is_RTE (T, RE_Checked_Pool) then
13123 return True;
13124 else
13125 T := Etype (T);
13126 end if;
13127 end loop;
13128
13129 return False;
13130 end Is_Checked_Storage_Pool;
13131
13132 -- Local variables
13133
13134 Context : constant Node_Id := Parent (N);
13135 Ptr_Typ : constant Entity_Id := Etype (N);
13136 Desig_Typ : constant Entity_Id :=
13137 Available_View (Designated_Type (Ptr_Typ));
13138 Loc : constant Source_Ptr := Sloc (N);
13139 Pool : constant Entity_Id := Associated_Storage_Pool (Ptr_Typ);
13140
13141 Addr : Entity_Id;
13142 Alig : Entity_Id;
13143 Deref : Node_Id;
13144 Size : Entity_Id;
13145 Size_Bits : Node_Id;
13146 Stmt : Node_Id;
13147
13148 -- Start of processing for Insert_Dereference_Action
13149
13150 begin
13151 pragma Assert (Nkind (Context) = N_Explicit_Dereference);
13152
13153 -- Do not re-expand a dereference which has already been processed by
13154 -- this routine.
13155
13156 if Has_Dereference_Action (Context) then
13157 return;
13158
13159 -- Do not perform this type of expansion for internally-generated
13160 -- dereferences.
13161
13162 elsif not Comes_From_Source (Original_Node (Context)) then
13163 return;
13164
13165 -- A dereference action is only applicable to objects which have been
13166 -- allocated on a checked pool.
13167
13168 elsif not Is_Checked_Storage_Pool (Pool) then
13169 return;
13170 end if;
13171
13172 -- Extract the address of the dereferenced object. Generate:
13173
13174 -- Addr : System.Address := <N>'Pool_Address;
13175
13176 Addr := Make_Temporary (Loc, 'P');
13177
13178 Insert_Action (N,
13179 Make_Object_Declaration (Loc,
13180 Defining_Identifier => Addr,
13181 Object_Definition =>
13182 New_Occurrence_Of (RTE (RE_Address), Loc),
13183 Expression =>
13184 Make_Attribute_Reference (Loc,
13185 Prefix => Duplicate_Subexpr_Move_Checks (N),
13186 Attribute_Name => Name_Pool_Address)));
13187
13188 -- Calculate the size of the dereferenced object. Generate:
13189
13190 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
13191
13192 Deref :=
13193 Make_Explicit_Dereference (Loc,
13194 Prefix => Duplicate_Subexpr_Move_Checks (N));
13195 Set_Has_Dereference_Action (Deref);
13196
13197 Size_Bits :=
13198 Make_Attribute_Reference (Loc,
13199 Prefix => Deref,
13200 Attribute_Name => Name_Size);
13201
13202 -- Special case of an unconstrained array: need to add descriptor size
13203
13204 if Is_Array_Type (Desig_Typ)
13205 and then not Is_Constrained (First_Subtype (Desig_Typ))
13206 then
13207 Size_Bits :=
13208 Make_Op_Add (Loc,
13209 Left_Opnd =>
13210 Make_Attribute_Reference (Loc,
13211 Prefix =>
13212 New_Occurrence_Of (First_Subtype (Desig_Typ), Loc),
13213 Attribute_Name => Name_Descriptor_Size),
13214 Right_Opnd => Size_Bits);
13215 end if;
13216
13217 Size := Make_Temporary (Loc, 'S');
13218 Insert_Action (N,
13219 Make_Object_Declaration (Loc,
13220 Defining_Identifier => Size,
13221 Object_Definition =>
13222 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
13223 Expression =>
13224 Make_Op_Divide (Loc,
13225 Left_Opnd => Size_Bits,
13226 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
13227
13228 -- Calculate the alignment of the dereferenced object. Generate:
13229 -- Alig : constant Storage_Count := <N>.all'Alignment;
13230
13231 Deref :=
13232 Make_Explicit_Dereference (Loc,
13233 Prefix => Duplicate_Subexpr_Move_Checks (N));
13234 Set_Has_Dereference_Action (Deref);
13235
13236 Alig := Make_Temporary (Loc, 'A');
13237 Insert_Action (N,
13238 Make_Object_Declaration (Loc,
13239 Defining_Identifier => Alig,
13240 Object_Definition =>
13241 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
13242 Expression =>
13243 Make_Attribute_Reference (Loc,
13244 Prefix => Deref,
13245 Attribute_Name => Name_Alignment)));
13246
13247 -- A dereference of a controlled object requires special processing. The
13248 -- finalization machinery requests additional space from the underlying
13249 -- pool to allocate and hide two pointers. As a result, a checked pool
13250 -- may mark the wrong memory as valid. Since checked pools do not have
13251 -- knowledge of hidden pointers, we have to bring the two pointers back
13252 -- in view in order to restore the original state of the object.
13253
13254 -- The address manipulation is not performed for access types that are
13255 -- subject to pragma No_Heap_Finalization because the two pointers do
13256 -- not exist in the first place.
13257
13258 if No_Heap_Finalization (Ptr_Typ) then
13259 null;
13260
13261 elsif Needs_Finalization (Desig_Typ) then
13262
13263 -- Adjust the address and size of the dereferenced object. Generate:
13264 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
13265
13266 Stmt :=
13267 Make_Procedure_Call_Statement (Loc,
13268 Name =>
13269 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
13270 Parameter_Associations => New_List (
13271 New_Occurrence_Of (Addr, Loc),
13272 New_Occurrence_Of (Size, Loc),
13273 New_Occurrence_Of (Alig, Loc)));
13274
13275 -- Class-wide types complicate things because we cannot determine
13276 -- statically whether the actual object is truly controlled. We must
13277 -- generate a runtime check to detect this property. Generate:
13278 --
13279 -- if Needs_Finalization (<N>.all'Tag) then
13280 -- <Stmt>;
13281 -- end if;
13282
13283 if Is_Class_Wide_Type (Desig_Typ) then
13284 Deref :=
13285 Make_Explicit_Dereference (Loc,
13286 Prefix => Duplicate_Subexpr_Move_Checks (N));
13287 Set_Has_Dereference_Action (Deref);
13288
13289 Stmt :=
13290 Make_Implicit_If_Statement (N,
13291 Condition =>
13292 Make_Function_Call (Loc,
13293 Name =>
13294 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
13295 Parameter_Associations => New_List (
13296 Make_Attribute_Reference (Loc,
13297 Prefix => Deref,
13298 Attribute_Name => Name_Tag))),
13299 Then_Statements => New_List (Stmt));
13300 end if;
13301
13302 Insert_Action (N, Stmt);
13303 end if;
13304
13305 -- Generate:
13306 -- Dereference (Pool, Addr, Size, Alig);
13307
13308 Insert_Action (N,
13309 Make_Procedure_Call_Statement (Loc,
13310 Name =>
13311 New_Occurrence_Of
13312 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
13313 Parameter_Associations => New_List (
13314 New_Occurrence_Of (Pool, Loc),
13315 New_Occurrence_Of (Addr, Loc),
13316 New_Occurrence_Of (Size, Loc),
13317 New_Occurrence_Of (Alig, Loc))));
13318
13319 -- Mark the explicit dereference as processed to avoid potential
13320 -- infinite expansion.
13321
13322 Set_Has_Dereference_Action (Context);
13323
13324 exception
13325 when RE_Not_Available =>
13326 return;
13327 end Insert_Dereference_Action;
13328
13329 --------------------------------
13330 -- Integer_Promotion_Possible --
13331 --------------------------------
13332
13333 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
13334 Operand : constant Node_Id := Expression (N);
13335 Operand_Type : constant Entity_Id := Etype (Operand);
13336 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
13337
13338 begin
13339 pragma Assert (Nkind (N) = N_Type_Conversion);
13340
13341 return
13342
13343 -- We only do the transformation for source constructs. We assume
13344 -- that the expander knows what it is doing when it generates code.
13345
13346 Comes_From_Source (N)
13347
13348 -- If the operand type is Short_Integer or Short_Short_Integer,
13349 -- then we will promote to Integer, which is available on all
13350 -- targets, and is sufficient to ensure no intermediate overflow.
13351 -- Furthermore it is likely to be as efficient or more efficient
13352 -- than using the smaller type for the computation so we do this
13353 -- unconditionally.
13354
13355 and then
13356 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
13357 or else
13358 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
13359
13360 -- Test for interesting operation, which includes addition,
13361 -- division, exponentiation, multiplication, subtraction, absolute
13362 -- value and unary negation. Unary "+" is omitted since it is a
13363 -- no-op and thus can't overflow.
13364
13365 and then Nkind_In (Operand, N_Op_Abs,
13366 N_Op_Add,
13367 N_Op_Divide,
13368 N_Op_Expon,
13369 N_Op_Minus,
13370 N_Op_Multiply,
13371 N_Op_Subtract);
13372 end Integer_Promotion_Possible;
13373
13374 ------------------------------
13375 -- Make_Array_Comparison_Op --
13376 ------------------------------
13377
13378 -- This is a hand-coded expansion of the following generic function:
13379
13380 -- generic
13381 -- type elem is (<>);
13382 -- type index is (<>);
13383 -- type a is array (index range <>) of elem;
13384
13385 -- function Gnnn (X : a; Y: a) return boolean is
13386 -- J : index := Y'first;
13387
13388 -- begin
13389 -- if X'length = 0 then
13390 -- return false;
13391
13392 -- elsif Y'length = 0 then
13393 -- return true;
13394
13395 -- else
13396 -- for I in X'range loop
13397 -- if X (I) = Y (J) then
13398 -- if J = Y'last then
13399 -- exit;
13400 -- else
13401 -- J := index'succ (J);
13402 -- end if;
13403
13404 -- else
13405 -- return X (I) > Y (J);
13406 -- end if;
13407 -- end loop;
13408
13409 -- return X'length > Y'length;
13410 -- end if;
13411 -- end Gnnn;
13412
13413 -- Note that since we are essentially doing this expansion by hand, we
13414 -- do not need to generate an actual or formal generic part, just the
13415 -- instantiated function itself.
13416
13417 -- Perhaps we could have the actual generic available in the run-time,
13418 -- obtained by rtsfind, and actually expand a real instantiation ???
13419
13420 function Make_Array_Comparison_Op
13421 (Typ : Entity_Id;
13422 Nod : Node_Id) return Node_Id
13423 is
13424 Loc : constant Source_Ptr := Sloc (Nod);
13425
13426 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
13427 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
13428 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
13429 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
13430
13431 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
13432
13433 Loop_Statement : Node_Id;
13434 Loop_Body : Node_Id;
13435 If_Stat : Node_Id;
13436 Inner_If : Node_Id;
13437 Final_Expr : Node_Id;
13438 Func_Body : Node_Id;
13439 Func_Name : Entity_Id;
13440 Formals : List_Id;
13441 Length1 : Node_Id;
13442 Length2 : Node_Id;
13443
13444 begin
13445 -- if J = Y'last then
13446 -- exit;
13447 -- else
13448 -- J := index'succ (J);
13449 -- end if;
13450
13451 Inner_If :=
13452 Make_Implicit_If_Statement (Nod,
13453 Condition =>
13454 Make_Op_Eq (Loc,
13455 Left_Opnd => New_Occurrence_Of (J, Loc),
13456 Right_Opnd =>
13457 Make_Attribute_Reference (Loc,
13458 Prefix => New_Occurrence_Of (Y, Loc),
13459 Attribute_Name => Name_Last)),
13460
13461 Then_Statements => New_List (
13462 Make_Exit_Statement (Loc)),
13463
13464 Else_Statements =>
13465 New_List (
13466 Make_Assignment_Statement (Loc,
13467 Name => New_Occurrence_Of (J, Loc),
13468 Expression =>
13469 Make_Attribute_Reference (Loc,
13470 Prefix => New_Occurrence_Of (Index, Loc),
13471 Attribute_Name => Name_Succ,
13472 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
13473
13474 -- if X (I) = Y (J) then
13475 -- if ... end if;
13476 -- else
13477 -- return X (I) > Y (J);
13478 -- end if;
13479
13480 Loop_Body :=
13481 Make_Implicit_If_Statement (Nod,
13482 Condition =>
13483 Make_Op_Eq (Loc,
13484 Left_Opnd =>
13485 Make_Indexed_Component (Loc,
13486 Prefix => New_Occurrence_Of (X, Loc),
13487 Expressions => New_List (New_Occurrence_Of (I, Loc))),
13488
13489 Right_Opnd =>
13490 Make_Indexed_Component (Loc,
13491 Prefix => New_Occurrence_Of (Y, Loc),
13492 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
13493
13494 Then_Statements => New_List (Inner_If),
13495
13496 Else_Statements => New_List (
13497 Make_Simple_Return_Statement (Loc,
13498 Expression =>
13499 Make_Op_Gt (Loc,
13500 Left_Opnd =>
13501 Make_Indexed_Component (Loc,
13502 Prefix => New_Occurrence_Of (X, Loc),
13503 Expressions => New_List (New_Occurrence_Of (I, Loc))),
13504
13505 Right_Opnd =>
13506 Make_Indexed_Component (Loc,
13507 Prefix => New_Occurrence_Of (Y, Loc),
13508 Expressions => New_List (
13509 New_Occurrence_Of (J, Loc)))))));
13510
13511 -- for I in X'range loop
13512 -- if ... end if;
13513 -- end loop;
13514
13515 Loop_Statement :=
13516 Make_Implicit_Loop_Statement (Nod,
13517 Identifier => Empty,
13518
13519 Iteration_Scheme =>
13520 Make_Iteration_Scheme (Loc,
13521 Loop_Parameter_Specification =>
13522 Make_Loop_Parameter_Specification (Loc,
13523 Defining_Identifier => I,
13524 Discrete_Subtype_Definition =>
13525 Make_Attribute_Reference (Loc,
13526 Prefix => New_Occurrence_Of (X, Loc),
13527 Attribute_Name => Name_Range))),
13528
13529 Statements => New_List (Loop_Body));
13530
13531 -- if X'length = 0 then
13532 -- return false;
13533 -- elsif Y'length = 0 then
13534 -- return true;
13535 -- else
13536 -- for ... loop ... end loop;
13537 -- return X'length > Y'length;
13538 -- end if;
13539
13540 Length1 :=
13541 Make_Attribute_Reference (Loc,
13542 Prefix => New_Occurrence_Of (X, Loc),
13543 Attribute_Name => Name_Length);
13544
13545 Length2 :=
13546 Make_Attribute_Reference (Loc,
13547 Prefix => New_Occurrence_Of (Y, Loc),
13548 Attribute_Name => Name_Length);
13549
13550 Final_Expr :=
13551 Make_Op_Gt (Loc,
13552 Left_Opnd => Length1,
13553 Right_Opnd => Length2);
13554
13555 If_Stat :=
13556 Make_Implicit_If_Statement (Nod,
13557 Condition =>
13558 Make_Op_Eq (Loc,
13559 Left_Opnd =>
13560 Make_Attribute_Reference (Loc,
13561 Prefix => New_Occurrence_Of (X, Loc),
13562 Attribute_Name => Name_Length),
13563 Right_Opnd =>
13564 Make_Integer_Literal (Loc, 0)),
13565
13566 Then_Statements =>
13567 New_List (
13568 Make_Simple_Return_Statement (Loc,
13569 Expression => New_Occurrence_Of (Standard_False, Loc))),
13570
13571 Elsif_Parts => New_List (
13572 Make_Elsif_Part (Loc,
13573 Condition =>
13574 Make_Op_Eq (Loc,
13575 Left_Opnd =>
13576 Make_Attribute_Reference (Loc,
13577 Prefix => New_Occurrence_Of (Y, Loc),
13578 Attribute_Name => Name_Length),
13579 Right_Opnd =>
13580 Make_Integer_Literal (Loc, 0)),
13581
13582 Then_Statements =>
13583 New_List (
13584 Make_Simple_Return_Statement (Loc,
13585 Expression => New_Occurrence_Of (Standard_True, Loc))))),
13586
13587 Else_Statements => New_List (
13588 Loop_Statement,
13589 Make_Simple_Return_Statement (Loc,
13590 Expression => Final_Expr)));
13591
13592 -- (X : a; Y: a)
13593
13594 Formals := New_List (
13595 Make_Parameter_Specification (Loc,
13596 Defining_Identifier => X,
13597 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
13598
13599 Make_Parameter_Specification (Loc,
13600 Defining_Identifier => Y,
13601 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
13602
13603 -- function Gnnn (...) return boolean is
13604 -- J : index := Y'first;
13605 -- begin
13606 -- if ... end if;
13607 -- end Gnnn;
13608
13609 Func_Name := Make_Temporary (Loc, 'G');
13610
13611 Func_Body :=
13612 Make_Subprogram_Body (Loc,
13613 Specification =>
13614 Make_Function_Specification (Loc,
13615 Defining_Unit_Name => Func_Name,
13616 Parameter_Specifications => Formals,
13617 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
13618
13619 Declarations => New_List (
13620 Make_Object_Declaration (Loc,
13621 Defining_Identifier => J,
13622 Object_Definition => New_Occurrence_Of (Index, Loc),
13623 Expression =>
13624 Make_Attribute_Reference (Loc,
13625 Prefix => New_Occurrence_Of (Y, Loc),
13626 Attribute_Name => Name_First))),
13627
13628 Handled_Statement_Sequence =>
13629 Make_Handled_Sequence_Of_Statements (Loc,
13630 Statements => New_List (If_Stat)));
13631
13632 return Func_Body;
13633 end Make_Array_Comparison_Op;
13634
13635 ---------------------------
13636 -- Make_Boolean_Array_Op --
13637 ---------------------------
13638
13639 -- For logical operations on boolean arrays, expand in line the following,
13640 -- replacing 'and' with 'or' or 'xor' where needed:
13641
13642 -- function Annn (A : typ; B: typ) return typ is
13643 -- C : typ;
13644 -- begin
13645 -- for J in A'range loop
13646 -- C (J) := A (J) op B (J);
13647 -- end loop;
13648 -- return C;
13649 -- end Annn;
13650
13651 -- Here typ is the boolean array type
13652
13653 function Make_Boolean_Array_Op
13654 (Typ : Entity_Id;
13655 N : Node_Id) return Node_Id
13656 is
13657 Loc : constant Source_Ptr := Sloc (N);
13658
13659 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
13660 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
13661 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
13662 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
13663
13664 A_J : Node_Id;
13665 B_J : Node_Id;
13666 C_J : Node_Id;
13667 Op : Node_Id;
13668
13669 Formals : List_Id;
13670 Func_Name : Entity_Id;
13671 Func_Body : Node_Id;
13672 Loop_Statement : Node_Id;
13673
13674 begin
13675 A_J :=
13676 Make_Indexed_Component (Loc,
13677 Prefix => New_Occurrence_Of (A, Loc),
13678 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13679
13680 B_J :=
13681 Make_Indexed_Component (Loc,
13682 Prefix => New_Occurrence_Of (B, Loc),
13683 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13684
13685 C_J :=
13686 Make_Indexed_Component (Loc,
13687 Prefix => New_Occurrence_Of (C, Loc),
13688 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13689
13690 if Nkind (N) = N_Op_And then
13691 Op :=
13692 Make_Op_And (Loc,
13693 Left_Opnd => A_J,
13694 Right_Opnd => B_J);
13695
13696 elsif Nkind (N) = N_Op_Or then
13697 Op :=
13698 Make_Op_Or (Loc,
13699 Left_Opnd => A_J,
13700 Right_Opnd => B_J);
13701
13702 else
13703 Op :=
13704 Make_Op_Xor (Loc,
13705 Left_Opnd => A_J,
13706 Right_Opnd => B_J);
13707 end if;
13708
13709 Loop_Statement :=
13710 Make_Implicit_Loop_Statement (N,
13711 Identifier => Empty,
13712
13713 Iteration_Scheme =>
13714 Make_Iteration_Scheme (Loc,
13715 Loop_Parameter_Specification =>
13716 Make_Loop_Parameter_Specification (Loc,
13717 Defining_Identifier => J,
13718 Discrete_Subtype_Definition =>
13719 Make_Attribute_Reference (Loc,
13720 Prefix => New_Occurrence_Of (A, Loc),
13721 Attribute_Name => Name_Range))),
13722
13723 Statements => New_List (
13724 Make_Assignment_Statement (Loc,
13725 Name => C_J,
13726 Expression => Op)));
13727
13728 Formals := New_List (
13729 Make_Parameter_Specification (Loc,
13730 Defining_Identifier => A,
13731 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
13732
13733 Make_Parameter_Specification (Loc,
13734 Defining_Identifier => B,
13735 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
13736
13737 Func_Name := Make_Temporary (Loc, 'A');
13738 Set_Is_Inlined (Func_Name);
13739
13740 Func_Body :=
13741 Make_Subprogram_Body (Loc,
13742 Specification =>
13743 Make_Function_Specification (Loc,
13744 Defining_Unit_Name => Func_Name,
13745 Parameter_Specifications => Formals,
13746 Result_Definition => New_Occurrence_Of (Typ, Loc)),
13747
13748 Declarations => New_List (
13749 Make_Object_Declaration (Loc,
13750 Defining_Identifier => C,
13751 Object_Definition => New_Occurrence_Of (Typ, Loc))),
13752
13753 Handled_Statement_Sequence =>
13754 Make_Handled_Sequence_Of_Statements (Loc,
13755 Statements => New_List (
13756 Loop_Statement,
13757 Make_Simple_Return_Statement (Loc,
13758 Expression => New_Occurrence_Of (C, Loc)))));
13759
13760 return Func_Body;
13761 end Make_Boolean_Array_Op;
13762
13763 -----------------------------------------
13764 -- Minimized_Eliminated_Overflow_Check --
13765 -----------------------------------------
13766
13767 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
13768 begin
13769 return
13770 Is_Signed_Integer_Type (Etype (N))
13771 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
13772 end Minimized_Eliminated_Overflow_Check;
13773
13774 --------------------------------
13775 -- Optimize_Length_Comparison --
13776 --------------------------------
13777
13778 procedure Optimize_Length_Comparison (N : Node_Id) is
13779 Loc : constant Source_Ptr := Sloc (N);
13780 Typ : constant Entity_Id := Etype (N);
13781 Result : Node_Id;
13782
13783 Left : Node_Id;
13784 Right : Node_Id;
13785 -- First and Last attribute reference nodes, which end up as left and
13786 -- right operands of the optimized result.
13787
13788 Is_Zero : Boolean;
13789 -- True for comparison operand of zero
13790
13791 Comp : Node_Id;
13792 -- Comparison operand, set only if Is_Zero is false
13793
13794 Ent : Entity_Id := Empty;
13795 -- Entity whose length is being compared
13796
13797 Index : Node_Id := Empty;
13798 -- Integer_Literal node for length attribute expression, or Empty
13799 -- if there is no such expression present.
13800
13801 Ityp : Entity_Id;
13802 -- Type of array index to which 'Length is applied
13803
13804 Op : Node_Kind := Nkind (N);
13805 -- Kind of comparison operator, gets flipped if operands backwards
13806
13807 function Is_Optimizable (N : Node_Id) return Boolean;
13808 -- Tests N to see if it is an optimizable comparison value (defined as
13809 -- constant zero or one, or something else where the value is known to
13810 -- be positive and in the range of 32-bits, and where the corresponding
13811 -- Length value is also known to be 32-bits. If result is true, sets
13812 -- Is_Zero, Ityp, and Comp accordingly.
13813
13814 function Is_Entity_Length (N : Node_Id) return Boolean;
13815 -- Tests if N is a length attribute applied to a simple entity. If so,
13816 -- returns True, and sets Ent to the entity, and Index to the integer
13817 -- literal provided as an attribute expression, or to Empty if none.
13818 -- Also returns True if the expression is a generated type conversion
13819 -- whose expression is of the desired form. This latter case arises
13820 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
13821 -- to check for being in range, which is not needed in this context.
13822 -- Returns False if neither condition holds.
13823
13824 function Prepare_64 (N : Node_Id) return Node_Id;
13825 -- Given a discrete expression, returns a Long_Long_Integer typed
13826 -- expression representing the underlying value of the expression.
13827 -- This is done with an unchecked conversion to the result type. We
13828 -- use unchecked conversion to handle the enumeration type case.
13829
13830 ----------------------
13831 -- Is_Entity_Length --
13832 ----------------------
13833
13834 function Is_Entity_Length (N : Node_Id) return Boolean is
13835 begin
13836 if Nkind (N) = N_Attribute_Reference
13837 and then Attribute_Name (N) = Name_Length
13838 and then Is_Entity_Name (Prefix (N))
13839 then
13840 Ent := Entity (Prefix (N));
13841
13842 if Present (Expressions (N)) then
13843 Index := First (Expressions (N));
13844 else
13845 Index := Empty;
13846 end if;
13847
13848 return True;
13849
13850 elsif Nkind (N) = N_Type_Conversion
13851 and then not Comes_From_Source (N)
13852 then
13853 return Is_Entity_Length (Expression (N));
13854
13855 else
13856 return False;
13857 end if;
13858 end Is_Entity_Length;
13859
13860 --------------------
13861 -- Is_Optimizable --
13862 --------------------
13863
13864 function Is_Optimizable (N : Node_Id) return Boolean is
13865 Val : Uint;
13866 OK : Boolean;
13867 Lo : Uint;
13868 Hi : Uint;
13869 Indx : Node_Id;
13870
13871 begin
13872 if Compile_Time_Known_Value (N) then
13873 Val := Expr_Value (N);
13874
13875 if Val = Uint_0 then
13876 Is_Zero := True;
13877 Comp := Empty;
13878 return True;
13879
13880 elsif Val = Uint_1 then
13881 Is_Zero := False;
13882 Comp := Empty;
13883 return True;
13884 end if;
13885 end if;
13886
13887 -- Here we have to make sure of being within 32-bits
13888
13889 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
13890
13891 if not OK
13892 or else Lo < Uint_1
13893 or else Hi > UI_From_Int (Int'Last)
13894 then
13895 return False;
13896 end if;
13897
13898 -- Comparison value was within range, so now we must check the index
13899 -- value to make sure it is also within 32-bits.
13900
13901 Indx := First_Index (Etype (Ent));
13902
13903 if Present (Index) then
13904 for J in 2 .. UI_To_Int (Intval (Index)) loop
13905 Next_Index (Indx);
13906 end loop;
13907 end if;
13908
13909 Ityp := Etype (Indx);
13910
13911 if Esize (Ityp) > 32 then
13912 return False;
13913 end if;
13914
13915 Is_Zero := False;
13916 Comp := N;
13917 return True;
13918 end Is_Optimizable;
13919
13920 ----------------
13921 -- Prepare_64 --
13922 ----------------
13923
13924 function Prepare_64 (N : Node_Id) return Node_Id is
13925 begin
13926 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
13927 end Prepare_64;
13928
13929 -- Start of processing for Optimize_Length_Comparison
13930
13931 begin
13932 -- Nothing to do if not a comparison
13933
13934 if Op not in N_Op_Compare then
13935 return;
13936 end if;
13937
13938 -- Nothing to do if special -gnatd.P debug flag set.
13939
13940 if Debug_Flag_Dot_PP then
13941 return;
13942 end if;
13943
13944 -- Ent'Length op 0/1
13945
13946 if Is_Entity_Length (Left_Opnd (N))
13947 and then Is_Optimizable (Right_Opnd (N))
13948 then
13949 null;
13950
13951 -- 0/1 op Ent'Length
13952
13953 elsif Is_Entity_Length (Right_Opnd (N))
13954 and then Is_Optimizable (Left_Opnd (N))
13955 then
13956 -- Flip comparison to opposite sense
13957
13958 case Op is
13959 when N_Op_Lt => Op := N_Op_Gt;
13960 when N_Op_Le => Op := N_Op_Ge;
13961 when N_Op_Gt => Op := N_Op_Lt;
13962 when N_Op_Ge => Op := N_Op_Le;
13963 when others => null;
13964 end case;
13965
13966 -- Else optimization not possible
13967
13968 else
13969 return;
13970 end if;
13971
13972 -- Fall through if we will do the optimization
13973
13974 -- Cases to handle:
13975
13976 -- X'Length = 0 => X'First > X'Last
13977 -- X'Length = 1 => X'First = X'Last
13978 -- X'Length = n => X'First + (n - 1) = X'Last
13979
13980 -- X'Length /= 0 => X'First <= X'Last
13981 -- X'Length /= 1 => X'First /= X'Last
13982 -- X'Length /= n => X'First + (n - 1) /= X'Last
13983
13984 -- X'Length >= 0 => always true, warn
13985 -- X'Length >= 1 => X'First <= X'Last
13986 -- X'Length >= n => X'First + (n - 1) <= X'Last
13987
13988 -- X'Length > 0 => X'First <= X'Last
13989 -- X'Length > 1 => X'First < X'Last
13990 -- X'Length > n => X'First + (n - 1) < X'Last
13991
13992 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
13993 -- X'Length <= 1 => X'First >= X'Last
13994 -- X'Length <= n => X'First + (n - 1) >= X'Last
13995
13996 -- X'Length < 0 => always false (warn)
13997 -- X'Length < 1 => X'First > X'Last
13998 -- X'Length < n => X'First + (n - 1) > X'Last
13999
14000 -- Note: for the cases of n (not constant 0,1), we require that the
14001 -- corresponding index type be integer or shorter (i.e. not 64-bit),
14002 -- and the same for the comparison value. Then we do the comparison
14003 -- using 64-bit arithmetic (actually long long integer), so that we
14004 -- cannot have overflow intefering with the result.
14005
14006 -- First deal with warning cases
14007
14008 if Is_Zero then
14009 case Op is
14010
14011 -- X'Length >= 0
14012
14013 when N_Op_Ge =>
14014 Rewrite (N,
14015 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
14016 Analyze_And_Resolve (N, Typ);
14017 Warn_On_Known_Condition (N);
14018 return;
14019
14020 -- X'Length < 0
14021
14022 when N_Op_Lt =>
14023 Rewrite (N,
14024 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
14025 Analyze_And_Resolve (N, Typ);
14026 Warn_On_Known_Condition (N);
14027 return;
14028
14029 when N_Op_Le =>
14030 if Constant_Condition_Warnings
14031 and then Comes_From_Source (Original_Node (N))
14032 then
14033 Error_Msg_N ("could replace by ""'=""?c?", N);
14034 end if;
14035
14036 Op := N_Op_Eq;
14037
14038 when others =>
14039 null;
14040 end case;
14041 end if;
14042
14043 -- Build the First reference we will use
14044
14045 Left :=
14046 Make_Attribute_Reference (Loc,
14047 Prefix => New_Occurrence_Of (Ent, Loc),
14048 Attribute_Name => Name_First);
14049
14050 if Present (Index) then
14051 Set_Expressions (Left, New_List (New_Copy (Index)));
14052 end if;
14053
14054 -- If general value case, then do the addition of (n - 1), and
14055 -- also add the needed conversions to type Long_Long_Integer.
14056
14057 if Present (Comp) then
14058 Left :=
14059 Make_Op_Add (Loc,
14060 Left_Opnd => Prepare_64 (Left),
14061 Right_Opnd =>
14062 Make_Op_Subtract (Loc,
14063 Left_Opnd => Prepare_64 (Comp),
14064 Right_Opnd => Make_Integer_Literal (Loc, 1)));
14065 end if;
14066
14067 -- Build the Last reference we will use
14068
14069 Right :=
14070 Make_Attribute_Reference (Loc,
14071 Prefix => New_Occurrence_Of (Ent, Loc),
14072 Attribute_Name => Name_Last);
14073
14074 if Present (Index) then
14075 Set_Expressions (Right, New_List (New_Copy (Index)));
14076 end if;
14077
14078 -- If general operand, convert Last reference to Long_Long_Integer
14079
14080 if Present (Comp) then
14081 Right := Prepare_64 (Right);
14082 end if;
14083
14084 -- Check for cases to optimize
14085
14086 -- X'Length = 0 => X'First > X'Last
14087 -- X'Length < 1 => X'First > X'Last
14088 -- X'Length < n => X'First + (n - 1) > X'Last
14089
14090 if (Is_Zero and then Op = N_Op_Eq)
14091 or else (not Is_Zero and then Op = N_Op_Lt)
14092 then
14093 Result :=
14094 Make_Op_Gt (Loc,
14095 Left_Opnd => Left,
14096 Right_Opnd => Right);
14097
14098 -- X'Length = 1 => X'First = X'Last
14099 -- X'Length = n => X'First + (n - 1) = X'Last
14100
14101 elsif not Is_Zero and then Op = N_Op_Eq then
14102 Result :=
14103 Make_Op_Eq (Loc,
14104 Left_Opnd => Left,
14105 Right_Opnd => Right);
14106
14107 -- X'Length /= 0 => X'First <= X'Last
14108 -- X'Length > 0 => X'First <= X'Last
14109
14110 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
14111 Result :=
14112 Make_Op_Le (Loc,
14113 Left_Opnd => Left,
14114 Right_Opnd => Right);
14115
14116 -- X'Length /= 1 => X'First /= X'Last
14117 -- X'Length /= n => X'First + (n - 1) /= X'Last
14118
14119 elsif not Is_Zero and then Op = N_Op_Ne then
14120 Result :=
14121 Make_Op_Ne (Loc,
14122 Left_Opnd => Left,
14123 Right_Opnd => Right);
14124
14125 -- X'Length >= 1 => X'First <= X'Last
14126 -- X'Length >= n => X'First + (n - 1) <= X'Last
14127
14128 elsif not Is_Zero and then Op = N_Op_Ge then
14129 Result :=
14130 Make_Op_Le (Loc,
14131 Left_Opnd => Left,
14132 Right_Opnd => Right);
14133
14134 -- X'Length > 1 => X'First < X'Last
14135 -- X'Length > n => X'First + (n = 1) < X'Last
14136
14137 elsif not Is_Zero and then Op = N_Op_Gt then
14138 Result :=
14139 Make_Op_Lt (Loc,
14140 Left_Opnd => Left,
14141 Right_Opnd => Right);
14142
14143 -- X'Length <= 1 => X'First >= X'Last
14144 -- X'Length <= n => X'First + (n - 1) >= X'Last
14145
14146 elsif not Is_Zero and then Op = N_Op_Le then
14147 Result :=
14148 Make_Op_Ge (Loc,
14149 Left_Opnd => Left,
14150 Right_Opnd => Right);
14151
14152 -- Should not happen at this stage
14153
14154 else
14155 raise Program_Error;
14156 end if;
14157
14158 -- Rewrite and finish up
14159
14160 Rewrite (N, Result);
14161 Analyze_And_Resolve (N, Typ);
14162 return;
14163 end Optimize_Length_Comparison;
14164
14165 --------------------------------
14166 -- Process_If_Case_Statements --
14167 --------------------------------
14168
14169 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id) is
14170 Decl : Node_Id;
14171
14172 begin
14173 Decl := First (Stmts);
14174 while Present (Decl) loop
14175 if Nkind (Decl) = N_Object_Declaration
14176 and then Is_Finalizable_Transient (Decl, N)
14177 then
14178 Process_Transient_In_Expression (Decl, N, Stmts);
14179 end if;
14180
14181 Next (Decl);
14182 end loop;
14183 end Process_If_Case_Statements;
14184
14185 -------------------------------------
14186 -- Process_Transient_In_Expression --
14187 -------------------------------------
14188
14189 procedure Process_Transient_In_Expression
14190 (Obj_Decl : Node_Id;
14191 Expr : Node_Id;
14192 Stmts : List_Id)
14193 is
14194 Loc : constant Source_Ptr := Sloc (Obj_Decl);
14195 Obj_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
14196
14197 Hook_Context : constant Node_Id := Find_Hook_Context (Expr);
14198 -- The node on which to insert the hook as an action. This is usually
14199 -- the innermost enclosing non-transient construct.
14200
14201 Fin_Call : Node_Id;
14202 Hook_Assign : Node_Id;
14203 Hook_Clear : Node_Id;
14204 Hook_Decl : Node_Id;
14205 Hook_Insert : Node_Id;
14206 Ptr_Decl : Node_Id;
14207
14208 Fin_Context : Node_Id;
14209 -- The node after which to insert the finalization actions of the
14210 -- transient object.
14211
14212 begin
14213 pragma Assert (Nkind_In (Expr, N_Case_Expression,
14214 N_Expression_With_Actions,
14215 N_If_Expression));
14216
14217 -- When the context is a Boolean evaluation, all three nodes capture the
14218 -- result of their computation in a local temporary:
14219
14220 -- do
14221 -- Trans_Id : Ctrl_Typ := ...;
14222 -- Result : constant Boolean := ... Trans_Id ...;
14223 -- <finalize Trans_Id>
14224 -- in Result end;
14225
14226 -- As a result, the finalization of any transient objects can safely
14227 -- take place after the result capture.
14228
14229 -- ??? could this be extended to elementary types?
14230
14231 if Is_Boolean_Type (Etype (Expr)) then
14232 Fin_Context := Last (Stmts);
14233
14234 -- Otherwise the immediate context may not be safe enough to carry
14235 -- out transient object finalization due to aliasing and nesting of
14236 -- constructs. Insert calls to [Deep_]Finalize after the innermost
14237 -- enclosing non-transient construct.
14238
14239 else
14240 Fin_Context := Hook_Context;
14241 end if;
14242
14243 -- Mark the transient object as successfully processed to avoid double
14244 -- finalization.
14245
14246 Set_Is_Finalized_Transient (Obj_Id);
14247
14248 -- Construct all the pieces necessary to hook and finalize a transient
14249 -- object.
14250
14251 Build_Transient_Object_Statements
14252 (Obj_Decl => Obj_Decl,
14253 Fin_Call => Fin_Call,
14254 Hook_Assign => Hook_Assign,
14255 Hook_Clear => Hook_Clear,
14256 Hook_Decl => Hook_Decl,
14257 Ptr_Decl => Ptr_Decl,
14258 Finalize_Obj => False);
14259
14260 -- Add the access type which provides a reference to the transient
14261 -- object. Generate:
14262
14263 -- type Ptr_Typ is access all Desig_Typ;
14264
14265 Insert_Action (Hook_Context, Ptr_Decl);
14266
14267 -- Add the temporary which acts as a hook to the transient object.
14268 -- Generate:
14269
14270 -- Hook : Ptr_Id := null;
14271
14272 Insert_Action (Hook_Context, Hook_Decl);
14273
14274 -- When the transient object is initialized by an aggregate, the hook
14275 -- must capture the object after the last aggregate assignment takes
14276 -- place. Only then is the object considered initialized. Generate:
14277
14278 -- Hook := Ptr_Typ (Obj_Id);
14279 -- <or>
14280 -- Hook := Obj_Id'Unrestricted_Access;
14281
14282 if Ekind_In (Obj_Id, E_Constant, E_Variable)
14283 and then Present (Last_Aggregate_Assignment (Obj_Id))
14284 then
14285 Hook_Insert := Last_Aggregate_Assignment (Obj_Id);
14286
14287 -- Otherwise the hook seizes the related object immediately
14288
14289 else
14290 Hook_Insert := Obj_Decl;
14291 end if;
14292
14293 Insert_After_And_Analyze (Hook_Insert, Hook_Assign);
14294
14295 -- When the node is part of a return statement, there is no need to
14296 -- insert a finalization call, as the general finalization mechanism
14297 -- (see Build_Finalizer) would take care of the transient object on
14298 -- subprogram exit. Note that it would also be impossible to insert the
14299 -- finalization code after the return statement as this will render it
14300 -- unreachable.
14301
14302 if Nkind (Fin_Context) = N_Simple_Return_Statement then
14303 null;
14304
14305 -- Finalize the hook after the context has been evaluated. Generate:
14306
14307 -- if Hook /= null then
14308 -- [Deep_]Finalize (Hook.all);
14309 -- Hook := null;
14310 -- end if;
14311
14312 else
14313 Insert_Action_After (Fin_Context,
14314 Make_Implicit_If_Statement (Obj_Decl,
14315 Condition =>
14316 Make_Op_Ne (Loc,
14317 Left_Opnd =>
14318 New_Occurrence_Of (Defining_Entity (Hook_Decl), Loc),
14319 Right_Opnd => Make_Null (Loc)),
14320
14321 Then_Statements => New_List (
14322 Fin_Call,
14323 Hook_Clear)));
14324 end if;
14325 end Process_Transient_In_Expression;
14326
14327 ------------------------
14328 -- Rewrite_Comparison --
14329 ------------------------
14330
14331 procedure Rewrite_Comparison (N : Node_Id) is
14332 Typ : constant Entity_Id := Etype (N);
14333
14334 False_Result : Boolean;
14335 True_Result : Boolean;
14336
14337 begin
14338 if Nkind (N) = N_Type_Conversion then
14339 Rewrite_Comparison (Expression (N));
14340 return;
14341
14342 elsif Nkind (N) not in N_Op_Compare then
14343 return;
14344 end if;
14345
14346 -- Determine the potential outcome of the comparison assuming that the
14347 -- operands are valid and emit a warning when the comparison evaluates
14348 -- to True or False only in the presence of invalid values.
14349
14350 Warn_On_Constant_Valid_Condition (N);
14351
14352 -- Determine the potential outcome of the comparison assuming that the
14353 -- operands are not valid.
14354
14355 Test_Comparison
14356 (Op => N,
14357 Assume_Valid => False,
14358 True_Result => True_Result,
14359 False_Result => False_Result);
14360
14361 -- The outcome is a decisive False or True, rewrite the operator
14362
14363 if False_Result or True_Result then
14364 Rewrite (N,
14365 Convert_To (Typ,
14366 New_Occurrence_Of (Boolean_Literals (True_Result), Sloc (N))));
14367
14368 Analyze_And_Resolve (N, Typ);
14369 Warn_On_Known_Condition (N);
14370 end if;
14371 end Rewrite_Comparison;
14372
14373 ----------------------------
14374 -- Safe_In_Place_Array_Op --
14375 ----------------------------
14376
14377 function Safe_In_Place_Array_Op
14378 (Lhs : Node_Id;
14379 Op1 : Node_Id;
14380 Op2 : Node_Id) return Boolean
14381 is
14382 Target : Entity_Id;
14383
14384 function Is_Safe_Operand (Op : Node_Id) return Boolean;
14385 -- Operand is safe if it cannot overlap part of the target of the
14386 -- operation. If the operand and the target are identical, the operand
14387 -- is safe. The operand can be empty in the case of negation.
14388
14389 function Is_Unaliased (N : Node_Id) return Boolean;
14390 -- Check that N is a stand-alone entity
14391
14392 ------------------
14393 -- Is_Unaliased --
14394 ------------------
14395
14396 function Is_Unaliased (N : Node_Id) return Boolean is
14397 begin
14398 return
14399 Is_Entity_Name (N)
14400 and then No (Address_Clause (Entity (N)))
14401 and then No (Renamed_Object (Entity (N)));
14402 end Is_Unaliased;
14403
14404 ---------------------
14405 -- Is_Safe_Operand --
14406 ---------------------
14407
14408 function Is_Safe_Operand (Op : Node_Id) return Boolean is
14409 begin
14410 if No (Op) then
14411 return True;
14412
14413 elsif Is_Entity_Name (Op) then
14414 return Is_Unaliased (Op);
14415
14416 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
14417 return Is_Unaliased (Prefix (Op));
14418
14419 elsif Nkind (Op) = N_Slice then
14420 return
14421 Is_Unaliased (Prefix (Op))
14422 and then Entity (Prefix (Op)) /= Target;
14423
14424 elsif Nkind (Op) = N_Op_Not then
14425 return Is_Safe_Operand (Right_Opnd (Op));
14426
14427 else
14428 return False;
14429 end if;
14430 end Is_Safe_Operand;
14431
14432 -- Start of processing for Safe_In_Place_Array_Op
14433
14434 begin
14435 -- Skip this processing if the component size is different from system
14436 -- storage unit (since at least for NOT this would cause problems).
14437
14438 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
14439 return False;
14440
14441 -- Cannot do in place stuff if non-standard Boolean representation
14442
14443 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
14444 return False;
14445
14446 elsif not Is_Unaliased (Lhs) then
14447 return False;
14448
14449 else
14450 Target := Entity (Lhs);
14451 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
14452 end if;
14453 end Safe_In_Place_Array_Op;
14454
14455 -----------------------
14456 -- Tagged_Membership --
14457 -----------------------
14458
14459 -- There are two different cases to consider depending on whether the right
14460 -- operand is a class-wide type or not. If not we just compare the actual
14461 -- tag of the left expr to the target type tag:
14462 --
14463 -- Left_Expr.Tag = Right_Type'Tag;
14464 --
14465 -- If it is a class-wide type we use the RT function CW_Membership which is
14466 -- usually implemented by looking in the ancestor tables contained in the
14467 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
14468
14469 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
14470 -- function IW_Membership which is usually implemented by looking in the
14471 -- table of abstract interface types plus the ancestor table contained in
14472 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
14473
14474 procedure Tagged_Membership
14475 (N : Node_Id;
14476 SCIL_Node : out Node_Id;
14477 Result : out Node_Id)
14478 is
14479 Left : constant Node_Id := Left_Opnd (N);
14480 Right : constant Node_Id := Right_Opnd (N);
14481 Loc : constant Source_Ptr := Sloc (N);
14482
14483 Full_R_Typ : Entity_Id;
14484 Left_Type : Entity_Id;
14485 New_Node : Node_Id;
14486 Right_Type : Entity_Id;
14487 Obj_Tag : Node_Id;
14488
14489 begin
14490 SCIL_Node := Empty;
14491
14492 -- Handle entities from the limited view
14493
14494 Left_Type := Available_View (Etype (Left));
14495 Right_Type := Available_View (Etype (Right));
14496
14497 -- In the case where the type is an access type, the test is applied
14498 -- using the designated types (needed in Ada 2012 for implicit anonymous
14499 -- access conversions, for AI05-0149).
14500
14501 if Is_Access_Type (Right_Type) then
14502 Left_Type := Designated_Type (Left_Type);
14503 Right_Type := Designated_Type (Right_Type);
14504 end if;
14505
14506 if Is_Class_Wide_Type (Left_Type) then
14507 Left_Type := Root_Type (Left_Type);
14508 end if;
14509
14510 if Is_Class_Wide_Type (Right_Type) then
14511 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
14512 else
14513 Full_R_Typ := Underlying_Type (Right_Type);
14514 end if;
14515
14516 Obj_Tag :=
14517 Make_Selected_Component (Loc,
14518 Prefix => Relocate_Node (Left),
14519 Selector_Name =>
14520 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
14521
14522 if Is_Class_Wide_Type (Right_Type) or else Is_Interface (Left_Type) then
14523
14524 -- No need to issue a run-time check if we statically know that the
14525 -- result of this membership test is always true. For example,
14526 -- considering the following declarations:
14527
14528 -- type Iface is interface;
14529 -- type T is tagged null record;
14530 -- type DT is new T and Iface with null record;
14531
14532 -- Obj1 : T;
14533 -- Obj2 : DT;
14534
14535 -- These membership tests are always true:
14536
14537 -- Obj1 in T'Class
14538 -- Obj2 in T'Class;
14539 -- Obj2 in Iface'Class;
14540
14541 -- We do not need to handle cases where the membership is illegal.
14542 -- For example:
14543
14544 -- Obj1 in DT'Class; -- Compile time error
14545 -- Obj1 in Iface'Class; -- Compile time error
14546
14547 if not Is_Interface (Left_Type)
14548 and then not Is_Class_Wide_Type (Left_Type)
14549 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
14550 Use_Full_View => True)
14551 or else (Is_Interface (Etype (Right_Type))
14552 and then Interface_Present_In_Ancestor
14553 (Typ => Left_Type,
14554 Iface => Etype (Right_Type))))
14555 then
14556 Result := New_Occurrence_Of (Standard_True, Loc);
14557 return;
14558 end if;
14559
14560 -- Ada 2005 (AI-251): Class-wide applied to interfaces
14561
14562 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
14563
14564 -- Support to: "Iface_CW_Typ in Typ'Class"
14565
14566 or else Is_Interface (Left_Type)
14567 then
14568 -- Issue error if IW_Membership operation not available in a
14569 -- configurable run time setting.
14570
14571 if not RTE_Available (RE_IW_Membership) then
14572 Error_Msg_CRT
14573 ("dynamic membership test on interface types", N);
14574 Result := Empty;
14575 return;
14576 end if;
14577
14578 Result :=
14579 Make_Function_Call (Loc,
14580 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
14581 Parameter_Associations => New_List (
14582 Make_Attribute_Reference (Loc,
14583 Prefix => Obj_Tag,
14584 Attribute_Name => Name_Address),
14585 New_Occurrence_Of (
14586 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
14587 Loc)));
14588
14589 -- Ada 95: Normal case
14590
14591 else
14592 Build_CW_Membership (Loc,
14593 Obj_Tag_Node => Obj_Tag,
14594 Typ_Tag_Node =>
14595 New_Occurrence_Of (
14596 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
14597 Related_Nod => N,
14598 New_Node => New_Node);
14599
14600 -- Generate the SCIL node for this class-wide membership test.
14601 -- Done here because the previous call to Build_CW_Membership
14602 -- relocates Obj_Tag.
14603
14604 if Generate_SCIL then
14605 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
14606 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
14607 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
14608 end if;
14609
14610 Result := New_Node;
14611 end if;
14612
14613 -- Right_Type is not a class-wide type
14614
14615 else
14616 -- No need to check the tag of the object if Right_Typ is abstract
14617
14618 if Is_Abstract_Type (Right_Type) then
14619 Result := New_Occurrence_Of (Standard_False, Loc);
14620
14621 else
14622 Result :=
14623 Make_Op_Eq (Loc,
14624 Left_Opnd => Obj_Tag,
14625 Right_Opnd =>
14626 New_Occurrence_Of
14627 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
14628 end if;
14629 end if;
14630 end Tagged_Membership;
14631
14632 ------------------------------
14633 -- Unary_Op_Validity_Checks --
14634 ------------------------------
14635
14636 procedure Unary_Op_Validity_Checks (N : Node_Id) is
14637 begin
14638 if Validity_Checks_On and Validity_Check_Operands then
14639 Ensure_Valid (Right_Opnd (N));
14640 end if;
14641 end Unary_Op_Validity_Checks;
14642
14643 end Exp_Ch4;