]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/libgnarl/s-taprop__solaris.adb
38785582fa0d69df84f41bad0a2a38a6d4207994
[thirdparty/gcc.git] / gcc / ada / libgnarl / s-taprop__solaris.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
31
32 -- This is a Solaris (native) version of this package
33
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
36
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
40
41 with Interfaces.C;
42
43 with System.Multiprocessors;
44 with System.Tasking.Debug;
45 with System.Interrupt_Management;
46 with System.OS_Constants;
47 with System.OS_Primitives;
48 with System.Task_Info;
49
50 pragma Warnings (Off);
51 with System.OS_Lib;
52 pragma Warnings (On);
53
54 with System.Soft_Links;
55 -- We use System.Soft_Links instead of System.Tasking.Initialization
56 -- because the later is a higher level package that we shouldn't depend on.
57 -- For example when using the restricted run time, it is replaced by
58 -- System.Tasking.Restricted.Stages.
59
60 package body System.Task_Primitives.Operations is
61
62 package OSC renames System.OS_Constants;
63 package SSL renames System.Soft_Links;
64
65 use System.Tasking.Debug;
66 use System.Tasking;
67 use Interfaces.C;
68 use System.OS_Interface;
69 use System.Parameters;
70 use System.OS_Primitives;
71
72 ----------------
73 -- Local Data --
74 ----------------
75
76 -- The following are logically constants, but need to be initialized
77 -- at run time.
78
79 Environment_Task_Id : Task_Id;
80 -- A variable to hold Task_Id for the environment task.
81 -- If we use this variable to get the Task_Id, we need the following
82 -- ATCB_Key only for non-Ada threads.
83
84 Unblocked_Signal_Mask : aliased sigset_t;
85 -- The set of signals that should unblocked in all tasks
86
87 ATCB_Key : aliased thread_key_t;
88 -- Key used to find the Ada Task_Id associated with a thread,
89 -- at least for C threads unknown to the Ada run-time system.
90
91 Single_RTS_Lock : aliased RTS_Lock;
92 -- This is a lock to allow only one thread of control in the RTS at
93 -- a time; it is used to execute in mutual exclusion from all other tasks.
94 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
95
96 Next_Serial_Number : Task_Serial_Number := 100;
97 -- We start at 100, to reserve some special values for
98 -- using in error checking.
99 -- The following are internal configuration constants needed.
100
101 Abort_Handler_Installed : Boolean := False;
102 -- True if a handler for the abort signal is installed
103
104 Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
105 -- Constant to indicate that the thread identifier has not yet been
106 -- initialized.
107
108 ----------------------
109 -- Priority Support --
110 ----------------------
111
112 Priority_Ceiling_Emulation : constant Boolean := True;
113 -- controls whether we emulate priority ceiling locking
114
115 -- To get a scheduling close to annex D requirements, we use the real-time
116 -- class provided for LWPs and map each task/thread to a specific and
117 -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
118
119 -- The real time class can only be set when the process has root
120 -- privileges, so in the other cases, we use the normal thread scheduling
121 -- and priority handling.
122
123 Using_Real_Time_Class : Boolean := False;
124 -- indicates whether the real time class is being used (i.e. the process
125 -- has root privileges).
126
127 Prio_Param : aliased struct_pcparms;
128 -- Hold priority info (Real_Time) initialized during the package
129 -- elaboration.
130
131 -----------------------------------
132 -- External Configuration Values --
133 -----------------------------------
134
135 Time_Slice_Val : Integer;
136 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
137
138 Locking_Policy : Character;
139 pragma Import (C, Locking_Policy, "__gl_locking_policy");
140
141 Dispatching_Policy : Character;
142 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
143
144 Foreign_Task_Elaborated : aliased Boolean := True;
145 -- Used to identified fake tasks (i.e., non-Ada Threads)
146
147 -----------------------
148 -- Local Subprograms --
149 -----------------------
150
151 function sysconf (name : System.OS_Interface.int) return processorid_t;
152 pragma Import (C, sysconf, "sysconf");
153
154 SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
155
156 function Num_Procs
157 (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
158 return processorid_t renames sysconf;
159
160 procedure Abort_Handler
161 (Sig : Signal;
162 Code : not null access siginfo_t;
163 Context : not null access ucontext_t);
164 -- Target-dependent binding of inter-thread Abort signal to
165 -- the raising of the Abort_Signal exception.
166 -- See also comments in 7staprop.adb
167
168 ------------
169 -- Checks --
170 ------------
171
172 function Check_Initialize_Lock
173 (L : Lock_Ptr;
174 Level : Lock_Level) return Boolean;
175 pragma Inline (Check_Initialize_Lock);
176
177 function Check_Lock (L : Lock_Ptr) return Boolean;
178 pragma Inline (Check_Lock);
179
180 function Record_Lock (L : Lock_Ptr) return Boolean;
181 pragma Inline (Record_Lock);
182
183 function Check_Sleep (Reason : Task_States) return Boolean;
184 pragma Inline (Check_Sleep);
185
186 function Record_Wakeup
187 (L : Lock_Ptr;
188 Reason : Task_States) return Boolean;
189 pragma Inline (Record_Wakeup);
190
191 function Check_Wakeup
192 (T : Task_Id;
193 Reason : Task_States) return Boolean;
194 pragma Inline (Check_Wakeup);
195
196 function Check_Unlock (L : Lock_Ptr) return Boolean;
197 pragma Inline (Check_Unlock);
198
199 function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
200 pragma Inline (Check_Finalize_Lock);
201
202 --------------------
203 -- Local Packages --
204 --------------------
205
206 package Specific is
207
208 procedure Initialize (Environment_Task : Task_Id);
209 pragma Inline (Initialize);
210 -- Initialize various data needed by this package
211
212 function Is_Valid_Task return Boolean;
213 pragma Inline (Is_Valid_Task);
214 -- Does executing thread have a TCB?
215
216 procedure Set (Self_Id : Task_Id);
217 pragma Inline (Set);
218 -- Set the self id for the current task
219
220 function Self return Task_Id;
221 pragma Inline (Self);
222 -- Return a pointer to the Ada Task Control Block of the calling task
223
224 end Specific;
225
226 package body Specific is separate;
227 -- The body of this package is target specific
228
229 ----------------------------------
230 -- ATCB allocation/deallocation --
231 ----------------------------------
232
233 package body ATCB_Allocation is separate;
234 -- The body of this package is shared across several targets
235
236 ---------------------------------
237 -- Support for foreign threads --
238 ---------------------------------
239
240 function Register_Foreign_Thread
241 (Thread : Thread_Id;
242 Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
243 -- Allocate and initialize a new ATCB for the current Thread. The size of
244 -- the secondary stack can be optionally specified.
245
246 function Register_Foreign_Thread
247 (Thread : Thread_Id;
248 Sec_Stack_Size : Size_Type := Unspecified_Size)
249 return Task_Id is separate;
250
251 ------------
252 -- Checks --
253 ------------
254
255 Check_Count : Integer := 0;
256 Lock_Count : Integer := 0;
257 Unlock_Count : Integer := 0;
258
259 -------------------
260 -- Abort_Handler --
261 -------------------
262
263 procedure Abort_Handler
264 (Sig : Signal;
265 Code : not null access siginfo_t;
266 Context : not null access ucontext_t)
267 is
268 pragma Unreferenced (Sig);
269 pragma Unreferenced (Code);
270 pragma Unreferenced (Context);
271
272 Self_ID : constant Task_Id := Self;
273 Old_Set : aliased sigset_t;
274
275 Result : Interfaces.C.int;
276 pragma Warnings (Off, Result);
277
278 begin
279 -- It's not safe to raise an exception when using GCC ZCX mechanism.
280 -- Note that we still need to install a signal handler, since in some
281 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
282 -- need to send the Abort signal to a task.
283
284 if ZCX_By_Default then
285 return;
286 end if;
287
288 if Self_ID.Deferral_Level = 0
289 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
290 and then not Self_ID.Aborting
291 then
292 Self_ID.Aborting := True;
293
294 -- Make sure signals used for RTS internal purpose are unmasked
295
296 Result :=
297 thr_sigsetmask
298 (SIG_UNBLOCK,
299 Unblocked_Signal_Mask'Unchecked_Access,
300 Old_Set'Unchecked_Access);
301 pragma Assert (Result = 0);
302
303 raise Standard'Abort_Signal;
304 end if;
305 end Abort_Handler;
306
307 -----------------
308 -- Stack_Guard --
309 -----------------
310
311 -- The underlying thread system sets a guard page at the
312 -- bottom of a thread stack, so nothing is needed.
313
314 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
315 pragma Unreferenced (T);
316 pragma Unreferenced (On);
317 begin
318 null;
319 end Stack_Guard;
320
321 -------------------
322 -- Get_Thread_Id --
323 -------------------
324
325 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
326 begin
327 return T.Common.LL.Thread;
328 end Get_Thread_Id;
329
330 ----------------
331 -- Initialize --
332 ----------------
333
334 procedure Initialize (Environment_Task : ST.Task_Id) is
335 act : aliased struct_sigaction;
336 old_act : aliased struct_sigaction;
337 Tmp_Set : aliased sigset_t;
338 Result : Interfaces.C.int;
339
340 procedure Configure_Processors;
341 -- Processors configuration
342 -- The user can specify a processor which the program should run
343 -- on to emulate a single-processor system. This can be easily
344 -- done by setting environment variable GNAT_PROCESSOR to one of
345 -- the following :
346 --
347 -- -2 : use the default configuration (run the program on all
348 -- available processors) - this is the same as having
349 -- GNAT_PROCESSOR unset
350 -- -1 : let the RTS choose one processor and run the program on
351 -- that processor
352 -- 0 .. Last_Proc : run the program on the specified processor
353 --
354 -- Last_Proc is equal to the value of the system variable
355 -- _SC_NPROCESSORS_CONF, minus one.
356
357 procedure Configure_Processors is
358 Proc_Acc : constant System.OS_Lib.String_Access :=
359 System.OS_Lib.Getenv ("GNAT_PROCESSOR");
360 Proc : aliased processorid_t; -- User processor #
361 Last_Proc : processorid_t; -- Last processor #
362
363 begin
364 if Proc_Acc.all'Length /= 0 then
365
366 -- Environment variable is defined
367
368 Last_Proc := Num_Procs - 1;
369
370 if Last_Proc /= -1 then
371 Proc := processorid_t'Value (Proc_Acc.all);
372
373 if Proc <= -2 or else Proc > Last_Proc then
374
375 -- Use the default configuration
376
377 null;
378
379 elsif Proc = -1 then
380
381 -- Choose a processor
382
383 Result := 0;
384 while Proc < Last_Proc loop
385 Proc := Proc + 1;
386 Result := p_online (Proc, PR_STATUS);
387 exit when Result = PR_ONLINE;
388 end loop;
389
390 pragma Assert (Result = PR_ONLINE);
391 Result := processor_bind (P_PID, P_MYID, Proc, null);
392 pragma Assert (Result = 0);
393
394 else
395 -- Use user processor
396
397 Result := processor_bind (P_PID, P_MYID, Proc, null);
398 pragma Assert (Result = 0);
399 end if;
400 end if;
401 end if;
402
403 exception
404 when Constraint_Error =>
405
406 -- Illegal environment variable GNAT_PROCESSOR - ignored
407
408 null;
409 end Configure_Processors;
410
411 function State
412 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
413 pragma Import (C, State, "__gnat_get_interrupt_state");
414 -- Get interrupt state. Defined in a-init.c
415 -- The input argument is the interrupt number,
416 -- and the result is one of the following:
417
418 Default : constant Character := 's';
419 -- 'n' this interrupt not set by any Interrupt_State pragma
420 -- 'u' Interrupt_State pragma set state to User
421 -- 'r' Interrupt_State pragma set state to Runtime
422 -- 's' Interrupt_State pragma set state to System (use "default"
423 -- system handler)
424
425 -- Start of processing for Initialize
426
427 begin
428 Environment_Task_Id := Environment_Task;
429
430 Interrupt_Management.Initialize;
431
432 -- Prepare the set of signals that should unblocked in all tasks
433
434 Result := sigemptyset (Unblocked_Signal_Mask'Access);
435 pragma Assert (Result = 0);
436
437 for J in Interrupt_Management.Interrupt_ID loop
438 if System.Interrupt_Management.Keep_Unmasked (J) then
439 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
440 pragma Assert (Result = 0);
441 end if;
442 end loop;
443
444 if Dispatching_Policy = 'F' then
445 declare
446 Result : Interfaces.C.long;
447 Class_Info : aliased struct_pcinfo;
448 Secs, Nsecs : Interfaces.C.long;
449
450 begin
451 -- If a pragma Time_Slice is specified, takes the value in account
452
453 if Time_Slice_Val > 0 then
454
455 -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
456
457 Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
458 Nsecs :=
459 Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
460
461 -- Otherwise, default to no time slicing (i.e run until blocked)
462
463 else
464 Secs := RT_TQINF;
465 Nsecs := RT_TQINF;
466 end if;
467
468 -- Get the real time class id
469
470 Class_Info.pc_clname (1) := 'R';
471 Class_Info.pc_clname (2) := 'T';
472 Class_Info.pc_clname (3) := ASCII.NUL;
473
474 Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
475 Class_Info'Address);
476
477 -- Request the real time class
478
479 Prio_Param.pc_cid := Class_Info.pc_cid;
480 Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
481 Prio_Param.rt_tqsecs := Secs;
482 Prio_Param.rt_tqnsecs := Nsecs;
483
484 Result :=
485 priocntl
486 (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
487
488 Using_Real_Time_Class := Result /= -1;
489 end;
490 end if;
491
492 Specific.Initialize (Environment_Task);
493
494 -- The following is done in Enter_Task, but this is too late for the
495 -- Environment Task, since we need to call Self in Check_Locks when
496 -- the run time is compiled with assertions on.
497
498 Specific.Set (Environment_Task);
499
500 -- Initialize the lock used to synchronize chain of all ATCBs
501
502 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
503
504 -- Make environment task known here because it doesn't go through
505 -- Activate_Tasks, which does it for all other tasks.
506
507 Known_Tasks (Known_Tasks'First) := Environment_Task;
508 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
509
510 Enter_Task (Environment_Task);
511
512 Configure_Processors;
513
514 if State
515 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
516 then
517 -- Set sa_flags to SA_NODEFER so that during the handler execution
518 -- we do not change the Signal_Mask to be masked for the Abort_Signal
519 -- This is a temporary fix to the problem that the Signal_Mask is
520 -- not restored after the exception (longjmp) from the handler.
521 -- The right fix should be made in sigsetjmp so that we save
522 -- the Signal_Set and restore it after a longjmp.
523 -- In that case, this field should be changed back to 0. ???
524
525 act.sa_flags := 16;
526
527 act.sa_handler := Abort_Handler'Address;
528 Result := sigemptyset (Tmp_Set'Access);
529 pragma Assert (Result = 0);
530 act.sa_mask := Tmp_Set;
531
532 Result :=
533 sigaction
534 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
535 act'Unchecked_Access,
536 old_act'Unchecked_Access);
537 pragma Assert (Result = 0);
538 Abort_Handler_Installed := True;
539 end if;
540 end Initialize;
541
542 ---------------------
543 -- Initialize_Lock --
544 ---------------------
545
546 -- Note: mutexes and cond_variables needed per-task basis are initialized
547 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
548 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
549 -- status change of RTS. Therefore raising Storage_Error in the following
550 -- routines should be able to be handled safely.
551
552 procedure Initialize_Lock
553 (Prio : System.Any_Priority;
554 L : not null access Lock)
555 is
556 Result : Interfaces.C.int;
557
558 begin
559 pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
560
561 if Priority_Ceiling_Emulation then
562 L.Ceiling := Prio;
563 end if;
564
565 Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
566 pragma Assert (Result = 0 or else Result = ENOMEM);
567
568 if Result = ENOMEM then
569 raise Storage_Error with "Failed to allocate a lock";
570 end if;
571 end Initialize_Lock;
572
573 procedure Initialize_Lock
574 (L : not null access RTS_Lock;
575 Level : Lock_Level)
576 is
577 Result : Interfaces.C.int;
578
579 begin
580 pragma Assert
581 (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
582 Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
583 pragma Assert (Result = 0 or else Result = ENOMEM);
584
585 if Result = ENOMEM then
586 raise Storage_Error with "Failed to allocate a lock";
587 end if;
588 end Initialize_Lock;
589
590 -------------------
591 -- Finalize_Lock --
592 -------------------
593
594 procedure Finalize_Lock (L : not null access Lock) is
595 Result : Interfaces.C.int;
596 begin
597 pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
598 Result := mutex_destroy (L.L'Access);
599 pragma Assert (Result = 0);
600 end Finalize_Lock;
601
602 procedure Finalize_Lock (L : not null access RTS_Lock) is
603 Result : Interfaces.C.int;
604 begin
605 pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
606 Result := mutex_destroy (L.L'Access);
607 pragma Assert (Result = 0);
608 end Finalize_Lock;
609
610 ----------------
611 -- Write_Lock --
612 ----------------
613
614 procedure Write_Lock
615 (L : not null access Lock;
616 Ceiling_Violation : out Boolean)
617 is
618 Result : Interfaces.C.int;
619
620 begin
621 pragma Assert (Check_Lock (Lock_Ptr (L)));
622
623 if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
624 declare
625 Self_Id : constant Task_Id := Self;
626 Saved_Priority : System.Any_Priority;
627
628 begin
629 if Self_Id.Common.LL.Active_Priority > L.Ceiling then
630 Ceiling_Violation := True;
631 return;
632 end if;
633
634 Saved_Priority := Self_Id.Common.LL.Active_Priority;
635
636 if Self_Id.Common.LL.Active_Priority < L.Ceiling then
637 Set_Priority (Self_Id, L.Ceiling);
638 end if;
639
640 Result := mutex_lock (L.L'Access);
641 pragma Assert (Result = 0);
642 Ceiling_Violation := False;
643
644 L.Saved_Priority := Saved_Priority;
645 end;
646
647 else
648 Result := mutex_lock (L.L'Access);
649 pragma Assert (Result = 0);
650 Ceiling_Violation := False;
651 end if;
652
653 pragma Assert (Record_Lock (Lock_Ptr (L)));
654 end Write_Lock;
655
656 procedure Write_Lock
657 (L : not null access RTS_Lock;
658 Global_Lock : Boolean := False)
659 is
660 Result : Interfaces.C.int;
661 begin
662 if not Single_Lock or else Global_Lock then
663 pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
664 Result := mutex_lock (L.L'Access);
665 pragma Assert (Result = 0);
666 pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
667 end if;
668 end Write_Lock;
669
670 procedure Write_Lock (T : Task_Id) is
671 Result : Interfaces.C.int;
672 begin
673 if not Single_Lock then
674 pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
675 Result := mutex_lock (T.Common.LL.L.L'Access);
676 pragma Assert (Result = 0);
677 pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
678 end if;
679 end Write_Lock;
680
681 ---------------
682 -- Read_Lock --
683 ---------------
684
685 procedure Read_Lock
686 (L : not null access Lock;
687 Ceiling_Violation : out Boolean) is
688 begin
689 Write_Lock (L, Ceiling_Violation);
690 end Read_Lock;
691
692 ------------
693 -- Unlock --
694 ------------
695
696 procedure Unlock (L : not null access Lock) is
697 Result : Interfaces.C.int;
698
699 begin
700 pragma Assert (Check_Unlock (Lock_Ptr (L)));
701
702 if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
703 declare
704 Self_Id : constant Task_Id := Self;
705
706 begin
707 Result := mutex_unlock (L.L'Access);
708 pragma Assert (Result = 0);
709
710 if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
711 Set_Priority (Self_Id, L.Saved_Priority);
712 end if;
713 end;
714 else
715 Result := mutex_unlock (L.L'Access);
716 pragma Assert (Result = 0);
717 end if;
718 end Unlock;
719
720 procedure Unlock
721 (L : not null access RTS_Lock;
722 Global_Lock : Boolean := False)
723 is
724 Result : Interfaces.C.int;
725 begin
726 if not Single_Lock or else Global_Lock then
727 pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
728 Result := mutex_unlock (L.L'Access);
729 pragma Assert (Result = 0);
730 end if;
731 end Unlock;
732
733 procedure Unlock (T : Task_Id) is
734 Result : Interfaces.C.int;
735 begin
736 if not Single_Lock then
737 pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
738 Result := mutex_unlock (T.Common.LL.L.L'Access);
739 pragma Assert (Result = 0);
740 end if;
741 end Unlock;
742
743 -----------------
744 -- Set_Ceiling --
745 -----------------
746
747 -- Dynamic priority ceilings are not supported by the underlying system
748
749 procedure Set_Ceiling
750 (L : not null access Lock;
751 Prio : System.Any_Priority)
752 is
753 pragma Unreferenced (L, Prio);
754 begin
755 null;
756 end Set_Ceiling;
757
758 -- For the time delay implementation, we need to make sure we
759 -- achieve following criteria:
760
761 -- 1) We have to delay at least for the amount requested.
762 -- 2) We have to give up CPU even though the actual delay does not
763 -- result in blocking.
764 -- 3) Except for restricted run-time systems that do not support
765 -- ATC or task abort, the delay must be interrupted by the
766 -- abort_task operation.
767 -- 4) The implementation has to be efficient so that the delay overhead
768 -- is relatively cheap.
769 -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
770 -- requirement we still want to provide the effect in all cases.
771 -- The reason is that users may want to use short delays to implement
772 -- their own scheduling effect in the absence of language provided
773 -- scheduling policies.
774
775 ---------------------
776 -- Monotonic_Clock --
777 ---------------------
778
779 function Monotonic_Clock return Duration is
780 TS : aliased timespec;
781 Result : Interfaces.C.int;
782 begin
783 Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
784 pragma Assert (Result = 0);
785 return To_Duration (TS);
786 end Monotonic_Clock;
787
788 -------------------
789 -- RT_Resolution --
790 -------------------
791
792 function RT_Resolution return Duration is
793 TS : aliased timespec;
794 Result : Interfaces.C.int;
795 begin
796 Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
797 pragma Assert (Result = 0);
798
799 return To_Duration (TS);
800 end RT_Resolution;
801
802 -----------
803 -- Yield --
804 -----------
805
806 procedure Yield (Do_Yield : Boolean := True) is
807 begin
808 if Do_Yield then
809 System.OS_Interface.thr_yield;
810 end if;
811 end Yield;
812
813 -----------
814 -- Self ---
815 -----------
816
817 function Self return Task_Id renames Specific.Self;
818
819 ------------------
820 -- Set_Priority --
821 ------------------
822
823 procedure Set_Priority
824 (T : Task_Id;
825 Prio : System.Any_Priority;
826 Loss_Of_Inheritance : Boolean := False)
827 is
828 pragma Unreferenced (Loss_Of_Inheritance);
829
830 Result : Interfaces.C.int;
831 pragma Unreferenced (Result);
832
833 Param : aliased struct_pcparms;
834
835 use Task_Info;
836
837 begin
838 T.Common.Current_Priority := Prio;
839
840 if Priority_Ceiling_Emulation then
841 T.Common.LL.Active_Priority := Prio;
842 end if;
843
844 if Using_Real_Time_Class then
845 Param.pc_cid := Prio_Param.pc_cid;
846 Param.rt_pri := pri_t (Prio);
847 Param.rt_tqsecs := Prio_Param.rt_tqsecs;
848 Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
849
850 Result := Interfaces.C.int (
851 priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
852 Param'Address));
853
854 else
855 if T.Common.Task_Info /= null
856 and then not T.Common.Task_Info.Bound_To_LWP
857 then
858 -- The task is not bound to a LWP, so use thr_setprio
859
860 Result :=
861 thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
862
863 else
864 -- The task is bound to a LWP, use priocntl
865 -- ??? TBD
866
867 null;
868 end if;
869 end if;
870 end Set_Priority;
871
872 ------------------
873 -- Get_Priority --
874 ------------------
875
876 function Get_Priority (T : Task_Id) return System.Any_Priority is
877 begin
878 return T.Common.Current_Priority;
879 end Get_Priority;
880
881 ----------------
882 -- Enter_Task --
883 ----------------
884
885 procedure Enter_Task (Self_ID : Task_Id) is
886 begin
887 Self_ID.Common.LL.Thread := thr_self;
888 Self_ID.Common.LL.LWP := lwp_self;
889
890 Set_Task_Affinity (Self_ID);
891 Specific.Set (Self_ID);
892
893 -- We need the above code even if we do direct fetch of Task_Id in Self
894 -- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
895 end Enter_Task;
896
897 -------------------
898 -- Is_Valid_Task --
899 -------------------
900
901 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
902
903 -----------------------------
904 -- Register_Foreign_Thread --
905 -----------------------------
906
907 function Register_Foreign_Thread return Task_Id is
908 begin
909 if Is_Valid_Task then
910 return Self;
911 else
912 return Register_Foreign_Thread (thr_self);
913 end if;
914 end Register_Foreign_Thread;
915
916 --------------------
917 -- Initialize_TCB --
918 --------------------
919
920 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
921 Result : Interfaces.C.int := 0;
922
923 begin
924 -- Give the task a unique serial number
925
926 Self_ID.Serial_Number := Next_Serial_Number;
927 Next_Serial_Number := Next_Serial_Number + 1;
928 pragma Assert (Next_Serial_Number /= 0);
929
930 Self_ID.Common.LL.Thread := Null_Thread_Id;
931
932 if not Single_Lock then
933 Result :=
934 mutex_init
935 (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
936 Self_ID.Common.LL.L.Level :=
937 Private_Task_Serial_Number (Self_ID.Serial_Number);
938 pragma Assert (Result = 0 or else Result = ENOMEM);
939 end if;
940
941 if Result = 0 then
942 Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
943 pragma Assert (Result = 0 or else Result = ENOMEM);
944 end if;
945
946 if Result = 0 then
947 Succeeded := True;
948 else
949 if not Single_Lock then
950 Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
951 pragma Assert (Result = 0);
952 end if;
953
954 Succeeded := False;
955 end if;
956 end Initialize_TCB;
957
958 -----------------
959 -- Create_Task --
960 -----------------
961
962 procedure Create_Task
963 (T : Task_Id;
964 Wrapper : System.Address;
965 Stack_Size : System.Parameters.Size_Type;
966 Priority : System.Any_Priority;
967 Succeeded : out Boolean)
968 is
969 pragma Unreferenced (Priority);
970
971 Result : Interfaces.C.int;
972 Adjusted_Stack_Size : Interfaces.C.size_t;
973 Opts : Interfaces.C.int := THR_DETACHED;
974
975 Page_Size : constant System.Parameters.Size_Type := 4096;
976 -- This constant is for reserving extra space at the
977 -- end of the stack, which can be used by the stack
978 -- checking as guard page. The idea is that we need
979 -- to have at least Stack_Size bytes available for
980 -- actual use.
981
982 use System.Task_Info;
983 use type System.Multiprocessors.CPU_Range;
984
985 begin
986 -- Check whether both Dispatching_Domain and CPU are specified for the
987 -- task, and the CPU value is not contained within the range of
988 -- processors for the domain.
989
990 if T.Common.Domain /= null
991 and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
992 and then
993 (T.Common.Base_CPU not in T.Common.Domain'Range
994 or else not T.Common.Domain (T.Common.Base_CPU))
995 then
996 Succeeded := False;
997 return;
998 end if;
999
1000 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
1001
1002 -- Since the initial signal mask of a thread is inherited from the
1003 -- creator, and the Environment task has all its signals masked, we
1004 -- do not need to manipulate caller's signal mask at this point.
1005 -- All tasks in RTS will have All_Tasks_Mask initially.
1006
1007 if T.Common.Task_Info /= null then
1008 if T.Common.Task_Info.New_LWP then
1009 Opts := Opts + THR_NEW_LWP;
1010 end if;
1011
1012 if T.Common.Task_Info.Bound_To_LWP then
1013 Opts := Opts + THR_BOUND;
1014 end if;
1015
1016 else
1017 Opts := THR_DETACHED + THR_BOUND;
1018 end if;
1019
1020 -- Note: the use of Unrestricted_Access in the following call is needed
1021 -- because otherwise we have an error of getting a access-to-volatile
1022 -- value which points to a non-volatile object. But in this case it is
1023 -- safe to do this, since we know we have no problems with aliasing and
1024 -- Unrestricted_Access bypasses this check.
1025
1026 Result :=
1027 thr_create
1028 (System.Null_Address,
1029 Adjusted_Stack_Size,
1030 Thread_Body_Access (Wrapper),
1031 To_Address (T),
1032 Opts,
1033 T.Common.LL.Thread'Unrestricted_Access);
1034
1035 Succeeded := Result = 0;
1036 pragma Assert
1037 (Result = 0
1038 or else Result = ENOMEM
1039 or else Result = EAGAIN);
1040 end Create_Task;
1041
1042 ------------------
1043 -- Finalize_TCB --
1044 ------------------
1045
1046 procedure Finalize_TCB (T : Task_Id) is
1047 Result : Interfaces.C.int;
1048
1049 begin
1050 T.Common.LL.Thread := Null_Thread_Id;
1051
1052 if not Single_Lock then
1053 Result := mutex_destroy (T.Common.LL.L.L'Access);
1054 pragma Assert (Result = 0);
1055 end if;
1056
1057 Result := cond_destroy (T.Common.LL.CV'Access);
1058 pragma Assert (Result = 0);
1059
1060 if T.Known_Tasks_Index /= -1 then
1061 Known_Tasks (T.Known_Tasks_Index) := null;
1062 end if;
1063
1064 ATCB_Allocation.Free_ATCB (T);
1065 end Finalize_TCB;
1066
1067 ---------------
1068 -- Exit_Task --
1069 ---------------
1070
1071 -- This procedure must be called with abort deferred. It can no longer
1072 -- call Self or access the current task's ATCB, since the ATCB has been
1073 -- deallocated.
1074
1075 procedure Exit_Task is
1076 begin
1077 Specific.Set (null);
1078 end Exit_Task;
1079
1080 ----------------
1081 -- Abort_Task --
1082 ----------------
1083
1084 procedure Abort_Task (T : Task_Id) is
1085 Result : Interfaces.C.int;
1086 begin
1087 if Abort_Handler_Installed then
1088 pragma Assert (T /= Self);
1089 Result :=
1090 thr_kill
1091 (T.Common.LL.Thread,
1092 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1093 pragma Assert (Result = 0);
1094 end if;
1095 end Abort_Task;
1096
1097 -----------
1098 -- Sleep --
1099 -----------
1100
1101 procedure Sleep
1102 (Self_ID : Task_Id;
1103 Reason : Task_States)
1104 is
1105 Result : Interfaces.C.int;
1106
1107 begin
1108 pragma Assert (Check_Sleep (Reason));
1109
1110 if Single_Lock then
1111 Result :=
1112 cond_wait
1113 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access);
1114 else
1115 Result :=
1116 cond_wait
1117 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
1118 end if;
1119
1120 pragma Assert
1121 (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1122 pragma Assert (Result = 0 or else Result = EINTR);
1123 end Sleep;
1124
1125 -- Note that we are relying heavily here on GNAT representing
1126 -- Calendar.Time, System.Real_Time.Time, Duration,
1127 -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
1128 -- nanoseconds.
1129
1130 -- This allows us to always pass the timeout value as a Duration
1131
1132 -- ???
1133 -- We are taking liberties here with the semantics of the delays. That is,
1134 -- we make no distinction between delays on the Calendar clock and delays
1135 -- on the Real_Time clock. That is technically incorrect, if the Calendar
1136 -- clock happens to be reset or adjusted. To solve this defect will require
1137 -- modification to the compiler interface, so that it can pass through more
1138 -- information, to tell us here which clock to use.
1139
1140 -- cond_timedwait will return if any of the following happens:
1141 -- 1) some other task did cond_signal on this condition variable
1142 -- In this case, the return value is 0
1143 -- 2) the call just returned, for no good reason
1144 -- This is called a "spurious wakeup".
1145 -- In this case, the return value may also be 0.
1146 -- 3) the time delay expires
1147 -- In this case, the return value is ETIME
1148 -- 4) this task received a signal, which was handled by some
1149 -- handler procedure, and now the thread is resuming execution
1150 -- UNIX calls this an "interrupted" system call.
1151 -- In this case, the return value is EINTR
1152
1153 -- If the cond_timedwait returns 0 or EINTR, it is still possible that the
1154 -- time has actually expired, and by chance a signal or cond_signal
1155 -- occurred at around the same time.
1156
1157 -- We have also observed that on some OS's the value ETIME will be
1158 -- returned, but the clock will show that the full delay has not yet
1159 -- expired.
1160
1161 -- For these reasons, we need to check the clock after return from
1162 -- cond_timedwait. If the time has expired, we will set Timedout = True.
1163
1164 -- This check might be omitted for systems on which the cond_timedwait()
1165 -- never returns early or wakes up spuriously.
1166
1167 -- Annex D requires that completion of a delay cause the task to go to the
1168 -- end of its priority queue, regardless of whether the task actually was
1169 -- suspended by the delay. Since cond_timedwait does not do this on
1170 -- Solaris, we add a call to thr_yield at the end. We might do this at the
1171 -- beginning, instead, but then the round-robin effect would not be the
1172 -- same; the delayed task would be ahead of other tasks of the same
1173 -- priority that awoke while it was sleeping.
1174
1175 -- For Timed_Sleep, we are expecting possible cond_signals to indicate
1176 -- other events (e.g., completion of a RV or completion of the abortable
1177 -- part of an async. select), we want to always return if interrupted. The
1178 -- caller will be responsible for checking the task state to see whether
1179 -- the wakeup was spurious, and to go back to sleep again in that case. We
1180 -- don't need to check for pending abort or priority change on the way in
1181 -- our out; that is the caller's responsibility.
1182
1183 -- For Timed_Delay, we are not expecting any cond_signals or other
1184 -- interruptions, except for priority changes and aborts. Therefore, we
1185 -- don't want to return unless the delay has actually expired, or the call
1186 -- has been aborted. In this case, since we want to implement the entire
1187 -- delay statement semantics, we do need to check for pending abort and
1188 -- priority changes. We can quietly handle priority changes inside the
1189 -- procedure, since there is no entry-queue reordering involved.
1190
1191 -----------------
1192 -- Timed_Sleep --
1193 -----------------
1194
1195 procedure Timed_Sleep
1196 (Self_ID : Task_Id;
1197 Time : Duration;
1198 Mode : ST.Delay_Modes;
1199 Reason : System.Tasking.Task_States;
1200 Timedout : out Boolean;
1201 Yielded : out Boolean)
1202 is
1203 Base_Time : constant Duration := Monotonic_Clock;
1204 Check_Time : Duration := Base_Time;
1205 Abs_Time : Duration;
1206 Request : aliased timespec;
1207 Result : Interfaces.C.int;
1208
1209 begin
1210 pragma Assert (Check_Sleep (Reason));
1211 Timedout := True;
1212 Yielded := False;
1213
1214 Abs_Time :=
1215 (if Mode = Relative
1216 then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
1217 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1218
1219 if Abs_Time > Check_Time then
1220 Request := To_Timespec (Abs_Time);
1221 loop
1222 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1223
1224 if Single_Lock then
1225 Result :=
1226 cond_timedwait
1227 (Self_ID.Common.LL.CV'Access,
1228 Single_RTS_Lock.L'Access, Request'Access);
1229 else
1230 Result :=
1231 cond_timedwait
1232 (Self_ID.Common.LL.CV'Access,
1233 Self_ID.Common.LL.L.L'Access, Request'Access);
1234 end if;
1235
1236 Yielded := True;
1237
1238 Check_Time := Monotonic_Clock;
1239 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1240
1241 if Result = 0 or Result = EINTR then
1242
1243 -- Somebody may have called Wakeup for us
1244
1245 Timedout := False;
1246 exit;
1247 end if;
1248
1249 pragma Assert (Result = ETIME);
1250 end loop;
1251 end if;
1252
1253 pragma Assert
1254 (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1255 end Timed_Sleep;
1256
1257 -----------------
1258 -- Timed_Delay --
1259 -----------------
1260
1261 procedure Timed_Delay
1262 (Self_ID : Task_Id;
1263 Time : Duration;
1264 Mode : ST.Delay_Modes)
1265 is
1266 Base_Time : constant Duration := Monotonic_Clock;
1267 Check_Time : Duration := Base_Time;
1268 Abs_Time : Duration;
1269 Request : aliased timespec;
1270 Result : Interfaces.C.int;
1271 Yielded : Boolean := False;
1272
1273 begin
1274 if Single_Lock then
1275 Lock_RTS;
1276 end if;
1277
1278 Write_Lock (Self_ID);
1279
1280 Abs_Time :=
1281 (if Mode = Relative
1282 then Time + Check_Time
1283 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1284
1285 if Abs_Time > Check_Time then
1286 Request := To_Timespec (Abs_Time);
1287 Self_ID.Common.State := Delay_Sleep;
1288
1289 pragma Assert (Check_Sleep (Delay_Sleep));
1290
1291 loop
1292 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1293
1294 if Single_Lock then
1295 Result :=
1296 cond_timedwait
1297 (Self_ID.Common.LL.CV'Access,
1298 Single_RTS_Lock.L'Access,
1299 Request'Access);
1300 else
1301 Result :=
1302 cond_timedwait
1303 (Self_ID.Common.LL.CV'Access,
1304 Self_ID.Common.LL.L.L'Access,
1305 Request'Access);
1306 end if;
1307
1308 Yielded := True;
1309
1310 Check_Time := Monotonic_Clock;
1311 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1312
1313 pragma Assert
1314 (Result = 0 or else
1315 Result = ETIME or else
1316 Result = EINTR);
1317 end loop;
1318
1319 pragma Assert
1320 (Record_Wakeup
1321 (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
1322
1323 Self_ID.Common.State := Runnable;
1324 end if;
1325
1326 Unlock (Self_ID);
1327
1328 if Single_Lock then
1329 Unlock_RTS;
1330 end if;
1331
1332 if not Yielded then
1333 thr_yield;
1334 end if;
1335 end Timed_Delay;
1336
1337 ------------
1338 -- Wakeup --
1339 ------------
1340
1341 procedure Wakeup
1342 (T : Task_Id;
1343 Reason : Task_States)
1344 is
1345 Result : Interfaces.C.int;
1346 begin
1347 pragma Assert (Check_Wakeup (T, Reason));
1348 Result := cond_signal (T.Common.LL.CV'Access);
1349 pragma Assert (Result = 0);
1350 end Wakeup;
1351
1352 ---------------------------
1353 -- Check_Initialize_Lock --
1354 ---------------------------
1355
1356 -- The following code is intended to check some of the invariant assertions
1357 -- related to lock usage, on which we depend.
1358
1359 function Check_Initialize_Lock
1360 (L : Lock_Ptr;
1361 Level : Lock_Level) return Boolean
1362 is
1363 Self_ID : constant Task_Id := Self;
1364
1365 begin
1366 -- Check that caller is abort-deferred
1367
1368 if Self_ID.Deferral_Level = 0 then
1369 return False;
1370 end if;
1371
1372 -- Check that the lock is not yet initialized
1373
1374 if L.Level /= 0 then
1375 return False;
1376 end if;
1377
1378 L.Level := Lock_Level'Pos (Level) + 1;
1379 return True;
1380 end Check_Initialize_Lock;
1381
1382 ----------------
1383 -- Check_Lock --
1384 ----------------
1385
1386 function Check_Lock (L : Lock_Ptr) return Boolean is
1387 Self_ID : constant Task_Id := Self;
1388 P : Lock_Ptr;
1389
1390 begin
1391 -- Check that the argument is not null
1392
1393 if L = null then
1394 return False;
1395 end if;
1396
1397 -- Check that L is not frozen
1398
1399 if L.Frozen then
1400 return False;
1401 end if;
1402
1403 -- Check that caller is abort-deferred
1404
1405 if Self_ID.Deferral_Level = 0 then
1406 return False;
1407 end if;
1408
1409 -- Check that caller is not holding this lock already
1410
1411 if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
1412 return False;
1413 end if;
1414
1415 if Single_Lock then
1416 return True;
1417 end if;
1418
1419 -- Check that TCB lock order rules are satisfied
1420
1421 P := Self_ID.Common.LL.Locks;
1422 if P /= null then
1423 if P.Level >= L.Level
1424 and then (P.Level > 2 or else L.Level > 2)
1425 then
1426 return False;
1427 end if;
1428 end if;
1429
1430 return True;
1431 end Check_Lock;
1432
1433 -----------------
1434 -- Record_Lock --
1435 -----------------
1436
1437 function Record_Lock (L : Lock_Ptr) return Boolean is
1438 Self_ID : constant Task_Id := Self;
1439 P : Lock_Ptr;
1440
1441 begin
1442 Lock_Count := Lock_Count + 1;
1443
1444 -- There should be no owner for this lock at this point
1445
1446 if L.Owner /= null then
1447 return False;
1448 end if;
1449
1450 -- Record new owner
1451
1452 L.Owner := To_Owner_ID (To_Address (Self_ID));
1453
1454 if Single_Lock then
1455 return True;
1456 end if;
1457
1458 -- Check that TCB lock order rules are satisfied
1459
1460 P := Self_ID.Common.LL.Locks;
1461
1462 if P /= null then
1463 L.Next := P;
1464 end if;
1465
1466 Self_ID.Common.LL.Locking := null;
1467 Self_ID.Common.LL.Locks := L;
1468 return True;
1469 end Record_Lock;
1470
1471 -----------------
1472 -- Check_Sleep --
1473 -----------------
1474
1475 function Check_Sleep (Reason : Task_States) return Boolean is
1476 pragma Unreferenced (Reason);
1477
1478 Self_ID : constant Task_Id := Self;
1479 P : Lock_Ptr;
1480
1481 begin
1482 -- Check that caller is abort-deferred
1483
1484 if Self_ID.Deferral_Level = 0 then
1485 return False;
1486 end if;
1487
1488 if Single_Lock then
1489 return True;
1490 end if;
1491
1492 -- Check that caller is holding own lock, on top of list
1493
1494 if Self_ID.Common.LL.Locks /=
1495 To_Lock_Ptr (Self_ID.Common.LL.L'Access)
1496 then
1497 return False;
1498 end if;
1499
1500 -- Check that TCB lock order rules are satisfied
1501
1502 if Self_ID.Common.LL.Locks.Next /= null then
1503 return False;
1504 end if;
1505
1506 Self_ID.Common.LL.L.Owner := null;
1507 P := Self_ID.Common.LL.Locks;
1508 Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1509 P.Next := null;
1510 return True;
1511 end Check_Sleep;
1512
1513 -------------------
1514 -- Record_Wakeup --
1515 -------------------
1516
1517 function Record_Wakeup
1518 (L : Lock_Ptr;
1519 Reason : Task_States) return Boolean
1520 is
1521 pragma Unreferenced (Reason);
1522
1523 Self_ID : constant Task_Id := Self;
1524 P : Lock_Ptr;
1525
1526 begin
1527 -- Record new owner
1528
1529 L.Owner := To_Owner_ID (To_Address (Self_ID));
1530
1531 if Single_Lock then
1532 return True;
1533 end if;
1534
1535 -- Check that TCB lock order rules are satisfied
1536
1537 P := Self_ID.Common.LL.Locks;
1538
1539 if P /= null then
1540 L.Next := P;
1541 end if;
1542
1543 Self_ID.Common.LL.Locking := null;
1544 Self_ID.Common.LL.Locks := L;
1545 return True;
1546 end Record_Wakeup;
1547
1548 ------------------
1549 -- Check_Wakeup --
1550 ------------------
1551
1552 function Check_Wakeup
1553 (T : Task_Id;
1554 Reason : Task_States) return Boolean
1555 is
1556 Self_ID : constant Task_Id := Self;
1557
1558 begin
1559 -- Is caller holding T's lock?
1560
1561 if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
1562 return False;
1563 end if;
1564
1565 -- Are reasons for wakeup and sleep consistent?
1566
1567 if T.Common.State /= Reason then
1568 return False;
1569 end if;
1570
1571 return True;
1572 end Check_Wakeup;
1573
1574 ------------------
1575 -- Check_Unlock --
1576 ------------------
1577
1578 function Check_Unlock (L : Lock_Ptr) return Boolean is
1579 Self_ID : constant Task_Id := Self;
1580 P : Lock_Ptr;
1581
1582 begin
1583 Unlock_Count := Unlock_Count + 1;
1584
1585 if L = null then
1586 return False;
1587 end if;
1588
1589 if L.Buddy /= null then
1590 return False;
1591 end if;
1592
1593 -- Magic constant 4???
1594
1595 if L.Level = 4 then
1596 Check_Count := Unlock_Count;
1597 end if;
1598
1599 -- Magic constant 1000???
1600
1601 if Unlock_Count - Check_Count > 1000 then
1602 Check_Count := Unlock_Count;
1603 end if;
1604
1605 -- Check that caller is abort-deferred
1606
1607 if Self_ID.Deferral_Level = 0 then
1608 return False;
1609 end if;
1610
1611 -- Check that caller is holding this lock, on top of list
1612
1613 if Self_ID.Common.LL.Locks /= L then
1614 return False;
1615 end if;
1616
1617 -- Record there is no owner now
1618
1619 L.Owner := null;
1620 P := Self_ID.Common.LL.Locks;
1621 Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1622 P.Next := null;
1623 return True;
1624 end Check_Unlock;
1625
1626 -------------------------
1627 -- Check_Finalize_Lock --
1628 -------------------------
1629
1630 function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
1631 Self_ID : constant Task_Id := Self;
1632
1633 begin
1634 -- Check that caller is abort-deferred
1635
1636 if Self_ID.Deferral_Level = 0 then
1637 return False;
1638 end if;
1639
1640 -- Check that no one is holding this lock
1641
1642 if L.Owner /= null then
1643 return False;
1644 end if;
1645
1646 L.Frozen := True;
1647 return True;
1648 end Check_Finalize_Lock;
1649
1650 ----------------
1651 -- Initialize --
1652 ----------------
1653
1654 procedure Initialize (S : in out Suspension_Object) is
1655 Result : Interfaces.C.int;
1656
1657 begin
1658 -- Initialize internal state (always to zero (RM D.10(6)))
1659
1660 S.State := False;
1661 S.Waiting := False;
1662
1663 -- Initialize internal mutex
1664
1665 Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
1666 pragma Assert (Result = 0 or else Result = ENOMEM);
1667
1668 if Result = ENOMEM then
1669 raise Storage_Error with "Failed to allocate a lock";
1670 end if;
1671
1672 -- Initialize internal condition variable
1673
1674 Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
1675 pragma Assert (Result = 0 or else Result = ENOMEM);
1676
1677 if Result /= 0 then
1678 Result := mutex_destroy (S.L'Access);
1679 pragma Assert (Result = 0);
1680
1681 if Result = ENOMEM then
1682 raise Storage_Error;
1683 end if;
1684 end if;
1685 end Initialize;
1686
1687 --------------
1688 -- Finalize --
1689 --------------
1690
1691 procedure Finalize (S : in out Suspension_Object) is
1692 Result : Interfaces.C.int;
1693
1694 begin
1695 -- Destroy internal mutex
1696
1697 Result := mutex_destroy (S.L'Access);
1698 pragma Assert (Result = 0);
1699
1700 -- Destroy internal condition variable
1701
1702 Result := cond_destroy (S.CV'Access);
1703 pragma Assert (Result = 0);
1704 end Finalize;
1705
1706 -------------------
1707 -- Current_State --
1708 -------------------
1709
1710 function Current_State (S : Suspension_Object) return Boolean is
1711 begin
1712 -- We do not want to use lock on this read operation. State is marked
1713 -- as Atomic so that we ensure that the value retrieved is correct.
1714
1715 return S.State;
1716 end Current_State;
1717
1718 ---------------
1719 -- Set_False --
1720 ---------------
1721
1722 procedure Set_False (S : in out Suspension_Object) is
1723 Result : Interfaces.C.int;
1724
1725 begin
1726 SSL.Abort_Defer.all;
1727
1728 Result := mutex_lock (S.L'Access);
1729 pragma Assert (Result = 0);
1730
1731 S.State := False;
1732
1733 Result := mutex_unlock (S.L'Access);
1734 pragma Assert (Result = 0);
1735
1736 SSL.Abort_Undefer.all;
1737 end Set_False;
1738
1739 --------------
1740 -- Set_True --
1741 --------------
1742
1743 procedure Set_True (S : in out Suspension_Object) is
1744 Result : Interfaces.C.int;
1745
1746 begin
1747 SSL.Abort_Defer.all;
1748
1749 Result := mutex_lock (S.L'Access);
1750 pragma Assert (Result = 0);
1751
1752 -- If there is already a task waiting on this suspension object then
1753 -- we resume it, leaving the state of the suspension object to False,
1754 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1755 -- the state to True.
1756
1757 if S.Waiting then
1758 S.Waiting := False;
1759 S.State := False;
1760
1761 Result := cond_signal (S.CV'Access);
1762 pragma Assert (Result = 0);
1763
1764 else
1765 S.State := True;
1766 end if;
1767
1768 Result := mutex_unlock (S.L'Access);
1769 pragma Assert (Result = 0);
1770
1771 SSL.Abort_Undefer.all;
1772 end Set_True;
1773
1774 ------------------------
1775 -- Suspend_Until_True --
1776 ------------------------
1777
1778 procedure Suspend_Until_True (S : in out Suspension_Object) is
1779 Result : Interfaces.C.int;
1780
1781 begin
1782 SSL.Abort_Defer.all;
1783
1784 Result := mutex_lock (S.L'Access);
1785 pragma Assert (Result = 0);
1786
1787 if S.Waiting then
1788
1789 -- Program_Error must be raised upon calling Suspend_Until_True
1790 -- if another task is already waiting on that suspension object
1791 -- (RM D.10(10)).
1792
1793 Result := mutex_unlock (S.L'Access);
1794 pragma Assert (Result = 0);
1795
1796 SSL.Abort_Undefer.all;
1797
1798 raise Program_Error;
1799
1800 else
1801 -- Suspend the task if the state is False. Otherwise, the task
1802 -- continues its execution, and the state of the suspension object
1803 -- is set to False (ARM D.10 par. 9).
1804
1805 if S.State then
1806 S.State := False;
1807 else
1808 S.Waiting := True;
1809
1810 loop
1811 -- Loop in case pthread_cond_wait returns earlier than expected
1812 -- (e.g. in case of EINTR caused by a signal).
1813
1814 Result := cond_wait (S.CV'Access, S.L'Access);
1815 pragma Assert (Result = 0 or else Result = EINTR);
1816
1817 exit when not S.Waiting;
1818 end loop;
1819 end if;
1820
1821 Result := mutex_unlock (S.L'Access);
1822 pragma Assert (Result = 0);
1823
1824 SSL.Abort_Undefer.all;
1825 end if;
1826 end Suspend_Until_True;
1827
1828 ----------------
1829 -- Check_Exit --
1830 ----------------
1831
1832 function Check_Exit (Self_ID : Task_Id) return Boolean is
1833 begin
1834 -- Check that caller is just holding Global_Task_Lock and no other locks
1835
1836 if Self_ID.Common.LL.Locks = null then
1837 return False;
1838 end if;
1839
1840 -- 2 = Global_Task_Level
1841
1842 if Self_ID.Common.LL.Locks.Level /= 2 then
1843 return False;
1844 end if;
1845
1846 if Self_ID.Common.LL.Locks.Next /= null then
1847 return False;
1848 end if;
1849
1850 -- Check that caller is abort-deferred
1851
1852 if Self_ID.Deferral_Level = 0 then
1853 return False;
1854 end if;
1855
1856 return True;
1857 end Check_Exit;
1858
1859 --------------------
1860 -- Check_No_Locks --
1861 --------------------
1862
1863 function Check_No_Locks (Self_ID : Task_Id) return Boolean is
1864 begin
1865 return Self_ID.Common.LL.Locks = null;
1866 end Check_No_Locks;
1867
1868 ----------------------
1869 -- Environment_Task --
1870 ----------------------
1871
1872 function Environment_Task return Task_Id is
1873 begin
1874 return Environment_Task_Id;
1875 end Environment_Task;
1876
1877 --------------
1878 -- Lock_RTS --
1879 --------------
1880
1881 procedure Lock_RTS is
1882 begin
1883 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1884 end Lock_RTS;
1885
1886 ----------------
1887 -- Unlock_RTS --
1888 ----------------
1889
1890 procedure Unlock_RTS is
1891 begin
1892 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1893 end Unlock_RTS;
1894
1895 ------------------
1896 -- Suspend_Task --
1897 ------------------
1898
1899 function Suspend_Task
1900 (T : ST.Task_Id;
1901 Thread_Self : Thread_Id) return Boolean
1902 is
1903 begin
1904 if T.Common.LL.Thread /= Thread_Self then
1905 return thr_suspend (T.Common.LL.Thread) = 0;
1906 else
1907 return True;
1908 end if;
1909 end Suspend_Task;
1910
1911 -----------------
1912 -- Resume_Task --
1913 -----------------
1914
1915 function Resume_Task
1916 (T : ST.Task_Id;
1917 Thread_Self : Thread_Id) return Boolean
1918 is
1919 begin
1920 if T.Common.LL.Thread /= Thread_Self then
1921 return thr_continue (T.Common.LL.Thread) = 0;
1922 else
1923 return True;
1924 end if;
1925 end Resume_Task;
1926
1927 --------------------
1928 -- Stop_All_Tasks --
1929 --------------------
1930
1931 procedure Stop_All_Tasks is
1932 begin
1933 null;
1934 end Stop_All_Tasks;
1935
1936 ---------------
1937 -- Stop_Task --
1938 ---------------
1939
1940 function Stop_Task (T : ST.Task_Id) return Boolean is
1941 pragma Unreferenced (T);
1942 begin
1943 return False;
1944 end Stop_Task;
1945
1946 -------------------
1947 -- Continue_Task --
1948 -------------------
1949
1950 function Continue_Task (T : ST.Task_Id) return Boolean is
1951 pragma Unreferenced (T);
1952 begin
1953 return False;
1954 end Continue_Task;
1955
1956 -----------------------
1957 -- Set_Task_Affinity --
1958 -----------------------
1959
1960 procedure Set_Task_Affinity (T : ST.Task_Id) is
1961 Result : Interfaces.C.int;
1962 Proc : processorid_t; -- User processor #
1963 Last_Proc : processorid_t; -- Last processor #
1964
1965 use System.Task_Info;
1966 use type System.Multiprocessors.CPU_Range;
1967
1968 begin
1969 -- Do nothing if the underlying thread has not yet been created. If the
1970 -- thread has not yet been created then the proper affinity will be set
1971 -- during its creation.
1972
1973 if T.Common.LL.Thread = Null_Thread_Id then
1974 null;
1975
1976 -- pragma CPU
1977
1978 elsif T.Common.Base_CPU /=
1979 System.Multiprocessors.Not_A_Specific_CPU
1980 then
1981 -- The CPU numbering in pragma CPU starts at 1 while the subprogram
1982 -- to set the affinity starts at 0, therefore we must substract 1.
1983
1984 Result :=
1985 processor_bind
1986 (P_LWPID, id_t (T.Common.LL.LWP),
1987 processorid_t (T.Common.Base_CPU) - 1, null);
1988 pragma Assert (Result = 0);
1989
1990 -- Task_Info
1991
1992 elsif T.Common.Task_Info /= null then
1993 if T.Common.Task_Info.New_LWP
1994 and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
1995 then
1996 Last_Proc := Num_Procs - 1;
1997
1998 if T.Common.Task_Info.CPU = ANY_CPU then
1999 Result := 0;
2000
2001 Proc := 0;
2002 while Proc < Last_Proc loop
2003 Result := p_online (Proc, PR_STATUS);
2004 exit when Result = PR_ONLINE;
2005 Proc := Proc + 1;
2006 end loop;
2007
2008 Result :=
2009 processor_bind
2010 (P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
2011 pragma Assert (Result = 0);
2012
2013 else
2014 -- Use specified processor
2015
2016 if T.Common.Task_Info.CPU < 0
2017 or else T.Common.Task_Info.CPU > Last_Proc
2018 then
2019 raise Invalid_CPU_Number;
2020 end if;
2021
2022 Result :=
2023 processor_bind
2024 (P_LWPID, id_t (T.Common.LL.LWP),
2025 T.Common.Task_Info.CPU, null);
2026 pragma Assert (Result = 0);
2027 end if;
2028 end if;
2029
2030 -- Handle dispatching domains
2031
2032 elsif T.Common.Domain /= null
2033 and then (T.Common.Domain /= ST.System_Domain
2034 or else T.Common.Domain.all /=
2035 (Multiprocessors.CPU'First ..
2036 Multiprocessors.Number_Of_CPUs => True))
2037 then
2038 declare
2039 CPU_Set : aliased psetid_t;
2040 Result : int;
2041
2042 begin
2043 Result := pset_create (CPU_Set'Access);
2044 pragma Assert (Result = 0);
2045
2046 -- Set the affinity to all the processors belonging to the
2047 -- dispatching domain.
2048
2049 for Proc in T.Common.Domain'Range loop
2050
2051 -- The Ada CPU numbering starts at 1 while the subprogram to
2052 -- set the affinity starts at 0, therefore we must substract 1.
2053
2054 if T.Common.Domain (Proc) then
2055 Result :=
2056 pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
2057 pragma Assert (Result = 0);
2058 end if;
2059 end loop;
2060
2061 Result :=
2062 pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
2063 pragma Assert (Result = 0);
2064 end;
2065 end if;
2066 end Set_Task_Affinity;
2067
2068 end System.Task_Primitives.Operations;