]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_aggr.adb
5a26cf9c7fd294b52de97403e9c9e4f0edd7853b
[thirdparty/gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Itypes; use Itypes;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sem_Type; use Sem_Type;
58 with Sem_Warn; use Sem_Warn;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stringt; use Stringt;
62 with Stand; use Stand;
63 with Style; use Style;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Uintp; use Uintp;
67
68 package body Sem_Aggr is
69
70 type Case_Bounds is record
71 Lo : Node_Id;
72 -- Low bound of choice. Once we sort the Case_Table, then entries
73 -- will be in order of ascending Choice_Lo values.
74
75 Hi : Node_Id;
76 -- High Bound of choice. The sort does not pay any attention to the
77 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78
79 Highest : Uint;
80 -- If there are duplicates or missing entries, then in the sorted
81 -- table, this records the highest value among Choice_Hi values
82 -- seen so far, including this entry.
83
84 Choice : Node_Id;
85 -- The node of the choice
86 end record;
87
88 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
89 -- Table type used by Check_Case_Choices procedure. Entry zero is not
90 -- used (reserved for the sort). Real entries start at one.
91
92 -----------------------
93 -- Local Subprograms --
94 -----------------------
95
96 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
97 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
98 -- simple insertion sort is used since the choices in a case statement will
99 -- usually be in near sorted order.
100
101 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
102 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
103 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
104 -- the array case (the component type of the array will be used) or an
105 -- E_Component/E_Discriminant entity in the record case, in which case the
106 -- type of the component will be used for the test. If Typ is any other
107 -- kind of entity, the call is ignored. Expr is the component node in the
108 -- aggregate which is known to have a null value. A warning message will be
109 -- issued if the component is null excluding.
110 --
111 -- It would be better to pass the proper type for Typ ???
112
113 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
114 -- Check that Expr is either not limited or else is one of the cases of
115 -- expressions allowed for a limited component association (namely, an
116 -- aggregate, function call, or <> notation). Report error for violations.
117 -- Expression is also OK in an instance or inlining context, because we
118 -- have already preanalyzed and it is known to be type correct.
119
120 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
121 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
122 -- at Level are qualified. If Level = 0, this applies to Expr directly.
123 -- Only issue errors in formal verification mode.
124
125 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
126 -- Return True of Expr is an aggregate not contained directly in another
127 -- aggregate.
128
129 ------------------------------------------------------
130 -- Subprograms used for RECORD AGGREGATE Processing --
131 ------------------------------------------------------
132
133 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
134 -- This procedure performs all the semantic checks required for record
135 -- aggregates. Note that for aggregates analysis and resolution go
136 -- hand in hand. Aggregate analysis has been delayed up to here and
137 -- it is done while resolving the aggregate.
138 --
139 -- N is the N_Aggregate node.
140 -- Typ is the record type for the aggregate resolution
141 --
142 -- While performing the semantic checks, this procedure builds a new
143 -- Component_Association_List where each record field appears alone in a
144 -- Component_Choice_List along with its corresponding expression. The
145 -- record fields in the Component_Association_List appear in the same order
146 -- in which they appear in the record type Typ.
147 --
148 -- Once this new Component_Association_List is built and all the semantic
149 -- checks performed, the original aggregate subtree is replaced with the
150 -- new named record aggregate just built. Note that subtree substitution is
151 -- performed with Rewrite so as to be able to retrieve the original
152 -- aggregate.
153 --
154 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
155 -- yields the aggregate format expected by Gigi. Typically, this kind of
156 -- tree manipulations are done in the expander. However, because the
157 -- semantic checks that need to be performed on record aggregates really go
158 -- hand in hand with the record aggregate normalization, the aggregate
159 -- subtree transformation is performed during resolution rather than
160 -- expansion. Had we decided otherwise we would have had to duplicate most
161 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
162 -- however, that all the expansion concerning aggregates for tagged records
163 -- is done in Expand_Record_Aggregate.
164 --
165 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
166 --
167 -- 1. Make sure that the record type against which the record aggregate
168 -- has to be resolved is not abstract. Furthermore if the type is a
169 -- null aggregate make sure the input aggregate N is also null.
170 --
171 -- 2. Verify that the structure of the aggregate is that of a record
172 -- aggregate. Specifically, look for component associations and ensure
173 -- that each choice list only has identifiers or the N_Others_Choice
174 -- node. Also make sure that if present, the N_Others_Choice occurs
175 -- last and by itself.
176 --
177 -- 3. If Typ contains discriminants, the values for each discriminant is
178 -- looked for. If the record type Typ has variants, we check that the
179 -- expressions corresponding to each discriminant ruling the (possibly
180 -- nested) variant parts of Typ, are static. This allows us to determine
181 -- the variant parts to which the rest of the aggregate must conform.
182 -- The names of discriminants with their values are saved in a new
183 -- association list, New_Assoc_List which is later augmented with the
184 -- names and values of the remaining components in the record type.
185 --
186 -- During this phase we also make sure that every discriminant is
187 -- assigned exactly one value. Note that when several values for a given
188 -- discriminant are found, semantic processing continues looking for
189 -- further errors. In this case it's the first discriminant value found
190 -- which we will be recorded.
191 --
192 -- IMPORTANT NOTE: For derived tagged types this procedure expects
193 -- First_Discriminant and Next_Discriminant to give the correct list
194 -- of discriminants, in the correct order.
195 --
196 -- 4. After all the discriminant values have been gathered, we can set the
197 -- Etype of the record aggregate. If Typ contains no discriminants this
198 -- is straightforward: the Etype of N is just Typ, otherwise a new
199 -- implicit constrained subtype of Typ is built to be the Etype of N.
200 --
201 -- 5. Gather the remaining record components according to the discriminant
202 -- values. This involves recursively traversing the record type
203 -- structure to see what variants are selected by the given discriminant
204 -- values. This processing is a little more convoluted if Typ is a
205 -- derived tagged types since we need to retrieve the record structure
206 -- of all the ancestors of Typ.
207 --
208 -- 6. After gathering the record components we look for their values in the
209 -- record aggregate and emit appropriate error messages should we not
210 -- find such values or should they be duplicated.
211 --
212 -- 7. We then make sure no illegal component names appear in the record
213 -- aggregate and make sure that the type of the record components
214 -- appearing in a same choice list is the same. Finally we ensure that
215 -- the others choice, if present, is used to provide the value of at
216 -- least a record component.
217 --
218 -- 8. The original aggregate node is replaced with the new named aggregate
219 -- built in steps 3 through 6, as explained earlier.
220 --
221 -- Given the complexity of record aggregate resolution, the primary goal of
222 -- this routine is clarity and simplicity rather than execution and storage
223 -- efficiency. If there are only positional components in the aggregate the
224 -- running time is linear. If there are associations the running time is
225 -- still linear as long as the order of the associations is not too far off
226 -- the order of the components in the record type. If this is not the case
227 -- the running time is at worst quadratic in the size of the association
228 -- list.
229
230 procedure Check_Misspelled_Component
231 (Elements : Elist_Id;
232 Component : Node_Id);
233 -- Give possible misspelling diagnostic if Component is likely to be a
234 -- misspelling of one of the components of the Assoc_List. This is called
235 -- by Resolve_Aggr_Expr after producing an invalid component error message.
236
237 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
238 -- An optimization: determine whether a discriminated subtype has a static
239 -- constraint, and contains array components whose length is also static,
240 -- either because they are constrained by the discriminant, or because the
241 -- original component bounds are static.
242
243 -----------------------------------------------------
244 -- Subprograms used for ARRAY AGGREGATE Processing --
245 -----------------------------------------------------
246
247 function Resolve_Array_Aggregate
248 (N : Node_Id;
249 Index : Node_Id;
250 Index_Constr : Node_Id;
251 Component_Typ : Entity_Id;
252 Others_Allowed : Boolean) return Boolean;
253 -- This procedure performs the semantic checks for an array aggregate.
254 -- True is returned if the aggregate resolution succeeds.
255 --
256 -- The procedure works by recursively checking each nested aggregate.
257 -- Specifically, after checking a sub-aggregate nested at the i-th level
258 -- we recursively check all the subaggregates at the i+1-st level (if any).
259 -- Note that for aggregates analysis and resolution go hand in hand.
260 -- Aggregate analysis has been delayed up to here and it is done while
261 -- resolving the aggregate.
262 --
263 -- N is the current N_Aggregate node to be checked.
264 --
265 -- Index is the index node corresponding to the array sub-aggregate that
266 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
267 -- corresponding index type (or subtype).
268 --
269 -- Index_Constr is the node giving the applicable index constraint if
270 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
271 -- contexts [...] that can be used to determine the bounds of the array
272 -- value specified by the aggregate". If Others_Allowed below is False
273 -- there is no applicable index constraint and this node is set to Index.
274 --
275 -- Component_Typ is the array component type.
276 --
277 -- Others_Allowed indicates whether an others choice is allowed
278 -- in the context where the top-level aggregate appeared.
279 --
280 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
281 --
282 -- 1. Make sure that the others choice, if present, is by itself and
283 -- appears last in the sub-aggregate. Check that we do not have
284 -- positional and named components in the array sub-aggregate (unless
285 -- the named association is an others choice). Finally if an others
286 -- choice is present, make sure it is allowed in the aggregate context.
287 --
288 -- 2. If the array sub-aggregate contains discrete_choices:
289 --
290 -- (A) Verify their validity. Specifically verify that:
291 --
292 -- (a) If a null range is present it must be the only possible
293 -- choice in the array aggregate.
294 --
295 -- (b) Ditto for a non static range.
296 --
297 -- (c) Ditto for a non static expression.
298 --
299 -- In addition this step analyzes and resolves each discrete_choice,
300 -- making sure that its type is the type of the corresponding Index.
301 -- If we are not at the lowest array aggregate level (in the case of
302 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
303 -- recursively on each component expression. Otherwise, resolve the
304 -- bottom level component expressions against the expected component
305 -- type ONLY IF the component corresponds to a single discrete choice
306 -- which is not an others choice (to see why read the DELAYED
307 -- COMPONENT RESOLUTION below).
308 --
309 -- (B) Determine the bounds of the sub-aggregate and lowest and
310 -- highest choice values.
311 --
312 -- 3. For positional aggregates:
313 --
314 -- (A) Loop over the component expressions either recursively invoking
315 -- Resolve_Array_Aggregate on each of these for multi-dimensional
316 -- array aggregates or resolving the bottom level component
317 -- expressions against the expected component type.
318 --
319 -- (B) Determine the bounds of the positional sub-aggregates.
320 --
321 -- 4. Try to determine statically whether the evaluation of the array
322 -- sub-aggregate raises Constraint_Error. If yes emit proper
323 -- warnings. The precise checks are the following:
324 --
325 -- (A) Check that the index range defined by aggregate bounds is
326 -- compatible with corresponding index subtype.
327 -- We also check against the base type. In fact it could be that
328 -- Low/High bounds of the base type are static whereas those of
329 -- the index subtype are not. Thus if we can statically catch
330 -- a problem with respect to the base type we are guaranteed
331 -- that the same problem will arise with the index subtype
332 --
333 -- (B) If we are dealing with a named aggregate containing an others
334 -- choice and at least one discrete choice then make sure the range
335 -- specified by the discrete choices does not overflow the
336 -- aggregate bounds. We also check against the index type and base
337 -- type bounds for the same reasons given in (A).
338 --
339 -- (C) If we are dealing with a positional aggregate with an others
340 -- choice make sure the number of positional elements specified
341 -- does not overflow the aggregate bounds. We also check against
342 -- the index type and base type bounds as mentioned in (A).
343 --
344 -- Finally construct an N_Range node giving the sub-aggregate bounds.
345 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
346 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
347 -- to build the appropriate aggregate subtype. Aggregate_Bounds
348 -- information is needed during expansion.
349 --
350 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
351 -- expressions in an array aggregate may call Duplicate_Subexpr or some
352 -- other routine that inserts code just outside the outermost aggregate.
353 -- If the array aggregate contains discrete choices or an others choice,
354 -- this may be wrong. Consider for instance the following example.
355 --
356 -- type Rec is record
357 -- V : Integer := 0;
358 -- end record;
359 --
360 -- type Acc_Rec is access Rec;
361 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
362 --
363 -- Then the transformation of "new Rec" that occurs during resolution
364 -- entails the following code modifications
365 --
366 -- P7b : constant Acc_Rec := new Rec;
367 -- RecIP (P7b.all);
368 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
369 --
370 -- This code transformation is clearly wrong, since we need to call
371 -- "new Rec" for each of the 3 array elements. To avoid this problem we
372 -- delay resolution of the components of non positional array aggregates
373 -- to the expansion phase. As an optimization, if the discrete choice
374 -- specifies a single value we do not delay resolution.
375
376 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
377 -- This routine returns the type or subtype of an array aggregate.
378 --
379 -- N is the array aggregate node whose type we return.
380 --
381 -- Typ is the context type in which N occurs.
382 --
383 -- This routine creates an implicit array subtype whose bounds are
384 -- those defined by the aggregate. When this routine is invoked
385 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
386 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
387 -- sub-aggregate bounds. When building the aggregate itype, this function
388 -- traverses the array aggregate N collecting such Aggregate_Bounds and
389 -- constructs the proper array aggregate itype.
390 --
391 -- Note that in the case of multidimensional aggregates each inner
392 -- sub-aggregate corresponding to a given array dimension, may provide a
393 -- different bounds. If it is possible to determine statically that
394 -- some sub-aggregates corresponding to the same index do not have the
395 -- same bounds, then a warning is emitted. If such check is not possible
396 -- statically (because some sub-aggregate bounds are dynamic expressions)
397 -- then this job is left to the expander. In all cases the particular
398 -- bounds that this function will chose for a given dimension is the first
399 -- N_Range node for a sub-aggregate corresponding to that dimension.
400 --
401 -- Note that the Raises_Constraint_Error flag of an array aggregate
402 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
403 -- is set in Resolve_Array_Aggregate but the aggregate is not
404 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
405 -- first construct the proper itype for the aggregate (Gigi needs
406 -- this). After constructing the proper itype we will eventually replace
407 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
408 -- Of course in cases such as:
409 --
410 -- type Arr is array (integer range <>) of Integer;
411 -- A : Arr := (positive range -1 .. 2 => 0);
412 --
413 -- The bounds of the aggregate itype are cooked up to look reasonable
414 -- (in this particular case the bounds will be 1 .. 2).
415
416 procedure Make_String_Into_Aggregate (N : Node_Id);
417 -- A string literal can appear in a context in which a one dimensional
418 -- array of characters is expected. This procedure simply rewrites the
419 -- string as an aggregate, prior to resolution.
420
421 ---------------------------------
422 -- Delta aggregate processing --
423 ---------------------------------
424
425 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
426 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
427
428 ------------------------
429 -- Array_Aggr_Subtype --
430 ------------------------
431
432 function Array_Aggr_Subtype
433 (N : Node_Id;
434 Typ : Entity_Id) return Entity_Id
435 is
436 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
437 -- Number of aggregate index dimensions
438
439 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
440 -- Constrained N_Range of each index dimension in our aggregate itype
441
442 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
443 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
444 -- Low and High bounds for each index dimension in our aggregate itype
445
446 Is_Fully_Positional : Boolean := True;
447
448 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
449 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
450 -- to (sub-)aggregate N. This procedure collects and removes the side
451 -- effects of the constrained N_Range nodes corresponding to each index
452 -- dimension of our aggregate itype. These N_Range nodes are collected
453 -- in Aggr_Range above.
454 --
455 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
456 -- bounds of each index dimension. If, when collecting, two bounds
457 -- corresponding to the same dimension are static and found to differ,
458 -- then emit a warning, and mark N as raising Constraint_Error.
459
460 -------------------------
461 -- Collect_Aggr_Bounds --
462 -------------------------
463
464 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
465 This_Range : constant Node_Id := Aggregate_Bounds (N);
466 -- The aggregate range node of this specific sub-aggregate
467
468 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
469 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
470 -- The aggregate bounds of this specific sub-aggregate
471
472 Assoc : Node_Id;
473 Expr : Node_Id;
474
475 begin
476 Remove_Side_Effects (This_Low, Variable_Ref => True);
477 Remove_Side_Effects (This_High, Variable_Ref => True);
478
479 -- Collect the first N_Range for a given dimension that you find.
480 -- For a given dimension they must be all equal anyway.
481
482 if No (Aggr_Range (Dim)) then
483 Aggr_Low (Dim) := This_Low;
484 Aggr_High (Dim) := This_High;
485 Aggr_Range (Dim) := This_Range;
486
487 else
488 if Compile_Time_Known_Value (This_Low) then
489 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
490 Aggr_Low (Dim) := This_Low;
491
492 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
493 Set_Raises_Constraint_Error (N);
494 Error_Msg_Warn := SPARK_Mode /= On;
495 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
496 Error_Msg_N ("\Constraint_Error [<<", N);
497 end if;
498 end if;
499
500 if Compile_Time_Known_Value (This_High) then
501 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
502 Aggr_High (Dim) := This_High;
503
504 elsif
505 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
506 then
507 Set_Raises_Constraint_Error (N);
508 Error_Msg_Warn := SPARK_Mode /= On;
509 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
510 Error_Msg_N ("\Constraint_Error [<<", N);
511 end if;
512 end if;
513 end if;
514
515 if Dim < Aggr_Dimension then
516
517 -- Process positional components
518
519 if Present (Expressions (N)) then
520 Expr := First (Expressions (N));
521 while Present (Expr) loop
522 Collect_Aggr_Bounds (Expr, Dim + 1);
523 Next (Expr);
524 end loop;
525 end if;
526
527 -- Process component associations
528
529 if Present (Component_Associations (N)) then
530 Is_Fully_Positional := False;
531
532 Assoc := First (Component_Associations (N));
533 while Present (Assoc) loop
534 Expr := Expression (Assoc);
535 Collect_Aggr_Bounds (Expr, Dim + 1);
536 Next (Assoc);
537 end loop;
538 end if;
539 end if;
540 end Collect_Aggr_Bounds;
541
542 -- Array_Aggr_Subtype variables
543
544 Itype : Entity_Id;
545 -- The final itype of the overall aggregate
546
547 Index_Constraints : constant List_Id := New_List;
548 -- The list of index constraints of the aggregate itype
549
550 -- Start of processing for Array_Aggr_Subtype
551
552 begin
553 -- Make sure that the list of index constraints is properly attached to
554 -- the tree, and then collect the aggregate bounds.
555
556 Set_Parent (Index_Constraints, N);
557 Collect_Aggr_Bounds (N, 1);
558
559 -- Build the list of constrained indexes of our aggregate itype
560
561 for J in 1 .. Aggr_Dimension loop
562 Create_Index : declare
563 Index_Base : constant Entity_Id :=
564 Base_Type (Etype (Aggr_Range (J)));
565 Index_Typ : Entity_Id;
566
567 begin
568 -- Construct the Index subtype, and associate it with the range
569 -- construct that generates it.
570
571 Index_Typ :=
572 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
573
574 Set_Etype (Index_Typ, Index_Base);
575
576 if Is_Character_Type (Index_Base) then
577 Set_Is_Character_Type (Index_Typ);
578 end if;
579
580 Set_Size_Info (Index_Typ, (Index_Base));
581 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
582 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
583 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
584
585 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
586 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
587 end if;
588
589 Set_Etype (Aggr_Range (J), Index_Typ);
590
591 Append (Aggr_Range (J), To => Index_Constraints);
592 end Create_Index;
593 end loop;
594
595 -- Now build the Itype
596
597 Itype := Create_Itype (E_Array_Subtype, N);
598
599 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
600 Set_Convention (Itype, Convention (Typ));
601 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
602 Set_Etype (Itype, Base_Type (Typ));
603 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
604 Set_Is_Aliased (Itype, Is_Aliased (Typ));
605 Set_Is_Independent (Itype, Is_Independent (Typ));
606 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
607
608 Copy_Suppress_Status (Index_Check, Typ, Itype);
609 Copy_Suppress_Status (Length_Check, Typ, Itype);
610
611 Set_First_Index (Itype, First (Index_Constraints));
612 Set_Is_Constrained (Itype, True);
613 Set_Is_Internal (Itype, True);
614
615 if Has_Predicates (Typ) then
616 Set_Has_Predicates (Itype);
617
618 -- If the base type has a predicate, capture the predicated parent
619 -- or the existing predicate function for SPARK use.
620
621 if Present (Predicate_Function (Typ)) then
622 Set_Predicate_Function (Itype, Predicate_Function (Typ));
623
624 elsif Is_Itype (Typ) then
625 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
626
627 else
628 Set_Predicated_Parent (Itype, Typ);
629 end if;
630 end if;
631
632 -- A simple optimization: purely positional aggregates of static
633 -- components should be passed to gigi unexpanded whenever possible, and
634 -- regardless of the staticness of the bounds themselves. Subsequent
635 -- checks in exp_aggr verify that type is not packed, etc.
636
637 Set_Size_Known_At_Compile_Time
638 (Itype,
639 Is_Fully_Positional
640 and then Comes_From_Source (N)
641 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
642
643 -- We always need a freeze node for a packed array subtype, so that we
644 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
645 -- expansion is disabled, the packed array subtype is not built, and we
646 -- must not generate a freeze node for the type, or else it will appear
647 -- incomplete to gigi.
648
649 if Is_Packed (Itype)
650 and then not In_Spec_Expression
651 and then Expander_Active
652 then
653 Freeze_Itype (Itype, N);
654 end if;
655
656 return Itype;
657 end Array_Aggr_Subtype;
658
659 --------------------------------
660 -- Check_Misspelled_Component --
661 --------------------------------
662
663 procedure Check_Misspelled_Component
664 (Elements : Elist_Id;
665 Component : Node_Id)
666 is
667 Max_Suggestions : constant := 2;
668
669 Nr_Of_Suggestions : Natural := 0;
670 Suggestion_1 : Entity_Id := Empty;
671 Suggestion_2 : Entity_Id := Empty;
672 Component_Elmt : Elmt_Id;
673
674 begin
675 -- All the components of List are matched against Component and a count
676 -- is maintained of possible misspellings. When at the end of the
677 -- analysis there are one or two (not more) possible misspellings,
678 -- these misspellings will be suggested as possible corrections.
679
680 Component_Elmt := First_Elmt (Elements);
681 while Nr_Of_Suggestions <= Max_Suggestions
682 and then Present (Component_Elmt)
683 loop
684 if Is_Bad_Spelling_Of
685 (Chars (Node (Component_Elmt)),
686 Chars (Component))
687 then
688 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
689
690 case Nr_Of_Suggestions is
691 when 1 => Suggestion_1 := Node (Component_Elmt);
692 when 2 => Suggestion_2 := Node (Component_Elmt);
693 when others => null;
694 end case;
695 end if;
696
697 Next_Elmt (Component_Elmt);
698 end loop;
699
700 -- Report at most two suggestions
701
702 if Nr_Of_Suggestions = 1 then
703 Error_Msg_NE -- CODEFIX
704 ("\possible misspelling of&", Component, Suggestion_1);
705
706 elsif Nr_Of_Suggestions = 2 then
707 Error_Msg_Node_2 := Suggestion_2;
708 Error_Msg_NE -- CODEFIX
709 ("\possible misspelling of& or&", Component, Suggestion_1);
710 end if;
711 end Check_Misspelled_Component;
712
713 ----------------------------------------
714 -- Check_Expr_OK_In_Limited_Aggregate --
715 ----------------------------------------
716
717 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
718 begin
719 if Is_Limited_Type (Etype (Expr))
720 and then Comes_From_Source (Expr)
721 then
722 if In_Instance_Body or else In_Inlined_Body then
723 null;
724
725 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
726 Error_Msg_N
727 ("initialization not allowed for limited types", Expr);
728 Explain_Limited_Type (Etype (Expr), Expr);
729 end if;
730 end if;
731 end Check_Expr_OK_In_Limited_Aggregate;
732
733 -------------------------------
734 -- Check_Qualified_Aggregate --
735 -------------------------------
736
737 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
738 Comp_Expr : Node_Id;
739 Comp_Assn : Node_Id;
740
741 begin
742 if Level = 0 then
743 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
744 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
745 end if;
746
747 else
748 Comp_Expr := First (Expressions (Expr));
749 while Present (Comp_Expr) loop
750 if Nkind (Comp_Expr) = N_Aggregate then
751 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
752 end if;
753
754 Comp_Expr := Next (Comp_Expr);
755 end loop;
756
757 Comp_Assn := First (Component_Associations (Expr));
758 while Present (Comp_Assn) loop
759 Comp_Expr := Expression (Comp_Assn);
760
761 if Nkind (Comp_Expr) = N_Aggregate then
762 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
763 end if;
764
765 Comp_Assn := Next (Comp_Assn);
766 end loop;
767 end if;
768 end Check_Qualified_Aggregate;
769
770 ----------------------------------------
771 -- Check_Static_Discriminated_Subtype --
772 ----------------------------------------
773
774 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
775 Disc : constant Entity_Id := First_Discriminant (T);
776 Comp : Entity_Id;
777 Ind : Entity_Id;
778
779 begin
780 if Has_Record_Rep_Clause (T) then
781 return;
782
783 elsif Present (Next_Discriminant (Disc)) then
784 return;
785
786 elsif Nkind (V) /= N_Integer_Literal then
787 return;
788 end if;
789
790 Comp := First_Component (T);
791 while Present (Comp) loop
792 if Is_Scalar_Type (Etype (Comp)) then
793 null;
794
795 elsif Is_Private_Type (Etype (Comp))
796 and then Present (Full_View (Etype (Comp)))
797 and then Is_Scalar_Type (Full_View (Etype (Comp)))
798 then
799 null;
800
801 elsif Is_Array_Type (Etype (Comp)) then
802 if Is_Bit_Packed_Array (Etype (Comp)) then
803 return;
804 end if;
805
806 Ind := First_Index (Etype (Comp));
807 while Present (Ind) loop
808 if Nkind (Ind) /= N_Range
809 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
810 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
811 then
812 return;
813 end if;
814
815 Next_Index (Ind);
816 end loop;
817
818 else
819 return;
820 end if;
821
822 Next_Component (Comp);
823 end loop;
824
825 -- On exit, all components have statically known sizes
826
827 Set_Size_Known_At_Compile_Time (T);
828 end Check_Static_Discriminated_Subtype;
829
830 -------------------------
831 -- Is_Others_Aggregate --
832 -------------------------
833
834 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
835 Assoc : constant List_Id := Component_Associations (Aggr);
836
837 begin
838 return No (Expressions (Aggr))
839 and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
840 end Is_Others_Aggregate;
841
842 -------------------------
843 -- Is_Single_Aggregate --
844 -------------------------
845
846 function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
847 Assoc : constant List_Id := Component_Associations (Aggr);
848
849 begin
850 return No (Expressions (Aggr))
851 and then No (Next (First (Assoc)))
852 and then No (Next (First (Choice_List (First (Assoc)))));
853 end Is_Single_Aggregate;
854
855 ----------------------------
856 -- Is_Top_Level_Aggregate --
857 ----------------------------
858
859 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
860 begin
861 return Nkind (Parent (Expr)) /= N_Aggregate
862 and then (Nkind (Parent (Expr)) /= N_Component_Association
863 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
864 end Is_Top_Level_Aggregate;
865
866 --------------------------------
867 -- Make_String_Into_Aggregate --
868 --------------------------------
869
870 procedure Make_String_Into_Aggregate (N : Node_Id) is
871 Exprs : constant List_Id := New_List;
872 Loc : constant Source_Ptr := Sloc (N);
873 Str : constant String_Id := Strval (N);
874 Strlen : constant Nat := String_Length (Str);
875 C : Char_Code;
876 C_Node : Node_Id;
877 New_N : Node_Id;
878 P : Source_Ptr;
879
880 begin
881 P := Loc + 1;
882 for J in 1 .. Strlen loop
883 C := Get_String_Char (Str, J);
884 Set_Character_Literal_Name (C);
885
886 C_Node :=
887 Make_Character_Literal (P,
888 Chars => Name_Find,
889 Char_Literal_Value => UI_From_CC (C));
890 Set_Etype (C_Node, Any_Character);
891 Append_To (Exprs, C_Node);
892
893 P := P + 1;
894 -- Something special for wide strings???
895 end loop;
896
897 New_N := Make_Aggregate (Loc, Expressions => Exprs);
898 Set_Analyzed (New_N);
899 Set_Etype (New_N, Any_Composite);
900
901 Rewrite (N, New_N);
902 end Make_String_Into_Aggregate;
903
904 -----------------------
905 -- Resolve_Aggregate --
906 -----------------------
907
908 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
909 Loc : constant Source_Ptr := Sloc (N);
910
911 Aggr_Subtyp : Entity_Id;
912 -- The actual aggregate subtype. This is not necessarily the same as Typ
913 -- which is the subtype of the context in which the aggregate was found.
914
915 begin
916 -- Ignore junk empty aggregate resulting from parser error
917
918 if No (Expressions (N))
919 and then No (Component_Associations (N))
920 and then not Null_Record_Present (N)
921 then
922 return;
923 end if;
924
925 -- If the aggregate has box-initialized components, its type must be
926 -- frozen so that initialization procedures can properly be called
927 -- in the resolution that follows. The replacement of boxes with
928 -- initialization calls is properly an expansion activity but it must
929 -- be done during resolution.
930
931 if Expander_Active
932 and then Present (Component_Associations (N))
933 then
934 declare
935 Comp : Node_Id;
936
937 begin
938 Comp := First (Component_Associations (N));
939 while Present (Comp) loop
940 if Box_Present (Comp) then
941 Insert_Actions (N, Freeze_Entity (Typ, N));
942 exit;
943 end if;
944
945 Next (Comp);
946 end loop;
947 end;
948 end if;
949
950 -- An unqualified aggregate is restricted in SPARK to:
951
952 -- An aggregate item inside an aggregate for a multi-dimensional array
953
954 -- An expression being assigned to an unconstrained array, but only if
955 -- the aggregate specifies a value for OTHERS only.
956
957 if Nkind (Parent (N)) = N_Qualified_Expression then
958 if Is_Array_Type (Typ) then
959 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
960 else
961 Check_Qualified_Aggregate (1, N);
962 end if;
963 else
964 if Is_Array_Type (Typ)
965 and then Nkind (Parent (N)) = N_Assignment_Statement
966 and then not Is_Constrained (Etype (Name (Parent (N))))
967 then
968 if not Is_Others_Aggregate (N) then
969 Check_SPARK_05_Restriction
970 ("array aggregate should have only OTHERS", N);
971 end if;
972
973 elsif Is_Top_Level_Aggregate (N) then
974 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
975
976 -- The legality of this unqualified aggregate is checked by calling
977 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
978 -- unless one of these already causes an error to be issued.
979
980 else
981 null;
982 end if;
983 end if;
984
985 -- Check for aggregates not allowed in configurable run-time mode.
986 -- We allow all cases of aggregates that do not come from source, since
987 -- these are all assumed to be small (e.g. bounds of a string literal).
988 -- We also allow aggregates of types we know to be small.
989
990 if not Support_Aggregates_On_Target
991 and then Comes_From_Source (N)
992 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
993 then
994 Error_Msg_CRT ("aggregate", N);
995 end if;
996
997 -- Ada 2005 (AI-287): Limited aggregates allowed
998
999 -- In an instance, ignore aggregate subcomponents tnat may be limited,
1000 -- because they originate in view conflicts. If the original aggregate
1001 -- is legal and the actuals are legal, the aggregate itself is legal.
1002
1003 if Is_Limited_Type (Typ)
1004 and then Ada_Version < Ada_2005
1005 and then not In_Instance
1006 then
1007 Error_Msg_N ("aggregate type cannot be limited", N);
1008 Explain_Limited_Type (Typ, N);
1009
1010 elsif Is_Class_Wide_Type (Typ) then
1011 Error_Msg_N ("type of aggregate cannot be class-wide", N);
1012
1013 elsif Typ = Any_String
1014 or else Typ = Any_Composite
1015 then
1016 Error_Msg_N ("no unique type for aggregate", N);
1017 Set_Etype (N, Any_Composite);
1018
1019 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1020 Error_Msg_N ("null record forbidden in array aggregate", N);
1021
1022 elsif Is_Record_Type (Typ) then
1023 Resolve_Record_Aggregate (N, Typ);
1024
1025 elsif Is_Array_Type (Typ) then
1026
1027 -- First a special test, for the case of a positional aggregate of
1028 -- characters which can be replaced by a string literal.
1029
1030 -- Do not perform this transformation if this was a string literal
1031 -- to start with, whose components needed constraint checks, or if
1032 -- the component type is non-static, because it will require those
1033 -- checks and be transformed back into an aggregate. If the index
1034 -- type is not Integer the aggregate may represent a user-defined
1035 -- string type but the context might need the original type so we
1036 -- do not perform the transformation at this point.
1037
1038 if Number_Dimensions (Typ) = 1
1039 and then Is_Standard_Character_Type (Component_Type (Typ))
1040 and then No (Component_Associations (N))
1041 and then not Is_Limited_Composite (Typ)
1042 and then not Is_Private_Composite (Typ)
1043 and then not Is_Bit_Packed_Array (Typ)
1044 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1045 and then Is_OK_Static_Subtype (Component_Type (Typ))
1046 and then Base_Type (Etype (First_Index (Typ))) =
1047 Base_Type (Standard_Integer)
1048 then
1049 declare
1050 Expr : Node_Id;
1051
1052 begin
1053 Expr := First (Expressions (N));
1054 while Present (Expr) loop
1055 exit when Nkind (Expr) /= N_Character_Literal;
1056 Next (Expr);
1057 end loop;
1058
1059 if No (Expr) then
1060 Start_String;
1061
1062 Expr := First (Expressions (N));
1063 while Present (Expr) loop
1064 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1065 Next (Expr);
1066 end loop;
1067
1068 Rewrite (N, Make_String_Literal (Loc, End_String));
1069
1070 Analyze_And_Resolve (N, Typ);
1071 return;
1072 end if;
1073 end;
1074 end if;
1075
1076 -- Here if we have a real aggregate to deal with
1077
1078 Array_Aggregate : declare
1079 Aggr_Resolved : Boolean;
1080
1081 Aggr_Typ : constant Entity_Id := Etype (Typ);
1082 -- This is the unconstrained array type, which is the type against
1083 -- which the aggregate is to be resolved. Typ itself is the array
1084 -- type of the context which may not be the same subtype as the
1085 -- subtype for the final aggregate.
1086
1087 begin
1088 -- In the following we determine whether an OTHERS choice is
1089 -- allowed inside the array aggregate. The test checks the context
1090 -- in which the array aggregate occurs. If the context does not
1091 -- permit it, or the aggregate type is unconstrained, an OTHERS
1092 -- choice is not allowed (except that it is always allowed on the
1093 -- right-hand side of an assignment statement; in this case the
1094 -- constrainedness of the type doesn't matter, because an array
1095 -- object is always constrained).
1096
1097 -- If expansion is disabled (generic context, or semantics-only
1098 -- mode) actual subtypes cannot be constructed, and the type of an
1099 -- object may be its unconstrained nominal type. However, if the
1100 -- context is an assignment statement, OTHERS is allowed, because
1101 -- the target of the assignment will have a constrained subtype
1102 -- when fully compiled. Ditto if the context is an initialization
1103 -- procedure where a component may have a predicate function that
1104 -- carries the base type.
1105
1106 -- Note that there is no node for Explicit_Actual_Parameter.
1107 -- To test for this context we therefore have to test for node
1108 -- N_Parameter_Association which itself appears only if there is a
1109 -- formal parameter. Consequently we also need to test for
1110 -- N_Procedure_Call_Statement or N_Function_Call.
1111
1112 -- The context may be an N_Reference node, created by expansion.
1113 -- Legality of the others clause was established in the source,
1114 -- so the context is legal.
1115
1116 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1117
1118 if Nkind (Parent (N)) = N_Assignment_Statement
1119 or else Inside_Init_Proc
1120 or else (Is_Constrained (Typ)
1121 and then Nkind_In (Parent (N),
1122 N_Parameter_Association,
1123 N_Function_Call,
1124 N_Procedure_Call_Statement,
1125 N_Generic_Association,
1126 N_Formal_Object_Declaration,
1127 N_Simple_Return_Statement,
1128 N_Object_Declaration,
1129 N_Component_Declaration,
1130 N_Parameter_Specification,
1131 N_Qualified_Expression,
1132 N_Reference,
1133 N_Aggregate,
1134 N_Extension_Aggregate,
1135 N_Component_Association,
1136 N_Case_Expression_Alternative,
1137 N_If_Expression))
1138 then
1139 Aggr_Resolved :=
1140 Resolve_Array_Aggregate
1141 (N,
1142 Index => First_Index (Aggr_Typ),
1143 Index_Constr => First_Index (Typ),
1144 Component_Typ => Component_Type (Typ),
1145 Others_Allowed => True);
1146 else
1147 Aggr_Resolved :=
1148 Resolve_Array_Aggregate
1149 (N,
1150 Index => First_Index (Aggr_Typ),
1151 Index_Constr => First_Index (Aggr_Typ),
1152 Component_Typ => Component_Type (Typ),
1153 Others_Allowed => False);
1154 end if;
1155
1156 if not Aggr_Resolved then
1157
1158 -- A parenthesized expression may have been intended as an
1159 -- aggregate, leading to a type error when analyzing the
1160 -- component. This can also happen for a nested component
1161 -- (see Analyze_Aggr_Expr).
1162
1163 if Paren_Count (N) > 0 then
1164 Error_Msg_N
1165 ("positional aggregate cannot have one component", N);
1166 end if;
1167
1168 Aggr_Subtyp := Any_Composite;
1169
1170 else
1171 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1172 end if;
1173
1174 Set_Etype (N, Aggr_Subtyp);
1175 end Array_Aggregate;
1176
1177 elsif Is_Private_Type (Typ)
1178 and then Present (Full_View (Typ))
1179 and then (In_Inlined_Body or In_Instance_Body)
1180 and then Is_Composite_Type (Full_View (Typ))
1181 then
1182 Resolve (N, Full_View (Typ));
1183
1184 else
1185 Error_Msg_N ("illegal context for aggregate", N);
1186 end if;
1187
1188 -- If we can determine statically that the evaluation of the aggregate
1189 -- raises Constraint_Error, then replace the aggregate with an
1190 -- N_Raise_Constraint_Error node, but set the Etype to the right
1191 -- aggregate subtype. Gigi needs this.
1192
1193 if Raises_Constraint_Error (N) then
1194 Aggr_Subtyp := Etype (N);
1195 Rewrite (N,
1196 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1197 Set_Raises_Constraint_Error (N);
1198 Set_Etype (N, Aggr_Subtyp);
1199 Set_Analyzed (N);
1200 end if;
1201
1202 Check_Function_Writable_Actuals (N);
1203 end Resolve_Aggregate;
1204
1205 -----------------------------
1206 -- Resolve_Array_Aggregate --
1207 -----------------------------
1208
1209 function Resolve_Array_Aggregate
1210 (N : Node_Id;
1211 Index : Node_Id;
1212 Index_Constr : Node_Id;
1213 Component_Typ : Entity_Id;
1214 Others_Allowed : Boolean) return Boolean
1215 is
1216 Loc : constant Source_Ptr := Sloc (N);
1217
1218 Failure : constant Boolean := False;
1219 Success : constant Boolean := True;
1220
1221 Index_Typ : constant Entity_Id := Etype (Index);
1222 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1223 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1224 -- The type of the index corresponding to the array sub-aggregate along
1225 -- with its low and upper bounds.
1226
1227 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1228 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1229 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1230 -- Ditto for the base type
1231
1232 Others_Present : Boolean := False;
1233
1234 Nb_Choices : Nat := 0;
1235 -- Contains the overall number of named choices in this sub-aggregate
1236
1237 function Add (Val : Uint; To : Node_Id) return Node_Id;
1238 -- Creates a new expression node where Val is added to expression To.
1239 -- Tries to constant fold whenever possible. To must be an already
1240 -- analyzed expression.
1241
1242 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1243 -- Checks that AH (the upper bound of an array aggregate) is less than
1244 -- or equal to BH (the upper bound of the index base type). If the check
1245 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1246 -- set, and AH is replaced with a duplicate of BH.
1247
1248 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1249 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1250 -- warning if not and sets the Raises_Constraint_Error flag in N.
1251
1252 procedure Check_Length (L, H : Node_Id; Len : Uint);
1253 -- Checks that range L .. H contains at least Len elements. Emits a
1254 -- warning if not and sets the Raises_Constraint_Error flag in N.
1255
1256 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1257 -- Returns True if range L .. H is dynamic or null
1258
1259 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1260 -- Given expression node From, this routine sets OK to False if it
1261 -- cannot statically evaluate From. Otherwise it stores this static
1262 -- value into Value.
1263
1264 function Resolve_Aggr_Expr
1265 (Expr : Node_Id;
1266 Single_Elmt : Boolean) return Boolean;
1267 -- Resolves aggregate expression Expr. Returns False if resolution
1268 -- fails. If Single_Elmt is set to False, the expression Expr may be
1269 -- used to initialize several array aggregate elements (this can happen
1270 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1271 -- In this event we do not resolve Expr unless expansion is disabled.
1272 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1273 --
1274 -- NOTE: In the case of "... => <>", we pass the in the
1275 -- N_Component_Association node as Expr, since there is no Expression in
1276 -- that case, and we need a Sloc for the error message.
1277
1278 procedure Resolve_Iterated_Component_Association
1279 (N : Node_Id;
1280 Index_Typ : Entity_Id);
1281 -- For AI12-061
1282
1283 ---------
1284 -- Add --
1285 ---------
1286
1287 function Add (Val : Uint; To : Node_Id) return Node_Id is
1288 Expr_Pos : Node_Id;
1289 Expr : Node_Id;
1290 To_Pos : Node_Id;
1291
1292 begin
1293 if Raises_Constraint_Error (To) then
1294 return To;
1295 end if;
1296
1297 -- First test if we can do constant folding
1298
1299 if Compile_Time_Known_Value (To)
1300 or else Nkind (To) = N_Integer_Literal
1301 then
1302 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1303 Set_Is_Static_Expression (Expr_Pos);
1304 Set_Etype (Expr_Pos, Etype (To));
1305 Set_Analyzed (Expr_Pos, Analyzed (To));
1306
1307 if not Is_Enumeration_Type (Index_Typ) then
1308 Expr := Expr_Pos;
1309
1310 -- If we are dealing with enumeration return
1311 -- Index_Typ'Val (Expr_Pos)
1312
1313 else
1314 Expr :=
1315 Make_Attribute_Reference
1316 (Loc,
1317 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1318 Attribute_Name => Name_Val,
1319 Expressions => New_List (Expr_Pos));
1320 end if;
1321
1322 return Expr;
1323 end if;
1324
1325 -- If we are here no constant folding possible
1326
1327 if not Is_Enumeration_Type (Index_Base) then
1328 Expr :=
1329 Make_Op_Add (Loc,
1330 Left_Opnd => Duplicate_Subexpr (To),
1331 Right_Opnd => Make_Integer_Literal (Loc, Val));
1332
1333 -- If we are dealing with enumeration return
1334 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1335
1336 else
1337 To_Pos :=
1338 Make_Attribute_Reference
1339 (Loc,
1340 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1341 Attribute_Name => Name_Pos,
1342 Expressions => New_List (Duplicate_Subexpr (To)));
1343
1344 Expr_Pos :=
1345 Make_Op_Add (Loc,
1346 Left_Opnd => To_Pos,
1347 Right_Opnd => Make_Integer_Literal (Loc, Val));
1348
1349 Expr :=
1350 Make_Attribute_Reference
1351 (Loc,
1352 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1353 Attribute_Name => Name_Val,
1354 Expressions => New_List (Expr_Pos));
1355
1356 -- If the index type has a non standard representation, the
1357 -- attributes 'Val and 'Pos expand into function calls and the
1358 -- resulting expression is considered non-safe for reevaluation
1359 -- by the backend. Relocate it into a constant temporary in order
1360 -- to make it safe for reevaluation.
1361
1362 if Has_Non_Standard_Rep (Etype (N)) then
1363 declare
1364 Def_Id : Entity_Id;
1365
1366 begin
1367 Def_Id := Make_Temporary (Loc, 'R', Expr);
1368 Set_Etype (Def_Id, Index_Typ);
1369 Insert_Action (N,
1370 Make_Object_Declaration (Loc,
1371 Defining_Identifier => Def_Id,
1372 Object_Definition =>
1373 New_Occurrence_Of (Index_Typ, Loc),
1374 Constant_Present => True,
1375 Expression => Relocate_Node (Expr)));
1376
1377 Expr := New_Occurrence_Of (Def_Id, Loc);
1378 end;
1379 end if;
1380 end if;
1381
1382 return Expr;
1383 end Add;
1384
1385 -----------------
1386 -- Check_Bound --
1387 -----------------
1388
1389 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1390 Val_BH : Uint;
1391 Val_AH : Uint;
1392
1393 OK_BH : Boolean;
1394 OK_AH : Boolean;
1395
1396 begin
1397 Get (Value => Val_BH, From => BH, OK => OK_BH);
1398 Get (Value => Val_AH, From => AH, OK => OK_AH);
1399
1400 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1401 Set_Raises_Constraint_Error (N);
1402 Error_Msg_Warn := SPARK_Mode /= On;
1403 Error_Msg_N ("upper bound out of range<<", AH);
1404 Error_Msg_N ("\Constraint_Error [<<", AH);
1405
1406 -- You need to set AH to BH or else in the case of enumerations
1407 -- indexes we will not be able to resolve the aggregate bounds.
1408
1409 AH := Duplicate_Subexpr (BH);
1410 end if;
1411 end Check_Bound;
1412
1413 ------------------
1414 -- Check_Bounds --
1415 ------------------
1416
1417 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1418 Val_L : Uint;
1419 Val_H : Uint;
1420 Val_AL : Uint;
1421 Val_AH : Uint;
1422
1423 OK_L : Boolean;
1424 OK_H : Boolean;
1425
1426 OK_AL : Boolean;
1427 OK_AH : Boolean;
1428 pragma Warnings (Off, OK_AL);
1429 pragma Warnings (Off, OK_AH);
1430
1431 begin
1432 if Raises_Constraint_Error (N)
1433 or else Dynamic_Or_Null_Range (AL, AH)
1434 then
1435 return;
1436 end if;
1437
1438 Get (Value => Val_L, From => L, OK => OK_L);
1439 Get (Value => Val_H, From => H, OK => OK_H);
1440
1441 Get (Value => Val_AL, From => AL, OK => OK_AL);
1442 Get (Value => Val_AH, From => AH, OK => OK_AH);
1443
1444 if OK_L and then Val_L > Val_AL then
1445 Set_Raises_Constraint_Error (N);
1446 Error_Msg_Warn := SPARK_Mode /= On;
1447 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1448 Error_Msg_N ("\Constraint_Error [<<", N);
1449 end if;
1450
1451 if OK_H and then Val_H < Val_AH then
1452 Set_Raises_Constraint_Error (N);
1453 Error_Msg_Warn := SPARK_Mode /= On;
1454 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1455 Error_Msg_N ("\Constraint_Error [<<", N);
1456 end if;
1457 end Check_Bounds;
1458
1459 ------------------
1460 -- Check_Length --
1461 ------------------
1462
1463 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1464 Val_L : Uint;
1465 Val_H : Uint;
1466
1467 OK_L : Boolean;
1468 OK_H : Boolean;
1469
1470 Range_Len : Uint;
1471
1472 begin
1473 if Raises_Constraint_Error (N) then
1474 return;
1475 end if;
1476
1477 Get (Value => Val_L, From => L, OK => OK_L);
1478 Get (Value => Val_H, From => H, OK => OK_H);
1479
1480 if not OK_L or else not OK_H then
1481 return;
1482 end if;
1483
1484 -- If null range length is zero
1485
1486 if Val_L > Val_H then
1487 Range_Len := Uint_0;
1488 else
1489 Range_Len := Val_H - Val_L + 1;
1490 end if;
1491
1492 if Range_Len < Len then
1493 Set_Raises_Constraint_Error (N);
1494 Error_Msg_Warn := SPARK_Mode /= On;
1495 Error_Msg_N ("too many elements<<", N);
1496 Error_Msg_N ("\Constraint_Error [<<", N);
1497 end if;
1498 end Check_Length;
1499
1500 ---------------------------
1501 -- Dynamic_Or_Null_Range --
1502 ---------------------------
1503
1504 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1505 Val_L : Uint;
1506 Val_H : Uint;
1507
1508 OK_L : Boolean;
1509 OK_H : Boolean;
1510
1511 begin
1512 Get (Value => Val_L, From => L, OK => OK_L);
1513 Get (Value => Val_H, From => H, OK => OK_H);
1514
1515 return not OK_L or else not OK_H
1516 or else not Is_OK_Static_Expression (L)
1517 or else not Is_OK_Static_Expression (H)
1518 or else Val_L > Val_H;
1519 end Dynamic_Or_Null_Range;
1520
1521 ---------
1522 -- Get --
1523 ---------
1524
1525 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1526 begin
1527 OK := True;
1528
1529 if Compile_Time_Known_Value (From) then
1530 Value := Expr_Value (From);
1531
1532 -- If expression From is something like Some_Type'Val (10) then
1533 -- Value = 10.
1534
1535 elsif Nkind (From) = N_Attribute_Reference
1536 and then Attribute_Name (From) = Name_Val
1537 and then Compile_Time_Known_Value (First (Expressions (From)))
1538 then
1539 Value := Expr_Value (First (Expressions (From)));
1540 else
1541 Value := Uint_0;
1542 OK := False;
1543 end if;
1544 end Get;
1545
1546 -----------------------
1547 -- Resolve_Aggr_Expr --
1548 -----------------------
1549
1550 function Resolve_Aggr_Expr
1551 (Expr : Node_Id;
1552 Single_Elmt : Boolean) return Boolean
1553 is
1554 Nxt_Ind : constant Node_Id := Next_Index (Index);
1555 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1556 -- Index is the current index corresponding to the expression
1557
1558 Resolution_OK : Boolean := True;
1559 -- Set to False if resolution of the expression failed
1560
1561 begin
1562 -- Defend against previous errors
1563
1564 if Nkind (Expr) = N_Error
1565 or else Error_Posted (Expr)
1566 then
1567 return True;
1568 end if;
1569
1570 -- If the array type against which we are resolving the aggregate
1571 -- has several dimensions, the expressions nested inside the
1572 -- aggregate must be further aggregates (or strings).
1573
1574 if Present (Nxt_Ind) then
1575 if Nkind (Expr) /= N_Aggregate then
1576
1577 -- A string literal can appear where a one-dimensional array
1578 -- of characters is expected. If the literal looks like an
1579 -- operator, it is still an operator symbol, which will be
1580 -- transformed into a string when analyzed.
1581
1582 if Is_Character_Type (Component_Typ)
1583 and then No (Next_Index (Nxt_Ind))
1584 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1585 then
1586 -- A string literal used in a multidimensional array
1587 -- aggregate in place of the final one-dimensional
1588 -- aggregate must not be enclosed in parentheses.
1589
1590 if Paren_Count (Expr) /= 0 then
1591 Error_Msg_N ("no parenthesis allowed here", Expr);
1592 end if;
1593
1594 Make_String_Into_Aggregate (Expr);
1595
1596 else
1597 Error_Msg_N ("nested array aggregate expected", Expr);
1598
1599 -- If the expression is parenthesized, this may be
1600 -- a missing component association for a 1-aggregate.
1601
1602 if Paren_Count (Expr) > 0 then
1603 Error_Msg_N
1604 ("\if single-component aggregate is intended, "
1605 & "write e.g. (1 ='> ...)", Expr);
1606 end if;
1607
1608 return Failure;
1609 end if;
1610 end if;
1611
1612 -- If it's "... => <>", nothing to resolve
1613
1614 if Nkind (Expr) = N_Component_Association then
1615 pragma Assert (Box_Present (Expr));
1616 return Success;
1617 end if;
1618
1619 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1620 -- Required to check the null-exclusion attribute (if present).
1621 -- This value may be overridden later on.
1622
1623 Set_Etype (Expr, Etype (N));
1624
1625 Resolution_OK := Resolve_Array_Aggregate
1626 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1627
1628 else
1629 -- If it's "... => <>", nothing to resolve
1630
1631 if Nkind (Expr) = N_Component_Association then
1632 pragma Assert (Box_Present (Expr));
1633 return Success;
1634 end if;
1635
1636 -- Do not resolve the expressions of discrete or others choices
1637 -- unless the expression covers a single component, or the
1638 -- expander is inactive.
1639
1640 -- In SPARK mode, expressions that can perform side effects will
1641 -- be recognized by the gnat2why back-end, and the whole
1642 -- subprogram will be ignored. So semantic analysis can be
1643 -- performed safely.
1644
1645 if Single_Elmt
1646 or else not Expander_Active
1647 or else In_Spec_Expression
1648 then
1649 Analyze_And_Resolve (Expr, Component_Typ);
1650 Check_Expr_OK_In_Limited_Aggregate (Expr);
1651 Check_Non_Static_Context (Expr);
1652 Aggregate_Constraint_Checks (Expr, Component_Typ);
1653 Check_Unset_Reference (Expr);
1654 end if;
1655 end if;
1656
1657 -- If an aggregate component has a type with predicates, an explicit
1658 -- predicate check must be applied, as for an assignment statement,
1659 -- because the aggegate might not be expanded into individual
1660 -- component assignments. If the expression covers several components
1661 -- the analysis and the predicate check take place later.
1662
1663 if Has_Predicates (Component_Typ)
1664 and then Analyzed (Expr)
1665 then
1666 Apply_Predicate_Check (Expr, Component_Typ);
1667 end if;
1668
1669 if Raises_Constraint_Error (Expr)
1670 and then Nkind (Parent (Expr)) /= N_Component_Association
1671 then
1672 Set_Raises_Constraint_Error (N);
1673 end if;
1674
1675 -- If the expression has been marked as requiring a range check,
1676 -- then generate it here. It's a bit odd to be generating such
1677 -- checks in the analyzer, but harmless since Generate_Range_Check
1678 -- does nothing (other than making sure Do_Range_Check is set) if
1679 -- the expander is not active.
1680
1681 if Do_Range_Check (Expr) then
1682 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1683 end if;
1684
1685 return Resolution_OK;
1686 end Resolve_Aggr_Expr;
1687
1688 --------------------------------------------
1689 -- Resolve_Iterated_Component_Association --
1690 --------------------------------------------
1691
1692 procedure Resolve_Iterated_Component_Association
1693 (N : Node_Id;
1694 Index_Typ : Entity_Id)
1695 is
1696 Loc : constant Source_Ptr := Sloc (N);
1697
1698 Choice : Node_Id;
1699 Dummy : Boolean;
1700 Ent : Entity_Id;
1701 Expr : Node_Id;
1702 Id : Entity_Id;
1703
1704 begin
1705 Choice := First (Discrete_Choices (N));
1706
1707 while Present (Choice) loop
1708 if Nkind (Choice) = N_Others_Choice then
1709 Others_Present := True;
1710
1711 else
1712 Analyze (Choice);
1713
1714 -- Choice can be a subtype name, a range, or an expression
1715
1716 if Is_Entity_Name (Choice)
1717 and then Is_Type (Entity (Choice))
1718 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1719 then
1720 null;
1721
1722 else
1723 Analyze_And_Resolve (Choice, Index_Typ);
1724 end if;
1725 end if;
1726
1727 Next (Choice);
1728 end loop;
1729
1730 -- Create a scope in which to introduce an index, which is usually
1731 -- visible in the expression for the component, and needed for its
1732 -- analysis.
1733
1734 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1735 Set_Etype (Ent, Standard_Void_Type);
1736 Set_Parent (Ent, Parent (N));
1737 Push_Scope (Ent);
1738 Id :=
1739 Make_Defining_Identifier (Loc,
1740 Chars => Chars (Defining_Identifier (N)));
1741
1742 -- Insert and decorate the index variable in the current scope.
1743 -- The expression has to be analyzed once the index variable is
1744 -- directly visible. Mark the variable as referenced to prevent
1745 -- spurious warnings, given that subsequent uses of its name in the
1746 -- expression will reference the internal (synonym) loop variable.
1747
1748 Enter_Name (Id);
1749 Set_Etype (Id, Index_Typ);
1750 Set_Ekind (Id, E_Variable);
1751 Set_Scope (Id, Ent);
1752 Set_Referenced (Id);
1753
1754 -- Analyze a copy of the expression, to verify legality. We use
1755 -- a copy because the expression will be analyzed anew when the
1756 -- enclosing aggregate is expanded, and the construct is rewritten
1757 -- as a loop with a new index variable.
1758
1759 Expr := New_Copy_Tree (Expression (N));
1760 Dummy := Resolve_Aggr_Expr (Expr, False);
1761
1762 -- An iterated_component_association may appear in a nested
1763 -- aggregate for a multidimensional structure: preserve the bounds
1764 -- computed for the expression, as well as the anonymous array
1765 -- type generated for it; both are needed during array expansion.
1766 -- This does not work for more than two levels of nesting. ???
1767
1768 if Nkind (Expr) = N_Aggregate then
1769 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1770 Set_Etype (Expression (N), Etype (Expr));
1771 end if;
1772
1773 End_Scope;
1774 end Resolve_Iterated_Component_Association;
1775
1776 -- Local variables
1777
1778 Assoc : Node_Id;
1779 Choice : Node_Id;
1780 Expr : Node_Id;
1781 Discard : Node_Id;
1782
1783 Aggr_Low : Node_Id := Empty;
1784 Aggr_High : Node_Id := Empty;
1785 -- The actual low and high bounds of this sub-aggregate
1786
1787 Case_Table_Size : Nat;
1788 -- Contains the size of the case table needed to sort aggregate choices
1789
1790 Choices_Low : Node_Id := Empty;
1791 Choices_High : Node_Id := Empty;
1792 -- The lowest and highest discrete choices values for a named aggregate
1793
1794 Delete_Choice : Boolean;
1795 -- Used when replacing a subtype choice with predicate by a list
1796
1797 Nb_Elements : Uint := Uint_0;
1798 -- The number of elements in a positional aggregate
1799
1800 Nb_Discrete_Choices : Nat := 0;
1801 -- The overall number of discrete choices (not counting others choice)
1802
1803 -- Start of processing for Resolve_Array_Aggregate
1804
1805 begin
1806 -- Ignore junk empty aggregate resulting from parser error
1807
1808 if No (Expressions (N))
1809 and then No (Component_Associations (N))
1810 and then not Null_Record_Present (N)
1811 then
1812 return False;
1813 end if;
1814
1815 -- STEP 1: make sure the aggregate is correctly formatted
1816
1817 if Present (Component_Associations (N)) then
1818 Assoc := First (Component_Associations (N));
1819 while Present (Assoc) loop
1820 if Nkind (Assoc) = N_Iterated_Component_Association then
1821 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1822 end if;
1823
1824 Choice := First (Choice_List (Assoc));
1825 Delete_Choice := False;
1826 while Present (Choice) loop
1827 if Nkind (Choice) = N_Others_Choice then
1828 Others_Present := True;
1829
1830 if Choice /= First (Choice_List (Assoc))
1831 or else Present (Next (Choice))
1832 then
1833 Error_Msg_N
1834 ("OTHERS must appear alone in a choice list", Choice);
1835 return Failure;
1836 end if;
1837
1838 if Present (Next (Assoc)) then
1839 Error_Msg_N
1840 ("OTHERS must appear last in an aggregate", Choice);
1841 return Failure;
1842 end if;
1843
1844 if Ada_Version = Ada_83
1845 and then Assoc /= First (Component_Associations (N))
1846 and then Nkind_In (Parent (N), N_Assignment_Statement,
1847 N_Object_Declaration)
1848 then
1849 Error_Msg_N
1850 ("(Ada 83) illegal context for OTHERS choice", N);
1851 end if;
1852
1853 elsif Is_Entity_Name (Choice) then
1854 Analyze (Choice);
1855
1856 declare
1857 E : constant Entity_Id := Entity (Choice);
1858 New_Cs : List_Id;
1859 P : Node_Id;
1860 C : Node_Id;
1861
1862 begin
1863 if Is_Type (E) and then Has_Predicates (E) then
1864 Freeze_Before (N, E);
1865
1866 if Has_Dynamic_Predicate_Aspect (E) then
1867 Error_Msg_NE
1868 ("subtype& has dynamic predicate, not allowed "
1869 & "in aggregate choice", Choice, E);
1870
1871 elsif not Is_OK_Static_Subtype (E) then
1872 Error_Msg_NE
1873 ("non-static subtype& has predicate, not allowed "
1874 & "in aggregate choice", Choice, E);
1875 end if;
1876
1877 -- If the subtype has a static predicate, replace the
1878 -- original choice with the list of individual values
1879 -- covered by the predicate. Do not perform this
1880 -- transformation if we need to preserve the source
1881 -- for ASIS use.
1882 -- This should be deferred to expansion time ???
1883
1884 if Present (Static_Discrete_Predicate (E))
1885 and then not ASIS_Mode
1886 then
1887 Delete_Choice := True;
1888
1889 New_Cs := New_List;
1890 P := First (Static_Discrete_Predicate (E));
1891 while Present (P) loop
1892 C := New_Copy (P);
1893 Set_Sloc (C, Sloc (Choice));
1894 Append_To (New_Cs, C);
1895 Next (P);
1896 end loop;
1897
1898 Insert_List_After (Choice, New_Cs);
1899 end if;
1900 end if;
1901 end;
1902 end if;
1903
1904 Nb_Choices := Nb_Choices + 1;
1905
1906 declare
1907 C : constant Node_Id := Choice;
1908
1909 begin
1910 Next (Choice);
1911
1912 if Delete_Choice then
1913 Remove (C);
1914 Nb_Choices := Nb_Choices - 1;
1915 Delete_Choice := False;
1916 end if;
1917 end;
1918 end loop;
1919
1920 Next (Assoc);
1921 end loop;
1922 end if;
1923
1924 -- At this point we know that the others choice, if present, is by
1925 -- itself and appears last in the aggregate. Check if we have mixed
1926 -- positional and discrete associations (other than the others choice).
1927
1928 if Present (Expressions (N))
1929 and then (Nb_Choices > 1
1930 or else (Nb_Choices = 1 and then not Others_Present))
1931 then
1932 Error_Msg_N
1933 ("named association cannot follow positional association",
1934 First (Choice_List (First (Component_Associations (N)))));
1935 return Failure;
1936 end if;
1937
1938 -- Test for the validity of an others choice if present
1939
1940 if Others_Present and then not Others_Allowed then
1941 Error_Msg_N
1942 ("OTHERS choice not allowed here",
1943 First (Choices (First (Component_Associations (N)))));
1944 return Failure;
1945 end if;
1946
1947 -- Protect against cascaded errors
1948
1949 if Etype (Index_Typ) = Any_Type then
1950 return Failure;
1951 end if;
1952
1953 -- STEP 2: Process named components
1954
1955 if No (Expressions (N)) then
1956 if Others_Present then
1957 Case_Table_Size := Nb_Choices - 1;
1958 else
1959 Case_Table_Size := Nb_Choices;
1960 end if;
1961
1962 Step_2 : declare
1963 function Empty_Range (A : Node_Id) return Boolean;
1964 -- If an association covers an empty range, some warnings on the
1965 -- expression of the association can be disabled.
1966
1967 -----------------
1968 -- Empty_Range --
1969 -----------------
1970
1971 function Empty_Range (A : Node_Id) return Boolean is
1972 R : constant Node_Id := First (Choices (A));
1973 begin
1974 return No (Next (R))
1975 and then Nkind (R) = N_Range
1976 and then Compile_Time_Compare
1977 (Low_Bound (R), High_Bound (R), False) = GT;
1978 end Empty_Range;
1979
1980 -- Local variables
1981
1982 Low : Node_Id;
1983 High : Node_Id;
1984 -- Denote the lowest and highest values in an aggregate choice
1985
1986 S_Low : Node_Id := Empty;
1987 S_High : Node_Id := Empty;
1988 -- if a choice in an aggregate is a subtype indication these
1989 -- denote the lowest and highest values of the subtype
1990
1991 Table : Case_Table_Type (0 .. Case_Table_Size);
1992 -- Used to sort all the different choice values. Entry zero is
1993 -- reserved for sorting purposes.
1994
1995 Single_Choice : Boolean;
1996 -- Set to true every time there is a single discrete choice in a
1997 -- discrete association
1998
1999 Prev_Nb_Discrete_Choices : Nat;
2000 -- Used to keep track of the number of discrete choices in the
2001 -- current association.
2002
2003 Errors_Posted_On_Choices : Boolean := False;
2004 -- Keeps track of whether any choices have semantic errors
2005
2006 -- Start of processing for Step_2
2007
2008 begin
2009 -- STEP 2 (A): Check discrete choices validity
2010
2011 Assoc := First (Component_Associations (N));
2012 while Present (Assoc) loop
2013 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
2014 Choice := First (Choice_List (Assoc));
2015
2016 loop
2017 Analyze (Choice);
2018
2019 if Nkind (Choice) = N_Others_Choice then
2020 Single_Choice := False;
2021 exit;
2022
2023 -- Test for subtype mark without constraint
2024
2025 elsif Is_Entity_Name (Choice) and then
2026 Is_Type (Entity (Choice))
2027 then
2028 if Base_Type (Entity (Choice)) /= Index_Base then
2029 Error_Msg_N
2030 ("invalid subtype mark in aggregate choice",
2031 Choice);
2032 return Failure;
2033 end if;
2034
2035 -- Case of subtype indication
2036
2037 elsif Nkind (Choice) = N_Subtype_Indication then
2038 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
2039
2040 if Has_Dynamic_Predicate_Aspect
2041 (Entity (Subtype_Mark (Choice)))
2042 then
2043 Error_Msg_NE
2044 ("subtype& has dynamic predicate, "
2045 & "not allowed in aggregate choice",
2046 Choice, Entity (Subtype_Mark (Choice)));
2047 end if;
2048
2049 -- Does the subtype indication evaluation raise CE?
2050
2051 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
2052 Get_Index_Bounds (Choice, Low, High);
2053 Check_Bounds (S_Low, S_High, Low, High);
2054
2055 -- Case of range or expression
2056
2057 else
2058 Resolve (Choice, Index_Base);
2059 Check_Unset_Reference (Choice);
2060 Check_Non_Static_Context (Choice);
2061
2062 -- If semantic errors were posted on the choice, then
2063 -- record that for possible early return from later
2064 -- processing (see handling of enumeration choices).
2065
2066 if Error_Posted (Choice) then
2067 Errors_Posted_On_Choices := True;
2068 end if;
2069
2070 -- Do not range check a choice. This check is redundant
2071 -- since this test is already done when we check that the
2072 -- bounds of the array aggregate are within range.
2073
2074 Set_Do_Range_Check (Choice, False);
2075
2076 -- In SPARK, the choice must be static
2077
2078 if not (Is_OK_Static_Expression (Choice)
2079 or else (Nkind (Choice) = N_Range
2080 and then Is_OK_Static_Range (Choice)))
2081 then
2082 Check_SPARK_05_Restriction
2083 ("choice should be static", Choice);
2084 end if;
2085 end if;
2086
2087 -- If we could not resolve the discrete choice stop here
2088
2089 if Etype (Choice) = Any_Type then
2090 return Failure;
2091
2092 -- If the discrete choice raises CE get its original bounds
2093
2094 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2095 Set_Raises_Constraint_Error (N);
2096 Get_Index_Bounds (Original_Node (Choice), Low, High);
2097
2098 -- Otherwise get its bounds as usual
2099
2100 else
2101 Get_Index_Bounds (Choice, Low, High);
2102 end if;
2103
2104 if (Dynamic_Or_Null_Range (Low, High)
2105 or else (Nkind (Choice) = N_Subtype_Indication
2106 and then
2107 Dynamic_Or_Null_Range (S_Low, S_High)))
2108 and then Nb_Choices /= 1
2109 then
2110 Error_Msg_N
2111 ("dynamic or empty choice in aggregate "
2112 & "must be the only choice", Choice);
2113 return Failure;
2114 end if;
2115
2116 if not (All_Composite_Constraints_Static (Low)
2117 and then All_Composite_Constraints_Static (High)
2118 and then All_Composite_Constraints_Static (S_Low)
2119 and then All_Composite_Constraints_Static (S_High))
2120 then
2121 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2122 end if;
2123
2124 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2125 Table (Nb_Discrete_Choices).Lo := Low;
2126 Table (Nb_Discrete_Choices).Hi := High;
2127 Table (Nb_Discrete_Choices).Choice := Choice;
2128
2129 Next (Choice);
2130
2131 if No (Choice) then
2132
2133 -- Check if we have a single discrete choice and whether
2134 -- this discrete choice specifies a single value.
2135
2136 Single_Choice :=
2137 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2138 and then (Low = High);
2139
2140 exit;
2141 end if;
2142 end loop;
2143
2144 -- Ada 2005 (AI-231)
2145
2146 if Ada_Version >= Ada_2005
2147 and then Known_Null (Expression (Assoc))
2148 and then not Empty_Range (Assoc)
2149 then
2150 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2151 end if;
2152
2153 -- Ada 2005 (AI-287): In case of default initialized component
2154 -- we delay the resolution to the expansion phase.
2155
2156 if Box_Present (Assoc) then
2157
2158 -- Ada 2005 (AI-287): In case of default initialization of a
2159 -- component the expander will generate calls to the
2160 -- corresponding initialization subprogram. We need to call
2161 -- Resolve_Aggr_Expr to check the rules about
2162 -- dimensionality.
2163
2164 if not Resolve_Aggr_Expr
2165 (Assoc, Single_Elmt => Single_Choice)
2166 then
2167 return Failure;
2168 end if;
2169
2170 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2171 null; -- handled above, in a loop context.
2172
2173 elsif not Resolve_Aggr_Expr
2174 (Expression (Assoc), Single_Elmt => Single_Choice)
2175 then
2176 return Failure;
2177
2178 -- Check incorrect use of dynamically tagged expression
2179
2180 -- We differentiate here two cases because the expression may
2181 -- not be decorated. For example, the analysis and resolution
2182 -- of the expression associated with the others choice will be
2183 -- done later with the full aggregate. In such case we
2184 -- duplicate the expression tree to analyze the copy and
2185 -- perform the required check.
2186
2187 elsif not Present (Etype (Expression (Assoc))) then
2188 declare
2189 Save_Analysis : constant Boolean := Full_Analysis;
2190 Expr : constant Node_Id :=
2191 New_Copy_Tree (Expression (Assoc));
2192
2193 begin
2194 Expander_Mode_Save_And_Set (False);
2195 Full_Analysis := False;
2196
2197 -- Analyze the expression, making sure it is properly
2198 -- attached to the tree before we do the analysis.
2199
2200 Set_Parent (Expr, Parent (Expression (Assoc)));
2201 Analyze (Expr);
2202
2203 -- Compute its dimensions now, rather than at the end of
2204 -- resolution, because in the case of multidimensional
2205 -- aggregates subsequent expansion may lead to spurious
2206 -- errors.
2207
2208 Check_Expression_Dimensions (Expr, Component_Typ);
2209
2210 -- If the expression is a literal, propagate this info
2211 -- to the expression in the association, to enable some
2212 -- optimizations downstream.
2213
2214 if Is_Entity_Name (Expr)
2215 and then Present (Entity (Expr))
2216 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2217 then
2218 Analyze_And_Resolve
2219 (Expression (Assoc), Component_Typ);
2220 end if;
2221
2222 Full_Analysis := Save_Analysis;
2223 Expander_Mode_Restore;
2224
2225 if Is_Tagged_Type (Etype (Expr)) then
2226 Check_Dynamically_Tagged_Expression
2227 (Expr => Expr,
2228 Typ => Component_Type (Etype (N)),
2229 Related_Nod => N);
2230 end if;
2231 end;
2232
2233 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2234 Check_Dynamically_Tagged_Expression
2235 (Expr => Expression (Assoc),
2236 Typ => Component_Type (Etype (N)),
2237 Related_Nod => N);
2238 end if;
2239
2240 Next (Assoc);
2241 end loop;
2242
2243 -- If aggregate contains more than one choice then these must be
2244 -- static. Check for duplicate and missing values.
2245
2246 -- Note: there is duplicated code here wrt Check_Choice_Set in
2247 -- the body of Sem_Case, and it is possible we could just reuse
2248 -- that procedure. To be checked ???
2249
2250 if Nb_Discrete_Choices > 1 then
2251 Check_Choices : declare
2252 Choice : Node_Id;
2253 -- Location of choice for messages
2254
2255 Hi_Val : Uint;
2256 Lo_Val : Uint;
2257 -- High end of one range and Low end of the next. Should be
2258 -- contiguous if there is no hole in the list of values.
2259
2260 Lo_Dup : Uint;
2261 Hi_Dup : Uint;
2262 -- End points of duplicated range
2263
2264 Missing_Or_Duplicates : Boolean := False;
2265 -- Set True if missing or duplicate choices found
2266
2267 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2268 -- Output continuation message with a representation of the
2269 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2270 -- choice node where the message is to be posted.
2271
2272 ------------------------
2273 -- Output_Bad_Choices --
2274 ------------------------
2275
2276 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2277 begin
2278 -- Enumeration type case
2279
2280 if Is_Enumeration_Type (Index_Typ) then
2281 Error_Msg_Name_1 :=
2282 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2283 Error_Msg_Name_2 :=
2284 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2285
2286 if Lo = Hi then
2287 Error_Msg_N ("\\ %!", C);
2288 else
2289 Error_Msg_N ("\\ % .. %!", C);
2290 end if;
2291
2292 -- Integer types case
2293
2294 else
2295 Error_Msg_Uint_1 := Lo;
2296 Error_Msg_Uint_2 := Hi;
2297
2298 if Lo = Hi then
2299 Error_Msg_N ("\\ ^!", C);
2300 else
2301 Error_Msg_N ("\\ ^ .. ^!", C);
2302 end if;
2303 end if;
2304 end Output_Bad_Choices;
2305
2306 -- Start of processing for Check_Choices
2307
2308 begin
2309 Sort_Case_Table (Table);
2310
2311 -- First we do a quick linear loop to find out if we have
2312 -- any duplicates or missing entries (usually we have a
2313 -- legal aggregate, so this will get us out quickly).
2314
2315 for J in 1 .. Nb_Discrete_Choices - 1 loop
2316 Hi_Val := Expr_Value (Table (J).Hi);
2317 Lo_Val := Expr_Value (Table (J + 1).Lo);
2318
2319 if Lo_Val <= Hi_Val
2320 or else (Lo_Val > Hi_Val + 1
2321 and then not Others_Present)
2322 then
2323 Missing_Or_Duplicates := True;
2324 exit;
2325 end if;
2326 end loop;
2327
2328 -- If we have missing or duplicate entries, first fill in
2329 -- the Highest entries to make life easier in the following
2330 -- loops to detect bad entries.
2331
2332 if Missing_Or_Duplicates then
2333 Table (1).Highest := Expr_Value (Table (1).Hi);
2334
2335 for J in 2 .. Nb_Discrete_Choices loop
2336 Table (J).Highest :=
2337 UI_Max
2338 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2339 end loop;
2340
2341 -- Loop through table entries to find duplicate indexes
2342
2343 for J in 2 .. Nb_Discrete_Choices loop
2344 Lo_Val := Expr_Value (Table (J).Lo);
2345 Hi_Val := Expr_Value (Table (J).Hi);
2346
2347 -- Case where we have duplicates (the lower bound of
2348 -- this choice is less than or equal to the highest
2349 -- high bound found so far).
2350
2351 if Lo_Val <= Table (J - 1).Highest then
2352
2353 -- We move backwards looking for duplicates. We can
2354 -- abandon this loop as soon as we reach a choice
2355 -- highest value that is less than Lo_Val.
2356
2357 for K in reverse 1 .. J - 1 loop
2358 exit when Table (K).Highest < Lo_Val;
2359
2360 -- Here we may have duplicates between entries
2361 -- for K and J. Get range of duplicates.
2362
2363 Lo_Dup :=
2364 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2365 Hi_Dup :=
2366 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2367
2368 -- Nothing to do if duplicate range is null
2369
2370 if Lo_Dup > Hi_Dup then
2371 null;
2372
2373 -- Otherwise place proper message. Because
2374 -- of the missing expansion of subtypes with
2375 -- predicates in ASIS mode, do not report
2376 -- spurious overlap errors.
2377
2378 elsif ASIS_Mode
2379 and then
2380 ((Is_Type (Entity (Table (J).Choice))
2381 and then Has_Predicates
2382 (Entity (Table (J).Choice)))
2383 or else
2384 (Is_Type (Entity (Table (K).Choice))
2385 and then Has_Predicates
2386 (Entity (Table (K).Choice))))
2387 then
2388 null;
2389
2390 else
2391 -- We place message on later choice, with a
2392 -- line reference to the earlier choice.
2393
2394 if Sloc (Table (J).Choice) <
2395 Sloc (Table (K).Choice)
2396 then
2397 Choice := Table (K).Choice;
2398 Error_Msg_Sloc := Sloc (Table (J).Choice);
2399 else
2400 Choice := Table (J).Choice;
2401 Error_Msg_Sloc := Sloc (Table (K).Choice);
2402 end if;
2403
2404 if Lo_Dup = Hi_Dup then
2405 Error_Msg_N
2406 ("index value in array aggregate "
2407 & "duplicates the one given#!", Choice);
2408 else
2409 Error_Msg_N
2410 ("index values in array aggregate "
2411 & "duplicate those given#!", Choice);
2412 end if;
2413
2414 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2415 end if;
2416 end loop;
2417 end if;
2418 end loop;
2419
2420 -- Loop through entries in table to find missing indexes.
2421 -- Not needed if others, since missing impossible.
2422
2423 if not Others_Present then
2424 for J in 2 .. Nb_Discrete_Choices loop
2425 Lo_Val := Expr_Value (Table (J).Lo);
2426 Hi_Val := Table (J - 1).Highest;
2427
2428 if Lo_Val > Hi_Val + 1 then
2429
2430 declare
2431 Error_Node : Node_Id;
2432
2433 begin
2434 -- If the choice is the bound of a range in
2435 -- a subtype indication, it is not in the
2436 -- source lists for the aggregate itself, so
2437 -- post the error on the aggregate. Otherwise
2438 -- post it on choice itself.
2439
2440 Choice := Table (J).Choice;
2441
2442 if Is_List_Member (Choice) then
2443 Error_Node := Choice;
2444 else
2445 Error_Node := N;
2446 end if;
2447
2448 if Hi_Val + 1 = Lo_Val - 1 then
2449 Error_Msg_N
2450 ("missing index value "
2451 & "in array aggregate!", Error_Node);
2452 else
2453 Error_Msg_N
2454 ("missing index values "
2455 & "in array aggregate!", Error_Node);
2456 end if;
2457
2458 Output_Bad_Choices
2459 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2460 end;
2461 end if;
2462 end loop;
2463 end if;
2464
2465 -- If either missing or duplicate values, return failure
2466
2467 Set_Etype (N, Any_Composite);
2468 return Failure;
2469 end if;
2470 end Check_Choices;
2471 end if;
2472
2473 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2474
2475 if Nb_Discrete_Choices > 0 then
2476 Choices_Low := Table (1).Lo;
2477 Choices_High := Table (Nb_Discrete_Choices).Hi;
2478 end if;
2479
2480 -- If Others is present, then bounds of aggregate come from the
2481 -- index constraint (not the choices in the aggregate itself).
2482
2483 if Others_Present then
2484 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2485
2486 -- Abandon processing if either bound is already signalled as
2487 -- an error (prevents junk cascaded messages and blow ups).
2488
2489 if Nkind (Aggr_Low) = N_Error
2490 or else
2491 Nkind (Aggr_High) = N_Error
2492 then
2493 return False;
2494 end if;
2495
2496 -- No others clause present
2497
2498 else
2499 -- Special processing if others allowed and not present. This
2500 -- means that the bounds of the aggregate come from the index
2501 -- constraint (and the length must match).
2502
2503 if Others_Allowed then
2504 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2505
2506 -- Abandon processing if either bound is already signalled
2507 -- as an error (stop junk cascaded messages and blow ups).
2508
2509 if Nkind (Aggr_Low) = N_Error
2510 or else
2511 Nkind (Aggr_High) = N_Error
2512 then
2513 return False;
2514 end if;
2515
2516 -- If others allowed, and no others present, then the array
2517 -- should cover all index values. If it does not, we will
2518 -- get a length check warning, but there is two cases where
2519 -- an additional warning is useful:
2520
2521 -- If we have no positional components, and the length is
2522 -- wrong (which we can tell by others being allowed with
2523 -- missing components), and the index type is an enumeration
2524 -- type, then issue appropriate warnings about these missing
2525 -- components. They are only warnings, since the aggregate
2526 -- is fine, it's just the wrong length. We skip this check
2527 -- for standard character types (since there are no literals
2528 -- and it is too much trouble to concoct them), and also if
2529 -- any of the bounds have values that are not known at
2530 -- compile time.
2531
2532 -- Another case warranting a warning is when the length
2533 -- is right, but as above we have an index type that is
2534 -- an enumeration, and the bounds do not match. This is a
2535 -- case where dubious sliding is allowed and we generate a
2536 -- warning that the bounds do not match.
2537
2538 if No (Expressions (N))
2539 and then Nkind (Index) = N_Range
2540 and then Is_Enumeration_Type (Etype (Index))
2541 and then not Is_Standard_Character_Type (Etype (Index))
2542 and then Compile_Time_Known_Value (Aggr_Low)
2543 and then Compile_Time_Known_Value (Aggr_High)
2544 and then Compile_Time_Known_Value (Choices_Low)
2545 and then Compile_Time_Known_Value (Choices_High)
2546 then
2547 -- If any of the expressions or range bounds in choices
2548 -- have semantic errors, then do not attempt further
2549 -- resolution, to prevent cascaded errors.
2550
2551 if Errors_Posted_On_Choices then
2552 return Failure;
2553 end if;
2554
2555 declare
2556 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2557 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2558 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2559 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2560
2561 Ent : Entity_Id;
2562
2563 begin
2564 -- Warning case 1, missing values at start/end. Only
2565 -- do the check if the number of entries is too small.
2566
2567 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2568 <
2569 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2570 then
2571 Error_Msg_N
2572 ("missing index value(s) in array aggregate??",
2573 N);
2574
2575 -- Output missing value(s) at start
2576
2577 if Chars (ALo) /= Chars (CLo) then
2578 Ent := Prev (CLo);
2579
2580 if Chars (ALo) = Chars (Ent) then
2581 Error_Msg_Name_1 := Chars (ALo);
2582 Error_Msg_N ("\ %??", N);
2583 else
2584 Error_Msg_Name_1 := Chars (ALo);
2585 Error_Msg_Name_2 := Chars (Ent);
2586 Error_Msg_N ("\ % .. %??", N);
2587 end if;
2588 end if;
2589
2590 -- Output missing value(s) at end
2591
2592 if Chars (AHi) /= Chars (CHi) then
2593 Ent := Next (CHi);
2594
2595 if Chars (AHi) = Chars (Ent) then
2596 Error_Msg_Name_1 := Chars (Ent);
2597 Error_Msg_N ("\ %??", N);
2598 else
2599 Error_Msg_Name_1 := Chars (Ent);
2600 Error_Msg_Name_2 := Chars (AHi);
2601 Error_Msg_N ("\ % .. %??", N);
2602 end if;
2603 end if;
2604
2605 -- Warning case 2, dubious sliding. The First_Subtype
2606 -- test distinguishes between a constrained type where
2607 -- sliding is not allowed (so we will get a warning
2608 -- later that Constraint_Error will be raised), and
2609 -- the unconstrained case where sliding is permitted.
2610
2611 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2612 =
2613 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2614 and then Chars (ALo) /= Chars (CLo)
2615 and then
2616 not Is_Constrained (First_Subtype (Etype (N)))
2617 then
2618 Error_Msg_N
2619 ("bounds of aggregate do not match target??", N);
2620 end if;
2621 end;
2622 end if;
2623 end if;
2624
2625 -- If no others, aggregate bounds come from aggregate
2626
2627 Aggr_Low := Choices_Low;
2628 Aggr_High := Choices_High;
2629 end if;
2630 end Step_2;
2631
2632 -- STEP 3: Process positional components
2633
2634 else
2635 -- STEP 3 (A): Process positional elements
2636
2637 Expr := First (Expressions (N));
2638 Nb_Elements := Uint_0;
2639 while Present (Expr) loop
2640 Nb_Elements := Nb_Elements + 1;
2641
2642 -- Ada 2005 (AI-231)
2643
2644 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2645 Check_Can_Never_Be_Null (Etype (N), Expr);
2646 end if;
2647
2648 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2649 return Failure;
2650 end if;
2651
2652 -- Check incorrect use of dynamically tagged expression
2653
2654 if Is_Tagged_Type (Etype (Expr)) then
2655 Check_Dynamically_Tagged_Expression
2656 (Expr => Expr,
2657 Typ => Component_Type (Etype (N)),
2658 Related_Nod => N);
2659 end if;
2660
2661 Next (Expr);
2662 end loop;
2663
2664 if Others_Present then
2665 Assoc := Last (Component_Associations (N));
2666
2667 -- Ada 2005 (AI-231)
2668
2669 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2670 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2671 end if;
2672
2673 -- Ada 2005 (AI-287): In case of default initialized component,
2674 -- we delay the resolution to the expansion phase.
2675
2676 if Box_Present (Assoc) then
2677
2678 -- Ada 2005 (AI-287): In case of default initialization of a
2679 -- component the expander will generate calls to the
2680 -- corresponding initialization subprogram. We need to call
2681 -- Resolve_Aggr_Expr to check the rules about
2682 -- dimensionality.
2683
2684 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2685 return Failure;
2686 end if;
2687
2688 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2689 Single_Elmt => False)
2690 then
2691 return Failure;
2692
2693 -- Check incorrect use of dynamically tagged expression. The
2694 -- expression of the others choice has not been resolved yet.
2695 -- In order to diagnose the semantic error we create a duplicate
2696 -- tree to analyze it and perform the check.
2697
2698 else
2699 declare
2700 Save_Analysis : constant Boolean := Full_Analysis;
2701 Expr : constant Node_Id :=
2702 New_Copy_Tree (Expression (Assoc));
2703
2704 begin
2705 Expander_Mode_Save_And_Set (False);
2706 Full_Analysis := False;
2707 Analyze (Expr);
2708 Full_Analysis := Save_Analysis;
2709 Expander_Mode_Restore;
2710
2711 if Is_Tagged_Type (Etype (Expr)) then
2712 Check_Dynamically_Tagged_Expression
2713 (Expr => Expr,
2714 Typ => Component_Type (Etype (N)),
2715 Related_Nod => N);
2716 end if;
2717 end;
2718 end if;
2719 end if;
2720
2721 -- STEP 3 (B): Compute the aggregate bounds
2722
2723 if Others_Present then
2724 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2725
2726 else
2727 if Others_Allowed then
2728 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2729 else
2730 Aggr_Low := Index_Typ_Low;
2731 end if;
2732
2733 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2734 Check_Bound (Index_Base_High, Aggr_High);
2735 end if;
2736 end if;
2737
2738 -- STEP 4: Perform static aggregate checks and save the bounds
2739
2740 -- Check (A)
2741
2742 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2743 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2744
2745 -- Check (B)
2746
2747 if Others_Present and then Nb_Discrete_Choices > 0 then
2748 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2749 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2750 Choices_Low, Choices_High);
2751 Check_Bounds (Index_Base_Low, Index_Base_High,
2752 Choices_Low, Choices_High);
2753
2754 -- Check (C)
2755
2756 elsif Others_Present and then Nb_Elements > 0 then
2757 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2758 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2759 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2760 end if;
2761
2762 if Raises_Constraint_Error (Aggr_Low)
2763 or else Raises_Constraint_Error (Aggr_High)
2764 then
2765 Set_Raises_Constraint_Error (N);
2766 end if;
2767
2768 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2769
2770 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2771 -- since the addition node returned by Add is not yet analyzed. Attach
2772 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2773 -- analyzed when it is a literal bound whose type must be properly set.
2774
2775 if Others_Present or else Nb_Discrete_Choices > 0 then
2776 Aggr_High := Duplicate_Subexpr (Aggr_High);
2777
2778 if Etype (Aggr_High) = Universal_Integer then
2779 Set_Analyzed (Aggr_High, False);
2780 end if;
2781 end if;
2782
2783 -- If the aggregate already has bounds attached to it, it means this is
2784 -- a positional aggregate created as an optimization by
2785 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2786 -- bounds.
2787
2788 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2789 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2790 Aggr_High := High_Bound (Aggregate_Bounds (N));
2791 end if;
2792
2793 Set_Aggregate_Bounds
2794 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2795
2796 -- The bounds may contain expressions that must be inserted upwards.
2797 -- Attach them fully to the tree. After analysis, remove side effects
2798 -- from upper bound, if still needed.
2799
2800 Set_Parent (Aggregate_Bounds (N), N);
2801 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2802 Check_Unset_Reference (Aggregate_Bounds (N));
2803
2804 if not Others_Present and then Nb_Discrete_Choices = 0 then
2805 Set_High_Bound
2806 (Aggregate_Bounds (N),
2807 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2808 end if;
2809
2810 -- Check the dimensions of each component in the array aggregate
2811
2812 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2813
2814 return Success;
2815 end Resolve_Array_Aggregate;
2816
2817 -----------------------------
2818 -- Resolve_Delta_Aggregate --
2819 -----------------------------
2820
2821 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2822 Base : constant Node_Id := Expression (N);
2823
2824 begin
2825 if Ada_Version < Ada_2020 then
2826 Error_Msg_N ("delta_aggregate is an Ada 202x feature", N);
2827 Error_Msg_N ("\compile with -gnatX", N);
2828 end if;
2829
2830 if not Is_Composite_Type (Typ) then
2831 Error_Msg_N ("not a composite type", N);
2832 end if;
2833
2834 Analyze_And_Resolve (Base, Typ);
2835
2836 if Is_Array_Type (Typ) then
2837 Resolve_Delta_Array_Aggregate (N, Typ);
2838 else
2839 Resolve_Delta_Record_Aggregate (N, Typ);
2840 end if;
2841
2842 Set_Etype (N, Typ);
2843 end Resolve_Delta_Aggregate;
2844
2845 -----------------------------------
2846 -- Resolve_Delta_Array_Aggregate --
2847 -----------------------------------
2848
2849 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
2850 Deltas : constant List_Id := Component_Associations (N);
2851
2852 Assoc : Node_Id;
2853 Choice : Node_Id;
2854 Index_Type : Entity_Id;
2855
2856 begin
2857 Index_Type := Etype (First_Index (Typ));
2858
2859 Assoc := First (Deltas);
2860 while Present (Assoc) loop
2861 if Nkind (Assoc) = N_Iterated_Component_Association then
2862 Choice := First (Choice_List (Assoc));
2863 while Present (Choice) loop
2864 if Nkind (Choice) = N_Others_Choice then
2865 Error_Msg_N
2866 ("others not allowed in delta aggregate", Choice);
2867
2868 else
2869 Analyze_And_Resolve (Choice, Index_Type);
2870 end if;
2871
2872 Next (Choice);
2873 end loop;
2874
2875 declare
2876 Id : constant Entity_Id := Defining_Identifier (Assoc);
2877 Ent : constant Entity_Id :=
2878 New_Internal_Entity
2879 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2880
2881 begin
2882 Set_Etype (Ent, Standard_Void_Type);
2883 Set_Parent (Ent, Assoc);
2884
2885 if No (Scope (Id)) then
2886 Enter_Name (Id);
2887 Set_Etype (Id, Index_Type);
2888 Set_Ekind (Id, E_Variable);
2889 Set_Scope (Id, Ent);
2890 end if;
2891
2892 Push_Scope (Ent);
2893 Analyze_And_Resolve
2894 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2895 End_Scope;
2896 end;
2897
2898 else
2899 Choice := First (Choice_List (Assoc));
2900 while Present (Choice) loop
2901 if Nkind (Choice) = N_Others_Choice then
2902 Error_Msg_N
2903 ("others not allowed in delta aggregate", Choice);
2904
2905 else
2906 Analyze (Choice);
2907
2908 if Is_Entity_Name (Choice)
2909 and then Is_Type (Entity (Choice))
2910 then
2911 -- Choice covers a range of values
2912
2913 if Base_Type (Entity (Choice)) /=
2914 Base_Type (Index_Type)
2915 then
2916 Error_Msg_NE
2917 ("choice does mat match index type of",
2918 Choice, Typ);
2919 end if;
2920 else
2921 Resolve (Choice, Index_Type);
2922 end if;
2923 end if;
2924
2925 Next (Choice);
2926 end loop;
2927
2928 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2929 end if;
2930
2931 Next (Assoc);
2932 end loop;
2933 end Resolve_Delta_Array_Aggregate;
2934
2935 ------------------------------------
2936 -- Resolve_Delta_Record_Aggregate --
2937 ------------------------------------
2938
2939 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2940
2941 -- Variables used to verify that discriminant-dependent components
2942 -- appear in the same variant.
2943
2944 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
2945 Variant : Node_Id;
2946
2947 procedure Check_Variant (Id : Entity_Id);
2948 -- If a given component of the delta aggregate appears in a variant
2949 -- part, verify that it is within the same variant as that of previous
2950 -- specified variant components of the delta.
2951
2952 function Get_Component_Type (Nam : Node_Id) return Entity_Id;
2953 -- Locate component with a given name and return its type. If none found
2954 -- report error.
2955
2956 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
2957 -- Determine whether variant V1 is within variant V2
2958
2959 function Variant_Depth (N : Node_Id) return Integer;
2960 -- Determine the distance of a variant to the enclosing type
2961 -- declaration.
2962
2963 --------------------
2964 -- Check_Variant --
2965 --------------------
2966
2967 procedure Check_Variant (Id : Entity_Id) is
2968 Comp : Entity_Id;
2969 Comp_Variant : Node_Id;
2970
2971 begin
2972 if not Has_Discriminants (Typ) then
2973 return;
2974 end if;
2975
2976 Comp := First_Entity (Typ);
2977 while Present (Comp) loop
2978 exit when Chars (Comp) = Chars (Id);
2979 Next_Component (Comp);
2980 end loop;
2981
2982 -- Find the variant, if any, whose component list includes the
2983 -- component declaration.
2984
2985 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
2986 if Nkind (Comp_Variant) = N_Variant then
2987 if No (Variant) then
2988 Variant := Comp_Variant;
2989 Comp_Ref := Comp;
2990
2991 elsif Variant /= Comp_Variant then
2992 declare
2993 D1 : constant Integer := Variant_Depth (Variant);
2994 D2 : constant Integer := Variant_Depth (Comp_Variant);
2995
2996 begin
2997 if D1 = D2
2998 or else
2999 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
3000 or else
3001 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
3002 then
3003 pragma Assert (Present (Comp_Ref));
3004 Error_Msg_Node_2 := Comp_Ref;
3005 Error_Msg_NE
3006 ("& and & appear in different variants", Id, Comp);
3007
3008 -- Otherwise retain the deeper variant for subsequent tests
3009
3010 elsif D2 > D1 then
3011 Variant := Comp_Variant;
3012 end if;
3013 end;
3014 end if;
3015 end if;
3016 end Check_Variant;
3017
3018 ------------------------
3019 -- Get_Component_Type --
3020 ------------------------
3021
3022 function Get_Component_Type (Nam : Node_Id) return Entity_Id is
3023 Comp : Entity_Id;
3024
3025 begin
3026 Comp := First_Entity (Typ);
3027 while Present (Comp) loop
3028 if Chars (Comp) = Chars (Nam) then
3029 if Ekind (Comp) = E_Discriminant then
3030 Error_Msg_N ("delta cannot apply to discriminant", Nam);
3031 end if;
3032
3033 return Etype (Comp);
3034 end if;
3035
3036 Comp := Next_Entity (Comp);
3037 end loop;
3038
3039 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
3040 return Any_Type;
3041 end Get_Component_Type;
3042
3043 ---------------
3044 -- Nested_In --
3045 ---------------
3046
3047 function Nested_In (V1, V2 : Node_Id) return Boolean is
3048 Par : Node_Id;
3049
3050 begin
3051 Par := Parent (V1);
3052 while Nkind (Par) /= N_Full_Type_Declaration loop
3053 if Par = V2 then
3054 return True;
3055 end if;
3056
3057 Par := Parent (Par);
3058 end loop;
3059
3060 return False;
3061 end Nested_In;
3062
3063 -------------------
3064 -- Variant_Depth --
3065 -------------------
3066
3067 function Variant_Depth (N : Node_Id) return Integer is
3068 Depth : Integer;
3069 Par : Node_Id;
3070
3071 begin
3072 Depth := 0;
3073 Par := Parent (N);
3074 while Nkind (Par) /= N_Full_Type_Declaration loop
3075 Depth := Depth + 1;
3076 Par := Parent (Par);
3077 end loop;
3078
3079 return Depth;
3080 end Variant_Depth;
3081
3082 -- Local variables
3083
3084 Deltas : constant List_Id := Component_Associations (N);
3085
3086 Assoc : Node_Id;
3087 Choice : Node_Id;
3088 Comp_Type : Entity_Id := Empty; -- init to avoid warning
3089
3090 -- Start of processing for Resolve_Delta_Record_Aggregate
3091
3092 begin
3093 Variant := Empty;
3094
3095 Assoc := First (Deltas);
3096 while Present (Assoc) loop
3097 Choice := First (Choice_List (Assoc));
3098 while Present (Choice) loop
3099 Comp_Type := Get_Component_Type (Choice);
3100
3101 if Comp_Type /= Any_Type then
3102 Check_Variant (Choice);
3103 end if;
3104
3105 Next (Choice);
3106 end loop;
3107
3108 pragma Assert (Present (Comp_Type));
3109 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3110 Next (Assoc);
3111 end loop;
3112 end Resolve_Delta_Record_Aggregate;
3113
3114 ---------------------------------
3115 -- Resolve_Extension_Aggregate --
3116 ---------------------------------
3117
3118 -- There are two cases to consider:
3119
3120 -- a) If the ancestor part is a type mark, the components needed are the
3121 -- difference between the components of the expected type and the
3122 -- components of the given type mark.
3123
3124 -- b) If the ancestor part is an expression, it must be unambiguous, and
3125 -- once we have its type we can also compute the needed components as in
3126 -- the previous case. In both cases, if the ancestor type is not the
3127 -- immediate ancestor, we have to build this ancestor recursively.
3128
3129 -- In both cases, discriminants of the ancestor type do not play a role in
3130 -- the resolution of the needed components, because inherited discriminants
3131 -- cannot be used in a type extension. As a result we can compute
3132 -- independently the list of components of the ancestor type and of the
3133 -- expected type.
3134
3135 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3136 A : constant Node_Id := Ancestor_Part (N);
3137 A_Type : Entity_Id;
3138 I : Interp_Index;
3139 It : Interp;
3140
3141 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3142 -- If the type is limited, verify that the ancestor part is a legal
3143 -- expression (aggregate or function call, including 'Input)) that does
3144 -- not require a copy, as specified in 7.5(2).
3145
3146 function Valid_Ancestor_Type return Boolean;
3147 -- Verify that the type of the ancestor part is a non-private ancestor
3148 -- of the expected type, which must be a type extension.
3149
3150 procedure Transform_BIP_Assignment (Typ : Entity_Id);
3151 -- For an extension aggregate whose ancestor part is a build-in-place
3152 -- call returning a nonlimited type, this is used to transform the
3153 -- assignment to the ancestor part to use a temp.
3154
3155 ----------------------------
3156 -- Valid_Limited_Ancestor --
3157 ----------------------------
3158
3159 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3160 begin
3161 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3162 return True;
3163
3164 -- The ancestor must be a call or an aggregate, but a call may
3165 -- have been expanded into a temporary, so check original node.
3166
3167 elsif Nkind_In (Anc, N_Aggregate,
3168 N_Extension_Aggregate,
3169 N_Function_Call)
3170 then
3171 return True;
3172
3173 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3174 return True;
3175
3176 elsif Nkind (Anc) = N_Attribute_Reference
3177 and then Attribute_Name (Anc) = Name_Input
3178 then
3179 return True;
3180
3181 elsif Nkind (Anc) = N_Qualified_Expression then
3182 return Valid_Limited_Ancestor (Expression (Anc));
3183
3184 elsif Nkind (Anc) = N_Raise_Expression then
3185 return True;
3186
3187 else
3188 return False;
3189 end if;
3190 end Valid_Limited_Ancestor;
3191
3192 -------------------------
3193 -- Valid_Ancestor_Type --
3194 -------------------------
3195
3196 function Valid_Ancestor_Type return Boolean is
3197 Imm_Type : Entity_Id;
3198
3199 begin
3200 Imm_Type := Base_Type (Typ);
3201 while Is_Derived_Type (Imm_Type) loop
3202 if Etype (Imm_Type) = Base_Type (A_Type) then
3203 return True;
3204
3205 -- The base type of the parent type may appear as a private
3206 -- extension if it is declared as such in a parent unit of the
3207 -- current one. For consistency of the subsequent analysis use
3208 -- the partial view for the ancestor part.
3209
3210 elsif Is_Private_Type (Etype (Imm_Type))
3211 and then Present (Full_View (Etype (Imm_Type)))
3212 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3213 then
3214 A_Type := Etype (Imm_Type);
3215 return True;
3216
3217 -- The parent type may be a private extension. The aggregate is
3218 -- legal if the type of the aggregate is an extension of it that
3219 -- is not a private extension.
3220
3221 elsif Is_Private_Type (A_Type)
3222 and then not Is_Private_Type (Imm_Type)
3223 and then Present (Full_View (A_Type))
3224 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3225 then
3226 return True;
3227
3228 -- The parent type may be a raise expression (which is legal in
3229 -- any expression context).
3230
3231 elsif A_Type = Raise_Type then
3232 A_Type := Etype (Imm_Type);
3233 return True;
3234
3235 else
3236 Imm_Type := Etype (Base_Type (Imm_Type));
3237 end if;
3238 end loop;
3239
3240 -- If previous loop did not find a proper ancestor, report error
3241
3242 Error_Msg_NE ("expect ancestor type of &", A, Typ);
3243 return False;
3244 end Valid_Ancestor_Type;
3245
3246 ------------------------------
3247 -- Transform_BIP_Assignment --
3248 ------------------------------
3249
3250 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3251 Loc : constant Source_Ptr := Sloc (N);
3252 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
3253 Obj_Decl : constant Node_Id :=
3254 Make_Object_Declaration (Loc,
3255 Defining_Identifier => Def_Id,
3256 Constant_Present => True,
3257 Object_Definition => New_Occurrence_Of (Typ, Loc),
3258 Expression => A,
3259 Has_Init_Expression => True);
3260 begin
3261 Set_Etype (Def_Id, Typ);
3262 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3263 Insert_Action (N, Obj_Decl);
3264 end Transform_BIP_Assignment;
3265
3266 -- Start of processing for Resolve_Extension_Aggregate
3267
3268 begin
3269 -- Analyze the ancestor part and account for the case where it is a
3270 -- parameterless function call.
3271
3272 Analyze (A);
3273 Check_Parameterless_Call (A);
3274
3275 -- In SPARK, the ancestor part cannot be a type mark
3276
3277 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3278 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
3279
3280 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3281 -- must not have unknown discriminants.
3282
3283 if Has_Unknown_Discriminants (Root_Type (Typ)) then
3284 Error_Msg_NE
3285 ("aggregate not available for type& whose ancestor "
3286 & "has unknown discriminants", N, Typ);
3287 end if;
3288 end if;
3289
3290 if not Is_Tagged_Type (Typ) then
3291 Error_Msg_N ("type of extension aggregate must be tagged", N);
3292 return;
3293
3294 elsif Is_Limited_Type (Typ) then
3295
3296 -- Ada 2005 (AI-287): Limited aggregates are allowed
3297
3298 if Ada_Version < Ada_2005 then
3299 Error_Msg_N ("aggregate type cannot be limited", N);
3300 Explain_Limited_Type (Typ, N);
3301 return;
3302
3303 elsif Valid_Limited_Ancestor (A) then
3304 null;
3305
3306 else
3307 Error_Msg_N
3308 ("limited ancestor part must be aggregate or function call", A);
3309 end if;
3310
3311 elsif Is_Class_Wide_Type (Typ) then
3312 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3313 return;
3314 end if;
3315
3316 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3317 A_Type := Get_Full_View (Entity (A));
3318
3319 if Valid_Ancestor_Type then
3320 Set_Entity (A, A_Type);
3321 Set_Etype (A, A_Type);
3322
3323 Validate_Ancestor_Part (N);
3324 Resolve_Record_Aggregate (N, Typ);
3325 end if;
3326
3327 elsif Nkind (A) /= N_Aggregate then
3328 if Is_Overloaded (A) then
3329 A_Type := Any_Type;
3330
3331 Get_First_Interp (A, I, It);
3332 while Present (It.Typ) loop
3333
3334 -- Consider limited interpretations if Ada 2005 or higher
3335
3336 if Is_Tagged_Type (It.Typ)
3337 and then (Ada_Version >= Ada_2005
3338 or else not Is_Limited_Type (It.Typ))
3339 then
3340 if A_Type /= Any_Type then
3341 Error_Msg_N ("cannot resolve expression", A);
3342 return;
3343 else
3344 A_Type := It.Typ;
3345 end if;
3346 end if;
3347
3348 Get_Next_Interp (I, It);
3349 end loop;
3350
3351 if A_Type = Any_Type then
3352 if Ada_Version >= Ada_2005 then
3353 Error_Msg_N
3354 ("ancestor part must be of a tagged type", A);
3355 else
3356 Error_Msg_N
3357 ("ancestor part must be of a nonlimited tagged type", A);
3358 end if;
3359
3360 return;
3361 end if;
3362
3363 else
3364 A_Type := Etype (A);
3365 end if;
3366
3367 if Valid_Ancestor_Type then
3368 Resolve (A, A_Type);
3369 Check_Unset_Reference (A);
3370 Check_Non_Static_Context (A);
3371
3372 -- The aggregate is illegal if the ancestor expression is a call
3373 -- to a function with a limited unconstrained result, unless the
3374 -- type of the aggregate is a null extension. This restriction
3375 -- was added in AI05-67 to simplify implementation.
3376
3377 if Nkind (A) = N_Function_Call
3378 and then Is_Limited_Type (A_Type)
3379 and then not Is_Null_Extension (Typ)
3380 and then not Is_Constrained (A_Type)
3381 then
3382 Error_Msg_N
3383 ("type of limited ancestor part must be constrained", A);
3384
3385 -- Reject the use of CPP constructors that leave objects partially
3386 -- initialized. For example:
3387
3388 -- type CPP_Root is tagged limited record ...
3389 -- pragma Import (CPP, CPP_Root);
3390
3391 -- type CPP_DT is new CPP_Root and Iface ...
3392 -- pragma Import (CPP, CPP_DT);
3393
3394 -- type Ada_DT is new CPP_DT with ...
3395
3396 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3397
3398 -- Using the constructor of CPP_Root the slots of the dispatch
3399 -- table of CPP_DT cannot be set, and the secondary tag of
3400 -- CPP_DT is unknown.
3401
3402 elsif Nkind (A) = N_Function_Call
3403 and then Is_CPP_Constructor_Call (A)
3404 and then Enclosing_CPP_Parent (Typ) /= A_Type
3405 then
3406 Error_Msg_NE
3407 ("??must use 'C'P'P constructor for type &", A,
3408 Enclosing_CPP_Parent (Typ));
3409
3410 -- The following call is not needed if the previous warning
3411 -- is promoted to an error.
3412
3413 Resolve_Record_Aggregate (N, Typ);
3414
3415 elsif Is_Class_Wide_Type (Etype (A))
3416 and then Nkind (Original_Node (A)) = N_Function_Call
3417 then
3418 -- If the ancestor part is a dispatching call, it appears
3419 -- statically to be a legal ancestor, but it yields any member
3420 -- of the class, and it is not possible to determine whether
3421 -- it is an ancestor of the extension aggregate (much less
3422 -- which ancestor). It is not possible to determine the
3423 -- components of the extension part.
3424
3425 -- This check implements AI-306, which in fact was motivated by
3426 -- an AdaCore query to the ARG after this test was added.
3427
3428 Error_Msg_N ("ancestor part must be statically tagged", A);
3429 else
3430 -- We are using the build-in-place protocol, but we can't build
3431 -- in place, because we need to call the function before
3432 -- allocating the aggregate. Could do better for null
3433 -- extensions, and maybe for nondiscriminated types.
3434 -- This is wrong for limited, but those were wrong already.
3435
3436 if not Is_Limited_View (A_Type)
3437 and then Is_Build_In_Place_Function_Call (A)
3438 then
3439 Transform_BIP_Assignment (A_Type);
3440 end if;
3441
3442 Resolve_Record_Aggregate (N, Typ);
3443 end if;
3444 end if;
3445
3446 else
3447 Error_Msg_N ("no unique type for this aggregate", A);
3448 end if;
3449
3450 Check_Function_Writable_Actuals (N);
3451 end Resolve_Extension_Aggregate;
3452
3453 ------------------------------
3454 -- Resolve_Record_Aggregate --
3455 ------------------------------
3456
3457 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3458 New_Assoc_List : constant List_Id := New_List;
3459 -- New_Assoc_List is the newly built list of N_Component_Association
3460 -- nodes.
3461
3462 Others_Etype : Entity_Id := Empty;
3463 -- This variable is used to save the Etype of the last record component
3464 -- that takes its value from the others choice. Its purpose is:
3465 --
3466 -- (a) make sure the others choice is useful
3467 --
3468 -- (b) make sure the type of all the components whose value is
3469 -- subsumed by the others choice are the same.
3470 --
3471 -- This variable is updated as a side effect of function Get_Value.
3472
3473 Box_Node : Node_Id := Empty;
3474 Is_Box_Present : Boolean := False;
3475 Others_Box : Integer := 0;
3476 -- Ada 2005 (AI-287): Variables used in case of default initialization
3477 -- to provide a functionality similar to Others_Etype. Box_Present
3478 -- indicates that the component takes its default initialization;
3479 -- Others_Box counts the number of components of the current aggregate
3480 -- (which may be a sub-aggregate of a larger one) that are default-
3481 -- initialized. A value of One indicates that an others_box is present.
3482 -- Any larger value indicates that the others_box is not redundant.
3483 -- These variables, similar to Others_Etype, are also updated as a side
3484 -- effect of function Get_Value. Box_Node is used to place a warning on
3485 -- a redundant others_box.
3486
3487 procedure Add_Association
3488 (Component : Entity_Id;
3489 Expr : Node_Id;
3490 Assoc_List : List_Id;
3491 Is_Box_Present : Boolean := False);
3492 -- Builds a new N_Component_Association node which associates Component
3493 -- to expression Expr and adds it to the association list being built,
3494 -- either New_Assoc_List, or the association being built for an inner
3495 -- aggregate.
3496
3497 procedure Add_Discriminant_Values
3498 (New_Aggr : Node_Id;
3499 Assoc_List : List_Id);
3500 -- The constraint to a component may be given by a discriminant of the
3501 -- enclosing type, in which case we have to retrieve its value, which is
3502 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3503 -- associations of the current type or of some enclosing record.
3504
3505 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3506 -- If aggregate N is a regular aggregate this routine will return True.
3507 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3508 -- a discriminant whose value may already have been specified by N's
3509 -- ancestor part. This routine checks whether this is indeed the case
3510 -- and if so returns False, signaling that no value for Input_Discr
3511 -- should appear in N's aggregate part. Also, in this case, the routine
3512 -- appends to New_Assoc_List the discriminant value specified in the
3513 -- ancestor part.
3514 --
3515 -- If the aggregate is in a context with expansion delayed, it will be
3516 -- reanalyzed. The inherited discriminant values must not be reinserted
3517 -- in the component list to prevent spurious errors, but they must be
3518 -- present on first analysis to build the proper subtype indications.
3519 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3520
3521 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3522 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3523 -- derived from private view Typ. Whether the aggregate is legal depends
3524 -- on the current visibility of the type as well as that of the parent
3525 -- of the ancestor.
3526
3527 function Get_Value
3528 (Compon : Node_Id;
3529 From : List_Id;
3530 Consider_Others_Choice : Boolean := False) return Node_Id;
3531 -- Given a record component stored in parameter Compon, this function
3532 -- returns its value as it appears in the list From, which is a list
3533 -- of N_Component_Association nodes.
3534 --
3535 -- If no component association has a choice for the searched component,
3536 -- the value provided by the others choice is returned, if there is one,
3537 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3538 -- returned. If there is more than one component association giving a
3539 -- value for the searched record component, an error message is emitted
3540 -- and the first found value is returned.
3541 --
3542 -- If Consider_Others_Choice is set and the returned expression comes
3543 -- from the others choice, then Others_Etype is set as a side effect.
3544 -- An error message is emitted if the components taking their value from
3545 -- the others choice do not have same type.
3546
3547 procedure Propagate_Discriminants
3548 (Aggr : Node_Id;
3549 Assoc_List : List_Id);
3550 -- Nested components may themselves be discriminated types constrained
3551 -- by outer discriminants, whose values must be captured before the
3552 -- aggregate is expanded into assignments.
3553
3554 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3555 -- Analyzes and resolves expression Expr against the Etype of the
3556 -- Component. This routine also applies all appropriate checks to Expr.
3557 -- It finally saves a Expr in the newly created association list that
3558 -- will be attached to the final record aggregate. Note that if the
3559 -- Parent pointer of Expr is not set then Expr was produced with a
3560 -- New_Copy_Tree or some such.
3561
3562 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3563 -- Rewrite a range node Rge when its bounds refer to non-stored
3564 -- discriminants from Root_Type, to replace them with the stored
3565 -- discriminant values. This is required in GNATprove mode, and is
3566 -- adopted in all modes to avoid special-casing GNATprove mode.
3567
3568 ---------------------
3569 -- Add_Association --
3570 ---------------------
3571
3572 procedure Add_Association
3573 (Component : Entity_Id;
3574 Expr : Node_Id;
3575 Assoc_List : List_Id;
3576 Is_Box_Present : Boolean := False)
3577 is
3578 Choice_List : constant List_Id := New_List;
3579 Loc : Source_Ptr;
3580
3581 begin
3582 -- If this is a box association the expression is missing, so use the
3583 -- Sloc of the aggregate itself for the new association.
3584
3585 if Present (Expr) then
3586 Loc := Sloc (Expr);
3587 else
3588 Loc := Sloc (N);
3589 end if;
3590
3591 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3592
3593 Append_To (Assoc_List,
3594 Make_Component_Association (Loc,
3595 Choices => Choice_List,
3596 Expression => Expr,
3597 Box_Present => Is_Box_Present));
3598 end Add_Association;
3599
3600 -----------------------------
3601 -- Add_Discriminant_Values --
3602 -----------------------------
3603
3604 procedure Add_Discriminant_Values
3605 (New_Aggr : Node_Id;
3606 Assoc_List : List_Id)
3607 is
3608 Assoc : Node_Id;
3609 Discr : Entity_Id;
3610 Discr_Elmt : Elmt_Id;
3611 Discr_Val : Node_Id;
3612 Val : Entity_Id;
3613
3614 begin
3615 Discr := First_Discriminant (Etype (New_Aggr));
3616 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3617 while Present (Discr_Elmt) loop
3618 Discr_Val := Node (Discr_Elmt);
3619
3620 -- If the constraint is given by a discriminant then it is a
3621 -- discriminant of an enclosing record, and its value has already
3622 -- been placed in the association list.
3623
3624 if Is_Entity_Name (Discr_Val)
3625 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3626 then
3627 Val := Entity (Discr_Val);
3628
3629 Assoc := First (Assoc_List);
3630 while Present (Assoc) loop
3631 if Present (Entity (First (Choices (Assoc))))
3632 and then Entity (First (Choices (Assoc))) = Val
3633 then
3634 Discr_Val := Expression (Assoc);
3635 exit;
3636 end if;
3637
3638 Next (Assoc);
3639 end loop;
3640 end if;
3641
3642 Add_Association
3643 (Discr, New_Copy_Tree (Discr_Val),
3644 Component_Associations (New_Aggr));
3645
3646 -- If the discriminant constraint is a current instance, mark the
3647 -- current aggregate so that the self-reference can be expanded
3648 -- later. The constraint may refer to the subtype of aggregate, so
3649 -- use base type for comparison.
3650
3651 if Nkind (Discr_Val) = N_Attribute_Reference
3652 and then Is_Entity_Name (Prefix (Discr_Val))
3653 and then Is_Type (Entity (Prefix (Discr_Val)))
3654 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3655 then
3656 Set_Has_Self_Reference (N);
3657 end if;
3658
3659 Next_Elmt (Discr_Elmt);
3660 Next_Discriminant (Discr);
3661 end loop;
3662 end Add_Discriminant_Values;
3663
3664 --------------------------
3665 -- Discriminant_Present --
3666 --------------------------
3667
3668 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3669 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3670
3671 Ancestor_Is_Subtyp : Boolean;
3672
3673 Loc : Source_Ptr;
3674
3675 Ancestor : Node_Id;
3676 Ancestor_Typ : Entity_Id;
3677 Comp_Assoc : Node_Id;
3678 Discr : Entity_Id;
3679 Discr_Expr : Node_Id;
3680 Discr_Val : Elmt_Id := No_Elmt;
3681 Orig_Discr : Entity_Id;
3682
3683 begin
3684 if Regular_Aggr then
3685 return True;
3686 end if;
3687
3688 -- Check whether inherited discriminant values have already been
3689 -- inserted in the aggregate. This will be the case if we are
3690 -- re-analyzing an aggregate whose expansion was delayed.
3691
3692 if Present (Component_Associations (N)) then
3693 Comp_Assoc := First (Component_Associations (N));
3694 while Present (Comp_Assoc) loop
3695 if Inherited_Discriminant (Comp_Assoc) then
3696 return True;
3697 end if;
3698
3699 Next (Comp_Assoc);
3700 end loop;
3701 end if;
3702
3703 Ancestor := Ancestor_Part (N);
3704 Ancestor_Typ := Etype (Ancestor);
3705 Loc := Sloc (Ancestor);
3706
3707 -- For a private type with unknown discriminants, use the underlying
3708 -- record view if it is available.
3709
3710 if Has_Unknown_Discriminants (Ancestor_Typ)
3711 and then Present (Full_View (Ancestor_Typ))
3712 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3713 then
3714 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3715 end if;
3716
3717 Ancestor_Is_Subtyp :=
3718 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3719
3720 -- If the ancestor part has no discriminants clearly N's aggregate
3721 -- part must provide a value for Discr.
3722
3723 if not Has_Discriminants (Ancestor_Typ) then
3724 return True;
3725
3726 -- If the ancestor part is an unconstrained subtype mark then the
3727 -- Discr must be present in N's aggregate part.
3728
3729 elsif Ancestor_Is_Subtyp
3730 and then not Is_Constrained (Entity (Ancestor))
3731 then
3732 return True;
3733 end if;
3734
3735 -- Now look to see if Discr was specified in the ancestor part
3736
3737 if Ancestor_Is_Subtyp then
3738 Discr_Val :=
3739 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3740 end if;
3741
3742 Orig_Discr := Original_Record_Component (Input_Discr);
3743
3744 Discr := First_Discriminant (Ancestor_Typ);
3745 while Present (Discr) loop
3746
3747 -- If Ancestor has already specified Disc value then insert its
3748 -- value in the final aggregate.
3749
3750 if Original_Record_Component (Discr) = Orig_Discr then
3751 if Ancestor_Is_Subtyp then
3752 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3753 else
3754 Discr_Expr :=
3755 Make_Selected_Component (Loc,
3756 Prefix => Duplicate_Subexpr (Ancestor),
3757 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3758 end if;
3759
3760 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3761 Set_Inherited_Discriminant (Last (New_Assoc_List));
3762 return False;
3763 end if;
3764
3765 Next_Discriminant (Discr);
3766
3767 if Ancestor_Is_Subtyp then
3768 Next_Elmt (Discr_Val);
3769 end if;
3770 end loop;
3771
3772 return True;
3773 end Discriminant_Present;
3774
3775 ---------------------------
3776 -- Find_Private_Ancestor --
3777 ---------------------------
3778
3779 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3780 Par : Entity_Id;
3781
3782 begin
3783 Par := Typ;
3784 loop
3785 if Has_Private_Ancestor (Par)
3786 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3787 then
3788 return Par;
3789
3790 elsif not Is_Derived_Type (Par) then
3791 return Empty;
3792
3793 else
3794 Par := Etype (Base_Type (Par));
3795 end if;
3796 end loop;
3797 end Find_Private_Ancestor;
3798
3799 ---------------
3800 -- Get_Value --
3801 ---------------
3802
3803 function Get_Value
3804 (Compon : Node_Id;
3805 From : List_Id;
3806 Consider_Others_Choice : Boolean := False) return Node_Id
3807 is
3808 Typ : constant Entity_Id := Etype (Compon);
3809 Assoc : Node_Id;
3810 Expr : Node_Id := Empty;
3811 Selector_Name : Node_Id;
3812
3813 begin
3814 Is_Box_Present := False;
3815
3816 if No (From) then
3817 return Empty;
3818 end if;
3819
3820 Assoc := First (From);
3821 while Present (Assoc) loop
3822 Selector_Name := First (Choices (Assoc));
3823 while Present (Selector_Name) loop
3824 if Nkind (Selector_Name) = N_Others_Choice then
3825 if Consider_Others_Choice and then No (Expr) then
3826
3827 -- We need to duplicate the expression for each
3828 -- successive component covered by the others choice.
3829 -- This is redundant if the others_choice covers only
3830 -- one component (small optimization possible???), but
3831 -- indispensable otherwise, because each one must be
3832 -- expanded individually to preserve side effects.
3833
3834 -- Ada 2005 (AI-287): In case of default initialization
3835 -- of components, we duplicate the corresponding default
3836 -- expression (from the record type declaration). The
3837 -- copy must carry the sloc of the association (not the
3838 -- original expression) to prevent spurious elaboration
3839 -- checks when the default includes function calls.
3840
3841 if Box_Present (Assoc) then
3842 Others_Box := Others_Box + 1;
3843 Is_Box_Present := True;
3844
3845 if Expander_Active then
3846 return
3847 New_Copy_Tree_And_Copy_Dimensions
3848 (Expression (Parent (Compon)),
3849 New_Sloc => Sloc (Assoc));
3850 else
3851 return Expression (Parent (Compon));
3852 end if;
3853
3854 else
3855 if Present (Others_Etype)
3856 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3857 then
3858 -- If the components are of an anonymous access
3859 -- type they are distinct, but this is legal in
3860 -- Ada 2012 as long as designated types match.
3861
3862 if (Ekind (Typ) = E_Anonymous_Access_Type
3863 or else Ekind (Typ) =
3864 E_Anonymous_Access_Subprogram_Type)
3865 and then Designated_Type (Typ) =
3866 Designated_Type (Others_Etype)
3867 then
3868 null;
3869 else
3870 Error_Msg_N
3871 ("components in OTHERS choice must have same "
3872 & "type", Selector_Name);
3873 end if;
3874 end if;
3875
3876 Others_Etype := Typ;
3877
3878 -- Copy the expression so that it is resolved
3879 -- independently for each component, This is needed
3880 -- for accessibility checks on compoents of anonymous
3881 -- access types, even in compile_only mode.
3882
3883 if not Inside_A_Generic then
3884
3885 -- In ASIS mode, preanalyze the expression in an
3886 -- others association before making copies for
3887 -- separate resolution and accessibility checks.
3888 -- This ensures that the type of the expression is
3889 -- available to ASIS in all cases, in particular if
3890 -- the expression is itself an aggregate.
3891
3892 if ASIS_Mode then
3893 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3894 end if;
3895
3896 return
3897 New_Copy_Tree_And_Copy_Dimensions
3898 (Expression (Assoc));
3899
3900 else
3901 return Expression (Assoc);
3902 end if;
3903 end if;
3904 end if;
3905
3906 elsif Chars (Compon) = Chars (Selector_Name) then
3907 if No (Expr) then
3908
3909 -- Ada 2005 (AI-231)
3910
3911 if Ada_Version >= Ada_2005
3912 and then Known_Null (Expression (Assoc))
3913 then
3914 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3915 end if;
3916
3917 -- We need to duplicate the expression when several
3918 -- components are grouped together with a "|" choice.
3919 -- For instance "filed1 | filed2 => Expr"
3920
3921 -- Ada 2005 (AI-287)
3922
3923 if Box_Present (Assoc) then
3924 Is_Box_Present := True;
3925
3926 -- Duplicate the default expression of the component
3927 -- from the record type declaration, so a new copy
3928 -- can be attached to the association.
3929
3930 -- Note that we always copy the default expression,
3931 -- even when the association has a single choice, in
3932 -- order to create a proper association for the
3933 -- expanded aggregate.
3934
3935 -- Component may have no default, in which case the
3936 -- expression is empty and the component is default-
3937 -- initialized, but an association for the component
3938 -- exists, and it is not covered by an others clause.
3939
3940 -- Scalar and private types have no initialization
3941 -- procedure, so they remain uninitialized. If the
3942 -- target of the aggregate is a constant this
3943 -- deserves a warning.
3944
3945 if No (Expression (Parent (Compon)))
3946 and then not Has_Non_Null_Base_Init_Proc (Typ)
3947 and then not Has_Aspect (Typ, Aspect_Default_Value)
3948 and then not Is_Concurrent_Type (Typ)
3949 and then Nkind (Parent (N)) = N_Object_Declaration
3950 and then Constant_Present (Parent (N))
3951 then
3952 Error_Msg_Node_2 := Typ;
3953 Error_Msg_NE
3954 ("component&? of type& is uninitialized",
3955 Assoc, Selector_Name);
3956
3957 -- An additional reminder if the component type
3958 -- is a generic formal.
3959
3960 if Is_Generic_Type (Base_Type (Typ)) then
3961 Error_Msg_NE
3962 ("\instance should provide actual type with "
3963 & "initialization for&", Assoc, Typ);
3964 end if;
3965 end if;
3966
3967 return
3968 New_Copy_Tree_And_Copy_Dimensions
3969 (Expression (Parent (Compon)));
3970
3971 else
3972 if Present (Next (Selector_Name)) then
3973 Expr := New_Copy_Tree_And_Copy_Dimensions
3974 (Expression (Assoc));
3975 else
3976 Expr := Expression (Assoc);
3977 end if;
3978 end if;
3979
3980 Generate_Reference (Compon, Selector_Name, 'm');
3981
3982 else
3983 Error_Msg_NE
3984 ("more than one value supplied for &",
3985 Selector_Name, Compon);
3986
3987 end if;
3988 end if;
3989
3990 Next (Selector_Name);
3991 end loop;
3992
3993 Next (Assoc);
3994 end loop;
3995
3996 return Expr;
3997 end Get_Value;
3998
3999 -----------------------------
4000 -- Propagate_Discriminants --
4001 -----------------------------
4002
4003 procedure Propagate_Discriminants
4004 (Aggr : Node_Id;
4005 Assoc_List : List_Id)
4006 is
4007 Loc : constant Source_Ptr := Sloc (N);
4008
4009 Needs_Box : Boolean := False;
4010
4011 procedure Process_Component (Comp : Entity_Id);
4012 -- Add one component with a box association to the inner aggregate,
4013 -- and recurse if component is itself composite.
4014
4015 -----------------------
4016 -- Process_Component --
4017 -----------------------
4018
4019 procedure Process_Component (Comp : Entity_Id) is
4020 T : constant Entity_Id := Etype (Comp);
4021 New_Aggr : Node_Id;
4022
4023 begin
4024 if Is_Record_Type (T) and then Has_Discriminants (T) then
4025 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
4026 Set_Etype (New_Aggr, T);
4027
4028 Add_Association
4029 (Comp, New_Aggr, Component_Associations (Aggr));
4030
4031 -- Collect discriminant values and recurse
4032
4033 Add_Discriminant_Values (New_Aggr, Assoc_List);
4034 Propagate_Discriminants (New_Aggr, Assoc_List);
4035
4036 else
4037 Needs_Box := True;
4038 end if;
4039 end Process_Component;
4040
4041 -- Local variables
4042
4043 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
4044 Components : constant Elist_Id := New_Elmt_List;
4045 Def_Node : constant Node_Id :=
4046 Type_Definition (Declaration_Node (Aggr_Type));
4047
4048 Comp : Node_Id;
4049 Comp_Elmt : Elmt_Id;
4050 Errors : Boolean;
4051
4052 -- Start of processing for Propagate_Discriminants
4053
4054 begin
4055 -- The component type may be a variant type. Collect the components
4056 -- that are ruled by the known values of the discriminants. Their
4057 -- values have already been inserted into the component list of the
4058 -- current aggregate.
4059
4060 if Nkind (Def_Node) = N_Record_Definition
4061 and then Present (Component_List (Def_Node))
4062 and then Present (Variant_Part (Component_List (Def_Node)))
4063 then
4064 Gather_Components (Aggr_Type,
4065 Component_List (Def_Node),
4066 Governed_By => Component_Associations (Aggr),
4067 Into => Components,
4068 Report_Errors => Errors);
4069
4070 Comp_Elmt := First_Elmt (Components);
4071 while Present (Comp_Elmt) loop
4072 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4073 Process_Component (Node (Comp_Elmt));
4074 end if;
4075
4076 Next_Elmt (Comp_Elmt);
4077 end loop;
4078
4079 -- No variant part, iterate over all components
4080
4081 else
4082 Comp := First_Component (Etype (Aggr));
4083 while Present (Comp) loop
4084 Process_Component (Comp);
4085 Next_Component (Comp);
4086 end loop;
4087 end if;
4088
4089 if Needs_Box then
4090 Append_To (Component_Associations (Aggr),
4091 Make_Component_Association (Loc,
4092 Choices => New_List (Make_Others_Choice (Loc)),
4093 Expression => Empty,
4094 Box_Present => True));
4095 end if;
4096 end Propagate_Discriminants;
4097
4098 -----------------------
4099 -- Resolve_Aggr_Expr --
4100 -----------------------
4101
4102 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4103 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4104 -- If the expression is an aggregate (possibly qualified) then its
4105 -- expansion is delayed until the enclosing aggregate is expanded
4106 -- into assignments. In that case, do not generate checks on the
4107 -- expression, because they will be generated later, and will other-
4108 -- wise force a copy (to remove side effects) that would leave a
4109 -- dynamic-sized aggregate in the code, something that gigi cannot
4110 -- handle.
4111
4112 ---------------------------
4113 -- Has_Expansion_Delayed --
4114 ---------------------------
4115
4116 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4117 begin
4118 return
4119 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
4120 and then Present (Etype (Expr))
4121 and then Is_Record_Type (Etype (Expr))
4122 and then Expansion_Delayed (Expr))
4123 or else
4124 (Nkind (Expr) = N_Qualified_Expression
4125 and then Has_Expansion_Delayed (Expression (Expr)));
4126 end Has_Expansion_Delayed;
4127
4128 -- Local variables
4129
4130 Expr_Type : Entity_Id := Empty;
4131 New_C : Entity_Id := Component;
4132 New_Expr : Node_Id;
4133
4134 Relocate : Boolean;
4135 -- Set to True if the resolved Expr node needs to be relocated when
4136 -- attached to the newly created association list. This node need not
4137 -- be relocated if its parent pointer is not set. In fact in this
4138 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
4139 -- True then we have analyzed the expression node in the original
4140 -- aggregate and hence it needs to be relocated when moved over to
4141 -- the new association list.
4142
4143 -- Start of processing for Resolve_Aggr_Expr
4144
4145 begin
4146 -- If the type of the component is elementary or the type of the
4147 -- aggregate does not contain discriminants, use the type of the
4148 -- component to resolve Expr.
4149
4150 if Is_Elementary_Type (Etype (Component))
4151 or else not Has_Discriminants (Etype (N))
4152 then
4153 Expr_Type := Etype (Component);
4154
4155 -- Otherwise we have to pick up the new type of the component from
4156 -- the new constrained subtype of the aggregate. In fact components
4157 -- which are of a composite type might be constrained by a
4158 -- discriminant, and we want to resolve Expr against the subtype were
4159 -- all discriminant occurrences are replaced with their actual value.
4160
4161 else
4162 New_C := First_Component (Etype (N));
4163 while Present (New_C) loop
4164 if Chars (New_C) = Chars (Component) then
4165 Expr_Type := Etype (New_C);
4166 exit;
4167 end if;
4168
4169 Next_Component (New_C);
4170 end loop;
4171
4172 pragma Assert (Present (Expr_Type));
4173
4174 -- For each range in an array type where a discriminant has been
4175 -- replaced with the constraint, check that this range is within
4176 -- the range of the base type. This checks is done in the init
4177 -- proc for regular objects, but has to be done here for
4178 -- aggregates since no init proc is called for them.
4179
4180 if Is_Array_Type (Expr_Type) then
4181 declare
4182 Index : Node_Id;
4183 -- Range of the current constrained index in the array
4184
4185 Orig_Index : Node_Id := First_Index (Etype (Component));
4186 -- Range corresponding to the range Index above in the
4187 -- original unconstrained record type. The bounds of this
4188 -- range may be governed by discriminants.
4189
4190 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4191 -- Range corresponding to the range Index above for the
4192 -- unconstrained array type. This range is needed to apply
4193 -- range checks.
4194
4195 begin
4196 Index := First_Index (Expr_Type);
4197 while Present (Index) loop
4198 if Depends_On_Discriminant (Orig_Index) then
4199 Apply_Range_Check (Index, Etype (Unconstr_Index));
4200 end if;
4201
4202 Next_Index (Index);
4203 Next_Index (Orig_Index);
4204 Next_Index (Unconstr_Index);
4205 end loop;
4206 end;
4207 end if;
4208 end if;
4209
4210 -- If the Parent pointer of Expr is not set, Expr is an expression
4211 -- duplicated by New_Tree_Copy (this happens for record aggregates
4212 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4213 -- Such a duplicated expression must be attached to the tree
4214 -- before analysis and resolution to enforce the rule that a tree
4215 -- fragment should never be analyzed or resolved unless it is
4216 -- attached to the current compilation unit.
4217
4218 if No (Parent (Expr)) then
4219 Set_Parent (Expr, N);
4220 Relocate := False;
4221 else
4222 Relocate := True;
4223 end if;
4224
4225 Analyze_And_Resolve (Expr, Expr_Type);
4226 Check_Expr_OK_In_Limited_Aggregate (Expr);
4227 Check_Non_Static_Context (Expr);
4228 Check_Unset_Reference (Expr);
4229
4230 -- Check wrong use of class-wide types
4231
4232 if Is_Class_Wide_Type (Etype (Expr)) then
4233 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4234 end if;
4235
4236 if not Has_Expansion_Delayed (Expr) then
4237 Aggregate_Constraint_Checks (Expr, Expr_Type);
4238 end if;
4239
4240 -- If an aggregate component has a type with predicates, an explicit
4241 -- predicate check must be applied, as for an assignment statement,
4242 -- because the aggegate might not be expanded into individual
4243 -- component assignments.
4244
4245 if Has_Predicates (Expr_Type)
4246 and then Analyzed (Expr)
4247 then
4248 Apply_Predicate_Check (Expr, Expr_Type);
4249 end if;
4250
4251 if Raises_Constraint_Error (Expr) then
4252 Set_Raises_Constraint_Error (N);
4253 end if;
4254
4255 -- If the expression has been marked as requiring a range check, then
4256 -- generate it here. It's a bit odd to be generating such checks in
4257 -- the analyzer, but harmless since Generate_Range_Check does nothing
4258 -- (other than making sure Do_Range_Check is set) if the expander is
4259 -- not active.
4260
4261 if Do_Range_Check (Expr) then
4262 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4263 end if;
4264
4265 -- Add association Component => Expr if the caller requests it
4266
4267 if Relocate then
4268 New_Expr := Relocate_Node (Expr);
4269
4270 -- Since New_Expr is not gonna be analyzed later on, we need to
4271 -- propagate here the dimensions form Expr to New_Expr.
4272
4273 Copy_Dimensions (Expr, New_Expr);
4274
4275 else
4276 New_Expr := Expr;
4277 end if;
4278
4279 Add_Association (New_C, New_Expr, New_Assoc_List);
4280 end Resolve_Aggr_Expr;
4281
4282 -------------------
4283 -- Rewrite_Range --
4284 -------------------
4285
4286 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4287 procedure Rewrite_Bound
4288 (Bound : Node_Id;
4289 Disc : Entity_Id;
4290 Expr_Disc : Node_Id);
4291 -- Rewrite a bound of the range Bound, when it is equal to the
4292 -- non-stored discriminant Disc, into the stored discriminant
4293 -- value Expr_Disc.
4294
4295 -------------------
4296 -- Rewrite_Bound --
4297 -------------------
4298
4299 procedure Rewrite_Bound
4300 (Bound : Node_Id;
4301 Disc : Entity_Id;
4302 Expr_Disc : Node_Id)
4303 is
4304 begin
4305 if Nkind (Bound) /= N_Identifier then
4306 return;
4307 end if;
4308
4309 -- We expect either the discriminant or the discriminal
4310
4311 if Entity (Bound) = Disc
4312 or else (Ekind (Entity (Bound)) = E_In_Parameter
4313 and then Discriminal_Link (Entity (Bound)) = Disc)
4314 then
4315 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4316 end if;
4317 end Rewrite_Bound;
4318
4319 -- Local variables
4320
4321 Low, High : Node_Id;
4322 Disc : Entity_Id;
4323 Expr_Disc : Elmt_Id;
4324
4325 -- Start of processing for Rewrite_Range
4326
4327 begin
4328 if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4329 Low := Low_Bound (Rge);
4330 High := High_Bound (Rge);
4331
4332 Disc := First_Discriminant (Root_Type);
4333 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4334 while Present (Disc) loop
4335 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4336 Rewrite_Bound (High, Disc, Node (Expr_Disc));
4337 Next_Discriminant (Disc);
4338 Next_Elmt (Expr_Disc);
4339 end loop;
4340 end if;
4341 end Rewrite_Range;
4342
4343 -- Local variables
4344
4345 Components : constant Elist_Id := New_Elmt_List;
4346 -- Components is the list of the record components whose value must be
4347 -- provided in the aggregate. This list does include discriminants.
4348
4349 Component : Entity_Id;
4350 Component_Elmt : Elmt_Id;
4351 Expr : Node_Id;
4352 Positional_Expr : Node_Id;
4353
4354 -- Start of processing for Resolve_Record_Aggregate
4355
4356 begin
4357 -- A record aggregate is restricted in SPARK:
4358
4359 -- Each named association can have only a single choice.
4360 -- OTHERS cannot be used.
4361 -- Positional and named associations cannot be mixed.
4362
4363 if Present (Component_Associations (N))
4364 and then Present (First (Component_Associations (N)))
4365 then
4366 if Present (Expressions (N)) then
4367 Check_SPARK_05_Restriction
4368 ("named association cannot follow positional one",
4369 First (Choices (First (Component_Associations (N)))));
4370 end if;
4371
4372 declare
4373 Assoc : Node_Id;
4374
4375 begin
4376 Assoc := First (Component_Associations (N));
4377 while Present (Assoc) loop
4378 if Nkind (Assoc) = N_Iterated_Component_Association then
4379 Error_Msg_N
4380 ("iterated component association can only appear in an "
4381 & "array aggregate", N);
4382 raise Unrecoverable_Error;
4383
4384 else
4385 if List_Length (Choices (Assoc)) > 1 then
4386 Check_SPARK_05_Restriction
4387 ("component association in record aggregate must "
4388 & "contain a single choice", Assoc);
4389 end if;
4390
4391 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4392 Check_SPARK_05_Restriction
4393 ("record aggregate cannot contain OTHERS", Assoc);
4394 end if;
4395 end if;
4396
4397 Assoc := Next (Assoc);
4398 end loop;
4399 end;
4400 end if;
4401
4402 -- We may end up calling Duplicate_Subexpr on expressions that are
4403 -- attached to New_Assoc_List. For this reason we need to attach it
4404 -- to the tree by setting its parent pointer to N. This parent point
4405 -- will change in STEP 8 below.
4406
4407 Set_Parent (New_Assoc_List, N);
4408
4409 -- STEP 1: abstract type and null record verification
4410
4411 if Is_Abstract_Type (Typ) then
4412 Error_Msg_N ("type of aggregate cannot be abstract", N);
4413 end if;
4414
4415 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4416 Set_Etype (N, Typ);
4417 return;
4418
4419 elsif Present (First_Entity (Typ))
4420 and then Null_Record_Present (N)
4421 and then not Is_Tagged_Type (Typ)
4422 then
4423 Error_Msg_N ("record aggregate cannot be null", N);
4424 return;
4425
4426 -- If the type has no components, then the aggregate should either
4427 -- have "null record", or in Ada 2005 it could instead have a single
4428 -- component association given by "others => <>". For Ada 95 we flag an
4429 -- error at this point, but for Ada 2005 we proceed with checking the
4430 -- associations below, which will catch the case where it's not an
4431 -- aggregate with "others => <>". Note that the legality of a <>
4432 -- aggregate for a null record type was established by AI05-016.
4433
4434 elsif No (First_Entity (Typ))
4435 and then Ada_Version < Ada_2005
4436 then
4437 Error_Msg_N ("record aggregate must be null", N);
4438 return;
4439 end if;
4440
4441 -- STEP 2: Verify aggregate structure
4442
4443 Step_2 : declare
4444 Assoc : Node_Id;
4445 Bad_Aggregate : Boolean := False;
4446 Selector_Name : Node_Id;
4447
4448 begin
4449 if Present (Component_Associations (N)) then
4450 Assoc := First (Component_Associations (N));
4451 else
4452 Assoc := Empty;
4453 end if;
4454
4455 while Present (Assoc) loop
4456 Selector_Name := First (Choices (Assoc));
4457 while Present (Selector_Name) loop
4458 if Nkind (Selector_Name) = N_Identifier then
4459 null;
4460
4461 elsif Nkind (Selector_Name) = N_Others_Choice then
4462 if Selector_Name /= First (Choices (Assoc))
4463 or else Present (Next (Selector_Name))
4464 then
4465 Error_Msg_N
4466 ("OTHERS must appear alone in a choice list",
4467 Selector_Name);
4468 return;
4469
4470 elsif Present (Next (Assoc)) then
4471 Error_Msg_N
4472 ("OTHERS must appear last in an aggregate",
4473 Selector_Name);
4474 return;
4475
4476 -- (Ada 2005): If this is an association with a box,
4477 -- indicate that the association need not represent
4478 -- any component.
4479
4480 elsif Box_Present (Assoc) then
4481 Others_Box := 1;
4482 Box_Node := Assoc;
4483 end if;
4484
4485 else
4486 Error_Msg_N
4487 ("selector name should be identifier or OTHERS",
4488 Selector_Name);
4489 Bad_Aggregate := True;
4490 end if;
4491
4492 Next (Selector_Name);
4493 end loop;
4494
4495 Next (Assoc);
4496 end loop;
4497
4498 if Bad_Aggregate then
4499 return;
4500 end if;
4501 end Step_2;
4502
4503 -- STEP 3: Find discriminant Values
4504
4505 Step_3 : declare
4506 Discrim : Entity_Id;
4507 Missing_Discriminants : Boolean := False;
4508
4509 begin
4510 if Present (Expressions (N)) then
4511 Positional_Expr := First (Expressions (N));
4512 else
4513 Positional_Expr := Empty;
4514 end if;
4515
4516 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4517 -- must not have unknown discriminants.
4518
4519 if Is_Derived_Type (Typ)
4520 and then Has_Unknown_Discriminants (Root_Type (Typ))
4521 and then Nkind (N) /= N_Extension_Aggregate
4522 then
4523 Error_Msg_NE
4524 ("aggregate not available for type& whose ancestor "
4525 & "has unknown discriminants ", N, Typ);
4526 end if;
4527
4528 if Has_Unknown_Discriminants (Typ)
4529 and then Present (Underlying_Record_View (Typ))
4530 then
4531 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4532 elsif Has_Discriminants (Typ) then
4533 Discrim := First_Discriminant (Typ);
4534 else
4535 Discrim := Empty;
4536 end if;
4537
4538 -- First find the discriminant values in the positional components
4539
4540 while Present (Discrim) and then Present (Positional_Expr) loop
4541 if Discriminant_Present (Discrim) then
4542 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4543
4544 -- Ada 2005 (AI-231)
4545
4546 if Ada_Version >= Ada_2005
4547 and then Known_Null (Positional_Expr)
4548 then
4549 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4550 end if;
4551
4552 Next (Positional_Expr);
4553 end if;
4554
4555 if Present (Get_Value (Discrim, Component_Associations (N))) then
4556 Error_Msg_NE
4557 ("more than one value supplied for discriminant&",
4558 N, Discrim);
4559 end if;
4560
4561 Next_Discriminant (Discrim);
4562 end loop;
4563
4564 -- Find remaining discriminant values if any among named components
4565
4566 while Present (Discrim) loop
4567 Expr := Get_Value (Discrim, Component_Associations (N), True);
4568
4569 if not Discriminant_Present (Discrim) then
4570 if Present (Expr) then
4571 Error_Msg_NE
4572 ("more than one value supplied for discriminant &",
4573 N, Discrim);
4574 end if;
4575
4576 elsif No (Expr) then
4577 Error_Msg_NE
4578 ("no value supplied for discriminant &", N, Discrim);
4579 Missing_Discriminants := True;
4580
4581 else
4582 Resolve_Aggr_Expr (Expr, Discrim);
4583 end if;
4584
4585 Next_Discriminant (Discrim);
4586 end loop;
4587
4588 if Missing_Discriminants then
4589 return;
4590 end if;
4591
4592 -- At this point and until the beginning of STEP 6, New_Assoc_List
4593 -- contains only the discriminants and their values.
4594
4595 end Step_3;
4596
4597 -- STEP 4: Set the Etype of the record aggregate
4598
4599 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4600 -- routine should really be exported in sem_util or some such and used
4601 -- in sem_ch3 and here rather than have a copy of the code which is a
4602 -- maintenance nightmare.
4603
4604 -- ??? Performance WARNING. The current implementation creates a new
4605 -- itype for all aggregates whose base type is discriminated. This means
4606 -- that for record aggregates nested inside an array aggregate we will
4607 -- create a new itype for each record aggregate if the array component
4608 -- type has discriminants. For large aggregates this may be a problem.
4609 -- What should be done in this case is to reuse itypes as much as
4610 -- possible.
4611
4612 if Has_Discriminants (Typ)
4613 or else (Has_Unknown_Discriminants (Typ)
4614 and then Present (Underlying_Record_View (Typ)))
4615 then
4616 Build_Constrained_Itype : declare
4617 Constrs : constant List_Id := New_List;
4618 Loc : constant Source_Ptr := Sloc (N);
4619 Def_Id : Entity_Id;
4620 Indic : Node_Id;
4621 New_Assoc : Node_Id;
4622 Subtyp_Decl : Node_Id;
4623
4624 begin
4625 New_Assoc := First (New_Assoc_List);
4626 while Present (New_Assoc) loop
4627 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4628 Next (New_Assoc);
4629 end loop;
4630
4631 if Has_Unknown_Discriminants (Typ)
4632 and then Present (Underlying_Record_View (Typ))
4633 then
4634 Indic :=
4635 Make_Subtype_Indication (Loc,
4636 Subtype_Mark =>
4637 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4638 Constraint =>
4639 Make_Index_Or_Discriminant_Constraint (Loc,
4640 Constraints => Constrs));
4641 else
4642 Indic :=
4643 Make_Subtype_Indication (Loc,
4644 Subtype_Mark =>
4645 New_Occurrence_Of (Base_Type (Typ), Loc),
4646 Constraint =>
4647 Make_Index_Or_Discriminant_Constraint (Loc,
4648 Constraints => Constrs));
4649 end if;
4650
4651 Def_Id := Create_Itype (Ekind (Typ), N);
4652
4653 Subtyp_Decl :=
4654 Make_Subtype_Declaration (Loc,
4655 Defining_Identifier => Def_Id,
4656 Subtype_Indication => Indic);
4657 Set_Parent (Subtyp_Decl, Parent (N));
4658
4659 -- Itypes must be analyzed with checks off (see itypes.ads)
4660
4661 Analyze (Subtyp_Decl, Suppress => All_Checks);
4662
4663 Set_Etype (N, Def_Id);
4664 Check_Static_Discriminated_Subtype
4665 (Def_Id, Expression (First (New_Assoc_List)));
4666 end Build_Constrained_Itype;
4667
4668 else
4669 Set_Etype (N, Typ);
4670 end if;
4671
4672 -- STEP 5: Get remaining components according to discriminant values
4673
4674 Step_5 : declare
4675 Dnode : Node_Id;
4676 Errors_Found : Boolean := False;
4677 Record_Def : Node_Id;
4678 Parent_Typ : Entity_Id;
4679 Parent_Typ_List : Elist_Id;
4680 Parent_Elmt : Elmt_Id;
4681 Root_Typ : Entity_Id;
4682
4683 begin
4684 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4685 Parent_Typ_List := New_Elmt_List;
4686
4687 -- If this is an extension aggregate, the component list must
4688 -- include all components that are not in the given ancestor type.
4689 -- Otherwise, the component list must include components of all
4690 -- ancestors, starting with the root.
4691
4692 if Nkind (N) = N_Extension_Aggregate then
4693 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4694
4695 else
4696 -- AI05-0115: check legality of aggregate for type with a
4697 -- private ancestor.
4698
4699 Root_Typ := Root_Type (Typ);
4700 if Has_Private_Ancestor (Typ) then
4701 declare
4702 Ancestor : constant Entity_Id :=
4703 Find_Private_Ancestor (Typ);
4704 Ancestor_Unit : constant Entity_Id :=
4705 Cunit_Entity
4706 (Get_Source_Unit (Ancestor));
4707 Parent_Unit : constant Entity_Id :=
4708 Cunit_Entity (Get_Source_Unit
4709 (Base_Type (Etype (Ancestor))));
4710 begin
4711 -- Check whether we are in a scope that has full view
4712 -- over the private ancestor and its parent. This can
4713 -- only happen if the derivation takes place in a child
4714 -- unit of the unit that declares the parent, and we are
4715 -- in the private part or body of that child unit, else
4716 -- the aggregate is illegal.
4717
4718 if Is_Child_Unit (Ancestor_Unit)
4719 and then Scope (Ancestor_Unit) = Parent_Unit
4720 and then In_Open_Scopes (Scope (Ancestor))
4721 and then
4722 (In_Private_Part (Scope (Ancestor))
4723 or else In_Package_Body (Scope (Ancestor)))
4724 then
4725 null;
4726
4727 else
4728 Error_Msg_NE
4729 ("type of aggregate has private ancestor&!",
4730 N, Root_Typ);
4731 Error_Msg_N ("must use extension aggregate!", N);
4732 return;
4733 end if;
4734 end;
4735 end if;
4736
4737 Dnode := Declaration_Node (Base_Type (Root_Typ));
4738
4739 -- If we don't get a full declaration, then we have some error
4740 -- which will get signalled later so skip this part. Otherwise
4741 -- gather components of root that apply to the aggregate type.
4742 -- We use the base type in case there is an applicable stored
4743 -- constraint that renames the discriminants of the root.
4744
4745 if Nkind (Dnode) = N_Full_Type_Declaration then
4746 Record_Def := Type_Definition (Dnode);
4747 Gather_Components
4748 (Base_Type (Typ),
4749 Component_List (Record_Def),
4750 Governed_By => New_Assoc_List,
4751 Into => Components,
4752 Report_Errors => Errors_Found);
4753
4754 if Errors_Found then
4755 Error_Msg_N
4756 ("discriminant controlling variant part is not static",
4757 N);
4758 return;
4759 end if;
4760 end if;
4761 end if;
4762
4763 Parent_Typ := Base_Type (Typ);
4764 while Parent_Typ /= Root_Typ loop
4765 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4766 Parent_Typ := Etype (Parent_Typ);
4767
4768 if Nkind (Parent (Base_Type (Parent_Typ))) =
4769 N_Private_Type_Declaration
4770 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4771 N_Private_Extension_Declaration
4772 then
4773 if Nkind (N) /= N_Extension_Aggregate then
4774 Error_Msg_NE
4775 ("type of aggregate has private ancestor&!",
4776 N, Parent_Typ);
4777 Error_Msg_N ("must use extension aggregate!", N);
4778 return;
4779
4780 elsif Parent_Typ /= Root_Typ then
4781 Error_Msg_NE
4782 ("ancestor part of aggregate must be private type&",
4783 Ancestor_Part (N), Parent_Typ);
4784 return;
4785 end if;
4786
4787 -- The current view of ancestor part may be a private type,
4788 -- while the context type is always non-private.
4789
4790 elsif Is_Private_Type (Root_Typ)
4791 and then Present (Full_View (Root_Typ))
4792 and then Nkind (N) = N_Extension_Aggregate
4793 then
4794 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4795 end if;
4796 end loop;
4797
4798 -- Now collect components from all other ancestors, beginning
4799 -- with the current type. If the type has unknown discriminants
4800 -- use the component list of the Underlying_Record_View, which
4801 -- needs to be used for the subsequent expansion of the aggregate
4802 -- into assignments.
4803
4804 Parent_Elmt := First_Elmt (Parent_Typ_List);
4805 while Present (Parent_Elmt) loop
4806 Parent_Typ := Node (Parent_Elmt);
4807
4808 if Has_Unknown_Discriminants (Parent_Typ)
4809 and then Present (Underlying_Record_View (Typ))
4810 then
4811 Parent_Typ := Underlying_Record_View (Parent_Typ);
4812 end if;
4813
4814 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4815 Gather_Components (Empty,
4816 Component_List (Record_Extension_Part (Record_Def)),
4817 Governed_By => New_Assoc_List,
4818 Into => Components,
4819 Report_Errors => Errors_Found);
4820
4821 Next_Elmt (Parent_Elmt);
4822 end loop;
4823
4824 -- Typ is not a derived tagged type
4825
4826 else
4827 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4828
4829 if Null_Present (Record_Def) then
4830 null;
4831
4832 elsif not Has_Unknown_Discriminants (Typ) then
4833 Gather_Components
4834 (Base_Type (Typ),
4835 Component_List (Record_Def),
4836 Governed_By => New_Assoc_List,
4837 Into => Components,
4838 Report_Errors => Errors_Found);
4839
4840 else
4841 Gather_Components
4842 (Base_Type (Underlying_Record_View (Typ)),
4843 Component_List (Record_Def),
4844 Governed_By => New_Assoc_List,
4845 Into => Components,
4846 Report_Errors => Errors_Found);
4847 end if;
4848 end if;
4849
4850 if Errors_Found then
4851 return;
4852 end if;
4853 end Step_5;
4854
4855 -- STEP 6: Find component Values
4856
4857 Component := Empty;
4858 Component_Elmt := First_Elmt (Components);
4859
4860 -- First scan the remaining positional associations in the aggregate.
4861 -- Remember that at this point Positional_Expr contains the current
4862 -- positional association if any is left after looking for discriminant
4863 -- values in step 3.
4864
4865 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4866 Component := Node (Component_Elmt);
4867 Resolve_Aggr_Expr (Positional_Expr, Component);
4868
4869 -- Ada 2005 (AI-231)
4870
4871 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4872 Check_Can_Never_Be_Null (Component, Positional_Expr);
4873 end if;
4874
4875 if Present (Get_Value (Component, Component_Associations (N))) then
4876 Error_Msg_NE
4877 ("more than one value supplied for Component &", N, Component);
4878 end if;
4879
4880 Next (Positional_Expr);
4881 Next_Elmt (Component_Elmt);
4882 end loop;
4883
4884 if Present (Positional_Expr) then
4885 Error_Msg_N
4886 ("too many components for record aggregate", Positional_Expr);
4887 end if;
4888
4889 -- Now scan for the named arguments of the aggregate
4890
4891 while Present (Component_Elmt) loop
4892 Component := Node (Component_Elmt);
4893 Expr := Get_Value (Component, Component_Associations (N), True);
4894
4895 -- Note: The previous call to Get_Value sets the value of the
4896 -- variable Is_Box_Present.
4897
4898 -- Ada 2005 (AI-287): Handle components with default initialization.
4899 -- Note: This feature was originally added to Ada 2005 for limited
4900 -- but it was finally allowed with any type.
4901
4902 if Is_Box_Present then
4903 Check_Box_Component : declare
4904 Ctyp : constant Entity_Id := Etype (Component);
4905
4906 begin
4907 -- If there is a default expression for the aggregate, copy
4908 -- it into a new association. This copy must modify the scopes
4909 -- of internal types that may be attached to the expression
4910 -- (e.g. index subtypes of arrays) because in general the type
4911 -- declaration and the aggregate appear in different scopes,
4912 -- and the backend requires the scope of the type to match the
4913 -- point at which it is elaborated.
4914
4915 -- If the component has an initialization procedure (IP) we
4916 -- pass the component to the expander, which will generate
4917 -- the call to such IP.
4918
4919 -- If the component has discriminants, their values must
4920 -- be taken from their subtype. This is indispensable for
4921 -- constraints that are given by the current instance of an
4922 -- enclosing type, to allow the expansion of the aggregate to
4923 -- replace the reference to the current instance by the target
4924 -- object of the aggregate.
4925
4926 if Present (Parent (Component))
4927 and then Nkind (Parent (Component)) = N_Component_Declaration
4928 and then Present (Expression (Parent (Component)))
4929 then
4930 Expr :=
4931 New_Copy_Tree_And_Copy_Dimensions
4932 (Expression (Parent (Component)),
4933 New_Scope => Current_Scope,
4934 New_Sloc => Sloc (N));
4935
4936 -- As the type of the copied default expression may refer
4937 -- to discriminants of the record type declaration, these
4938 -- non-stored discriminants need to be rewritten into stored
4939 -- discriminant values for the aggregate. This is required
4940 -- in GNATprove mode, and is adopted in all modes to avoid
4941 -- special-casing GNATprove mode.
4942
4943 if Is_Array_Type (Etype (Expr)) then
4944 declare
4945 Rec_Typ : constant Entity_Id := Scope (Component);
4946 -- Root record type whose discriminants may be used as
4947 -- bounds in range nodes.
4948
4949 Assoc : Node_Id;
4950 Choice : Node_Id;
4951 Index : Node_Id;
4952
4953 begin
4954 -- Rewrite the range nodes occurring in the indexes
4955 -- and their types.
4956
4957 Index := First_Index (Etype (Expr));
4958 while Present (Index) loop
4959 Rewrite_Range (Rec_Typ, Index);
4960 Rewrite_Range
4961 (Rec_Typ, Scalar_Range (Etype (Index)));
4962
4963 Next_Index (Index);
4964 end loop;
4965
4966 -- Rewrite the range nodes occurring as aggregate
4967 -- bounds and component associations.
4968
4969 if Nkind (Expr) = N_Aggregate then
4970 if Present (Aggregate_Bounds (Expr)) then
4971 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
4972 end if;
4973
4974 if Present (Component_Associations (Expr)) then
4975 Assoc := First (Component_Associations (Expr));
4976 while Present (Assoc) loop
4977 Choice := First (Choices (Assoc));
4978 while Present (Choice) loop
4979 Rewrite_Range (Rec_Typ, Choice);
4980
4981 Next (Choice);
4982 end loop;
4983
4984 Next (Assoc);
4985 end loop;
4986 end if;
4987 end if;
4988 end;
4989 end if;
4990
4991 Add_Association
4992 (Component => Component,
4993 Expr => Expr,
4994 Assoc_List => New_Assoc_List);
4995 Set_Has_Self_Reference (N);
4996
4997 -- A box-defaulted access component gets the value null. Also
4998 -- included are components of private types whose underlying
4999 -- type is an access type. In either case set the type of the
5000 -- literal, for subsequent use in semantic checks.
5001
5002 elsif Present (Underlying_Type (Ctyp))
5003 and then Is_Access_Type (Underlying_Type (Ctyp))
5004 then
5005 -- If the component's type is private with an access type as
5006 -- its underlying type then we have to create an unchecked
5007 -- conversion to satisfy type checking.
5008
5009 if Is_Private_Type (Ctyp) then
5010 declare
5011 Qual_Null : constant Node_Id :=
5012 Make_Qualified_Expression (Sloc (N),
5013 Subtype_Mark =>
5014 New_Occurrence_Of
5015 (Underlying_Type (Ctyp), Sloc (N)),
5016 Expression => Make_Null (Sloc (N)));
5017
5018 Convert_Null : constant Node_Id :=
5019 Unchecked_Convert_To
5020 (Ctyp, Qual_Null);
5021
5022 begin
5023 Analyze_And_Resolve (Convert_Null, Ctyp);
5024 Add_Association
5025 (Component => Component,
5026 Expr => Convert_Null,
5027 Assoc_List => New_Assoc_List);
5028 end;
5029
5030 -- Otherwise the component type is non-private
5031
5032 else
5033 Expr := Make_Null (Sloc (N));
5034 Set_Etype (Expr, Ctyp);
5035
5036 Add_Association
5037 (Component => Component,
5038 Expr => Expr,
5039 Assoc_List => New_Assoc_List);
5040 end if;
5041
5042 -- Ada 2012: If component is scalar with default value, use it
5043
5044 elsif Is_Scalar_Type (Ctyp)
5045 and then Has_Default_Aspect (Ctyp)
5046 then
5047 Add_Association
5048 (Component => Component,
5049 Expr =>
5050 Default_Aspect_Value
5051 (First_Subtype (Underlying_Type (Ctyp))),
5052 Assoc_List => New_Assoc_List);
5053
5054 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
5055 or else not Expander_Active
5056 then
5057 if Is_Record_Type (Ctyp)
5058 and then Has_Discriminants (Ctyp)
5059 and then not Is_Private_Type (Ctyp)
5060 then
5061 -- We build a partially initialized aggregate with the
5062 -- values of the discriminants and box initialization
5063 -- for the rest, if other components are present.
5064
5065 -- The type of the aggregate is the known subtype of
5066 -- the component. The capture of discriminants must be
5067 -- recursive because subcomponents may be constrained
5068 -- (transitively) by discriminants of enclosing types.
5069 -- For a private type with discriminants, a call to the
5070 -- initialization procedure will be generated, and no
5071 -- subaggregate is needed.
5072
5073 Capture_Discriminants : declare
5074 Loc : constant Source_Ptr := Sloc (N);
5075 Expr : Node_Id;
5076
5077 begin
5078 Expr := Make_Aggregate (Loc, New_List, New_List);
5079 Set_Etype (Expr, Ctyp);
5080
5081 -- If the enclosing type has discriminants, they have
5082 -- been collected in the aggregate earlier, and they
5083 -- may appear as constraints of subcomponents.
5084
5085 -- Similarly if this component has discriminants, they
5086 -- might in turn be propagated to their components.
5087
5088 if Has_Discriminants (Typ) then
5089 Add_Discriminant_Values (Expr, New_Assoc_List);
5090 Propagate_Discriminants (Expr, New_Assoc_List);
5091
5092 elsif Has_Discriminants (Ctyp) then
5093 Add_Discriminant_Values
5094 (Expr, Component_Associations (Expr));
5095 Propagate_Discriminants
5096 (Expr, Component_Associations (Expr));
5097
5098 else
5099 declare
5100 Comp : Entity_Id;
5101
5102 begin
5103 -- If the type has additional components, create
5104 -- an OTHERS box association for them.
5105
5106 Comp := First_Component (Ctyp);
5107 while Present (Comp) loop
5108 if Ekind (Comp) = E_Component then
5109 if not Is_Record_Type (Etype (Comp)) then
5110 Append_To
5111 (Component_Associations (Expr),
5112 Make_Component_Association (Loc,
5113 Choices =>
5114 New_List (
5115 Make_Others_Choice (Loc)),
5116 Expression => Empty,
5117 Box_Present => True));
5118 end if;
5119
5120 exit;
5121 end if;
5122
5123 Next_Component (Comp);
5124 end loop;
5125 end;
5126 end if;
5127
5128 Add_Association
5129 (Component => Component,
5130 Expr => Expr,
5131 Assoc_List => New_Assoc_List);
5132 end Capture_Discriminants;
5133
5134 -- Otherwise the component type is not a record, or it has
5135 -- not discriminants, or it is private.
5136
5137 else
5138 Add_Association
5139 (Component => Component,
5140 Expr => Empty,
5141 Assoc_List => New_Assoc_List,
5142 Is_Box_Present => True);
5143 end if;
5144
5145 -- Otherwise we only need to resolve the expression if the
5146 -- component has partially initialized values (required to
5147 -- expand the corresponding assignments and run-time checks).
5148
5149 elsif Present (Expr)
5150 and then Is_Partially_Initialized_Type (Ctyp)
5151 then
5152 Resolve_Aggr_Expr (Expr, Component);
5153 end if;
5154 end Check_Box_Component;
5155
5156 elsif No (Expr) then
5157
5158 -- Ignore hidden components associated with the position of the
5159 -- interface tags: these are initialized dynamically.
5160
5161 if not Present (Related_Type (Component)) then
5162 Error_Msg_NE
5163 ("no value supplied for component &!", N, Component);
5164 end if;
5165
5166 else
5167 Resolve_Aggr_Expr (Expr, Component);
5168 end if;
5169
5170 Next_Elmt (Component_Elmt);
5171 end loop;
5172
5173 -- STEP 7: check for invalid components + check type in choice list
5174
5175 Step_7 : declare
5176 Assoc : Node_Id;
5177 New_Assoc : Node_Id;
5178
5179 Selectr : Node_Id;
5180 -- Selector name
5181
5182 Typech : Entity_Id;
5183 -- Type of first component in choice list
5184
5185 begin
5186 if Present (Component_Associations (N)) then
5187 Assoc := First (Component_Associations (N));
5188 else
5189 Assoc := Empty;
5190 end if;
5191
5192 Verification : while Present (Assoc) loop
5193 Selectr := First (Choices (Assoc));
5194 Typech := Empty;
5195
5196 if Nkind (Selectr) = N_Others_Choice then
5197
5198 -- Ada 2005 (AI-287): others choice may have expression or box
5199
5200 if No (Others_Etype) and then Others_Box = 0 then
5201 Error_Msg_N
5202 ("OTHERS must represent at least one component", Selectr);
5203
5204 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5205 Error_Msg_N ("others choice is redundant?", Box_Node);
5206 Error_Msg_N
5207 ("\previous choices cover all components?", Box_Node);
5208 end if;
5209
5210 exit Verification;
5211 end if;
5212
5213 while Present (Selectr) loop
5214 New_Assoc := First (New_Assoc_List);
5215 while Present (New_Assoc) loop
5216 Component := First (Choices (New_Assoc));
5217
5218 if Chars (Selectr) = Chars (Component) then
5219 if Style_Check then
5220 Check_Identifier (Selectr, Entity (Component));
5221 end if;
5222
5223 exit;
5224 end if;
5225
5226 Next (New_Assoc);
5227 end loop;
5228
5229 -- If no association, this is not a legal component of the type
5230 -- in question, unless its association is provided with a box.
5231
5232 if No (New_Assoc) then
5233 if Box_Present (Parent (Selectr)) then
5234
5235 -- This may still be a bogus component with a box. Scan
5236 -- list of components to verify that a component with
5237 -- that name exists.
5238
5239 declare
5240 C : Entity_Id;
5241
5242 begin
5243 C := First_Component (Typ);
5244 while Present (C) loop
5245 if Chars (C) = Chars (Selectr) then
5246
5247 -- If the context is an extension aggregate,
5248 -- the component must not be inherited from
5249 -- the ancestor part of the aggregate.
5250
5251 if Nkind (N) /= N_Extension_Aggregate
5252 or else
5253 Scope (Original_Record_Component (C)) /=
5254 Etype (Ancestor_Part (N))
5255 then
5256 exit;
5257 end if;
5258 end if;
5259
5260 Next_Component (C);
5261 end loop;
5262
5263 if No (C) then
5264 Error_Msg_Node_2 := Typ;
5265 Error_Msg_N ("& is not a component of}", Selectr);
5266 end if;
5267 end;
5268
5269 elsif Chars (Selectr) /= Name_uTag
5270 and then Chars (Selectr) /= Name_uParent
5271 then
5272 if not Has_Discriminants (Typ) then
5273 Error_Msg_Node_2 := Typ;
5274 Error_Msg_N ("& is not a component of}", Selectr);
5275 else
5276 Error_Msg_N
5277 ("& is not a component of the aggregate subtype",
5278 Selectr);
5279 end if;
5280
5281 Check_Misspelled_Component (Components, Selectr);
5282 end if;
5283
5284 elsif No (Typech) then
5285 Typech := Base_Type (Etype (Component));
5286
5287 -- AI05-0199: In Ada 2012, several components of anonymous
5288 -- access types can appear in a choice list, as long as the
5289 -- designated types match.
5290
5291 elsif Typech /= Base_Type (Etype (Component)) then
5292 if Ada_Version >= Ada_2012
5293 and then Ekind (Typech) = E_Anonymous_Access_Type
5294 and then
5295 Ekind (Etype (Component)) = E_Anonymous_Access_Type
5296 and then Base_Type (Designated_Type (Typech)) =
5297 Base_Type (Designated_Type (Etype (Component)))
5298 and then
5299 Subtypes_Statically_Match (Typech, (Etype (Component)))
5300 then
5301 null;
5302
5303 elsif not Box_Present (Parent (Selectr)) then
5304 Error_Msg_N
5305 ("components in choice list must have same type",
5306 Selectr);
5307 end if;
5308 end if;
5309
5310 Next (Selectr);
5311 end loop;
5312
5313 Next (Assoc);
5314 end loop Verification;
5315 end Step_7;
5316
5317 -- STEP 8: replace the original aggregate
5318
5319 Step_8 : declare
5320 New_Aggregate : constant Node_Id := New_Copy (N);
5321
5322 begin
5323 Set_Expressions (New_Aggregate, No_List);
5324 Set_Etype (New_Aggregate, Etype (N));
5325 Set_Component_Associations (New_Aggregate, New_Assoc_List);
5326 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
5327
5328 Rewrite (N, New_Aggregate);
5329 end Step_8;
5330
5331 -- Check the dimensions of the components in the record aggregate
5332
5333 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5334 end Resolve_Record_Aggregate;
5335
5336 -----------------------------
5337 -- Check_Can_Never_Be_Null --
5338 -----------------------------
5339
5340 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5341 Comp_Typ : Entity_Id;
5342
5343 begin
5344 pragma Assert
5345 (Ada_Version >= Ada_2005
5346 and then Present (Expr)
5347 and then Known_Null (Expr));
5348
5349 case Ekind (Typ) is
5350 when E_Array_Type =>
5351 Comp_Typ := Component_Type (Typ);
5352
5353 when E_Component
5354 | E_Discriminant
5355 =>
5356 Comp_Typ := Etype (Typ);
5357
5358 when others =>
5359 return;
5360 end case;
5361
5362 if Can_Never_Be_Null (Comp_Typ) then
5363
5364 -- Here we know we have a constraint error. Note that we do not use
5365 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5366 -- seem the more natural approach. That's because in some cases the
5367 -- components are rewritten, and the replacement would be missed.
5368 -- We do not mark the whole aggregate as raising a constraint error,
5369 -- because the association may be a null array range.
5370
5371 Error_Msg_N
5372 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
5373 Error_Msg_N
5374 ("\Constraint_Error will be raised at run time??", Expr);
5375
5376 Rewrite (Expr,
5377 Make_Raise_Constraint_Error
5378 (Sloc (Expr), Reason => CE_Access_Check_Failed));
5379 Set_Etype (Expr, Comp_Typ);
5380 Set_Analyzed (Expr);
5381 end if;
5382 end Check_Can_Never_Be_Null;
5383
5384 ---------------------
5385 -- Sort_Case_Table --
5386 ---------------------
5387
5388 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5389 U : constant Int := Case_Table'Last;
5390 K : Int;
5391 J : Int;
5392 T : Case_Bounds;
5393
5394 begin
5395 K := 1;
5396 while K < U loop
5397 T := Case_Table (K + 1);
5398
5399 J := K + 1;
5400 while J > 1
5401 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5402 loop
5403 Case_Table (J) := Case_Table (J - 1);
5404 J := J - 1;
5405 end loop;
5406
5407 Case_Table (J) := T;
5408 K := K + 1;
5409 end loop;
5410 end Sort_Case_Table;
5411
5412 end Sem_Aggr;