]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_eval.adb
b209d4af0ef1753646e93bba2b1feba9d8d2b715
[thirdparty/gcc.git] / gcc / ada / sem_eval.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Namet; use Namet;
38 with Nmake; use Nmake;
39 with Nlists; use Nlists;
40 with Opt; use Opt;
41 with Par_SCO; use Par_SCO;
42 with Rtsfind; use Rtsfind;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Type; use Sem_Type;
51 with Sem_Warn; use Sem_Warn;
52 with Sinfo; use Sinfo;
53 with Snames; use Snames;
54 with Stand; use Stand;
55 with Stringt; use Stringt;
56 with Tbuild; use Tbuild;
57
58 package body Sem_Eval is
59
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
63
64 -- The compile time evaluation of expressions is distributed over several
65 -- Eval_xxx procedures. These procedures are called immediately after
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
68
69 -- Is_Static_Expression is determined by following the rules in
70 -- RM-4.9. This involves testing the Is_Static_Expression flag of
71 -- the operands in many cases.
72
73 -- Raises_Constraint_Error is usually set if any of the operands have
74 -- the flag set or if an attempt to compute the value of the current
75 -- expression results in Constraint_Error.
76
77 -- The general approach is as follows. First compute Is_Static_Expression.
78 -- If the node is not static, then the flag is left off in the node and
79 -- we are all done. Otherwise for a static node, we test if any of the
80 -- operands will raise Constraint_Error, and if so, propagate the flag
81 -- Raises_Constraint_Error to the result node and we are done (since the
82 -- error was already posted at a lower level).
83
84 -- For the case of a static node whose operands do not raise constraint
85 -- error, we attempt to evaluate the node. If this evaluation succeeds,
86 -- then the node is replaced by the result of this computation. If the
87 -- evaluation raises Constraint_Error, then we rewrite the node with
88 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
89 -- to post appropriate error messages.
90
91 ----------------
92 -- Local Data --
93 ----------------
94
95 type Bits is array (Nat range <>) of Boolean;
96 -- Used to convert unsigned (modular) values for folding logical ops
97
98 -- The following declarations are used to maintain a cache of nodes that
99 -- have compile-time-known values. The cache is maintained only for
100 -- discrete types (the most common case), and is populated by calls to
101 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
102 -- since it is possible for the status to change (in particular it is
103 -- possible for a node to get replaced by a Constraint_Error node).
104
105 CV_Bits : constant := 5;
106 -- Number of low order bits of Node_Id value used to reference entries
107 -- in the cache table.
108
109 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
110 -- Size of cache for compile time values
111
112 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
113
114 type CV_Entry is record
115 N : Node_Id;
116 V : Uint;
117 end record;
118
119 type Match_Result is (Match, No_Match, Non_Static);
120 -- Result returned from functions that test for a matching result. If the
121 -- operands are not OK_Static then Non_Static will be returned. Otherwise
122 -- Match/No_Match is returned depending on whether the match succeeds.
123
124 type CV_Cache_Array is array (CV_Range) of CV_Entry;
125
126 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
127 -- This is the actual cache, with entries consisting of node/value pairs,
128 -- and the impossible value Node_High_Bound used for unset entries.
129
130 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
131 -- Range membership may either be statically known to be in range or out
132 -- of range, or not statically known. Used for Test_In_Range below.
133
134 -----------------------
135 -- Local Subprograms --
136 -----------------------
137
138 function Choice_Matches
139 (Expr : Node_Id;
140 Choice : Node_Id) return Match_Result;
141 -- Determines whether given value Expr matches the given Choice. The Expr
142 -- can be of discrete, real, or string type and must be a compile time
143 -- known value (it is an error to make the call if these conditions are
144 -- not met). The choice can be a range, subtype name, subtype indication,
145 -- or expression. The returned result is Non_Static if Choice is not
146 -- OK_Static, otherwise either Match or No_Match is returned depending
147 -- on whether Choice matches Expr. This is used for case expression
148 -- alternatives, and also for membership tests. In each case, more
149 -- possibilities are tested than the syntax allows (e.g. membership allows
150 -- subtype indications and non-discrete types, and case allows an OTHERS
151 -- choice), but it does not matter, since we have already done a full
152 -- semantic and syntax check of the construct, so the extra possibilities
153 -- just will not arise for correct expressions.
154 --
155 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
156 -- a reference to a type, one of whose bounds raises Constraint_Error, then
157 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
158
159 function Choices_Match
160 (Expr : Node_Id;
161 Choices : List_Id) return Match_Result;
162 -- This function applies Choice_Matches to each element of Choices. If the
163 -- result is No_Match, then it continues and checks the next element. If
164 -- the result is Match or Non_Static, this result is immediately given
165 -- as the result without checking the rest of the list. Expr can be of
166 -- discrete, real, or string type and must be a compile-time-known value
167 -- (it is an error to make the call if these conditions are not met).
168
169 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
170 -- Check whether an arithmetic operation with universal operands which is a
171 -- rewritten function call with an explicit scope indication is ambiguous:
172 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
173 -- type declared in P and the context does not impose a type on the result
174 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
175 -- error and return Empty, else return the result type of the operator.
176
177 function From_Bits (B : Bits; T : Entity_Id) return Uint;
178 -- Converts a bit string of length B'Length to a Uint value to be used for
179 -- a target of type T, which is a modular type. This procedure includes the
180 -- necessary reduction by the modulus in the case of a nonbinary modulus
181 -- (for a binary modulus, the bit string is the right length any way so all
182 -- is well).
183
184 function Get_String_Val (N : Node_Id) return Node_Id;
185 -- Given a tree node for a folded string or character value, returns the
186 -- corresponding string literal or character literal (one of the two must
187 -- be available, or the operand would not have been marked as foldable in
188 -- the earlier analysis of the operation).
189
190 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
191 -- Given a choice (from a case expression or membership test), returns
192 -- True if the choice is static and does not raise a Constraint_Error.
193
194 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
195 -- Given a choice list (from a case expression or membership test), return
196 -- True if all choices are static in the sense of Is_OK_Static_Choice.
197
198 function Is_Static_Choice (Choice : Node_Id) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static. No test is made for raising of constraint
201 -- error, so this function is used only for legality tests.
202
203 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
204 -- Given a choice list (from a case expression or membership test), return
205 -- True if all choices are static in the sense of Is_Static_Choice.
206
207 function Is_Static_Range (N : Node_Id) return Boolean;
208 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
209 -- argument is an N_Range node (but note that the semantic analysis of
210 -- equivalent range attribute references already turned them into the
211 -- equivalent range). This differs from Is_OK_Static_Range (which is what
212 -- must be used by clients) in that it does not care whether the bounds
213 -- raise Constraint_Error or not. Used for checking whether expressions are
214 -- static in the 4.9 sense (without worrying about exceptions).
215
216 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
217 -- Bits represents the number of bits in an integer value to be computed
218 -- (but the value has not been computed yet). If this value in Bits is
219 -- reasonable, a result of True is returned, with the implication that the
220 -- caller should go ahead and complete the calculation. If the value in
221 -- Bits is unreasonably large, then an error is posted on node N, and
222 -- False is returned (and the caller skips the proposed calculation).
223
224 procedure Out_Of_Range (N : Node_Id);
225 -- This procedure is called if it is determined that node N, which appears
226 -- in a non-static context, is a compile-time-known value which is outside
227 -- its range, i.e. the range of Etype. This is used in contexts where
228 -- this is an illegality if N is static, and should generate a warning
229 -- otherwise.
230
231 function Real_Or_String_Static_Predicate_Matches
232 (Val : Node_Id;
233 Typ : Entity_Id) return Boolean;
234 -- This is the function used to evaluate real or string static predicates.
235 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
236 -- represents the value to be tested against the predicate. Typ is the
237 -- type with the predicate, from which the predicate expression can be
238 -- extracted. The result returned is True if the given value satisfies
239 -- the predicate.
240
241 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
242 -- N and Exp are nodes representing an expression, Exp is known to raise
243 -- CE. N is rewritten in term of Exp in the optimal way.
244
245 function String_Type_Len (Stype : Entity_Id) return Uint;
246 -- Given a string type, determines the length of the index type, or, if
247 -- this index type is non-static, the length of the base type of this index
248 -- type. Note that if the string type is itself static, then the index type
249 -- is static, so the second case applies only if the string type passed is
250 -- non-static.
251
252 function Test (Cond : Boolean) return Uint;
253 pragma Inline (Test);
254 -- This function simply returns the appropriate Boolean'Pos value
255 -- corresponding to the value of Cond as a universal integer. It is
256 -- used for producing the result of the static evaluation of the
257 -- logical operators
258
259 procedure Test_Expression_Is_Foldable
260 (N : Node_Id;
261 Op1 : Node_Id;
262 Stat : out Boolean;
263 Fold : out Boolean);
264 -- Tests to see if expression N whose single operand is Op1 is foldable,
265 -- i.e. the operand value is known at compile time. If the operation is
266 -- foldable, then Fold is True on return, and Stat indicates whether the
267 -- result is static (i.e. the operand was static). Note that it is quite
268 -- possible for Fold to be True, and Stat to be False, since there are
269 -- cases in which we know the value of an operand even though it is not
270 -- technically static (e.g. the static lower bound of a range whose upper
271 -- bound is non-static).
272 --
273 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
274 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
275 -- return, then all processing is complete, and the caller should return,
276 -- since there is nothing else to do.
277 --
278 -- If Stat is set True on return, then Is_Static_Expression is also set
279 -- true in node N. There are some cases where this is over-enthusiastic,
280 -- e.g. in the two operand case below, for string comparison, the result is
281 -- not static even though the two operands are static. In such cases, the
282 -- caller must reset the Is_Static_Expression flag in N.
283 --
284 -- If Fold and Stat are both set to False then this routine performs also
285 -- the following extra actions:
286 --
287 -- If either operand is Any_Type then propagate it to result to prevent
288 -- cascaded errors.
289 --
290 -- If some operand raises Constraint_Error, then replace the node N
291 -- with the raise Constraint_Error node. This replacement inherits the
292 -- Is_Static_Expression flag from the operands.
293
294 procedure Test_Expression_Is_Foldable
295 (N : Node_Id;
296 Op1 : Node_Id;
297 Op2 : Node_Id;
298 Stat : out Boolean;
299 Fold : out Boolean;
300 CRT_Safe : Boolean := False);
301 -- Same processing, except applies to an expression N with two operands
302 -- Op1 and Op2. The result is static only if both operands are static. If
303 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
304 -- for the tests that the two operands are known at compile time. See
305 -- spec of this routine for further details.
306
307 function Test_In_Range
308 (N : Node_Id;
309 Typ : Entity_Id;
310 Assume_Valid : Boolean;
311 Fixed_Int : Boolean;
312 Int_Real : Boolean) return Range_Membership;
313 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
314 -- or Out_Of_Range if it can be guaranteed at compile time that expression
315 -- N is known to be in or out of range of the subtype Typ. If not compile
316 -- time known, Unknown is returned. See documentation of Is_In_Range for
317 -- complete description of parameters.
318
319 procedure To_Bits (U : Uint; B : out Bits);
320 -- Converts a Uint value to a bit string of length B'Length
321
322 -----------------------------------------------
323 -- Check_Expression_Against_Static_Predicate --
324 -----------------------------------------------
325
326 procedure Check_Expression_Against_Static_Predicate
327 (Expr : Node_Id;
328 Typ : Entity_Id)
329 is
330 begin
331 -- Nothing to do if expression is not known at compile time, or the
332 -- type has no static predicate set (will be the case for all non-scalar
333 -- types, so no need to make a special test for that).
334
335 if not (Has_Static_Predicate (Typ)
336 and then Compile_Time_Known_Value (Expr))
337 then
338 return;
339 end if;
340
341 -- Here we have a static predicate (note that it could have arisen from
342 -- an explicitly specified Dynamic_Predicate whose expression met the
343 -- rules for being predicate-static). If the expression is known at
344 -- compile time and obeys the predicate, then it is static and must be
345 -- labeled as such, which matters e.g. for case statements. The original
346 -- expression may be a type conversion of a variable with a known value,
347 -- which might otherwise not be marked static.
348
349 -- Case of real static predicate
350
351 if Is_Real_Type (Typ) then
352 if Real_Or_String_Static_Predicate_Matches
353 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
354 Typ => Typ)
355 then
356 Set_Is_Static_Expression (Expr);
357 return;
358 end if;
359
360 -- Case of string static predicate
361
362 elsif Is_String_Type (Typ) then
363 if Real_Or_String_Static_Predicate_Matches
364 (Val => Expr_Value_S (Expr), Typ => Typ)
365 then
366 Set_Is_Static_Expression (Expr);
367 return;
368 end if;
369
370 -- Case of discrete static predicate
371
372 else
373 pragma Assert (Is_Discrete_Type (Typ));
374
375 -- If static predicate matches, nothing to do
376
377 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
378 Set_Is_Static_Expression (Expr);
379 return;
380 end if;
381 end if;
382
383 -- Here we know that the predicate will fail
384
385 -- Special case of static expression failing a predicate (other than one
386 -- that was explicitly specified with a Dynamic_Predicate aspect). This
387 -- is the case where the expression is no longer considered static.
388
389 if Is_Static_Expression (Expr)
390 and then not Has_Dynamic_Predicate_Aspect (Typ)
391 then
392 Error_Msg_NE
393 ("??static expression fails static predicate check on &",
394 Expr, Typ);
395 Error_Msg_N
396 ("\??expression is no longer considered static", Expr);
397 Set_Is_Static_Expression (Expr, False);
398
399 -- In all other cases, this is just a warning that a test will fail.
400 -- It does not matter if the expression is static or not, or if the
401 -- predicate comes from a dynamic predicate aspect or not.
402
403 else
404 Error_Msg_NE
405 ("??expression fails predicate check on &", Expr, Typ);
406 end if;
407 end Check_Expression_Against_Static_Predicate;
408
409 ------------------------------
410 -- Check_Non_Static_Context --
411 ------------------------------
412
413 procedure Check_Non_Static_Context (N : Node_Id) is
414 T : constant Entity_Id := Etype (N);
415 Checks_On : constant Boolean :=
416 not Index_Checks_Suppressed (T)
417 and not Range_Checks_Suppressed (T);
418
419 begin
420 -- Ignore cases of non-scalar types, error types, or universal real
421 -- types that have no usable bounds.
422
423 if T = Any_Type
424 or else not Is_Scalar_Type (T)
425 or else T = Universal_Fixed
426 or else T = Universal_Real
427 then
428 return;
429 end if;
430
431 -- At this stage we have a scalar type. If we have an expression that
432 -- raises CE, then we already issued a warning or error msg so there is
433 -- nothing more to be done in this routine.
434
435 if Raises_Constraint_Error (N) then
436 return;
437 end if;
438
439 -- Now we have a scalar type which is not marked as raising a constraint
440 -- error exception. The main purpose of this routine is to deal with
441 -- static expressions appearing in a non-static context. That means
442 -- that if we do not have a static expression then there is not much
443 -- to do. The one case that we deal with here is that if we have a
444 -- floating-point value that is out of range, then we post a warning
445 -- that an infinity will result.
446
447 if not Is_Static_Expression (N) then
448 if Is_Floating_Point_Type (T) then
449 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
450 Error_Msg_N
451 ("??float value out of range, infinity will be generated", N);
452
453 -- The literal may be the result of constant-folding of a non-
454 -- static subexpression of a larger expression (e.g. a conversion
455 -- of a non-static variable whose value happens to be known). At
456 -- this point we must reduce the value of the subexpression to a
457 -- machine number (RM 4.9 (38/2)).
458
459 elsif Nkind (N) = N_Real_Literal
460 and then Nkind (Parent (N)) in N_Subexpr
461 then
462 Rewrite (N, New_Copy (N));
463 Set_Realval
464 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
465 end if;
466 end if;
467
468 return;
469 end if;
470
471 -- Here we have the case of outer level static expression of scalar
472 -- type, where the processing of this procedure is needed.
473
474 -- For real types, this is where we convert the value to a machine
475 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
476 -- need to do this if the parent is a constant declaration, since in
477 -- other cases, gigi should do the necessary conversion correctly, but
478 -- experimentation shows that this is not the case on all machines, in
479 -- particular if we do not convert all literals to machine values in
480 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
481 -- and SGI/Irix.
482
483 -- This conversion is always done by GNATprove on real literals in
484 -- non-static expressions, by calling Check_Non_Static_Context from
485 -- gnat2why, as GNATprove cannot do the conversion later contrary
486 -- to gigi. The frontend computes the information about which
487 -- expressions are static, which is used by gnat2why to call
488 -- Check_Non_Static_Context on exactly those real literals that are
489 -- not subexpressions of static expressions.
490
491 if Nkind (N) = N_Real_Literal
492 and then not Is_Machine_Number (N)
493 and then not Is_Generic_Type (Etype (N))
494 and then Etype (N) /= Universal_Real
495 then
496 -- Check that value is in bounds before converting to machine
497 -- number, so as not to lose case where value overflows in the
498 -- least significant bit or less. See B490001.
499
500 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
501 Out_Of_Range (N);
502 return;
503 end if;
504
505 -- Note: we have to copy the node, to avoid problems with conformance
506 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
507
508 Rewrite (N, New_Copy (N));
509
510 if not Is_Floating_Point_Type (T) then
511 Set_Realval
512 (N, Corresponding_Integer_Value (N) * Small_Value (T));
513
514 elsif not UR_Is_Zero (Realval (N)) then
515
516 -- Note: even though RM 4.9(38) specifies biased rounding, this
517 -- has been modified by AI-100 in order to prevent confusing
518 -- differences in rounding between static and non-static
519 -- expressions. AI-100 specifies that the effect of such rounding
520 -- is implementation dependent, and in GNAT we round to nearest
521 -- even to match the run-time behavior. Note that this applies
522 -- to floating point literals, not fixed points ones, even though
523 -- their compiler representation is also as a universal real.
524
525 Set_Realval
526 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
527 Set_Is_Machine_Number (N);
528 end if;
529
530 end if;
531
532 -- Check for out of range universal integer. This is a non-static
533 -- context, so the integer value must be in range of the runtime
534 -- representation of universal integers.
535
536 -- We do this only within an expression, because that is the only
537 -- case in which non-static universal integer values can occur, and
538 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
539 -- called in contexts like the expression of a number declaration where
540 -- we certainly want to allow out of range values.
541
542 -- We inhibit the warning when expansion is disabled, because the
543 -- preanalysis of a range of a 64-bit modular type may appear to
544 -- violate the constraint on non-static Universal_Integer. If there
545 -- is a true overflow it will be diagnosed during full analysis.
546
547 if Etype (N) = Universal_Integer
548 and then Nkind (N) = N_Integer_Literal
549 and then Nkind (Parent (N)) in N_Subexpr
550 and then Expander_Active
551 and then
552 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
553 or else
554 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
555 then
556 Apply_Compile_Time_Constraint_Error
557 (N, "non-static universal integer value out of range<<",
558 CE_Range_Check_Failed);
559
560 -- Check out of range of base type
561
562 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
563 Out_Of_Range (N);
564
565 -- Give a warning or error on the value outside the subtype. A warning
566 -- is omitted if the expression appears in a range that could be null
567 -- (warnings are handled elsewhere for this case).
568
569 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
570 if Is_In_Range (N, T, Assume_Valid => True) then
571 null;
572
573 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
574 -- Ignore out of range values for System.Priority in CodePeer
575 -- mode since the actual target compiler may provide a wider
576 -- range.
577
578 if CodePeer_Mode and then T = RTE (RE_Priority) then
579 Set_Do_Range_Check (N, False);
580
581 -- Determine if the out-of-range violation constitutes a warning
582 -- or an error based on context, according to RM 4.9 (34/3).
583
584 elsif Nkind_In (Original_Node (N), N_Type_Conversion,
585 N_Qualified_Expression)
586 and then Comes_From_Source (Original_Node (N))
587 then
588 Apply_Compile_Time_Constraint_Error
589 (N, "value not in range of}", CE_Range_Check_Failed);
590 else
591 Apply_Compile_Time_Constraint_Error
592 (N, "value not in range of}<<", CE_Range_Check_Failed);
593 end if;
594
595 elsif Checks_On then
596 Enable_Range_Check (N);
597
598 else
599 Set_Do_Range_Check (N, False);
600 end if;
601 end if;
602 end Check_Non_Static_Context;
603
604 ---------------------------------
605 -- Check_String_Literal_Length --
606 ---------------------------------
607
608 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
609 begin
610 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
611 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
612 then
613 Apply_Compile_Time_Constraint_Error
614 (N, "string length wrong for}??",
615 CE_Length_Check_Failed,
616 Ent => Ttype,
617 Typ => Ttype);
618 end if;
619 end if;
620 end Check_String_Literal_Length;
621
622 --------------------
623 -- Choice_Matches --
624 --------------------
625
626 function Choice_Matches
627 (Expr : Node_Id;
628 Choice : Node_Id) return Match_Result
629 is
630 Etyp : constant Entity_Id := Etype (Expr);
631 Val : Uint;
632 ValR : Ureal;
633 ValS : Node_Id;
634
635 begin
636 pragma Assert (Compile_Time_Known_Value (Expr));
637 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
638
639 if not Is_OK_Static_Choice (Choice) then
640 Set_Raises_Constraint_Error (Choice);
641 return Non_Static;
642
643 -- When the choice denotes a subtype with a static predictate, check the
644 -- expression against the predicate values. Different procedures apply
645 -- to discrete and non-discrete types.
646
647 elsif (Nkind (Choice) = N_Subtype_Indication
648 or else (Is_Entity_Name (Choice)
649 and then Is_Type (Entity (Choice))))
650 and then Has_Predicates (Etype (Choice))
651 and then Has_Static_Predicate (Etype (Choice))
652 then
653 if Is_Discrete_Type (Etype (Choice)) then
654 return
655 Choices_Match
656 (Expr, Static_Discrete_Predicate (Etype (Choice)));
657
658 elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
659 then
660 return Match;
661
662 else
663 return No_Match;
664 end if;
665
666 -- Discrete type case only
667
668 elsif Is_Discrete_Type (Etyp) then
669 Val := Expr_Value (Expr);
670
671 if Nkind (Choice) = N_Range then
672 if Val >= Expr_Value (Low_Bound (Choice))
673 and then
674 Val <= Expr_Value (High_Bound (Choice))
675 then
676 return Match;
677 else
678 return No_Match;
679 end if;
680
681 elsif Nkind (Choice) = N_Subtype_Indication
682 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
683 then
684 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
685 and then
686 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
687 then
688 return Match;
689 else
690 return No_Match;
691 end if;
692
693 elsif Nkind (Choice) = N_Others_Choice then
694 return Match;
695
696 else
697 if Val = Expr_Value (Choice) then
698 return Match;
699 else
700 return No_Match;
701 end if;
702 end if;
703
704 -- Real type case
705
706 elsif Is_Real_Type (Etyp) then
707 ValR := Expr_Value_R (Expr);
708
709 if Nkind (Choice) = N_Range then
710 if ValR >= Expr_Value_R (Low_Bound (Choice))
711 and then
712 ValR <= Expr_Value_R (High_Bound (Choice))
713 then
714 return Match;
715 else
716 return No_Match;
717 end if;
718
719 elsif Nkind (Choice) = N_Subtype_Indication
720 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
721 then
722 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
723 and then
724 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
725 then
726 return Match;
727 else
728 return No_Match;
729 end if;
730
731 else
732 if ValR = Expr_Value_R (Choice) then
733 return Match;
734 else
735 return No_Match;
736 end if;
737 end if;
738
739 -- String type cases
740
741 else
742 pragma Assert (Is_String_Type (Etyp));
743 ValS := Expr_Value_S (Expr);
744
745 if Nkind (Choice) = N_Subtype_Indication
746 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
747 then
748 if not Is_Constrained (Etype (Choice)) then
749 return Match;
750
751 else
752 declare
753 Typlen : constant Uint :=
754 String_Type_Len (Etype (Choice));
755 Strlen : constant Uint :=
756 UI_From_Int (String_Length (Strval (ValS)));
757 begin
758 if Typlen = Strlen then
759 return Match;
760 else
761 return No_Match;
762 end if;
763 end;
764 end if;
765
766 else
767 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
768 then
769 return Match;
770 else
771 return No_Match;
772 end if;
773 end if;
774 end if;
775 end Choice_Matches;
776
777 -------------------
778 -- Choices_Match --
779 -------------------
780
781 function Choices_Match
782 (Expr : Node_Id;
783 Choices : List_Id) return Match_Result
784 is
785 Choice : Node_Id;
786 Result : Match_Result;
787
788 begin
789 Choice := First (Choices);
790 while Present (Choice) loop
791 Result := Choice_Matches (Expr, Choice);
792
793 if Result /= No_Match then
794 return Result;
795 end if;
796
797 Next (Choice);
798 end loop;
799
800 return No_Match;
801 end Choices_Match;
802
803 --------------------------
804 -- Compile_Time_Compare --
805 --------------------------
806
807 function Compile_Time_Compare
808 (L, R : Node_Id;
809 Assume_Valid : Boolean) return Compare_Result
810 is
811 Discard : aliased Uint;
812 begin
813 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
814 end Compile_Time_Compare;
815
816 function Compile_Time_Compare
817 (L, R : Node_Id;
818 Diff : access Uint;
819 Assume_Valid : Boolean;
820 Rec : Boolean := False) return Compare_Result
821 is
822 Ltyp : Entity_Id := Etype (L);
823 Rtyp : Entity_Id := Etype (R);
824
825 Discard : aliased Uint;
826
827 procedure Compare_Decompose
828 (N : Node_Id;
829 R : out Node_Id;
830 V : out Uint);
831 -- This procedure decomposes the node N into an expression node and a
832 -- signed offset, so that the value of N is equal to the value of R plus
833 -- the value V (which may be negative). If no such decomposition is
834 -- possible, then on return R is a copy of N, and V is set to zero.
835
836 function Compare_Fixup (N : Node_Id) return Node_Id;
837 -- This function deals with replacing 'Last and 'First references with
838 -- their corresponding type bounds, which we then can compare. The
839 -- argument is the original node, the result is the identity, unless we
840 -- have a 'Last/'First reference in which case the value returned is the
841 -- appropriate type bound.
842
843 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
844 -- Even if the context does not assume that values are valid, some
845 -- simple cases can be recognized.
846
847 function Is_Same_Value (L, R : Node_Id) return Boolean;
848 -- Returns True iff L and R represent expressions that definitely have
849 -- identical (but not necessarily compile-time-known) values Indeed the
850 -- caller is expected to have already dealt with the cases of compile
851 -- time known values, so these are not tested here.
852
853 -----------------------
854 -- Compare_Decompose --
855 -----------------------
856
857 procedure Compare_Decompose
858 (N : Node_Id;
859 R : out Node_Id;
860 V : out Uint)
861 is
862 begin
863 if Nkind (N) = N_Op_Add
864 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
865 then
866 R := Left_Opnd (N);
867 V := Intval (Right_Opnd (N));
868 return;
869
870 elsif Nkind (N) = N_Op_Subtract
871 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
872 then
873 R := Left_Opnd (N);
874 V := UI_Negate (Intval (Right_Opnd (N)));
875 return;
876
877 elsif Nkind (N) = N_Attribute_Reference then
878 if Attribute_Name (N) = Name_Succ then
879 R := First (Expressions (N));
880 V := Uint_1;
881 return;
882
883 elsif Attribute_Name (N) = Name_Pred then
884 R := First (Expressions (N));
885 V := Uint_Minus_1;
886 return;
887 end if;
888 end if;
889
890 R := N;
891 V := Uint_0;
892 end Compare_Decompose;
893
894 -------------------
895 -- Compare_Fixup --
896 -------------------
897
898 function Compare_Fixup (N : Node_Id) return Node_Id is
899 Indx : Node_Id;
900 Xtyp : Entity_Id;
901 Subs : Nat;
902
903 begin
904 -- Fixup only required for First/Last attribute reference
905
906 if Nkind (N) = N_Attribute_Reference
907 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
908 then
909 Xtyp := Etype (Prefix (N));
910
911 -- If we have no type, then just abandon the attempt to do
912 -- a fixup, this is probably the result of some other error.
913
914 if No (Xtyp) then
915 return N;
916 end if;
917
918 -- Dereference an access type
919
920 if Is_Access_Type (Xtyp) then
921 Xtyp := Designated_Type (Xtyp);
922 end if;
923
924 -- If we don't have an array type at this stage, something is
925 -- peculiar, e.g. another error, and we abandon the attempt at
926 -- a fixup.
927
928 if not Is_Array_Type (Xtyp) then
929 return N;
930 end if;
931
932 -- Ignore unconstrained array, since bounds are not meaningful
933
934 if not Is_Constrained (Xtyp) then
935 return N;
936 end if;
937
938 if Ekind (Xtyp) = E_String_Literal_Subtype then
939 if Attribute_Name (N) = Name_First then
940 return String_Literal_Low_Bound (Xtyp);
941 else
942 return
943 Make_Integer_Literal (Sloc (N),
944 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
945 String_Literal_Length (Xtyp));
946 end if;
947 end if;
948
949 -- Find correct index type
950
951 Indx := First_Index (Xtyp);
952
953 if Present (Expressions (N)) then
954 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
955
956 for J in 2 .. Subs loop
957 Indx := Next_Index (Indx);
958 end loop;
959 end if;
960
961 Xtyp := Etype (Indx);
962
963 if Attribute_Name (N) = Name_First then
964 return Type_Low_Bound (Xtyp);
965 else
966 return Type_High_Bound (Xtyp);
967 end if;
968 end if;
969
970 return N;
971 end Compare_Fixup;
972
973 ----------------------------
974 -- Is_Known_Valid_Operand --
975 ----------------------------
976
977 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
978 begin
979 return (Is_Entity_Name (Opnd)
980 and then
981 (Is_Known_Valid (Entity (Opnd))
982 or else Ekind (Entity (Opnd)) = E_In_Parameter
983 or else
984 (Ekind (Entity (Opnd)) in Object_Kind
985 and then Present (Current_Value (Entity (Opnd))))))
986 or else Is_OK_Static_Expression (Opnd);
987 end Is_Known_Valid_Operand;
988
989 -------------------
990 -- Is_Same_Value --
991 -------------------
992
993 function Is_Same_Value (L, R : Node_Id) return Boolean is
994 Lf : constant Node_Id := Compare_Fixup (L);
995 Rf : constant Node_Id := Compare_Fixup (R);
996
997 function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean;
998 -- An attribute reference to Loop_Entry may have been rewritten into
999 -- its prefix as a way to avoid generating a constant for that
1000 -- attribute when the corresponding pragma is ignored. These nodes
1001 -- should be ignored when deciding if they can be equal to one
1002 -- another.
1003
1004 function Is_Same_Subscript (L, R : List_Id) return Boolean;
1005 -- L, R are the Expressions values from two attribute nodes for First
1006 -- or Last attributes. Either may be set to No_List if no expressions
1007 -- are present (indicating subscript 1). The result is True if both
1008 -- expressions represent the same subscript (note one case is where
1009 -- one subscript is missing and the other is explicitly set to 1).
1010
1011 -----------------------------
1012 -- Is_Rewritten_Loop_Entry --
1013 -----------------------------
1014
1015 function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean is
1016 Orig_N : constant Node_Id := Original_Node (N);
1017 begin
1018 return Orig_N /= N
1019 and then Nkind (Orig_N) = N_Attribute_Reference
1020 and then Get_Attribute_Id (Attribute_Name (Orig_N)) =
1021 Attribute_Loop_Entry;
1022 end Is_Rewritten_Loop_Entry;
1023
1024 -----------------------
1025 -- Is_Same_Subscript --
1026 -----------------------
1027
1028 function Is_Same_Subscript (L, R : List_Id) return Boolean is
1029 begin
1030 if L = No_List then
1031 if R = No_List then
1032 return True;
1033 else
1034 return Expr_Value (First (R)) = Uint_1;
1035 end if;
1036
1037 else
1038 if R = No_List then
1039 return Expr_Value (First (L)) = Uint_1;
1040 else
1041 return Expr_Value (First (L)) = Expr_Value (First (R));
1042 end if;
1043 end if;
1044 end Is_Same_Subscript;
1045
1046 -- Start of processing for Is_Same_Value
1047
1048 begin
1049 -- Loop_Entry nodes rewritten into their prefix inside ignored
1050 -- pragmas should never lead to a decision of equality.
1051
1052 if Is_Rewritten_Loop_Entry (Lf)
1053 or else Is_Rewritten_Loop_Entry (Rf)
1054 then
1055 return False;
1056
1057 -- Values are the same if they refer to the same entity and the
1058 -- entity is nonvolatile.
1059
1060 elsif Nkind_In (Lf, N_Identifier, N_Expanded_Name)
1061 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
1062 and then Entity (Lf) = Entity (Rf)
1063
1064 -- If the entity is a discriminant, the two expressions may be
1065 -- bounds of components of objects of the same discriminated type.
1066 -- The values of the discriminants are not static, and therefore
1067 -- the result is unknown.
1068
1069 and then Ekind (Entity (Lf)) /= E_Discriminant
1070 and then Present (Entity (Lf))
1071
1072 -- This does not however apply to Float types, since we may have
1073 -- two NaN values and they should never compare equal.
1074
1075 and then not Is_Floating_Point_Type (Etype (L))
1076 and then not Is_Volatile_Reference (L)
1077 and then not Is_Volatile_Reference (R)
1078 then
1079 return True;
1080
1081 -- Or if they are compile-time-known and identical
1082
1083 elsif Compile_Time_Known_Value (Lf)
1084 and then
1085 Compile_Time_Known_Value (Rf)
1086 and then Expr_Value (Lf) = Expr_Value (Rf)
1087 then
1088 return True;
1089
1090 -- False if Nkind of the two nodes is different for remaining cases
1091
1092 elsif Nkind (Lf) /= Nkind (Rf) then
1093 return False;
1094
1095 -- True if both 'First or 'Last values applying to the same entity
1096 -- (first and last don't change even if value does). Note that we
1097 -- need this even with the calls to Compare_Fixup, to handle the
1098 -- case of unconstrained array attributes where Compare_Fixup
1099 -- cannot find useful bounds.
1100
1101 elsif Nkind (Lf) = N_Attribute_Reference
1102 and then Attribute_Name (Lf) = Attribute_Name (Rf)
1103 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
1104 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1105 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
1106 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
1107 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
1108 then
1109 return True;
1110
1111 -- True if the same selected component from the same record
1112
1113 elsif Nkind (Lf) = N_Selected_Component
1114 and then Selector_Name (Lf) = Selector_Name (Rf)
1115 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1116 then
1117 return True;
1118
1119 -- True if the same unary operator applied to the same operand
1120
1121 elsif Nkind (Lf) in N_Unary_Op
1122 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1123 then
1124 return True;
1125
1126 -- True if the same binary operator applied to the same operands
1127
1128 elsif Nkind (Lf) in N_Binary_Op
1129 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1130 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1131 then
1132 return True;
1133
1134 -- All other cases, we can't tell, so return False
1135
1136 else
1137 return False;
1138 end if;
1139 end Is_Same_Value;
1140
1141 -- Start of processing for Compile_Time_Compare
1142
1143 begin
1144 Diff.all := No_Uint;
1145
1146 -- In preanalysis mode, always return Unknown unless the expression
1147 -- is static. It is too early to be thinking we know the result of a
1148 -- comparison, save that judgment for the full analysis. This is
1149 -- particularly important in the case of pre and postconditions, which
1150 -- otherwise can be prematurely collapsed into having True or False
1151 -- conditions when this is inappropriate.
1152
1153 if not (Full_Analysis
1154 or else (Is_OK_Static_Expression (L)
1155 and then
1156 Is_OK_Static_Expression (R)))
1157 then
1158 return Unknown;
1159 end if;
1160
1161 -- If either operand could raise Constraint_Error, then we cannot
1162 -- know the result at compile time (since CE may be raised).
1163
1164 if not (Cannot_Raise_Constraint_Error (L)
1165 and then
1166 Cannot_Raise_Constraint_Error (R))
1167 then
1168 return Unknown;
1169 end if;
1170
1171 -- Identical operands are most certainly equal
1172
1173 if L = R then
1174 return EQ;
1175 end if;
1176
1177 -- If expressions have no types, then do not attempt to determine if
1178 -- they are the same, since something funny is going on. One case in
1179 -- which this happens is during generic template analysis, when bounds
1180 -- are not fully analyzed.
1181
1182 if No (Ltyp) or else No (Rtyp) then
1183 return Unknown;
1184 end if;
1185
1186 -- These get reset to the base type for the case of entities where
1187 -- Is_Known_Valid is not set. This takes care of handling possible
1188 -- invalid representations using the value of the base type, in
1189 -- accordance with RM 13.9.1(10).
1190
1191 Ltyp := Underlying_Type (Ltyp);
1192 Rtyp := Underlying_Type (Rtyp);
1193
1194 -- Same rationale as above, but for Underlying_Type instead of Etype
1195
1196 if No (Ltyp) or else No (Rtyp) then
1197 return Unknown;
1198 end if;
1199
1200 -- We do not attempt comparisons for packed arrays represented as
1201 -- modular types, where the semantics of comparison is quite different.
1202
1203 if Is_Packed_Array_Impl_Type (Ltyp)
1204 and then Is_Modular_Integer_Type (Ltyp)
1205 then
1206 return Unknown;
1207
1208 -- For access types, the only time we know the result at compile time
1209 -- (apart from identical operands, which we handled already) is if we
1210 -- know one operand is null and the other is not, or both operands are
1211 -- known null.
1212
1213 elsif Is_Access_Type (Ltyp) then
1214 if Known_Null (L) then
1215 if Known_Null (R) then
1216 return EQ;
1217 elsif Known_Non_Null (R) then
1218 return NE;
1219 else
1220 return Unknown;
1221 end if;
1222
1223 elsif Known_Non_Null (L) and then Known_Null (R) then
1224 return NE;
1225
1226 else
1227 return Unknown;
1228 end if;
1229
1230 -- Case where comparison involves two compile-time-known values
1231
1232 elsif Compile_Time_Known_Value (L)
1233 and then
1234 Compile_Time_Known_Value (R)
1235 then
1236 -- For the floating-point case, we have to be a little careful, since
1237 -- at compile time we are dealing with universal exact values, but at
1238 -- runtime, these will be in non-exact target form. That's why the
1239 -- returned results are LE and GE below instead of LT and GT.
1240
1241 if Is_Floating_Point_Type (Ltyp)
1242 or else
1243 Is_Floating_Point_Type (Rtyp)
1244 then
1245 declare
1246 Lo : constant Ureal := Expr_Value_R (L);
1247 Hi : constant Ureal := Expr_Value_R (R);
1248 begin
1249 if Lo < Hi then
1250 return LE;
1251 elsif Lo = Hi then
1252 return EQ;
1253 else
1254 return GE;
1255 end if;
1256 end;
1257
1258 -- For string types, we have two string literals and we proceed to
1259 -- compare them using the Ada style dictionary string comparison.
1260
1261 elsif not Is_Scalar_Type (Ltyp) then
1262 declare
1263 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1264 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1265 Llen : constant Nat := String_Length (Lstring);
1266 Rlen : constant Nat := String_Length (Rstring);
1267
1268 begin
1269 for J in 1 .. Nat'Min (Llen, Rlen) loop
1270 declare
1271 LC : constant Char_Code := Get_String_Char (Lstring, J);
1272 RC : constant Char_Code := Get_String_Char (Rstring, J);
1273 begin
1274 if LC < RC then
1275 return LT;
1276 elsif LC > RC then
1277 return GT;
1278 end if;
1279 end;
1280 end loop;
1281
1282 if Llen < Rlen then
1283 return LT;
1284 elsif Llen > Rlen then
1285 return GT;
1286 else
1287 return EQ;
1288 end if;
1289 end;
1290
1291 -- For remaining scalar cases we know exactly (note that this does
1292 -- include the fixed-point case, where we know the run time integer
1293 -- values now).
1294
1295 else
1296 declare
1297 Lo : constant Uint := Expr_Value (L);
1298 Hi : constant Uint := Expr_Value (R);
1299 begin
1300 if Lo < Hi then
1301 Diff.all := Hi - Lo;
1302 return LT;
1303 elsif Lo = Hi then
1304 return EQ;
1305 else
1306 Diff.all := Lo - Hi;
1307 return GT;
1308 end if;
1309 end;
1310 end if;
1311
1312 -- Cases where at least one operand is not known at compile time
1313
1314 else
1315 -- Remaining checks apply only for discrete types
1316
1317 if not Is_Discrete_Type (Ltyp)
1318 or else
1319 not Is_Discrete_Type (Rtyp)
1320 then
1321 return Unknown;
1322 end if;
1323
1324 -- Defend against generic types, or actually any expressions that
1325 -- contain a reference to a generic type from within a generic
1326 -- template. We don't want to do any range analysis of such
1327 -- expressions for two reasons. First, the bounds of a generic type
1328 -- itself are junk and cannot be used for any kind of analysis.
1329 -- Second, we may have a case where the range at run time is indeed
1330 -- known, but we don't want to do compile time analysis in the
1331 -- template based on that range since in an instance the value may be
1332 -- static, and able to be elaborated without reference to the bounds
1333 -- of types involved. As an example, consider:
1334
1335 -- (F'Pos (F'Last) + 1) > Integer'Last
1336
1337 -- The expression on the left side of > is Universal_Integer and thus
1338 -- acquires the type Integer for evaluation at run time, and at run
1339 -- time it is true that this condition is always False, but within
1340 -- an instance F may be a type with a static range greater than the
1341 -- range of Integer, and the expression statically evaluates to True.
1342
1343 if References_Generic_Formal_Type (L)
1344 or else
1345 References_Generic_Formal_Type (R)
1346 then
1347 return Unknown;
1348 end if;
1349
1350 -- Replace types by base types for the case of values which are not
1351 -- known to have valid representations. This takes care of properly
1352 -- dealing with invalid representations.
1353
1354 if not Assume_Valid then
1355 if not (Is_Entity_Name (L)
1356 and then (Is_Known_Valid (Entity (L))
1357 or else Assume_No_Invalid_Values))
1358 then
1359 Ltyp := Underlying_Type (Base_Type (Ltyp));
1360 end if;
1361
1362 if not (Is_Entity_Name (R)
1363 and then (Is_Known_Valid (Entity (R))
1364 or else Assume_No_Invalid_Values))
1365 then
1366 Rtyp := Underlying_Type (Base_Type (Rtyp));
1367 end if;
1368 end if;
1369
1370 -- First attempt is to decompose the expressions to extract a
1371 -- constant offset resulting from the use of any of the forms:
1372
1373 -- expr + literal
1374 -- expr - literal
1375 -- typ'Succ (expr)
1376 -- typ'Pred (expr)
1377
1378 -- Then we see if the two expressions are the same value, and if so
1379 -- the result is obtained by comparing the offsets.
1380
1381 -- Note: the reason we do this test first is that it returns only
1382 -- decisive results (with diff set), where other tests, like the
1383 -- range test, may not be as so decisive. Consider for example
1384 -- J .. J + 1. This code can conclude LT with a difference of 1,
1385 -- even if the range of J is not known.
1386
1387 declare
1388 Lnode : Node_Id;
1389 Loffs : Uint;
1390 Rnode : Node_Id;
1391 Roffs : Uint;
1392
1393 begin
1394 Compare_Decompose (L, Lnode, Loffs);
1395 Compare_Decompose (R, Rnode, Roffs);
1396
1397 if Is_Same_Value (Lnode, Rnode) then
1398 if Loffs = Roffs then
1399 return EQ;
1400 end if;
1401
1402 -- When the offsets are not equal, we can go farther only if
1403 -- the types are not modular (e.g. X < X + 1 is False if X is
1404 -- the largest number).
1405
1406 if not Is_Modular_Integer_Type (Ltyp)
1407 and then not Is_Modular_Integer_Type (Rtyp)
1408 then
1409 if Loffs < Roffs then
1410 Diff.all := Roffs - Loffs;
1411 return LT;
1412 else
1413 Diff.all := Loffs - Roffs;
1414 return GT;
1415 end if;
1416 end if;
1417 end if;
1418 end;
1419
1420 -- Next, try range analysis and see if operand ranges are disjoint
1421
1422 declare
1423 LOK, ROK : Boolean;
1424 LLo, LHi : Uint;
1425 RLo, RHi : Uint;
1426
1427 Single : Boolean;
1428 -- True if each range is a single point
1429
1430 begin
1431 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1432 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1433
1434 if LOK and ROK then
1435 Single := (LLo = LHi) and then (RLo = RHi);
1436
1437 if LHi < RLo then
1438 if Single and Assume_Valid then
1439 Diff.all := RLo - LLo;
1440 end if;
1441
1442 return LT;
1443
1444 elsif RHi < LLo then
1445 if Single and Assume_Valid then
1446 Diff.all := LLo - RLo;
1447 end if;
1448
1449 return GT;
1450
1451 elsif Single and then LLo = RLo then
1452
1453 -- If the range includes a single literal and we can assume
1454 -- validity then the result is known even if an operand is
1455 -- not static.
1456
1457 if Assume_Valid then
1458 return EQ;
1459 else
1460 return Unknown;
1461 end if;
1462
1463 elsif LHi = RLo then
1464 return LE;
1465
1466 elsif RHi = LLo then
1467 return GE;
1468
1469 elsif not Is_Known_Valid_Operand (L)
1470 and then not Assume_Valid
1471 then
1472 if Is_Same_Value (L, R) then
1473 return EQ;
1474 else
1475 return Unknown;
1476 end if;
1477 end if;
1478
1479 -- If the range of either operand cannot be determined, nothing
1480 -- further can be inferred.
1481
1482 else
1483 return Unknown;
1484 end if;
1485 end;
1486
1487 -- Here is where we check for comparisons against maximum bounds of
1488 -- types, where we know that no value can be outside the bounds of
1489 -- the subtype. Note that this routine is allowed to assume that all
1490 -- expressions are within their subtype bounds. Callers wishing to
1491 -- deal with possibly invalid values must in any case take special
1492 -- steps (e.g. conversions to larger types) to avoid this kind of
1493 -- optimization, which is always considered to be valid. We do not
1494 -- attempt this optimization with generic types, since the type
1495 -- bounds may not be meaningful in this case.
1496
1497 -- We are in danger of an infinite recursion here. It does not seem
1498 -- useful to go more than one level deep, so the parameter Rec is
1499 -- used to protect ourselves against this infinite recursion.
1500
1501 if not Rec then
1502
1503 -- See if we can get a decisive check against one operand and a
1504 -- bound of the other operand (four possible tests here). Note
1505 -- that we avoid testing junk bounds of a generic type.
1506
1507 if not Is_Generic_Type (Rtyp) then
1508 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1509 Discard'Access,
1510 Assume_Valid, Rec => True)
1511 is
1512 when LT => return LT;
1513 when LE => return LE;
1514 when EQ => return LE;
1515 when others => null;
1516 end case;
1517
1518 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1519 Discard'Access,
1520 Assume_Valid, Rec => True)
1521 is
1522 when GT => return GT;
1523 when GE => return GE;
1524 when EQ => return GE;
1525 when others => null;
1526 end case;
1527 end if;
1528
1529 if not Is_Generic_Type (Ltyp) then
1530 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1531 Discard'Access,
1532 Assume_Valid, Rec => True)
1533 is
1534 when GT => return GT;
1535 when GE => return GE;
1536 when EQ => return GE;
1537 when others => null;
1538 end case;
1539
1540 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1541 Discard'Access,
1542 Assume_Valid, Rec => True)
1543 is
1544 when LT => return LT;
1545 when LE => return LE;
1546 when EQ => return LE;
1547 when others => null;
1548 end case;
1549 end if;
1550 end if;
1551
1552 -- Next attempt is to see if we have an entity compared with a
1553 -- compile-time-known value, where there is a current value
1554 -- conditional for the entity which can tell us the result.
1555
1556 declare
1557 Var : Node_Id;
1558 -- Entity variable (left operand)
1559
1560 Val : Uint;
1561 -- Value (right operand)
1562
1563 Inv : Boolean;
1564 -- If False, we have reversed the operands
1565
1566 Op : Node_Kind;
1567 -- Comparison operator kind from Get_Current_Value_Condition call
1568
1569 Opn : Node_Id;
1570 -- Value from Get_Current_Value_Condition call
1571
1572 Opv : Uint;
1573 -- Value of Opn
1574
1575 Result : Compare_Result;
1576 -- Known result before inversion
1577
1578 begin
1579 if Is_Entity_Name (L)
1580 and then Compile_Time_Known_Value (R)
1581 then
1582 Var := L;
1583 Val := Expr_Value (R);
1584 Inv := False;
1585
1586 elsif Is_Entity_Name (R)
1587 and then Compile_Time_Known_Value (L)
1588 then
1589 Var := R;
1590 Val := Expr_Value (L);
1591 Inv := True;
1592
1593 -- That was the last chance at finding a compile time result
1594
1595 else
1596 return Unknown;
1597 end if;
1598
1599 Get_Current_Value_Condition (Var, Op, Opn);
1600
1601 -- That was the last chance, so if we got nothing return
1602
1603 if No (Opn) then
1604 return Unknown;
1605 end if;
1606
1607 Opv := Expr_Value (Opn);
1608
1609 -- We got a comparison, so we might have something interesting
1610
1611 -- Convert LE to LT and GE to GT, just so we have fewer cases
1612
1613 if Op = N_Op_Le then
1614 Op := N_Op_Lt;
1615 Opv := Opv + 1;
1616
1617 elsif Op = N_Op_Ge then
1618 Op := N_Op_Gt;
1619 Opv := Opv - 1;
1620 end if;
1621
1622 -- Deal with equality case
1623
1624 if Op = N_Op_Eq then
1625 if Val = Opv then
1626 Result := EQ;
1627 elsif Opv < Val then
1628 Result := LT;
1629 else
1630 Result := GT;
1631 end if;
1632
1633 -- Deal with inequality case
1634
1635 elsif Op = N_Op_Ne then
1636 if Val = Opv then
1637 Result := NE;
1638 else
1639 return Unknown;
1640 end if;
1641
1642 -- Deal with greater than case
1643
1644 elsif Op = N_Op_Gt then
1645 if Opv >= Val then
1646 Result := GT;
1647 elsif Opv = Val - 1 then
1648 Result := GE;
1649 else
1650 return Unknown;
1651 end if;
1652
1653 -- Deal with less than case
1654
1655 else pragma Assert (Op = N_Op_Lt);
1656 if Opv <= Val then
1657 Result := LT;
1658 elsif Opv = Val + 1 then
1659 Result := LE;
1660 else
1661 return Unknown;
1662 end if;
1663 end if;
1664
1665 -- Deal with inverting result
1666
1667 if Inv then
1668 case Result is
1669 when GT => return LT;
1670 when GE => return LE;
1671 when LT => return GT;
1672 when LE => return GE;
1673 when others => return Result;
1674 end case;
1675 end if;
1676
1677 return Result;
1678 end;
1679 end if;
1680 end Compile_Time_Compare;
1681
1682 -------------------------------
1683 -- Compile_Time_Known_Bounds --
1684 -------------------------------
1685
1686 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1687 Indx : Node_Id;
1688 Typ : Entity_Id;
1689
1690 begin
1691 if T = Any_Composite or else not Is_Array_Type (T) then
1692 return False;
1693 end if;
1694
1695 Indx := First_Index (T);
1696 while Present (Indx) loop
1697 Typ := Underlying_Type (Etype (Indx));
1698
1699 -- Never look at junk bounds of a generic type
1700
1701 if Is_Generic_Type (Typ) then
1702 return False;
1703 end if;
1704
1705 -- Otherwise check bounds for compile-time-known
1706
1707 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1708 return False;
1709 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1710 return False;
1711 else
1712 Next_Index (Indx);
1713 end if;
1714 end loop;
1715
1716 return True;
1717 end Compile_Time_Known_Bounds;
1718
1719 ------------------------------
1720 -- Compile_Time_Known_Value --
1721 ------------------------------
1722
1723 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1724 K : constant Node_Kind := Nkind (Op);
1725 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1726
1727 begin
1728 -- Never known at compile time if bad type or raises Constraint_Error
1729 -- or empty (latter case occurs only as a result of a previous error).
1730
1731 if No (Op) then
1732 Check_Error_Detected;
1733 return False;
1734
1735 elsif Op = Error
1736 or else Etype (Op) = Any_Type
1737 or else Raises_Constraint_Error (Op)
1738 then
1739 return False;
1740 end if;
1741
1742 -- If we have an entity name, then see if it is the name of a constant
1743 -- and if so, test the corresponding constant value, or the name of an
1744 -- enumeration literal, which is always a constant.
1745
1746 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1747 declare
1748 Ent : constant Entity_Id := Entity (Op);
1749 Val : Node_Id;
1750
1751 begin
1752 -- Never known at compile time if it is a packed array value. We
1753 -- might want to try to evaluate these at compile time one day,
1754 -- but we do not make that attempt now.
1755
1756 if Is_Packed_Array_Impl_Type (Etype (Op)) then
1757 return False;
1758
1759 elsif Ekind (Ent) = E_Enumeration_Literal then
1760 return True;
1761
1762 elsif Ekind (Ent) = E_Constant then
1763 Val := Constant_Value (Ent);
1764
1765 if Present (Val) then
1766
1767 -- Guard against an illegal deferred constant whose full
1768 -- view is initialized with a reference to itself. Treat
1769 -- this case as a value not known at compile time.
1770
1771 if Is_Entity_Name (Val) and then Entity (Val) = Ent then
1772 return False;
1773 else
1774 return Compile_Time_Known_Value (Val);
1775 end if;
1776
1777 -- Otherwise, the constant does not have a compile-time-known
1778 -- value.
1779
1780 else
1781 return False;
1782 end if;
1783 end if;
1784 end;
1785
1786 -- We have a value, see if it is compile-time-known
1787
1788 else
1789 -- Integer literals are worth storing in the cache
1790
1791 if K = N_Integer_Literal then
1792 CV_Ent.N := Op;
1793 CV_Ent.V := Intval (Op);
1794 return True;
1795
1796 -- Other literals and NULL are known at compile time
1797
1798 elsif
1799 Nkind_In (K, N_Character_Literal,
1800 N_Real_Literal,
1801 N_String_Literal,
1802 N_Null)
1803 then
1804 return True;
1805 end if;
1806 end if;
1807
1808 -- If we fall through, not known at compile time
1809
1810 return False;
1811
1812 -- If we get an exception while trying to do this test, then some error
1813 -- has occurred, and we simply say that the value is not known after all
1814
1815 exception
1816 when others =>
1817 return False;
1818 end Compile_Time_Known_Value;
1819
1820 --------------------------------------
1821 -- Compile_Time_Known_Value_Or_Aggr --
1822 --------------------------------------
1823
1824 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1825 begin
1826 -- If we have an entity name, then see if it is the name of a constant
1827 -- and if so, test the corresponding constant value, or the name of
1828 -- an enumeration literal, which is always a constant.
1829
1830 if Is_Entity_Name (Op) then
1831 declare
1832 E : constant Entity_Id := Entity (Op);
1833 V : Node_Id;
1834
1835 begin
1836 if Ekind (E) = E_Enumeration_Literal then
1837 return True;
1838
1839 elsif Ekind (E) /= E_Constant then
1840 return False;
1841
1842 else
1843 V := Constant_Value (E);
1844 return Present (V)
1845 and then Compile_Time_Known_Value_Or_Aggr (V);
1846 end if;
1847 end;
1848
1849 -- We have a value, see if it is compile-time-known
1850
1851 else
1852 if Compile_Time_Known_Value (Op) then
1853 return True;
1854
1855 elsif Nkind (Op) = N_Aggregate then
1856
1857 if Present (Expressions (Op)) then
1858 declare
1859 Expr : Node_Id;
1860 begin
1861 Expr := First (Expressions (Op));
1862 while Present (Expr) loop
1863 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1864 return False;
1865 else
1866 Next (Expr);
1867 end if;
1868 end loop;
1869 end;
1870 end if;
1871
1872 if Present (Component_Associations (Op)) then
1873 declare
1874 Cass : Node_Id;
1875
1876 begin
1877 Cass := First (Component_Associations (Op));
1878 while Present (Cass) loop
1879 if not
1880 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1881 then
1882 return False;
1883 end if;
1884
1885 Next (Cass);
1886 end loop;
1887 end;
1888 end if;
1889
1890 return True;
1891
1892 elsif Nkind (Op) = N_Qualified_Expression then
1893 return Compile_Time_Known_Value_Or_Aggr (Expression (Op));
1894
1895 -- All other types of values are not known at compile time
1896
1897 else
1898 return False;
1899 end if;
1900
1901 end if;
1902 end Compile_Time_Known_Value_Or_Aggr;
1903
1904 ---------------------------------------
1905 -- CRT_Safe_Compile_Time_Known_Value --
1906 ---------------------------------------
1907
1908 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1909 begin
1910 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1911 and then not Is_OK_Static_Expression (Op)
1912 then
1913 return False;
1914 else
1915 return Compile_Time_Known_Value (Op);
1916 end if;
1917 end CRT_Safe_Compile_Time_Known_Value;
1918
1919 -----------------
1920 -- Eval_Actual --
1921 -----------------
1922
1923 -- This is only called for actuals of functions that are not predefined
1924 -- operators (which have already been rewritten as operators at this
1925 -- stage), so the call can never be folded, and all that needs doing for
1926 -- the actual is to do the check for a non-static context.
1927
1928 procedure Eval_Actual (N : Node_Id) is
1929 begin
1930 Check_Non_Static_Context (N);
1931 end Eval_Actual;
1932
1933 --------------------
1934 -- Eval_Allocator --
1935 --------------------
1936
1937 -- Allocators are never static, so all we have to do is to do the
1938 -- check for a non-static context if an expression is present.
1939
1940 procedure Eval_Allocator (N : Node_Id) is
1941 Expr : constant Node_Id := Expression (N);
1942 begin
1943 if Nkind (Expr) = N_Qualified_Expression then
1944 Check_Non_Static_Context (Expression (Expr));
1945 end if;
1946 end Eval_Allocator;
1947
1948 ------------------------
1949 -- Eval_Arithmetic_Op --
1950 ------------------------
1951
1952 -- Arithmetic operations are static functions, so the result is static
1953 -- if both operands are static (RM 4.9(7), 4.9(20)).
1954
1955 procedure Eval_Arithmetic_Op (N : Node_Id) is
1956 Left : constant Node_Id := Left_Opnd (N);
1957 Right : constant Node_Id := Right_Opnd (N);
1958 Ltype : constant Entity_Id := Etype (Left);
1959 Rtype : constant Entity_Id := Etype (Right);
1960 Otype : Entity_Id := Empty;
1961 Stat : Boolean;
1962 Fold : Boolean;
1963
1964 begin
1965 -- If not foldable we are done
1966
1967 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1968
1969 if not Fold then
1970 return;
1971 end if;
1972
1973 -- Otherwise attempt to fold
1974
1975 if Is_Universal_Numeric_Type (Etype (Left))
1976 and then
1977 Is_Universal_Numeric_Type (Etype (Right))
1978 then
1979 Otype := Find_Universal_Operator_Type (N);
1980 end if;
1981
1982 -- Fold for cases where both operands are of integer type
1983
1984 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1985 declare
1986 Left_Int : constant Uint := Expr_Value (Left);
1987 Right_Int : constant Uint := Expr_Value (Right);
1988 Result : Uint;
1989
1990 begin
1991 case Nkind (N) is
1992 when N_Op_Add =>
1993 Result := Left_Int + Right_Int;
1994
1995 when N_Op_Subtract =>
1996 Result := Left_Int - Right_Int;
1997
1998 when N_Op_Multiply =>
1999 if OK_Bits
2000 (N, UI_From_Int
2001 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
2002 then
2003 Result := Left_Int * Right_Int;
2004 else
2005 Result := Left_Int;
2006 end if;
2007
2008 when N_Op_Divide =>
2009
2010 -- The exception Constraint_Error is raised by integer
2011 -- division, rem and mod if the right operand is zero.
2012
2013 if Right_Int = 0 then
2014
2015 -- When SPARK_Mode is On, force a warning instead of
2016 -- an error in that case, as this likely corresponds
2017 -- to deactivated code.
2018
2019 Apply_Compile_Time_Constraint_Error
2020 (N, "division by zero", CE_Divide_By_Zero,
2021 Warn => not Stat or SPARK_Mode = On);
2022 Set_Raises_Constraint_Error (N);
2023 return;
2024
2025 -- Otherwise we can do the division
2026
2027 else
2028 Result := Left_Int / Right_Int;
2029 end if;
2030
2031 when N_Op_Mod =>
2032
2033 -- The exception Constraint_Error is raised by integer
2034 -- division, rem and mod if the right operand is zero.
2035
2036 if Right_Int = 0 then
2037
2038 -- When SPARK_Mode is On, force a warning instead of
2039 -- an error in that case, as this likely corresponds
2040 -- to deactivated code.
2041
2042 Apply_Compile_Time_Constraint_Error
2043 (N, "mod with zero divisor", CE_Divide_By_Zero,
2044 Warn => not Stat or SPARK_Mode = On);
2045 return;
2046
2047 else
2048 Result := Left_Int mod Right_Int;
2049 end if;
2050
2051 when N_Op_Rem =>
2052
2053 -- The exception Constraint_Error is raised by integer
2054 -- division, rem and mod if the right operand is zero.
2055
2056 if Right_Int = 0 then
2057
2058 -- When SPARK_Mode is On, force a warning instead of
2059 -- an error in that case, as this likely corresponds
2060 -- to deactivated code.
2061
2062 Apply_Compile_Time_Constraint_Error
2063 (N, "rem with zero divisor", CE_Divide_By_Zero,
2064 Warn => not Stat or SPARK_Mode = On);
2065 return;
2066
2067 else
2068 Result := Left_Int rem Right_Int;
2069 end if;
2070
2071 when others =>
2072 raise Program_Error;
2073 end case;
2074
2075 -- Adjust the result by the modulus if the type is a modular type
2076
2077 if Is_Modular_Integer_Type (Ltype) then
2078 Result := Result mod Modulus (Ltype);
2079
2080 -- For a signed integer type, check non-static overflow
2081
2082 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2083 declare
2084 BT : constant Entity_Id := Base_Type (Ltype);
2085 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2086 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2087 begin
2088 if Result < Lo or else Result > Hi then
2089 Apply_Compile_Time_Constraint_Error
2090 (N, "value not in range of }??",
2091 CE_Overflow_Check_Failed,
2092 Ent => BT);
2093 return;
2094 end if;
2095 end;
2096 end if;
2097
2098 -- If we get here we can fold the result
2099
2100 Fold_Uint (N, Result, Stat);
2101 end;
2102
2103 -- Cases where at least one operand is a real. We handle the cases of
2104 -- both reals, or mixed/real integer cases (the latter happen only for
2105 -- divide and multiply, and the result is always real).
2106
2107 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2108 declare
2109 Left_Real : Ureal;
2110 Right_Real : Ureal;
2111 Result : Ureal;
2112
2113 begin
2114 if Is_Real_Type (Ltype) then
2115 Left_Real := Expr_Value_R (Left);
2116 else
2117 Left_Real := UR_From_Uint (Expr_Value (Left));
2118 end if;
2119
2120 if Is_Real_Type (Rtype) then
2121 Right_Real := Expr_Value_R (Right);
2122 else
2123 Right_Real := UR_From_Uint (Expr_Value (Right));
2124 end if;
2125
2126 if Nkind (N) = N_Op_Add then
2127 Result := Left_Real + Right_Real;
2128
2129 elsif Nkind (N) = N_Op_Subtract then
2130 Result := Left_Real - Right_Real;
2131
2132 elsif Nkind (N) = N_Op_Multiply then
2133 Result := Left_Real * Right_Real;
2134
2135 else pragma Assert (Nkind (N) = N_Op_Divide);
2136 if UR_Is_Zero (Right_Real) then
2137 Apply_Compile_Time_Constraint_Error
2138 (N, "division by zero", CE_Divide_By_Zero);
2139 return;
2140 end if;
2141
2142 Result := Left_Real / Right_Real;
2143 end if;
2144
2145 Fold_Ureal (N, Result, Stat);
2146 end;
2147 end if;
2148
2149 -- If the operator was resolved to a specific type, make sure that type
2150 -- is frozen even if the expression is folded into a literal (which has
2151 -- a universal type).
2152
2153 if Present (Otype) then
2154 Freeze_Before (N, Otype);
2155 end if;
2156 end Eval_Arithmetic_Op;
2157
2158 ----------------------------
2159 -- Eval_Character_Literal --
2160 ----------------------------
2161
2162 -- Nothing to be done
2163
2164 procedure Eval_Character_Literal (N : Node_Id) is
2165 pragma Warnings (Off, N);
2166 begin
2167 null;
2168 end Eval_Character_Literal;
2169
2170 ---------------
2171 -- Eval_Call --
2172 ---------------
2173
2174 -- Static function calls are either calls to predefined operators
2175 -- with static arguments, or calls to functions that rename a literal.
2176 -- Only the latter case is handled here, predefined operators are
2177 -- constant-folded elsewhere.
2178
2179 -- If the function is itself inherited (see 7423-001) the literal of
2180 -- the parent type must be explicitly converted to the return type
2181 -- of the function.
2182
2183 procedure Eval_Call (N : Node_Id) is
2184 Loc : constant Source_Ptr := Sloc (N);
2185 Typ : constant Entity_Id := Etype (N);
2186 Lit : Entity_Id;
2187
2188 begin
2189 if Nkind (N) = N_Function_Call
2190 and then No (Parameter_Associations (N))
2191 and then Is_Entity_Name (Name (N))
2192 and then Present (Alias (Entity (Name (N))))
2193 and then Is_Enumeration_Type (Base_Type (Typ))
2194 then
2195 Lit := Ultimate_Alias (Entity (Name (N)));
2196
2197 if Ekind (Lit) = E_Enumeration_Literal then
2198 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2199 Rewrite
2200 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2201 else
2202 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2203 end if;
2204
2205 Resolve (N, Typ);
2206 end if;
2207 end if;
2208 end Eval_Call;
2209
2210 --------------------------
2211 -- Eval_Case_Expression --
2212 --------------------------
2213
2214 -- A conditional expression is static if all its conditions and dependent
2215 -- expressions are static. Note that we do not care if the dependent
2216 -- expressions raise CE, except for the one that will be selected.
2217
2218 procedure Eval_Case_Expression (N : Node_Id) is
2219 Alt : Node_Id;
2220 Choice : Node_Id;
2221
2222 begin
2223 Set_Is_Static_Expression (N, False);
2224
2225 if Error_Posted (Expression (N))
2226 or else not Is_Static_Expression (Expression (N))
2227 then
2228 Check_Non_Static_Context (Expression (N));
2229 return;
2230 end if;
2231
2232 -- First loop, make sure all the alternatives are static expressions
2233 -- none of which raise Constraint_Error. We make the Constraint_Error
2234 -- check because part of the legality condition for a correct static
2235 -- case expression is that the cases are covered, like any other case
2236 -- expression. And we can't do that if any of the conditions raise an
2237 -- exception, so we don't even try to evaluate if that is the case.
2238
2239 Alt := First (Alternatives (N));
2240 while Present (Alt) loop
2241
2242 -- The expression must be static, but we don't care at this stage
2243 -- if it raises Constraint_Error (the alternative might not match,
2244 -- in which case the expression is statically unevaluated anyway).
2245
2246 if not Is_Static_Expression (Expression (Alt)) then
2247 Check_Non_Static_Context (Expression (Alt));
2248 return;
2249 end if;
2250
2251 -- The choices of a case always have to be static, and cannot raise
2252 -- an exception. If this condition is not met, then the expression
2253 -- is plain illegal, so just abandon evaluation attempts. No need
2254 -- to check non-static context when we have something illegal anyway.
2255
2256 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2257 return;
2258 end if;
2259
2260 Next (Alt);
2261 end loop;
2262
2263 -- OK, if the above loop gets through it means that all choices are OK
2264 -- static (don't raise exceptions), so the whole case is static, and we
2265 -- can find the matching alternative.
2266
2267 Set_Is_Static_Expression (N);
2268
2269 -- Now to deal with propagating a possible Constraint_Error
2270
2271 -- If the selecting expression raises CE, propagate and we are done
2272
2273 if Raises_Constraint_Error (Expression (N)) then
2274 Set_Raises_Constraint_Error (N);
2275
2276 -- Otherwise we need to check the alternatives to find the matching
2277 -- one. CE's in other than the matching one are not relevant. But we
2278 -- do need to check the matching one. Unlike the first loop, we do not
2279 -- have to go all the way through, when we find the matching one, quit.
2280
2281 else
2282 Alt := First (Alternatives (N));
2283 Search : loop
2284
2285 -- We must find a match among the alternatives. If not, this must
2286 -- be due to other errors, so just ignore, leaving as non-static.
2287
2288 if No (Alt) then
2289 Set_Is_Static_Expression (N, False);
2290 return;
2291 end if;
2292
2293 -- Otherwise loop through choices of this alternative
2294
2295 Choice := First (Discrete_Choices (Alt));
2296 while Present (Choice) loop
2297
2298 -- If we find a matching choice, then the Expression of this
2299 -- alternative replaces N (Raises_Constraint_Error flag is
2300 -- included, so we don't have to special case that).
2301
2302 if Choice_Matches (Expression (N), Choice) = Match then
2303 Rewrite (N, Relocate_Node (Expression (Alt)));
2304 return;
2305 end if;
2306
2307 Next (Choice);
2308 end loop;
2309
2310 Next (Alt);
2311 end loop Search;
2312 end if;
2313 end Eval_Case_Expression;
2314
2315 ------------------------
2316 -- Eval_Concatenation --
2317 ------------------------
2318
2319 -- Concatenation is a static function, so the result is static if both
2320 -- operands are static (RM 4.9(7), 4.9(21)).
2321
2322 procedure Eval_Concatenation (N : Node_Id) is
2323 Left : constant Node_Id := Left_Opnd (N);
2324 Right : constant Node_Id := Right_Opnd (N);
2325 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
2326 Stat : Boolean;
2327 Fold : Boolean;
2328
2329 begin
2330 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2331 -- non-static context.
2332
2333 if Ada_Version = Ada_83
2334 and then Comes_From_Source (N)
2335 then
2336 Check_Non_Static_Context (Left);
2337 Check_Non_Static_Context (Right);
2338 return;
2339 end if;
2340
2341 -- If not foldable we are done. In principle concatenation that yields
2342 -- any string type is static (i.e. an array type of character types).
2343 -- However, character types can include enumeration literals, and
2344 -- concatenation in that case cannot be described by a literal, so we
2345 -- only consider the operation static if the result is an array of
2346 -- (a descendant of) a predefined character type.
2347
2348 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2349
2350 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
2351 Set_Is_Static_Expression (N, False);
2352 return;
2353 end if;
2354
2355 -- Compile time string concatenation
2356
2357 -- ??? Note that operands that are aggregates can be marked as static,
2358 -- so we should attempt at a later stage to fold concatenations with
2359 -- such aggregates.
2360
2361 declare
2362 Left_Str : constant Node_Id := Get_String_Val (Left);
2363 Left_Len : Nat;
2364 Right_Str : constant Node_Id := Get_String_Val (Right);
2365 Folded_Val : String_Id := No_String;
2366
2367 begin
2368 -- Establish new string literal, and store left operand. We make
2369 -- sure to use the special Start_String that takes an operand if
2370 -- the left operand is a string literal. Since this is optimized
2371 -- in the case where that is the most recently created string
2372 -- literal, we ensure efficient time/space behavior for the
2373 -- case of a concatenation of a series of string literals.
2374
2375 if Nkind (Left_Str) = N_String_Literal then
2376 Left_Len := String_Length (Strval (Left_Str));
2377
2378 -- If the left operand is the empty string, and the right operand
2379 -- is a string literal (the case of "" & "..."), the result is the
2380 -- value of the right operand. This optimization is important when
2381 -- Is_Folded_In_Parser, to avoid copying an enormous right
2382 -- operand.
2383
2384 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2385 Folded_Val := Strval (Right_Str);
2386 else
2387 Start_String (Strval (Left_Str));
2388 end if;
2389
2390 else
2391 Start_String;
2392 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
2393 Left_Len := 1;
2394 end if;
2395
2396 -- Now append the characters of the right operand, unless we
2397 -- optimized the "" & "..." case above.
2398
2399 if Nkind (Right_Str) = N_String_Literal then
2400 if Left_Len /= 0 then
2401 Store_String_Chars (Strval (Right_Str));
2402 Folded_Val := End_String;
2403 end if;
2404 else
2405 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
2406 Folded_Val := End_String;
2407 end if;
2408
2409 Set_Is_Static_Expression (N, Stat);
2410
2411 -- If left operand is the empty string, the result is the
2412 -- right operand, including its bounds if anomalous.
2413
2414 if Left_Len = 0
2415 and then Is_Array_Type (Etype (Right))
2416 and then Etype (Right) /= Any_String
2417 then
2418 Set_Etype (N, Etype (Right));
2419 end if;
2420
2421 Fold_Str (N, Folded_Val, Static => Stat);
2422 end;
2423 end Eval_Concatenation;
2424
2425 ----------------------
2426 -- Eval_Entity_Name --
2427 ----------------------
2428
2429 -- This procedure is used for identifiers and expanded names other than
2430 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2431 -- static if they denote a static constant (RM 4.9(6)) or if the name
2432 -- denotes an enumeration literal (RM 4.9(22)).
2433
2434 procedure Eval_Entity_Name (N : Node_Id) is
2435 Def_Id : constant Entity_Id := Entity (N);
2436 Val : Node_Id;
2437
2438 begin
2439 -- Enumeration literals are always considered to be constants
2440 -- and cannot raise Constraint_Error (RM 4.9(22)).
2441
2442 if Ekind (Def_Id) = E_Enumeration_Literal then
2443 Set_Is_Static_Expression (N);
2444 return;
2445
2446 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2447 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2448 -- it does not violate 10.2.1(8) here, since this is not a variable.
2449
2450 elsif Ekind (Def_Id) = E_Constant then
2451
2452 -- Deferred constants must always be treated as nonstatic outside the
2453 -- scope of their full view.
2454
2455 if Present (Full_View (Def_Id))
2456 and then not In_Open_Scopes (Scope (Def_Id))
2457 then
2458 Val := Empty;
2459 else
2460 Val := Constant_Value (Def_Id);
2461 end if;
2462
2463 if Present (Val) then
2464 Set_Is_Static_Expression
2465 (N, Is_Static_Expression (Val)
2466 and then Is_Static_Subtype (Etype (Def_Id)));
2467 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2468
2469 if not Is_Static_Expression (N)
2470 and then not Is_Generic_Type (Etype (N))
2471 then
2472 Validate_Static_Object_Name (N);
2473 end if;
2474
2475 -- Mark constant condition in SCOs
2476
2477 if Generate_SCO
2478 and then Comes_From_Source (N)
2479 and then Is_Boolean_Type (Etype (Def_Id))
2480 and then Compile_Time_Known_Value (N)
2481 then
2482 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2483 end if;
2484
2485 return;
2486 end if;
2487 end if;
2488
2489 -- Fall through if the name is not static
2490
2491 Validate_Static_Object_Name (N);
2492 end Eval_Entity_Name;
2493
2494 ------------------------
2495 -- Eval_If_Expression --
2496 ------------------------
2497
2498 -- We can fold to a static expression if the condition and both dependent
2499 -- expressions are static. Otherwise, the only required processing is to do
2500 -- the check for non-static context for the then and else expressions.
2501
2502 procedure Eval_If_Expression (N : Node_Id) is
2503 Condition : constant Node_Id := First (Expressions (N));
2504 Then_Expr : constant Node_Id := Next (Condition);
2505 Else_Expr : constant Node_Id := Next (Then_Expr);
2506 Result : Node_Id;
2507 Non_Result : Node_Id;
2508
2509 Rstat : constant Boolean :=
2510 Is_Static_Expression (Condition)
2511 and then
2512 Is_Static_Expression (Then_Expr)
2513 and then
2514 Is_Static_Expression (Else_Expr);
2515 -- True if result is static
2516
2517 begin
2518 -- If result not static, nothing to do, otherwise set static result
2519
2520 if not Rstat then
2521 return;
2522 else
2523 Set_Is_Static_Expression (N);
2524 end if;
2525
2526 -- If any operand is Any_Type, just propagate to result and do not try
2527 -- to fold, this prevents cascaded errors.
2528
2529 if Etype (Condition) = Any_Type or else
2530 Etype (Then_Expr) = Any_Type or else
2531 Etype (Else_Expr) = Any_Type
2532 then
2533 Set_Etype (N, Any_Type);
2534 Set_Is_Static_Expression (N, False);
2535 return;
2536 end if;
2537
2538 -- If condition raises Constraint_Error then we have already signaled
2539 -- an error, and we just propagate to the result and do not fold.
2540
2541 if Raises_Constraint_Error (Condition) then
2542 Set_Raises_Constraint_Error (N);
2543 return;
2544 end if;
2545
2546 -- Static case where we can fold. Note that we don't try to fold cases
2547 -- where the condition is known at compile time, but the result is
2548 -- non-static. This avoids possible cases of infinite recursion where
2549 -- the expander puts in a redundant test and we remove it. Instead we
2550 -- deal with these cases in the expander.
2551
2552 -- Select result operand
2553
2554 if Is_True (Expr_Value (Condition)) then
2555 Result := Then_Expr;
2556 Non_Result := Else_Expr;
2557 else
2558 Result := Else_Expr;
2559 Non_Result := Then_Expr;
2560 end if;
2561
2562 -- Note that it does not matter if the non-result operand raises a
2563 -- Constraint_Error, but if the result raises Constraint_Error then we
2564 -- replace the node with a raise Constraint_Error. This will properly
2565 -- propagate Raises_Constraint_Error since this flag is set in Result.
2566
2567 if Raises_Constraint_Error (Result) then
2568 Rewrite_In_Raise_CE (N, Result);
2569 Check_Non_Static_Context (Non_Result);
2570
2571 -- Otherwise the result operand replaces the original node
2572
2573 else
2574 Rewrite (N, Relocate_Node (Result));
2575 Set_Is_Static_Expression (N);
2576 end if;
2577 end Eval_If_Expression;
2578
2579 ----------------------------
2580 -- Eval_Indexed_Component --
2581 ----------------------------
2582
2583 -- Indexed components are never static, so we need to perform the check
2584 -- for non-static context on the index values. Then, we check if the
2585 -- value can be obtained at compile time, even though it is non-static.
2586
2587 procedure Eval_Indexed_Component (N : Node_Id) is
2588 Expr : Node_Id;
2589
2590 begin
2591 -- Check for non-static context on index values
2592
2593 Expr := First (Expressions (N));
2594 while Present (Expr) loop
2595 Check_Non_Static_Context (Expr);
2596 Next (Expr);
2597 end loop;
2598
2599 -- If the indexed component appears in an object renaming declaration
2600 -- then we do not want to try to evaluate it, since in this case we
2601 -- need the identity of the array element.
2602
2603 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2604 return;
2605
2606 -- Similarly if the indexed component appears as the prefix of an
2607 -- attribute we don't want to evaluate it, because at least for
2608 -- some cases of attributes we need the identify (e.g. Access, Size)
2609
2610 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2611 return;
2612 end if;
2613
2614 -- Note: there are other cases, such as the left side of an assignment,
2615 -- or an OUT parameter for a call, where the replacement results in the
2616 -- illegal use of a constant, But these cases are illegal in the first
2617 -- place, so the replacement, though silly, is harmless.
2618
2619 -- Now see if this is a constant array reference
2620
2621 if List_Length (Expressions (N)) = 1
2622 and then Is_Entity_Name (Prefix (N))
2623 and then Ekind (Entity (Prefix (N))) = E_Constant
2624 and then Present (Constant_Value (Entity (Prefix (N))))
2625 then
2626 declare
2627 Loc : constant Source_Ptr := Sloc (N);
2628 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2629 Sub : constant Node_Id := First (Expressions (N));
2630
2631 Atyp : Entity_Id;
2632 -- Type of array
2633
2634 Lin : Nat;
2635 -- Linear one's origin subscript value for array reference
2636
2637 Lbd : Node_Id;
2638 -- Lower bound of the first array index
2639
2640 Elm : Node_Id;
2641 -- Value from constant array
2642
2643 begin
2644 Atyp := Etype (Arr);
2645
2646 if Is_Access_Type (Atyp) then
2647 Atyp := Designated_Type (Atyp);
2648 end if;
2649
2650 -- If we have an array type (we should have but perhaps there are
2651 -- error cases where this is not the case), then see if we can do
2652 -- a constant evaluation of the array reference.
2653
2654 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2655 if Ekind (Atyp) = E_String_Literal_Subtype then
2656 Lbd := String_Literal_Low_Bound (Atyp);
2657 else
2658 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2659 end if;
2660
2661 if Compile_Time_Known_Value (Sub)
2662 and then Nkind (Arr) = N_Aggregate
2663 and then Compile_Time_Known_Value (Lbd)
2664 and then Is_Discrete_Type (Component_Type (Atyp))
2665 then
2666 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2667
2668 if List_Length (Expressions (Arr)) >= Lin then
2669 Elm := Pick (Expressions (Arr), Lin);
2670
2671 -- If the resulting expression is compile-time-known,
2672 -- then we can rewrite the indexed component with this
2673 -- value, being sure to mark the result as non-static.
2674 -- We also reset the Sloc, in case this generates an
2675 -- error later on (e.g. 136'Access).
2676
2677 if Compile_Time_Known_Value (Elm) then
2678 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2679 Set_Is_Static_Expression (N, False);
2680 Set_Sloc (N, Loc);
2681 end if;
2682 end if;
2683
2684 -- We can also constant-fold if the prefix is a string literal.
2685 -- This will be useful in an instantiation or an inlining.
2686
2687 elsif Compile_Time_Known_Value (Sub)
2688 and then Nkind (Arr) = N_String_Literal
2689 and then Compile_Time_Known_Value (Lbd)
2690 and then Expr_Value (Lbd) = 1
2691 and then Expr_Value (Sub) <=
2692 String_Literal_Length (Etype (Arr))
2693 then
2694 declare
2695 C : constant Char_Code :=
2696 Get_String_Char (Strval (Arr),
2697 UI_To_Int (Expr_Value (Sub)));
2698 begin
2699 Set_Character_Literal_Name (C);
2700
2701 Elm :=
2702 Make_Character_Literal (Loc,
2703 Chars => Name_Find,
2704 Char_Literal_Value => UI_From_CC (C));
2705 Set_Etype (Elm, Component_Type (Atyp));
2706 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2707 Set_Is_Static_Expression (N, False);
2708 end;
2709 end if;
2710 end if;
2711 end;
2712 end if;
2713 end Eval_Indexed_Component;
2714
2715 --------------------------
2716 -- Eval_Integer_Literal --
2717 --------------------------
2718
2719 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2720 -- as static by the analyzer. The reason we did it that early is to allow
2721 -- the possibility of turning off the Is_Static_Expression flag after
2722 -- analysis, but before resolution, when integer literals are generated in
2723 -- the expander that do not correspond to static expressions.
2724
2725 procedure Eval_Integer_Literal (N : Node_Id) is
2726 function In_Any_Integer_Context (Context : Node_Id) return Boolean;
2727 -- If the literal is resolved with a specific type in a context where
2728 -- the expected type is Any_Integer, there are no range checks on the
2729 -- literal. By the time the literal is evaluated, it carries the type
2730 -- imposed by the enclosing expression, and we must recover the context
2731 -- to determine that Any_Integer is meant.
2732
2733 ----------------------------
2734 -- In_Any_Integer_Context --
2735 ----------------------------
2736
2737 function In_Any_Integer_Context (Context : Node_Id) return Boolean is
2738 begin
2739 -- Any_Integer also appears in digits specifications for real types,
2740 -- but those have bounds smaller that those of any integer base type,
2741 -- so we can safely ignore these cases.
2742
2743 return
2744 Nkind_In (Context, N_Attribute_Definition_Clause,
2745 N_Attribute_Reference,
2746 N_Modular_Type_Definition,
2747 N_Number_Declaration,
2748 N_Signed_Integer_Type_Definition);
2749 end In_Any_Integer_Context;
2750
2751 -- Local variables
2752
2753 Par : constant Node_Id := Parent (N);
2754 Typ : constant Entity_Id := Etype (N);
2755
2756 -- Start of processing for Eval_Integer_Literal
2757
2758 begin
2759 -- If the literal appears in a non-expression context, then it is
2760 -- certainly appearing in a non-static context, so check it. This is
2761 -- actually a redundant check, since Check_Non_Static_Context would
2762 -- check it, but it seems worthwhile to optimize out the call.
2763
2764 -- Additionally, when the literal appears within an if or case
2765 -- expression it must be checked as well. However, due to the literal
2766 -- appearing within a conditional statement, expansion greatly changes
2767 -- the nature of its context and performing some of the checks within
2768 -- Check_Non_Static_Context on an expanded literal may lead to spurious
2769 -- and misleading warnings.
2770
2771 if (Nkind_In (Par, N_Case_Expression_Alternative, N_If_Expression)
2772 or else Nkind (Parent (N)) not in N_Subexpr)
2773 and then (not Nkind_In (Par, N_Case_Expression_Alternative,
2774 N_If_Expression)
2775 or else Comes_From_Source (N))
2776 and then not In_Any_Integer_Context (Par)
2777 then
2778 Check_Non_Static_Context (N);
2779 end if;
2780
2781 -- Modular integer literals must be in their base range
2782
2783 if Is_Modular_Integer_Type (Typ)
2784 and then Is_Out_Of_Range (N, Base_Type (Typ), Assume_Valid => True)
2785 then
2786 Out_Of_Range (N);
2787 end if;
2788 end Eval_Integer_Literal;
2789
2790 ---------------------
2791 -- Eval_Logical_Op --
2792 ---------------------
2793
2794 -- Logical operations are static functions, so the result is potentially
2795 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2796
2797 procedure Eval_Logical_Op (N : Node_Id) is
2798 Left : constant Node_Id := Left_Opnd (N);
2799 Right : constant Node_Id := Right_Opnd (N);
2800 Stat : Boolean;
2801 Fold : Boolean;
2802
2803 begin
2804 -- If not foldable we are done
2805
2806 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2807
2808 if not Fold then
2809 return;
2810 end if;
2811
2812 -- Compile time evaluation of logical operation
2813
2814 declare
2815 Left_Int : constant Uint := Expr_Value (Left);
2816 Right_Int : constant Uint := Expr_Value (Right);
2817
2818 begin
2819 if Is_Modular_Integer_Type (Etype (N)) then
2820 declare
2821 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2822 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2823
2824 begin
2825 To_Bits (Left_Int, Left_Bits);
2826 To_Bits (Right_Int, Right_Bits);
2827
2828 -- Note: should really be able to use array ops instead of
2829 -- these loops, but they weren't working at the time ???
2830
2831 if Nkind (N) = N_Op_And then
2832 for J in Left_Bits'Range loop
2833 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2834 end loop;
2835
2836 elsif Nkind (N) = N_Op_Or then
2837 for J in Left_Bits'Range loop
2838 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2839 end loop;
2840
2841 else
2842 pragma Assert (Nkind (N) = N_Op_Xor);
2843
2844 for J in Left_Bits'Range loop
2845 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2846 end loop;
2847 end if;
2848
2849 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2850 end;
2851
2852 else
2853 pragma Assert (Is_Boolean_Type (Etype (N)));
2854
2855 if Nkind (N) = N_Op_And then
2856 Fold_Uint (N,
2857 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2858
2859 elsif Nkind (N) = N_Op_Or then
2860 Fold_Uint (N,
2861 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2862
2863 else
2864 pragma Assert (Nkind (N) = N_Op_Xor);
2865 Fold_Uint (N,
2866 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2867 end if;
2868 end if;
2869 end;
2870 end Eval_Logical_Op;
2871
2872 ------------------------
2873 -- Eval_Membership_Op --
2874 ------------------------
2875
2876 -- A membership test is potentially static if the expression is static, and
2877 -- the range is a potentially static range, or is a subtype mark denoting a
2878 -- static subtype (RM 4.9(12)).
2879
2880 procedure Eval_Membership_Op (N : Node_Id) is
2881 Alts : constant List_Id := Alternatives (N);
2882 Choice : constant Node_Id := Right_Opnd (N);
2883 Expr : constant Node_Id := Left_Opnd (N);
2884 Result : Match_Result;
2885
2886 begin
2887 -- Ignore if error in either operand, except to make sure that Any_Type
2888 -- is properly propagated to avoid junk cascaded errors.
2889
2890 if Etype (Expr) = Any_Type
2891 or else (Present (Choice) and then Etype (Choice) = Any_Type)
2892 then
2893 Set_Etype (N, Any_Type);
2894 return;
2895 end if;
2896
2897 -- If left operand non-static, then nothing to do
2898
2899 if not Is_Static_Expression (Expr) then
2900 return;
2901 end if;
2902
2903 -- If choice is non-static, left operand is in non-static context
2904
2905 if (Present (Choice) and then not Is_Static_Choice (Choice))
2906 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2907 then
2908 Check_Non_Static_Context (Expr);
2909 return;
2910 end if;
2911
2912 -- Otherwise we definitely have a static expression
2913
2914 Set_Is_Static_Expression (N);
2915
2916 -- If left operand raises Constraint_Error, propagate and we are done
2917
2918 if Raises_Constraint_Error (Expr) then
2919 Set_Raises_Constraint_Error (N, True);
2920
2921 -- See if we match
2922
2923 else
2924 if Present (Choice) then
2925 Result := Choice_Matches (Expr, Choice);
2926 else
2927 Result := Choices_Match (Expr, Alts);
2928 end if;
2929
2930 -- If result is Non_Static, it means that we raise Constraint_Error,
2931 -- since we already tested that the operands were themselves static.
2932
2933 if Result = Non_Static then
2934 Set_Raises_Constraint_Error (N);
2935
2936 -- Otherwise we have our result (flipped if NOT IN case)
2937
2938 else
2939 Fold_Uint
2940 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2941 Warn_On_Known_Condition (N);
2942 end if;
2943 end if;
2944 end Eval_Membership_Op;
2945
2946 ------------------------
2947 -- Eval_Named_Integer --
2948 ------------------------
2949
2950 procedure Eval_Named_Integer (N : Node_Id) is
2951 begin
2952 Fold_Uint (N,
2953 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2954 end Eval_Named_Integer;
2955
2956 ---------------------
2957 -- Eval_Named_Real --
2958 ---------------------
2959
2960 procedure Eval_Named_Real (N : Node_Id) is
2961 begin
2962 Fold_Ureal (N,
2963 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2964 end Eval_Named_Real;
2965
2966 -------------------
2967 -- Eval_Op_Expon --
2968 -------------------
2969
2970 -- Exponentiation is a static functions, so the result is potentially
2971 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2972
2973 procedure Eval_Op_Expon (N : Node_Id) is
2974 Left : constant Node_Id := Left_Opnd (N);
2975 Right : constant Node_Id := Right_Opnd (N);
2976 Stat : Boolean;
2977 Fold : Boolean;
2978
2979 begin
2980 -- If not foldable we are done
2981
2982 Test_Expression_Is_Foldable
2983 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2984
2985 -- Return if not foldable
2986
2987 if not Fold then
2988 return;
2989 end if;
2990
2991 if Configurable_Run_Time_Mode and not Stat then
2992 return;
2993 end if;
2994
2995 -- Fold exponentiation operation
2996
2997 declare
2998 Right_Int : constant Uint := Expr_Value (Right);
2999
3000 begin
3001 -- Integer case
3002
3003 if Is_Integer_Type (Etype (Left)) then
3004 declare
3005 Left_Int : constant Uint := Expr_Value (Left);
3006 Result : Uint;
3007
3008 begin
3009 -- Exponentiation of an integer raises Constraint_Error for a
3010 -- negative exponent (RM 4.5.6).
3011
3012 if Right_Int < 0 then
3013 Apply_Compile_Time_Constraint_Error
3014 (N, "integer exponent negative", CE_Range_Check_Failed,
3015 Warn => not Stat);
3016 return;
3017
3018 else
3019 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
3020 Result := Left_Int ** Right_Int;
3021 else
3022 Result := Left_Int;
3023 end if;
3024
3025 if Is_Modular_Integer_Type (Etype (N)) then
3026 Result := Result mod Modulus (Etype (N));
3027 end if;
3028
3029 Fold_Uint (N, Result, Stat);
3030 end if;
3031 end;
3032
3033 -- Real case
3034
3035 else
3036 declare
3037 Left_Real : constant Ureal := Expr_Value_R (Left);
3038
3039 begin
3040 -- Cannot have a zero base with a negative exponent
3041
3042 if UR_Is_Zero (Left_Real) then
3043
3044 if Right_Int < 0 then
3045 Apply_Compile_Time_Constraint_Error
3046 (N, "zero ** negative integer", CE_Range_Check_Failed,
3047 Warn => not Stat);
3048 return;
3049 else
3050 Fold_Ureal (N, Ureal_0, Stat);
3051 end if;
3052
3053 else
3054 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
3055 end if;
3056 end;
3057 end if;
3058 end;
3059 end Eval_Op_Expon;
3060
3061 -----------------
3062 -- Eval_Op_Not --
3063 -----------------
3064
3065 -- The not operation is a static functions, so the result is potentially
3066 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
3067
3068 procedure Eval_Op_Not (N : Node_Id) is
3069 Right : constant Node_Id := Right_Opnd (N);
3070 Stat : Boolean;
3071 Fold : Boolean;
3072
3073 begin
3074 -- If not foldable we are done
3075
3076 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3077
3078 if not Fold then
3079 return;
3080 end if;
3081
3082 -- Fold not operation
3083
3084 declare
3085 Rint : constant Uint := Expr_Value (Right);
3086 Typ : constant Entity_Id := Etype (N);
3087
3088 begin
3089 -- Negation is equivalent to subtracting from the modulus minus one.
3090 -- For a binary modulus this is equivalent to the ones-complement of
3091 -- the original value. For a nonbinary modulus this is an arbitrary
3092 -- but consistent definition.
3093
3094 if Is_Modular_Integer_Type (Typ) then
3095 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
3096 else pragma Assert (Is_Boolean_Type (Typ));
3097 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
3098 end if;
3099
3100 Set_Is_Static_Expression (N, Stat);
3101 end;
3102 end Eval_Op_Not;
3103
3104 -------------------------------
3105 -- Eval_Qualified_Expression --
3106 -------------------------------
3107
3108 -- A qualified expression is potentially static if its subtype mark denotes
3109 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3110
3111 procedure Eval_Qualified_Expression (N : Node_Id) is
3112 Operand : constant Node_Id := Expression (N);
3113 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3114
3115 Stat : Boolean;
3116 Fold : Boolean;
3117 Hex : Boolean;
3118
3119 begin
3120 -- Can only fold if target is string or scalar and subtype is static.
3121 -- Also, do not fold if our parent is an allocator (this is because the
3122 -- qualified expression is really part of the syntactic structure of an
3123 -- allocator, and we do not want to end up with something that
3124 -- corresponds to "new 1" where the 1 is the result of folding a
3125 -- qualified expression).
3126
3127 if not Is_Static_Subtype (Target_Type)
3128 or else Nkind (Parent (N)) = N_Allocator
3129 then
3130 Check_Non_Static_Context (Operand);
3131
3132 -- If operand is known to raise constraint_error, set the flag on the
3133 -- expression so it does not get optimized away.
3134
3135 if Nkind (Operand) = N_Raise_Constraint_Error then
3136 Set_Raises_Constraint_Error (N);
3137 end if;
3138
3139 return;
3140 end if;
3141
3142 -- If not foldable we are done
3143
3144 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3145
3146 if not Fold then
3147 return;
3148
3149 -- Don't try fold if target type has Constraint_Error bounds
3150
3151 elsif not Is_OK_Static_Subtype (Target_Type) then
3152 Set_Raises_Constraint_Error (N);
3153 return;
3154 end if;
3155
3156 -- Here we will fold, save Print_In_Hex indication
3157
3158 Hex := Nkind (Operand) = N_Integer_Literal
3159 and then Print_In_Hex (Operand);
3160
3161 -- Fold the result of qualification
3162
3163 if Is_Discrete_Type (Target_Type) then
3164 Fold_Uint (N, Expr_Value (Operand), Stat);
3165
3166 -- Preserve Print_In_Hex indication
3167
3168 if Hex and then Nkind (N) = N_Integer_Literal then
3169 Set_Print_In_Hex (N);
3170 end if;
3171
3172 elsif Is_Real_Type (Target_Type) then
3173 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
3174
3175 else
3176 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
3177
3178 if not Stat then
3179 Set_Is_Static_Expression (N, False);
3180 else
3181 Check_String_Literal_Length (N, Target_Type);
3182 end if;
3183
3184 return;
3185 end if;
3186
3187 -- The expression may be foldable but not static
3188
3189 Set_Is_Static_Expression (N, Stat);
3190
3191 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3192 Out_Of_Range (N);
3193 end if;
3194 end Eval_Qualified_Expression;
3195
3196 -----------------------
3197 -- Eval_Real_Literal --
3198 -----------------------
3199
3200 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3201 -- as static by the analyzer. The reason we did it that early is to allow
3202 -- the possibility of turning off the Is_Static_Expression flag after
3203 -- analysis, but before resolution, when integer literals are generated
3204 -- in the expander that do not correspond to static expressions.
3205
3206 procedure Eval_Real_Literal (N : Node_Id) is
3207 PK : constant Node_Kind := Nkind (Parent (N));
3208
3209 begin
3210 -- If the literal appears in a non-expression context and not as part of
3211 -- a number declaration, then it is appearing in a non-static context,
3212 -- so check it.
3213
3214 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
3215 Check_Non_Static_Context (N);
3216 end if;
3217 end Eval_Real_Literal;
3218
3219 ------------------------
3220 -- Eval_Relational_Op --
3221 ------------------------
3222
3223 -- Relational operations are static functions, so the result is static if
3224 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3225 -- the result is never static, even if the operands are.
3226
3227 -- However, for internally generated nodes, we allow string equality and
3228 -- inequality to be static. This is because we rewrite A in "ABC" as an
3229 -- equality test A = "ABC", and the former is definitely static.
3230
3231 procedure Eval_Relational_Op (N : Node_Id) is
3232 Left : constant Node_Id := Left_Opnd (N);
3233 Right : constant Node_Id := Right_Opnd (N);
3234
3235 procedure Decompose_Expr
3236 (Expr : Node_Id;
3237 Ent : out Entity_Id;
3238 Kind : out Character;
3239 Cons : out Uint;
3240 Orig : Boolean := True);
3241 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3242 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3243 -- simple entity, and Cons is the value of K. If the expression is not
3244 -- of the required form, Ent is set to Empty.
3245 --
3246 -- Orig indicates whether Expr is the original expression to consider,
3247 -- or if we are handling a subexpression (e.g. recursive call to
3248 -- Decompose_Expr).
3249
3250 procedure Fold_General_Op (Is_Static : Boolean);
3251 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3252 -- be set when the operator denotes a static expression.
3253
3254 procedure Fold_Static_Real_Op;
3255 -- Attempt to fold static real type relational operator N
3256
3257 function Static_Length (Expr : Node_Id) return Uint;
3258 -- If Expr is an expression for a constrained array whose length is
3259 -- known at compile time, return the non-negative length, otherwise
3260 -- return -1.
3261
3262 --------------------
3263 -- Decompose_Expr --
3264 --------------------
3265
3266 procedure Decompose_Expr
3267 (Expr : Node_Id;
3268 Ent : out Entity_Id;
3269 Kind : out Character;
3270 Cons : out Uint;
3271 Orig : Boolean := True)
3272 is
3273 Exp : Node_Id;
3274
3275 begin
3276 -- Assume that the expression does not meet the expected form
3277
3278 Cons := No_Uint;
3279 Ent := Empty;
3280 Kind := '?';
3281
3282 if Nkind (Expr) = N_Op_Add
3283 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3284 then
3285 Exp := Left_Opnd (Expr);
3286 Cons := Expr_Value (Right_Opnd (Expr));
3287
3288 elsif Nkind (Expr) = N_Op_Subtract
3289 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3290 then
3291 Exp := Left_Opnd (Expr);
3292 Cons := -Expr_Value (Right_Opnd (Expr));
3293
3294 -- If the bound is a constant created to remove side effects, recover
3295 -- the original expression to see if it has one of the recognizable
3296 -- forms.
3297
3298 elsif Nkind (Expr) = N_Identifier
3299 and then not Comes_From_Source (Entity (Expr))
3300 and then Ekind (Entity (Expr)) = E_Constant
3301 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3302 then
3303 Exp := Expression (Parent (Entity (Expr)));
3304 Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3305
3306 -- If original expression includes an entity, create a reference
3307 -- to it for use below.
3308
3309 if Present (Ent) then
3310 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3311 else
3312 return;
3313 end if;
3314
3315 else
3316 -- Only consider the case of X + 0 for a full expression, and
3317 -- not when recursing, otherwise we may end up with evaluating
3318 -- expressions not known at compile time to 0.
3319
3320 if Orig then
3321 Exp := Expr;
3322 Cons := Uint_0;
3323 else
3324 return;
3325 end if;
3326 end if;
3327
3328 -- At this stage Exp is set to the potential X
3329
3330 if Nkind (Exp) = N_Attribute_Reference then
3331 if Attribute_Name (Exp) = Name_First then
3332 Kind := 'F';
3333 elsif Attribute_Name (Exp) = Name_Last then
3334 Kind := 'L';
3335 else
3336 return;
3337 end if;
3338
3339 Exp := Prefix (Exp);
3340
3341 else
3342 Kind := 'E';
3343 end if;
3344
3345 if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3346 Ent := Entity (Exp);
3347 end if;
3348 end Decompose_Expr;
3349
3350 ---------------------
3351 -- Fold_General_Op --
3352 ---------------------
3353
3354 procedure Fold_General_Op (Is_Static : Boolean) is
3355 CR : constant Compare_Result :=
3356 Compile_Time_Compare (Left, Right, Assume_Valid => False);
3357
3358 Result : Boolean;
3359
3360 begin
3361 if CR = Unknown then
3362 return;
3363 end if;
3364
3365 case Nkind (N) is
3366 when N_Op_Eq =>
3367 if CR = EQ then
3368 Result := True;
3369 elsif CR = NE or else CR = GT or else CR = LT then
3370 Result := False;
3371 else
3372 return;
3373 end if;
3374
3375 when N_Op_Ge =>
3376 if CR = GT or else CR = EQ or else CR = GE then
3377 Result := True;
3378 elsif CR = LT then
3379 Result := False;
3380 else
3381 return;
3382 end if;
3383
3384 when N_Op_Gt =>
3385 if CR = GT then
3386 Result := True;
3387 elsif CR = EQ or else CR = LT or else CR = LE then
3388 Result := False;
3389 else
3390 return;
3391 end if;
3392
3393 when N_Op_Le =>
3394 if CR = LT or else CR = EQ or else CR = LE then
3395 Result := True;
3396 elsif CR = GT then
3397 Result := False;
3398 else
3399 return;
3400 end if;
3401
3402 when N_Op_Lt =>
3403 if CR = LT then
3404 Result := True;
3405 elsif CR = EQ or else CR = GT or else CR = GE then
3406 Result := False;
3407 else
3408 return;
3409 end if;
3410
3411 when N_Op_Ne =>
3412 if CR = NE or else CR = GT or else CR = LT then
3413 Result := True;
3414 elsif CR = EQ then
3415 Result := False;
3416 else
3417 return;
3418 end if;
3419
3420 when others =>
3421 raise Program_Error;
3422 end case;
3423
3424 -- Determine the potential outcome of the relation assuming the
3425 -- operands are valid and emit a warning when the relation yields
3426 -- True or False only in the presence of invalid values.
3427
3428 Warn_On_Constant_Valid_Condition (N);
3429
3430 Fold_Uint (N, Test (Result), Is_Static);
3431 end Fold_General_Op;
3432
3433 -------------------------
3434 -- Fold_Static_Real_Op --
3435 -------------------------
3436
3437 procedure Fold_Static_Real_Op is
3438 Left_Real : constant Ureal := Expr_Value_R (Left);
3439 Right_Real : constant Ureal := Expr_Value_R (Right);
3440 Result : Boolean;
3441
3442 begin
3443 case Nkind (N) is
3444 when N_Op_Eq => Result := (Left_Real = Right_Real);
3445 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3446 when N_Op_Gt => Result := (Left_Real > Right_Real);
3447 when N_Op_Le => Result := (Left_Real <= Right_Real);
3448 when N_Op_Lt => Result := (Left_Real < Right_Real);
3449 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3450 when others => raise Program_Error;
3451 end case;
3452
3453 Fold_Uint (N, Test (Result), True);
3454 end Fold_Static_Real_Op;
3455
3456 -------------------
3457 -- Static_Length --
3458 -------------------
3459
3460 function Static_Length (Expr : Node_Id) return Uint is
3461 Cons1 : Uint;
3462 Cons2 : Uint;
3463 Ent1 : Entity_Id;
3464 Ent2 : Entity_Id;
3465 Kind1 : Character;
3466 Kind2 : Character;
3467 Typ : Entity_Id;
3468
3469 begin
3470 -- First easy case string literal
3471
3472 if Nkind (Expr) = N_String_Literal then
3473 return UI_From_Int (String_Length (Strval (Expr)));
3474
3475 -- With frontend inlining as performed in GNATprove mode, a variable
3476 -- may be inserted that has a string literal subtype. Deal with this
3477 -- specially as for the previous case.
3478
3479 elsif Ekind (Etype (Expr)) = E_String_Literal_Subtype then
3480 return String_Literal_Length (Etype (Expr));
3481
3482 -- Second easy case, not constrained subtype, so no length
3483
3484 elsif not Is_Constrained (Etype (Expr)) then
3485 return Uint_Minus_1;
3486 end if;
3487
3488 -- General case
3489
3490 Typ := Etype (First_Index (Etype (Expr)));
3491
3492 -- The simple case, both bounds are known at compile time
3493
3494 if Is_Discrete_Type (Typ)
3495 and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3496 and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3497 then
3498 return
3499 UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3500 Expr_Value (Type_Low_Bound (Typ)) + 1);
3501 end if;
3502
3503 -- A more complex case, where the bounds are of the form X [+/- K1]
3504 -- .. X [+/- K2]), where X is an expression that is either A'First or
3505 -- A'Last (with A an entity name), or X is an entity name, and the
3506 -- two X's are the same and K1 and K2 are known at compile time, in
3507 -- this case, the length can also be computed at compile time, even
3508 -- though the bounds are not known. A common case of this is e.g.
3509 -- (X'First .. X'First+5).
3510
3511 Decompose_Expr
3512 (Original_Node (Type_Low_Bound (Typ)), Ent1, Kind1, Cons1);
3513 Decompose_Expr
3514 (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3515
3516 if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3517 return Cons2 - Cons1 + 1;
3518 else
3519 return Uint_Minus_1;
3520 end if;
3521 end Static_Length;
3522
3523 -- Local variables
3524
3525 Left_Typ : constant Entity_Id := Etype (Left);
3526 Right_Typ : constant Entity_Id := Etype (Right);
3527 Fold : Boolean;
3528 Left_Len : Uint;
3529 Op_Typ : Entity_Id := Empty;
3530 Right_Len : Uint;
3531
3532 Is_Static_Expression : Boolean;
3533
3534 -- Start of processing for Eval_Relational_Op
3535
3536 begin
3537 -- One special case to deal with first. If we can tell that the result
3538 -- will be false because the lengths of one or more index subtypes are
3539 -- compile-time known and different, then we can replace the entire
3540 -- result by False. We only do this for one-dimensional arrays, because
3541 -- the case of multidimensional arrays is rare and too much trouble. If
3542 -- one of the operands is an illegal aggregate, its type might still be
3543 -- an arbitrary composite type, so nothing to do.
3544
3545 if Is_Array_Type (Left_Typ)
3546 and then Left_Typ /= Any_Composite
3547 and then Number_Dimensions (Left_Typ) = 1
3548 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3549 then
3550 if Raises_Constraint_Error (Left)
3551 or else
3552 Raises_Constraint_Error (Right)
3553 then
3554 return;
3555
3556 -- OK, we have the case where we may be able to do this fold
3557
3558 else
3559 Left_Len := Static_Length (Left);
3560 Right_Len := Static_Length (Right);
3561
3562 if Left_Len /= Uint_Minus_1
3563 and then Right_Len /= Uint_Minus_1
3564 and then Left_Len /= Right_Len
3565 then
3566 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3567 Warn_On_Known_Condition (N);
3568 return;
3569 end if;
3570 end if;
3571
3572 -- General case
3573
3574 else
3575 -- Initialize the value of Is_Static_Expression. The value of Fold
3576 -- returned by Test_Expression_Is_Foldable is not needed since, even
3577 -- when some operand is a variable, we can still perform the static
3578 -- evaluation of the expression in some cases (for example, for a
3579 -- variable of a subtype of Integer we statically know that any value
3580 -- stored in such variable is smaller than Integer'Last).
3581
3582 Test_Expression_Is_Foldable
3583 (N, Left, Right, Is_Static_Expression, Fold);
3584
3585 -- Only comparisons of scalars can give static results. A comparison
3586 -- of strings never yields a static result, even if both operands are
3587 -- static strings, except that as noted above, we allow equality and
3588 -- inequality for strings.
3589
3590 if Is_String_Type (Left_Typ)
3591 and then not Comes_From_Source (N)
3592 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3593 then
3594 null;
3595
3596 elsif not Is_Scalar_Type (Left_Typ) then
3597 Is_Static_Expression := False;
3598 Set_Is_Static_Expression (N, False);
3599 end if;
3600
3601 -- For operators on universal numeric types called as functions with
3602 -- an explicit scope, determine appropriate specific numeric type,
3603 -- and diagnose possible ambiguity.
3604
3605 if Is_Universal_Numeric_Type (Left_Typ)
3606 and then
3607 Is_Universal_Numeric_Type (Right_Typ)
3608 then
3609 Op_Typ := Find_Universal_Operator_Type (N);
3610 end if;
3611
3612 -- Attempt to fold the relational operator
3613
3614 if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3615 Fold_Static_Real_Op;
3616 else
3617 Fold_General_Op (Is_Static_Expression);
3618 end if;
3619 end if;
3620
3621 -- For the case of a folded relational operator on a specific numeric
3622 -- type, freeze the operand type now.
3623
3624 if Present (Op_Typ) then
3625 Freeze_Before (N, Op_Typ);
3626 end if;
3627
3628 Warn_On_Known_Condition (N);
3629 end Eval_Relational_Op;
3630
3631 ----------------
3632 -- Eval_Shift --
3633 ----------------
3634
3635 -- Shift operations are intrinsic operations that can never be static, so
3636 -- the only processing required is to perform the required check for a non
3637 -- static context for the two operands.
3638
3639 -- Actually we could do some compile time evaluation here some time ???
3640
3641 procedure Eval_Shift (N : Node_Id) is
3642 begin
3643 Check_Non_Static_Context (Left_Opnd (N));
3644 Check_Non_Static_Context (Right_Opnd (N));
3645 end Eval_Shift;
3646
3647 ------------------------
3648 -- Eval_Short_Circuit --
3649 ------------------------
3650
3651 -- A short circuit operation is potentially static if both operands are
3652 -- potentially static (RM 4.9 (13)).
3653
3654 procedure Eval_Short_Circuit (N : Node_Id) is
3655 Kind : constant Node_Kind := Nkind (N);
3656 Left : constant Node_Id := Left_Opnd (N);
3657 Right : constant Node_Id := Right_Opnd (N);
3658 Left_Int : Uint;
3659
3660 Rstat : constant Boolean :=
3661 Is_Static_Expression (Left)
3662 and then
3663 Is_Static_Expression (Right);
3664
3665 begin
3666 -- Short circuit operations are never static in Ada 83
3667
3668 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3669 Check_Non_Static_Context (Left);
3670 Check_Non_Static_Context (Right);
3671 return;
3672 end if;
3673
3674 -- Now look at the operands, we can't quite use the normal call to
3675 -- Test_Expression_Is_Foldable here because short circuit operations
3676 -- are a special case, they can still be foldable, even if the right
3677 -- operand raises Constraint_Error.
3678
3679 -- If either operand is Any_Type, just propagate to result and do not
3680 -- try to fold, this prevents cascaded errors.
3681
3682 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3683 Set_Etype (N, Any_Type);
3684 return;
3685
3686 -- If left operand raises Constraint_Error, then replace node N with
3687 -- the raise Constraint_Error node, and we are obviously not foldable.
3688 -- Is_Static_Expression is set from the two operands in the normal way,
3689 -- and we check the right operand if it is in a non-static context.
3690
3691 elsif Raises_Constraint_Error (Left) then
3692 if not Rstat then
3693 Check_Non_Static_Context (Right);
3694 end if;
3695
3696 Rewrite_In_Raise_CE (N, Left);
3697 Set_Is_Static_Expression (N, Rstat);
3698 return;
3699
3700 -- If the result is not static, then we won't in any case fold
3701
3702 elsif not Rstat then
3703 Check_Non_Static_Context (Left);
3704 Check_Non_Static_Context (Right);
3705 return;
3706 end if;
3707
3708 -- Here the result is static, note that, unlike the normal processing
3709 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3710 -- the right operand raises Constraint_Error, that's because it is not
3711 -- significant if the left operand is decisive.
3712
3713 Set_Is_Static_Expression (N);
3714
3715 -- It does not matter if the right operand raises Constraint_Error if
3716 -- it will not be evaluated. So deal specially with the cases where
3717 -- the right operand is not evaluated. Note that we will fold these
3718 -- cases even if the right operand is non-static, which is fine, but
3719 -- of course in these cases the result is not potentially static.
3720
3721 Left_Int := Expr_Value (Left);
3722
3723 if (Kind = N_And_Then and then Is_False (Left_Int))
3724 or else
3725 (Kind = N_Or_Else and then Is_True (Left_Int))
3726 then
3727 Fold_Uint (N, Left_Int, Rstat);
3728 return;
3729 end if;
3730
3731 -- If first operand not decisive, then it does matter if the right
3732 -- operand raises Constraint_Error, since it will be evaluated, so
3733 -- we simply replace the node with the right operand. Note that this
3734 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3735 -- (both are set to True in Right).
3736
3737 if Raises_Constraint_Error (Right) then
3738 Rewrite_In_Raise_CE (N, Right);
3739 Check_Non_Static_Context (Left);
3740 return;
3741 end if;
3742
3743 -- Otherwise the result depends on the right operand
3744
3745 Fold_Uint (N, Expr_Value (Right), Rstat);
3746 return;
3747 end Eval_Short_Circuit;
3748
3749 ----------------
3750 -- Eval_Slice --
3751 ----------------
3752
3753 -- Slices can never be static, so the only processing required is to check
3754 -- for non-static context if an explicit range is given.
3755
3756 procedure Eval_Slice (N : Node_Id) is
3757 Drange : constant Node_Id := Discrete_Range (N);
3758
3759 begin
3760 if Nkind (Drange) = N_Range then
3761 Check_Non_Static_Context (Low_Bound (Drange));
3762 Check_Non_Static_Context (High_Bound (Drange));
3763 end if;
3764
3765 -- A slice of the form A (subtype), when the subtype is the index of
3766 -- the type of A, is redundant, the slice can be replaced with A, and
3767 -- this is worth a warning.
3768
3769 if Is_Entity_Name (Prefix (N)) then
3770 declare
3771 E : constant Entity_Id := Entity (Prefix (N));
3772 T : constant Entity_Id := Etype (E);
3773
3774 begin
3775 if Ekind (E) = E_Constant
3776 and then Is_Array_Type (T)
3777 and then Is_Entity_Name (Drange)
3778 then
3779 if Is_Entity_Name (Original_Node (First_Index (T)))
3780 and then Entity (Original_Node (First_Index (T)))
3781 = Entity (Drange)
3782 then
3783 if Warn_On_Redundant_Constructs then
3784 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3785 end if;
3786
3787 -- The following might be a useful optimization???
3788
3789 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3790 end if;
3791 end if;
3792 end;
3793 end if;
3794 end Eval_Slice;
3795
3796 -------------------------
3797 -- Eval_String_Literal --
3798 -------------------------
3799
3800 procedure Eval_String_Literal (N : Node_Id) is
3801 Typ : constant Entity_Id := Etype (N);
3802 Bas : constant Entity_Id := Base_Type (Typ);
3803 Xtp : Entity_Id;
3804 Len : Nat;
3805 Lo : Node_Id;
3806
3807 begin
3808 -- Nothing to do if error type (handles cases like default expressions
3809 -- or generics where we have not yet fully resolved the type).
3810
3811 if Bas = Any_Type or else Bas = Any_String then
3812 return;
3813 end if;
3814
3815 -- String literals are static if the subtype is static (RM 4.9(2)), so
3816 -- reset the static expression flag (it was set unconditionally in
3817 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3818 -- the subtype is static by looking at the lower bound.
3819
3820 if Ekind (Typ) = E_String_Literal_Subtype then
3821 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3822 Set_Is_Static_Expression (N, False);
3823 return;
3824 end if;
3825
3826 -- Here if Etype of string literal is normal Etype (not yet possible,
3827 -- but may be possible in future).
3828
3829 elsif not Is_OK_Static_Expression
3830 (Type_Low_Bound (Etype (First_Index (Typ))))
3831 then
3832 Set_Is_Static_Expression (N, False);
3833 return;
3834 end if;
3835
3836 -- If original node was a type conversion, then result if non-static
3837
3838 if Nkind (Original_Node (N)) = N_Type_Conversion then
3839 Set_Is_Static_Expression (N, False);
3840 return;
3841 end if;
3842
3843 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3844 -- if its bounds are outside the index base type and this index type is
3845 -- static. This can happen in only two ways. Either the string literal
3846 -- is too long, or it is null, and the lower bound is type'First. Either
3847 -- way it is the upper bound that is out of range of the index type.
3848
3849 if Ada_Version >= Ada_95 then
3850 if Is_Standard_String_Type (Bas) then
3851 Xtp := Standard_Positive;
3852 else
3853 Xtp := Etype (First_Index (Bas));
3854 end if;
3855
3856 if Ekind (Typ) = E_String_Literal_Subtype then
3857 Lo := String_Literal_Low_Bound (Typ);
3858 else
3859 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3860 end if;
3861
3862 -- Check for string too long
3863
3864 Len := String_Length (Strval (N));
3865
3866 if UI_From_Int (Len) > String_Type_Len (Bas) then
3867
3868 -- Issue message. Note that this message is a warning if the
3869 -- string literal is not marked as static (happens in some cases
3870 -- of folding strings known at compile time, but not static).
3871 -- Furthermore in such cases, we reword the message, since there
3872 -- is no string literal in the source program.
3873
3874 if Is_Static_Expression (N) then
3875 Apply_Compile_Time_Constraint_Error
3876 (N, "string literal too long for}", CE_Length_Check_Failed,
3877 Ent => Bas,
3878 Typ => First_Subtype (Bas));
3879 else
3880 Apply_Compile_Time_Constraint_Error
3881 (N, "string value too long for}", CE_Length_Check_Failed,
3882 Ent => Bas,
3883 Typ => First_Subtype (Bas),
3884 Warn => True);
3885 end if;
3886
3887 -- Test for null string not allowed
3888
3889 elsif Len = 0
3890 and then not Is_Generic_Type (Xtp)
3891 and then
3892 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3893 then
3894 -- Same specialization of message
3895
3896 if Is_Static_Expression (N) then
3897 Apply_Compile_Time_Constraint_Error
3898 (N, "null string literal not allowed for}",
3899 CE_Length_Check_Failed,
3900 Ent => Bas,
3901 Typ => First_Subtype (Bas));
3902 else
3903 Apply_Compile_Time_Constraint_Error
3904 (N, "null string value not allowed for}",
3905 CE_Length_Check_Failed,
3906 Ent => Bas,
3907 Typ => First_Subtype (Bas),
3908 Warn => True);
3909 end if;
3910 end if;
3911 end if;
3912 end Eval_String_Literal;
3913
3914 --------------------------
3915 -- Eval_Type_Conversion --
3916 --------------------------
3917
3918 -- A type conversion is potentially static if its subtype mark is for a
3919 -- static scalar subtype, and its operand expression is potentially static
3920 -- (RM 4.9(10)).
3921
3922 procedure Eval_Type_Conversion (N : Node_Id) is
3923 Operand : constant Node_Id := Expression (N);
3924 Source_Type : constant Entity_Id := Etype (Operand);
3925 Target_Type : constant Entity_Id := Etype (N);
3926
3927 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3928 -- Returns true if type T is an integer type, or if it is a fixed-point
3929 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3930 -- on the conversion node).
3931
3932 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3933 -- Returns true if type T is a floating-point type, or if it is a
3934 -- fixed-point type that is not to be treated as an integer (i.e. the
3935 -- flag Conversion_OK is not set on the conversion node).
3936
3937 ------------------------------
3938 -- To_Be_Treated_As_Integer --
3939 ------------------------------
3940
3941 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3942 begin
3943 return
3944 Is_Integer_Type (T)
3945 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3946 end To_Be_Treated_As_Integer;
3947
3948 ---------------------------
3949 -- To_Be_Treated_As_Real --
3950 ---------------------------
3951
3952 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3953 begin
3954 return
3955 Is_Floating_Point_Type (T)
3956 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3957 end To_Be_Treated_As_Real;
3958
3959 -- Local variables
3960
3961 Fold : Boolean;
3962 Stat : Boolean;
3963
3964 -- Start of processing for Eval_Type_Conversion
3965
3966 begin
3967 -- Cannot fold if target type is non-static or if semantic error
3968
3969 if not Is_Static_Subtype (Target_Type) then
3970 Check_Non_Static_Context (Operand);
3971 return;
3972 elsif Error_Posted (N) then
3973 return;
3974 end if;
3975
3976 -- If not foldable we are done
3977
3978 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3979
3980 if not Fold then
3981 return;
3982
3983 -- Don't try fold if target type has Constraint_Error bounds
3984
3985 elsif not Is_OK_Static_Subtype (Target_Type) then
3986 Set_Raises_Constraint_Error (N);
3987 return;
3988 end if;
3989
3990 -- Remaining processing depends on operand types. Note that in the
3991 -- following type test, fixed-point counts as real unless the flag
3992 -- Conversion_OK is set, in which case it counts as integer.
3993
3994 -- Fold conversion, case of string type. The result is not static
3995
3996 if Is_String_Type (Target_Type) then
3997 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3998 return;
3999
4000 -- Fold conversion, case of integer target type
4001
4002 elsif To_Be_Treated_As_Integer (Target_Type) then
4003 declare
4004 Result : Uint;
4005
4006 begin
4007 -- Integer to integer conversion
4008
4009 if To_Be_Treated_As_Integer (Source_Type) then
4010 Result := Expr_Value (Operand);
4011
4012 -- Real to integer conversion
4013
4014 else
4015 Result := UR_To_Uint (Expr_Value_R (Operand));
4016 end if;
4017
4018 -- If fixed-point type (Conversion_OK must be set), then the
4019 -- result is logically an integer, but we must replace the
4020 -- conversion with the corresponding real literal, since the
4021 -- type from a semantic point of view is still fixed-point.
4022
4023 if Is_Fixed_Point_Type (Target_Type) then
4024 Fold_Ureal
4025 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
4026
4027 -- Otherwise result is integer literal
4028
4029 else
4030 Fold_Uint (N, Result, Stat);
4031 end if;
4032 end;
4033
4034 -- Fold conversion, case of real target type
4035
4036 elsif To_Be_Treated_As_Real (Target_Type) then
4037 declare
4038 Result : Ureal;
4039
4040 begin
4041 if To_Be_Treated_As_Real (Source_Type) then
4042 Result := Expr_Value_R (Operand);
4043 else
4044 Result := UR_From_Uint (Expr_Value (Operand));
4045 end if;
4046
4047 Fold_Ureal (N, Result, Stat);
4048 end;
4049
4050 -- Enumeration types
4051
4052 else
4053 Fold_Uint (N, Expr_Value (Operand), Stat);
4054 end if;
4055
4056 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
4057 Out_Of_Range (N);
4058 end if;
4059
4060 end Eval_Type_Conversion;
4061
4062 -------------------
4063 -- Eval_Unary_Op --
4064 -------------------
4065
4066 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
4067 -- are potentially static if the operand is potentially static (RM 4.9(7)).
4068
4069 procedure Eval_Unary_Op (N : Node_Id) is
4070 Right : constant Node_Id := Right_Opnd (N);
4071 Otype : Entity_Id := Empty;
4072 Stat : Boolean;
4073 Fold : Boolean;
4074
4075 begin
4076 -- If not foldable we are done
4077
4078 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
4079
4080 if not Fold then
4081 return;
4082 end if;
4083
4084 if Etype (Right) = Universal_Integer
4085 or else
4086 Etype (Right) = Universal_Real
4087 then
4088 Otype := Find_Universal_Operator_Type (N);
4089 end if;
4090
4091 -- Fold for integer case
4092
4093 if Is_Integer_Type (Etype (N)) then
4094 declare
4095 Rint : constant Uint := Expr_Value (Right);
4096 Result : Uint;
4097
4098 begin
4099 -- In the case of modular unary plus and abs there is no need
4100 -- to adjust the result of the operation since if the original
4101 -- operand was in bounds the result will be in the bounds of the
4102 -- modular type. However, in the case of modular unary minus the
4103 -- result may go out of the bounds of the modular type and needs
4104 -- adjustment.
4105
4106 if Nkind (N) = N_Op_Plus then
4107 Result := Rint;
4108
4109 elsif Nkind (N) = N_Op_Minus then
4110 if Is_Modular_Integer_Type (Etype (N)) then
4111 Result := (-Rint) mod Modulus (Etype (N));
4112 else
4113 Result := (-Rint);
4114 end if;
4115
4116 else
4117 pragma Assert (Nkind (N) = N_Op_Abs);
4118 Result := abs Rint;
4119 end if;
4120
4121 Fold_Uint (N, Result, Stat);
4122 end;
4123
4124 -- Fold for real case
4125
4126 elsif Is_Real_Type (Etype (N)) then
4127 declare
4128 Rreal : constant Ureal := Expr_Value_R (Right);
4129 Result : Ureal;
4130
4131 begin
4132 if Nkind (N) = N_Op_Plus then
4133 Result := Rreal;
4134 elsif Nkind (N) = N_Op_Minus then
4135 Result := UR_Negate (Rreal);
4136 else
4137 pragma Assert (Nkind (N) = N_Op_Abs);
4138 Result := abs Rreal;
4139 end if;
4140
4141 Fold_Ureal (N, Result, Stat);
4142 end;
4143 end if;
4144
4145 -- If the operator was resolved to a specific type, make sure that type
4146 -- is frozen even if the expression is folded into a literal (which has
4147 -- a universal type).
4148
4149 if Present (Otype) then
4150 Freeze_Before (N, Otype);
4151 end if;
4152 end Eval_Unary_Op;
4153
4154 -------------------------------
4155 -- Eval_Unchecked_Conversion --
4156 -------------------------------
4157
4158 -- Unchecked conversions can never be static, so the only required
4159 -- processing is to check for a non-static context for the operand.
4160
4161 procedure Eval_Unchecked_Conversion (N : Node_Id) is
4162 begin
4163 Check_Non_Static_Context (Expression (N));
4164 end Eval_Unchecked_Conversion;
4165
4166 --------------------
4167 -- Expr_Rep_Value --
4168 --------------------
4169
4170 function Expr_Rep_Value (N : Node_Id) return Uint is
4171 Kind : constant Node_Kind := Nkind (N);
4172 Ent : Entity_Id;
4173
4174 begin
4175 if Is_Entity_Name (N) then
4176 Ent := Entity (N);
4177
4178 -- An enumeration literal that was either in the source or created
4179 -- as a result of static evaluation.
4180
4181 if Ekind (Ent) = E_Enumeration_Literal then
4182 return Enumeration_Rep (Ent);
4183
4184 -- A user defined static constant
4185
4186 else
4187 pragma Assert (Ekind (Ent) = E_Constant);
4188 return Expr_Rep_Value (Constant_Value (Ent));
4189 end if;
4190
4191 -- An integer literal that was either in the source or created as a
4192 -- result of static evaluation.
4193
4194 elsif Kind = N_Integer_Literal then
4195 return Intval (N);
4196
4197 -- A real literal for a fixed-point type. This must be the fixed-point
4198 -- case, either the literal is of a fixed-point type, or it is a bound
4199 -- of a fixed-point type, with type universal real. In either case we
4200 -- obtain the desired value from Corresponding_Integer_Value.
4201
4202 elsif Kind = N_Real_Literal then
4203 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4204 return Corresponding_Integer_Value (N);
4205
4206 -- Otherwise must be character literal
4207
4208 else
4209 pragma Assert (Kind = N_Character_Literal);
4210 Ent := Entity (N);
4211
4212 -- Since Character literals of type Standard.Character don't have any
4213 -- defining character literals built for them, they do not have their
4214 -- Entity set, so just use their Char code. Otherwise for user-
4215 -- defined character literals use their Pos value as usual which is
4216 -- the same as the Rep value.
4217
4218 if No (Ent) then
4219 return Char_Literal_Value (N);
4220 else
4221 return Enumeration_Rep (Ent);
4222 end if;
4223 end if;
4224 end Expr_Rep_Value;
4225
4226 ----------------
4227 -- Expr_Value --
4228 ----------------
4229
4230 function Expr_Value (N : Node_Id) return Uint is
4231 Kind : constant Node_Kind := Nkind (N);
4232 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4233 Ent : Entity_Id;
4234 Val : Uint;
4235
4236 begin
4237 -- If already in cache, then we know it's compile-time-known and we can
4238 -- return the value that was previously stored in the cache since
4239 -- compile-time-known values cannot change.
4240
4241 if CV_Ent.N = N then
4242 return CV_Ent.V;
4243 end if;
4244
4245 -- Otherwise proceed to test value
4246
4247 if Is_Entity_Name (N) then
4248 Ent := Entity (N);
4249
4250 -- An enumeration literal that was either in the source or created as
4251 -- a result of static evaluation.
4252
4253 if Ekind (Ent) = E_Enumeration_Literal then
4254 Val := Enumeration_Pos (Ent);
4255
4256 -- A user defined static constant
4257
4258 else
4259 pragma Assert (Ekind (Ent) = E_Constant);
4260 Val := Expr_Value (Constant_Value (Ent));
4261 end if;
4262
4263 -- An integer literal that was either in the source or created as a
4264 -- result of static evaluation.
4265
4266 elsif Kind = N_Integer_Literal then
4267 Val := Intval (N);
4268
4269 -- A real literal for a fixed-point type. This must be the fixed-point
4270 -- case, either the literal is of a fixed-point type, or it is a bound
4271 -- of a fixed-point type, with type universal real. In either case we
4272 -- obtain the desired value from Corresponding_Integer_Value.
4273
4274 elsif Kind = N_Real_Literal then
4275 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4276 Val := Corresponding_Integer_Value (N);
4277
4278 -- The NULL access value
4279
4280 elsif Kind = N_Null then
4281 pragma Assert (Is_Access_Type (Underlying_Type (Etype (N)))
4282 or else Error_Posted (N));
4283 Val := Uint_0;
4284
4285 -- Character literal
4286
4287 elsif Kind = N_Character_Literal then
4288 Ent := Entity (N);
4289
4290 -- Since Character literals of type Standard.Character don't
4291 -- have any defining character literals built for them, they
4292 -- do not have their Entity set, so just use their Char
4293 -- code. Otherwise for user-defined character literals use
4294 -- their Pos value as usual.
4295
4296 if No (Ent) then
4297 Val := Char_Literal_Value (N);
4298 else
4299 Val := Enumeration_Pos (Ent);
4300 end if;
4301
4302 -- Unchecked conversion, which can come from System'To_Address (X)
4303 -- where X is a static integer expression. Recursively evaluate X.
4304
4305 elsif Kind = N_Unchecked_Type_Conversion then
4306 Val := Expr_Value (Expression (N));
4307
4308 else
4309 raise Program_Error;
4310 end if;
4311
4312 -- Come here with Val set to value to be returned, set cache
4313
4314 CV_Ent.N := N;
4315 CV_Ent.V := Val;
4316 return Val;
4317 end Expr_Value;
4318
4319 ------------------
4320 -- Expr_Value_E --
4321 ------------------
4322
4323 function Expr_Value_E (N : Node_Id) return Entity_Id is
4324 Ent : constant Entity_Id := Entity (N);
4325 begin
4326 if Ekind (Ent) = E_Enumeration_Literal then
4327 return Ent;
4328 else
4329 pragma Assert (Ekind (Ent) = E_Constant);
4330
4331 -- We may be dealing with a enumerated character type constant, so
4332 -- handle that case here.
4333
4334 if Nkind (Constant_Value (Ent)) = N_Character_Literal then
4335 return Ent;
4336 else
4337 return Expr_Value_E (Constant_Value (Ent));
4338 end if;
4339 end if;
4340 end Expr_Value_E;
4341
4342 ------------------
4343 -- Expr_Value_R --
4344 ------------------
4345
4346 function Expr_Value_R (N : Node_Id) return Ureal is
4347 Kind : constant Node_Kind := Nkind (N);
4348 Ent : Entity_Id;
4349
4350 begin
4351 if Kind = N_Real_Literal then
4352 return Realval (N);
4353
4354 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4355 Ent := Entity (N);
4356 pragma Assert (Ekind (Ent) = E_Constant);
4357 return Expr_Value_R (Constant_Value (Ent));
4358
4359 elsif Kind = N_Integer_Literal then
4360 return UR_From_Uint (Expr_Value (N));
4361
4362 -- Here, we have a node that cannot be interpreted as a compile time
4363 -- constant. That is definitely an error.
4364
4365 else
4366 raise Program_Error;
4367 end if;
4368 end Expr_Value_R;
4369
4370 ------------------
4371 -- Expr_Value_S --
4372 ------------------
4373
4374 function Expr_Value_S (N : Node_Id) return Node_Id is
4375 begin
4376 if Nkind (N) = N_String_Literal then
4377 return N;
4378 else
4379 pragma Assert (Ekind (Entity (N)) = E_Constant);
4380 return Expr_Value_S (Constant_Value (Entity (N)));
4381 end if;
4382 end Expr_Value_S;
4383
4384 ----------------------------------
4385 -- Find_Universal_Operator_Type --
4386 ----------------------------------
4387
4388 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4389 PN : constant Node_Id := Parent (N);
4390 Call : constant Node_Id := Original_Node (N);
4391 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4392
4393 Is_Fix : constant Boolean :=
4394 Nkind (N) in N_Binary_Op
4395 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4396 -- A mixed-mode operation in this context indicates the presence of
4397 -- fixed-point type in the designated package.
4398
4399 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4400 -- Case where N is a relational (or membership) operator (else it is an
4401 -- arithmetic one).
4402
4403 In_Membership : constant Boolean :=
4404 Nkind (PN) in N_Membership_Test
4405 and then
4406 Nkind (Right_Opnd (PN)) = N_Range
4407 and then
4408 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4409 and then
4410 Is_Universal_Numeric_Type
4411 (Etype (Low_Bound (Right_Opnd (PN))))
4412 and then
4413 Is_Universal_Numeric_Type
4414 (Etype (High_Bound (Right_Opnd (PN))));
4415 -- Case where N is part of a membership test with a universal range
4416
4417 E : Entity_Id;
4418 Pack : Entity_Id;
4419 Typ1 : Entity_Id := Empty;
4420 Priv_E : Entity_Id;
4421
4422 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
4423 -- Check whether one operand is a mixed-mode operation that requires the
4424 -- presence of a fixed-point type. Given that all operands are universal
4425 -- and have been constant-folded, retrieve the original function call.
4426
4427 ---------------------------
4428 -- Is_Mixed_Mode_Operand --
4429 ---------------------------
4430
4431 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4432 Onod : constant Node_Id := Original_Node (Op);
4433 begin
4434 return Nkind (Onod) = N_Function_Call
4435 and then Present (Next_Actual (First_Actual (Onod)))
4436 and then Etype (First_Actual (Onod)) /=
4437 Etype (Next_Actual (First_Actual (Onod)));
4438 end Is_Mixed_Mode_Operand;
4439
4440 -- Start of processing for Find_Universal_Operator_Type
4441
4442 begin
4443 if Nkind (Call) /= N_Function_Call
4444 or else Nkind (Name (Call)) /= N_Expanded_Name
4445 then
4446 return Empty;
4447
4448 -- There are several cases where the context does not imply the type of
4449 -- the operands:
4450 -- - the universal expression appears in a type conversion;
4451 -- - the expression is a relational operator applied to universal
4452 -- operands;
4453 -- - the expression is a membership test with a universal operand
4454 -- and a range with universal bounds.
4455
4456 elsif Nkind (Parent (N)) = N_Type_Conversion
4457 or else Is_Relational
4458 or else In_Membership
4459 then
4460 Pack := Entity (Prefix (Name (Call)));
4461
4462 -- If the prefix is a package declared elsewhere, iterate over its
4463 -- visible entities, otherwise iterate over all declarations in the
4464 -- designated scope.
4465
4466 if Ekind (Pack) = E_Package
4467 and then not In_Open_Scopes (Pack)
4468 then
4469 Priv_E := First_Private_Entity (Pack);
4470 else
4471 Priv_E := Empty;
4472 end if;
4473
4474 Typ1 := Empty;
4475 E := First_Entity (Pack);
4476 while Present (E) and then E /= Priv_E loop
4477 if Is_Numeric_Type (E)
4478 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4479 and then Comes_From_Source (E)
4480 and then Is_Integer_Type (E) = Is_Int
4481 and then (Nkind (N) in N_Unary_Op
4482 or else Is_Relational
4483 or else Is_Fixed_Point_Type (E) = Is_Fix)
4484 then
4485 if No (Typ1) then
4486 Typ1 := E;
4487
4488 -- Before emitting an error, check for the presence of a
4489 -- mixed-mode operation that specifies a fixed point type.
4490
4491 elsif Is_Relational
4492 and then
4493 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4494 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4495 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4496
4497 then
4498 if Is_Fixed_Point_Type (E) then
4499 Typ1 := E;
4500 end if;
4501
4502 else
4503 -- More than one type of the proper class declared in P
4504
4505 Error_Msg_N ("ambiguous operation", N);
4506 Error_Msg_Sloc := Sloc (Typ1);
4507 Error_Msg_N ("\possible interpretation (inherited)#", N);
4508 Error_Msg_Sloc := Sloc (E);
4509 Error_Msg_N ("\possible interpretation (inherited)#", N);
4510 return Empty;
4511 end if;
4512 end if;
4513
4514 Next_Entity (E);
4515 end loop;
4516 end if;
4517
4518 return Typ1;
4519 end Find_Universal_Operator_Type;
4520
4521 --------------------------
4522 -- Flag_Non_Static_Expr --
4523 --------------------------
4524
4525 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4526 begin
4527 if Error_Posted (Expr) and then not All_Errors_Mode then
4528 return;
4529 else
4530 Error_Msg_F (Msg, Expr);
4531 Why_Not_Static (Expr);
4532 end if;
4533 end Flag_Non_Static_Expr;
4534
4535 --------------
4536 -- Fold_Str --
4537 --------------
4538
4539 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4540 Loc : constant Source_Ptr := Sloc (N);
4541 Typ : constant Entity_Id := Etype (N);
4542
4543 begin
4544 if Raises_Constraint_Error (N) then
4545 Set_Is_Static_Expression (N, Static);
4546 return;
4547 end if;
4548
4549 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4550
4551 -- We now have the literal with the right value, both the actual type
4552 -- and the expected type of this literal are taken from the expression
4553 -- that was evaluated. So now we do the Analyze and Resolve.
4554
4555 -- Note that we have to reset Is_Static_Expression both after the
4556 -- analyze step (because Resolve will evaluate the literal, which
4557 -- will cause semantic errors if it is marked as static), and after
4558 -- the Resolve step (since Resolve in some cases resets this flag).
4559
4560 Analyze (N);
4561 Set_Is_Static_Expression (N, Static);
4562 Set_Etype (N, Typ);
4563 Resolve (N);
4564 Set_Is_Static_Expression (N, Static);
4565 end Fold_Str;
4566
4567 ---------------
4568 -- Fold_Uint --
4569 ---------------
4570
4571 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4572 Loc : constant Source_Ptr := Sloc (N);
4573 Typ : Entity_Id := Etype (N);
4574 Ent : Entity_Id;
4575
4576 begin
4577 if Raises_Constraint_Error (N) then
4578 Set_Is_Static_Expression (N, Static);
4579 return;
4580 end if;
4581
4582 -- If we are folding a named number, retain the entity in the literal,
4583 -- for ASIS use.
4584
4585 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
4586 Ent := Entity (N);
4587 else
4588 Ent := Empty;
4589 end if;
4590
4591 if Is_Private_Type (Typ) then
4592 Typ := Full_View (Typ);
4593 end if;
4594
4595 -- For a result of type integer, substitute an N_Integer_Literal node
4596 -- for the result of the compile time evaluation of the expression.
4597 -- For ASIS use, set a link to the original named number when not in
4598 -- a generic context.
4599
4600 if Is_Integer_Type (Typ) then
4601 Rewrite (N, Make_Integer_Literal (Loc, Val));
4602 Set_Original_Entity (N, Ent);
4603
4604 -- Otherwise we have an enumeration type, and we substitute either
4605 -- an N_Identifier or N_Character_Literal to represent the enumeration
4606 -- literal corresponding to the given value, which must always be in
4607 -- range, because appropriate tests have already been made for this.
4608
4609 else pragma Assert (Is_Enumeration_Type (Typ));
4610 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4611 end if;
4612
4613 -- We now have the literal with the right value, both the actual type
4614 -- and the expected type of this literal are taken from the expression
4615 -- that was evaluated. So now we do the Analyze and Resolve.
4616
4617 -- Note that we have to reset Is_Static_Expression both after the
4618 -- analyze step (because Resolve will evaluate the literal, which
4619 -- will cause semantic errors if it is marked as static), and after
4620 -- the Resolve step (since Resolve in some cases sets this flag).
4621
4622 Analyze (N);
4623 Set_Is_Static_Expression (N, Static);
4624 Set_Etype (N, Typ);
4625 Resolve (N);
4626 Set_Is_Static_Expression (N, Static);
4627 end Fold_Uint;
4628
4629 ----------------
4630 -- Fold_Ureal --
4631 ----------------
4632
4633 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4634 Loc : constant Source_Ptr := Sloc (N);
4635 Typ : constant Entity_Id := Etype (N);
4636 Ent : Entity_Id;
4637
4638 begin
4639 if Raises_Constraint_Error (N) then
4640 Set_Is_Static_Expression (N, Static);
4641 return;
4642 end if;
4643
4644 -- If we are folding a named number, retain the entity in the literal,
4645 -- for ASIS use.
4646
4647 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
4648 Ent := Entity (N);
4649 else
4650 Ent := Empty;
4651 end if;
4652
4653 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4654
4655 -- Set link to original named number, for ASIS use
4656
4657 Set_Original_Entity (N, Ent);
4658
4659 -- We now have the literal with the right value, both the actual type
4660 -- and the expected type of this literal are taken from the expression
4661 -- that was evaluated. So now we do the Analyze and Resolve.
4662
4663 -- Note that we have to reset Is_Static_Expression both after the
4664 -- analyze step (because Resolve will evaluate the literal, which
4665 -- will cause semantic errors if it is marked as static), and after
4666 -- the Resolve step (since Resolve in some cases sets this flag).
4667
4668 -- We mark the node as analyzed so that its type is not erased by
4669 -- calling Analyze_Real_Literal.
4670
4671 Analyze (N);
4672 Set_Is_Static_Expression (N, Static);
4673 Set_Etype (N, Typ);
4674 Resolve (N);
4675 Set_Analyzed (N);
4676 Set_Is_Static_Expression (N, Static);
4677 end Fold_Ureal;
4678
4679 ---------------
4680 -- From_Bits --
4681 ---------------
4682
4683 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4684 V : Uint := Uint_0;
4685
4686 begin
4687 for J in 0 .. B'Last loop
4688 if B (J) then
4689 V := V + 2 ** J;
4690 end if;
4691 end loop;
4692
4693 if Non_Binary_Modulus (T) then
4694 V := V mod Modulus (T);
4695 end if;
4696
4697 return V;
4698 end From_Bits;
4699
4700 --------------------
4701 -- Get_String_Val --
4702 --------------------
4703
4704 function Get_String_Val (N : Node_Id) return Node_Id is
4705 begin
4706 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
4707 return N;
4708 else
4709 pragma Assert (Is_Entity_Name (N));
4710 return Get_String_Val (Constant_Value (Entity (N)));
4711 end if;
4712 end Get_String_Val;
4713
4714 ----------------
4715 -- Initialize --
4716 ----------------
4717
4718 procedure Initialize is
4719 begin
4720 CV_Cache := (others => (Node_High_Bound, Uint_0));
4721 end Initialize;
4722
4723 --------------------
4724 -- In_Subrange_Of --
4725 --------------------
4726
4727 function In_Subrange_Of
4728 (T1 : Entity_Id;
4729 T2 : Entity_Id;
4730 Fixed_Int : Boolean := False) return Boolean
4731 is
4732 L1 : Node_Id;
4733 H1 : Node_Id;
4734
4735 L2 : Node_Id;
4736 H2 : Node_Id;
4737
4738 begin
4739 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4740 return True;
4741
4742 -- Never in range if both types are not scalar. Don't know if this can
4743 -- actually happen, but just in case.
4744
4745 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4746 return False;
4747
4748 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4749 -- definitely not compatible with T2.
4750
4751 elsif Is_Floating_Point_Type (T1)
4752 and then Has_Infinities (T1)
4753 and then Is_Floating_Point_Type (T2)
4754 and then not Has_Infinities (T2)
4755 then
4756 return False;
4757
4758 else
4759 L1 := Type_Low_Bound (T1);
4760 H1 := Type_High_Bound (T1);
4761
4762 L2 := Type_Low_Bound (T2);
4763 H2 := Type_High_Bound (T2);
4764
4765 -- Check bounds to see if comparison possible at compile time
4766
4767 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4768 and then
4769 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4770 then
4771 return True;
4772 end if;
4773
4774 -- If bounds not comparable at compile time, then the bounds of T2
4775 -- must be compile-time-known or we cannot answer the query.
4776
4777 if not Compile_Time_Known_Value (L2)
4778 or else not Compile_Time_Known_Value (H2)
4779 then
4780 return False;
4781 end if;
4782
4783 -- If the bounds of T1 are know at compile time then use these
4784 -- ones, otherwise use the bounds of the base type (which are of
4785 -- course always static).
4786
4787 if not Compile_Time_Known_Value (L1) then
4788 L1 := Type_Low_Bound (Base_Type (T1));
4789 end if;
4790
4791 if not Compile_Time_Known_Value (H1) then
4792 H1 := Type_High_Bound (Base_Type (T1));
4793 end if;
4794
4795 -- Fixed point types should be considered as such only if
4796 -- flag Fixed_Int is set to False.
4797
4798 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4799 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4800 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4801 then
4802 return
4803 Expr_Value_R (L2) <= Expr_Value_R (L1)
4804 and then
4805 Expr_Value_R (H2) >= Expr_Value_R (H1);
4806
4807 else
4808 return
4809 Expr_Value (L2) <= Expr_Value (L1)
4810 and then
4811 Expr_Value (H2) >= Expr_Value (H1);
4812
4813 end if;
4814 end if;
4815
4816 -- If any exception occurs, it means that we have some bug in the compiler
4817 -- possibly triggered by a previous error, or by some unforeseen peculiar
4818 -- occurrence. However, this is only an optimization attempt, so there is
4819 -- really no point in crashing the compiler. Instead we just decide, too
4820 -- bad, we can't figure out the answer in this case after all.
4821
4822 exception
4823 when others =>
4824
4825 -- Debug flag K disables this behavior (useful for debugging)
4826
4827 if Debug_Flag_K then
4828 raise;
4829 else
4830 return False;
4831 end if;
4832 end In_Subrange_Of;
4833
4834 -----------------
4835 -- Is_In_Range --
4836 -----------------
4837
4838 function Is_In_Range
4839 (N : Node_Id;
4840 Typ : Entity_Id;
4841 Assume_Valid : Boolean := False;
4842 Fixed_Int : Boolean := False;
4843 Int_Real : Boolean := False) return Boolean
4844 is
4845 begin
4846 return
4847 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
4848 end Is_In_Range;
4849
4850 -------------------
4851 -- Is_Null_Range --
4852 -------------------
4853
4854 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4855 begin
4856 if Compile_Time_Known_Value (Lo)
4857 and then Compile_Time_Known_Value (Hi)
4858 then
4859 declare
4860 Typ : Entity_Id := Etype (Lo);
4861 begin
4862 -- When called from the frontend, as part of the analysis of
4863 -- potentially static expressions, Typ will be the full view of a
4864 -- type with all the info needed to answer this query. When called
4865 -- from the backend, for example to know whether a range of a loop
4866 -- is null, Typ might be a private type and we need to explicitly
4867 -- switch to its corresponding full view to access the same info.
4868
4869 if Is_Incomplete_Or_Private_Type (Typ)
4870 and then Present (Full_View (Typ))
4871 then
4872 Typ := Full_View (Typ);
4873 end if;
4874
4875 if Is_Discrete_Type (Typ) then
4876 return Expr_Value (Lo) > Expr_Value (Hi);
4877 else pragma Assert (Is_Real_Type (Typ));
4878 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4879 end if;
4880 end;
4881 else
4882 return False;
4883 end if;
4884 end Is_Null_Range;
4885
4886 -------------------------
4887 -- Is_OK_Static_Choice --
4888 -------------------------
4889
4890 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4891 begin
4892 -- Check various possibilities for choice
4893
4894 -- Note: for membership tests, we test more cases than are possible
4895 -- (in particular subtype indication), but it doesn't matter because
4896 -- it just won't occur (we have already done a syntax check).
4897
4898 if Nkind (Choice) = N_Others_Choice then
4899 return True;
4900
4901 elsif Nkind (Choice) = N_Range then
4902 return Is_OK_Static_Range (Choice);
4903
4904 elsif Nkind (Choice) = N_Subtype_Indication
4905 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4906 then
4907 return Is_OK_Static_Subtype (Etype (Choice));
4908
4909 else
4910 return Is_OK_Static_Expression (Choice);
4911 end if;
4912 end Is_OK_Static_Choice;
4913
4914 ------------------------------
4915 -- Is_OK_Static_Choice_List --
4916 ------------------------------
4917
4918 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4919 Choice : Node_Id;
4920
4921 begin
4922 if not Is_Static_Choice_List (Choices) then
4923 return False;
4924 end if;
4925
4926 Choice := First (Choices);
4927 while Present (Choice) loop
4928 if not Is_OK_Static_Choice (Choice) then
4929 Set_Raises_Constraint_Error (Choice);
4930 return False;
4931 end if;
4932
4933 Next (Choice);
4934 end loop;
4935
4936 return True;
4937 end Is_OK_Static_Choice_List;
4938
4939 -----------------------------
4940 -- Is_OK_Static_Expression --
4941 -----------------------------
4942
4943 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4944 begin
4945 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
4946 end Is_OK_Static_Expression;
4947
4948 ------------------------
4949 -- Is_OK_Static_Range --
4950 ------------------------
4951
4952 -- A static range is a range whose bounds are static expressions, or a
4953 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4954 -- We have already converted range attribute references, so we get the
4955 -- "or" part of this rule without needing a special test.
4956
4957 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4958 begin
4959 return Is_OK_Static_Expression (Low_Bound (N))
4960 and then Is_OK_Static_Expression (High_Bound (N));
4961 end Is_OK_Static_Range;
4962
4963 --------------------------
4964 -- Is_OK_Static_Subtype --
4965 --------------------------
4966
4967 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4968 -- neither bound raises Constraint_Error when evaluated.
4969
4970 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4971 Base_T : constant Entity_Id := Base_Type (Typ);
4972 Anc_Subt : Entity_Id;
4973
4974 begin
4975 -- First a quick check on the non static subtype flag. As described
4976 -- in further detail in Einfo, this flag is not decisive in all cases,
4977 -- but if it is set, then the subtype is definitely non-static.
4978
4979 if Is_Non_Static_Subtype (Typ) then
4980 return False;
4981 end if;
4982
4983 Anc_Subt := Ancestor_Subtype (Typ);
4984
4985 if Anc_Subt = Empty then
4986 Anc_Subt := Base_T;
4987 end if;
4988
4989 if Is_Generic_Type (Root_Type (Base_T))
4990 or else Is_Generic_Actual_Type (Base_T)
4991 then
4992 return False;
4993
4994 elsif Has_Dynamic_Predicate_Aspect (Typ) then
4995 return False;
4996
4997 -- String types
4998
4999 elsif Is_String_Type (Typ) then
5000 return
5001 Ekind (Typ) = E_String_Literal_Subtype
5002 or else
5003 (Is_OK_Static_Subtype (Component_Type (Typ))
5004 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
5005
5006 -- Scalar types
5007
5008 elsif Is_Scalar_Type (Typ) then
5009 if Base_T = Typ then
5010 return True;
5011
5012 else
5013 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
5014 -- Get_Type_{Low,High}_Bound.
5015
5016 return Is_OK_Static_Subtype (Anc_Subt)
5017 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
5018 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
5019 end if;
5020
5021 -- Types other than string and scalar types are never static
5022
5023 else
5024 return False;
5025 end if;
5026 end Is_OK_Static_Subtype;
5027
5028 ---------------------
5029 -- Is_Out_Of_Range --
5030 ---------------------
5031
5032 function Is_Out_Of_Range
5033 (N : Node_Id;
5034 Typ : Entity_Id;
5035 Assume_Valid : Boolean := False;
5036 Fixed_Int : Boolean := False;
5037 Int_Real : Boolean := False) return Boolean
5038 is
5039 begin
5040 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
5041 Out_Of_Range;
5042 end Is_Out_Of_Range;
5043
5044 ----------------------
5045 -- Is_Static_Choice --
5046 ----------------------
5047
5048 function Is_Static_Choice (Choice : Node_Id) return Boolean is
5049 begin
5050 -- Check various possibilities for choice
5051
5052 -- Note: for membership tests, we test more cases than are possible
5053 -- (in particular subtype indication), but it doesn't matter because
5054 -- it just won't occur (we have already done a syntax check).
5055
5056 if Nkind (Choice) = N_Others_Choice then
5057 return True;
5058
5059 elsif Nkind (Choice) = N_Range then
5060 return Is_Static_Range (Choice);
5061
5062 elsif Nkind (Choice) = N_Subtype_Indication
5063 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
5064 then
5065 return Is_Static_Subtype (Etype (Choice));
5066
5067 else
5068 return Is_Static_Expression (Choice);
5069 end if;
5070 end Is_Static_Choice;
5071
5072 ---------------------------
5073 -- Is_Static_Choice_List --
5074 ---------------------------
5075
5076 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
5077 Choice : Node_Id;
5078
5079 begin
5080 Choice := First (Choices);
5081 while Present (Choice) loop
5082 if not Is_Static_Choice (Choice) then
5083 return False;
5084 end if;
5085
5086 Next (Choice);
5087 end loop;
5088
5089 return True;
5090 end Is_Static_Choice_List;
5091
5092 ---------------------
5093 -- Is_Static_Range --
5094 ---------------------
5095
5096 -- A static range is a range whose bounds are static expressions, or a
5097 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5098 -- We have already converted range attribute references, so we get the
5099 -- "or" part of this rule without needing a special test.
5100
5101 function Is_Static_Range (N : Node_Id) return Boolean is
5102 begin
5103 return Is_Static_Expression (Low_Bound (N))
5104 and then
5105 Is_Static_Expression (High_Bound (N));
5106 end Is_Static_Range;
5107
5108 -----------------------
5109 -- Is_Static_Subtype --
5110 -----------------------
5111
5112 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
5113
5114 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
5115 Base_T : constant Entity_Id := Base_Type (Typ);
5116 Anc_Subt : Entity_Id;
5117
5118 begin
5119 -- First a quick check on the non static subtype flag. As described
5120 -- in further detail in Einfo, this flag is not decisive in all cases,
5121 -- but if it is set, then the subtype is definitely non-static.
5122
5123 if Is_Non_Static_Subtype (Typ) then
5124 return False;
5125 end if;
5126
5127 Anc_Subt := Ancestor_Subtype (Typ);
5128
5129 if Anc_Subt = Empty then
5130 Anc_Subt := Base_T;
5131 end if;
5132
5133 if Is_Generic_Type (Root_Type (Base_T))
5134 or else Is_Generic_Actual_Type (Base_T)
5135 then
5136 return False;
5137
5138 -- If there is a dynamic predicate for the type (declared or inherited)
5139 -- the expression is not static.
5140
5141 elsif Has_Dynamic_Predicate_Aspect (Typ)
5142 or else (Is_Derived_Type (Typ)
5143 and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5144 then
5145 return False;
5146
5147 -- String types
5148
5149 elsif Is_String_Type (Typ) then
5150 return
5151 Ekind (Typ) = E_String_Literal_Subtype
5152 or else (Is_Static_Subtype (Component_Type (Typ))
5153 and then Is_Static_Subtype (Etype (First_Index (Typ))));
5154
5155 -- Scalar types
5156
5157 elsif Is_Scalar_Type (Typ) then
5158 if Base_T = Typ then
5159 return True;
5160
5161 else
5162 return Is_Static_Subtype (Anc_Subt)
5163 and then Is_Static_Expression (Type_Low_Bound (Typ))
5164 and then Is_Static_Expression (Type_High_Bound (Typ));
5165 end if;
5166
5167 -- Types other than string and scalar types are never static
5168
5169 else
5170 return False;
5171 end if;
5172 end Is_Static_Subtype;
5173
5174 -------------------------------
5175 -- Is_Statically_Unevaluated --
5176 -------------------------------
5177
5178 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5179 function Check_Case_Expr_Alternative
5180 (CEA : Node_Id) return Match_Result;
5181 -- We have a message emanating from the Expression of a case expression
5182 -- alternative. We examine this alternative, as follows:
5183 --
5184 -- If the selecting expression of the parent case is non-static, or
5185 -- if any of the discrete choices of the given case alternative are
5186 -- non-static or raise Constraint_Error, return Non_Static.
5187 --
5188 -- Otherwise check if the selecting expression matches any of the given
5189 -- discrete choices. If so, the alternative is executed and we return
5190 -- Match, otherwise, the alternative can never be executed, and so we
5191 -- return No_Match.
5192
5193 ---------------------------------
5194 -- Check_Case_Expr_Alternative --
5195 ---------------------------------
5196
5197 function Check_Case_Expr_Alternative
5198 (CEA : Node_Id) return Match_Result
5199 is
5200 Case_Exp : constant Node_Id := Parent (CEA);
5201 Choice : Node_Id;
5202 Prev_CEA : Node_Id;
5203
5204 begin
5205 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5206
5207 -- Check that selecting expression is static
5208
5209 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5210 return Non_Static;
5211 end if;
5212
5213 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5214 return Non_Static;
5215 end if;
5216
5217 -- All choices are now known to be static. Now see if alternative
5218 -- matches one of the choices.
5219
5220 Choice := First (Discrete_Choices (CEA));
5221 while Present (Choice) loop
5222
5223 -- Check various possibilities for choice, returning Match if we
5224 -- find the selecting value matches any of the choices. Note that
5225 -- we know we are the last choice, so we don't have to keep going.
5226
5227 if Nkind (Choice) = N_Others_Choice then
5228
5229 -- Others choice is a bit annoying, it matches if none of the
5230 -- previous alternatives matches (note that we know we are the
5231 -- last alternative in this case, so we can just go backwards
5232 -- from us to see if any previous one matches).
5233
5234 Prev_CEA := Prev (CEA);
5235 while Present (Prev_CEA) loop
5236 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5237 return No_Match;
5238 end if;
5239
5240 Prev (Prev_CEA);
5241 end loop;
5242
5243 return Match;
5244
5245 -- Else we have a normal static choice
5246
5247 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5248 return Match;
5249 end if;
5250
5251 -- If we fall through, it means that the discrete choice did not
5252 -- match the selecting expression, so continue.
5253
5254 Next (Choice);
5255 end loop;
5256
5257 -- If we get through that loop then all choices were static, and none
5258 -- of them matched the selecting expression. So return No_Match.
5259
5260 return No_Match;
5261 end Check_Case_Expr_Alternative;
5262
5263 -- Local variables
5264
5265 P : Node_Id;
5266 OldP : Node_Id;
5267 Choice : Node_Id;
5268
5269 -- Start of processing for Is_Statically_Unevaluated
5270
5271 begin
5272 -- The (32.x) references here are from RM section 4.9
5273
5274 -- (32.1) An expression is statically unevaluated if it is part of ...
5275
5276 -- This means we have to climb the tree looking for one of the cases
5277
5278 P := Expr;
5279 loop
5280 OldP := P;
5281 P := Parent (P);
5282
5283 -- (32.2) The right operand of a static short-circuit control form
5284 -- whose value is determined by its left operand.
5285
5286 -- AND THEN with False as left operand
5287
5288 if Nkind (P) = N_And_Then
5289 and then Compile_Time_Known_Value (Left_Opnd (P))
5290 and then Is_False (Expr_Value (Left_Opnd (P)))
5291 then
5292 return True;
5293
5294 -- OR ELSE with True as left operand
5295
5296 elsif Nkind (P) = N_Or_Else
5297 and then Compile_Time_Known_Value (Left_Opnd (P))
5298 and then Is_True (Expr_Value (Left_Opnd (P)))
5299 then
5300 return True;
5301
5302 -- (32.3) A dependent_expression of an if_expression whose associated
5303 -- condition is static and equals False.
5304
5305 elsif Nkind (P) = N_If_Expression then
5306 declare
5307 Cond : constant Node_Id := First (Expressions (P));
5308 Texp : constant Node_Id := Next (Cond);
5309 Fexp : constant Node_Id := Next (Texp);
5310
5311 begin
5312 if Compile_Time_Known_Value (Cond) then
5313
5314 -- Condition is True and we are in the right operand
5315
5316 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5317 return True;
5318
5319 -- Condition is False and we are in the left operand
5320
5321 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5322 return True;
5323 end if;
5324 end if;
5325 end;
5326
5327 -- (32.4) A condition or dependent_expression of an if_expression
5328 -- where the condition corresponding to at least one preceding
5329 -- dependent_expression of the if_expression is static and equals
5330 -- True.
5331
5332 -- This refers to cases like
5333
5334 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5335
5336 -- But we expand elsif's out anyway, so the above looks like:
5337
5338 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5339
5340 -- So for us this is caught by the above check for the 32.3 case.
5341
5342 -- (32.5) A dependent_expression of a case_expression whose
5343 -- selecting_expression is static and whose value is not covered
5344 -- by the corresponding discrete_choice_list.
5345
5346 elsif Nkind (P) = N_Case_Expression_Alternative then
5347
5348 -- First, we have to be in the expression to suppress messages.
5349 -- If we are within one of the choices, we want the message.
5350
5351 if OldP = Expression (P) then
5352
5353 -- Statically unevaluated if alternative does not match
5354
5355 if Check_Case_Expr_Alternative (P) = No_Match then
5356 return True;
5357 end if;
5358 end if;
5359
5360 -- (32.6) A choice_expression (or a simple_expression of a range
5361 -- that occurs as a membership_choice of a membership_choice_list)
5362 -- of a static membership test that is preceded in the enclosing
5363 -- membership_choice_list by another item whose individual
5364 -- membership test (see (RM 4.5.2)) statically yields True.
5365
5366 elsif Nkind (P) in N_Membership_Test then
5367
5368 -- Only possibly unevaluated if simple expression is static
5369
5370 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5371 null;
5372
5373 -- All members of the choice list must be static
5374
5375 elsif (Present (Right_Opnd (P))
5376 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5377 or else (Present (Alternatives (P))
5378 and then
5379 not Is_OK_Static_Choice_List (Alternatives (P)))
5380 then
5381 null;
5382
5383 -- If expression is the one and only alternative, then it is
5384 -- definitely not statically unevaluated, so we only have to
5385 -- test the case where there are alternatives present.
5386
5387 elsif Present (Alternatives (P)) then
5388
5389 -- Look for previous matching Choice
5390
5391 Choice := First (Alternatives (P));
5392 while Present (Choice) loop
5393
5394 -- If we reached us and no previous choices matched, this
5395 -- is not the case where we are statically unevaluated.
5396
5397 exit when OldP = Choice;
5398
5399 -- If a previous choice matches, then that is the case where
5400 -- we know our choice is statically unevaluated.
5401
5402 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5403 return True;
5404 end if;
5405
5406 Next (Choice);
5407 end loop;
5408
5409 -- If we fall through the loop, we were not one of the choices,
5410 -- we must have been the expression, so that is not covered by
5411 -- this rule, and we keep going.
5412
5413 null;
5414 end if;
5415 end if;
5416
5417 -- OK, not statically unevaluated at this level, see if we should
5418 -- keep climbing to look for a higher level reason.
5419
5420 -- Special case for component association in aggregates, where
5421 -- we want to keep climbing up to the parent aggregate.
5422
5423 if Nkind (P) = N_Component_Association
5424 and then Nkind (Parent (P)) = N_Aggregate
5425 then
5426 null;
5427
5428 -- All done if not still within subexpression
5429
5430 else
5431 exit when Nkind (P) not in N_Subexpr;
5432 end if;
5433 end loop;
5434
5435 -- If we fall through the loop, not one of the cases covered!
5436
5437 return False;
5438 end Is_Statically_Unevaluated;
5439
5440 --------------------
5441 -- Not_Null_Range --
5442 --------------------
5443
5444 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5445 begin
5446 if Compile_Time_Known_Value (Lo)
5447 and then Compile_Time_Known_Value (Hi)
5448 then
5449 declare
5450 Typ : Entity_Id := Etype (Lo);
5451 begin
5452 -- When called from the frontend, as part of the analysis of
5453 -- potentially static expressions, Typ will be the full view of a
5454 -- type with all the info needed to answer this query. When called
5455 -- from the backend, for example to know whether a range of a loop
5456 -- is null, Typ might be a private type and we need to explicitly
5457 -- switch to its corresponding full view to access the same info.
5458
5459 if Is_Incomplete_Or_Private_Type (Typ)
5460 and then Present (Full_View (Typ))
5461 then
5462 Typ := Full_View (Typ);
5463 end if;
5464
5465 if Is_Discrete_Type (Typ) then
5466 return Expr_Value (Lo) <= Expr_Value (Hi);
5467 else pragma Assert (Is_Real_Type (Typ));
5468 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5469 end if;
5470 end;
5471 else
5472 return False;
5473 end if;
5474
5475 end Not_Null_Range;
5476
5477 -------------
5478 -- OK_Bits --
5479 -------------
5480
5481 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5482 begin
5483 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5484
5485 if Bits < 500_000 then
5486 return True;
5487
5488 -- Error if this maximum is exceeded
5489
5490 else
5491 Error_Msg_N ("static value too large, capacity exceeded", N);
5492 return False;
5493 end if;
5494 end OK_Bits;
5495
5496 ------------------
5497 -- Out_Of_Range --
5498 ------------------
5499
5500 procedure Out_Of_Range (N : Node_Id) is
5501 begin
5502 -- If we have the static expression case, then this is an illegality
5503 -- in Ada 95 mode, except that in an instance, we never generate an
5504 -- error (if the error is legitimate, it was already diagnosed in the
5505 -- template).
5506
5507 if Is_Static_Expression (N)
5508 and then not In_Instance
5509 and then not In_Inlined_Body
5510 and then Ada_Version >= Ada_95
5511 then
5512 -- No message if we are statically unevaluated
5513
5514 if Is_Statically_Unevaluated (N) then
5515 null;
5516
5517 -- The expression to compute the length of a packed array is attached
5518 -- to the array type itself, and deserves a separate message.
5519
5520 elsif Nkind (Parent (N)) = N_Defining_Identifier
5521 and then Is_Array_Type (Parent (N))
5522 and then Present (Packed_Array_Impl_Type (Parent (N)))
5523 and then Present (First_Rep_Item (Parent (N)))
5524 then
5525 Error_Msg_N
5526 ("length of packed array must not exceed Integer''Last",
5527 First_Rep_Item (Parent (N)));
5528 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5529
5530 -- All cases except the special array case.
5531 -- No message if we are dealing with System.Priority values in
5532 -- CodePeer mode where the target runtime may have more priorities.
5533
5534 elsif not CodePeer_Mode or else Etype (N) /= RTE (RE_Priority) then
5535 -- Determine if the out-of-range violation constitutes a warning
5536 -- or an error based on context, according to RM 4.9 (34/3).
5537
5538 if Nkind (Original_Node (N)) = N_Type_Conversion
5539 and then not Comes_From_Source (Original_Node (N))
5540 then
5541 Apply_Compile_Time_Constraint_Error
5542 (N, "value not in range of}??", CE_Range_Check_Failed);
5543 else
5544 Apply_Compile_Time_Constraint_Error
5545 (N, "value not in range of}", CE_Range_Check_Failed);
5546 end if;
5547 end if;
5548
5549 -- Here we generate a warning for the Ada 83 case, or when we are in an
5550 -- instance, or when we have a non-static expression case.
5551
5552 else
5553 Apply_Compile_Time_Constraint_Error
5554 (N, "value not in range of}??", CE_Range_Check_Failed);
5555 end if;
5556 end Out_Of_Range;
5557
5558 ----------------------
5559 -- Predicates_Match --
5560 ----------------------
5561
5562 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5563 Pred1 : Node_Id;
5564 Pred2 : Node_Id;
5565
5566 begin
5567 if Ada_Version < Ada_2012 then
5568 return True;
5569
5570 -- Both types must have predicates or lack them
5571
5572 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5573 return False;
5574
5575 -- Check matching predicates
5576
5577 else
5578 Pred1 :=
5579 Get_Rep_Item
5580 (T1, Name_Static_Predicate, Check_Parents => False);
5581 Pred2 :=
5582 Get_Rep_Item
5583 (T2, Name_Static_Predicate, Check_Parents => False);
5584
5585 -- Subtypes statically match if the predicate comes from the
5586 -- same declaration, which can only happen if one is a subtype
5587 -- of the other and has no explicit predicate.
5588
5589 -- Suppress warnings on order of actuals, which is otherwise
5590 -- triggered by one of the two calls below.
5591
5592 pragma Warnings (Off);
5593 return Pred1 = Pred2
5594 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5595 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5596 pragma Warnings (On);
5597 end if;
5598 end Predicates_Match;
5599
5600 ---------------------------------------------
5601 -- Real_Or_String_Static_Predicate_Matches --
5602 ---------------------------------------------
5603
5604 function Real_Or_String_Static_Predicate_Matches
5605 (Val : Node_Id;
5606 Typ : Entity_Id) return Boolean
5607 is
5608 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5609 -- The predicate expression from the type
5610
5611 Pfun : constant Entity_Id := Predicate_Function (Typ);
5612 -- The entity for the predicate function
5613
5614 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5615 -- The name of the formal of the predicate function. Occurrences of the
5616 -- type name in Expr have been rewritten as references to this formal,
5617 -- and it has a unique name, so we can identify references by this name.
5618
5619 Copy : Node_Id;
5620 -- Copy of the predicate function tree
5621
5622 function Process (N : Node_Id) return Traverse_Result;
5623 -- Function used to process nodes during the traversal in which we will
5624 -- find occurrences of the entity name, and replace such occurrences
5625 -- by a real literal with the value to be tested.
5626
5627 procedure Traverse is new Traverse_Proc (Process);
5628 -- The actual traversal procedure
5629
5630 -------------
5631 -- Process --
5632 -------------
5633
5634 function Process (N : Node_Id) return Traverse_Result is
5635 begin
5636 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5637 declare
5638 Nod : constant Node_Id := New_Copy (Val);
5639 begin
5640 Set_Sloc (Nod, Sloc (N));
5641 Rewrite (N, Nod);
5642 return Skip;
5643 end;
5644
5645 -- The predicate function may contain string-comparison operations
5646 -- that have been converted into calls to run-time array-comparison
5647 -- routines. To evaluate the predicate statically, we recover the
5648 -- original comparison operation and replace the occurrence of the
5649 -- formal by the static string value. The actuals of the generated
5650 -- call are of the form X'Address.
5651
5652 elsif Nkind (N) in N_Op_Compare
5653 and then Nkind (Left_Opnd (N)) = N_Function_Call
5654 then
5655 declare
5656 C : constant Node_Id := Left_Opnd (N);
5657 F : constant Node_Id := First (Parameter_Associations (C));
5658 L : constant Node_Id := Prefix (F);
5659 R : constant Node_Id := Prefix (Next (F));
5660
5661 begin
5662 -- If an operand is an entity name, it is the formal of the
5663 -- predicate function, so replace it with the string value.
5664 -- It may be either operand in the call. The other operand
5665 -- is a static string from the original predicate.
5666
5667 if Is_Entity_Name (L) then
5668 Rewrite (Left_Opnd (N), New_Copy (Val));
5669 Rewrite (Right_Opnd (N), New_Copy (R));
5670
5671 else
5672 Rewrite (Left_Opnd (N), New_Copy (L));
5673 Rewrite (Right_Opnd (N), New_Copy (Val));
5674 end if;
5675
5676 return Skip;
5677 end;
5678
5679 else
5680 return OK;
5681 end if;
5682 end Process;
5683
5684 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5685
5686 begin
5687 -- First deal with special case of inherited predicate, where the
5688 -- predicate expression looks like:
5689
5690 -- xxPredicate (typ (Ent)) and then Expr
5691
5692 -- where Expr is the predicate expression for this level, and the
5693 -- left operand is the call to evaluate the inherited predicate.
5694
5695 if Nkind (Expr) = N_And_Then
5696 and then Nkind (Left_Opnd (Expr)) = N_Function_Call
5697 and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
5698 then
5699 -- OK we have the inherited case, so make a call to evaluate the
5700 -- inherited predicate. If that fails, so do we!
5701
5702 if not
5703 Real_Or_String_Static_Predicate_Matches
5704 (Val => Val,
5705 Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
5706 then
5707 return False;
5708 end if;
5709
5710 -- Use the right operand for the continued processing
5711
5712 Copy := Copy_Separate_Tree (Right_Opnd (Expr));
5713
5714 -- Case where call to predicate function appears on its own (this means
5715 -- that the predicate at this level is just inherited from the parent).
5716
5717 elsif Nkind (Expr) = N_Function_Call then
5718 declare
5719 Typ : constant Entity_Id :=
5720 Etype (First_Formal (Entity (Name (Expr))));
5721
5722 begin
5723 -- If the inherited predicate is dynamic, just ignore it. We can't
5724 -- go trying to evaluate a dynamic predicate as a static one!
5725
5726 if Has_Dynamic_Predicate_Aspect (Typ) then
5727 return True;
5728
5729 -- Otherwise inherited predicate is static, check for match
5730
5731 else
5732 return Real_Or_String_Static_Predicate_Matches (Val, Typ);
5733 end if;
5734 end;
5735
5736 -- If not just an inherited predicate, copy whole expression
5737
5738 else
5739 Copy := Copy_Separate_Tree (Expr);
5740 end if;
5741
5742 -- Now we replace occurrences of the entity by the value
5743
5744 Traverse (Copy);
5745
5746 -- And analyze the resulting static expression to see if it is True
5747
5748 Analyze_And_Resolve (Copy, Standard_Boolean);
5749 return Is_True (Expr_Value (Copy));
5750 end Real_Or_String_Static_Predicate_Matches;
5751
5752 -------------------------
5753 -- Rewrite_In_Raise_CE --
5754 -------------------------
5755
5756 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
5757 Stat : constant Boolean := Is_Static_Expression (N);
5758 Typ : constant Entity_Id := Etype (N);
5759
5760 begin
5761 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5762 -- can just clear the condition if the reason is appropriate. We do
5763 -- not do this operation if the parent has a reason other than range
5764 -- check failed, because otherwise we would change the reason.
5765
5766 if Present (Parent (N))
5767 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
5768 and then Reason (Parent (N)) =
5769 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
5770 then
5771 Set_Condition (Parent (N), Empty);
5772
5773 -- Else build an explicit N_Raise_CE
5774
5775 else
5776 if Nkind (Exp) = N_Raise_Constraint_Error then
5777 Rewrite (N,
5778 Make_Raise_Constraint_Error (Sloc (Exp),
5779 Reason => Reason (Exp)));
5780 else
5781 Rewrite (N,
5782 Make_Raise_Constraint_Error (Sloc (Exp),
5783 Reason => CE_Range_Check_Failed));
5784 end if;
5785
5786 Set_Raises_Constraint_Error (N);
5787 Set_Etype (N, Typ);
5788 end if;
5789
5790 -- Set proper flags in result
5791
5792 Set_Raises_Constraint_Error (N, True);
5793 Set_Is_Static_Expression (N, Stat);
5794 end Rewrite_In_Raise_CE;
5795
5796 ---------------------
5797 -- String_Type_Len --
5798 ---------------------
5799
5800 function String_Type_Len (Stype : Entity_Id) return Uint is
5801 NT : constant Entity_Id := Etype (First_Index (Stype));
5802 T : Entity_Id;
5803
5804 begin
5805 if Is_OK_Static_Subtype (NT) then
5806 T := NT;
5807 else
5808 T := Base_Type (NT);
5809 end if;
5810
5811 return Expr_Value (Type_High_Bound (T)) -
5812 Expr_Value (Type_Low_Bound (T)) + 1;
5813 end String_Type_Len;
5814
5815 ------------------------------------
5816 -- Subtypes_Statically_Compatible --
5817 ------------------------------------
5818
5819 function Subtypes_Statically_Compatible
5820 (T1 : Entity_Id;
5821 T2 : Entity_Id;
5822 Formal_Derived_Matching : Boolean := False) return Boolean
5823 is
5824 begin
5825 -- Scalar types
5826
5827 if Is_Scalar_Type (T1) then
5828
5829 -- Definitely compatible if we match
5830
5831 if Subtypes_Statically_Match (T1, T2) then
5832 return True;
5833
5834 -- If either subtype is nonstatic then they're not compatible
5835
5836 elsif not Is_OK_Static_Subtype (T1)
5837 or else
5838 not Is_OK_Static_Subtype (T2)
5839 then
5840 return False;
5841
5842 -- Base types must match, but we don't check that (should we???) but
5843 -- we do at least check that both types are real, or both types are
5844 -- not real.
5845
5846 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
5847 return False;
5848
5849 -- Here we check the bounds
5850
5851 else
5852 declare
5853 LB1 : constant Node_Id := Type_Low_Bound (T1);
5854 HB1 : constant Node_Id := Type_High_Bound (T1);
5855 LB2 : constant Node_Id := Type_Low_Bound (T2);
5856 HB2 : constant Node_Id := Type_High_Bound (T2);
5857
5858 begin
5859 if Is_Real_Type (T1) then
5860 return
5861 Expr_Value_R (LB1) > Expr_Value_R (HB1)
5862 or else
5863 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5864 and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5865
5866 else
5867 return
5868 Expr_Value (LB1) > Expr_Value (HB1)
5869 or else
5870 (Expr_Value (LB2) <= Expr_Value (LB1)
5871 and then Expr_Value (HB1) <= Expr_Value (HB2));
5872 end if;
5873 end;
5874 end if;
5875
5876 -- Access types
5877
5878 elsif Is_Access_Type (T1) then
5879 return
5880 (not Is_Constrained (T2)
5881 or else Subtypes_Statically_Match
5882 (Designated_Type (T1), Designated_Type (T2)))
5883 and then not (Can_Never_Be_Null (T2)
5884 and then not Can_Never_Be_Null (T1));
5885
5886 -- All other cases
5887
5888 else
5889 return
5890 (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5891 or else Subtypes_Statically_Match
5892 (T1, T2, Formal_Derived_Matching);
5893 end if;
5894 end Subtypes_Statically_Compatible;
5895
5896 -------------------------------
5897 -- Subtypes_Statically_Match --
5898 -------------------------------
5899
5900 -- Subtypes statically match if they have statically matching constraints
5901 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5902 -- they are the same identical constraint, or if they are static and the
5903 -- values match (RM 4.9.1(1)).
5904
5905 -- In addition, in GNAT, the object size (Esize) values of the types must
5906 -- match if they are set (unless checking an actual for a formal derived
5907 -- type). The use of 'Object_Size can cause this to be false even if the
5908 -- types would otherwise match in the Ada 95 RM sense, but this deviation
5909 -- is adopted by AI12-059 which introduces Object_Size in Ada 2020.
5910
5911 function Subtypes_Statically_Match
5912 (T1 : Entity_Id;
5913 T2 : Entity_Id;
5914 Formal_Derived_Matching : Boolean := False) return Boolean
5915 is
5916 begin
5917 -- A type always statically matches itself
5918
5919 if T1 = T2 then
5920 return True;
5921
5922 -- No match if sizes different (from use of 'Object_Size). This test
5923 -- is excluded if Formal_Derived_Matching is True, as the base types
5924 -- can be different in that case and typically have different sizes.
5925
5926 elsif not Formal_Derived_Matching
5927 and then Known_Static_Esize (T1)
5928 and then Known_Static_Esize (T2)
5929 and then Esize (T1) /= Esize (T2)
5930 then
5931 return False;
5932
5933 -- No match if predicates do not match
5934
5935 elsif not Predicates_Match (T1, T2) then
5936 return False;
5937
5938 -- Scalar types
5939
5940 elsif Is_Scalar_Type (T1) then
5941
5942 -- Base types must be the same
5943
5944 if Base_Type (T1) /= Base_Type (T2) then
5945 return False;
5946 end if;
5947
5948 -- A constrained numeric subtype never matches an unconstrained
5949 -- subtype, i.e. both types must be constrained or unconstrained.
5950
5951 -- To understand the requirement for this test, see RM 4.9.1(1).
5952 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5953 -- a constrained subtype with constraint bounds matching the bounds
5954 -- of its corresponding unconstrained base type. In this situation,
5955 -- Integer and Integer'Base do not statically match, even though
5956 -- they have the same bounds.
5957
5958 -- We only apply this test to types in Standard and types that appear
5959 -- in user programs. That way, we do not have to be too careful about
5960 -- setting Is_Constrained right for Itypes.
5961
5962 if Is_Numeric_Type (T1)
5963 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5964 and then (Scope (T1) = Standard_Standard
5965 or else Comes_From_Source (T1))
5966 and then (Scope (T2) = Standard_Standard
5967 or else Comes_From_Source (T2))
5968 then
5969 return False;
5970
5971 -- A generic scalar type does not statically match its base type
5972 -- (AI-311). In this case we make sure that the formals, which are
5973 -- first subtypes of their bases, are constrained.
5974
5975 elsif Is_Generic_Type (T1)
5976 and then Is_Generic_Type (T2)
5977 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5978 then
5979 return False;
5980 end if;
5981
5982 -- If there was an error in either range, then just assume the types
5983 -- statically match to avoid further junk errors.
5984
5985 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5986 or else Error_Posted (Scalar_Range (T1))
5987 or else Error_Posted (Scalar_Range (T2))
5988 then
5989 return True;
5990 end if;
5991
5992 -- Otherwise both types have bounds that can be compared
5993
5994 declare
5995 LB1 : constant Node_Id := Type_Low_Bound (T1);
5996 HB1 : constant Node_Id := Type_High_Bound (T1);
5997 LB2 : constant Node_Id := Type_Low_Bound (T2);
5998 HB2 : constant Node_Id := Type_High_Bound (T2);
5999
6000 begin
6001 -- If the bounds are the same tree node, then match (common case)
6002
6003 if LB1 = LB2 and then HB1 = HB2 then
6004 return True;
6005
6006 -- Otherwise bounds must be static and identical value
6007
6008 else
6009 if not Is_OK_Static_Subtype (T1)
6010 or else
6011 not Is_OK_Static_Subtype (T2)
6012 then
6013 return False;
6014
6015 elsif Is_Real_Type (T1) then
6016 return
6017 Expr_Value_R (LB1) = Expr_Value_R (LB2)
6018 and then
6019 Expr_Value_R (HB1) = Expr_Value_R (HB2);
6020
6021 else
6022 return
6023 Expr_Value (LB1) = Expr_Value (LB2)
6024 and then
6025 Expr_Value (HB1) = Expr_Value (HB2);
6026 end if;
6027 end if;
6028 end;
6029
6030 -- Type with discriminants
6031
6032 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6033
6034 -- Because of view exchanges in multiple instantiations, conformance
6035 -- checking might try to match a partial view of a type with no
6036 -- discriminants with a full view that has defaulted discriminants.
6037 -- In such a case, use the discriminant constraint of the full view,
6038 -- which must exist because we know that the two subtypes have the
6039 -- same base type.
6040
6041 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
6042 if In_Instance then
6043 if Is_Private_Type (T2)
6044 and then Present (Full_View (T2))
6045 and then Has_Discriminants (Full_View (T2))
6046 then
6047 return Subtypes_Statically_Match (T1, Full_View (T2));
6048
6049 elsif Is_Private_Type (T1)
6050 and then Present (Full_View (T1))
6051 and then Has_Discriminants (Full_View (T1))
6052 then
6053 return Subtypes_Statically_Match (Full_View (T1), T2);
6054
6055 else
6056 return False;
6057 end if;
6058 else
6059 return False;
6060 end if;
6061 end if;
6062
6063 declare
6064 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
6065 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
6066
6067 DA1 : Elmt_Id;
6068 DA2 : Elmt_Id;
6069
6070 begin
6071 if DL1 = DL2 then
6072 return True;
6073 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
6074 return False;
6075 end if;
6076
6077 -- Now loop through the discriminant constraints
6078
6079 -- Note: the guard here seems necessary, since it is possible at
6080 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
6081
6082 if Present (DL1) and then Present (DL2) then
6083 DA1 := First_Elmt (DL1);
6084 DA2 := First_Elmt (DL2);
6085 while Present (DA1) loop
6086 declare
6087 Expr1 : constant Node_Id := Node (DA1);
6088 Expr2 : constant Node_Id := Node (DA2);
6089
6090 begin
6091 if not Is_OK_Static_Expression (Expr1)
6092 or else not Is_OK_Static_Expression (Expr2)
6093 then
6094 return False;
6095
6096 -- If either expression raised a Constraint_Error,
6097 -- consider the expressions as matching, since this
6098 -- helps to prevent cascading errors.
6099
6100 elsif Raises_Constraint_Error (Expr1)
6101 or else Raises_Constraint_Error (Expr2)
6102 then
6103 null;
6104
6105 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
6106 return False;
6107 end if;
6108 end;
6109
6110 Next_Elmt (DA1);
6111 Next_Elmt (DA2);
6112 end loop;
6113 end if;
6114 end;
6115
6116 return True;
6117
6118 -- A definite type does not match an indefinite or classwide type.
6119 -- However, a generic type with unknown discriminants may be
6120 -- instantiated with a type with no discriminants, and conformance
6121 -- checking on an inherited operation may compare the actual with the
6122 -- subtype that renames it in the instance.
6123
6124 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
6125 then
6126 return
6127 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
6128
6129 -- Array type
6130
6131 elsif Is_Array_Type (T1) then
6132
6133 -- If either subtype is unconstrained then both must be, and if both
6134 -- are unconstrained then no further checking is needed.
6135
6136 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
6137 return not (Is_Constrained (T1) or else Is_Constrained (T2));
6138 end if;
6139
6140 -- Both subtypes are constrained, so check that the index subtypes
6141 -- statically match.
6142
6143 declare
6144 Index1 : Node_Id := First_Index (T1);
6145 Index2 : Node_Id := First_Index (T2);
6146
6147 begin
6148 while Present (Index1) loop
6149 if not
6150 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6151 then
6152 return False;
6153 end if;
6154
6155 Next_Index (Index1);
6156 Next_Index (Index2);
6157 end loop;
6158
6159 return True;
6160 end;
6161
6162 elsif Is_Access_Type (T1) then
6163 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6164 return False;
6165
6166 elsif Ekind_In (T1, E_Access_Subprogram_Type,
6167 E_Anonymous_Access_Subprogram_Type)
6168 then
6169 return
6170 Subtype_Conformant
6171 (Designated_Type (T1),
6172 Designated_Type (T2));
6173 else
6174 return
6175 Subtypes_Statically_Match
6176 (Designated_Type (T1),
6177 Designated_Type (T2))
6178 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6179 end if;
6180
6181 -- All other types definitely match
6182
6183 else
6184 return True;
6185 end if;
6186 end Subtypes_Statically_Match;
6187
6188 ----------
6189 -- Test --
6190 ----------
6191
6192 function Test (Cond : Boolean) return Uint is
6193 begin
6194 if Cond then
6195 return Uint_1;
6196 else
6197 return Uint_0;
6198 end if;
6199 end Test;
6200
6201 ---------------------
6202 -- Test_Comparison --
6203 ---------------------
6204
6205 procedure Test_Comparison
6206 (Op : Node_Id;
6207 Assume_Valid : Boolean;
6208 True_Result : out Boolean;
6209 False_Result : out Boolean)
6210 is
6211 Left : constant Node_Id := Left_Opnd (Op);
6212 Left_Typ : constant Entity_Id := Etype (Left);
6213 Orig_Op : constant Node_Id := Original_Node (Op);
6214
6215 procedure Replacement_Warning (Msg : String);
6216 -- Emit a warning on a comparison that can be replaced by '='
6217
6218 -------------------------
6219 -- Replacement_Warning --
6220 -------------------------
6221
6222 procedure Replacement_Warning (Msg : String) is
6223 begin
6224 if Constant_Condition_Warnings
6225 and then Comes_From_Source (Orig_Op)
6226 and then Is_Integer_Type (Left_Typ)
6227 and then not Error_Posted (Op)
6228 and then not Has_Warnings_Off (Left_Typ)
6229 and then not In_Instance
6230 then
6231 Error_Msg_N (Msg, Op);
6232 end if;
6233 end Replacement_Warning;
6234
6235 -- Local variables
6236
6237 Res : constant Compare_Result :=
6238 Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6239
6240 -- Start of processing for Test_Comparison
6241
6242 begin
6243 case N_Op_Compare (Nkind (Op)) is
6244 when N_Op_Eq =>
6245 True_Result := Res = EQ;
6246 False_Result := Res = LT or else Res = GT or else Res = NE;
6247
6248 when N_Op_Ge =>
6249 True_Result := Res in Compare_GE;
6250 False_Result := Res = LT;
6251
6252 if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6253 Replacement_Warning
6254 ("can never be greater than, could replace by ""'=""?c?");
6255 end if;
6256
6257 when N_Op_Gt =>
6258 True_Result := Res = GT;
6259 False_Result := Res in Compare_LE;
6260
6261 when N_Op_Le =>
6262 True_Result := Res in Compare_LE;
6263 False_Result := Res = GT;
6264
6265 if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6266 Replacement_Warning
6267 ("can never be less than, could replace by ""'=""?c?");
6268 end if;
6269
6270 when N_Op_Lt =>
6271 True_Result := Res = LT;
6272 False_Result := Res in Compare_GE;
6273
6274 when N_Op_Ne =>
6275 True_Result := Res = NE or else Res = GT or else Res = LT;
6276 False_Result := Res = EQ;
6277 end case;
6278 end Test_Comparison;
6279
6280 ---------------------------------
6281 -- Test_Expression_Is_Foldable --
6282 ---------------------------------
6283
6284 -- One operand case
6285
6286 procedure Test_Expression_Is_Foldable
6287 (N : Node_Id;
6288 Op1 : Node_Id;
6289 Stat : out Boolean;
6290 Fold : out Boolean)
6291 is
6292 begin
6293 Stat := False;
6294 Fold := False;
6295
6296 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6297 return;
6298 end if;
6299
6300 -- If operand is Any_Type, just propagate to result and do not
6301 -- try to fold, this prevents cascaded errors.
6302
6303 if Etype (Op1) = Any_Type then
6304 Set_Etype (N, Any_Type);
6305 return;
6306
6307 -- If operand raises Constraint_Error, then replace node N with the
6308 -- raise Constraint_Error node, and we are obviously not foldable.
6309 -- Note that this replacement inherits the Is_Static_Expression flag
6310 -- from the operand.
6311
6312 elsif Raises_Constraint_Error (Op1) then
6313 Rewrite_In_Raise_CE (N, Op1);
6314 return;
6315
6316 -- If the operand is not static, then the result is not static, and
6317 -- all we have to do is to check the operand since it is now known
6318 -- to appear in a non-static context.
6319
6320 elsif not Is_Static_Expression (Op1) then
6321 Check_Non_Static_Context (Op1);
6322 Fold := Compile_Time_Known_Value (Op1);
6323 return;
6324
6325 -- An expression of a formal modular type is not foldable because
6326 -- the modulus is unknown.
6327
6328 elsif Is_Modular_Integer_Type (Etype (Op1))
6329 and then Is_Generic_Type (Etype (Op1))
6330 then
6331 Check_Non_Static_Context (Op1);
6332 return;
6333
6334 -- Here we have the case of an operand whose type is OK, which is
6335 -- static, and which does not raise Constraint_Error, we can fold.
6336
6337 else
6338 Set_Is_Static_Expression (N);
6339 Fold := True;
6340 Stat := True;
6341 end if;
6342 end Test_Expression_Is_Foldable;
6343
6344 -- Two operand case
6345
6346 procedure Test_Expression_Is_Foldable
6347 (N : Node_Id;
6348 Op1 : Node_Id;
6349 Op2 : Node_Id;
6350 Stat : out Boolean;
6351 Fold : out Boolean;
6352 CRT_Safe : Boolean := False)
6353 is
6354 Rstat : constant Boolean := Is_Static_Expression (Op1)
6355 and then
6356 Is_Static_Expression (Op2);
6357
6358 begin
6359 Stat := False;
6360 Fold := False;
6361
6362 -- Inhibit folding if -gnatd.f flag set
6363
6364 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6365 return;
6366 end if;
6367
6368 -- If either operand is Any_Type, just propagate to result and
6369 -- do not try to fold, this prevents cascaded errors.
6370
6371 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6372 Set_Etype (N, Any_Type);
6373 return;
6374
6375 -- If left operand raises Constraint_Error, then replace node N with the
6376 -- Raise_Constraint_Error node, and we are obviously not foldable.
6377 -- Is_Static_Expression is set from the two operands in the normal way,
6378 -- and we check the right operand if it is in a non-static context.
6379
6380 elsif Raises_Constraint_Error (Op1) then
6381 if not Rstat then
6382 Check_Non_Static_Context (Op2);
6383 end if;
6384
6385 Rewrite_In_Raise_CE (N, Op1);
6386 Set_Is_Static_Expression (N, Rstat);
6387 return;
6388
6389 -- Similar processing for the case of the right operand. Note that we
6390 -- don't use this routine for the short-circuit case, so we do not have
6391 -- to worry about that special case here.
6392
6393 elsif Raises_Constraint_Error (Op2) then
6394 if not Rstat then
6395 Check_Non_Static_Context (Op1);
6396 end if;
6397
6398 Rewrite_In_Raise_CE (N, Op2);
6399 Set_Is_Static_Expression (N, Rstat);
6400 return;
6401
6402 -- Exclude expressions of a generic modular type, as above
6403
6404 elsif Is_Modular_Integer_Type (Etype (Op1))
6405 and then Is_Generic_Type (Etype (Op1))
6406 then
6407 Check_Non_Static_Context (Op1);
6408 return;
6409
6410 -- If result is not static, then check non-static contexts on operands
6411 -- since one of them may be static and the other one may not be static.
6412
6413 elsif not Rstat then
6414 Check_Non_Static_Context (Op1);
6415 Check_Non_Static_Context (Op2);
6416
6417 if CRT_Safe then
6418 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6419 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6420 else
6421 Fold := Compile_Time_Known_Value (Op1)
6422 and then Compile_Time_Known_Value (Op2);
6423 end if;
6424
6425 return;
6426
6427 -- Else result is static and foldable. Both operands are static, and
6428 -- neither raises Constraint_Error, so we can definitely fold.
6429
6430 else
6431 Set_Is_Static_Expression (N);
6432 Fold := True;
6433 Stat := True;
6434 return;
6435 end if;
6436 end Test_Expression_Is_Foldable;
6437
6438 -------------------
6439 -- Test_In_Range --
6440 -------------------
6441
6442 function Test_In_Range
6443 (N : Node_Id;
6444 Typ : Entity_Id;
6445 Assume_Valid : Boolean;
6446 Fixed_Int : Boolean;
6447 Int_Real : Boolean) return Range_Membership
6448 is
6449 Val : Uint;
6450 Valr : Ureal;
6451
6452 pragma Warnings (Off, Assume_Valid);
6453 -- For now Assume_Valid is unreferenced since the current implementation
6454 -- always returns Unknown if N is not a compile-time-known value, but we
6455 -- keep the parameter to allow for future enhancements in which we try
6456 -- to get the information in the variable case as well.
6457
6458 begin
6459 -- If an error was posted on expression, then return Unknown, we do not
6460 -- want cascaded errors based on some false analysis of a junk node.
6461
6462 if Error_Posted (N) then
6463 return Unknown;
6464
6465 -- Expression that raises Constraint_Error is an odd case. We certainly
6466 -- do not want to consider it to be in range. It might make sense to
6467 -- consider it always out of range, but this causes incorrect error
6468 -- messages about static expressions out of range. So we just return
6469 -- Unknown, which is always safe.
6470
6471 elsif Raises_Constraint_Error (N) then
6472 return Unknown;
6473
6474 -- Universal types have no range limits, so always in range
6475
6476 elsif Typ = Universal_Integer or else Typ = Universal_Real then
6477 return In_Range;
6478
6479 -- Never known if not scalar type. Don't know if this can actually
6480 -- happen, but our spec allows it, so we must check.
6481
6482 elsif not Is_Scalar_Type (Typ) then
6483 return Unknown;
6484
6485 -- Never known if this is a generic type, since the bounds of generic
6486 -- types are junk. Note that if we only checked for static expressions
6487 -- (instead of compile-time-known values) below, we would not need this
6488 -- check, because values of a generic type can never be static, but they
6489 -- can be known at compile time.
6490
6491 elsif Is_Generic_Type (Typ) then
6492 return Unknown;
6493
6494 -- Case of a known compile time value, where we can check if it is in
6495 -- the bounds of the given type.
6496
6497 elsif Compile_Time_Known_Value (N) then
6498 declare
6499 Lo : Node_Id;
6500 Hi : Node_Id;
6501
6502 LB_Known : Boolean;
6503 HB_Known : Boolean;
6504
6505 begin
6506 Lo := Type_Low_Bound (Typ);
6507 Hi := Type_High_Bound (Typ);
6508
6509 LB_Known := Compile_Time_Known_Value (Lo);
6510 HB_Known := Compile_Time_Known_Value (Hi);
6511
6512 -- Fixed point types should be considered as such only if flag
6513 -- Fixed_Int is set to False.
6514
6515 if Is_Floating_Point_Type (Typ)
6516 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6517 or else Int_Real
6518 then
6519 Valr := Expr_Value_R (N);
6520
6521 if LB_Known and HB_Known then
6522 if Valr >= Expr_Value_R (Lo)
6523 and then
6524 Valr <= Expr_Value_R (Hi)
6525 then
6526 return In_Range;
6527 else
6528 return Out_Of_Range;
6529 end if;
6530
6531 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6532 or else
6533 (HB_Known and then Valr > Expr_Value_R (Hi))
6534 then
6535 return Out_Of_Range;
6536
6537 else
6538 return Unknown;
6539 end if;
6540
6541 else
6542 Val := Expr_Value (N);
6543
6544 if LB_Known and HB_Known then
6545 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
6546 then
6547 return In_Range;
6548 else
6549 return Out_Of_Range;
6550 end if;
6551
6552 elsif (LB_Known and then Val < Expr_Value (Lo))
6553 or else
6554 (HB_Known and then Val > Expr_Value (Hi))
6555 then
6556 return Out_Of_Range;
6557
6558 else
6559 return Unknown;
6560 end if;
6561 end if;
6562 end;
6563
6564 -- Here for value not known at compile time. Case of expression subtype
6565 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6566 -- In this case we know it is in range without knowing its value.
6567
6568 elsif Assume_Valid
6569 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6570 then
6571 return In_Range;
6572
6573 -- Another special case. For signed integer types, if the target type
6574 -- has Is_Known_Valid set, and the source type does not have a larger
6575 -- size, then the source value must be in range. We exclude biased
6576 -- types, because they bizarrely can generate out of range values.
6577
6578 elsif Is_Signed_Integer_Type (Etype (N))
6579 and then Is_Known_Valid (Typ)
6580 and then Esize (Etype (N)) <= Esize (Typ)
6581 and then not Has_Biased_Representation (Etype (N))
6582 then
6583 return In_Range;
6584
6585 -- For all other cases, result is unknown
6586
6587 else
6588 return Unknown;
6589 end if;
6590 end Test_In_Range;
6591
6592 --------------
6593 -- To_Bits --
6594 --------------
6595
6596 procedure To_Bits (U : Uint; B : out Bits) is
6597 begin
6598 for J in 0 .. B'Last loop
6599 B (J) := (U / (2 ** J)) mod 2 /= 0;
6600 end loop;
6601 end To_Bits;
6602
6603 --------------------
6604 -- Why_Not_Static --
6605 --------------------
6606
6607 procedure Why_Not_Static (Expr : Node_Id) is
6608 N : constant Node_Id := Original_Node (Expr);
6609 Typ : Entity_Id := Empty;
6610 E : Entity_Id;
6611 Alt : Node_Id;
6612 Exp : Node_Id;
6613
6614 procedure Why_Not_Static_List (L : List_Id);
6615 -- A version that can be called on a list of expressions. Finds all
6616 -- non-static violations in any element of the list.
6617
6618 -------------------------
6619 -- Why_Not_Static_List --
6620 -------------------------
6621
6622 procedure Why_Not_Static_List (L : List_Id) is
6623 N : Node_Id;
6624 begin
6625 if Is_Non_Empty_List (L) then
6626 N := First (L);
6627 while Present (N) loop
6628 Why_Not_Static (N);
6629 Next (N);
6630 end loop;
6631 end if;
6632 end Why_Not_Static_List;
6633
6634 -- Start of processing for Why_Not_Static
6635
6636 begin
6637 -- Ignore call on error or empty node
6638
6639 if No (Expr) or else Nkind (Expr) = N_Error then
6640 return;
6641 end if;
6642
6643 -- Preprocessing for sub expressions
6644
6645 if Nkind (Expr) in N_Subexpr then
6646
6647 -- Nothing to do if expression is static
6648
6649 if Is_OK_Static_Expression (Expr) then
6650 return;
6651 end if;
6652
6653 -- Test for Constraint_Error raised
6654
6655 if Raises_Constraint_Error (Expr) then
6656
6657 -- Special case membership to find out which piece to flag
6658
6659 if Nkind (N) in N_Membership_Test then
6660 if Raises_Constraint_Error (Left_Opnd (N)) then
6661 Why_Not_Static (Left_Opnd (N));
6662 return;
6663
6664 elsif Present (Right_Opnd (N))
6665 and then Raises_Constraint_Error (Right_Opnd (N))
6666 then
6667 Why_Not_Static (Right_Opnd (N));
6668 return;
6669
6670 else
6671 pragma Assert (Present (Alternatives (N)));
6672
6673 Alt := First (Alternatives (N));
6674 while Present (Alt) loop
6675 if Raises_Constraint_Error (Alt) then
6676 Why_Not_Static (Alt);
6677 return;
6678 else
6679 Next (Alt);
6680 end if;
6681 end loop;
6682 end if;
6683
6684 -- Special case a range to find out which bound to flag
6685
6686 elsif Nkind (N) = N_Range then
6687 if Raises_Constraint_Error (Low_Bound (N)) then
6688 Why_Not_Static (Low_Bound (N));
6689 return;
6690
6691 elsif Raises_Constraint_Error (High_Bound (N)) then
6692 Why_Not_Static (High_Bound (N));
6693 return;
6694 end if;
6695
6696 -- Special case attribute to see which part to flag
6697
6698 elsif Nkind (N) = N_Attribute_Reference then
6699 if Raises_Constraint_Error (Prefix (N)) then
6700 Why_Not_Static (Prefix (N));
6701 return;
6702 end if;
6703
6704 if Present (Expressions (N)) then
6705 Exp := First (Expressions (N));
6706 while Present (Exp) loop
6707 if Raises_Constraint_Error (Exp) then
6708 Why_Not_Static (Exp);
6709 return;
6710 end if;
6711
6712 Next (Exp);
6713 end loop;
6714 end if;
6715
6716 -- Special case a subtype name
6717
6718 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6719 Error_Msg_NE
6720 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6721 return;
6722 end if;
6723
6724 -- End of special cases
6725
6726 Error_Msg_N
6727 ("!expression raises exception, cannot be static (RM 4.9(34))",
6728 N);
6729 return;
6730 end if;
6731
6732 -- If no type, then something is pretty wrong, so ignore
6733
6734 Typ := Etype (Expr);
6735
6736 if No (Typ) then
6737 return;
6738 end if;
6739
6740 -- Type must be scalar or string type (but allow Bignum, since this
6741 -- is really a scalar type from our point of view in this diagnosis).
6742
6743 if not Is_Scalar_Type (Typ)
6744 and then not Is_String_Type (Typ)
6745 and then not Is_RTE (Typ, RE_Bignum)
6746 then
6747 Error_Msg_N
6748 ("!static expression must have scalar or string type " &
6749 "(RM 4.9(2))", N);
6750 return;
6751 end if;
6752 end if;
6753
6754 -- If we got through those checks, test particular node kind
6755
6756 case Nkind (N) is
6757
6758 -- Entity name
6759
6760 when N_Expanded_Name
6761 | N_Identifier
6762 | N_Operator_Symbol
6763 =>
6764 E := Entity (N);
6765
6766 if Is_Named_Number (E) then
6767 null;
6768
6769 elsif Ekind (E) = E_Constant then
6770
6771 -- One case we can give a metter message is when we have a
6772 -- string literal created by concatenating an aggregate with
6773 -- an others expression.
6774
6775 Entity_Case : declare
6776 CV : constant Node_Id := Constant_Value (E);
6777 CO : constant Node_Id := Original_Node (CV);
6778
6779 function Is_Aggregate (N : Node_Id) return Boolean;
6780 -- See if node N came from an others aggregate, if so
6781 -- return True and set Error_Msg_Sloc to aggregate.
6782
6783 ------------------
6784 -- Is_Aggregate --
6785 ------------------
6786
6787 function Is_Aggregate (N : Node_Id) return Boolean is
6788 begin
6789 if Nkind (Original_Node (N)) = N_Aggregate then
6790 Error_Msg_Sloc := Sloc (Original_Node (N));
6791 return True;
6792
6793 elsif Is_Entity_Name (N)
6794 and then Ekind (Entity (N)) = E_Constant
6795 and then
6796 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6797 N_Aggregate
6798 then
6799 Error_Msg_Sloc :=
6800 Sloc (Original_Node (Constant_Value (Entity (N))));
6801 return True;
6802
6803 else
6804 return False;
6805 end if;
6806 end Is_Aggregate;
6807
6808 -- Start of processing for Entity_Case
6809
6810 begin
6811 if Is_Aggregate (CV)
6812 or else (Nkind (CO) = N_Op_Concat
6813 and then (Is_Aggregate (Left_Opnd (CO))
6814 or else
6815 Is_Aggregate (Right_Opnd (CO))))
6816 then
6817 Error_Msg_N ("!aggregate (#) is never static", N);
6818
6819 elsif No (CV) or else not Is_Static_Expression (CV) then
6820 Error_Msg_NE
6821 ("!& is not a static constant (RM 4.9(5))", N, E);
6822 end if;
6823 end Entity_Case;
6824
6825 elsif Is_Type (E) then
6826 Error_Msg_NE
6827 ("!& is not a static subtype (RM 4.9(26))", N, E);
6828
6829 else
6830 Error_Msg_NE
6831 ("!& is not static constant or named number "
6832 & "(RM 4.9(5))", N, E);
6833 end if;
6834
6835 -- Binary operator
6836
6837 when N_Binary_Op
6838 | N_Membership_Test
6839 | N_Short_Circuit
6840 =>
6841 if Nkind (N) in N_Op_Shift then
6842 Error_Msg_N
6843 ("!shift functions are never static (RM 4.9(6,18))", N);
6844 else
6845 Why_Not_Static (Left_Opnd (N));
6846 Why_Not_Static (Right_Opnd (N));
6847 end if;
6848
6849 -- Unary operator
6850
6851 when N_Unary_Op =>
6852 Why_Not_Static (Right_Opnd (N));
6853
6854 -- Attribute reference
6855
6856 when N_Attribute_Reference =>
6857 Why_Not_Static_List (Expressions (N));
6858
6859 E := Etype (Prefix (N));
6860
6861 if E = Standard_Void_Type then
6862 return;
6863 end if;
6864
6865 -- Special case non-scalar'Size since this is a common error
6866
6867 if Attribute_Name (N) = Name_Size then
6868 Error_Msg_N
6869 ("!size attribute is only static for static scalar type "
6870 & "(RM 4.9(7,8))", N);
6871
6872 -- Flag array cases
6873
6874 elsif Is_Array_Type (E) then
6875 if not Nam_In (Attribute_Name (N), Name_First,
6876 Name_Last,
6877 Name_Length)
6878 then
6879 Error_Msg_N
6880 ("!static array attribute must be Length, First, or Last "
6881 & "(RM 4.9(8))", N);
6882
6883 -- Since we know the expression is not-static (we already
6884 -- tested for this, must mean array is not static).
6885
6886 else
6887 Error_Msg_N
6888 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
6889 end if;
6890
6891 return;
6892
6893 -- Special case generic types, since again this is a common source
6894 -- of confusion.
6895
6896 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
6897 Error_Msg_N
6898 ("!attribute of generic type is never static "
6899 & "(RM 4.9(7,8))", N);
6900
6901 elsif Is_OK_Static_Subtype (E) then
6902 null;
6903
6904 elsif Is_Scalar_Type (E) then
6905 Error_Msg_N
6906 ("!prefix type for attribute is not static scalar subtype "
6907 & "(RM 4.9(7))", N);
6908
6909 else
6910 Error_Msg_N
6911 ("!static attribute must apply to array/scalar type "
6912 & "(RM 4.9(7,8))", N);
6913 end if;
6914
6915 -- String literal
6916
6917 when N_String_Literal =>
6918 Error_Msg_N
6919 ("!subtype of string literal is non-static (RM 4.9(4))", N);
6920
6921 -- Explicit dereference
6922
6923 when N_Explicit_Dereference =>
6924 Error_Msg_N
6925 ("!explicit dereference is never static (RM 4.9)", N);
6926
6927 -- Function call
6928
6929 when N_Function_Call =>
6930 Why_Not_Static_List (Parameter_Associations (N));
6931
6932 -- Complain about non-static function call unless we have Bignum
6933 -- which means that the underlying expression is really some
6934 -- scalar arithmetic operation.
6935
6936 if not Is_RTE (Typ, RE_Bignum) then
6937 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
6938 end if;
6939
6940 -- Parameter assocation (test actual parameter)
6941
6942 when N_Parameter_Association =>
6943 Why_Not_Static (Explicit_Actual_Parameter (N));
6944
6945 -- Indexed component
6946
6947 when N_Indexed_Component =>
6948 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
6949
6950 -- Procedure call
6951
6952 when N_Procedure_Call_Statement =>
6953 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
6954
6955 -- Qualified expression (test expression)
6956
6957 when N_Qualified_Expression =>
6958 Why_Not_Static (Expression (N));
6959
6960 -- Aggregate
6961
6962 when N_Aggregate
6963 | N_Extension_Aggregate
6964 =>
6965 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
6966
6967 -- Range
6968
6969 when N_Range =>
6970 Why_Not_Static (Low_Bound (N));
6971 Why_Not_Static (High_Bound (N));
6972
6973 -- Range constraint, test range expression
6974
6975 when N_Range_Constraint =>
6976 Why_Not_Static (Range_Expression (N));
6977
6978 -- Subtype indication, test constraint
6979
6980 when N_Subtype_Indication =>
6981 Why_Not_Static (Constraint (N));
6982
6983 -- Selected component
6984
6985 when N_Selected_Component =>
6986 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
6987
6988 -- Slice
6989
6990 when N_Slice =>
6991 Error_Msg_N ("!slice is never static (RM 4.9)", N);
6992
6993 when N_Type_Conversion =>
6994 Why_Not_Static (Expression (N));
6995
6996 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
6997 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
6998 then
6999 Error_Msg_N
7000 ("!static conversion requires static scalar subtype result "
7001 & "(RM 4.9(9))", N);
7002 end if;
7003
7004 -- Unchecked type conversion
7005
7006 when N_Unchecked_Type_Conversion =>
7007 Error_Msg_N
7008 ("!unchecked type conversion is never static (RM 4.9)", N);
7009
7010 -- All other cases, no reason to give
7011
7012 when others =>
7013 null;
7014 end case;
7015 end Why_Not_Static;
7016
7017 end Sem_Eval;