]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
7511f71b9c0b1cdb8066e718bcd0fac780f027ea
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53 #include "calls.h"
54
55 /* This file contains three techniques for performing Dead Store
56 Elimination (dse).
57
58 * The first technique performs dse locally on any base address. It
59 is based on the cselib which is a local value numbering technique.
60 This technique is local to a basic block but deals with a fairly
61 general addresses.
62
63 * The second technique performs dse globally but is restricted to
64 base addresses that are either constant or are relative to the
65 frame_pointer.
66
67 * The third technique, (which is only done after register allocation)
68 processes the spill slots. This differs from the second
69 technique because it takes advantage of the fact that spilling is
70 completely free from the effects of aliasing.
71
72 Logically, dse is a backwards dataflow problem. A store can be
73 deleted if it if cannot be reached in the backward direction by any
74 use of the value being stored. However, the local technique uses a
75 forwards scan of the basic block because cselib requires that the
76 block be processed in that order.
77
78 The pass is logically broken into 7 steps:
79
80 0) Initialization.
81
82 1) The local algorithm, as well as scanning the insns for the two
83 global algorithms.
84
85 2) Analysis to see if the global algs are necessary. In the case
86 of stores base on a constant address, there must be at least two
87 stores to that address, to make it possible to delete some of the
88 stores. In the case of stores off of the frame or spill related
89 stores, only one store to an address is necessary because those
90 stores die at the end of the function.
91
92 3) Set up the global dataflow equations based on processing the
93 info parsed in the first step.
94
95 4) Solve the dataflow equations.
96
97 5) Delete the insns that the global analysis has indicated are
98 unnecessary.
99
100 6) Delete insns that store the same value as preceding store
101 where the earlier store couldn't be eliminated.
102
103 7) Cleanup.
104
105 This step uses cselib and canon_rtx to build the largest expression
106 possible for each address. This pass is a forwards pass through
107 each basic block. From the point of view of the global technique,
108 the first pass could examine a block in either direction. The
109 forwards ordering is to accommodate cselib.
110
111 We make a simplifying assumption: addresses fall into four broad
112 categories:
113
114 1) base has rtx_varies_p == false, offset is constant.
115 2) base has rtx_varies_p == false, offset variable.
116 3) base has rtx_varies_p == true, offset constant.
117 4) base has rtx_varies_p == true, offset variable.
118
119 The local passes are able to process all 4 kinds of addresses. The
120 global pass only handles 1).
121
122 The global problem is formulated as follows:
123
124 A store, S1, to address A, where A is not relative to the stack
125 frame, can be eliminated if all paths from S1 to the end of the
126 function contain another store to A before a read to A.
127
128 If the address A is relative to the stack frame, a store S2 to A
129 can be eliminated if there are no paths from S2 that reach the
130 end of the function that read A before another store to A. In
131 this case S2 can be deleted if there are paths from S2 to the
132 end of the function that have no reads or writes to A. This
133 second case allows stores to the stack frame to be deleted that
134 would otherwise die when the function returns. This cannot be
135 done if stores_off_frame_dead_at_return is not true. See the doc
136 for that variable for when this variable is false.
137
138 The global problem is formulated as a backwards set union
139 dataflow problem where the stores are the gens and reads are the
140 kills. Set union problems are rare and require some special
141 handling given our representation of bitmaps. A straightforward
142 implementation requires a lot of bitmaps filled with 1s.
143 These are expensive and cumbersome in our bitmap formulation so
144 care has been taken to avoid large vectors filled with 1s. See
145 the comments in bb_info and in the dataflow confluence functions
146 for details.
147
148 There are two places for further enhancements to this algorithm:
149
150 1) The original dse which was embedded in a pass called flow also
151 did local address forwarding. For example in
152
153 A <- r100
154 ... <- A
155
156 flow would replace the right hand side of the second insn with a
157 reference to r100. Most of the information is available to add this
158 to this pass. It has not done it because it is a lot of work in
159 the case that either r100 is assigned to between the first and
160 second insn and/or the second insn is a load of part of the value
161 stored by the first insn.
162
163 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
164 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
165 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
166 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167
168 2) The cleaning up of spill code is quite profitable. It currently
169 depends on reading tea leaves and chicken entrails left by reload.
170 This pass depends on reload creating a singleton alias set for each
171 spill slot and telling the next dse pass which of these alias sets
172 are the singletons. Rather than analyze the addresses of the
173 spills, dse's spill processing just does analysis of the loads and
174 stores that use those alias sets. There are three cases where this
175 falls short:
176
177 a) Reload sometimes creates the slot for one mode of access, and
178 then inserts loads and/or stores for a smaller mode. In this
179 case, the current code just punts on the slot. The proper thing
180 to do is to back out and use one bit vector position for each
181 byte of the entity associated with the slot. This depends on
182 KNOWING that reload always generates the accesses for each of the
183 bytes in some canonical (read that easy to understand several
184 passes after reload happens) way.
185
186 b) Reload sometimes decides that spill slot it allocated was not
187 large enough for the mode and goes back and allocates more slots
188 with the same mode and alias set. The backout in this case is a
189 little more graceful than (a). In this case the slot is unmarked
190 as being a spill slot and if final address comes out to be based
191 off the frame pointer, the global algorithm handles this slot.
192
193 c) For any pass that may prespill, there is currently no
194 mechanism to tell the dse pass that the slot being used has the
195 special properties that reload uses. It may be that all that is
196 required is to have those passes make the same calls that reload
197 does, assuming that the alias sets can be manipulated in the same
198 way. */
199
200 /* There are limits to the size of constant offsets we model for the
201 global problem. There are certainly test cases, that exceed this
202 limit, however, it is unlikely that there are important programs
203 that really have constant offsets this size. */
204 #define MAX_OFFSET (64 * 1024)
205
206 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
207 on the default obstack because these bitmaps can grow quite large
208 (~2GB for the small (!) test case of PR54146) and we'll hold on to
209 all that memory until the end of the compiler run.
210 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
211 releasing the whole obstack. */
212 static bitmap_obstack dse_bitmap_obstack;
213
214 /* Obstack for other data. As for above: Kinda nice to be able to
215 throw it all away at the end in one big sweep. */
216 static struct obstack dse_obstack;
217
218 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
219 static bitmap scratch = NULL;
220
221 struct insn_info_type;
222
223 /* This structure holds information about a candidate store. */
224 class store_info
225 {
226 public:
227
228 /* False means this is a clobber. */
229 bool is_set;
230
231 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
232 bool is_large;
233
234 /* The id of the mem group of the base address. If rtx_varies_p is
235 true, this is -1. Otherwise, it is the index into the group
236 table. */
237 int group_id;
238
239 /* This is the cselib value. */
240 cselib_val *cse_base;
241
242 /* This canonized mem. */
243 rtx mem;
244
245 /* Canonized MEM address for use by canon_true_dependence. */
246 rtx mem_addr;
247
248 /* The offset of the first byte associated with the operation. */
249 poly_int64 offset;
250
251 /* The number of bytes covered by the operation. This is always exact
252 and known (rather than -1). */
253 poly_int64 width;
254
255 union
256 {
257 /* A bitmask as wide as the number of bytes in the word that
258 contains a 1 if the byte may be needed. The store is unused if
259 all of the bits are 0. This is used if IS_LARGE is false. */
260 unsigned HOST_WIDE_INT small_bitmask;
261
262 struct
263 {
264 /* A bitmap with one bit per byte, or null if the number of
265 bytes isn't known at compile time. A cleared bit means
266 the position is needed. Used if IS_LARGE is true. */
267 bitmap bmap;
268
269 /* When BITMAP is nonnull, this counts the number of set bits
270 (i.e. unneeded bytes) in the bitmap. If it is equal to
271 WIDTH, the whole store is unused.
272
273 When BITMAP is null:
274 - the store is definitely not needed when COUNT == 1
275 - all the store is needed when COUNT == 0 and RHS is nonnull
276 - otherwise we don't know which parts of the store are needed. */
277 int count;
278 } large;
279 } positions_needed;
280
281 /* The next store info for this insn. */
282 class store_info *next;
283
284 /* The right hand side of the store. This is used if there is a
285 subsequent reload of the mems address somewhere later in the
286 basic block. */
287 rtx rhs;
288
289 /* If rhs is or holds a constant, this contains that constant,
290 otherwise NULL. */
291 rtx const_rhs;
292
293 /* Set if this store stores the same constant value as REDUNDANT_REASON
294 insn stored. These aren't eliminated early, because doing that
295 might prevent the earlier larger store to be eliminated. */
296 struct insn_info_type *redundant_reason;
297 };
298
299 /* Return a bitmask with the first N low bits set. */
300
301 static unsigned HOST_WIDE_INT
302 lowpart_bitmask (int n)
303 {
304 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
305 return mask >> (HOST_BITS_PER_WIDE_INT - n);
306 }
307
308 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
309
310 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
311
312 /* This structure holds information about a load. These are only
313 built for rtx bases. */
314 class read_info_type
315 {
316 public:
317 /* The id of the mem group of the base address. */
318 int group_id;
319
320 /* The offset of the first byte associated with the operation. */
321 poly_int64 offset;
322
323 /* The number of bytes covered by the operation, or -1 if not known. */
324 poly_int64 width;
325
326 /* The mem being read. */
327 rtx mem;
328
329 /* The next read_info for this insn. */
330 class read_info_type *next;
331 };
332 typedef class read_info_type *read_info_t;
333
334 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
335
336 /* One of these records is created for each insn. */
337
338 struct insn_info_type
339 {
340 /* Set true if the insn contains a store but the insn itself cannot
341 be deleted. This is set if the insn is a parallel and there is
342 more than one non dead output or if the insn is in some way
343 volatile. */
344 bool cannot_delete;
345
346 /* This field is only used by the global algorithm. It is set true
347 if the insn contains any read of mem except for a (1). This is
348 also set if the insn is a call or has a clobber mem. If the insn
349 contains a wild read, the use_rec will be null. */
350 bool wild_read;
351
352 /* This is true only for CALL instructions which could potentially read
353 any non-frame memory location. This field is used by the global
354 algorithm. */
355 bool non_frame_wild_read;
356
357 /* This field is only used for the processing of const functions.
358 These functions cannot read memory, but they can read the stack
359 because that is where they may get their parms. We need to be
360 this conservative because, like the store motion pass, we don't
361 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
362 Moreover, we need to distinguish two cases:
363 1. Before reload (register elimination), the stores related to
364 outgoing arguments are stack pointer based and thus deemed
365 of non-constant base in this pass. This requires special
366 handling but also means that the frame pointer based stores
367 need not be killed upon encountering a const function call.
368 2. After reload, the stores related to outgoing arguments can be
369 either stack pointer or hard frame pointer based. This means
370 that we have no other choice than also killing all the frame
371 pointer based stores upon encountering a const function call.
372 This field is set after reload for const function calls and before
373 reload for const tail function calls on targets where arg pointer
374 is the frame pointer. Having this set is less severe than a wild
375 read, it just means that all the frame related stores are killed
376 rather than all the stores. */
377 bool frame_read;
378
379 /* This field is only used for the processing of const functions.
380 It is set if the insn may contain a stack pointer based store. */
381 bool stack_pointer_based;
382
383 /* This is true if any of the sets within the store contains a
384 cselib base. Such stores can only be deleted by the local
385 algorithm. */
386 bool contains_cselib_groups;
387
388 /* The insn. */
389 rtx_insn *insn;
390
391 /* The list of mem sets or mem clobbers that are contained in this
392 insn. If the insn is deletable, it contains only one mem set.
393 But it could also contain clobbers. Insns that contain more than
394 one mem set are not deletable, but each of those mems are here in
395 order to provide info to delete other insns. */
396 store_info *store_rec;
397
398 /* The linked list of mem uses in this insn. Only the reads from
399 rtx bases are listed here. The reads to cselib bases are
400 completely processed during the first scan and so are never
401 created. */
402 read_info_t read_rec;
403
404 /* The live fixed registers. We assume only fixed registers can
405 cause trouble by being clobbered from an expanded pattern;
406 storing only the live fixed registers (rather than all registers)
407 means less memory needs to be allocated / copied for the individual
408 stores. */
409 regset fixed_regs_live;
410
411 /* The prev insn in the basic block. */
412 struct insn_info_type * prev_insn;
413
414 /* The linked list of insns that are in consideration for removal in
415 the forwards pass through the basic block. This pointer may be
416 trash as it is not cleared when a wild read occurs. The only
417 time it is guaranteed to be correct is when the traversal starts
418 at active_local_stores. */
419 struct insn_info_type * next_local_store;
420 };
421 typedef struct insn_info_type *insn_info_t;
422
423 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
424
425 /* The linked list of stores that are under consideration in this
426 basic block. */
427 static insn_info_t active_local_stores;
428 static int active_local_stores_len;
429
430 struct dse_bb_info_type
431 {
432 /* Pointer to the insn info for the last insn in the block. These
433 are linked so this is how all of the insns are reached. During
434 scanning this is the current insn being scanned. */
435 insn_info_t last_insn;
436
437 /* The info for the global dataflow problem. */
438
439
440 /* This is set if the transfer function should and in the wild_read
441 bitmap before applying the kill and gen sets. That vector knocks
442 out most of the bits in the bitmap and thus speeds up the
443 operations. */
444 bool apply_wild_read;
445
446 /* The following 4 bitvectors hold information about which positions
447 of which stores are live or dead. They are indexed by
448 get_bitmap_index. */
449
450 /* The set of store positions that exist in this block before a wild read. */
451 bitmap gen;
452
453 /* The set of load positions that exist in this block above the
454 same position of a store. */
455 bitmap kill;
456
457 /* The set of stores that reach the top of the block without being
458 killed by a read.
459
460 Do not represent the in if it is all ones. Note that this is
461 what the bitvector should logically be initialized to for a set
462 intersection problem. However, like the kill set, this is too
463 expensive. So initially, the in set will only be created for the
464 exit block and any block that contains a wild read. */
465 bitmap in;
466
467 /* The set of stores that reach the bottom of the block from it's
468 successors.
469
470 Do not represent the in if it is all ones. Note that this is
471 what the bitvector should logically be initialized to for a set
472 intersection problem. However, like the kill and in set, this is
473 too expensive. So what is done is that the confluence operator
474 just initializes the vector from one of the out sets of the
475 successors of the block. */
476 bitmap out;
477
478 /* The following bitvector is indexed by the reg number. It
479 contains the set of regs that are live at the current instruction
480 being processed. While it contains info for all of the
481 registers, only the hard registers are actually examined. It is used
482 to assure that shift and/or add sequences that are inserted do not
483 accidentally clobber live hard regs. */
484 bitmap regs_live;
485 };
486
487 typedef struct dse_bb_info_type *bb_info_t;
488
489 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
490 ("bb_info_pool");
491
492 /* Table to hold all bb_infos. */
493 static bb_info_t *bb_table;
494
495 /* There is a group_info for each rtx base that is used to reference
496 memory. There are also not many of the rtx bases because they are
497 very limited in scope. */
498
499 struct group_info
500 {
501 /* The actual base of the address. */
502 rtx rtx_base;
503
504 /* The sequential id of the base. This allows us to have a
505 canonical ordering of these that is not based on addresses. */
506 int id;
507
508 /* True if there are any positions that are to be processed
509 globally. */
510 bool process_globally;
511
512 /* True if the base of this group is either the frame_pointer or
513 hard_frame_pointer. */
514 bool frame_related;
515
516 /* A mem wrapped around the base pointer for the group in order to do
517 read dependency. It must be given BLKmode in order to encompass all
518 the possible offsets from the base. */
519 rtx base_mem;
520
521 /* Canonized version of base_mem's address. */
522 rtx canon_base_addr;
523
524 /* These two sets of two bitmaps are used to keep track of how many
525 stores are actually referencing that position from this base. We
526 only do this for rtx bases as this will be used to assign
527 positions in the bitmaps for the global problem. Bit N is set in
528 store1 on the first store for offset N. Bit N is set in store2
529 for the second store to offset N. This is all we need since we
530 only care about offsets that have two or more stores for them.
531
532 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
533 for 0 and greater offsets.
534
535 There is one special case here, for stores into the stack frame,
536 we will or store1 into store2 before deciding which stores look
537 at globally. This is because stores to the stack frame that have
538 no other reads before the end of the function can also be
539 deleted. */
540 bitmap store1_n, store1_p, store2_n, store2_p;
541
542 /* These bitmaps keep track of offsets in this group escape this function.
543 An offset escapes if it corresponds to a named variable whose
544 addressable flag is set. */
545 bitmap escaped_n, escaped_p;
546
547 /* The positions in this bitmap have the same assignments as the in,
548 out, gen and kill bitmaps. This bitmap is all zeros except for
549 the positions that are occupied by stores for this group. */
550 bitmap group_kill;
551
552 /* The offset_map is used to map the offsets from this base into
553 positions in the global bitmaps. It is only created after all of
554 the all of stores have been scanned and we know which ones we
555 care about. */
556 int *offset_map_n, *offset_map_p;
557 int offset_map_size_n, offset_map_size_p;
558 };
559
560 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
561
562 /* Index into the rtx_group_vec. */
563 static int rtx_group_next_id;
564
565
566 static vec<group_info *> rtx_group_vec;
567
568
569 /* This structure holds the set of changes that are being deferred
570 when removing read operation. See replace_read. */
571 struct deferred_change
572 {
573
574 /* The mem that is being replaced. */
575 rtx *loc;
576
577 /* The reg it is being replaced with. */
578 rtx reg;
579
580 struct deferred_change *next;
581 };
582
583 static object_allocator<deferred_change> deferred_change_pool
584 ("deferred_change_pool");
585
586 static deferred_change *deferred_change_list = NULL;
587
588 /* This is true except if cfun->stdarg -- i.e. we cannot do
589 this for vararg functions because they play games with the frame. */
590 static bool stores_off_frame_dead_at_return;
591
592 /* Counter for stats. */
593 static int globally_deleted;
594 static int locally_deleted;
595
596 static bitmap all_blocks;
597
598 /* Locations that are killed by calls in the global phase. */
599 static bitmap kill_on_calls;
600
601 /* The number of bits used in the global bitmaps. */
602 static unsigned int current_position;
603
604 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
605
606 static void
607 print_range (FILE *file, poly_int64 offset, poly_int64 width)
608 {
609 fprintf (file, "[");
610 print_dec (offset, file, SIGNED);
611 fprintf (file, "..");
612 print_dec (offset + width, file, SIGNED);
613 fprintf (file, ")");
614 }
615 \f
616 /*----------------------------------------------------------------------------
617 Zeroth step.
618
619 Initialization.
620 ----------------------------------------------------------------------------*/
621
622
623 /* Hashtable callbacks for maintaining the "bases" field of
624 store_group_info, given that the addresses are function invariants. */
625
626 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
627 {
628 static inline hashval_t hash (const group_info *);
629 static inline bool equal (const group_info *, const group_info *);
630 };
631
632 inline bool
633 invariant_group_base_hasher::equal (const group_info *gi1,
634 const group_info *gi2)
635 {
636 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
637 }
638
639 inline hashval_t
640 invariant_group_base_hasher::hash (const group_info *gi)
641 {
642 int do_not_record;
643 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
644 }
645
646 /* Tables of group_info structures, hashed by base value. */
647 static hash_table<invariant_group_base_hasher> *rtx_group_table;
648
649
650 /* Get the GROUP for BASE. Add a new group if it is not there. */
651
652 static group_info *
653 get_group_info (rtx base)
654 {
655 struct group_info tmp_gi;
656 group_info *gi;
657 group_info **slot;
658
659 gcc_assert (base != NULL_RTX);
660
661 /* Find the store_base_info structure for BASE, creating a new one
662 if necessary. */
663 tmp_gi.rtx_base = base;
664 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
665 gi = *slot;
666
667 if (gi == NULL)
668 {
669 *slot = gi = group_info_pool.allocate ();
670 gi->rtx_base = base;
671 gi->id = rtx_group_next_id++;
672 gi->base_mem = gen_rtx_MEM (BLKmode, base);
673 gi->canon_base_addr = canon_rtx (base);
674 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
681 gi->process_globally = false;
682 gi->frame_related =
683 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
684 gi->offset_map_size_n = 0;
685 gi->offset_map_size_p = 0;
686 gi->offset_map_n = NULL;
687 gi->offset_map_p = NULL;
688 rtx_group_vec.safe_push (gi);
689 }
690
691 return gi;
692 }
693
694
695 /* Initialization of data structures. */
696
697 static void
698 dse_step0 (void)
699 {
700 locally_deleted = 0;
701 globally_deleted = 0;
702
703 bitmap_obstack_initialize (&dse_bitmap_obstack);
704 gcc_obstack_init (&dse_obstack);
705
706 scratch = BITMAP_ALLOC (&reg_obstack);
707 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
708
709
710 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
711
712 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
713 rtx_group_next_id = 0;
714
715 stores_off_frame_dead_at_return = !cfun->stdarg;
716
717 init_alias_analysis ();
718 }
719
720
721 \f
722 /*----------------------------------------------------------------------------
723 First step.
724
725 Scan all of the insns. Any random ordering of the blocks is fine.
726 Each block is scanned in forward order to accommodate cselib which
727 is used to remove stores with non-constant bases.
728 ----------------------------------------------------------------------------*/
729
730 /* Delete all of the store_info recs from INSN_INFO. */
731
732 static void
733 free_store_info (insn_info_t insn_info)
734 {
735 store_info *cur = insn_info->store_rec;
736 while (cur)
737 {
738 store_info *next = cur->next;
739 if (cur->is_large)
740 BITMAP_FREE (cur->positions_needed.large.bmap);
741 if (cur->cse_base)
742 cse_store_info_pool.remove (cur);
743 else
744 rtx_store_info_pool.remove (cur);
745 cur = next;
746 }
747
748 insn_info->cannot_delete = true;
749 insn_info->contains_cselib_groups = false;
750 insn_info->store_rec = NULL;
751 }
752
753 struct note_add_store_info
754 {
755 rtx_insn *first, *current;
756 regset fixed_regs_live;
757 bool failure;
758 };
759
760 /* Callback for emit_inc_dec_insn_before via note_stores.
761 Check if a register is clobbered which is live afterwards. */
762
763 static void
764 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
765 {
766 rtx_insn *insn;
767 note_add_store_info *info = (note_add_store_info *) data;
768
769 if (!REG_P (loc))
770 return;
771
772 /* If this register is referenced by the current or an earlier insn,
773 that's OK. E.g. this applies to the register that is being incremented
774 with this addition. */
775 for (insn = info->first;
776 insn != NEXT_INSN (info->current);
777 insn = NEXT_INSN (insn))
778 if (reg_referenced_p (loc, PATTERN (insn)))
779 return;
780
781 /* If we come here, we have a clobber of a register that's only OK
782 if that register is not live. If we don't have liveness information
783 available, fail now. */
784 if (!info->fixed_regs_live)
785 {
786 info->failure = true;
787 return;
788 }
789 /* Now check if this is a live fixed register. */
790 unsigned int end_regno = END_REGNO (loc);
791 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
792 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
793 info->failure = true;
794 }
795
796 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
797 SRC + SRCOFF before insn ARG. */
798
799 static int
800 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
801 rtx op ATTRIBUTE_UNUSED,
802 rtx dest, rtx src, rtx srcoff, void *arg)
803 {
804 insn_info_t insn_info = (insn_info_t) arg;
805 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
806 note_add_store_info info;
807
808 /* We can reuse all operands without copying, because we are about
809 to delete the insn that contained it. */
810 if (srcoff)
811 {
812 start_sequence ();
813 emit_insn (gen_add3_insn (dest, src, srcoff));
814 new_insn = get_insns ();
815 end_sequence ();
816 }
817 else
818 new_insn = gen_move_insn (dest, src);
819 info.first = new_insn;
820 info.fixed_regs_live = insn_info->fixed_regs_live;
821 info.failure = false;
822 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
823 {
824 info.current = cur;
825 note_stores (PATTERN (cur), note_add_store, &info);
826 }
827
828 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
829 return it immediately, communicating the failure to its caller. */
830 if (info.failure)
831 return 1;
832
833 emit_insn_before (new_insn, insn);
834
835 return 0;
836 }
837
838 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
839 is there, is split into a separate insn.
840 Return true on success (or if there was nothing to do), false on failure. */
841
842 static bool
843 check_for_inc_dec_1 (insn_info_t insn_info)
844 {
845 rtx_insn *insn = insn_info->insn;
846 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
847 if (note)
848 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
849 insn_info) == 0;
850 return true;
851 }
852
853
854 /* Entry point for postreload. If you work on reload_cse, or you need this
855 anywhere else, consider if you can provide register liveness information
856 and add a parameter to this function so that it can be passed down in
857 insn_info.fixed_regs_live. */
858 bool
859 check_for_inc_dec (rtx_insn *insn)
860 {
861 insn_info_type insn_info;
862 rtx note;
863
864 insn_info.insn = insn;
865 insn_info.fixed_regs_live = NULL;
866 note = find_reg_note (insn, REG_INC, NULL_RTX);
867 if (note)
868 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
869 &insn_info) == 0;
870 return true;
871 }
872
873 /* Delete the insn and free all of the fields inside INSN_INFO. */
874
875 static void
876 delete_dead_store_insn (insn_info_t insn_info)
877 {
878 read_info_t read_info;
879
880 if (!dbg_cnt (dse))
881 return;
882
883 if (!check_for_inc_dec_1 (insn_info))
884 return;
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 fprintf (dump_file, "Locally deleting insn %d\n",
887 INSN_UID (insn_info->insn));
888
889 free_store_info (insn_info);
890 read_info = insn_info->read_rec;
891
892 while (read_info)
893 {
894 read_info_t next = read_info->next;
895 read_info_type_pool.remove (read_info);
896 read_info = next;
897 }
898 insn_info->read_rec = NULL;
899
900 delete_insn (insn_info->insn);
901 locally_deleted++;
902 insn_info->insn = NULL;
903
904 insn_info->wild_read = false;
905 }
906
907 /* Return whether DECL, a local variable, can possibly escape the current
908 function scope. */
909
910 static bool
911 local_variable_can_escape (tree decl)
912 {
913 if (TREE_ADDRESSABLE (decl))
914 return true;
915
916 /* If this is a partitioned variable, we need to consider all the variables
917 in the partition. This is necessary because a store into one of them can
918 be replaced with a store into another and this may not change the outcome
919 of the escape analysis. */
920 if (cfun->gimple_df->decls_to_pointers != NULL)
921 {
922 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
923 if (namep)
924 return TREE_ADDRESSABLE (*namep);
925 }
926
927 return false;
928 }
929
930 /* Return whether EXPR can possibly escape the current function scope. */
931
932 static bool
933 can_escape (tree expr)
934 {
935 tree base;
936 if (!expr)
937 return true;
938 base = get_base_address (expr);
939 if (DECL_P (base)
940 && !may_be_aliased (base)
941 && !(VAR_P (base)
942 && !DECL_EXTERNAL (base)
943 && !TREE_STATIC (base)
944 && local_variable_can_escape (base)))
945 return false;
946 return true;
947 }
948
949 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
950 OFFSET and WIDTH. */
951
952 static void
953 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
954 tree expr)
955 {
956 /* Non-constant offsets and widths act as global kills, so there's no point
957 trying to use them to derive global DSE candidates. */
958 HOST_WIDE_INT i, const_offset, const_width;
959 bool expr_escapes = can_escape (expr);
960 if (offset.is_constant (&const_offset)
961 && width.is_constant (&const_width)
962 && const_offset > -MAX_OFFSET
963 && const_offset + const_width < MAX_OFFSET)
964 for (i = const_offset; i < const_offset + const_width; ++i)
965 {
966 bitmap store1;
967 bitmap store2;
968 bitmap escaped;
969 int ai;
970 if (i < 0)
971 {
972 store1 = group->store1_n;
973 store2 = group->store2_n;
974 escaped = group->escaped_n;
975 ai = -i;
976 }
977 else
978 {
979 store1 = group->store1_p;
980 store2 = group->store2_p;
981 escaped = group->escaped_p;
982 ai = i;
983 }
984
985 if (!bitmap_set_bit (store1, ai))
986 bitmap_set_bit (store2, ai);
987 else
988 {
989 if (i < 0)
990 {
991 if (group->offset_map_size_n < ai)
992 group->offset_map_size_n = ai;
993 }
994 else
995 {
996 if (group->offset_map_size_p < ai)
997 group->offset_map_size_p = ai;
998 }
999 }
1000 if (expr_escapes)
1001 bitmap_set_bit (escaped, ai);
1002 }
1003 }
1004
1005 static void
1006 reset_active_stores (void)
1007 {
1008 active_local_stores = NULL;
1009 active_local_stores_len = 0;
1010 }
1011
1012 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1013
1014 static void
1015 free_read_records (bb_info_t bb_info)
1016 {
1017 insn_info_t insn_info = bb_info->last_insn;
1018 read_info_t *ptr = &insn_info->read_rec;
1019 while (*ptr)
1020 {
1021 read_info_t next = (*ptr)->next;
1022 read_info_type_pool.remove (*ptr);
1023 *ptr = next;
1024 }
1025 }
1026
1027 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1028
1029 static void
1030 add_wild_read (bb_info_t bb_info)
1031 {
1032 insn_info_t insn_info = bb_info->last_insn;
1033 insn_info->wild_read = true;
1034 free_read_records (bb_info);
1035 reset_active_stores ();
1036 }
1037
1038 /* Set the BB_INFO so that the last insn is marked as a wild read of
1039 non-frame locations. */
1040
1041 static void
1042 add_non_frame_wild_read (bb_info_t bb_info)
1043 {
1044 insn_info_t insn_info = bb_info->last_insn;
1045 insn_info->non_frame_wild_read = true;
1046 free_read_records (bb_info);
1047 reset_active_stores ();
1048 }
1049
1050 /* Return true if X is a constant or one of the registers that behave
1051 as a constant over the life of a function. This is equivalent to
1052 !rtx_varies_p for memory addresses. */
1053
1054 static bool
1055 const_or_frame_p (rtx x)
1056 {
1057 if (CONSTANT_P (x))
1058 return true;
1059
1060 if (GET_CODE (x) == REG)
1061 {
1062 /* Note that we have to test for the actual rtx used for the frame
1063 and arg pointers and not just the register number in case we have
1064 eliminated the frame and/or arg pointer and are using it
1065 for pseudos. */
1066 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1067 /* The arg pointer varies if it is not a fixed register. */
1068 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1069 || x == pic_offset_table_rtx)
1070 return true;
1071 return false;
1072 }
1073
1074 return false;
1075 }
1076
1077 /* Take all reasonable action to put the address of MEM into the form
1078 that we can do analysis on.
1079
1080 The gold standard is to get the address into the form: address +
1081 OFFSET where address is something that rtx_varies_p considers a
1082 constant. When we can get the address in this form, we can do
1083 global analysis on it. Note that for constant bases, address is
1084 not actually returned, only the group_id. The address can be
1085 obtained from that.
1086
1087 If that fails, we try cselib to get a value we can at least use
1088 locally. If that fails we return false.
1089
1090 The GROUP_ID is set to -1 for cselib bases and the index of the
1091 group for non_varying bases.
1092
1093 FOR_READ is true if this is a mem read and false if not. */
1094
1095 static bool
1096 canon_address (rtx mem,
1097 int *group_id,
1098 poly_int64 *offset,
1099 cselib_val **base)
1100 {
1101 machine_mode address_mode = get_address_mode (mem);
1102 rtx mem_address = XEXP (mem, 0);
1103 rtx expanded_address, address;
1104 int expanded;
1105
1106 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1107
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1109 {
1110 fprintf (dump_file, " mem: ");
1111 print_inline_rtx (dump_file, mem_address, 0);
1112 fprintf (dump_file, "\n");
1113 }
1114
1115 /* First see if just canon_rtx (mem_address) is const or frame,
1116 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1117 address = NULL_RTX;
1118 for (expanded = 0; expanded < 2; expanded++)
1119 {
1120 if (expanded)
1121 {
1122 /* Use cselib to replace all of the reg references with the full
1123 expression. This will take care of the case where we have
1124
1125 r_x = base + offset;
1126 val = *r_x;
1127
1128 by making it into
1129
1130 val = *(base + offset); */
1131
1132 expanded_address = cselib_expand_value_rtx (mem_address,
1133 scratch, 5);
1134
1135 /* If this fails, just go with the address from first
1136 iteration. */
1137 if (!expanded_address)
1138 break;
1139 }
1140 else
1141 expanded_address = mem_address;
1142
1143 /* Split the address into canonical BASE + OFFSET terms. */
1144 address = canon_rtx (expanded_address);
1145
1146 *offset = 0;
1147
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1149 {
1150 if (expanded)
1151 {
1152 fprintf (dump_file, "\n after cselib_expand address: ");
1153 print_inline_rtx (dump_file, expanded_address, 0);
1154 fprintf (dump_file, "\n");
1155 }
1156
1157 fprintf (dump_file, "\n after canon_rtx address: ");
1158 print_inline_rtx (dump_file, address, 0);
1159 fprintf (dump_file, "\n");
1160 }
1161
1162 if (GET_CODE (address) == CONST)
1163 address = XEXP (address, 0);
1164
1165 address = strip_offset_and_add (address, offset);
1166
1167 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1168 && const_or_frame_p (address))
1169 {
1170 group_info *group = get_group_info (address);
1171
1172 if (dump_file && (dump_flags & TDF_DETAILS))
1173 {
1174 fprintf (dump_file, " gid=%d offset=", group->id);
1175 print_dec (*offset, dump_file);
1176 fprintf (dump_file, "\n");
1177 }
1178 *base = NULL;
1179 *group_id = group->id;
1180 return true;
1181 }
1182 }
1183
1184 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1185 *group_id = -1;
1186
1187 if (*base == NULL)
1188 {
1189 if (dump_file && (dump_flags & TDF_DETAILS))
1190 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1191 return false;
1192 }
1193 if (dump_file && (dump_flags & TDF_DETAILS))
1194 {
1195 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1196 (*base)->uid, (*base)->hash);
1197 print_dec (*offset, dump_file);
1198 fprintf (dump_file, "\n");
1199 }
1200 return true;
1201 }
1202
1203
1204 /* Clear the rhs field from the active_local_stores array. */
1205
1206 static void
1207 clear_rhs_from_active_local_stores (void)
1208 {
1209 insn_info_t ptr = active_local_stores;
1210
1211 while (ptr)
1212 {
1213 store_info *store_info = ptr->store_rec;
1214 /* Skip the clobbers. */
1215 while (!store_info->is_set)
1216 store_info = store_info->next;
1217
1218 store_info->rhs = NULL;
1219 store_info->const_rhs = NULL;
1220
1221 ptr = ptr->next_local_store;
1222 }
1223 }
1224
1225
1226 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1227
1228 static inline void
1229 set_position_unneeded (store_info *s_info, int pos)
1230 {
1231 if (__builtin_expect (s_info->is_large, false))
1232 {
1233 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1234 s_info->positions_needed.large.count++;
1235 }
1236 else
1237 s_info->positions_needed.small_bitmask
1238 &= ~(HOST_WIDE_INT_1U << pos);
1239 }
1240
1241 /* Mark the whole store S_INFO as unneeded. */
1242
1243 static inline void
1244 set_all_positions_unneeded (store_info *s_info)
1245 {
1246 if (__builtin_expect (s_info->is_large, false))
1247 {
1248 HOST_WIDE_INT width;
1249 if (s_info->width.is_constant (&width))
1250 {
1251 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1252 s_info->positions_needed.large.count = width;
1253 }
1254 else
1255 {
1256 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1257 s_info->positions_needed.large.count = 1;
1258 }
1259 }
1260 else
1261 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1262 }
1263
1264 /* Return TRUE if any bytes from S_INFO store are needed. */
1265
1266 static inline bool
1267 any_positions_needed_p (store_info *s_info)
1268 {
1269 if (__builtin_expect (s_info->is_large, false))
1270 {
1271 HOST_WIDE_INT width;
1272 if (s_info->width.is_constant (&width))
1273 {
1274 gcc_checking_assert (s_info->positions_needed.large.bmap);
1275 return s_info->positions_needed.large.count < width;
1276 }
1277 else
1278 {
1279 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1280 return s_info->positions_needed.large.count == 0;
1281 }
1282 }
1283 else
1284 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1285 }
1286
1287 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1288 store are known to be needed. */
1289
1290 static inline bool
1291 all_positions_needed_p (store_info *s_info, poly_int64 start,
1292 poly_int64 width)
1293 {
1294 gcc_assert (s_info->rhs);
1295 if (!s_info->width.is_constant ())
1296 {
1297 gcc_assert (s_info->is_large
1298 && !s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count == 0;
1300 }
1301
1302 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1303 a non-constant region of a constant-sized store. We can't say for
1304 sure that all positions are needed. */
1305 HOST_WIDE_INT const_start, const_width;
1306 if (!start.is_constant (&const_start)
1307 || !width.is_constant (&const_width))
1308 return false;
1309
1310 if (__builtin_expect (s_info->is_large, false))
1311 {
1312 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1313 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1314 return false;
1315 return true;
1316 }
1317 else
1318 {
1319 unsigned HOST_WIDE_INT mask
1320 = lowpart_bitmask (const_width) << const_start;
1321 return (s_info->positions_needed.small_bitmask & mask) == mask;
1322 }
1323 }
1324
1325
1326 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1327 poly_int64, basic_block, bool);
1328
1329
1330 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1331 there is a candidate store, after adding it to the appropriate
1332 local store group if so. */
1333
1334 static int
1335 record_store (rtx body, bb_info_t bb_info)
1336 {
1337 rtx mem, rhs, const_rhs, mem_addr;
1338 poly_int64 offset = 0;
1339 poly_int64 width = 0;
1340 insn_info_t insn_info = bb_info->last_insn;
1341 store_info *store_info = NULL;
1342 int group_id;
1343 cselib_val *base = NULL;
1344 insn_info_t ptr, last, redundant_reason;
1345 bool store_is_unused;
1346
1347 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1348 return 0;
1349
1350 mem = SET_DEST (body);
1351
1352 /* If this is not used, then this cannot be used to keep the insn
1353 from being deleted. On the other hand, it does provide something
1354 that can be used to prove that another store is dead. */
1355 store_is_unused
1356 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1357
1358 /* Check whether that value is a suitable memory location. */
1359 if (!MEM_P (mem))
1360 {
1361 /* If the set or clobber is unused, then it does not effect our
1362 ability to get rid of the entire insn. */
1363 if (!store_is_unused)
1364 insn_info->cannot_delete = true;
1365 return 0;
1366 }
1367
1368 /* At this point we know mem is a mem. */
1369 if (GET_MODE (mem) == BLKmode)
1370 {
1371 HOST_WIDE_INT const_size;
1372 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1373 {
1374 if (dump_file && (dump_flags & TDF_DETAILS))
1375 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1376 add_wild_read (bb_info);
1377 insn_info->cannot_delete = true;
1378 return 0;
1379 }
1380 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1381 as memset (addr, 0, 36); */
1382 else if (!MEM_SIZE_KNOWN_P (mem)
1383 || maybe_le (MEM_SIZE (mem), 0)
1384 /* This is a limit on the bitmap size, which is only relevant
1385 for constant-sized MEMs. */
1386 || (MEM_SIZE (mem).is_constant (&const_size)
1387 && const_size > MAX_OFFSET)
1388 || GET_CODE (body) != SET
1389 || !CONST_INT_P (SET_SRC (body)))
1390 {
1391 if (!store_is_unused)
1392 {
1393 /* If the set or clobber is unused, then it does not effect our
1394 ability to get rid of the entire insn. */
1395 insn_info->cannot_delete = true;
1396 clear_rhs_from_active_local_stores ();
1397 }
1398 return 0;
1399 }
1400 }
1401
1402 /* We can still process a volatile mem, we just cannot delete it. */
1403 if (MEM_VOLATILE_P (mem))
1404 insn_info->cannot_delete = true;
1405
1406 if (!canon_address (mem, &group_id, &offset, &base))
1407 {
1408 clear_rhs_from_active_local_stores ();
1409 return 0;
1410 }
1411
1412 if (GET_MODE (mem) == BLKmode)
1413 width = MEM_SIZE (mem);
1414 else
1415 width = GET_MODE_SIZE (GET_MODE (mem));
1416
1417 if (!endpoint_representable_p (offset, width))
1418 {
1419 clear_rhs_from_active_local_stores ();
1420 return 0;
1421 }
1422
1423 if (known_eq (width, 0))
1424 return 0;
1425
1426 if (group_id >= 0)
1427 {
1428 /* In the restrictive case where the base is a constant or the
1429 frame pointer we can do global analysis. */
1430
1431 group_info *group
1432 = rtx_group_vec[group_id];
1433 tree expr = MEM_EXPR (mem);
1434
1435 store_info = rtx_store_info_pool.allocate ();
1436 set_usage_bits (group, offset, width, expr);
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 {
1440 fprintf (dump_file, " processing const base store gid=%d",
1441 group_id);
1442 print_range (dump_file, offset, width);
1443 fprintf (dump_file, "\n");
1444 }
1445 }
1446 else
1447 {
1448 if (may_be_sp_based_p (XEXP (mem, 0)))
1449 insn_info->stack_pointer_based = true;
1450 insn_info->contains_cselib_groups = true;
1451
1452 store_info = cse_store_info_pool.allocate ();
1453 group_id = -1;
1454
1455 if (dump_file && (dump_flags & TDF_DETAILS))
1456 {
1457 fprintf (dump_file, " processing cselib store ");
1458 print_range (dump_file, offset, width);
1459 fprintf (dump_file, "\n");
1460 }
1461 }
1462
1463 const_rhs = rhs = NULL_RTX;
1464 if (GET_CODE (body) == SET
1465 /* No place to keep the value after ra. */
1466 && !reload_completed
1467 && (REG_P (SET_SRC (body))
1468 || GET_CODE (SET_SRC (body)) == SUBREG
1469 || CONSTANT_P (SET_SRC (body)))
1470 && !MEM_VOLATILE_P (mem)
1471 /* Sometimes the store and reload is used for truncation and
1472 rounding. */
1473 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1474 {
1475 rhs = SET_SRC (body);
1476 if (CONSTANT_P (rhs))
1477 const_rhs = rhs;
1478 else if (body == PATTERN (insn_info->insn))
1479 {
1480 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1481 if (tem && CONSTANT_P (XEXP (tem, 0)))
1482 const_rhs = XEXP (tem, 0);
1483 }
1484 if (const_rhs == NULL_RTX && REG_P (rhs))
1485 {
1486 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1487
1488 if (tem && CONSTANT_P (tem))
1489 const_rhs = tem;
1490 }
1491 }
1492
1493 /* Check to see if this stores causes some other stores to be
1494 dead. */
1495 ptr = active_local_stores;
1496 last = NULL;
1497 redundant_reason = NULL;
1498 mem = canon_rtx (mem);
1499
1500 if (group_id < 0)
1501 mem_addr = base->val_rtx;
1502 else
1503 {
1504 group_info *group = rtx_group_vec[group_id];
1505 mem_addr = group->canon_base_addr;
1506 }
1507 if (maybe_ne (offset, 0))
1508 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1509
1510 while (ptr)
1511 {
1512 insn_info_t next = ptr->next_local_store;
1513 class store_info *s_info = ptr->store_rec;
1514 bool del = true;
1515
1516 /* Skip the clobbers. We delete the active insn if this insn
1517 shadows the set. To have been put on the active list, it
1518 has exactly on set. */
1519 while (!s_info->is_set)
1520 s_info = s_info->next;
1521
1522 if (s_info->group_id == group_id && s_info->cse_base == base)
1523 {
1524 HOST_WIDE_INT i;
1525 if (dump_file && (dump_flags & TDF_DETAILS))
1526 {
1527 fprintf (dump_file, " trying store in insn=%d gid=%d",
1528 INSN_UID (ptr->insn), s_info->group_id);
1529 print_range (dump_file, s_info->offset, s_info->width);
1530 fprintf (dump_file, "\n");
1531 }
1532
1533 /* Even if PTR won't be eliminated as unneeded, if both
1534 PTR and this insn store the same constant value, we might
1535 eliminate this insn instead. */
1536 if (s_info->const_rhs
1537 && const_rhs
1538 && known_subrange_p (offset, width,
1539 s_info->offset, s_info->width)
1540 && all_positions_needed_p (s_info, offset - s_info->offset,
1541 width)
1542 /* We can only remove the later store if the earlier aliases
1543 at least all accesses the later one. */
1544 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1545 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1546 MEM_ALIAS_SET (s_info->mem))))
1547 {
1548 if (GET_MODE (mem) == BLKmode)
1549 {
1550 if (GET_MODE (s_info->mem) == BLKmode
1551 && s_info->const_rhs == const_rhs)
1552 redundant_reason = ptr;
1553 }
1554 else if (s_info->const_rhs == const0_rtx
1555 && const_rhs == const0_rtx)
1556 redundant_reason = ptr;
1557 else
1558 {
1559 rtx val;
1560 start_sequence ();
1561 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1562 BLOCK_FOR_INSN (insn_info->insn),
1563 true);
1564 if (get_insns () != NULL)
1565 val = NULL_RTX;
1566 end_sequence ();
1567 if (val && rtx_equal_p (val, const_rhs))
1568 redundant_reason = ptr;
1569 }
1570 }
1571
1572 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1573 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1574 /* The new store touches every byte that S_INFO does. */
1575 set_all_positions_unneeded (s_info);
1576 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1577 && s_info->width.is_constant (&const_s_width)
1578 && width.is_constant (&const_width))
1579 {
1580 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1581 begin_unneeded = MAX (begin_unneeded, 0);
1582 end_unneeded = MIN (end_unneeded, const_s_width);
1583 for (i = begin_unneeded; i < end_unneeded; ++i)
1584 set_position_unneeded (s_info, i);
1585 }
1586 else
1587 {
1588 /* We don't know which parts of S_INFO are needed and
1589 which aren't, so invalidate the RHS. */
1590 s_info->rhs = NULL;
1591 s_info->const_rhs = NULL;
1592 }
1593 }
1594 else if (s_info->rhs)
1595 /* Need to see if it is possible for this store to overwrite
1596 the value of store_info. If it is, set the rhs to NULL to
1597 keep it from being used to remove a load. */
1598 {
1599 if (canon_output_dependence (s_info->mem, true,
1600 mem, GET_MODE (mem),
1601 mem_addr))
1602 {
1603 s_info->rhs = NULL;
1604 s_info->const_rhs = NULL;
1605 }
1606 }
1607
1608 /* An insn can be deleted if every position of every one of
1609 its s_infos is zero. */
1610 if (any_positions_needed_p (s_info))
1611 del = false;
1612
1613 if (del)
1614 {
1615 insn_info_t insn_to_delete = ptr;
1616
1617 active_local_stores_len--;
1618 if (last)
1619 last->next_local_store = ptr->next_local_store;
1620 else
1621 active_local_stores = ptr->next_local_store;
1622
1623 if (!insn_to_delete->cannot_delete)
1624 delete_dead_store_insn (insn_to_delete);
1625 }
1626 else
1627 last = ptr;
1628
1629 ptr = next;
1630 }
1631
1632 /* Finish filling in the store_info. */
1633 store_info->next = insn_info->store_rec;
1634 insn_info->store_rec = store_info;
1635 store_info->mem = mem;
1636 store_info->mem_addr = mem_addr;
1637 store_info->cse_base = base;
1638 HOST_WIDE_INT const_width;
1639 if (!width.is_constant (&const_width))
1640 {
1641 store_info->is_large = true;
1642 store_info->positions_needed.large.count = 0;
1643 store_info->positions_needed.large.bmap = NULL;
1644 }
1645 else if (const_width > HOST_BITS_PER_WIDE_INT)
1646 {
1647 store_info->is_large = true;
1648 store_info->positions_needed.large.count = 0;
1649 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1650 }
1651 else
1652 {
1653 store_info->is_large = false;
1654 store_info->positions_needed.small_bitmask
1655 = lowpart_bitmask (const_width);
1656 }
1657 store_info->group_id = group_id;
1658 store_info->offset = offset;
1659 store_info->width = width;
1660 store_info->is_set = GET_CODE (body) == SET;
1661 store_info->rhs = rhs;
1662 store_info->const_rhs = const_rhs;
1663 store_info->redundant_reason = redundant_reason;
1664
1665 /* If this is a clobber, we return 0. We will only be able to
1666 delete this insn if there is only one store USED store, but we
1667 can use the clobber to delete other stores earlier. */
1668 return store_info->is_set ? 1 : 0;
1669 }
1670
1671
1672 static void
1673 dump_insn_info (const char * start, insn_info_t insn_info)
1674 {
1675 fprintf (dump_file, "%s insn=%d %s\n", start,
1676 INSN_UID (insn_info->insn),
1677 insn_info->store_rec ? "has store" : "naked");
1678 }
1679
1680
1681 /* If the modes are different and the value's source and target do not
1682 line up, we need to extract the value from lower part of the rhs of
1683 the store, shift it, and then put it into a form that can be shoved
1684 into the read_insn. This function generates a right SHIFT of a
1685 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1686 shift sequence is returned or NULL if we failed to find a
1687 shift. */
1688
1689 static rtx
1690 find_shift_sequence (poly_int64 access_size,
1691 store_info *store_info,
1692 machine_mode read_mode,
1693 poly_int64 shift, bool speed, bool require_cst)
1694 {
1695 machine_mode store_mode = GET_MODE (store_info->mem);
1696 scalar_int_mode new_mode;
1697 rtx read_reg = NULL;
1698
1699 /* Some machines like the x86 have shift insns for each size of
1700 operand. Other machines like the ppc or the ia-64 may only have
1701 shift insns that shift values within 32 or 64 bit registers.
1702 This loop tries to find the smallest shift insn that will right
1703 justify the value we want to read but is available in one insn on
1704 the machine. */
1705
1706 opt_scalar_int_mode new_mode_iter;
1707 FOR_EACH_MODE_FROM (new_mode_iter,
1708 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1709 {
1710 rtx target, new_reg, new_lhs;
1711 rtx_insn *shift_seq, *insn;
1712 int cost;
1713
1714 new_mode = new_mode_iter.require ();
1715 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1716 break;
1717
1718 /* If a constant was stored into memory, try to simplify it here,
1719 otherwise the cost of the shift might preclude this optimization
1720 e.g. at -Os, even when no actual shift will be needed. */
1721 if (store_info->const_rhs)
1722 {
1723 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1724 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1725 store_mode, byte);
1726 if (ret && CONSTANT_P (ret))
1727 {
1728 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1729 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1730 ret, shift_rtx);
1731 if (ret && CONSTANT_P (ret))
1732 {
1733 byte = subreg_lowpart_offset (read_mode, new_mode);
1734 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1735 if (ret && CONSTANT_P (ret)
1736 && (set_src_cost (ret, read_mode, speed)
1737 <= COSTS_N_INSNS (1)))
1738 return ret;
1739 }
1740 }
1741 }
1742
1743 if (require_cst)
1744 return NULL_RTX;
1745
1746 /* Try a wider mode if truncating the store mode to NEW_MODE
1747 requires a real instruction. */
1748 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1749 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1750 continue;
1751
1752 /* Also try a wider mode if the necessary punning is either not
1753 desirable or not possible. */
1754 if (!CONSTANT_P (store_info->rhs)
1755 && !targetm.modes_tieable_p (new_mode, store_mode))
1756 continue;
1757
1758 new_reg = gen_reg_rtx (new_mode);
1759
1760 start_sequence ();
1761
1762 /* In theory we could also check for an ashr. Ian Taylor knows
1763 of one dsp where the cost of these two was not the same. But
1764 this really is a rare case anyway. */
1765 target = expand_binop (new_mode, lshr_optab, new_reg,
1766 gen_int_shift_amount (new_mode, shift),
1767 new_reg, 1, OPTAB_DIRECT);
1768
1769 shift_seq = get_insns ();
1770 end_sequence ();
1771
1772 if (target != new_reg || shift_seq == NULL)
1773 continue;
1774
1775 cost = 0;
1776 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1777 if (INSN_P (insn))
1778 cost += insn_cost (insn, speed);
1779
1780 /* The computation up to here is essentially independent
1781 of the arguments and could be precomputed. It may
1782 not be worth doing so. We could precompute if
1783 worthwhile or at least cache the results. The result
1784 technically depends on both SHIFT and ACCESS_SIZE,
1785 but in practice the answer will depend only on ACCESS_SIZE. */
1786
1787 if (cost > COSTS_N_INSNS (1))
1788 continue;
1789
1790 new_lhs = extract_low_bits (new_mode, store_mode,
1791 copy_rtx (store_info->rhs));
1792 if (new_lhs == NULL_RTX)
1793 continue;
1794
1795 /* We found an acceptable shift. Generate a move to
1796 take the value from the store and put it into the
1797 shift pseudo, then shift it, then generate another
1798 move to put in into the target of the read. */
1799 emit_move_insn (new_reg, new_lhs);
1800 emit_insn (shift_seq);
1801 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1802 break;
1803 }
1804
1805 return read_reg;
1806 }
1807
1808
1809 /* Call back for note_stores to find the hard regs set or clobbered by
1810 insn. Data is a bitmap of the hardregs set so far. */
1811
1812 static void
1813 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1814 {
1815 bitmap regs_set = (bitmap) data;
1816
1817 if (REG_P (x)
1818 && HARD_REGISTER_P (x))
1819 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1820 }
1821
1822 /* Helper function for replace_read and record_store.
1823 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1824 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1825 if not successful. If REQUIRE_CST is true, return always constant. */
1826
1827 static rtx
1828 get_stored_val (store_info *store_info, machine_mode read_mode,
1829 poly_int64 read_offset, poly_int64 read_width,
1830 basic_block bb, bool require_cst)
1831 {
1832 machine_mode store_mode = GET_MODE (store_info->mem);
1833 poly_int64 gap;
1834 rtx read_reg;
1835
1836 /* To get here the read is within the boundaries of the write so
1837 shift will never be negative. Start out with the shift being in
1838 bytes. */
1839 if (store_mode == BLKmode)
1840 gap = 0;
1841 else if (BYTES_BIG_ENDIAN)
1842 gap = ((store_info->offset + store_info->width)
1843 - (read_offset + read_width));
1844 else
1845 gap = read_offset - store_info->offset;
1846
1847 if (gap.is_constant () && maybe_ne (gap, 0))
1848 {
1849 poly_int64 shift = gap * BITS_PER_UNIT;
1850 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1851 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1852 shift, optimize_bb_for_speed_p (bb),
1853 require_cst);
1854 }
1855 else if (store_mode == BLKmode)
1856 {
1857 /* The store is a memset (addr, const_val, const_size). */
1858 gcc_assert (CONST_INT_P (store_info->rhs));
1859 scalar_int_mode int_store_mode;
1860 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1861 read_reg = NULL_RTX;
1862 else if (store_info->rhs == const0_rtx)
1863 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1864 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1865 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1866 read_reg = NULL_RTX;
1867 else
1868 {
1869 unsigned HOST_WIDE_INT c
1870 = INTVAL (store_info->rhs)
1871 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1872 int shift = BITS_PER_UNIT;
1873 while (shift < HOST_BITS_PER_WIDE_INT)
1874 {
1875 c |= (c << shift);
1876 shift <<= 1;
1877 }
1878 read_reg = gen_int_mode (c, int_store_mode);
1879 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1880 }
1881 }
1882 else if (store_info->const_rhs
1883 && (require_cst
1884 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1885 read_reg = extract_low_bits (read_mode, store_mode,
1886 copy_rtx (store_info->const_rhs));
1887 else
1888 read_reg = extract_low_bits (read_mode, store_mode,
1889 copy_rtx (store_info->rhs));
1890 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1891 read_reg = NULL_RTX;
1892 return read_reg;
1893 }
1894
1895 /* Take a sequence of:
1896 A <- r1
1897 ...
1898 ... <- A
1899
1900 and change it into
1901 r2 <- r1
1902 A <- r1
1903 ...
1904 ... <- r2
1905
1906 or
1907
1908 r3 <- extract (r1)
1909 r3 <- r3 >> shift
1910 r2 <- extract (r3)
1911 ... <- r2
1912
1913 or
1914
1915 r2 <- extract (r1)
1916 ... <- r2
1917
1918 Depending on the alignment and the mode of the store and
1919 subsequent load.
1920
1921
1922 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1923 and READ_INSN are for the read. Return true if the replacement
1924 went ok. */
1925
1926 static bool
1927 replace_read (store_info *store_info, insn_info_t store_insn,
1928 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1929 bitmap regs_live)
1930 {
1931 machine_mode store_mode = GET_MODE (store_info->mem);
1932 machine_mode read_mode = GET_MODE (read_info->mem);
1933 rtx_insn *insns, *this_insn;
1934 rtx read_reg;
1935 basic_block bb;
1936
1937 if (!dbg_cnt (dse))
1938 return false;
1939
1940 /* Create a sequence of instructions to set up the read register.
1941 This sequence goes immediately before the store and its result
1942 is read by the load.
1943
1944 We need to keep this in perspective. We are replacing a read
1945 with a sequence of insns, but the read will almost certainly be
1946 in cache, so it is not going to be an expensive one. Thus, we
1947 are not willing to do a multi insn shift or worse a subroutine
1948 call to get rid of the read. */
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1950 fprintf (dump_file, "trying to replace %smode load in insn %d"
1951 " from %smode store in insn %d\n",
1952 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1953 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1954 start_sequence ();
1955 bb = BLOCK_FOR_INSN (read_insn->insn);
1956 read_reg = get_stored_val (store_info,
1957 read_mode, read_info->offset, read_info->width,
1958 bb, false);
1959 if (read_reg == NULL_RTX)
1960 {
1961 end_sequence ();
1962 if (dump_file && (dump_flags & TDF_DETAILS))
1963 fprintf (dump_file, " -- could not extract bits of stored value\n");
1964 return false;
1965 }
1966 /* Force the value into a new register so that it won't be clobbered
1967 between the store and the load. */
1968 read_reg = copy_to_mode_reg (read_mode, read_reg);
1969 insns = get_insns ();
1970 end_sequence ();
1971
1972 if (insns != NULL_RTX)
1973 {
1974 /* Now we have to scan the set of new instructions to see if the
1975 sequence contains and sets of hardregs that happened to be
1976 live at this point. For instance, this can happen if one of
1977 the insns sets the CC and the CC happened to be live at that
1978 point. This does occasionally happen, see PR 37922. */
1979 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1980
1981 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1982 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1983
1984 bitmap_and_into (regs_set, regs_live);
1985 if (!bitmap_empty_p (regs_set))
1986 {
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1988 {
1989 fprintf (dump_file,
1990 "abandoning replacement because sequence clobbers live hardregs:");
1991 df_print_regset (dump_file, regs_set);
1992 }
1993
1994 BITMAP_FREE (regs_set);
1995 return false;
1996 }
1997 BITMAP_FREE (regs_set);
1998 }
1999
2000 if (validate_change (read_insn->insn, loc, read_reg, 0))
2001 {
2002 deferred_change *change = deferred_change_pool.allocate ();
2003
2004 /* Insert this right before the store insn where it will be safe
2005 from later insns that might change it before the read. */
2006 emit_insn_before (insns, store_insn->insn);
2007
2008 /* And now for the kludge part: cselib croaks if you just
2009 return at this point. There are two reasons for this:
2010
2011 1) Cselib has an idea of how many pseudos there are and
2012 that does not include the new ones we just added.
2013
2014 2) Cselib does not know about the move insn we added
2015 above the store_info, and there is no way to tell it
2016 about it, because it has "moved on".
2017
2018 Problem (1) is fixable with a certain amount of engineering.
2019 Problem (2) is requires starting the bb from scratch. This
2020 could be expensive.
2021
2022 So we are just going to have to lie. The move/extraction
2023 insns are not really an issue, cselib did not see them. But
2024 the use of the new pseudo read_insn is a real problem because
2025 cselib has not scanned this insn. The way that we solve this
2026 problem is that we are just going to put the mem back for now
2027 and when we are finished with the block, we undo this. We
2028 keep a table of mems to get rid of. At the end of the basic
2029 block we can put them back. */
2030
2031 *loc = read_info->mem;
2032 change->next = deferred_change_list;
2033 deferred_change_list = change;
2034 change->loc = loc;
2035 change->reg = read_reg;
2036
2037 /* Get rid of the read_info, from the point of view of the
2038 rest of dse, play like this read never happened. */
2039 read_insn->read_rec = read_info->next;
2040 read_info_type_pool.remove (read_info);
2041 if (dump_file && (dump_flags & TDF_DETAILS))
2042 {
2043 fprintf (dump_file, " -- replaced the loaded MEM with ");
2044 print_simple_rtl (dump_file, read_reg);
2045 fprintf (dump_file, "\n");
2046 }
2047 return true;
2048 }
2049 else
2050 {
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2052 {
2053 fprintf (dump_file, " -- replacing the loaded MEM with ");
2054 print_simple_rtl (dump_file, read_reg);
2055 fprintf (dump_file, " led to an invalid instruction\n");
2056 }
2057 return false;
2058 }
2059 }
2060
2061 /* Check the address of MEM *LOC and kill any appropriate stores that may
2062 be active. */
2063
2064 static void
2065 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2066 {
2067 rtx mem = *loc, mem_addr;
2068 insn_info_t insn_info;
2069 poly_int64 offset = 0;
2070 poly_int64 width = 0;
2071 cselib_val *base = NULL;
2072 int group_id;
2073 read_info_t read_info;
2074
2075 insn_info = bb_info->last_insn;
2076
2077 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2078 || MEM_VOLATILE_P (mem))
2079 {
2080 if (crtl->stack_protect_guard
2081 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2082 || (crtl->stack_protect_guard_decl
2083 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2084 && MEM_VOLATILE_P (mem))
2085 {
2086 /* This is either the stack protector canary on the stack,
2087 which ought to be written by a MEM_VOLATILE_P store and
2088 thus shouldn't be deleted and is read at the very end of
2089 function, but shouldn't conflict with any other store.
2090 Or it is __stack_chk_guard variable or TLS or whatever else
2091 MEM holding the canary value, which really shouldn't be
2092 ever modified in -fstack-protector* protected functions,
2093 otherwise the prologue store wouldn't match the epilogue
2094 check. */
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, " stack protector canary read ignored.\n");
2097 insn_info->cannot_delete = true;
2098 return;
2099 }
2100
2101 if (dump_file && (dump_flags & TDF_DETAILS))
2102 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2103 add_wild_read (bb_info);
2104 insn_info->cannot_delete = true;
2105 return;
2106 }
2107
2108 /* If it is reading readonly mem, then there can be no conflict with
2109 another write. */
2110 if (MEM_READONLY_P (mem))
2111 return;
2112
2113 if (!canon_address (mem, &group_id, &offset, &base))
2114 {
2115 if (dump_file && (dump_flags & TDF_DETAILS))
2116 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2117 add_wild_read (bb_info);
2118 return;
2119 }
2120
2121 if (GET_MODE (mem) == BLKmode)
2122 width = -1;
2123 else
2124 width = GET_MODE_SIZE (GET_MODE (mem));
2125
2126 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2127 {
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2129 fprintf (dump_file, " adding wild read, due to overflow.\n");
2130 add_wild_read (bb_info);
2131 return;
2132 }
2133
2134 read_info = read_info_type_pool.allocate ();
2135 read_info->group_id = group_id;
2136 read_info->mem = mem;
2137 read_info->offset = offset;
2138 read_info->width = width;
2139 read_info->next = insn_info->read_rec;
2140 insn_info->read_rec = read_info;
2141 if (group_id < 0)
2142 mem_addr = base->val_rtx;
2143 else
2144 {
2145 group_info *group = rtx_group_vec[group_id];
2146 mem_addr = group->canon_base_addr;
2147 }
2148 if (maybe_ne (offset, 0))
2149 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2150
2151 if (group_id >= 0)
2152 {
2153 /* This is the restricted case where the base is a constant or
2154 the frame pointer and offset is a constant. */
2155 insn_info_t i_ptr = active_local_stores;
2156 insn_info_t last = NULL;
2157
2158 if (dump_file && (dump_flags & TDF_DETAILS))
2159 {
2160 if (!known_size_p (width))
2161 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2162 group_id);
2163 else
2164 {
2165 fprintf (dump_file, " processing const load gid=%d", group_id);
2166 print_range (dump_file, offset, width);
2167 fprintf (dump_file, "\n");
2168 }
2169 }
2170
2171 while (i_ptr)
2172 {
2173 bool remove = false;
2174 store_info *store_info = i_ptr->store_rec;
2175
2176 /* Skip the clobbers. */
2177 while (!store_info->is_set)
2178 store_info = store_info->next;
2179
2180 /* There are three cases here. */
2181 if (store_info->group_id < 0)
2182 /* We have a cselib store followed by a read from a
2183 const base. */
2184 remove
2185 = canon_true_dependence (store_info->mem,
2186 GET_MODE (store_info->mem),
2187 store_info->mem_addr,
2188 mem, mem_addr);
2189
2190 else if (group_id == store_info->group_id)
2191 {
2192 /* This is a block mode load. We may get lucky and
2193 canon_true_dependence may save the day. */
2194 if (!known_size_p (width))
2195 remove
2196 = canon_true_dependence (store_info->mem,
2197 GET_MODE (store_info->mem),
2198 store_info->mem_addr,
2199 mem, mem_addr);
2200
2201 /* If this read is just reading back something that we just
2202 stored, rewrite the read. */
2203 else
2204 {
2205 if (store_info->rhs
2206 && known_subrange_p (offset, width, store_info->offset,
2207 store_info->width)
2208 && all_positions_needed_p (store_info,
2209 offset - store_info->offset,
2210 width)
2211 && replace_read (store_info, i_ptr, read_info,
2212 insn_info, loc, bb_info->regs_live))
2213 return;
2214
2215 /* The bases are the same, just see if the offsets
2216 could overlap. */
2217 if (ranges_maybe_overlap_p (offset, width,
2218 store_info->offset,
2219 store_info->width))
2220 remove = true;
2221 }
2222 }
2223
2224 /* else
2225 The else case that is missing here is that the
2226 bases are constant but different. There is nothing
2227 to do here because there is no overlap. */
2228
2229 if (remove)
2230 {
2231 if (dump_file && (dump_flags & TDF_DETAILS))
2232 dump_insn_info ("removing from active", i_ptr);
2233
2234 active_local_stores_len--;
2235 if (last)
2236 last->next_local_store = i_ptr->next_local_store;
2237 else
2238 active_local_stores = i_ptr->next_local_store;
2239 }
2240 else
2241 last = i_ptr;
2242 i_ptr = i_ptr->next_local_store;
2243 }
2244 }
2245 else
2246 {
2247 insn_info_t i_ptr = active_local_stores;
2248 insn_info_t last = NULL;
2249 if (dump_file && (dump_flags & TDF_DETAILS))
2250 {
2251 fprintf (dump_file, " processing cselib load mem:");
2252 print_inline_rtx (dump_file, mem, 0);
2253 fprintf (dump_file, "\n");
2254 }
2255
2256 while (i_ptr)
2257 {
2258 bool remove = false;
2259 store_info *store_info = i_ptr->store_rec;
2260
2261 if (dump_file && (dump_flags & TDF_DETAILS))
2262 fprintf (dump_file, " processing cselib load against insn %d\n",
2263 INSN_UID (i_ptr->insn));
2264
2265 /* Skip the clobbers. */
2266 while (!store_info->is_set)
2267 store_info = store_info->next;
2268
2269 /* If this read is just reading back something that we just
2270 stored, rewrite the read. */
2271 if (store_info->rhs
2272 && store_info->group_id == -1
2273 && store_info->cse_base == base
2274 && known_subrange_p (offset, width, store_info->offset,
2275 store_info->width)
2276 && all_positions_needed_p (store_info,
2277 offset - store_info->offset, width)
2278 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2279 bb_info->regs_live))
2280 return;
2281
2282 remove = canon_true_dependence (store_info->mem,
2283 GET_MODE (store_info->mem),
2284 store_info->mem_addr,
2285 mem, mem_addr);
2286
2287 if (remove)
2288 {
2289 if (dump_file && (dump_flags & TDF_DETAILS))
2290 dump_insn_info ("removing from active", i_ptr);
2291
2292 active_local_stores_len--;
2293 if (last)
2294 last->next_local_store = i_ptr->next_local_store;
2295 else
2296 active_local_stores = i_ptr->next_local_store;
2297 }
2298 else
2299 last = i_ptr;
2300 i_ptr = i_ptr->next_local_store;
2301 }
2302 }
2303 }
2304
2305 /* A note_uses callback in which DATA points the INSN_INFO for
2306 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2307 true for any part of *LOC. */
2308
2309 static void
2310 check_mem_read_use (rtx *loc, void *data)
2311 {
2312 subrtx_ptr_iterator::array_type array;
2313 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2314 {
2315 rtx *loc = *iter;
2316 if (MEM_P (*loc))
2317 check_mem_read_rtx (loc, (bb_info_t) data);
2318 }
2319 }
2320
2321
2322 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2323 So far it only handles arguments passed in registers. */
2324
2325 static bool
2326 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2327 {
2328 CUMULATIVE_ARGS args_so_far_v;
2329 cumulative_args_t args_so_far;
2330 tree arg;
2331 int idx;
2332
2333 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2334 args_so_far = pack_cumulative_args (&args_so_far_v);
2335
2336 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2337 for (idx = 0;
2338 arg != void_list_node && idx < nargs;
2339 arg = TREE_CHAIN (arg), idx++)
2340 {
2341 scalar_int_mode mode;
2342 rtx reg, link, tmp;
2343
2344 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2345 return false;
2346
2347 function_arg_info arg (mode, /*named=*/true);
2348 reg = targetm.calls.function_arg (args_so_far, arg);
2349 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2350 return false;
2351
2352 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2353 link;
2354 link = XEXP (link, 1))
2355 if (GET_CODE (XEXP (link, 0)) == USE)
2356 {
2357 scalar_int_mode arg_mode;
2358 args[idx] = XEXP (XEXP (link, 0), 0);
2359 if (REG_P (args[idx])
2360 && REGNO (args[idx]) == REGNO (reg)
2361 && (GET_MODE (args[idx]) == mode
2362 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2363 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2364 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2365 break;
2366 }
2367 if (!link)
2368 return false;
2369
2370 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2371 if (GET_MODE (args[idx]) != mode)
2372 {
2373 if (!tmp || !CONST_INT_P (tmp))
2374 return false;
2375 tmp = gen_int_mode (INTVAL (tmp), mode);
2376 }
2377 if (tmp)
2378 args[idx] = tmp;
2379
2380 targetm.calls.function_arg_advance (args_so_far, arg);
2381 }
2382 if (arg != void_list_node || idx != nargs)
2383 return false;
2384 return true;
2385 }
2386
2387 /* Return a bitmap of the fixed registers contained in IN. */
2388
2389 static bitmap
2390 copy_fixed_regs (const_bitmap in)
2391 {
2392 bitmap ret;
2393
2394 ret = ALLOC_REG_SET (NULL);
2395 bitmap_and (ret, in, fixed_reg_set_regset);
2396 return ret;
2397 }
2398
2399 /* Apply record_store to all candidate stores in INSN. Mark INSN
2400 if some part of it is not a candidate store and assigns to a
2401 non-register target. */
2402
2403 static void
2404 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2405 {
2406 rtx body;
2407 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2408 int mems_found = 0;
2409 memset (insn_info, 0, sizeof (struct insn_info_type));
2410
2411 if (dump_file && (dump_flags & TDF_DETAILS))
2412 fprintf (dump_file, "\n**scanning insn=%d\n",
2413 INSN_UID (insn));
2414
2415 insn_info->prev_insn = bb_info->last_insn;
2416 insn_info->insn = insn;
2417 bb_info->last_insn = insn_info;
2418
2419 if (DEBUG_INSN_P (insn))
2420 {
2421 insn_info->cannot_delete = true;
2422 return;
2423 }
2424
2425 /* Look at all of the uses in the insn. */
2426 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2427
2428 if (CALL_P (insn))
2429 {
2430 bool const_call;
2431 rtx call, sym;
2432 tree memset_call = NULL_TREE;
2433
2434 insn_info->cannot_delete = true;
2435
2436 /* Const functions cannot do anything bad i.e. read memory,
2437 however, they can read their parameters which may have
2438 been pushed onto the stack.
2439 memset and bzero don't read memory either. */
2440 const_call = RTL_CONST_CALL_P (insn);
2441 if (!const_call
2442 && (call = get_call_rtx_from (insn))
2443 && (sym = XEXP (XEXP (call, 0), 0))
2444 && GET_CODE (sym) == SYMBOL_REF
2445 && SYMBOL_REF_DECL (sym)
2446 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2447 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2448 memset_call = SYMBOL_REF_DECL (sym);
2449
2450 if (const_call || memset_call)
2451 {
2452 insn_info_t i_ptr = active_local_stores;
2453 insn_info_t last = NULL;
2454
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2456 fprintf (dump_file, "%s call %d\n",
2457 const_call ? "const" : "memset", INSN_UID (insn));
2458
2459 /* See the head comment of the frame_read field. */
2460 if (reload_completed
2461 /* Tail calls are storing their arguments using
2462 arg pointer. If it is a frame pointer on the target,
2463 even before reload we need to kill frame pointer based
2464 stores. */
2465 || (SIBLING_CALL_P (insn)
2466 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2467 insn_info->frame_read = true;
2468
2469 /* Loop over the active stores and remove those which are
2470 killed by the const function call. */
2471 while (i_ptr)
2472 {
2473 bool remove_store = false;
2474
2475 /* The stack pointer based stores are always killed. */
2476 if (i_ptr->stack_pointer_based)
2477 remove_store = true;
2478
2479 /* If the frame is read, the frame related stores are killed. */
2480 else if (insn_info->frame_read)
2481 {
2482 store_info *store_info = i_ptr->store_rec;
2483
2484 /* Skip the clobbers. */
2485 while (!store_info->is_set)
2486 store_info = store_info->next;
2487
2488 if (store_info->group_id >= 0
2489 && rtx_group_vec[store_info->group_id]->frame_related)
2490 remove_store = true;
2491 }
2492
2493 if (remove_store)
2494 {
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2496 dump_insn_info ("removing from active", i_ptr);
2497
2498 active_local_stores_len--;
2499 if (last)
2500 last->next_local_store = i_ptr->next_local_store;
2501 else
2502 active_local_stores = i_ptr->next_local_store;
2503 }
2504 else
2505 last = i_ptr;
2506
2507 i_ptr = i_ptr->next_local_store;
2508 }
2509
2510 if (memset_call)
2511 {
2512 rtx args[3];
2513 if (get_call_args (insn, memset_call, args, 3)
2514 && CONST_INT_P (args[1])
2515 && CONST_INT_P (args[2])
2516 && INTVAL (args[2]) > 0)
2517 {
2518 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2519 set_mem_size (mem, INTVAL (args[2]));
2520 body = gen_rtx_SET (mem, args[1]);
2521 mems_found += record_store (body, bb_info);
2522 if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file, "handling memset as BLKmode store\n");
2524 if (mems_found == 1)
2525 {
2526 if (active_local_stores_len++
2527 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2528 {
2529 active_local_stores_len = 1;
2530 active_local_stores = NULL;
2531 }
2532 insn_info->fixed_regs_live
2533 = copy_fixed_regs (bb_info->regs_live);
2534 insn_info->next_local_store = active_local_stores;
2535 active_local_stores = insn_info;
2536 }
2537 }
2538 else
2539 clear_rhs_from_active_local_stores ();
2540 }
2541 }
2542 else if (SIBLING_CALL_P (insn) && reload_completed)
2543 /* Arguments for a sibling call that are pushed to memory are passed
2544 using the incoming argument pointer of the current function. After
2545 reload that might be (and likely is) frame pointer based. */
2546 add_wild_read (bb_info);
2547 else
2548 /* Every other call, including pure functions, may read any memory
2549 that is not relative to the frame. */
2550 add_non_frame_wild_read (bb_info);
2551
2552 return;
2553 }
2554
2555 /* Assuming that there are sets in these insns, we cannot delete
2556 them. */
2557 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2558 || volatile_refs_p (PATTERN (insn))
2559 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2560 || (RTX_FRAME_RELATED_P (insn))
2561 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2562 insn_info->cannot_delete = true;
2563
2564 body = PATTERN (insn);
2565 if (GET_CODE (body) == PARALLEL)
2566 {
2567 int i;
2568 for (i = 0; i < XVECLEN (body, 0); i++)
2569 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2570 }
2571 else
2572 mems_found += record_store (body, bb_info);
2573
2574 if (dump_file && (dump_flags & TDF_DETAILS))
2575 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2576 mems_found, insn_info->cannot_delete ? "true" : "false");
2577
2578 /* If we found some sets of mems, add it into the active_local_stores so
2579 that it can be locally deleted if found dead or used for
2580 replace_read and redundant constant store elimination. Otherwise mark
2581 it as cannot delete. This simplifies the processing later. */
2582 if (mems_found == 1)
2583 {
2584 if (active_local_stores_len++
2585 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2586 {
2587 active_local_stores_len = 1;
2588 active_local_stores = NULL;
2589 }
2590 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2591 insn_info->next_local_store = active_local_stores;
2592 active_local_stores = insn_info;
2593 }
2594 else
2595 insn_info->cannot_delete = true;
2596 }
2597
2598
2599 /* Remove BASE from the set of active_local_stores. This is a
2600 callback from cselib that is used to get rid of the stores in
2601 active_local_stores. */
2602
2603 static void
2604 remove_useless_values (cselib_val *base)
2605 {
2606 insn_info_t insn_info = active_local_stores;
2607 insn_info_t last = NULL;
2608
2609 while (insn_info)
2610 {
2611 store_info *store_info = insn_info->store_rec;
2612 bool del = false;
2613
2614 /* If ANY of the store_infos match the cselib group that is
2615 being deleted, then the insn cannot be deleted. */
2616 while (store_info)
2617 {
2618 if ((store_info->group_id == -1)
2619 && (store_info->cse_base == base))
2620 {
2621 del = true;
2622 break;
2623 }
2624 store_info = store_info->next;
2625 }
2626
2627 if (del)
2628 {
2629 active_local_stores_len--;
2630 if (last)
2631 last->next_local_store = insn_info->next_local_store;
2632 else
2633 active_local_stores = insn_info->next_local_store;
2634 free_store_info (insn_info);
2635 }
2636 else
2637 last = insn_info;
2638
2639 insn_info = insn_info->next_local_store;
2640 }
2641 }
2642
2643
2644 /* Do all of step 1. */
2645
2646 static void
2647 dse_step1 (void)
2648 {
2649 basic_block bb;
2650 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2651
2652 cselib_init (0);
2653 all_blocks = BITMAP_ALLOC (NULL);
2654 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2655 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2656
2657 FOR_ALL_BB_FN (bb, cfun)
2658 {
2659 insn_info_t ptr;
2660 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2661
2662 memset (bb_info, 0, sizeof (dse_bb_info_type));
2663 bitmap_set_bit (all_blocks, bb->index);
2664 bb_info->regs_live = regs_live;
2665
2666 bitmap_copy (regs_live, DF_LR_IN (bb));
2667 df_simulate_initialize_forwards (bb, regs_live);
2668
2669 bb_table[bb->index] = bb_info;
2670 cselib_discard_hook = remove_useless_values;
2671
2672 if (bb->index >= NUM_FIXED_BLOCKS)
2673 {
2674 rtx_insn *insn;
2675
2676 active_local_stores = NULL;
2677 active_local_stores_len = 0;
2678 cselib_clear_table ();
2679
2680 /* Scan the insns. */
2681 FOR_BB_INSNS (bb, insn)
2682 {
2683 if (INSN_P (insn))
2684 scan_insn (bb_info, insn);
2685 cselib_process_insn (insn);
2686 if (INSN_P (insn))
2687 df_simulate_one_insn_forwards (bb, insn, regs_live);
2688 }
2689
2690 /* This is something of a hack, because the global algorithm
2691 is supposed to take care of the case where stores go dead
2692 at the end of the function. However, the global
2693 algorithm must take a more conservative view of block
2694 mode reads than the local alg does. So to get the case
2695 where you have a store to the frame followed by a non
2696 overlapping block more read, we look at the active local
2697 stores at the end of the function and delete all of the
2698 frame and spill based ones. */
2699 if (stores_off_frame_dead_at_return
2700 && (EDGE_COUNT (bb->succs) == 0
2701 || (single_succ_p (bb)
2702 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2703 && ! crtl->calls_eh_return)))
2704 {
2705 insn_info_t i_ptr = active_local_stores;
2706 while (i_ptr)
2707 {
2708 store_info *store_info = i_ptr->store_rec;
2709
2710 /* Skip the clobbers. */
2711 while (!store_info->is_set)
2712 store_info = store_info->next;
2713 if (store_info->group_id >= 0)
2714 {
2715 group_info *group = rtx_group_vec[store_info->group_id];
2716 if (group->frame_related && !i_ptr->cannot_delete)
2717 delete_dead_store_insn (i_ptr);
2718 }
2719
2720 i_ptr = i_ptr->next_local_store;
2721 }
2722 }
2723
2724 /* Get rid of the loads that were discovered in
2725 replace_read. Cselib is finished with this block. */
2726 while (deferred_change_list)
2727 {
2728 deferred_change *next = deferred_change_list->next;
2729
2730 /* There is no reason to validate this change. That was
2731 done earlier. */
2732 *deferred_change_list->loc = deferred_change_list->reg;
2733 deferred_change_pool.remove (deferred_change_list);
2734 deferred_change_list = next;
2735 }
2736
2737 /* Get rid of all of the cselib based store_infos in this
2738 block and mark the containing insns as not being
2739 deletable. */
2740 ptr = bb_info->last_insn;
2741 while (ptr)
2742 {
2743 if (ptr->contains_cselib_groups)
2744 {
2745 store_info *s_info = ptr->store_rec;
2746 while (s_info && !s_info->is_set)
2747 s_info = s_info->next;
2748 if (s_info
2749 && s_info->redundant_reason
2750 && s_info->redundant_reason->insn
2751 && !ptr->cannot_delete)
2752 {
2753 if (dump_file && (dump_flags & TDF_DETAILS))
2754 fprintf (dump_file, "Locally deleting insn %d "
2755 "because insn %d stores the "
2756 "same value and couldn't be "
2757 "eliminated\n",
2758 INSN_UID (ptr->insn),
2759 INSN_UID (s_info->redundant_reason->insn));
2760 delete_dead_store_insn (ptr);
2761 }
2762 free_store_info (ptr);
2763 }
2764 else
2765 {
2766 store_info *s_info;
2767
2768 /* Free at least positions_needed bitmaps. */
2769 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2770 if (s_info->is_large)
2771 {
2772 BITMAP_FREE (s_info->positions_needed.large.bmap);
2773 s_info->is_large = false;
2774 }
2775 }
2776 ptr = ptr->prev_insn;
2777 }
2778
2779 cse_store_info_pool.release ();
2780 }
2781 bb_info->regs_live = NULL;
2782 }
2783
2784 BITMAP_FREE (regs_live);
2785 cselib_finish ();
2786 rtx_group_table->empty ();
2787 }
2788
2789 \f
2790 /*----------------------------------------------------------------------------
2791 Second step.
2792
2793 Assign each byte position in the stores that we are going to
2794 analyze globally to a position in the bitmaps. Returns true if
2795 there are any bit positions assigned.
2796 ----------------------------------------------------------------------------*/
2797
2798 static void
2799 dse_step2_init (void)
2800 {
2801 unsigned int i;
2802 group_info *group;
2803
2804 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2805 {
2806 /* For all non stack related bases, we only consider a store to
2807 be deletable if there are two or more stores for that
2808 position. This is because it takes one store to make the
2809 other store redundant. However, for the stores that are
2810 stack related, we consider them if there is only one store
2811 for the position. We do this because the stack related
2812 stores can be deleted if their is no read between them and
2813 the end of the function.
2814
2815 To make this work in the current framework, we take the stack
2816 related bases add all of the bits from store1 into store2.
2817 This has the effect of making the eligible even if there is
2818 only one store. */
2819
2820 if (stores_off_frame_dead_at_return && group->frame_related)
2821 {
2822 bitmap_ior_into (group->store2_n, group->store1_n);
2823 bitmap_ior_into (group->store2_p, group->store1_p);
2824 if (dump_file && (dump_flags & TDF_DETAILS))
2825 fprintf (dump_file, "group %d is frame related ", i);
2826 }
2827
2828 group->offset_map_size_n++;
2829 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2830 group->offset_map_size_n);
2831 group->offset_map_size_p++;
2832 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2833 group->offset_map_size_p);
2834 group->process_globally = false;
2835 if (dump_file && (dump_flags & TDF_DETAILS))
2836 {
2837 fprintf (dump_file, "group %d(%d+%d): ", i,
2838 (int)bitmap_count_bits (group->store2_n),
2839 (int)bitmap_count_bits (group->store2_p));
2840 bitmap_print (dump_file, group->store2_n, "n ", " ");
2841 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2842 }
2843 }
2844 }
2845
2846
2847 /* Init the offset tables. */
2848
2849 static bool
2850 dse_step2 (void)
2851 {
2852 unsigned int i;
2853 group_info *group;
2854 /* Position 0 is unused because 0 is used in the maps to mean
2855 unused. */
2856 current_position = 1;
2857 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2858 {
2859 bitmap_iterator bi;
2860 unsigned int j;
2861
2862 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2863 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2864 bitmap_clear (group->group_kill);
2865
2866 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2867 {
2868 bitmap_set_bit (group->group_kill, current_position);
2869 if (bitmap_bit_p (group->escaped_n, j))
2870 bitmap_set_bit (kill_on_calls, current_position);
2871 group->offset_map_n[j] = current_position++;
2872 group->process_globally = true;
2873 }
2874 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2875 {
2876 bitmap_set_bit (group->group_kill, current_position);
2877 if (bitmap_bit_p (group->escaped_p, j))
2878 bitmap_set_bit (kill_on_calls, current_position);
2879 group->offset_map_p[j] = current_position++;
2880 group->process_globally = true;
2881 }
2882 }
2883 return current_position != 1;
2884 }
2885
2886
2887 \f
2888 /*----------------------------------------------------------------------------
2889 Third step.
2890
2891 Build the bit vectors for the transfer functions.
2892 ----------------------------------------------------------------------------*/
2893
2894
2895 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2896 there, return 0. */
2897
2898 static int
2899 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2900 {
2901 if (offset < 0)
2902 {
2903 HOST_WIDE_INT offset_p = -offset;
2904 if (offset_p >= group_info->offset_map_size_n)
2905 return 0;
2906 return group_info->offset_map_n[offset_p];
2907 }
2908 else
2909 {
2910 if (offset >= group_info->offset_map_size_p)
2911 return 0;
2912 return group_info->offset_map_p[offset];
2913 }
2914 }
2915
2916
2917 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2918 may be NULL. */
2919
2920 static void
2921 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2922 {
2923 while (store_info)
2924 {
2925 HOST_WIDE_INT i, offset, width;
2926 group_info *group_info
2927 = rtx_group_vec[store_info->group_id];
2928 /* We can (conservatively) ignore stores whose bounds aren't known;
2929 they simply don't generate new global dse opportunities. */
2930 if (group_info->process_globally
2931 && store_info->offset.is_constant (&offset)
2932 && store_info->width.is_constant (&width))
2933 {
2934 HOST_WIDE_INT end = offset + width;
2935 for (i = offset; i < end; i++)
2936 {
2937 int index = get_bitmap_index (group_info, i);
2938 if (index != 0)
2939 {
2940 bitmap_set_bit (gen, index);
2941 if (kill)
2942 bitmap_clear_bit (kill, index);
2943 }
2944 }
2945 }
2946 store_info = store_info->next;
2947 }
2948 }
2949
2950
2951 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2952 may be NULL. */
2953
2954 static void
2955 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2956 {
2957 read_info_t read_info = insn_info->read_rec;
2958 int i;
2959 group_info *group;
2960
2961 /* If this insn reads the frame, kill all the frame related stores. */
2962 if (insn_info->frame_read)
2963 {
2964 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2965 if (group->process_globally && group->frame_related)
2966 {
2967 if (kill)
2968 bitmap_ior_into (kill, group->group_kill);
2969 bitmap_and_compl_into (gen, group->group_kill);
2970 }
2971 }
2972 if (insn_info->non_frame_wild_read)
2973 {
2974 /* Kill all non-frame related stores. Kill all stores of variables that
2975 escape. */
2976 if (kill)
2977 bitmap_ior_into (kill, kill_on_calls);
2978 bitmap_and_compl_into (gen, kill_on_calls);
2979 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2980 if (group->process_globally && !group->frame_related)
2981 {
2982 if (kill)
2983 bitmap_ior_into (kill, group->group_kill);
2984 bitmap_and_compl_into (gen, group->group_kill);
2985 }
2986 }
2987 while (read_info)
2988 {
2989 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2990 {
2991 if (group->process_globally)
2992 {
2993 if (i == read_info->group_id)
2994 {
2995 HOST_WIDE_INT offset, width;
2996 /* Reads with non-constant size kill all DSE opportunities
2997 in the group. */
2998 if (!read_info->offset.is_constant (&offset)
2999 || !read_info->width.is_constant (&width)
3000 || !known_size_p (width))
3001 {
3002 /* Handle block mode reads. */
3003 if (kill)
3004 bitmap_ior_into (kill, group->group_kill);
3005 bitmap_and_compl_into (gen, group->group_kill);
3006 }
3007 else
3008 {
3009 /* The groups are the same, just process the
3010 offsets. */
3011 HOST_WIDE_INT j;
3012 HOST_WIDE_INT end = offset + width;
3013 for (j = offset; j < end; j++)
3014 {
3015 int index = get_bitmap_index (group, j);
3016 if (index != 0)
3017 {
3018 if (kill)
3019 bitmap_set_bit (kill, index);
3020 bitmap_clear_bit (gen, index);
3021 }
3022 }
3023 }
3024 }
3025 else
3026 {
3027 /* The groups are different, if the alias sets
3028 conflict, clear the entire group. We only need
3029 to apply this test if the read_info is a cselib
3030 read. Anything with a constant base cannot alias
3031 something else with a different constant
3032 base. */
3033 if ((read_info->group_id < 0)
3034 && canon_true_dependence (group->base_mem,
3035 GET_MODE (group->base_mem),
3036 group->canon_base_addr,
3037 read_info->mem, NULL_RTX))
3038 {
3039 if (kill)
3040 bitmap_ior_into (kill, group->group_kill);
3041 bitmap_and_compl_into (gen, group->group_kill);
3042 }
3043 }
3044 }
3045 }
3046
3047 read_info = read_info->next;
3048 }
3049 }
3050
3051
3052 /* Return the insn in BB_INFO before the first wild read or if there
3053 are no wild reads in the block, return the last insn. */
3054
3055 static insn_info_t
3056 find_insn_before_first_wild_read (bb_info_t bb_info)
3057 {
3058 insn_info_t insn_info = bb_info->last_insn;
3059 insn_info_t last_wild_read = NULL;
3060
3061 while (insn_info)
3062 {
3063 if (insn_info->wild_read)
3064 {
3065 last_wild_read = insn_info->prev_insn;
3066 /* Block starts with wild read. */
3067 if (!last_wild_read)
3068 return NULL;
3069 }
3070
3071 insn_info = insn_info->prev_insn;
3072 }
3073
3074 if (last_wild_read)
3075 return last_wild_read;
3076 else
3077 return bb_info->last_insn;
3078 }
3079
3080
3081 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3082 the block in order to build the gen and kill sets for the block.
3083 We start at ptr which may be the last insn in the block or may be
3084 the first insn with a wild read. In the latter case we are able to
3085 skip the rest of the block because it just does not matter:
3086 anything that happens is hidden by the wild read. */
3087
3088 static void
3089 dse_step3_scan (basic_block bb)
3090 {
3091 bb_info_t bb_info = bb_table[bb->index];
3092 insn_info_t insn_info;
3093
3094 insn_info = find_insn_before_first_wild_read (bb_info);
3095
3096 /* In the spill case or in the no_spill case if there is no wild
3097 read in the block, we will need a kill set. */
3098 if (insn_info == bb_info->last_insn)
3099 {
3100 if (bb_info->kill)
3101 bitmap_clear (bb_info->kill);
3102 else
3103 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3104 }
3105 else
3106 if (bb_info->kill)
3107 BITMAP_FREE (bb_info->kill);
3108
3109 while (insn_info)
3110 {
3111 /* There may have been code deleted by the dce pass run before
3112 this phase. */
3113 if (insn_info->insn && INSN_P (insn_info->insn))
3114 {
3115 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3116 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3117 }
3118
3119 insn_info = insn_info->prev_insn;
3120 }
3121 }
3122
3123
3124 /* Set the gen set of the exit block, and also any block with no
3125 successors that does not have a wild read. */
3126
3127 static void
3128 dse_step3_exit_block_scan (bb_info_t bb_info)
3129 {
3130 /* The gen set is all 0's for the exit block except for the
3131 frame_pointer_group. */
3132
3133 if (stores_off_frame_dead_at_return)
3134 {
3135 unsigned int i;
3136 group_info *group;
3137
3138 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3139 {
3140 if (group->process_globally && group->frame_related)
3141 bitmap_ior_into (bb_info->gen, group->group_kill);
3142 }
3143 }
3144 }
3145
3146
3147 /* Find all of the blocks that are not backwards reachable from the
3148 exit block or any block with no successors (BB). These are the
3149 infinite loops or infinite self loops. These blocks will still
3150 have their bits set in UNREACHABLE_BLOCKS. */
3151
3152 static void
3153 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3154 {
3155 edge e;
3156 edge_iterator ei;
3157
3158 if (bitmap_bit_p (unreachable_blocks, bb->index))
3159 {
3160 bitmap_clear_bit (unreachable_blocks, bb->index);
3161 FOR_EACH_EDGE (e, ei, bb->preds)
3162 {
3163 mark_reachable_blocks (unreachable_blocks, e->src);
3164 }
3165 }
3166 }
3167
3168 /* Build the transfer functions for the function. */
3169
3170 static void
3171 dse_step3 ()
3172 {
3173 basic_block bb;
3174 sbitmap_iterator sbi;
3175 bitmap all_ones = NULL;
3176 unsigned int i;
3177
3178 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3179 bitmap_ones (unreachable_blocks);
3180
3181 FOR_ALL_BB_FN (bb, cfun)
3182 {
3183 bb_info_t bb_info = bb_table[bb->index];
3184 if (bb_info->gen)
3185 bitmap_clear (bb_info->gen);
3186 else
3187 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3188
3189 if (bb->index == ENTRY_BLOCK)
3190 ;
3191 else if (bb->index == EXIT_BLOCK)
3192 dse_step3_exit_block_scan (bb_info);
3193 else
3194 dse_step3_scan (bb);
3195 if (EDGE_COUNT (bb->succs) == 0)
3196 mark_reachable_blocks (unreachable_blocks, bb);
3197
3198 /* If this is the second time dataflow is run, delete the old
3199 sets. */
3200 if (bb_info->in)
3201 BITMAP_FREE (bb_info->in);
3202 if (bb_info->out)
3203 BITMAP_FREE (bb_info->out);
3204 }
3205
3206 /* For any block in an infinite loop, we must initialize the out set
3207 to all ones. This could be expensive, but almost never occurs in
3208 practice. However, it is common in regression tests. */
3209 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3210 {
3211 if (bitmap_bit_p (all_blocks, i))
3212 {
3213 bb_info_t bb_info = bb_table[i];
3214 if (!all_ones)
3215 {
3216 unsigned int j;
3217 group_info *group;
3218
3219 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3220 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3221 bitmap_ior_into (all_ones, group->group_kill);
3222 }
3223 if (!bb_info->out)
3224 {
3225 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3226 bitmap_copy (bb_info->out, all_ones);
3227 }
3228 }
3229 }
3230
3231 if (all_ones)
3232 BITMAP_FREE (all_ones);
3233 }
3234
3235
3236 \f
3237 /*----------------------------------------------------------------------------
3238 Fourth step.
3239
3240 Solve the bitvector equations.
3241 ----------------------------------------------------------------------------*/
3242
3243
3244 /* Confluence function for blocks with no successors. Create an out
3245 set from the gen set of the exit block. This block logically has
3246 the exit block as a successor. */
3247
3248
3249
3250 static void
3251 dse_confluence_0 (basic_block bb)
3252 {
3253 bb_info_t bb_info = bb_table[bb->index];
3254
3255 if (bb->index == EXIT_BLOCK)
3256 return;
3257
3258 if (!bb_info->out)
3259 {
3260 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3261 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3262 }
3263 }
3264
3265 /* Propagate the information from the in set of the dest of E to the
3266 out set of the src of E. If the various in or out sets are not
3267 there, that means they are all ones. */
3268
3269 static bool
3270 dse_confluence_n (edge e)
3271 {
3272 bb_info_t src_info = bb_table[e->src->index];
3273 bb_info_t dest_info = bb_table[e->dest->index];
3274
3275 if (dest_info->in)
3276 {
3277 if (src_info->out)
3278 bitmap_and_into (src_info->out, dest_info->in);
3279 else
3280 {
3281 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3282 bitmap_copy (src_info->out, dest_info->in);
3283 }
3284 }
3285 return true;
3286 }
3287
3288
3289 /* Propagate the info from the out to the in set of BB_INDEX's basic
3290 block. There are three cases:
3291
3292 1) The block has no kill set. In this case the kill set is all
3293 ones. It does not matter what the out set of the block is, none of
3294 the info can reach the top. The only thing that reaches the top is
3295 the gen set and we just copy the set.
3296
3297 2) There is a kill set but no out set and bb has successors. In
3298 this case we just return. Eventually an out set will be created and
3299 it is better to wait than to create a set of ones.
3300
3301 3) There is both a kill and out set. We apply the obvious transfer
3302 function.
3303 */
3304
3305 static bool
3306 dse_transfer_function (int bb_index)
3307 {
3308 bb_info_t bb_info = bb_table[bb_index];
3309
3310 if (bb_info->kill)
3311 {
3312 if (bb_info->out)
3313 {
3314 /* Case 3 above. */
3315 if (bb_info->in)
3316 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3317 bb_info->out, bb_info->kill);
3318 else
3319 {
3320 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3321 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3322 bb_info->out, bb_info->kill);
3323 return true;
3324 }
3325 }
3326 else
3327 /* Case 2 above. */
3328 return false;
3329 }
3330 else
3331 {
3332 /* Case 1 above. If there is already an in set, nothing
3333 happens. */
3334 if (bb_info->in)
3335 return false;
3336 else
3337 {
3338 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3339 bitmap_copy (bb_info->in, bb_info->gen);
3340 return true;
3341 }
3342 }
3343 }
3344
3345 /* Solve the dataflow equations. */
3346
3347 static void
3348 dse_step4 (void)
3349 {
3350 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3351 dse_confluence_n, dse_transfer_function,
3352 all_blocks, df_get_postorder (DF_BACKWARD),
3353 df_get_n_blocks (DF_BACKWARD));
3354 if (dump_file && (dump_flags & TDF_DETAILS))
3355 {
3356 basic_block bb;
3357
3358 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3359 FOR_ALL_BB_FN (bb, cfun)
3360 {
3361 bb_info_t bb_info = bb_table[bb->index];
3362
3363 df_print_bb_index (bb, dump_file);
3364 if (bb_info->in)
3365 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3366 else
3367 fprintf (dump_file, " in: *MISSING*\n");
3368 if (bb_info->gen)
3369 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3370 else
3371 fprintf (dump_file, " gen: *MISSING*\n");
3372 if (bb_info->kill)
3373 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3374 else
3375 fprintf (dump_file, " kill: *MISSING*\n");
3376 if (bb_info->out)
3377 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3378 else
3379 fprintf (dump_file, " out: *MISSING*\n\n");
3380 }
3381 }
3382 }
3383
3384
3385 \f
3386 /*----------------------------------------------------------------------------
3387 Fifth step.
3388
3389 Delete the stores that can only be deleted using the global information.
3390 ----------------------------------------------------------------------------*/
3391
3392
3393 static void
3394 dse_step5 (void)
3395 {
3396 basic_block bb;
3397 FOR_EACH_BB_FN (bb, cfun)
3398 {
3399 bb_info_t bb_info = bb_table[bb->index];
3400 insn_info_t insn_info = bb_info->last_insn;
3401 bitmap v = bb_info->out;
3402
3403 while (insn_info)
3404 {
3405 bool deleted = false;
3406 if (dump_file && insn_info->insn)
3407 {
3408 fprintf (dump_file, "starting to process insn %d\n",
3409 INSN_UID (insn_info->insn));
3410 bitmap_print (dump_file, v, " v: ", "\n");
3411 }
3412
3413 /* There may have been code deleted by the dce pass run before
3414 this phase. */
3415 if (insn_info->insn
3416 && INSN_P (insn_info->insn)
3417 && (!insn_info->cannot_delete)
3418 && (!bitmap_empty_p (v)))
3419 {
3420 store_info *store_info = insn_info->store_rec;
3421
3422 /* Try to delete the current insn. */
3423 deleted = true;
3424
3425 /* Skip the clobbers. */
3426 while (!store_info->is_set)
3427 store_info = store_info->next;
3428
3429 HOST_WIDE_INT i, offset, width;
3430 group_info *group_info = rtx_group_vec[store_info->group_id];
3431
3432 if (!store_info->offset.is_constant (&offset)
3433 || !store_info->width.is_constant (&width))
3434 deleted = false;
3435 else
3436 {
3437 HOST_WIDE_INT end = offset + width;
3438 for (i = offset; i < end; i++)
3439 {
3440 int index = get_bitmap_index (group_info, i);
3441
3442 if (dump_file && (dump_flags & TDF_DETAILS))
3443 fprintf (dump_file, "i = %d, index = %d\n",
3444 (int) i, index);
3445 if (index == 0 || !bitmap_bit_p (v, index))
3446 {
3447 if (dump_file && (dump_flags & TDF_DETAILS))
3448 fprintf (dump_file, "failing at i = %d\n",
3449 (int) i);
3450 deleted = false;
3451 break;
3452 }
3453 }
3454 }
3455 if (deleted)
3456 {
3457 if (dbg_cnt (dse)
3458 && check_for_inc_dec_1 (insn_info))
3459 {
3460 delete_insn (insn_info->insn);
3461 insn_info->insn = NULL;
3462 globally_deleted++;
3463 }
3464 }
3465 }
3466 /* We do want to process the local info if the insn was
3467 deleted. For instance, if the insn did a wild read, we
3468 no longer need to trash the info. */
3469 if (insn_info->insn
3470 && INSN_P (insn_info->insn)
3471 && (!deleted))
3472 {
3473 scan_stores (insn_info->store_rec, v, NULL);
3474 if (insn_info->wild_read)
3475 {
3476 if (dump_file && (dump_flags & TDF_DETAILS))
3477 fprintf (dump_file, "wild read\n");
3478 bitmap_clear (v);
3479 }
3480 else if (insn_info->read_rec
3481 || insn_info->non_frame_wild_read
3482 || insn_info->frame_read)
3483 {
3484 if (dump_file && (dump_flags & TDF_DETAILS))
3485 {
3486 if (!insn_info->non_frame_wild_read
3487 && !insn_info->frame_read)
3488 fprintf (dump_file, "regular read\n");
3489 if (insn_info->non_frame_wild_read)
3490 fprintf (dump_file, "non-frame wild read\n");
3491 if (insn_info->frame_read)
3492 fprintf (dump_file, "frame read\n");
3493 }
3494 scan_reads (insn_info, v, NULL);
3495 }
3496 }
3497
3498 insn_info = insn_info->prev_insn;
3499 }
3500 }
3501 }
3502
3503
3504 \f
3505 /*----------------------------------------------------------------------------
3506 Sixth step.
3507
3508 Delete stores made redundant by earlier stores (which store the same
3509 value) that couldn't be eliminated.
3510 ----------------------------------------------------------------------------*/
3511
3512 static void
3513 dse_step6 (void)
3514 {
3515 basic_block bb;
3516
3517 FOR_ALL_BB_FN (bb, cfun)
3518 {
3519 bb_info_t bb_info = bb_table[bb->index];
3520 insn_info_t insn_info = bb_info->last_insn;
3521
3522 while (insn_info)
3523 {
3524 /* There may have been code deleted by the dce pass run before
3525 this phase. */
3526 if (insn_info->insn
3527 && INSN_P (insn_info->insn)
3528 && !insn_info->cannot_delete)
3529 {
3530 store_info *s_info = insn_info->store_rec;
3531
3532 while (s_info && !s_info->is_set)
3533 s_info = s_info->next;
3534 if (s_info
3535 && s_info->redundant_reason
3536 && s_info->redundant_reason->insn
3537 && INSN_P (s_info->redundant_reason->insn))
3538 {
3539 rtx_insn *rinsn = s_info->redundant_reason->insn;
3540 if (dump_file && (dump_flags & TDF_DETAILS))
3541 fprintf (dump_file, "Locally deleting insn %d "
3542 "because insn %d stores the "
3543 "same value and couldn't be "
3544 "eliminated\n",
3545 INSN_UID (insn_info->insn),
3546 INSN_UID (rinsn));
3547 delete_dead_store_insn (insn_info);
3548 }
3549 }
3550 insn_info = insn_info->prev_insn;
3551 }
3552 }
3553 }
3554 \f
3555 /*----------------------------------------------------------------------------
3556 Seventh step.
3557
3558 Destroy everything left standing.
3559 ----------------------------------------------------------------------------*/
3560
3561 static void
3562 dse_step7 (void)
3563 {
3564 bitmap_obstack_release (&dse_bitmap_obstack);
3565 obstack_free (&dse_obstack, NULL);
3566
3567 end_alias_analysis ();
3568 free (bb_table);
3569 delete rtx_group_table;
3570 rtx_group_table = NULL;
3571 rtx_group_vec.release ();
3572 BITMAP_FREE (all_blocks);
3573 BITMAP_FREE (scratch);
3574
3575 rtx_store_info_pool.release ();
3576 read_info_type_pool.release ();
3577 insn_info_type_pool.release ();
3578 dse_bb_info_type_pool.release ();
3579 group_info_pool.release ();
3580 deferred_change_pool.release ();
3581 }
3582
3583
3584 /* -------------------------------------------------------------------------
3585 DSE
3586 ------------------------------------------------------------------------- */
3587
3588 /* Callback for running pass_rtl_dse. */
3589
3590 static unsigned int
3591 rest_of_handle_dse (void)
3592 {
3593 df_set_flags (DF_DEFER_INSN_RESCAN);
3594
3595 /* Need the notes since we must track live hardregs in the forwards
3596 direction. */
3597 df_note_add_problem ();
3598 df_analyze ();
3599
3600 dse_step0 ();
3601 dse_step1 ();
3602 dse_step2_init ();
3603 if (dse_step2 ())
3604 {
3605 df_set_flags (DF_LR_RUN_DCE);
3606 df_analyze ();
3607 if (dump_file && (dump_flags & TDF_DETAILS))
3608 fprintf (dump_file, "doing global processing\n");
3609 dse_step3 ();
3610 dse_step4 ();
3611 dse_step5 ();
3612 }
3613
3614 dse_step6 ();
3615 dse_step7 ();
3616
3617 if (dump_file)
3618 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3619 locally_deleted, globally_deleted);
3620
3621 /* DSE can eliminate potentially-trapping MEMs.
3622 Remove any EH edges associated with them. */
3623 if ((locally_deleted || globally_deleted)
3624 && cfun->can_throw_non_call_exceptions
3625 && purge_all_dead_edges ())
3626 {
3627 free_dominance_info (CDI_DOMINATORS);
3628 cleanup_cfg (0);
3629 }
3630
3631 return 0;
3632 }
3633
3634 namespace {
3635
3636 const pass_data pass_data_rtl_dse1 =
3637 {
3638 RTL_PASS, /* type */
3639 "dse1", /* name */
3640 OPTGROUP_NONE, /* optinfo_flags */
3641 TV_DSE1, /* tv_id */
3642 0, /* properties_required */
3643 0, /* properties_provided */
3644 0, /* properties_destroyed */
3645 0, /* todo_flags_start */
3646 TODO_df_finish, /* todo_flags_finish */
3647 };
3648
3649 class pass_rtl_dse1 : public rtl_opt_pass
3650 {
3651 public:
3652 pass_rtl_dse1 (gcc::context *ctxt)
3653 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3654 {}
3655
3656 /* opt_pass methods: */
3657 virtual bool gate (function *)
3658 {
3659 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3660 }
3661
3662 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3663
3664 }; // class pass_rtl_dse1
3665
3666 } // anon namespace
3667
3668 rtl_opt_pass *
3669 make_pass_rtl_dse1 (gcc::context *ctxt)
3670 {
3671 return new pass_rtl_dse1 (ctxt);
3672 }
3673
3674 namespace {
3675
3676 const pass_data pass_data_rtl_dse2 =
3677 {
3678 RTL_PASS, /* type */
3679 "dse2", /* name */
3680 OPTGROUP_NONE, /* optinfo_flags */
3681 TV_DSE2, /* tv_id */
3682 0, /* properties_required */
3683 0, /* properties_provided */
3684 0, /* properties_destroyed */
3685 0, /* todo_flags_start */
3686 TODO_df_finish, /* todo_flags_finish */
3687 };
3688
3689 class pass_rtl_dse2 : public rtl_opt_pass
3690 {
3691 public:
3692 pass_rtl_dse2 (gcc::context *ctxt)
3693 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3694 {}
3695
3696 /* opt_pass methods: */
3697 virtual bool gate (function *)
3698 {
3699 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3700 }
3701
3702 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3703
3704 }; // class pass_rtl_dse2
3705
3706 } // anon namespace
3707
3708 rtl_opt_pass *
3709 make_pass_rtl_dse2 (gcc::context *ctxt)
3710 {
3711 return new pass_rtl_dse2 (ctxt);
3712 }