]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-utils.cc
163899af6af79af6a2b6b31feded71f4668e62b7
[thirdparty/gcc.git] / gcc / ipa-utils.cc
1 /* Utilities for ipa analysis.
2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "alloc-pool.h"
29 #include "cgraph.h"
30 #include "lto-streamer.h"
31 #include "dumpfile.h"
32 #include "splay-tree.h"
33 #include "ipa-utils.h"
34 #include "symbol-summary.h"
35 #include "tree-vrp.h"
36 #include "ipa-prop.h"
37 #include "ipa-fnsummary.h"
38
39 /* Debugging function for postorder and inorder code. NOTE is a string
40 that is printed before the nodes are printed. ORDER is an array of
41 cgraph_nodes that has COUNT useful nodes in it. */
42
43 void
44 ipa_print_order (FILE* out,
45 const char * note,
46 struct cgraph_node** order,
47 int count)
48 {
49 int i;
50 fprintf (out, "\n\n ordered call graph: %s\n", note);
51
52 for (i = count - 1; i >= 0; i--)
53 order[i]->dump (out);
54 fprintf (out, "\n");
55 fflush (out);
56 }
57
58
59 struct searchc_env {
60 struct cgraph_node **stack;
61 struct cgraph_node **result;
62 int stack_size;
63 int order_pos;
64 splay_tree nodes_marked_new;
65 bool reduce;
66 int count;
67 };
68
69 /* This is an implementation of Tarjan's strongly connected region
70 finder as reprinted in Aho Hopcraft and Ullman's The Design and
71 Analysis of Computer Programs (1975) pages 192-193. This version
72 has been customized for cgraph_nodes. The env parameter is because
73 it is recursive and there are no nested functions here. This
74 function should only be called from itself or
75 ipa_reduced_postorder. ENV is a stack env and would be
76 unnecessary if C had nested functions. V is the node to start
77 searching from. */
78
79 static void
80 searchc (struct searchc_env* env, struct cgraph_node *v,
81 bool (*ignore_edge) (struct cgraph_edge *))
82 {
83 struct cgraph_edge *edge;
84 struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->aux;
85
86 /* mark node as old */
87 v_info->new_node = false;
88 splay_tree_remove (env->nodes_marked_new, v->get_uid ());
89
90 v_info->dfn_number = env->count;
91 v_info->low_link = env->count;
92 env->count++;
93 env->stack[(env->stack_size)++] = v;
94 v_info->on_stack = true;
95
96 for (edge = v->callees; edge; edge = edge->next_callee)
97 {
98 struct ipa_dfs_info * w_info;
99 enum availability avail;
100 struct cgraph_node *w = edge->callee->ultimate_alias_target (&avail);
101
102 if (!w || (ignore_edge && ignore_edge (edge)))
103 continue;
104
105 if (w->aux
106 && (avail >= AVAIL_INTERPOSABLE))
107 {
108 w_info = (struct ipa_dfs_info *) w->aux;
109 if (w_info->new_node)
110 {
111 searchc (env, w, ignore_edge);
112 v_info->low_link =
113 (v_info->low_link < w_info->low_link) ?
114 v_info->low_link : w_info->low_link;
115 }
116 else
117 if ((w_info->dfn_number < v_info->dfn_number)
118 && (w_info->on_stack))
119 v_info->low_link =
120 (w_info->dfn_number < v_info->low_link) ?
121 w_info->dfn_number : v_info->low_link;
122 }
123 }
124
125
126 if (v_info->low_link == v_info->dfn_number)
127 {
128 struct cgraph_node *last = NULL;
129 struct cgraph_node *x;
130 struct ipa_dfs_info *x_info;
131 do {
132 x = env->stack[--(env->stack_size)];
133 x_info = (struct ipa_dfs_info *) x->aux;
134 x_info->on_stack = false;
135 x_info->scc_no = v_info->dfn_number;
136
137 if (env->reduce)
138 {
139 x_info->next_cycle = last;
140 last = x;
141 }
142 else
143 env->result[env->order_pos++] = x;
144 }
145 while (v != x);
146 if (env->reduce)
147 env->result[env->order_pos++] = v;
148 }
149 }
150
151 /* Topsort the call graph by caller relation. Put the result in ORDER.
152
153 The REDUCE flag is true if you want the cycles reduced to single nodes.
154 You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
155 call graph nodes in a reduced node.
156
157 Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
158 IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
159 for the topological sort. */
160
161 int
162 ipa_reduced_postorder (struct cgraph_node **order,
163 bool reduce,
164 bool (*ignore_edge) (struct cgraph_edge *))
165 {
166 struct cgraph_node *node;
167 struct searchc_env env;
168 splay_tree_node result;
169 env.stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
170 env.stack_size = 0;
171 env.result = order;
172 env.order_pos = 0;
173 env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
174 env.count = 1;
175 env.reduce = reduce;
176
177 FOR_EACH_DEFINED_FUNCTION (node)
178 {
179 enum availability avail = node->get_availability ();
180
181 if (avail > AVAIL_INTERPOSABLE
182 || avail == AVAIL_INTERPOSABLE)
183 {
184 /* Reuse the info if it is already there. */
185 struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->aux;
186 if (!info)
187 info = XCNEW (struct ipa_dfs_info);
188 info->new_node = true;
189 info->on_stack = false;
190 info->next_cycle = NULL;
191 node->aux = info;
192
193 splay_tree_insert (env.nodes_marked_new,
194 (splay_tree_key)node->get_uid (),
195 (splay_tree_value)node);
196 }
197 else
198 node->aux = NULL;
199 }
200 result = splay_tree_min (env.nodes_marked_new);
201 while (result)
202 {
203 node = (struct cgraph_node *)result->value;
204 searchc (&env, node, ignore_edge);
205 result = splay_tree_min (env.nodes_marked_new);
206 }
207 splay_tree_delete (env.nodes_marked_new);
208 free (env.stack);
209
210 return env.order_pos;
211 }
212
213 /* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
214 graph nodes. */
215
216 void
217 ipa_free_postorder_info (void)
218 {
219 struct cgraph_node *node;
220 FOR_EACH_DEFINED_FUNCTION (node)
221 {
222 /* Get rid of the aux information. */
223 if (node->aux)
224 {
225 free (node->aux);
226 node->aux = NULL;
227 }
228 }
229 }
230
231 /* Get the set of nodes for the cycle in the reduced call graph starting
232 from NODE. */
233
234 vec<cgraph_node *>
235 ipa_get_nodes_in_cycle (struct cgraph_node *node)
236 {
237 vec<cgraph_node *> v = vNULL;
238 struct ipa_dfs_info *node_dfs_info;
239 while (node)
240 {
241 v.safe_push (node);
242 node_dfs_info = (struct ipa_dfs_info *) node->aux;
243 node = node_dfs_info->next_cycle;
244 }
245 return v;
246 }
247
248 /* Return true iff the CS is an edge within a strongly connected component as
249 computed by ipa_reduced_postorder. */
250
251 bool
252 ipa_edge_within_scc (struct cgraph_edge *cs)
253 {
254 struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
255 struct ipa_dfs_info *callee_dfs;
256 struct cgraph_node *callee = cs->callee->function_symbol ();
257
258 callee_dfs = (struct ipa_dfs_info *) callee->aux;
259 return (caller_dfs
260 && callee_dfs
261 && caller_dfs->scc_no == callee_dfs->scc_no);
262 }
263
264 struct postorder_stack
265 {
266 struct cgraph_node *node;
267 struct cgraph_edge *edge;
268 int ref;
269 };
270
271 /* Fill array order with all nodes with output flag set in the reverse
272 topological order. Return the number of elements in the array.
273 FIXME: While walking, consider aliases, too. */
274
275 int
276 ipa_reverse_postorder (struct cgraph_node **order)
277 {
278 struct cgraph_node *node, *node2;
279 int stack_size = 0;
280 int order_pos = 0;
281 struct cgraph_edge *edge;
282 int pass;
283 struct ipa_ref *ref = NULL;
284
285 struct postorder_stack *stack =
286 XCNEWVEC (struct postorder_stack, symtab->cgraph_count);
287
288 /* We have to deal with cycles nicely, so use a depth first traversal
289 output algorithm. Ignore the fact that some functions won't need
290 to be output and put them into order as well, so we get dependencies
291 right through inline functions. */
292 FOR_EACH_FUNCTION (node)
293 node->aux = NULL;
294 for (pass = 0; pass < 2; pass++)
295 FOR_EACH_FUNCTION (node)
296 if (!node->aux
297 && (pass
298 || (!node->address_taken
299 && !node->inlined_to
300 && !node->alias && !node->thunk
301 && !node->only_called_directly_p ())))
302 {
303 stack_size = 0;
304 stack[stack_size].node = node;
305 stack[stack_size].edge = node->callers;
306 stack[stack_size].ref = 0;
307 node->aux = (void *)(size_t)1;
308 while (stack_size >= 0)
309 {
310 while (true)
311 {
312 node2 = NULL;
313 while (stack[stack_size].edge && !node2)
314 {
315 edge = stack[stack_size].edge;
316 node2 = edge->caller;
317 stack[stack_size].edge = edge->next_caller;
318 /* Break possible cycles involving always-inline
319 functions by ignoring edges from always-inline
320 functions to non-always-inline functions. */
321 if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->decl)
322 && !DECL_DISREGARD_INLINE_LIMITS
323 (edge->callee->function_symbol ()->decl))
324 node2 = NULL;
325 }
326 for (; stack[stack_size].node->iterate_referring (
327 stack[stack_size].ref,
328 ref) && !node2;
329 stack[stack_size].ref++)
330 {
331 if (ref->use == IPA_REF_ALIAS)
332 node2 = dyn_cast <cgraph_node *> (ref->referring);
333 }
334 if (!node2)
335 break;
336 if (!node2->aux)
337 {
338 stack[++stack_size].node = node2;
339 stack[stack_size].edge = node2->callers;
340 stack[stack_size].ref = 0;
341 node2->aux = (void *)(size_t)1;
342 }
343 }
344 order[order_pos++] = stack[stack_size--].node;
345 }
346 }
347 free (stack);
348 FOR_EACH_FUNCTION (node)
349 node->aux = NULL;
350 return order_pos;
351 }
352
353
354
355 /* Given a memory reference T, will return the variable at the bottom
356 of the access. Unlike get_base_address, this will recurse through
357 INDIRECT_REFS. */
358
359 tree
360 get_base_var (tree t)
361 {
362 while (!SSA_VAR_P (t)
363 && (!CONSTANT_CLASS_P (t))
364 && TREE_CODE (t) != LABEL_DECL
365 && TREE_CODE (t) != FUNCTION_DECL
366 && TREE_CODE (t) != CONST_DECL
367 && TREE_CODE (t) != CONSTRUCTOR)
368 {
369 t = TREE_OPERAND (t, 0);
370 }
371 return t;
372 }
373
374 /* Scale function of calls in NODE by ratio ORIG_COUNT/NODE->count. */
375
376 void
377 scale_ipa_profile_for_fn (struct cgraph_node *node, profile_count orig_count)
378 {
379 profile_count to = node->count;
380 profile_count::adjust_for_ipa_scaling (&to, &orig_count);
381 struct cgraph_edge *e;
382
383 for (e = node->callees; e; e = e->next_callee)
384 e->count = e->count.apply_scale (to, orig_count);
385 for (e = node->indirect_calls; e; e = e->next_callee)
386 e->count = e->count.apply_scale (to, orig_count);
387 }
388
389 /* SRC and DST are going to be merged. Take SRC's profile and merge it into
390 DST so it is not going to be lost. Possibly destroy SRC's body on the way
391 unless PRESERVE_BODY is set. */
392
393 void
394 ipa_merge_profiles (struct cgraph_node *dst,
395 struct cgraph_node *src,
396 bool preserve_body)
397 {
398 tree oldsrcdecl = src->decl;
399 struct function *srccfun, *dstcfun;
400 bool match = true;
401 bool copy_counts = false;
402
403 if (!src->definition
404 || !dst->definition)
405 return;
406
407 if (src->frequency < dst->frequency)
408 src->frequency = dst->frequency;
409
410 /* Time profiles are merged. */
411 if (dst->tp_first_run > src->tp_first_run && src->tp_first_run)
412 dst->tp_first_run = src->tp_first_run;
413
414 if (src->profile_id && !dst->profile_id)
415 dst->profile_id = src->profile_id;
416
417 /* Merging zero profile to dst is no-op. */
418 if (src->count.ipa () == profile_count::zero ())
419 return;
420
421 /* FIXME when we merge in unknown profile, we ought to set counts as
422 unsafe. */
423 if (!src->count.initialized_p ()
424 || !(src->count.ipa () == src->count))
425 return;
426 profile_count orig_count = dst->count;
427
428 /* Either sum the profiles if both are IPA and not global0, or
429 pick more informative one (that is nonzero IPA if other is
430 uninitialized, guessed or global0). */
431
432 if ((dst->count.ipa ().nonzero_p ()
433 || src->count.ipa ().nonzero_p ())
434 && dst->count.ipa ().initialized_p ()
435 && src->count.ipa ().initialized_p ())
436 dst->count = dst->count.ipa () + src->count.ipa ();
437 else if (dst->count.ipa ().initialized_p ())
438 ;
439 else if (src->count.ipa ().initialized_p ())
440 {
441 copy_counts = true;
442 dst->count = src->count.ipa ();
443 }
444
445 /* If no updating needed return early. */
446 if (dst->count == orig_count)
447 return;
448
449 if (symtab->dump_file)
450 {
451 fprintf (symtab->dump_file, "Merging profiles of %s count:",
452 src->dump_name ());
453 src->count.dump (symtab->dump_file);
454 fprintf (symtab->dump_file, " to %s count:",
455 dst->dump_name ());
456 orig_count.dump (symtab->dump_file);
457 fprintf (symtab->dump_file, " resulting count:");
458 dst->count.dump (symtab->dump_file);
459 fprintf (symtab->dump_file, "\n");
460 }
461
462 /* First handle functions with no gimple body. */
463 if (dst->thunk || dst->alias
464 || src->thunk || src->alias)
465 {
466 scale_ipa_profile_for_fn (dst, orig_count);
467 return;
468 }
469
470 /* This is ugly. We need to get both function bodies into memory.
471 If declaration is merged, we need to duplicate it to be able
472 to load body that is being replaced. This makes symbol table
473 temporarily inconsistent. */
474 if (src->decl == dst->decl)
475 {
476 struct lto_in_decl_state temp;
477 struct lto_in_decl_state *state;
478
479 /* We are going to move the decl, we want to remove its file decl data.
480 and link these with the new decl. */
481 temp.fn_decl = src->decl;
482 lto_in_decl_state **slot
483 = src->lto_file_data->function_decl_states->find_slot (&temp,
484 NO_INSERT);
485 state = *slot;
486 src->lto_file_data->function_decl_states->clear_slot (slot);
487 gcc_assert (state);
488
489 /* Duplicate the decl and be sure it does not link into body of DST. */
490 src->decl = copy_node (src->decl);
491 DECL_STRUCT_FUNCTION (src->decl) = NULL;
492 DECL_ARGUMENTS (src->decl) = NULL;
493 DECL_INITIAL (src->decl) = NULL;
494 DECL_RESULT (src->decl) = NULL;
495
496 /* Associate the decl state with new declaration, so LTO streamer
497 can look it up. */
498 state->fn_decl = src->decl;
499 slot
500 = src->lto_file_data->function_decl_states->find_slot (state, INSERT);
501 gcc_assert (!*slot);
502 *slot = state;
503 }
504 src->get_untransformed_body ();
505 dst->get_untransformed_body ();
506 srccfun = DECL_STRUCT_FUNCTION (src->decl);
507 dstcfun = DECL_STRUCT_FUNCTION (dst->decl);
508 if (n_basic_blocks_for_fn (srccfun)
509 != n_basic_blocks_for_fn (dstcfun))
510 {
511 if (symtab->dump_file)
512 fprintf (symtab->dump_file,
513 "Giving up; number of basic block mismatch.\n");
514 match = false;
515 }
516 else if (last_basic_block_for_fn (srccfun)
517 != last_basic_block_for_fn (dstcfun))
518 {
519 if (symtab->dump_file)
520 fprintf (symtab->dump_file,
521 "Giving up; last block mismatch.\n");
522 match = false;
523 }
524 else
525 {
526 basic_block srcbb, dstbb;
527 struct cgraph_edge *e, *e2;
528
529 for (e = dst->callees, e2 = src->callees; e && e2 && match;
530 e2 = e2->next_callee, e = e->next_callee)
531 {
532 if (gimple_bb (e->call_stmt)->index
533 != gimple_bb (e2->call_stmt)->index)
534 {
535 if (symtab->dump_file)
536 fprintf (symtab->dump_file,
537 "Giving up; call stmt mismatch.\n");
538 match = false;
539 }
540 }
541 if (e || e2)
542 {
543 if (symtab->dump_file)
544 fprintf (symtab->dump_file,
545 "Giving up; number of calls differs.\n");
546 match = false;
547 }
548 for (e = dst->indirect_calls, e2 = src->indirect_calls; e && e2 && match;
549 e2 = e2->next_callee, e = e->next_callee)
550 {
551 if (gimple_bb (e->call_stmt)->index
552 != gimple_bb (e2->call_stmt)->index)
553 {
554 if (symtab->dump_file)
555 fprintf (symtab->dump_file,
556 "Giving up; indirect call stmt mismatch.\n");
557 match = false;
558 }
559 }
560 if (e || e2)
561 {
562 if (symtab->dump_file)
563 fprintf (symtab->dump_file,
564 "Giving up; number of indirect calls differs.\n");
565 match=false;
566 }
567
568 if (match)
569 FOR_ALL_BB_FN (srcbb, srccfun)
570 {
571 unsigned int i;
572
573 dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
574 if (dstbb == NULL)
575 {
576 if (symtab->dump_file)
577 fprintf (symtab->dump_file,
578 "No matching block for bb %i.\n",
579 srcbb->index);
580 match = false;
581 break;
582 }
583 if (EDGE_COUNT (srcbb->succs) != EDGE_COUNT (dstbb->succs))
584 {
585 if (symtab->dump_file)
586 fprintf (symtab->dump_file,
587 "Edge count mismatch for bb %i.\n",
588 srcbb->index);
589 match = false;
590 break;
591 }
592 for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
593 {
594 edge srce = EDGE_SUCC (srcbb, i);
595 edge dste = EDGE_SUCC (dstbb, i);
596 if (srce->dest->index != dste->dest->index)
597 {
598 if (symtab->dump_file)
599 fprintf (symtab->dump_file,
600 "Succ edge mismatch for bb %i.\n",
601 srce->dest->index);
602 match = false;
603 break;
604 }
605 }
606 }
607 }
608 if (match)
609 {
610 struct cgraph_edge *e, *e2;
611 basic_block srcbb, dstbb;
612
613 /* Function and global profile may be out of sync. First scale it same
614 way as fixup_cfg would. */
615 profile_count srcnum = src->count;
616 profile_count srcden = ENTRY_BLOCK_PTR_FOR_FN (srccfun)->count;
617 bool srcscale = srcnum.initialized_p () && !(srcnum == srcden);
618 profile_count dstnum = orig_count;
619 profile_count dstden = ENTRY_BLOCK_PTR_FOR_FN (dstcfun)->count;
620 bool dstscale = !copy_counts
621 && dstnum.initialized_p () && !(dstnum == dstden);
622
623 /* TODO: merge also statement histograms. */
624 FOR_ALL_BB_FN (srcbb, srccfun)
625 {
626 unsigned int i;
627
628 dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
629
630 profile_count srccount = srcbb->count;
631 if (srcscale)
632 srccount = srccount.apply_scale (srcnum, srcden);
633 if (dstscale)
634 dstbb->count = dstbb->count.apply_scale (dstnum, dstden);
635
636 if (copy_counts)
637 {
638 dstbb->count = srccount;
639 for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
640 {
641 edge srce = EDGE_SUCC (srcbb, i);
642 edge dste = EDGE_SUCC (dstbb, i);
643 if (srce->probability.initialized_p ())
644 dste->probability = srce->probability;
645 }
646 }
647 else
648 {
649 for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
650 {
651 edge srce = EDGE_SUCC (srcbb, i);
652 edge dste = EDGE_SUCC (dstbb, i);
653 dste->probability =
654 dste->probability * dstbb->count.ipa ().probability_in
655 (dstbb->count.ipa ()
656 + srccount.ipa ())
657 + srce->probability * srcbb->count.ipa ().probability_in
658 (dstbb->count.ipa ()
659 + srccount.ipa ());
660 }
661 dstbb->count = dstbb->count.ipa () + srccount.ipa ();
662 }
663 }
664 push_cfun (dstcfun);
665 update_max_bb_count ();
666 compute_function_frequency ();
667 pop_cfun ();
668 for (e = dst->callees; e; e = e->next_callee)
669 {
670 if (e->speculative)
671 continue;
672 e->count = gimple_bb (e->call_stmt)->count;
673 }
674 for (e = dst->indirect_calls, e2 = src->indirect_calls; e;
675 e2 = (e2 ? e2->next_callee : NULL), e = e->next_callee)
676 {
677 if (!e->speculative && !e2->speculative)
678 {
679 /* FIXME: we need to also merge ipa-profile histograms
680 because with LTO merging happens from lto-symtab before
681 these are converted to indirect edges. */
682 e->count = gimple_bb (e->call_stmt)->count;
683 continue;
684 }
685
686 /* When copying just remove all speuclations on dst and then copy
687 one from src. */
688 if (copy_counts)
689 {
690 while (e->speculative)
691 cgraph_edge::resolve_speculation (e, NULL);
692 e->count = gimple_bb (e->call_stmt)->count;
693 if (e2->speculative)
694 {
695 for (cgraph_edge *e3 = e2->first_speculative_call_target ();
696 e3;
697 e3 = e3->next_speculative_call_target ())
698 {
699 cgraph_edge *ns;
700 ns = e->make_speculative
701 (dyn_cast <cgraph_node *>
702 (e3->speculative_call_target_ref ()->referred),
703 e3->count, e3->speculative_id);
704 /* Target may differ from ref (for example it may be
705 redirected to local alias. */
706 ns->redirect_callee (e3->callee);
707 }
708 }
709 continue;
710 }
711
712 /* Iterate all speculations in SRC, see if corresponding ones exist
713 int DST and if so, sum the counts. Otherwise create new
714 speculation. */
715 int max_spec = 0;
716 for (cgraph_edge *e3 = e->first_speculative_call_target ();
717 e3;
718 e3 = e3->next_speculative_call_target ())
719 if (e3->speculative_id > max_spec)
720 max_spec = e3->speculative_id;
721 for (cgraph_edge *e3 = e2->first_speculative_call_target ();
722 e3;
723 e3 = e3->next_speculative_call_target ())
724 {
725 cgraph_edge *te
726 = e->speculative_call_for_target
727 (dyn_cast <cgraph_node *>
728 (e3->speculative_call_target_ref ()->referred));
729 if (te)
730 te->count = te->count + e3->count;
731 else
732 {
733 e->count = e->count + e3->count;
734 cgraph_edge *ns;
735 ns = e->make_speculative
736 (dyn_cast <cgraph_node *>
737 (e3->speculative_call_target_ref ()
738 ->referred),
739 e3->count,
740 e3->speculative_id + max_spec + 1);
741 /* Target may differ from ref (for example it may be
742 redirected to local alias. */
743 ns->redirect_callee (e3->callee);
744 }
745 }
746 }
747 if (!preserve_body)
748 src->release_body ();
749 /* Update summary. */
750 compute_fn_summary (dst, 0);
751 }
752 /* We can't update CFG profile, but we can scale IPA profile. CFG
753 will be scaled according to dst->count after IPA passes. */
754 else
755 scale_ipa_profile_for_fn (dst, orig_count);
756 src->decl = oldsrcdecl;
757 }
758
759 /* Return true if call to DEST is known to be self-recusive
760 call withing FUNC. */
761
762 bool
763 recursive_call_p (tree func, tree dest)
764 {
765 struct cgraph_node *dest_node = cgraph_node::get_create (dest);
766 struct cgraph_node *cnode = cgraph_node::get_create (func);
767 ipa_ref *alias;
768 enum availability avail;
769
770 gcc_assert (!cnode->alias);
771 if (cnode != dest_node->ultimate_alias_target (&avail))
772 return false;
773 if (avail >= AVAIL_AVAILABLE)
774 return true;
775 if (!dest_node->semantically_equivalent_p (cnode))
776 return false;
777 /* If there is only one way to call the fuction or we know all of them
778 are semantically equivalent, we still can consider call recursive. */
779 FOR_EACH_ALIAS (cnode, alias)
780 if (!dest_node->semantically_equivalent_p (alias->referring))
781 return false;
782 return true;
783 }