]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reg-stack.cc
635b5825333e4a032617569d60f66ab2561fa959
[thirdparty/gcc.git] / gcc / reg-stack.cc
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
102
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
105
106 asm ("foo" : "=t" (a) : "f" (b));
107
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
113
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
116
117 The asm above would be written as
118
119 asm ("foo" : "=&t" (a) : "f" (b));
120
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
125
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
129
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
134
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
137
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
141
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
144
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.cc to know that fyl2xp1 pops both inputs.
150
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152
153 */
154 \f
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "regs.h"
166 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
167 #include "recog.h"
168 #include "varasm.h"
169 #include "rtl-error.h"
170 #include "cfgrtl.h"
171 #include "cfganal.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
174 #include "reload.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177 #include "function-abi.h"
178
179 #ifdef STACK_REGS
180
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static vec<char> stack_regs_mentioned_data;
188
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191 int regstack_completed = 0;
192
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202 typedef struct stack_def
203 {
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack_ptr;
208
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212 typedef struct block_info_def
213 {
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
221
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
226 {
227 EMIT_AFTER,
228 EMIT_BEFORE
229 };
230
231 /* The block we're currently working on. */
232 static basic_block current_block;
233
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
238
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
248
249 /* Forward declarations */
250
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack_ptr, int);
253 static rtx *get_true_reg (rtx *);
254
255 static int check_asm_stack_operands (rtx_insn *);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack_ptr, rtx);
261 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
262 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
263 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx_insn *, int &);
267 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
268 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
269 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
270 static bool subst_stack_regs (rtx_insn *, stack_ptr);
271 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
272 static void print_stack (FILE *, stack_ptr);
273 static rtx_insn *next_flags_user (rtx_insn *, int &);
274 \f
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276
277 static int
278 stack_regs_mentioned_p (const_rtx pat)
279 {
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return 1;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305
306 int
307 stack_regs_mentioned (const_rtx insn)
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = stack_regs_mentioned_data.length ();
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 stack_regs_mentioned_data.safe_grow_cleared (max, true);
323 }
324
325 test = stack_regs_mentioned_data[uid];
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 stack_regs_mentioned_data[uid] = test;
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx_insn *
339 next_flags_user (rtx_insn *insn, int &debug_seen)
340 {
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 {
350 if (DEBUG_INSN_P (insn) && debug_seen >= 0)
351 {
352 debug_seen = 1;
353 continue;
354 }
355 return insn;
356 }
357
358 if (CALL_P (insn))
359 return NULL;
360 }
361 return NULL;
362 }
363 \f
364 /* Reorganize the stack into ascending numbers, before this insn. */
365
366 static void
367 straighten_stack (rtx_insn *insn, stack_ptr regstack)
368 {
369 struct stack_def temp_stack;
370 int top;
371
372 /* If there is only a single register on the stack, then the stack is
373 already in increasing order and no reorganization is needed.
374
375 Similarly if the stack is empty. */
376 if (regstack->top <= 0)
377 return;
378
379 temp_stack.reg_set = regstack->reg_set;
380
381 for (top = temp_stack.top = regstack->top; top >= 0; top--)
382 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
383
384 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
385 }
386
387 /* Pop a register from the stack. */
388
389 static void
390 pop_stack (stack_ptr regstack, int regno)
391 {
392 int top = regstack->top;
393
394 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
395 regstack->top--;
396 /* If regno was not at the top of stack then adjust stack. */
397 if (regstack->reg [top] != regno)
398 {
399 int i;
400 for (i = regstack->top; i >= 0; i--)
401 if (regstack->reg [i] == regno)
402 {
403 int j;
404 for (j = i; j < top; j++)
405 regstack->reg [j] = regstack->reg [j + 1];
406 break;
407 }
408 }
409 }
410 \f
411 /* Return a pointer to the REG expression within PAT. If PAT is not a
412 REG, possible enclosed by a conversion rtx, return the inner part of
413 PAT that stopped the search. */
414
415 static rtx *
416 get_true_reg (rtx *pat)
417 {
418 for (;;)
419 switch (GET_CODE (*pat))
420 {
421 case SUBREG:
422 /* Eliminate FP subregister accesses in favor of the
423 actual FP register in use. */
424 {
425 rtx subreg = SUBREG_REG (*pat);
426
427 if (STACK_REG_P (subreg))
428 {
429 int regno_off = subreg_regno_offset (REGNO (subreg),
430 GET_MODE (subreg),
431 SUBREG_BYTE (*pat),
432 GET_MODE (*pat));
433 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
434 GET_MODE (subreg));
435 return pat;
436 }
437 pat = &XEXP (*pat, 0);
438 break;
439 }
440
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 /* FALLTHRU */
445
446 case FLOAT:
447 case FIX:
448 case FLOAT_EXTEND:
449 pat = &XEXP (*pat, 0);
450 break;
451
452 case UNSPEC:
453 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
454 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
455 pat = &XVECEXP (*pat, 0, 0);
456 return pat;
457
458 default:
459 return pat;
460 }
461 }
462 \f
463 /* Set if we find any malformed asms in a function. */
464 static bool any_malformed_asm;
465
466 /* There are many rules that an asm statement for stack-like regs must
467 follow. Those rules are explained at the top of this file: the rule
468 numbers below refer to that explanation. */
469
470 static int
471 check_asm_stack_operands (rtx_insn *insn)
472 {
473 int i;
474 int n_clobbers;
475 int malformed_asm = 0;
476 rtx body = PATTERN (insn);
477
478 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
479 char implicitly_dies[FIRST_PSEUDO_REGISTER];
480 char explicitly_used[FIRST_PSEUDO_REGISTER];
481
482 rtx *clobber_reg = 0;
483 int n_inputs, n_outputs;
484
485 /* Find out what the constraints require. If no constraint
486 alternative matches, this asm is malformed. */
487 extract_constrain_insn (insn);
488
489 preprocess_constraints (insn);
490
491 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
492
493 if (which_alternative < 0)
494 {
495 /* Avoid further trouble with this insn. */
496 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
497 return 0;
498 }
499 const operand_alternative *op_alt = which_op_alt ();
500
501 /* Strip SUBREGs here to make the following code simpler. */
502 for (i = 0; i < recog_data.n_operands; i++)
503 if (GET_CODE (recog_data.operand[i]) == SUBREG
504 && REG_P (SUBREG_REG (recog_data.operand[i])))
505 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
506
507 /* Set up CLOBBER_REG. */
508
509 n_clobbers = 0;
510
511 if (GET_CODE (body) == PARALLEL)
512 {
513 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
514
515 for (i = 0; i < XVECLEN (body, 0); i++)
516 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
517 {
518 rtx clobber = XVECEXP (body, 0, i);
519 rtx reg = XEXP (clobber, 0);
520
521 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
522 reg = SUBREG_REG (reg);
523
524 if (STACK_REG_P (reg))
525 {
526 clobber_reg[n_clobbers] = reg;
527 n_clobbers++;
528 }
529 }
530 }
531
532 /* Enforce rule #4: Output operands must specifically indicate which
533 reg an output appears in after an asm. "=f" is not allowed: the
534 operand constraints must select a class with a single reg.
535
536 Also enforce rule #5: Output operands must start at the top of
537 the reg-stack: output operands may not "skip" a reg. */
538
539 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
540 for (i = 0; i < n_outputs; i++)
541 if (STACK_REG_P (recog_data.operand[i]))
542 {
543 if (reg_class_size[(int) op_alt[i].cl] != 1)
544 {
545 error_for_asm (insn, "output constraint %d must specify a single register", i);
546 malformed_asm = 1;
547 }
548 else
549 {
550 int j;
551
552 for (j = 0; j < n_clobbers; j++)
553 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
554 {
555 error_for_asm (insn, "output constraint %d cannot be "
556 "specified together with %qs clobber",
557 i, reg_names [REGNO (clobber_reg[j])]);
558 malformed_asm = 1;
559 break;
560 }
561 if (j == n_clobbers)
562 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
563 }
564 }
565
566
567 /* Search for first non-popped reg. */
568 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
569 if (! reg_used_as_output[i])
570 break;
571
572 /* If there are any other popped regs, that's an error. */
573 for (; i < LAST_STACK_REG + 1; i++)
574 if (reg_used_as_output[i])
575 break;
576
577 if (i != LAST_STACK_REG + 1)
578 {
579 error_for_asm (insn, "output registers must be grouped at top of stack");
580 malformed_asm = 1;
581 }
582
583 /* Enforce rule #2: All implicitly popped input regs must be closer
584 to the top of the reg-stack than any input that is not implicitly
585 popped. */
586
587 memset (implicitly_dies, 0, sizeof (implicitly_dies));
588 memset (explicitly_used, 0, sizeof (explicitly_used));
589 for (i = n_outputs; i < n_outputs + n_inputs; i++)
590 if (STACK_REG_P (recog_data.operand[i]))
591 {
592 /* An input reg is implicitly popped if it is tied to an
593 output, or if there is a CLOBBER for it. */
594 int j;
595
596 for (j = 0; j < n_clobbers; j++)
597 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
598 break;
599
600 if (j < n_clobbers || op_alt[i].matches >= 0)
601 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
602 else if (reg_class_size[(int) op_alt[i].cl] == 1)
603 explicitly_used[REGNO (recog_data.operand[i])] = 1;
604 }
605
606 /* Search for first non-popped reg. */
607 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
608 if (! implicitly_dies[i])
609 break;
610
611 /* If there are any other popped regs, that's an error. */
612 for (; i < LAST_STACK_REG + 1; i++)
613 if (implicitly_dies[i])
614 break;
615
616 if (i != LAST_STACK_REG + 1)
617 {
618 error_for_asm (insn,
619 "implicitly popped registers must be grouped "
620 "at top of stack");
621 malformed_asm = 1;
622 }
623
624 /* Search for first not-explicitly used reg. */
625 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
626 if (! implicitly_dies[i] && ! explicitly_used[i])
627 break;
628
629 /* If there are any other explicitly used regs, that's an error. */
630 for (; i < LAST_STACK_REG + 1; i++)
631 if (explicitly_used[i])
632 break;
633
634 if (i != LAST_STACK_REG + 1)
635 {
636 error_for_asm (insn,
637 "explicitly used registers must be grouped "
638 "at top of stack");
639 malformed_asm = 1;
640 }
641
642 /* Enforce rule #3: If any input operand uses the "f" constraint, all
643 output constraints must use the "&" earlyclobber.
644
645 ??? Detect this more deterministically by having constrain_asm_operands
646 record any earlyclobber. */
647
648 for (i = n_outputs; i < n_outputs + n_inputs; i++)
649 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
650 {
651 int j;
652
653 for (j = 0; j < n_outputs; j++)
654 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
655 {
656 error_for_asm (insn,
657 "output operand %d must use %<&%> constraint", j);
658 malformed_asm = 1;
659 }
660 }
661
662 if (malformed_asm)
663 {
664 /* Avoid further trouble with this insn. */
665 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
666 any_malformed_asm = true;
667 return 0;
668 }
669
670 return 1;
671 }
672 \f
673 /* Calculate the number of inputs and outputs in BODY, an
674 asm_operands. N_OPERANDS is the total number of operands, and
675 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
676 placed. */
677
678 static void
679 get_asm_operands_in_out (rtx body, int *pout, int *pin)
680 {
681 rtx asmop = extract_asm_operands (body);
682
683 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
684 *pout = (recog_data.n_operands
685 - ASM_OPERANDS_INPUT_LENGTH (asmop)
686 - ASM_OPERANDS_LABEL_LENGTH (asmop));
687 }
688
689 /* If current function returns its result in an fp stack register,
690 return the REG. Otherwise, return 0. */
691
692 static rtx
693 stack_result (tree decl)
694 {
695 rtx result;
696
697 /* If the value is supposed to be returned in memory, then clearly
698 it is not returned in a stack register. */
699 if (aggregate_value_p (DECL_RESULT (decl), decl))
700 return 0;
701
702 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
703 if (result != 0)
704 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
705 decl, true);
706
707 return result != 0 && STACK_REG_P (result) ? result : 0;
708 }
709 \f
710
711 /*
712 * This section deals with stack register substitution, and forms the second
713 * pass over the RTL.
714 */
715
716 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
717 the desired hard REGNO. */
718
719 static void
720 replace_reg (rtx *reg, int regno)
721 {
722 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
723 gcc_assert (STACK_REG_P (*reg));
724
725 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
726 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
727
728 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
729 }
730
731 /* Remove a note of type NOTE, which must be found, for register
732 number REGNO from INSN. Remove only one such note. */
733
734 static void
735 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
736 {
737 rtx *note_link, this_rtx;
738
739 note_link = &REG_NOTES (insn);
740 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
741 if (REG_NOTE_KIND (this_rtx) == note
742 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
743 {
744 *note_link = XEXP (this_rtx, 1);
745 return;
746 }
747 else
748 note_link = &XEXP (this_rtx, 1);
749
750 gcc_unreachable ();
751 }
752
753 /* Find the hard register number of virtual register REG in REGSTACK.
754 The hard register number is relative to the top of the stack. -1 is
755 returned if the register is not found. */
756
757 static int
758 get_hard_regnum (stack_ptr regstack, rtx reg)
759 {
760 int i;
761
762 gcc_assert (STACK_REG_P (reg));
763
764 for (i = regstack->top; i >= 0; i--)
765 if (regstack->reg[i] == REGNO (reg))
766 break;
767
768 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
769 }
770 \f
771 /* Emit an insn to pop virtual register REG before or after INSN.
772 REGSTACK is the stack state after INSN and is updated to reflect this
773 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
774 is represented as a SET whose destination is the register to be popped
775 and source is the top of stack. A death note for the top of stack
776 cases the movdf pattern to pop. */
777
778 static rtx_insn *
779 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
780 enum emit_where where)
781 {
782 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
783 rtx_insn *pop_insn;
784 rtx pop_rtx;
785 int hard_regno;
786
787 /* For complex types take care to pop both halves. These may survive in
788 CLOBBER and USE expressions. */
789 if (COMPLEX_MODE_P (GET_MODE (reg)))
790 {
791 rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
792 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
793
794 pop_insn = NULL;
795 if (get_hard_regnum (regstack, reg1) >= 0)
796 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
797 if (get_hard_regnum (regstack, reg2) >= 0)
798 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
799 gcc_assert (pop_insn);
800 return pop_insn;
801 }
802
803 hard_regno = get_hard_regnum (regstack, reg);
804
805 gcc_assert (hard_regno >= FIRST_STACK_REG);
806
807 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
808 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
809
810 if (where == EMIT_AFTER)
811 pop_insn = emit_insn_after (pop_rtx, insn);
812 else
813 pop_insn = emit_insn_before (pop_rtx, insn);
814
815 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
816
817 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
818 = regstack->reg[regstack->top];
819 regstack->top -= 1;
820 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
821
822 return pop_insn;
823 }
824 \f
825 /* Emit an insn before or after INSN to swap virtual register REG with
826 the top of stack. REGSTACK is the stack state before the swap, and
827 is updated to reflect the swap. A swap insn is represented as a
828 PARALLEL of two patterns: each pattern moves one reg to the other.
829
830 If REG is already at the top of the stack, no insn is emitted. */
831
832 static void
833 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
834 {
835 int hard_regno;
836 int other_reg; /* swap regno temps */
837 rtx_insn *i1; /* the stack-reg insn prior to INSN */
838 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
839
840 hard_regno = get_hard_regnum (regstack, reg);
841
842 if (hard_regno == FIRST_STACK_REG)
843 return;
844 if (hard_regno == -1)
845 {
846 /* Something failed if the register wasn't on the stack. If we had
847 malformed asms, we zapped the instruction itself, but that didn't
848 produce the same pattern of register sets as before. To prevent
849 further failure, adjust REGSTACK to include REG at TOP. */
850 gcc_assert (any_malformed_asm);
851 regstack->reg[++regstack->top] = REGNO (reg);
852 return;
853 }
854 gcc_assert (hard_regno >= FIRST_STACK_REG);
855
856 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
857 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
858
859 /* Find the previous insn involving stack regs, but don't pass a
860 block boundary. */
861 i1 = NULL;
862 if (current_block && insn != BB_HEAD (current_block))
863 {
864 rtx_insn *tmp = PREV_INSN (insn);
865 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
866 while (tmp != limit)
867 {
868 if (LABEL_P (tmp)
869 || CALL_P (tmp)
870 || NOTE_INSN_BASIC_BLOCK_P (tmp)
871 || (NONJUMP_INSN_P (tmp)
872 && stack_regs_mentioned (tmp)))
873 {
874 i1 = tmp;
875 break;
876 }
877 tmp = PREV_INSN (tmp);
878 }
879 }
880
881 if (i1 != NULL_RTX
882 && (i1set = single_set (i1)) != NULL_RTX)
883 {
884 rtx i1src = *get_true_reg (&SET_SRC (i1set));
885 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
886
887 /* If the previous register stack push was from the reg we are to
888 swap with, omit the swap. */
889
890 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
891 && REG_P (i1src)
892 && REGNO (i1src) == (unsigned) hard_regno - 1
893 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
894 return;
895
896 /* If the previous insn wrote to the reg we are to swap with,
897 omit the swap. */
898
899 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
900 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
901 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
902 return;
903
904 /* Instead of
905 fld a
906 fld b
907 fxch %st(1)
908 just use
909 fld b
910 fld a
911 if possible. Similarly for fld1, fldz, fldpi etc. instead of any
912 of the loads or for float extension from memory. */
913
914 i1src = SET_SRC (i1set);
915 if (GET_CODE (i1src) == FLOAT_EXTEND)
916 i1src = XEXP (i1src, 0);
917 if (REG_P (i1dest)
918 && REGNO (i1dest) == FIRST_STACK_REG
919 && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
920 && !side_effects_p (i1src)
921 && hard_regno == FIRST_STACK_REG + 1
922 && i1 != BB_HEAD (current_block))
923 {
924 /* i1 is the last insn that involves stack regs before insn, and
925 is known to be a load without other side-effects, i.e. fld b
926 in the above comment. */
927 rtx_insn *i2 = NULL;
928 rtx i2set;
929 rtx_insn *tmp = PREV_INSN (i1);
930 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
931 /* Find the previous insn involving stack regs, but don't pass a
932 block boundary. */
933 while (tmp != limit)
934 {
935 if (LABEL_P (tmp)
936 || CALL_P (tmp)
937 || NOTE_INSN_BASIC_BLOCK_P (tmp)
938 || (NONJUMP_INSN_P (tmp)
939 && stack_regs_mentioned (tmp)))
940 {
941 i2 = tmp;
942 break;
943 }
944 tmp = PREV_INSN (tmp);
945 }
946 if (i2 != NULL_RTX
947 && (i2set = single_set (i2)) != NULL_RTX)
948 {
949 rtx i2dest = *get_true_reg (&SET_DEST (i2set));
950 rtx i2src = SET_SRC (i2set);
951 if (GET_CODE (i2src) == FLOAT_EXTEND)
952 i2src = XEXP (i2src, 0);
953 /* If the last two insns before insn that involve
954 stack regs are loads, where the latter (i1)
955 pushes onto the register stack and thus
956 moves the value from the first load (i2) from
957 %st to %st(1), consider swapping them. */
958 if (REG_P (i2dest)
959 && REGNO (i2dest) == FIRST_STACK_REG
960 && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
961 /* Ensure i2 doesn't have other side-effects. */
962 && !side_effects_p (i2src)
963 /* And that the two instructions can actually be
964 swapped, i.e. there shouldn't be any stores
965 in between i2 and i1 that might alias with
966 the i1 memory, and the memory address can't
967 use registers set in between i2 and i1. */
968 && !modified_between_p (SET_SRC (i1set), i2, i1))
969 {
970 /* Move i1 (fld b above) right before i2 (fld a
971 above. */
972 remove_insn (i1);
973 SET_PREV_INSN (i1) = NULL_RTX;
974 SET_NEXT_INSN (i1) = NULL_RTX;
975 set_block_for_insn (i1, NULL);
976 emit_insn_before (i1, i2);
977 return;
978 }
979 }
980 }
981 }
982
983 /* Avoid emitting the swap if this is the first register stack insn
984 of the current_block. Instead update the current_block's stack_in
985 and let compensate edges take care of this for us. */
986 if (current_block && starting_stack_p)
987 {
988 BLOCK_INFO (current_block)->stack_in = *regstack;
989 starting_stack_p = false;
990 return;
991 }
992
993 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
994 rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
995 rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
996 rtx swap_rtx
997 = gen_rtx_PARALLEL (VOIDmode,
998 gen_rtvec (2, gen_rtx_SET (op1, op2),
999 gen_rtx_SET (op2, op1)));
1000 if (i1)
1001 emit_insn_after (swap_rtx, i1);
1002 else if (current_block)
1003 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1004 else
1005 emit_insn_before (swap_rtx, insn);
1006 }
1007 \f
1008 /* Emit an insns before INSN to swap virtual register SRC1 with
1009 the top of stack and virtual register SRC2 with second stack
1010 slot. REGSTACK is the stack state before the swaps, and
1011 is updated to reflect the swaps. A swap insn is represented as a
1012 PARALLEL of two patterns: each pattern moves one reg to the other.
1013
1014 If SRC1 and/or SRC2 are already at the right place, no swap insn
1015 is emitted. */
1016
1017 static void
1018 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1019 {
1020 struct stack_def temp_stack;
1021 int regno, j, k;
1022
1023 temp_stack = *regstack;
1024
1025 /* Place operand 1 at the top of stack. */
1026 regno = get_hard_regnum (&temp_stack, src1);
1027 gcc_assert (regno >= 0);
1028 if (regno != FIRST_STACK_REG)
1029 {
1030 k = temp_stack.top - (regno - FIRST_STACK_REG);
1031 j = temp_stack.top;
1032
1033 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1034 }
1035
1036 /* Place operand 2 next on the stack. */
1037 regno = get_hard_regnum (&temp_stack, src2);
1038 gcc_assert (regno >= 0);
1039 if (regno != FIRST_STACK_REG + 1)
1040 {
1041 k = temp_stack.top - (regno - FIRST_STACK_REG);
1042 j = temp_stack.top - 1;
1043
1044 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1045 }
1046
1047 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1048 }
1049 \f
1050 /* Handle a move to or from a stack register in PAT, which is in INSN.
1051 REGSTACK is the current stack. Return whether a control flow insn
1052 was deleted in the process. */
1053
1054 static bool
1055 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1056 {
1057 rtx *psrc = get_true_reg (&SET_SRC (pat));
1058 rtx *pdest = get_true_reg (&SET_DEST (pat));
1059 rtx src, dest;
1060 rtx note;
1061 bool control_flow_insn_deleted = false;
1062
1063 src = *psrc; dest = *pdest;
1064
1065 if (STACK_REG_P (src) && STACK_REG_P (dest))
1066 {
1067 /* Write from one stack reg to another. If SRC dies here, then
1068 just change the register mapping and delete the insn. */
1069
1070 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1071 if (note)
1072 {
1073 int i;
1074
1075 /* If this is a no-op move, there must not be a REG_DEAD note. */
1076 gcc_assert (REGNO (src) != REGNO (dest));
1077
1078 for (i = regstack->top; i >= 0; i--)
1079 if (regstack->reg[i] == REGNO (src))
1080 break;
1081
1082 /* The destination must be dead, or life analysis is borked. */
1083 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1084 || any_malformed_asm);
1085
1086 /* If the source is not live, this is yet another case of
1087 uninitialized variables. Load up a NaN instead. */
1088 if (i < 0)
1089 return move_nan_for_stack_reg (insn, regstack, dest);
1090
1091 /* It is possible that the dest is unused after this insn.
1092 If so, just pop the src. */
1093
1094 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1095 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1096 else
1097 {
1098 regstack->reg[i] = REGNO (dest);
1099 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1100 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1101 }
1102
1103 control_flow_insn_deleted |= control_flow_insn_p (insn);
1104 delete_insn (insn);
1105 return control_flow_insn_deleted;
1106 }
1107
1108 /* The source reg does not die. */
1109
1110 /* If this appears to be a no-op move, delete it, or else it
1111 will confuse the machine description output patterns. But if
1112 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1113 for REG_UNUSED will not work for deleted insns. */
1114
1115 if (REGNO (src) == REGNO (dest))
1116 {
1117 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1118 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1119
1120 control_flow_insn_deleted |= control_flow_insn_p (insn);
1121 delete_insn (insn);
1122 return control_flow_insn_deleted;
1123 }
1124
1125 /* The destination ought to be dead. */
1126 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1127 gcc_assert (any_malformed_asm);
1128 else
1129 {
1130 replace_reg (psrc, get_hard_regnum (regstack, src));
1131
1132 regstack->reg[++regstack->top] = REGNO (dest);
1133 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1134 replace_reg (pdest, FIRST_STACK_REG);
1135 }
1136 }
1137 else if (STACK_REG_P (src))
1138 {
1139 /* Save from a stack reg to MEM, or possibly integer reg. Since
1140 only top of stack may be saved, emit an exchange first if
1141 needs be. */
1142
1143 emit_swap_insn (insn, regstack, src);
1144
1145 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1146 if (note)
1147 {
1148 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1149 regstack->top--;
1150 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1151 }
1152 else if ((GET_MODE (src) == XFmode)
1153 && regstack->top < REG_STACK_SIZE - 1)
1154 {
1155 /* A 387 cannot write an XFmode value to a MEM without
1156 clobbering the source reg. The output code can handle
1157 this by reading back the value from the MEM.
1158 But it is more efficient to use a temp register if one is
1159 available. Push the source value here if the register
1160 stack is not full, and then write the value to memory via
1161 a pop. */
1162 rtx push_rtx;
1163 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1164
1165 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1166 emit_insn_before (push_rtx, insn);
1167 add_reg_note (insn, REG_DEAD, top_stack_reg);
1168 }
1169
1170 replace_reg (psrc, FIRST_STACK_REG);
1171 }
1172 else
1173 {
1174 rtx pat = PATTERN (insn);
1175
1176 gcc_assert (STACK_REG_P (dest));
1177
1178 /* Load from MEM, or possibly integer REG or constant, into the
1179 stack regs. The actual target is always the top of the
1180 stack. The stack mapping is changed to reflect that DEST is
1181 now at top of stack. */
1182
1183 /* The destination ought to be dead. However, there is a
1184 special case with i387 UNSPEC_TAN, where destination is live
1185 (an argument to fptan) but inherent load of 1.0 is modelled
1186 as a load from a constant. */
1187 if (GET_CODE (pat) == PARALLEL
1188 && XVECLEN (pat, 0) == 2
1189 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1190 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1191 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1192 emit_swap_insn (insn, regstack, dest);
1193 else
1194 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1195 || any_malformed_asm);
1196
1197 gcc_assert (regstack->top < REG_STACK_SIZE);
1198
1199 regstack->reg[++regstack->top] = REGNO (dest);
1200 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1201 replace_reg (pdest, FIRST_STACK_REG);
1202 }
1203
1204 return control_flow_insn_deleted;
1205 }
1206
1207 /* A helper function which replaces INSN with a pattern that loads up
1208 a NaN into DEST, then invokes move_for_stack_reg. */
1209
1210 static bool
1211 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1212 {
1213 rtx pat;
1214
1215 dest = FP_MODE_REG (REGNO (dest), SFmode);
1216 pat = gen_rtx_SET (dest, not_a_num);
1217 PATTERN (insn) = pat;
1218 INSN_CODE (insn) = -1;
1219
1220 return move_for_stack_reg (insn, regstack, pat);
1221 }
1222 \f
1223 /* Swap the condition on a branch, if there is one. Return true if we
1224 found a condition to swap. False if the condition was not used as
1225 such. */
1226
1227 static int
1228 swap_rtx_condition_1 (rtx pat)
1229 {
1230 const char *fmt;
1231 int i, r = 0;
1232
1233 if (COMPARISON_P (pat))
1234 {
1235 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1236 r = 1;
1237 }
1238 else
1239 {
1240 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1241 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1242 {
1243 if (fmt[i] == 'E')
1244 {
1245 int j;
1246
1247 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1248 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1249 }
1250 else if (fmt[i] == 'e')
1251 r |= swap_rtx_condition_1 (XEXP (pat, i));
1252 }
1253 }
1254
1255 return r;
1256 }
1257
1258 /* This function swaps condition in cc users and returns true
1259 if successful. It is invoked in 2 different modes, one with
1260 DEBUG_SEEN set initially to 0. In this mode, next_flags_user
1261 will skip DEBUG_INSNs that it would otherwise return and just
1262 sets DEBUG_SEEN to 1 in that case. If DEBUG_SEEN is 0 at
1263 the end of toplevel swap_rtx_condition which returns true,
1264 it means no problematic DEBUG_INSNs were seen and all changes
1265 have been applied. If it returns true but DEBUG_SEEN is 1,
1266 it means some problematic DEBUG_INSNs were seen and no changes
1267 have been applied so far. In that case one needs to call
1268 swap_rtx_condition again with DEBUG_SEEN set to -1, in which
1269 case it doesn't skip DEBUG_INSNs, but instead adjusts the
1270 flags related condition in them or resets them as needed. */
1271
1272 static int
1273 swap_rtx_condition (rtx_insn *insn, int &debug_seen)
1274 {
1275 rtx pat = PATTERN (insn);
1276
1277 /* We're looking for a single set to an HImode temporary. */
1278
1279 if (GET_CODE (pat) == SET
1280 && REG_P (SET_DEST (pat))
1281 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1282 {
1283 insn = next_flags_user (insn, debug_seen);
1284 if (insn == NULL_RTX)
1285 return 0;
1286 pat = PATTERN (insn);
1287 }
1288
1289 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1290 with the cc value right now. We may be able to search for one
1291 though. */
1292
1293 if (GET_CODE (pat) == SET
1294 && GET_CODE (SET_SRC (pat)) == UNSPEC
1295 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1296 {
1297 rtx dest = SET_DEST (pat);
1298
1299 /* Search forward looking for the first use of this value.
1300 Stop at block boundaries. */
1301 while (insn != BB_END (current_block))
1302 {
1303 insn = NEXT_INSN (insn);
1304 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1305 {
1306 if (DEBUG_INSN_P (insn))
1307 {
1308 if (debug_seen >= 0)
1309 debug_seen = 1;
1310 else
1311 /* Reset the DEBUG insn otherwise. */
1312 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1313 continue;
1314 }
1315 break;
1316 }
1317 if (CALL_P (insn))
1318 return 0;
1319 }
1320
1321 /* We haven't found it. */
1322 if (insn == BB_END (current_block))
1323 return 0;
1324
1325 /* So we've found the insn using this value. If it is anything
1326 other than sahf or the value does not die (meaning we'd have
1327 to search further), then we must give up. */
1328 pat = PATTERN (insn);
1329 if (GET_CODE (pat) != SET
1330 || GET_CODE (SET_SRC (pat)) != UNSPEC
1331 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1332 || ! dead_or_set_p (insn, dest))
1333 return 0;
1334
1335 /* Now we are prepared to handle this. */
1336 insn = next_flags_user (insn, debug_seen);
1337 if (insn == NULL_RTX)
1338 return 0;
1339 pat = PATTERN (insn);
1340 }
1341
1342 if (swap_rtx_condition_1 (pat))
1343 {
1344 int fail = 0;
1345 if (DEBUG_INSN_P (insn))
1346 gcc_assert (debug_seen < 0);
1347 else
1348 {
1349 INSN_CODE (insn) = -1;
1350 if (recog_memoized (insn) == -1)
1351 fail = 1;
1352 }
1353 /* In case the flags don't die here, recurse to try fix
1354 following user too. */
1355 if (!fail && !dead_or_set_p (insn, ix86_flags_rtx))
1356 {
1357 insn = next_flags_user (insn, debug_seen);
1358 if (!insn || !swap_rtx_condition (insn, debug_seen))
1359 fail = 1;
1360 }
1361 if (fail || debug_seen == 1)
1362 swap_rtx_condition_1 (pat);
1363 return !fail;
1364 }
1365 return 0;
1366 }
1367
1368 /* Handle a comparison. Special care needs to be taken to avoid
1369 causing comparisons that a 387 cannot do correctly, such as EQ.
1370
1371 Also, a pop insn may need to be emitted. The 387 does have an
1372 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1373 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1374 set up. */
1375
1376 static void
1377 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1378 rtx pat_src, bool can_pop_second_op)
1379 {
1380 rtx *src1, *src2;
1381 rtx src1_note, src2_note;
1382 int debug_seen = 0;
1383
1384 src1 = get_true_reg (&XEXP (pat_src, 0));
1385 src2 = get_true_reg (&XEXP (pat_src, 1));
1386
1387 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1388 registers that die in this insn - move those to stack top first. */
1389 if ((! STACK_REG_P (*src1)
1390 || (STACK_REG_P (*src2)
1391 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1392 && swap_rtx_condition (insn, debug_seen))
1393 {
1394 /* If swap_rtx_condition succeeded but some debug insns
1395 were seen along the way, it has actually reverted all the
1396 changes. Rerun swap_rtx_condition in a mode where DEBUG_ISNSs
1397 will be adjusted as well. */
1398 if (debug_seen)
1399 {
1400 debug_seen = -1;
1401 swap_rtx_condition (insn, debug_seen);
1402 }
1403 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1404
1405 src1 = get_true_reg (&XEXP (pat_src, 0));
1406 src2 = get_true_reg (&XEXP (pat_src, 1));
1407
1408 INSN_CODE (insn) = -1;
1409 }
1410
1411 /* We will fix any death note later. */
1412
1413 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1414
1415 if (STACK_REG_P (*src2))
1416 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1417 else
1418 src2_note = NULL_RTX;
1419
1420 emit_swap_insn (insn, regstack, *src1);
1421
1422 replace_reg (src1, FIRST_STACK_REG);
1423
1424 if (STACK_REG_P (*src2))
1425 replace_reg (src2, get_hard_regnum (regstack, *src2));
1426
1427 if (src1_note)
1428 {
1429 if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1430 {
1431 /* This is `ftst' insn that can't pop register. */
1432 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1433 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1434 EMIT_AFTER);
1435 }
1436 else
1437 {
1438 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1439 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1440 }
1441 }
1442
1443 /* If the second operand dies, handle that. But if the operands are
1444 the same stack register, don't bother, because only one death is
1445 needed, and it was just handled. */
1446
1447 if (src2_note
1448 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1449 && REGNO (*src1) == REGNO (*src2)))
1450 {
1451 /* As a special case, two regs may die in this insn if src2 is
1452 next to top of stack and the top of stack also dies. Since
1453 we have already popped src1, "next to top of stack" is really
1454 at top (FIRST_STACK_REG) now. */
1455
1456 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1457 && src1_note && can_pop_second_op)
1458 {
1459 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1460 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1461 }
1462 else
1463 {
1464 /* The 386 can only represent death of the first operand in
1465 the case handled above. In all other cases, emit a separate
1466 pop and remove the death note from here. */
1467 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1468 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1469 EMIT_AFTER);
1470 }
1471 }
1472 }
1473 \f
1474 /* Substitute hardware stack regs in debug insn INSN, using stack
1475 layout REGSTACK. If we can't find a hardware stack reg for any of
1476 the REGs in it, reset the debug insn. */
1477
1478 static void
1479 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1480 {
1481 subrtx_ptr_iterator::array_type array;
1482 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1483 {
1484 rtx *loc = *iter;
1485 rtx x = *loc;
1486 if (STACK_REG_P (x))
1487 {
1488 int hard_regno = get_hard_regnum (regstack, x);
1489
1490 /* If we can't find an active register, reset this debug insn. */
1491 if (hard_regno == -1)
1492 {
1493 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1494 return;
1495 }
1496
1497 gcc_assert (hard_regno >= FIRST_STACK_REG);
1498 replace_reg (loc, hard_regno);
1499 iter.skip_subrtxes ();
1500 }
1501 }
1502 }
1503
1504 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1505 is the current register layout. Return whether a control flow insn
1506 was deleted in the process. */
1507
1508 static bool
1509 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1510 {
1511 rtx *dest, *src;
1512 bool control_flow_insn_deleted = false;
1513
1514 switch (GET_CODE (pat))
1515 {
1516 case USE:
1517 /* Deaths in USE insns can happen in non optimizing compilation.
1518 Handle them by popping the dying register. */
1519 src = get_true_reg (&XEXP (pat, 0));
1520 if (STACK_REG_P (*src)
1521 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1522 {
1523 /* USEs are ignored for liveness information so USEs of dead
1524 register might happen. */
1525 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1526 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1527 return control_flow_insn_deleted;
1528 }
1529 /* Uninitialized USE might happen for functions returning uninitialized
1530 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1531 so it is safe to ignore the use here. This is consistent with behavior
1532 of dataflow analyzer that ignores USE too. (This also imply that
1533 forcibly initializing the register to NaN here would lead to ICE later,
1534 since the REG_DEAD notes are not issued.) */
1535 break;
1536
1537 case VAR_LOCATION:
1538 gcc_unreachable ();
1539
1540 case CLOBBER:
1541 {
1542 rtx note;
1543
1544 dest = get_true_reg (&XEXP (pat, 0));
1545 if (STACK_REG_P (*dest))
1546 {
1547 note = find_reg_note (insn, REG_DEAD, *dest);
1548
1549 if (pat != PATTERN (insn))
1550 {
1551 /* The fix_truncdi_1 pattern wants to be able to
1552 allocate its own scratch register. It does this by
1553 clobbering an fp reg so that it is assured of an
1554 empty reg-stack register. If the register is live,
1555 kill it now. Remove the DEAD/UNUSED note so we
1556 don't try to kill it later too.
1557
1558 In reality the UNUSED note can be absent in some
1559 complicated cases when the register is reused for
1560 partially set variable. */
1561
1562 if (note)
1563 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1564 else
1565 note = find_reg_note (insn, REG_UNUSED, *dest);
1566 if (note)
1567 remove_note (insn, note);
1568 replace_reg (dest, FIRST_STACK_REG + 1);
1569 }
1570 else
1571 {
1572 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1573 indicates an uninitialized value. Because reload removed
1574 all other clobbers, this must be due to a function
1575 returning without a value. Load up a NaN. */
1576
1577 if (!note)
1578 {
1579 rtx t = *dest;
1580 if (COMPLEX_MODE_P (GET_MODE (t)))
1581 {
1582 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1583 if (get_hard_regnum (regstack, u) == -1)
1584 {
1585 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1586 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1587 control_flow_insn_deleted
1588 |= move_nan_for_stack_reg (insn2, regstack, u);
1589 }
1590 }
1591 if (get_hard_regnum (regstack, t) == -1)
1592 control_flow_insn_deleted
1593 |= move_nan_for_stack_reg (insn, regstack, t);
1594 }
1595 }
1596 }
1597 break;
1598 }
1599
1600 case SET:
1601 {
1602 rtx *src1 = (rtx *) 0, *src2;
1603 rtx src1_note, src2_note;
1604 rtx pat_src;
1605
1606 dest = get_true_reg (&SET_DEST (pat));
1607 src = get_true_reg (&SET_SRC (pat));
1608 pat_src = SET_SRC (pat);
1609
1610 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1611 if (STACK_REG_P (*src)
1612 || (STACK_REG_P (*dest)
1613 && (REG_P (*src) || MEM_P (*src)
1614 || CONST_DOUBLE_P (*src))))
1615 {
1616 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1617 break;
1618 }
1619
1620 switch (GET_CODE (pat_src))
1621 {
1622 case CALL:
1623 {
1624 int count;
1625 for (count = REG_NREGS (*dest); --count >= 0;)
1626 {
1627 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1628 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1629 }
1630 }
1631 replace_reg (dest, FIRST_STACK_REG);
1632 break;
1633
1634 case REG:
1635 gcc_unreachable ();
1636
1637 /* Fall through. */
1638
1639 case FLOAT_TRUNCATE:
1640 case SQRT:
1641 case ABS:
1642 case NEG:
1643 /* These insns only operate on the top of the stack. It's
1644 possible that the tstM case results in a REG_DEAD note on the
1645 source. */
1646
1647 if (src1 == 0)
1648 src1 = get_true_reg (&XEXP (pat_src, 0));
1649
1650 emit_swap_insn (insn, regstack, *src1);
1651
1652 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1653
1654 if (STACK_REG_P (*dest))
1655 replace_reg (dest, FIRST_STACK_REG);
1656
1657 if (src1_note)
1658 {
1659 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1660 regstack->top--;
1661 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1662 }
1663
1664 replace_reg (src1, FIRST_STACK_REG);
1665 break;
1666
1667 case MINUS:
1668 case DIV:
1669 /* On i386, reversed forms of subM3 and divM3 exist for
1670 MODE_FLOAT, so the same code that works for addM3 and mulM3
1671 can be used. */
1672 case MULT:
1673 case PLUS:
1674 /* These insns can accept the top of stack as a destination
1675 from a stack reg or mem, or can use the top of stack as a
1676 source and some other stack register (possibly top of stack)
1677 as a destination. */
1678
1679 src1 = get_true_reg (&XEXP (pat_src, 0));
1680 src2 = get_true_reg (&XEXP (pat_src, 1));
1681
1682 /* We will fix any death note later. */
1683
1684 if (STACK_REG_P (*src1))
1685 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1686 else
1687 src1_note = NULL_RTX;
1688 if (STACK_REG_P (*src2))
1689 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1690 else
1691 src2_note = NULL_RTX;
1692
1693 /* If either operand is not a stack register, then the dest
1694 must be top of stack. */
1695
1696 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1697 emit_swap_insn (insn, regstack, *dest);
1698 else
1699 {
1700 /* Both operands are REG. If neither operand is already
1701 at the top of stack, choose to make the one that is the
1702 dest the new top of stack. */
1703
1704 int src1_hard_regnum, src2_hard_regnum;
1705
1706 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1707 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1708
1709 /* If the source is not live, this is yet another case of
1710 uninitialized variables. Load up a NaN instead. */
1711 if (src1_hard_regnum == -1)
1712 {
1713 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1714 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1715 control_flow_insn_deleted
1716 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1717 }
1718 if (src2_hard_regnum == -1)
1719 {
1720 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1721 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1722 control_flow_insn_deleted
1723 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1724 }
1725
1726 if (src1_hard_regnum != FIRST_STACK_REG
1727 && src2_hard_regnum != FIRST_STACK_REG)
1728 emit_swap_insn (insn, regstack, *dest);
1729 }
1730
1731 if (STACK_REG_P (*src1))
1732 replace_reg (src1, get_hard_regnum (regstack, *src1));
1733 if (STACK_REG_P (*src2))
1734 replace_reg (src2, get_hard_regnum (regstack, *src2));
1735
1736 if (src1_note)
1737 {
1738 rtx src1_reg = XEXP (src1_note, 0);
1739
1740 /* If the register that dies is at the top of stack, then
1741 the destination is somewhere else - merely substitute it.
1742 But if the reg that dies is not at top of stack, then
1743 move the top of stack to the dead reg, as though we had
1744 done the insn and then a store-with-pop. */
1745
1746 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1747 {
1748 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1749 replace_reg (dest, get_hard_regnum (regstack, *dest));
1750 }
1751 else
1752 {
1753 int regno = get_hard_regnum (regstack, src1_reg);
1754
1755 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1756 replace_reg (dest, regno);
1757
1758 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1759 = regstack->reg[regstack->top];
1760 }
1761
1762 CLEAR_HARD_REG_BIT (regstack->reg_set,
1763 REGNO (XEXP (src1_note, 0)));
1764 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1765 regstack->top--;
1766 }
1767 else if (src2_note)
1768 {
1769 rtx src2_reg = XEXP (src2_note, 0);
1770 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1771 {
1772 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1773 replace_reg (dest, get_hard_regnum (regstack, *dest));
1774 }
1775 else
1776 {
1777 int regno = get_hard_regnum (regstack, src2_reg);
1778
1779 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1780 replace_reg (dest, regno);
1781
1782 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1783 = regstack->reg[regstack->top];
1784 }
1785
1786 CLEAR_HARD_REG_BIT (regstack->reg_set,
1787 REGNO (XEXP (src2_note, 0)));
1788 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1789 regstack->top--;
1790 }
1791 else
1792 {
1793 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1794 replace_reg (dest, get_hard_regnum (regstack, *dest));
1795 }
1796
1797 /* Keep operand 1 matching with destination. */
1798 if (COMMUTATIVE_ARITH_P (pat_src)
1799 && REG_P (*src1) && REG_P (*src2)
1800 && REGNO (*src1) != REGNO (*dest))
1801 {
1802 int tmp = REGNO (*src1);
1803 replace_reg (src1, REGNO (*src2));
1804 replace_reg (src2, tmp);
1805 }
1806 break;
1807
1808 case UNSPEC:
1809 switch (XINT (pat_src, 1))
1810 {
1811 case UNSPEC_FIST:
1812 case UNSPEC_FIST_ATOMIC:
1813
1814 case UNSPEC_FIST_FLOOR:
1815 case UNSPEC_FIST_CEIL:
1816
1817 /* These insns only operate on the top of the stack. */
1818
1819 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1820 emit_swap_insn (insn, regstack, *src1);
1821
1822 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1823
1824 if (STACK_REG_P (*dest))
1825 replace_reg (dest, FIRST_STACK_REG);
1826
1827 if (src1_note)
1828 {
1829 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1830 regstack->top--;
1831 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1832 }
1833
1834 replace_reg (src1, FIRST_STACK_REG);
1835 break;
1836
1837 case UNSPEC_FXAM:
1838
1839 /* This insn only operate on the top of the stack. */
1840
1841 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1842 emit_swap_insn (insn, regstack, *src1);
1843
1844 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1845
1846 replace_reg (src1, FIRST_STACK_REG);
1847
1848 if (src1_note)
1849 {
1850 remove_regno_note (insn, REG_DEAD,
1851 REGNO (XEXP (src1_note, 0)));
1852 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1853 EMIT_AFTER);
1854 }
1855
1856 break;
1857
1858 case UNSPEC_SIN:
1859 case UNSPEC_COS:
1860 case UNSPEC_FRNDINT:
1861 case UNSPEC_F2XM1:
1862
1863 case UNSPEC_FRNDINT_ROUNDEVEN:
1864 case UNSPEC_FRNDINT_FLOOR:
1865 case UNSPEC_FRNDINT_CEIL:
1866 case UNSPEC_FRNDINT_TRUNC:
1867
1868 /* Above insns operate on the top of the stack. */
1869
1870 case UNSPEC_SINCOS_COS:
1871 case UNSPEC_XTRACT_FRACT:
1872
1873 /* Above insns operate on the top two stack slots,
1874 first part of one input, double output insn. */
1875
1876 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1877
1878 emit_swap_insn (insn, regstack, *src1);
1879
1880 /* Input should never die, it is replaced with output. */
1881 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1882 gcc_assert (!src1_note);
1883
1884 if (STACK_REG_P (*dest))
1885 replace_reg (dest, FIRST_STACK_REG);
1886
1887 replace_reg (src1, FIRST_STACK_REG);
1888 break;
1889
1890 case UNSPEC_SINCOS_SIN:
1891 case UNSPEC_XTRACT_EXP:
1892
1893 /* These insns operate on the top two stack slots,
1894 second part of one input, double output insn. */
1895
1896 regstack->top++;
1897 /* FALLTHRU */
1898
1899 case UNSPEC_TAN:
1900
1901 /* For UNSPEC_TAN, regstack->top is already increased
1902 by inherent load of constant 1.0. */
1903
1904 /* Output value is generated in the second stack slot.
1905 Move current value from second slot to the top. */
1906 regstack->reg[regstack->top]
1907 = regstack->reg[regstack->top - 1];
1908
1909 gcc_assert (STACK_REG_P (*dest));
1910
1911 regstack->reg[regstack->top - 1] = REGNO (*dest);
1912 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1913 replace_reg (dest, FIRST_STACK_REG + 1);
1914
1915 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1916
1917 replace_reg (src1, FIRST_STACK_REG);
1918 break;
1919
1920 case UNSPEC_FPATAN:
1921 case UNSPEC_FYL2X:
1922 case UNSPEC_FYL2XP1:
1923 /* These insns operate on the top two stack slots. */
1924
1925 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1926 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1927
1928 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1929 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1930
1931 swap_to_top (insn, regstack, *src1, *src2);
1932
1933 replace_reg (src1, FIRST_STACK_REG);
1934 replace_reg (src2, FIRST_STACK_REG + 1);
1935
1936 if (src1_note)
1937 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1938 if (src2_note)
1939 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1940
1941 /* Pop both input operands from the stack. */
1942 CLEAR_HARD_REG_BIT (regstack->reg_set,
1943 regstack->reg[regstack->top]);
1944 CLEAR_HARD_REG_BIT (regstack->reg_set,
1945 regstack->reg[regstack->top - 1]);
1946 regstack->top -= 2;
1947
1948 /* Push the result back onto the stack. */
1949 regstack->reg[++regstack->top] = REGNO (*dest);
1950 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1951 replace_reg (dest, FIRST_STACK_REG);
1952 break;
1953
1954 case UNSPEC_FSCALE_FRACT:
1955 case UNSPEC_FPREM_F:
1956 case UNSPEC_FPREM1_F:
1957 /* These insns operate on the top two stack slots,
1958 first part of double input, double output insn. */
1959
1960 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1961 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1962
1963 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1964 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1965
1966 /* Inputs should never die, they are
1967 replaced with outputs. */
1968 gcc_assert (!src1_note);
1969 gcc_assert (!src2_note);
1970
1971 swap_to_top (insn, regstack, *src1, *src2);
1972
1973 /* Push the result back onto stack. Empty stack slot
1974 will be filled in second part of insn. */
1975 if (STACK_REG_P (*dest))
1976 {
1977 regstack->reg[regstack->top] = REGNO (*dest);
1978 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1979 replace_reg (dest, FIRST_STACK_REG);
1980 }
1981
1982 replace_reg (src1, FIRST_STACK_REG);
1983 replace_reg (src2, FIRST_STACK_REG + 1);
1984 break;
1985
1986 case UNSPEC_FSCALE_EXP:
1987 case UNSPEC_FPREM_U:
1988 case UNSPEC_FPREM1_U:
1989 /* These insns operate on the top two stack slots,
1990 second part of double input, double output insn. */
1991
1992 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1993 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1994
1995 /* Push the result back onto stack. Fill empty slot from
1996 first part of insn and fix top of stack pointer. */
1997 if (STACK_REG_P (*dest))
1998 {
1999 regstack->reg[regstack->top - 1] = REGNO (*dest);
2000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2001 replace_reg (dest, FIRST_STACK_REG + 1);
2002 }
2003
2004 replace_reg (src1, FIRST_STACK_REG);
2005 replace_reg (src2, FIRST_STACK_REG + 1);
2006 break;
2007
2008 case UNSPEC_C2_FLAG:
2009 /* This insn operates on the top two stack slots,
2010 third part of C2 setting double input insn. */
2011
2012 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
2013 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
2014
2015 replace_reg (src1, FIRST_STACK_REG);
2016 replace_reg (src2, FIRST_STACK_REG + 1);
2017 break;
2018
2019 case UNSPEC_FNSTSW:
2020 /* Combined fcomp+fnstsw generated for doing well with
2021 CSE. When optimizing this would have been broken
2022 up before now. */
2023
2024 pat_src = XVECEXP (pat_src, 0, 0);
2025 if (GET_CODE (pat_src) == COMPARE)
2026 goto do_compare;
2027
2028 /* Fall through. */
2029
2030 case UNSPEC_NOTRAP:
2031
2032 pat_src = XVECEXP (pat_src, 0, 0);
2033 gcc_assert (GET_CODE (pat_src) == COMPARE);
2034 goto do_compare;
2035
2036 default:
2037 gcc_unreachable ();
2038 }
2039 break;
2040
2041 case COMPARE:
2042 do_compare:
2043 /* `fcomi' insn can't pop two regs. */
2044 compare_for_stack_reg (insn, regstack, pat_src,
2045 REGNO (*dest) != FLAGS_REG);
2046 break;
2047
2048 case IF_THEN_ELSE:
2049 /* This insn requires the top of stack to be the destination. */
2050
2051 src1 = get_true_reg (&XEXP (pat_src, 1));
2052 src2 = get_true_reg (&XEXP (pat_src, 2));
2053
2054 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2055 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2056
2057 /* If the comparison operator is an FP comparison operator,
2058 it is handled correctly by compare_for_stack_reg () who
2059 will move the destination to the top of stack. But if the
2060 comparison operator is not an FP comparison operator, we
2061 have to handle it here. */
2062 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2063 && REGNO (*dest) != regstack->reg[regstack->top])
2064 {
2065 /* In case one of operands is the top of stack and the operands
2066 dies, it is safe to make it the destination operand by
2067 reversing the direction of cmove and avoid fxch. */
2068 if ((REGNO (*src1) == regstack->reg[regstack->top]
2069 && src1_note)
2070 || (REGNO (*src2) == regstack->reg[regstack->top]
2071 && src2_note))
2072 {
2073 int idx1 = (get_hard_regnum (regstack, *src1)
2074 - FIRST_STACK_REG);
2075 int idx2 = (get_hard_regnum (regstack, *src2)
2076 - FIRST_STACK_REG);
2077
2078 /* Make reg-stack believe that the operands are already
2079 swapped on the stack */
2080 regstack->reg[regstack->top - idx1] = REGNO (*src2);
2081 regstack->reg[regstack->top - idx2] = REGNO (*src1);
2082
2083 /* Reverse condition to compensate the operand swap.
2084 i386 do have comparison always reversible. */
2085 PUT_CODE (XEXP (pat_src, 0),
2086 reversed_comparison_code (XEXP (pat_src, 0), insn));
2087 }
2088 else
2089 emit_swap_insn (insn, regstack, *dest);
2090 }
2091
2092 {
2093 rtx src_note [3];
2094 int i;
2095
2096 src_note[0] = 0;
2097 src_note[1] = src1_note;
2098 src_note[2] = src2_note;
2099
2100 if (STACK_REG_P (*src1))
2101 replace_reg (src1, get_hard_regnum (regstack, *src1));
2102 if (STACK_REG_P (*src2))
2103 replace_reg (src2, get_hard_regnum (regstack, *src2));
2104
2105 for (i = 1; i <= 2; i++)
2106 if (src_note [i])
2107 {
2108 int regno = REGNO (XEXP (src_note[i], 0));
2109
2110 /* If the register that dies is not at the top of
2111 stack, then move the top of stack to the dead reg.
2112 Top of stack should never die, as it is the
2113 destination. */
2114 gcc_assert (regno != regstack->reg[regstack->top]);
2115 remove_regno_note (insn, REG_DEAD, regno);
2116 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2117 EMIT_AFTER);
2118 }
2119 }
2120
2121 /* Make dest the top of stack. Add dest to regstack if
2122 not present. */
2123 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2124 regstack->reg[++regstack->top] = REGNO (*dest);
2125 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2126 replace_reg (dest, FIRST_STACK_REG);
2127 break;
2128
2129 default:
2130 gcc_unreachable ();
2131 }
2132 break;
2133 }
2134
2135 default:
2136 break;
2137 }
2138
2139 return control_flow_insn_deleted;
2140 }
2141 \f
2142 /* Substitute hard regnums for any stack regs in INSN, which has
2143 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2144 before the insn, and is updated with changes made here.
2145
2146 There are several requirements and assumptions about the use of
2147 stack-like regs in asm statements. These rules are enforced by
2148 record_asm_stack_regs; see comments there for details. Any
2149 asm_operands left in the RTL at this point may be assume to meet the
2150 requirements, since record_asm_stack_regs removes any problem asm. */
2151
2152 static void
2153 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2154 {
2155 rtx body = PATTERN (insn);
2156
2157 rtx *note_reg; /* Array of note contents */
2158 rtx **note_loc; /* Address of REG field of each note */
2159 enum reg_note *note_kind; /* The type of each note */
2160
2161 rtx *clobber_reg = 0;
2162 rtx **clobber_loc = 0;
2163
2164 struct stack_def temp_stack;
2165 int n_notes;
2166 int n_clobbers;
2167 rtx note;
2168 int i;
2169 int n_inputs, n_outputs;
2170
2171 if (! check_asm_stack_operands (insn))
2172 return;
2173
2174 /* Find out what the constraints required. If no constraint
2175 alternative matches, that is a compiler bug: we should have caught
2176 such an insn in check_asm_stack_operands. */
2177 extract_constrain_insn (insn);
2178
2179 preprocess_constraints (insn);
2180 const operand_alternative *op_alt = which_op_alt ();
2181
2182 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2183
2184 /* Strip SUBREGs here to make the following code simpler. */
2185 for (i = 0; i < recog_data.n_operands; i++)
2186 if (GET_CODE (recog_data.operand[i]) == SUBREG
2187 && REG_P (SUBREG_REG (recog_data.operand[i])))
2188 {
2189 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2190 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2191 }
2192
2193 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2194
2195 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2196 i++;
2197
2198 note_reg = XALLOCAVEC (rtx, i);
2199 note_loc = XALLOCAVEC (rtx *, i);
2200 note_kind = XALLOCAVEC (enum reg_note, i);
2201
2202 n_notes = 0;
2203 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2204 {
2205 if (GET_CODE (note) != EXPR_LIST)
2206 continue;
2207 rtx reg = XEXP (note, 0);
2208 rtx *loc = & XEXP (note, 0);
2209
2210 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2211 {
2212 loc = & SUBREG_REG (reg);
2213 reg = SUBREG_REG (reg);
2214 }
2215
2216 if (STACK_REG_P (reg)
2217 && (REG_NOTE_KIND (note) == REG_DEAD
2218 || REG_NOTE_KIND (note) == REG_UNUSED))
2219 {
2220 note_reg[n_notes] = reg;
2221 note_loc[n_notes] = loc;
2222 note_kind[n_notes] = REG_NOTE_KIND (note);
2223 n_notes++;
2224 }
2225 }
2226
2227 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2228
2229 n_clobbers = 0;
2230
2231 if (GET_CODE (body) == PARALLEL)
2232 {
2233 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2234 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2235
2236 for (i = 0; i < XVECLEN (body, 0); i++)
2237 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2238 {
2239 rtx clobber = XVECEXP (body, 0, i);
2240 rtx reg = XEXP (clobber, 0);
2241 rtx *loc = & XEXP (clobber, 0);
2242
2243 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2244 {
2245 loc = & SUBREG_REG (reg);
2246 reg = SUBREG_REG (reg);
2247 }
2248
2249 if (STACK_REG_P (reg))
2250 {
2251 clobber_reg[n_clobbers] = reg;
2252 clobber_loc[n_clobbers] = loc;
2253 n_clobbers++;
2254 }
2255 }
2256 }
2257
2258 temp_stack = *regstack;
2259
2260 /* Put the input regs into the desired place in TEMP_STACK. */
2261
2262 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2263 if (STACK_REG_P (recog_data.operand[i])
2264 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2265 && op_alt[i].cl != FLOAT_REGS)
2266 {
2267 /* If an operand needs to be in a particular reg in
2268 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2269 these constraints are for single register classes, and
2270 reload guaranteed that operand[i] is already in that class,
2271 we can just use REGNO (recog_data.operand[i]) to know which
2272 actual reg this operand needs to be in. */
2273
2274 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2275
2276 gcc_assert (regno >= 0);
2277
2278 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2279 {
2280 /* recog_data.operand[i] is not in the right place. Find
2281 it and swap it with whatever is already in I's place.
2282 K is where recog_data.operand[i] is now. J is where it
2283 should be. */
2284 int j, k;
2285
2286 k = temp_stack.top - (regno - FIRST_STACK_REG);
2287 j = (temp_stack.top
2288 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2289
2290 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2291 }
2292 }
2293
2294 /* Emit insns before INSN to make sure the reg-stack is in the right
2295 order. */
2296
2297 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2298
2299 /* Make the needed input register substitutions. Do death notes and
2300 clobbers too, because these are for inputs, not outputs. */
2301
2302 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2303 if (STACK_REG_P (recog_data.operand[i]))
2304 {
2305 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2306
2307 gcc_assert (regnum >= 0);
2308
2309 replace_reg (recog_data.operand_loc[i], regnum);
2310 }
2311
2312 for (i = 0; i < n_notes; i++)
2313 if (note_kind[i] == REG_DEAD)
2314 {
2315 int regnum = get_hard_regnum (regstack, note_reg[i]);
2316
2317 gcc_assert (regnum >= 0);
2318
2319 replace_reg (note_loc[i], regnum);
2320 }
2321
2322 for (i = 0; i < n_clobbers; i++)
2323 {
2324 /* It's OK for a CLOBBER to reference a reg that is not live.
2325 Don't try to replace it in that case. */
2326 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2327
2328 if (regnum >= 0)
2329 replace_reg (clobber_loc[i], regnum);
2330 }
2331
2332 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2333
2334 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2335 if (STACK_REG_P (recog_data.operand[i]))
2336 {
2337 /* An input reg is implicitly popped if it is tied to an
2338 output, or if there is a CLOBBER for it. */
2339 int j;
2340
2341 for (j = 0; j < n_clobbers; j++)
2342 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2343 break;
2344
2345 if (j < n_clobbers || op_alt[i].matches >= 0)
2346 {
2347 /* recog_data.operand[i] might not be at the top of stack.
2348 But that's OK, because all we need to do is pop the
2349 right number of regs off of the top of the reg-stack.
2350 record_asm_stack_regs guaranteed that all implicitly
2351 popped regs were grouped at the top of the reg-stack. */
2352
2353 CLEAR_HARD_REG_BIT (regstack->reg_set,
2354 regstack->reg[regstack->top]);
2355 regstack->top--;
2356 }
2357 }
2358
2359 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2360 Note that there isn't any need to substitute register numbers.
2361 ??? Explain why this is true. */
2362
2363 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2364 {
2365 /* See if there is an output for this hard reg. */
2366 int j;
2367
2368 for (j = 0; j < n_outputs; j++)
2369 if (STACK_REG_P (recog_data.operand[j])
2370 && REGNO (recog_data.operand[j]) == (unsigned) i)
2371 {
2372 regstack->reg[++regstack->top] = i;
2373 SET_HARD_REG_BIT (regstack->reg_set, i);
2374 break;
2375 }
2376 }
2377
2378 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2379 input that the asm didn't implicitly pop. If the asm didn't
2380 implicitly pop an input reg, that reg will still be live.
2381
2382 Note that we can't use find_regno_note here: the register numbers
2383 in the death notes have already been substituted. */
2384
2385 for (i = 0; i < n_outputs; i++)
2386 if (STACK_REG_P (recog_data.operand[i]))
2387 {
2388 int j;
2389
2390 for (j = 0; j < n_notes; j++)
2391 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2392 && note_kind[j] == REG_UNUSED)
2393 {
2394 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2395 EMIT_AFTER);
2396 break;
2397 }
2398 }
2399
2400 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2401 if (STACK_REG_P (recog_data.operand[i]))
2402 {
2403 int j;
2404
2405 for (j = 0; j < n_notes; j++)
2406 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2407 && note_kind[j] == REG_DEAD
2408 && TEST_HARD_REG_BIT (regstack->reg_set,
2409 REGNO (recog_data.operand[i])))
2410 {
2411 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2412 EMIT_AFTER);
2413 break;
2414 }
2415 }
2416 }
2417
2418 /* Return true if a function call is allowed to alter some or all bits
2419 of any stack reg. */
2420 static bool
2421 callee_clobbers_any_stack_reg (const function_abi & callee_abi)
2422 {
2423 for (unsigned regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
2424 if (callee_abi.clobbers_at_least_part_of_reg_p (regno))
2425 return true;
2426 return false;
2427 }
2428
2429 \f
2430 /* Substitute stack hard reg numbers for stack virtual registers in
2431 INSN. Non-stack register numbers are not changed. REGSTACK is the
2432 current stack content. Insns may be emitted as needed to arrange the
2433 stack for the 387 based on the contents of the insn. Return whether
2434 a control flow insn was deleted in the process. */
2435
2436 static bool
2437 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2438 {
2439 rtx *note_link, note;
2440 bool control_flow_insn_deleted = false;
2441 int i;
2442
2443 /* If the target of the call doesn't clobber any stack registers,
2444 Don't clear the arguments. */
2445 if (CALL_P (insn)
2446 && callee_clobbers_any_stack_reg (insn_callee_abi (insn)))
2447 {
2448 int top = regstack->top;
2449
2450 /* If there are any floating point parameters to be passed in
2451 registers for this call, make sure they are in the right
2452 order. */
2453
2454 if (top >= 0)
2455 {
2456 straighten_stack (insn, regstack);
2457
2458 /* Now mark the arguments as dead after the call. */
2459
2460 while (regstack->top >= 0)
2461 {
2462 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2463 regstack->top--;
2464 }
2465 }
2466 }
2467
2468 /* Do the actual substitution if any stack regs are mentioned.
2469 Since we only record whether entire insn mentions stack regs, and
2470 subst_stack_regs_pat only works for patterns that contain stack regs,
2471 we must check each pattern in a parallel here. A call_value_pop could
2472 fail otherwise. */
2473
2474 if (stack_regs_mentioned (insn))
2475 {
2476 int n_operands = asm_noperands (PATTERN (insn));
2477 if (n_operands >= 0)
2478 {
2479 /* This insn is an `asm' with operands. Decode the operands,
2480 decide how many are inputs, and do register substitution.
2481 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2482
2483 subst_asm_stack_regs (insn, regstack);
2484 return control_flow_insn_deleted;
2485 }
2486
2487 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2488 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2489 {
2490 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2491 {
2492 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2493 XVECEXP (PATTERN (insn), 0, i)
2494 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2495 control_flow_insn_deleted
2496 |= subst_stack_regs_pat (insn, regstack,
2497 XVECEXP (PATTERN (insn), 0, i));
2498 }
2499 }
2500 else
2501 control_flow_insn_deleted
2502 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2503 }
2504
2505 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2506 REG_UNUSED will already have been dealt with, so just return. */
2507
2508 if (NOTE_P (insn) || insn->deleted ())
2509 return control_flow_insn_deleted;
2510
2511 /* If this a noreturn call, we can't insert pop insns after it.
2512 Instead, reset the stack state to empty. */
2513 if (CALL_P (insn)
2514 && find_reg_note (insn, REG_NORETURN, NULL))
2515 {
2516 regstack->top = -1;
2517 CLEAR_HARD_REG_SET (regstack->reg_set);
2518 return control_flow_insn_deleted;
2519 }
2520
2521 /* If there is a REG_UNUSED note on a stack register on this insn,
2522 the indicated reg must be popped. The REG_UNUSED note is removed,
2523 since the form of the newly emitted pop insn references the reg,
2524 making it no longer `unset'. */
2525
2526 note_link = &REG_NOTES (insn);
2527 for (note = *note_link; note; note = XEXP (note, 1))
2528 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2529 {
2530 *note_link = XEXP (note, 1);
2531 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2532 }
2533 else
2534 note_link = &XEXP (note, 1);
2535
2536 return control_flow_insn_deleted;
2537 }
2538 \f
2539 /* Change the organization of the stack so that it fits a new basic
2540 block. Some registers might have to be popped, but there can never be
2541 a register live in the new block that is not now live.
2542
2543 Insert any needed insns before or after INSN, as indicated by
2544 WHERE. OLD is the original stack layout, and NEW is the desired
2545 form. OLD is updated to reflect the code emitted, i.e., it will be
2546 the same as NEW upon return.
2547
2548 This function will not preserve block_end[]. But that information
2549 is no longer needed once this has executed. */
2550
2551 static void
2552 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2553 enum emit_where where)
2554 {
2555 int reg;
2556 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2557 rtx_insn *update_end = NULL;
2558 int i;
2559
2560 /* Stack adjustments for the first insn in a block update the
2561 current_block's stack_in instead of inserting insns directly.
2562 compensate_edges will add the necessary code later. */
2563 if (current_block
2564 && starting_stack_p
2565 && where == EMIT_BEFORE)
2566 {
2567 BLOCK_INFO (current_block)->stack_in = *new_stack;
2568 starting_stack_p = false;
2569 *old = *new_stack;
2570 return;
2571 }
2572
2573 /* We will be inserting new insns "backwards". If we are to insert
2574 after INSN, find the next insn, and insert before it. */
2575
2576 if (where == EMIT_AFTER)
2577 {
2578 if (current_block && BB_END (current_block) == insn)
2579 update_end = insn;
2580 insn = NEXT_INSN (insn);
2581 }
2582
2583 /* Initialize partially dead variables. */
2584 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2585 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2586 && !TEST_HARD_REG_BIT (old->reg_set, i))
2587 {
2588 old->reg[++old->top] = i;
2589 SET_HARD_REG_BIT (old->reg_set, i);
2590 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2591 insn);
2592 }
2593
2594 /* Pop any registers that are not needed in the new block. */
2595
2596 /* If the destination block's stack already has a specified layout
2597 and contains two or more registers, use a more intelligent algorithm
2598 to pop registers that minimizes the number of fxchs below. */
2599 if (new_stack->top > 0)
2600 {
2601 bool slots[REG_STACK_SIZE];
2602 int pops[REG_STACK_SIZE];
2603 int next, dest, topsrc;
2604
2605 /* First pass to determine the free slots. */
2606 for (reg = 0; reg <= new_stack->top; reg++)
2607 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2608
2609 /* Second pass to allocate preferred slots. */
2610 topsrc = -1;
2611 for (reg = old->top; reg > new_stack->top; reg--)
2612 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2613 {
2614 dest = -1;
2615 for (next = 0; next <= new_stack->top; next++)
2616 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2617 {
2618 /* If this is a preference for the new top of stack, record
2619 the fact by remembering it's old->reg in topsrc. */
2620 if (next == new_stack->top)
2621 topsrc = reg;
2622 slots[next] = true;
2623 dest = next;
2624 break;
2625 }
2626 pops[reg] = dest;
2627 }
2628 else
2629 pops[reg] = reg;
2630
2631 /* Intentionally, avoid placing the top of stack in it's correct
2632 location, if we still need to permute the stack below and we
2633 can usefully place it somewhere else. This is the case if any
2634 slot is still unallocated, in which case we should place the
2635 top of stack there. */
2636 if (topsrc != -1)
2637 for (reg = 0; reg < new_stack->top; reg++)
2638 if (!slots[reg])
2639 {
2640 pops[topsrc] = reg;
2641 slots[new_stack->top] = false;
2642 slots[reg] = true;
2643 break;
2644 }
2645
2646 /* Third pass allocates remaining slots and emits pop insns. */
2647 next = new_stack->top;
2648 for (reg = old->top; reg > new_stack->top; reg--)
2649 {
2650 dest = pops[reg];
2651 if (dest == -1)
2652 {
2653 /* Find next free slot. */
2654 while (slots[next])
2655 next--;
2656 dest = next--;
2657 }
2658 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], raw_mode),
2659 EMIT_BEFORE);
2660 }
2661 }
2662 else
2663 {
2664 /* The following loop attempts to maximize the number of times we
2665 pop the top of the stack, as this permits the use of the faster
2666 ffreep instruction on platforms that support it. */
2667 int live, next;
2668
2669 live = 0;
2670 for (reg = 0; reg <= old->top; reg++)
2671 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2672 live++;
2673
2674 next = live;
2675 while (old->top >= live)
2676 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2677 {
2678 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2679 next--;
2680 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], raw_mode),
2681 EMIT_BEFORE);
2682 }
2683 else
2684 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], raw_mode),
2685 EMIT_BEFORE);
2686 }
2687
2688 if (new_stack->top == -2)
2689 {
2690 /* If the new block has never been processed, then it can inherit
2691 the old stack order. */
2692
2693 new_stack->top = old->top;
2694 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2695 }
2696 else
2697 {
2698 /* This block has been entered before, and we must match the
2699 previously selected stack order. */
2700
2701 /* By now, the only difference should be the order of the stack,
2702 not their depth or liveliness. */
2703
2704 gcc_assert (old->reg_set == new_stack->reg_set);
2705 gcc_assert (old->top == new_stack->top);
2706
2707 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2708 swaps until the stack is correct.
2709
2710 The worst case number of swaps emitted is N + 2, where N is the
2711 depth of the stack. In some cases, the reg at the top of
2712 stack may be correct, but swapped anyway in order to fix
2713 other regs. But since we never swap any other reg away from
2714 its correct slot, this algorithm will converge. */
2715
2716 if (new_stack->top != -1)
2717 do
2718 {
2719 /* Swap the reg at top of stack into the position it is
2720 supposed to be in, until the correct top of stack appears. */
2721
2722 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2723 {
2724 for (reg = new_stack->top; reg >= 0; reg--)
2725 if (new_stack->reg[reg] == old->reg[old->top])
2726 break;
2727
2728 gcc_assert (reg != -1);
2729
2730 emit_swap_insn (insn, old,
2731 FP_MODE_REG (old->reg[reg], raw_mode));
2732 }
2733
2734 /* See if any regs remain incorrect. If so, bring an
2735 incorrect reg to the top of stack, and let the while loop
2736 above fix it. */
2737
2738 for (reg = new_stack->top; reg >= 0; reg--)
2739 if (new_stack->reg[reg] != old->reg[reg])
2740 {
2741 emit_swap_insn (insn, old,
2742 FP_MODE_REG (old->reg[reg], raw_mode));
2743 break;
2744 }
2745 } while (reg >= 0);
2746
2747 /* At this point there must be no differences. */
2748
2749 for (reg = old->top; reg >= 0; reg--)
2750 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2751 }
2752
2753 if (update_end)
2754 {
2755 for (update_end = NEXT_INSN (update_end); update_end != insn;
2756 update_end = NEXT_INSN (update_end))
2757 {
2758 set_block_for_insn (update_end, current_block);
2759 if (INSN_P (update_end))
2760 df_insn_rescan (update_end);
2761 }
2762 BB_END (current_block) = PREV_INSN (insn);
2763 }
2764 }
2765 \f
2766 /* Print stack configuration. */
2767
2768 static void
2769 print_stack (FILE *file, stack_ptr s)
2770 {
2771 if (! file)
2772 return;
2773
2774 if (s->top == -2)
2775 fprintf (file, "uninitialized\n");
2776 else if (s->top == -1)
2777 fprintf (file, "empty\n");
2778 else
2779 {
2780 int i;
2781 fputs ("[ ", file);
2782 for (i = 0; i <= s->top; ++i)
2783 fprintf (file, "%d ", s->reg[i]);
2784 fputs ("]\n", file);
2785 }
2786 }
2787 \f
2788 /* This function was doing life analysis. We now let the regular live
2789 code do it's job, so we only need to check some extra invariants
2790 that reg-stack expects. Primary among these being that all registers
2791 are initialized before use.
2792
2793 The function returns true when code was emitted to CFG edges and
2794 commit_edge_insertions needs to be called. */
2795
2796 static int
2797 convert_regs_entry (void)
2798 {
2799 int inserted = 0;
2800 edge e;
2801 edge_iterator ei;
2802
2803 /* Load something into each stack register live at function entry.
2804 Such live registers can be caused by uninitialized variables or
2805 functions not returning values on all paths. In order to keep
2806 the push/pop code happy, and to not scrog the register stack, we
2807 must put something in these registers. Use a QNaN.
2808
2809 Note that we are inserting converted code here. This code is
2810 never seen by the convert_regs pass. */
2811
2812 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2813 {
2814 basic_block block = e->dest;
2815 block_info bi = BLOCK_INFO (block);
2816 int reg, top = -1;
2817
2818 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2819 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2820 {
2821 rtx init;
2822
2823 bi->stack_in.reg[++top] = reg;
2824
2825 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2826 not_a_num);
2827 insert_insn_on_edge (init, e);
2828 inserted = 1;
2829 }
2830
2831 bi->stack_in.top = top;
2832 }
2833
2834 return inserted;
2835 }
2836
2837 /* Construct the desired stack for function exit. This will either
2838 be `empty', or the function return value at top-of-stack. */
2839
2840 static void
2841 convert_regs_exit (void)
2842 {
2843 int value_reg_low, value_reg_high;
2844 stack_ptr output_stack;
2845 rtx retvalue;
2846
2847 retvalue = stack_result (current_function_decl);
2848 value_reg_low = value_reg_high = -1;
2849 if (retvalue)
2850 {
2851 value_reg_low = REGNO (retvalue);
2852 value_reg_high = END_REGNO (retvalue) - 1;
2853 }
2854
2855 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2856 if (value_reg_low == -1)
2857 output_stack->top = -1;
2858 else
2859 {
2860 int reg;
2861
2862 output_stack->top = value_reg_high - value_reg_low;
2863 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2864 {
2865 output_stack->reg[value_reg_high - reg] = reg;
2866 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2867 }
2868 }
2869 }
2870
2871 /* Copy the stack info from the end of edge E's source block to the
2872 start of E's destination block. */
2873
2874 static void
2875 propagate_stack (edge e)
2876 {
2877 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2878 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2879 int reg;
2880
2881 /* Preserve the order of the original stack, but check whether
2882 any pops are needed. */
2883 dest_stack->top = -1;
2884 for (reg = 0; reg <= src_stack->top; ++reg)
2885 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2886 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2887
2888 /* Push in any partially dead values. */
2889 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2890 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2891 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2892 dest_stack->reg[++dest_stack->top] = reg;
2893 }
2894
2895
2896 /* Adjust the stack of edge E's source block on exit to match the stack
2897 of it's target block upon input. The stack layouts of both blocks
2898 should have been defined by now. */
2899
2900 static bool
2901 compensate_edge (edge e)
2902 {
2903 basic_block source = e->src, target = e->dest;
2904 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2905 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2906 struct stack_def regstack;
2907 int reg;
2908
2909 if (dump_file)
2910 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2911
2912 gcc_assert (target_stack->top != -2);
2913
2914 /* Check whether stacks are identical. */
2915 if (target_stack->top == source_stack->top)
2916 {
2917 for (reg = target_stack->top; reg >= 0; --reg)
2918 if (target_stack->reg[reg] != source_stack->reg[reg])
2919 break;
2920
2921 if (reg == -1)
2922 {
2923 if (dump_file)
2924 fprintf (dump_file, "no changes needed\n");
2925 return false;
2926 }
2927 }
2928
2929 if (dump_file)
2930 {
2931 fprintf (dump_file, "correcting stack to ");
2932 print_stack (dump_file, target_stack);
2933 }
2934
2935 /* Abnormal calls may appear to have values live in st(0), but the
2936 abnormal return path will not have actually loaded the values. */
2937 if (e->flags & EDGE_ABNORMAL_CALL)
2938 {
2939 /* Assert that the lifetimes are as we expect -- one value
2940 live at st(0) on the end of the source block, and no
2941 values live at the beginning of the destination block.
2942 For complex return values, we may have st(1) live as well. */
2943 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2944 gcc_assert (target_stack->top == -1);
2945 return false;
2946 }
2947
2948 /* Handle non-call EH edges specially. The normal return path have
2949 values in registers. These will be popped en masse by the unwind
2950 library. */
2951 if (e->flags & EDGE_EH)
2952 {
2953 gcc_assert (target_stack->top == -1);
2954 return false;
2955 }
2956
2957 /* We don't support abnormal edges. Global takes care to
2958 avoid any live register across them, so we should never
2959 have to insert instructions on such edges. */
2960 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2961
2962 /* Make a copy of source_stack as change_stack is destructive. */
2963 regstack = *source_stack;
2964
2965 /* It is better to output directly to the end of the block
2966 instead of to the edge, because emit_swap can do minimal
2967 insn scheduling. We can do this when there is only one
2968 edge out, and it is not abnormal. */
2969 if (EDGE_COUNT (source->succs) == 1)
2970 {
2971 current_block = source;
2972 change_stack (BB_END (source), &regstack, target_stack,
2973 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2974 }
2975 else
2976 {
2977 rtx_insn *seq;
2978 rtx_note *after;
2979
2980 current_block = NULL;
2981 start_sequence ();
2982
2983 /* ??? change_stack needs some point to emit insns after. */
2984 after = emit_note (NOTE_INSN_DELETED);
2985
2986 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2987
2988 seq = get_insns ();
2989 end_sequence ();
2990
2991 set_insn_locations (seq, e->goto_locus);
2992 insert_insn_on_edge (seq, e);
2993 return true;
2994 }
2995 return false;
2996 }
2997
2998 /* Traverse all non-entry edges in the CFG, and emit the necessary
2999 edge compensation code to change the stack from stack_out of the
3000 source block to the stack_in of the destination block. */
3001
3002 static bool
3003 compensate_edges (void)
3004 {
3005 bool inserted = false;
3006 basic_block bb;
3007
3008 starting_stack_p = false;
3009
3010 FOR_EACH_BB_FN (bb, cfun)
3011 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3012 {
3013 edge e;
3014 edge_iterator ei;
3015
3016 FOR_EACH_EDGE (e, ei, bb->succs)
3017 inserted |= compensate_edge (e);
3018 }
3019 return inserted;
3020 }
3021
3022 /* Select the better of two edges E1 and E2 to use to determine the
3023 stack layout for their shared destination basic block. This is
3024 typically the more frequently executed. The edge E1 may be NULL
3025 (in which case E2 is returned), but E2 is always non-NULL. */
3026
3027 static edge
3028 better_edge (edge e1, edge e2)
3029 {
3030 if (!e1)
3031 return e2;
3032
3033 if (e1->count () > e2->count ())
3034 return e1;
3035 if (e1->count () < e2->count ())
3036 return e2;
3037
3038 /* Prefer critical edges to minimize inserting compensation code on
3039 critical edges. */
3040
3041 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
3042 return EDGE_CRITICAL_P (e1) ? e1 : e2;
3043
3044 /* Avoid non-deterministic behavior. */
3045 return (e1->src->index < e2->src->index) ? e1 : e2;
3046 }
3047
3048 /* Convert stack register references in one block. Return true if the CFG
3049 has been modified in the process. */
3050
3051 static bool
3052 convert_regs_1 (basic_block block)
3053 {
3054 struct stack_def regstack;
3055 block_info bi = BLOCK_INFO (block);
3056 int reg;
3057 rtx_insn *insn, *next;
3058 bool control_flow_insn_deleted = false;
3059 bool cfg_altered = false;
3060 int debug_insns_with_starting_stack = 0;
3061
3062 /* Choose an initial stack layout, if one hasn't already been chosen. */
3063 if (bi->stack_in.top == -2)
3064 {
3065 edge e, beste = NULL;
3066 edge_iterator ei;
3067
3068 /* Select the best incoming edge (typically the most frequent) to
3069 use as a template for this basic block. */
3070 FOR_EACH_EDGE (e, ei, block->preds)
3071 if (BLOCK_INFO (e->src)->done)
3072 beste = better_edge (beste, e);
3073
3074 if (beste)
3075 propagate_stack (beste);
3076 else
3077 {
3078 /* No predecessors. Create an arbitrary input stack. */
3079 bi->stack_in.top = -1;
3080 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3081 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3082 bi->stack_in.reg[++bi->stack_in.top] = reg;
3083 }
3084 }
3085
3086 if (dump_file)
3087 {
3088 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3089 print_stack (dump_file, &bi->stack_in);
3090 }
3091
3092 /* Process all insns in this block. Keep track of NEXT so that we
3093 don't process insns emitted while substituting in INSN. */
3094 current_block = block;
3095 next = BB_HEAD (block);
3096 regstack = bi->stack_in;
3097 starting_stack_p = true;
3098
3099 do
3100 {
3101 insn = next;
3102 next = NEXT_INSN (insn);
3103
3104 /* Ensure we have not missed a block boundary. */
3105 gcc_assert (next);
3106 if (insn == BB_END (block))
3107 next = NULL;
3108
3109 /* Don't bother processing unless there is a stack reg
3110 mentioned or if it's a CALL_INSN. */
3111 if (DEBUG_BIND_INSN_P (insn))
3112 {
3113 if (starting_stack_p)
3114 debug_insns_with_starting_stack++;
3115 else
3116 {
3117 subst_all_stack_regs_in_debug_insn (insn, &regstack);
3118
3119 /* Nothing must ever die at a debug insn. If something
3120 is referenced in it that becomes dead, it should have
3121 died before and the reference in the debug insn
3122 should have been removed so as to avoid changing code
3123 generation. */
3124 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3125 }
3126 }
3127 else if (stack_regs_mentioned (insn)
3128 || CALL_P (insn))
3129 {
3130 if (dump_file)
3131 {
3132 fprintf (dump_file, " insn %d input stack: ",
3133 INSN_UID (insn));
3134 print_stack (dump_file, &regstack);
3135 }
3136 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3137 starting_stack_p = false;
3138 }
3139 }
3140 while (next);
3141
3142 if (debug_insns_with_starting_stack)
3143 {
3144 /* Since it's the first non-debug instruction that determines
3145 the stack requirements of the current basic block, we refrain
3146 from updating debug insns before it in the loop above, and
3147 fix them up here. */
3148 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3149 insn = NEXT_INSN (insn))
3150 {
3151 if (!DEBUG_BIND_INSN_P (insn))
3152 continue;
3153
3154 debug_insns_with_starting_stack--;
3155 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3156 }
3157 }
3158
3159 if (dump_file)
3160 {
3161 fprintf (dump_file, "Expected live registers [");
3162 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3163 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3164 fprintf (dump_file, " %d", reg);
3165 fprintf (dump_file, " ]\nOutput stack: ");
3166 print_stack (dump_file, &regstack);
3167 }
3168
3169 insn = BB_END (block);
3170 if (JUMP_P (insn))
3171 insn = PREV_INSN (insn);
3172
3173 /* If the function is declared to return a value, but it returns one
3174 in only some cases, some registers might come live here. Emit
3175 necessary moves for them. */
3176
3177 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3178 {
3179 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3180 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3181 {
3182 rtx set;
3183
3184 if (dump_file)
3185 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3186
3187 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3188 insn = emit_insn_after (set, insn);
3189 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3190 }
3191 }
3192
3193 /* Amongst the insns possibly deleted during the substitution process above,
3194 might have been the only trapping insn in the block. We purge the now
3195 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3196 called at the end of convert_regs. The order in which we process the
3197 blocks ensures that we never delete an already processed edge.
3198
3199 Note that, at this point, the CFG may have been damaged by the emission
3200 of instructions after an abnormal call, which moves the basic block end
3201 (and is the reason why we call fixup_abnormal_edges later). So we must
3202 be sure that the trapping insn has been deleted before trying to purge
3203 dead edges, otherwise we risk purging valid edges.
3204
3205 ??? We are normally supposed not to delete trapping insns, so we pretend
3206 that the insns deleted above don't actually trap. It would have been
3207 better to detect this earlier and avoid creating the EH edge in the first
3208 place, still, but we don't have enough information at that time. */
3209
3210 if (control_flow_insn_deleted)
3211 cfg_altered |= purge_dead_edges (block);
3212
3213 /* Something failed if the stack lives don't match. If we had malformed
3214 asms, we zapped the instruction itself, but that didn't produce the
3215 same pattern of register kills as before. */
3216
3217 gcc_assert (regstack.reg_set == bi->out_reg_set || any_malformed_asm);
3218 bi->stack_out = regstack;
3219 bi->done = true;
3220
3221 return cfg_altered;
3222 }
3223
3224 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3225 CFG has been modified in the process. */
3226
3227 static bool
3228 convert_regs_2 (basic_block block)
3229 {
3230 basic_block *stack, *sp;
3231 bool cfg_altered = false;
3232
3233 /* We process the blocks in a top-down manner, in a way such that one block
3234 is only processed after all its predecessors. The number of predecessors
3235 of every block has already been computed. */
3236
3237 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3238 sp = stack;
3239
3240 *sp++ = block;
3241
3242 do
3243 {
3244 edge e;
3245 edge_iterator ei;
3246
3247 block = *--sp;
3248
3249 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3250 some dead EH outgoing edge after the deletion of the trapping
3251 insn inside the block. Since the number of predecessors of
3252 BLOCK's successors was computed based on the initial edge set,
3253 we check the necessity to process some of these successors
3254 before such an edge deletion may happen. However, there is
3255 a pitfall: if BLOCK is the only predecessor of a successor and
3256 the edge between them happens to be deleted, the successor
3257 becomes unreachable and should not be processed. The problem
3258 is that there is no way to preventively detect this case so we
3259 stack the successor in all cases and hand over the task of
3260 fixing up the discrepancy to convert_regs_1. */
3261
3262 FOR_EACH_EDGE (e, ei, block->succs)
3263 if (! (e->flags & EDGE_DFS_BACK))
3264 {
3265 BLOCK_INFO (e->dest)->predecessors--;
3266 if (!BLOCK_INFO (e->dest)->predecessors)
3267 *sp++ = e->dest;
3268 }
3269
3270 cfg_altered |= convert_regs_1 (block);
3271 }
3272 while (sp != stack);
3273
3274 free (stack);
3275
3276 return cfg_altered;
3277 }
3278
3279 /* Traverse all basic blocks in a function, converting the register
3280 references in each insn from the "flat" register file that gcc uses,
3281 to the stack-like registers the 387 uses. */
3282
3283 static void
3284 convert_regs (void)
3285 {
3286 bool cfg_altered = false;
3287 int inserted;
3288 basic_block b;
3289 edge e;
3290 edge_iterator ei;
3291
3292 /* Initialize uninitialized registers on function entry. */
3293 inserted = convert_regs_entry ();
3294
3295 /* Construct the desired stack for function exit. */
3296 convert_regs_exit ();
3297 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3298
3299 /* ??? Future: process inner loops first, and give them arbitrary
3300 initial stacks which emit_swap_insn can modify. This ought to
3301 prevent double fxch that often appears at the head of a loop. */
3302
3303 /* Process all blocks reachable from all entry points. */
3304 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3305 cfg_altered |= convert_regs_2 (e->dest);
3306
3307 /* ??? Process all unreachable blocks. Though there's no excuse
3308 for keeping these even when not optimizing. */
3309 FOR_EACH_BB_FN (b, cfun)
3310 {
3311 block_info bi = BLOCK_INFO (b);
3312
3313 if (! bi->done)
3314 cfg_altered |= convert_regs_2 (b);
3315 }
3316
3317 /* We must fix up abnormal edges before inserting compensation code
3318 because both mechanisms insert insns on edges. */
3319 inserted |= fixup_abnormal_edges ();
3320
3321 inserted |= compensate_edges ();
3322
3323 clear_aux_for_blocks ();
3324
3325 if (inserted)
3326 commit_edge_insertions ();
3327
3328 if (cfg_altered)
3329 cleanup_cfg (0);
3330
3331 if (dump_file)
3332 fputc ('\n', dump_file);
3333 }
3334 \f
3335 /* Convert register usage from "flat" register file usage to a "stack
3336 register file. FILE is the dump file, if used.
3337
3338 Construct a CFG and run life analysis. Then convert each insn one
3339 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3340 code duplication created when the converter inserts pop insns on
3341 the edges. */
3342
3343 static bool
3344 reg_to_stack (void)
3345 {
3346 basic_block bb;
3347 int i;
3348 int max_uid;
3349
3350 /* Clean up previous run. */
3351 stack_regs_mentioned_data.release ();
3352
3353 /* See if there is something to do. Flow analysis is quite
3354 expensive so we might save some compilation time. */
3355 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3356 if (df_regs_ever_live_p (i))
3357 break;
3358 if (i > LAST_STACK_REG)
3359 return false;
3360
3361 df_note_add_problem ();
3362 df_analyze ();
3363
3364 mark_dfs_back_edges ();
3365
3366 /* Set up block info for each basic block. */
3367 alloc_aux_for_blocks (sizeof (struct block_info_def));
3368 FOR_EACH_BB_FN (bb, cfun)
3369 {
3370 block_info bi = BLOCK_INFO (bb);
3371 edge_iterator ei;
3372 edge e;
3373 int reg;
3374
3375 FOR_EACH_EDGE (e, ei, bb->preds)
3376 if (!(e->flags & EDGE_DFS_BACK)
3377 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3378 bi->predecessors++;
3379
3380 /* Set current register status at last instruction `uninitialized'. */
3381 bi->stack_in.top = -2;
3382
3383 /* Copy live_at_end and live_at_start into temporaries. */
3384 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3385 {
3386 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3387 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3388 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3389 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3390 }
3391 }
3392
3393 /* Create the replacement registers up front. */
3394 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3395 {
3396 machine_mode mode;
3397 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3398 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3399 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3400 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3401 }
3402
3403 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3404
3405 /* A QNaN for initializing uninitialized variables.
3406
3407 ??? We can't load from constant memory in PIC mode, because
3408 we're inserting these instructions before the prologue and
3409 the PIC register hasn't been set up. In that case, fall back
3410 on zero, which we can get from `fldz'. */
3411
3412 if ((flag_pic && !TARGET_64BIT)
3413 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3414 not_a_num = CONST0_RTX (SFmode);
3415 else
3416 {
3417 REAL_VALUE_TYPE r;
3418
3419 real_nan (&r, "", 1, SFmode);
3420 not_a_num = const_double_from_real_value (r, SFmode);
3421 not_a_num = force_const_mem (SFmode, not_a_num);
3422 }
3423
3424 /* Allocate a cache for stack_regs_mentioned. */
3425 max_uid = get_max_uid ();
3426 stack_regs_mentioned_data.create (max_uid + 1);
3427 memset (stack_regs_mentioned_data.address (),
3428 0, sizeof (char) * (max_uid + 1));
3429
3430 convert_regs ();
3431 any_malformed_asm = false;
3432
3433 free_aux_for_blocks ();
3434 return true;
3435 }
3436 #endif /* STACK_REGS */
3437 \f
3438 namespace {
3439
3440 const pass_data pass_data_stack_regs =
3441 {
3442 RTL_PASS, /* type */
3443 "*stack_regs", /* name */
3444 OPTGROUP_NONE, /* optinfo_flags */
3445 TV_REG_STACK, /* tv_id */
3446 0, /* properties_required */
3447 0, /* properties_provided */
3448 0, /* properties_destroyed */
3449 0, /* todo_flags_start */
3450 0, /* todo_flags_finish */
3451 };
3452
3453 class pass_stack_regs : public rtl_opt_pass
3454 {
3455 public:
3456 pass_stack_regs (gcc::context *ctxt)
3457 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3458 {}
3459
3460 /* opt_pass methods: */
3461 bool gate (function *) final override
3462 {
3463 #ifdef STACK_REGS
3464 return true;
3465 #else
3466 return false;
3467 #endif
3468 }
3469
3470 }; // class pass_stack_regs
3471
3472 } // anon namespace
3473
3474 rtl_opt_pass *
3475 make_pass_stack_regs (gcc::context *ctxt)
3476 {
3477 return new pass_stack_regs (ctxt);
3478 }
3479
3480 /* Convert register usage from flat register file usage to a stack
3481 register file. */
3482 static unsigned int
3483 rest_of_handle_stack_regs (void)
3484 {
3485 #ifdef STACK_REGS
3486 if (reg_to_stack ())
3487 df_insn_rescan_all ();
3488 regstack_completed = 1;
3489 #endif
3490 return 0;
3491 }
3492
3493 namespace {
3494
3495 const pass_data pass_data_stack_regs_run =
3496 {
3497 RTL_PASS, /* type */
3498 "stack", /* name */
3499 OPTGROUP_NONE, /* optinfo_flags */
3500 TV_REG_STACK, /* tv_id */
3501 0, /* properties_required */
3502 0, /* properties_provided */
3503 0, /* properties_destroyed */
3504 0, /* todo_flags_start */
3505 TODO_df_finish, /* todo_flags_finish */
3506 };
3507
3508 class pass_stack_regs_run : public rtl_opt_pass
3509 {
3510 public:
3511 pass_stack_regs_run (gcc::context *ctxt)
3512 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3513 {}
3514
3515 /* opt_pass methods: */
3516 unsigned int execute (function *) final override
3517 {
3518 return rest_of_handle_stack_regs ();
3519 }
3520
3521 }; // class pass_stack_regs_run
3522
3523 } // anon namespace
3524
3525 rtl_opt_pass *
3526 make_pass_stack_regs_run (gcc::context *ctxt)
3527 {
3528 return new pass_stack_regs_run (ctxt);
3529 }