]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
2cc9e4f66e37817b2b8f5711dd92fb49502639dd
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71
72 /* Tree code classes. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
75 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76
77 const enum tree_code_class tree_code_type[] = {
78 #include "all-tree.def"
79 };
80
81 #undef DEFTREECODE
82 #undef END_OF_BASE_TREE_CODES
83
84 /* Table indexed by tree code giving number of expression
85 operands beyond the fixed part of the node structure.
86 Not used for types or decls. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
89 #define END_OF_BASE_TREE_CODES 0,
90
91 const unsigned char tree_code_length[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Names of tree components.
99 Used for printing out the tree and error messages. */
100 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
101 #define END_OF_BASE_TREE_CODES "@dummy",
102
103 static const char *const tree_code_name[] = {
104 #include "all-tree.def"
105 };
106
107 #undef DEFTREECODE
108 #undef END_OF_BASE_TREE_CODES
109
110 /* Each tree code class has an associated string representation.
111 These must correspond to the tree_code_class entries. */
112
113 const char *const tree_code_class_strings[] =
114 {
115 "exceptional",
116 "constant",
117 "type",
118 "declaration",
119 "reference",
120 "comparison",
121 "unary",
122 "binary",
123 "statement",
124 "vl_exp",
125 "expression"
126 };
127
128 /* obstack.[ch] explicitly declined to prototype this. */
129 extern int _obstack_allocated_p (struct obstack *h, void *obj);
130
131 /* Statistics-gathering stuff. */
132
133 static uint64_t tree_code_counts[MAX_TREE_CODES];
134 uint64_t tree_node_counts[(int) all_kinds];
135 uint64_t tree_node_sizes[(int) all_kinds];
136
137 /* Keep in sync with tree.h:enum tree_node_kind. */
138 static const char * const tree_node_kind_names[] = {
139 "decls",
140 "types",
141 "blocks",
142 "stmts",
143 "refs",
144 "exprs",
145 "constants",
146 "identifiers",
147 "vecs",
148 "binfos",
149 "ssa names",
150 "constructors",
151 "random kinds",
152 "lang_decl kinds",
153 "lang_type kinds",
154 "omp clauses",
155 };
156
157 /* Unique id for next decl created. */
158 static GTY(()) int next_decl_uid;
159 /* Unique id for next type created. */
160 static GTY(()) unsigned next_type_uid = 1;
161 /* Unique id for next debug decl created. Use negative numbers,
162 to catch erroneous uses. */
163 static GTY(()) int next_debug_decl_uid;
164
165 /* Since we cannot rehash a type after it is in the table, we have to
166 keep the hash code. */
167
168 struct GTY((for_user)) type_hash {
169 unsigned long hash;
170 tree type;
171 };
172
173 /* Initial size of the hash table (rounded to next prime). */
174 #define TYPE_HASH_INITIAL_SIZE 1000
175
176 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
177 {
178 static hashval_t hash (type_hash *t) { return t->hash; }
179 static bool equal (type_hash *a, type_hash *b);
180
181 static int
182 keep_cache_entry (type_hash *&t)
183 {
184 return ggc_marked_p (t->type);
185 }
186 };
187
188 /* Now here is the hash table. When recording a type, it is added to
189 the slot whose index is the hash code. Note that the hash table is
190 used for several kinds of types (function types, array types and
191 array index range types, for now). While all these live in the
192 same table, they are completely independent, and the hash code is
193 computed differently for each of these. */
194
195 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
196
197 /* Hash table and temporary node for larger integer const values. */
198 static GTY (()) tree int_cst_node;
199
200 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
201 {
202 static hashval_t hash (tree t);
203 static bool equal (tree x, tree y);
204 };
205
206 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
207
208 /* Class and variable for making sure that there is a single POLY_INT_CST
209 for a given value. */
210 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
211 {
212 typedef std::pair<tree, const poly_wide_int *> compare_type;
213 static hashval_t hash (tree t);
214 static bool equal (tree x, const compare_type &y);
215 };
216
217 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
218
219 /* Hash table for optimization flags and target option flags. Use the same
220 hash table for both sets of options. Nodes for building the current
221 optimization and target option nodes. The assumption is most of the time
222 the options created will already be in the hash table, so we avoid
223 allocating and freeing up a node repeatably. */
224 static GTY (()) tree cl_optimization_node;
225 static GTY (()) tree cl_target_option_node;
226
227 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
228 {
229 static hashval_t hash (tree t);
230 static bool equal (tree x, tree y);
231 };
232
233 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
234
235 /* General tree->tree mapping structure for use in hash tables. */
236
237
238 static GTY ((cache))
239 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
240
241 static GTY ((cache))
242 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
243
244 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
245 {
246 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
247
248 static bool
249 equal (tree_vec_map *a, tree_vec_map *b)
250 {
251 return a->base.from == b->base.from;
252 }
253
254 static int
255 keep_cache_entry (tree_vec_map *&m)
256 {
257 return ggc_marked_p (m->base.from);
258 }
259 };
260
261 static GTY ((cache))
262 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
263
264 static void set_type_quals (tree, int);
265 static void print_type_hash_statistics (void);
266 static void print_debug_expr_statistics (void);
267 static void print_value_expr_statistics (void);
268
269 static tree build_array_type_1 (tree, tree, bool, bool, bool);
270
271 tree global_trees[TI_MAX];
272 tree integer_types[itk_none];
273
274 bool int_n_enabled_p[NUM_INT_N_ENTS];
275 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
276
277 bool tree_contains_struct[MAX_TREE_CODES][64];
278
279 /* Number of operands for each OpenMP clause. */
280 unsigned const char omp_clause_num_ops[] =
281 {
282 0, /* OMP_CLAUSE_ERROR */
283 1, /* OMP_CLAUSE_PRIVATE */
284 1, /* OMP_CLAUSE_SHARED */
285 1, /* OMP_CLAUSE_FIRSTPRIVATE */
286 2, /* OMP_CLAUSE_LASTPRIVATE */
287 5, /* OMP_CLAUSE_REDUCTION */
288 5, /* OMP_CLAUSE_TASK_REDUCTION */
289 5, /* OMP_CLAUSE_IN_REDUCTION */
290 1, /* OMP_CLAUSE_COPYIN */
291 1, /* OMP_CLAUSE_COPYPRIVATE */
292 3, /* OMP_CLAUSE_LINEAR */
293 2, /* OMP_CLAUSE_ALIGNED */
294 1, /* OMP_CLAUSE_DEPEND */
295 1, /* OMP_CLAUSE_NONTEMPORAL */
296 1, /* OMP_CLAUSE_UNIFORM */
297 1, /* OMP_CLAUSE_TO_DECLARE */
298 1, /* OMP_CLAUSE_LINK */
299 2, /* OMP_CLAUSE_FROM */
300 2, /* OMP_CLAUSE_TO */
301 2, /* OMP_CLAUSE_MAP */
302 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
303 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
304 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
305 1, /* OMP_CLAUSE_INCLUSIVE */
306 1, /* OMP_CLAUSE_EXCLUSIVE */
307 2, /* OMP_CLAUSE__CACHE_ */
308 2, /* OMP_CLAUSE_GANG */
309 1, /* OMP_CLAUSE_ASYNC */
310 1, /* OMP_CLAUSE_WAIT */
311 0, /* OMP_CLAUSE_AUTO */
312 0, /* OMP_CLAUSE_SEQ */
313 1, /* OMP_CLAUSE__LOOPTEMP_ */
314 1, /* OMP_CLAUSE__REDUCTEMP_ */
315 1, /* OMP_CLAUSE__CONDTEMP_ */
316 1, /* OMP_CLAUSE__SCANTEMP_ */
317 1, /* OMP_CLAUSE_IF */
318 1, /* OMP_CLAUSE_NUM_THREADS */
319 1, /* OMP_CLAUSE_SCHEDULE */
320 0, /* OMP_CLAUSE_NOWAIT */
321 1, /* OMP_CLAUSE_ORDERED */
322 0, /* OMP_CLAUSE_DEFAULT */
323 3, /* OMP_CLAUSE_COLLAPSE */
324 0, /* OMP_CLAUSE_UNTIED */
325 1, /* OMP_CLAUSE_FINAL */
326 0, /* OMP_CLAUSE_MERGEABLE */
327 1, /* OMP_CLAUSE_DEVICE */
328 1, /* OMP_CLAUSE_DIST_SCHEDULE */
329 0, /* OMP_CLAUSE_INBRANCH */
330 0, /* OMP_CLAUSE_NOTINBRANCH */
331 1, /* OMP_CLAUSE_NUM_TEAMS */
332 1, /* OMP_CLAUSE_THREAD_LIMIT */
333 0, /* OMP_CLAUSE_PROC_BIND */
334 1, /* OMP_CLAUSE_SAFELEN */
335 1, /* OMP_CLAUSE_SIMDLEN */
336 0, /* OMP_CLAUSE_DEVICE_TYPE */
337 0, /* OMP_CLAUSE_FOR */
338 0, /* OMP_CLAUSE_PARALLEL */
339 0, /* OMP_CLAUSE_SECTIONS */
340 0, /* OMP_CLAUSE_TASKGROUP */
341 1, /* OMP_CLAUSE_PRIORITY */
342 1, /* OMP_CLAUSE_GRAINSIZE */
343 1, /* OMP_CLAUSE_NUM_TASKS */
344 0, /* OMP_CLAUSE_NOGROUP */
345 0, /* OMP_CLAUSE_THREADS */
346 0, /* OMP_CLAUSE_SIMD */
347 1, /* OMP_CLAUSE_HINT */
348 0, /* OMP_CLAUSE_DEFAULTMAP */
349 0, /* OMP_CLAUSE_ORDER */
350 0, /* OMP_CLAUSE_BIND */
351 1, /* OMP_CLAUSE__SIMDUID_ */
352 0, /* OMP_CLAUSE__SIMT_ */
353 0, /* OMP_CLAUSE_INDEPENDENT */
354 1, /* OMP_CLAUSE_WORKER */
355 1, /* OMP_CLAUSE_VECTOR */
356 1, /* OMP_CLAUSE_NUM_GANGS */
357 1, /* OMP_CLAUSE_NUM_WORKERS */
358 1, /* OMP_CLAUSE_VECTOR_LENGTH */
359 3, /* OMP_CLAUSE_TILE */
360 2, /* OMP_CLAUSE__GRIDDIM_ */
361 0, /* OMP_CLAUSE_IF_PRESENT */
362 0, /* OMP_CLAUSE_FINALIZE */
363 };
364
365 const char * const omp_clause_code_name[] =
366 {
367 "error_clause",
368 "private",
369 "shared",
370 "firstprivate",
371 "lastprivate",
372 "reduction",
373 "task_reduction",
374 "in_reduction",
375 "copyin",
376 "copyprivate",
377 "linear",
378 "aligned",
379 "depend",
380 "nontemporal",
381 "uniform",
382 "to",
383 "link",
384 "from",
385 "to",
386 "map",
387 "use_device_ptr",
388 "use_device_addr",
389 "is_device_ptr",
390 "inclusive",
391 "exclusive",
392 "_cache_",
393 "gang",
394 "async",
395 "wait",
396 "auto",
397 "seq",
398 "_looptemp_",
399 "_reductemp_",
400 "_condtemp_",
401 "_scantemp_",
402 "if",
403 "num_threads",
404 "schedule",
405 "nowait",
406 "ordered",
407 "default",
408 "collapse",
409 "untied",
410 "final",
411 "mergeable",
412 "device",
413 "dist_schedule",
414 "inbranch",
415 "notinbranch",
416 "num_teams",
417 "thread_limit",
418 "proc_bind",
419 "safelen",
420 "simdlen",
421 "device_type",
422 "for",
423 "parallel",
424 "sections",
425 "taskgroup",
426 "priority",
427 "grainsize",
428 "num_tasks",
429 "nogroup",
430 "threads",
431 "simd",
432 "hint",
433 "defaultmap",
434 "order",
435 "bind",
436 "_simduid_",
437 "_simt_",
438 "independent",
439 "worker",
440 "vector",
441 "num_gangs",
442 "num_workers",
443 "vector_length",
444 "tile",
445 "_griddim_",
446 "if_present",
447 "finalize",
448 };
449
450
451 /* Return the tree node structure used by tree code CODE. */
452
453 static inline enum tree_node_structure_enum
454 tree_node_structure_for_code (enum tree_code code)
455 {
456 switch (TREE_CODE_CLASS (code))
457 {
458 case tcc_declaration:
459 switch (code)
460 {
461 case CONST_DECL: return TS_CONST_DECL;
462 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
463 case FIELD_DECL: return TS_FIELD_DECL;
464 case FUNCTION_DECL: return TS_FUNCTION_DECL;
465 case LABEL_DECL: return TS_LABEL_DECL;
466 case PARM_DECL: return TS_PARM_DECL;
467 case RESULT_DECL: return TS_RESULT_DECL;
468 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
469 case TYPE_DECL: return TS_TYPE_DECL;
470 case VAR_DECL: return TS_VAR_DECL;
471 default: return TS_DECL_NON_COMMON;
472 }
473
474 case tcc_type: return TS_TYPE_NON_COMMON;
475
476 case tcc_binary:
477 case tcc_comparison:
478 case tcc_expression:
479 case tcc_reference:
480 case tcc_statement:
481 case tcc_unary:
482 case tcc_vl_exp: return TS_EXP;
483
484 default: /* tcc_constant and tcc_exceptional */
485 break;
486 }
487
488 switch (code)
489 {
490 /* tcc_constant cases. */
491 case COMPLEX_CST: return TS_COMPLEX;
492 case FIXED_CST: return TS_FIXED_CST;
493 case INTEGER_CST: return TS_INT_CST;
494 case POLY_INT_CST: return TS_POLY_INT_CST;
495 case REAL_CST: return TS_REAL_CST;
496 case STRING_CST: return TS_STRING;
497 case VECTOR_CST: return TS_VECTOR;
498 case VOID_CST: return TS_TYPED;
499
500 /* tcc_exceptional cases. */
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case ERROR_MARK: return TS_COMMON;
504 case IDENTIFIER_NODE: return TS_IDENTIFIER;
505 case OMP_CLAUSE: return TS_OMP_CLAUSE;
506 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
507 case PLACEHOLDER_EXPR: return TS_COMMON;
508 case SSA_NAME: return TS_SSA_NAME;
509 case STATEMENT_LIST: return TS_STATEMENT_LIST;
510 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
511 case TREE_BINFO: return TS_BINFO;
512 case TREE_LIST: return TS_LIST;
513 case TREE_VEC: return TS_VEC;
514
515 default:
516 gcc_unreachable ();
517 }
518 }
519
520
521 /* Initialize tree_contains_struct to describe the hierarchy of tree
522 nodes. */
523
524 static void
525 initialize_tree_contains_struct (void)
526 {
527 unsigned i;
528
529 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
530 {
531 enum tree_code code;
532 enum tree_node_structure_enum ts_code;
533
534 code = (enum tree_code) i;
535 ts_code = tree_node_structure_for_code (code);
536
537 /* Mark the TS structure itself. */
538 tree_contains_struct[code][ts_code] = 1;
539
540 /* Mark all the structures that TS is derived from. */
541 switch (ts_code)
542 {
543 case TS_TYPED:
544 case TS_BLOCK:
545 case TS_OPTIMIZATION:
546 case TS_TARGET_OPTION:
547 MARK_TS_BASE (code);
548 break;
549
550 case TS_COMMON:
551 case TS_INT_CST:
552 case TS_POLY_INT_CST:
553 case TS_REAL_CST:
554 case TS_FIXED_CST:
555 case TS_VECTOR:
556 case TS_STRING:
557 case TS_COMPLEX:
558 case TS_SSA_NAME:
559 case TS_CONSTRUCTOR:
560 case TS_EXP:
561 case TS_STATEMENT_LIST:
562 MARK_TS_TYPED (code);
563 break;
564
565 case TS_IDENTIFIER:
566 case TS_DECL_MINIMAL:
567 case TS_TYPE_COMMON:
568 case TS_LIST:
569 case TS_VEC:
570 case TS_BINFO:
571 case TS_OMP_CLAUSE:
572 MARK_TS_COMMON (code);
573 break;
574
575 case TS_TYPE_WITH_LANG_SPECIFIC:
576 MARK_TS_TYPE_COMMON (code);
577 break;
578
579 case TS_TYPE_NON_COMMON:
580 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
581 break;
582
583 case TS_DECL_COMMON:
584 MARK_TS_DECL_MINIMAL (code);
585 break;
586
587 case TS_DECL_WRTL:
588 case TS_CONST_DECL:
589 MARK_TS_DECL_COMMON (code);
590 break;
591
592 case TS_DECL_NON_COMMON:
593 MARK_TS_DECL_WITH_VIS (code);
594 break;
595
596 case TS_DECL_WITH_VIS:
597 case TS_PARM_DECL:
598 case TS_LABEL_DECL:
599 case TS_RESULT_DECL:
600 MARK_TS_DECL_WRTL (code);
601 break;
602
603 case TS_FIELD_DECL:
604 MARK_TS_DECL_COMMON (code);
605 break;
606
607 case TS_VAR_DECL:
608 MARK_TS_DECL_WITH_VIS (code);
609 break;
610
611 case TS_TYPE_DECL:
612 case TS_FUNCTION_DECL:
613 MARK_TS_DECL_NON_COMMON (code);
614 break;
615
616 case TS_TRANSLATION_UNIT_DECL:
617 MARK_TS_DECL_COMMON (code);
618 break;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 /* Basic consistency checks for attributes used in fold. */
626 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
628 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
633 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
634 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
635 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
636 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
638 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
639 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
641 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
647 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
649 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
650 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
651 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
652 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
654 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
655 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
656 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
657 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
658 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
659 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
660 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
661 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
662 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
663 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
664 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
665 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
666 }
667
668
669 /* Init tree.c. */
670
671 void
672 init_ttree (void)
673 {
674 /* Initialize the hash table of types. */
675 type_hash_table
676 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
677
678 debug_expr_for_decl
679 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
680
681 value_expr_for_decl
682 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
683
684 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
685
686 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
687
688 int_cst_node = make_int_cst (1, 1);
689
690 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
691
692 cl_optimization_node = make_node (OPTIMIZATION_NODE);
693 cl_target_option_node = make_node (TARGET_OPTION_NODE);
694
695 /* Initialize the tree_contains_struct array. */
696 initialize_tree_contains_struct ();
697 lang_hooks.init_ts ();
698 }
699
700 \f
701 /* The name of the object as the assembler will see it (but before any
702 translations made by ASM_OUTPUT_LABELREF). Often this is the same
703 as DECL_NAME. It is an IDENTIFIER_NODE. */
704 tree
705 decl_assembler_name (tree decl)
706 {
707 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
708 lang_hooks.set_decl_assembler_name (decl);
709 return DECL_ASSEMBLER_NAME_RAW (decl);
710 }
711
712 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
713 (either of which may be NULL). Inform the FE, if this changes the
714 name. */
715
716 void
717 overwrite_decl_assembler_name (tree decl, tree name)
718 {
719 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
720 lang_hooks.overwrite_decl_assembler_name (decl, name);
721 }
722
723 /* When the target supports COMDAT groups, this indicates which group the
724 DECL is associated with. This can be either an IDENTIFIER_NODE or a
725 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
726 tree
727 decl_comdat_group (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_comdat_group ();
733 }
734
735 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
736 tree
737 decl_comdat_group_id (const_tree node)
738 {
739 struct symtab_node *snode = symtab_node::get (node);
740 if (!snode)
741 return NULL;
742 return snode->get_comdat_group_id ();
743 }
744
745 /* When the target supports named section, return its name as IDENTIFIER_NODE
746 or NULL if it is in no section. */
747 const char *
748 decl_section_name (const_tree node)
749 {
750 struct symtab_node *snode = symtab_node::get (node);
751 if (!snode)
752 return NULL;
753 return snode->get_section ();
754 }
755
756 /* Set section name of NODE to VALUE (that is expected to be
757 identifier node) */
758 void
759 set_decl_section_name (tree node, const char *value)
760 {
761 struct symtab_node *snode;
762
763 if (value == NULL)
764 {
765 snode = symtab_node::get (node);
766 if (!snode)
767 return;
768 }
769 else if (VAR_P (node))
770 snode = varpool_node::get_create (node);
771 else
772 snode = cgraph_node::get_create (node);
773 snode->set_section (value);
774 }
775
776 /* Return TLS model of a variable NODE. */
777 enum tls_model
778 decl_tls_model (const_tree node)
779 {
780 struct varpool_node *snode = varpool_node::get (node);
781 if (!snode)
782 return TLS_MODEL_NONE;
783 return snode->tls_model;
784 }
785
786 /* Set TLS model of variable NODE to MODEL. */
787 void
788 set_decl_tls_model (tree node, enum tls_model model)
789 {
790 struct varpool_node *vnode;
791
792 if (model == TLS_MODEL_NONE)
793 {
794 vnode = varpool_node::get (node);
795 if (!vnode)
796 return;
797 }
798 else
799 vnode = varpool_node::get_create (node);
800 vnode->tls_model = model;
801 }
802
803 /* Compute the number of bytes occupied by a tree with code CODE.
804 This function cannot be used for nodes that have variable sizes,
805 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
806 size_t
807 tree_code_size (enum tree_code code)
808 {
809 switch (TREE_CODE_CLASS (code))
810 {
811 case tcc_declaration: /* A decl node */
812 switch (code)
813 {
814 case FIELD_DECL: return sizeof (tree_field_decl);
815 case PARM_DECL: return sizeof (tree_parm_decl);
816 case VAR_DECL: return sizeof (tree_var_decl);
817 case LABEL_DECL: return sizeof (tree_label_decl);
818 case RESULT_DECL: return sizeof (tree_result_decl);
819 case CONST_DECL: return sizeof (tree_const_decl);
820 case TYPE_DECL: return sizeof (tree_type_decl);
821 case FUNCTION_DECL: return sizeof (tree_function_decl);
822 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
823 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
824 case NAMESPACE_DECL:
825 case IMPORTED_DECL:
826 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
827 default:
828 gcc_checking_assert (code >= NUM_TREE_CODES);
829 return lang_hooks.tree_size (code);
830 }
831
832 case tcc_type: /* a type node */
833 switch (code)
834 {
835 case OFFSET_TYPE:
836 case ENUMERAL_TYPE:
837 case BOOLEAN_TYPE:
838 case INTEGER_TYPE:
839 case REAL_TYPE:
840 case POINTER_TYPE:
841 case REFERENCE_TYPE:
842 case NULLPTR_TYPE:
843 case FIXED_POINT_TYPE:
844 case COMPLEX_TYPE:
845 case VECTOR_TYPE:
846 case ARRAY_TYPE:
847 case RECORD_TYPE:
848 case UNION_TYPE:
849 case QUAL_UNION_TYPE:
850 case VOID_TYPE:
851 case FUNCTION_TYPE:
852 case METHOD_TYPE:
853 case LANG_TYPE: return sizeof (tree_type_non_common);
854 default:
855 gcc_checking_assert (code >= NUM_TREE_CODES);
856 return lang_hooks.tree_size (code);
857 }
858
859 case tcc_reference: /* a reference */
860 case tcc_expression: /* an expression */
861 case tcc_statement: /* an expression with side effects */
862 case tcc_comparison: /* a comparison expression */
863 case tcc_unary: /* a unary arithmetic expression */
864 case tcc_binary: /* a binary arithmetic expression */
865 return (sizeof (struct tree_exp)
866 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
867
868 case tcc_constant: /* a constant */
869 switch (code)
870 {
871 case VOID_CST: return sizeof (tree_typed);
872 case INTEGER_CST: gcc_unreachable ();
873 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
874 case REAL_CST: return sizeof (tree_real_cst);
875 case FIXED_CST: return sizeof (tree_fixed_cst);
876 case COMPLEX_CST: return sizeof (tree_complex);
877 case VECTOR_CST: gcc_unreachable ();
878 case STRING_CST: gcc_unreachable ();
879 default:
880 gcc_checking_assert (code >= NUM_TREE_CODES);
881 return lang_hooks.tree_size (code);
882 }
883
884 case tcc_exceptional: /* something random, like an identifier. */
885 switch (code)
886 {
887 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
888 case TREE_LIST: return sizeof (tree_list);
889
890 case ERROR_MARK:
891 case PLACEHOLDER_EXPR: return sizeof (tree_common);
892
893 case TREE_VEC: gcc_unreachable ();
894 case OMP_CLAUSE: gcc_unreachable ();
895
896 case SSA_NAME: return sizeof (tree_ssa_name);
897
898 case STATEMENT_LIST: return sizeof (tree_statement_list);
899 case BLOCK: return sizeof (struct tree_block);
900 case CONSTRUCTOR: return sizeof (tree_constructor);
901 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
902 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
903
904 default:
905 gcc_checking_assert (code >= NUM_TREE_CODES);
906 return lang_hooks.tree_size (code);
907 }
908
909 default:
910 gcc_unreachable ();
911 }
912 }
913
914 /* Compute the number of bytes occupied by NODE. This routine only
915 looks at TREE_CODE, except for those nodes that have variable sizes. */
916 size_t
917 tree_size (const_tree node)
918 {
919 const enum tree_code code = TREE_CODE (node);
920 switch (code)
921 {
922 case INTEGER_CST:
923 return (sizeof (struct tree_int_cst)
924 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
925
926 case TREE_BINFO:
927 return (offsetof (struct tree_binfo, base_binfos)
928 + vec<tree, va_gc>
929 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
930
931 case TREE_VEC:
932 return (sizeof (struct tree_vec)
933 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
934
935 case VECTOR_CST:
936 return (sizeof (struct tree_vector)
937 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
938
939 case STRING_CST:
940 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
941
942 case OMP_CLAUSE:
943 return (sizeof (struct tree_omp_clause)
944 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
945 * sizeof (tree));
946
947 default:
948 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
949 return (sizeof (struct tree_exp)
950 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
951 else
952 return tree_code_size (code);
953 }
954 }
955
956 /* Return tree node kind based on tree CODE. */
957
958 static tree_node_kind
959 get_stats_node_kind (enum tree_code code)
960 {
961 enum tree_code_class type = TREE_CODE_CLASS (code);
962
963 switch (type)
964 {
965 case tcc_declaration: /* A decl node */
966 return d_kind;
967 case tcc_type: /* a type node */
968 return t_kind;
969 case tcc_statement: /* an expression with side effects */
970 return s_kind;
971 case tcc_reference: /* a reference */
972 return r_kind;
973 case tcc_expression: /* an expression */
974 case tcc_comparison: /* a comparison expression */
975 case tcc_unary: /* a unary arithmetic expression */
976 case tcc_binary: /* a binary arithmetic expression */
977 return e_kind;
978 case tcc_constant: /* a constant */
979 return c_kind;
980 case tcc_exceptional: /* something random, like an identifier. */
981 switch (code)
982 {
983 case IDENTIFIER_NODE:
984 return id_kind;
985 case TREE_VEC:
986 return vec_kind;
987 case TREE_BINFO:
988 return binfo_kind;
989 case SSA_NAME:
990 return ssa_name_kind;
991 case BLOCK:
992 return b_kind;
993 case CONSTRUCTOR:
994 return constr_kind;
995 case OMP_CLAUSE:
996 return omp_clause_kind;
997 default:
998 return x_kind;
999 }
1000 break;
1001 case tcc_vl_exp:
1002 return e_kind;
1003 default:
1004 gcc_unreachable ();
1005 }
1006 }
1007
1008 /* Record interesting allocation statistics for a tree node with CODE
1009 and LENGTH. */
1010
1011 static void
1012 record_node_allocation_statistics (enum tree_code code, size_t length)
1013 {
1014 if (!GATHER_STATISTICS)
1015 return;
1016
1017 tree_node_kind kind = get_stats_node_kind (code);
1018
1019 tree_code_counts[(int) code]++;
1020 tree_node_counts[(int) kind]++;
1021 tree_node_sizes[(int) kind] += length;
1022 }
1023
1024 /* Allocate and return a new UID from the DECL_UID namespace. */
1025
1026 int
1027 allocate_decl_uid (void)
1028 {
1029 return next_decl_uid++;
1030 }
1031
1032 /* Return a newly allocated node of code CODE. For decl and type
1033 nodes, some other fields are initialized. The rest of the node is
1034 initialized to zero. This function cannot be used for TREE_VEC,
1035 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1036 tree_code_size.
1037
1038 Achoo! I got a code in the node. */
1039
1040 tree
1041 make_node (enum tree_code code MEM_STAT_DECL)
1042 {
1043 tree t;
1044 enum tree_code_class type = TREE_CODE_CLASS (code);
1045 size_t length = tree_code_size (code);
1046
1047 record_node_allocation_statistics (code, length);
1048
1049 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1050 TREE_SET_CODE (t, code);
1051
1052 switch (type)
1053 {
1054 case tcc_statement:
1055 if (code != DEBUG_BEGIN_STMT)
1056 TREE_SIDE_EFFECTS (t) = 1;
1057 break;
1058
1059 case tcc_declaration:
1060 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1061 {
1062 if (code == FUNCTION_DECL)
1063 {
1064 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1065 SET_DECL_MODE (t, FUNCTION_MODE);
1066 }
1067 else
1068 SET_DECL_ALIGN (t, 1);
1069 }
1070 DECL_SOURCE_LOCATION (t) = input_location;
1071 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1072 DECL_UID (t) = --next_debug_decl_uid;
1073 else
1074 {
1075 DECL_UID (t) = allocate_decl_uid ();
1076 SET_DECL_PT_UID (t, -1);
1077 }
1078 if (TREE_CODE (t) == LABEL_DECL)
1079 LABEL_DECL_UID (t) = -1;
1080
1081 break;
1082
1083 case tcc_type:
1084 TYPE_UID (t) = next_type_uid++;
1085 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1086 TYPE_USER_ALIGN (t) = 0;
1087 TYPE_MAIN_VARIANT (t) = t;
1088 TYPE_CANONICAL (t) = t;
1089
1090 /* Default to no attributes for type, but let target change that. */
1091 TYPE_ATTRIBUTES (t) = NULL_TREE;
1092 targetm.set_default_type_attributes (t);
1093
1094 /* We have not yet computed the alias set for this type. */
1095 TYPE_ALIAS_SET (t) = -1;
1096 break;
1097
1098 case tcc_constant:
1099 TREE_CONSTANT (t) = 1;
1100 break;
1101
1102 case tcc_expression:
1103 switch (code)
1104 {
1105 case INIT_EXPR:
1106 case MODIFY_EXPR:
1107 case VA_ARG_EXPR:
1108 case PREDECREMENT_EXPR:
1109 case PREINCREMENT_EXPR:
1110 case POSTDECREMENT_EXPR:
1111 case POSTINCREMENT_EXPR:
1112 /* All of these have side-effects, no matter what their
1113 operands are. */
1114 TREE_SIDE_EFFECTS (t) = 1;
1115 break;
1116
1117 default:
1118 break;
1119 }
1120 break;
1121
1122 case tcc_exceptional:
1123 switch (code)
1124 {
1125 case TARGET_OPTION_NODE:
1126 TREE_TARGET_OPTION(t)
1127 = ggc_cleared_alloc<struct cl_target_option> ();
1128 break;
1129
1130 case OPTIMIZATION_NODE:
1131 TREE_OPTIMIZATION (t)
1132 = ggc_cleared_alloc<struct cl_optimization> ();
1133 break;
1134
1135 default:
1136 break;
1137 }
1138 break;
1139
1140 default:
1141 /* Other classes need no special treatment. */
1142 break;
1143 }
1144
1145 return t;
1146 }
1147
1148 /* Free tree node. */
1149
1150 void
1151 free_node (tree node)
1152 {
1153 enum tree_code code = TREE_CODE (node);
1154 if (GATHER_STATISTICS)
1155 {
1156 enum tree_node_kind kind = get_stats_node_kind (code);
1157
1158 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1159 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1160 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1161
1162 tree_code_counts[(int) TREE_CODE (node)]--;
1163 tree_node_counts[(int) kind]--;
1164 tree_node_sizes[(int) kind] -= tree_size (node);
1165 }
1166 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1167 vec_free (CONSTRUCTOR_ELTS (node));
1168 else if (code == BLOCK)
1169 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1170 else if (code == TREE_BINFO)
1171 vec_free (BINFO_BASE_ACCESSES (node));
1172 else if (code == OPTIMIZATION_NODE)
1173 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1174 else if (code == TARGET_OPTION_NODE)
1175 cl_target_option_free (TREE_TARGET_OPTION (node));
1176 ggc_free (node);
1177 }
1178 \f
1179 /* Return a new node with the same contents as NODE except that its
1180 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1181
1182 tree
1183 copy_node (tree node MEM_STAT_DECL)
1184 {
1185 tree t;
1186 enum tree_code code = TREE_CODE (node);
1187 size_t length;
1188
1189 gcc_assert (code != STATEMENT_LIST);
1190
1191 length = tree_size (node);
1192 record_node_allocation_statistics (code, length);
1193 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1194 memcpy (t, node, length);
1195
1196 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1197 TREE_CHAIN (t) = 0;
1198 TREE_ASM_WRITTEN (t) = 0;
1199 TREE_VISITED (t) = 0;
1200
1201 if (TREE_CODE_CLASS (code) == tcc_declaration)
1202 {
1203 if (code == DEBUG_EXPR_DECL)
1204 DECL_UID (t) = --next_debug_decl_uid;
1205 else
1206 {
1207 DECL_UID (t) = allocate_decl_uid ();
1208 if (DECL_PT_UID_SET_P (node))
1209 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1210 }
1211 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1212 && DECL_HAS_VALUE_EXPR_P (node))
1213 {
1214 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1215 DECL_HAS_VALUE_EXPR_P (t) = 1;
1216 }
1217 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1218 if (VAR_P (node))
1219 {
1220 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1221 t->decl_with_vis.symtab_node = NULL;
1222 }
1223 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1224 {
1225 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1226 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1227 }
1228 if (TREE_CODE (node) == FUNCTION_DECL)
1229 {
1230 DECL_STRUCT_FUNCTION (t) = NULL;
1231 t->decl_with_vis.symtab_node = NULL;
1232 }
1233 }
1234 else if (TREE_CODE_CLASS (code) == tcc_type)
1235 {
1236 TYPE_UID (t) = next_type_uid++;
1237 /* The following is so that the debug code for
1238 the copy is different from the original type.
1239 The two statements usually duplicate each other
1240 (because they clear fields of the same union),
1241 but the optimizer should catch that. */
1242 TYPE_SYMTAB_ADDRESS (t) = 0;
1243 TYPE_SYMTAB_DIE (t) = 0;
1244
1245 /* Do not copy the values cache. */
1246 if (TYPE_CACHED_VALUES_P (t))
1247 {
1248 TYPE_CACHED_VALUES_P (t) = 0;
1249 TYPE_CACHED_VALUES (t) = NULL_TREE;
1250 }
1251 }
1252 else if (code == TARGET_OPTION_NODE)
1253 {
1254 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1255 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1256 sizeof (struct cl_target_option));
1257 }
1258 else if (code == OPTIMIZATION_NODE)
1259 {
1260 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1261 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1262 sizeof (struct cl_optimization));
1263 }
1264
1265 return t;
1266 }
1267
1268 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1269 For example, this can copy a list made of TREE_LIST nodes. */
1270
1271 tree
1272 copy_list (tree list)
1273 {
1274 tree head;
1275 tree prev, next;
1276
1277 if (list == 0)
1278 return 0;
1279
1280 head = prev = copy_node (list);
1281 next = TREE_CHAIN (list);
1282 while (next)
1283 {
1284 TREE_CHAIN (prev) = copy_node (next);
1285 prev = TREE_CHAIN (prev);
1286 next = TREE_CHAIN (next);
1287 }
1288 return head;
1289 }
1290
1291 \f
1292 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1293 INTEGER_CST with value CST and type TYPE. */
1294
1295 static unsigned int
1296 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1297 {
1298 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1299 /* We need extra HWIs if CST is an unsigned integer with its
1300 upper bit set. */
1301 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1302 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1303 return cst.get_len ();
1304 }
1305
1306 /* Return a new INTEGER_CST with value CST and type TYPE. */
1307
1308 static tree
1309 build_new_int_cst (tree type, const wide_int &cst)
1310 {
1311 unsigned int len = cst.get_len ();
1312 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1313 tree nt = make_int_cst (len, ext_len);
1314
1315 if (len < ext_len)
1316 {
1317 --ext_len;
1318 TREE_INT_CST_ELT (nt, ext_len)
1319 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1320 for (unsigned int i = len; i < ext_len; ++i)
1321 TREE_INT_CST_ELT (nt, i) = -1;
1322 }
1323 else if (TYPE_UNSIGNED (type)
1324 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1325 {
1326 len--;
1327 TREE_INT_CST_ELT (nt, len)
1328 = zext_hwi (cst.elt (len),
1329 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1330 }
1331
1332 for (unsigned int i = 0; i < len; i++)
1333 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1334 TREE_TYPE (nt) = type;
1335 return nt;
1336 }
1337
1338 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1339
1340 static tree
1341 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1342 CXX_MEM_STAT_INFO)
1343 {
1344 size_t length = sizeof (struct tree_poly_int_cst);
1345 record_node_allocation_statistics (POLY_INT_CST, length);
1346
1347 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1348
1349 TREE_SET_CODE (t, POLY_INT_CST);
1350 TREE_CONSTANT (t) = 1;
1351 TREE_TYPE (t) = type;
1352 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1353 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1354 return t;
1355 }
1356
1357 /* Create a constant tree that contains CST sign-extended to TYPE. */
1358
1359 tree
1360 build_int_cst (tree type, poly_int64 cst)
1361 {
1362 /* Support legacy code. */
1363 if (!type)
1364 type = integer_type_node;
1365
1366 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1367 }
1368
1369 /* Create a constant tree that contains CST zero-extended to TYPE. */
1370
1371 tree
1372 build_int_cstu (tree type, poly_uint64 cst)
1373 {
1374 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1375 }
1376
1377 /* Create a constant tree that contains CST sign-extended to TYPE. */
1378
1379 tree
1380 build_int_cst_type (tree type, poly_int64 cst)
1381 {
1382 gcc_assert (type);
1383 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1384 }
1385
1386 /* Constructs tree in type TYPE from with value given by CST. Signedness
1387 of CST is assumed to be the same as the signedness of TYPE. */
1388
1389 tree
1390 double_int_to_tree (tree type, double_int cst)
1391 {
1392 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1393 }
1394
1395 /* We force the wide_int CST to the range of the type TYPE by sign or
1396 zero extending it. OVERFLOWABLE indicates if we are interested in
1397 overflow of the value, when >0 we are only interested in signed
1398 overflow, for <0 we are interested in any overflow. OVERFLOWED
1399 indicates whether overflow has already occurred. CONST_OVERFLOWED
1400 indicates whether constant overflow has already occurred. We force
1401 T's value to be within range of T's type (by setting to 0 or 1 all
1402 the bits outside the type's range). We set TREE_OVERFLOWED if,
1403 OVERFLOWED is nonzero,
1404 or OVERFLOWABLE is >0 and signed overflow occurs
1405 or OVERFLOWABLE is <0 and any overflow occurs
1406 We return a new tree node for the extended wide_int. The node
1407 is shared if no overflow flags are set. */
1408
1409
1410 tree
1411 force_fit_type (tree type, const poly_wide_int_ref &cst,
1412 int overflowable, bool overflowed)
1413 {
1414 signop sign = TYPE_SIGN (type);
1415
1416 /* If we need to set overflow flags, return a new unshared node. */
1417 if (overflowed || !wi::fits_to_tree_p (cst, type))
1418 {
1419 if (overflowed
1420 || overflowable < 0
1421 || (overflowable > 0 && sign == SIGNED))
1422 {
1423 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1424 sign);
1425 tree t;
1426 if (tmp.is_constant ())
1427 t = build_new_int_cst (type, tmp.coeffs[0]);
1428 else
1429 {
1430 tree coeffs[NUM_POLY_INT_COEFFS];
1431 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1432 {
1433 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1434 TREE_OVERFLOW (coeffs[i]) = 1;
1435 }
1436 t = build_new_poly_int_cst (type, coeffs);
1437 }
1438 TREE_OVERFLOW (t) = 1;
1439 return t;
1440 }
1441 }
1442
1443 /* Else build a shared node. */
1444 return wide_int_to_tree (type, cst);
1445 }
1446
1447 /* These are the hash table functions for the hash table of INTEGER_CST
1448 nodes of a sizetype. */
1449
1450 /* Return the hash code X, an INTEGER_CST. */
1451
1452 hashval_t
1453 int_cst_hasher::hash (tree x)
1454 {
1455 const_tree const t = x;
1456 hashval_t code = TYPE_UID (TREE_TYPE (t));
1457 int i;
1458
1459 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1460 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1461
1462 return code;
1463 }
1464
1465 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1466 is the same as that given by *Y, which is the same. */
1467
1468 bool
1469 int_cst_hasher::equal (tree x, tree y)
1470 {
1471 const_tree const xt = x;
1472 const_tree const yt = y;
1473
1474 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1475 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1476 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1477 return false;
1478
1479 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1480 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1481 return false;
1482
1483 return true;
1484 }
1485
1486 /* Create an INT_CST node of TYPE and value CST.
1487 The returned node is always shared. For small integers we use a
1488 per-type vector cache, for larger ones we use a single hash table.
1489 The value is extended from its precision according to the sign of
1490 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1491 the upper bits and ensures that hashing and value equality based
1492 upon the underlying HOST_WIDE_INTs works without masking. */
1493
1494 static tree
1495 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1496 {
1497 tree t;
1498 int ix = -1;
1499 int limit = 0;
1500
1501 gcc_assert (type);
1502 unsigned int prec = TYPE_PRECISION (type);
1503 signop sgn = TYPE_SIGN (type);
1504
1505 /* Verify that everything is canonical. */
1506 int l = pcst.get_len ();
1507 if (l > 1)
1508 {
1509 if (pcst.elt (l - 1) == 0)
1510 gcc_checking_assert (pcst.elt (l - 2) < 0);
1511 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1512 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1513 }
1514
1515 wide_int cst = wide_int::from (pcst, prec, sgn);
1516 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1517
1518 if (ext_len == 1)
1519 {
1520 /* We just need to store a single HOST_WIDE_INT. */
1521 HOST_WIDE_INT hwi;
1522 if (TYPE_UNSIGNED (type))
1523 hwi = cst.to_uhwi ();
1524 else
1525 hwi = cst.to_shwi ();
1526
1527 switch (TREE_CODE (type))
1528 {
1529 case NULLPTR_TYPE:
1530 gcc_assert (hwi == 0);
1531 /* Fallthru. */
1532
1533 case POINTER_TYPE:
1534 case REFERENCE_TYPE:
1535 /* Cache NULL pointer and zero bounds. */
1536 if (hwi == 0)
1537 {
1538 limit = 1;
1539 ix = 0;
1540 }
1541 break;
1542
1543 case BOOLEAN_TYPE:
1544 /* Cache false or true. */
1545 limit = 2;
1546 if (IN_RANGE (hwi, 0, 1))
1547 ix = hwi;
1548 break;
1549
1550 case INTEGER_TYPE:
1551 case OFFSET_TYPE:
1552 if (TYPE_SIGN (type) == UNSIGNED)
1553 {
1554 /* Cache [0, N). */
1555 limit = param_integer_share_limit;
1556 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1557 ix = hwi;
1558 }
1559 else
1560 {
1561 /* Cache [-1, N). */
1562 limit = param_integer_share_limit + 1;
1563 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1564 ix = hwi + 1;
1565 }
1566 break;
1567
1568 case ENUMERAL_TYPE:
1569 break;
1570
1571 default:
1572 gcc_unreachable ();
1573 }
1574
1575 if (ix >= 0)
1576 {
1577 /* Look for it in the type's vector of small shared ints. */
1578 if (!TYPE_CACHED_VALUES_P (type))
1579 {
1580 TYPE_CACHED_VALUES_P (type) = 1;
1581 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1582 }
1583
1584 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1585 if (t)
1586 /* Make sure no one is clobbering the shared constant. */
1587 gcc_checking_assert (TREE_TYPE (t) == type
1588 && TREE_INT_CST_NUNITS (t) == 1
1589 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1590 && TREE_INT_CST_EXT_NUNITS (t) == 1
1591 && TREE_INT_CST_ELT (t, 0) == hwi);
1592 else
1593 {
1594 /* Create a new shared int. */
1595 t = build_new_int_cst (type, cst);
1596 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1597 }
1598 }
1599 else
1600 {
1601 /* Use the cache of larger shared ints, using int_cst_node as
1602 a temporary. */
1603
1604 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1605 TREE_TYPE (int_cst_node) = type;
1606
1607 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1608 t = *slot;
1609 if (!t)
1610 {
1611 /* Insert this one into the hash table. */
1612 t = int_cst_node;
1613 *slot = t;
1614 /* Make a new node for next time round. */
1615 int_cst_node = make_int_cst (1, 1);
1616 }
1617 }
1618 }
1619 else
1620 {
1621 /* The value either hashes properly or we drop it on the floor
1622 for the gc to take care of. There will not be enough of them
1623 to worry about. */
1624
1625 tree nt = build_new_int_cst (type, cst);
1626 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1627 t = *slot;
1628 if (!t)
1629 {
1630 /* Insert this one into the hash table. */
1631 t = nt;
1632 *slot = t;
1633 }
1634 else
1635 ggc_free (nt);
1636 }
1637
1638 return t;
1639 }
1640
1641 hashval_t
1642 poly_int_cst_hasher::hash (tree t)
1643 {
1644 inchash::hash hstate;
1645
1646 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1649
1650 return hstate.end ();
1651 }
1652
1653 bool
1654 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1655 {
1656 if (TREE_TYPE (x) != y.first)
1657 return false;
1658 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1659 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1660 return false;
1661 return true;
1662 }
1663
1664 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1665 The elements must also have type TYPE. */
1666
1667 tree
1668 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1669 {
1670 unsigned int prec = TYPE_PRECISION (type);
1671 gcc_assert (prec <= values.coeffs[0].get_precision ());
1672 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1673
1674 inchash::hash h;
1675 h.add_int (TYPE_UID (type));
1676 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1677 h.add_wide_int (c.coeffs[i]);
1678 poly_int_cst_hasher::compare_type comp (type, &c);
1679 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1680 INSERT);
1681 if (*slot == NULL_TREE)
1682 {
1683 tree coeffs[NUM_POLY_INT_COEFFS];
1684 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1685 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1686 *slot = build_new_poly_int_cst (type, coeffs);
1687 }
1688 return *slot;
1689 }
1690
1691 /* Create a constant tree with value VALUE in type TYPE. */
1692
1693 tree
1694 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1695 {
1696 if (value.is_constant ())
1697 return wide_int_to_tree_1 (type, value.coeffs[0]);
1698 return build_poly_int_cst (type, value);
1699 }
1700
1701 void
1702 cache_integer_cst (tree t)
1703 {
1704 tree type = TREE_TYPE (t);
1705 int ix = -1;
1706 int limit = 0;
1707 int prec = TYPE_PRECISION (type);
1708
1709 gcc_assert (!TREE_OVERFLOW (t));
1710
1711 switch (TREE_CODE (type))
1712 {
1713 case NULLPTR_TYPE:
1714 gcc_assert (integer_zerop (t));
1715 /* Fallthru. */
1716
1717 case POINTER_TYPE:
1718 case REFERENCE_TYPE:
1719 /* Cache NULL pointer. */
1720 if (integer_zerop (t))
1721 {
1722 limit = 1;
1723 ix = 0;
1724 }
1725 break;
1726
1727 case BOOLEAN_TYPE:
1728 /* Cache false or true. */
1729 limit = 2;
1730 if (wi::ltu_p (wi::to_wide (t), 2))
1731 ix = TREE_INT_CST_ELT (t, 0);
1732 break;
1733
1734 case INTEGER_TYPE:
1735 case OFFSET_TYPE:
1736 if (TYPE_UNSIGNED (type))
1737 {
1738 /* Cache 0..N */
1739 limit = param_integer_share_limit;
1740
1741 /* This is a little hokie, but if the prec is smaller than
1742 what is necessary to hold param_integer_share_limit, then the
1743 obvious test will not get the correct answer. */
1744 if (prec < HOST_BITS_PER_WIDE_INT)
1745 {
1746 if (tree_to_uhwi (t)
1747 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1748 ix = tree_to_uhwi (t);
1749 }
1750 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1751 ix = tree_to_uhwi (t);
1752 }
1753 else
1754 {
1755 /* Cache -1..N */
1756 limit = param_integer_share_limit + 1;
1757
1758 if (integer_minus_onep (t))
1759 ix = 0;
1760 else if (!wi::neg_p (wi::to_wide (t)))
1761 {
1762 if (prec < HOST_BITS_PER_WIDE_INT)
1763 {
1764 if (tree_to_shwi (t) < param_integer_share_limit)
1765 ix = tree_to_shwi (t) + 1;
1766 }
1767 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1768 ix = tree_to_shwi (t) + 1;
1769 }
1770 }
1771 break;
1772
1773 case ENUMERAL_TYPE:
1774 break;
1775
1776 default:
1777 gcc_unreachable ();
1778 }
1779
1780 if (ix >= 0)
1781 {
1782 /* Look for it in the type's vector of small shared ints. */
1783 if (!TYPE_CACHED_VALUES_P (type))
1784 {
1785 TYPE_CACHED_VALUES_P (type) = 1;
1786 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1787 }
1788
1789 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1790 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1791 }
1792 else
1793 {
1794 /* Use the cache of larger shared ints. */
1795 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1796 /* If there is already an entry for the number verify it's the
1797 same. */
1798 if (*slot)
1799 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1800 else
1801 /* Otherwise insert this one into the hash table. */
1802 *slot = t;
1803 }
1804 }
1805
1806
1807 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1808 and the rest are zeros. */
1809
1810 tree
1811 build_low_bits_mask (tree type, unsigned bits)
1812 {
1813 gcc_assert (bits <= TYPE_PRECISION (type));
1814
1815 return wide_int_to_tree (type, wi::mask (bits, false,
1816 TYPE_PRECISION (type)));
1817 }
1818
1819 /* Checks that X is integer constant that can be expressed in (unsigned)
1820 HOST_WIDE_INT without loss of precision. */
1821
1822 bool
1823 cst_and_fits_in_hwi (const_tree x)
1824 {
1825 return (TREE_CODE (x) == INTEGER_CST
1826 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1827 }
1828
1829 /* Build a newly constructed VECTOR_CST with the given values of
1830 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1831
1832 tree
1833 make_vector (unsigned log2_npatterns,
1834 unsigned int nelts_per_pattern MEM_STAT_DECL)
1835 {
1836 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1837 tree t;
1838 unsigned npatterns = 1 << log2_npatterns;
1839 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1840 unsigned length = (sizeof (struct tree_vector)
1841 + (encoded_nelts - 1) * sizeof (tree));
1842
1843 record_node_allocation_statistics (VECTOR_CST, length);
1844
1845 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1846
1847 TREE_SET_CODE (t, VECTOR_CST);
1848 TREE_CONSTANT (t) = 1;
1849 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1850 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1851
1852 return t;
1853 }
1854
1855 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1856 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1857
1858 tree
1859 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1860 {
1861 if (vec_safe_length (v) == 0)
1862 return build_zero_cst (type);
1863
1864 unsigned HOST_WIDE_INT idx, nelts;
1865 tree value;
1866
1867 /* We can't construct a VECTOR_CST for a variable number of elements. */
1868 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1869 tree_vector_builder vec (type, nelts, 1);
1870 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1871 {
1872 if (TREE_CODE (value) == VECTOR_CST)
1873 {
1874 /* If NELTS is constant then this must be too. */
1875 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1876 for (unsigned i = 0; i < sub_nelts; ++i)
1877 vec.quick_push (VECTOR_CST_ELT (value, i));
1878 }
1879 else
1880 vec.quick_push (value);
1881 }
1882 while (vec.length () < nelts)
1883 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1884
1885 return vec.build ();
1886 }
1887
1888 /* Build a vector of type VECTYPE where all the elements are SCs. */
1889 tree
1890 build_vector_from_val (tree vectype, tree sc)
1891 {
1892 unsigned HOST_WIDE_INT i, nunits;
1893
1894 if (sc == error_mark_node)
1895 return sc;
1896
1897 /* Verify that the vector type is suitable for SC. Note that there
1898 is some inconsistency in the type-system with respect to restrict
1899 qualifications of pointers. Vector types always have a main-variant
1900 element type and the qualification is applied to the vector-type.
1901 So TREE_TYPE (vector-type) does not return a properly qualified
1902 vector element-type. */
1903 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1904 TREE_TYPE (vectype)));
1905
1906 if (CONSTANT_CLASS_P (sc))
1907 {
1908 tree_vector_builder v (vectype, 1, 1);
1909 v.quick_push (sc);
1910 return v.build ();
1911 }
1912 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1913 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1914 else
1915 {
1916 vec<constructor_elt, va_gc> *v;
1917 vec_alloc (v, nunits);
1918 for (i = 0; i < nunits; ++i)
1919 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1920 return build_constructor (vectype, v);
1921 }
1922 }
1923
1924 /* If TYPE is not a vector type, just return SC, otherwise return
1925 build_vector_from_val (TYPE, SC). */
1926
1927 tree
1928 build_uniform_cst (tree type, tree sc)
1929 {
1930 if (!VECTOR_TYPE_P (type))
1931 return sc;
1932
1933 return build_vector_from_val (type, sc);
1934 }
1935
1936 /* Build a vector series of type TYPE in which element I has the value
1937 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1938 and a VEC_SERIES_EXPR otherwise. */
1939
1940 tree
1941 build_vec_series (tree type, tree base, tree step)
1942 {
1943 if (integer_zerop (step))
1944 return build_vector_from_val (type, base);
1945 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1946 {
1947 tree_vector_builder builder (type, 1, 3);
1948 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1949 wi::to_wide (base) + wi::to_wide (step));
1950 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1951 wi::to_wide (elt1) + wi::to_wide (step));
1952 builder.quick_push (base);
1953 builder.quick_push (elt1);
1954 builder.quick_push (elt2);
1955 return builder.build ();
1956 }
1957 return build2 (VEC_SERIES_EXPR, type, base, step);
1958 }
1959
1960 /* Return a vector with the same number of units and number of bits
1961 as VEC_TYPE, but in which the elements are a linear series of unsigned
1962 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1963
1964 tree
1965 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1966 {
1967 tree index_vec_type = vec_type;
1968 tree index_elt_type = TREE_TYPE (vec_type);
1969 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1970 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1971 {
1972 index_elt_type = build_nonstandard_integer_type
1973 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1974 index_vec_type = build_vector_type (index_elt_type, nunits);
1975 }
1976
1977 tree_vector_builder v (index_vec_type, 1, 3);
1978 for (unsigned int i = 0; i < 3; ++i)
1979 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1980 return v.build ();
1981 }
1982
1983 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
1984 elements are A and the rest are B. */
1985
1986 tree
1987 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
1988 {
1989 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
1990 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
1991 /* Optimize the constant case. */
1992 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
1993 count /= 2;
1994 tree_vector_builder builder (vec_type, count, 2);
1995 for (unsigned int i = 0; i < count * 2; ++i)
1996 builder.quick_push (i < num_a ? a : b);
1997 return builder.build ();
1998 }
1999
2000 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2001 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2002
2003 void
2004 recompute_constructor_flags (tree c)
2005 {
2006 unsigned int i;
2007 tree val;
2008 bool constant_p = true;
2009 bool side_effects_p = false;
2010 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2011
2012 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2013 {
2014 /* Mostly ctors will have elts that don't have side-effects, so
2015 the usual case is to scan all the elements. Hence a single
2016 loop for both const and side effects, rather than one loop
2017 each (with early outs). */
2018 if (!TREE_CONSTANT (val))
2019 constant_p = false;
2020 if (TREE_SIDE_EFFECTS (val))
2021 side_effects_p = true;
2022 }
2023
2024 TREE_SIDE_EFFECTS (c) = side_effects_p;
2025 TREE_CONSTANT (c) = constant_p;
2026 }
2027
2028 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2029 CONSTRUCTOR C. */
2030
2031 void
2032 verify_constructor_flags (tree c)
2033 {
2034 unsigned int i;
2035 tree val;
2036 bool constant_p = TREE_CONSTANT (c);
2037 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2038 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2039
2040 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2041 {
2042 if (constant_p && !TREE_CONSTANT (val))
2043 internal_error ("non-constant element in constant CONSTRUCTOR");
2044 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2045 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2046 }
2047 }
2048
2049 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2050 are in the vec pointed to by VALS. */
2051 tree
2052 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2053 {
2054 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2055
2056 TREE_TYPE (c) = type;
2057 CONSTRUCTOR_ELTS (c) = vals;
2058
2059 recompute_constructor_flags (c);
2060
2061 return c;
2062 }
2063
2064 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2065 INDEX and VALUE. */
2066 tree
2067 build_constructor_single (tree type, tree index, tree value)
2068 {
2069 vec<constructor_elt, va_gc> *v;
2070 constructor_elt elt = {index, value};
2071
2072 vec_alloc (v, 1);
2073 v->quick_push (elt);
2074
2075 return build_constructor (type, v);
2076 }
2077
2078
2079 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2080 are in a list pointed to by VALS. */
2081 tree
2082 build_constructor_from_list (tree type, tree vals)
2083 {
2084 tree t;
2085 vec<constructor_elt, va_gc> *v = NULL;
2086
2087 if (vals)
2088 {
2089 vec_alloc (v, list_length (vals));
2090 for (t = vals; t; t = TREE_CHAIN (t))
2091 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2092 }
2093
2094 return build_constructor (type, v);
2095 }
2096
2097 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2098 of elements, provided as index/value pairs. */
2099
2100 tree
2101 build_constructor_va (tree type, int nelts, ...)
2102 {
2103 vec<constructor_elt, va_gc> *v = NULL;
2104 va_list p;
2105
2106 va_start (p, nelts);
2107 vec_alloc (v, nelts);
2108 while (nelts--)
2109 {
2110 tree index = va_arg (p, tree);
2111 tree value = va_arg (p, tree);
2112 CONSTRUCTOR_APPEND_ELT (v, index, value);
2113 }
2114 va_end (p);
2115 return build_constructor (type, v);
2116 }
2117
2118 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2119
2120 tree
2121 build_clobber (tree type)
2122 {
2123 tree clobber = build_constructor (type, NULL);
2124 TREE_THIS_VOLATILE (clobber) = true;
2125 return clobber;
2126 }
2127
2128 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2129
2130 tree
2131 build_fixed (tree type, FIXED_VALUE_TYPE f)
2132 {
2133 tree v;
2134 FIXED_VALUE_TYPE *fp;
2135
2136 v = make_node (FIXED_CST);
2137 fp = ggc_alloc<fixed_value> ();
2138 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2139
2140 TREE_TYPE (v) = type;
2141 TREE_FIXED_CST_PTR (v) = fp;
2142 return v;
2143 }
2144
2145 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2146
2147 tree
2148 build_real (tree type, REAL_VALUE_TYPE d)
2149 {
2150 tree v;
2151 REAL_VALUE_TYPE *dp;
2152 int overflow = 0;
2153
2154 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2155 Consider doing it via real_convert now. */
2156
2157 v = make_node (REAL_CST);
2158 dp = ggc_alloc<real_value> ();
2159 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2160
2161 TREE_TYPE (v) = type;
2162 TREE_REAL_CST_PTR (v) = dp;
2163 TREE_OVERFLOW (v) = overflow;
2164 return v;
2165 }
2166
2167 /* Like build_real, but first truncate D to the type. */
2168
2169 tree
2170 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2171 {
2172 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2173 }
2174
2175 /* Return a new REAL_CST node whose type is TYPE
2176 and whose value is the integer value of the INTEGER_CST node I. */
2177
2178 REAL_VALUE_TYPE
2179 real_value_from_int_cst (const_tree type, const_tree i)
2180 {
2181 REAL_VALUE_TYPE d;
2182
2183 /* Clear all bits of the real value type so that we can later do
2184 bitwise comparisons to see if two values are the same. */
2185 memset (&d, 0, sizeof d);
2186
2187 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2188 TYPE_SIGN (TREE_TYPE (i)));
2189 return d;
2190 }
2191
2192 /* Given a tree representing an integer constant I, return a tree
2193 representing the same value as a floating-point constant of type TYPE. */
2194
2195 tree
2196 build_real_from_int_cst (tree type, const_tree i)
2197 {
2198 tree v;
2199 int overflow = TREE_OVERFLOW (i);
2200
2201 v = build_real (type, real_value_from_int_cst (type, i));
2202
2203 TREE_OVERFLOW (v) |= overflow;
2204 return v;
2205 }
2206
2207 /* Return a newly constructed STRING_CST node whose value is
2208 the LEN characters at STR.
2209 Note that for a C string literal, LEN should include the trailing NUL.
2210 The TREE_TYPE is not initialized. */
2211
2212 tree
2213 build_string (int len, const char *str)
2214 {
2215 tree s;
2216 size_t length;
2217
2218 /* Do not waste bytes provided by padding of struct tree_string. */
2219 length = len + offsetof (struct tree_string, str) + 1;
2220
2221 record_node_allocation_statistics (STRING_CST, length);
2222
2223 s = (tree) ggc_internal_alloc (length);
2224
2225 memset (s, 0, sizeof (struct tree_typed));
2226 TREE_SET_CODE (s, STRING_CST);
2227 TREE_CONSTANT (s) = 1;
2228 TREE_STRING_LENGTH (s) = len;
2229 memcpy (s->string.str, str, len);
2230 s->string.str[len] = '\0';
2231
2232 return s;
2233 }
2234
2235 /* Return a newly constructed COMPLEX_CST node whose value is
2236 specified by the real and imaginary parts REAL and IMAG.
2237 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2238 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2239
2240 tree
2241 build_complex (tree type, tree real, tree imag)
2242 {
2243 gcc_assert (CONSTANT_CLASS_P (real));
2244 gcc_assert (CONSTANT_CLASS_P (imag));
2245
2246 tree t = make_node (COMPLEX_CST);
2247
2248 TREE_REALPART (t) = real;
2249 TREE_IMAGPART (t) = imag;
2250 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2251 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2252 return t;
2253 }
2254
2255 /* Build a complex (inf +- 0i), such as for the result of cproj.
2256 TYPE is the complex tree type of the result. If NEG is true, the
2257 imaginary zero is negative. */
2258
2259 tree
2260 build_complex_inf (tree type, bool neg)
2261 {
2262 REAL_VALUE_TYPE rinf, rzero = dconst0;
2263
2264 real_inf (&rinf);
2265 rzero.sign = neg;
2266 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2267 build_real (TREE_TYPE (type), rzero));
2268 }
2269
2270 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2271 element is set to 1. In particular, this is 1 + i for complex types. */
2272
2273 tree
2274 build_each_one_cst (tree type)
2275 {
2276 if (TREE_CODE (type) == COMPLEX_TYPE)
2277 {
2278 tree scalar = build_one_cst (TREE_TYPE (type));
2279 return build_complex (type, scalar, scalar);
2280 }
2281 else
2282 return build_one_cst (type);
2283 }
2284
2285 /* Return a constant of arithmetic type TYPE which is the
2286 multiplicative identity of the set TYPE. */
2287
2288 tree
2289 build_one_cst (tree type)
2290 {
2291 switch (TREE_CODE (type))
2292 {
2293 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2294 case POINTER_TYPE: case REFERENCE_TYPE:
2295 case OFFSET_TYPE:
2296 return build_int_cst (type, 1);
2297
2298 case REAL_TYPE:
2299 return build_real (type, dconst1);
2300
2301 case FIXED_POINT_TYPE:
2302 /* We can only generate 1 for accum types. */
2303 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2304 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2305
2306 case VECTOR_TYPE:
2307 {
2308 tree scalar = build_one_cst (TREE_TYPE (type));
2309
2310 return build_vector_from_val (type, scalar);
2311 }
2312
2313 case COMPLEX_TYPE:
2314 return build_complex (type,
2315 build_one_cst (TREE_TYPE (type)),
2316 build_zero_cst (TREE_TYPE (type)));
2317
2318 default:
2319 gcc_unreachable ();
2320 }
2321 }
2322
2323 /* Return an integer of type TYPE containing all 1's in as much precision as
2324 it contains, or a complex or vector whose subparts are such integers. */
2325
2326 tree
2327 build_all_ones_cst (tree type)
2328 {
2329 if (TREE_CODE (type) == COMPLEX_TYPE)
2330 {
2331 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2332 return build_complex (type, scalar, scalar);
2333 }
2334 else
2335 return build_minus_one_cst (type);
2336 }
2337
2338 /* Return a constant of arithmetic type TYPE which is the
2339 opposite of the multiplicative identity of the set TYPE. */
2340
2341 tree
2342 build_minus_one_cst (tree type)
2343 {
2344 switch (TREE_CODE (type))
2345 {
2346 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2347 case POINTER_TYPE: case REFERENCE_TYPE:
2348 case OFFSET_TYPE:
2349 return build_int_cst (type, -1);
2350
2351 case REAL_TYPE:
2352 return build_real (type, dconstm1);
2353
2354 case FIXED_POINT_TYPE:
2355 /* We can only generate 1 for accum types. */
2356 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2357 return build_fixed (type,
2358 fixed_from_double_int (double_int_minus_one,
2359 SCALAR_TYPE_MODE (type)));
2360
2361 case VECTOR_TYPE:
2362 {
2363 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2364
2365 return build_vector_from_val (type, scalar);
2366 }
2367
2368 case COMPLEX_TYPE:
2369 return build_complex (type,
2370 build_minus_one_cst (TREE_TYPE (type)),
2371 build_zero_cst (TREE_TYPE (type)));
2372
2373 default:
2374 gcc_unreachable ();
2375 }
2376 }
2377
2378 /* Build 0 constant of type TYPE. This is used by constructor folding
2379 and thus the constant should be represented in memory by
2380 zero(es). */
2381
2382 tree
2383 build_zero_cst (tree type)
2384 {
2385 switch (TREE_CODE (type))
2386 {
2387 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2388 case POINTER_TYPE: case REFERENCE_TYPE:
2389 case OFFSET_TYPE: case NULLPTR_TYPE:
2390 return build_int_cst (type, 0);
2391
2392 case REAL_TYPE:
2393 return build_real (type, dconst0);
2394
2395 case FIXED_POINT_TYPE:
2396 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2397
2398 case VECTOR_TYPE:
2399 {
2400 tree scalar = build_zero_cst (TREE_TYPE (type));
2401
2402 return build_vector_from_val (type, scalar);
2403 }
2404
2405 case COMPLEX_TYPE:
2406 {
2407 tree zero = build_zero_cst (TREE_TYPE (type));
2408
2409 return build_complex (type, zero, zero);
2410 }
2411
2412 default:
2413 if (!AGGREGATE_TYPE_P (type))
2414 return fold_convert (type, integer_zero_node);
2415 return build_constructor (type, NULL);
2416 }
2417 }
2418
2419
2420 /* Build a BINFO with LEN language slots. */
2421
2422 tree
2423 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2424 {
2425 tree t;
2426 size_t length = (offsetof (struct tree_binfo, base_binfos)
2427 + vec<tree, va_gc>::embedded_size (base_binfos));
2428
2429 record_node_allocation_statistics (TREE_BINFO, length);
2430
2431 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2432
2433 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2434
2435 TREE_SET_CODE (t, TREE_BINFO);
2436
2437 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2438
2439 return t;
2440 }
2441
2442 /* Create a CASE_LABEL_EXPR tree node and return it. */
2443
2444 tree
2445 build_case_label (tree low_value, tree high_value, tree label_decl)
2446 {
2447 tree t = make_node (CASE_LABEL_EXPR);
2448
2449 TREE_TYPE (t) = void_type_node;
2450 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2451
2452 CASE_LOW (t) = low_value;
2453 CASE_HIGH (t) = high_value;
2454 CASE_LABEL (t) = label_decl;
2455 CASE_CHAIN (t) = NULL_TREE;
2456
2457 return t;
2458 }
2459
2460 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2461 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2462 The latter determines the length of the HOST_WIDE_INT vector. */
2463
2464 tree
2465 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2466 {
2467 tree t;
2468 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2469 + sizeof (struct tree_int_cst));
2470
2471 gcc_assert (len);
2472 record_node_allocation_statistics (INTEGER_CST, length);
2473
2474 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2475
2476 TREE_SET_CODE (t, INTEGER_CST);
2477 TREE_INT_CST_NUNITS (t) = len;
2478 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2479 /* to_offset can only be applied to trees that are offset_int-sized
2480 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2481 must be exactly the precision of offset_int and so LEN is correct. */
2482 if (ext_len <= OFFSET_INT_ELTS)
2483 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2484 else
2485 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2486
2487 TREE_CONSTANT (t) = 1;
2488
2489 return t;
2490 }
2491
2492 /* Build a newly constructed TREE_VEC node of length LEN. */
2493
2494 tree
2495 make_tree_vec (int len MEM_STAT_DECL)
2496 {
2497 tree t;
2498 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2499
2500 record_node_allocation_statistics (TREE_VEC, length);
2501
2502 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2503
2504 TREE_SET_CODE (t, TREE_VEC);
2505 TREE_VEC_LENGTH (t) = len;
2506
2507 return t;
2508 }
2509
2510 /* Grow a TREE_VEC node to new length LEN. */
2511
2512 tree
2513 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2514 {
2515 gcc_assert (TREE_CODE (v) == TREE_VEC);
2516
2517 int oldlen = TREE_VEC_LENGTH (v);
2518 gcc_assert (len > oldlen);
2519
2520 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2521 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2522
2523 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2524
2525 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2526
2527 TREE_VEC_LENGTH (v) = len;
2528
2529 return v;
2530 }
2531 \f
2532 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2533 fixed, and scalar, complex or vector. */
2534
2535 bool
2536 zerop (const_tree expr)
2537 {
2538 return (integer_zerop (expr)
2539 || real_zerop (expr)
2540 || fixed_zerop (expr));
2541 }
2542
2543 /* Return 1 if EXPR is the integer constant zero or a complex constant
2544 of zero, or a location wrapper for such a constant. */
2545
2546 bool
2547 integer_zerop (const_tree expr)
2548 {
2549 STRIP_ANY_LOCATION_WRAPPER (expr);
2550
2551 switch (TREE_CODE (expr))
2552 {
2553 case INTEGER_CST:
2554 return wi::to_wide (expr) == 0;
2555 case COMPLEX_CST:
2556 return (integer_zerop (TREE_REALPART (expr))
2557 && integer_zerop (TREE_IMAGPART (expr)));
2558 case VECTOR_CST:
2559 return (VECTOR_CST_NPATTERNS (expr) == 1
2560 && VECTOR_CST_DUPLICATE_P (expr)
2561 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2562 default:
2563 return false;
2564 }
2565 }
2566
2567 /* Return 1 if EXPR is the integer constant one or the corresponding
2568 complex constant, or a location wrapper for such a constant. */
2569
2570 bool
2571 integer_onep (const_tree expr)
2572 {
2573 STRIP_ANY_LOCATION_WRAPPER (expr);
2574
2575 switch (TREE_CODE (expr))
2576 {
2577 case INTEGER_CST:
2578 return wi::eq_p (wi::to_widest (expr), 1);
2579 case COMPLEX_CST:
2580 return (integer_onep (TREE_REALPART (expr))
2581 && integer_zerop (TREE_IMAGPART (expr)));
2582 case VECTOR_CST:
2583 return (VECTOR_CST_NPATTERNS (expr) == 1
2584 && VECTOR_CST_DUPLICATE_P (expr)
2585 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2586 default:
2587 return false;
2588 }
2589 }
2590
2591 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2592 return 1 if every piece is the integer constant one.
2593 Also return 1 for location wrappers for such a constant. */
2594
2595 bool
2596 integer_each_onep (const_tree expr)
2597 {
2598 STRIP_ANY_LOCATION_WRAPPER (expr);
2599
2600 if (TREE_CODE (expr) == COMPLEX_CST)
2601 return (integer_onep (TREE_REALPART (expr))
2602 && integer_onep (TREE_IMAGPART (expr)));
2603 else
2604 return integer_onep (expr);
2605 }
2606
2607 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2608 it contains, or a complex or vector whose subparts are such integers,
2609 or a location wrapper for such a constant. */
2610
2611 bool
2612 integer_all_onesp (const_tree expr)
2613 {
2614 STRIP_ANY_LOCATION_WRAPPER (expr);
2615
2616 if (TREE_CODE (expr) == COMPLEX_CST
2617 && integer_all_onesp (TREE_REALPART (expr))
2618 && integer_all_onesp (TREE_IMAGPART (expr)))
2619 return true;
2620
2621 else if (TREE_CODE (expr) == VECTOR_CST)
2622 return (VECTOR_CST_NPATTERNS (expr) == 1
2623 && VECTOR_CST_DUPLICATE_P (expr)
2624 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2625
2626 else if (TREE_CODE (expr) != INTEGER_CST)
2627 return false;
2628
2629 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2630 == wi::to_wide (expr));
2631 }
2632
2633 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2634 for such a constant. */
2635
2636 bool
2637 integer_minus_onep (const_tree expr)
2638 {
2639 STRIP_ANY_LOCATION_WRAPPER (expr);
2640
2641 if (TREE_CODE (expr) == COMPLEX_CST)
2642 return (integer_all_onesp (TREE_REALPART (expr))
2643 && integer_zerop (TREE_IMAGPART (expr)));
2644 else
2645 return integer_all_onesp (expr);
2646 }
2647
2648 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2649 one bit on), or a location wrapper for such a constant. */
2650
2651 bool
2652 integer_pow2p (const_tree expr)
2653 {
2654 STRIP_ANY_LOCATION_WRAPPER (expr);
2655
2656 if (TREE_CODE (expr) == COMPLEX_CST
2657 && integer_pow2p (TREE_REALPART (expr))
2658 && integer_zerop (TREE_IMAGPART (expr)))
2659 return true;
2660
2661 if (TREE_CODE (expr) != INTEGER_CST)
2662 return false;
2663
2664 return wi::popcount (wi::to_wide (expr)) == 1;
2665 }
2666
2667 /* Return 1 if EXPR is an integer constant other than zero or a
2668 complex constant other than zero, or a location wrapper for such a
2669 constant. */
2670
2671 bool
2672 integer_nonzerop (const_tree expr)
2673 {
2674 STRIP_ANY_LOCATION_WRAPPER (expr);
2675
2676 return ((TREE_CODE (expr) == INTEGER_CST
2677 && wi::to_wide (expr) != 0)
2678 || (TREE_CODE (expr) == COMPLEX_CST
2679 && (integer_nonzerop (TREE_REALPART (expr))
2680 || integer_nonzerop (TREE_IMAGPART (expr)))));
2681 }
2682
2683 /* Return 1 if EXPR is the integer constant one. For vector,
2684 return 1 if every piece is the integer constant minus one
2685 (representing the value TRUE).
2686 Also return 1 for location wrappers for such a constant. */
2687
2688 bool
2689 integer_truep (const_tree expr)
2690 {
2691 STRIP_ANY_LOCATION_WRAPPER (expr);
2692
2693 if (TREE_CODE (expr) == VECTOR_CST)
2694 return integer_all_onesp (expr);
2695 return integer_onep (expr);
2696 }
2697
2698 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2699 for such a constant. */
2700
2701 bool
2702 fixed_zerop (const_tree expr)
2703 {
2704 STRIP_ANY_LOCATION_WRAPPER (expr);
2705
2706 return (TREE_CODE (expr) == FIXED_CST
2707 && TREE_FIXED_CST (expr).data.is_zero ());
2708 }
2709
2710 /* Return the power of two represented by a tree node known to be a
2711 power of two. */
2712
2713 int
2714 tree_log2 (const_tree expr)
2715 {
2716 if (TREE_CODE (expr) == COMPLEX_CST)
2717 return tree_log2 (TREE_REALPART (expr));
2718
2719 return wi::exact_log2 (wi::to_wide (expr));
2720 }
2721
2722 /* Similar, but return the largest integer Y such that 2 ** Y is less
2723 than or equal to EXPR. */
2724
2725 int
2726 tree_floor_log2 (const_tree expr)
2727 {
2728 if (TREE_CODE (expr) == COMPLEX_CST)
2729 return tree_log2 (TREE_REALPART (expr));
2730
2731 return wi::floor_log2 (wi::to_wide (expr));
2732 }
2733
2734 /* Return number of known trailing zero bits in EXPR, or, if the value of
2735 EXPR is known to be zero, the precision of it's type. */
2736
2737 unsigned int
2738 tree_ctz (const_tree expr)
2739 {
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2741 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2742 return 0;
2743
2744 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2745 switch (TREE_CODE (expr))
2746 {
2747 case INTEGER_CST:
2748 ret1 = wi::ctz (wi::to_wide (expr));
2749 return MIN (ret1, prec);
2750 case SSA_NAME:
2751 ret1 = wi::ctz (get_nonzero_bits (expr));
2752 return MIN (ret1, prec);
2753 case PLUS_EXPR:
2754 case MINUS_EXPR:
2755 case BIT_IOR_EXPR:
2756 case BIT_XOR_EXPR:
2757 case MIN_EXPR:
2758 case MAX_EXPR:
2759 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2760 if (ret1 == 0)
2761 return ret1;
2762 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2763 return MIN (ret1, ret2);
2764 case POINTER_PLUS_EXPR:
2765 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2766 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2767 /* Second operand is sizetype, which could be in theory
2768 wider than pointer's precision. Make sure we never
2769 return more than prec. */
2770 ret2 = MIN (ret2, prec);
2771 return MIN (ret1, ret2);
2772 case BIT_AND_EXPR:
2773 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2774 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2775 return MAX (ret1, ret2);
2776 case MULT_EXPR:
2777 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2778 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2779 return MIN (ret1 + ret2, prec);
2780 case LSHIFT_EXPR:
2781 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2782 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2783 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2784 {
2785 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2786 return MIN (ret1 + ret2, prec);
2787 }
2788 return ret1;
2789 case RSHIFT_EXPR:
2790 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2791 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2792 {
2793 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2794 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2795 if (ret1 > ret2)
2796 return ret1 - ret2;
2797 }
2798 return 0;
2799 case TRUNC_DIV_EXPR:
2800 case CEIL_DIV_EXPR:
2801 case FLOOR_DIV_EXPR:
2802 case ROUND_DIV_EXPR:
2803 case EXACT_DIV_EXPR:
2804 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2805 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2806 {
2807 int l = tree_log2 (TREE_OPERAND (expr, 1));
2808 if (l >= 0)
2809 {
2810 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2811 ret2 = l;
2812 if (ret1 > ret2)
2813 return ret1 - ret2;
2814 }
2815 }
2816 return 0;
2817 CASE_CONVERT:
2818 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2819 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2820 ret1 = prec;
2821 return MIN (ret1, prec);
2822 case SAVE_EXPR:
2823 return tree_ctz (TREE_OPERAND (expr, 0));
2824 case COND_EXPR:
2825 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2826 if (ret1 == 0)
2827 return 0;
2828 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2829 return MIN (ret1, ret2);
2830 case COMPOUND_EXPR:
2831 return tree_ctz (TREE_OPERAND (expr, 1));
2832 case ADDR_EXPR:
2833 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2834 if (ret1 > BITS_PER_UNIT)
2835 {
2836 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2837 return MIN (ret1, prec);
2838 }
2839 return 0;
2840 default:
2841 return 0;
2842 }
2843 }
2844
2845 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2846 decimal float constants, so don't return 1 for them.
2847 Also return 1 for location wrappers around such a constant. */
2848
2849 bool
2850 real_zerop (const_tree expr)
2851 {
2852 STRIP_ANY_LOCATION_WRAPPER (expr);
2853
2854 switch (TREE_CODE (expr))
2855 {
2856 case REAL_CST:
2857 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2858 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2859 case COMPLEX_CST:
2860 return real_zerop (TREE_REALPART (expr))
2861 && real_zerop (TREE_IMAGPART (expr));
2862 case VECTOR_CST:
2863 {
2864 /* Don't simply check for a duplicate because the predicate
2865 accepts both +0.0 and -0.0. */
2866 unsigned count = vector_cst_encoded_nelts (expr);
2867 for (unsigned int i = 0; i < count; ++i)
2868 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2869 return false;
2870 return true;
2871 }
2872 default:
2873 return false;
2874 }
2875 }
2876
2877 /* Return 1 if EXPR is the real constant one in real or complex form.
2878 Trailing zeroes matter for decimal float constants, so don't return
2879 1 for them.
2880 Also return 1 for location wrappers around such a constant. */
2881
2882 bool
2883 real_onep (const_tree expr)
2884 {
2885 STRIP_ANY_LOCATION_WRAPPER (expr);
2886
2887 switch (TREE_CODE (expr))
2888 {
2889 case REAL_CST:
2890 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2891 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2892 case COMPLEX_CST:
2893 return real_onep (TREE_REALPART (expr))
2894 && real_zerop (TREE_IMAGPART (expr));
2895 case VECTOR_CST:
2896 return (VECTOR_CST_NPATTERNS (expr) == 1
2897 && VECTOR_CST_DUPLICATE_P (expr)
2898 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2899 default:
2900 return false;
2901 }
2902 }
2903
2904 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2905 matter for decimal float constants, so don't return 1 for them.
2906 Also return 1 for location wrappers around such a constant. */
2907
2908 bool
2909 real_minus_onep (const_tree expr)
2910 {
2911 STRIP_ANY_LOCATION_WRAPPER (expr);
2912
2913 switch (TREE_CODE (expr))
2914 {
2915 case REAL_CST:
2916 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2917 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2918 case COMPLEX_CST:
2919 return real_minus_onep (TREE_REALPART (expr))
2920 && real_zerop (TREE_IMAGPART (expr));
2921 case VECTOR_CST:
2922 return (VECTOR_CST_NPATTERNS (expr) == 1
2923 && VECTOR_CST_DUPLICATE_P (expr)
2924 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2925 default:
2926 return false;
2927 }
2928 }
2929
2930 /* Nonzero if EXP is a constant or a cast of a constant. */
2931
2932 bool
2933 really_constant_p (const_tree exp)
2934 {
2935 /* This is not quite the same as STRIP_NOPS. It does more. */
2936 while (CONVERT_EXPR_P (exp)
2937 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2938 exp = TREE_OPERAND (exp, 0);
2939 return TREE_CONSTANT (exp);
2940 }
2941
2942 /* Return true if T holds a polynomial pointer difference, storing it in
2943 *VALUE if so. A true return means that T's precision is no greater
2944 than 64 bits, which is the largest address space we support, so *VALUE
2945 never loses precision. However, the signedness of the result does
2946 not necessarily match the signedness of T: sometimes an unsigned type
2947 like sizetype is used to encode a value that is actually negative. */
2948
2949 bool
2950 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2951 {
2952 if (!t)
2953 return false;
2954 if (TREE_CODE (t) == INTEGER_CST)
2955 {
2956 if (!cst_and_fits_in_hwi (t))
2957 return false;
2958 *value = int_cst_value (t);
2959 return true;
2960 }
2961 if (POLY_INT_CST_P (t))
2962 {
2963 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2964 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2965 return false;
2966 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2967 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2968 return true;
2969 }
2970 return false;
2971 }
2972
2973 poly_int64
2974 tree_to_poly_int64 (const_tree t)
2975 {
2976 gcc_assert (tree_fits_poly_int64_p (t));
2977 if (POLY_INT_CST_P (t))
2978 return poly_int_cst_value (t).force_shwi ();
2979 return TREE_INT_CST_LOW (t);
2980 }
2981
2982 poly_uint64
2983 tree_to_poly_uint64 (const_tree t)
2984 {
2985 gcc_assert (tree_fits_poly_uint64_p (t));
2986 if (POLY_INT_CST_P (t))
2987 return poly_int_cst_value (t).force_uhwi ();
2988 return TREE_INT_CST_LOW (t);
2989 }
2990 \f
2991 /* Return first list element whose TREE_VALUE is ELEM.
2992 Return 0 if ELEM is not in LIST. */
2993
2994 tree
2995 value_member (tree elem, tree list)
2996 {
2997 while (list)
2998 {
2999 if (elem == TREE_VALUE (list))
3000 return list;
3001 list = TREE_CHAIN (list);
3002 }
3003 return NULL_TREE;
3004 }
3005
3006 /* Return first list element whose TREE_PURPOSE is ELEM.
3007 Return 0 if ELEM is not in LIST. */
3008
3009 tree
3010 purpose_member (const_tree elem, tree list)
3011 {
3012 while (list)
3013 {
3014 if (elem == TREE_PURPOSE (list))
3015 return list;
3016 list = TREE_CHAIN (list);
3017 }
3018 return NULL_TREE;
3019 }
3020
3021 /* Return true if ELEM is in V. */
3022
3023 bool
3024 vec_member (const_tree elem, vec<tree, va_gc> *v)
3025 {
3026 unsigned ix;
3027 tree t;
3028 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3029 if (elem == t)
3030 return true;
3031 return false;
3032 }
3033
3034 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3035 NULL_TREE. */
3036
3037 tree
3038 chain_index (int idx, tree chain)
3039 {
3040 for (; chain && idx > 0; --idx)
3041 chain = TREE_CHAIN (chain);
3042 return chain;
3043 }
3044
3045 /* Return nonzero if ELEM is part of the chain CHAIN. */
3046
3047 bool
3048 chain_member (const_tree elem, const_tree chain)
3049 {
3050 while (chain)
3051 {
3052 if (elem == chain)
3053 return true;
3054 chain = DECL_CHAIN (chain);
3055 }
3056
3057 return false;
3058 }
3059
3060 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3061 We expect a null pointer to mark the end of the chain.
3062 This is the Lisp primitive `length'. */
3063
3064 int
3065 list_length (const_tree t)
3066 {
3067 const_tree p = t;
3068 #ifdef ENABLE_TREE_CHECKING
3069 const_tree q = t;
3070 #endif
3071 int len = 0;
3072
3073 while (p)
3074 {
3075 p = TREE_CHAIN (p);
3076 #ifdef ENABLE_TREE_CHECKING
3077 if (len % 2)
3078 q = TREE_CHAIN (q);
3079 gcc_assert (p != q);
3080 #endif
3081 len++;
3082 }
3083
3084 return len;
3085 }
3086
3087 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3088 UNION_TYPE TYPE, or NULL_TREE if none. */
3089
3090 tree
3091 first_field (const_tree type)
3092 {
3093 tree t = TYPE_FIELDS (type);
3094 while (t && TREE_CODE (t) != FIELD_DECL)
3095 t = TREE_CHAIN (t);
3096 return t;
3097 }
3098
3099 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3100 UNION_TYPE TYPE, or NULL_TREE if none. */
3101
3102 tree
3103 last_field (const_tree type)
3104 {
3105 tree last = NULL_TREE;
3106
3107 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3108 {
3109 if (TREE_CODE (fld) != FIELD_DECL)
3110 continue;
3111
3112 last = fld;
3113 }
3114
3115 return last;
3116 }
3117
3118 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3119 by modifying the last node in chain 1 to point to chain 2.
3120 This is the Lisp primitive `nconc'. */
3121
3122 tree
3123 chainon (tree op1, tree op2)
3124 {
3125 tree t1;
3126
3127 if (!op1)
3128 return op2;
3129 if (!op2)
3130 return op1;
3131
3132 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3133 continue;
3134 TREE_CHAIN (t1) = op2;
3135
3136 #ifdef ENABLE_TREE_CHECKING
3137 {
3138 tree t2;
3139 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3140 gcc_assert (t2 != t1);
3141 }
3142 #endif
3143
3144 return op1;
3145 }
3146
3147 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3148
3149 tree
3150 tree_last (tree chain)
3151 {
3152 tree next;
3153 if (chain)
3154 while ((next = TREE_CHAIN (chain)))
3155 chain = next;
3156 return chain;
3157 }
3158
3159 /* Reverse the order of elements in the chain T,
3160 and return the new head of the chain (old last element). */
3161
3162 tree
3163 nreverse (tree t)
3164 {
3165 tree prev = 0, decl, next;
3166 for (decl = t; decl; decl = next)
3167 {
3168 /* We shouldn't be using this function to reverse BLOCK chains; we
3169 have blocks_nreverse for that. */
3170 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3171 next = TREE_CHAIN (decl);
3172 TREE_CHAIN (decl) = prev;
3173 prev = decl;
3174 }
3175 return prev;
3176 }
3177 \f
3178 /* Return a newly created TREE_LIST node whose
3179 purpose and value fields are PARM and VALUE. */
3180
3181 tree
3182 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3183 {
3184 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3185 TREE_PURPOSE (t) = parm;
3186 TREE_VALUE (t) = value;
3187 return t;
3188 }
3189
3190 /* Build a chain of TREE_LIST nodes from a vector. */
3191
3192 tree
3193 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3194 {
3195 tree ret = NULL_TREE;
3196 tree *pp = &ret;
3197 unsigned int i;
3198 tree t;
3199 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3200 {
3201 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3202 pp = &TREE_CHAIN (*pp);
3203 }
3204 return ret;
3205 }
3206
3207 /* Return a newly created TREE_LIST node whose
3208 purpose and value fields are PURPOSE and VALUE
3209 and whose TREE_CHAIN is CHAIN. */
3210
3211 tree
3212 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3213 {
3214 tree node;
3215
3216 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3217 memset (node, 0, sizeof (struct tree_common));
3218
3219 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3220
3221 TREE_SET_CODE (node, TREE_LIST);
3222 TREE_CHAIN (node) = chain;
3223 TREE_PURPOSE (node) = purpose;
3224 TREE_VALUE (node) = value;
3225 return node;
3226 }
3227
3228 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3229 trees. */
3230
3231 vec<tree, va_gc> *
3232 ctor_to_vec (tree ctor)
3233 {
3234 vec<tree, va_gc> *vec;
3235 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3236 unsigned int ix;
3237 tree val;
3238
3239 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3240 vec->quick_push (val);
3241
3242 return vec;
3243 }
3244 \f
3245 /* Return the size nominally occupied by an object of type TYPE
3246 when it resides in memory. The value is measured in units of bytes,
3247 and its data type is that normally used for type sizes
3248 (which is the first type created by make_signed_type or
3249 make_unsigned_type). */
3250
3251 tree
3252 size_in_bytes_loc (location_t loc, const_tree type)
3253 {
3254 tree t;
3255
3256 if (type == error_mark_node)
3257 return integer_zero_node;
3258
3259 type = TYPE_MAIN_VARIANT (type);
3260 t = TYPE_SIZE_UNIT (type);
3261
3262 if (t == 0)
3263 {
3264 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3265 return size_zero_node;
3266 }
3267
3268 return t;
3269 }
3270
3271 /* Return the size of TYPE (in bytes) as a wide integer
3272 or return -1 if the size can vary or is larger than an integer. */
3273
3274 HOST_WIDE_INT
3275 int_size_in_bytes (const_tree type)
3276 {
3277 tree t;
3278
3279 if (type == error_mark_node)
3280 return 0;
3281
3282 type = TYPE_MAIN_VARIANT (type);
3283 t = TYPE_SIZE_UNIT (type);
3284
3285 if (t && tree_fits_uhwi_p (t))
3286 return TREE_INT_CST_LOW (t);
3287 else
3288 return -1;
3289 }
3290
3291 /* Return the maximum size of TYPE (in bytes) as a wide integer
3292 or return -1 if the size can vary or is larger than an integer. */
3293
3294 HOST_WIDE_INT
3295 max_int_size_in_bytes (const_tree type)
3296 {
3297 HOST_WIDE_INT size = -1;
3298 tree size_tree;
3299
3300 /* If this is an array type, check for a possible MAX_SIZE attached. */
3301
3302 if (TREE_CODE (type) == ARRAY_TYPE)
3303 {
3304 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3305
3306 if (size_tree && tree_fits_uhwi_p (size_tree))
3307 size = tree_to_uhwi (size_tree);
3308 }
3309
3310 /* If we still haven't been able to get a size, see if the language
3311 can compute a maximum size. */
3312
3313 if (size == -1)
3314 {
3315 size_tree = lang_hooks.types.max_size (type);
3316
3317 if (size_tree && tree_fits_uhwi_p (size_tree))
3318 size = tree_to_uhwi (size_tree);
3319 }
3320
3321 return size;
3322 }
3323 \f
3324 /* Return the bit position of FIELD, in bits from the start of the record.
3325 This is a tree of type bitsizetype. */
3326
3327 tree
3328 bit_position (const_tree field)
3329 {
3330 return bit_from_pos (DECL_FIELD_OFFSET (field),
3331 DECL_FIELD_BIT_OFFSET (field));
3332 }
3333 \f
3334 /* Return the byte position of FIELD, in bytes from the start of the record.
3335 This is a tree of type sizetype. */
3336
3337 tree
3338 byte_position (const_tree field)
3339 {
3340 return byte_from_pos (DECL_FIELD_OFFSET (field),
3341 DECL_FIELD_BIT_OFFSET (field));
3342 }
3343
3344 /* Likewise, but return as an integer. It must be representable in
3345 that way (since it could be a signed value, we don't have the
3346 option of returning -1 like int_size_in_byte can. */
3347
3348 HOST_WIDE_INT
3349 int_byte_position (const_tree field)
3350 {
3351 return tree_to_shwi (byte_position (field));
3352 }
3353 \f
3354 /* Return, as a tree node, the number of elements for TYPE (which is an
3355 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3356
3357 tree
3358 array_type_nelts (const_tree type)
3359 {
3360 tree index_type, min, max;
3361
3362 /* If they did it with unspecified bounds, then we should have already
3363 given an error about it before we got here. */
3364 if (! TYPE_DOMAIN (type))
3365 return error_mark_node;
3366
3367 index_type = TYPE_DOMAIN (type);
3368 min = TYPE_MIN_VALUE (index_type);
3369 max = TYPE_MAX_VALUE (index_type);
3370
3371 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3372 if (!max)
3373 return error_mark_node;
3374
3375 return (integer_zerop (min)
3376 ? max
3377 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3378 }
3379 \f
3380 /* If arg is static -- a reference to an object in static storage -- then
3381 return the object. This is not the same as the C meaning of `static'.
3382 If arg isn't static, return NULL. */
3383
3384 tree
3385 staticp (tree arg)
3386 {
3387 switch (TREE_CODE (arg))
3388 {
3389 case FUNCTION_DECL:
3390 /* Nested functions are static, even though taking their address will
3391 involve a trampoline as we unnest the nested function and create
3392 the trampoline on the tree level. */
3393 return arg;
3394
3395 case VAR_DECL:
3396 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3397 && ! DECL_THREAD_LOCAL_P (arg)
3398 && ! DECL_DLLIMPORT_P (arg)
3399 ? arg : NULL);
3400
3401 case CONST_DECL:
3402 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3403 ? arg : NULL);
3404
3405 case CONSTRUCTOR:
3406 return TREE_STATIC (arg) ? arg : NULL;
3407
3408 case LABEL_DECL:
3409 case STRING_CST:
3410 return arg;
3411
3412 case COMPONENT_REF:
3413 /* If the thing being referenced is not a field, then it is
3414 something language specific. */
3415 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3416
3417 /* If we are referencing a bitfield, we can't evaluate an
3418 ADDR_EXPR at compile time and so it isn't a constant. */
3419 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3420 return NULL;
3421
3422 return staticp (TREE_OPERAND (arg, 0));
3423
3424 case BIT_FIELD_REF:
3425 return NULL;
3426
3427 case INDIRECT_REF:
3428 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3429
3430 case ARRAY_REF:
3431 case ARRAY_RANGE_REF:
3432 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3433 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3434 return staticp (TREE_OPERAND (arg, 0));
3435 else
3436 return NULL;
3437
3438 case COMPOUND_LITERAL_EXPR:
3439 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3440
3441 default:
3442 return NULL;
3443 }
3444 }
3445
3446 \f
3447
3448
3449 /* Return whether OP is a DECL whose address is function-invariant. */
3450
3451 bool
3452 decl_address_invariant_p (const_tree op)
3453 {
3454 /* The conditions below are slightly less strict than the one in
3455 staticp. */
3456
3457 switch (TREE_CODE (op))
3458 {
3459 case PARM_DECL:
3460 case RESULT_DECL:
3461 case LABEL_DECL:
3462 case FUNCTION_DECL:
3463 return true;
3464
3465 case VAR_DECL:
3466 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3467 || DECL_THREAD_LOCAL_P (op)
3468 || DECL_CONTEXT (op) == current_function_decl
3469 || decl_function_context (op) == current_function_decl)
3470 return true;
3471 break;
3472
3473 case CONST_DECL:
3474 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3475 || decl_function_context (op) == current_function_decl)
3476 return true;
3477 break;
3478
3479 default:
3480 break;
3481 }
3482
3483 return false;
3484 }
3485
3486 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3487
3488 bool
3489 decl_address_ip_invariant_p (const_tree op)
3490 {
3491 /* The conditions below are slightly less strict than the one in
3492 staticp. */
3493
3494 switch (TREE_CODE (op))
3495 {
3496 case LABEL_DECL:
3497 case FUNCTION_DECL:
3498 case STRING_CST:
3499 return true;
3500
3501 case VAR_DECL:
3502 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3503 && !DECL_DLLIMPORT_P (op))
3504 || DECL_THREAD_LOCAL_P (op))
3505 return true;
3506 break;
3507
3508 case CONST_DECL:
3509 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3510 return true;
3511 break;
3512
3513 default:
3514 break;
3515 }
3516
3517 return false;
3518 }
3519
3520
3521 /* Return true if T is function-invariant (internal function, does
3522 not handle arithmetic; that's handled in skip_simple_arithmetic and
3523 tree_invariant_p). */
3524
3525 static bool
3526 tree_invariant_p_1 (tree t)
3527 {
3528 tree op;
3529
3530 if (TREE_CONSTANT (t)
3531 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3532 return true;
3533
3534 switch (TREE_CODE (t))
3535 {
3536 case SAVE_EXPR:
3537 return true;
3538
3539 case ADDR_EXPR:
3540 op = TREE_OPERAND (t, 0);
3541 while (handled_component_p (op))
3542 {
3543 switch (TREE_CODE (op))
3544 {
3545 case ARRAY_REF:
3546 case ARRAY_RANGE_REF:
3547 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3548 || TREE_OPERAND (op, 2) != NULL_TREE
3549 || TREE_OPERAND (op, 3) != NULL_TREE)
3550 return false;
3551 break;
3552
3553 case COMPONENT_REF:
3554 if (TREE_OPERAND (op, 2) != NULL_TREE)
3555 return false;
3556 break;
3557
3558 default:;
3559 }
3560 op = TREE_OPERAND (op, 0);
3561 }
3562
3563 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3564
3565 default:
3566 break;
3567 }
3568
3569 return false;
3570 }
3571
3572 /* Return true if T is function-invariant. */
3573
3574 bool
3575 tree_invariant_p (tree t)
3576 {
3577 tree inner = skip_simple_arithmetic (t);
3578 return tree_invariant_p_1 (inner);
3579 }
3580
3581 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3582 Do this to any expression which may be used in more than one place,
3583 but must be evaluated only once.
3584
3585 Normally, expand_expr would reevaluate the expression each time.
3586 Calling save_expr produces something that is evaluated and recorded
3587 the first time expand_expr is called on it. Subsequent calls to
3588 expand_expr just reuse the recorded value.
3589
3590 The call to expand_expr that generates code that actually computes
3591 the value is the first call *at compile time*. Subsequent calls
3592 *at compile time* generate code to use the saved value.
3593 This produces correct result provided that *at run time* control
3594 always flows through the insns made by the first expand_expr
3595 before reaching the other places where the save_expr was evaluated.
3596 You, the caller of save_expr, must make sure this is so.
3597
3598 Constants, and certain read-only nodes, are returned with no
3599 SAVE_EXPR because that is safe. Expressions containing placeholders
3600 are not touched; see tree.def for an explanation of what these
3601 are used for. */
3602
3603 tree
3604 save_expr (tree expr)
3605 {
3606 tree inner;
3607
3608 /* If the tree evaluates to a constant, then we don't want to hide that
3609 fact (i.e. this allows further folding, and direct checks for constants).
3610 However, a read-only object that has side effects cannot be bypassed.
3611 Since it is no problem to reevaluate literals, we just return the
3612 literal node. */
3613 inner = skip_simple_arithmetic (expr);
3614 if (TREE_CODE (inner) == ERROR_MARK)
3615 return inner;
3616
3617 if (tree_invariant_p_1 (inner))
3618 return expr;
3619
3620 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3621 it means that the size or offset of some field of an object depends on
3622 the value within another field.
3623
3624 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3625 and some variable since it would then need to be both evaluated once and
3626 evaluated more than once. Front-ends must assure this case cannot
3627 happen by surrounding any such subexpressions in their own SAVE_EXPR
3628 and forcing evaluation at the proper time. */
3629 if (contains_placeholder_p (inner))
3630 return expr;
3631
3632 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3633
3634 /* This expression might be placed ahead of a jump to ensure that the
3635 value was computed on both sides of the jump. So make sure it isn't
3636 eliminated as dead. */
3637 TREE_SIDE_EFFECTS (expr) = 1;
3638 return expr;
3639 }
3640
3641 /* Look inside EXPR into any simple arithmetic operations. Return the
3642 outermost non-arithmetic or non-invariant node. */
3643
3644 tree
3645 skip_simple_arithmetic (tree expr)
3646 {
3647 /* We don't care about whether this can be used as an lvalue in this
3648 context. */
3649 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3650 expr = TREE_OPERAND (expr, 0);
3651
3652 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3653 a constant, it will be more efficient to not make another SAVE_EXPR since
3654 it will allow better simplification and GCSE will be able to merge the
3655 computations if they actually occur. */
3656 while (true)
3657 {
3658 if (UNARY_CLASS_P (expr))
3659 expr = TREE_OPERAND (expr, 0);
3660 else if (BINARY_CLASS_P (expr))
3661 {
3662 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3663 expr = TREE_OPERAND (expr, 0);
3664 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3665 expr = TREE_OPERAND (expr, 1);
3666 else
3667 break;
3668 }
3669 else
3670 break;
3671 }
3672
3673 return expr;
3674 }
3675
3676 /* Look inside EXPR into simple arithmetic operations involving constants.
3677 Return the outermost non-arithmetic or non-constant node. */
3678
3679 tree
3680 skip_simple_constant_arithmetic (tree expr)
3681 {
3682 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3683 expr = TREE_OPERAND (expr, 0);
3684
3685 while (true)
3686 {
3687 if (UNARY_CLASS_P (expr))
3688 expr = TREE_OPERAND (expr, 0);
3689 else if (BINARY_CLASS_P (expr))
3690 {
3691 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3692 expr = TREE_OPERAND (expr, 0);
3693 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3694 expr = TREE_OPERAND (expr, 1);
3695 else
3696 break;
3697 }
3698 else
3699 break;
3700 }
3701
3702 return expr;
3703 }
3704
3705 /* Return which tree structure is used by T. */
3706
3707 enum tree_node_structure_enum
3708 tree_node_structure (const_tree t)
3709 {
3710 const enum tree_code code = TREE_CODE (t);
3711 return tree_node_structure_for_code (code);
3712 }
3713
3714 /* Set various status flags when building a CALL_EXPR object T. */
3715
3716 static void
3717 process_call_operands (tree t)
3718 {
3719 bool side_effects = TREE_SIDE_EFFECTS (t);
3720 bool read_only = false;
3721 int i = call_expr_flags (t);
3722
3723 /* Calls have side-effects, except those to const or pure functions. */
3724 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3725 side_effects = true;
3726 /* Propagate TREE_READONLY of arguments for const functions. */
3727 if (i & ECF_CONST)
3728 read_only = true;
3729
3730 if (!side_effects || read_only)
3731 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3732 {
3733 tree op = TREE_OPERAND (t, i);
3734 if (op && TREE_SIDE_EFFECTS (op))
3735 side_effects = true;
3736 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3737 read_only = false;
3738 }
3739
3740 TREE_SIDE_EFFECTS (t) = side_effects;
3741 TREE_READONLY (t) = read_only;
3742 }
3743 \f
3744 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3745 size or offset that depends on a field within a record. */
3746
3747 bool
3748 contains_placeholder_p (const_tree exp)
3749 {
3750 enum tree_code code;
3751
3752 if (!exp)
3753 return 0;
3754
3755 code = TREE_CODE (exp);
3756 if (code == PLACEHOLDER_EXPR)
3757 return 1;
3758
3759 switch (TREE_CODE_CLASS (code))
3760 {
3761 case tcc_reference:
3762 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3763 position computations since they will be converted into a
3764 WITH_RECORD_EXPR involving the reference, which will assume
3765 here will be valid. */
3766 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3767
3768 case tcc_exceptional:
3769 if (code == TREE_LIST)
3770 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3771 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3772 break;
3773
3774 case tcc_unary:
3775 case tcc_binary:
3776 case tcc_comparison:
3777 case tcc_expression:
3778 switch (code)
3779 {
3780 case COMPOUND_EXPR:
3781 /* Ignoring the first operand isn't quite right, but works best. */
3782 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3783
3784 case COND_EXPR:
3785 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3786 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3787 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3788
3789 case SAVE_EXPR:
3790 /* The save_expr function never wraps anything containing
3791 a PLACEHOLDER_EXPR. */
3792 return 0;
3793
3794 default:
3795 break;
3796 }
3797
3798 switch (TREE_CODE_LENGTH (code))
3799 {
3800 case 1:
3801 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3802 case 2:
3803 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3804 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3805 default:
3806 return 0;
3807 }
3808
3809 case tcc_vl_exp:
3810 switch (code)
3811 {
3812 case CALL_EXPR:
3813 {
3814 const_tree arg;
3815 const_call_expr_arg_iterator iter;
3816 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3817 if (CONTAINS_PLACEHOLDER_P (arg))
3818 return 1;
3819 return 0;
3820 }
3821 default:
3822 return 0;
3823 }
3824
3825 default:
3826 return 0;
3827 }
3828 return 0;
3829 }
3830
3831 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3832 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3833 field positions. */
3834
3835 static bool
3836 type_contains_placeholder_1 (const_tree type)
3837 {
3838 /* If the size contains a placeholder or the parent type (component type in
3839 the case of arrays) type involves a placeholder, this type does. */
3840 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3841 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3842 || (!POINTER_TYPE_P (type)
3843 && TREE_TYPE (type)
3844 && type_contains_placeholder_p (TREE_TYPE (type))))
3845 return true;
3846
3847 /* Now do type-specific checks. Note that the last part of the check above
3848 greatly limits what we have to do below. */
3849 switch (TREE_CODE (type))
3850 {
3851 case VOID_TYPE:
3852 case COMPLEX_TYPE:
3853 case ENUMERAL_TYPE:
3854 case BOOLEAN_TYPE:
3855 case POINTER_TYPE:
3856 case OFFSET_TYPE:
3857 case REFERENCE_TYPE:
3858 case METHOD_TYPE:
3859 case FUNCTION_TYPE:
3860 case VECTOR_TYPE:
3861 case NULLPTR_TYPE:
3862 return false;
3863
3864 case INTEGER_TYPE:
3865 case REAL_TYPE:
3866 case FIXED_POINT_TYPE:
3867 /* Here we just check the bounds. */
3868 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3869 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3870
3871 case ARRAY_TYPE:
3872 /* We have already checked the component type above, so just check
3873 the domain type. Flexible array members have a null domain. */
3874 return TYPE_DOMAIN (type) ?
3875 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3876
3877 case RECORD_TYPE:
3878 case UNION_TYPE:
3879 case QUAL_UNION_TYPE:
3880 {
3881 tree field;
3882
3883 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3884 if (TREE_CODE (field) == FIELD_DECL
3885 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3886 || (TREE_CODE (type) == QUAL_UNION_TYPE
3887 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3888 || type_contains_placeholder_p (TREE_TYPE (field))))
3889 return true;
3890
3891 return false;
3892 }
3893
3894 default:
3895 gcc_unreachable ();
3896 }
3897 }
3898
3899 /* Wrapper around above function used to cache its result. */
3900
3901 bool
3902 type_contains_placeholder_p (tree type)
3903 {
3904 bool result;
3905
3906 /* If the contains_placeholder_bits field has been initialized,
3907 then we know the answer. */
3908 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3909 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3910
3911 /* Indicate that we've seen this type node, and the answer is false.
3912 This is what we want to return if we run into recursion via fields. */
3913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3914
3915 /* Compute the real value. */
3916 result = type_contains_placeholder_1 (type);
3917
3918 /* Store the real value. */
3919 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3920
3921 return result;
3922 }
3923 \f
3924 /* Push tree EXP onto vector QUEUE if it is not already present. */
3925
3926 static void
3927 push_without_duplicates (tree exp, vec<tree> *queue)
3928 {
3929 unsigned int i;
3930 tree iter;
3931
3932 FOR_EACH_VEC_ELT (*queue, i, iter)
3933 if (simple_cst_equal (iter, exp) == 1)
3934 break;
3935
3936 if (!iter)
3937 queue->safe_push (exp);
3938 }
3939
3940 /* Given a tree EXP, find all occurrences of references to fields
3941 in a PLACEHOLDER_EXPR and place them in vector REFS without
3942 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3943 we assume here that EXP contains only arithmetic expressions
3944 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3945 argument list. */
3946
3947 void
3948 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3949 {
3950 enum tree_code code = TREE_CODE (exp);
3951 tree inner;
3952 int i;
3953
3954 /* We handle TREE_LIST and COMPONENT_REF separately. */
3955 if (code == TREE_LIST)
3956 {
3957 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3958 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3959 }
3960 else if (code == COMPONENT_REF)
3961 {
3962 for (inner = TREE_OPERAND (exp, 0);
3963 REFERENCE_CLASS_P (inner);
3964 inner = TREE_OPERAND (inner, 0))
3965 ;
3966
3967 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3968 push_without_duplicates (exp, refs);
3969 else
3970 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3971 }
3972 else
3973 switch (TREE_CODE_CLASS (code))
3974 {
3975 case tcc_constant:
3976 break;
3977
3978 case tcc_declaration:
3979 /* Variables allocated to static storage can stay. */
3980 if (!TREE_STATIC (exp))
3981 push_without_duplicates (exp, refs);
3982 break;
3983
3984 case tcc_expression:
3985 /* This is the pattern built in ada/make_aligning_type. */
3986 if (code == ADDR_EXPR
3987 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3988 {
3989 push_without_duplicates (exp, refs);
3990 break;
3991 }
3992
3993 /* Fall through. */
3994
3995 case tcc_exceptional:
3996 case tcc_unary:
3997 case tcc_binary:
3998 case tcc_comparison:
3999 case tcc_reference:
4000 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4001 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4002 break;
4003
4004 case tcc_vl_exp:
4005 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4006 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4007 break;
4008
4009 default:
4010 gcc_unreachable ();
4011 }
4012 }
4013
4014 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4015 return a tree with all occurrences of references to F in a
4016 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4017 CONST_DECLs. Note that we assume here that EXP contains only
4018 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4019 occurring only in their argument list. */
4020
4021 tree
4022 substitute_in_expr (tree exp, tree f, tree r)
4023 {
4024 enum tree_code code = TREE_CODE (exp);
4025 tree op0, op1, op2, op3;
4026 tree new_tree;
4027
4028 /* We handle TREE_LIST and COMPONENT_REF separately. */
4029 if (code == TREE_LIST)
4030 {
4031 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4032 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4033 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4034 return exp;
4035
4036 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4037 }
4038 else if (code == COMPONENT_REF)
4039 {
4040 tree inner;
4041
4042 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4043 and it is the right field, replace it with R. */
4044 for (inner = TREE_OPERAND (exp, 0);
4045 REFERENCE_CLASS_P (inner);
4046 inner = TREE_OPERAND (inner, 0))
4047 ;
4048
4049 /* The field. */
4050 op1 = TREE_OPERAND (exp, 1);
4051
4052 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4053 return r;
4054
4055 /* If this expression hasn't been completed let, leave it alone. */
4056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4057 return exp;
4058
4059 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4060 if (op0 == TREE_OPERAND (exp, 0))
4061 return exp;
4062
4063 new_tree
4064 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4065 }
4066 else
4067 switch (TREE_CODE_CLASS (code))
4068 {
4069 case tcc_constant:
4070 return exp;
4071
4072 case tcc_declaration:
4073 if (exp == f)
4074 return r;
4075 else
4076 return exp;
4077
4078 case tcc_expression:
4079 if (exp == f)
4080 return r;
4081
4082 /* Fall through. */
4083
4084 case tcc_exceptional:
4085 case tcc_unary:
4086 case tcc_binary:
4087 case tcc_comparison:
4088 case tcc_reference:
4089 switch (TREE_CODE_LENGTH (code))
4090 {
4091 case 0:
4092 return exp;
4093
4094 case 1:
4095 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4096 if (op0 == TREE_OPERAND (exp, 0))
4097 return exp;
4098
4099 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4100 break;
4101
4102 case 2:
4103 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4104 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4105
4106 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4107 return exp;
4108
4109 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4110 break;
4111
4112 case 3:
4113 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4114 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4115 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4116
4117 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4118 && op2 == TREE_OPERAND (exp, 2))
4119 return exp;
4120
4121 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4122 break;
4123
4124 case 4:
4125 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4126 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4127 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4128 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4129
4130 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4131 && op2 == TREE_OPERAND (exp, 2)
4132 && op3 == TREE_OPERAND (exp, 3))
4133 return exp;
4134
4135 new_tree
4136 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4137 break;
4138
4139 default:
4140 gcc_unreachable ();
4141 }
4142 break;
4143
4144 case tcc_vl_exp:
4145 {
4146 int i;
4147
4148 new_tree = NULL_TREE;
4149
4150 /* If we are trying to replace F with a constant or with another
4151 instance of one of the arguments of the call, inline back
4152 functions which do nothing else than computing a value from
4153 the arguments they are passed. This makes it possible to
4154 fold partially or entirely the replacement expression. */
4155 if (code == CALL_EXPR)
4156 {
4157 bool maybe_inline = false;
4158 if (CONSTANT_CLASS_P (r))
4159 maybe_inline = true;
4160 else
4161 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4162 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4163 {
4164 maybe_inline = true;
4165 break;
4166 }
4167 if (maybe_inline)
4168 {
4169 tree t = maybe_inline_call_in_expr (exp);
4170 if (t)
4171 return SUBSTITUTE_IN_EXPR (t, f, r);
4172 }
4173 }
4174
4175 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4176 {
4177 tree op = TREE_OPERAND (exp, i);
4178 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4179 if (new_op != op)
4180 {
4181 if (!new_tree)
4182 new_tree = copy_node (exp);
4183 TREE_OPERAND (new_tree, i) = new_op;
4184 }
4185 }
4186
4187 if (new_tree)
4188 {
4189 new_tree = fold (new_tree);
4190 if (TREE_CODE (new_tree) == CALL_EXPR)
4191 process_call_operands (new_tree);
4192 }
4193 else
4194 return exp;
4195 }
4196 break;
4197
4198 default:
4199 gcc_unreachable ();
4200 }
4201
4202 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4203
4204 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4205 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4206
4207 return new_tree;
4208 }
4209
4210 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4211 for it within OBJ, a tree that is an object or a chain of references. */
4212
4213 tree
4214 substitute_placeholder_in_expr (tree exp, tree obj)
4215 {
4216 enum tree_code code = TREE_CODE (exp);
4217 tree op0, op1, op2, op3;
4218 tree new_tree;
4219
4220 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4221 in the chain of OBJ. */
4222 if (code == PLACEHOLDER_EXPR)
4223 {
4224 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4225 tree elt;
4226
4227 for (elt = obj; elt != 0;
4228 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4229 || TREE_CODE (elt) == COND_EXPR)
4230 ? TREE_OPERAND (elt, 1)
4231 : (REFERENCE_CLASS_P (elt)
4232 || UNARY_CLASS_P (elt)
4233 || BINARY_CLASS_P (elt)
4234 || VL_EXP_CLASS_P (elt)
4235 || EXPRESSION_CLASS_P (elt))
4236 ? TREE_OPERAND (elt, 0) : 0))
4237 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4238 return elt;
4239
4240 for (elt = obj; elt != 0;
4241 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4242 || TREE_CODE (elt) == COND_EXPR)
4243 ? TREE_OPERAND (elt, 1)
4244 : (REFERENCE_CLASS_P (elt)
4245 || UNARY_CLASS_P (elt)
4246 || BINARY_CLASS_P (elt)
4247 || VL_EXP_CLASS_P (elt)
4248 || EXPRESSION_CLASS_P (elt))
4249 ? TREE_OPERAND (elt, 0) : 0))
4250 if (POINTER_TYPE_P (TREE_TYPE (elt))
4251 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4252 == need_type))
4253 return fold_build1 (INDIRECT_REF, need_type, elt);
4254
4255 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4256 survives until RTL generation, there will be an error. */
4257 return exp;
4258 }
4259
4260 /* TREE_LIST is special because we need to look at TREE_VALUE
4261 and TREE_CHAIN, not TREE_OPERANDS. */
4262 else if (code == TREE_LIST)
4263 {
4264 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4265 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4266 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4267 return exp;
4268
4269 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4270 }
4271 else
4272 switch (TREE_CODE_CLASS (code))
4273 {
4274 case tcc_constant:
4275 case tcc_declaration:
4276 return exp;
4277
4278 case tcc_exceptional:
4279 case tcc_unary:
4280 case tcc_binary:
4281 case tcc_comparison:
4282 case tcc_expression:
4283 case tcc_reference:
4284 case tcc_statement:
4285 switch (TREE_CODE_LENGTH (code))
4286 {
4287 case 0:
4288 return exp;
4289
4290 case 1:
4291 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4292 if (op0 == TREE_OPERAND (exp, 0))
4293 return exp;
4294
4295 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4296 break;
4297
4298 case 2:
4299 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4300 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4301
4302 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4303 return exp;
4304
4305 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4306 break;
4307
4308 case 3:
4309 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4310 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4311 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4312
4313 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4314 && op2 == TREE_OPERAND (exp, 2))
4315 return exp;
4316
4317 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4318 break;
4319
4320 case 4:
4321 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4322 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4323 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4324 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4325
4326 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4327 && op2 == TREE_OPERAND (exp, 2)
4328 && op3 == TREE_OPERAND (exp, 3))
4329 return exp;
4330
4331 new_tree
4332 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4333 break;
4334
4335 default:
4336 gcc_unreachable ();
4337 }
4338 break;
4339
4340 case tcc_vl_exp:
4341 {
4342 int i;
4343
4344 new_tree = NULL_TREE;
4345
4346 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4347 {
4348 tree op = TREE_OPERAND (exp, i);
4349 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4350 if (new_op != op)
4351 {
4352 if (!new_tree)
4353 new_tree = copy_node (exp);
4354 TREE_OPERAND (new_tree, i) = new_op;
4355 }
4356 }
4357
4358 if (new_tree)
4359 {
4360 new_tree = fold (new_tree);
4361 if (TREE_CODE (new_tree) == CALL_EXPR)
4362 process_call_operands (new_tree);
4363 }
4364 else
4365 return exp;
4366 }
4367 break;
4368
4369 default:
4370 gcc_unreachable ();
4371 }
4372
4373 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4374
4375 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4376 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4377
4378 return new_tree;
4379 }
4380 \f
4381
4382 /* Subroutine of stabilize_reference; this is called for subtrees of
4383 references. Any expression with side-effects must be put in a SAVE_EXPR
4384 to ensure that it is only evaluated once.
4385
4386 We don't put SAVE_EXPR nodes around everything, because assigning very
4387 simple expressions to temporaries causes us to miss good opportunities
4388 for optimizations. Among other things, the opportunity to fold in the
4389 addition of a constant into an addressing mode often gets lost, e.g.
4390 "y[i+1] += x;". In general, we take the approach that we should not make
4391 an assignment unless we are forced into it - i.e., that any non-side effect
4392 operator should be allowed, and that cse should take care of coalescing
4393 multiple utterances of the same expression should that prove fruitful. */
4394
4395 static tree
4396 stabilize_reference_1 (tree e)
4397 {
4398 tree result;
4399 enum tree_code code = TREE_CODE (e);
4400
4401 /* We cannot ignore const expressions because it might be a reference
4402 to a const array but whose index contains side-effects. But we can
4403 ignore things that are actual constant or that already have been
4404 handled by this function. */
4405
4406 if (tree_invariant_p (e))
4407 return e;
4408
4409 switch (TREE_CODE_CLASS (code))
4410 {
4411 case tcc_exceptional:
4412 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4413 have side-effects. */
4414 if (code == STATEMENT_LIST)
4415 return save_expr (e);
4416 /* FALLTHRU */
4417 case tcc_type:
4418 case tcc_declaration:
4419 case tcc_comparison:
4420 case tcc_statement:
4421 case tcc_expression:
4422 case tcc_reference:
4423 case tcc_vl_exp:
4424 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4425 so that it will only be evaluated once. */
4426 /* The reference (r) and comparison (<) classes could be handled as
4427 below, but it is generally faster to only evaluate them once. */
4428 if (TREE_SIDE_EFFECTS (e))
4429 return save_expr (e);
4430 return e;
4431
4432 case tcc_constant:
4433 /* Constants need no processing. In fact, we should never reach
4434 here. */
4435 return e;
4436
4437 case tcc_binary:
4438 /* Division is slow and tends to be compiled with jumps,
4439 especially the division by powers of 2 that is often
4440 found inside of an array reference. So do it just once. */
4441 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4442 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4443 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4444 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4445 return save_expr (e);
4446 /* Recursively stabilize each operand. */
4447 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4448 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4449 break;
4450
4451 case tcc_unary:
4452 /* Recursively stabilize each operand. */
4453 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4454 break;
4455
4456 default:
4457 gcc_unreachable ();
4458 }
4459
4460 TREE_TYPE (result) = TREE_TYPE (e);
4461 TREE_READONLY (result) = TREE_READONLY (e);
4462 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4463 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4464
4465 return result;
4466 }
4467
4468 /* Stabilize a reference so that we can use it any number of times
4469 without causing its operands to be evaluated more than once.
4470 Returns the stabilized reference. This works by means of save_expr,
4471 so see the caveats in the comments about save_expr.
4472
4473 Also allows conversion expressions whose operands are references.
4474 Any other kind of expression is returned unchanged. */
4475
4476 tree
4477 stabilize_reference (tree ref)
4478 {
4479 tree result;
4480 enum tree_code code = TREE_CODE (ref);
4481
4482 switch (code)
4483 {
4484 case VAR_DECL:
4485 case PARM_DECL:
4486 case RESULT_DECL:
4487 /* No action is needed in this case. */
4488 return ref;
4489
4490 CASE_CONVERT:
4491 case FLOAT_EXPR:
4492 case FIX_TRUNC_EXPR:
4493 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4494 break;
4495
4496 case INDIRECT_REF:
4497 result = build_nt (INDIRECT_REF,
4498 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4499 break;
4500
4501 case COMPONENT_REF:
4502 result = build_nt (COMPONENT_REF,
4503 stabilize_reference (TREE_OPERAND (ref, 0)),
4504 TREE_OPERAND (ref, 1), NULL_TREE);
4505 break;
4506
4507 case BIT_FIELD_REF:
4508 result = build_nt (BIT_FIELD_REF,
4509 stabilize_reference (TREE_OPERAND (ref, 0)),
4510 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4511 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4512 break;
4513
4514 case ARRAY_REF:
4515 result = build_nt (ARRAY_REF,
4516 stabilize_reference (TREE_OPERAND (ref, 0)),
4517 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4518 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4519 break;
4520
4521 case ARRAY_RANGE_REF:
4522 result = build_nt (ARRAY_RANGE_REF,
4523 stabilize_reference (TREE_OPERAND (ref, 0)),
4524 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4525 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4526 break;
4527
4528 case COMPOUND_EXPR:
4529 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4530 it wouldn't be ignored. This matters when dealing with
4531 volatiles. */
4532 return stabilize_reference_1 (ref);
4533
4534 /* If arg isn't a kind of lvalue we recognize, make no change.
4535 Caller should recognize the error for an invalid lvalue. */
4536 default:
4537 return ref;
4538
4539 case ERROR_MARK:
4540 return error_mark_node;
4541 }
4542
4543 TREE_TYPE (result) = TREE_TYPE (ref);
4544 TREE_READONLY (result) = TREE_READONLY (ref);
4545 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4546 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4547
4548 return result;
4549 }
4550 \f
4551 /* Low-level constructors for expressions. */
4552
4553 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4554 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4555
4556 void
4557 recompute_tree_invariant_for_addr_expr (tree t)
4558 {
4559 tree node;
4560 bool tc = true, se = false;
4561
4562 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4563
4564 /* We started out assuming this address is both invariant and constant, but
4565 does not have side effects. Now go down any handled components and see if
4566 any of them involve offsets that are either non-constant or non-invariant.
4567 Also check for side-effects.
4568
4569 ??? Note that this code makes no attempt to deal with the case where
4570 taking the address of something causes a copy due to misalignment. */
4571
4572 #define UPDATE_FLAGS(NODE) \
4573 do { tree _node = (NODE); \
4574 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4575 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4576
4577 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4578 node = TREE_OPERAND (node, 0))
4579 {
4580 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4581 array reference (probably made temporarily by the G++ front end),
4582 so ignore all the operands. */
4583 if ((TREE_CODE (node) == ARRAY_REF
4584 || TREE_CODE (node) == ARRAY_RANGE_REF)
4585 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4586 {
4587 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4588 if (TREE_OPERAND (node, 2))
4589 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4590 if (TREE_OPERAND (node, 3))
4591 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4592 }
4593 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4594 FIELD_DECL, apparently. The G++ front end can put something else
4595 there, at least temporarily. */
4596 else if (TREE_CODE (node) == COMPONENT_REF
4597 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4598 {
4599 if (TREE_OPERAND (node, 2))
4600 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4601 }
4602 }
4603
4604 node = lang_hooks.expr_to_decl (node, &tc, &se);
4605
4606 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4607 the address, since &(*a)->b is a form of addition. If it's a constant, the
4608 address is constant too. If it's a decl, its address is constant if the
4609 decl is static. Everything else is not constant and, furthermore,
4610 taking the address of a volatile variable is not volatile. */
4611 if (TREE_CODE (node) == INDIRECT_REF
4612 || TREE_CODE (node) == MEM_REF)
4613 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4614 else if (CONSTANT_CLASS_P (node))
4615 ;
4616 else if (DECL_P (node))
4617 tc &= (staticp (node) != NULL_TREE);
4618 else
4619 {
4620 tc = false;
4621 se |= TREE_SIDE_EFFECTS (node);
4622 }
4623
4624
4625 TREE_CONSTANT (t) = tc;
4626 TREE_SIDE_EFFECTS (t) = se;
4627 #undef UPDATE_FLAGS
4628 }
4629
4630 /* Build an expression of code CODE, data type TYPE, and operands as
4631 specified. Expressions and reference nodes can be created this way.
4632 Constants, decls, types and misc nodes cannot be.
4633
4634 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4635 enough for all extant tree codes. */
4636
4637 tree
4638 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4639 {
4640 tree t;
4641
4642 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4643
4644 t = make_node (code PASS_MEM_STAT);
4645 TREE_TYPE (t) = tt;
4646
4647 return t;
4648 }
4649
4650 tree
4651 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4652 {
4653 int length = sizeof (struct tree_exp);
4654 tree t;
4655
4656 record_node_allocation_statistics (code, length);
4657
4658 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4659
4660 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4661
4662 memset (t, 0, sizeof (struct tree_common));
4663
4664 TREE_SET_CODE (t, code);
4665
4666 TREE_TYPE (t) = type;
4667 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4668 TREE_OPERAND (t, 0) = node;
4669 if (node && !TYPE_P (node))
4670 {
4671 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4672 TREE_READONLY (t) = TREE_READONLY (node);
4673 }
4674
4675 if (TREE_CODE_CLASS (code) == tcc_statement)
4676 {
4677 if (code != DEBUG_BEGIN_STMT)
4678 TREE_SIDE_EFFECTS (t) = 1;
4679 }
4680 else switch (code)
4681 {
4682 case VA_ARG_EXPR:
4683 /* All of these have side-effects, no matter what their
4684 operands are. */
4685 TREE_SIDE_EFFECTS (t) = 1;
4686 TREE_READONLY (t) = 0;
4687 break;
4688
4689 case INDIRECT_REF:
4690 /* Whether a dereference is readonly has nothing to do with whether
4691 its operand is readonly. */
4692 TREE_READONLY (t) = 0;
4693 break;
4694
4695 case ADDR_EXPR:
4696 if (node)
4697 recompute_tree_invariant_for_addr_expr (t);
4698 break;
4699
4700 default:
4701 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4702 && node && !TYPE_P (node)
4703 && TREE_CONSTANT (node))
4704 TREE_CONSTANT (t) = 1;
4705 if (TREE_CODE_CLASS (code) == tcc_reference
4706 && node && TREE_THIS_VOLATILE (node))
4707 TREE_THIS_VOLATILE (t) = 1;
4708 break;
4709 }
4710
4711 return t;
4712 }
4713
4714 #define PROCESS_ARG(N) \
4715 do { \
4716 TREE_OPERAND (t, N) = arg##N; \
4717 if (arg##N &&!TYPE_P (arg##N)) \
4718 { \
4719 if (TREE_SIDE_EFFECTS (arg##N)) \
4720 side_effects = 1; \
4721 if (!TREE_READONLY (arg##N) \
4722 && !CONSTANT_CLASS_P (arg##N)) \
4723 (void) (read_only = 0); \
4724 if (!TREE_CONSTANT (arg##N)) \
4725 (void) (constant = 0); \
4726 } \
4727 } while (0)
4728
4729 tree
4730 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4731 {
4732 bool constant, read_only, side_effects, div_by_zero;
4733 tree t;
4734
4735 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4736
4737 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4738 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4739 /* When sizetype precision doesn't match that of pointers
4740 we need to be able to build explicit extensions or truncations
4741 of the offset argument. */
4742 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4743 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4744 && TREE_CODE (arg1) == INTEGER_CST);
4745
4746 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4747 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4748 && ptrofftype_p (TREE_TYPE (arg1)));
4749
4750 t = make_node (code PASS_MEM_STAT);
4751 TREE_TYPE (t) = tt;
4752
4753 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4754 result based on those same flags for the arguments. But if the
4755 arguments aren't really even `tree' expressions, we shouldn't be trying
4756 to do this. */
4757
4758 /* Expressions without side effects may be constant if their
4759 arguments are as well. */
4760 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4761 || TREE_CODE_CLASS (code) == tcc_binary);
4762 read_only = 1;
4763 side_effects = TREE_SIDE_EFFECTS (t);
4764
4765 switch (code)
4766 {
4767 case TRUNC_DIV_EXPR:
4768 case CEIL_DIV_EXPR:
4769 case FLOOR_DIV_EXPR:
4770 case ROUND_DIV_EXPR:
4771 case EXACT_DIV_EXPR:
4772 case CEIL_MOD_EXPR:
4773 case FLOOR_MOD_EXPR:
4774 case ROUND_MOD_EXPR:
4775 case TRUNC_MOD_EXPR:
4776 div_by_zero = integer_zerop (arg1);
4777 break;
4778 default:
4779 div_by_zero = false;
4780 }
4781
4782 PROCESS_ARG (0);
4783 PROCESS_ARG (1);
4784
4785 TREE_SIDE_EFFECTS (t) = side_effects;
4786 if (code == MEM_REF)
4787 {
4788 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4789 {
4790 tree o = TREE_OPERAND (arg0, 0);
4791 TREE_READONLY (t) = TREE_READONLY (o);
4792 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4793 }
4794 }
4795 else
4796 {
4797 TREE_READONLY (t) = read_only;
4798 /* Don't mark X / 0 as constant. */
4799 TREE_CONSTANT (t) = constant && !div_by_zero;
4800 TREE_THIS_VOLATILE (t)
4801 = (TREE_CODE_CLASS (code) == tcc_reference
4802 && arg0 && TREE_THIS_VOLATILE (arg0));
4803 }
4804
4805 return t;
4806 }
4807
4808
4809 tree
4810 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4811 tree arg2 MEM_STAT_DECL)
4812 {
4813 bool constant, read_only, side_effects;
4814 tree t;
4815
4816 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4817 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4818
4819 t = make_node (code PASS_MEM_STAT);
4820 TREE_TYPE (t) = tt;
4821
4822 read_only = 1;
4823
4824 /* As a special exception, if COND_EXPR has NULL branches, we
4825 assume that it is a gimple statement and always consider
4826 it to have side effects. */
4827 if (code == COND_EXPR
4828 && tt == void_type_node
4829 && arg1 == NULL_TREE
4830 && arg2 == NULL_TREE)
4831 side_effects = true;
4832 else
4833 side_effects = TREE_SIDE_EFFECTS (t);
4834
4835 PROCESS_ARG (0);
4836 PROCESS_ARG (1);
4837 PROCESS_ARG (2);
4838
4839 if (code == COND_EXPR)
4840 TREE_READONLY (t) = read_only;
4841
4842 TREE_SIDE_EFFECTS (t) = side_effects;
4843 TREE_THIS_VOLATILE (t)
4844 = (TREE_CODE_CLASS (code) == tcc_reference
4845 && arg0 && TREE_THIS_VOLATILE (arg0));
4846
4847 return t;
4848 }
4849
4850 tree
4851 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4852 tree arg2, tree arg3 MEM_STAT_DECL)
4853 {
4854 bool constant, read_only, side_effects;
4855 tree t;
4856
4857 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4858
4859 t = make_node (code PASS_MEM_STAT);
4860 TREE_TYPE (t) = tt;
4861
4862 side_effects = TREE_SIDE_EFFECTS (t);
4863
4864 PROCESS_ARG (0);
4865 PROCESS_ARG (1);
4866 PROCESS_ARG (2);
4867 PROCESS_ARG (3);
4868
4869 TREE_SIDE_EFFECTS (t) = side_effects;
4870 TREE_THIS_VOLATILE (t)
4871 = (TREE_CODE_CLASS (code) == tcc_reference
4872 && arg0 && TREE_THIS_VOLATILE (arg0));
4873
4874 return t;
4875 }
4876
4877 tree
4878 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4879 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4880 {
4881 bool constant, read_only, side_effects;
4882 tree t;
4883
4884 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4885
4886 t = make_node (code PASS_MEM_STAT);
4887 TREE_TYPE (t) = tt;
4888
4889 side_effects = TREE_SIDE_EFFECTS (t);
4890
4891 PROCESS_ARG (0);
4892 PROCESS_ARG (1);
4893 PROCESS_ARG (2);
4894 PROCESS_ARG (3);
4895 PROCESS_ARG (4);
4896
4897 TREE_SIDE_EFFECTS (t) = side_effects;
4898 if (code == TARGET_MEM_REF)
4899 {
4900 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4901 {
4902 tree o = TREE_OPERAND (arg0, 0);
4903 TREE_READONLY (t) = TREE_READONLY (o);
4904 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4905 }
4906 }
4907 else
4908 TREE_THIS_VOLATILE (t)
4909 = (TREE_CODE_CLASS (code) == tcc_reference
4910 && arg0 && TREE_THIS_VOLATILE (arg0));
4911
4912 return t;
4913 }
4914
4915 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4916 on the pointer PTR. */
4917
4918 tree
4919 build_simple_mem_ref_loc (location_t loc, tree ptr)
4920 {
4921 poly_int64 offset = 0;
4922 tree ptype = TREE_TYPE (ptr);
4923 tree tem;
4924 /* For convenience allow addresses that collapse to a simple base
4925 and offset. */
4926 if (TREE_CODE (ptr) == ADDR_EXPR
4927 && (handled_component_p (TREE_OPERAND (ptr, 0))
4928 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4929 {
4930 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4931 gcc_assert (ptr);
4932 if (TREE_CODE (ptr) == MEM_REF)
4933 {
4934 offset += mem_ref_offset (ptr).force_shwi ();
4935 ptr = TREE_OPERAND (ptr, 0);
4936 }
4937 else
4938 ptr = build_fold_addr_expr (ptr);
4939 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4940 }
4941 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4942 ptr, build_int_cst (ptype, offset));
4943 SET_EXPR_LOCATION (tem, loc);
4944 return tem;
4945 }
4946
4947 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4948
4949 poly_offset_int
4950 mem_ref_offset (const_tree t)
4951 {
4952 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4953 SIGNED);
4954 }
4955
4956 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4957 offsetted by OFFSET units. */
4958
4959 tree
4960 build_invariant_address (tree type, tree base, poly_int64 offset)
4961 {
4962 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4963 build_fold_addr_expr (base),
4964 build_int_cst (ptr_type_node, offset));
4965 tree addr = build1 (ADDR_EXPR, type, ref);
4966 recompute_tree_invariant_for_addr_expr (addr);
4967 return addr;
4968 }
4969
4970 /* Similar except don't specify the TREE_TYPE
4971 and leave the TREE_SIDE_EFFECTS as 0.
4972 It is permissible for arguments to be null,
4973 or even garbage if their values do not matter. */
4974
4975 tree
4976 build_nt (enum tree_code code, ...)
4977 {
4978 tree t;
4979 int length;
4980 int i;
4981 va_list p;
4982
4983 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4984
4985 va_start (p, code);
4986
4987 t = make_node (code);
4988 length = TREE_CODE_LENGTH (code);
4989
4990 for (i = 0; i < length; i++)
4991 TREE_OPERAND (t, i) = va_arg (p, tree);
4992
4993 va_end (p);
4994 return t;
4995 }
4996
4997 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4998 tree vec. */
4999
5000 tree
5001 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5002 {
5003 tree ret, t;
5004 unsigned int ix;
5005
5006 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5007 CALL_EXPR_FN (ret) = fn;
5008 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5009 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5010 CALL_EXPR_ARG (ret, ix) = t;
5011 return ret;
5012 }
5013 \f
5014 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5015 and data type TYPE.
5016 We do NOT enter this node in any sort of symbol table.
5017
5018 LOC is the location of the decl.
5019
5020 layout_decl is used to set up the decl's storage layout.
5021 Other slots are initialized to 0 or null pointers. */
5022
5023 tree
5024 build_decl (location_t loc, enum tree_code code, tree name,
5025 tree type MEM_STAT_DECL)
5026 {
5027 tree t;
5028
5029 t = make_node (code PASS_MEM_STAT);
5030 DECL_SOURCE_LOCATION (t) = loc;
5031
5032 /* if (type == error_mark_node)
5033 type = integer_type_node; */
5034 /* That is not done, deliberately, so that having error_mark_node
5035 as the type can suppress useless errors in the use of this variable. */
5036
5037 DECL_NAME (t) = name;
5038 TREE_TYPE (t) = type;
5039
5040 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5041 layout_decl (t, 0);
5042
5043 return t;
5044 }
5045
5046 /* Builds and returns function declaration with NAME and TYPE. */
5047
5048 tree
5049 build_fn_decl (const char *name, tree type)
5050 {
5051 tree id = get_identifier (name);
5052 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5053
5054 DECL_EXTERNAL (decl) = 1;
5055 TREE_PUBLIC (decl) = 1;
5056 DECL_ARTIFICIAL (decl) = 1;
5057 TREE_NOTHROW (decl) = 1;
5058
5059 return decl;
5060 }
5061
5062 vec<tree, va_gc> *all_translation_units;
5063
5064 /* Builds a new translation-unit decl with name NAME, queues it in the
5065 global list of translation-unit decls and returns it. */
5066
5067 tree
5068 build_translation_unit_decl (tree name)
5069 {
5070 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5071 name, NULL_TREE);
5072 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5073 vec_safe_push (all_translation_units, tu);
5074 return tu;
5075 }
5076
5077 \f
5078 /* BLOCK nodes are used to represent the structure of binding contours
5079 and declarations, once those contours have been exited and their contents
5080 compiled. This information is used for outputting debugging info. */
5081
5082 tree
5083 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5084 {
5085 tree block = make_node (BLOCK);
5086
5087 BLOCK_VARS (block) = vars;
5088 BLOCK_SUBBLOCKS (block) = subblocks;
5089 BLOCK_SUPERCONTEXT (block) = supercontext;
5090 BLOCK_CHAIN (block) = chain;
5091 return block;
5092 }
5093
5094 \f
5095 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5096
5097 LOC is the location to use in tree T. */
5098
5099 void
5100 protected_set_expr_location (tree t, location_t loc)
5101 {
5102 if (CAN_HAVE_LOCATION_P (t))
5103 SET_EXPR_LOCATION (t, loc);
5104 else if (t && TREE_CODE (t) == STATEMENT_LIST)
5105 {
5106 t = expr_single (t);
5107 if (t && CAN_HAVE_LOCATION_P (t))
5108 SET_EXPR_LOCATION (t, loc);
5109 }
5110 }
5111
5112 /* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
5113 UNKNOWN_LOCATION. */
5114
5115 void
5116 protected_set_expr_location_if_unset (tree t, location_t loc)
5117 {
5118 t = expr_single (t);
5119 if (t && !EXPR_HAS_LOCATION (t))
5120 protected_set_expr_location (t, loc);
5121 }
5122
5123 /* Data used when collecting DECLs and TYPEs for language data removal. */
5124
5125 class free_lang_data_d
5126 {
5127 public:
5128 free_lang_data_d () : decls (100), types (100) {}
5129
5130 /* Worklist to avoid excessive recursion. */
5131 auto_vec<tree> worklist;
5132
5133 /* Set of traversed objects. Used to avoid duplicate visits. */
5134 hash_set<tree> pset;
5135
5136 /* Array of symbols to process with free_lang_data_in_decl. */
5137 auto_vec<tree> decls;
5138
5139 /* Array of types to process with free_lang_data_in_type. */
5140 auto_vec<tree> types;
5141 };
5142
5143
5144 /* Add type or decl T to one of the list of tree nodes that need their
5145 language data removed. The lists are held inside FLD. */
5146
5147 static void
5148 add_tree_to_fld_list (tree t, class free_lang_data_d *fld)
5149 {
5150 if (DECL_P (t))
5151 fld->decls.safe_push (t);
5152 else if (TYPE_P (t))
5153 fld->types.safe_push (t);
5154 else
5155 gcc_unreachable ();
5156 }
5157
5158 /* Push tree node T into FLD->WORKLIST. */
5159
5160 static inline void
5161 fld_worklist_push (tree t, class free_lang_data_d *fld)
5162 {
5163 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5164 fld->worklist.safe_push ((t));
5165 }
5166
5167
5168 \f
5169 /* Return simplified TYPE_NAME of TYPE. */
5170
5171 static tree
5172 fld_simplified_type_name (tree type)
5173 {
5174 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5175 return TYPE_NAME (type);
5176 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5177 TYPE_DECL if the type doesn't have linkage.
5178 this must match fld_ */
5179 if (type != TYPE_MAIN_VARIANT (type)
5180 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5181 && (TREE_CODE (type) != RECORD_TYPE
5182 || !TYPE_BINFO (type)
5183 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5184 return DECL_NAME (TYPE_NAME (type));
5185 return TYPE_NAME (type);
5186 }
5187
5188 /* Do same comparsion as check_qualified_type skipping lang part of type
5189 and be more permissive about type names: we only care that names are
5190 same (for diagnostics) and that ODR names are the same.
5191 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5192
5193 static bool
5194 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5195 {
5196 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5197 /* We want to match incomplete variants with complete types.
5198 In this case we need to ignore alignment. */
5199 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5200 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5201 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5202 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5203 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5204 TYPE_ATTRIBUTES (v))
5205 || (inner_type && TREE_TYPE (v) != inner_type))
5206 return false;
5207
5208 return true;
5209 }
5210
5211 /* Find variant of FIRST that match T and create new one if necessary.
5212 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5213
5214 static tree
5215 fld_type_variant (tree first, tree t, class free_lang_data_d *fld,
5216 tree inner_type = NULL)
5217 {
5218 if (first == TYPE_MAIN_VARIANT (t))
5219 return t;
5220 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5221 if (fld_type_variant_equal_p (t, v, inner_type))
5222 return v;
5223 tree v = build_variant_type_copy (first);
5224 TYPE_READONLY (v) = TYPE_READONLY (t);
5225 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5226 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5227 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5228 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5229 TYPE_NAME (v) = TYPE_NAME (t);
5230 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5231 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5232 /* Variants of incomplete types should have alignment
5233 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5234 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5235 {
5236 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5237 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5238 }
5239 if (inner_type)
5240 TREE_TYPE (v) = inner_type;
5241 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5242 if (!fld->pset.add (v))
5243 add_tree_to_fld_list (v, fld);
5244 return v;
5245 }
5246
5247 /* Map complete types to incomplete types. */
5248
5249 static hash_map<tree, tree> *fld_incomplete_types;
5250
5251 /* Map types to simplified types. */
5252
5253 static hash_map<tree, tree> *fld_simplified_types;
5254
5255 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5256 use MAP to prevent duplicates. */
5257
5258 static tree
5259 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5260 class free_lang_data_d *fld)
5261 {
5262 if (TREE_TYPE (t) == t2)
5263 return t;
5264
5265 if (TYPE_MAIN_VARIANT (t) != t)
5266 {
5267 return fld_type_variant
5268 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5269 TYPE_MAIN_VARIANT (t2), map, fld),
5270 t, fld, t2);
5271 }
5272
5273 bool existed;
5274 tree &array
5275 = map->get_or_insert (t, &existed);
5276 if (!existed)
5277 {
5278 array
5279 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5280 false, false);
5281 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5282 if (!fld->pset.add (array))
5283 add_tree_to_fld_list (array, fld);
5284 }
5285 return array;
5286 }
5287
5288 /* Return CTX after removal of contexts that are not relevant */
5289
5290 static tree
5291 fld_decl_context (tree ctx)
5292 {
5293 /* Variably modified types are needed for tree_is_indexable to decide
5294 whether the type needs to go to local or global section.
5295 This code is semi-broken but for now it is easiest to keep contexts
5296 as expected. */
5297 if (ctx && TYPE_P (ctx)
5298 && !variably_modified_type_p (ctx, NULL_TREE))
5299 {
5300 while (ctx && TYPE_P (ctx))
5301 ctx = TYPE_CONTEXT (ctx);
5302 }
5303 return ctx;
5304 }
5305
5306 /* For T being aggregate type try to turn it into a incomplete variant.
5307 Return T if no simplification is possible. */
5308
5309 static tree
5310 fld_incomplete_type_of (tree t, class free_lang_data_d *fld)
5311 {
5312 if (!t)
5313 return NULL;
5314 if (POINTER_TYPE_P (t))
5315 {
5316 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5317 if (t2 != TREE_TYPE (t))
5318 {
5319 tree first;
5320 if (TREE_CODE (t) == POINTER_TYPE)
5321 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5322 TYPE_REF_CAN_ALIAS_ALL (t));
5323 else
5324 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5325 TYPE_REF_CAN_ALIAS_ALL (t));
5326 gcc_assert (TYPE_CANONICAL (t2) != t2
5327 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5328 if (!fld->pset.add (first))
5329 add_tree_to_fld_list (first, fld);
5330 return fld_type_variant (first, t, fld);
5331 }
5332 return t;
5333 }
5334 if (TREE_CODE (t) == ARRAY_TYPE)
5335 return fld_process_array_type (t,
5336 fld_incomplete_type_of (TREE_TYPE (t), fld),
5337 fld_incomplete_types, fld);
5338 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5339 || !COMPLETE_TYPE_P (t))
5340 return t;
5341 if (TYPE_MAIN_VARIANT (t) == t)
5342 {
5343 bool existed;
5344 tree &copy
5345 = fld_incomplete_types->get_or_insert (t, &existed);
5346
5347 if (!existed)
5348 {
5349 copy = build_distinct_type_copy (t);
5350
5351 /* It is possible that type was not seen by free_lang_data yet. */
5352 if (!fld->pset.add (copy))
5353 add_tree_to_fld_list (copy, fld);
5354 TYPE_SIZE (copy) = NULL;
5355 TYPE_USER_ALIGN (copy) = 0;
5356 TYPE_SIZE_UNIT (copy) = NULL;
5357 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5358 TREE_ADDRESSABLE (copy) = 0;
5359 if (AGGREGATE_TYPE_P (t))
5360 {
5361 SET_TYPE_MODE (copy, VOIDmode);
5362 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5363 TYPE_TYPELESS_STORAGE (copy) = 0;
5364 TYPE_FIELDS (copy) = NULL;
5365 TYPE_BINFO (copy) = NULL;
5366 TYPE_FINAL_P (copy) = 0;
5367 TYPE_EMPTY_P (copy) = 0;
5368 }
5369 else
5370 {
5371 TYPE_VALUES (copy) = NULL;
5372 ENUM_IS_OPAQUE (copy) = 0;
5373 ENUM_IS_SCOPED (copy) = 0;
5374 }
5375
5376 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5377 This is needed for ODR violation warnings to come out right (we
5378 want duplicate TYPE_DECLs whenever the type is duplicated because
5379 of ODR violation. Because lang data in the TYPE_DECL may not
5380 have been freed yet, rebuild it from scratch and copy relevant
5381 fields. */
5382 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5383 tree name = TYPE_NAME (copy);
5384
5385 if (name && TREE_CODE (name) == TYPE_DECL)
5386 {
5387 gcc_checking_assert (TREE_TYPE (name) == t);
5388 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5389 DECL_NAME (name), copy);
5390 if (DECL_ASSEMBLER_NAME_SET_P (name))
5391 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5392 SET_DECL_ALIGN (name2, 0);
5393 DECL_CONTEXT (name2) = fld_decl_context
5394 (DECL_CONTEXT (name));
5395 TYPE_NAME (copy) = name2;
5396 }
5397 }
5398 return copy;
5399 }
5400 return (fld_type_variant
5401 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5402 }
5403
5404 /* Simplify type T for scenarios where we do not need complete pointer
5405 types. */
5406
5407 static tree
5408 fld_simplified_type (tree t, class free_lang_data_d *fld)
5409 {
5410 if (!t)
5411 return t;
5412 if (POINTER_TYPE_P (t))
5413 return fld_incomplete_type_of (t, fld);
5414 /* FIXME: This triggers verification error, see PR88140. */
5415 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5416 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5417 fld_simplified_types, fld);
5418 return t;
5419 }
5420
5421 /* Reset the expression *EXPR_P, a size or position.
5422
5423 ??? We could reset all non-constant sizes or positions. But it's cheap
5424 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5425
5426 We need to reset self-referential sizes or positions because they cannot
5427 be gimplified and thus can contain a CALL_EXPR after the gimplification
5428 is finished, which will run afoul of LTO streaming. And they need to be
5429 reset to something essentially dummy but not constant, so as to preserve
5430 the properties of the object they are attached to. */
5431
5432 static inline void
5433 free_lang_data_in_one_sizepos (tree *expr_p)
5434 {
5435 tree expr = *expr_p;
5436 if (CONTAINS_PLACEHOLDER_P (expr))
5437 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5438 }
5439
5440
5441 /* Reset all the fields in a binfo node BINFO. We only keep
5442 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5443
5444 static void
5445 free_lang_data_in_binfo (tree binfo)
5446 {
5447 unsigned i;
5448 tree t;
5449
5450 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5451
5452 BINFO_VIRTUALS (binfo) = NULL_TREE;
5453 BINFO_BASE_ACCESSES (binfo) = NULL;
5454 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5455 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5456 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5457 TREE_PUBLIC (binfo) = 0;
5458
5459 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5460 free_lang_data_in_binfo (t);
5461 }
5462
5463
5464 /* Reset all language specific information still present in TYPE. */
5465
5466 static void
5467 free_lang_data_in_type (tree type, class free_lang_data_d *fld)
5468 {
5469 gcc_assert (TYPE_P (type));
5470
5471 /* Give the FE a chance to remove its own data first. */
5472 lang_hooks.free_lang_data (type);
5473
5474 TREE_LANG_FLAG_0 (type) = 0;
5475 TREE_LANG_FLAG_1 (type) = 0;
5476 TREE_LANG_FLAG_2 (type) = 0;
5477 TREE_LANG_FLAG_3 (type) = 0;
5478 TREE_LANG_FLAG_4 (type) = 0;
5479 TREE_LANG_FLAG_5 (type) = 0;
5480 TREE_LANG_FLAG_6 (type) = 0;
5481
5482 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5483
5484 /* Purge non-marked variants from the variants chain, so that they
5485 don't reappear in the IL after free_lang_data. */
5486 while (TYPE_NEXT_VARIANT (type)
5487 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5488 {
5489 tree t = TYPE_NEXT_VARIANT (type);
5490 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5491 /* Turn the removed types into distinct types. */
5492 TYPE_MAIN_VARIANT (t) = t;
5493 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5494 }
5495
5496 if (TREE_CODE (type) == FUNCTION_TYPE)
5497 {
5498 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5499 /* Remove the const and volatile qualifiers from arguments. The
5500 C++ front end removes them, but the C front end does not,
5501 leading to false ODR violation errors when merging two
5502 instances of the same function signature compiled by
5503 different front ends. */
5504 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5505 {
5506 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5507 tree arg_type = TREE_VALUE (p);
5508
5509 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5510 {
5511 int quals = TYPE_QUALS (arg_type)
5512 & ~TYPE_QUAL_CONST
5513 & ~TYPE_QUAL_VOLATILE;
5514 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5515 if (!fld->pset.add (TREE_VALUE (p)))
5516 free_lang_data_in_type (TREE_VALUE (p), fld);
5517 }
5518 /* C++ FE uses TREE_PURPOSE to store initial values. */
5519 TREE_PURPOSE (p) = NULL;
5520 }
5521 }
5522 else if (TREE_CODE (type) == METHOD_TYPE)
5523 {
5524 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5525 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5526 {
5527 /* C++ FE uses TREE_PURPOSE to store initial values. */
5528 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5529 TREE_PURPOSE (p) = NULL;
5530 }
5531 }
5532 else if (RECORD_OR_UNION_TYPE_P (type))
5533 {
5534 /* Remove members that are not FIELD_DECLs from the field list
5535 of an aggregate. These occur in C++. */
5536 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5537 if (TREE_CODE (member) == FIELD_DECL)
5538 prev = &DECL_CHAIN (member);
5539 else
5540 *prev = DECL_CHAIN (member);
5541
5542 TYPE_VFIELD (type) = NULL_TREE;
5543
5544 if (TYPE_BINFO (type))
5545 {
5546 free_lang_data_in_binfo (TYPE_BINFO (type));
5547 /* We need to preserve link to bases and virtual table for all
5548 polymorphic types to make devirtualization machinery working. */
5549 if (!BINFO_VTABLE (TYPE_BINFO (type)))
5550 TYPE_BINFO (type) = NULL;
5551 }
5552 }
5553 else if (INTEGRAL_TYPE_P (type)
5554 || SCALAR_FLOAT_TYPE_P (type)
5555 || FIXED_POINT_TYPE_P (type))
5556 {
5557 if (TREE_CODE (type) == ENUMERAL_TYPE)
5558 {
5559 tree it = NULL_TREE;
5560 ENUM_IS_OPAQUE (type) = 0;
5561 ENUM_IS_SCOPED (type) = 0;
5562 /* Type values are used only for C++ ODR checking. Drop them
5563 for all type variants and non-ODR types.
5564 For ODR types the data is freed in free_odr_warning_data. */
5565 if (TYPE_MAIN_VARIANT (type) != type
5566 || !type_with_linkage_p (type))
5567 TYPE_VALUES (type) = NULL;
5568 else
5569 /* Simplify representation by recording only values rather
5570 than const decls. */
5571 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5572 {
5573 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5574 {
5575 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5576 /* We can not stream values whose TREE_TYPE is type itself
5577 because that would create non-trivial CSS. Canonicalize
5578 them to integer types. */
5579 }
5580 /* Some frontends use ENUMERAL_TYPE to represent the constants.
5581 This leads to nontrivial SCC components containing
5582 INTEGER_CST which is not good for streaming. Convert them
5583 all to corresponding integer type. */
5584 if (TREE_CODE (TREE_TYPE (TREE_VALUE (e))) != INTEGER_TYPE)
5585 {
5586 if (!it)
5587 it = lang_hooks.types.type_for_size
5588 (TYPE_PRECISION (TREE_TYPE (TREE_VALUE (e))),
5589 TYPE_UNSIGNED (TREE_TYPE (TREE_VALUE (e))));
5590 TREE_VALUE (e) = fold_convert (it, TREE_VALUE (e));
5591 }
5592 }
5593 }
5594 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5595 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5596 }
5597
5598 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5599
5600 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5601 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5602
5603 if (TYPE_CONTEXT (type)
5604 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5605 {
5606 tree ctx = TYPE_CONTEXT (type);
5607 do
5608 {
5609 ctx = BLOCK_SUPERCONTEXT (ctx);
5610 }
5611 while (ctx && TREE_CODE (ctx) == BLOCK);
5612 TYPE_CONTEXT (type) = ctx;
5613 }
5614
5615 TYPE_STUB_DECL (type) = NULL;
5616 TYPE_NAME (type) = fld_simplified_type_name (type);
5617 }
5618
5619
5620 /* Return true if DECL may need an assembler name to be set. */
5621
5622 static inline bool
5623 need_assembler_name_p (tree decl)
5624 {
5625 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5626 Rule merging. This makes type_odr_p to return true on those types during
5627 LTO and by comparing the mangled name, we can say what types are intended
5628 to be equivalent across compilation unit.
5629
5630 We do not store names of type_in_anonymous_namespace_p.
5631
5632 Record, union and enumeration type have linkage that allows use
5633 to check type_in_anonymous_namespace_p. We do not mangle compound types
5634 that always can be compared structurally.
5635
5636 Similarly for builtin types, we compare properties of their main variant.
5637 A special case are integer types where mangling do make differences
5638 between char/signed char/unsigned char etc. Storing name for these makes
5639 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5640 See cp/mangle.c:write_builtin_type for details. */
5641
5642 if (TREE_CODE (decl) == TYPE_DECL)
5643 {
5644 if (DECL_NAME (decl)
5645 && decl == TYPE_NAME (TREE_TYPE (decl))
5646 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5647 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5648 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
5649 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
5650 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
5651 && (type_with_linkage_p (TREE_TYPE (decl))
5652 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5653 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5654 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5655 return false;
5656 }
5657 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5658 if (!VAR_OR_FUNCTION_DECL_P (decl))
5659 return false;
5660
5661 /* If DECL already has its assembler name set, it does not need a
5662 new one. */
5663 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5664 || DECL_ASSEMBLER_NAME_SET_P (decl))
5665 return false;
5666
5667 /* Abstract decls do not need an assembler name. */
5668 if (DECL_ABSTRACT_P (decl))
5669 return false;
5670
5671 /* For VAR_DECLs, only static, public and external symbols need an
5672 assembler name. */
5673 if (VAR_P (decl)
5674 && !TREE_STATIC (decl)
5675 && !TREE_PUBLIC (decl)
5676 && !DECL_EXTERNAL (decl))
5677 return false;
5678
5679 if (TREE_CODE (decl) == FUNCTION_DECL)
5680 {
5681 /* Do not set assembler name on builtins. Allow RTL expansion to
5682 decide whether to expand inline or via a regular call. */
5683 if (fndecl_built_in_p (decl)
5684 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5685 return false;
5686
5687 /* Functions represented in the callgraph need an assembler name. */
5688 if (cgraph_node::get (decl) != NULL)
5689 return true;
5690
5691 /* Unused and not public functions don't need an assembler name. */
5692 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5693 return false;
5694 }
5695
5696 return true;
5697 }
5698
5699
5700 /* Reset all language specific information still present in symbol
5701 DECL. */
5702
5703 static void
5704 free_lang_data_in_decl (tree decl, class free_lang_data_d *fld)
5705 {
5706 gcc_assert (DECL_P (decl));
5707
5708 /* Give the FE a chance to remove its own data first. */
5709 lang_hooks.free_lang_data (decl);
5710
5711 TREE_LANG_FLAG_0 (decl) = 0;
5712 TREE_LANG_FLAG_1 (decl) = 0;
5713 TREE_LANG_FLAG_2 (decl) = 0;
5714 TREE_LANG_FLAG_3 (decl) = 0;
5715 TREE_LANG_FLAG_4 (decl) = 0;
5716 TREE_LANG_FLAG_5 (decl) = 0;
5717 TREE_LANG_FLAG_6 (decl) = 0;
5718
5719 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5720 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5721 if (TREE_CODE (decl) == FIELD_DECL)
5722 {
5723 DECL_FCONTEXT (decl) = NULL;
5724 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5725 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5726 DECL_QUALIFIER (decl) = NULL_TREE;
5727 }
5728
5729 if (TREE_CODE (decl) == FUNCTION_DECL)
5730 {
5731 struct cgraph_node *node;
5732 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5733 the address may be taken in other unit, so this flag has no practical
5734 use for middle-end.
5735
5736 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5737 for public objects that indeed cannot be adressed, but it is not
5738 the case. Set the flag to true so we do not get merge failures for
5739 i.e. virtual tables between units that take address of it and
5740 units that don't. */
5741 if (TREE_PUBLIC (decl))
5742 TREE_ADDRESSABLE (decl) = true;
5743 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5744 if (!(node = cgraph_node::get (decl))
5745 || (!node->definition && !node->clones))
5746 {
5747 if (node)
5748 node->release_body ();
5749 else
5750 {
5751 release_function_body (decl);
5752 DECL_ARGUMENTS (decl) = NULL;
5753 DECL_RESULT (decl) = NULL;
5754 DECL_INITIAL (decl) = error_mark_node;
5755 }
5756 }
5757 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5758 {
5759 tree t;
5760
5761 /* If DECL has a gimple body, then the context for its
5762 arguments must be DECL. Otherwise, it doesn't really
5763 matter, as we will not be emitting any code for DECL. In
5764 general, there may be other instances of DECL created by
5765 the front end and since PARM_DECLs are generally shared,
5766 their DECL_CONTEXT changes as the replicas of DECL are
5767 created. The only time where DECL_CONTEXT is important
5768 is for the FUNCTION_DECLs that have a gimple body (since
5769 the PARM_DECL will be used in the function's body). */
5770 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5771 DECL_CONTEXT (t) = decl;
5772 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5773 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5774 = target_option_default_node;
5775 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5776 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5777 = optimization_default_node;
5778 }
5779
5780 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5781 At this point, it is not needed anymore. */
5782 DECL_SAVED_TREE (decl) = NULL_TREE;
5783
5784 /* Clear the abstract origin if it refers to a method.
5785 Otherwise dwarf2out.c will ICE as we splice functions out of
5786 TYPE_FIELDS and thus the origin will not be output
5787 correctly. */
5788 if (DECL_ABSTRACT_ORIGIN (decl)
5789 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5790 && RECORD_OR_UNION_TYPE_P
5791 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5792 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5793
5794 DECL_VINDEX (decl) = NULL_TREE;
5795 }
5796 else if (VAR_P (decl))
5797 {
5798 /* See comment above why we set the flag for functions. */
5799 if (TREE_PUBLIC (decl))
5800 TREE_ADDRESSABLE (decl) = true;
5801 if ((DECL_EXTERNAL (decl)
5802 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5803 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5804 DECL_INITIAL (decl) = NULL_TREE;
5805 }
5806 else if (TREE_CODE (decl) == TYPE_DECL)
5807 {
5808 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5809 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5810 TREE_PUBLIC (decl) = 0;
5811 TREE_PRIVATE (decl) = 0;
5812 DECL_ARTIFICIAL (decl) = 0;
5813 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5814 DECL_INITIAL (decl) = NULL_TREE;
5815 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5816 DECL_MODE (decl) = VOIDmode;
5817 SET_DECL_ALIGN (decl, 0);
5818 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5819 }
5820 else if (TREE_CODE (decl) == FIELD_DECL)
5821 {
5822 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5823 DECL_INITIAL (decl) = NULL_TREE;
5824 }
5825 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5826 && DECL_INITIAL (decl)
5827 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5828 {
5829 /* Strip builtins from the translation-unit BLOCK. We still have targets
5830 without builtin_decl_explicit support and also builtins are shared
5831 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5832 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5833 while (*nextp)
5834 {
5835 tree var = *nextp;
5836 if (TREE_CODE (var) == FUNCTION_DECL
5837 && fndecl_built_in_p (var))
5838 *nextp = TREE_CHAIN (var);
5839 else
5840 nextp = &TREE_CHAIN (var);
5841 }
5842 }
5843 /* We need to keep field decls associated with their trees. Otherwise tree
5844 merging may merge some fileds and keep others disjoint wich in turn will
5845 not do well with TREE_CHAIN pointers linking them.
5846
5847 Also do not drop containing types for virtual methods and tables because
5848 these are needed by devirtualization.
5849 C++ destructors are special because C++ frontends sometimes produces
5850 virtual destructor as an alias of non-virtual destructor. In
5851 devirutalization code we always walk through aliases and we need
5852 context to be preserved too. See PR89335 */
5853 if (TREE_CODE (decl) != FIELD_DECL
5854 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5855 || (!DECL_VIRTUAL_P (decl)
5856 && (TREE_CODE (decl) != FUNCTION_DECL
5857 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5858 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5859 }
5860
5861
5862 /* Operand callback helper for free_lang_data_in_node. *TP is the
5863 subtree operand being considered. */
5864
5865 static tree
5866 find_decls_types_r (tree *tp, int *ws, void *data)
5867 {
5868 tree t = *tp;
5869 class free_lang_data_d *fld = (class free_lang_data_d *) data;
5870
5871 if (TREE_CODE (t) == TREE_LIST)
5872 return NULL_TREE;
5873
5874 /* Language specific nodes will be removed, so there is no need
5875 to gather anything under them. */
5876 if (is_lang_specific (t))
5877 {
5878 *ws = 0;
5879 return NULL_TREE;
5880 }
5881
5882 if (DECL_P (t))
5883 {
5884 /* Note that walk_tree does not traverse every possible field in
5885 decls, so we have to do our own traversals here. */
5886 add_tree_to_fld_list (t, fld);
5887
5888 fld_worklist_push (DECL_NAME (t), fld);
5889 fld_worklist_push (DECL_CONTEXT (t), fld);
5890 fld_worklist_push (DECL_SIZE (t), fld);
5891 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5892
5893 /* We are going to remove everything under DECL_INITIAL for
5894 TYPE_DECLs. No point walking them. */
5895 if (TREE_CODE (t) != TYPE_DECL)
5896 fld_worklist_push (DECL_INITIAL (t), fld);
5897
5898 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5899 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5900
5901 if (TREE_CODE (t) == FUNCTION_DECL)
5902 {
5903 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5904 fld_worklist_push (DECL_RESULT (t), fld);
5905 }
5906 else if (TREE_CODE (t) == FIELD_DECL)
5907 {
5908 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5909 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5910 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5911 fld_worklist_push (DECL_FCONTEXT (t), fld);
5912 }
5913
5914 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5915 && DECL_HAS_VALUE_EXPR_P (t))
5916 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5917
5918 if (TREE_CODE (t) != FIELD_DECL
5919 && TREE_CODE (t) != TYPE_DECL)
5920 fld_worklist_push (TREE_CHAIN (t), fld);
5921 *ws = 0;
5922 }
5923 else if (TYPE_P (t))
5924 {
5925 /* Note that walk_tree does not traverse every possible field in
5926 types, so we have to do our own traversals here. */
5927 add_tree_to_fld_list (t, fld);
5928
5929 if (!RECORD_OR_UNION_TYPE_P (t))
5930 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5931 fld_worklist_push (TYPE_SIZE (t), fld);
5932 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5933 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5934 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5935 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5936 fld_worklist_push (TYPE_NAME (t), fld);
5937 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5938 lists, we may look types up in these lists and use them while
5939 optimizing the function body. Thus we need to free lang data
5940 in them. */
5941 if (TREE_CODE (t) == POINTER_TYPE)
5942 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5943 if (TREE_CODE (t) == REFERENCE_TYPE)
5944 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5945 if (!POINTER_TYPE_P (t))
5946 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5947 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5948 if (!RECORD_OR_UNION_TYPE_P (t))
5949 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5950 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5951 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5952 do not and want not to reach unused variants this way. */
5953 if (TYPE_CONTEXT (t))
5954 {
5955 tree ctx = TYPE_CONTEXT (t);
5956 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5957 So push that instead. */
5958 while (ctx && TREE_CODE (ctx) == BLOCK)
5959 ctx = BLOCK_SUPERCONTEXT (ctx);
5960 fld_worklist_push (ctx, fld);
5961 }
5962 fld_worklist_push (TYPE_CANONICAL (t), fld);
5963
5964 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5965 {
5966 unsigned i;
5967 tree tem;
5968 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5969 fld_worklist_push (TREE_TYPE (tem), fld);
5970 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5971 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5972 }
5973 if (RECORD_OR_UNION_TYPE_P (t))
5974 {
5975 tree tem;
5976 /* Push all TYPE_FIELDS - there can be interleaving interesting
5977 and non-interesting things. */
5978 tem = TYPE_FIELDS (t);
5979 while (tem)
5980 {
5981 if (TREE_CODE (tem) == FIELD_DECL)
5982 fld_worklist_push (tem, fld);
5983 tem = TREE_CHAIN (tem);
5984 }
5985 }
5986 if (FUNC_OR_METHOD_TYPE_P (t))
5987 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5988
5989 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5990 *ws = 0;
5991 }
5992 else if (TREE_CODE (t) == BLOCK)
5993 {
5994 for (tree *tem = &BLOCK_VARS (t); *tem; )
5995 {
5996 if (TREE_CODE (*tem) != LABEL_DECL
5997 && (TREE_CODE (*tem) != VAR_DECL
5998 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
5999 {
6000 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
6001 && TREE_CODE (*tem) != PARM_DECL);
6002 *tem = TREE_CHAIN (*tem);
6003 }
6004 else
6005 {
6006 fld_worklist_push (*tem, fld);
6007 tem = &TREE_CHAIN (*tem);
6008 }
6009 }
6010 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
6011 fld_worklist_push (tem, fld);
6012 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
6013 }
6014
6015 if (TREE_CODE (t) != IDENTIFIER_NODE
6016 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
6017 fld_worklist_push (TREE_TYPE (t), fld);
6018
6019 return NULL_TREE;
6020 }
6021
6022
6023 /* Find decls and types in T. */
6024
6025 static void
6026 find_decls_types (tree t, class free_lang_data_d *fld)
6027 {
6028 while (1)
6029 {
6030 if (!fld->pset.contains (t))
6031 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
6032 if (fld->worklist.is_empty ())
6033 break;
6034 t = fld->worklist.pop ();
6035 }
6036 }
6037
6038 /* Translate all the types in LIST with the corresponding runtime
6039 types. */
6040
6041 static tree
6042 get_eh_types_for_runtime (tree list)
6043 {
6044 tree head, prev;
6045
6046 if (list == NULL_TREE)
6047 return NULL_TREE;
6048
6049 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6050 prev = head;
6051 list = TREE_CHAIN (list);
6052 while (list)
6053 {
6054 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6055 TREE_CHAIN (prev) = n;
6056 prev = TREE_CHAIN (prev);
6057 list = TREE_CHAIN (list);
6058 }
6059
6060 return head;
6061 }
6062
6063
6064 /* Find decls and types referenced in EH region R and store them in
6065 FLD->DECLS and FLD->TYPES. */
6066
6067 static void
6068 find_decls_types_in_eh_region (eh_region r, class free_lang_data_d *fld)
6069 {
6070 switch (r->type)
6071 {
6072 case ERT_CLEANUP:
6073 break;
6074
6075 case ERT_TRY:
6076 {
6077 eh_catch c;
6078
6079 /* The types referenced in each catch must first be changed to the
6080 EH types used at runtime. This removes references to FE types
6081 in the region. */
6082 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6083 {
6084 c->type_list = get_eh_types_for_runtime (c->type_list);
6085 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6086 }
6087 }
6088 break;
6089
6090 case ERT_ALLOWED_EXCEPTIONS:
6091 r->u.allowed.type_list
6092 = get_eh_types_for_runtime (r->u.allowed.type_list);
6093 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6094 break;
6095
6096 case ERT_MUST_NOT_THROW:
6097 walk_tree (&r->u.must_not_throw.failure_decl,
6098 find_decls_types_r, fld, &fld->pset);
6099 break;
6100 }
6101 }
6102
6103
6104 /* Find decls and types referenced in cgraph node N and store them in
6105 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6106 look for *every* kind of DECL and TYPE node reachable from N,
6107 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6108 NAMESPACE_DECLs, etc). */
6109
6110 static void
6111 find_decls_types_in_node (struct cgraph_node *n, class free_lang_data_d *fld)
6112 {
6113 basic_block bb;
6114 struct function *fn;
6115 unsigned ix;
6116 tree t;
6117
6118 find_decls_types (n->decl, fld);
6119
6120 if (!gimple_has_body_p (n->decl))
6121 return;
6122
6123 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6124
6125 fn = DECL_STRUCT_FUNCTION (n->decl);
6126
6127 /* Traverse locals. */
6128 FOR_EACH_LOCAL_DECL (fn, ix, t)
6129 find_decls_types (t, fld);
6130
6131 /* Traverse EH regions in FN. */
6132 {
6133 eh_region r;
6134 FOR_ALL_EH_REGION_FN (r, fn)
6135 find_decls_types_in_eh_region (r, fld);
6136 }
6137
6138 /* Traverse every statement in FN. */
6139 FOR_EACH_BB_FN (bb, fn)
6140 {
6141 gphi_iterator psi;
6142 gimple_stmt_iterator si;
6143 unsigned i;
6144
6145 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6146 {
6147 gphi *phi = psi.phi ();
6148
6149 for (i = 0; i < gimple_phi_num_args (phi); i++)
6150 {
6151 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6152 find_decls_types (*arg_p, fld);
6153 }
6154 }
6155
6156 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6157 {
6158 gimple *stmt = gsi_stmt (si);
6159
6160 if (is_gimple_call (stmt))
6161 find_decls_types (gimple_call_fntype (stmt), fld);
6162
6163 for (i = 0; i < gimple_num_ops (stmt); i++)
6164 {
6165 tree arg = gimple_op (stmt, i);
6166 find_decls_types (arg, fld);
6167 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6168 which we need for asm stmts. */
6169 if (arg
6170 && TREE_CODE (arg) == TREE_LIST
6171 && TREE_PURPOSE (arg)
6172 && gimple_code (stmt) == GIMPLE_ASM)
6173 find_decls_types (TREE_PURPOSE (arg), fld);
6174 }
6175 }
6176 }
6177 }
6178
6179
6180 /* Find decls and types referenced in varpool node N and store them in
6181 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6182 look for *every* kind of DECL and TYPE node reachable from N,
6183 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6184 NAMESPACE_DECLs, etc). */
6185
6186 static void
6187 find_decls_types_in_var (varpool_node *v, class free_lang_data_d *fld)
6188 {
6189 find_decls_types (v->decl, fld);
6190 }
6191
6192 /* If T needs an assembler name, have one created for it. */
6193
6194 void
6195 assign_assembler_name_if_needed (tree t)
6196 {
6197 if (need_assembler_name_p (t))
6198 {
6199 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6200 diagnostics that use input_location to show locus
6201 information. The problem here is that, at this point,
6202 input_location is generally anchored to the end of the file
6203 (since the parser is long gone), so we don't have a good
6204 position to pin it to.
6205
6206 To alleviate this problem, this uses the location of T's
6207 declaration. Examples of this are
6208 testsuite/g++.dg/template/cond2.C and
6209 testsuite/g++.dg/template/pr35240.C. */
6210 location_t saved_location = input_location;
6211 input_location = DECL_SOURCE_LOCATION (t);
6212
6213 decl_assembler_name (t);
6214
6215 input_location = saved_location;
6216 }
6217 }
6218
6219
6220 /* Free language specific information for every operand and expression
6221 in every node of the call graph. This process operates in three stages:
6222
6223 1- Every callgraph node and varpool node is traversed looking for
6224 decls and types embedded in them. This is a more exhaustive
6225 search than that done by find_referenced_vars, because it will
6226 also collect individual fields, decls embedded in types, etc.
6227
6228 2- All the decls found are sent to free_lang_data_in_decl.
6229
6230 3- All the types found are sent to free_lang_data_in_type.
6231
6232 The ordering between decls and types is important because
6233 free_lang_data_in_decl sets assembler names, which includes
6234 mangling. So types cannot be freed up until assembler names have
6235 been set up. */
6236
6237 static void
6238 free_lang_data_in_cgraph (class free_lang_data_d *fld)
6239 {
6240 struct cgraph_node *n;
6241 varpool_node *v;
6242 tree t;
6243 unsigned i;
6244 alias_pair *p;
6245
6246 /* Find decls and types in the body of every function in the callgraph. */
6247 FOR_EACH_FUNCTION (n)
6248 find_decls_types_in_node (n, fld);
6249
6250 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6251 find_decls_types (p->decl, fld);
6252
6253 /* Find decls and types in every varpool symbol. */
6254 FOR_EACH_VARIABLE (v)
6255 find_decls_types_in_var (v, fld);
6256
6257 /* Set the assembler name on every decl found. We need to do this
6258 now because free_lang_data_in_decl will invalidate data needed
6259 for mangling. This breaks mangling on interdependent decls. */
6260 FOR_EACH_VEC_ELT (fld->decls, i, t)
6261 assign_assembler_name_if_needed (t);
6262
6263 /* Traverse every decl found freeing its language data. */
6264 FOR_EACH_VEC_ELT (fld->decls, i, t)
6265 free_lang_data_in_decl (t, fld);
6266
6267 /* Traverse every type found freeing its language data. */
6268 FOR_EACH_VEC_ELT (fld->types, i, t)
6269 free_lang_data_in_type (t, fld);
6270 }
6271
6272
6273 /* Free resources that are used by FE but are not needed once they are done. */
6274
6275 static unsigned
6276 free_lang_data (void)
6277 {
6278 unsigned i;
6279 class free_lang_data_d fld;
6280
6281 /* If we are the LTO frontend we have freed lang-specific data already. */
6282 if (in_lto_p
6283 || (!flag_generate_lto && !flag_generate_offload))
6284 {
6285 /* Rebuild type inheritance graph even when not doing LTO to get
6286 consistent profile data. */
6287 rebuild_type_inheritance_graph ();
6288 return 0;
6289 }
6290
6291 fld_incomplete_types = new hash_map<tree, tree>;
6292 fld_simplified_types = new hash_map<tree, tree>;
6293
6294 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6295 if (vec_safe_is_empty (all_translation_units))
6296 build_translation_unit_decl (NULL_TREE);
6297
6298 /* Allocate and assign alias sets to the standard integer types
6299 while the slots are still in the way the frontends generated them. */
6300 for (i = 0; i < itk_none; ++i)
6301 if (integer_types[i])
6302 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6303
6304 /* Traverse the IL resetting language specific information for
6305 operands, expressions, etc. */
6306 free_lang_data_in_cgraph (&fld);
6307
6308 /* Create gimple variants for common types. */
6309 for (unsigned i = 0;
6310 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6311 ++i)
6312 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6313
6314 /* Reset some langhooks. Do not reset types_compatible_p, it may
6315 still be used indirectly via the get_alias_set langhook. */
6316 lang_hooks.dwarf_name = lhd_dwarf_name;
6317 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6318 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6319 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6320 lang_hooks.print_xnode = lhd_print_tree_nothing;
6321 lang_hooks.print_decl = lhd_print_tree_nothing;
6322 lang_hooks.print_type = lhd_print_tree_nothing;
6323 lang_hooks.print_identifier = lhd_print_tree_nothing;
6324
6325 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6326
6327 if (flag_checking)
6328 {
6329 int i;
6330 tree t;
6331
6332 FOR_EACH_VEC_ELT (fld.types, i, t)
6333 verify_type (t);
6334 }
6335
6336 /* We do not want the default decl_assembler_name implementation,
6337 rather if we have fixed everything we want a wrapper around it
6338 asserting that all non-local symbols already got their assembler
6339 name and only produce assembler names for local symbols. Or rather
6340 make sure we never call decl_assembler_name on local symbols and
6341 devise a separate, middle-end private scheme for it. */
6342
6343 /* Reset diagnostic machinery. */
6344 tree_diagnostics_defaults (global_dc);
6345
6346 rebuild_type_inheritance_graph ();
6347
6348 delete fld_incomplete_types;
6349 delete fld_simplified_types;
6350
6351 return 0;
6352 }
6353
6354
6355 namespace {
6356
6357 const pass_data pass_data_ipa_free_lang_data =
6358 {
6359 SIMPLE_IPA_PASS, /* type */
6360 "*free_lang_data", /* name */
6361 OPTGROUP_NONE, /* optinfo_flags */
6362 TV_IPA_FREE_LANG_DATA, /* tv_id */
6363 0, /* properties_required */
6364 0, /* properties_provided */
6365 0, /* properties_destroyed */
6366 0, /* todo_flags_start */
6367 0, /* todo_flags_finish */
6368 };
6369
6370 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6371 {
6372 public:
6373 pass_ipa_free_lang_data (gcc::context *ctxt)
6374 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6375 {}
6376
6377 /* opt_pass methods: */
6378 virtual unsigned int execute (function *) { return free_lang_data (); }
6379
6380 }; // class pass_ipa_free_lang_data
6381
6382 } // anon namespace
6383
6384 simple_ipa_opt_pass *
6385 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6386 {
6387 return new pass_ipa_free_lang_data (ctxt);
6388 }
6389 \f
6390 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6391 of the various TYPE_QUAL values. */
6392
6393 static void
6394 set_type_quals (tree type, int type_quals)
6395 {
6396 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6397 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6398 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6399 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6400 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6401 }
6402
6403 /* Returns true iff CAND and BASE have equivalent language-specific
6404 qualifiers. */
6405
6406 bool
6407 check_lang_type (const_tree cand, const_tree base)
6408 {
6409 if (lang_hooks.types.type_hash_eq == NULL)
6410 return true;
6411 /* type_hash_eq currently only applies to these types. */
6412 if (TREE_CODE (cand) != FUNCTION_TYPE
6413 && TREE_CODE (cand) != METHOD_TYPE)
6414 return true;
6415 return lang_hooks.types.type_hash_eq (cand, base);
6416 }
6417
6418 /* This function checks to see if TYPE matches the size one of the built-in
6419 atomic types, and returns that core atomic type. */
6420
6421 static tree
6422 find_atomic_core_type (const_tree type)
6423 {
6424 tree base_atomic_type;
6425
6426 /* Only handle complete types. */
6427 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6428 return NULL_TREE;
6429
6430 switch (tree_to_uhwi (TYPE_SIZE (type)))
6431 {
6432 case 8:
6433 base_atomic_type = atomicQI_type_node;
6434 break;
6435
6436 case 16:
6437 base_atomic_type = atomicHI_type_node;
6438 break;
6439
6440 case 32:
6441 base_atomic_type = atomicSI_type_node;
6442 break;
6443
6444 case 64:
6445 base_atomic_type = atomicDI_type_node;
6446 break;
6447
6448 case 128:
6449 base_atomic_type = atomicTI_type_node;
6450 break;
6451
6452 default:
6453 base_atomic_type = NULL_TREE;
6454 }
6455
6456 return base_atomic_type;
6457 }
6458
6459 /* Returns true iff unqualified CAND and BASE are equivalent. */
6460
6461 bool
6462 check_base_type (const_tree cand, const_tree base)
6463 {
6464 if (TYPE_NAME (cand) != TYPE_NAME (base)
6465 /* Apparently this is needed for Objective-C. */
6466 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6467 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6468 TYPE_ATTRIBUTES (base)))
6469 return false;
6470 /* Check alignment. */
6471 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6472 return true;
6473 /* Atomic types increase minimal alignment. We must to do so as well
6474 or we get duplicated canonical types. See PR88686. */
6475 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6476 {
6477 /* See if this object can map to a basic atomic type. */
6478 tree atomic_type = find_atomic_core_type (cand);
6479 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6480 return true;
6481 }
6482 return false;
6483 }
6484
6485 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6486
6487 bool
6488 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6489 {
6490 return (TYPE_QUALS (cand) == type_quals
6491 && check_base_type (cand, base)
6492 && check_lang_type (cand, base));
6493 }
6494
6495 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6496
6497 static bool
6498 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6499 {
6500 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6501 && TYPE_NAME (cand) == TYPE_NAME (base)
6502 /* Apparently this is needed for Objective-C. */
6503 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6504 /* Check alignment. */
6505 && TYPE_ALIGN (cand) == align
6506 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6507 TYPE_ATTRIBUTES (base))
6508 && check_lang_type (cand, base));
6509 }
6510
6511 /* Return a version of the TYPE, qualified as indicated by the
6512 TYPE_QUALS, if one exists. If no qualified version exists yet,
6513 return NULL_TREE. */
6514
6515 tree
6516 get_qualified_type (tree type, int type_quals)
6517 {
6518 if (TYPE_QUALS (type) == type_quals)
6519 return type;
6520
6521 tree mv = TYPE_MAIN_VARIANT (type);
6522 if (check_qualified_type (mv, type, type_quals))
6523 return mv;
6524
6525 /* Search the chain of variants to see if there is already one there just
6526 like the one we need to have. If so, use that existing one. We must
6527 preserve the TYPE_NAME, since there is code that depends on this. */
6528 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6529 if (check_qualified_type (*tp, type, type_quals))
6530 {
6531 /* Put the found variant at the head of the variant list so
6532 frequently searched variants get found faster. The C++ FE
6533 benefits greatly from this. */
6534 tree t = *tp;
6535 *tp = TYPE_NEXT_VARIANT (t);
6536 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6537 TYPE_NEXT_VARIANT (mv) = t;
6538 return t;
6539 }
6540
6541 return NULL_TREE;
6542 }
6543
6544 /* Like get_qualified_type, but creates the type if it does not
6545 exist. This function never returns NULL_TREE. */
6546
6547 tree
6548 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6549 {
6550 tree t;
6551
6552 /* See if we already have the appropriate qualified variant. */
6553 t = get_qualified_type (type, type_quals);
6554
6555 /* If not, build it. */
6556 if (!t)
6557 {
6558 t = build_variant_type_copy (type PASS_MEM_STAT);
6559 set_type_quals (t, type_quals);
6560
6561 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6562 {
6563 /* See if this object can map to a basic atomic type. */
6564 tree atomic_type = find_atomic_core_type (type);
6565 if (atomic_type)
6566 {
6567 /* Ensure the alignment of this type is compatible with
6568 the required alignment of the atomic type. */
6569 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6570 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6571 }
6572 }
6573
6574 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6575 /* Propagate structural equality. */
6576 SET_TYPE_STRUCTURAL_EQUALITY (t);
6577 else if (TYPE_CANONICAL (type) != type)
6578 /* Build the underlying canonical type, since it is different
6579 from TYPE. */
6580 {
6581 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6582 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6583 }
6584 else
6585 /* T is its own canonical type. */
6586 TYPE_CANONICAL (t) = t;
6587
6588 }
6589
6590 return t;
6591 }
6592
6593 /* Create a variant of type T with alignment ALIGN. */
6594
6595 tree
6596 build_aligned_type (tree type, unsigned int align)
6597 {
6598 tree t;
6599
6600 if (TYPE_PACKED (type)
6601 || TYPE_ALIGN (type) == align)
6602 return type;
6603
6604 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6605 if (check_aligned_type (t, type, align))
6606 return t;
6607
6608 t = build_variant_type_copy (type);
6609 SET_TYPE_ALIGN (t, align);
6610 TYPE_USER_ALIGN (t) = 1;
6611
6612 return t;
6613 }
6614
6615 /* Create a new distinct copy of TYPE. The new type is made its own
6616 MAIN_VARIANT. If TYPE requires structural equality checks, the
6617 resulting type requires structural equality checks; otherwise, its
6618 TYPE_CANONICAL points to itself. */
6619
6620 tree
6621 build_distinct_type_copy (tree type MEM_STAT_DECL)
6622 {
6623 tree t = copy_node (type PASS_MEM_STAT);
6624
6625 TYPE_POINTER_TO (t) = 0;
6626 TYPE_REFERENCE_TO (t) = 0;
6627
6628 /* Set the canonical type either to a new equivalence class, or
6629 propagate the need for structural equality checks. */
6630 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6631 SET_TYPE_STRUCTURAL_EQUALITY (t);
6632 else
6633 TYPE_CANONICAL (t) = t;
6634
6635 /* Make it its own variant. */
6636 TYPE_MAIN_VARIANT (t) = t;
6637 TYPE_NEXT_VARIANT (t) = 0;
6638
6639 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6640 whose TREE_TYPE is not t. This can also happen in the Ada
6641 frontend when using subtypes. */
6642
6643 return t;
6644 }
6645
6646 /* Create a new variant of TYPE, equivalent but distinct. This is so
6647 the caller can modify it. TYPE_CANONICAL for the return type will
6648 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6649 are considered equal by the language itself (or that both types
6650 require structural equality checks). */
6651
6652 tree
6653 build_variant_type_copy (tree type MEM_STAT_DECL)
6654 {
6655 tree t, m = TYPE_MAIN_VARIANT (type);
6656
6657 t = build_distinct_type_copy (type PASS_MEM_STAT);
6658
6659 /* Since we're building a variant, assume that it is a non-semantic
6660 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6661 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6662 /* Type variants have no alias set defined. */
6663 TYPE_ALIAS_SET (t) = -1;
6664
6665 /* Add the new type to the chain of variants of TYPE. */
6666 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6667 TYPE_NEXT_VARIANT (m) = t;
6668 TYPE_MAIN_VARIANT (t) = m;
6669
6670 return t;
6671 }
6672 \f
6673 /* Return true if the from tree in both tree maps are equal. */
6674
6675 int
6676 tree_map_base_eq (const void *va, const void *vb)
6677 {
6678 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6679 *const b = (const struct tree_map_base *) vb;
6680 return (a->from == b->from);
6681 }
6682
6683 /* Hash a from tree in a tree_base_map. */
6684
6685 unsigned int
6686 tree_map_base_hash (const void *item)
6687 {
6688 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6689 }
6690
6691 /* Return true if this tree map structure is marked for garbage collection
6692 purposes. We simply return true if the from tree is marked, so that this
6693 structure goes away when the from tree goes away. */
6694
6695 int
6696 tree_map_base_marked_p (const void *p)
6697 {
6698 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6699 }
6700
6701 /* Hash a from tree in a tree_map. */
6702
6703 unsigned int
6704 tree_map_hash (const void *item)
6705 {
6706 return (((const struct tree_map *) item)->hash);
6707 }
6708
6709 /* Hash a from tree in a tree_decl_map. */
6710
6711 unsigned int
6712 tree_decl_map_hash (const void *item)
6713 {
6714 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6715 }
6716
6717 /* Return the initialization priority for DECL. */
6718
6719 priority_type
6720 decl_init_priority_lookup (tree decl)
6721 {
6722 symtab_node *snode = symtab_node::get (decl);
6723
6724 if (!snode)
6725 return DEFAULT_INIT_PRIORITY;
6726 return
6727 snode->get_init_priority ();
6728 }
6729
6730 /* Return the finalization priority for DECL. */
6731
6732 priority_type
6733 decl_fini_priority_lookup (tree decl)
6734 {
6735 cgraph_node *node = cgraph_node::get (decl);
6736
6737 if (!node)
6738 return DEFAULT_INIT_PRIORITY;
6739 return
6740 node->get_fini_priority ();
6741 }
6742
6743 /* Set the initialization priority for DECL to PRIORITY. */
6744
6745 void
6746 decl_init_priority_insert (tree decl, priority_type priority)
6747 {
6748 struct symtab_node *snode;
6749
6750 if (priority == DEFAULT_INIT_PRIORITY)
6751 {
6752 snode = symtab_node::get (decl);
6753 if (!snode)
6754 return;
6755 }
6756 else if (VAR_P (decl))
6757 snode = varpool_node::get_create (decl);
6758 else
6759 snode = cgraph_node::get_create (decl);
6760 snode->set_init_priority (priority);
6761 }
6762
6763 /* Set the finalization priority for DECL to PRIORITY. */
6764
6765 void
6766 decl_fini_priority_insert (tree decl, priority_type priority)
6767 {
6768 struct cgraph_node *node;
6769
6770 if (priority == DEFAULT_INIT_PRIORITY)
6771 {
6772 node = cgraph_node::get (decl);
6773 if (!node)
6774 return;
6775 }
6776 else
6777 node = cgraph_node::get_create (decl);
6778 node->set_fini_priority (priority);
6779 }
6780
6781 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6782
6783 static void
6784 print_debug_expr_statistics (void)
6785 {
6786 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6787 (long) debug_expr_for_decl->size (),
6788 (long) debug_expr_for_decl->elements (),
6789 debug_expr_for_decl->collisions ());
6790 }
6791
6792 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6793
6794 static void
6795 print_value_expr_statistics (void)
6796 {
6797 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6798 (long) value_expr_for_decl->size (),
6799 (long) value_expr_for_decl->elements (),
6800 value_expr_for_decl->collisions ());
6801 }
6802
6803 /* Lookup a debug expression for FROM, and return it if we find one. */
6804
6805 tree
6806 decl_debug_expr_lookup (tree from)
6807 {
6808 struct tree_decl_map *h, in;
6809 in.base.from = from;
6810
6811 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6812 if (h)
6813 return h->to;
6814 return NULL_TREE;
6815 }
6816
6817 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6818
6819 void
6820 decl_debug_expr_insert (tree from, tree to)
6821 {
6822 struct tree_decl_map *h;
6823
6824 h = ggc_alloc<tree_decl_map> ();
6825 h->base.from = from;
6826 h->to = to;
6827 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6828 }
6829
6830 /* Lookup a value expression for FROM, and return it if we find one. */
6831
6832 tree
6833 decl_value_expr_lookup (tree from)
6834 {
6835 struct tree_decl_map *h, in;
6836 in.base.from = from;
6837
6838 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6839 if (h)
6840 return h->to;
6841 return NULL_TREE;
6842 }
6843
6844 /* Insert a mapping FROM->TO in the value expression hashtable. */
6845
6846 void
6847 decl_value_expr_insert (tree from, tree to)
6848 {
6849 struct tree_decl_map *h;
6850
6851 h = ggc_alloc<tree_decl_map> ();
6852 h->base.from = from;
6853 h->to = to;
6854 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6855 }
6856
6857 /* Lookup a vector of debug arguments for FROM, and return it if we
6858 find one. */
6859
6860 vec<tree, va_gc> **
6861 decl_debug_args_lookup (tree from)
6862 {
6863 struct tree_vec_map *h, in;
6864
6865 if (!DECL_HAS_DEBUG_ARGS_P (from))
6866 return NULL;
6867 gcc_checking_assert (debug_args_for_decl != NULL);
6868 in.base.from = from;
6869 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6870 if (h)
6871 return &h->to;
6872 return NULL;
6873 }
6874
6875 /* Insert a mapping FROM->empty vector of debug arguments in the value
6876 expression hashtable. */
6877
6878 vec<tree, va_gc> **
6879 decl_debug_args_insert (tree from)
6880 {
6881 struct tree_vec_map *h;
6882 tree_vec_map **loc;
6883
6884 if (DECL_HAS_DEBUG_ARGS_P (from))
6885 return decl_debug_args_lookup (from);
6886 if (debug_args_for_decl == NULL)
6887 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6888 h = ggc_alloc<tree_vec_map> ();
6889 h->base.from = from;
6890 h->to = NULL;
6891 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6892 *loc = h;
6893 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6894 return &h->to;
6895 }
6896
6897 /* Hashing of types so that we don't make duplicates.
6898 The entry point is `type_hash_canon'. */
6899
6900 /* Generate the default hash code for TYPE. This is designed for
6901 speed, rather than maximum entropy. */
6902
6903 hashval_t
6904 type_hash_canon_hash (tree type)
6905 {
6906 inchash::hash hstate;
6907
6908 hstate.add_int (TREE_CODE (type));
6909
6910 if (TREE_TYPE (type))
6911 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6912
6913 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6914 /* Just the identifier is adequate to distinguish. */
6915 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6916
6917 switch (TREE_CODE (type))
6918 {
6919 case METHOD_TYPE:
6920 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6921 /* FALLTHROUGH. */
6922 case FUNCTION_TYPE:
6923 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6924 if (TREE_VALUE (t) != error_mark_node)
6925 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6926 break;
6927
6928 case OFFSET_TYPE:
6929 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6930 break;
6931
6932 case ARRAY_TYPE:
6933 {
6934 if (TYPE_DOMAIN (type))
6935 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6936 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6937 {
6938 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6939 hstate.add_object (typeless);
6940 }
6941 }
6942 break;
6943
6944 case INTEGER_TYPE:
6945 {
6946 tree t = TYPE_MAX_VALUE (type);
6947 if (!t)
6948 t = TYPE_MIN_VALUE (type);
6949 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6950 hstate.add_object (TREE_INT_CST_ELT (t, i));
6951 break;
6952 }
6953
6954 case REAL_TYPE:
6955 case FIXED_POINT_TYPE:
6956 {
6957 unsigned prec = TYPE_PRECISION (type);
6958 hstate.add_object (prec);
6959 break;
6960 }
6961
6962 case VECTOR_TYPE:
6963 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6964 break;
6965
6966 default:
6967 break;
6968 }
6969
6970 return hstate.end ();
6971 }
6972
6973 /* These are the Hashtable callback functions. */
6974
6975 /* Returns true iff the types are equivalent. */
6976
6977 bool
6978 type_cache_hasher::equal (type_hash *a, type_hash *b)
6979 {
6980 /* First test the things that are the same for all types. */
6981 if (a->hash != b->hash
6982 || TREE_CODE (a->type) != TREE_CODE (b->type)
6983 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6984 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6985 TYPE_ATTRIBUTES (b->type))
6986 || (TREE_CODE (a->type) != COMPLEX_TYPE
6987 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6988 return 0;
6989
6990 /* Be careful about comparing arrays before and after the element type
6991 has been completed; don't compare TYPE_ALIGN unless both types are
6992 complete. */
6993 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6994 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6995 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6996 return 0;
6997
6998 switch (TREE_CODE (a->type))
6999 {
7000 case VOID_TYPE:
7001 case COMPLEX_TYPE:
7002 case POINTER_TYPE:
7003 case REFERENCE_TYPE:
7004 case NULLPTR_TYPE:
7005 return 1;
7006
7007 case VECTOR_TYPE:
7008 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
7009 TYPE_VECTOR_SUBPARTS (b->type));
7010
7011 case ENUMERAL_TYPE:
7012 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
7013 && !(TYPE_VALUES (a->type)
7014 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
7015 && TYPE_VALUES (b->type)
7016 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
7017 && type_list_equal (TYPE_VALUES (a->type),
7018 TYPE_VALUES (b->type))))
7019 return 0;
7020
7021 /* fall through */
7022
7023 case INTEGER_TYPE:
7024 case REAL_TYPE:
7025 case BOOLEAN_TYPE:
7026 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7027 return false;
7028 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7029 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7030 TYPE_MAX_VALUE (b->type)))
7031 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7032 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7033 TYPE_MIN_VALUE (b->type))));
7034
7035 case FIXED_POINT_TYPE:
7036 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7037
7038 case OFFSET_TYPE:
7039 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7040
7041 case METHOD_TYPE:
7042 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7043 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7044 || (TYPE_ARG_TYPES (a->type)
7045 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7046 && TYPE_ARG_TYPES (b->type)
7047 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7048 && type_list_equal (TYPE_ARG_TYPES (a->type),
7049 TYPE_ARG_TYPES (b->type)))))
7050 break;
7051 return 0;
7052 case ARRAY_TYPE:
7053 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
7054 where the flag should be inherited from the element type
7055 and can change after ARRAY_TYPEs are created; on non-aggregates
7056 compare it and hash it, scalars will never have that flag set
7057 and we need to differentiate between arrays created by different
7058 front-ends or middle-end created arrays. */
7059 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7060 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7061 || (TYPE_TYPELESS_STORAGE (a->type)
7062 == TYPE_TYPELESS_STORAGE (b->type))));
7063
7064 case RECORD_TYPE:
7065 case UNION_TYPE:
7066 case QUAL_UNION_TYPE:
7067 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7068 || (TYPE_FIELDS (a->type)
7069 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7070 && TYPE_FIELDS (b->type)
7071 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7072 && type_list_equal (TYPE_FIELDS (a->type),
7073 TYPE_FIELDS (b->type))));
7074
7075 case FUNCTION_TYPE:
7076 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7077 || (TYPE_ARG_TYPES (a->type)
7078 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7079 && TYPE_ARG_TYPES (b->type)
7080 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7081 && type_list_equal (TYPE_ARG_TYPES (a->type),
7082 TYPE_ARG_TYPES (b->type))))
7083 break;
7084 return 0;
7085
7086 default:
7087 return 0;
7088 }
7089
7090 if (lang_hooks.types.type_hash_eq != NULL)
7091 return lang_hooks.types.type_hash_eq (a->type, b->type);
7092
7093 return 1;
7094 }
7095
7096 /* Given TYPE, and HASHCODE its hash code, return the canonical
7097 object for an identical type if one already exists.
7098 Otherwise, return TYPE, and record it as the canonical object.
7099
7100 To use this function, first create a type of the sort you want.
7101 Then compute its hash code from the fields of the type that
7102 make it different from other similar types.
7103 Then call this function and use the value. */
7104
7105 tree
7106 type_hash_canon (unsigned int hashcode, tree type)
7107 {
7108 type_hash in;
7109 type_hash **loc;
7110
7111 /* The hash table only contains main variants, so ensure that's what we're
7112 being passed. */
7113 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7114
7115 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7116 must call that routine before comparing TYPE_ALIGNs. */
7117 layout_type (type);
7118
7119 in.hash = hashcode;
7120 in.type = type;
7121
7122 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7123 if (*loc)
7124 {
7125 tree t1 = ((type_hash *) *loc)->type;
7126 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7127 && t1 != type);
7128 if (TYPE_UID (type) + 1 == next_type_uid)
7129 --next_type_uid;
7130 /* Free also min/max values and the cache for integer
7131 types. This can't be done in free_node, as LTO frees
7132 those on its own. */
7133 if (TREE_CODE (type) == INTEGER_TYPE)
7134 {
7135 if (TYPE_MIN_VALUE (type)
7136 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7137 {
7138 /* Zero is always in TYPE_CACHED_VALUES. */
7139 if (! TYPE_UNSIGNED (type))
7140 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7141 ggc_free (TYPE_MIN_VALUE (type));
7142 }
7143 if (TYPE_MAX_VALUE (type)
7144 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7145 {
7146 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7147 ggc_free (TYPE_MAX_VALUE (type));
7148 }
7149 if (TYPE_CACHED_VALUES_P (type))
7150 ggc_free (TYPE_CACHED_VALUES (type));
7151 }
7152 free_node (type);
7153 return t1;
7154 }
7155 else
7156 {
7157 struct type_hash *h;
7158
7159 h = ggc_alloc<type_hash> ();
7160 h->hash = hashcode;
7161 h->type = type;
7162 *loc = h;
7163
7164 return type;
7165 }
7166 }
7167
7168 static void
7169 print_type_hash_statistics (void)
7170 {
7171 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7172 (long) type_hash_table->size (),
7173 (long) type_hash_table->elements (),
7174 type_hash_table->collisions ());
7175 }
7176
7177 /* Given two lists of types
7178 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7179 return 1 if the lists contain the same types in the same order.
7180 Also, the TREE_PURPOSEs must match. */
7181
7182 bool
7183 type_list_equal (const_tree l1, const_tree l2)
7184 {
7185 const_tree t1, t2;
7186
7187 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7188 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7189 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7190 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7191 && (TREE_TYPE (TREE_PURPOSE (t1))
7192 == TREE_TYPE (TREE_PURPOSE (t2))))))
7193 return false;
7194
7195 return t1 == t2;
7196 }
7197
7198 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7199 given by TYPE. If the argument list accepts variable arguments,
7200 then this function counts only the ordinary arguments. */
7201
7202 int
7203 type_num_arguments (const_tree fntype)
7204 {
7205 int i = 0;
7206
7207 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7208 /* If the function does not take a variable number of arguments,
7209 the last element in the list will have type `void'. */
7210 if (VOID_TYPE_P (TREE_VALUE (t)))
7211 break;
7212 else
7213 ++i;
7214
7215 return i;
7216 }
7217
7218 /* Return the type of the function TYPE's argument ARGNO if known.
7219 For vararg function's where ARGNO refers to one of the variadic
7220 arguments return null. Otherwise, return a void_type_node for
7221 out-of-bounds ARGNO. */
7222
7223 tree
7224 type_argument_type (const_tree fntype, unsigned argno)
7225 {
7226 /* Treat zero the same as an out-of-bounds argument number. */
7227 if (!argno)
7228 return void_type_node;
7229
7230 function_args_iterator iter;
7231
7232 tree argtype;
7233 unsigned i = 1;
7234 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7235 {
7236 /* A vararg function's argument list ends in a null. Otherwise,
7237 an ordinary function's argument list ends with void. Return
7238 null if ARGNO refers to a vararg argument, void_type_node if
7239 it's out of bounds, and the formal argument type otherwise. */
7240 if (!argtype)
7241 break;
7242
7243 if (i == argno || VOID_TYPE_P (argtype))
7244 return argtype;
7245
7246 ++i;
7247 }
7248
7249 return NULL_TREE;
7250 }
7251
7252 /* Nonzero if integer constants T1 and T2
7253 represent the same constant value. */
7254
7255 int
7256 tree_int_cst_equal (const_tree t1, const_tree t2)
7257 {
7258 if (t1 == t2)
7259 return 1;
7260
7261 if (t1 == 0 || t2 == 0)
7262 return 0;
7263
7264 STRIP_ANY_LOCATION_WRAPPER (t1);
7265 STRIP_ANY_LOCATION_WRAPPER (t2);
7266
7267 if (TREE_CODE (t1) == INTEGER_CST
7268 && TREE_CODE (t2) == INTEGER_CST
7269 && wi::to_widest (t1) == wi::to_widest (t2))
7270 return 1;
7271
7272 return 0;
7273 }
7274
7275 /* Return true if T is an INTEGER_CST whose numerical value (extended
7276 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7277
7278 bool
7279 tree_fits_shwi_p (const_tree t)
7280 {
7281 return (t != NULL_TREE
7282 && TREE_CODE (t) == INTEGER_CST
7283 && wi::fits_shwi_p (wi::to_widest (t)));
7284 }
7285
7286 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7287 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7288
7289 bool
7290 tree_fits_poly_int64_p (const_tree t)
7291 {
7292 if (t == NULL_TREE)
7293 return false;
7294 if (POLY_INT_CST_P (t))
7295 {
7296 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7297 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7298 return false;
7299 return true;
7300 }
7301 return (TREE_CODE (t) == INTEGER_CST
7302 && wi::fits_shwi_p (wi::to_widest (t)));
7303 }
7304
7305 /* Return true if T is an INTEGER_CST whose numerical value (extended
7306 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7307
7308 bool
7309 tree_fits_uhwi_p (const_tree t)
7310 {
7311 return (t != NULL_TREE
7312 && TREE_CODE (t) == INTEGER_CST
7313 && wi::fits_uhwi_p (wi::to_widest (t)));
7314 }
7315
7316 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7317 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7318
7319 bool
7320 tree_fits_poly_uint64_p (const_tree t)
7321 {
7322 if (t == NULL_TREE)
7323 return false;
7324 if (POLY_INT_CST_P (t))
7325 {
7326 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7327 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7328 return false;
7329 return true;
7330 }
7331 return (TREE_CODE (t) == INTEGER_CST
7332 && wi::fits_uhwi_p (wi::to_widest (t)));
7333 }
7334
7335 /* T is an INTEGER_CST whose numerical value (extended according to
7336 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7337 HOST_WIDE_INT. */
7338
7339 HOST_WIDE_INT
7340 tree_to_shwi (const_tree t)
7341 {
7342 gcc_assert (tree_fits_shwi_p (t));
7343 return TREE_INT_CST_LOW (t);
7344 }
7345
7346 /* T is an INTEGER_CST whose numerical value (extended according to
7347 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7348 HOST_WIDE_INT. */
7349
7350 unsigned HOST_WIDE_INT
7351 tree_to_uhwi (const_tree t)
7352 {
7353 gcc_assert (tree_fits_uhwi_p (t));
7354 return TREE_INT_CST_LOW (t);
7355 }
7356
7357 /* Return the most significant (sign) bit of T. */
7358
7359 int
7360 tree_int_cst_sign_bit (const_tree t)
7361 {
7362 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7363
7364 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7365 }
7366
7367 /* Return an indication of the sign of the integer constant T.
7368 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7369 Note that -1 will never be returned if T's type is unsigned. */
7370
7371 int
7372 tree_int_cst_sgn (const_tree t)
7373 {
7374 if (wi::to_wide (t) == 0)
7375 return 0;
7376 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7377 return 1;
7378 else if (wi::neg_p (wi::to_wide (t)))
7379 return -1;
7380 else
7381 return 1;
7382 }
7383
7384 /* Return the minimum number of bits needed to represent VALUE in a
7385 signed or unsigned type, UNSIGNEDP says which. */
7386
7387 unsigned int
7388 tree_int_cst_min_precision (tree value, signop sgn)
7389 {
7390 /* If the value is negative, compute its negative minus 1. The latter
7391 adjustment is because the absolute value of the largest negative value
7392 is one larger than the largest positive value. This is equivalent to
7393 a bit-wise negation, so use that operation instead. */
7394
7395 if (tree_int_cst_sgn (value) < 0)
7396 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7397
7398 /* Return the number of bits needed, taking into account the fact
7399 that we need one more bit for a signed than unsigned type.
7400 If value is 0 or -1, the minimum precision is 1 no matter
7401 whether unsignedp is true or false. */
7402
7403 if (integer_zerop (value))
7404 return 1;
7405 else
7406 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7407 }
7408
7409 /* Return truthvalue of whether T1 is the same tree structure as T2.
7410 Return 1 if they are the same.
7411 Return 0 if they are understandably different.
7412 Return -1 if either contains tree structure not understood by
7413 this function. */
7414
7415 int
7416 simple_cst_equal (const_tree t1, const_tree t2)
7417 {
7418 enum tree_code code1, code2;
7419 int cmp;
7420 int i;
7421
7422 if (t1 == t2)
7423 return 1;
7424 if (t1 == 0 || t2 == 0)
7425 return 0;
7426
7427 /* For location wrappers to be the same, they must be at the same
7428 source location (and wrap the same thing). */
7429 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7430 {
7431 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7432 return 0;
7433 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7434 }
7435
7436 code1 = TREE_CODE (t1);
7437 code2 = TREE_CODE (t2);
7438
7439 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7440 {
7441 if (CONVERT_EXPR_CODE_P (code2)
7442 || code2 == NON_LVALUE_EXPR)
7443 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7444 else
7445 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7446 }
7447
7448 else if (CONVERT_EXPR_CODE_P (code2)
7449 || code2 == NON_LVALUE_EXPR)
7450 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7451
7452 if (code1 != code2)
7453 return 0;
7454
7455 switch (code1)
7456 {
7457 case INTEGER_CST:
7458 return wi::to_widest (t1) == wi::to_widest (t2);
7459
7460 case REAL_CST:
7461 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7462
7463 case FIXED_CST:
7464 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7465
7466 case STRING_CST:
7467 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7468 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7469 TREE_STRING_LENGTH (t1)));
7470
7471 case CONSTRUCTOR:
7472 {
7473 unsigned HOST_WIDE_INT idx;
7474 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7475 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7476
7477 if (vec_safe_length (v1) != vec_safe_length (v2))
7478 return false;
7479
7480 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7481 /* ??? Should we handle also fields here? */
7482 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7483 return false;
7484 return true;
7485 }
7486
7487 case SAVE_EXPR:
7488 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7489
7490 case CALL_EXPR:
7491 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7492 if (cmp <= 0)
7493 return cmp;
7494 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7495 return 0;
7496 {
7497 const_tree arg1, arg2;
7498 const_call_expr_arg_iterator iter1, iter2;
7499 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7500 arg2 = first_const_call_expr_arg (t2, &iter2);
7501 arg1 && arg2;
7502 arg1 = next_const_call_expr_arg (&iter1),
7503 arg2 = next_const_call_expr_arg (&iter2))
7504 {
7505 cmp = simple_cst_equal (arg1, arg2);
7506 if (cmp <= 0)
7507 return cmp;
7508 }
7509 return arg1 == arg2;
7510 }
7511
7512 case TARGET_EXPR:
7513 /* Special case: if either target is an unallocated VAR_DECL,
7514 it means that it's going to be unified with whatever the
7515 TARGET_EXPR is really supposed to initialize, so treat it
7516 as being equivalent to anything. */
7517 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7518 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7519 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7520 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7521 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7522 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7523 cmp = 1;
7524 else
7525 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7526
7527 if (cmp <= 0)
7528 return cmp;
7529
7530 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7531
7532 case WITH_CLEANUP_EXPR:
7533 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7534 if (cmp <= 0)
7535 return cmp;
7536
7537 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7538
7539 case COMPONENT_REF:
7540 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7541 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7542
7543 return 0;
7544
7545 case VAR_DECL:
7546 case PARM_DECL:
7547 case CONST_DECL:
7548 case FUNCTION_DECL:
7549 return 0;
7550
7551 default:
7552 if (POLY_INT_CST_P (t1))
7553 /* A false return means maybe_ne rather than known_ne. */
7554 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7555 TYPE_SIGN (TREE_TYPE (t1))),
7556 poly_widest_int::from (poly_int_cst_value (t2),
7557 TYPE_SIGN (TREE_TYPE (t2))));
7558 break;
7559 }
7560
7561 /* This general rule works for most tree codes. All exceptions should be
7562 handled above. If this is a language-specific tree code, we can't
7563 trust what might be in the operand, so say we don't know
7564 the situation. */
7565 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7566 return -1;
7567
7568 switch (TREE_CODE_CLASS (code1))
7569 {
7570 case tcc_unary:
7571 case tcc_binary:
7572 case tcc_comparison:
7573 case tcc_expression:
7574 case tcc_reference:
7575 case tcc_statement:
7576 cmp = 1;
7577 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7578 {
7579 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7580 if (cmp <= 0)
7581 return cmp;
7582 }
7583
7584 return cmp;
7585
7586 default:
7587 return -1;
7588 }
7589 }
7590
7591 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7592 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7593 than U, respectively. */
7594
7595 int
7596 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7597 {
7598 if (tree_int_cst_sgn (t) < 0)
7599 return -1;
7600 else if (!tree_fits_uhwi_p (t))
7601 return 1;
7602 else if (TREE_INT_CST_LOW (t) == u)
7603 return 0;
7604 else if (TREE_INT_CST_LOW (t) < u)
7605 return -1;
7606 else
7607 return 1;
7608 }
7609
7610 /* Return true if SIZE represents a constant size that is in bounds of
7611 what the middle-end and the backend accepts (covering not more than
7612 half of the address-space).
7613 When PERR is non-null, set *PERR on failure to the description of
7614 why SIZE is not valid. */
7615
7616 bool
7617 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7618 {
7619 if (POLY_INT_CST_P (size))
7620 {
7621 if (TREE_OVERFLOW (size))
7622 return false;
7623 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7624 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7625 return false;
7626 return true;
7627 }
7628
7629 cst_size_error error;
7630 if (!perr)
7631 perr = &error;
7632
7633 if (TREE_CODE (size) != INTEGER_CST)
7634 {
7635 *perr = cst_size_not_constant;
7636 return false;
7637 }
7638
7639 if (TREE_OVERFLOW_P (size))
7640 {
7641 *perr = cst_size_overflow;
7642 return false;
7643 }
7644
7645 if (tree_int_cst_sgn (size) < 0)
7646 {
7647 *perr = cst_size_negative;
7648 return false;
7649 }
7650 if (!tree_fits_uhwi_p (size)
7651 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7652 < wi::to_widest (size) * 2))
7653 {
7654 *perr = cst_size_too_big;
7655 return false;
7656 }
7657
7658 return true;
7659 }
7660
7661 /* Return the precision of the type, or for a complex or vector type the
7662 precision of the type of its elements. */
7663
7664 unsigned int
7665 element_precision (const_tree type)
7666 {
7667 if (!TYPE_P (type))
7668 type = TREE_TYPE (type);
7669 enum tree_code code = TREE_CODE (type);
7670 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7671 type = TREE_TYPE (type);
7672
7673 return TYPE_PRECISION (type);
7674 }
7675
7676 /* Return true if CODE represents an associative tree code. Otherwise
7677 return false. */
7678 bool
7679 associative_tree_code (enum tree_code code)
7680 {
7681 switch (code)
7682 {
7683 case BIT_IOR_EXPR:
7684 case BIT_AND_EXPR:
7685 case BIT_XOR_EXPR:
7686 case PLUS_EXPR:
7687 case MULT_EXPR:
7688 case MIN_EXPR:
7689 case MAX_EXPR:
7690 return true;
7691
7692 default:
7693 break;
7694 }
7695 return false;
7696 }
7697
7698 /* Return true if CODE represents a commutative tree code. Otherwise
7699 return false. */
7700 bool
7701 commutative_tree_code (enum tree_code code)
7702 {
7703 switch (code)
7704 {
7705 case PLUS_EXPR:
7706 case MULT_EXPR:
7707 case MULT_HIGHPART_EXPR:
7708 case MIN_EXPR:
7709 case MAX_EXPR:
7710 case BIT_IOR_EXPR:
7711 case BIT_XOR_EXPR:
7712 case BIT_AND_EXPR:
7713 case NE_EXPR:
7714 case EQ_EXPR:
7715 case UNORDERED_EXPR:
7716 case ORDERED_EXPR:
7717 case UNEQ_EXPR:
7718 case LTGT_EXPR:
7719 case TRUTH_AND_EXPR:
7720 case TRUTH_XOR_EXPR:
7721 case TRUTH_OR_EXPR:
7722 case WIDEN_MULT_EXPR:
7723 case VEC_WIDEN_MULT_HI_EXPR:
7724 case VEC_WIDEN_MULT_LO_EXPR:
7725 case VEC_WIDEN_MULT_EVEN_EXPR:
7726 case VEC_WIDEN_MULT_ODD_EXPR:
7727 return true;
7728
7729 default:
7730 break;
7731 }
7732 return false;
7733 }
7734
7735 /* Return true if CODE represents a ternary tree code for which the
7736 first two operands are commutative. Otherwise return false. */
7737 bool
7738 commutative_ternary_tree_code (enum tree_code code)
7739 {
7740 switch (code)
7741 {
7742 case WIDEN_MULT_PLUS_EXPR:
7743 case WIDEN_MULT_MINUS_EXPR:
7744 case DOT_PROD_EXPR:
7745 return true;
7746
7747 default:
7748 break;
7749 }
7750 return false;
7751 }
7752
7753 /* Returns true if CODE can overflow. */
7754
7755 bool
7756 operation_can_overflow (enum tree_code code)
7757 {
7758 switch (code)
7759 {
7760 case PLUS_EXPR:
7761 case MINUS_EXPR:
7762 case MULT_EXPR:
7763 case LSHIFT_EXPR:
7764 /* Can overflow in various ways. */
7765 return true;
7766 case TRUNC_DIV_EXPR:
7767 case EXACT_DIV_EXPR:
7768 case FLOOR_DIV_EXPR:
7769 case CEIL_DIV_EXPR:
7770 /* For INT_MIN / -1. */
7771 return true;
7772 case NEGATE_EXPR:
7773 case ABS_EXPR:
7774 /* For -INT_MIN. */
7775 return true;
7776 default:
7777 /* These operators cannot overflow. */
7778 return false;
7779 }
7780 }
7781
7782 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7783 ftrapv doesn't generate trapping insns for CODE. */
7784
7785 bool
7786 operation_no_trapping_overflow (tree type, enum tree_code code)
7787 {
7788 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7789
7790 /* We don't generate instructions that trap on overflow for complex or vector
7791 types. */
7792 if (!INTEGRAL_TYPE_P (type))
7793 return true;
7794
7795 if (!TYPE_OVERFLOW_TRAPS (type))
7796 return true;
7797
7798 switch (code)
7799 {
7800 case PLUS_EXPR:
7801 case MINUS_EXPR:
7802 case MULT_EXPR:
7803 case NEGATE_EXPR:
7804 case ABS_EXPR:
7805 /* These operators can overflow, and -ftrapv generates trapping code for
7806 these. */
7807 return false;
7808 case TRUNC_DIV_EXPR:
7809 case EXACT_DIV_EXPR:
7810 case FLOOR_DIV_EXPR:
7811 case CEIL_DIV_EXPR:
7812 case LSHIFT_EXPR:
7813 /* These operators can overflow, but -ftrapv does not generate trapping
7814 code for these. */
7815 return true;
7816 default:
7817 /* These operators cannot overflow. */
7818 return true;
7819 }
7820 }
7821
7822 /* Constructors for pointer, array and function types.
7823 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7824 constructed by language-dependent code, not here.) */
7825
7826 /* Construct, lay out and return the type of pointers to TO_TYPE with
7827 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7828 reference all of memory. If such a type has already been
7829 constructed, reuse it. */
7830
7831 tree
7832 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7833 bool can_alias_all)
7834 {
7835 tree t;
7836 bool could_alias = can_alias_all;
7837
7838 if (to_type == error_mark_node)
7839 return error_mark_node;
7840
7841 /* If the pointed-to type has the may_alias attribute set, force
7842 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7843 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7844 can_alias_all = true;
7845
7846 /* In some cases, languages will have things that aren't a POINTER_TYPE
7847 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7848 In that case, return that type without regard to the rest of our
7849 operands.
7850
7851 ??? This is a kludge, but consistent with the way this function has
7852 always operated and there doesn't seem to be a good way to avoid this
7853 at the moment. */
7854 if (TYPE_POINTER_TO (to_type) != 0
7855 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7856 return TYPE_POINTER_TO (to_type);
7857
7858 /* First, if we already have a type for pointers to TO_TYPE and it's
7859 the proper mode, use it. */
7860 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7861 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7862 return t;
7863
7864 t = make_node (POINTER_TYPE);
7865
7866 TREE_TYPE (t) = to_type;
7867 SET_TYPE_MODE (t, mode);
7868 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7869 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7870 TYPE_POINTER_TO (to_type) = t;
7871
7872 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7873 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7874 SET_TYPE_STRUCTURAL_EQUALITY (t);
7875 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7876 TYPE_CANONICAL (t)
7877 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7878 mode, false);
7879
7880 /* Lay out the type. This function has many callers that are concerned
7881 with expression-construction, and this simplifies them all. */
7882 layout_type (t);
7883
7884 return t;
7885 }
7886
7887 /* By default build pointers in ptr_mode. */
7888
7889 tree
7890 build_pointer_type (tree to_type)
7891 {
7892 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7893 : TYPE_ADDR_SPACE (to_type);
7894 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7895 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7896 }
7897
7898 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7899
7900 tree
7901 build_reference_type_for_mode (tree to_type, machine_mode mode,
7902 bool can_alias_all)
7903 {
7904 tree t;
7905 bool could_alias = can_alias_all;
7906
7907 if (to_type == error_mark_node)
7908 return error_mark_node;
7909
7910 /* If the pointed-to type has the may_alias attribute set, force
7911 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7912 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7913 can_alias_all = true;
7914
7915 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7916 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7917 In that case, return that type without regard to the rest of our
7918 operands.
7919
7920 ??? This is a kludge, but consistent with the way this function has
7921 always operated and there doesn't seem to be a good way to avoid this
7922 at the moment. */
7923 if (TYPE_REFERENCE_TO (to_type) != 0
7924 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7925 return TYPE_REFERENCE_TO (to_type);
7926
7927 /* First, if we already have a type for pointers to TO_TYPE and it's
7928 the proper mode, use it. */
7929 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7930 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7931 return t;
7932
7933 t = make_node (REFERENCE_TYPE);
7934
7935 TREE_TYPE (t) = to_type;
7936 SET_TYPE_MODE (t, mode);
7937 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7938 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7939 TYPE_REFERENCE_TO (to_type) = t;
7940
7941 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7942 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7943 SET_TYPE_STRUCTURAL_EQUALITY (t);
7944 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7945 TYPE_CANONICAL (t)
7946 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7947 mode, false);
7948
7949 layout_type (t);
7950
7951 return t;
7952 }
7953
7954
7955 /* Build the node for the type of references-to-TO_TYPE by default
7956 in ptr_mode. */
7957
7958 tree
7959 build_reference_type (tree to_type)
7960 {
7961 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7962 : TYPE_ADDR_SPACE (to_type);
7963 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7964 return build_reference_type_for_mode (to_type, pointer_mode, false);
7965 }
7966
7967 #define MAX_INT_CACHED_PREC \
7968 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7969 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7970
7971 /* Builds a signed or unsigned integer type of precision PRECISION.
7972 Used for C bitfields whose precision does not match that of
7973 built-in target types. */
7974 tree
7975 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7976 int unsignedp)
7977 {
7978 tree itype, ret;
7979
7980 if (unsignedp)
7981 unsignedp = MAX_INT_CACHED_PREC + 1;
7982
7983 if (precision <= MAX_INT_CACHED_PREC)
7984 {
7985 itype = nonstandard_integer_type_cache[precision + unsignedp];
7986 if (itype)
7987 return itype;
7988 }
7989
7990 itype = make_node (INTEGER_TYPE);
7991 TYPE_PRECISION (itype) = precision;
7992
7993 if (unsignedp)
7994 fixup_unsigned_type (itype);
7995 else
7996 fixup_signed_type (itype);
7997
7998 inchash::hash hstate;
7999 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8000 ret = type_hash_canon (hstate.end (), itype);
8001 if (precision <= MAX_INT_CACHED_PREC)
8002 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8003
8004 return ret;
8005 }
8006
8007 #define MAX_BOOL_CACHED_PREC \
8008 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8009 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8010
8011 /* Builds a boolean type of precision PRECISION.
8012 Used for boolean vectors to choose proper vector element size. */
8013 tree
8014 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8015 {
8016 tree type;
8017
8018 if (precision <= MAX_BOOL_CACHED_PREC)
8019 {
8020 type = nonstandard_boolean_type_cache[precision];
8021 if (type)
8022 return type;
8023 }
8024
8025 type = make_node (BOOLEAN_TYPE);
8026 TYPE_PRECISION (type) = precision;
8027 fixup_signed_type (type);
8028
8029 if (precision <= MAX_INT_CACHED_PREC)
8030 nonstandard_boolean_type_cache[precision] = type;
8031
8032 return type;
8033 }
8034
8035 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8036 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8037 is true, reuse such a type that has already been constructed. */
8038
8039 static tree
8040 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8041 {
8042 tree itype = make_node (INTEGER_TYPE);
8043
8044 TREE_TYPE (itype) = type;
8045
8046 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8047 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8048
8049 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8050 SET_TYPE_MODE (itype, TYPE_MODE (type));
8051 TYPE_SIZE (itype) = TYPE_SIZE (type);
8052 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8053 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8054 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8055 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8056
8057 if (!shared)
8058 return itype;
8059
8060 if ((TYPE_MIN_VALUE (itype)
8061 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8062 || (TYPE_MAX_VALUE (itype)
8063 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8064 {
8065 /* Since we cannot reliably merge this type, we need to compare it using
8066 structural equality checks. */
8067 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8068 return itype;
8069 }
8070
8071 hashval_t hash = type_hash_canon_hash (itype);
8072 itype = type_hash_canon (hash, itype);
8073
8074 return itype;
8075 }
8076
8077 /* Wrapper around build_range_type_1 with SHARED set to true. */
8078
8079 tree
8080 build_range_type (tree type, tree lowval, tree highval)
8081 {
8082 return build_range_type_1 (type, lowval, highval, true);
8083 }
8084
8085 /* Wrapper around build_range_type_1 with SHARED set to false. */
8086
8087 tree
8088 build_nonshared_range_type (tree type, tree lowval, tree highval)
8089 {
8090 return build_range_type_1 (type, lowval, highval, false);
8091 }
8092
8093 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8094 MAXVAL should be the maximum value in the domain
8095 (one less than the length of the array).
8096
8097 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8098 We don't enforce this limit, that is up to caller (e.g. language front end).
8099 The limit exists because the result is a signed type and we don't handle
8100 sizes that use more than one HOST_WIDE_INT. */
8101
8102 tree
8103 build_index_type (tree maxval)
8104 {
8105 return build_range_type (sizetype, size_zero_node, maxval);
8106 }
8107
8108 /* Return true if the debug information for TYPE, a subtype, should be emitted
8109 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8110 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8111 debug info and doesn't reflect the source code. */
8112
8113 bool
8114 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8115 {
8116 tree base_type = TREE_TYPE (type), low, high;
8117
8118 /* Subrange types have a base type which is an integral type. */
8119 if (!INTEGRAL_TYPE_P (base_type))
8120 return false;
8121
8122 /* Get the real bounds of the subtype. */
8123 if (lang_hooks.types.get_subrange_bounds)
8124 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8125 else
8126 {
8127 low = TYPE_MIN_VALUE (type);
8128 high = TYPE_MAX_VALUE (type);
8129 }
8130
8131 /* If the type and its base type have the same representation and the same
8132 name, then the type is not a subrange but a copy of the base type. */
8133 if ((TREE_CODE (base_type) == INTEGER_TYPE
8134 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8135 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8136 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8137 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8138 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8139 return false;
8140
8141 if (lowval)
8142 *lowval = low;
8143 if (highval)
8144 *highval = high;
8145 return true;
8146 }
8147
8148 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8149 and number of elements specified by the range of values of INDEX_TYPE.
8150 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8151 If SHARED is true, reuse such a type that has already been constructed.
8152 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
8153
8154 static tree
8155 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8156 bool shared, bool set_canonical)
8157 {
8158 tree t;
8159
8160 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8161 {
8162 error ("arrays of functions are not meaningful");
8163 elt_type = integer_type_node;
8164 }
8165
8166 t = make_node (ARRAY_TYPE);
8167 TREE_TYPE (t) = elt_type;
8168 TYPE_DOMAIN (t) = index_type;
8169 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8170 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8171 layout_type (t);
8172
8173 if (shared)
8174 {
8175 hashval_t hash = type_hash_canon_hash (t);
8176 t = type_hash_canon (hash, t);
8177 }
8178
8179 if (TYPE_CANONICAL (t) == t && set_canonical)
8180 {
8181 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8182 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8183 || in_lto_p)
8184 SET_TYPE_STRUCTURAL_EQUALITY (t);
8185 else if (TYPE_CANONICAL (elt_type) != elt_type
8186 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8187 TYPE_CANONICAL (t)
8188 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8189 index_type
8190 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8191 typeless_storage, shared, set_canonical);
8192 }
8193
8194 return t;
8195 }
8196
8197 /* Wrapper around build_array_type_1 with SHARED set to true. */
8198
8199 tree
8200 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8201 {
8202 return
8203 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8204 }
8205
8206 /* Wrapper around build_array_type_1 with SHARED set to false. */
8207
8208 tree
8209 build_nonshared_array_type (tree elt_type, tree index_type)
8210 {
8211 return build_array_type_1 (elt_type, index_type, false, false, true);
8212 }
8213
8214 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8215 sizetype. */
8216
8217 tree
8218 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8219 {
8220 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8221 }
8222
8223 /* Recursively examines the array elements of TYPE, until a non-array
8224 element type is found. */
8225
8226 tree
8227 strip_array_types (tree type)
8228 {
8229 while (TREE_CODE (type) == ARRAY_TYPE)
8230 type = TREE_TYPE (type);
8231
8232 return type;
8233 }
8234
8235 /* Computes the canonical argument types from the argument type list
8236 ARGTYPES.
8237
8238 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8239 on entry to this function, or if any of the ARGTYPES are
8240 structural.
8241
8242 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8243 true on entry to this function, or if any of the ARGTYPES are
8244 non-canonical.
8245
8246 Returns a canonical argument list, which may be ARGTYPES when the
8247 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8248 true) or would not differ from ARGTYPES. */
8249
8250 static tree
8251 maybe_canonicalize_argtypes (tree argtypes,
8252 bool *any_structural_p,
8253 bool *any_noncanonical_p)
8254 {
8255 tree arg;
8256 bool any_noncanonical_argtypes_p = false;
8257
8258 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8259 {
8260 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8261 /* Fail gracefully by stating that the type is structural. */
8262 *any_structural_p = true;
8263 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8264 *any_structural_p = true;
8265 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8266 || TREE_PURPOSE (arg))
8267 /* If the argument has a default argument, we consider it
8268 non-canonical even though the type itself is canonical.
8269 That way, different variants of function and method types
8270 with default arguments will all point to the variant with
8271 no defaults as their canonical type. */
8272 any_noncanonical_argtypes_p = true;
8273 }
8274
8275 if (*any_structural_p)
8276 return argtypes;
8277
8278 if (any_noncanonical_argtypes_p)
8279 {
8280 /* Build the canonical list of argument types. */
8281 tree canon_argtypes = NULL_TREE;
8282 bool is_void = false;
8283
8284 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8285 {
8286 if (arg == void_list_node)
8287 is_void = true;
8288 else
8289 canon_argtypes = tree_cons (NULL_TREE,
8290 TYPE_CANONICAL (TREE_VALUE (arg)),
8291 canon_argtypes);
8292 }
8293
8294 canon_argtypes = nreverse (canon_argtypes);
8295 if (is_void)
8296 canon_argtypes = chainon (canon_argtypes, void_list_node);
8297
8298 /* There is a non-canonical type. */
8299 *any_noncanonical_p = true;
8300 return canon_argtypes;
8301 }
8302
8303 /* The canonical argument types are the same as ARGTYPES. */
8304 return argtypes;
8305 }
8306
8307 /* Construct, lay out and return
8308 the type of functions returning type VALUE_TYPE
8309 given arguments of types ARG_TYPES.
8310 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8311 are data type nodes for the arguments of the function.
8312 If such a type has already been constructed, reuse it. */
8313
8314 tree
8315 build_function_type (tree value_type, tree arg_types)
8316 {
8317 tree t;
8318 inchash::hash hstate;
8319 bool any_structural_p, any_noncanonical_p;
8320 tree canon_argtypes;
8321
8322 gcc_assert (arg_types != error_mark_node);
8323
8324 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8325 {
8326 error ("function return type cannot be function");
8327 value_type = integer_type_node;
8328 }
8329
8330 /* Make a node of the sort we want. */
8331 t = make_node (FUNCTION_TYPE);
8332 TREE_TYPE (t) = value_type;
8333 TYPE_ARG_TYPES (t) = arg_types;
8334
8335 /* If we already have such a type, use the old one. */
8336 hashval_t hash = type_hash_canon_hash (t);
8337 t = type_hash_canon (hash, t);
8338
8339 /* Set up the canonical type. */
8340 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8341 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8342 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8343 &any_structural_p,
8344 &any_noncanonical_p);
8345 if (any_structural_p)
8346 SET_TYPE_STRUCTURAL_EQUALITY (t);
8347 else if (any_noncanonical_p)
8348 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8349 canon_argtypes);
8350
8351 if (!COMPLETE_TYPE_P (t))
8352 layout_type (t);
8353 return t;
8354 }
8355
8356 /* Build a function type. The RETURN_TYPE is the type returned by the
8357 function. If VAARGS is set, no void_type_node is appended to the
8358 list. ARGP must be always be terminated be a NULL_TREE. */
8359
8360 static tree
8361 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8362 {
8363 tree t, args, last;
8364
8365 t = va_arg (argp, tree);
8366 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8367 args = tree_cons (NULL_TREE, t, args);
8368
8369 if (vaargs)
8370 {
8371 last = args;
8372 if (args != NULL_TREE)
8373 args = nreverse (args);
8374 gcc_assert (last != void_list_node);
8375 }
8376 else if (args == NULL_TREE)
8377 args = void_list_node;
8378 else
8379 {
8380 last = args;
8381 args = nreverse (args);
8382 TREE_CHAIN (last) = void_list_node;
8383 }
8384 args = build_function_type (return_type, args);
8385
8386 return args;
8387 }
8388
8389 /* Build a function type. The RETURN_TYPE is the type returned by the
8390 function. If additional arguments are provided, they are
8391 additional argument types. The list of argument types must always
8392 be terminated by NULL_TREE. */
8393
8394 tree
8395 build_function_type_list (tree return_type, ...)
8396 {
8397 tree args;
8398 va_list p;
8399
8400 va_start (p, return_type);
8401 args = build_function_type_list_1 (false, return_type, p);
8402 va_end (p);
8403 return args;
8404 }
8405
8406 /* Build a variable argument function type. The RETURN_TYPE is the
8407 type returned by the function. If additional arguments are provided,
8408 they are additional argument types. The list of argument types must
8409 always be terminated by NULL_TREE. */
8410
8411 tree
8412 build_varargs_function_type_list (tree return_type, ...)
8413 {
8414 tree args;
8415 va_list p;
8416
8417 va_start (p, return_type);
8418 args = build_function_type_list_1 (true, return_type, p);
8419 va_end (p);
8420
8421 return args;
8422 }
8423
8424 /* Build a function type. RETURN_TYPE is the type returned by the
8425 function; VAARGS indicates whether the function takes varargs. The
8426 function takes N named arguments, the types of which are provided in
8427 ARG_TYPES. */
8428
8429 static tree
8430 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8431 tree *arg_types)
8432 {
8433 int i;
8434 tree t = vaargs ? NULL_TREE : void_list_node;
8435
8436 for (i = n - 1; i >= 0; i--)
8437 t = tree_cons (NULL_TREE, arg_types[i], t);
8438
8439 return build_function_type (return_type, t);
8440 }
8441
8442 /* Build a function type. RETURN_TYPE is the type returned by the
8443 function. The function takes N named arguments, the types of which
8444 are provided in ARG_TYPES. */
8445
8446 tree
8447 build_function_type_array (tree return_type, int n, tree *arg_types)
8448 {
8449 return build_function_type_array_1 (false, return_type, n, arg_types);
8450 }
8451
8452 /* Build a variable argument function type. RETURN_TYPE is the type
8453 returned by the function. The function takes N named arguments, the
8454 types of which are provided in ARG_TYPES. */
8455
8456 tree
8457 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8458 {
8459 return build_function_type_array_1 (true, return_type, n, arg_types);
8460 }
8461
8462 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8463 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8464 for the method. An implicit additional parameter (of type
8465 pointer-to-BASETYPE) is added to the ARGTYPES. */
8466
8467 tree
8468 build_method_type_directly (tree basetype,
8469 tree rettype,
8470 tree argtypes)
8471 {
8472 tree t;
8473 tree ptype;
8474 bool any_structural_p, any_noncanonical_p;
8475 tree canon_argtypes;
8476
8477 /* Make a node of the sort we want. */
8478 t = make_node (METHOD_TYPE);
8479
8480 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8481 TREE_TYPE (t) = rettype;
8482 ptype = build_pointer_type (basetype);
8483
8484 /* The actual arglist for this function includes a "hidden" argument
8485 which is "this". Put it into the list of argument types. */
8486 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8487 TYPE_ARG_TYPES (t) = argtypes;
8488
8489 /* If we already have such a type, use the old one. */
8490 hashval_t hash = type_hash_canon_hash (t);
8491 t = type_hash_canon (hash, t);
8492
8493 /* Set up the canonical type. */
8494 any_structural_p
8495 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8496 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8497 any_noncanonical_p
8498 = (TYPE_CANONICAL (basetype) != basetype
8499 || TYPE_CANONICAL (rettype) != rettype);
8500 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8501 &any_structural_p,
8502 &any_noncanonical_p);
8503 if (any_structural_p)
8504 SET_TYPE_STRUCTURAL_EQUALITY (t);
8505 else if (any_noncanonical_p)
8506 TYPE_CANONICAL (t)
8507 = build_method_type_directly (TYPE_CANONICAL (basetype),
8508 TYPE_CANONICAL (rettype),
8509 canon_argtypes);
8510 if (!COMPLETE_TYPE_P (t))
8511 layout_type (t);
8512
8513 return t;
8514 }
8515
8516 /* Construct, lay out and return the type of methods belonging to class
8517 BASETYPE and whose arguments and values are described by TYPE.
8518 If that type exists already, reuse it.
8519 TYPE must be a FUNCTION_TYPE node. */
8520
8521 tree
8522 build_method_type (tree basetype, tree type)
8523 {
8524 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8525
8526 return build_method_type_directly (basetype,
8527 TREE_TYPE (type),
8528 TYPE_ARG_TYPES (type));
8529 }
8530
8531 /* Construct, lay out and return the type of offsets to a value
8532 of type TYPE, within an object of type BASETYPE.
8533 If a suitable offset type exists already, reuse it. */
8534
8535 tree
8536 build_offset_type (tree basetype, tree type)
8537 {
8538 tree t;
8539
8540 /* Make a node of the sort we want. */
8541 t = make_node (OFFSET_TYPE);
8542
8543 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8544 TREE_TYPE (t) = type;
8545
8546 /* If we already have such a type, use the old one. */
8547 hashval_t hash = type_hash_canon_hash (t);
8548 t = type_hash_canon (hash, t);
8549
8550 if (!COMPLETE_TYPE_P (t))
8551 layout_type (t);
8552
8553 if (TYPE_CANONICAL (t) == t)
8554 {
8555 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8556 || TYPE_STRUCTURAL_EQUALITY_P (type))
8557 SET_TYPE_STRUCTURAL_EQUALITY (t);
8558 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8559 || TYPE_CANONICAL (type) != type)
8560 TYPE_CANONICAL (t)
8561 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8562 TYPE_CANONICAL (type));
8563 }
8564
8565 return t;
8566 }
8567
8568 /* Create a complex type whose components are COMPONENT_TYPE.
8569
8570 If NAMED is true, the type is given a TYPE_NAME. We do not always
8571 do so because this creates a DECL node and thus make the DECL_UIDs
8572 dependent on the type canonicalization hashtable, which is GC-ed,
8573 so the DECL_UIDs would not be stable wrt garbage collection. */
8574
8575 tree
8576 build_complex_type (tree component_type, bool named)
8577 {
8578 gcc_assert (INTEGRAL_TYPE_P (component_type)
8579 || SCALAR_FLOAT_TYPE_P (component_type)
8580 || FIXED_POINT_TYPE_P (component_type));
8581
8582 /* Make a node of the sort we want. */
8583 tree probe = make_node (COMPLEX_TYPE);
8584
8585 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8586
8587 /* If we already have such a type, use the old one. */
8588 hashval_t hash = type_hash_canon_hash (probe);
8589 tree t = type_hash_canon (hash, probe);
8590
8591 if (t == probe)
8592 {
8593 /* We created a new type. The hash insertion will have laid
8594 out the type. We need to check the canonicalization and
8595 maybe set the name. */
8596 gcc_checking_assert (COMPLETE_TYPE_P (t)
8597 && !TYPE_NAME (t)
8598 && TYPE_CANONICAL (t) == t);
8599
8600 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8601 SET_TYPE_STRUCTURAL_EQUALITY (t);
8602 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8603 TYPE_CANONICAL (t)
8604 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8605
8606 /* We need to create a name, since complex is a fundamental type. */
8607 if (named)
8608 {
8609 const char *name = NULL;
8610
8611 if (TREE_TYPE (t) == char_type_node)
8612 name = "complex char";
8613 else if (TREE_TYPE (t) == signed_char_type_node)
8614 name = "complex signed char";
8615 else if (TREE_TYPE (t) == unsigned_char_type_node)
8616 name = "complex unsigned char";
8617 else if (TREE_TYPE (t) == short_integer_type_node)
8618 name = "complex short int";
8619 else if (TREE_TYPE (t) == short_unsigned_type_node)
8620 name = "complex short unsigned int";
8621 else if (TREE_TYPE (t) == integer_type_node)
8622 name = "complex int";
8623 else if (TREE_TYPE (t) == unsigned_type_node)
8624 name = "complex unsigned int";
8625 else if (TREE_TYPE (t) == long_integer_type_node)
8626 name = "complex long int";
8627 else if (TREE_TYPE (t) == long_unsigned_type_node)
8628 name = "complex long unsigned int";
8629 else if (TREE_TYPE (t) == long_long_integer_type_node)
8630 name = "complex long long int";
8631 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8632 name = "complex long long unsigned int";
8633
8634 if (name != NULL)
8635 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8636 get_identifier (name), t);
8637 }
8638 }
8639
8640 return build_qualified_type (t, TYPE_QUALS (component_type));
8641 }
8642
8643 /* If TYPE is a real or complex floating-point type and the target
8644 does not directly support arithmetic on TYPE then return the wider
8645 type to be used for arithmetic on TYPE. Otherwise, return
8646 NULL_TREE. */
8647
8648 tree
8649 excess_precision_type (tree type)
8650 {
8651 /* The target can give two different responses to the question of
8652 which excess precision mode it would like depending on whether we
8653 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8654
8655 enum excess_precision_type requested_type
8656 = (flag_excess_precision == EXCESS_PRECISION_FAST
8657 ? EXCESS_PRECISION_TYPE_FAST
8658 : EXCESS_PRECISION_TYPE_STANDARD);
8659
8660 enum flt_eval_method target_flt_eval_method
8661 = targetm.c.excess_precision (requested_type);
8662
8663 /* The target should not ask for unpredictable float evaluation (though
8664 it might advertise that implicitly the evaluation is unpredictable,
8665 but we don't care about that here, it will have been reported
8666 elsewhere). If it does ask for unpredictable evaluation, we have
8667 nothing to do here. */
8668 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8669
8670 /* Nothing to do. The target has asked for all types we know about
8671 to be computed with their native precision and range. */
8672 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8673 return NULL_TREE;
8674
8675 /* The target will promote this type in a target-dependent way, so excess
8676 precision ought to leave it alone. */
8677 if (targetm.promoted_type (type) != NULL_TREE)
8678 return NULL_TREE;
8679
8680 machine_mode float16_type_mode = (float16_type_node
8681 ? TYPE_MODE (float16_type_node)
8682 : VOIDmode);
8683 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8684 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8685
8686 switch (TREE_CODE (type))
8687 {
8688 case REAL_TYPE:
8689 {
8690 machine_mode type_mode = TYPE_MODE (type);
8691 switch (target_flt_eval_method)
8692 {
8693 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8694 if (type_mode == float16_type_mode)
8695 return float_type_node;
8696 break;
8697 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8698 if (type_mode == float16_type_mode
8699 || type_mode == float_type_mode)
8700 return double_type_node;
8701 break;
8702 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8703 if (type_mode == float16_type_mode
8704 || type_mode == float_type_mode
8705 || type_mode == double_type_mode)
8706 return long_double_type_node;
8707 break;
8708 default:
8709 gcc_unreachable ();
8710 }
8711 break;
8712 }
8713 case COMPLEX_TYPE:
8714 {
8715 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8716 return NULL_TREE;
8717 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8718 switch (target_flt_eval_method)
8719 {
8720 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8721 if (type_mode == float16_type_mode)
8722 return complex_float_type_node;
8723 break;
8724 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8725 if (type_mode == float16_type_mode
8726 || type_mode == float_type_mode)
8727 return complex_double_type_node;
8728 break;
8729 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8730 if (type_mode == float16_type_mode
8731 || type_mode == float_type_mode
8732 || type_mode == double_type_mode)
8733 return complex_long_double_type_node;
8734 break;
8735 default:
8736 gcc_unreachable ();
8737 }
8738 break;
8739 }
8740 default:
8741 break;
8742 }
8743
8744 return NULL_TREE;
8745 }
8746 \f
8747 /* Return OP, stripped of any conversions to wider types as much as is safe.
8748 Converting the value back to OP's type makes a value equivalent to OP.
8749
8750 If FOR_TYPE is nonzero, we return a value which, if converted to
8751 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8752
8753 OP must have integer, real or enumeral type. Pointers are not allowed!
8754
8755 There are some cases where the obvious value we could return
8756 would regenerate to OP if converted to OP's type,
8757 but would not extend like OP to wider types.
8758 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8759 For example, if OP is (unsigned short)(signed char)-1,
8760 we avoid returning (signed char)-1 if FOR_TYPE is int,
8761 even though extending that to an unsigned short would regenerate OP,
8762 since the result of extending (signed char)-1 to (int)
8763 is different from (int) OP. */
8764
8765 tree
8766 get_unwidened (tree op, tree for_type)
8767 {
8768 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8769 tree type = TREE_TYPE (op);
8770 unsigned final_prec
8771 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8772 int uns
8773 = (for_type != 0 && for_type != type
8774 && final_prec > TYPE_PRECISION (type)
8775 && TYPE_UNSIGNED (type));
8776 tree win = op;
8777
8778 while (CONVERT_EXPR_P (op))
8779 {
8780 int bitschange;
8781
8782 /* TYPE_PRECISION on vector types has different meaning
8783 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8784 so avoid them here. */
8785 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8786 break;
8787
8788 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8789 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8790
8791 /* Truncations are many-one so cannot be removed.
8792 Unless we are later going to truncate down even farther. */
8793 if (bitschange < 0
8794 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8795 break;
8796
8797 /* See what's inside this conversion. If we decide to strip it,
8798 we will set WIN. */
8799 op = TREE_OPERAND (op, 0);
8800
8801 /* If we have not stripped any zero-extensions (uns is 0),
8802 we can strip any kind of extension.
8803 If we have previously stripped a zero-extension,
8804 only zero-extensions can safely be stripped.
8805 Any extension can be stripped if the bits it would produce
8806 are all going to be discarded later by truncating to FOR_TYPE. */
8807
8808 if (bitschange > 0)
8809 {
8810 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8811 win = op;
8812 /* TYPE_UNSIGNED says whether this is a zero-extension.
8813 Let's avoid computing it if it does not affect WIN
8814 and if UNS will not be needed again. */
8815 if ((uns
8816 || CONVERT_EXPR_P (op))
8817 && TYPE_UNSIGNED (TREE_TYPE (op)))
8818 {
8819 uns = 1;
8820 win = op;
8821 }
8822 }
8823 }
8824
8825 /* If we finally reach a constant see if it fits in sth smaller and
8826 in that case convert it. */
8827 if (TREE_CODE (win) == INTEGER_CST)
8828 {
8829 tree wtype = TREE_TYPE (win);
8830 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8831 if (for_type)
8832 prec = MAX (prec, final_prec);
8833 if (prec < TYPE_PRECISION (wtype))
8834 {
8835 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8836 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8837 win = fold_convert (t, win);
8838 }
8839 }
8840
8841 return win;
8842 }
8843 \f
8844 /* Return OP or a simpler expression for a narrower value
8845 which can be sign-extended or zero-extended to give back OP.
8846 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8847 or 0 if the value should be sign-extended. */
8848
8849 tree
8850 get_narrower (tree op, int *unsignedp_ptr)
8851 {
8852 int uns = 0;
8853 int first = 1;
8854 tree win = op;
8855 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8856
8857 if (TREE_CODE (op) == COMPOUND_EXPR)
8858 {
8859 do
8860 op = TREE_OPERAND (op, 1);
8861 while (TREE_CODE (op) == COMPOUND_EXPR);
8862 tree ret = get_narrower (op, unsignedp_ptr);
8863 if (ret == op)
8864 return win;
8865 auto_vec <tree, 16> v;
8866 unsigned int i;
8867 for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
8868 op = TREE_OPERAND (op, 1))
8869 v.safe_push (op);
8870 FOR_EACH_VEC_ELT_REVERSE (v, i, op)
8871 ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
8872 TREE_TYPE (win), TREE_OPERAND (op, 0),
8873 ret);
8874 return ret;
8875 }
8876 while (TREE_CODE (op) == NOP_EXPR)
8877 {
8878 int bitschange
8879 = (TYPE_PRECISION (TREE_TYPE (op))
8880 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8881
8882 /* Truncations are many-one so cannot be removed. */
8883 if (bitschange < 0)
8884 break;
8885
8886 /* See what's inside this conversion. If we decide to strip it,
8887 we will set WIN. */
8888
8889 if (bitschange > 0)
8890 {
8891 op = TREE_OPERAND (op, 0);
8892 /* An extension: the outermost one can be stripped,
8893 but remember whether it is zero or sign extension. */
8894 if (first)
8895 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8896 /* Otherwise, if a sign extension has been stripped,
8897 only sign extensions can now be stripped;
8898 if a zero extension has been stripped, only zero-extensions. */
8899 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8900 break;
8901 first = 0;
8902 }
8903 else /* bitschange == 0 */
8904 {
8905 /* A change in nominal type can always be stripped, but we must
8906 preserve the unsignedness. */
8907 if (first)
8908 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8909 first = 0;
8910 op = TREE_OPERAND (op, 0);
8911 /* Keep trying to narrow, but don't assign op to win if it
8912 would turn an integral type into something else. */
8913 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8914 continue;
8915 }
8916
8917 win = op;
8918 }
8919
8920 if (TREE_CODE (op) == COMPONENT_REF
8921 /* Since type_for_size always gives an integer type. */
8922 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8923 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8924 /* Ensure field is laid out already. */
8925 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8926 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8927 {
8928 unsigned HOST_WIDE_INT innerprec
8929 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8930 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8931 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8932 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8933
8934 /* We can get this structure field in a narrower type that fits it,
8935 but the resulting extension to its nominal type (a fullword type)
8936 must satisfy the same conditions as for other extensions.
8937
8938 Do this only for fields that are aligned (not bit-fields),
8939 because when bit-field insns will be used there is no
8940 advantage in doing this. */
8941
8942 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8943 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8944 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8945 && type != 0)
8946 {
8947 if (first)
8948 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8949 win = fold_convert (type, op);
8950 }
8951 }
8952
8953 *unsignedp_ptr = uns;
8954 return win;
8955 }
8956 \f
8957 /* Return true if integer constant C has a value that is permissible
8958 for TYPE, an integral type. */
8959
8960 bool
8961 int_fits_type_p (const_tree c, const_tree type)
8962 {
8963 tree type_low_bound, type_high_bound;
8964 bool ok_for_low_bound, ok_for_high_bound;
8965 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8966
8967 /* Non-standard boolean types can have arbitrary precision but various
8968 transformations assume that they can only take values 0 and +/-1. */
8969 if (TREE_CODE (type) == BOOLEAN_TYPE)
8970 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8971
8972 retry:
8973 type_low_bound = TYPE_MIN_VALUE (type);
8974 type_high_bound = TYPE_MAX_VALUE (type);
8975
8976 /* If at least one bound of the type is a constant integer, we can check
8977 ourselves and maybe make a decision. If no such decision is possible, but
8978 this type is a subtype, try checking against that. Otherwise, use
8979 fits_to_tree_p, which checks against the precision.
8980
8981 Compute the status for each possibly constant bound, and return if we see
8982 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8983 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8984 for "constant known to fit". */
8985
8986 /* Check if c >= type_low_bound. */
8987 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8988 {
8989 if (tree_int_cst_lt (c, type_low_bound))
8990 return false;
8991 ok_for_low_bound = true;
8992 }
8993 else
8994 ok_for_low_bound = false;
8995
8996 /* Check if c <= type_high_bound. */
8997 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8998 {
8999 if (tree_int_cst_lt (type_high_bound, c))
9000 return false;
9001 ok_for_high_bound = true;
9002 }
9003 else
9004 ok_for_high_bound = false;
9005
9006 /* If the constant fits both bounds, the result is known. */
9007 if (ok_for_low_bound && ok_for_high_bound)
9008 return true;
9009
9010 /* Perform some generic filtering which may allow making a decision
9011 even if the bounds are not constant. First, negative integers
9012 never fit in unsigned types, */
9013 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9014 return false;
9015
9016 /* Second, narrower types always fit in wider ones. */
9017 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9018 return true;
9019
9020 /* Third, unsigned integers with top bit set never fit signed types. */
9021 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9022 {
9023 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9024 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9025 {
9026 /* When a tree_cst is converted to a wide-int, the precision
9027 is taken from the type. However, if the precision of the
9028 mode underneath the type is smaller than that, it is
9029 possible that the value will not fit. The test below
9030 fails if any bit is set between the sign bit of the
9031 underlying mode and the top bit of the type. */
9032 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9033 return false;
9034 }
9035 else if (wi::neg_p (wi::to_wide (c)))
9036 return false;
9037 }
9038
9039 /* If we haven't been able to decide at this point, there nothing more we
9040 can check ourselves here. Look at the base type if we have one and it
9041 has the same precision. */
9042 if (TREE_CODE (type) == INTEGER_TYPE
9043 && TREE_TYPE (type) != 0
9044 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9045 {
9046 type = TREE_TYPE (type);
9047 goto retry;
9048 }
9049
9050 /* Or to fits_to_tree_p, if nothing else. */
9051 return wi::fits_to_tree_p (wi::to_wide (c), type);
9052 }
9053
9054 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9055 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9056 represented (assuming two's-complement arithmetic) within the bit
9057 precision of the type are returned instead. */
9058
9059 void
9060 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9061 {
9062 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9063 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9064 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9065 else
9066 {
9067 if (TYPE_UNSIGNED (type))
9068 mpz_set_ui (min, 0);
9069 else
9070 {
9071 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9072 wi::to_mpz (mn, min, SIGNED);
9073 }
9074 }
9075
9076 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9077 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9078 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9079 else
9080 {
9081 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9082 wi::to_mpz (mn, max, TYPE_SIGN (type));
9083 }
9084 }
9085
9086 /* Return true if VAR is an automatic variable. */
9087
9088 bool
9089 auto_var_p (const_tree var)
9090 {
9091 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9092 || TREE_CODE (var) == PARM_DECL)
9093 && ! TREE_STATIC (var))
9094 || TREE_CODE (var) == RESULT_DECL);
9095 }
9096
9097 /* Return true if VAR is an automatic variable defined in function FN. */
9098
9099 bool
9100 auto_var_in_fn_p (const_tree var, const_tree fn)
9101 {
9102 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9103 && (auto_var_p (var)
9104 || TREE_CODE (var) == LABEL_DECL));
9105 }
9106
9107 /* Subprogram of following function. Called by walk_tree.
9108
9109 Return *TP if it is an automatic variable or parameter of the
9110 function passed in as DATA. */
9111
9112 static tree
9113 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9114 {
9115 tree fn = (tree) data;
9116
9117 if (TYPE_P (*tp))
9118 *walk_subtrees = 0;
9119
9120 else if (DECL_P (*tp)
9121 && auto_var_in_fn_p (*tp, fn))
9122 return *tp;
9123
9124 return NULL_TREE;
9125 }
9126
9127 /* Returns true if T is, contains, or refers to a type with variable
9128 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9129 arguments, but not the return type. If FN is nonzero, only return
9130 true if a modifier of the type or position of FN is a variable or
9131 parameter inside FN.
9132
9133 This concept is more general than that of C99 'variably modified types':
9134 in C99, a struct type is never variably modified because a VLA may not
9135 appear as a structure member. However, in GNU C code like:
9136
9137 struct S { int i[f()]; };
9138
9139 is valid, and other languages may define similar constructs. */
9140
9141 bool
9142 variably_modified_type_p (tree type, tree fn)
9143 {
9144 tree t;
9145
9146 /* Test if T is either variable (if FN is zero) or an expression containing
9147 a variable in FN. If TYPE isn't gimplified, return true also if
9148 gimplify_one_sizepos would gimplify the expression into a local
9149 variable. */
9150 #define RETURN_TRUE_IF_VAR(T) \
9151 do { tree _t = (T); \
9152 if (_t != NULL_TREE \
9153 && _t != error_mark_node \
9154 && !CONSTANT_CLASS_P (_t) \
9155 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9156 && (!fn \
9157 || (!TYPE_SIZES_GIMPLIFIED (type) \
9158 && (TREE_CODE (_t) != VAR_DECL \
9159 && !CONTAINS_PLACEHOLDER_P (_t))) \
9160 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9161 return true; } while (0)
9162
9163 if (type == error_mark_node)
9164 return false;
9165
9166 /* If TYPE itself has variable size, it is variably modified. */
9167 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9168 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9169
9170 switch (TREE_CODE (type))
9171 {
9172 case POINTER_TYPE:
9173 case REFERENCE_TYPE:
9174 case VECTOR_TYPE:
9175 /* Ada can have pointer types refering to themselves indirectly. */
9176 if (TREE_VISITED (type))
9177 return false;
9178 TREE_VISITED (type) = true;
9179 if (variably_modified_type_p (TREE_TYPE (type), fn))
9180 {
9181 TREE_VISITED (type) = false;
9182 return true;
9183 }
9184 TREE_VISITED (type) = false;
9185 break;
9186
9187 case FUNCTION_TYPE:
9188 case METHOD_TYPE:
9189 /* If TYPE is a function type, it is variably modified if the
9190 return type is variably modified. */
9191 if (variably_modified_type_p (TREE_TYPE (type), fn))
9192 return true;
9193 break;
9194
9195 case INTEGER_TYPE:
9196 case REAL_TYPE:
9197 case FIXED_POINT_TYPE:
9198 case ENUMERAL_TYPE:
9199 case BOOLEAN_TYPE:
9200 /* Scalar types are variably modified if their end points
9201 aren't constant. */
9202 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9203 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9204 break;
9205
9206 case RECORD_TYPE:
9207 case UNION_TYPE:
9208 case QUAL_UNION_TYPE:
9209 /* We can't see if any of the fields are variably-modified by the
9210 definition we normally use, since that would produce infinite
9211 recursion via pointers. */
9212 /* This is variably modified if some field's type is. */
9213 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9214 if (TREE_CODE (t) == FIELD_DECL)
9215 {
9216 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9217 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9218 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9219
9220 /* If the type is a qualified union, then the DECL_QUALIFIER
9221 of fields can also be an expression containing a variable. */
9222 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9223 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9224
9225 /* If the field is a qualified union, then it's only a container
9226 for what's inside so we look into it. That's necessary in LTO
9227 mode because the sizes of the field tested above have been set
9228 to PLACEHOLDER_EXPRs by free_lang_data. */
9229 if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
9230 && variably_modified_type_p (TREE_TYPE (t), fn))
9231 return true;
9232 }
9233 break;
9234
9235 case ARRAY_TYPE:
9236 /* Do not call ourselves to avoid infinite recursion. This is
9237 variably modified if the element type is. */
9238 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9239 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9240 break;
9241
9242 default:
9243 break;
9244 }
9245
9246 /* The current language may have other cases to check, but in general,
9247 all other types are not variably modified. */
9248 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9249
9250 #undef RETURN_TRUE_IF_VAR
9251 }
9252
9253 /* Given a DECL or TYPE, return the scope in which it was declared, or
9254 NULL_TREE if there is no containing scope. */
9255
9256 tree
9257 get_containing_scope (const_tree t)
9258 {
9259 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9260 }
9261
9262 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9263
9264 const_tree
9265 get_ultimate_context (const_tree decl)
9266 {
9267 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9268 {
9269 if (TREE_CODE (decl) == BLOCK)
9270 decl = BLOCK_SUPERCONTEXT (decl);
9271 else
9272 decl = get_containing_scope (decl);
9273 }
9274 return decl;
9275 }
9276
9277 /* Return the innermost context enclosing DECL that is
9278 a FUNCTION_DECL, or zero if none. */
9279
9280 tree
9281 decl_function_context (const_tree decl)
9282 {
9283 tree context;
9284
9285 if (TREE_CODE (decl) == ERROR_MARK)
9286 return 0;
9287
9288 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9289 where we look up the function at runtime. Such functions always take
9290 a first argument of type 'pointer to real context'.
9291
9292 C++ should really be fixed to use DECL_CONTEXT for the real context,
9293 and use something else for the "virtual context". */
9294 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9295 context
9296 = TYPE_MAIN_VARIANT
9297 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9298 else
9299 context = DECL_CONTEXT (decl);
9300
9301 while (context && TREE_CODE (context) != FUNCTION_DECL)
9302 {
9303 if (TREE_CODE (context) == BLOCK)
9304 context = BLOCK_SUPERCONTEXT (context);
9305 else
9306 context = get_containing_scope (context);
9307 }
9308
9309 return context;
9310 }
9311
9312 /* Return the innermost context enclosing DECL that is
9313 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9314 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9315
9316 tree
9317 decl_type_context (const_tree decl)
9318 {
9319 tree context = DECL_CONTEXT (decl);
9320
9321 while (context)
9322 switch (TREE_CODE (context))
9323 {
9324 case NAMESPACE_DECL:
9325 case TRANSLATION_UNIT_DECL:
9326 return NULL_TREE;
9327
9328 case RECORD_TYPE:
9329 case UNION_TYPE:
9330 case QUAL_UNION_TYPE:
9331 return context;
9332
9333 case TYPE_DECL:
9334 case FUNCTION_DECL:
9335 context = DECL_CONTEXT (context);
9336 break;
9337
9338 case BLOCK:
9339 context = BLOCK_SUPERCONTEXT (context);
9340 break;
9341
9342 default:
9343 gcc_unreachable ();
9344 }
9345
9346 return NULL_TREE;
9347 }
9348
9349 /* CALL is a CALL_EXPR. Return the declaration for the function
9350 called, or NULL_TREE if the called function cannot be
9351 determined. */
9352
9353 tree
9354 get_callee_fndecl (const_tree call)
9355 {
9356 tree addr;
9357
9358 if (call == error_mark_node)
9359 return error_mark_node;
9360
9361 /* It's invalid to call this function with anything but a
9362 CALL_EXPR. */
9363 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9364
9365 /* The first operand to the CALL is the address of the function
9366 called. */
9367 addr = CALL_EXPR_FN (call);
9368
9369 /* If there is no function, return early. */
9370 if (addr == NULL_TREE)
9371 return NULL_TREE;
9372
9373 STRIP_NOPS (addr);
9374
9375 /* If this is a readonly function pointer, extract its initial value. */
9376 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9377 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9378 && DECL_INITIAL (addr))
9379 addr = DECL_INITIAL (addr);
9380
9381 /* If the address is just `&f' for some function `f', then we know
9382 that `f' is being called. */
9383 if (TREE_CODE (addr) == ADDR_EXPR
9384 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9385 return TREE_OPERAND (addr, 0);
9386
9387 /* We couldn't figure out what was being called. */
9388 return NULL_TREE;
9389 }
9390
9391 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9392 return the associated function code, otherwise return CFN_LAST. */
9393
9394 combined_fn
9395 get_call_combined_fn (const_tree call)
9396 {
9397 /* It's invalid to call this function with anything but a CALL_EXPR. */
9398 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9399
9400 if (!CALL_EXPR_FN (call))
9401 return as_combined_fn (CALL_EXPR_IFN (call));
9402
9403 tree fndecl = get_callee_fndecl (call);
9404 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9405 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9406
9407 return CFN_LAST;
9408 }
9409
9410 /* Comparator of indices based on tree_node_counts. */
9411
9412 static int
9413 tree_nodes_cmp (const void *p1, const void *p2)
9414 {
9415 const unsigned *n1 = (const unsigned *)p1;
9416 const unsigned *n2 = (const unsigned *)p2;
9417
9418 return tree_node_counts[*n1] - tree_node_counts[*n2];
9419 }
9420
9421 /* Comparator of indices based on tree_code_counts. */
9422
9423 static int
9424 tree_codes_cmp (const void *p1, const void *p2)
9425 {
9426 const unsigned *n1 = (const unsigned *)p1;
9427 const unsigned *n2 = (const unsigned *)p2;
9428
9429 return tree_code_counts[*n1] - tree_code_counts[*n2];
9430 }
9431
9432 #define TREE_MEM_USAGE_SPACES 40
9433
9434 /* Print debugging information about tree nodes generated during the compile,
9435 and any language-specific information. */
9436
9437 void
9438 dump_tree_statistics (void)
9439 {
9440 if (GATHER_STATISTICS)
9441 {
9442 uint64_t total_nodes, total_bytes;
9443 fprintf (stderr, "\nKind Nodes Bytes\n");
9444 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9445 total_nodes = total_bytes = 0;
9446
9447 {
9448 auto_vec<unsigned> indices (all_kinds);
9449 for (unsigned i = 0; i < all_kinds; i++)
9450 indices.quick_push (i);
9451 indices.qsort (tree_nodes_cmp);
9452
9453 for (unsigned i = 0; i < (int) all_kinds; i++)
9454 {
9455 unsigned j = indices[i];
9456 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9457 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
9458 SIZE_AMOUNT (tree_node_sizes[j]));
9459 total_nodes += tree_node_counts[j];
9460 total_bytes += tree_node_sizes[j];
9461 }
9462 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9463 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9464 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9465 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9466 }
9467
9468 {
9469 fprintf (stderr, "Code Nodes\n");
9470 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9471
9472 auto_vec<unsigned> indices (MAX_TREE_CODES);
9473 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9474 indices.quick_push (i);
9475 indices.qsort (tree_codes_cmp);
9476
9477 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9478 {
9479 unsigned j = indices[i];
9480 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9481 get_tree_code_name ((enum tree_code) j),
9482 SIZE_AMOUNT (tree_code_counts[j]));
9483 }
9484 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9485 fprintf (stderr, "\n");
9486 ssanames_print_statistics ();
9487 fprintf (stderr, "\n");
9488 phinodes_print_statistics ();
9489 fprintf (stderr, "\n");
9490 }
9491 }
9492 else
9493 fprintf (stderr, "(No per-node statistics)\n");
9494
9495 print_type_hash_statistics ();
9496 print_debug_expr_statistics ();
9497 print_value_expr_statistics ();
9498 lang_hooks.print_statistics ();
9499 }
9500 \f
9501 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9502
9503 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9504
9505 unsigned
9506 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9507 {
9508 /* This relies on the raw feedback's top 4 bits being zero. */
9509 #define FEEDBACK(X) ((X) * 0x04c11db7)
9510 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9511 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9512 static const unsigned syndromes[16] =
9513 {
9514 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9515 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9516 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9517 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9518 };
9519 #undef FEEDBACK
9520 #undef SYNDROME
9521
9522 value <<= (32 - bytes * 8);
9523 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9524 {
9525 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9526
9527 chksum = (chksum << 4) ^ feedback;
9528 }
9529
9530 return chksum;
9531 }
9532
9533 /* Generate a crc32 of a string. */
9534
9535 unsigned
9536 crc32_string (unsigned chksum, const char *string)
9537 {
9538 do
9539 chksum = crc32_byte (chksum, *string);
9540 while (*string++);
9541 return chksum;
9542 }
9543
9544 /* P is a string that will be used in a symbol. Mask out any characters
9545 that are not valid in that context. */
9546
9547 void
9548 clean_symbol_name (char *p)
9549 {
9550 for (; *p; p++)
9551 if (! (ISALNUM (*p)
9552 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9553 || *p == '$'
9554 #endif
9555 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9556 || *p == '.'
9557 #endif
9558 ))
9559 *p = '_';
9560 }
9561
9562 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
9563
9564 /* Create a unique anonymous identifier. The identifier is still a
9565 valid assembly label. */
9566
9567 tree
9568 make_anon_name ()
9569 {
9570 const char *fmt =
9571 #if !defined (NO_DOT_IN_LABEL)
9572 "."
9573 #elif !defined (NO_DOLLAR_IN_LABEL)
9574 "$"
9575 #else
9576 "_"
9577 #endif
9578 "_anon_%d";
9579
9580 char buf[24];
9581 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
9582 gcc_checking_assert (len < int (sizeof (buf)));
9583
9584 tree id = get_identifier_with_length (buf, len);
9585 IDENTIFIER_ANON_P (id) = true;
9586
9587 return id;
9588 }
9589
9590 /* Generate a name for a special-purpose function.
9591 The generated name may need to be unique across the whole link.
9592 Changes to this function may also require corresponding changes to
9593 xstrdup_mask_random.
9594 TYPE is some string to identify the purpose of this function to the
9595 linker or collect2; it must start with an uppercase letter,
9596 one of:
9597 I - for constructors
9598 D - for destructors
9599 N - for C++ anonymous namespaces
9600 F - for DWARF unwind frame information. */
9601
9602 tree
9603 get_file_function_name (const char *type)
9604 {
9605 char *buf;
9606 const char *p;
9607 char *q;
9608
9609 /* If we already have a name we know to be unique, just use that. */
9610 if (first_global_object_name)
9611 p = q = ASTRDUP (first_global_object_name);
9612 /* If the target is handling the constructors/destructors, they
9613 will be local to this file and the name is only necessary for
9614 debugging purposes.
9615 We also assign sub_I and sub_D sufixes to constructors called from
9616 the global static constructors. These are always local. */
9617 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9618 || (strncmp (type, "sub_", 4) == 0
9619 && (type[4] == 'I' || type[4] == 'D')))
9620 {
9621 const char *file = main_input_filename;
9622 if (! file)
9623 file = LOCATION_FILE (input_location);
9624 /* Just use the file's basename, because the full pathname
9625 might be quite long. */
9626 p = q = ASTRDUP (lbasename (file));
9627 }
9628 else
9629 {
9630 /* Otherwise, the name must be unique across the entire link.
9631 We don't have anything that we know to be unique to this translation
9632 unit, so use what we do have and throw in some randomness. */
9633 unsigned len;
9634 const char *name = weak_global_object_name;
9635 const char *file = main_input_filename;
9636
9637 if (! name)
9638 name = "";
9639 if (! file)
9640 file = LOCATION_FILE (input_location);
9641
9642 len = strlen (file);
9643 q = (char *) alloca (9 + 19 + len + 1);
9644 memcpy (q, file, len + 1);
9645
9646 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9647 crc32_string (0, name), get_random_seed (false));
9648
9649 p = q;
9650 }
9651
9652 clean_symbol_name (q);
9653 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9654 + strlen (type));
9655
9656 /* Set up the name of the file-level functions we may need.
9657 Use a global object (which is already required to be unique over
9658 the program) rather than the file name (which imposes extra
9659 constraints). */
9660 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9661
9662 return get_identifier (buf);
9663 }
9664 \f
9665 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9666
9667 /* Complain that the tree code of NODE does not match the expected 0
9668 terminated list of trailing codes. The trailing code list can be
9669 empty, for a more vague error message. FILE, LINE, and FUNCTION
9670 are of the caller. */
9671
9672 void
9673 tree_check_failed (const_tree node, const char *file,
9674 int line, const char *function, ...)
9675 {
9676 va_list args;
9677 const char *buffer;
9678 unsigned length = 0;
9679 enum tree_code code;
9680
9681 va_start (args, function);
9682 while ((code = (enum tree_code) va_arg (args, int)))
9683 length += 4 + strlen (get_tree_code_name (code));
9684 va_end (args);
9685 if (length)
9686 {
9687 char *tmp;
9688 va_start (args, function);
9689 length += strlen ("expected ");
9690 buffer = tmp = (char *) alloca (length);
9691 length = 0;
9692 while ((code = (enum tree_code) va_arg (args, int)))
9693 {
9694 const char *prefix = length ? " or " : "expected ";
9695
9696 strcpy (tmp + length, prefix);
9697 length += strlen (prefix);
9698 strcpy (tmp + length, get_tree_code_name (code));
9699 length += strlen (get_tree_code_name (code));
9700 }
9701 va_end (args);
9702 }
9703 else
9704 buffer = "unexpected node";
9705
9706 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9707 buffer, get_tree_code_name (TREE_CODE (node)),
9708 function, trim_filename (file), line);
9709 }
9710
9711 /* Complain that the tree code of NODE does match the expected 0
9712 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9713 the caller. */
9714
9715 void
9716 tree_not_check_failed (const_tree node, const char *file,
9717 int line, const char *function, ...)
9718 {
9719 va_list args;
9720 char *buffer;
9721 unsigned length = 0;
9722 enum tree_code code;
9723
9724 va_start (args, function);
9725 while ((code = (enum tree_code) va_arg (args, int)))
9726 length += 4 + strlen (get_tree_code_name (code));
9727 va_end (args);
9728 va_start (args, function);
9729 buffer = (char *) alloca (length);
9730 length = 0;
9731 while ((code = (enum tree_code) va_arg (args, int)))
9732 {
9733 if (length)
9734 {
9735 strcpy (buffer + length, " or ");
9736 length += 4;
9737 }
9738 strcpy (buffer + length, get_tree_code_name (code));
9739 length += strlen (get_tree_code_name (code));
9740 }
9741 va_end (args);
9742
9743 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9744 buffer, get_tree_code_name (TREE_CODE (node)),
9745 function, trim_filename (file), line);
9746 }
9747
9748 /* Similar to tree_check_failed, except that we check for a class of tree
9749 code, given in CL. */
9750
9751 void
9752 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9753 const char *file, int line, const char *function)
9754 {
9755 internal_error
9756 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9757 TREE_CODE_CLASS_STRING (cl),
9758 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9759 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9760 }
9761
9762 /* Similar to tree_check_failed, except that instead of specifying a
9763 dozen codes, use the knowledge that they're all sequential. */
9764
9765 void
9766 tree_range_check_failed (const_tree node, const char *file, int line,
9767 const char *function, enum tree_code c1,
9768 enum tree_code c2)
9769 {
9770 char *buffer;
9771 unsigned length = 0;
9772 unsigned int c;
9773
9774 for (c = c1; c <= c2; ++c)
9775 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9776
9777 length += strlen ("expected ");
9778 buffer = (char *) alloca (length);
9779 length = 0;
9780
9781 for (c = c1; c <= c2; ++c)
9782 {
9783 const char *prefix = length ? " or " : "expected ";
9784
9785 strcpy (buffer + length, prefix);
9786 length += strlen (prefix);
9787 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9788 length += strlen (get_tree_code_name ((enum tree_code) c));
9789 }
9790
9791 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9792 buffer, get_tree_code_name (TREE_CODE (node)),
9793 function, trim_filename (file), line);
9794 }
9795
9796
9797 /* Similar to tree_check_failed, except that we check that a tree does
9798 not have the specified code, given in CL. */
9799
9800 void
9801 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9802 const char *file, int line, const char *function)
9803 {
9804 internal_error
9805 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9806 TREE_CODE_CLASS_STRING (cl),
9807 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9808 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9809 }
9810
9811
9812 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9813
9814 void
9815 omp_clause_check_failed (const_tree node, const char *file, int line,
9816 const char *function, enum omp_clause_code code)
9817 {
9818 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9819 "in %s, at %s:%d",
9820 omp_clause_code_name[code],
9821 get_tree_code_name (TREE_CODE (node)),
9822 function, trim_filename (file), line);
9823 }
9824
9825
9826 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9827
9828 void
9829 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9830 const char *function, enum omp_clause_code c1,
9831 enum omp_clause_code c2)
9832 {
9833 char *buffer;
9834 unsigned length = 0;
9835 unsigned int c;
9836
9837 for (c = c1; c <= c2; ++c)
9838 length += 4 + strlen (omp_clause_code_name[c]);
9839
9840 length += strlen ("expected ");
9841 buffer = (char *) alloca (length);
9842 length = 0;
9843
9844 for (c = c1; c <= c2; ++c)
9845 {
9846 const char *prefix = length ? " or " : "expected ";
9847
9848 strcpy (buffer + length, prefix);
9849 length += strlen (prefix);
9850 strcpy (buffer + length, omp_clause_code_name[c]);
9851 length += strlen (omp_clause_code_name[c]);
9852 }
9853
9854 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9855 buffer, omp_clause_code_name[TREE_CODE (node)],
9856 function, trim_filename (file), line);
9857 }
9858
9859
9860 #undef DEFTREESTRUCT
9861 #define DEFTREESTRUCT(VAL, NAME) NAME,
9862
9863 static const char *ts_enum_names[] = {
9864 #include "treestruct.def"
9865 };
9866 #undef DEFTREESTRUCT
9867
9868 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9869
9870 /* Similar to tree_class_check_failed, except that we check for
9871 whether CODE contains the tree structure identified by EN. */
9872
9873 void
9874 tree_contains_struct_check_failed (const_tree node,
9875 const enum tree_node_structure_enum en,
9876 const char *file, int line,
9877 const char *function)
9878 {
9879 internal_error
9880 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9881 TS_ENUM_NAME (en),
9882 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9883 }
9884
9885
9886 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9887 (dynamically sized) vector. */
9888
9889 void
9890 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9891 const char *function)
9892 {
9893 internal_error
9894 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9895 "at %s:%d",
9896 idx + 1, len, function, trim_filename (file), line);
9897 }
9898
9899 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9900 (dynamically sized) vector. */
9901
9902 void
9903 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9904 const char *function)
9905 {
9906 internal_error
9907 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
9908 idx + 1, len, function, trim_filename (file), line);
9909 }
9910
9911 /* Similar to above, except that the check is for the bounds of the operand
9912 vector of an expression node EXP. */
9913
9914 void
9915 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9916 int line, const char *function)
9917 {
9918 enum tree_code code = TREE_CODE (exp);
9919 internal_error
9920 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9921 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9922 function, trim_filename (file), line);
9923 }
9924
9925 /* Similar to above, except that the check is for the number of
9926 operands of an OMP_CLAUSE node. */
9927
9928 void
9929 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9930 int line, const char *function)
9931 {
9932 internal_error
9933 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
9934 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9935 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9936 trim_filename (file), line);
9937 }
9938 #endif /* ENABLE_TREE_CHECKING */
9939 \f
9940 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9941 and mapped to the machine mode MODE. Initialize its fields and build
9942 the information necessary for debugging output. */
9943
9944 static tree
9945 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9946 {
9947 tree t;
9948 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9949
9950 t = make_node (VECTOR_TYPE);
9951 TREE_TYPE (t) = mv_innertype;
9952 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9953 SET_TYPE_MODE (t, mode);
9954
9955 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9956 SET_TYPE_STRUCTURAL_EQUALITY (t);
9957 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9958 || mode != VOIDmode)
9959 && !VECTOR_BOOLEAN_TYPE_P (t))
9960 TYPE_CANONICAL (t)
9961 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9962
9963 layout_type (t);
9964
9965 hashval_t hash = type_hash_canon_hash (t);
9966 t = type_hash_canon (hash, t);
9967
9968 /* We have built a main variant, based on the main variant of the
9969 inner type. Use it to build the variant we return. */
9970 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9971 && TREE_TYPE (t) != innertype)
9972 return build_type_attribute_qual_variant (t,
9973 TYPE_ATTRIBUTES (innertype),
9974 TYPE_QUALS (innertype));
9975
9976 return t;
9977 }
9978
9979 static tree
9980 make_or_reuse_type (unsigned size, int unsignedp)
9981 {
9982 int i;
9983
9984 if (size == INT_TYPE_SIZE)
9985 return unsignedp ? unsigned_type_node : integer_type_node;
9986 if (size == CHAR_TYPE_SIZE)
9987 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9988 if (size == SHORT_TYPE_SIZE)
9989 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9990 if (size == LONG_TYPE_SIZE)
9991 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9992 if (size == LONG_LONG_TYPE_SIZE)
9993 return (unsignedp ? long_long_unsigned_type_node
9994 : long_long_integer_type_node);
9995
9996 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9997 if (size == int_n_data[i].bitsize
9998 && int_n_enabled_p[i])
9999 return (unsignedp ? int_n_trees[i].unsigned_type
10000 : int_n_trees[i].signed_type);
10001
10002 if (unsignedp)
10003 return make_unsigned_type (size);
10004 else
10005 return make_signed_type (size);
10006 }
10007
10008 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10009
10010 static tree
10011 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10012 {
10013 if (satp)
10014 {
10015 if (size == SHORT_FRACT_TYPE_SIZE)
10016 return unsignedp ? sat_unsigned_short_fract_type_node
10017 : sat_short_fract_type_node;
10018 if (size == FRACT_TYPE_SIZE)
10019 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10020 if (size == LONG_FRACT_TYPE_SIZE)
10021 return unsignedp ? sat_unsigned_long_fract_type_node
10022 : sat_long_fract_type_node;
10023 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10024 return unsignedp ? sat_unsigned_long_long_fract_type_node
10025 : sat_long_long_fract_type_node;
10026 }
10027 else
10028 {
10029 if (size == SHORT_FRACT_TYPE_SIZE)
10030 return unsignedp ? unsigned_short_fract_type_node
10031 : short_fract_type_node;
10032 if (size == FRACT_TYPE_SIZE)
10033 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10034 if (size == LONG_FRACT_TYPE_SIZE)
10035 return unsignedp ? unsigned_long_fract_type_node
10036 : long_fract_type_node;
10037 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10038 return unsignedp ? unsigned_long_long_fract_type_node
10039 : long_long_fract_type_node;
10040 }
10041
10042 return make_fract_type (size, unsignedp, satp);
10043 }
10044
10045 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10046
10047 static tree
10048 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10049 {
10050 if (satp)
10051 {
10052 if (size == SHORT_ACCUM_TYPE_SIZE)
10053 return unsignedp ? sat_unsigned_short_accum_type_node
10054 : sat_short_accum_type_node;
10055 if (size == ACCUM_TYPE_SIZE)
10056 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10057 if (size == LONG_ACCUM_TYPE_SIZE)
10058 return unsignedp ? sat_unsigned_long_accum_type_node
10059 : sat_long_accum_type_node;
10060 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10061 return unsignedp ? sat_unsigned_long_long_accum_type_node
10062 : sat_long_long_accum_type_node;
10063 }
10064 else
10065 {
10066 if (size == SHORT_ACCUM_TYPE_SIZE)
10067 return unsignedp ? unsigned_short_accum_type_node
10068 : short_accum_type_node;
10069 if (size == ACCUM_TYPE_SIZE)
10070 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10071 if (size == LONG_ACCUM_TYPE_SIZE)
10072 return unsignedp ? unsigned_long_accum_type_node
10073 : long_accum_type_node;
10074 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10075 return unsignedp ? unsigned_long_long_accum_type_node
10076 : long_long_accum_type_node;
10077 }
10078
10079 return make_accum_type (size, unsignedp, satp);
10080 }
10081
10082
10083 /* Create an atomic variant node for TYPE. This routine is called
10084 during initialization of data types to create the 5 basic atomic
10085 types. The generic build_variant_type function requires these to
10086 already be set up in order to function properly, so cannot be
10087 called from there. If ALIGN is non-zero, then ensure alignment is
10088 overridden to this value. */
10089
10090 static tree
10091 build_atomic_base (tree type, unsigned int align)
10092 {
10093 tree t;
10094
10095 /* Make sure its not already registered. */
10096 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10097 return t;
10098
10099 t = build_variant_type_copy (type);
10100 set_type_quals (t, TYPE_QUAL_ATOMIC);
10101
10102 if (align)
10103 SET_TYPE_ALIGN (t, align);
10104
10105 return t;
10106 }
10107
10108 /* Information about the _FloatN and _FloatNx types. This must be in
10109 the same order as the corresponding TI_* enum values. */
10110 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10111 {
10112 { 16, false },
10113 { 32, false },
10114 { 64, false },
10115 { 128, false },
10116 { 32, true },
10117 { 64, true },
10118 { 128, true },
10119 };
10120
10121
10122 /* Create nodes for all integer types (and error_mark_node) using the sizes
10123 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10124
10125 void
10126 build_common_tree_nodes (bool signed_char)
10127 {
10128 int i;
10129
10130 error_mark_node = make_node (ERROR_MARK);
10131 TREE_TYPE (error_mark_node) = error_mark_node;
10132
10133 initialize_sizetypes ();
10134
10135 /* Define both `signed char' and `unsigned char'. */
10136 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10137 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10138 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10139 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10140
10141 /* Define `char', which is like either `signed char' or `unsigned char'
10142 but not the same as either. */
10143 char_type_node
10144 = (signed_char
10145 ? make_signed_type (CHAR_TYPE_SIZE)
10146 : make_unsigned_type (CHAR_TYPE_SIZE));
10147 TYPE_STRING_FLAG (char_type_node) = 1;
10148
10149 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10150 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10151 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10152 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10153 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10154 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10155 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10156 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10157
10158 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10159 {
10160 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10161 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10162
10163 if (int_n_enabled_p[i])
10164 {
10165 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10166 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10167 }
10168 }
10169
10170 /* Define a boolean type. This type only represents boolean values but
10171 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10172 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10173 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10174 TYPE_PRECISION (boolean_type_node) = 1;
10175 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10176
10177 /* Define what type to use for size_t. */
10178 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10179 size_type_node = unsigned_type_node;
10180 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10181 size_type_node = long_unsigned_type_node;
10182 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10183 size_type_node = long_long_unsigned_type_node;
10184 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10185 size_type_node = short_unsigned_type_node;
10186 else
10187 {
10188 int i;
10189
10190 size_type_node = NULL_TREE;
10191 for (i = 0; i < NUM_INT_N_ENTS; i++)
10192 if (int_n_enabled_p[i])
10193 {
10194 char name[50], altname[50];
10195 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10196 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
10197
10198 if (strcmp (name, SIZE_TYPE) == 0
10199 || strcmp (altname, SIZE_TYPE) == 0)
10200 {
10201 size_type_node = int_n_trees[i].unsigned_type;
10202 }
10203 }
10204 if (size_type_node == NULL_TREE)
10205 gcc_unreachable ();
10206 }
10207
10208 /* Define what type to use for ptrdiff_t. */
10209 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10210 ptrdiff_type_node = integer_type_node;
10211 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10212 ptrdiff_type_node = long_integer_type_node;
10213 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10214 ptrdiff_type_node = long_long_integer_type_node;
10215 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10216 ptrdiff_type_node = short_integer_type_node;
10217 else
10218 {
10219 ptrdiff_type_node = NULL_TREE;
10220 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10221 if (int_n_enabled_p[i])
10222 {
10223 char name[50], altname[50];
10224 sprintf (name, "__int%d", int_n_data[i].bitsize);
10225 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
10226
10227 if (strcmp (name, PTRDIFF_TYPE) == 0
10228 || strcmp (altname, PTRDIFF_TYPE) == 0)
10229 ptrdiff_type_node = int_n_trees[i].signed_type;
10230 }
10231 if (ptrdiff_type_node == NULL_TREE)
10232 gcc_unreachable ();
10233 }
10234
10235 /* Fill in the rest of the sized types. Reuse existing type nodes
10236 when possible. */
10237 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10238 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10239 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10240 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10241 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10242
10243 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10244 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10245 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10246 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10247 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10248
10249 /* Don't call build_qualified type for atomics. That routine does
10250 special processing for atomics, and until they are initialized
10251 it's better not to make that call.
10252
10253 Check to see if there is a target override for atomic types. */
10254
10255 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10256 targetm.atomic_align_for_mode (QImode));
10257 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10258 targetm.atomic_align_for_mode (HImode));
10259 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10260 targetm.atomic_align_for_mode (SImode));
10261 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10262 targetm.atomic_align_for_mode (DImode));
10263 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10264 targetm.atomic_align_for_mode (TImode));
10265
10266 access_public_node = get_identifier ("public");
10267 access_protected_node = get_identifier ("protected");
10268 access_private_node = get_identifier ("private");
10269
10270 /* Define these next since types below may used them. */
10271 integer_zero_node = build_int_cst (integer_type_node, 0);
10272 integer_one_node = build_int_cst (integer_type_node, 1);
10273 integer_three_node = build_int_cst (integer_type_node, 3);
10274 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10275
10276 size_zero_node = size_int (0);
10277 size_one_node = size_int (1);
10278 bitsize_zero_node = bitsize_int (0);
10279 bitsize_one_node = bitsize_int (1);
10280 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10281
10282 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10283 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10284
10285 void_type_node = make_node (VOID_TYPE);
10286 layout_type (void_type_node);
10287
10288 /* We are not going to have real types in C with less than byte alignment,
10289 so we might as well not have any types that claim to have it. */
10290 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10291 TYPE_USER_ALIGN (void_type_node) = 0;
10292
10293 void_node = make_node (VOID_CST);
10294 TREE_TYPE (void_node) = void_type_node;
10295
10296 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10297 layout_type (TREE_TYPE (null_pointer_node));
10298
10299 ptr_type_node = build_pointer_type (void_type_node);
10300 const_ptr_type_node
10301 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10302 for (unsigned i = 0;
10303 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10304 ++i)
10305 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10306
10307 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10308
10309 float_type_node = make_node (REAL_TYPE);
10310 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10311 layout_type (float_type_node);
10312
10313 double_type_node = make_node (REAL_TYPE);
10314 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10315 layout_type (double_type_node);
10316
10317 long_double_type_node = make_node (REAL_TYPE);
10318 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10319 layout_type (long_double_type_node);
10320
10321 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10322 {
10323 int n = floatn_nx_types[i].n;
10324 bool extended = floatn_nx_types[i].extended;
10325 scalar_float_mode mode;
10326 if (!targetm.floatn_mode (n, extended).exists (&mode))
10327 continue;
10328 int precision = GET_MODE_PRECISION (mode);
10329 /* Work around the rs6000 KFmode having precision 113 not
10330 128. */
10331 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10332 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10333 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10334 if (!extended)
10335 gcc_assert (min_precision == n);
10336 if (precision < min_precision)
10337 precision = min_precision;
10338 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10339 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10340 layout_type (FLOATN_NX_TYPE_NODE (i));
10341 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10342 }
10343
10344 float_ptr_type_node = build_pointer_type (float_type_node);
10345 double_ptr_type_node = build_pointer_type (double_type_node);
10346 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10347 integer_ptr_type_node = build_pointer_type (integer_type_node);
10348
10349 /* Fixed size integer types. */
10350 uint16_type_node = make_or_reuse_type (16, 1);
10351 uint32_type_node = make_or_reuse_type (32, 1);
10352 uint64_type_node = make_or_reuse_type (64, 1);
10353 if (targetm.scalar_mode_supported_p (TImode))
10354 uint128_type_node = make_or_reuse_type (128, 1);
10355
10356 /* Decimal float types. */
10357 if (targetm.decimal_float_supported_p ())
10358 {
10359 dfloat32_type_node = make_node (REAL_TYPE);
10360 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10361 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10362 layout_type (dfloat32_type_node);
10363
10364 dfloat64_type_node = make_node (REAL_TYPE);
10365 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10366 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10367 layout_type (dfloat64_type_node);
10368
10369 dfloat128_type_node = make_node (REAL_TYPE);
10370 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10371 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10372 layout_type (dfloat128_type_node);
10373 }
10374
10375 complex_integer_type_node = build_complex_type (integer_type_node, true);
10376 complex_float_type_node = build_complex_type (float_type_node, true);
10377 complex_double_type_node = build_complex_type (double_type_node, true);
10378 complex_long_double_type_node = build_complex_type (long_double_type_node,
10379 true);
10380
10381 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10382 {
10383 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10384 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10385 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10386 }
10387
10388 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10389 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10390 sat_ ## KIND ## _type_node = \
10391 make_sat_signed_ ## KIND ## _type (SIZE); \
10392 sat_unsigned_ ## KIND ## _type_node = \
10393 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10394 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10395 unsigned_ ## KIND ## _type_node = \
10396 make_unsigned_ ## KIND ## _type (SIZE);
10397
10398 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10399 sat_ ## WIDTH ## KIND ## _type_node = \
10400 make_sat_signed_ ## KIND ## _type (SIZE); \
10401 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10402 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10403 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10404 unsigned_ ## WIDTH ## KIND ## _type_node = \
10405 make_unsigned_ ## KIND ## _type (SIZE);
10406
10407 /* Make fixed-point type nodes based on four different widths. */
10408 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10409 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10410 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10411 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10412 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10413
10414 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10415 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10416 NAME ## _type_node = \
10417 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10418 u ## NAME ## _type_node = \
10419 make_or_reuse_unsigned_ ## KIND ## _type \
10420 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10421 sat_ ## NAME ## _type_node = \
10422 make_or_reuse_sat_signed_ ## KIND ## _type \
10423 (GET_MODE_BITSIZE (MODE ## mode)); \
10424 sat_u ## NAME ## _type_node = \
10425 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10426 (GET_MODE_BITSIZE (U ## MODE ## mode));
10427
10428 /* Fixed-point type and mode nodes. */
10429 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10430 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10431 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10432 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10433 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10434 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10435 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10436 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10437 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10438 MAKE_FIXED_MODE_NODE (accum, da, DA)
10439 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10440
10441 {
10442 tree t = targetm.build_builtin_va_list ();
10443
10444 /* Many back-ends define record types without setting TYPE_NAME.
10445 If we copied the record type here, we'd keep the original
10446 record type without a name. This breaks name mangling. So,
10447 don't copy record types and let c_common_nodes_and_builtins()
10448 declare the type to be __builtin_va_list. */
10449 if (TREE_CODE (t) != RECORD_TYPE)
10450 t = build_variant_type_copy (t);
10451
10452 va_list_type_node = t;
10453 }
10454
10455 /* SCEV analyzer global shared trees. */
10456 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
10457 TREE_TYPE (chrec_dont_know) = void_type_node;
10458 chrec_known = make_node (SCEV_KNOWN);
10459 TREE_TYPE (chrec_known) = void_type_node;
10460 }
10461
10462 /* Modify DECL for given flags.
10463 TM_PURE attribute is set only on types, so the function will modify
10464 DECL's type when ECF_TM_PURE is used. */
10465
10466 void
10467 set_call_expr_flags (tree decl, int flags)
10468 {
10469 if (flags & ECF_NOTHROW)
10470 TREE_NOTHROW (decl) = 1;
10471 if (flags & ECF_CONST)
10472 TREE_READONLY (decl) = 1;
10473 if (flags & ECF_PURE)
10474 DECL_PURE_P (decl) = 1;
10475 if (flags & ECF_LOOPING_CONST_OR_PURE)
10476 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10477 if (flags & ECF_NOVOPS)
10478 DECL_IS_NOVOPS (decl) = 1;
10479 if (flags & ECF_NORETURN)
10480 TREE_THIS_VOLATILE (decl) = 1;
10481 if (flags & ECF_MALLOC)
10482 DECL_IS_MALLOC (decl) = 1;
10483 if (flags & ECF_RETURNS_TWICE)
10484 DECL_IS_RETURNS_TWICE (decl) = 1;
10485 if (flags & ECF_LEAF)
10486 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10487 NULL, DECL_ATTRIBUTES (decl));
10488 if (flags & ECF_COLD)
10489 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10490 NULL, DECL_ATTRIBUTES (decl));
10491 if (flags & ECF_RET1)
10492 DECL_ATTRIBUTES (decl)
10493 = tree_cons (get_identifier ("fn spec"),
10494 build_tree_list (NULL_TREE, build_string (1, "1")),
10495 DECL_ATTRIBUTES (decl));
10496 if ((flags & ECF_TM_PURE) && flag_tm)
10497 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10498 /* Looping const or pure is implied by noreturn.
10499 There is currently no way to declare looping const or looping pure alone. */
10500 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10501 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10502 }
10503
10504
10505 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10506
10507 static void
10508 local_define_builtin (const char *name, tree type, enum built_in_function code,
10509 const char *library_name, int ecf_flags)
10510 {
10511 tree decl;
10512
10513 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10514 library_name, NULL_TREE);
10515 set_call_expr_flags (decl, ecf_flags);
10516
10517 set_builtin_decl (code, decl, true);
10518 }
10519
10520 /* Call this function after instantiating all builtins that the language
10521 front end cares about. This will build the rest of the builtins
10522 and internal functions that are relied upon by the tree optimizers and
10523 the middle-end. */
10524
10525 void
10526 build_common_builtin_nodes (void)
10527 {
10528 tree tmp, ftype;
10529 int ecf_flags;
10530
10531 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10532 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10533 {
10534 ftype = build_function_type (void_type_node, void_list_node);
10535 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10536 local_define_builtin ("__builtin_unreachable", ftype,
10537 BUILT_IN_UNREACHABLE,
10538 "__builtin_unreachable",
10539 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10540 | ECF_CONST | ECF_COLD);
10541 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10542 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10543 "abort",
10544 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10545 }
10546
10547 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10548 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10549 {
10550 ftype = build_function_type_list (ptr_type_node,
10551 ptr_type_node, const_ptr_type_node,
10552 size_type_node, NULL_TREE);
10553
10554 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10555 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10556 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10557 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10558 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10559 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10560 }
10561
10562 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10563 {
10564 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10565 const_ptr_type_node, size_type_node,
10566 NULL_TREE);
10567 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10568 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10569 }
10570
10571 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10572 {
10573 ftype = build_function_type_list (ptr_type_node,
10574 ptr_type_node, integer_type_node,
10575 size_type_node, NULL_TREE);
10576 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10577 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10578 }
10579
10580 /* If we're checking the stack, `alloca' can throw. */
10581 const int alloca_flags
10582 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10583
10584 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10585 {
10586 ftype = build_function_type_list (ptr_type_node,
10587 size_type_node, NULL_TREE);
10588 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10589 "alloca", alloca_flags);
10590 }
10591
10592 ftype = build_function_type_list (ptr_type_node, size_type_node,
10593 size_type_node, NULL_TREE);
10594 local_define_builtin ("__builtin_alloca_with_align", ftype,
10595 BUILT_IN_ALLOCA_WITH_ALIGN,
10596 "__builtin_alloca_with_align",
10597 alloca_flags);
10598
10599 ftype = build_function_type_list (ptr_type_node, size_type_node,
10600 size_type_node, size_type_node, NULL_TREE);
10601 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10602 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10603 "__builtin_alloca_with_align_and_max",
10604 alloca_flags);
10605
10606 ftype = build_function_type_list (void_type_node,
10607 ptr_type_node, ptr_type_node,
10608 ptr_type_node, NULL_TREE);
10609 local_define_builtin ("__builtin_init_trampoline", ftype,
10610 BUILT_IN_INIT_TRAMPOLINE,
10611 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10612 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10613 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10614 "__builtin_init_heap_trampoline",
10615 ECF_NOTHROW | ECF_LEAF);
10616 local_define_builtin ("__builtin_init_descriptor", ftype,
10617 BUILT_IN_INIT_DESCRIPTOR,
10618 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10619
10620 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10621 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10622 BUILT_IN_ADJUST_TRAMPOLINE,
10623 "__builtin_adjust_trampoline",
10624 ECF_CONST | ECF_NOTHROW);
10625 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10626 BUILT_IN_ADJUST_DESCRIPTOR,
10627 "__builtin_adjust_descriptor",
10628 ECF_CONST | ECF_NOTHROW);
10629
10630 ftype = build_function_type_list (void_type_node,
10631 ptr_type_node, ptr_type_node, NULL_TREE);
10632 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10633 BUILT_IN_NONLOCAL_GOTO,
10634 "__builtin_nonlocal_goto",
10635 ECF_NORETURN | ECF_NOTHROW);
10636
10637 ftype = build_function_type_list (void_type_node,
10638 ptr_type_node, ptr_type_node, NULL_TREE);
10639 local_define_builtin ("__builtin_setjmp_setup", ftype,
10640 BUILT_IN_SETJMP_SETUP,
10641 "__builtin_setjmp_setup", ECF_NOTHROW);
10642
10643 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10644 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10645 BUILT_IN_SETJMP_RECEIVER,
10646 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10647
10648 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10649 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10650 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10651
10652 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10653 local_define_builtin ("__builtin_stack_restore", ftype,
10654 BUILT_IN_STACK_RESTORE,
10655 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10656
10657 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10658 const_ptr_type_node, size_type_node,
10659 NULL_TREE);
10660 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10661 "__builtin_memcmp_eq",
10662 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10663
10664 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10665 "__builtin_strncmp_eq",
10666 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10667
10668 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10669 "__builtin_strcmp_eq",
10670 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10671
10672 /* If there's a possibility that we might use the ARM EABI, build the
10673 alternate __cxa_end_cleanup node used to resume from C++. */
10674 if (targetm.arm_eabi_unwinder)
10675 {
10676 ftype = build_function_type_list (void_type_node, NULL_TREE);
10677 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10678 BUILT_IN_CXA_END_CLEANUP,
10679 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10680 }
10681
10682 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10683 local_define_builtin ("__builtin_unwind_resume", ftype,
10684 BUILT_IN_UNWIND_RESUME,
10685 ((targetm_common.except_unwind_info (&global_options)
10686 == UI_SJLJ)
10687 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10688 ECF_NORETURN);
10689
10690 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10691 {
10692 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10693 NULL_TREE);
10694 local_define_builtin ("__builtin_return_address", ftype,
10695 BUILT_IN_RETURN_ADDRESS,
10696 "__builtin_return_address",
10697 ECF_NOTHROW);
10698 }
10699
10700 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10701 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10702 {
10703 ftype = build_function_type_list (void_type_node, ptr_type_node,
10704 ptr_type_node, NULL_TREE);
10705 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10706 local_define_builtin ("__cyg_profile_func_enter", ftype,
10707 BUILT_IN_PROFILE_FUNC_ENTER,
10708 "__cyg_profile_func_enter", 0);
10709 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10710 local_define_builtin ("__cyg_profile_func_exit", ftype,
10711 BUILT_IN_PROFILE_FUNC_EXIT,
10712 "__cyg_profile_func_exit", 0);
10713 }
10714
10715 /* The exception object and filter values from the runtime. The argument
10716 must be zero before exception lowering, i.e. from the front end. After
10717 exception lowering, it will be the region number for the exception
10718 landing pad. These functions are PURE instead of CONST to prevent
10719 them from being hoisted past the exception edge that will initialize
10720 its value in the landing pad. */
10721 ftype = build_function_type_list (ptr_type_node,
10722 integer_type_node, NULL_TREE);
10723 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10724 /* Only use TM_PURE if we have TM language support. */
10725 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10726 ecf_flags |= ECF_TM_PURE;
10727 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10728 "__builtin_eh_pointer", ecf_flags);
10729
10730 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10731 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10732 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10733 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10734
10735 ftype = build_function_type_list (void_type_node,
10736 integer_type_node, integer_type_node,
10737 NULL_TREE);
10738 local_define_builtin ("__builtin_eh_copy_values", ftype,
10739 BUILT_IN_EH_COPY_VALUES,
10740 "__builtin_eh_copy_values", ECF_NOTHROW);
10741
10742 /* Complex multiplication and division. These are handled as builtins
10743 rather than optabs because emit_library_call_value doesn't support
10744 complex. Further, we can do slightly better with folding these
10745 beasties if the real and complex parts of the arguments are separate. */
10746 {
10747 int mode;
10748
10749 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10750 {
10751 char mode_name_buf[4], *q;
10752 const char *p;
10753 enum built_in_function mcode, dcode;
10754 tree type, inner_type;
10755 const char *prefix = "__";
10756
10757 if (targetm.libfunc_gnu_prefix)
10758 prefix = "__gnu_";
10759
10760 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10761 if (type == NULL)
10762 continue;
10763 inner_type = TREE_TYPE (type);
10764
10765 ftype = build_function_type_list (type, inner_type, inner_type,
10766 inner_type, inner_type, NULL_TREE);
10767
10768 mcode = ((enum built_in_function)
10769 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10770 dcode = ((enum built_in_function)
10771 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10772
10773 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10774 *q = TOLOWER (*p);
10775 *q = '\0';
10776
10777 /* For -ftrapping-math these should throw from a former
10778 -fnon-call-exception stmt. */
10779 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10780 NULL);
10781 local_define_builtin (built_in_names[mcode], ftype, mcode,
10782 built_in_names[mcode],
10783 ECF_CONST | ECF_LEAF);
10784
10785 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10786 NULL);
10787 local_define_builtin (built_in_names[dcode], ftype, dcode,
10788 built_in_names[dcode],
10789 ECF_CONST | ECF_LEAF);
10790 }
10791 }
10792
10793 init_internal_fns ();
10794 }
10795
10796 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10797 better way.
10798
10799 If we requested a pointer to a vector, build up the pointers that
10800 we stripped off while looking for the inner type. Similarly for
10801 return values from functions.
10802
10803 The argument TYPE is the top of the chain, and BOTTOM is the
10804 new type which we will point to. */
10805
10806 tree
10807 reconstruct_complex_type (tree type, tree bottom)
10808 {
10809 tree inner, outer;
10810
10811 if (TREE_CODE (type) == POINTER_TYPE)
10812 {
10813 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10814 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10815 TYPE_REF_CAN_ALIAS_ALL (type));
10816 }
10817 else if (TREE_CODE (type) == REFERENCE_TYPE)
10818 {
10819 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10820 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10821 TYPE_REF_CAN_ALIAS_ALL (type));
10822 }
10823 else if (TREE_CODE (type) == ARRAY_TYPE)
10824 {
10825 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10826 outer = build_array_type (inner, TYPE_DOMAIN (type));
10827 }
10828 else if (TREE_CODE (type) == FUNCTION_TYPE)
10829 {
10830 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10831 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10832 }
10833 else if (TREE_CODE (type) == METHOD_TYPE)
10834 {
10835 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10836 /* The build_method_type_directly() routine prepends 'this' to argument list,
10837 so we must compensate by getting rid of it. */
10838 outer
10839 = build_method_type_directly
10840 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10841 inner,
10842 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10843 }
10844 else if (TREE_CODE (type) == OFFSET_TYPE)
10845 {
10846 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10847 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10848 }
10849 else
10850 return bottom;
10851
10852 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10853 TYPE_QUALS (type));
10854 }
10855
10856 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10857 the inner type. */
10858 tree
10859 build_vector_type_for_mode (tree innertype, machine_mode mode)
10860 {
10861 poly_int64 nunits;
10862 unsigned int bitsize;
10863
10864 switch (GET_MODE_CLASS (mode))
10865 {
10866 case MODE_VECTOR_BOOL:
10867 case MODE_VECTOR_INT:
10868 case MODE_VECTOR_FLOAT:
10869 case MODE_VECTOR_FRACT:
10870 case MODE_VECTOR_UFRACT:
10871 case MODE_VECTOR_ACCUM:
10872 case MODE_VECTOR_UACCUM:
10873 nunits = GET_MODE_NUNITS (mode);
10874 break;
10875
10876 case MODE_INT:
10877 /* Check that there are no leftover bits. */
10878 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10879 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10880 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10881 break;
10882
10883 default:
10884 gcc_unreachable ();
10885 }
10886
10887 return make_vector_type (innertype, nunits, mode);
10888 }
10889
10890 /* Similarly, but takes the inner type and number of units, which must be
10891 a power of two. */
10892
10893 tree
10894 build_vector_type (tree innertype, poly_int64 nunits)
10895 {
10896 return make_vector_type (innertype, nunits, VOIDmode);
10897 }
10898
10899 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
10900
10901 tree
10902 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
10903 {
10904 gcc_assert (mask_mode != BLKmode);
10905
10906 poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
10907 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10908 tree bool_type = build_nonstandard_boolean_type (esize);
10909
10910 return make_vector_type (bool_type, nunits, mask_mode);
10911 }
10912
10913 /* Build a vector type that holds one boolean result for each element of
10914 vector type VECTYPE. The public interface for this operation is
10915 truth_type_for. */
10916
10917 static tree
10918 build_truth_vector_type_for (tree vectype)
10919 {
10920 machine_mode vector_mode = TYPE_MODE (vectype);
10921 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
10922
10923 machine_mode mask_mode;
10924 if (VECTOR_MODE_P (vector_mode)
10925 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
10926 return build_truth_vector_type_for_mode (nunits, mask_mode);
10927
10928 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
10929 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10930 tree bool_type = build_nonstandard_boolean_type (esize);
10931
10932 return make_vector_type (bool_type, nunits, BLKmode);
10933 }
10934
10935 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
10936 set. */
10937
10938 tree
10939 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10940 {
10941 tree t = make_vector_type (innertype, nunits, VOIDmode);
10942 tree cand;
10943 /* We always build the non-opaque variant before the opaque one,
10944 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10945 cand = TYPE_NEXT_VARIANT (t);
10946 if (cand
10947 && TYPE_VECTOR_OPAQUE (cand)
10948 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10949 return cand;
10950 /* Othewise build a variant type and make sure to queue it after
10951 the non-opaque type. */
10952 cand = build_distinct_type_copy (t);
10953 TYPE_VECTOR_OPAQUE (cand) = true;
10954 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10955 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10956 TYPE_NEXT_VARIANT (t) = cand;
10957 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10958 return cand;
10959 }
10960
10961 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10962
10963 wide_int
10964 vector_cst_int_elt (const_tree t, unsigned int i)
10965 {
10966 /* First handle elements that are directly encoded. */
10967 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10968 if (i < encoded_nelts)
10969 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10970
10971 /* Identify the pattern that contains element I and work out the index of
10972 the last encoded element for that pattern. */
10973 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10974 unsigned int pattern = i % npatterns;
10975 unsigned int count = i / npatterns;
10976 unsigned int final_i = encoded_nelts - npatterns + pattern;
10977
10978 /* If there are no steps, the final encoded value is the right one. */
10979 if (!VECTOR_CST_STEPPED_P (t))
10980 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10981
10982 /* Otherwise work out the value from the last two encoded elements. */
10983 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10984 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10985 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10986 return wi::to_wide (v2) + (count - 2) * diff;
10987 }
10988
10989 /* Return the value of element I of VECTOR_CST T. */
10990
10991 tree
10992 vector_cst_elt (const_tree t, unsigned int i)
10993 {
10994 /* First handle elements that are directly encoded. */
10995 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10996 if (i < encoded_nelts)
10997 return VECTOR_CST_ENCODED_ELT (t, i);
10998
10999 /* If there are no steps, the final encoded value is the right one. */
11000 if (!VECTOR_CST_STEPPED_P (t))
11001 {
11002 /* Identify the pattern that contains element I and work out the index of
11003 the last encoded element for that pattern. */
11004 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11005 unsigned int pattern = i % npatterns;
11006 unsigned int final_i = encoded_nelts - npatterns + pattern;
11007 return VECTOR_CST_ENCODED_ELT (t, final_i);
11008 }
11009
11010 /* Otherwise work out the value from the last two encoded elements. */
11011 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11012 vector_cst_int_elt (t, i));
11013 }
11014
11015 /* Given an initializer INIT, return TRUE if INIT is zero or some
11016 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11017 null, set *NONZERO if and only if INIT is known not to be all
11018 zeros. The combination of return value of false and *NONZERO
11019 false implies that INIT may but need not be all zeros. Other
11020 combinations indicate definitive answers. */
11021
11022 bool
11023 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11024 {
11025 bool dummy;
11026 if (!nonzero)
11027 nonzero = &dummy;
11028
11029 /* Conservatively clear NONZERO and set it only if INIT is definitely
11030 not all zero. */
11031 *nonzero = false;
11032
11033 STRIP_NOPS (init);
11034
11035 unsigned HOST_WIDE_INT off = 0;
11036
11037 switch (TREE_CODE (init))
11038 {
11039 case INTEGER_CST:
11040 if (integer_zerop (init))
11041 return true;
11042
11043 *nonzero = true;
11044 return false;
11045
11046 case REAL_CST:
11047 /* ??? Note that this is not correct for C4X float formats. There,
11048 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11049 negative exponent. */
11050 if (real_zerop (init)
11051 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11052 return true;
11053
11054 *nonzero = true;
11055 return false;
11056
11057 case FIXED_CST:
11058 if (fixed_zerop (init))
11059 return true;
11060
11061 *nonzero = true;
11062 return false;
11063
11064 case COMPLEX_CST:
11065 if (integer_zerop (init)
11066 || (real_zerop (init)
11067 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11068 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11069 return true;
11070
11071 *nonzero = true;
11072 return false;
11073
11074 case VECTOR_CST:
11075 if (VECTOR_CST_NPATTERNS (init) == 1
11076 && VECTOR_CST_DUPLICATE_P (init)
11077 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11078 return true;
11079
11080 *nonzero = true;
11081 return false;
11082
11083 case CONSTRUCTOR:
11084 {
11085 if (TREE_CLOBBER_P (init))
11086 return false;
11087
11088 unsigned HOST_WIDE_INT idx;
11089 tree elt;
11090
11091 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11092 if (!initializer_zerop (elt, nonzero))
11093 return false;
11094
11095 return true;
11096 }
11097
11098 case MEM_REF:
11099 {
11100 tree arg = TREE_OPERAND (init, 0);
11101 if (TREE_CODE (arg) != ADDR_EXPR)
11102 return false;
11103 tree offset = TREE_OPERAND (init, 1);
11104 if (TREE_CODE (offset) != INTEGER_CST
11105 || !tree_fits_uhwi_p (offset))
11106 return false;
11107 off = tree_to_uhwi (offset);
11108 if (INT_MAX < off)
11109 return false;
11110 arg = TREE_OPERAND (arg, 0);
11111 if (TREE_CODE (arg) != STRING_CST)
11112 return false;
11113 init = arg;
11114 }
11115 /* Fall through. */
11116
11117 case STRING_CST:
11118 {
11119 gcc_assert (off <= INT_MAX);
11120
11121 int i = off;
11122 int n = TREE_STRING_LENGTH (init);
11123 if (n <= i)
11124 return false;
11125
11126 /* We need to loop through all elements to handle cases like
11127 "\0" and "\0foobar". */
11128 for (i = 0; i < n; ++i)
11129 if (TREE_STRING_POINTER (init)[i] != '\0')
11130 {
11131 *nonzero = true;
11132 return false;
11133 }
11134
11135 return true;
11136 }
11137
11138 default:
11139 return false;
11140 }
11141 }
11142
11143 /* Return true if EXPR is an initializer expression in which every element
11144 is a constant that is numerically equal to 0 or 1. The elements do not
11145 need to be equal to each other. */
11146
11147 bool
11148 initializer_each_zero_or_onep (const_tree expr)
11149 {
11150 STRIP_ANY_LOCATION_WRAPPER (expr);
11151
11152 switch (TREE_CODE (expr))
11153 {
11154 case INTEGER_CST:
11155 return integer_zerop (expr) || integer_onep (expr);
11156
11157 case REAL_CST:
11158 return real_zerop (expr) || real_onep (expr);
11159
11160 case VECTOR_CST:
11161 {
11162 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11163 if (VECTOR_CST_STEPPED_P (expr)
11164 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11165 return false;
11166
11167 for (unsigned int i = 0; i < nelts; ++i)
11168 {
11169 tree elt = vector_cst_elt (expr, i);
11170 if (!initializer_each_zero_or_onep (elt))
11171 return false;
11172 }
11173
11174 return true;
11175 }
11176
11177 default:
11178 return false;
11179 }
11180 }
11181
11182 /* Check if vector VEC consists of all the equal elements and
11183 that the number of elements corresponds to the type of VEC.
11184 The function returns first element of the vector
11185 or NULL_TREE if the vector is not uniform. */
11186 tree
11187 uniform_vector_p (const_tree vec)
11188 {
11189 tree first, t;
11190 unsigned HOST_WIDE_INT i, nelts;
11191
11192 if (vec == NULL_TREE)
11193 return NULL_TREE;
11194
11195 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11196
11197 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11198 return TREE_OPERAND (vec, 0);
11199
11200 else if (TREE_CODE (vec) == VECTOR_CST)
11201 {
11202 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11203 return VECTOR_CST_ENCODED_ELT (vec, 0);
11204 return NULL_TREE;
11205 }
11206
11207 else if (TREE_CODE (vec) == CONSTRUCTOR
11208 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11209 {
11210 first = error_mark_node;
11211
11212 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11213 {
11214 if (i == 0)
11215 {
11216 first = t;
11217 continue;
11218 }
11219 if (!operand_equal_p (first, t, 0))
11220 return NULL_TREE;
11221 }
11222 if (i != nelts)
11223 return NULL_TREE;
11224
11225 return first;
11226 }
11227
11228 return NULL_TREE;
11229 }
11230
11231 /* If the argument is INTEGER_CST, return it. If the argument is vector
11232 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11233 return NULL_TREE.
11234 Look through location wrappers. */
11235
11236 tree
11237 uniform_integer_cst_p (tree t)
11238 {
11239 STRIP_ANY_LOCATION_WRAPPER (t);
11240
11241 if (TREE_CODE (t) == INTEGER_CST)
11242 return t;
11243
11244 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11245 {
11246 t = uniform_vector_p (t);
11247 if (t && TREE_CODE (t) == INTEGER_CST)
11248 return t;
11249 }
11250
11251 return NULL_TREE;
11252 }
11253
11254 /* If VECTOR_CST T has a single nonzero element, return the index of that
11255 element, otherwise return -1. */
11256
11257 int
11258 single_nonzero_element (const_tree t)
11259 {
11260 unsigned HOST_WIDE_INT nelts;
11261 unsigned int repeat_nelts;
11262 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11263 repeat_nelts = nelts;
11264 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11265 {
11266 nelts = vector_cst_encoded_nelts (t);
11267 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11268 }
11269 else
11270 return -1;
11271
11272 int res = -1;
11273 for (unsigned int i = 0; i < nelts; ++i)
11274 {
11275 tree elt = vector_cst_elt (t, i);
11276 if (!integer_zerop (elt) && !real_zerop (elt))
11277 {
11278 if (res >= 0 || i >= repeat_nelts)
11279 return -1;
11280 res = i;
11281 }
11282 }
11283 return res;
11284 }
11285
11286 /* Build an empty statement at location LOC. */
11287
11288 tree
11289 build_empty_stmt (location_t loc)
11290 {
11291 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11292 SET_EXPR_LOCATION (t, loc);
11293 return t;
11294 }
11295
11296
11297 /* Build an OpenMP clause with code CODE. LOC is the location of the
11298 clause. */
11299
11300 tree
11301 build_omp_clause (location_t loc, enum omp_clause_code code)
11302 {
11303 tree t;
11304 int size, length;
11305
11306 length = omp_clause_num_ops[code];
11307 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11308
11309 record_node_allocation_statistics (OMP_CLAUSE, size);
11310
11311 t = (tree) ggc_internal_alloc (size);
11312 memset (t, 0, size);
11313 TREE_SET_CODE (t, OMP_CLAUSE);
11314 OMP_CLAUSE_SET_CODE (t, code);
11315 OMP_CLAUSE_LOCATION (t) = loc;
11316
11317 return t;
11318 }
11319
11320 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11321 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11322 Except for the CODE and operand count field, other storage for the
11323 object is initialized to zeros. */
11324
11325 tree
11326 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11327 {
11328 tree t;
11329 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11330
11331 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11332 gcc_assert (len >= 1);
11333
11334 record_node_allocation_statistics (code, length);
11335
11336 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11337
11338 TREE_SET_CODE (t, code);
11339
11340 /* Can't use TREE_OPERAND to store the length because if checking is
11341 enabled, it will try to check the length before we store it. :-P */
11342 t->exp.operands[0] = build_int_cst (sizetype, len);
11343
11344 return t;
11345 }
11346
11347 /* Helper function for build_call_* functions; build a CALL_EXPR with
11348 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11349 the argument slots. */
11350
11351 static tree
11352 build_call_1 (tree return_type, tree fn, int nargs)
11353 {
11354 tree t;
11355
11356 t = build_vl_exp (CALL_EXPR, nargs + 3);
11357 TREE_TYPE (t) = return_type;
11358 CALL_EXPR_FN (t) = fn;
11359 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11360
11361 return t;
11362 }
11363
11364 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11365 FN and a null static chain slot. NARGS is the number of call arguments
11366 which are specified as "..." arguments. */
11367
11368 tree
11369 build_call_nary (tree return_type, tree fn, int nargs, ...)
11370 {
11371 tree ret;
11372 va_list args;
11373 va_start (args, nargs);
11374 ret = build_call_valist (return_type, fn, nargs, args);
11375 va_end (args);
11376 return ret;
11377 }
11378
11379 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11380 FN and a null static chain slot. NARGS is the number of call arguments
11381 which are specified as a va_list ARGS. */
11382
11383 tree
11384 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11385 {
11386 tree t;
11387 int i;
11388
11389 t = build_call_1 (return_type, fn, nargs);
11390 for (i = 0; i < nargs; i++)
11391 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11392 process_call_operands (t);
11393 return t;
11394 }
11395
11396 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11397 FN and a null static chain slot. NARGS is the number of call arguments
11398 which are specified as a tree array ARGS. */
11399
11400 tree
11401 build_call_array_loc (location_t loc, tree return_type, tree fn,
11402 int nargs, const tree *args)
11403 {
11404 tree t;
11405 int i;
11406
11407 t = build_call_1 (return_type, fn, nargs);
11408 for (i = 0; i < nargs; i++)
11409 CALL_EXPR_ARG (t, i) = args[i];
11410 process_call_operands (t);
11411 SET_EXPR_LOCATION (t, loc);
11412 return t;
11413 }
11414
11415 /* Like build_call_array, but takes a vec. */
11416
11417 tree
11418 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11419 {
11420 tree ret, t;
11421 unsigned int ix;
11422
11423 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11424 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11425 CALL_EXPR_ARG (ret, ix) = t;
11426 process_call_operands (ret);
11427 return ret;
11428 }
11429
11430 /* Conveniently construct a function call expression. FNDECL names the
11431 function to be called and N arguments are passed in the array
11432 ARGARRAY. */
11433
11434 tree
11435 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11436 {
11437 tree fntype = TREE_TYPE (fndecl);
11438 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11439
11440 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11441 }
11442
11443 /* Conveniently construct a function call expression. FNDECL names the
11444 function to be called and the arguments are passed in the vector
11445 VEC. */
11446
11447 tree
11448 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11449 {
11450 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11451 vec_safe_address (vec));
11452 }
11453
11454
11455 /* Conveniently construct a function call expression. FNDECL names the
11456 function to be called, N is the number of arguments, and the "..."
11457 parameters are the argument expressions. */
11458
11459 tree
11460 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11461 {
11462 va_list ap;
11463 tree *argarray = XALLOCAVEC (tree, n);
11464 int i;
11465
11466 va_start (ap, n);
11467 for (i = 0; i < n; i++)
11468 argarray[i] = va_arg (ap, tree);
11469 va_end (ap);
11470 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11471 }
11472
11473 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11474 varargs macros aren't supported by all bootstrap compilers. */
11475
11476 tree
11477 build_call_expr (tree fndecl, int n, ...)
11478 {
11479 va_list ap;
11480 tree *argarray = XALLOCAVEC (tree, n);
11481 int i;
11482
11483 va_start (ap, n);
11484 for (i = 0; i < n; i++)
11485 argarray[i] = va_arg (ap, tree);
11486 va_end (ap);
11487 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11488 }
11489
11490 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11491 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11492 It will get gimplified later into an ordinary internal function. */
11493
11494 tree
11495 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11496 tree type, int n, const tree *args)
11497 {
11498 tree t = build_call_1 (type, NULL_TREE, n);
11499 for (int i = 0; i < n; ++i)
11500 CALL_EXPR_ARG (t, i) = args[i];
11501 SET_EXPR_LOCATION (t, loc);
11502 CALL_EXPR_IFN (t) = ifn;
11503 process_call_operands (t);
11504 return t;
11505 }
11506
11507 /* Build internal call expression. This is just like CALL_EXPR, except
11508 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11509 internal function. */
11510
11511 tree
11512 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11513 tree type, int n, ...)
11514 {
11515 va_list ap;
11516 tree *argarray = XALLOCAVEC (tree, n);
11517 int i;
11518
11519 va_start (ap, n);
11520 for (i = 0; i < n; i++)
11521 argarray[i] = va_arg (ap, tree);
11522 va_end (ap);
11523 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11524 }
11525
11526 /* Return a function call to FN, if the target is guaranteed to support it,
11527 or null otherwise.
11528
11529 N is the number of arguments, passed in the "...", and TYPE is the
11530 type of the return value. */
11531
11532 tree
11533 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11534 int n, ...)
11535 {
11536 va_list ap;
11537 tree *argarray = XALLOCAVEC (tree, n);
11538 int i;
11539
11540 va_start (ap, n);
11541 for (i = 0; i < n; i++)
11542 argarray[i] = va_arg (ap, tree);
11543 va_end (ap);
11544 if (internal_fn_p (fn))
11545 {
11546 internal_fn ifn = as_internal_fn (fn);
11547 if (direct_internal_fn_p (ifn))
11548 {
11549 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11550 if (!direct_internal_fn_supported_p (ifn, types,
11551 OPTIMIZE_FOR_BOTH))
11552 return NULL_TREE;
11553 }
11554 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11555 }
11556 else
11557 {
11558 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11559 if (!fndecl)
11560 return NULL_TREE;
11561 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11562 }
11563 }
11564
11565 /* Return a function call to the appropriate builtin alloca variant.
11566
11567 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11568 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11569 bound for SIZE in case it is not a fixed value. */
11570
11571 tree
11572 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11573 {
11574 if (max_size >= 0)
11575 {
11576 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11577 return
11578 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11579 }
11580 else if (align > 0)
11581 {
11582 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11583 return build_call_expr (t, 2, size, size_int (align));
11584 }
11585 else
11586 {
11587 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11588 return build_call_expr (t, 1, size);
11589 }
11590 }
11591
11592 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11593 if SIZE == -1) and return a tree node representing char* pointer to
11594 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value
11595 is the LEN bytes at STR (the representation of the string, which may
11596 be wide). */
11597
11598 tree
11599 build_string_literal (int len, const char *str,
11600 tree eltype /* = char_type_node */,
11601 unsigned HOST_WIDE_INT size /* = -1 */)
11602 {
11603 tree t = build_string (len, str);
11604 /* Set the maximum valid index based on the string length or SIZE. */
11605 unsigned HOST_WIDE_INT maxidx
11606 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11607
11608 tree index = build_index_type (size_int (maxidx));
11609 eltype = build_type_variant (eltype, 1, 0);
11610 tree type = build_array_type (eltype, index);
11611 TREE_TYPE (t) = type;
11612 TREE_CONSTANT (t) = 1;
11613 TREE_READONLY (t) = 1;
11614 TREE_STATIC (t) = 1;
11615
11616 type = build_pointer_type (eltype);
11617 t = build1 (ADDR_EXPR, type,
11618 build4 (ARRAY_REF, eltype,
11619 t, integer_zero_node, NULL_TREE, NULL_TREE));
11620 return t;
11621 }
11622
11623
11624
11625 /* Return true if T (assumed to be a DECL) must be assigned a memory
11626 location. */
11627
11628 bool
11629 needs_to_live_in_memory (const_tree t)
11630 {
11631 return (TREE_ADDRESSABLE (t)
11632 || is_global_var (t)
11633 || (TREE_CODE (t) == RESULT_DECL
11634 && !DECL_BY_REFERENCE (t)
11635 && aggregate_value_p (t, current_function_decl)));
11636 }
11637
11638 /* Return value of a constant X and sign-extend it. */
11639
11640 HOST_WIDE_INT
11641 int_cst_value (const_tree x)
11642 {
11643 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11644 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11645
11646 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11647 gcc_assert (cst_and_fits_in_hwi (x));
11648
11649 if (bits < HOST_BITS_PER_WIDE_INT)
11650 {
11651 bool negative = ((val >> (bits - 1)) & 1) != 0;
11652 if (negative)
11653 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11654 else
11655 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11656 }
11657
11658 return val;
11659 }
11660
11661 /* If TYPE is an integral or pointer type, return an integer type with
11662 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11663 if TYPE is already an integer type of signedness UNSIGNEDP.
11664 If TYPE is a floating-point type, return an integer type with the same
11665 bitsize and with the signedness given by UNSIGNEDP; this is useful
11666 when doing bit-level operations on a floating-point value. */
11667
11668 tree
11669 signed_or_unsigned_type_for (int unsignedp, tree type)
11670 {
11671 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11672 return type;
11673
11674 if (TREE_CODE (type) == VECTOR_TYPE)
11675 {
11676 tree inner = TREE_TYPE (type);
11677 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11678 if (!inner2)
11679 return NULL_TREE;
11680 if (inner == inner2)
11681 return type;
11682 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11683 }
11684
11685 if (TREE_CODE (type) == COMPLEX_TYPE)
11686 {
11687 tree inner = TREE_TYPE (type);
11688 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11689 if (!inner2)
11690 return NULL_TREE;
11691 if (inner == inner2)
11692 return type;
11693 return build_complex_type (inner2);
11694 }
11695
11696 unsigned int bits;
11697 if (INTEGRAL_TYPE_P (type)
11698 || POINTER_TYPE_P (type)
11699 || TREE_CODE (type) == OFFSET_TYPE)
11700 bits = TYPE_PRECISION (type);
11701 else if (TREE_CODE (type) == REAL_TYPE)
11702 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11703 else
11704 return NULL_TREE;
11705
11706 return build_nonstandard_integer_type (bits, unsignedp);
11707 }
11708
11709 /* If TYPE is an integral or pointer type, return an integer type with
11710 the same precision which is unsigned, or itself if TYPE is already an
11711 unsigned integer type. If TYPE is a floating-point type, return an
11712 unsigned integer type with the same bitsize as TYPE. */
11713
11714 tree
11715 unsigned_type_for (tree type)
11716 {
11717 return signed_or_unsigned_type_for (1, type);
11718 }
11719
11720 /* If TYPE is an integral or pointer type, return an integer type with
11721 the same precision which is signed, or itself if TYPE is already a
11722 signed integer type. If TYPE is a floating-point type, return a
11723 signed integer type with the same bitsize as TYPE. */
11724
11725 tree
11726 signed_type_for (tree type)
11727 {
11728 return signed_or_unsigned_type_for (0, type);
11729 }
11730
11731 /* If TYPE is a vector type, return a signed integer vector type with the
11732 same width and number of subparts. Otherwise return boolean_type_node. */
11733
11734 tree
11735 truth_type_for (tree type)
11736 {
11737 if (TREE_CODE (type) == VECTOR_TYPE)
11738 {
11739 if (VECTOR_BOOLEAN_TYPE_P (type))
11740 return type;
11741 return build_truth_vector_type_for (type);
11742 }
11743 else
11744 return boolean_type_node;
11745 }
11746
11747 /* Returns the largest value obtainable by casting something in INNER type to
11748 OUTER type. */
11749
11750 tree
11751 upper_bound_in_type (tree outer, tree inner)
11752 {
11753 unsigned int det = 0;
11754 unsigned oprec = TYPE_PRECISION (outer);
11755 unsigned iprec = TYPE_PRECISION (inner);
11756 unsigned prec;
11757
11758 /* Compute a unique number for every combination. */
11759 det |= (oprec > iprec) ? 4 : 0;
11760 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11761 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11762
11763 /* Determine the exponent to use. */
11764 switch (det)
11765 {
11766 case 0:
11767 case 1:
11768 /* oprec <= iprec, outer: signed, inner: don't care. */
11769 prec = oprec - 1;
11770 break;
11771 case 2:
11772 case 3:
11773 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11774 prec = oprec;
11775 break;
11776 case 4:
11777 /* oprec > iprec, outer: signed, inner: signed. */
11778 prec = iprec - 1;
11779 break;
11780 case 5:
11781 /* oprec > iprec, outer: signed, inner: unsigned. */
11782 prec = iprec;
11783 break;
11784 case 6:
11785 /* oprec > iprec, outer: unsigned, inner: signed. */
11786 prec = oprec;
11787 break;
11788 case 7:
11789 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11790 prec = iprec;
11791 break;
11792 default:
11793 gcc_unreachable ();
11794 }
11795
11796 return wide_int_to_tree (outer,
11797 wi::mask (prec, false, TYPE_PRECISION (outer)));
11798 }
11799
11800 /* Returns the smallest value obtainable by casting something in INNER type to
11801 OUTER type. */
11802
11803 tree
11804 lower_bound_in_type (tree outer, tree inner)
11805 {
11806 unsigned oprec = TYPE_PRECISION (outer);
11807 unsigned iprec = TYPE_PRECISION (inner);
11808
11809 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11810 and obtain 0. */
11811 if (TYPE_UNSIGNED (outer)
11812 /* If we are widening something of an unsigned type, OUTER type
11813 contains all values of INNER type. In particular, both INNER
11814 and OUTER types have zero in common. */
11815 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11816 return build_int_cst (outer, 0);
11817 else
11818 {
11819 /* If we are widening a signed type to another signed type, we
11820 want to obtain -2^^(iprec-1). If we are keeping the
11821 precision or narrowing to a signed type, we want to obtain
11822 -2^(oprec-1). */
11823 unsigned prec = oprec > iprec ? iprec : oprec;
11824 return wide_int_to_tree (outer,
11825 wi::mask (prec - 1, true,
11826 TYPE_PRECISION (outer)));
11827 }
11828 }
11829
11830 /* Return nonzero if two operands that are suitable for PHI nodes are
11831 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11832 SSA_NAME or invariant. Note that this is strictly an optimization.
11833 That is, callers of this function can directly call operand_equal_p
11834 and get the same result, only slower. */
11835
11836 int
11837 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11838 {
11839 if (arg0 == arg1)
11840 return 1;
11841 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11842 return 0;
11843 return operand_equal_p (arg0, arg1, 0);
11844 }
11845
11846 /* Returns number of zeros at the end of binary representation of X. */
11847
11848 tree
11849 num_ending_zeros (const_tree x)
11850 {
11851 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11852 }
11853
11854
11855 #define WALK_SUBTREE(NODE) \
11856 do \
11857 { \
11858 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11859 if (result) \
11860 return result; \
11861 } \
11862 while (0)
11863
11864 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11865 be walked whenever a type is seen in the tree. Rest of operands and return
11866 value are as for walk_tree. */
11867
11868 static tree
11869 walk_type_fields (tree type, walk_tree_fn func, void *data,
11870 hash_set<tree> *pset, walk_tree_lh lh)
11871 {
11872 tree result = NULL_TREE;
11873
11874 switch (TREE_CODE (type))
11875 {
11876 case POINTER_TYPE:
11877 case REFERENCE_TYPE:
11878 case VECTOR_TYPE:
11879 /* We have to worry about mutually recursive pointers. These can't
11880 be written in C. They can in Ada. It's pathological, but
11881 there's an ACATS test (c38102a) that checks it. Deal with this
11882 by checking if we're pointing to another pointer, that one
11883 points to another pointer, that one does too, and we have no htab.
11884 If so, get a hash table. We check three levels deep to avoid
11885 the cost of the hash table if we don't need one. */
11886 if (POINTER_TYPE_P (TREE_TYPE (type))
11887 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11888 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11889 && !pset)
11890 {
11891 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11892 func, data);
11893 if (result)
11894 return result;
11895
11896 break;
11897 }
11898
11899 /* fall through */
11900
11901 case COMPLEX_TYPE:
11902 WALK_SUBTREE (TREE_TYPE (type));
11903 break;
11904
11905 case METHOD_TYPE:
11906 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11907
11908 /* Fall through. */
11909
11910 case FUNCTION_TYPE:
11911 WALK_SUBTREE (TREE_TYPE (type));
11912 {
11913 tree arg;
11914
11915 /* We never want to walk into default arguments. */
11916 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11917 WALK_SUBTREE (TREE_VALUE (arg));
11918 }
11919 break;
11920
11921 case ARRAY_TYPE:
11922 /* Don't follow this nodes's type if a pointer for fear that
11923 we'll have infinite recursion. If we have a PSET, then we
11924 need not fear. */
11925 if (pset
11926 || (!POINTER_TYPE_P (TREE_TYPE (type))
11927 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11928 WALK_SUBTREE (TREE_TYPE (type));
11929 WALK_SUBTREE (TYPE_DOMAIN (type));
11930 break;
11931
11932 case OFFSET_TYPE:
11933 WALK_SUBTREE (TREE_TYPE (type));
11934 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11935 break;
11936
11937 default:
11938 break;
11939 }
11940
11941 return NULL_TREE;
11942 }
11943
11944 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11945 called with the DATA and the address of each sub-tree. If FUNC returns a
11946 non-NULL value, the traversal is stopped, and the value returned by FUNC
11947 is returned. If PSET is non-NULL it is used to record the nodes visited,
11948 and to avoid visiting a node more than once. */
11949
11950 tree
11951 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11952 hash_set<tree> *pset, walk_tree_lh lh)
11953 {
11954 enum tree_code code;
11955 int walk_subtrees;
11956 tree result;
11957
11958 #define WALK_SUBTREE_TAIL(NODE) \
11959 do \
11960 { \
11961 tp = & (NODE); \
11962 goto tail_recurse; \
11963 } \
11964 while (0)
11965
11966 tail_recurse:
11967 /* Skip empty subtrees. */
11968 if (!*tp)
11969 return NULL_TREE;
11970
11971 /* Don't walk the same tree twice, if the user has requested
11972 that we avoid doing so. */
11973 if (pset && pset->add (*tp))
11974 return NULL_TREE;
11975
11976 /* Call the function. */
11977 walk_subtrees = 1;
11978 result = (*func) (tp, &walk_subtrees, data);
11979
11980 /* If we found something, return it. */
11981 if (result)
11982 return result;
11983
11984 code = TREE_CODE (*tp);
11985
11986 /* Even if we didn't, FUNC may have decided that there was nothing
11987 interesting below this point in the tree. */
11988 if (!walk_subtrees)
11989 {
11990 /* But we still need to check our siblings. */
11991 if (code == TREE_LIST)
11992 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11993 else if (code == OMP_CLAUSE)
11994 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11995 else
11996 return NULL_TREE;
11997 }
11998
11999 if (lh)
12000 {
12001 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12002 if (result || !walk_subtrees)
12003 return result;
12004 }
12005
12006 switch (code)
12007 {
12008 case ERROR_MARK:
12009 case IDENTIFIER_NODE:
12010 case INTEGER_CST:
12011 case REAL_CST:
12012 case FIXED_CST:
12013 case VECTOR_CST:
12014 case STRING_CST:
12015 case BLOCK:
12016 case PLACEHOLDER_EXPR:
12017 case SSA_NAME:
12018 case FIELD_DECL:
12019 case RESULT_DECL:
12020 /* None of these have subtrees other than those already walked
12021 above. */
12022 break;
12023
12024 case TREE_LIST:
12025 WALK_SUBTREE (TREE_VALUE (*tp));
12026 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12027 break;
12028
12029 case TREE_VEC:
12030 {
12031 int len = TREE_VEC_LENGTH (*tp);
12032
12033 if (len == 0)
12034 break;
12035
12036 /* Walk all elements but the first. */
12037 while (--len)
12038 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12039
12040 /* Now walk the first one as a tail call. */
12041 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12042 }
12043
12044 case COMPLEX_CST:
12045 WALK_SUBTREE (TREE_REALPART (*tp));
12046 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12047
12048 case CONSTRUCTOR:
12049 {
12050 unsigned HOST_WIDE_INT idx;
12051 constructor_elt *ce;
12052
12053 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12054 idx++)
12055 WALK_SUBTREE (ce->value);
12056 }
12057 break;
12058
12059 case SAVE_EXPR:
12060 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12061
12062 case BIND_EXPR:
12063 {
12064 tree decl;
12065 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12066 {
12067 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12068 into declarations that are just mentioned, rather than
12069 declared; they don't really belong to this part of the tree.
12070 And, we can see cycles: the initializer for a declaration
12071 can refer to the declaration itself. */
12072 WALK_SUBTREE (DECL_INITIAL (decl));
12073 WALK_SUBTREE (DECL_SIZE (decl));
12074 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12075 }
12076 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12077 }
12078
12079 case STATEMENT_LIST:
12080 {
12081 tree_stmt_iterator i;
12082 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12083 WALK_SUBTREE (*tsi_stmt_ptr (i));
12084 }
12085 break;
12086
12087 case OMP_CLAUSE:
12088 switch (OMP_CLAUSE_CODE (*tp))
12089 {
12090 case OMP_CLAUSE_GANG:
12091 case OMP_CLAUSE__GRIDDIM_:
12092 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12093 /* FALLTHRU */
12094
12095 case OMP_CLAUSE_ASYNC:
12096 case OMP_CLAUSE_WAIT:
12097 case OMP_CLAUSE_WORKER:
12098 case OMP_CLAUSE_VECTOR:
12099 case OMP_CLAUSE_NUM_GANGS:
12100 case OMP_CLAUSE_NUM_WORKERS:
12101 case OMP_CLAUSE_VECTOR_LENGTH:
12102 case OMP_CLAUSE_PRIVATE:
12103 case OMP_CLAUSE_SHARED:
12104 case OMP_CLAUSE_FIRSTPRIVATE:
12105 case OMP_CLAUSE_COPYIN:
12106 case OMP_CLAUSE_COPYPRIVATE:
12107 case OMP_CLAUSE_FINAL:
12108 case OMP_CLAUSE_IF:
12109 case OMP_CLAUSE_NUM_THREADS:
12110 case OMP_CLAUSE_SCHEDULE:
12111 case OMP_CLAUSE_UNIFORM:
12112 case OMP_CLAUSE_DEPEND:
12113 case OMP_CLAUSE_NONTEMPORAL:
12114 case OMP_CLAUSE_NUM_TEAMS:
12115 case OMP_CLAUSE_THREAD_LIMIT:
12116 case OMP_CLAUSE_DEVICE:
12117 case OMP_CLAUSE_DIST_SCHEDULE:
12118 case OMP_CLAUSE_SAFELEN:
12119 case OMP_CLAUSE_SIMDLEN:
12120 case OMP_CLAUSE_ORDERED:
12121 case OMP_CLAUSE_PRIORITY:
12122 case OMP_CLAUSE_GRAINSIZE:
12123 case OMP_CLAUSE_NUM_TASKS:
12124 case OMP_CLAUSE_HINT:
12125 case OMP_CLAUSE_TO_DECLARE:
12126 case OMP_CLAUSE_LINK:
12127 case OMP_CLAUSE_USE_DEVICE_PTR:
12128 case OMP_CLAUSE_USE_DEVICE_ADDR:
12129 case OMP_CLAUSE_IS_DEVICE_PTR:
12130 case OMP_CLAUSE_INCLUSIVE:
12131 case OMP_CLAUSE_EXCLUSIVE:
12132 case OMP_CLAUSE__LOOPTEMP_:
12133 case OMP_CLAUSE__REDUCTEMP_:
12134 case OMP_CLAUSE__CONDTEMP_:
12135 case OMP_CLAUSE__SCANTEMP_:
12136 case OMP_CLAUSE__SIMDUID_:
12137 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12138 /* FALLTHRU */
12139
12140 case OMP_CLAUSE_INDEPENDENT:
12141 case OMP_CLAUSE_NOWAIT:
12142 case OMP_CLAUSE_DEFAULT:
12143 case OMP_CLAUSE_UNTIED:
12144 case OMP_CLAUSE_MERGEABLE:
12145 case OMP_CLAUSE_PROC_BIND:
12146 case OMP_CLAUSE_DEVICE_TYPE:
12147 case OMP_CLAUSE_INBRANCH:
12148 case OMP_CLAUSE_NOTINBRANCH:
12149 case OMP_CLAUSE_FOR:
12150 case OMP_CLAUSE_PARALLEL:
12151 case OMP_CLAUSE_SECTIONS:
12152 case OMP_CLAUSE_TASKGROUP:
12153 case OMP_CLAUSE_NOGROUP:
12154 case OMP_CLAUSE_THREADS:
12155 case OMP_CLAUSE_SIMD:
12156 case OMP_CLAUSE_DEFAULTMAP:
12157 case OMP_CLAUSE_ORDER:
12158 case OMP_CLAUSE_BIND:
12159 case OMP_CLAUSE_AUTO:
12160 case OMP_CLAUSE_SEQ:
12161 case OMP_CLAUSE_TILE:
12162 case OMP_CLAUSE__SIMT_:
12163 case OMP_CLAUSE_IF_PRESENT:
12164 case OMP_CLAUSE_FINALIZE:
12165 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12166
12167 case OMP_CLAUSE_LASTPRIVATE:
12168 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12169 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12170 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12171
12172 case OMP_CLAUSE_COLLAPSE:
12173 {
12174 int i;
12175 for (i = 0; i < 3; i++)
12176 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12177 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12178 }
12179
12180 case OMP_CLAUSE_LINEAR:
12181 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12182 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12183 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12184 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12185
12186 case OMP_CLAUSE_ALIGNED:
12187 case OMP_CLAUSE_FROM:
12188 case OMP_CLAUSE_TO:
12189 case OMP_CLAUSE_MAP:
12190 case OMP_CLAUSE__CACHE_:
12191 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12192 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12193 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12194
12195 case OMP_CLAUSE_REDUCTION:
12196 case OMP_CLAUSE_TASK_REDUCTION:
12197 case OMP_CLAUSE_IN_REDUCTION:
12198 {
12199 int i;
12200 for (i = 0; i < 5; i++)
12201 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12202 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12203 }
12204
12205 default:
12206 gcc_unreachable ();
12207 }
12208 break;
12209
12210 case TARGET_EXPR:
12211 {
12212 int i, len;
12213
12214 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12215 But, we only want to walk once. */
12216 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12217 for (i = 0; i < len; ++i)
12218 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12219 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12220 }
12221
12222 case DECL_EXPR:
12223 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12224 defining. We only want to walk into these fields of a type in this
12225 case and not in the general case of a mere reference to the type.
12226
12227 The criterion is as follows: if the field can be an expression, it
12228 must be walked only here. This should be in keeping with the fields
12229 that are directly gimplified in gimplify_type_sizes in order for the
12230 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12231 variable-sized types.
12232
12233 Note that DECLs get walked as part of processing the BIND_EXPR. */
12234 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12235 {
12236 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12237 if (TREE_CODE (*type_p) == ERROR_MARK)
12238 return NULL_TREE;
12239
12240 /* Call the function for the type. See if it returns anything or
12241 doesn't want us to continue. If we are to continue, walk both
12242 the normal fields and those for the declaration case. */
12243 result = (*func) (type_p, &walk_subtrees, data);
12244 if (result || !walk_subtrees)
12245 return result;
12246
12247 /* But do not walk a pointed-to type since it may itself need to
12248 be walked in the declaration case if it isn't anonymous. */
12249 if (!POINTER_TYPE_P (*type_p))
12250 {
12251 result = walk_type_fields (*type_p, func, data, pset, lh);
12252 if (result)
12253 return result;
12254 }
12255
12256 /* If this is a record type, also walk the fields. */
12257 if (RECORD_OR_UNION_TYPE_P (*type_p))
12258 {
12259 tree field;
12260
12261 for (field = TYPE_FIELDS (*type_p); field;
12262 field = DECL_CHAIN (field))
12263 {
12264 /* We'd like to look at the type of the field, but we can
12265 easily get infinite recursion. So assume it's pointed
12266 to elsewhere in the tree. Also, ignore things that
12267 aren't fields. */
12268 if (TREE_CODE (field) != FIELD_DECL)
12269 continue;
12270
12271 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12272 WALK_SUBTREE (DECL_SIZE (field));
12273 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12274 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12275 WALK_SUBTREE (DECL_QUALIFIER (field));
12276 }
12277 }
12278
12279 /* Same for scalar types. */
12280 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12281 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12282 || TREE_CODE (*type_p) == INTEGER_TYPE
12283 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12284 || TREE_CODE (*type_p) == REAL_TYPE)
12285 {
12286 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12287 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12288 }
12289
12290 WALK_SUBTREE (TYPE_SIZE (*type_p));
12291 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12292 }
12293 /* FALLTHRU */
12294
12295 default:
12296 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12297 {
12298 int i, len;
12299
12300 /* Walk over all the sub-trees of this operand. */
12301 len = TREE_OPERAND_LENGTH (*tp);
12302
12303 /* Go through the subtrees. We need to do this in forward order so
12304 that the scope of a FOR_EXPR is handled properly. */
12305 if (len)
12306 {
12307 for (i = 0; i < len - 1; ++i)
12308 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12309 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12310 }
12311 }
12312 /* If this is a type, walk the needed fields in the type. */
12313 else if (TYPE_P (*tp))
12314 return walk_type_fields (*tp, func, data, pset, lh);
12315 break;
12316 }
12317
12318 /* We didn't find what we were looking for. */
12319 return NULL_TREE;
12320
12321 #undef WALK_SUBTREE_TAIL
12322 }
12323 #undef WALK_SUBTREE
12324
12325 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12326
12327 tree
12328 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12329 walk_tree_lh lh)
12330 {
12331 tree result;
12332
12333 hash_set<tree> pset;
12334 result = walk_tree_1 (tp, func, data, &pset, lh);
12335 return result;
12336 }
12337
12338
12339 tree
12340 tree_block (tree t)
12341 {
12342 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12343
12344 if (IS_EXPR_CODE_CLASS (c))
12345 return LOCATION_BLOCK (t->exp.locus);
12346 gcc_unreachable ();
12347 return NULL;
12348 }
12349
12350 void
12351 tree_set_block (tree t, tree b)
12352 {
12353 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12354
12355 if (IS_EXPR_CODE_CLASS (c))
12356 {
12357 t->exp.locus = set_block (t->exp.locus, b);
12358 }
12359 else
12360 gcc_unreachable ();
12361 }
12362
12363 /* Create a nameless artificial label and put it in the current
12364 function context. The label has a location of LOC. Returns the
12365 newly created label. */
12366
12367 tree
12368 create_artificial_label (location_t loc)
12369 {
12370 tree lab = build_decl (loc,
12371 LABEL_DECL, NULL_TREE, void_type_node);
12372
12373 DECL_ARTIFICIAL (lab) = 1;
12374 DECL_IGNORED_P (lab) = 1;
12375 DECL_CONTEXT (lab) = current_function_decl;
12376 return lab;
12377 }
12378
12379 /* Given a tree, try to return a useful variable name that we can use
12380 to prefix a temporary that is being assigned the value of the tree.
12381 I.E. given <temp> = &A, return A. */
12382
12383 const char *
12384 get_name (tree t)
12385 {
12386 tree stripped_decl;
12387
12388 stripped_decl = t;
12389 STRIP_NOPS (stripped_decl);
12390 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12391 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12392 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12393 {
12394 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12395 if (!name)
12396 return NULL;
12397 return IDENTIFIER_POINTER (name);
12398 }
12399 else
12400 {
12401 switch (TREE_CODE (stripped_decl))
12402 {
12403 case ADDR_EXPR:
12404 return get_name (TREE_OPERAND (stripped_decl, 0));
12405 default:
12406 return NULL;
12407 }
12408 }
12409 }
12410
12411 /* Return true if TYPE has a variable argument list. */
12412
12413 bool
12414 stdarg_p (const_tree fntype)
12415 {
12416 function_args_iterator args_iter;
12417 tree n = NULL_TREE, t;
12418
12419 if (!fntype)
12420 return false;
12421
12422 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12423 {
12424 n = t;
12425 }
12426
12427 return n != NULL_TREE && n != void_type_node;
12428 }
12429
12430 /* Return true if TYPE has a prototype. */
12431
12432 bool
12433 prototype_p (const_tree fntype)
12434 {
12435 tree t;
12436
12437 gcc_assert (fntype != NULL_TREE);
12438
12439 t = TYPE_ARG_TYPES (fntype);
12440 return (t != NULL_TREE);
12441 }
12442
12443 /* If BLOCK is inlined from an __attribute__((__artificial__))
12444 routine, return pointer to location from where it has been
12445 called. */
12446 location_t *
12447 block_nonartificial_location (tree block)
12448 {
12449 location_t *ret = NULL;
12450
12451 while (block && TREE_CODE (block) == BLOCK
12452 && BLOCK_ABSTRACT_ORIGIN (block))
12453 {
12454 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12455 if (TREE_CODE (ao) == FUNCTION_DECL)
12456 {
12457 /* If AO is an artificial inline, point RET to the
12458 call site locus at which it has been inlined and continue
12459 the loop, in case AO's caller is also an artificial
12460 inline. */
12461 if (DECL_DECLARED_INLINE_P (ao)
12462 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12463 ret = &BLOCK_SOURCE_LOCATION (block);
12464 else
12465 break;
12466 }
12467 else if (TREE_CODE (ao) != BLOCK)
12468 break;
12469
12470 block = BLOCK_SUPERCONTEXT (block);
12471 }
12472 return ret;
12473 }
12474
12475
12476 /* If EXP is inlined from an __attribute__((__artificial__))
12477 function, return the location of the original call expression. */
12478
12479 location_t
12480 tree_nonartificial_location (tree exp)
12481 {
12482 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12483
12484 if (loc)
12485 return *loc;
12486 else
12487 return EXPR_LOCATION (exp);
12488 }
12489
12490
12491 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12492 nodes. */
12493
12494 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12495
12496 hashval_t
12497 cl_option_hasher::hash (tree x)
12498 {
12499 const_tree const t = x;
12500 const char *p;
12501 size_t i;
12502 size_t len = 0;
12503 hashval_t hash = 0;
12504
12505 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12506 {
12507 p = (const char *)TREE_OPTIMIZATION (t);
12508 len = sizeof (struct cl_optimization);
12509 }
12510
12511 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12512 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12513
12514 else
12515 gcc_unreachable ();
12516
12517 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12518 something else. */
12519 for (i = 0; i < len; i++)
12520 if (p[i])
12521 hash = (hash << 4) ^ ((i << 2) | p[i]);
12522
12523 return hash;
12524 }
12525
12526 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12527 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12528 same. */
12529
12530 bool
12531 cl_option_hasher::equal (tree x, tree y)
12532 {
12533 const_tree const xt = x;
12534 const_tree const yt = y;
12535
12536 if (TREE_CODE (xt) != TREE_CODE (yt))
12537 return 0;
12538
12539 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12540 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12541 TREE_OPTIMIZATION (yt));
12542 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12543 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12544 TREE_TARGET_OPTION (yt));
12545 else
12546 gcc_unreachable ();
12547 }
12548
12549 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12550
12551 tree
12552 build_optimization_node (struct gcc_options *opts)
12553 {
12554 tree t;
12555
12556 /* Use the cache of optimization nodes. */
12557
12558 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12559 opts);
12560
12561 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12562 t = *slot;
12563 if (!t)
12564 {
12565 /* Insert this one into the hash table. */
12566 t = cl_optimization_node;
12567 *slot = t;
12568
12569 /* Make a new node for next time round. */
12570 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12571 }
12572
12573 return t;
12574 }
12575
12576 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12577
12578 tree
12579 build_target_option_node (struct gcc_options *opts)
12580 {
12581 tree t;
12582
12583 /* Use the cache of optimization nodes. */
12584
12585 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12586 opts);
12587
12588 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12589 t = *slot;
12590 if (!t)
12591 {
12592 /* Insert this one into the hash table. */
12593 t = cl_target_option_node;
12594 *slot = t;
12595
12596 /* Make a new node for next time round. */
12597 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12598 }
12599
12600 return t;
12601 }
12602
12603 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12604 so that they aren't saved during PCH writing. */
12605
12606 void
12607 prepare_target_option_nodes_for_pch (void)
12608 {
12609 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12610 for (; iter != cl_option_hash_table->end (); ++iter)
12611 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12612 TREE_TARGET_GLOBALS (*iter) = NULL;
12613 }
12614
12615 /* Determine the "ultimate origin" of a block. */
12616
12617 tree
12618 block_ultimate_origin (const_tree block)
12619 {
12620 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12621
12622 if (origin == NULL_TREE)
12623 return NULL_TREE;
12624 else
12625 {
12626 gcc_checking_assert ((DECL_P (origin)
12627 && DECL_ORIGIN (origin) == origin)
12628 || BLOCK_ORIGIN (origin) == origin);
12629 return origin;
12630 }
12631 }
12632
12633 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12634 no instruction. */
12635
12636 bool
12637 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12638 {
12639 /* Do not strip casts into or out of differing address spaces. */
12640 if (POINTER_TYPE_P (outer_type)
12641 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12642 {
12643 if (!POINTER_TYPE_P (inner_type)
12644 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12645 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12646 return false;
12647 }
12648 else if (POINTER_TYPE_P (inner_type)
12649 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12650 {
12651 /* We already know that outer_type is not a pointer with
12652 a non-generic address space. */
12653 return false;
12654 }
12655
12656 /* Use precision rather then machine mode when we can, which gives
12657 the correct answer even for submode (bit-field) types. */
12658 if ((INTEGRAL_TYPE_P (outer_type)
12659 || POINTER_TYPE_P (outer_type)
12660 || TREE_CODE (outer_type) == OFFSET_TYPE)
12661 && (INTEGRAL_TYPE_P (inner_type)
12662 || POINTER_TYPE_P (inner_type)
12663 || TREE_CODE (inner_type) == OFFSET_TYPE))
12664 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12665
12666 /* Otherwise fall back on comparing machine modes (e.g. for
12667 aggregate types, floats). */
12668 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12669 }
12670
12671 /* Return true iff conversion in EXP generates no instruction. Mark
12672 it inline so that we fully inline into the stripping functions even
12673 though we have two uses of this function. */
12674
12675 static inline bool
12676 tree_nop_conversion (const_tree exp)
12677 {
12678 tree outer_type, inner_type;
12679
12680 if (location_wrapper_p (exp))
12681 return true;
12682 if (!CONVERT_EXPR_P (exp)
12683 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12684 return false;
12685
12686 outer_type = TREE_TYPE (exp);
12687 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12688 if (!inner_type || inner_type == error_mark_node)
12689 return false;
12690
12691 return tree_nop_conversion_p (outer_type, inner_type);
12692 }
12693
12694 /* Return true iff conversion in EXP generates no instruction. Don't
12695 consider conversions changing the signedness. */
12696
12697 static bool
12698 tree_sign_nop_conversion (const_tree exp)
12699 {
12700 tree outer_type, inner_type;
12701
12702 if (!tree_nop_conversion (exp))
12703 return false;
12704
12705 outer_type = TREE_TYPE (exp);
12706 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12707
12708 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12709 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12710 }
12711
12712 /* Strip conversions from EXP according to tree_nop_conversion and
12713 return the resulting expression. */
12714
12715 tree
12716 tree_strip_nop_conversions (tree exp)
12717 {
12718 while (tree_nop_conversion (exp))
12719 exp = TREE_OPERAND (exp, 0);
12720 return exp;
12721 }
12722
12723 /* Strip conversions from EXP according to tree_sign_nop_conversion
12724 and return the resulting expression. */
12725
12726 tree
12727 tree_strip_sign_nop_conversions (tree exp)
12728 {
12729 while (tree_sign_nop_conversion (exp))
12730 exp = TREE_OPERAND (exp, 0);
12731 return exp;
12732 }
12733
12734 /* Avoid any floating point extensions from EXP. */
12735 tree
12736 strip_float_extensions (tree exp)
12737 {
12738 tree sub, expt, subt;
12739
12740 /* For floating point constant look up the narrowest type that can hold
12741 it properly and handle it like (type)(narrowest_type)constant.
12742 This way we can optimize for instance a=a*2.0 where "a" is float
12743 but 2.0 is double constant. */
12744 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12745 {
12746 REAL_VALUE_TYPE orig;
12747 tree type = NULL;
12748
12749 orig = TREE_REAL_CST (exp);
12750 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12751 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12752 type = float_type_node;
12753 else if (TYPE_PRECISION (TREE_TYPE (exp))
12754 > TYPE_PRECISION (double_type_node)
12755 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12756 type = double_type_node;
12757 if (type)
12758 return build_real_truncate (type, orig);
12759 }
12760
12761 if (!CONVERT_EXPR_P (exp))
12762 return exp;
12763
12764 sub = TREE_OPERAND (exp, 0);
12765 subt = TREE_TYPE (sub);
12766 expt = TREE_TYPE (exp);
12767
12768 if (!FLOAT_TYPE_P (subt))
12769 return exp;
12770
12771 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12772 return exp;
12773
12774 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12775 return exp;
12776
12777 return strip_float_extensions (sub);
12778 }
12779
12780 /* Strip out all handled components that produce invariant
12781 offsets. */
12782
12783 const_tree
12784 strip_invariant_refs (const_tree op)
12785 {
12786 while (handled_component_p (op))
12787 {
12788 switch (TREE_CODE (op))
12789 {
12790 case ARRAY_REF:
12791 case ARRAY_RANGE_REF:
12792 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12793 || TREE_OPERAND (op, 2) != NULL_TREE
12794 || TREE_OPERAND (op, 3) != NULL_TREE)
12795 return NULL;
12796 break;
12797
12798 case COMPONENT_REF:
12799 if (TREE_OPERAND (op, 2) != NULL_TREE)
12800 return NULL;
12801 break;
12802
12803 default:;
12804 }
12805 op = TREE_OPERAND (op, 0);
12806 }
12807
12808 return op;
12809 }
12810
12811 static GTY(()) tree gcc_eh_personality_decl;
12812
12813 /* Return the GCC personality function decl. */
12814
12815 tree
12816 lhd_gcc_personality (void)
12817 {
12818 if (!gcc_eh_personality_decl)
12819 gcc_eh_personality_decl = build_personality_function ("gcc");
12820 return gcc_eh_personality_decl;
12821 }
12822
12823 /* TARGET is a call target of GIMPLE call statement
12824 (obtained by gimple_call_fn). Return true if it is
12825 OBJ_TYPE_REF representing an virtual call of C++ method.
12826 (As opposed to OBJ_TYPE_REF representing objc calls
12827 through a cast where middle-end devirtualization machinery
12828 can't apply.) */
12829
12830 bool
12831 virtual_method_call_p (const_tree target)
12832 {
12833 if (TREE_CODE (target) != OBJ_TYPE_REF)
12834 return false;
12835 tree t = TREE_TYPE (target);
12836 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12837 t = TREE_TYPE (t);
12838 if (TREE_CODE (t) == FUNCTION_TYPE)
12839 return false;
12840 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12841 /* If we do not have BINFO associated, it means that type was built
12842 without devirtualization enabled. Do not consider this a virtual
12843 call. */
12844 if (!TYPE_BINFO (obj_type_ref_class (target)))
12845 return false;
12846 return true;
12847 }
12848
12849 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12850
12851 static tree
12852 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12853 {
12854 unsigned int i;
12855 tree base_binfo, b;
12856
12857 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12858 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12859 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12860 return base_binfo;
12861 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12862 return b;
12863 return NULL;
12864 }
12865
12866 /* Try to find a base info of BINFO that would have its field decl at offset
12867 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12868 found, return, otherwise return NULL_TREE. */
12869
12870 tree
12871 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12872 {
12873 tree type = BINFO_TYPE (binfo);
12874
12875 while (true)
12876 {
12877 HOST_WIDE_INT pos, size;
12878 tree fld;
12879 int i;
12880
12881 if (types_same_for_odr (type, expected_type))
12882 return binfo;
12883 if (maybe_lt (offset, 0))
12884 return NULL_TREE;
12885
12886 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12887 {
12888 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12889 continue;
12890
12891 pos = int_bit_position (fld);
12892 size = tree_to_uhwi (DECL_SIZE (fld));
12893 if (known_in_range_p (offset, pos, size))
12894 break;
12895 }
12896 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12897 return NULL_TREE;
12898
12899 /* Offset 0 indicates the primary base, whose vtable contents are
12900 represented in the binfo for the derived class. */
12901 else if (maybe_ne (offset, 0))
12902 {
12903 tree found_binfo = NULL, base_binfo;
12904 /* Offsets in BINFO are in bytes relative to the whole structure
12905 while POS is in bits relative to the containing field. */
12906 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12907 / BITS_PER_UNIT);
12908
12909 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12910 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12911 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12912 {
12913 found_binfo = base_binfo;
12914 break;
12915 }
12916 if (found_binfo)
12917 binfo = found_binfo;
12918 else
12919 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12920 binfo_offset);
12921 }
12922
12923 type = TREE_TYPE (fld);
12924 offset -= pos;
12925 }
12926 }
12927
12928 /* Returns true if X is a typedef decl. */
12929
12930 bool
12931 is_typedef_decl (const_tree x)
12932 {
12933 return (x && TREE_CODE (x) == TYPE_DECL
12934 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12935 }
12936
12937 /* Returns true iff TYPE is a type variant created for a typedef. */
12938
12939 bool
12940 typedef_variant_p (const_tree type)
12941 {
12942 return is_typedef_decl (TYPE_NAME (type));
12943 }
12944
12945 /* PR 84195: Replace control characters in "unescaped" with their
12946 escaped equivalents. Allow newlines if -fmessage-length has
12947 been set to a non-zero value. This is done here, rather than
12948 where the attribute is recorded as the message length can
12949 change between these two locations. */
12950
12951 void
12952 escaped_string::escape (const char *unescaped)
12953 {
12954 char *escaped;
12955 size_t i, new_i, len;
12956
12957 if (m_owned)
12958 free (m_str);
12959
12960 m_str = const_cast<char *> (unescaped);
12961 m_owned = false;
12962
12963 if (unescaped == NULL || *unescaped == 0)
12964 return;
12965
12966 len = strlen (unescaped);
12967 escaped = NULL;
12968 new_i = 0;
12969
12970 for (i = 0; i < len; i++)
12971 {
12972 char c = unescaped[i];
12973
12974 if (!ISCNTRL (c))
12975 {
12976 if (escaped)
12977 escaped[new_i++] = c;
12978 continue;
12979 }
12980
12981 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12982 {
12983 if (escaped == NULL)
12984 {
12985 /* We only allocate space for a new string if we
12986 actually encounter a control character that
12987 needs replacing. */
12988 escaped = (char *) xmalloc (len * 2 + 1);
12989 strncpy (escaped, unescaped, i);
12990 new_i = i;
12991 }
12992
12993 escaped[new_i++] = '\\';
12994
12995 switch (c)
12996 {
12997 case '\a': escaped[new_i++] = 'a'; break;
12998 case '\b': escaped[new_i++] = 'b'; break;
12999 case '\f': escaped[new_i++] = 'f'; break;
13000 case '\n': escaped[new_i++] = 'n'; break;
13001 case '\r': escaped[new_i++] = 'r'; break;
13002 case '\t': escaped[new_i++] = 't'; break;
13003 case '\v': escaped[new_i++] = 'v'; break;
13004 default: escaped[new_i++] = '?'; break;
13005 }
13006 }
13007 else if (escaped)
13008 escaped[new_i++] = c;
13009 }
13010
13011 if (escaped)
13012 {
13013 escaped[new_i] = 0;
13014 m_str = escaped;
13015 m_owned = true;
13016 }
13017 }
13018
13019 /* Warn about a use of an identifier which was marked deprecated. Returns
13020 whether a warning was given. */
13021
13022 bool
13023 warn_deprecated_use (tree node, tree attr)
13024 {
13025 escaped_string msg;
13026
13027 if (node == 0 || !warn_deprecated_decl)
13028 return false;
13029
13030 if (!attr)
13031 {
13032 if (DECL_P (node))
13033 attr = DECL_ATTRIBUTES (node);
13034 else if (TYPE_P (node))
13035 {
13036 tree decl = TYPE_STUB_DECL (node);
13037 if (decl)
13038 attr = lookup_attribute ("deprecated",
13039 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13040 }
13041 }
13042
13043 if (attr)
13044 attr = lookup_attribute ("deprecated", attr);
13045
13046 if (attr)
13047 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13048
13049 bool w = false;
13050 if (DECL_P (node))
13051 {
13052 auto_diagnostic_group d;
13053 if (msg)
13054 w = warning (OPT_Wdeprecated_declarations,
13055 "%qD is deprecated: %s", node, (const char *) msg);
13056 else
13057 w = warning (OPT_Wdeprecated_declarations,
13058 "%qD is deprecated", node);
13059 if (w)
13060 inform (DECL_SOURCE_LOCATION (node), "declared here");
13061 }
13062 else if (TYPE_P (node))
13063 {
13064 tree what = NULL_TREE;
13065 tree decl = TYPE_STUB_DECL (node);
13066
13067 if (TYPE_NAME (node))
13068 {
13069 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13070 what = TYPE_NAME (node);
13071 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13072 && DECL_NAME (TYPE_NAME (node)))
13073 what = DECL_NAME (TYPE_NAME (node));
13074 }
13075
13076 auto_diagnostic_group d;
13077 if (what)
13078 {
13079 if (msg)
13080 w = warning (OPT_Wdeprecated_declarations,
13081 "%qE is deprecated: %s", what, (const char *) msg);
13082 else
13083 w = warning (OPT_Wdeprecated_declarations,
13084 "%qE is deprecated", what);
13085 }
13086 else
13087 {
13088 if (msg)
13089 w = warning (OPT_Wdeprecated_declarations,
13090 "type is deprecated: %s", (const char *) msg);
13091 else
13092 w = warning (OPT_Wdeprecated_declarations,
13093 "type is deprecated");
13094 }
13095
13096 if (w && decl)
13097 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13098 }
13099
13100 return w;
13101 }
13102
13103 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13104 somewhere in it. */
13105
13106 bool
13107 contains_bitfld_component_ref_p (const_tree ref)
13108 {
13109 while (handled_component_p (ref))
13110 {
13111 if (TREE_CODE (ref) == COMPONENT_REF
13112 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13113 return true;
13114 ref = TREE_OPERAND (ref, 0);
13115 }
13116
13117 return false;
13118 }
13119
13120 /* Try to determine whether a TRY_CATCH expression can fall through.
13121 This is a subroutine of block_may_fallthru. */
13122
13123 static bool
13124 try_catch_may_fallthru (const_tree stmt)
13125 {
13126 tree_stmt_iterator i;
13127
13128 /* If the TRY block can fall through, the whole TRY_CATCH can
13129 fall through. */
13130 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13131 return true;
13132
13133 i = tsi_start (TREE_OPERAND (stmt, 1));
13134 switch (TREE_CODE (tsi_stmt (i)))
13135 {
13136 case CATCH_EXPR:
13137 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13138 catch expression and a body. The whole TRY_CATCH may fall
13139 through iff any of the catch bodies falls through. */
13140 for (; !tsi_end_p (i); tsi_next (&i))
13141 {
13142 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13143 return true;
13144 }
13145 return false;
13146
13147 case EH_FILTER_EXPR:
13148 /* The exception filter expression only matters if there is an
13149 exception. If the exception does not match EH_FILTER_TYPES,
13150 we will execute EH_FILTER_FAILURE, and we will fall through
13151 if that falls through. If the exception does match
13152 EH_FILTER_TYPES, the stack unwinder will continue up the
13153 stack, so we will not fall through. We don't know whether we
13154 will throw an exception which matches EH_FILTER_TYPES or not,
13155 so we just ignore EH_FILTER_TYPES and assume that we might
13156 throw an exception which doesn't match. */
13157 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13158
13159 default:
13160 /* This case represents statements to be executed when an
13161 exception occurs. Those statements are implicitly followed
13162 by a RESX statement to resume execution after the exception.
13163 So in this case the TRY_CATCH never falls through. */
13164 return false;
13165 }
13166 }
13167
13168 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13169 need not be 100% accurate; simply be conservative and return true if we
13170 don't know. This is used only to avoid stupidly generating extra code.
13171 If we're wrong, we'll just delete the extra code later. */
13172
13173 bool
13174 block_may_fallthru (const_tree block)
13175 {
13176 /* This CONST_CAST is okay because expr_last returns its argument
13177 unmodified and we assign it to a const_tree. */
13178 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13179
13180 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13181 {
13182 case GOTO_EXPR:
13183 case RETURN_EXPR:
13184 /* Easy cases. If the last statement of the block implies
13185 control transfer, then we can't fall through. */
13186 return false;
13187
13188 case SWITCH_EXPR:
13189 /* If there is a default: label or case labels cover all possible
13190 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13191 to some case label in all cases and all we care is whether the
13192 SWITCH_BODY falls through. */
13193 if (SWITCH_ALL_CASES_P (stmt))
13194 return block_may_fallthru (SWITCH_BODY (stmt));
13195 return true;
13196
13197 case COND_EXPR:
13198 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13199 return true;
13200 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13201
13202 case BIND_EXPR:
13203 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13204
13205 case TRY_CATCH_EXPR:
13206 return try_catch_may_fallthru (stmt);
13207
13208 case TRY_FINALLY_EXPR:
13209 /* The finally clause is always executed after the try clause,
13210 so if it does not fall through, then the try-finally will not
13211 fall through. Otherwise, if the try clause does not fall
13212 through, then when the finally clause falls through it will
13213 resume execution wherever the try clause was going. So the
13214 whole try-finally will only fall through if both the try
13215 clause and the finally clause fall through. */
13216 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13217 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13218
13219 case EH_ELSE_EXPR:
13220 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13221
13222 case MODIFY_EXPR:
13223 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13224 stmt = TREE_OPERAND (stmt, 1);
13225 else
13226 return true;
13227 /* FALLTHRU */
13228
13229 case CALL_EXPR:
13230 /* Functions that do not return do not fall through. */
13231 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13232
13233 case CLEANUP_POINT_EXPR:
13234 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13235
13236 case TARGET_EXPR:
13237 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13238
13239 case ERROR_MARK:
13240 return true;
13241
13242 default:
13243 return lang_hooks.block_may_fallthru (stmt);
13244 }
13245 }
13246
13247 /* True if we are using EH to handle cleanups. */
13248 static bool using_eh_for_cleanups_flag = false;
13249
13250 /* This routine is called from front ends to indicate eh should be used for
13251 cleanups. */
13252 void
13253 using_eh_for_cleanups (void)
13254 {
13255 using_eh_for_cleanups_flag = true;
13256 }
13257
13258 /* Query whether EH is used for cleanups. */
13259 bool
13260 using_eh_for_cleanups_p (void)
13261 {
13262 return using_eh_for_cleanups_flag;
13263 }
13264
13265 /* Wrapper for tree_code_name to ensure that tree code is valid */
13266 const char *
13267 get_tree_code_name (enum tree_code code)
13268 {
13269 const char *invalid = "<invalid tree code>";
13270
13271 if (code >= MAX_TREE_CODES)
13272 {
13273 if (code == 0xa5a5)
13274 return "ggc_freed";
13275 return invalid;
13276 }
13277
13278 return tree_code_name[code];
13279 }
13280
13281 /* Drops the TREE_OVERFLOW flag from T. */
13282
13283 tree
13284 drop_tree_overflow (tree t)
13285 {
13286 gcc_checking_assert (TREE_OVERFLOW (t));
13287
13288 /* For tree codes with a sharing machinery re-build the result. */
13289 if (poly_int_tree_p (t))
13290 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13291
13292 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13293 and canonicalize the result. */
13294 if (TREE_CODE (t) == VECTOR_CST)
13295 {
13296 tree_vector_builder builder;
13297 builder.new_unary_operation (TREE_TYPE (t), t, true);
13298 unsigned int count = builder.encoded_nelts ();
13299 for (unsigned int i = 0; i < count; ++i)
13300 {
13301 tree elt = VECTOR_CST_ELT (t, i);
13302 if (TREE_OVERFLOW (elt))
13303 elt = drop_tree_overflow (elt);
13304 builder.quick_push (elt);
13305 }
13306 return builder.build ();
13307 }
13308
13309 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13310 and drop the flag. */
13311 t = copy_node (t);
13312 TREE_OVERFLOW (t) = 0;
13313
13314 /* For constants that contain nested constants, drop the flag
13315 from those as well. */
13316 if (TREE_CODE (t) == COMPLEX_CST)
13317 {
13318 if (TREE_OVERFLOW (TREE_REALPART (t)))
13319 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13320 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13321 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13322 }
13323
13324 return t;
13325 }
13326
13327 /* Given a memory reference expression T, return its base address.
13328 The base address of a memory reference expression is the main
13329 object being referenced. For instance, the base address for
13330 'array[i].fld[j]' is 'array'. You can think of this as stripping
13331 away the offset part from a memory address.
13332
13333 This function calls handled_component_p to strip away all the inner
13334 parts of the memory reference until it reaches the base object. */
13335
13336 tree
13337 get_base_address (tree t)
13338 {
13339 while (handled_component_p (t))
13340 t = TREE_OPERAND (t, 0);
13341
13342 if ((TREE_CODE (t) == MEM_REF
13343 || TREE_CODE (t) == TARGET_MEM_REF)
13344 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13345 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13346
13347 /* ??? Either the alias oracle or all callers need to properly deal
13348 with WITH_SIZE_EXPRs before we can look through those. */
13349 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13350 return NULL_TREE;
13351
13352 return t;
13353 }
13354
13355 /* Return a tree of sizetype representing the size, in bytes, of the element
13356 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13357
13358 tree
13359 array_ref_element_size (tree exp)
13360 {
13361 tree aligned_size = TREE_OPERAND (exp, 3);
13362 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13363 location_t loc = EXPR_LOCATION (exp);
13364
13365 /* If a size was specified in the ARRAY_REF, it's the size measured
13366 in alignment units of the element type. So multiply by that value. */
13367 if (aligned_size)
13368 {
13369 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13370 sizetype from another type of the same width and signedness. */
13371 if (TREE_TYPE (aligned_size) != sizetype)
13372 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13373 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13374 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13375 }
13376
13377 /* Otherwise, take the size from that of the element type. Substitute
13378 any PLACEHOLDER_EXPR that we have. */
13379 else
13380 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13381 }
13382
13383 /* Return a tree representing the lower bound of the array mentioned in
13384 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13385
13386 tree
13387 array_ref_low_bound (tree exp)
13388 {
13389 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13390
13391 /* If a lower bound is specified in EXP, use it. */
13392 if (TREE_OPERAND (exp, 2))
13393 return TREE_OPERAND (exp, 2);
13394
13395 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13396 substituting for a PLACEHOLDER_EXPR as needed. */
13397 if (domain_type && TYPE_MIN_VALUE (domain_type))
13398 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13399
13400 /* Otherwise, return a zero of the appropriate type. */
13401 tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
13402 return (idxtype == error_mark_node
13403 ? integer_zero_node : build_int_cst (idxtype, 0));
13404 }
13405
13406 /* Return a tree representing the upper bound of the array mentioned in
13407 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13408
13409 tree
13410 array_ref_up_bound (tree exp)
13411 {
13412 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13413
13414 /* If there is a domain type and it has an upper bound, use it, substituting
13415 for a PLACEHOLDER_EXPR as needed. */
13416 if (domain_type && TYPE_MAX_VALUE (domain_type))
13417 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13418
13419 /* Otherwise fail. */
13420 return NULL_TREE;
13421 }
13422
13423 /* Returns true if REF is an array reference, component reference,
13424 or memory reference to an array at the end of a structure.
13425 If this is the case, the array may be allocated larger
13426 than its upper bound implies. */
13427
13428 bool
13429 array_at_struct_end_p (tree ref)
13430 {
13431 tree atype;
13432
13433 if (TREE_CODE (ref) == ARRAY_REF
13434 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13435 {
13436 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13437 ref = TREE_OPERAND (ref, 0);
13438 }
13439 else if (TREE_CODE (ref) == COMPONENT_REF
13440 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13441 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13442 else if (TREE_CODE (ref) == MEM_REF)
13443 {
13444 tree arg = TREE_OPERAND (ref, 0);
13445 if (TREE_CODE (arg) == ADDR_EXPR)
13446 arg = TREE_OPERAND (arg, 0);
13447 tree argtype = TREE_TYPE (arg);
13448 if (TREE_CODE (argtype) == RECORD_TYPE)
13449 {
13450 if (tree fld = last_field (argtype))
13451 {
13452 atype = TREE_TYPE (fld);
13453 if (TREE_CODE (atype) != ARRAY_TYPE)
13454 return false;
13455 if (VAR_P (arg) && DECL_SIZE (fld))
13456 return false;
13457 }
13458 else
13459 return false;
13460 }
13461 else
13462 return false;
13463 }
13464 else
13465 return false;
13466
13467 if (TREE_CODE (ref) == STRING_CST)
13468 return false;
13469
13470 tree ref_to_array = ref;
13471 while (handled_component_p (ref))
13472 {
13473 /* If the reference chain contains a component reference to a
13474 non-union type and there follows another field the reference
13475 is not at the end of a structure. */
13476 if (TREE_CODE (ref) == COMPONENT_REF)
13477 {
13478 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13479 {
13480 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13481 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13482 nextf = DECL_CHAIN (nextf);
13483 if (nextf)
13484 return false;
13485 }
13486 }
13487 /* If we have a multi-dimensional array we do not consider
13488 a non-innermost dimension as flex array if the whole
13489 multi-dimensional array is at struct end.
13490 Same for an array of aggregates with a trailing array
13491 member. */
13492 else if (TREE_CODE (ref) == ARRAY_REF)
13493 return false;
13494 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13495 ;
13496 /* If we view an underlying object as sth else then what we
13497 gathered up to now is what we have to rely on. */
13498 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13499 break;
13500 else
13501 gcc_unreachable ();
13502
13503 ref = TREE_OPERAND (ref, 0);
13504 }
13505
13506 /* The array now is at struct end. Treat flexible arrays as
13507 always subject to extend, even into just padding constrained by
13508 an underlying decl. */
13509 if (! TYPE_SIZE (atype)
13510 || ! TYPE_DOMAIN (atype)
13511 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13512 return true;
13513
13514 if (TREE_CODE (ref) == MEM_REF
13515 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13516 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13517
13518 /* If the reference is based on a declared entity, the size of the array
13519 is constrained by its given domain. (Do not trust commons PR/69368). */
13520 if (DECL_P (ref)
13521 && !(flag_unconstrained_commons
13522 && VAR_P (ref) && DECL_COMMON (ref))
13523 && DECL_SIZE_UNIT (ref)
13524 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13525 {
13526 /* Check whether the array domain covers all of the available
13527 padding. */
13528 poly_int64 offset;
13529 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13530 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13531 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13532 return true;
13533 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13534 return true;
13535
13536 /* If at least one extra element fits it is a flexarray. */
13537 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13538 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13539 + 2)
13540 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13541 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13542 return true;
13543
13544 return false;
13545 }
13546
13547 return true;
13548 }
13549
13550 /* Return a tree representing the offset, in bytes, of the field referenced
13551 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13552
13553 tree
13554 component_ref_field_offset (tree exp)
13555 {
13556 tree aligned_offset = TREE_OPERAND (exp, 2);
13557 tree field = TREE_OPERAND (exp, 1);
13558 location_t loc = EXPR_LOCATION (exp);
13559
13560 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13561 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13562 value. */
13563 if (aligned_offset)
13564 {
13565 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13566 sizetype from another type of the same width and signedness. */
13567 if (TREE_TYPE (aligned_offset) != sizetype)
13568 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13569 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13570 size_int (DECL_OFFSET_ALIGN (field)
13571 / BITS_PER_UNIT));
13572 }
13573
13574 /* Otherwise, take the offset from that of the field. Substitute
13575 any PLACEHOLDER_EXPR that we have. */
13576 else
13577 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13578 }
13579
13580 /* Given the initializer INIT, return the initializer for the field
13581 DECL if it exists, otherwise null. Used to obtain the initializer
13582 for a flexible array member and determine its size. */
13583
13584 static tree
13585 get_initializer_for (tree init, tree decl)
13586 {
13587 STRIP_NOPS (init);
13588
13589 tree fld, fld_init;
13590 unsigned HOST_WIDE_INT i;
13591 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13592 {
13593 if (decl == fld)
13594 return fld_init;
13595
13596 if (TREE_CODE (fld) == CONSTRUCTOR)
13597 {
13598 fld_init = get_initializer_for (fld_init, decl);
13599 if (fld_init)
13600 return fld_init;
13601 }
13602 }
13603
13604 return NULL_TREE;
13605 }
13606
13607 /* Determines the size of the member referenced by the COMPONENT_REF
13608 REF, using its initializer expression if necessary in order to
13609 determine the size of an initialized flexible array member.
13610 If non-null, *INTERIOR_ZERO_LENGTH is set when REF refers to
13611 an interior zero-length array.
13612 Returns the size as sizetype (which might be zero for an object
13613 with an uninitialized flexible array member) or null if the size
13614 cannot be determined. */
13615
13616 tree
13617 component_ref_size (tree ref, bool *interior_zero_length /* = NULL */)
13618 {
13619 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13620
13621 bool int_0_len = false;
13622 if (!interior_zero_length)
13623 interior_zero_length = &int_0_len;
13624
13625 /* The object/argument referenced by the COMPONENT_REF and its type. */
13626 tree arg = TREE_OPERAND (ref, 0);
13627 tree argtype = TREE_TYPE (arg);
13628 /* The referenced member. */
13629 tree member = TREE_OPERAND (ref, 1);
13630
13631 tree memsize = DECL_SIZE_UNIT (member);
13632 if (memsize)
13633 {
13634 tree memtype = TREE_TYPE (member);
13635 if (TREE_CODE (memtype) != ARRAY_TYPE)
13636 return memsize;
13637
13638 bool trailing = array_at_struct_end_p (ref);
13639 bool zero_length = integer_zerop (memsize);
13640 if (!trailing && !zero_length)
13641 /* MEMBER is either an interior array or is an array with
13642 more than one element. */
13643 return memsize;
13644
13645 *interior_zero_length = zero_length && !trailing;
13646 if (*interior_zero_length)
13647 memsize = NULL_TREE;
13648
13649 if (!zero_length)
13650 if (tree dom = TYPE_DOMAIN (memtype))
13651 if (tree min = TYPE_MIN_VALUE (dom))
13652 if (tree max = TYPE_MAX_VALUE (dom))
13653 if (TREE_CODE (min) == INTEGER_CST
13654 && TREE_CODE (max) == INTEGER_CST)
13655 {
13656 offset_int minidx = wi::to_offset (min);
13657 offset_int maxidx = wi::to_offset (max);
13658 if (maxidx - minidx > 0)
13659 /* MEMBER is an array with more than one element. */
13660 return memsize;
13661 }
13662
13663 /* For a refernce to a zero- or one-element array member of a union
13664 use the size of the union instead of the size of the member. */
13665 if (TREE_CODE (argtype) == UNION_TYPE)
13666 memsize = TYPE_SIZE_UNIT (argtype);
13667 }
13668
13669 /* MEMBER is either a bona fide flexible array member, or a zero-length
13670 array member, or an array of length one treated as such. */
13671
13672 /* If the reference is to a declared object and the member a true
13673 flexible array, try to determine its size from its initializer. */
13674 poly_int64 baseoff = 0;
13675 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13676 if (!base || !VAR_P (base))
13677 {
13678 if (!*interior_zero_length)
13679 return NULL_TREE;
13680
13681 if (TREE_CODE (arg) != COMPONENT_REF)
13682 return NULL_TREE;
13683
13684 base = arg;
13685 while (TREE_CODE (base) == COMPONENT_REF)
13686 base = TREE_OPERAND (base, 0);
13687 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13688 }
13689
13690 /* BASE is the declared object of which MEMBER is either a member
13691 or that is cast to ARGTYPE (e.g., a char buffer used to store
13692 an ARGTYPE object). */
13693 tree basetype = TREE_TYPE (base);
13694
13695 /* Determine the base type of the referenced object. If it's
13696 the same as ARGTYPE and MEMBER has a known size, return it. */
13697 tree bt = basetype;
13698 if (!*interior_zero_length)
13699 while (TREE_CODE (bt) == ARRAY_TYPE)
13700 bt = TREE_TYPE (bt);
13701 bool typematch = useless_type_conversion_p (argtype, bt);
13702 if (memsize && typematch)
13703 return memsize;
13704
13705 memsize = NULL_TREE;
13706
13707 if (typematch)
13708 /* MEMBER is a true flexible array member. Compute its size from
13709 the initializer of the BASE object if it has one. */
13710 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13711 if (init != error_mark_node)
13712 {
13713 init = get_initializer_for (init, member);
13714 if (init)
13715 {
13716 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13717 if (tree refsize = TYPE_SIZE_UNIT (argtype))
13718 {
13719 /* Use the larger of the initializer size and the tail
13720 padding in the enclosing struct. */
13721 poly_int64 rsz = tree_to_poly_int64 (refsize);
13722 rsz -= baseoff;
13723 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13724 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13725 }
13726
13727 baseoff = 0;
13728 }
13729 }
13730
13731 if (!memsize)
13732 {
13733 if (typematch)
13734 {
13735 if (DECL_P (base)
13736 && DECL_EXTERNAL (base)
13737 && bt == basetype
13738 && !*interior_zero_length)
13739 /* The size of a flexible array member of an extern struct
13740 with no initializer cannot be determined (it's defined
13741 in another translation unit and can have an initializer
13742 with an arbitrary number of elements). */
13743 return NULL_TREE;
13744
13745 /* Use the size of the base struct or, for interior zero-length
13746 arrays, the size of the enclosing type. */
13747 memsize = TYPE_SIZE_UNIT (bt);
13748 }
13749 else if (DECL_P (base))
13750 /* Use the size of the BASE object (possibly an array of some
13751 other type such as char used to store the struct). */
13752 memsize = DECL_SIZE_UNIT (base);
13753 else
13754 return NULL_TREE;
13755 }
13756
13757 /* If the flexible array member has a known size use the greater
13758 of it and the tail padding in the enclosing struct.
13759 Otherwise, when the size of the flexible array member is unknown
13760 and the referenced object is not a struct, use the size of its
13761 type when known. This detects sizes of array buffers when cast
13762 to struct types with flexible array members. */
13763 if (memsize)
13764 {
13765 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13766 if (known_lt (baseoff, memsz64))
13767 {
13768 memsz64 -= baseoff;
13769 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13770 }
13771 return size_zero_node;
13772 }
13773
13774 /* Return "don't know" for an external non-array object since its
13775 flexible array member can be initialized to have any number of
13776 elements. Otherwise, return zero because the flexible array
13777 member has no elements. */
13778 return (DECL_P (base)
13779 && DECL_EXTERNAL (base)
13780 && (!typematch
13781 || TREE_CODE (basetype) != ARRAY_TYPE)
13782 ? NULL_TREE : size_zero_node);
13783 }
13784
13785 /* Return the machine mode of T. For vectors, returns the mode of the
13786 inner type. The main use case is to feed the result to HONOR_NANS,
13787 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13788
13789 machine_mode
13790 element_mode (const_tree t)
13791 {
13792 if (!TYPE_P (t))
13793 t = TREE_TYPE (t);
13794 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13795 t = TREE_TYPE (t);
13796 return TYPE_MODE (t);
13797 }
13798
13799 /* Vector types need to re-check the target flags each time we report
13800 the machine mode. We need to do this because attribute target can
13801 change the result of vector_mode_supported_p and have_regs_of_mode
13802 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13803 change on a per-function basis. */
13804 /* ??? Possibly a better solution is to run through all the types
13805 referenced by a function and re-compute the TYPE_MODE once, rather
13806 than make the TYPE_MODE macro call a function. */
13807
13808 machine_mode
13809 vector_type_mode (const_tree t)
13810 {
13811 machine_mode mode;
13812
13813 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13814
13815 mode = t->type_common.mode;
13816 if (VECTOR_MODE_P (mode)
13817 && (!targetm.vector_mode_supported_p (mode)
13818 || !have_regs_of_mode[mode]))
13819 {
13820 scalar_int_mode innermode;
13821
13822 /* For integers, try mapping it to a same-sized scalar mode. */
13823 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13824 {
13825 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13826 * GET_MODE_BITSIZE (innermode));
13827 scalar_int_mode mode;
13828 if (int_mode_for_size (size, 0).exists (&mode)
13829 && have_regs_of_mode[mode])
13830 return mode;
13831 }
13832
13833 return BLKmode;
13834 }
13835
13836 return mode;
13837 }
13838
13839 /* Return the size in bits of each element of vector type TYPE. */
13840
13841 unsigned int
13842 vector_element_bits (const_tree type)
13843 {
13844 gcc_checking_assert (VECTOR_TYPE_P (type));
13845 if (VECTOR_BOOLEAN_TYPE_P (type))
13846 return vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (type)),
13847 TYPE_VECTOR_SUBPARTS (type));
13848 return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
13849 }
13850
13851 /* Calculate the size in bits of each element of vector type TYPE
13852 and return the result as a tree of type bitsizetype. */
13853
13854 tree
13855 vector_element_bits_tree (const_tree type)
13856 {
13857 gcc_checking_assert (VECTOR_TYPE_P (type));
13858 if (VECTOR_BOOLEAN_TYPE_P (type))
13859 return bitsize_int (vector_element_bits (type));
13860 return TYPE_SIZE (TREE_TYPE (type));
13861 }
13862
13863 /* Verify that basic properties of T match TV and thus T can be a variant of
13864 TV. TV should be the more specified variant (i.e. the main variant). */
13865
13866 static bool
13867 verify_type_variant (const_tree t, tree tv)
13868 {
13869 /* Type variant can differ by:
13870
13871 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13872 ENCODE_QUAL_ADDR_SPACE.
13873 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13874 in this case some values may not be set in the variant types
13875 (see TYPE_COMPLETE_P checks).
13876 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13877 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13878 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13879 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13880 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13881 this is necessary to make it possible to merge types form different TUs
13882 - arrays, pointers and references may have TREE_TYPE that is a variant
13883 of TREE_TYPE of their main variants.
13884 - aggregates may have new TYPE_FIELDS list that list variants of
13885 the main variant TYPE_FIELDS.
13886 - vector types may differ by TYPE_VECTOR_OPAQUE
13887 */
13888
13889 /* Convenience macro for matching individual fields. */
13890 #define verify_variant_match(flag) \
13891 do { \
13892 if (flag (tv) != flag (t)) \
13893 { \
13894 error ("type variant differs by %s", #flag); \
13895 debug_tree (tv); \
13896 return false; \
13897 } \
13898 } while (false)
13899
13900 /* tree_base checks. */
13901
13902 verify_variant_match (TREE_CODE);
13903 /* FIXME: Ada builds non-artificial variants of artificial types. */
13904 if (TYPE_ARTIFICIAL (tv) && 0)
13905 verify_variant_match (TYPE_ARTIFICIAL);
13906 if (POINTER_TYPE_P (tv))
13907 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13908 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13909 verify_variant_match (TYPE_UNSIGNED);
13910 verify_variant_match (TYPE_PACKED);
13911 if (TREE_CODE (t) == REFERENCE_TYPE)
13912 verify_variant_match (TYPE_REF_IS_RVALUE);
13913 if (AGGREGATE_TYPE_P (t))
13914 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13915 else
13916 verify_variant_match (TYPE_SATURATING);
13917 /* FIXME: This check trigger during libstdc++ build. */
13918 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13919 verify_variant_match (TYPE_FINAL_P);
13920
13921 /* tree_type_common checks. */
13922
13923 if (COMPLETE_TYPE_P (t))
13924 {
13925 verify_variant_match (TYPE_MODE);
13926 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13927 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13928 verify_variant_match (TYPE_SIZE);
13929 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13930 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13931 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13932 {
13933 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13934 TYPE_SIZE_UNIT (tv), 0));
13935 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13936 debug_tree (tv);
13937 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13938 debug_tree (TYPE_SIZE_UNIT (tv));
13939 error ("type%'s %<TYPE_SIZE_UNIT%>");
13940 debug_tree (TYPE_SIZE_UNIT (t));
13941 return false;
13942 }
13943 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13944 }
13945 verify_variant_match (TYPE_PRECISION);
13946 if (RECORD_OR_UNION_TYPE_P (t))
13947 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13948 else if (TREE_CODE (t) == ARRAY_TYPE)
13949 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13950 /* During LTO we merge variant lists from diferent translation units
13951 that may differ BY TYPE_CONTEXT that in turn may point
13952 to TRANSLATION_UNIT_DECL.
13953 Ada also builds variants of types with different TYPE_CONTEXT. */
13954 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13955 verify_variant_match (TYPE_CONTEXT);
13956 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
13957 verify_variant_match (TYPE_STRING_FLAG);
13958 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
13959 verify_variant_match (TYPE_CXX_ODR_P);
13960 if (TYPE_ALIAS_SET_KNOWN_P (t))
13961 {
13962 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13963 debug_tree (tv);
13964 return false;
13965 }
13966
13967 /* tree_type_non_common checks. */
13968
13969 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13970 and dangle the pointer from time to time. */
13971 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13972 && (in_lto_p || !TYPE_VFIELD (tv)
13973 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13974 {
13975 error ("type variant has different %<TYPE_VFIELD%>");
13976 debug_tree (tv);
13977 return false;
13978 }
13979 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13980 || TREE_CODE (t) == INTEGER_TYPE
13981 || TREE_CODE (t) == BOOLEAN_TYPE
13982 || TREE_CODE (t) == REAL_TYPE
13983 || TREE_CODE (t) == FIXED_POINT_TYPE)
13984 {
13985 verify_variant_match (TYPE_MAX_VALUE);
13986 verify_variant_match (TYPE_MIN_VALUE);
13987 }
13988 if (TREE_CODE (t) == METHOD_TYPE)
13989 verify_variant_match (TYPE_METHOD_BASETYPE);
13990 if (TREE_CODE (t) == OFFSET_TYPE)
13991 verify_variant_match (TYPE_OFFSET_BASETYPE);
13992 if (TREE_CODE (t) == ARRAY_TYPE)
13993 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13994 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13995 or even type's main variant. This is needed to make bootstrap pass
13996 and the bug seems new in GCC 5.
13997 C++ FE should be updated to make this consistent and we should check
13998 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13999 is a match with main variant.
14000
14001 Also disable the check for Java for now because of parser hack that builds
14002 first an dummy BINFO and then sometimes replace it by real BINFO in some
14003 of the copies. */
14004 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
14005 && TYPE_BINFO (t) != TYPE_BINFO (tv)
14006 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
14007 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
14008 at LTO time only. */
14009 && (in_lto_p && odr_type_p (t)))
14010 {
14011 error ("type variant has different %<TYPE_BINFO%>");
14012 debug_tree (tv);
14013 error ("type variant%'s %<TYPE_BINFO%>");
14014 debug_tree (TYPE_BINFO (tv));
14015 error ("type%'s %<TYPE_BINFO%>");
14016 debug_tree (TYPE_BINFO (t));
14017 return false;
14018 }
14019
14020 /* Check various uses of TYPE_VALUES_RAW. */
14021 if (TREE_CODE (t) == ENUMERAL_TYPE
14022 && TYPE_VALUES (t))
14023 verify_variant_match (TYPE_VALUES);
14024 else if (TREE_CODE (t) == ARRAY_TYPE)
14025 verify_variant_match (TYPE_DOMAIN);
14026 /* Permit incomplete variants of complete type. While FEs may complete
14027 all variants, this does not happen for C++ templates in all cases. */
14028 else if (RECORD_OR_UNION_TYPE_P (t)
14029 && COMPLETE_TYPE_P (t)
14030 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
14031 {
14032 tree f1, f2;
14033
14034 /* Fortran builds qualified variants as new records with items of
14035 qualified type. Verify that they looks same. */
14036 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
14037 f1 && f2;
14038 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14039 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
14040 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
14041 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
14042 /* FIXME: gfc_nonrestricted_type builds all types as variants
14043 with exception of pointer types. It deeply copies the type
14044 which means that we may end up with a variant type
14045 referring non-variant pointer. We may change it to
14046 produce types as variants, too, like
14047 objc_get_protocol_qualified_type does. */
14048 && !POINTER_TYPE_P (TREE_TYPE (f1)))
14049 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
14050 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
14051 break;
14052 if (f1 || f2)
14053 {
14054 error ("type variant has different %<TYPE_FIELDS%>");
14055 debug_tree (tv);
14056 error ("first mismatch is field");
14057 debug_tree (f1);
14058 error ("and field");
14059 debug_tree (f2);
14060 return false;
14061 }
14062 }
14063 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
14064 verify_variant_match (TYPE_ARG_TYPES);
14065 /* For C++ the qualified variant of array type is really an array type
14066 of qualified TREE_TYPE.
14067 objc builds variants of pointer where pointer to type is a variant, too
14068 in objc_get_protocol_qualified_type. */
14069 if (TREE_TYPE (t) != TREE_TYPE (tv)
14070 && ((TREE_CODE (t) != ARRAY_TYPE
14071 && !POINTER_TYPE_P (t))
14072 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
14073 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
14074 {
14075 error ("type variant has different %<TREE_TYPE%>");
14076 debug_tree (tv);
14077 error ("type variant%'s %<TREE_TYPE%>");
14078 debug_tree (TREE_TYPE (tv));
14079 error ("type%'s %<TREE_TYPE%>");
14080 debug_tree (TREE_TYPE (t));
14081 return false;
14082 }
14083 if (type_with_alias_set_p (t)
14084 && !gimple_canonical_types_compatible_p (t, tv, false))
14085 {
14086 error ("type is not compatible with its variant");
14087 debug_tree (tv);
14088 error ("type variant%'s %<TREE_TYPE%>");
14089 debug_tree (TREE_TYPE (tv));
14090 error ("type%'s %<TREE_TYPE%>");
14091 debug_tree (TREE_TYPE (t));
14092 return false;
14093 }
14094 return true;
14095 #undef verify_variant_match
14096 }
14097
14098
14099 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14100 the middle-end types_compatible_p function. It needs to avoid
14101 claiming types are different for types that should be treated
14102 the same with respect to TBAA. Canonical types are also used
14103 for IL consistency checks via the useless_type_conversion_p
14104 predicate which does not handle all type kinds itself but falls
14105 back to pointer-comparison of TYPE_CANONICAL for aggregates
14106 for example. */
14107
14108 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14109 type calculation because we need to allow inter-operability between signed
14110 and unsigned variants. */
14111
14112 bool
14113 type_with_interoperable_signedness (const_tree type)
14114 {
14115 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14116 signed char and unsigned char. Similarly fortran FE builds
14117 C_SIZE_T as signed type, while C defines it unsigned. */
14118
14119 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14120 == INTEGER_TYPE
14121 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14122 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14123 }
14124
14125 /* Return true iff T1 and T2 are structurally identical for what
14126 TBAA is concerned.
14127 This function is used both by lto.c canonical type merging and by the
14128 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14129 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14130 only for LTO because only in these cases TYPE_CANONICAL equivalence
14131 correspond to one defined by gimple_canonical_types_compatible_p. */
14132
14133 bool
14134 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14135 bool trust_type_canonical)
14136 {
14137 /* Type variants should be same as the main variant. When not doing sanity
14138 checking to verify this fact, go to main variants and save some work. */
14139 if (trust_type_canonical)
14140 {
14141 t1 = TYPE_MAIN_VARIANT (t1);
14142 t2 = TYPE_MAIN_VARIANT (t2);
14143 }
14144
14145 /* Check first for the obvious case of pointer identity. */
14146 if (t1 == t2)
14147 return true;
14148
14149 /* Check that we have two types to compare. */
14150 if (t1 == NULL_TREE || t2 == NULL_TREE)
14151 return false;
14152
14153 /* We consider complete types always compatible with incomplete type.
14154 This does not make sense for canonical type calculation and thus we
14155 need to ensure that we are never called on it.
14156
14157 FIXME: For more correctness the function probably should have three modes
14158 1) mode assuming that types are complete mathcing their structure
14159 2) mode allowing incomplete types but producing equivalence classes
14160 and thus ignoring all info from complete types
14161 3) mode allowing incomplete types to match complete but checking
14162 compatibility between complete types.
14163
14164 1 and 2 can be used for canonical type calculation. 3 is the real
14165 definition of type compatibility that can be used i.e. for warnings during
14166 declaration merging. */
14167
14168 gcc_assert (!trust_type_canonical
14169 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14170
14171 /* If the types have been previously registered and found equal
14172 they still are. */
14173
14174 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14175 && trust_type_canonical)
14176 {
14177 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14178 they are always NULL, but they are set to non-NULL for types
14179 constructed by build_pointer_type and variants. In this case the
14180 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14181 all pointers are considered equal. Be sure to not return false
14182 negatives. */
14183 gcc_checking_assert (canonical_type_used_p (t1)
14184 && canonical_type_used_p (t2));
14185 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14186 }
14187
14188 /* For types where we do ODR based TBAA the canonical type is always
14189 set correctly, so we know that types are different if their
14190 canonical types does not match. */
14191 if (trust_type_canonical
14192 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
14193 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
14194 return false;
14195
14196 /* Can't be the same type if the types don't have the same code. */
14197 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14198 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14199 return false;
14200
14201 /* Qualifiers do not matter for canonical type comparison purposes. */
14202
14203 /* Void types and nullptr types are always the same. */
14204 if (TREE_CODE (t1) == VOID_TYPE
14205 || TREE_CODE (t1) == NULLPTR_TYPE)
14206 return true;
14207
14208 /* Can't be the same type if they have different mode. */
14209 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14210 return false;
14211
14212 /* Non-aggregate types can be handled cheaply. */
14213 if (INTEGRAL_TYPE_P (t1)
14214 || SCALAR_FLOAT_TYPE_P (t1)
14215 || FIXED_POINT_TYPE_P (t1)
14216 || TREE_CODE (t1) == VECTOR_TYPE
14217 || TREE_CODE (t1) == COMPLEX_TYPE
14218 || TREE_CODE (t1) == OFFSET_TYPE
14219 || POINTER_TYPE_P (t1))
14220 {
14221 /* Can't be the same type if they have different recision. */
14222 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14223 return false;
14224
14225 /* In some cases the signed and unsigned types are required to be
14226 inter-operable. */
14227 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14228 && !type_with_interoperable_signedness (t1))
14229 return false;
14230
14231 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14232 interoperable with "signed char". Unless all frontends are revisited
14233 to agree on these types, we must ignore the flag completely. */
14234
14235 /* Fortran standard define C_PTR type that is compatible with every
14236 C pointer. For this reason we need to glob all pointers into one.
14237 Still pointers in different address spaces are not compatible. */
14238 if (POINTER_TYPE_P (t1))
14239 {
14240 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14241 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14242 return false;
14243 }
14244
14245 /* Tail-recurse to components. */
14246 if (TREE_CODE (t1) == VECTOR_TYPE
14247 || TREE_CODE (t1) == COMPLEX_TYPE)
14248 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14249 TREE_TYPE (t2),
14250 trust_type_canonical);
14251
14252 return true;
14253 }
14254
14255 /* Do type-specific comparisons. */
14256 switch (TREE_CODE (t1))
14257 {
14258 case ARRAY_TYPE:
14259 /* Array types are the same if the element types are the same and
14260 the number of elements are the same. */
14261 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14262 trust_type_canonical)
14263 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14264 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14265 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14266 return false;
14267 else
14268 {
14269 tree i1 = TYPE_DOMAIN (t1);
14270 tree i2 = TYPE_DOMAIN (t2);
14271
14272 /* For an incomplete external array, the type domain can be
14273 NULL_TREE. Check this condition also. */
14274 if (i1 == NULL_TREE && i2 == NULL_TREE)
14275 return true;
14276 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14277 return false;
14278 else
14279 {
14280 tree min1 = TYPE_MIN_VALUE (i1);
14281 tree min2 = TYPE_MIN_VALUE (i2);
14282 tree max1 = TYPE_MAX_VALUE (i1);
14283 tree max2 = TYPE_MAX_VALUE (i2);
14284
14285 /* The minimum/maximum values have to be the same. */
14286 if ((min1 == min2
14287 || (min1 && min2
14288 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14289 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14290 || operand_equal_p (min1, min2, 0))))
14291 && (max1 == max2
14292 || (max1 && max2
14293 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14294 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14295 || operand_equal_p (max1, max2, 0)))))
14296 return true;
14297 else
14298 return false;
14299 }
14300 }
14301
14302 case METHOD_TYPE:
14303 case FUNCTION_TYPE:
14304 /* Function types are the same if the return type and arguments types
14305 are the same. */
14306 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14307 trust_type_canonical))
14308 return false;
14309
14310 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14311 return true;
14312 else
14313 {
14314 tree parms1, parms2;
14315
14316 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14317 parms1 && parms2;
14318 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14319 {
14320 if (!gimple_canonical_types_compatible_p
14321 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14322 trust_type_canonical))
14323 return false;
14324 }
14325
14326 if (parms1 || parms2)
14327 return false;
14328
14329 return true;
14330 }
14331
14332 case RECORD_TYPE:
14333 case UNION_TYPE:
14334 case QUAL_UNION_TYPE:
14335 {
14336 tree f1, f2;
14337
14338 /* Don't try to compare variants of an incomplete type, before
14339 TYPE_FIELDS has been copied around. */
14340 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14341 return true;
14342
14343
14344 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14345 return false;
14346
14347 /* For aggregate types, all the fields must be the same. */
14348 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14349 f1 || f2;
14350 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14351 {
14352 /* Skip non-fields and zero-sized fields. */
14353 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14354 || (DECL_SIZE (f1)
14355 && integer_zerop (DECL_SIZE (f1)))))
14356 f1 = TREE_CHAIN (f1);
14357 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14358 || (DECL_SIZE (f2)
14359 && integer_zerop (DECL_SIZE (f2)))))
14360 f2 = TREE_CHAIN (f2);
14361 if (!f1 || !f2)
14362 break;
14363 /* The fields must have the same name, offset and type. */
14364 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14365 || !gimple_compare_field_offset (f1, f2)
14366 || !gimple_canonical_types_compatible_p
14367 (TREE_TYPE (f1), TREE_TYPE (f2),
14368 trust_type_canonical))
14369 return false;
14370 }
14371
14372 /* If one aggregate has more fields than the other, they
14373 are not the same. */
14374 if (f1 || f2)
14375 return false;
14376
14377 return true;
14378 }
14379
14380 default:
14381 /* Consider all types with language specific trees in them mutually
14382 compatible. This is executed only from verify_type and false
14383 positives can be tolerated. */
14384 gcc_assert (!in_lto_p);
14385 return true;
14386 }
14387 }
14388
14389 /* Verify type T. */
14390
14391 void
14392 verify_type (const_tree t)
14393 {
14394 bool error_found = false;
14395 tree mv = TYPE_MAIN_VARIANT (t);
14396 if (!mv)
14397 {
14398 error ("main variant is not defined");
14399 error_found = true;
14400 }
14401 else if (mv != TYPE_MAIN_VARIANT (mv))
14402 {
14403 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14404 debug_tree (mv);
14405 error_found = true;
14406 }
14407 else if (t != mv && !verify_type_variant (t, mv))
14408 error_found = true;
14409
14410 tree ct = TYPE_CANONICAL (t);
14411 if (!ct)
14412 ;
14413 else if (TYPE_CANONICAL (t) != ct)
14414 {
14415 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14416 debug_tree (ct);
14417 error_found = true;
14418 }
14419 /* Method and function types cannot be used to address memory and thus
14420 TYPE_CANONICAL really matters only for determining useless conversions.
14421
14422 FIXME: C++ FE produce declarations of builtin functions that are not
14423 compatible with main variants. */
14424 else if (TREE_CODE (t) == FUNCTION_TYPE)
14425 ;
14426 else if (t != ct
14427 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14428 with variably sized arrays because their sizes possibly
14429 gimplified to different variables. */
14430 && !variably_modified_type_p (ct, NULL)
14431 && !gimple_canonical_types_compatible_p (t, ct, false)
14432 && COMPLETE_TYPE_P (t))
14433 {
14434 error ("%<TYPE_CANONICAL%> is not compatible");
14435 debug_tree (ct);
14436 error_found = true;
14437 }
14438
14439 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14440 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14441 {
14442 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14443 debug_tree (ct);
14444 error_found = true;
14445 }
14446 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14447 {
14448 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14449 debug_tree (ct);
14450 debug_tree (TYPE_MAIN_VARIANT (ct));
14451 error_found = true;
14452 }
14453
14454
14455 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14456 if (RECORD_OR_UNION_TYPE_P (t))
14457 {
14458 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14459 and danagle the pointer from time to time. */
14460 if (TYPE_VFIELD (t)
14461 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14462 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14463 {
14464 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14465 debug_tree (TYPE_VFIELD (t));
14466 error_found = true;
14467 }
14468 }
14469 else if (TREE_CODE (t) == POINTER_TYPE)
14470 {
14471 if (TYPE_NEXT_PTR_TO (t)
14472 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14473 {
14474 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14475 debug_tree (TYPE_NEXT_PTR_TO (t));
14476 error_found = true;
14477 }
14478 }
14479 else if (TREE_CODE (t) == REFERENCE_TYPE)
14480 {
14481 if (TYPE_NEXT_REF_TO (t)
14482 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14483 {
14484 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14485 debug_tree (TYPE_NEXT_REF_TO (t));
14486 error_found = true;
14487 }
14488 }
14489 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14490 || TREE_CODE (t) == FIXED_POINT_TYPE)
14491 {
14492 /* FIXME: The following check should pass:
14493 useless_type_conversion_p (const_cast <tree> (t),
14494 TREE_TYPE (TYPE_MIN_VALUE (t))
14495 but does not for C sizetypes in LTO. */
14496 }
14497
14498 /* Check various uses of TYPE_MAXVAL_RAW. */
14499 if (RECORD_OR_UNION_TYPE_P (t))
14500 {
14501 if (!TYPE_BINFO (t))
14502 ;
14503 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14504 {
14505 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14506 debug_tree (TYPE_BINFO (t));
14507 error_found = true;
14508 }
14509 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14510 {
14511 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14512 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14513 error_found = true;
14514 }
14515 }
14516 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14517 {
14518 if (TYPE_METHOD_BASETYPE (t)
14519 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14520 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14521 {
14522 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14523 debug_tree (TYPE_METHOD_BASETYPE (t));
14524 error_found = true;
14525 }
14526 }
14527 else if (TREE_CODE (t) == OFFSET_TYPE)
14528 {
14529 if (TYPE_OFFSET_BASETYPE (t)
14530 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14531 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14532 {
14533 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14534 debug_tree (TYPE_OFFSET_BASETYPE (t));
14535 error_found = true;
14536 }
14537 }
14538 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14539 || TREE_CODE (t) == FIXED_POINT_TYPE)
14540 {
14541 /* FIXME: The following check should pass:
14542 useless_type_conversion_p (const_cast <tree> (t),
14543 TREE_TYPE (TYPE_MAX_VALUE (t))
14544 but does not for C sizetypes in LTO. */
14545 }
14546 else if (TREE_CODE (t) == ARRAY_TYPE)
14547 {
14548 if (TYPE_ARRAY_MAX_SIZE (t)
14549 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14550 {
14551 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14552 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14553 error_found = true;
14554 }
14555 }
14556 else if (TYPE_MAX_VALUE_RAW (t))
14557 {
14558 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14559 debug_tree (TYPE_MAX_VALUE_RAW (t));
14560 error_found = true;
14561 }
14562
14563 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14564 {
14565 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14566 debug_tree (TYPE_LANG_SLOT_1 (t));
14567 error_found = true;
14568 }
14569
14570 /* Check various uses of TYPE_VALUES_RAW. */
14571 if (TREE_CODE (t) == ENUMERAL_TYPE)
14572 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14573 {
14574 tree value = TREE_VALUE (l);
14575 tree name = TREE_PURPOSE (l);
14576
14577 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14578 CONST_DECL of ENUMERAL TYPE. */
14579 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14580 {
14581 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14582 debug_tree (value);
14583 debug_tree (name);
14584 error_found = true;
14585 }
14586 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14587 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14588 {
14589 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14590 "to the enum");
14591 debug_tree (value);
14592 debug_tree (name);
14593 error_found = true;
14594 }
14595 if (TREE_CODE (name) != IDENTIFIER_NODE)
14596 {
14597 error ("enum value name is not %<IDENTIFIER_NODE%>");
14598 debug_tree (value);
14599 debug_tree (name);
14600 error_found = true;
14601 }
14602 }
14603 else if (TREE_CODE (t) == ARRAY_TYPE)
14604 {
14605 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14606 {
14607 error ("array %<TYPE_DOMAIN%> is not integer type");
14608 debug_tree (TYPE_DOMAIN (t));
14609 error_found = true;
14610 }
14611 }
14612 else if (RECORD_OR_UNION_TYPE_P (t))
14613 {
14614 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14615 {
14616 error ("%<TYPE_FIELDS%> defined in incomplete type");
14617 error_found = true;
14618 }
14619 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14620 {
14621 /* TODO: verify properties of decls. */
14622 if (TREE_CODE (fld) == FIELD_DECL)
14623 ;
14624 else if (TREE_CODE (fld) == TYPE_DECL)
14625 ;
14626 else if (TREE_CODE (fld) == CONST_DECL)
14627 ;
14628 else if (VAR_P (fld))
14629 ;
14630 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14631 ;
14632 else if (TREE_CODE (fld) == USING_DECL)
14633 ;
14634 else if (TREE_CODE (fld) == FUNCTION_DECL)
14635 ;
14636 else
14637 {
14638 error ("wrong tree in %<TYPE_FIELDS%> list");
14639 debug_tree (fld);
14640 error_found = true;
14641 }
14642 }
14643 }
14644 else if (TREE_CODE (t) == INTEGER_TYPE
14645 || TREE_CODE (t) == BOOLEAN_TYPE
14646 || TREE_CODE (t) == OFFSET_TYPE
14647 || TREE_CODE (t) == REFERENCE_TYPE
14648 || TREE_CODE (t) == NULLPTR_TYPE
14649 || TREE_CODE (t) == POINTER_TYPE)
14650 {
14651 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14652 {
14653 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14654 "is %p",
14655 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14656 error_found = true;
14657 }
14658 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14659 {
14660 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14661 debug_tree (TYPE_CACHED_VALUES (t));
14662 error_found = true;
14663 }
14664 /* Verify just enough of cache to ensure that no one copied it to new type.
14665 All copying should go by copy_node that should clear it. */
14666 else if (TYPE_CACHED_VALUES_P (t))
14667 {
14668 int i;
14669 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14670 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14671 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14672 {
14673 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14674 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14675 error_found = true;
14676 break;
14677 }
14678 }
14679 }
14680 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14681 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14682 {
14683 /* C++ FE uses TREE_PURPOSE to store initial values. */
14684 if (TREE_PURPOSE (l) && in_lto_p)
14685 {
14686 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14687 debug_tree (l);
14688 error_found = true;
14689 }
14690 if (!TYPE_P (TREE_VALUE (l)))
14691 {
14692 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14693 debug_tree (l);
14694 error_found = true;
14695 }
14696 }
14697 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14698 {
14699 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14700 debug_tree (TYPE_VALUES_RAW (t));
14701 error_found = true;
14702 }
14703 if (TREE_CODE (t) != INTEGER_TYPE
14704 && TREE_CODE (t) != BOOLEAN_TYPE
14705 && TREE_CODE (t) != OFFSET_TYPE
14706 && TREE_CODE (t) != REFERENCE_TYPE
14707 && TREE_CODE (t) != NULLPTR_TYPE
14708 && TREE_CODE (t) != POINTER_TYPE
14709 && TYPE_CACHED_VALUES_P (t))
14710 {
14711 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14712 error_found = true;
14713 }
14714
14715 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14716 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14717 of a type. */
14718 if (TREE_CODE (t) == METHOD_TYPE
14719 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14720 {
14721 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14722 error_found = true;
14723 }
14724
14725 if (error_found)
14726 {
14727 debug_tree (const_cast <tree> (t));
14728 internal_error ("%qs failed", __func__);
14729 }
14730 }
14731
14732
14733 /* Return 1 if ARG interpreted as signed in its precision is known to be
14734 always positive or 2 if ARG is known to be always negative, or 3 if
14735 ARG may be positive or negative. */
14736
14737 int
14738 get_range_pos_neg (tree arg)
14739 {
14740 if (arg == error_mark_node)
14741 return 3;
14742
14743 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14744 int cnt = 0;
14745 if (TREE_CODE (arg) == INTEGER_CST)
14746 {
14747 wide_int w = wi::sext (wi::to_wide (arg), prec);
14748 if (wi::neg_p (w))
14749 return 2;
14750 else
14751 return 1;
14752 }
14753 while (CONVERT_EXPR_P (arg)
14754 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14755 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14756 {
14757 arg = TREE_OPERAND (arg, 0);
14758 /* Narrower value zero extended into wider type
14759 will always result in positive values. */
14760 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14761 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14762 return 1;
14763 prec = TYPE_PRECISION (TREE_TYPE (arg));
14764 if (++cnt > 30)
14765 return 3;
14766 }
14767
14768 if (TREE_CODE (arg) != SSA_NAME)
14769 return 3;
14770 wide_int arg_min, arg_max;
14771 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14772 {
14773 gimple *g = SSA_NAME_DEF_STMT (arg);
14774 if (is_gimple_assign (g)
14775 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14776 {
14777 tree t = gimple_assign_rhs1 (g);
14778 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14779 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14780 {
14781 if (TYPE_UNSIGNED (TREE_TYPE (t))
14782 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14783 return 1;
14784 prec = TYPE_PRECISION (TREE_TYPE (t));
14785 arg = t;
14786 if (++cnt > 30)
14787 return 3;
14788 continue;
14789 }
14790 }
14791 return 3;
14792 }
14793 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14794 {
14795 /* For unsigned values, the "positive" range comes
14796 below the "negative" range. */
14797 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14798 return 1;
14799 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14800 return 2;
14801 }
14802 else
14803 {
14804 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14805 return 1;
14806 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14807 return 2;
14808 }
14809 return 3;
14810 }
14811
14812
14813
14814
14815 /* Return true if ARG is marked with the nonnull attribute in the
14816 current function signature. */
14817
14818 bool
14819 nonnull_arg_p (const_tree arg)
14820 {
14821 tree t, attrs, fntype;
14822 unsigned HOST_WIDE_INT arg_num;
14823
14824 gcc_assert (TREE_CODE (arg) == PARM_DECL
14825 && (POINTER_TYPE_P (TREE_TYPE (arg))
14826 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14827
14828 /* The static chain decl is always non null. */
14829 if (arg == cfun->static_chain_decl)
14830 return true;
14831
14832 /* THIS argument of method is always non-NULL. */
14833 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14834 && arg == DECL_ARGUMENTS (cfun->decl)
14835 && flag_delete_null_pointer_checks)
14836 return true;
14837
14838 /* Values passed by reference are always non-NULL. */
14839 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14840 && flag_delete_null_pointer_checks)
14841 return true;
14842
14843 fntype = TREE_TYPE (cfun->decl);
14844 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14845 {
14846 attrs = lookup_attribute ("nonnull", attrs);
14847
14848 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14849 if (attrs == NULL_TREE)
14850 return false;
14851
14852 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14853 if (TREE_VALUE (attrs) == NULL_TREE)
14854 return true;
14855
14856 /* Get the position number for ARG in the function signature. */
14857 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14858 t;
14859 t = DECL_CHAIN (t), arg_num++)
14860 {
14861 if (t == arg)
14862 break;
14863 }
14864
14865 gcc_assert (t == arg);
14866
14867 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14868 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14869 {
14870 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14871 return true;
14872 }
14873 }
14874
14875 return false;
14876 }
14877
14878 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14879 information. */
14880
14881 location_t
14882 set_block (location_t loc, tree block)
14883 {
14884 location_t pure_loc = get_pure_location (loc);
14885 source_range src_range = get_range_from_loc (line_table, loc);
14886 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14887 }
14888
14889 location_t
14890 set_source_range (tree expr, location_t start, location_t finish)
14891 {
14892 source_range src_range;
14893 src_range.m_start = start;
14894 src_range.m_finish = finish;
14895 return set_source_range (expr, src_range);
14896 }
14897
14898 location_t
14899 set_source_range (tree expr, source_range src_range)
14900 {
14901 if (!EXPR_P (expr))
14902 return UNKNOWN_LOCATION;
14903
14904 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14905 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14906 pure_loc,
14907 src_range,
14908 NULL);
14909 SET_EXPR_LOCATION (expr, adhoc);
14910 return adhoc;
14911 }
14912
14913 /* Return EXPR, potentially wrapped with a node expression LOC,
14914 if !CAN_HAVE_LOCATION_P (expr).
14915
14916 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14917 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14918
14919 Wrapper nodes can be identified using location_wrapper_p. */
14920
14921 tree
14922 maybe_wrap_with_location (tree expr, location_t loc)
14923 {
14924 if (expr == NULL)
14925 return NULL;
14926 if (loc == UNKNOWN_LOCATION)
14927 return expr;
14928 if (CAN_HAVE_LOCATION_P (expr))
14929 return expr;
14930 /* We should only be adding wrappers for constants and for decls,
14931 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14932 gcc_assert (CONSTANT_CLASS_P (expr)
14933 || DECL_P (expr)
14934 || EXCEPTIONAL_CLASS_P (expr));
14935
14936 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14937 any impact of the wrapper nodes. */
14938 if (EXCEPTIONAL_CLASS_P (expr))
14939 return expr;
14940
14941 /* If any auto_suppress_location_wrappers are active, don't create
14942 wrappers. */
14943 if (suppress_location_wrappers > 0)
14944 return expr;
14945
14946 tree_code code
14947 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14948 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14949 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14950 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14951 /* Mark this node as being a wrapper. */
14952 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14953 return wrapper;
14954 }
14955
14956 int suppress_location_wrappers;
14957
14958 /* Return the name of combined function FN, for debugging purposes. */
14959
14960 const char *
14961 combined_fn_name (combined_fn fn)
14962 {
14963 if (builtin_fn_p (fn))
14964 {
14965 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14966 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14967 }
14968 else
14969 return internal_fn_name (as_internal_fn (fn));
14970 }
14971
14972 /* Return a bitmap with a bit set corresponding to each argument in
14973 a function call type FNTYPE declared with attribute nonnull,
14974 or null if none of the function's argument are nonnull. The caller
14975 must free the bitmap. */
14976
14977 bitmap
14978 get_nonnull_args (const_tree fntype)
14979 {
14980 if (fntype == NULL_TREE)
14981 return NULL;
14982
14983 tree attrs = TYPE_ATTRIBUTES (fntype);
14984 if (!attrs)
14985 return NULL;
14986
14987 bitmap argmap = NULL;
14988
14989 /* A function declaration can specify multiple attribute nonnull,
14990 each with zero or more arguments. The loop below creates a bitmap
14991 representing a union of all the arguments. An empty (but non-null)
14992 bitmap means that all arguments have been declaraed nonnull. */
14993 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14994 {
14995 attrs = lookup_attribute ("nonnull", attrs);
14996 if (!attrs)
14997 break;
14998
14999 if (!argmap)
15000 argmap = BITMAP_ALLOC (NULL);
15001
15002 if (!TREE_VALUE (attrs))
15003 {
15004 /* Clear the bitmap in case a previous attribute nonnull
15005 set it and this one overrides it for all arguments. */
15006 bitmap_clear (argmap);
15007 return argmap;
15008 }
15009
15010 /* Iterate over the indices of the format arguments declared nonnull
15011 and set a bit for each. */
15012 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
15013 {
15014 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
15015 bitmap_set_bit (argmap, val);
15016 }
15017 }
15018
15019 return argmap;
15020 }
15021
15022 /* Returns true if TYPE is a type where it and all of its subobjects
15023 (recursively) are of structure, union, or array type. */
15024
15025 static bool
15026 default_is_empty_type (tree type)
15027 {
15028 if (RECORD_OR_UNION_TYPE_P (type))
15029 {
15030 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
15031 if (TREE_CODE (field) == FIELD_DECL
15032 && !DECL_PADDING_P (field)
15033 && !default_is_empty_type (TREE_TYPE (field)))
15034 return false;
15035 return true;
15036 }
15037 else if (TREE_CODE (type) == ARRAY_TYPE)
15038 return (integer_minus_onep (array_type_nelts (type))
15039 || TYPE_DOMAIN (type) == NULL_TREE
15040 || default_is_empty_type (TREE_TYPE (type)));
15041 return false;
15042 }
15043
15044 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
15045 that shouldn't be passed via stack. */
15046
15047 bool
15048 default_is_empty_record (const_tree type)
15049 {
15050 if (!abi_version_at_least (12))
15051 return false;
15052
15053 if (type == error_mark_node)
15054 return false;
15055
15056 if (TREE_ADDRESSABLE (type))
15057 return false;
15058
15059 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
15060 }
15061
15062 /* Determine whether TYPE is a structure with a flexible array member,
15063 or a union containing such a structure (possibly recursively). */
15064
15065 bool
15066 flexible_array_type_p (const_tree type)
15067 {
15068 tree x, last;
15069 switch (TREE_CODE (type))
15070 {
15071 case RECORD_TYPE:
15072 last = NULL_TREE;
15073 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15074 if (TREE_CODE (x) == FIELD_DECL)
15075 last = x;
15076 if (last == NULL_TREE)
15077 return false;
15078 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
15079 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
15080 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
15081 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15082 return true;
15083 return false;
15084 case UNION_TYPE:
15085 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15086 {
15087 if (TREE_CODE (x) == FIELD_DECL
15088 && flexible_array_type_p (TREE_TYPE (x)))
15089 return true;
15090 }
15091 return false;
15092 default:
15093 return false;
15094 }
15095 }
15096
15097 /* Like int_size_in_bytes, but handle empty records specially. */
15098
15099 HOST_WIDE_INT
15100 arg_int_size_in_bytes (const_tree type)
15101 {
15102 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15103 }
15104
15105 /* Like size_in_bytes, but handle empty records specially. */
15106
15107 tree
15108 arg_size_in_bytes (const_tree type)
15109 {
15110 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15111 }
15112
15113 /* Return true if an expression with CODE has to have the same result type as
15114 its first operand. */
15115
15116 bool
15117 expr_type_first_operand_type_p (tree_code code)
15118 {
15119 switch (code)
15120 {
15121 case NEGATE_EXPR:
15122 case ABS_EXPR:
15123 case BIT_NOT_EXPR:
15124 case PAREN_EXPR:
15125 case CONJ_EXPR:
15126
15127 case PLUS_EXPR:
15128 case MINUS_EXPR:
15129 case MULT_EXPR:
15130 case TRUNC_DIV_EXPR:
15131 case CEIL_DIV_EXPR:
15132 case FLOOR_DIV_EXPR:
15133 case ROUND_DIV_EXPR:
15134 case TRUNC_MOD_EXPR:
15135 case CEIL_MOD_EXPR:
15136 case FLOOR_MOD_EXPR:
15137 case ROUND_MOD_EXPR:
15138 case RDIV_EXPR:
15139 case EXACT_DIV_EXPR:
15140 case MIN_EXPR:
15141 case MAX_EXPR:
15142 case BIT_IOR_EXPR:
15143 case BIT_XOR_EXPR:
15144 case BIT_AND_EXPR:
15145
15146 case LSHIFT_EXPR:
15147 case RSHIFT_EXPR:
15148 case LROTATE_EXPR:
15149 case RROTATE_EXPR:
15150 return true;
15151
15152 default:
15153 return false;
15154 }
15155 }
15156
15157 /* Return a typenode for the "standard" C type with a given name. */
15158 tree
15159 get_typenode_from_name (const char *name)
15160 {
15161 if (name == NULL || *name == '\0')
15162 return NULL_TREE;
15163
15164 if (strcmp (name, "char") == 0)
15165 return char_type_node;
15166 if (strcmp (name, "unsigned char") == 0)
15167 return unsigned_char_type_node;
15168 if (strcmp (name, "signed char") == 0)
15169 return signed_char_type_node;
15170
15171 if (strcmp (name, "short int") == 0)
15172 return short_integer_type_node;
15173 if (strcmp (name, "short unsigned int") == 0)
15174 return short_unsigned_type_node;
15175
15176 if (strcmp (name, "int") == 0)
15177 return integer_type_node;
15178 if (strcmp (name, "unsigned int") == 0)
15179 return unsigned_type_node;
15180
15181 if (strcmp (name, "long int") == 0)
15182 return long_integer_type_node;
15183 if (strcmp (name, "long unsigned int") == 0)
15184 return long_unsigned_type_node;
15185
15186 if (strcmp (name, "long long int") == 0)
15187 return long_long_integer_type_node;
15188 if (strcmp (name, "long long unsigned int") == 0)
15189 return long_long_unsigned_type_node;
15190
15191 gcc_unreachable ();
15192 }
15193
15194 /* List of pointer types used to declare builtins before we have seen their
15195 real declaration.
15196
15197 Keep the size up to date in tree.h ! */
15198 const builtin_structptr_type builtin_structptr_types[6] =
15199 {
15200 { fileptr_type_node, ptr_type_node, "FILE" },
15201 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15202 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15203 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15204 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15205 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15206 };
15207
15208 /* Return the maximum object size. */
15209
15210 tree
15211 max_object_size (void)
15212 {
15213 /* To do: Make this a configurable parameter. */
15214 return TYPE_MAX_VALUE (ptrdiff_type_node);
15215 }
15216
15217 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
15218 parameter default to false and that weeds out error_mark_node. */
15219
15220 bool
15221 verify_type_context (location_t loc, type_context_kind context,
15222 const_tree type, bool silent_p)
15223 {
15224 if (type == error_mark_node)
15225 return true;
15226
15227 gcc_assert (TYPE_P (type));
15228 return (!targetm.verify_type_context
15229 || targetm.verify_type_context (loc, context, type, silent_p));
15230 }
15231
15232 #if CHECKING_P
15233
15234 namespace selftest {
15235
15236 /* Selftests for tree. */
15237
15238 /* Verify that integer constants are sane. */
15239
15240 static void
15241 test_integer_constants ()
15242 {
15243 ASSERT_TRUE (integer_type_node != NULL);
15244 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15245
15246 tree type = integer_type_node;
15247
15248 tree zero = build_zero_cst (type);
15249 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15250 ASSERT_EQ (type, TREE_TYPE (zero));
15251
15252 tree one = build_int_cst (type, 1);
15253 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15254 ASSERT_EQ (type, TREE_TYPE (zero));
15255 }
15256
15257 /* Verify identifiers. */
15258
15259 static void
15260 test_identifiers ()
15261 {
15262 tree identifier = get_identifier ("foo");
15263 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15264 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15265 }
15266
15267 /* Verify LABEL_DECL. */
15268
15269 static void
15270 test_labels ()
15271 {
15272 tree identifier = get_identifier ("err");
15273 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15274 identifier, void_type_node);
15275 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15276 ASSERT_FALSE (FORCED_LABEL (label_decl));
15277 }
15278
15279 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15280 are given by VALS. */
15281
15282 static tree
15283 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15284 {
15285 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15286 tree_vector_builder builder (type, vals.length (), 1);
15287 builder.splice (vals);
15288 return builder.build ();
15289 }
15290
15291 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15292
15293 static void
15294 check_vector_cst (vec<tree> expected, tree actual)
15295 {
15296 ASSERT_KNOWN_EQ (expected.length (),
15297 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15298 for (unsigned int i = 0; i < expected.length (); ++i)
15299 ASSERT_EQ (wi::to_wide (expected[i]),
15300 wi::to_wide (vector_cst_elt (actual, i)));
15301 }
15302
15303 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15304 and that its elements match EXPECTED. */
15305
15306 static void
15307 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15308 unsigned int npatterns)
15309 {
15310 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15311 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15312 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15313 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15314 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15315 check_vector_cst (expected, actual);
15316 }
15317
15318 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15319 and NPATTERNS background elements, and that its elements match
15320 EXPECTED. */
15321
15322 static void
15323 check_vector_cst_fill (vec<tree> expected, tree actual,
15324 unsigned int npatterns)
15325 {
15326 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15327 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15328 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15329 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15330 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15331 check_vector_cst (expected, actual);
15332 }
15333
15334 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15335 and that its elements match EXPECTED. */
15336
15337 static void
15338 check_vector_cst_stepped (vec<tree> expected, tree actual,
15339 unsigned int npatterns)
15340 {
15341 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15342 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15343 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15344 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15345 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15346 check_vector_cst (expected, actual);
15347 }
15348
15349 /* Test the creation of VECTOR_CSTs. */
15350
15351 static void
15352 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15353 {
15354 auto_vec<tree, 8> elements (8);
15355 elements.quick_grow (8);
15356 tree element_type = build_nonstandard_integer_type (16, true);
15357 tree vector_type = build_vector_type (element_type, 8);
15358
15359 /* Test a simple linear series with a base of 0 and a step of 1:
15360 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15361 for (unsigned int i = 0; i < 8; ++i)
15362 elements[i] = build_int_cst (element_type, i);
15363 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15364 check_vector_cst_stepped (elements, vector, 1);
15365
15366 /* Try the same with the first element replaced by 100:
15367 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15368 elements[0] = build_int_cst (element_type, 100);
15369 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15370 check_vector_cst_stepped (elements, vector, 1);
15371
15372 /* Try a series that wraps around.
15373 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15374 for (unsigned int i = 1; i < 8; ++i)
15375 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15376 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15377 check_vector_cst_stepped (elements, vector, 1);
15378
15379 /* Try a downward series:
15380 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15381 for (unsigned int i = 1; i < 8; ++i)
15382 elements[i] = build_int_cst (element_type, 80 - i);
15383 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15384 check_vector_cst_stepped (elements, vector, 1);
15385
15386 /* Try two interleaved series with different bases and steps:
15387 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15388 elements[1] = build_int_cst (element_type, 53);
15389 for (unsigned int i = 2; i < 8; i += 2)
15390 {
15391 elements[i] = build_int_cst (element_type, 70 - i * 2);
15392 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15393 }
15394 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15395 check_vector_cst_stepped (elements, vector, 2);
15396
15397 /* Try a duplicated value:
15398 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15399 for (unsigned int i = 1; i < 8; ++i)
15400 elements[i] = elements[0];
15401 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15402 check_vector_cst_duplicate (elements, vector, 1);
15403
15404 /* Try an interleaved duplicated value:
15405 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15406 elements[1] = build_int_cst (element_type, 55);
15407 for (unsigned int i = 2; i < 8; ++i)
15408 elements[i] = elements[i - 2];
15409 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15410 check_vector_cst_duplicate (elements, vector, 2);
15411
15412 /* Try a duplicated value with 2 exceptions
15413 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15414 elements[0] = build_int_cst (element_type, 41);
15415 elements[1] = build_int_cst (element_type, 97);
15416 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15417 check_vector_cst_fill (elements, vector, 2);
15418
15419 /* Try with and without a step
15420 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15421 for (unsigned int i = 3; i < 8; i += 2)
15422 elements[i] = build_int_cst (element_type, i * 7);
15423 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15424 check_vector_cst_stepped (elements, vector, 2);
15425
15426 /* Try a fully-general constant:
15427 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15428 elements[5] = build_int_cst (element_type, 9990);
15429 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15430 check_vector_cst_fill (elements, vector, 4);
15431 }
15432
15433 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15434 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15435 modifying its argument in-place. */
15436
15437 static void
15438 check_strip_nops (tree node, tree expected)
15439 {
15440 STRIP_NOPS (node);
15441 ASSERT_EQ (expected, node);
15442 }
15443
15444 /* Verify location wrappers. */
15445
15446 static void
15447 test_location_wrappers ()
15448 {
15449 location_t loc = BUILTINS_LOCATION;
15450
15451 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15452
15453 /* Wrapping a constant. */
15454 tree int_cst = build_int_cst (integer_type_node, 42);
15455 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15456 ASSERT_FALSE (location_wrapper_p (int_cst));
15457
15458 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15459 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15460 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15461 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15462
15463 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15464 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15465
15466 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15467 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15468 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15469 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15470
15471 /* Wrapping a STRING_CST. */
15472 tree string_cst = build_string (4, "foo");
15473 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15474 ASSERT_FALSE (location_wrapper_p (string_cst));
15475
15476 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15477 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15478 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15479 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15480 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15481
15482
15483 /* Wrapping a variable. */
15484 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15485 get_identifier ("some_int_var"),
15486 integer_type_node);
15487 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15488 ASSERT_FALSE (location_wrapper_p (int_var));
15489
15490 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15491 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15492 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15493 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15494
15495 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15496 wrapper. */
15497 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15498 ASSERT_FALSE (location_wrapper_p (r_cast));
15499 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15500
15501 /* Verify that STRIP_NOPS removes wrappers. */
15502 check_strip_nops (wrapped_int_cst, int_cst);
15503 check_strip_nops (wrapped_string_cst, string_cst);
15504 check_strip_nops (wrapped_int_var, int_var);
15505 }
15506
15507 /* Test various tree predicates. Verify that location wrappers don't
15508 affect the results. */
15509
15510 static void
15511 test_predicates ()
15512 {
15513 /* Build various constants and wrappers around them. */
15514
15515 location_t loc = BUILTINS_LOCATION;
15516
15517 tree i_0 = build_int_cst (integer_type_node, 0);
15518 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15519
15520 tree i_1 = build_int_cst (integer_type_node, 1);
15521 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15522
15523 tree i_m1 = build_int_cst (integer_type_node, -1);
15524 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15525
15526 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15527 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15528 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15529 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15530 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15531 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15532
15533 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15534 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15535 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15536
15537 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15538 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15539 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15540
15541 /* TODO: vector constants. */
15542
15543 /* Test integer_onep. */
15544 ASSERT_FALSE (integer_onep (i_0));
15545 ASSERT_FALSE (integer_onep (wr_i_0));
15546 ASSERT_TRUE (integer_onep (i_1));
15547 ASSERT_TRUE (integer_onep (wr_i_1));
15548 ASSERT_FALSE (integer_onep (i_m1));
15549 ASSERT_FALSE (integer_onep (wr_i_m1));
15550 ASSERT_FALSE (integer_onep (f_0));
15551 ASSERT_FALSE (integer_onep (wr_f_0));
15552 ASSERT_FALSE (integer_onep (f_1));
15553 ASSERT_FALSE (integer_onep (wr_f_1));
15554 ASSERT_FALSE (integer_onep (f_m1));
15555 ASSERT_FALSE (integer_onep (wr_f_m1));
15556 ASSERT_FALSE (integer_onep (c_i_0));
15557 ASSERT_TRUE (integer_onep (c_i_1));
15558 ASSERT_FALSE (integer_onep (c_i_m1));
15559 ASSERT_FALSE (integer_onep (c_f_0));
15560 ASSERT_FALSE (integer_onep (c_f_1));
15561 ASSERT_FALSE (integer_onep (c_f_m1));
15562
15563 /* Test integer_zerop. */
15564 ASSERT_TRUE (integer_zerop (i_0));
15565 ASSERT_TRUE (integer_zerop (wr_i_0));
15566 ASSERT_FALSE (integer_zerop (i_1));
15567 ASSERT_FALSE (integer_zerop (wr_i_1));
15568 ASSERT_FALSE (integer_zerop (i_m1));
15569 ASSERT_FALSE (integer_zerop (wr_i_m1));
15570 ASSERT_FALSE (integer_zerop (f_0));
15571 ASSERT_FALSE (integer_zerop (wr_f_0));
15572 ASSERT_FALSE (integer_zerop (f_1));
15573 ASSERT_FALSE (integer_zerop (wr_f_1));
15574 ASSERT_FALSE (integer_zerop (f_m1));
15575 ASSERT_FALSE (integer_zerop (wr_f_m1));
15576 ASSERT_TRUE (integer_zerop (c_i_0));
15577 ASSERT_FALSE (integer_zerop (c_i_1));
15578 ASSERT_FALSE (integer_zerop (c_i_m1));
15579 ASSERT_FALSE (integer_zerop (c_f_0));
15580 ASSERT_FALSE (integer_zerop (c_f_1));
15581 ASSERT_FALSE (integer_zerop (c_f_m1));
15582
15583 /* Test integer_all_onesp. */
15584 ASSERT_FALSE (integer_all_onesp (i_0));
15585 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15586 ASSERT_FALSE (integer_all_onesp (i_1));
15587 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15588 ASSERT_TRUE (integer_all_onesp (i_m1));
15589 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15590 ASSERT_FALSE (integer_all_onesp (f_0));
15591 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15592 ASSERT_FALSE (integer_all_onesp (f_1));
15593 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15594 ASSERT_FALSE (integer_all_onesp (f_m1));
15595 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15596 ASSERT_FALSE (integer_all_onesp (c_i_0));
15597 ASSERT_FALSE (integer_all_onesp (c_i_1));
15598 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15599 ASSERT_FALSE (integer_all_onesp (c_f_0));
15600 ASSERT_FALSE (integer_all_onesp (c_f_1));
15601 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15602
15603 /* Test integer_minus_onep. */
15604 ASSERT_FALSE (integer_minus_onep (i_0));
15605 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15606 ASSERT_FALSE (integer_minus_onep (i_1));
15607 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15608 ASSERT_TRUE (integer_minus_onep (i_m1));
15609 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15610 ASSERT_FALSE (integer_minus_onep (f_0));
15611 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15612 ASSERT_FALSE (integer_minus_onep (f_1));
15613 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15614 ASSERT_FALSE (integer_minus_onep (f_m1));
15615 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15616 ASSERT_FALSE (integer_minus_onep (c_i_0));
15617 ASSERT_FALSE (integer_minus_onep (c_i_1));
15618 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15619 ASSERT_FALSE (integer_minus_onep (c_f_0));
15620 ASSERT_FALSE (integer_minus_onep (c_f_1));
15621 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15622
15623 /* Test integer_each_onep. */
15624 ASSERT_FALSE (integer_each_onep (i_0));
15625 ASSERT_FALSE (integer_each_onep (wr_i_0));
15626 ASSERT_TRUE (integer_each_onep (i_1));
15627 ASSERT_TRUE (integer_each_onep (wr_i_1));
15628 ASSERT_FALSE (integer_each_onep (i_m1));
15629 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15630 ASSERT_FALSE (integer_each_onep (f_0));
15631 ASSERT_FALSE (integer_each_onep (wr_f_0));
15632 ASSERT_FALSE (integer_each_onep (f_1));
15633 ASSERT_FALSE (integer_each_onep (wr_f_1));
15634 ASSERT_FALSE (integer_each_onep (f_m1));
15635 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15636 ASSERT_FALSE (integer_each_onep (c_i_0));
15637 ASSERT_FALSE (integer_each_onep (c_i_1));
15638 ASSERT_FALSE (integer_each_onep (c_i_m1));
15639 ASSERT_FALSE (integer_each_onep (c_f_0));
15640 ASSERT_FALSE (integer_each_onep (c_f_1));
15641 ASSERT_FALSE (integer_each_onep (c_f_m1));
15642
15643 /* Test integer_truep. */
15644 ASSERT_FALSE (integer_truep (i_0));
15645 ASSERT_FALSE (integer_truep (wr_i_0));
15646 ASSERT_TRUE (integer_truep (i_1));
15647 ASSERT_TRUE (integer_truep (wr_i_1));
15648 ASSERT_FALSE (integer_truep (i_m1));
15649 ASSERT_FALSE (integer_truep (wr_i_m1));
15650 ASSERT_FALSE (integer_truep (f_0));
15651 ASSERT_FALSE (integer_truep (wr_f_0));
15652 ASSERT_FALSE (integer_truep (f_1));
15653 ASSERT_FALSE (integer_truep (wr_f_1));
15654 ASSERT_FALSE (integer_truep (f_m1));
15655 ASSERT_FALSE (integer_truep (wr_f_m1));
15656 ASSERT_FALSE (integer_truep (c_i_0));
15657 ASSERT_TRUE (integer_truep (c_i_1));
15658 ASSERT_FALSE (integer_truep (c_i_m1));
15659 ASSERT_FALSE (integer_truep (c_f_0));
15660 ASSERT_FALSE (integer_truep (c_f_1));
15661 ASSERT_FALSE (integer_truep (c_f_m1));
15662
15663 /* Test integer_nonzerop. */
15664 ASSERT_FALSE (integer_nonzerop (i_0));
15665 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15666 ASSERT_TRUE (integer_nonzerop (i_1));
15667 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15668 ASSERT_TRUE (integer_nonzerop (i_m1));
15669 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15670 ASSERT_FALSE (integer_nonzerop (f_0));
15671 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15672 ASSERT_FALSE (integer_nonzerop (f_1));
15673 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15674 ASSERT_FALSE (integer_nonzerop (f_m1));
15675 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15676 ASSERT_FALSE (integer_nonzerop (c_i_0));
15677 ASSERT_TRUE (integer_nonzerop (c_i_1));
15678 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15679 ASSERT_FALSE (integer_nonzerop (c_f_0));
15680 ASSERT_FALSE (integer_nonzerop (c_f_1));
15681 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15682
15683 /* Test real_zerop. */
15684 ASSERT_FALSE (real_zerop (i_0));
15685 ASSERT_FALSE (real_zerop (wr_i_0));
15686 ASSERT_FALSE (real_zerop (i_1));
15687 ASSERT_FALSE (real_zerop (wr_i_1));
15688 ASSERT_FALSE (real_zerop (i_m1));
15689 ASSERT_FALSE (real_zerop (wr_i_m1));
15690 ASSERT_TRUE (real_zerop (f_0));
15691 ASSERT_TRUE (real_zerop (wr_f_0));
15692 ASSERT_FALSE (real_zerop (f_1));
15693 ASSERT_FALSE (real_zerop (wr_f_1));
15694 ASSERT_FALSE (real_zerop (f_m1));
15695 ASSERT_FALSE (real_zerop (wr_f_m1));
15696 ASSERT_FALSE (real_zerop (c_i_0));
15697 ASSERT_FALSE (real_zerop (c_i_1));
15698 ASSERT_FALSE (real_zerop (c_i_m1));
15699 ASSERT_TRUE (real_zerop (c_f_0));
15700 ASSERT_FALSE (real_zerop (c_f_1));
15701 ASSERT_FALSE (real_zerop (c_f_m1));
15702
15703 /* Test real_onep. */
15704 ASSERT_FALSE (real_onep (i_0));
15705 ASSERT_FALSE (real_onep (wr_i_0));
15706 ASSERT_FALSE (real_onep (i_1));
15707 ASSERT_FALSE (real_onep (wr_i_1));
15708 ASSERT_FALSE (real_onep (i_m1));
15709 ASSERT_FALSE (real_onep (wr_i_m1));
15710 ASSERT_FALSE (real_onep (f_0));
15711 ASSERT_FALSE (real_onep (wr_f_0));
15712 ASSERT_TRUE (real_onep (f_1));
15713 ASSERT_TRUE (real_onep (wr_f_1));
15714 ASSERT_FALSE (real_onep (f_m1));
15715 ASSERT_FALSE (real_onep (wr_f_m1));
15716 ASSERT_FALSE (real_onep (c_i_0));
15717 ASSERT_FALSE (real_onep (c_i_1));
15718 ASSERT_FALSE (real_onep (c_i_m1));
15719 ASSERT_FALSE (real_onep (c_f_0));
15720 ASSERT_TRUE (real_onep (c_f_1));
15721 ASSERT_FALSE (real_onep (c_f_m1));
15722
15723 /* Test real_minus_onep. */
15724 ASSERT_FALSE (real_minus_onep (i_0));
15725 ASSERT_FALSE (real_minus_onep (wr_i_0));
15726 ASSERT_FALSE (real_minus_onep (i_1));
15727 ASSERT_FALSE (real_minus_onep (wr_i_1));
15728 ASSERT_FALSE (real_minus_onep (i_m1));
15729 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15730 ASSERT_FALSE (real_minus_onep (f_0));
15731 ASSERT_FALSE (real_minus_onep (wr_f_0));
15732 ASSERT_FALSE (real_minus_onep (f_1));
15733 ASSERT_FALSE (real_minus_onep (wr_f_1));
15734 ASSERT_TRUE (real_minus_onep (f_m1));
15735 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15736 ASSERT_FALSE (real_minus_onep (c_i_0));
15737 ASSERT_FALSE (real_minus_onep (c_i_1));
15738 ASSERT_FALSE (real_minus_onep (c_i_m1));
15739 ASSERT_FALSE (real_minus_onep (c_f_0));
15740 ASSERT_FALSE (real_minus_onep (c_f_1));
15741 ASSERT_TRUE (real_minus_onep (c_f_m1));
15742
15743 /* Test zerop. */
15744 ASSERT_TRUE (zerop (i_0));
15745 ASSERT_TRUE (zerop (wr_i_0));
15746 ASSERT_FALSE (zerop (i_1));
15747 ASSERT_FALSE (zerop (wr_i_1));
15748 ASSERT_FALSE (zerop (i_m1));
15749 ASSERT_FALSE (zerop (wr_i_m1));
15750 ASSERT_TRUE (zerop (f_0));
15751 ASSERT_TRUE (zerop (wr_f_0));
15752 ASSERT_FALSE (zerop (f_1));
15753 ASSERT_FALSE (zerop (wr_f_1));
15754 ASSERT_FALSE (zerop (f_m1));
15755 ASSERT_FALSE (zerop (wr_f_m1));
15756 ASSERT_TRUE (zerop (c_i_0));
15757 ASSERT_FALSE (zerop (c_i_1));
15758 ASSERT_FALSE (zerop (c_i_m1));
15759 ASSERT_TRUE (zerop (c_f_0));
15760 ASSERT_FALSE (zerop (c_f_1));
15761 ASSERT_FALSE (zerop (c_f_m1));
15762
15763 /* Test tree_expr_nonnegative_p. */
15764 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15765 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15766 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15767 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15768 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15769 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15770 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15771 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15772 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15773 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15774 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15775 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15776 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15777 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15778 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15779 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15780 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15781 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15782
15783 /* Test tree_expr_nonzero_p. */
15784 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15785 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15786 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15787 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15788 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15789 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15790
15791 /* Test integer_valued_real_p. */
15792 ASSERT_FALSE (integer_valued_real_p (i_0));
15793 ASSERT_TRUE (integer_valued_real_p (f_0));
15794 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15795 ASSERT_TRUE (integer_valued_real_p (f_1));
15796 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15797
15798 /* Test integer_pow2p. */
15799 ASSERT_FALSE (integer_pow2p (i_0));
15800 ASSERT_TRUE (integer_pow2p (i_1));
15801 ASSERT_TRUE (integer_pow2p (wr_i_1));
15802
15803 /* Test uniform_integer_cst_p. */
15804 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15805 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15806 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15807 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15808 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15809 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15810 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15811 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15812 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15813 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15814 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15815 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15816 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15817 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15818 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15819 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15820 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15821 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15822 }
15823
15824 /* Check that string escaping works correctly. */
15825
15826 static void
15827 test_escaped_strings (void)
15828 {
15829 int saved_cutoff;
15830 escaped_string msg;
15831
15832 msg.escape (NULL);
15833 /* ASSERT_STREQ does not accept NULL as a valid test
15834 result, so we have to use ASSERT_EQ instead. */
15835 ASSERT_EQ (NULL, (const char *) msg);
15836
15837 msg.escape ("");
15838 ASSERT_STREQ ("", (const char *) msg);
15839
15840 msg.escape ("foobar");
15841 ASSERT_STREQ ("foobar", (const char *) msg);
15842
15843 /* Ensure that we have -fmessage-length set to 0. */
15844 saved_cutoff = pp_line_cutoff (global_dc->printer);
15845 pp_line_cutoff (global_dc->printer) = 0;
15846
15847 msg.escape ("foo\nbar");
15848 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15849
15850 msg.escape ("\a\b\f\n\r\t\v");
15851 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15852
15853 /* Now repeat the tests with -fmessage-length set to 5. */
15854 pp_line_cutoff (global_dc->printer) = 5;
15855
15856 /* Note that the newline is not translated into an escape. */
15857 msg.escape ("foo\nbar");
15858 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15859
15860 msg.escape ("\a\b\f\n\r\t\v");
15861 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15862
15863 /* Restore the original message length setting. */
15864 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15865 }
15866
15867 /* Run all of the selftests within this file. */
15868
15869 void
15870 tree_c_tests ()
15871 {
15872 test_integer_constants ();
15873 test_identifiers ();
15874 test_labels ();
15875 test_vector_cst_patterns ();
15876 test_location_wrappers ();
15877 test_predicates ();
15878 test_escaped_strings ();
15879 }
15880
15881 } // namespace selftest
15882
15883 #endif /* CHECKING_P */
15884
15885 #include "gt-tree.h"