]> git.ipfire.org Git - thirdparty/gcc.git/blob - libiberty/regex.c
5ead8b642d66da0e1cf64901be1cafd7263cf0d4
[thirdparty/gcc.git] / libiberty / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
7
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
22
23 /* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
29 #pragma alloca
30 #endif
31
32 #undef _GNU_SOURCE
33 #define _GNU_SOURCE
34
35 #ifdef HAVE_CONFIG_H
36 # include <config.h>
37 #endif
38
39 #ifndef PARAMS
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
42 # else
43 # define PARAMS(args) ()
44 # endif /* GCC. */
45 #endif /* Not PARAMS. */
46
47 #ifndef INSIDE_RECURSION
48
49 # if defined STDC_HEADERS && !defined emacs
50 # include <stddef.h>
51 # else
52 /* We need this for `regex.h', and perhaps for the Emacs include files. */
53 # include <sys/types.h>
54 # endif
55
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 # include <wchar.h>
63 # include <wctype.h>
64 # endif
65
66 # ifdef _LIBC
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
88 # define btowc __btowc
89
90 /* We are also using some library internals. */
91 # include <locale/localeinfo.h>
92 # include <locale/elem-hash.h>
93 # include <langinfo.h>
94 # include <locale/coll-lookup.h>
95 # endif
96
97 /* This is for other GNU distributions with internationalized messages. */
98 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
99 # include <libintl.h>
100 # ifdef _LIBC
101 # undef gettext
102 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103 # endif
104 # else
105 # define gettext(msgid) (msgid)
106 # endif
107
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 # endif
113
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 # ifdef emacs
117
118 # include "lisp.h"
119 # include "buffer.h"
120 # include "syntax.h"
121
122 # else /* not emacs */
123
124 /* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
127 # undef REL_ALLOC
128
129 # if defined STDC_HEADERS || defined _LIBC
130 # include <stdlib.h>
131 # else
132 char *malloc ();
133 char *realloc ();
134 # endif
135
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138 # ifdef INHIBIT_STRING_HEADER
139 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 # if !defined bzero && !defined bcopy
141 # undef INHIBIT_STRING_HEADER
142 # endif
143 # endif
144 # endif
145
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149 # ifndef INHIBIT_STRING_HEADER
150 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151 # include <string.h>
152 # ifndef bzero
153 # ifndef _LIBC
154 # define bzero(s, n) (memset (s, '\0', n), (s))
155 # else
156 # define bzero(s, n) __bzero (s, n)
157 # endif
158 # endif
159 # else
160 # include <strings.h>
161 # ifndef memcmp
162 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
163 # endif
164 # ifndef memcpy
165 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
166 # endif
167 # endif
168 # endif
169
170 /* Define the syntax stuff for \<, \>, etc. */
171
172 /* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
174 # ifndef Sword
175 # define Sword 1
176 # endif
177
178 # ifdef SWITCH_ENUM_BUG
179 # define SWITCH_ENUM_CAST(x) ((int)(x))
180 # else
181 # define SWITCH_ENUM_CAST(x) (x)
182 # endif
183
184 # endif /* not emacs */
185
186 # if defined _LIBC || HAVE_LIMITS_H
187 # include <limits.h>
188 # endif
189
190 # ifndef MB_LEN_MAX
191 # define MB_LEN_MAX 1
192 # endif
193 \f
194 /* Get the interface, including the syntax bits. */
195 # include "xregex.h" /* change for libiberty */
196
197 /* isalpha etc. are used for the character classes. */
198 # include <ctype.h>
199
200 /* Jim Meyering writes:
201
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
211
212 # undef ISASCII
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
215 # else
216 # define ISASCII(c) isascii(c)
217 # endif
218
219 # ifdef isblank
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
221 # else
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223 # endif
224 # ifdef isgraph
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 # else
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228 # endif
229
230 # undef ISPRINT
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242 # ifdef _tolower
243 # define TOLOWER(c) _tolower(c)
244 # else
245 # define TOLOWER(c) tolower(c)
246 # endif
247
248 # ifndef NULL
249 # define NULL (void *)0
250 # endif
251
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256 # undef SIGN_EXTEND_CHAR
257 # if __STDC__
258 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else /* not __STDC__ */
260 /* As in Harbison and Steele. */
261 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262 # endif
263 \f
264 # ifndef emacs
265 /* How many characters in the character set. */
266 # define CHAR_SET_SIZE 256
267
268 # ifdef SYNTAX_TABLE
269
270 extern char *re_syntax_table;
271
272 # else /* not SYNTAX_TABLE */
273
274 static char re_syntax_table[CHAR_SET_SIZE];
275
276 static void init_syntax_once PARAMS ((void));
277
278 static void
279 init_syntax_once ()
280 {
281 register int c;
282 static int done = 0;
283
284 if (done)
285 return;
286 bzero (re_syntax_table, sizeof re_syntax_table);
287
288 for (c = 0; c < CHAR_SET_SIZE; ++c)
289 if (ISALNUM (c))
290 re_syntax_table[c] = Sword;
291
292 re_syntax_table['_'] = Sword;
293
294 done = 1;
295 }
296
297 # endif /* not SYNTAX_TABLE */
298
299 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
301 # endif /* emacs */
302 \f
303 /* Integer type for pointers. */
304 # if !defined _LIBC && !defined HAVE_UINTPTR_T
305 typedef unsigned long int uintptr_t;
306 # endif
307
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
313
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
317
318 # ifdef REGEX_MALLOC
319
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
323
324 # else /* not REGEX_MALLOC */
325
326 /* Emacs already defines alloca, sometimes. */
327 # ifndef alloca
328
329 /* Make alloca work the best possible way. */
330 # ifdef __GNUC__
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
333 # if HAVE_ALLOCA_H
334 # include <alloca.h>
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
337
338 # endif /* not alloca */
339
340 # define REGEX_ALLOCATE alloca
341
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
346
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
349
350 # endif /* not REGEX_MALLOC */
351
352 /* Define how to allocate the failure stack. */
353
354 # if defined REL_ALLOC && defined REGEX_MALLOC
355
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
362
363 # else /* not using relocating allocator */
364
365 # ifdef REGEX_MALLOC
366
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
370
371 # else /* not REGEX_MALLOC */
372
373 # define REGEX_ALLOCATE_STACK alloca
374
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
379
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
382
383
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
386 a good thing. */
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
397 # define BYTEWIDTH 8 /* In bits. */
398
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
401 # undef MAX
402 # undef MIN
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
405
406 typedef char boolean;
407 # define false 0
408 # define true 1
409
410 static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411 reg_syntax_t syntax,
412 struct re_pattern_buffer *bufp));
413
414 static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
417 int pos,
418 struct re_registers *regs,
419 int stop));
420 static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop));
425 static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
426
427 #ifdef MBS_SUPPORT
428 static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429 reg_syntax_t syntax,
430 struct re_pattern_buffer *bufp));
431
432
433 static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
436 int pos,
437 struct re_registers *regs,
438 int stop,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2));
442 static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop));
447 static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
448 #endif
449 \f
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
454
455 typedef enum
456 {
457 no_op = 0,
458
459 /* Succeed right away--no more backtracking. */
460 succeed,
461
462 /* Followed by one byte giving n, then by n literal bytes. */
463 exactn,
464
465 # ifdef MBS_SUPPORT
466 /* Same as exactn, but contains binary data. */
467 exactn_bin,
468 # endif
469
470 /* Matches any (more or less) character. */
471 anychar,
472
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
484 elements follow.
485 See regex_compile function. */
486 charset,
487
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
490 charset_not,
491
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
498 of re_match_2.) */
499 start_memory,
500
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
508 stop_memory,
509
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
512 duplicate,
513
514 /* Fail unless at beginning of line. */
515 begline,
516
517 /* Fail unless at end of line. */
518 endline,
519
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
522 begbuf,
523
524 /* Analogously, for end of buffer/string. */
525 endbuf,
526
527 /* Followed by two byte relative address to which to jump. */
528 jump,
529
530 /* Same as jump, but marks the end of an alternative. */
531 jump_past_alt,
532
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 on_failure_jump,
537
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
541
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 pop_failure_jump,
546
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 maybe_pop_jump,
556
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 dummy_failure_jump,
564
565 /* Push a dummy failure point and continue. Used at the end of
566 alternatives. */
567 push_dummy_failure,
568
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 succeed_n,
573
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 jump_n,
578
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
581 bytes of number. */
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 set_number_at,
584
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
587
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
590
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
593
594 # ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
598
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
601 syntaxspec,
602
603 /* Matches any character whose syntax is not that specified. */
604 notsyntaxspec
605 # endif /* emacs */
606 } re_opcode_t;
607 #endif /* not INSIDE_RECURSION */
608 \f
609
610 #ifdef BYTE
611 # define CHAR_T char
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # if defined __STDC__ && __STDC__
616 # define PREFIX(name) byte_##name
617 # else
618 # define PREFIX(name) byte_/**/name
619 # endif
620 # define ARG_PREFIX(name) name
621 # define PUT_CHAR(c) putchar (c)
622 #else
623 # ifdef WCHAR
624 # define CHAR_T wchar_t
625 # define UCHAR_T wchar_t
626 # define COMPILED_BUFFER_VAR wc_buffer
627 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
628 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
629 # if defined __STDC__ && __STDC__
630 # define PREFIX(name) wcs_##name
631 # define ARG_PREFIX(name) c##name
632 # else
633 # define PREFIX(name) wcs_/**/name
634 # define ARG_PREFIX(name) c/**/name
635 # endif
636 /* Should we use wide stream?? */
637 # define PUT_CHAR(c) printf ("%C", c);
638 # define TRUE 1
639 # define FALSE 0
640 # else
641 # ifdef MBS_SUPPORT
642 # define WCHAR
643 # define INSIDE_RECURSION
644 # include "regex.c"
645 # undef INSIDE_RECURSION
646 # endif
647 # define BYTE
648 # define INSIDE_RECURSION
649 # include "regex.c"
650 # undef INSIDE_RECURSION
651 # endif
652 #endif
653
654 #ifdef INSIDE_RECURSION
655 /* Common operations on the compiled pattern. */
656
657 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
658 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
659
660 # ifdef WCHAR
661 # define STORE_NUMBER(destination, number) \
662 do { \
663 *(destination) = (UCHAR_T)(number); \
664 } while (0)
665 # else /* BYTE */
666 # define STORE_NUMBER(destination, number) \
667 do { \
668 (destination)[0] = (number) & 0377; \
669 (destination)[1] = (number) >> 8; \
670 } while (0)
671 # endif /* WCHAR */
672
673 /* Same as STORE_NUMBER, except increment DESTINATION to
674 the byte after where the number is stored. Therefore, DESTINATION
675 must be an lvalue. */
676 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
677
678 # define STORE_NUMBER_AND_INCR(destination, number) \
679 do { \
680 STORE_NUMBER (destination, number); \
681 (destination) += OFFSET_ADDRESS_SIZE; \
682 } while (0)
683
684 /* Put into DESTINATION a number stored in two contiguous bytes starting
685 at SOURCE. */
686 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
687
688 # ifdef WCHAR
689 # define EXTRACT_NUMBER(destination, source) \
690 do { \
691 (destination) = *(source); \
692 } while (0)
693 # else /* BYTE */
694 # define EXTRACT_NUMBER(destination, source) \
695 do { \
696 (destination) = *(source) & 0377; \
697 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
698 } while (0)
699 # endif
700
701 # ifdef DEBUG
702 static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
703 static void
704 PREFIX(extract_number) (dest, source)
705 int *dest;
706 UCHAR_T *source;
707 {
708 # ifdef WCHAR
709 *dest = *source;
710 # else /* BYTE */
711 int temp = SIGN_EXTEND_CHAR (*(source + 1));
712 *dest = *source & 0377;
713 *dest += temp << 8;
714 # endif
715 }
716
717 # ifndef EXTRACT_MACROS /* To debug the macros. */
718 # undef EXTRACT_NUMBER
719 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
720 # endif /* not EXTRACT_MACROS */
721
722 # endif /* DEBUG */
723
724 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
725 SOURCE must be an lvalue. */
726
727 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
728 do { \
729 EXTRACT_NUMBER (destination, source); \
730 (source) += OFFSET_ADDRESS_SIZE; \
731 } while (0)
732
733 # ifdef DEBUG
734 static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
735 UCHAR_T **source));
736 static void
737 PREFIX(extract_number_and_incr) (destination, source)
738 int *destination;
739 UCHAR_T **source;
740 {
741 PREFIX(extract_number) (destination, *source);
742 *source += OFFSET_ADDRESS_SIZE;
743 }
744
745 # ifndef EXTRACT_MACROS
746 # undef EXTRACT_NUMBER_AND_INCR
747 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
748 PREFIX(extract_number_and_incr) (&dest, &src)
749 # endif /* not EXTRACT_MACROS */
750
751 # endif /* DEBUG */
752
753 \f
754
755 /* If DEBUG is defined, Regex prints many voluminous messages about what
756 it is doing (if the variable `debug' is nonzero). If linked with the
757 main program in `iregex.c', you can enter patterns and strings
758 interactively. And if linked with the main program in `main.c' and
759 the other test files, you can run the already-written tests. */
760
761 # ifdef DEBUG
762
763 # ifndef DEFINED_ONCE
764
765 /* We use standard I/O for debugging. */
766 # include <stdio.h>
767
768 /* It is useful to test things that ``must'' be true when debugging. */
769 # include <assert.h>
770
771 static int debug;
772
773 # define DEBUG_STATEMENT(e) e
774 # define DEBUG_PRINT1(x) if (debug) printf (x)
775 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
776 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
777 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
778 # endif /* not DEFINED_ONCE */
779
780 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
781 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
782 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
783 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
784
785
786 /* Print the fastmap in human-readable form. */
787
788 # ifndef DEFINED_ONCE
789 void
790 print_fastmap (fastmap)
791 char *fastmap;
792 {
793 unsigned was_a_range = 0;
794 unsigned i = 0;
795
796 while (i < (1 << BYTEWIDTH))
797 {
798 if (fastmap[i++])
799 {
800 was_a_range = 0;
801 putchar (i - 1);
802 while (i < (1 << BYTEWIDTH) && fastmap[i])
803 {
804 was_a_range = 1;
805 i++;
806 }
807 if (was_a_range)
808 {
809 printf ("-");
810 putchar (i - 1);
811 }
812 }
813 }
814 putchar ('\n');
815 }
816 # endif /* not DEFINED_ONCE */
817
818
819 /* Print a compiled pattern string in human-readable form, starting at
820 the START pointer into it and ending just before the pointer END. */
821
822 void
823 PREFIX(print_partial_compiled_pattern) (start, end)
824 UCHAR_T *start;
825 UCHAR_T *end;
826 {
827 int mcnt, mcnt2;
828 UCHAR_T *p1;
829 UCHAR_T *p = start;
830 UCHAR_T *pend = end;
831
832 if (start == NULL)
833 {
834 printf ("(null)\n");
835 return;
836 }
837
838 /* Loop over pattern commands. */
839 while (p < pend)
840 {
841 # ifdef _LIBC
842 printf ("%td:\t", p - start);
843 # else
844 printf ("%ld:\t", (long int) (p - start));
845 # endif
846
847 switch ((re_opcode_t) *p++)
848 {
849 case no_op:
850 printf ("/no_op");
851 break;
852
853 case exactn:
854 mcnt = *p++;
855 printf ("/exactn/%d", mcnt);
856 do
857 {
858 putchar ('/');
859 PUT_CHAR (*p++);
860 }
861 while (--mcnt);
862 break;
863
864 # ifdef MBS_SUPPORT
865 case exactn_bin:
866 mcnt = *p++;
867 printf ("/exactn_bin/%d", mcnt);
868 do
869 {
870 printf("/%lx", (long int) *p++);
871 }
872 while (--mcnt);
873 break;
874 # endif /* MBS_SUPPORT */
875
876 case start_memory:
877 mcnt = *p++;
878 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
879 break;
880
881 case stop_memory:
882 mcnt = *p++;
883 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
884 break;
885
886 case duplicate:
887 printf ("/duplicate/%ld", (long int) *p++);
888 break;
889
890 case anychar:
891 printf ("/anychar");
892 break;
893
894 case charset:
895 case charset_not:
896 {
897 # ifdef WCHAR
898 int i, length;
899 wchar_t *workp = p;
900 printf ("/charset [%s",
901 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
902 p += 5;
903 length = *workp++; /* the length of char_classes */
904 for (i=0 ; i<length ; i++)
905 printf("[:%lx:]", (long int) *p++);
906 length = *workp++; /* the length of collating_symbol */
907 for (i=0 ; i<length ;)
908 {
909 printf("[.");
910 while(*p != 0)
911 PUT_CHAR((i++,*p++));
912 i++,p++;
913 printf(".]");
914 }
915 length = *workp++; /* the length of equivalence_class */
916 for (i=0 ; i<length ;)
917 {
918 printf("[=");
919 while(*p != 0)
920 PUT_CHAR((i++,*p++));
921 i++,p++;
922 printf("=]");
923 }
924 length = *workp++; /* the length of char_range */
925 for (i=0 ; i<length ; i++)
926 {
927 wchar_t range_start = *p++;
928 wchar_t range_end = *p++;
929 printf("%C-%C", range_start, range_end);
930 }
931 length = *workp++; /* the length of char */
932 for (i=0 ; i<length ; i++)
933 printf("%C", *p++);
934 putchar (']');
935 # else
936 register int c, last = -100;
937 register int in_range = 0;
938
939 printf ("/charset [%s",
940 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
941
942 assert (p + *p < pend);
943
944 for (c = 0; c < 256; c++)
945 if (c / 8 < *p
946 && (p[1 + (c/8)] & (1 << (c % 8))))
947 {
948 /* Are we starting a range? */
949 if (last + 1 == c && ! in_range)
950 {
951 putchar ('-');
952 in_range = 1;
953 }
954 /* Have we broken a range? */
955 else if (last + 1 != c && in_range)
956 {
957 putchar (last);
958 in_range = 0;
959 }
960
961 if (! in_range)
962 putchar (c);
963
964 last = c;
965 }
966
967 if (in_range)
968 putchar (last);
969
970 putchar (']');
971
972 p += 1 + *p;
973 # endif /* WCHAR */
974 }
975 break;
976
977 case begline:
978 printf ("/begline");
979 break;
980
981 case endline:
982 printf ("/endline");
983 break;
984
985 case on_failure_jump:
986 PREFIX(extract_number_and_incr) (&mcnt, &p);
987 # ifdef _LIBC
988 printf ("/on_failure_jump to %td", p + mcnt - start);
989 # else
990 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
991 # endif
992 break;
993
994 case on_failure_keep_string_jump:
995 PREFIX(extract_number_and_incr) (&mcnt, &p);
996 # ifdef _LIBC
997 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
998 # else
999 printf ("/on_failure_keep_string_jump to %ld",
1000 (long int) (p + mcnt - start));
1001 # endif
1002 break;
1003
1004 case dummy_failure_jump:
1005 PREFIX(extract_number_and_incr) (&mcnt, &p);
1006 # ifdef _LIBC
1007 printf ("/dummy_failure_jump to %td", p + mcnt - start);
1008 # else
1009 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1010 # endif
1011 break;
1012
1013 case push_dummy_failure:
1014 printf ("/push_dummy_failure");
1015 break;
1016
1017 case maybe_pop_jump:
1018 PREFIX(extract_number_and_incr) (&mcnt, &p);
1019 # ifdef _LIBC
1020 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1021 # else
1022 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1023 # endif
1024 break;
1025
1026 case pop_failure_jump:
1027 PREFIX(extract_number_and_incr) (&mcnt, &p);
1028 # ifdef _LIBC
1029 printf ("/pop_failure_jump to %td", p + mcnt - start);
1030 # else
1031 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1032 # endif
1033 break;
1034
1035 case jump_past_alt:
1036 PREFIX(extract_number_and_incr) (&mcnt, &p);
1037 # ifdef _LIBC
1038 printf ("/jump_past_alt to %td", p + mcnt - start);
1039 # else
1040 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1041 # endif
1042 break;
1043
1044 case jump:
1045 PREFIX(extract_number_and_incr) (&mcnt, &p);
1046 # ifdef _LIBC
1047 printf ("/jump to %td", p + mcnt - start);
1048 # else
1049 printf ("/jump to %ld", (long int) (p + mcnt - start));
1050 # endif
1051 break;
1052
1053 case succeed_n:
1054 PREFIX(extract_number_and_incr) (&mcnt, &p);
1055 p1 = p + mcnt;
1056 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1057 # ifdef _LIBC
1058 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1059 # else
1060 printf ("/succeed_n to %ld, %d times",
1061 (long int) (p1 - start), mcnt2);
1062 # endif
1063 break;
1064
1065 case jump_n:
1066 PREFIX(extract_number_and_incr) (&mcnt, &p);
1067 p1 = p + mcnt;
1068 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1069 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1070 break;
1071
1072 case set_number_at:
1073 PREFIX(extract_number_and_incr) (&mcnt, &p);
1074 p1 = p + mcnt;
1075 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1076 # ifdef _LIBC
1077 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1078 # else
1079 printf ("/set_number_at location %ld to %d",
1080 (long int) (p1 - start), mcnt2);
1081 # endif
1082 break;
1083
1084 case wordbound:
1085 printf ("/wordbound");
1086 break;
1087
1088 case notwordbound:
1089 printf ("/notwordbound");
1090 break;
1091
1092 case wordbeg:
1093 printf ("/wordbeg");
1094 break;
1095
1096 case wordend:
1097 printf ("/wordend");
1098 break;
1099
1100 # ifdef emacs
1101 case before_dot:
1102 printf ("/before_dot");
1103 break;
1104
1105 case at_dot:
1106 printf ("/at_dot");
1107 break;
1108
1109 case after_dot:
1110 printf ("/after_dot");
1111 break;
1112
1113 case syntaxspec:
1114 printf ("/syntaxspec");
1115 mcnt = *p++;
1116 printf ("/%d", mcnt);
1117 break;
1118
1119 case notsyntaxspec:
1120 printf ("/notsyntaxspec");
1121 mcnt = *p++;
1122 printf ("/%d", mcnt);
1123 break;
1124 # endif /* emacs */
1125
1126 case wordchar:
1127 printf ("/wordchar");
1128 break;
1129
1130 case notwordchar:
1131 printf ("/notwordchar");
1132 break;
1133
1134 case begbuf:
1135 printf ("/begbuf");
1136 break;
1137
1138 case endbuf:
1139 printf ("/endbuf");
1140 break;
1141
1142 default:
1143 printf ("?%ld", (long int) *(p-1));
1144 }
1145
1146 putchar ('\n');
1147 }
1148
1149 # ifdef _LIBC
1150 printf ("%td:\tend of pattern.\n", p - start);
1151 # else
1152 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1153 # endif
1154 }
1155
1156
1157 void
1158 PREFIX(print_compiled_pattern) (bufp)
1159 struct re_pattern_buffer *bufp;
1160 {
1161 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1162
1163 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1164 + bufp->used / sizeof(UCHAR_T));
1165 printf ("%ld bytes used/%ld bytes allocated.\n",
1166 bufp->used, bufp->allocated);
1167
1168 if (bufp->fastmap_accurate && bufp->fastmap)
1169 {
1170 printf ("fastmap: ");
1171 print_fastmap (bufp->fastmap);
1172 }
1173
1174 # ifdef _LIBC
1175 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1176 # else
1177 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1178 # endif
1179 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1180 printf ("can_be_null: %d\t", bufp->can_be_null);
1181 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1182 printf ("no_sub: %d\t", bufp->no_sub);
1183 printf ("not_bol: %d\t", bufp->not_bol);
1184 printf ("not_eol: %d\t", bufp->not_eol);
1185 printf ("syntax: %lx\n", bufp->syntax);
1186 /* Perhaps we should print the translate table? */
1187 }
1188
1189
1190 void
1191 PREFIX(print_double_string) (where, string1, size1, string2, size2)
1192 const CHAR_T *where;
1193 const CHAR_T *string1;
1194 const CHAR_T *string2;
1195 int size1;
1196 int size2;
1197 {
1198 int this_char;
1199
1200 if (where == NULL)
1201 printf ("(null)");
1202 else
1203 {
1204 int cnt;
1205
1206 if (FIRST_STRING_P (where))
1207 {
1208 for (this_char = where - string1; this_char < size1; this_char++)
1209 PUT_CHAR (string1[this_char]);
1210
1211 where = string2;
1212 }
1213
1214 cnt = 0;
1215 for (this_char = where - string2; this_char < size2; this_char++)
1216 {
1217 PUT_CHAR (string2[this_char]);
1218 if (++cnt > 100)
1219 {
1220 fputs ("...", stdout);
1221 break;
1222 }
1223 }
1224 }
1225 }
1226
1227 # ifndef DEFINED_ONCE
1228 void
1229 printchar (c)
1230 int c;
1231 {
1232 putc (c, stderr);
1233 }
1234 # endif
1235
1236 # else /* not DEBUG */
1237
1238 # ifndef DEFINED_ONCE
1239 # undef assert
1240 # define assert(e)
1241
1242 # define DEBUG_STATEMENT(e)
1243 # define DEBUG_PRINT1(x)
1244 # define DEBUG_PRINT2(x1, x2)
1245 # define DEBUG_PRINT3(x1, x2, x3)
1246 # define DEBUG_PRINT4(x1, x2, x3, x4)
1247 # endif /* not DEFINED_ONCE */
1248 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1249 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1250
1251 # endif /* not DEBUG */
1252
1253 \f
1254
1255 # ifdef WCHAR
1256 /* This convert a multibyte string to a wide character string.
1257 And write their correspondances to offset_buffer(see below)
1258 and write whether each wchar_t is binary data to is_binary.
1259 This assume invalid multibyte sequences as binary data.
1260 We assume offset_buffer and is_binary is already allocated
1261 enough space. */
1262
1263 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1264 size_t len, int *offset_buffer,
1265 char *is_binary);
1266 static size_t
1267 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1268 CHAR_T *dest;
1269 const unsigned char* src;
1270 size_t len; /* the length of multibyte string. */
1271
1272 /* It hold correspondances between src(char string) and
1273 dest(wchar_t string) for optimization.
1274 e.g. src = "xxxyzz"
1275 dest = {'X', 'Y', 'Z'}
1276 (each "xxx", "y" and "zz" represent one multibyte character
1277 corresponding to 'X', 'Y' and 'Z'.)
1278 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1279 = {0, 3, 4, 6}
1280 */
1281 int *offset_buffer;
1282 char *is_binary;
1283 {
1284 wchar_t *pdest = dest;
1285 const unsigned char *psrc = src;
1286 size_t wc_count = 0;
1287
1288 mbstate_t mbs;
1289 int i, consumed;
1290 size_t mb_remain = len;
1291 size_t mb_count = 0;
1292
1293 /* Initialize the conversion state. */
1294 memset (&mbs, 0, sizeof (mbstate_t));
1295
1296 offset_buffer[0] = 0;
1297 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1298 psrc += consumed)
1299 {
1300 #ifdef _LIBC
1301 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1302 #else
1303 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1304 #endif
1305
1306 if (consumed <= 0)
1307 /* failed to convert. maybe src contains binary data.
1308 So we consume 1 byte manualy. */
1309 {
1310 *pdest = *psrc;
1311 consumed = 1;
1312 is_binary[wc_count] = TRUE;
1313 }
1314 else
1315 is_binary[wc_count] = FALSE;
1316 /* In sjis encoding, we use yen sign as escape character in
1317 place of reverse solidus. So we convert 0x5c(yen sign in
1318 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1319 solidus in UCS2). */
1320 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1321 *pdest = (wchar_t) *psrc;
1322
1323 offset_buffer[wc_count + 1] = mb_count += consumed;
1324 }
1325
1326 /* Fill remain of the buffer with sentinel. */
1327 for (i = wc_count + 1 ; i <= len ; i++)
1328 offset_buffer[i] = mb_count + 1;
1329
1330 return wc_count;
1331 }
1332
1333 # endif /* WCHAR */
1334
1335 #else /* not INSIDE_RECURSION */
1336
1337 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1338 also be assigned to arbitrarily: each pattern buffer stores its own
1339 syntax, so it can be changed between regex compilations. */
1340 /* This has no initializer because initialized variables in Emacs
1341 become read-only after dumping. */
1342 reg_syntax_t re_syntax_options;
1343
1344
1345 /* Specify the precise syntax of regexps for compilation. This provides
1346 for compatibility for various utilities which historically have
1347 different, incompatible syntaxes.
1348
1349 The argument SYNTAX is a bit mask comprised of the various bits
1350 defined in regex.h. We return the old syntax. */
1351
1352 reg_syntax_t
1353 re_set_syntax (syntax)
1354 reg_syntax_t syntax;
1355 {
1356 reg_syntax_t ret = re_syntax_options;
1357
1358 re_syntax_options = syntax;
1359 # ifdef DEBUG
1360 if (syntax & RE_DEBUG)
1361 debug = 1;
1362 else if (debug) /* was on but now is not */
1363 debug = 0;
1364 # endif /* DEBUG */
1365 return ret;
1366 }
1367 # ifdef _LIBC
1368 weak_alias (__re_set_syntax, re_set_syntax)
1369 # endif
1370 \f
1371 /* This table gives an error message for each of the error codes listed
1372 in regex.h. Obviously the order here has to be same as there.
1373 POSIX doesn't require that we do anything for REG_NOERROR,
1374 but why not be nice? */
1375
1376 static const char re_error_msgid[] =
1377 {
1378 # define REG_NOERROR_IDX 0
1379 gettext_noop ("Success") /* REG_NOERROR */
1380 "\0"
1381 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1382 gettext_noop ("No match") /* REG_NOMATCH */
1383 "\0"
1384 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1385 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1386 "\0"
1387 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1388 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1389 "\0"
1390 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1391 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1392 "\0"
1393 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1394 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1395 "\0"
1396 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1397 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1398 "\0"
1399 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1400 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1401 "\0"
1402 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1403 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1404 "\0"
1405 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1406 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1407 "\0"
1408 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1409 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1410 "\0"
1411 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1412 gettext_noop ("Invalid range end") /* REG_ERANGE */
1413 "\0"
1414 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1415 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1416 "\0"
1417 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1418 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1419 "\0"
1420 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1421 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1422 "\0"
1423 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1424 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1425 "\0"
1426 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1427 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1428 };
1429
1430 static const size_t re_error_msgid_idx[] =
1431 {
1432 REG_NOERROR_IDX,
1433 REG_NOMATCH_IDX,
1434 REG_BADPAT_IDX,
1435 REG_ECOLLATE_IDX,
1436 REG_ECTYPE_IDX,
1437 REG_EESCAPE_IDX,
1438 REG_ESUBREG_IDX,
1439 REG_EBRACK_IDX,
1440 REG_EPAREN_IDX,
1441 REG_EBRACE_IDX,
1442 REG_BADBR_IDX,
1443 REG_ERANGE_IDX,
1444 REG_ESPACE_IDX,
1445 REG_BADRPT_IDX,
1446 REG_EEND_IDX,
1447 REG_ESIZE_IDX,
1448 REG_ERPAREN_IDX
1449 };
1450 \f
1451 #endif /* INSIDE_RECURSION */
1452
1453 #ifndef DEFINED_ONCE
1454 /* Avoiding alloca during matching, to placate r_alloc. */
1455
1456 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1457 searching and matching functions should not call alloca. On some
1458 systems, alloca is implemented in terms of malloc, and if we're
1459 using the relocating allocator routines, then malloc could cause a
1460 relocation, which might (if the strings being searched are in the
1461 ralloc heap) shift the data out from underneath the regexp
1462 routines.
1463
1464 Here's another reason to avoid allocation: Emacs
1465 processes input from X in a signal handler; processing X input may
1466 call malloc; if input arrives while a matching routine is calling
1467 malloc, then we're scrod. But Emacs can't just block input while
1468 calling matching routines; then we don't notice interrupts when
1469 they come in. So, Emacs blocks input around all regexp calls
1470 except the matching calls, which it leaves unprotected, in the
1471 faith that they will not malloc. */
1472
1473 /* Normally, this is fine. */
1474 # define MATCH_MAY_ALLOCATE
1475
1476 /* When using GNU C, we are not REALLY using the C alloca, no matter
1477 what config.h may say. So don't take precautions for it. */
1478 # ifdef __GNUC__
1479 # undef C_ALLOCA
1480 # endif
1481
1482 /* The match routines may not allocate if (1) they would do it with malloc
1483 and (2) it's not safe for them to use malloc.
1484 Note that if REL_ALLOC is defined, matching would not use malloc for the
1485 failure stack, but we would still use it for the register vectors;
1486 so REL_ALLOC should not affect this. */
1487 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1488 # undef MATCH_MAY_ALLOCATE
1489 # endif
1490 #endif /* not DEFINED_ONCE */
1491 \f
1492 #ifdef INSIDE_RECURSION
1493 /* Failure stack declarations and macros; both re_compile_fastmap and
1494 re_match_2 use a failure stack. These have to be macros because of
1495 REGEX_ALLOCATE_STACK. */
1496
1497
1498 /* Number of failure points for which to initially allocate space
1499 when matching. If this number is exceeded, we allocate more
1500 space, so it is not a hard limit. */
1501 # ifndef INIT_FAILURE_ALLOC
1502 # define INIT_FAILURE_ALLOC 5
1503 # endif
1504
1505 /* Roughly the maximum number of failure points on the stack. Would be
1506 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1507 This is a variable only so users of regex can assign to it; we never
1508 change it ourselves. */
1509
1510 # ifdef INT_IS_16BIT
1511
1512 # ifndef DEFINED_ONCE
1513 # if defined MATCH_MAY_ALLOCATE
1514 /* 4400 was enough to cause a crash on Alpha OSF/1,
1515 whose default stack limit is 2mb. */
1516 long int re_max_failures = 4000;
1517 # else
1518 long int re_max_failures = 2000;
1519 # endif
1520 # endif
1521
1522 union PREFIX(fail_stack_elt)
1523 {
1524 UCHAR_T *pointer;
1525 long int integer;
1526 };
1527
1528 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1529
1530 typedef struct
1531 {
1532 PREFIX(fail_stack_elt_t) *stack;
1533 unsigned long int size;
1534 unsigned long int avail; /* Offset of next open position. */
1535 } PREFIX(fail_stack_type);
1536
1537 # else /* not INT_IS_16BIT */
1538
1539 # ifndef DEFINED_ONCE
1540 # if defined MATCH_MAY_ALLOCATE
1541 /* 4400 was enough to cause a crash on Alpha OSF/1,
1542 whose default stack limit is 2mb. */
1543 int re_max_failures = 4000;
1544 # else
1545 int re_max_failures = 2000;
1546 # endif
1547 # endif
1548
1549 union PREFIX(fail_stack_elt)
1550 {
1551 UCHAR_T *pointer;
1552 int integer;
1553 };
1554
1555 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1556
1557 typedef struct
1558 {
1559 PREFIX(fail_stack_elt_t) *stack;
1560 unsigned size;
1561 unsigned avail; /* Offset of next open position. */
1562 } PREFIX(fail_stack_type);
1563
1564 # endif /* INT_IS_16BIT */
1565
1566 # ifndef DEFINED_ONCE
1567 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1568 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1569 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1570 # endif
1571
1572
1573 /* Define macros to initialize and free the failure stack.
1574 Do `return -2' if the alloc fails. */
1575
1576 # ifdef MATCH_MAY_ALLOCATE
1577 # define INIT_FAIL_STACK() \
1578 do { \
1579 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1580 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1581 \
1582 if (fail_stack.stack == NULL) \
1583 return -2; \
1584 \
1585 fail_stack.size = INIT_FAILURE_ALLOC; \
1586 fail_stack.avail = 0; \
1587 } while (0)
1588
1589 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1590 # else
1591 # define INIT_FAIL_STACK() \
1592 do { \
1593 fail_stack.avail = 0; \
1594 } while (0)
1595
1596 # define RESET_FAIL_STACK()
1597 # endif
1598
1599
1600 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1601
1602 Return 1 if succeeds, and 0 if either ran out of memory
1603 allocating space for it or it was already too large.
1604
1605 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1606
1607 # define DOUBLE_FAIL_STACK(fail_stack) \
1608 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1609 ? 0 \
1610 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1611 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1612 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1613 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1614 \
1615 (fail_stack).stack == NULL \
1616 ? 0 \
1617 : ((fail_stack).size <<= 1, \
1618 1)))
1619
1620
1621 /* Push pointer POINTER on FAIL_STACK.
1622 Return 1 if was able to do so and 0 if ran out of memory allocating
1623 space to do so. */
1624 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1625 ((FAIL_STACK_FULL () \
1626 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1627 ? 0 \
1628 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1629 1))
1630
1631 /* Push a pointer value onto the failure stack.
1632 Assumes the variable `fail_stack'. Probably should only
1633 be called from within `PUSH_FAILURE_POINT'. */
1634 # define PUSH_FAILURE_POINTER(item) \
1635 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1636
1637 /* This pushes an integer-valued item onto the failure stack.
1638 Assumes the variable `fail_stack'. Probably should only
1639 be called from within `PUSH_FAILURE_POINT'. */
1640 # define PUSH_FAILURE_INT(item) \
1641 fail_stack.stack[fail_stack.avail++].integer = (item)
1642
1643 /* Push a fail_stack_elt_t value onto the failure stack.
1644 Assumes the variable `fail_stack'. Probably should only
1645 be called from within `PUSH_FAILURE_POINT'. */
1646 # define PUSH_FAILURE_ELT(item) \
1647 fail_stack.stack[fail_stack.avail++] = (item)
1648
1649 /* These three POP... operations complement the three PUSH... operations.
1650 All assume that `fail_stack' is nonempty. */
1651 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1652 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1653 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1654
1655 /* Used to omit pushing failure point id's when we're not debugging. */
1656 # ifdef DEBUG
1657 # define DEBUG_PUSH PUSH_FAILURE_INT
1658 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1659 # else
1660 # define DEBUG_PUSH(item)
1661 # define DEBUG_POP(item_addr)
1662 # endif
1663
1664
1665 /* Push the information about the state we will need
1666 if we ever fail back to it.
1667
1668 Requires variables fail_stack, regstart, regend, reg_info, and
1669 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1670 be declared.
1671
1672 Does `return FAILURE_CODE' if runs out of memory. */
1673
1674 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1675 do { \
1676 char *destination; \
1677 /* Must be int, so when we don't save any registers, the arithmetic \
1678 of 0 + -1 isn't done as unsigned. */ \
1679 /* Can't be int, since there is not a shred of a guarantee that int \
1680 is wide enough to hold a value of something to which pointer can \
1681 be assigned */ \
1682 active_reg_t this_reg; \
1683 \
1684 DEBUG_STATEMENT (failure_id++); \
1685 DEBUG_STATEMENT (nfailure_points_pushed++); \
1686 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1687 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1688 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1689 \
1690 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1691 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1692 \
1693 /* Ensure we have enough space allocated for what we will push. */ \
1694 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1695 { \
1696 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1697 return failure_code; \
1698 \
1699 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1700 (fail_stack).size); \
1701 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1702 } \
1703 \
1704 /* Push the info, starting with the registers. */ \
1705 DEBUG_PRINT1 ("\n"); \
1706 \
1707 if (1) \
1708 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1709 this_reg++) \
1710 { \
1711 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1712 DEBUG_STATEMENT (num_regs_pushed++); \
1713 \
1714 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1715 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1716 \
1717 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1718 PUSH_FAILURE_POINTER (regend[this_reg]); \
1719 \
1720 DEBUG_PRINT2 (" info: %p\n ", \
1721 reg_info[this_reg].word.pointer); \
1722 DEBUG_PRINT2 (" match_null=%d", \
1723 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1724 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1725 DEBUG_PRINT2 (" matched_something=%d", \
1726 MATCHED_SOMETHING (reg_info[this_reg])); \
1727 DEBUG_PRINT2 (" ever_matched=%d", \
1728 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1729 DEBUG_PRINT1 ("\n"); \
1730 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1731 } \
1732 \
1733 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1734 PUSH_FAILURE_INT (lowest_active_reg); \
1735 \
1736 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1737 PUSH_FAILURE_INT (highest_active_reg); \
1738 \
1739 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1740 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1741 PUSH_FAILURE_POINTER (pattern_place); \
1742 \
1743 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1744 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1745 size2); \
1746 DEBUG_PRINT1 ("'\n"); \
1747 PUSH_FAILURE_POINTER (string_place); \
1748 \
1749 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1750 DEBUG_PUSH (failure_id); \
1751 } while (0)
1752
1753 # ifndef DEFINED_ONCE
1754 /* This is the number of items that are pushed and popped on the stack
1755 for each register. */
1756 # define NUM_REG_ITEMS 3
1757
1758 /* Individual items aside from the registers. */
1759 # ifdef DEBUG
1760 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1761 # else
1762 # define NUM_NONREG_ITEMS 4
1763 # endif
1764
1765 /* We push at most this many items on the stack. */
1766 /* We used to use (num_regs - 1), which is the number of registers
1767 this regexp will save; but that was changed to 5
1768 to avoid stack overflow for a regexp with lots of parens. */
1769 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1770
1771 /* We actually push this many items. */
1772 # define NUM_FAILURE_ITEMS \
1773 (((0 \
1774 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1775 * NUM_REG_ITEMS) \
1776 + NUM_NONREG_ITEMS)
1777
1778 /* How many items can still be added to the stack without overflowing it. */
1779 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1780 # endif /* not DEFINED_ONCE */
1781
1782
1783 /* Pops what PUSH_FAIL_STACK pushes.
1784
1785 We restore into the parameters, all of which should be lvalues:
1786 STR -- the saved data position.
1787 PAT -- the saved pattern position.
1788 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1789 REGSTART, REGEND -- arrays of string positions.
1790 REG_INFO -- array of information about each subexpression.
1791
1792 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1793 `pend', `string1', `size1', `string2', and `size2'. */
1794 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1795 { \
1796 DEBUG_STATEMENT (unsigned failure_id;) \
1797 active_reg_t this_reg; \
1798 const UCHAR_T *string_temp; \
1799 \
1800 assert (!FAIL_STACK_EMPTY ()); \
1801 \
1802 /* Remove failure points and point to how many regs pushed. */ \
1803 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1804 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1805 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1806 \
1807 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1808 \
1809 DEBUG_POP (&failure_id); \
1810 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1811 \
1812 /* If the saved string location is NULL, it came from an \
1813 on_failure_keep_string_jump opcode, and we want to throw away the \
1814 saved NULL, thus retaining our current position in the string. */ \
1815 string_temp = POP_FAILURE_POINTER (); \
1816 if (string_temp != NULL) \
1817 str = (const CHAR_T *) string_temp; \
1818 \
1819 DEBUG_PRINT2 (" Popping string %p: `", str); \
1820 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1821 DEBUG_PRINT1 ("'\n"); \
1822 \
1823 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1824 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1825 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1826 \
1827 /* Restore register info. */ \
1828 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1829 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1830 \
1831 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1832 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1833 \
1834 if (1) \
1835 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1836 { \
1837 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1838 \
1839 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1840 DEBUG_PRINT2 (" info: %p\n", \
1841 reg_info[this_reg].word.pointer); \
1842 \
1843 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1844 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1845 \
1846 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1847 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1848 } \
1849 else \
1850 { \
1851 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1852 { \
1853 reg_info[this_reg].word.integer = 0; \
1854 regend[this_reg] = 0; \
1855 regstart[this_reg] = 0; \
1856 } \
1857 highest_active_reg = high_reg; \
1858 } \
1859 \
1860 set_regs_matched_done = 0; \
1861 DEBUG_STATEMENT (nfailure_points_popped++); \
1862 } /* POP_FAILURE_POINT */
1863 \f
1864 /* Structure for per-register (a.k.a. per-group) information.
1865 Other register information, such as the
1866 starting and ending positions (which are addresses), and the list of
1867 inner groups (which is a bits list) are maintained in separate
1868 variables.
1869
1870 We are making a (strictly speaking) nonportable assumption here: that
1871 the compiler will pack our bit fields into something that fits into
1872 the type of `word', i.e., is something that fits into one item on the
1873 failure stack. */
1874
1875
1876 /* Declarations and macros for re_match_2. */
1877
1878 typedef union
1879 {
1880 PREFIX(fail_stack_elt_t) word;
1881 struct
1882 {
1883 /* This field is one if this group can match the empty string,
1884 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1885 # define MATCH_NULL_UNSET_VALUE 3
1886 unsigned match_null_string_p : 2;
1887 unsigned is_active : 1;
1888 unsigned matched_something : 1;
1889 unsigned ever_matched_something : 1;
1890 } bits;
1891 } PREFIX(register_info_type);
1892
1893 # ifndef DEFINED_ONCE
1894 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1895 # define IS_ACTIVE(R) ((R).bits.is_active)
1896 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1897 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1898
1899
1900 /* Call this when have matched a real character; it sets `matched' flags
1901 for the subexpressions which we are currently inside. Also records
1902 that those subexprs have matched. */
1903 # define SET_REGS_MATCHED() \
1904 do \
1905 { \
1906 if (!set_regs_matched_done) \
1907 { \
1908 active_reg_t r; \
1909 set_regs_matched_done = 1; \
1910 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1911 { \
1912 MATCHED_SOMETHING (reg_info[r]) \
1913 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1914 = 1; \
1915 } \
1916 } \
1917 } \
1918 while (0)
1919 # endif /* not DEFINED_ONCE */
1920
1921 /* Registers are set to a sentinel when they haven't yet matched. */
1922 static CHAR_T PREFIX(reg_unset_dummy);
1923 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1924 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1925
1926 /* Subroutine declarations and macros for regex_compile. */
1927 static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1928 static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1929 int arg1, int arg2));
1930 static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1931 int arg, UCHAR_T *end));
1932 static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1933 int arg1, int arg2, UCHAR_T *end));
1934 static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1935 const CHAR_T *p,
1936 reg_syntax_t syntax));
1937 static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1938 const CHAR_T *pend,
1939 reg_syntax_t syntax));
1940 # ifdef WCHAR
1941 static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1942 const CHAR_T **p_ptr,
1943 const CHAR_T *pend,
1944 char *translate,
1945 reg_syntax_t syntax,
1946 UCHAR_T *b,
1947 CHAR_T *char_set));
1948 static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1949 # else /* BYTE */
1950 static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1951 const char **p_ptr,
1952 const char *pend,
1953 char *translate,
1954 reg_syntax_t syntax,
1955 unsigned char *b));
1956 # endif /* WCHAR */
1957
1958 /* Fetch the next character in the uncompiled pattern---translating it
1959 if necessary. Also cast from a signed character in the constant
1960 string passed to us by the user to an unsigned char that we can use
1961 as an array index (in, e.g., `translate'). */
1962 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1963 because it is impossible to allocate 4GB array for some encodings
1964 which have 4 byte character_set like UCS4. */
1965 # ifndef PATFETCH
1966 # ifdef WCHAR
1967 # define PATFETCH(c) \
1968 do {if (p == pend) return REG_EEND; \
1969 c = (UCHAR_T) *p++; \
1970 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1971 } while (0)
1972 # else /* BYTE */
1973 # define PATFETCH(c) \
1974 do {if (p == pend) return REG_EEND; \
1975 c = (unsigned char) *p++; \
1976 if (translate) c = (unsigned char) translate[c]; \
1977 } while (0)
1978 # endif /* WCHAR */
1979 # endif
1980
1981 /* Fetch the next character in the uncompiled pattern, with no
1982 translation. */
1983 # define PATFETCH_RAW(c) \
1984 do {if (p == pend) return REG_EEND; \
1985 c = (UCHAR_T) *p++; \
1986 } while (0)
1987
1988 /* Go backwards one character in the pattern. */
1989 # define PATUNFETCH p--
1990
1991
1992 /* If `translate' is non-null, return translate[D], else just D. We
1993 cast the subscript to translate because some data is declared as
1994 `char *', to avoid warnings when a string constant is passed. But
1995 when we use a character as a subscript we must make it unsigned. */
1996 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1997 because it is impossible to allocate 4GB array for some encodings
1998 which have 4 byte character_set like UCS4. */
1999
2000 # ifndef TRANSLATE
2001 # ifdef WCHAR
2002 # define TRANSLATE(d) \
2003 ((translate && ((UCHAR_T) (d)) <= 0xff) \
2004 ? (char) translate[(unsigned char) (d)] : (d))
2005 # else /* BYTE */
2006 # define TRANSLATE(d) \
2007 (translate ? (char) translate[(unsigned char) (d)] : (d))
2008 # endif /* WCHAR */
2009 # endif
2010
2011
2012 /* Macros for outputting the compiled pattern into `buffer'. */
2013
2014 /* If the buffer isn't allocated when it comes in, use this. */
2015 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2016
2017 /* Make sure we have at least N more bytes of space in buffer. */
2018 # ifdef WCHAR
2019 # define GET_BUFFER_SPACE(n) \
2020 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2021 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2022 EXTEND_BUFFER ()
2023 # else /* BYTE */
2024 # define GET_BUFFER_SPACE(n) \
2025 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2026 EXTEND_BUFFER ()
2027 # endif /* WCHAR */
2028
2029 /* Make sure we have one more byte of buffer space and then add C to it. */
2030 # define BUF_PUSH(c) \
2031 do { \
2032 GET_BUFFER_SPACE (1); \
2033 *b++ = (UCHAR_T) (c); \
2034 } while (0)
2035
2036
2037 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2038 # define BUF_PUSH_2(c1, c2) \
2039 do { \
2040 GET_BUFFER_SPACE (2); \
2041 *b++ = (UCHAR_T) (c1); \
2042 *b++ = (UCHAR_T) (c2); \
2043 } while (0)
2044
2045
2046 /* As with BUF_PUSH_2, except for three bytes. */
2047 # define BUF_PUSH_3(c1, c2, c3) \
2048 do { \
2049 GET_BUFFER_SPACE (3); \
2050 *b++ = (UCHAR_T) (c1); \
2051 *b++ = (UCHAR_T) (c2); \
2052 *b++ = (UCHAR_T) (c3); \
2053 } while (0)
2054
2055 /* Store a jump with opcode OP at LOC to location TO. We store a
2056 relative address offset by the three bytes the jump itself occupies. */
2057 # define STORE_JUMP(op, loc, to) \
2058 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2059
2060 /* Likewise, for a two-argument jump. */
2061 # define STORE_JUMP2(op, loc, to, arg) \
2062 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2063
2064 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2065 # define INSERT_JUMP(op, loc, to) \
2066 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2067
2068 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2069 # define INSERT_JUMP2(op, loc, to, arg) \
2070 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2071 arg, b)
2072
2073 /* This is not an arbitrary limit: the arguments which represent offsets
2074 into the pattern are two bytes long. So if 2^16 bytes turns out to
2075 be too small, many things would have to change. */
2076 /* Any other compiler which, like MSC, has allocation limit below 2^16
2077 bytes will have to use approach similar to what was done below for
2078 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2079 reallocating to 0 bytes. Such thing is not going to work too well.
2080 You have been warned!! */
2081 # ifndef DEFINED_ONCE
2082 # if defined _MSC_VER && !defined WIN32
2083 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2084 The REALLOC define eliminates a flurry of conversion warnings,
2085 but is not required. */
2086 # define MAX_BUF_SIZE 65500L
2087 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2088 # else
2089 # define MAX_BUF_SIZE (1L << 16)
2090 # define REALLOC(p,s) realloc ((p), (s))
2091 # endif
2092
2093 /* Extend the buffer by twice its current size via realloc and
2094 reset the pointers that pointed into the old block to point to the
2095 correct places in the new one. If extending the buffer results in it
2096 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2097 # if __BOUNDED_POINTERS__
2098 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2099 # define MOVE_BUFFER_POINTER(P) \
2100 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2101 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2102 else \
2103 { \
2104 SET_HIGH_BOUND (b); \
2105 SET_HIGH_BOUND (begalt); \
2106 if (fixup_alt_jump) \
2107 SET_HIGH_BOUND (fixup_alt_jump); \
2108 if (laststart) \
2109 SET_HIGH_BOUND (laststart); \
2110 if (pending_exact) \
2111 SET_HIGH_BOUND (pending_exact); \
2112 }
2113 # else
2114 # define MOVE_BUFFER_POINTER(P) (P) += incr
2115 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2116 # endif
2117 # endif /* not DEFINED_ONCE */
2118
2119 # ifdef WCHAR
2120 # define EXTEND_BUFFER() \
2121 do { \
2122 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2123 int wchar_count; \
2124 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2125 return REG_ESIZE; \
2126 bufp->allocated <<= 1; \
2127 if (bufp->allocated > MAX_BUF_SIZE) \
2128 bufp->allocated = MAX_BUF_SIZE; \
2129 /* How many characters the new buffer can have? */ \
2130 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2131 if (wchar_count == 0) wchar_count = 1; \
2132 /* Truncate the buffer to CHAR_T align. */ \
2133 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2134 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2135 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2136 if (COMPILED_BUFFER_VAR == NULL) \
2137 return REG_ESPACE; \
2138 /* If the buffer moved, move all the pointers into it. */ \
2139 if (old_buffer != COMPILED_BUFFER_VAR) \
2140 { \
2141 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2142 MOVE_BUFFER_POINTER (b); \
2143 MOVE_BUFFER_POINTER (begalt); \
2144 if (fixup_alt_jump) \
2145 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2146 if (laststart) \
2147 MOVE_BUFFER_POINTER (laststart); \
2148 if (pending_exact) \
2149 MOVE_BUFFER_POINTER (pending_exact); \
2150 } \
2151 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2152 } while (0)
2153 # else /* BYTE */
2154 # define EXTEND_BUFFER() \
2155 do { \
2156 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2157 if (bufp->allocated == MAX_BUF_SIZE) \
2158 return REG_ESIZE; \
2159 bufp->allocated <<= 1; \
2160 if (bufp->allocated > MAX_BUF_SIZE) \
2161 bufp->allocated = MAX_BUF_SIZE; \
2162 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2163 bufp->allocated); \
2164 if (COMPILED_BUFFER_VAR == NULL) \
2165 return REG_ESPACE; \
2166 /* If the buffer moved, move all the pointers into it. */ \
2167 if (old_buffer != COMPILED_BUFFER_VAR) \
2168 { \
2169 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2170 MOVE_BUFFER_POINTER (b); \
2171 MOVE_BUFFER_POINTER (begalt); \
2172 if (fixup_alt_jump) \
2173 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2174 if (laststart) \
2175 MOVE_BUFFER_POINTER (laststart); \
2176 if (pending_exact) \
2177 MOVE_BUFFER_POINTER (pending_exact); \
2178 } \
2179 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2180 } while (0)
2181 # endif /* WCHAR */
2182
2183 # ifndef DEFINED_ONCE
2184 /* Since we have one byte reserved for the register number argument to
2185 {start,stop}_memory, the maximum number of groups we can report
2186 things about is what fits in that byte. */
2187 # define MAX_REGNUM 255
2188
2189 /* But patterns can have more than `MAX_REGNUM' registers. We just
2190 ignore the excess. */
2191 typedef unsigned regnum_t;
2192
2193
2194 /* Macros for the compile stack. */
2195
2196 /* Since offsets can go either forwards or backwards, this type needs to
2197 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2198 /* int may be not enough when sizeof(int) == 2. */
2199 typedef long pattern_offset_t;
2200
2201 typedef struct
2202 {
2203 pattern_offset_t begalt_offset;
2204 pattern_offset_t fixup_alt_jump;
2205 pattern_offset_t inner_group_offset;
2206 pattern_offset_t laststart_offset;
2207 regnum_t regnum;
2208 } compile_stack_elt_t;
2209
2210
2211 typedef struct
2212 {
2213 compile_stack_elt_t *stack;
2214 unsigned size;
2215 unsigned avail; /* Offset of next open position. */
2216 } compile_stack_type;
2217
2218
2219 # define INIT_COMPILE_STACK_SIZE 32
2220
2221 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2222 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2223
2224 /* The next available element. */
2225 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2226
2227 # endif /* not DEFINED_ONCE */
2228
2229 /* Set the bit for character C in a list. */
2230 # ifndef DEFINED_ONCE
2231 # define SET_LIST_BIT(c) \
2232 (b[((unsigned char) (c)) / BYTEWIDTH] \
2233 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2234 # endif /* DEFINED_ONCE */
2235
2236 /* Get the next unsigned number in the uncompiled pattern. */
2237 # define GET_UNSIGNED_NUMBER(num) \
2238 { \
2239 while (p != pend) \
2240 { \
2241 PATFETCH (c); \
2242 if (c < '0' || c > '9') \
2243 break; \
2244 if (num <= RE_DUP_MAX) \
2245 { \
2246 if (num < 0) \
2247 num = 0; \
2248 num = num * 10 + c - '0'; \
2249 } \
2250 } \
2251 }
2252
2253 # ifndef DEFINED_ONCE
2254 # if defined _LIBC || WIDE_CHAR_SUPPORT
2255 /* The GNU C library provides support for user-defined character classes
2256 and the functions from ISO C amendement 1. */
2257 # ifdef CHARCLASS_NAME_MAX
2258 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2259 # else
2260 /* This shouldn't happen but some implementation might still have this
2261 problem. Use a reasonable default value. */
2262 # define CHAR_CLASS_MAX_LENGTH 256
2263 # endif
2264
2265 # ifdef _LIBC
2266 # define IS_CHAR_CLASS(string) __wctype (string)
2267 # else
2268 # define IS_CHAR_CLASS(string) wctype (string)
2269 # endif
2270 # else
2271 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2272
2273 # define IS_CHAR_CLASS(string) \
2274 (STREQ (string, "alpha") || STREQ (string, "upper") \
2275 || STREQ (string, "lower") || STREQ (string, "digit") \
2276 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2277 || STREQ (string, "space") || STREQ (string, "print") \
2278 || STREQ (string, "punct") || STREQ (string, "graph") \
2279 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2280 # endif
2281 # endif /* DEFINED_ONCE */
2282 \f
2283 # ifndef MATCH_MAY_ALLOCATE
2284
2285 /* If we cannot allocate large objects within re_match_2_internal,
2286 we make the fail stack and register vectors global.
2287 The fail stack, we grow to the maximum size when a regexp
2288 is compiled.
2289 The register vectors, we adjust in size each time we
2290 compile a regexp, according to the number of registers it needs. */
2291
2292 static PREFIX(fail_stack_type) fail_stack;
2293
2294 /* Size with which the following vectors are currently allocated.
2295 That is so we can make them bigger as needed,
2296 but never make them smaller. */
2297 # ifdef DEFINED_ONCE
2298 static int regs_allocated_size;
2299
2300 static const char ** regstart, ** regend;
2301 static const char ** old_regstart, ** old_regend;
2302 static const char **best_regstart, **best_regend;
2303 static const char **reg_dummy;
2304 # endif /* DEFINED_ONCE */
2305
2306 static PREFIX(register_info_type) *PREFIX(reg_info);
2307 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2308
2309 /* Make the register vectors big enough for NUM_REGS registers,
2310 but don't make them smaller. */
2311
2312 static void
2313 PREFIX(regex_grow_registers) (num_regs)
2314 int num_regs;
2315 {
2316 if (num_regs > regs_allocated_size)
2317 {
2318 RETALLOC_IF (regstart, num_regs, const char *);
2319 RETALLOC_IF (regend, num_regs, const char *);
2320 RETALLOC_IF (old_regstart, num_regs, const char *);
2321 RETALLOC_IF (old_regend, num_regs, const char *);
2322 RETALLOC_IF (best_regstart, num_regs, const char *);
2323 RETALLOC_IF (best_regend, num_regs, const char *);
2324 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2325 RETALLOC_IF (reg_dummy, num_regs, const char *);
2326 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2327
2328 regs_allocated_size = num_regs;
2329 }
2330 }
2331
2332 # endif /* not MATCH_MAY_ALLOCATE */
2333 \f
2334 # ifndef DEFINED_ONCE
2335 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2336 compile_stack,
2337 regnum_t regnum));
2338 # endif /* not DEFINED_ONCE */
2339
2340 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2341 Returns one of error codes defined in `regex.h', or zero for success.
2342
2343 Assumes the `allocated' (and perhaps `buffer') and `translate'
2344 fields are set in BUFP on entry.
2345
2346 If it succeeds, results are put in BUFP (if it returns an error, the
2347 contents of BUFP are undefined):
2348 `buffer' is the compiled pattern;
2349 `syntax' is set to SYNTAX;
2350 `used' is set to the length of the compiled pattern;
2351 `fastmap_accurate' is zero;
2352 `re_nsub' is the number of subexpressions in PATTERN;
2353 `not_bol' and `not_eol' are zero;
2354
2355 The `fastmap' and `newline_anchor' fields are neither
2356 examined nor set. */
2357
2358 /* Return, freeing storage we allocated. */
2359 # ifdef WCHAR
2360 # define FREE_STACK_RETURN(value) \
2361 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2362 # else
2363 # define FREE_STACK_RETURN(value) \
2364 return (free (compile_stack.stack), value)
2365 # endif /* WCHAR */
2366
2367 static reg_errcode_t
2368 PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2369 const char *ARG_PREFIX(pattern);
2370 size_t ARG_PREFIX(size);
2371 reg_syntax_t syntax;
2372 struct re_pattern_buffer *bufp;
2373 {
2374 /* We fetch characters from PATTERN here. Even though PATTERN is
2375 `char *' (i.e., signed), we declare these variables as unsigned, so
2376 they can be reliably used as array indices. */
2377 register UCHAR_T c, c1;
2378
2379 #ifdef WCHAR
2380 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2381 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2382 size_t size;
2383 /* offset buffer for optimization. See convert_mbs_to_wc. */
2384 int *mbs_offset = NULL;
2385 /* It hold whether each wchar_t is binary data or not. */
2386 char *is_binary = NULL;
2387 /* A flag whether exactn is handling binary data or not. */
2388 char is_exactn_bin = FALSE;
2389 #endif /* WCHAR */
2390
2391 /* A random temporary spot in PATTERN. */
2392 const CHAR_T *p1;
2393
2394 /* Points to the end of the buffer, where we should append. */
2395 register UCHAR_T *b;
2396
2397 /* Keeps track of unclosed groups. */
2398 compile_stack_type compile_stack;
2399
2400 /* Points to the current (ending) position in the pattern. */
2401 #ifdef WCHAR
2402 const CHAR_T *p;
2403 const CHAR_T *pend;
2404 #else /* BYTE */
2405 const CHAR_T *p = pattern;
2406 const CHAR_T *pend = pattern + size;
2407 #endif /* WCHAR */
2408
2409 /* How to translate the characters in the pattern. */
2410 RE_TRANSLATE_TYPE translate = bufp->translate;
2411
2412 /* Address of the count-byte of the most recently inserted `exactn'
2413 command. This makes it possible to tell if a new exact-match
2414 character can be added to that command or if the character requires
2415 a new `exactn' command. */
2416 UCHAR_T *pending_exact = 0;
2417
2418 /* Address of start of the most recently finished expression.
2419 This tells, e.g., postfix * where to find the start of its
2420 operand. Reset at the beginning of groups and alternatives. */
2421 UCHAR_T *laststart = 0;
2422
2423 /* Address of beginning of regexp, or inside of last group. */
2424 UCHAR_T *begalt;
2425
2426 /* Address of the place where a forward jump should go to the end of
2427 the containing expression. Each alternative of an `or' -- except the
2428 last -- ends with a forward jump of this sort. */
2429 UCHAR_T *fixup_alt_jump = 0;
2430
2431 /* Counts open-groups as they are encountered. Remembered for the
2432 matching close-group on the compile stack, so the same register
2433 number is put in the stop_memory as the start_memory. */
2434 regnum_t regnum = 0;
2435
2436 #ifdef WCHAR
2437 /* Initialize the wchar_t PATTERN and offset_buffer. */
2438 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2439 mbs_offset = TALLOC(csize + 1, int);
2440 is_binary = TALLOC(csize + 1, char);
2441 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2442 {
2443 free(pattern);
2444 free(mbs_offset);
2445 free(is_binary);
2446 return REG_ESPACE;
2447 }
2448 pattern[csize] = L'\0'; /* sentinel */
2449 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2450 pend = p + size;
2451 if (size < 0)
2452 {
2453 free(pattern);
2454 free(mbs_offset);
2455 free(is_binary);
2456 return REG_BADPAT;
2457 }
2458 #endif
2459
2460 #ifdef DEBUG
2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
2462 if (debug)
2463 {
2464 unsigned debug_count;
2465
2466 for (debug_count = 0; debug_count < size; debug_count++)
2467 PUT_CHAR (pattern[debug_count]);
2468 putchar ('\n');
2469 }
2470 #endif /* DEBUG */
2471
2472 /* Initialize the compile stack. */
2473 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2474 if (compile_stack.stack == NULL)
2475 {
2476 #ifdef WCHAR
2477 free(pattern);
2478 free(mbs_offset);
2479 free(is_binary);
2480 #endif
2481 return REG_ESPACE;
2482 }
2483
2484 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2485 compile_stack.avail = 0;
2486
2487 /* Initialize the pattern buffer. */
2488 bufp->syntax = syntax;
2489 bufp->fastmap_accurate = 0;
2490 bufp->not_bol = bufp->not_eol = 0;
2491
2492 /* Set `used' to zero, so that if we return an error, the pattern
2493 printer (for debugging) will think there's no pattern. We reset it
2494 at the end. */
2495 bufp->used = 0;
2496
2497 /* Always count groups, whether or not bufp->no_sub is set. */
2498 bufp->re_nsub = 0;
2499
2500 #if !defined emacs && !defined SYNTAX_TABLE
2501 /* Initialize the syntax table. */
2502 init_syntax_once ();
2503 #endif
2504
2505 if (bufp->allocated == 0)
2506 {
2507 if (bufp->buffer)
2508 { /* If zero allocated, but buffer is non-null, try to realloc
2509 enough space. This loses if buffer's address is bogus, but
2510 that is the user's responsibility. */
2511 #ifdef WCHAR
2512 /* Free bufp->buffer and allocate an array for wchar_t pattern
2513 buffer. */
2514 free(bufp->buffer);
2515 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2516 UCHAR_T);
2517 #else
2518 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2519 #endif /* WCHAR */
2520 }
2521 else
2522 { /* Caller did not allocate a buffer. Do it for them. */
2523 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2524 UCHAR_T);
2525 }
2526
2527 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2528 #ifdef WCHAR
2529 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2530 #endif /* WCHAR */
2531 bufp->allocated = INIT_BUF_SIZE;
2532 }
2533 #ifdef WCHAR
2534 else
2535 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2536 #endif
2537
2538 begalt = b = COMPILED_BUFFER_VAR;
2539
2540 /* Loop through the uncompiled pattern until we're at the end. */
2541 while (p != pend)
2542 {
2543 PATFETCH (c);
2544
2545 switch (c)
2546 {
2547 case '^':
2548 {
2549 if ( /* If at start of pattern, it's an operator. */
2550 p == pattern + 1
2551 /* If context independent, it's an operator. */
2552 || syntax & RE_CONTEXT_INDEP_ANCHORS
2553 /* Otherwise, depends on what's come before. */
2554 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2555 BUF_PUSH (begline);
2556 else
2557 goto normal_char;
2558 }
2559 break;
2560
2561
2562 case '$':
2563 {
2564 if ( /* If at end of pattern, it's an operator. */
2565 p == pend
2566 /* If context independent, it's an operator. */
2567 || syntax & RE_CONTEXT_INDEP_ANCHORS
2568 /* Otherwise, depends on what's next. */
2569 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2570 BUF_PUSH (endline);
2571 else
2572 goto normal_char;
2573 }
2574 break;
2575
2576
2577 case '+':
2578 case '?':
2579 if ((syntax & RE_BK_PLUS_QM)
2580 || (syntax & RE_LIMITED_OPS))
2581 goto normal_char;
2582 handle_plus:
2583 case '*':
2584 /* If there is no previous pattern... */
2585 if (!laststart)
2586 {
2587 if (syntax & RE_CONTEXT_INVALID_OPS)
2588 FREE_STACK_RETURN (REG_BADRPT);
2589 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2590 goto normal_char;
2591 }
2592
2593 {
2594 /* Are we optimizing this jump? */
2595 boolean keep_string_p = false;
2596
2597 /* 1 means zero (many) matches is allowed. */
2598 char zero_times_ok = 0, many_times_ok = 0;
2599
2600 /* If there is a sequence of repetition chars, collapse it
2601 down to just one (the right one). We can't combine
2602 interval operators with these because of, e.g., `a{2}*',
2603 which should only match an even number of `a's. */
2604
2605 for (;;)
2606 {
2607 zero_times_ok |= c != '+';
2608 many_times_ok |= c != '?';
2609
2610 if (p == pend)
2611 break;
2612
2613 PATFETCH (c);
2614
2615 if (c == '*'
2616 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2617 ;
2618
2619 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2620 {
2621 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2622
2623 PATFETCH (c1);
2624 if (!(c1 == '+' || c1 == '?'))
2625 {
2626 PATUNFETCH;
2627 PATUNFETCH;
2628 break;
2629 }
2630
2631 c = c1;
2632 }
2633 else
2634 {
2635 PATUNFETCH;
2636 break;
2637 }
2638
2639 /* If we get here, we found another repeat character. */
2640 }
2641
2642 /* Star, etc. applied to an empty pattern is equivalent
2643 to an empty pattern. */
2644 if (!laststart)
2645 break;
2646
2647 /* Now we know whether or not zero matches is allowed
2648 and also whether or not two or more matches is allowed. */
2649 if (many_times_ok)
2650 { /* More than one repetition is allowed, so put in at the
2651 end a backward relative jump from `b' to before the next
2652 jump we're going to put in below (which jumps from
2653 laststart to after this jump).
2654
2655 But if we are at the `*' in the exact sequence `.*\n',
2656 insert an unconditional jump backwards to the .,
2657 instead of the beginning of the loop. This way we only
2658 push a failure point once, instead of every time
2659 through the loop. */
2660 assert (p - 1 > pattern);
2661
2662 /* Allocate the space for the jump. */
2663 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2664
2665 /* We know we are not at the first character of the pattern,
2666 because laststart was nonzero. And we've already
2667 incremented `p', by the way, to be the character after
2668 the `*'. Do we have to do something analogous here
2669 for null bytes, because of RE_DOT_NOT_NULL? */
2670 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2671 && zero_times_ok
2672 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2673 && !(syntax & RE_DOT_NEWLINE))
2674 { /* We have .*\n. */
2675 STORE_JUMP (jump, b, laststart);
2676 keep_string_p = true;
2677 }
2678 else
2679 /* Anything else. */
2680 STORE_JUMP (maybe_pop_jump, b, laststart -
2681 (1 + OFFSET_ADDRESS_SIZE));
2682
2683 /* We've added more stuff to the buffer. */
2684 b += 1 + OFFSET_ADDRESS_SIZE;
2685 }
2686
2687 /* On failure, jump from laststart to b + 3, which will be the
2688 end of the buffer after this jump is inserted. */
2689 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2690 'b + 3'. */
2691 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2692 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2693 : on_failure_jump,
2694 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2695 pending_exact = 0;
2696 b += 1 + OFFSET_ADDRESS_SIZE;
2697
2698 if (!zero_times_ok)
2699 {
2700 /* At least one repetition is required, so insert a
2701 `dummy_failure_jump' before the initial
2702 `on_failure_jump' instruction of the loop. This
2703 effects a skip over that instruction the first time
2704 we hit that loop. */
2705 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2706 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2707 2 + 2 * OFFSET_ADDRESS_SIZE);
2708 b += 1 + OFFSET_ADDRESS_SIZE;
2709 }
2710 }
2711 break;
2712
2713
2714 case '.':
2715 laststart = b;
2716 BUF_PUSH (anychar);
2717 break;
2718
2719
2720 case '[':
2721 {
2722 boolean had_char_class = false;
2723 #ifdef WCHAR
2724 CHAR_T range_start = 0xffffffff;
2725 #else
2726 unsigned int range_start = 0xffffffff;
2727 #endif
2728 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2729
2730 #ifdef WCHAR
2731 /* We assume a charset(_not) structure as a wchar_t array.
2732 charset[0] = (re_opcode_t) charset(_not)
2733 charset[1] = l (= length of char_classes)
2734 charset[2] = m (= length of collating_symbols)
2735 charset[3] = n (= length of equivalence_classes)
2736 charset[4] = o (= length of char_ranges)
2737 charset[5] = p (= length of chars)
2738
2739 charset[6] = char_class (wctype_t)
2740 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2741 ...
2742 charset[l+5] = char_class (wctype_t)
2743
2744 charset[l+6] = collating_symbol (wchar_t)
2745 ...
2746 charset[l+m+5] = collating_symbol (wchar_t)
2747 ifdef _LIBC we use the index if
2748 _NL_COLLATE_SYMB_EXTRAMB instead of
2749 wchar_t string.
2750
2751 charset[l+m+6] = equivalence_classes (wchar_t)
2752 ...
2753 charset[l+m+n+5] = equivalence_classes (wchar_t)
2754 ifdef _LIBC we use the index in
2755 _NL_COLLATE_WEIGHT instead of
2756 wchar_t string.
2757
2758 charset[l+m+n+6] = range_start
2759 charset[l+m+n+7] = range_end
2760 ...
2761 charset[l+m+n+2o+4] = range_start
2762 charset[l+m+n+2o+5] = range_end
2763 ifdef _LIBC we use the value looked up
2764 in _NL_COLLATE_COLLSEQ instead of
2765 wchar_t character.
2766
2767 charset[l+m+n+2o+6] = char
2768 ...
2769 charset[l+m+n+2o+p+5] = char
2770
2771 */
2772
2773 /* We need at least 6 spaces: the opcode, the length of
2774 char_classes, the length of collating_symbols, the length of
2775 equivalence_classes, the length of char_ranges, the length of
2776 chars. */
2777 GET_BUFFER_SPACE (6);
2778
2779 /* Save b as laststart. And We use laststart as the pointer
2780 to the first element of the charset here.
2781 In other words, laststart[i] indicates charset[i]. */
2782 laststart = b;
2783
2784 /* We test `*p == '^' twice, instead of using an if
2785 statement, so we only need one BUF_PUSH. */
2786 BUF_PUSH (*p == '^' ? charset_not : charset);
2787 if (*p == '^')
2788 p++;
2789
2790 /* Push the length of char_classes, the length of
2791 collating_symbols, the length of equivalence_classes, the
2792 length of char_ranges and the length of chars. */
2793 BUF_PUSH_3 (0, 0, 0);
2794 BUF_PUSH_2 (0, 0);
2795
2796 /* Remember the first position in the bracket expression. */
2797 p1 = p;
2798
2799 /* charset_not matches newline according to a syntax bit. */
2800 if ((re_opcode_t) b[-6] == charset_not
2801 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2802 {
2803 BUF_PUSH('\n');
2804 laststart[5]++; /* Update the length of characters */
2805 }
2806
2807 /* Read in characters and ranges, setting map bits. */
2808 for (;;)
2809 {
2810 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2811
2812 PATFETCH (c);
2813
2814 /* \ might escape characters inside [...] and [^...]. */
2815 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2816 {
2817 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2818
2819 PATFETCH (c1);
2820 BUF_PUSH(c1);
2821 laststart[5]++; /* Update the length of chars */
2822 range_start = c1;
2823 continue;
2824 }
2825
2826 /* Could be the end of the bracket expression. If it's
2827 not (i.e., when the bracket expression is `[]' so
2828 far), the ']' character bit gets set way below. */
2829 if (c == ']' && p != p1 + 1)
2830 break;
2831
2832 /* Look ahead to see if it's a range when the last thing
2833 was a character class. */
2834 if (had_char_class && c == '-' && *p != ']')
2835 FREE_STACK_RETURN (REG_ERANGE);
2836
2837 /* Look ahead to see if it's a range when the last thing
2838 was a character: if this is a hyphen not at the
2839 beginning or the end of a list, then it's the range
2840 operator. */
2841 if (c == '-'
2842 && !(p - 2 >= pattern && p[-2] == '[')
2843 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2844 && *p != ']')
2845 {
2846 reg_errcode_t ret;
2847 /* Allocate the space for range_start and range_end. */
2848 GET_BUFFER_SPACE (2);
2849 /* Update the pointer to indicate end of buffer. */
2850 b += 2;
2851 ret = wcs_compile_range (range_start, &p, pend, translate,
2852 syntax, b, laststart);
2853 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2854 range_start = 0xffffffff;
2855 }
2856 else if (p[0] == '-' && p[1] != ']')
2857 { /* This handles ranges made up of characters only. */
2858 reg_errcode_t ret;
2859
2860 /* Move past the `-'. */
2861 PATFETCH (c1);
2862 /* Allocate the space for range_start and range_end. */
2863 GET_BUFFER_SPACE (2);
2864 /* Update the pointer to indicate end of buffer. */
2865 b += 2;
2866 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2867 laststart);
2868 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2869 range_start = 0xffffffff;
2870 }
2871
2872 /* See if we're at the beginning of a possible character
2873 class. */
2874 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2875 { /* Leave room for the null. */
2876 char str[CHAR_CLASS_MAX_LENGTH + 1];
2877
2878 PATFETCH (c);
2879 c1 = 0;
2880
2881 /* If pattern is `[[:'. */
2882 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2883
2884 for (;;)
2885 {
2886 PATFETCH (c);
2887 if ((c == ':' && *p == ']') || p == pend)
2888 break;
2889 if (c1 < CHAR_CLASS_MAX_LENGTH)
2890 str[c1++] = c;
2891 else
2892 /* This is in any case an invalid class name. */
2893 str[0] = '\0';
2894 }
2895 str[c1] = '\0';
2896
2897 /* If isn't a word bracketed by `[:' and `:]':
2898 undo the ending character, the letters, and leave
2899 the leading `:' and `[' (but store them as character). */
2900 if (c == ':' && *p == ']')
2901 {
2902 wctype_t wt;
2903 uintptr_t alignedp;
2904
2905 /* Query the character class as wctype_t. */
2906 wt = IS_CHAR_CLASS (str);
2907 if (wt == 0)
2908 FREE_STACK_RETURN (REG_ECTYPE);
2909
2910 /* Throw away the ] at the end of the character
2911 class. */
2912 PATFETCH (c);
2913
2914 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2915
2916 /* Allocate the space for character class. */
2917 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2918 /* Update the pointer to indicate end of buffer. */
2919 b += CHAR_CLASS_SIZE;
2920 /* Move data which follow character classes
2921 not to violate the data. */
2922 insert_space(CHAR_CLASS_SIZE,
2923 laststart + 6 + laststart[1],
2924 b - 1);
2925 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2926 + __alignof__(wctype_t) - 1)
2927 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2928 /* Store the character class. */
2929 *((wctype_t*)alignedp) = wt;
2930 /* Update length of char_classes */
2931 laststart[1] += CHAR_CLASS_SIZE;
2932
2933 had_char_class = true;
2934 }
2935 else
2936 {
2937 c1++;
2938 while (c1--)
2939 PATUNFETCH;
2940 BUF_PUSH ('[');
2941 BUF_PUSH (':');
2942 laststart[5] += 2; /* Update the length of characters */
2943 range_start = ':';
2944 had_char_class = false;
2945 }
2946 }
2947 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2948 || *p == '.'))
2949 {
2950 CHAR_T str[128]; /* Should be large enough. */
2951 CHAR_T delim = *p; /* '=' or '.' */
2952 # ifdef _LIBC
2953 uint32_t nrules =
2954 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2955 # endif
2956 PATFETCH (c);
2957 c1 = 0;
2958
2959 /* If pattern is `[[=' or '[[.'. */
2960 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2961
2962 for (;;)
2963 {
2964 PATFETCH (c);
2965 if ((c == delim && *p == ']') || p == pend)
2966 break;
2967 if (c1 < sizeof (str) - 1)
2968 str[c1++] = c;
2969 else
2970 /* This is in any case an invalid class name. */
2971 str[0] = '\0';
2972 }
2973 str[c1] = '\0';
2974
2975 if (c == delim && *p == ']' && str[0] != '\0')
2976 {
2977 unsigned int i, offset;
2978 /* If we have no collation data we use the default
2979 collation in which each character is in a class
2980 by itself. It also means that ASCII is the
2981 character set and therefore we cannot have character
2982 with more than one byte in the multibyte
2983 representation. */
2984
2985 /* If not defined _LIBC, we push the name and
2986 `\0' for the sake of matching performance. */
2987 int datasize = c1 + 1;
2988
2989 # ifdef _LIBC
2990 int32_t idx = 0;
2991 if (nrules == 0)
2992 # endif
2993 {
2994 if (c1 != 1)
2995 FREE_STACK_RETURN (REG_ECOLLATE);
2996 }
2997 # ifdef _LIBC
2998 else
2999 {
3000 const int32_t *table;
3001 const int32_t *weights;
3002 const int32_t *extra;
3003 const int32_t *indirect;
3004 wint_t *cp;
3005
3006 /* This #include defines a local function! */
3007 # include <locale/weightwc.h>
3008
3009 if(delim == '=')
3010 {
3011 /* We push the index for equivalence class. */
3012 cp = (wint_t*)str;
3013
3014 table = (const int32_t *)
3015 _NL_CURRENT (LC_COLLATE,
3016 _NL_COLLATE_TABLEWC);
3017 weights = (const int32_t *)
3018 _NL_CURRENT (LC_COLLATE,
3019 _NL_COLLATE_WEIGHTWC);
3020 extra = (const int32_t *)
3021 _NL_CURRENT (LC_COLLATE,
3022 _NL_COLLATE_EXTRAWC);
3023 indirect = (const int32_t *)
3024 _NL_CURRENT (LC_COLLATE,
3025 _NL_COLLATE_INDIRECTWC);
3026
3027 idx = findidx ((const wint_t**)&cp);
3028 if (idx == 0 || cp < (wint_t*) str + c1)
3029 /* This is no valid character. */
3030 FREE_STACK_RETURN (REG_ECOLLATE);
3031
3032 str[0] = (wchar_t)idx;
3033 }
3034 else /* delim == '.' */
3035 {
3036 /* We push collation sequence value
3037 for collating symbol. */
3038 int32_t table_size;
3039 const int32_t *symb_table;
3040 const unsigned char *extra;
3041 int32_t idx;
3042 int32_t elem;
3043 int32_t second;
3044 int32_t hash;
3045 char char_str[c1];
3046
3047 /* We have to convert the name to a single-byte
3048 string. This is possible since the names
3049 consist of ASCII characters and the internal
3050 representation is UCS4. */
3051 for (i = 0; i < c1; ++i)
3052 char_str[i] = str[i];
3053
3054 table_size =
3055 _NL_CURRENT_WORD (LC_COLLATE,
3056 _NL_COLLATE_SYMB_HASH_SIZEMB);
3057 symb_table = (const int32_t *)
3058 _NL_CURRENT (LC_COLLATE,
3059 _NL_COLLATE_SYMB_TABLEMB);
3060 extra = (const unsigned char *)
3061 _NL_CURRENT (LC_COLLATE,
3062 _NL_COLLATE_SYMB_EXTRAMB);
3063
3064 /* Locate the character in the hashing table. */
3065 hash = elem_hash (char_str, c1);
3066
3067 idx = 0;
3068 elem = hash % table_size;
3069 second = hash % (table_size - 2);
3070 while (symb_table[2 * elem] != 0)
3071 {
3072 /* First compare the hashing value. */
3073 if (symb_table[2 * elem] == hash
3074 && c1 == extra[symb_table[2 * elem + 1]]
3075 && memcmp (char_str,
3076 &extra[symb_table[2 * elem + 1]
3077 + 1], c1) == 0)
3078 {
3079 /* Yep, this is the entry. */
3080 idx = symb_table[2 * elem + 1];
3081 idx += 1 + extra[idx];
3082 break;
3083 }
3084
3085 /* Next entry. */
3086 elem += second;
3087 }
3088
3089 if (symb_table[2 * elem] != 0)
3090 {
3091 /* Compute the index of the byte sequence
3092 in the table. */
3093 idx += 1 + extra[idx];
3094 /* Adjust for the alignment. */
3095 idx = (idx + 3) & ~3;
3096
3097 str[0] = (wchar_t) idx + 4;
3098 }
3099 else if (symb_table[2 * elem] == 0 && c1 == 1)
3100 {
3101 /* No valid character. Match it as a
3102 single byte character. */
3103 had_char_class = false;
3104 BUF_PUSH(str[0]);
3105 /* Update the length of characters */
3106 laststart[5]++;
3107 range_start = str[0];
3108
3109 /* Throw away the ] at the end of the
3110 collating symbol. */
3111 PATFETCH (c);
3112 /* exit from the switch block. */
3113 continue;
3114 }
3115 else
3116 FREE_STACK_RETURN (REG_ECOLLATE);
3117 }
3118 datasize = 1;
3119 }
3120 # endif
3121 /* Throw away the ] at the end of the equivalence
3122 class (or collating symbol). */
3123 PATFETCH (c);
3124
3125 /* Allocate the space for the equivalence class
3126 (or collating symbol) (and '\0' if needed). */
3127 GET_BUFFER_SPACE(datasize);
3128 /* Update the pointer to indicate end of buffer. */
3129 b += datasize;
3130
3131 if (delim == '=')
3132 { /* equivalence class */
3133 /* Calculate the offset of char_ranges,
3134 which is next to equivalence_classes. */
3135 offset = laststart[1] + laststart[2]
3136 + laststart[3] +6;
3137 /* Insert space. */
3138 insert_space(datasize, laststart + offset, b - 1);
3139
3140 /* Write the equivalence_class and \0. */
3141 for (i = 0 ; i < datasize ; i++)
3142 laststart[offset + i] = str[i];
3143
3144 /* Update the length of equivalence_classes. */
3145 laststart[3] += datasize;
3146 had_char_class = true;
3147 }
3148 else /* delim == '.' */
3149 { /* collating symbol */
3150 /* Calculate the offset of the equivalence_classes,
3151 which is next to collating_symbols. */
3152 offset = laststart[1] + laststart[2] + 6;
3153 /* Insert space and write the collationg_symbol
3154 and \0. */
3155 insert_space(datasize, laststart + offset, b-1);
3156 for (i = 0 ; i < datasize ; i++)
3157 laststart[offset + i] = str[i];
3158
3159 /* In re_match_2_internal if range_start < -1, we
3160 assume -range_start is the offset of the
3161 collating symbol which is specified as
3162 the character of the range start. So we assign
3163 -(laststart[1] + laststart[2] + 6) to
3164 range_start. */
3165 range_start = -(laststart[1] + laststart[2] + 6);
3166 /* Update the length of collating_symbol. */
3167 laststart[2] += datasize;
3168 had_char_class = false;
3169 }
3170 }
3171 else
3172 {
3173 c1++;
3174 while (c1--)
3175 PATUNFETCH;
3176 BUF_PUSH ('[');
3177 BUF_PUSH (delim);
3178 laststart[5] += 2; /* Update the length of characters */
3179 range_start = delim;
3180 had_char_class = false;
3181 }
3182 }
3183 else
3184 {
3185 had_char_class = false;
3186 BUF_PUSH(c);
3187 laststart[5]++; /* Update the length of characters */
3188 range_start = c;
3189 }
3190 }
3191
3192 #else /* BYTE */
3193 /* Ensure that we have enough space to push a charset: the
3194 opcode, the length count, and the bitset; 34 bytes in all. */
3195 GET_BUFFER_SPACE (34);
3196
3197 laststart = b;
3198
3199 /* We test `*p == '^' twice, instead of using an if
3200 statement, so we only need one BUF_PUSH. */
3201 BUF_PUSH (*p == '^' ? charset_not : charset);
3202 if (*p == '^')
3203 p++;
3204
3205 /* Remember the first position in the bracket expression. */
3206 p1 = p;
3207
3208 /* Push the number of bytes in the bitmap. */
3209 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3210
3211 /* Clear the whole map. */
3212 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3213
3214 /* charset_not matches newline according to a syntax bit. */
3215 if ((re_opcode_t) b[-2] == charset_not
3216 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3217 SET_LIST_BIT ('\n');
3218
3219 /* Read in characters and ranges, setting map bits. */
3220 for (;;)
3221 {
3222 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3223
3224 PATFETCH (c);
3225
3226 /* \ might escape characters inside [...] and [^...]. */
3227 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3228 {
3229 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3230
3231 PATFETCH (c1);
3232 SET_LIST_BIT (c1);
3233 range_start = c1;
3234 continue;
3235 }
3236
3237 /* Could be the end of the bracket expression. If it's
3238 not (i.e., when the bracket expression is `[]' so
3239 far), the ']' character bit gets set way below. */
3240 if (c == ']' && p != p1 + 1)
3241 break;
3242
3243 /* Look ahead to see if it's a range when the last thing
3244 was a character class. */
3245 if (had_char_class && c == '-' && *p != ']')
3246 FREE_STACK_RETURN (REG_ERANGE);
3247
3248 /* Look ahead to see if it's a range when the last thing
3249 was a character: if this is a hyphen not at the
3250 beginning or the end of a list, then it's the range
3251 operator. */
3252 if (c == '-'
3253 && !(p - 2 >= pattern && p[-2] == '[')
3254 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3255 && *p != ']')
3256 {
3257 reg_errcode_t ret
3258 = byte_compile_range (range_start, &p, pend, translate,
3259 syntax, b);
3260 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3261 range_start = 0xffffffff;
3262 }
3263
3264 else if (p[0] == '-' && p[1] != ']')
3265 { /* This handles ranges made up of characters only. */
3266 reg_errcode_t ret;
3267
3268 /* Move past the `-'. */
3269 PATFETCH (c1);
3270
3271 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3272 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3273 range_start = 0xffffffff;
3274 }
3275
3276 /* See if we're at the beginning of a possible character
3277 class. */
3278
3279 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3280 { /* Leave room for the null. */
3281 char str[CHAR_CLASS_MAX_LENGTH + 1];
3282
3283 PATFETCH (c);
3284 c1 = 0;
3285
3286 /* If pattern is `[[:'. */
3287 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3288
3289 for (;;)
3290 {
3291 PATFETCH (c);
3292 if ((c == ':' && *p == ']') || p == pend)
3293 break;
3294 if (c1 < CHAR_CLASS_MAX_LENGTH)
3295 str[c1++] = c;
3296 else
3297 /* This is in any case an invalid class name. */
3298 str[0] = '\0';
3299 }
3300 str[c1] = '\0';
3301
3302 /* If isn't a word bracketed by `[:' and `:]':
3303 undo the ending character, the letters, and leave
3304 the leading `:' and `[' (but set bits for them). */
3305 if (c == ':' && *p == ']')
3306 {
3307 # if defined _LIBC || WIDE_CHAR_SUPPORT
3308 boolean is_lower = STREQ (str, "lower");
3309 boolean is_upper = STREQ (str, "upper");
3310 wctype_t wt;
3311 int ch;
3312
3313 wt = IS_CHAR_CLASS (str);
3314 if (wt == 0)
3315 FREE_STACK_RETURN (REG_ECTYPE);
3316
3317 /* Throw away the ] at the end of the character
3318 class. */
3319 PATFETCH (c);
3320
3321 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3322
3323 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3324 {
3325 # ifdef _LIBC
3326 if (__iswctype (__btowc (ch), wt))
3327 SET_LIST_BIT (ch);
3328 # else
3329 if (iswctype (btowc (ch), wt))
3330 SET_LIST_BIT (ch);
3331 # endif
3332
3333 if (translate && (is_upper || is_lower)
3334 && (ISUPPER (ch) || ISLOWER (ch)))
3335 SET_LIST_BIT (ch);
3336 }
3337
3338 had_char_class = true;
3339 # else
3340 int ch;
3341 boolean is_alnum = STREQ (str, "alnum");
3342 boolean is_alpha = STREQ (str, "alpha");
3343 boolean is_blank = STREQ (str, "blank");
3344 boolean is_cntrl = STREQ (str, "cntrl");
3345 boolean is_digit = STREQ (str, "digit");
3346 boolean is_graph = STREQ (str, "graph");
3347 boolean is_lower = STREQ (str, "lower");
3348 boolean is_print = STREQ (str, "print");
3349 boolean is_punct = STREQ (str, "punct");
3350 boolean is_space = STREQ (str, "space");
3351 boolean is_upper = STREQ (str, "upper");
3352 boolean is_xdigit = STREQ (str, "xdigit");
3353
3354 if (!IS_CHAR_CLASS (str))
3355 FREE_STACK_RETURN (REG_ECTYPE);
3356
3357 /* Throw away the ] at the end of the character
3358 class. */
3359 PATFETCH (c);
3360
3361 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3362
3363 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3364 {
3365 /* This was split into 3 if's to
3366 avoid an arbitrary limit in some compiler. */
3367 if ( (is_alnum && ISALNUM (ch))
3368 || (is_alpha && ISALPHA (ch))
3369 || (is_blank && ISBLANK (ch))
3370 || (is_cntrl && ISCNTRL (ch)))
3371 SET_LIST_BIT (ch);
3372 if ( (is_digit && ISDIGIT (ch))
3373 || (is_graph && ISGRAPH (ch))
3374 || (is_lower && ISLOWER (ch))
3375 || (is_print && ISPRINT (ch)))
3376 SET_LIST_BIT (ch);
3377 if ( (is_punct && ISPUNCT (ch))
3378 || (is_space && ISSPACE (ch))
3379 || (is_upper && ISUPPER (ch))
3380 || (is_xdigit && ISXDIGIT (ch)))
3381 SET_LIST_BIT (ch);
3382 if ( translate && (is_upper || is_lower)
3383 && (ISUPPER (ch) || ISLOWER (ch)))
3384 SET_LIST_BIT (ch);
3385 }
3386 had_char_class = true;
3387 # endif /* libc || wctype.h */
3388 }
3389 else
3390 {
3391 c1++;
3392 while (c1--)
3393 PATUNFETCH;
3394 SET_LIST_BIT ('[');
3395 SET_LIST_BIT (':');
3396 range_start = ':';
3397 had_char_class = false;
3398 }
3399 }
3400 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3401 {
3402 unsigned char str[MB_LEN_MAX + 1];
3403 # ifdef _LIBC
3404 uint32_t nrules =
3405 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3406 # endif
3407
3408 PATFETCH (c);
3409 c1 = 0;
3410
3411 /* If pattern is `[[='. */
3412 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3413
3414 for (;;)
3415 {
3416 PATFETCH (c);
3417 if ((c == '=' && *p == ']') || p == pend)
3418 break;
3419 if (c1 < MB_LEN_MAX)
3420 str[c1++] = c;
3421 else
3422 /* This is in any case an invalid class name. */
3423 str[0] = '\0';
3424 }
3425 str[c1] = '\0';
3426
3427 if (c == '=' && *p == ']' && str[0] != '\0')
3428 {
3429 /* If we have no collation data we use the default
3430 collation in which each character is in a class
3431 by itself. It also means that ASCII is the
3432 character set and therefore we cannot have character
3433 with more than one byte in the multibyte
3434 representation. */
3435 # ifdef _LIBC
3436 if (nrules == 0)
3437 # endif
3438 {
3439 if (c1 != 1)
3440 FREE_STACK_RETURN (REG_ECOLLATE);
3441
3442 /* Throw away the ] at the end of the equivalence
3443 class. */
3444 PATFETCH (c);
3445
3446 /* Set the bit for the character. */
3447 SET_LIST_BIT (str[0]);
3448 }
3449 # ifdef _LIBC
3450 else
3451 {
3452 /* Try to match the byte sequence in `str' against
3453 those known to the collate implementation.
3454 First find out whether the bytes in `str' are
3455 actually from exactly one character. */
3456 const int32_t *table;
3457 const unsigned char *weights;
3458 const unsigned char *extra;
3459 const int32_t *indirect;
3460 int32_t idx;
3461 const unsigned char *cp = str;
3462 int ch;
3463
3464 /* This #include defines a local function! */
3465 # include <locale/weight.h>
3466
3467 table = (const int32_t *)
3468 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3469 weights = (const unsigned char *)
3470 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3471 extra = (const unsigned char *)
3472 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3473 indirect = (const int32_t *)
3474 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3475
3476 idx = findidx (&cp);
3477 if (idx == 0 || cp < str + c1)
3478 /* This is no valid character. */
3479 FREE_STACK_RETURN (REG_ECOLLATE);
3480
3481 /* Throw away the ] at the end of the equivalence
3482 class. */
3483 PATFETCH (c);
3484
3485 /* Now we have to go throught the whole table
3486 and find all characters which have the same
3487 first level weight.
3488
3489 XXX Note that this is not entirely correct.
3490 we would have to match multibyte sequences
3491 but this is not possible with the current
3492 implementation. */
3493 for (ch = 1; ch < 256; ++ch)
3494 /* XXX This test would have to be changed if we
3495 would allow matching multibyte sequences. */
3496 if (table[ch] > 0)
3497 {
3498 int32_t idx2 = table[ch];
3499 size_t len = weights[idx2];
3500
3501 /* Test whether the lenghts match. */
3502 if (weights[idx] == len)
3503 {
3504 /* They do. New compare the bytes of
3505 the weight. */
3506 size_t cnt = 0;
3507
3508 while (cnt < len
3509 && (weights[idx + 1 + cnt]
3510 == weights[idx2 + 1 + cnt]))
3511 ++cnt;
3512
3513 if (cnt == len)
3514 /* They match. Mark the character as
3515 acceptable. */
3516 SET_LIST_BIT (ch);
3517 }
3518 }
3519 }
3520 # endif
3521 had_char_class = true;
3522 }
3523 else
3524 {
3525 c1++;
3526 while (c1--)
3527 PATUNFETCH;
3528 SET_LIST_BIT ('[');
3529 SET_LIST_BIT ('=');
3530 range_start = '=';
3531 had_char_class = false;
3532 }
3533 }
3534 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3535 {
3536 unsigned char str[128]; /* Should be large enough. */
3537 # ifdef _LIBC
3538 uint32_t nrules =
3539 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3540 # endif
3541
3542 PATFETCH (c);
3543 c1 = 0;
3544
3545 /* If pattern is `[[.'. */
3546 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3547
3548 for (;;)
3549 {
3550 PATFETCH (c);
3551 if ((c == '.' && *p == ']') || p == pend)
3552 break;
3553 if (c1 < sizeof (str))
3554 str[c1++] = c;
3555 else
3556 /* This is in any case an invalid class name. */
3557 str[0] = '\0';
3558 }
3559 str[c1] = '\0';
3560
3561 if (c == '.' && *p == ']' && str[0] != '\0')
3562 {
3563 /* If we have no collation data we use the default
3564 collation in which each character is the name
3565 for its own class which contains only the one
3566 character. It also means that ASCII is the
3567 character set and therefore we cannot have character
3568 with more than one byte in the multibyte
3569 representation. */
3570 # ifdef _LIBC
3571 if (nrules == 0)
3572 # endif
3573 {
3574 if (c1 != 1)
3575 FREE_STACK_RETURN (REG_ECOLLATE);
3576
3577 /* Throw away the ] at the end of the equivalence
3578 class. */
3579 PATFETCH (c);
3580
3581 /* Set the bit for the character. */
3582 SET_LIST_BIT (str[0]);
3583 range_start = ((const unsigned char *) str)[0];
3584 }
3585 # ifdef _LIBC
3586 else
3587 {
3588 /* Try to match the byte sequence in `str' against
3589 those known to the collate implementation.
3590 First find out whether the bytes in `str' are
3591 actually from exactly one character. */
3592 int32_t table_size;
3593 const int32_t *symb_table;
3594 const unsigned char *extra;
3595 int32_t idx;
3596 int32_t elem;
3597 int32_t second;
3598 int32_t hash;
3599
3600 table_size =
3601 _NL_CURRENT_WORD (LC_COLLATE,
3602 _NL_COLLATE_SYMB_HASH_SIZEMB);
3603 symb_table = (const int32_t *)
3604 _NL_CURRENT (LC_COLLATE,
3605 _NL_COLLATE_SYMB_TABLEMB);
3606 extra = (const unsigned char *)
3607 _NL_CURRENT (LC_COLLATE,
3608 _NL_COLLATE_SYMB_EXTRAMB);
3609
3610 /* Locate the character in the hashing table. */
3611 hash = elem_hash (str, c1);
3612
3613 idx = 0;
3614 elem = hash % table_size;
3615 second = hash % (table_size - 2);
3616 while (symb_table[2 * elem] != 0)
3617 {
3618 /* First compare the hashing value. */
3619 if (symb_table[2 * elem] == hash
3620 && c1 == extra[symb_table[2 * elem + 1]]
3621 && memcmp (str,
3622 &extra[symb_table[2 * elem + 1]
3623 + 1],
3624 c1) == 0)
3625 {
3626 /* Yep, this is the entry. */
3627 idx = symb_table[2 * elem + 1];
3628 idx += 1 + extra[idx];
3629 break;
3630 }
3631
3632 /* Next entry. */
3633 elem += second;
3634 }
3635
3636 if (symb_table[2 * elem] == 0)
3637 /* This is no valid character. */
3638 FREE_STACK_RETURN (REG_ECOLLATE);
3639
3640 /* Throw away the ] at the end of the equivalence
3641 class. */
3642 PATFETCH (c);
3643
3644 /* Now add the multibyte character(s) we found
3645 to the accept list.
3646
3647 XXX Note that this is not entirely correct.
3648 we would have to match multibyte sequences
3649 but this is not possible with the current
3650 implementation. Also, we have to match
3651 collating symbols, which expand to more than
3652 one file, as a whole and not allow the
3653 individual bytes. */
3654 c1 = extra[idx++];
3655 if (c1 == 1)
3656 range_start = extra[idx];
3657 while (c1-- > 0)
3658 {
3659 SET_LIST_BIT (extra[idx]);
3660 ++idx;
3661 }
3662 }
3663 # endif
3664 had_char_class = false;
3665 }
3666 else
3667 {
3668 c1++;
3669 while (c1--)
3670 PATUNFETCH;
3671 SET_LIST_BIT ('[');
3672 SET_LIST_BIT ('.');
3673 range_start = '.';
3674 had_char_class = false;
3675 }
3676 }
3677 else
3678 {
3679 had_char_class = false;
3680 SET_LIST_BIT (c);
3681 range_start = c;
3682 }
3683 }
3684
3685 /* Discard any (non)matching list bytes that are all 0 at the
3686 end of the map. Decrease the map-length byte too. */
3687 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3688 b[-1]--;
3689 b += b[-1];
3690 #endif /* WCHAR */
3691 }
3692 break;
3693
3694
3695 case '(':
3696 if (syntax & RE_NO_BK_PARENS)
3697 goto handle_open;
3698 else
3699 goto normal_char;
3700
3701
3702 case ')':
3703 if (syntax & RE_NO_BK_PARENS)
3704 goto handle_close;
3705 else
3706 goto normal_char;
3707
3708
3709 case '\n':
3710 if (syntax & RE_NEWLINE_ALT)
3711 goto handle_alt;
3712 else
3713 goto normal_char;
3714
3715
3716 case '|':
3717 if (syntax & RE_NO_BK_VBAR)
3718 goto handle_alt;
3719 else
3720 goto normal_char;
3721
3722
3723 case '{':
3724 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3725 goto handle_interval;
3726 else
3727 goto normal_char;
3728
3729
3730 case '\\':
3731 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3732
3733 /* Do not translate the character after the \, so that we can
3734 distinguish, e.g., \B from \b, even if we normally would
3735 translate, e.g., B to b. */
3736 PATFETCH_RAW (c);
3737
3738 switch (c)
3739 {
3740 case '(':
3741 if (syntax & RE_NO_BK_PARENS)
3742 goto normal_backslash;
3743
3744 handle_open:
3745 bufp->re_nsub++;
3746 regnum++;
3747
3748 if (COMPILE_STACK_FULL)
3749 {
3750 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3751 compile_stack_elt_t);
3752 if (compile_stack.stack == NULL) return REG_ESPACE;
3753
3754 compile_stack.size <<= 1;
3755 }
3756
3757 /* These are the values to restore when we hit end of this
3758 group. They are all relative offsets, so that if the
3759 whole pattern moves because of realloc, they will still
3760 be valid. */
3761 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3762 COMPILE_STACK_TOP.fixup_alt_jump
3763 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3764 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3765 COMPILE_STACK_TOP.regnum = regnum;
3766
3767 /* We will eventually replace the 0 with the number of
3768 groups inner to this one. But do not push a
3769 start_memory for groups beyond the last one we can
3770 represent in the compiled pattern. */
3771 if (regnum <= MAX_REGNUM)
3772 {
3773 COMPILE_STACK_TOP.inner_group_offset = b
3774 - COMPILED_BUFFER_VAR + 2;
3775 BUF_PUSH_3 (start_memory, regnum, 0);
3776 }
3777
3778 compile_stack.avail++;
3779
3780 fixup_alt_jump = 0;
3781 laststart = 0;
3782 begalt = b;
3783 /* If we've reached MAX_REGNUM groups, then this open
3784 won't actually generate any code, so we'll have to
3785 clear pending_exact explicitly. */
3786 pending_exact = 0;
3787 break;
3788
3789
3790 case ')':
3791 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3792
3793 if (COMPILE_STACK_EMPTY)
3794 {
3795 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3796 goto normal_backslash;
3797 else
3798 FREE_STACK_RETURN (REG_ERPAREN);
3799 }
3800
3801 handle_close:
3802 if (fixup_alt_jump)
3803 { /* Push a dummy failure point at the end of the
3804 alternative for a possible future
3805 `pop_failure_jump' to pop. See comments at
3806 `push_dummy_failure' in `re_match_2'. */
3807 BUF_PUSH (push_dummy_failure);
3808
3809 /* We allocated space for this jump when we assigned
3810 to `fixup_alt_jump', in the `handle_alt' case below. */
3811 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3812 }
3813
3814 /* See similar code for backslashed left paren above. */
3815 if (COMPILE_STACK_EMPTY)
3816 {
3817 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3818 goto normal_char;
3819 else
3820 FREE_STACK_RETURN (REG_ERPAREN);
3821 }
3822
3823 /* Since we just checked for an empty stack above, this
3824 ``can't happen''. */
3825 assert (compile_stack.avail != 0);
3826 {
3827 /* We don't just want to restore into `regnum', because
3828 later groups should continue to be numbered higher,
3829 as in `(ab)c(de)' -- the second group is #2. */
3830 regnum_t this_group_regnum;
3831
3832 compile_stack.avail--;
3833 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3834 fixup_alt_jump
3835 = COMPILE_STACK_TOP.fixup_alt_jump
3836 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3837 : 0;
3838 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3839 this_group_regnum = COMPILE_STACK_TOP.regnum;
3840 /* If we've reached MAX_REGNUM groups, then this open
3841 won't actually generate any code, so we'll have to
3842 clear pending_exact explicitly. */
3843 pending_exact = 0;
3844
3845 /* We're at the end of the group, so now we know how many
3846 groups were inside this one. */
3847 if (this_group_regnum <= MAX_REGNUM)
3848 {
3849 UCHAR_T *inner_group_loc
3850 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3851
3852 *inner_group_loc = regnum - this_group_regnum;
3853 BUF_PUSH_3 (stop_memory, this_group_regnum,
3854 regnum - this_group_regnum);
3855 }
3856 }
3857 break;
3858
3859
3860 case '|': /* `\|'. */
3861 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3862 goto normal_backslash;
3863 handle_alt:
3864 if (syntax & RE_LIMITED_OPS)
3865 goto normal_char;
3866
3867 /* Insert before the previous alternative a jump which
3868 jumps to this alternative if the former fails. */
3869 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3870 INSERT_JUMP (on_failure_jump, begalt,
3871 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3872 pending_exact = 0;
3873 b += 1 + OFFSET_ADDRESS_SIZE;
3874
3875 /* The alternative before this one has a jump after it
3876 which gets executed if it gets matched. Adjust that
3877 jump so it will jump to this alternative's analogous
3878 jump (put in below, which in turn will jump to the next
3879 (if any) alternative's such jump, etc.). The last such
3880 jump jumps to the correct final destination. A picture:
3881 _____ _____
3882 | | | |
3883 | v | v
3884 a | b | c
3885
3886 If we are at `b', then fixup_alt_jump right now points to a
3887 three-byte space after `a'. We'll put in the jump, set
3888 fixup_alt_jump to right after `b', and leave behind three
3889 bytes which we'll fill in when we get to after `c'. */
3890
3891 if (fixup_alt_jump)
3892 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3893
3894 /* Mark and leave space for a jump after this alternative,
3895 to be filled in later either by next alternative or
3896 when know we're at the end of a series of alternatives. */
3897 fixup_alt_jump = b;
3898 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3899 b += 1 + OFFSET_ADDRESS_SIZE;
3900
3901 laststart = 0;
3902 begalt = b;
3903 break;
3904
3905
3906 case '{':
3907 /* If \{ is a literal. */
3908 if (!(syntax & RE_INTERVALS)
3909 /* If we're at `\{' and it's not the open-interval
3910 operator. */
3911 || (syntax & RE_NO_BK_BRACES))
3912 goto normal_backslash;
3913
3914 handle_interval:
3915 {
3916 /* If got here, then the syntax allows intervals. */
3917
3918 /* At least (most) this many matches must be made. */
3919 int lower_bound = -1, upper_bound = -1;
3920
3921 /* Place in the uncompiled pattern (i.e., just after
3922 the '{') to go back to if the interval is invalid. */
3923 const CHAR_T *beg_interval = p;
3924
3925 if (p == pend)
3926 goto invalid_interval;
3927
3928 GET_UNSIGNED_NUMBER (lower_bound);
3929
3930 if (c == ',')
3931 {
3932 GET_UNSIGNED_NUMBER (upper_bound);
3933 if (upper_bound < 0)
3934 upper_bound = RE_DUP_MAX;
3935 }
3936 else
3937 /* Interval such as `{1}' => match exactly once. */
3938 upper_bound = lower_bound;
3939
3940 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3941 goto invalid_interval;
3942
3943 if (!(syntax & RE_NO_BK_BRACES))
3944 {
3945 if (c != '\\' || p == pend)
3946 goto invalid_interval;
3947 PATFETCH (c);
3948 }
3949
3950 if (c != '}')
3951 goto invalid_interval;
3952
3953 /* If it's invalid to have no preceding re. */
3954 if (!laststart)
3955 {
3956 if (syntax & RE_CONTEXT_INVALID_OPS
3957 && !(syntax & RE_INVALID_INTERVAL_ORD))
3958 FREE_STACK_RETURN (REG_BADRPT);
3959 else if (syntax & RE_CONTEXT_INDEP_OPS)
3960 laststart = b;
3961 else
3962 goto unfetch_interval;
3963 }
3964
3965 /* We just parsed a valid interval. */
3966
3967 if (RE_DUP_MAX < upper_bound)
3968 FREE_STACK_RETURN (REG_BADBR);
3969
3970 /* If the upper bound is zero, don't want to succeed at
3971 all; jump from `laststart' to `b + 3', which will be
3972 the end of the buffer after we insert the jump. */
3973 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3974 instead of 'b + 3'. */
3975 if (upper_bound == 0)
3976 {
3977 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3978 INSERT_JUMP (jump, laststart, b + 1
3979 + OFFSET_ADDRESS_SIZE);
3980 b += 1 + OFFSET_ADDRESS_SIZE;
3981 }
3982
3983 /* Otherwise, we have a nontrivial interval. When
3984 we're all done, the pattern will look like:
3985 set_number_at <jump count> <upper bound>
3986 set_number_at <succeed_n count> <lower bound>
3987 succeed_n <after jump addr> <succeed_n count>
3988 <body of loop>
3989 jump_n <succeed_n addr> <jump count>
3990 (The upper bound and `jump_n' are omitted if
3991 `upper_bound' is 1, though.) */
3992 else
3993 { /* If the upper bound is > 1, we need to insert
3994 more at the end of the loop. */
3995 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3996 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3997
3998 GET_BUFFER_SPACE (nbytes);
3999
4000 /* Initialize lower bound of the `succeed_n', even
4001 though it will be set during matching by its
4002 attendant `set_number_at' (inserted next),
4003 because `re_compile_fastmap' needs to know.
4004 Jump to the `jump_n' we might insert below. */
4005 INSERT_JUMP2 (succeed_n, laststart,
4006 b + 1 + 2 * OFFSET_ADDRESS_SIZE
4007 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
4008 , lower_bound);
4009 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4010
4011 /* Code to initialize the lower bound. Insert
4012 before the `succeed_n'. The `5' is the last two
4013 bytes of this `set_number_at', plus 3 bytes of
4014 the following `succeed_n'. */
4015 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4016 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4017 of the following `succeed_n'. */
4018 PREFIX(insert_op2) (set_number_at, laststart, 1
4019 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4020 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4021
4022 if (upper_bound > 1)
4023 { /* More than one repetition is allowed, so
4024 append a backward jump to the `succeed_n'
4025 that starts this interval.
4026
4027 When we've reached this during matching,
4028 we'll have matched the interval once, so
4029 jump back only `upper_bound - 1' times. */
4030 STORE_JUMP2 (jump_n, b, laststart
4031 + 2 * OFFSET_ADDRESS_SIZE + 1,
4032 upper_bound - 1);
4033 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4034
4035 /* The location we want to set is the second
4036 parameter of the `jump_n'; that is `b-2' as
4037 an absolute address. `laststart' will be
4038 the `set_number_at' we're about to insert;
4039 `laststart+3' the number to set, the source
4040 for the relative address. But we are
4041 inserting into the middle of the pattern --
4042 so everything is getting moved up by 5.
4043 Conclusion: (b - 2) - (laststart + 3) + 5,
4044 i.e., b - laststart.
4045
4046 We insert this at the beginning of the loop
4047 so that if we fail during matching, we'll
4048 reinitialize the bounds. */
4049 PREFIX(insert_op2) (set_number_at, laststart,
4050 b - laststart,
4051 upper_bound - 1, b);
4052 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4053 }
4054 }
4055 pending_exact = 0;
4056 break;
4057
4058 invalid_interval:
4059 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4060 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4061 unfetch_interval:
4062 /* Match the characters as literals. */
4063 p = beg_interval;
4064 c = '{';
4065 if (syntax & RE_NO_BK_BRACES)
4066 goto normal_char;
4067 else
4068 goto normal_backslash;
4069 }
4070
4071 #ifdef emacs
4072 /* There is no way to specify the before_dot and after_dot
4073 operators. rms says this is ok. --karl */
4074 case '=':
4075 BUF_PUSH (at_dot);
4076 break;
4077
4078 case 's':
4079 laststart = b;
4080 PATFETCH (c);
4081 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4082 break;
4083
4084 case 'S':
4085 laststart = b;
4086 PATFETCH (c);
4087 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4088 break;
4089 #endif /* emacs */
4090
4091
4092 case 'w':
4093 if (syntax & RE_NO_GNU_OPS)
4094 goto normal_char;
4095 laststart = b;
4096 BUF_PUSH (wordchar);
4097 break;
4098
4099
4100 case 'W':
4101 if (syntax & RE_NO_GNU_OPS)
4102 goto normal_char;
4103 laststart = b;
4104 BUF_PUSH (notwordchar);
4105 break;
4106
4107
4108 case '<':
4109 if (syntax & RE_NO_GNU_OPS)
4110 goto normal_char;
4111 BUF_PUSH (wordbeg);
4112 break;
4113
4114 case '>':
4115 if (syntax & RE_NO_GNU_OPS)
4116 goto normal_char;
4117 BUF_PUSH (wordend);
4118 break;
4119
4120 case 'b':
4121 if (syntax & RE_NO_GNU_OPS)
4122 goto normal_char;
4123 BUF_PUSH (wordbound);
4124 break;
4125
4126 case 'B':
4127 if (syntax & RE_NO_GNU_OPS)
4128 goto normal_char;
4129 BUF_PUSH (notwordbound);
4130 break;
4131
4132 case '`':
4133 if (syntax & RE_NO_GNU_OPS)
4134 goto normal_char;
4135 BUF_PUSH (begbuf);
4136 break;
4137
4138 case '\'':
4139 if (syntax & RE_NO_GNU_OPS)
4140 goto normal_char;
4141 BUF_PUSH (endbuf);
4142 break;
4143
4144 case '1': case '2': case '3': case '4': case '5':
4145 case '6': case '7': case '8': case '9':
4146 if (syntax & RE_NO_BK_REFS)
4147 goto normal_char;
4148
4149 c1 = c - '0';
4150
4151 if (c1 > regnum)
4152 FREE_STACK_RETURN (REG_ESUBREG);
4153
4154 /* Can't back reference to a subexpression if inside of it. */
4155 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4156 goto normal_char;
4157
4158 laststart = b;
4159 BUF_PUSH_2 (duplicate, c1);
4160 break;
4161
4162
4163 case '+':
4164 case '?':
4165 if (syntax & RE_BK_PLUS_QM)
4166 goto handle_plus;
4167 else
4168 goto normal_backslash;
4169
4170 default:
4171 normal_backslash:
4172 /* You might think it would be useful for \ to mean
4173 not to translate; but if we don't translate it
4174 it will never match anything. */
4175 c = TRANSLATE (c);
4176 goto normal_char;
4177 }
4178 break;
4179
4180
4181 default:
4182 /* Expects the character in `c'. */
4183 normal_char:
4184 /* If no exactn currently being built. */
4185 if (!pending_exact
4186 #ifdef WCHAR
4187 /* If last exactn handle binary(or character) and
4188 new exactn handle character(or binary). */
4189 || is_exactn_bin != is_binary[p - 1 - pattern]
4190 #endif /* WCHAR */
4191
4192 /* If last exactn not at current position. */
4193 || pending_exact + *pending_exact + 1 != b
4194
4195 /* We have only one byte following the exactn for the count. */
4196 || *pending_exact == (1 << BYTEWIDTH) - 1
4197
4198 /* If followed by a repetition operator. */
4199 || *p == '*' || *p == '^'
4200 || ((syntax & RE_BK_PLUS_QM)
4201 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4202 : (*p == '+' || *p == '?'))
4203 || ((syntax & RE_INTERVALS)
4204 && ((syntax & RE_NO_BK_BRACES)
4205 ? *p == '{'
4206 : (p[0] == '\\' && p[1] == '{'))))
4207 {
4208 /* Start building a new exactn. */
4209
4210 laststart = b;
4211
4212 #ifdef WCHAR
4213 /* Is this exactn binary data or character? */
4214 is_exactn_bin = is_binary[p - 1 - pattern];
4215 if (is_exactn_bin)
4216 BUF_PUSH_2 (exactn_bin, 0);
4217 else
4218 BUF_PUSH_2 (exactn, 0);
4219 #else
4220 BUF_PUSH_2 (exactn, 0);
4221 #endif /* WCHAR */
4222 pending_exact = b - 1;
4223 }
4224
4225 BUF_PUSH (c);
4226 (*pending_exact)++;
4227 break;
4228 } /* switch (c) */
4229 } /* while p != pend */
4230
4231
4232 /* Through the pattern now. */
4233
4234 if (fixup_alt_jump)
4235 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4236
4237 if (!COMPILE_STACK_EMPTY)
4238 FREE_STACK_RETURN (REG_EPAREN);
4239
4240 /* If we don't want backtracking, force success
4241 the first time we reach the end of the compiled pattern. */
4242 if (syntax & RE_NO_POSIX_BACKTRACKING)
4243 BUF_PUSH (succeed);
4244
4245 #ifdef WCHAR
4246 free (pattern);
4247 free (mbs_offset);
4248 free (is_binary);
4249 #endif
4250 free (compile_stack.stack);
4251
4252 /* We have succeeded; set the length of the buffer. */
4253 #ifdef WCHAR
4254 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4255 #else
4256 bufp->used = b - bufp->buffer;
4257 #endif
4258
4259 #ifdef DEBUG
4260 if (debug)
4261 {
4262 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4263 PREFIX(print_compiled_pattern) (bufp);
4264 }
4265 #endif /* DEBUG */
4266
4267 #ifndef MATCH_MAY_ALLOCATE
4268 /* Initialize the failure stack to the largest possible stack. This
4269 isn't necessary unless we're trying to avoid calling alloca in
4270 the search and match routines. */
4271 {
4272 int num_regs = bufp->re_nsub + 1;
4273
4274 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4275 is strictly greater than re_max_failures, the largest possible stack
4276 is 2 * re_max_failures failure points. */
4277 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4278 {
4279 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4280
4281 # ifdef emacs
4282 if (! fail_stack.stack)
4283 fail_stack.stack
4284 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4285 * sizeof (PREFIX(fail_stack_elt_t)));
4286 else
4287 fail_stack.stack
4288 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4289 (fail_stack.size
4290 * sizeof (PREFIX(fail_stack_elt_t))));
4291 # else /* not emacs */
4292 if (! fail_stack.stack)
4293 fail_stack.stack
4294 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4295 * sizeof (PREFIX(fail_stack_elt_t)));
4296 else
4297 fail_stack.stack
4298 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4299 (fail_stack.size
4300 * sizeof (PREFIX(fail_stack_elt_t))));
4301 # endif /* not emacs */
4302 }
4303
4304 PREFIX(regex_grow_registers) (num_regs);
4305 }
4306 #endif /* not MATCH_MAY_ALLOCATE */
4307
4308 return REG_NOERROR;
4309 } /* regex_compile */
4310
4311 /* Subroutines for `regex_compile'. */
4312
4313 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4314 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4315
4316 static void
4317 PREFIX(store_op1) (op, loc, arg)
4318 re_opcode_t op;
4319 UCHAR_T *loc;
4320 int arg;
4321 {
4322 *loc = (UCHAR_T) op;
4323 STORE_NUMBER (loc + 1, arg);
4324 }
4325
4326
4327 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4328 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4329
4330 static void
4331 PREFIX(store_op2) (op, loc, arg1, arg2)
4332 re_opcode_t op;
4333 UCHAR_T *loc;
4334 int arg1, arg2;
4335 {
4336 *loc = (UCHAR_T) op;
4337 STORE_NUMBER (loc + 1, arg1);
4338 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4339 }
4340
4341
4342 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4343 for OP followed by two-byte integer parameter ARG. */
4344 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4345
4346 static void
4347 PREFIX(insert_op1) (op, loc, arg, end)
4348 re_opcode_t op;
4349 UCHAR_T *loc;
4350 int arg;
4351 UCHAR_T *end;
4352 {
4353 register UCHAR_T *pfrom = end;
4354 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4355
4356 while (pfrom != loc)
4357 *--pto = *--pfrom;
4358
4359 PREFIX(store_op1) (op, loc, arg);
4360 }
4361
4362
4363 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4364 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4365
4366 static void
4367 PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4368 re_opcode_t op;
4369 UCHAR_T *loc;
4370 int arg1, arg2;
4371 UCHAR_T *end;
4372 {
4373 register UCHAR_T *pfrom = end;
4374 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4375
4376 while (pfrom != loc)
4377 *--pto = *--pfrom;
4378
4379 PREFIX(store_op2) (op, loc, arg1, arg2);
4380 }
4381
4382
4383 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4384 after an alternative or a begin-subexpression. We assume there is at
4385 least one character before the ^. */
4386
4387 static boolean
4388 PREFIX(at_begline_loc_p) (pattern, p, syntax)
4389 const CHAR_T *pattern, *p;
4390 reg_syntax_t syntax;
4391 {
4392 const CHAR_T *prev = p - 2;
4393 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4394
4395 return
4396 /* After a subexpression? */
4397 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4398 /* After an alternative? */
4399 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4400 }
4401
4402
4403 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4404 at least one character after the $, i.e., `P < PEND'. */
4405
4406 static boolean
4407 PREFIX(at_endline_loc_p) (p, pend, syntax)
4408 const CHAR_T *p, *pend;
4409 reg_syntax_t syntax;
4410 {
4411 const CHAR_T *next = p;
4412 boolean next_backslash = *next == '\\';
4413 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4414
4415 return
4416 /* Before a subexpression? */
4417 (syntax & RE_NO_BK_PARENS ? *next == ')'
4418 : next_backslash && next_next && *next_next == ')')
4419 /* Before an alternative? */
4420 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4421 : next_backslash && next_next && *next_next == '|');
4422 }
4423
4424 #else /* not INSIDE_RECURSION */
4425
4426 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4427 false if it's not. */
4428
4429 static boolean
4430 group_in_compile_stack (compile_stack, regnum)
4431 compile_stack_type compile_stack;
4432 regnum_t regnum;
4433 {
4434 int this_element;
4435
4436 for (this_element = compile_stack.avail - 1;
4437 this_element >= 0;
4438 this_element--)
4439 if (compile_stack.stack[this_element].regnum == regnum)
4440 return true;
4441
4442 return false;
4443 }
4444 #endif /* not INSIDE_RECURSION */
4445
4446 #ifdef INSIDE_RECURSION
4447
4448 #ifdef WCHAR
4449 /* This insert space, which size is "num", into the pattern at "loc".
4450 "end" must point the end of the allocated buffer. */
4451 static void
4452 insert_space (num, loc, end)
4453 int num;
4454 CHAR_T *loc;
4455 CHAR_T *end;
4456 {
4457 register CHAR_T *pto = end;
4458 register CHAR_T *pfrom = end - num;
4459
4460 while (pfrom >= loc)
4461 *pto-- = *pfrom--;
4462 }
4463 #endif /* WCHAR */
4464
4465 #ifdef WCHAR
4466 static reg_errcode_t
4467 wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4468 char_set)
4469 CHAR_T range_start_char;
4470 const CHAR_T **p_ptr, *pend;
4471 CHAR_T *char_set, *b;
4472 RE_TRANSLATE_TYPE translate;
4473 reg_syntax_t syntax;
4474 {
4475 const CHAR_T *p = *p_ptr;
4476 CHAR_T range_start, range_end;
4477 reg_errcode_t ret;
4478 # ifdef _LIBC
4479 uint32_t nrules;
4480 uint32_t start_val, end_val;
4481 # endif
4482 if (p == pend)
4483 return REG_ERANGE;
4484
4485 # ifdef _LIBC
4486 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4487 if (nrules != 0)
4488 {
4489 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4490 _NL_COLLATE_COLLSEQWC);
4491 const unsigned char *extra = (const unsigned char *)
4492 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4493
4494 if (range_start_char < -1)
4495 {
4496 /* range_start is a collating symbol. */
4497 int32_t *wextra;
4498 /* Retreive the index and get collation sequence value. */
4499 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4500 start_val = wextra[1 + *wextra];
4501 }
4502 else
4503 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4504
4505 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4506
4507 /* Report an error if the range is empty and the syntax prohibits
4508 this. */
4509 ret = ((syntax & RE_NO_EMPTY_RANGES)
4510 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4511
4512 /* Insert space to the end of the char_ranges. */
4513 insert_space(2, b - char_set[5] - 2, b - 1);
4514 *(b - char_set[5] - 2) = (wchar_t)start_val;
4515 *(b - char_set[5] - 1) = (wchar_t)end_val;
4516 char_set[4]++; /* ranges_index */
4517 }
4518 else
4519 # endif
4520 {
4521 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4522 range_start_char;
4523 range_end = TRANSLATE (p[0]);
4524 /* Report an error if the range is empty and the syntax prohibits
4525 this. */
4526 ret = ((syntax & RE_NO_EMPTY_RANGES)
4527 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4528
4529 /* Insert space to the end of the char_ranges. */
4530 insert_space(2, b - char_set[5] - 2, b - 1);
4531 *(b - char_set[5] - 2) = range_start;
4532 *(b - char_set[5] - 1) = range_end;
4533 char_set[4]++; /* ranges_index */
4534 }
4535 /* Have to increment the pointer into the pattern string, so the
4536 caller isn't still at the ending character. */
4537 (*p_ptr)++;
4538
4539 return ret;
4540 }
4541 #else /* BYTE */
4542 /* Read the ending character of a range (in a bracket expression) from the
4543 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4544 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4545 Then we set the translation of all bits between the starting and
4546 ending characters (inclusive) in the compiled pattern B.
4547
4548 Return an error code.
4549
4550 We use these short variable names so we can use the same macros as
4551 `regex_compile' itself. */
4552
4553 static reg_errcode_t
4554 byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4555 unsigned int range_start_char;
4556 const char **p_ptr, *pend;
4557 RE_TRANSLATE_TYPE translate;
4558 reg_syntax_t syntax;
4559 unsigned char *b;
4560 {
4561 unsigned this_char;
4562 const char *p = *p_ptr;
4563 reg_errcode_t ret;
4564 # if _LIBC
4565 const unsigned char *collseq;
4566 unsigned int start_colseq;
4567 unsigned int end_colseq;
4568 # else
4569 unsigned end_char;
4570 # endif
4571
4572 if (p == pend)
4573 return REG_ERANGE;
4574
4575 /* Have to increment the pointer into the pattern string, so the
4576 caller isn't still at the ending character. */
4577 (*p_ptr)++;
4578
4579 /* Report an error if the range is empty and the syntax prohibits this. */
4580 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4581
4582 # if _LIBC
4583 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4584 _NL_COLLATE_COLLSEQMB);
4585
4586 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4587 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4588 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4589 {
4590 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4591
4592 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4593 {
4594 SET_LIST_BIT (TRANSLATE (this_char));
4595 ret = REG_NOERROR;
4596 }
4597 }
4598 # else
4599 /* Here we see why `this_char' has to be larger than an `unsigned
4600 char' -- we would otherwise go into an infinite loop, since all
4601 characters <= 0xff. */
4602 range_start_char = TRANSLATE (range_start_char);
4603 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4604 and some compilers cast it to int implicitly, so following for_loop
4605 may fall to (almost) infinite loop.
4606 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4607 To avoid this, we cast p[0] to unsigned int and truncate it. */
4608 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4609
4610 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4611 {
4612 SET_LIST_BIT (TRANSLATE (this_char));
4613 ret = REG_NOERROR;
4614 }
4615 # endif
4616
4617 return ret;
4618 }
4619 #endif /* WCHAR */
4620 \f
4621 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4622 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4623 characters can start a string that matches the pattern. This fastmap
4624 is used by re_search to skip quickly over impossible starting points.
4625
4626 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4627 area as BUFP->fastmap.
4628
4629 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4630 the pattern buffer.
4631
4632 Returns 0 if we succeed, -2 if an internal error. */
4633
4634 #ifdef WCHAR
4635 /* local function for re_compile_fastmap.
4636 truncate wchar_t character to char. */
4637 static unsigned char truncate_wchar (CHAR_T c);
4638
4639 static unsigned char
4640 truncate_wchar (c)
4641 CHAR_T c;
4642 {
4643 unsigned char buf[MB_CUR_MAX];
4644 mbstate_t state;
4645 int retval;
4646 memset (&state, '\0', sizeof (state));
4647 # ifdef _LIBC
4648 retval = __wcrtomb (buf, c, &state);
4649 # else
4650 retval = wcrtomb (buf, c, &state);
4651 # endif
4652 return retval > 0 ? buf[0] : (unsigned char) c;
4653 }
4654 #endif /* WCHAR */
4655
4656 static int
4657 PREFIX(re_compile_fastmap) (bufp)
4658 struct re_pattern_buffer *bufp;
4659 {
4660 int j, k;
4661 #ifdef MATCH_MAY_ALLOCATE
4662 PREFIX(fail_stack_type) fail_stack;
4663 #endif
4664 #ifndef REGEX_MALLOC
4665 char *destination;
4666 #endif
4667
4668 register char *fastmap = bufp->fastmap;
4669
4670 #ifdef WCHAR
4671 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4672 pattern to (char*) in regex_compile. */
4673 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4674 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4675 #else /* BYTE */
4676 UCHAR_T *pattern = bufp->buffer;
4677 register UCHAR_T *pend = pattern + bufp->used;
4678 #endif /* WCHAR */
4679 UCHAR_T *p = pattern;
4680
4681 #ifdef REL_ALLOC
4682 /* This holds the pointer to the failure stack, when
4683 it is allocated relocatably. */
4684 fail_stack_elt_t *failure_stack_ptr;
4685 #endif
4686
4687 /* Assume that each path through the pattern can be null until
4688 proven otherwise. We set this false at the bottom of switch
4689 statement, to which we get only if a particular path doesn't
4690 match the empty string. */
4691 boolean path_can_be_null = true;
4692
4693 /* We aren't doing a `succeed_n' to begin with. */
4694 boolean succeed_n_p = false;
4695
4696 assert (fastmap != NULL && p != NULL);
4697
4698 INIT_FAIL_STACK ();
4699 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4700 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4701 bufp->can_be_null = 0;
4702
4703 while (1)
4704 {
4705 if (p == pend || *p == succeed)
4706 {
4707 /* We have reached the (effective) end of pattern. */
4708 if (!FAIL_STACK_EMPTY ())
4709 {
4710 bufp->can_be_null |= path_can_be_null;
4711
4712 /* Reset for next path. */
4713 path_can_be_null = true;
4714
4715 p = fail_stack.stack[--fail_stack.avail].pointer;
4716
4717 continue;
4718 }
4719 else
4720 break;
4721 }
4722
4723 /* We should never be about to go beyond the end of the pattern. */
4724 assert (p < pend);
4725
4726 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4727 {
4728
4729 /* I guess the idea here is to simply not bother with a fastmap
4730 if a backreference is used, since it's too hard to figure out
4731 the fastmap for the corresponding group. Setting
4732 `can_be_null' stops `re_search_2' from using the fastmap, so
4733 that is all we do. */
4734 case duplicate:
4735 bufp->can_be_null = 1;
4736 goto done;
4737
4738
4739 /* Following are the cases which match a character. These end
4740 with `break'. */
4741
4742 #ifdef WCHAR
4743 case exactn:
4744 fastmap[truncate_wchar(p[1])] = 1;
4745 break;
4746 #else /* BYTE */
4747 case exactn:
4748 fastmap[p[1]] = 1;
4749 break;
4750 #endif /* WCHAR */
4751 #ifdef MBS_SUPPORT
4752 case exactn_bin:
4753 fastmap[p[1]] = 1;
4754 break;
4755 #endif
4756
4757 #ifdef WCHAR
4758 /* It is hard to distinguish fastmap from (multi byte) characters
4759 which depends on current locale. */
4760 case charset:
4761 case charset_not:
4762 case wordchar:
4763 case notwordchar:
4764 bufp->can_be_null = 1;
4765 goto done;
4766 #else /* BYTE */
4767 case charset:
4768 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4769 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4770 fastmap[j] = 1;
4771 break;
4772
4773
4774 case charset_not:
4775 /* Chars beyond end of map must be allowed. */
4776 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4777 fastmap[j] = 1;
4778
4779 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4780 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4781 fastmap[j] = 1;
4782 break;
4783
4784
4785 case wordchar:
4786 for (j = 0; j < (1 << BYTEWIDTH); j++)
4787 if (SYNTAX (j) == Sword)
4788 fastmap[j] = 1;
4789 break;
4790
4791
4792 case notwordchar:
4793 for (j = 0; j < (1 << BYTEWIDTH); j++)
4794 if (SYNTAX (j) != Sword)
4795 fastmap[j] = 1;
4796 break;
4797 #endif /* WCHAR */
4798
4799 case anychar:
4800 {
4801 int fastmap_newline = fastmap['\n'];
4802
4803 /* `.' matches anything ... */
4804 for (j = 0; j < (1 << BYTEWIDTH); j++)
4805 fastmap[j] = 1;
4806
4807 /* ... except perhaps newline. */
4808 if (!(bufp->syntax & RE_DOT_NEWLINE))
4809 fastmap['\n'] = fastmap_newline;
4810
4811 /* Return if we have already set `can_be_null'; if we have,
4812 then the fastmap is irrelevant. Something's wrong here. */
4813 else if (bufp->can_be_null)
4814 goto done;
4815
4816 /* Otherwise, have to check alternative paths. */
4817 break;
4818 }
4819
4820 #ifdef emacs
4821 case syntaxspec:
4822 k = *p++;
4823 for (j = 0; j < (1 << BYTEWIDTH); j++)
4824 if (SYNTAX (j) == (enum syntaxcode) k)
4825 fastmap[j] = 1;
4826 break;
4827
4828
4829 case notsyntaxspec:
4830 k = *p++;
4831 for (j = 0; j < (1 << BYTEWIDTH); j++)
4832 if (SYNTAX (j) != (enum syntaxcode) k)
4833 fastmap[j] = 1;
4834 break;
4835
4836
4837 /* All cases after this match the empty string. These end with
4838 `continue'. */
4839
4840
4841 case before_dot:
4842 case at_dot:
4843 case after_dot:
4844 continue;
4845 #endif /* emacs */
4846
4847
4848 case no_op:
4849 case begline:
4850 case endline:
4851 case begbuf:
4852 case endbuf:
4853 case wordbound:
4854 case notwordbound:
4855 case wordbeg:
4856 case wordend:
4857 case push_dummy_failure:
4858 continue;
4859
4860
4861 case jump_n:
4862 case pop_failure_jump:
4863 case maybe_pop_jump:
4864 case jump:
4865 case jump_past_alt:
4866 case dummy_failure_jump:
4867 EXTRACT_NUMBER_AND_INCR (j, p);
4868 p += j;
4869 if (j > 0)
4870 continue;
4871
4872 /* Jump backward implies we just went through the body of a
4873 loop and matched nothing. Opcode jumped to should be
4874 `on_failure_jump' or `succeed_n'. Just treat it like an
4875 ordinary jump. For a * loop, it has pushed its failure
4876 point already; if so, discard that as redundant. */
4877 if ((re_opcode_t) *p != on_failure_jump
4878 && (re_opcode_t) *p != succeed_n)
4879 continue;
4880
4881 p++;
4882 EXTRACT_NUMBER_AND_INCR (j, p);
4883 p += j;
4884
4885 /* If what's on the stack is where we are now, pop it. */
4886 if (!FAIL_STACK_EMPTY ()
4887 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4888 fail_stack.avail--;
4889
4890 continue;
4891
4892
4893 case on_failure_jump:
4894 case on_failure_keep_string_jump:
4895 handle_on_failure_jump:
4896 EXTRACT_NUMBER_AND_INCR (j, p);
4897
4898 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4899 end of the pattern. We don't want to push such a point,
4900 since when we restore it above, entering the switch will
4901 increment `p' past the end of the pattern. We don't need
4902 to push such a point since we obviously won't find any more
4903 fastmap entries beyond `pend'. Such a pattern can match
4904 the null string, though. */
4905 if (p + j < pend)
4906 {
4907 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4908 {
4909 RESET_FAIL_STACK ();
4910 return -2;
4911 }
4912 }
4913 else
4914 bufp->can_be_null = 1;
4915
4916 if (succeed_n_p)
4917 {
4918 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4919 succeed_n_p = false;
4920 }
4921
4922 continue;
4923
4924
4925 case succeed_n:
4926 /* Get to the number of times to succeed. */
4927 p += OFFSET_ADDRESS_SIZE;
4928
4929 /* Increment p past the n for when k != 0. */
4930 EXTRACT_NUMBER_AND_INCR (k, p);
4931 if (k == 0)
4932 {
4933 p -= 2 * OFFSET_ADDRESS_SIZE;
4934 succeed_n_p = true; /* Spaghetti code alert. */
4935 goto handle_on_failure_jump;
4936 }
4937 continue;
4938
4939
4940 case set_number_at:
4941 p += 2 * OFFSET_ADDRESS_SIZE;
4942 continue;
4943
4944
4945 case start_memory:
4946 case stop_memory:
4947 p += 2;
4948 continue;
4949
4950
4951 default:
4952 abort (); /* We have listed all the cases. */
4953 } /* switch *p++ */
4954
4955 /* Getting here means we have found the possible starting
4956 characters for one path of the pattern -- and that the empty
4957 string does not match. We need not follow this path further.
4958 Instead, look at the next alternative (remembered on the
4959 stack), or quit if no more. The test at the top of the loop
4960 does these things. */
4961 path_can_be_null = false;
4962 p = pend;
4963 } /* while p */
4964
4965 /* Set `can_be_null' for the last path (also the first path, if the
4966 pattern is empty). */
4967 bufp->can_be_null |= path_can_be_null;
4968
4969 done:
4970 RESET_FAIL_STACK ();
4971 return 0;
4972 }
4973
4974 #else /* not INSIDE_RECURSION */
4975
4976 int
4977 re_compile_fastmap (bufp)
4978 struct re_pattern_buffer *bufp;
4979 {
4980 # ifdef MBS_SUPPORT
4981 if (MB_CUR_MAX != 1)
4982 return wcs_re_compile_fastmap(bufp);
4983 else
4984 # endif
4985 return byte_re_compile_fastmap(bufp);
4986 } /* re_compile_fastmap */
4987 #ifdef _LIBC
4988 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4989 #endif
4990 \f
4991
4992 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4993 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4994 this memory for recording register information. STARTS and ENDS
4995 must be allocated using the malloc library routine, and must each
4996 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4997
4998 If NUM_REGS == 0, then subsequent matches should allocate their own
4999 register data.
5000
5001 Unless this function is called, the first search or match using
5002 PATTERN_BUFFER will allocate its own register data, without
5003 freeing the old data. */
5004
5005 void
5006 re_set_registers (bufp, regs, num_regs, starts, ends)
5007 struct re_pattern_buffer *bufp;
5008 struct re_registers *regs;
5009 unsigned num_regs;
5010 regoff_t *starts, *ends;
5011 {
5012 if (num_regs)
5013 {
5014 bufp->regs_allocated = REGS_REALLOCATE;
5015 regs->num_regs = num_regs;
5016 regs->start = starts;
5017 regs->end = ends;
5018 }
5019 else
5020 {
5021 bufp->regs_allocated = REGS_UNALLOCATED;
5022 regs->num_regs = 0;
5023 regs->start = regs->end = (regoff_t *) 0;
5024 }
5025 }
5026 #ifdef _LIBC
5027 weak_alias (__re_set_registers, re_set_registers)
5028 #endif
5029 \f
5030 /* Searching routines. */
5031
5032 /* Like re_search_2, below, but only one string is specified, and
5033 doesn't let you say where to stop matching. */
5034
5035 int
5036 re_search (bufp, string, size, startpos, range, regs)
5037 struct re_pattern_buffer *bufp;
5038 const char *string;
5039 int size, startpos, range;
5040 struct re_registers *regs;
5041 {
5042 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5043 regs, size);
5044 }
5045 #ifdef _LIBC
5046 weak_alias (__re_search, re_search)
5047 #endif
5048
5049
5050 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5051 virtual concatenation of STRING1 and STRING2, starting first at index
5052 STARTPOS, then at STARTPOS + 1, and so on.
5053
5054 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5055
5056 RANGE is how far to scan while trying to match. RANGE = 0 means try
5057 only at STARTPOS; in general, the last start tried is STARTPOS +
5058 RANGE.
5059
5060 In REGS, return the indices of the virtual concatenation of STRING1
5061 and STRING2 that matched the entire BUFP->buffer and its contained
5062 subexpressions.
5063
5064 Do not consider matching one past the index STOP in the virtual
5065 concatenation of STRING1 and STRING2.
5066
5067 We return either the position in the strings at which the match was
5068 found, -1 if no match, or -2 if error (such as failure
5069 stack overflow). */
5070
5071 int
5072 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5073 struct re_pattern_buffer *bufp;
5074 const char *string1, *string2;
5075 int size1, size2;
5076 int startpos;
5077 int range;
5078 struct re_registers *regs;
5079 int stop;
5080 {
5081 # ifdef MBS_SUPPORT
5082 if (MB_CUR_MAX != 1)
5083 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5084 range, regs, stop);
5085 else
5086 # endif
5087 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5088 range, regs, stop);
5089 } /* re_search_2 */
5090 #ifdef _LIBC
5091 weak_alias (__re_search_2, re_search_2)
5092 #endif
5093
5094 #endif /* not INSIDE_RECURSION */
5095
5096 #ifdef INSIDE_RECURSION
5097
5098 #ifdef MATCH_MAY_ALLOCATE
5099 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5100 #else
5101 # define FREE_VAR(var) if (var) free (var); var = NULL
5102 #endif
5103
5104 #ifdef WCHAR
5105 # define MAX_ALLOCA_SIZE 2000
5106
5107 # define FREE_WCS_BUFFERS() \
5108 do { \
5109 if (size1 > MAX_ALLOCA_SIZE) \
5110 { \
5111 free (wcs_string1); \
5112 free (mbs_offset1); \
5113 } \
5114 else \
5115 { \
5116 FREE_VAR (wcs_string1); \
5117 FREE_VAR (mbs_offset1); \
5118 } \
5119 if (size2 > MAX_ALLOCA_SIZE) \
5120 { \
5121 free (wcs_string2); \
5122 free (mbs_offset2); \
5123 } \
5124 else \
5125 { \
5126 FREE_VAR (wcs_string2); \
5127 FREE_VAR (mbs_offset2); \
5128 } \
5129 } while (0)
5130
5131 #endif
5132
5133
5134 static int
5135 PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5136 regs, stop)
5137 struct re_pattern_buffer *bufp;
5138 const char *string1, *string2;
5139 int size1, size2;
5140 int startpos;
5141 int range;
5142 struct re_registers *regs;
5143 int stop;
5144 {
5145 int val;
5146 register char *fastmap = bufp->fastmap;
5147 register RE_TRANSLATE_TYPE translate = bufp->translate;
5148 int total_size = size1 + size2;
5149 int endpos = startpos + range;
5150 #ifdef WCHAR
5151 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5152 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5153 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5154 int wcs_size1 = 0, wcs_size2 = 0;
5155 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5156 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5157 /* They hold whether each wchar_t is binary data or not. */
5158 char *is_binary = NULL;
5159 #endif /* WCHAR */
5160
5161 /* Check for out-of-range STARTPOS. */
5162 if (startpos < 0 || startpos > total_size)
5163 return -1;
5164
5165 /* Fix up RANGE if it might eventually take us outside
5166 the virtual concatenation of STRING1 and STRING2.
5167 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5168 if (endpos < 0)
5169 range = 0 - startpos;
5170 else if (endpos > total_size)
5171 range = total_size - startpos;
5172
5173 /* If the search isn't to be a backwards one, don't waste time in a
5174 search for a pattern that must be anchored. */
5175 if (bufp->used > 0 && range > 0
5176 && ((re_opcode_t) bufp->buffer[0] == begbuf
5177 /* `begline' is like `begbuf' if it cannot match at newlines. */
5178 || ((re_opcode_t) bufp->buffer[0] == begline
5179 && !bufp->newline_anchor)))
5180 {
5181 if (startpos > 0)
5182 return -1;
5183 else
5184 range = 1;
5185 }
5186
5187 #ifdef emacs
5188 /* In a forward search for something that starts with \=.
5189 don't keep searching past point. */
5190 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5191 {
5192 range = PT - startpos;
5193 if (range <= 0)
5194 return -1;
5195 }
5196 #endif /* emacs */
5197
5198 /* Update the fastmap now if not correct already. */
5199 if (fastmap && !bufp->fastmap_accurate)
5200 if (re_compile_fastmap (bufp) == -2)
5201 return -2;
5202
5203 #ifdef WCHAR
5204 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5205 fill them with converted string. */
5206 if (size1 != 0)
5207 {
5208 if (size1 > MAX_ALLOCA_SIZE)
5209 {
5210 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5211 mbs_offset1 = TALLOC (size1 + 1, int);
5212 is_binary = TALLOC (size1 + 1, char);
5213 }
5214 else
5215 {
5216 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5217 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5218 is_binary = REGEX_TALLOC (size1 + 1, char);
5219 }
5220 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5221 {
5222 if (size1 > MAX_ALLOCA_SIZE)
5223 {
5224 free (wcs_string1);
5225 free (mbs_offset1);
5226 free (is_binary);
5227 }
5228 else
5229 {
5230 FREE_VAR (wcs_string1);
5231 FREE_VAR (mbs_offset1);
5232 FREE_VAR (is_binary);
5233 }
5234 return -2;
5235 }
5236 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5237 mbs_offset1, is_binary);
5238 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5239 if (size1 > MAX_ALLOCA_SIZE)
5240 free (is_binary);
5241 else
5242 FREE_VAR (is_binary);
5243 }
5244 if (size2 != 0)
5245 {
5246 if (size2 > MAX_ALLOCA_SIZE)
5247 {
5248 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5249 mbs_offset2 = TALLOC (size2 + 1, int);
5250 is_binary = TALLOC (size2 + 1, char);
5251 }
5252 else
5253 {
5254 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5255 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5256 is_binary = REGEX_TALLOC (size2 + 1, char);
5257 }
5258 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5259 {
5260 FREE_WCS_BUFFERS ();
5261 if (size2 > MAX_ALLOCA_SIZE)
5262 free (is_binary);
5263 else
5264 FREE_VAR (is_binary);
5265 return -2;
5266 }
5267 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5268 mbs_offset2, is_binary);
5269 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5270 if (size2 > MAX_ALLOCA_SIZE)
5271 free (is_binary);
5272 else
5273 FREE_VAR (is_binary);
5274 }
5275 #endif /* WCHAR */
5276
5277
5278 /* Loop through the string, looking for a place to start matching. */
5279 for (;;)
5280 {
5281 /* If a fastmap is supplied, skip quickly over characters that
5282 cannot be the start of a match. If the pattern can match the
5283 null string, however, we don't need to skip characters; we want
5284 the first null string. */
5285 if (fastmap && startpos < total_size && !bufp->can_be_null)
5286 {
5287 if (range > 0) /* Searching forwards. */
5288 {
5289 register const char *d;
5290 register int lim = 0;
5291 int irange = range;
5292
5293 if (startpos < size1 && startpos + range >= size1)
5294 lim = range - (size1 - startpos);
5295
5296 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5297
5298 /* Written out as an if-else to avoid testing `translate'
5299 inside the loop. */
5300 if (translate)
5301 while (range > lim
5302 && !fastmap[(unsigned char)
5303 translate[(unsigned char) *d++]])
5304 range--;
5305 else
5306 while (range > lim && !fastmap[(unsigned char) *d++])
5307 range--;
5308
5309 startpos += irange - range;
5310 }
5311 else /* Searching backwards. */
5312 {
5313 register CHAR_T c = (size1 == 0 || startpos >= size1
5314 ? string2[startpos - size1]
5315 : string1[startpos]);
5316
5317 if (!fastmap[(unsigned char) TRANSLATE (c)])
5318 goto advance;
5319 }
5320 }
5321
5322 /* If can't match the null string, and that's all we have left, fail. */
5323 if (range >= 0 && startpos == total_size && fastmap
5324 && !bufp->can_be_null)
5325 {
5326 #ifdef WCHAR
5327 FREE_WCS_BUFFERS ();
5328 #endif
5329 return -1;
5330 }
5331
5332 #ifdef WCHAR
5333 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5334 size2, startpos, regs, stop,
5335 wcs_string1, wcs_size1,
5336 wcs_string2, wcs_size2,
5337 mbs_offset1, mbs_offset2);
5338 #else /* BYTE */
5339 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5340 size2, startpos, regs, stop);
5341 #endif /* BYTE */
5342
5343 #ifndef REGEX_MALLOC
5344 # ifdef C_ALLOCA
5345 alloca (0);
5346 # endif
5347 #endif
5348
5349 if (val >= 0)
5350 {
5351 #ifdef WCHAR
5352 FREE_WCS_BUFFERS ();
5353 #endif
5354 return startpos;
5355 }
5356
5357 if (val == -2)
5358 {
5359 #ifdef WCHAR
5360 FREE_WCS_BUFFERS ();
5361 #endif
5362 return -2;
5363 }
5364
5365 advance:
5366 if (!range)
5367 break;
5368 else if (range > 0)
5369 {
5370 range--;
5371 startpos++;
5372 }
5373 else
5374 {
5375 range++;
5376 startpos--;
5377 }
5378 }
5379 #ifdef WCHAR
5380 FREE_WCS_BUFFERS ();
5381 #endif
5382 return -1;
5383 }
5384
5385 #ifdef WCHAR
5386 /* This converts PTR, a pointer into one of the search wchar_t strings
5387 `string1' and `string2' into an multibyte string offset from the
5388 beginning of that string. We use mbs_offset to optimize.
5389 See convert_mbs_to_wcs. */
5390 # define POINTER_TO_OFFSET(ptr) \
5391 (FIRST_STRING_P (ptr) \
5392 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5393 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5394 + csize1)))
5395 #else /* BYTE */
5396 /* This converts PTR, a pointer into one of the search strings `string1'
5397 and `string2' into an offset from the beginning of that string. */
5398 # define POINTER_TO_OFFSET(ptr) \
5399 (FIRST_STRING_P (ptr) \
5400 ? ((regoff_t) ((ptr) - string1)) \
5401 : ((regoff_t) ((ptr) - string2 + size1)))
5402 #endif /* WCHAR */
5403
5404 /* Macros for dealing with the split strings in re_match_2. */
5405
5406 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5407
5408 /* Call before fetching a character with *d. This switches over to
5409 string2 if necessary. */
5410 #define PREFETCH() \
5411 while (d == dend) \
5412 { \
5413 /* End of string2 => fail. */ \
5414 if (dend == end_match_2) \
5415 goto fail; \
5416 /* End of string1 => advance to string2. */ \
5417 d = string2; \
5418 dend = end_match_2; \
5419 }
5420
5421 /* Test if at very beginning or at very end of the virtual concatenation
5422 of `string1' and `string2'. If only one string, it's `string2'. */
5423 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5424 #define AT_STRINGS_END(d) ((d) == end2)
5425
5426
5427 /* Test if D points to a character which is word-constituent. We have
5428 two special cases to check for: if past the end of string1, look at
5429 the first character in string2; and if before the beginning of
5430 string2, look at the last character in string1. */
5431 #ifdef WCHAR
5432 /* Use internationalized API instead of SYNTAX. */
5433 # define WORDCHAR_P(d) \
5434 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5435 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5436 || ((d) == end1 ? *string2 \
5437 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5438 #else /* BYTE */
5439 # define WORDCHAR_P(d) \
5440 (SYNTAX ((d) == end1 ? *string2 \
5441 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5442 == Sword)
5443 #endif /* WCHAR */
5444
5445 /* Disabled due to a compiler bug -- see comment at case wordbound */
5446 #if 0
5447 /* Test if the character before D and the one at D differ with respect
5448 to being word-constituent. */
5449 #define AT_WORD_BOUNDARY(d) \
5450 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5451 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5452 #endif
5453
5454 /* Free everything we malloc. */
5455 #ifdef MATCH_MAY_ALLOCATE
5456 # ifdef WCHAR
5457 # define FREE_VARIABLES() \
5458 do { \
5459 REGEX_FREE_STACK (fail_stack.stack); \
5460 FREE_VAR (regstart); \
5461 FREE_VAR (regend); \
5462 FREE_VAR (old_regstart); \
5463 FREE_VAR (old_regend); \
5464 FREE_VAR (best_regstart); \
5465 FREE_VAR (best_regend); \
5466 FREE_VAR (reg_info); \
5467 FREE_VAR (reg_dummy); \
5468 FREE_VAR (reg_info_dummy); \
5469 if (!cant_free_wcs_buf) \
5470 { \
5471 FREE_VAR (string1); \
5472 FREE_VAR (string2); \
5473 FREE_VAR (mbs_offset1); \
5474 FREE_VAR (mbs_offset2); \
5475 } \
5476 } while (0)
5477 # else /* BYTE */
5478 # define FREE_VARIABLES() \
5479 do { \
5480 REGEX_FREE_STACK (fail_stack.stack); \
5481 FREE_VAR (regstart); \
5482 FREE_VAR (regend); \
5483 FREE_VAR (old_regstart); \
5484 FREE_VAR (old_regend); \
5485 FREE_VAR (best_regstart); \
5486 FREE_VAR (best_regend); \
5487 FREE_VAR (reg_info); \
5488 FREE_VAR (reg_dummy); \
5489 FREE_VAR (reg_info_dummy); \
5490 } while (0)
5491 # endif /* WCHAR */
5492 #else
5493 # ifdef WCHAR
5494 # define FREE_VARIABLES() \
5495 do { \
5496 if (!cant_free_wcs_buf) \
5497 { \
5498 FREE_VAR (string1); \
5499 FREE_VAR (string2); \
5500 FREE_VAR (mbs_offset1); \
5501 FREE_VAR (mbs_offset2); \
5502 } \
5503 } while (0)
5504 # else /* BYTE */
5505 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5506 # endif /* WCHAR */
5507 #endif /* not MATCH_MAY_ALLOCATE */
5508
5509 /* These values must meet several constraints. They must not be valid
5510 register values; since we have a limit of 255 registers (because
5511 we use only one byte in the pattern for the register number), we can
5512 use numbers larger than 255. They must differ by 1, because of
5513 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5514 be larger than the value for the highest register, so we do not try
5515 to actually save any registers when none are active. */
5516 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5517 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5518 \f
5519 #else /* not INSIDE_RECURSION */
5520 /* Matching routines. */
5521
5522 #ifndef emacs /* Emacs never uses this. */
5523 /* re_match is like re_match_2 except it takes only a single string. */
5524
5525 int
5526 re_match (bufp, string, size, pos, regs)
5527 struct re_pattern_buffer *bufp;
5528 const char *string;
5529 int size, pos;
5530 struct re_registers *regs;
5531 {
5532 int result;
5533 # ifdef MBS_SUPPORT
5534 if (MB_CUR_MAX != 1)
5535 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5536 pos, regs, size,
5537 NULL, 0, NULL, 0, NULL, NULL);
5538 else
5539 # endif
5540 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5541 pos, regs, size);
5542 # ifndef REGEX_MALLOC
5543 # ifdef C_ALLOCA
5544 alloca (0);
5545 # endif
5546 # endif
5547 return result;
5548 }
5549 # ifdef _LIBC
5550 weak_alias (__re_match, re_match)
5551 # endif
5552 #endif /* not emacs */
5553
5554 #endif /* not INSIDE_RECURSION */
5555
5556 #ifdef INSIDE_RECURSION
5557 static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5558 UCHAR_T *end,
5559 PREFIX(register_info_type) *reg_info));
5560 static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5561 UCHAR_T *end,
5562 PREFIX(register_info_type) *reg_info));
5563 static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5564 UCHAR_T *end,
5565 PREFIX(register_info_type) *reg_info));
5566 static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5567 int len, char *translate));
5568 #else /* not INSIDE_RECURSION */
5569
5570 /* re_match_2 matches the compiled pattern in BUFP against the
5571 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5572 and SIZE2, respectively). We start matching at POS, and stop
5573 matching at STOP.
5574
5575 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5576 store offsets for the substring each group matched in REGS. See the
5577 documentation for exactly how many groups we fill.
5578
5579 We return -1 if no match, -2 if an internal error (such as the
5580 failure stack overflowing). Otherwise, we return the length of the
5581 matched substring. */
5582
5583 int
5584 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5585 struct re_pattern_buffer *bufp;
5586 const char *string1, *string2;
5587 int size1, size2;
5588 int pos;
5589 struct re_registers *regs;
5590 int stop;
5591 {
5592 int result;
5593 # ifdef MBS_SUPPORT
5594 if (MB_CUR_MAX != 1)
5595 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5596 pos, regs, stop,
5597 NULL, 0, NULL, 0, NULL, NULL);
5598 else
5599 # endif
5600 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5601 pos, regs, stop);
5602
5603 #ifndef REGEX_MALLOC
5604 # ifdef C_ALLOCA
5605 alloca (0);
5606 # endif
5607 #endif
5608 return result;
5609 }
5610 #ifdef _LIBC
5611 weak_alias (__re_match_2, re_match_2)
5612 #endif
5613
5614 #endif /* not INSIDE_RECURSION */
5615
5616 #ifdef INSIDE_RECURSION
5617
5618 #ifdef WCHAR
5619 static int count_mbs_length PARAMS ((int *, int));
5620
5621 /* This check the substring (from 0, to length) of the multibyte string,
5622 to which offset_buffer correspond. And count how many wchar_t_characters
5623 the substring occupy. We use offset_buffer to optimization.
5624 See convert_mbs_to_wcs. */
5625
5626 static int
5627 count_mbs_length(offset_buffer, length)
5628 int *offset_buffer;
5629 int length;
5630 {
5631 int upper, lower;
5632
5633 /* Check whether the size is valid. */
5634 if (length < 0)
5635 return -1;
5636
5637 if (offset_buffer == NULL)
5638 return 0;
5639
5640 /* If there are no multibyte character, offset_buffer[i] == i.
5641 Optmize for this case. */
5642 if (offset_buffer[length] == length)
5643 return length;
5644
5645 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5646 upper = length;
5647 lower = 0;
5648
5649 while (true)
5650 {
5651 int middle = (lower + upper) / 2;
5652 if (middle == lower || middle == upper)
5653 break;
5654 if (offset_buffer[middle] > length)
5655 upper = middle;
5656 else if (offset_buffer[middle] < length)
5657 lower = middle;
5658 else
5659 return middle;
5660 }
5661
5662 return -1;
5663 }
5664 #endif /* WCHAR */
5665
5666 /* This is a separate function so that we can force an alloca cleanup
5667 afterwards. */
5668 #ifdef WCHAR
5669 static int
5670 wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5671 regs, stop, string1, size1, string2, size2,
5672 mbs_offset1, mbs_offset2)
5673 struct re_pattern_buffer *bufp;
5674 const char *cstring1, *cstring2;
5675 int csize1, csize2;
5676 int pos;
5677 struct re_registers *regs;
5678 int stop;
5679 /* string1 == string2 == NULL means string1/2, size1/2 and
5680 mbs_offset1/2 need seting up in this function. */
5681 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5682 wchar_t *string1, *string2;
5683 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5684 int size1, size2;
5685 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5686 int *mbs_offset1, *mbs_offset2;
5687 #else /* BYTE */
5688 static int
5689 byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5690 regs, stop)
5691 struct re_pattern_buffer *bufp;
5692 const char *string1, *string2;
5693 int size1, size2;
5694 int pos;
5695 struct re_registers *regs;
5696 int stop;
5697 #endif /* BYTE */
5698 {
5699 /* General temporaries. */
5700 int mcnt;
5701 UCHAR_T *p1;
5702 #ifdef WCHAR
5703 /* They hold whether each wchar_t is binary data or not. */
5704 char *is_binary = NULL;
5705 /* If true, we can't free string1/2, mbs_offset1/2. */
5706 int cant_free_wcs_buf = 1;
5707 #endif /* WCHAR */
5708
5709 /* Just past the end of the corresponding string. */
5710 const CHAR_T *end1, *end2;
5711
5712 /* Pointers into string1 and string2, just past the last characters in
5713 each to consider matching. */
5714 const CHAR_T *end_match_1, *end_match_2;
5715
5716 /* Where we are in the data, and the end of the current string. */
5717 const CHAR_T *d, *dend;
5718
5719 /* Where we are in the pattern, and the end of the pattern. */
5720 #ifdef WCHAR
5721 UCHAR_T *pattern, *p;
5722 register UCHAR_T *pend;
5723 #else /* BYTE */
5724 UCHAR_T *p = bufp->buffer;
5725 register UCHAR_T *pend = p + bufp->used;
5726 #endif /* WCHAR */
5727
5728 /* Mark the opcode just after a start_memory, so we can test for an
5729 empty subpattern when we get to the stop_memory. */
5730 UCHAR_T *just_past_start_mem = 0;
5731
5732 /* We use this to map every character in the string. */
5733 RE_TRANSLATE_TYPE translate = bufp->translate;
5734
5735 /* Failure point stack. Each place that can handle a failure further
5736 down the line pushes a failure point on this stack. It consists of
5737 restart, regend, and reg_info for all registers corresponding to
5738 the subexpressions we're currently inside, plus the number of such
5739 registers, and, finally, two char *'s. The first char * is where
5740 to resume scanning the pattern; the second one is where to resume
5741 scanning the strings. If the latter is zero, the failure point is
5742 a ``dummy''; if a failure happens and the failure point is a dummy,
5743 it gets discarded and the next next one is tried. */
5744 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5745 PREFIX(fail_stack_type) fail_stack;
5746 #endif
5747 #ifdef DEBUG
5748 static unsigned failure_id;
5749 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5750 #endif
5751
5752 #ifdef REL_ALLOC
5753 /* This holds the pointer to the failure stack, when
5754 it is allocated relocatably. */
5755 fail_stack_elt_t *failure_stack_ptr;
5756 #endif
5757
5758 /* We fill all the registers internally, independent of what we
5759 return, for use in backreferences. The number here includes
5760 an element for register zero. */
5761 size_t num_regs = bufp->re_nsub + 1;
5762
5763 /* The currently active registers. */
5764 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5765 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5766
5767 /* Information on the contents of registers. These are pointers into
5768 the input strings; they record just what was matched (on this
5769 attempt) by a subexpression part of the pattern, that is, the
5770 regnum-th regstart pointer points to where in the pattern we began
5771 matching and the regnum-th regend points to right after where we
5772 stopped matching the regnum-th subexpression. (The zeroth register
5773 keeps track of what the whole pattern matches.) */
5774 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5775 const CHAR_T **regstart, **regend;
5776 #endif
5777
5778 /* If a group that's operated upon by a repetition operator fails to
5779 match anything, then the register for its start will need to be
5780 restored because it will have been set to wherever in the string we
5781 are when we last see its open-group operator. Similarly for a
5782 register's end. */
5783 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5784 const CHAR_T **old_regstart, **old_regend;
5785 #endif
5786
5787 /* The is_active field of reg_info helps us keep track of which (possibly
5788 nested) subexpressions we are currently in. The matched_something
5789 field of reg_info[reg_num] helps us tell whether or not we have
5790 matched any of the pattern so far this time through the reg_num-th
5791 subexpression. These two fields get reset each time through any
5792 loop their register is in. */
5793 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5794 PREFIX(register_info_type) *reg_info;
5795 #endif
5796
5797 /* The following record the register info as found in the above
5798 variables when we find a match better than any we've seen before.
5799 This happens as we backtrack through the failure points, which in
5800 turn happens only if we have not yet matched the entire string. */
5801 unsigned best_regs_set = false;
5802 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5803 const CHAR_T **best_regstart, **best_regend;
5804 #endif
5805
5806 /* Logically, this is `best_regend[0]'. But we don't want to have to
5807 allocate space for that if we're not allocating space for anything
5808 else (see below). Also, we never need info about register 0 for
5809 any of the other register vectors, and it seems rather a kludge to
5810 treat `best_regend' differently than the rest. So we keep track of
5811 the end of the best match so far in a separate variable. We
5812 initialize this to NULL so that when we backtrack the first time
5813 and need to test it, it's not garbage. */
5814 const CHAR_T *match_end = NULL;
5815
5816 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5817 int set_regs_matched_done = 0;
5818
5819 /* Used when we pop values we don't care about. */
5820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5821 const CHAR_T **reg_dummy;
5822 PREFIX(register_info_type) *reg_info_dummy;
5823 #endif
5824
5825 #ifdef DEBUG
5826 /* Counts the total number of registers pushed. */
5827 unsigned num_regs_pushed = 0;
5828 #endif
5829
5830 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5831
5832 INIT_FAIL_STACK ();
5833
5834 #ifdef MATCH_MAY_ALLOCATE
5835 /* Do not bother to initialize all the register variables if there are
5836 no groups in the pattern, as it takes a fair amount of time. If
5837 there are groups, we include space for register 0 (the whole
5838 pattern), even though we never use it, since it simplifies the
5839 array indexing. We should fix this. */
5840 if (bufp->re_nsub)
5841 {
5842 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5843 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5844 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5845 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5846 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5847 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5848 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5849 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5850 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5851
5852 if (!(regstart && regend && old_regstart && old_regend && reg_info
5853 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5854 {
5855 FREE_VARIABLES ();
5856 return -2;
5857 }
5858 }
5859 else
5860 {
5861 /* We must initialize all our variables to NULL, so that
5862 `FREE_VARIABLES' doesn't try to free them. */
5863 regstart = regend = old_regstart = old_regend = best_regstart
5864 = best_regend = reg_dummy = NULL;
5865 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5866 }
5867 #endif /* MATCH_MAY_ALLOCATE */
5868
5869 /* The starting position is bogus. */
5870 #ifdef WCHAR
5871 if (pos < 0 || pos > csize1 + csize2)
5872 #else /* BYTE */
5873 if (pos < 0 || pos > size1 + size2)
5874 #endif
5875 {
5876 FREE_VARIABLES ();
5877 return -1;
5878 }
5879
5880 #ifdef WCHAR
5881 /* Allocate wchar_t array for string1 and string2 and
5882 fill them with converted string. */
5883 if (string1 == NULL && string2 == NULL)
5884 {
5885 /* We need seting up buffers here. */
5886
5887 /* We must free wcs buffers in this function. */
5888 cant_free_wcs_buf = 0;
5889
5890 if (csize1 != 0)
5891 {
5892 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5893 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5894 is_binary = REGEX_TALLOC (csize1 + 1, char);
5895 if (!string1 || !mbs_offset1 || !is_binary)
5896 {
5897 FREE_VAR (string1);
5898 FREE_VAR (mbs_offset1);
5899 FREE_VAR (is_binary);
5900 return -2;
5901 }
5902 }
5903 if (csize2 != 0)
5904 {
5905 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5906 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5907 is_binary = REGEX_TALLOC (csize2 + 1, char);
5908 if (!string2 || !mbs_offset2 || !is_binary)
5909 {
5910 FREE_VAR (string1);
5911 FREE_VAR (mbs_offset1);
5912 FREE_VAR (string2);
5913 FREE_VAR (mbs_offset2);
5914 FREE_VAR (is_binary);
5915 return -2;
5916 }
5917 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5918 mbs_offset2, is_binary);
5919 string2[size2] = L'\0'; /* for a sentinel */
5920 FREE_VAR (is_binary);
5921 }
5922 }
5923
5924 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5925 pattern to (char*) in regex_compile. */
5926 p = pattern = (CHAR_T*)bufp->buffer;
5927 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5928
5929 #endif /* WCHAR */
5930
5931 /* Initialize subexpression text positions to -1 to mark ones that no
5932 start_memory/stop_memory has been seen for. Also initialize the
5933 register information struct. */
5934 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5935 {
5936 regstart[mcnt] = regend[mcnt]
5937 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5938
5939 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5940 IS_ACTIVE (reg_info[mcnt]) = 0;
5941 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5942 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5943 }
5944
5945 /* We move `string1' into `string2' if the latter's empty -- but not if
5946 `string1' is null. */
5947 if (size2 == 0 && string1 != NULL)
5948 {
5949 string2 = string1;
5950 size2 = size1;
5951 string1 = 0;
5952 size1 = 0;
5953 #ifdef WCHAR
5954 mbs_offset2 = mbs_offset1;
5955 csize2 = csize1;
5956 mbs_offset1 = NULL;
5957 csize1 = 0;
5958 #endif
5959 }
5960 end1 = string1 + size1;
5961 end2 = string2 + size2;
5962
5963 /* Compute where to stop matching, within the two strings. */
5964 #ifdef WCHAR
5965 if (stop <= csize1)
5966 {
5967 mcnt = count_mbs_length(mbs_offset1, stop);
5968 end_match_1 = string1 + mcnt;
5969 end_match_2 = string2;
5970 }
5971 else
5972 {
5973 if (stop > csize1 + csize2)
5974 stop = csize1 + csize2;
5975 end_match_1 = end1;
5976 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5977 end_match_2 = string2 + mcnt;
5978 }
5979 if (mcnt < 0)
5980 { /* count_mbs_length return error. */
5981 FREE_VARIABLES ();
5982 return -1;
5983 }
5984 #else
5985 if (stop <= size1)
5986 {
5987 end_match_1 = string1 + stop;
5988 end_match_2 = string2;
5989 }
5990 else
5991 {
5992 end_match_1 = end1;
5993 end_match_2 = string2 + stop - size1;
5994 }
5995 #endif /* WCHAR */
5996
5997 /* `p' scans through the pattern as `d' scans through the data.
5998 `dend' is the end of the input string that `d' points within. `d'
5999 is advanced into the following input string whenever necessary, but
6000 this happens before fetching; therefore, at the beginning of the
6001 loop, `d' can be pointing at the end of a string, but it cannot
6002 equal `string2'. */
6003 #ifdef WCHAR
6004 if (size1 > 0 && pos <= csize1)
6005 {
6006 mcnt = count_mbs_length(mbs_offset1, pos);
6007 d = string1 + mcnt;
6008 dend = end_match_1;
6009 }
6010 else
6011 {
6012 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6013 d = string2 + mcnt;
6014 dend = end_match_2;
6015 }
6016
6017 if (mcnt < 0)
6018 { /* count_mbs_length return error. */
6019 FREE_VARIABLES ();
6020 return -1;
6021 }
6022 #else
6023 if (size1 > 0 && pos <= size1)
6024 {
6025 d = string1 + pos;
6026 dend = end_match_1;
6027 }
6028 else
6029 {
6030 d = string2 + pos - size1;
6031 dend = end_match_2;
6032 }
6033 #endif /* WCHAR */
6034
6035 DEBUG_PRINT1 ("The compiled pattern is:\n");
6036 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6037 DEBUG_PRINT1 ("The string to match is: `");
6038 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6039 DEBUG_PRINT1 ("'\n");
6040
6041 /* This loops over pattern commands. It exits by returning from the
6042 function if the match is complete, or it drops through if the match
6043 fails at this starting point in the input data. */
6044 for (;;)
6045 {
6046 #ifdef _LIBC
6047 DEBUG_PRINT2 ("\n%p: ", p);
6048 #else
6049 DEBUG_PRINT2 ("\n0x%x: ", p);
6050 #endif
6051
6052 if (p == pend)
6053 { /* End of pattern means we might have succeeded. */
6054 DEBUG_PRINT1 ("end of pattern ... ");
6055
6056 /* If we haven't matched the entire string, and we want the
6057 longest match, try backtracking. */
6058 if (d != end_match_2)
6059 {
6060 /* 1 if this match ends in the same string (string1 or string2)
6061 as the best previous match. */
6062 boolean same_str_p = (FIRST_STRING_P (match_end)
6063 == MATCHING_IN_FIRST_STRING);
6064 /* 1 if this match is the best seen so far. */
6065 boolean best_match_p;
6066
6067 /* AIX compiler got confused when this was combined
6068 with the previous declaration. */
6069 if (same_str_p)
6070 best_match_p = d > match_end;
6071 else
6072 best_match_p = !MATCHING_IN_FIRST_STRING;
6073
6074 DEBUG_PRINT1 ("backtracking.\n");
6075
6076 if (!FAIL_STACK_EMPTY ())
6077 { /* More failure points to try. */
6078
6079 /* If exceeds best match so far, save it. */
6080 if (!best_regs_set || best_match_p)
6081 {
6082 best_regs_set = true;
6083 match_end = d;
6084
6085 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6086
6087 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6088 {
6089 best_regstart[mcnt] = regstart[mcnt];
6090 best_regend[mcnt] = regend[mcnt];
6091 }
6092 }
6093 goto fail;
6094 }
6095
6096 /* If no failure points, don't restore garbage. And if
6097 last match is real best match, don't restore second
6098 best one. */
6099 else if (best_regs_set && !best_match_p)
6100 {
6101 restore_best_regs:
6102 /* Restore best match. It may happen that `dend ==
6103 end_match_1' while the restored d is in string2.
6104 For example, the pattern `x.*y.*z' against the
6105 strings `x-' and `y-z-', if the two strings are
6106 not consecutive in memory. */
6107 DEBUG_PRINT1 ("Restoring best registers.\n");
6108
6109 d = match_end;
6110 dend = ((d >= string1 && d <= end1)
6111 ? end_match_1 : end_match_2);
6112
6113 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6114 {
6115 regstart[mcnt] = best_regstart[mcnt];
6116 regend[mcnt] = best_regend[mcnt];
6117 }
6118 }
6119 } /* d != end_match_2 */
6120
6121 succeed_label:
6122 DEBUG_PRINT1 ("Accepting match.\n");
6123 /* If caller wants register contents data back, do it. */
6124 if (regs && !bufp->no_sub)
6125 {
6126 /* Have the register data arrays been allocated? */
6127 if (bufp->regs_allocated == REGS_UNALLOCATED)
6128 { /* No. So allocate them with malloc. We need one
6129 extra element beyond `num_regs' for the `-1' marker
6130 GNU code uses. */
6131 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6132 regs->start = TALLOC (regs->num_regs, regoff_t);
6133 regs->end = TALLOC (regs->num_regs, regoff_t);
6134 if (regs->start == NULL || regs->end == NULL)
6135 {
6136 FREE_VARIABLES ();
6137 return -2;
6138 }
6139 bufp->regs_allocated = REGS_REALLOCATE;
6140 }
6141 else if (bufp->regs_allocated == REGS_REALLOCATE)
6142 { /* Yes. If we need more elements than were already
6143 allocated, reallocate them. If we need fewer, just
6144 leave it alone. */
6145 if (regs->num_regs < num_regs + 1)
6146 {
6147 regs->num_regs = num_regs + 1;
6148 RETALLOC (regs->start, regs->num_regs, regoff_t);
6149 RETALLOC (regs->end, regs->num_regs, regoff_t);
6150 if (regs->start == NULL || regs->end == NULL)
6151 {
6152 FREE_VARIABLES ();
6153 return -2;
6154 }
6155 }
6156 }
6157 else
6158 {
6159 /* These braces fend off a "empty body in an else-statement"
6160 warning under GCC when assert expands to nothing. */
6161 assert (bufp->regs_allocated == REGS_FIXED);
6162 }
6163
6164 /* Convert the pointer data in `regstart' and `regend' to
6165 indices. Register zero has to be set differently,
6166 since we haven't kept track of any info for it. */
6167 if (regs->num_regs > 0)
6168 {
6169 regs->start[0] = pos;
6170 #ifdef WCHAR
6171 if (MATCHING_IN_FIRST_STRING)
6172 regs->end[0] = mbs_offset1 != NULL ?
6173 mbs_offset1[d-string1] : 0;
6174 else
6175 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6176 mbs_offset2[d-string2] : 0);
6177 #else
6178 regs->end[0] = (MATCHING_IN_FIRST_STRING
6179 ? ((regoff_t) (d - string1))
6180 : ((regoff_t) (d - string2 + size1)));
6181 #endif /* WCHAR */
6182 }
6183
6184 /* Go through the first `min (num_regs, regs->num_regs)'
6185 registers, since that is all we initialized. */
6186 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6187 mcnt++)
6188 {
6189 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6190 regs->start[mcnt] = regs->end[mcnt] = -1;
6191 else
6192 {
6193 regs->start[mcnt]
6194 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6195 regs->end[mcnt]
6196 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6197 }
6198 }
6199
6200 /* If the regs structure we return has more elements than
6201 were in the pattern, set the extra elements to -1. If
6202 we (re)allocated the registers, this is the case,
6203 because we always allocate enough to have at least one
6204 -1 at the end. */
6205 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6206 regs->start[mcnt] = regs->end[mcnt] = -1;
6207 } /* regs && !bufp->no_sub */
6208
6209 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6210 nfailure_points_pushed, nfailure_points_popped,
6211 nfailure_points_pushed - nfailure_points_popped);
6212 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6213
6214 #ifdef WCHAR
6215 if (MATCHING_IN_FIRST_STRING)
6216 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6217 else
6218 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6219 csize1;
6220 mcnt -= pos;
6221 #else
6222 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6223 ? string1
6224 : string2 - size1);
6225 #endif /* WCHAR */
6226
6227 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6228
6229 FREE_VARIABLES ();
6230 return mcnt;
6231 }
6232
6233 /* Otherwise match next pattern command. */
6234 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6235 {
6236 /* Ignore these. Used to ignore the n of succeed_n's which
6237 currently have n == 0. */
6238 case no_op:
6239 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6240 break;
6241
6242 case succeed:
6243 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6244 goto succeed_label;
6245
6246 /* Match the next n pattern characters exactly. The following
6247 byte in the pattern defines n, and the n bytes after that
6248 are the characters to match. */
6249 case exactn:
6250 #ifdef MBS_SUPPORT
6251 case exactn_bin:
6252 #endif
6253 mcnt = *p++;
6254 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6255
6256 /* This is written out as an if-else so we don't waste time
6257 testing `translate' inside the loop. */
6258 if (translate)
6259 {
6260 do
6261 {
6262 PREFETCH ();
6263 #ifdef WCHAR
6264 if (*d <= 0xff)
6265 {
6266 if ((UCHAR_T) translate[(unsigned char) *d++]
6267 != (UCHAR_T) *p++)
6268 goto fail;
6269 }
6270 else
6271 {
6272 if (*d++ != (CHAR_T) *p++)
6273 goto fail;
6274 }
6275 #else
6276 if ((UCHAR_T) translate[(unsigned char) *d++]
6277 != (UCHAR_T) *p++)
6278 goto fail;
6279 #endif /* WCHAR */
6280 }
6281 while (--mcnt);
6282 }
6283 else
6284 {
6285 do
6286 {
6287 PREFETCH ();
6288 if (*d++ != (CHAR_T) *p++) goto fail;
6289 }
6290 while (--mcnt);
6291 }
6292 SET_REGS_MATCHED ();
6293 break;
6294
6295
6296 /* Match any character except possibly a newline or a null. */
6297 case anychar:
6298 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6299
6300 PREFETCH ();
6301
6302 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6303 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6304 goto fail;
6305
6306 SET_REGS_MATCHED ();
6307 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6308 d++;
6309 break;
6310
6311
6312 case charset:
6313 case charset_not:
6314 {
6315 register UCHAR_T c;
6316 #ifdef WCHAR
6317 unsigned int i, char_class_length, coll_symbol_length,
6318 equiv_class_length, ranges_length, chars_length, length;
6319 CHAR_T *workp, *workp2, *charset_top;
6320 #define WORK_BUFFER_SIZE 128
6321 CHAR_T str_buf[WORK_BUFFER_SIZE];
6322 # ifdef _LIBC
6323 uint32_t nrules;
6324 # endif /* _LIBC */
6325 #endif /* WCHAR */
6326 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6327
6328 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6329 PREFETCH ();
6330 c = TRANSLATE (*d); /* The character to match. */
6331 #ifdef WCHAR
6332 # ifdef _LIBC
6333 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6334 # endif /* _LIBC */
6335 charset_top = p - 1;
6336 char_class_length = *p++;
6337 coll_symbol_length = *p++;
6338 equiv_class_length = *p++;
6339 ranges_length = *p++;
6340 chars_length = *p++;
6341 /* p points charset[6], so the address of the next instruction
6342 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6343 where l=length of char_classes, m=length of collating_symbol,
6344 n=equivalence_class, o=length of char_range,
6345 p'=length of character. */
6346 workp = p;
6347 /* Update p to indicate the next instruction. */
6348 p += char_class_length + coll_symbol_length+ equiv_class_length +
6349 2*ranges_length + chars_length;
6350
6351 /* match with char_class? */
6352 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6353 {
6354 wctype_t wctype;
6355 uintptr_t alignedp = ((uintptr_t)workp
6356 + __alignof__(wctype_t) - 1)
6357 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6358 wctype = *((wctype_t*)alignedp);
6359 workp += CHAR_CLASS_SIZE;
6360 # ifdef _LIBC
6361 if (__iswctype((wint_t)c, wctype))
6362 goto char_set_matched;
6363 # else
6364 if (iswctype((wint_t)c, wctype))
6365 goto char_set_matched;
6366 # endif
6367 }
6368
6369 /* match with collating_symbol? */
6370 # ifdef _LIBC
6371 if (nrules != 0)
6372 {
6373 const unsigned char *extra = (const unsigned char *)
6374 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6375
6376 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6377 workp++)
6378 {
6379 int32_t *wextra;
6380 wextra = (int32_t*)(extra + *workp++);
6381 for (i = 0; i < *wextra; ++i)
6382 if (TRANSLATE(d[i]) != wextra[1 + i])
6383 break;
6384
6385 if (i == *wextra)
6386 {
6387 /* Update d, however d will be incremented at
6388 char_set_matched:, we decrement d here. */
6389 d += i - 1;
6390 goto char_set_matched;
6391 }
6392 }
6393 }
6394 else /* (nrules == 0) */
6395 # endif
6396 /* If we can't look up collation data, we use wcscoll
6397 instead. */
6398 {
6399 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6400 {
6401 const CHAR_T *backup_d = d, *backup_dend = dend;
6402 # ifdef _LIBC
6403 length = __wcslen (workp);
6404 # else
6405 length = wcslen (workp);
6406 # endif
6407
6408 /* If wcscoll(the collating symbol, whole string) > 0,
6409 any substring of the string never match with the
6410 collating symbol. */
6411 # ifdef _LIBC
6412 if (__wcscoll (workp, d) > 0)
6413 # else
6414 if (wcscoll (workp, d) > 0)
6415 # endif
6416 {
6417 workp += length + 1;
6418 continue;
6419 }
6420
6421 /* First, we compare the collating symbol with
6422 the first character of the string.
6423 If it don't match, we add the next character to
6424 the compare buffer in turn. */
6425 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6426 {
6427 int match;
6428 if (d == dend)
6429 {
6430 if (dend == end_match_2)
6431 break;
6432 d = string2;
6433 dend = end_match_2;
6434 }
6435
6436 /* add next character to the compare buffer. */
6437 str_buf[i] = TRANSLATE(*d);
6438 str_buf[i+1] = '\0';
6439
6440 # ifdef _LIBC
6441 match = __wcscoll (workp, str_buf);
6442 # else
6443 match = wcscoll (workp, str_buf);
6444 # endif
6445 if (match == 0)
6446 goto char_set_matched;
6447
6448 if (match < 0)
6449 /* (str_buf > workp) indicate (str_buf + X > workp),
6450 because for all X (str_buf + X > str_buf).
6451 So we don't need continue this loop. */
6452 break;
6453
6454 /* Otherwise(str_buf < workp),
6455 (str_buf+next_character) may equals (workp).
6456 So we continue this loop. */
6457 }
6458 /* not matched */
6459 d = backup_d;
6460 dend = backup_dend;
6461 workp += length + 1;
6462 }
6463 }
6464 /* match with equivalence_class? */
6465 # ifdef _LIBC
6466 if (nrules != 0)
6467 {
6468 const CHAR_T *backup_d = d, *backup_dend = dend;
6469 /* Try to match the equivalence class against
6470 those known to the collate implementation. */
6471 const int32_t *table;
6472 const int32_t *weights;
6473 const int32_t *extra;
6474 const int32_t *indirect;
6475 int32_t idx, idx2;
6476 wint_t *cp;
6477 size_t len;
6478
6479 /* This #include defines a local function! */
6480 # include <locale/weightwc.h>
6481
6482 table = (const int32_t *)
6483 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6484 weights = (const wint_t *)
6485 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6486 extra = (const wint_t *)
6487 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6488 indirect = (const int32_t *)
6489 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6490
6491 /* Write 1 collating element to str_buf, and
6492 get its index. */
6493 idx2 = 0;
6494
6495 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6496 {
6497 cp = (wint_t*)str_buf;
6498 if (d == dend)
6499 {
6500 if (dend == end_match_2)
6501 break;
6502 d = string2;
6503 dend = end_match_2;
6504 }
6505 str_buf[i] = TRANSLATE(*(d+i));
6506 str_buf[i+1] = '\0'; /* sentinel */
6507 idx2 = findidx ((const wint_t**)&cp);
6508 }
6509
6510 /* Update d, however d will be incremented at
6511 char_set_matched:, we decrement d here. */
6512 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6513 if (d >= dend)
6514 {
6515 if (dend == end_match_2)
6516 d = dend;
6517 else
6518 {
6519 d = string2;
6520 dend = end_match_2;
6521 }
6522 }
6523
6524 len = weights[idx2];
6525
6526 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6527 workp++)
6528 {
6529 idx = (int32_t)*workp;
6530 /* We already checked idx != 0 in regex_compile. */
6531
6532 if (idx2 != 0 && len == weights[idx])
6533 {
6534 int cnt = 0;
6535 while (cnt < len && (weights[idx + 1 + cnt]
6536 == weights[idx2 + 1 + cnt]))
6537 ++cnt;
6538
6539 if (cnt == len)
6540 goto char_set_matched;
6541 }
6542 }
6543 /* not matched */
6544 d = backup_d;
6545 dend = backup_dend;
6546 }
6547 else /* (nrules == 0) */
6548 # endif
6549 /* If we can't look up collation data, we use wcscoll
6550 instead. */
6551 {
6552 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6553 {
6554 const CHAR_T *backup_d = d, *backup_dend = dend;
6555 # ifdef _LIBC
6556 length = __wcslen (workp);
6557 # else
6558 length = wcslen (workp);
6559 # endif
6560
6561 /* If wcscoll(the collating symbol, whole string) > 0,
6562 any substring of the string never match with the
6563 collating symbol. */
6564 # ifdef _LIBC
6565 if (__wcscoll (workp, d) > 0)
6566 # else
6567 if (wcscoll (workp, d) > 0)
6568 # endif
6569 {
6570 workp += length + 1;
6571 break;
6572 }
6573
6574 /* First, we compare the equivalence class with
6575 the first character of the string.
6576 If it don't match, we add the next character to
6577 the compare buffer in turn. */
6578 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6579 {
6580 int match;
6581 if (d == dend)
6582 {
6583 if (dend == end_match_2)
6584 break;
6585 d = string2;
6586 dend = end_match_2;
6587 }
6588
6589 /* add next character to the compare buffer. */
6590 str_buf[i] = TRANSLATE(*d);
6591 str_buf[i+1] = '\0';
6592
6593 # ifdef _LIBC
6594 match = __wcscoll (workp, str_buf);
6595 # else
6596 match = wcscoll (workp, str_buf);
6597 # endif
6598
6599 if (match == 0)
6600 goto char_set_matched;
6601
6602 if (match < 0)
6603 /* (str_buf > workp) indicate (str_buf + X > workp),
6604 because for all X (str_buf + X > str_buf).
6605 So we don't need continue this loop. */
6606 break;
6607
6608 /* Otherwise(str_buf < workp),
6609 (str_buf+next_character) may equals (workp).
6610 So we continue this loop. */
6611 }
6612 /* not matched */
6613 d = backup_d;
6614 dend = backup_dend;
6615 workp += length + 1;
6616 }
6617 }
6618
6619 /* match with char_range? */
6620 # ifdef _LIBC
6621 if (nrules != 0)
6622 {
6623 uint32_t collseqval;
6624 const char *collseq = (const char *)
6625 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6626
6627 collseqval = collseq_table_lookup (collseq, c);
6628
6629 for (; workp < p - chars_length ;)
6630 {
6631 uint32_t start_val, end_val;
6632
6633 /* We already compute the collation sequence value
6634 of the characters (or collating symbols). */
6635 start_val = (uint32_t) *workp++; /* range_start */
6636 end_val = (uint32_t) *workp++; /* range_end */
6637
6638 if (start_val <= collseqval && collseqval <= end_val)
6639 goto char_set_matched;
6640 }
6641 }
6642 else
6643 # endif
6644 {
6645 /* We set range_start_char at str_buf[0], range_end_char
6646 at str_buf[4], and compared char at str_buf[2]. */
6647 str_buf[1] = 0;
6648 str_buf[2] = c;
6649 str_buf[3] = 0;
6650 str_buf[5] = 0;
6651 for (; workp < p - chars_length ;)
6652 {
6653 wchar_t *range_start_char, *range_end_char;
6654
6655 /* match if (range_start_char <= c <= range_end_char). */
6656
6657 /* If range_start(or end) < 0, we assume -range_start(end)
6658 is the offset of the collating symbol which is specified
6659 as the character of the range start(end). */
6660
6661 /* range_start */
6662 if (*workp < 0)
6663 range_start_char = charset_top - (*workp++);
6664 else
6665 {
6666 str_buf[0] = *workp++;
6667 range_start_char = str_buf;
6668 }
6669
6670 /* range_end */
6671 if (*workp < 0)
6672 range_end_char = charset_top - (*workp++);
6673 else
6674 {
6675 str_buf[4] = *workp++;
6676 range_end_char = str_buf + 4;
6677 }
6678
6679 # ifdef _LIBC
6680 if (__wcscoll (range_start_char, str_buf+2) <= 0
6681 && __wcscoll (str_buf+2, range_end_char) <= 0)
6682 # else
6683 if (wcscoll (range_start_char, str_buf+2) <= 0
6684 && wcscoll (str_buf+2, range_end_char) <= 0)
6685 # endif
6686 goto char_set_matched;
6687 }
6688 }
6689
6690 /* match with char? */
6691 for (; workp < p ; workp++)
6692 if (c == *workp)
6693 goto char_set_matched;
6694
6695 not = !not;
6696
6697 char_set_matched:
6698 if (not) goto fail;
6699 #else
6700 /* Cast to `unsigned' instead of `unsigned char' in case the
6701 bit list is a full 32 bytes long. */
6702 if (c < (unsigned) (*p * BYTEWIDTH)
6703 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6704 not = !not;
6705
6706 p += 1 + *p;
6707
6708 if (!not) goto fail;
6709 #undef WORK_BUFFER_SIZE
6710 #endif /* WCHAR */
6711 SET_REGS_MATCHED ();
6712 d++;
6713 break;
6714 }
6715
6716
6717 /* The beginning of a group is represented by start_memory.
6718 The arguments are the register number in the next byte, and the
6719 number of groups inner to this one in the next. The text
6720 matched within the group is recorded (in the internal
6721 registers data structure) under the register number. */
6722 case start_memory:
6723 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6724 (long int) *p, (long int) p[1]);
6725
6726 /* Find out if this group can match the empty string. */
6727 p1 = p; /* To send to group_match_null_string_p. */
6728
6729 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6730 REG_MATCH_NULL_STRING_P (reg_info[*p])
6731 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6732
6733 /* Save the position in the string where we were the last time
6734 we were at this open-group operator in case the group is
6735 operated upon by a repetition operator, e.g., with `(a*)*b'
6736 against `ab'; then we want to ignore where we are now in
6737 the string in case this attempt to match fails. */
6738 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6739 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6740 : regstart[*p];
6741 DEBUG_PRINT2 (" old_regstart: %d\n",
6742 POINTER_TO_OFFSET (old_regstart[*p]));
6743
6744 regstart[*p] = d;
6745 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6746
6747 IS_ACTIVE (reg_info[*p]) = 1;
6748 MATCHED_SOMETHING (reg_info[*p]) = 0;
6749
6750 /* Clear this whenever we change the register activity status. */
6751 set_regs_matched_done = 0;
6752
6753 /* This is the new highest active register. */
6754 highest_active_reg = *p;
6755
6756 /* If nothing was active before, this is the new lowest active
6757 register. */
6758 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6759 lowest_active_reg = *p;
6760
6761 /* Move past the register number and inner group count. */
6762 p += 2;
6763 just_past_start_mem = p;
6764
6765 break;
6766
6767
6768 /* The stop_memory opcode represents the end of a group. Its
6769 arguments are the same as start_memory's: the register
6770 number, and the number of inner groups. */
6771 case stop_memory:
6772 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6773 (long int) *p, (long int) p[1]);
6774
6775 /* We need to save the string position the last time we were at
6776 this close-group operator in case the group is operated
6777 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6778 against `aba'; then we want to ignore where we are now in
6779 the string in case this attempt to match fails. */
6780 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6781 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6782 : regend[*p];
6783 DEBUG_PRINT2 (" old_regend: %d\n",
6784 POINTER_TO_OFFSET (old_regend[*p]));
6785
6786 regend[*p] = d;
6787 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6788
6789 /* This register isn't active anymore. */
6790 IS_ACTIVE (reg_info[*p]) = 0;
6791
6792 /* Clear this whenever we change the register activity status. */
6793 set_regs_matched_done = 0;
6794
6795 /* If this was the only register active, nothing is active
6796 anymore. */
6797 if (lowest_active_reg == highest_active_reg)
6798 {
6799 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6800 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6801 }
6802 else
6803 { /* We must scan for the new highest active register, since
6804 it isn't necessarily one less than now: consider
6805 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6806 new highest active register is 1. */
6807 UCHAR_T r = *p - 1;
6808 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6809 r--;
6810
6811 /* If we end up at register zero, that means that we saved
6812 the registers as the result of an `on_failure_jump', not
6813 a `start_memory', and we jumped to past the innermost
6814 `stop_memory'. For example, in ((.)*) we save
6815 registers 1 and 2 as a result of the *, but when we pop
6816 back to the second ), we are at the stop_memory 1.
6817 Thus, nothing is active. */
6818 if (r == 0)
6819 {
6820 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6821 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6822 }
6823 else
6824 highest_active_reg = r;
6825 }
6826
6827 /* If just failed to match something this time around with a
6828 group that's operated on by a repetition operator, try to
6829 force exit from the ``loop'', and restore the register
6830 information for this group that we had before trying this
6831 last match. */
6832 if ((!MATCHED_SOMETHING (reg_info[*p])
6833 || just_past_start_mem == p - 1)
6834 && (p + 2) < pend)
6835 {
6836 boolean is_a_jump_n = false;
6837
6838 p1 = p + 2;
6839 mcnt = 0;
6840 switch ((re_opcode_t) *p1++)
6841 {
6842 case jump_n:
6843 is_a_jump_n = true;
6844 case pop_failure_jump:
6845 case maybe_pop_jump:
6846 case jump:
6847 case dummy_failure_jump:
6848 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6849 if (is_a_jump_n)
6850 p1 += OFFSET_ADDRESS_SIZE;
6851 break;
6852
6853 default:
6854 /* do nothing */ ;
6855 }
6856 p1 += mcnt;
6857
6858 /* If the next operation is a jump backwards in the pattern
6859 to an on_failure_jump right before the start_memory
6860 corresponding to this stop_memory, exit from the loop
6861 by forcing a failure after pushing on the stack the
6862 on_failure_jump's jump in the pattern, and d. */
6863 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6864 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6865 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6866 {
6867 /* If this group ever matched anything, then restore
6868 what its registers were before trying this last
6869 failed match, e.g., with `(a*)*b' against `ab' for
6870 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6871 against `aba' for regend[3].
6872
6873 Also restore the registers for inner groups for,
6874 e.g., `((a*)(b*))*' against `aba' (register 3 would
6875 otherwise get trashed). */
6876
6877 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6878 {
6879 unsigned r;
6880
6881 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6882
6883 /* Restore this and inner groups' (if any) registers. */
6884 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6885 r++)
6886 {
6887 regstart[r] = old_regstart[r];
6888
6889 /* xx why this test? */
6890 if (old_regend[r] >= regstart[r])
6891 regend[r] = old_regend[r];
6892 }
6893 }
6894 p1++;
6895 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6896 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6897
6898 goto fail;
6899 }
6900 }
6901
6902 /* Move past the register number and the inner group count. */
6903 p += 2;
6904 break;
6905
6906
6907 /* \<digit> has been turned into a `duplicate' command which is
6908 followed by the numeric value of <digit> as the register number. */
6909 case duplicate:
6910 {
6911 register const CHAR_T *d2, *dend2;
6912 int regno = *p++; /* Get which register to match against. */
6913 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6914
6915 /* Can't back reference a group which we've never matched. */
6916 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6917 goto fail;
6918
6919 /* Where in input to try to start matching. */
6920 d2 = regstart[regno];
6921
6922 /* Where to stop matching; if both the place to start and
6923 the place to stop matching are in the same string, then
6924 set to the place to stop, otherwise, for now have to use
6925 the end of the first string. */
6926
6927 dend2 = ((FIRST_STRING_P (regstart[regno])
6928 == FIRST_STRING_P (regend[regno]))
6929 ? regend[regno] : end_match_1);
6930 for (;;)
6931 {
6932 /* If necessary, advance to next segment in register
6933 contents. */
6934 while (d2 == dend2)
6935 {
6936 if (dend2 == end_match_2) break;
6937 if (dend2 == regend[regno]) break;
6938
6939 /* End of string1 => advance to string2. */
6940 d2 = string2;
6941 dend2 = regend[regno];
6942 }
6943 /* At end of register contents => success */
6944 if (d2 == dend2) break;
6945
6946 /* If necessary, advance to next segment in data. */
6947 PREFETCH ();
6948
6949 /* How many characters left in this segment to match. */
6950 mcnt = dend - d;
6951
6952 /* Want how many consecutive characters we can match in
6953 one shot, so, if necessary, adjust the count. */
6954 if (mcnt > dend2 - d2)
6955 mcnt = dend2 - d2;
6956
6957 /* Compare that many; failure if mismatch, else move
6958 past them. */
6959 if (translate
6960 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6961 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6962 goto fail;
6963 d += mcnt, d2 += mcnt;
6964
6965 /* Do this because we've match some characters. */
6966 SET_REGS_MATCHED ();
6967 }
6968 }
6969 break;
6970
6971
6972 /* begline matches the empty string at the beginning of the string
6973 (unless `not_bol' is set in `bufp'), and, if
6974 `newline_anchor' is set, after newlines. */
6975 case begline:
6976 DEBUG_PRINT1 ("EXECUTING begline.\n");
6977
6978 if (AT_STRINGS_BEG (d))
6979 {
6980 if (!bufp->not_bol) break;
6981 }
6982 else if (d[-1] == '\n' && bufp->newline_anchor)
6983 {
6984 break;
6985 }
6986 /* In all other cases, we fail. */
6987 goto fail;
6988
6989
6990 /* endline is the dual of begline. */
6991 case endline:
6992 DEBUG_PRINT1 ("EXECUTING endline.\n");
6993
6994 if (AT_STRINGS_END (d))
6995 {
6996 if (!bufp->not_eol) break;
6997 }
6998
6999 /* We have to ``prefetch'' the next character. */
7000 else if ((d == end1 ? *string2 : *d) == '\n'
7001 && bufp->newline_anchor)
7002 {
7003 break;
7004 }
7005 goto fail;
7006
7007
7008 /* Match at the very beginning of the data. */
7009 case begbuf:
7010 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7011 if (AT_STRINGS_BEG (d))
7012 break;
7013 goto fail;
7014
7015
7016 /* Match at the very end of the data. */
7017 case endbuf:
7018 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7019 if (AT_STRINGS_END (d))
7020 break;
7021 goto fail;
7022
7023
7024 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7025 pushes NULL as the value for the string on the stack. Then
7026 `pop_failure_point' will keep the current value for the
7027 string, instead of restoring it. To see why, consider
7028 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7029 then the . fails against the \n. But the next thing we want
7030 to do is match the \n against the \n; if we restored the
7031 string value, we would be back at the foo.
7032
7033 Because this is used only in specific cases, we don't need to
7034 check all the things that `on_failure_jump' does, to make
7035 sure the right things get saved on the stack. Hence we don't
7036 share its code. The only reason to push anything on the
7037 stack at all is that otherwise we would have to change
7038 `anychar's code to do something besides goto fail in this
7039 case; that seems worse than this. */
7040 case on_failure_keep_string_jump:
7041 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7042
7043 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7044 #ifdef _LIBC
7045 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7046 #else
7047 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7048 #endif
7049
7050 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7051 break;
7052
7053
7054 /* Uses of on_failure_jump:
7055
7056 Each alternative starts with an on_failure_jump that points
7057 to the beginning of the next alternative. Each alternative
7058 except the last ends with a jump that in effect jumps past
7059 the rest of the alternatives. (They really jump to the
7060 ending jump of the following alternative, because tensioning
7061 these jumps is a hassle.)
7062
7063 Repeats start with an on_failure_jump that points past both
7064 the repetition text and either the following jump or
7065 pop_failure_jump back to this on_failure_jump. */
7066 case on_failure_jump:
7067 on_failure:
7068 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7069
7070 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7071 #ifdef _LIBC
7072 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7073 #else
7074 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7075 #endif
7076
7077 /* If this on_failure_jump comes right before a group (i.e.,
7078 the original * applied to a group), save the information
7079 for that group and all inner ones, so that if we fail back
7080 to this point, the group's information will be correct.
7081 For example, in \(a*\)*\1, we need the preceding group,
7082 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7083
7084 /* We can't use `p' to check ahead because we push
7085 a failure point to `p + mcnt' after we do this. */
7086 p1 = p;
7087
7088 /* We need to skip no_op's before we look for the
7089 start_memory in case this on_failure_jump is happening as
7090 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7091 against aba. */
7092 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7093 p1++;
7094
7095 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7096 {
7097 /* We have a new highest active register now. This will
7098 get reset at the start_memory we are about to get to,
7099 but we will have saved all the registers relevant to
7100 this repetition op, as described above. */
7101 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7102 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7103 lowest_active_reg = *(p1 + 1);
7104 }
7105
7106 DEBUG_PRINT1 (":\n");
7107 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7108 break;
7109
7110
7111 /* A smart repeat ends with `maybe_pop_jump'.
7112 We change it to either `pop_failure_jump' or `jump'. */
7113 case maybe_pop_jump:
7114 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7115 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7116 {
7117 register UCHAR_T *p2 = p;
7118
7119 /* Compare the beginning of the repeat with what in the
7120 pattern follows its end. If we can establish that there
7121 is nothing that they would both match, i.e., that we
7122 would have to backtrack because of (as in, e.g., `a*a')
7123 then we can change to pop_failure_jump, because we'll
7124 never have to backtrack.
7125
7126 This is not true in the case of alternatives: in
7127 `(a|ab)*' we do need to backtrack to the `ab' alternative
7128 (e.g., if the string was `ab'). But instead of trying to
7129 detect that here, the alternative has put on a dummy
7130 failure point which is what we will end up popping. */
7131
7132 /* Skip over open/close-group commands.
7133 If what follows this loop is a ...+ construct,
7134 look at what begins its body, since we will have to
7135 match at least one of that. */
7136 while (1)
7137 {
7138 if (p2 + 2 < pend
7139 && ((re_opcode_t) *p2 == stop_memory
7140 || (re_opcode_t) *p2 == start_memory))
7141 p2 += 3;
7142 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7143 && (re_opcode_t) *p2 == dummy_failure_jump)
7144 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7145 else
7146 break;
7147 }
7148
7149 p1 = p + mcnt;
7150 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7151 to the `maybe_finalize_jump' of this case. Examine what
7152 follows. */
7153
7154 /* If we're at the end of the pattern, we can change. */
7155 if (p2 == pend)
7156 {
7157 /* Consider what happens when matching ":\(.*\)"
7158 against ":/". I don't really understand this code
7159 yet. */
7160 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7161 pop_failure_jump;
7162 DEBUG_PRINT1
7163 (" End of pattern: change to `pop_failure_jump'.\n");
7164 }
7165
7166 else if ((re_opcode_t) *p2 == exactn
7167 #ifdef MBS_SUPPORT
7168 || (re_opcode_t) *p2 == exactn_bin
7169 #endif
7170 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7171 {
7172 register UCHAR_T c
7173 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7174
7175 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7176 #ifdef MBS_SUPPORT
7177 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7178 #endif
7179 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7180 {
7181 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7182 pop_failure_jump;
7183 #ifdef WCHAR
7184 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7185 (wint_t) c,
7186 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7187 #else
7188 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7189 (char) c,
7190 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7191 #endif
7192 }
7193
7194 #ifndef WCHAR
7195 else if ((re_opcode_t) p1[3] == charset
7196 || (re_opcode_t) p1[3] == charset_not)
7197 {
7198 int not = (re_opcode_t) p1[3] == charset_not;
7199
7200 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7201 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7202 not = !not;
7203
7204 /* `not' is equal to 1 if c would match, which means
7205 that we can't change to pop_failure_jump. */
7206 if (!not)
7207 {
7208 p[-3] = (unsigned char) pop_failure_jump;
7209 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7210 }
7211 }
7212 #endif /* not WCHAR */
7213 }
7214 #ifndef WCHAR
7215 else if ((re_opcode_t) *p2 == charset)
7216 {
7217 /* We win if the first character of the loop is not part
7218 of the charset. */
7219 if ((re_opcode_t) p1[3] == exactn
7220 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7221 && (p2[2 + p1[5] / BYTEWIDTH]
7222 & (1 << (p1[5] % BYTEWIDTH)))))
7223 {
7224 p[-3] = (unsigned char) pop_failure_jump;
7225 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7226 }
7227
7228 else if ((re_opcode_t) p1[3] == charset_not)
7229 {
7230 int idx;
7231 /* We win if the charset_not inside the loop
7232 lists every character listed in the charset after. */
7233 for (idx = 0; idx < (int) p2[1]; idx++)
7234 if (! (p2[2 + idx] == 0
7235 || (idx < (int) p1[4]
7236 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7237 break;
7238
7239 if (idx == p2[1])
7240 {
7241 p[-3] = (unsigned char) pop_failure_jump;
7242 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7243 }
7244 }
7245 else if ((re_opcode_t) p1[3] == charset)
7246 {
7247 int idx;
7248 /* We win if the charset inside the loop
7249 has no overlap with the one after the loop. */
7250 for (idx = 0;
7251 idx < (int) p2[1] && idx < (int) p1[4];
7252 idx++)
7253 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7254 break;
7255
7256 if (idx == p2[1] || idx == p1[4])
7257 {
7258 p[-3] = (unsigned char) pop_failure_jump;
7259 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7260 }
7261 }
7262 }
7263 #endif /* not WCHAR */
7264 }
7265 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7266 if ((re_opcode_t) p[-1] != pop_failure_jump)
7267 {
7268 p[-1] = (UCHAR_T) jump;
7269 DEBUG_PRINT1 (" Match => jump.\n");
7270 goto unconditional_jump;
7271 }
7272 /* Note fall through. */
7273
7274
7275 /* The end of a simple repeat has a pop_failure_jump back to
7276 its matching on_failure_jump, where the latter will push a
7277 failure point. The pop_failure_jump takes off failure
7278 points put on by this pop_failure_jump's matching
7279 on_failure_jump; we got through the pattern to here from the
7280 matching on_failure_jump, so didn't fail. */
7281 case pop_failure_jump:
7282 {
7283 /* We need to pass separate storage for the lowest and
7284 highest registers, even though we don't care about the
7285 actual values. Otherwise, we will restore only one
7286 register from the stack, since lowest will == highest in
7287 `pop_failure_point'. */
7288 active_reg_t dummy_low_reg, dummy_high_reg;
7289 UCHAR_T *pdummy = NULL;
7290 const CHAR_T *sdummy = NULL;
7291
7292 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7293 POP_FAILURE_POINT (sdummy, pdummy,
7294 dummy_low_reg, dummy_high_reg,
7295 reg_dummy, reg_dummy, reg_info_dummy);
7296 }
7297 /* Note fall through. */
7298
7299 unconditional_jump:
7300 #ifdef _LIBC
7301 DEBUG_PRINT2 ("\n%p: ", p);
7302 #else
7303 DEBUG_PRINT2 ("\n0x%x: ", p);
7304 #endif
7305 /* Note fall through. */
7306
7307 /* Unconditionally jump (without popping any failure points). */
7308 case jump:
7309 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7310 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7311 p += mcnt; /* Do the jump. */
7312 #ifdef _LIBC
7313 DEBUG_PRINT2 ("(to %p).\n", p);
7314 #else
7315 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7316 #endif
7317 break;
7318
7319
7320 /* We need this opcode so we can detect where alternatives end
7321 in `group_match_null_string_p' et al. */
7322 case jump_past_alt:
7323 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7324 goto unconditional_jump;
7325
7326
7327 /* Normally, the on_failure_jump pushes a failure point, which
7328 then gets popped at pop_failure_jump. We will end up at
7329 pop_failure_jump, also, and with a pattern of, say, `a+', we
7330 are skipping over the on_failure_jump, so we have to push
7331 something meaningless for pop_failure_jump to pop. */
7332 case dummy_failure_jump:
7333 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7334 /* It doesn't matter what we push for the string here. What
7335 the code at `fail' tests is the value for the pattern. */
7336 PUSH_FAILURE_POINT (NULL, NULL, -2);
7337 goto unconditional_jump;
7338
7339
7340 /* At the end of an alternative, we need to push a dummy failure
7341 point in case we are followed by a `pop_failure_jump', because
7342 we don't want the failure point for the alternative to be
7343 popped. For example, matching `(a|ab)*' against `aab'
7344 requires that we match the `ab' alternative. */
7345 case push_dummy_failure:
7346 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7347 /* See comments just above at `dummy_failure_jump' about the
7348 two zeroes. */
7349 PUSH_FAILURE_POINT (NULL, NULL, -2);
7350 break;
7351
7352 /* Have to succeed matching what follows at least n times.
7353 After that, handle like `on_failure_jump'. */
7354 case succeed_n:
7355 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7356 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7357
7358 assert (mcnt >= 0);
7359 /* Originally, this is how many times we HAVE to succeed. */
7360 if (mcnt > 0)
7361 {
7362 mcnt--;
7363 p += OFFSET_ADDRESS_SIZE;
7364 STORE_NUMBER_AND_INCR (p, mcnt);
7365 #ifdef _LIBC
7366 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7367 , mcnt);
7368 #else
7369 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7370 , mcnt);
7371 #endif
7372 }
7373 else if (mcnt == 0)
7374 {
7375 #ifdef _LIBC
7376 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7377 p + OFFSET_ADDRESS_SIZE);
7378 #else
7379 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7380 p + OFFSET_ADDRESS_SIZE);
7381 #endif /* _LIBC */
7382
7383 #ifdef WCHAR
7384 p[1] = (UCHAR_T) no_op;
7385 #else
7386 p[2] = (UCHAR_T) no_op;
7387 p[3] = (UCHAR_T) no_op;
7388 #endif /* WCHAR */
7389 goto on_failure;
7390 }
7391 break;
7392
7393 case jump_n:
7394 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7395 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7396
7397 /* Originally, this is how many times we CAN jump. */
7398 if (mcnt)
7399 {
7400 mcnt--;
7401 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7402
7403 #ifdef _LIBC
7404 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7405 mcnt);
7406 #else
7407 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7408 mcnt);
7409 #endif /* _LIBC */
7410 goto unconditional_jump;
7411 }
7412 /* If don't have to jump any more, skip over the rest of command. */
7413 else
7414 p += 2 * OFFSET_ADDRESS_SIZE;
7415 break;
7416
7417 case set_number_at:
7418 {
7419 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7420
7421 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7422 p1 = p + mcnt;
7423 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7424 #ifdef _LIBC
7425 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7426 #else
7427 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7428 #endif
7429 STORE_NUMBER (p1, mcnt);
7430 break;
7431 }
7432
7433 #if 0
7434 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7435 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7436 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7437 macro and introducing temporary variables works around the bug. */
7438
7439 case wordbound:
7440 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7441 if (AT_WORD_BOUNDARY (d))
7442 break;
7443 goto fail;
7444
7445 case notwordbound:
7446 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7447 if (AT_WORD_BOUNDARY (d))
7448 goto fail;
7449 break;
7450 #else
7451 case wordbound:
7452 {
7453 boolean prevchar, thischar;
7454
7455 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7456 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7457 break;
7458
7459 prevchar = WORDCHAR_P (d - 1);
7460 thischar = WORDCHAR_P (d);
7461 if (prevchar != thischar)
7462 break;
7463 goto fail;
7464 }
7465
7466 case notwordbound:
7467 {
7468 boolean prevchar, thischar;
7469
7470 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7471 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7472 goto fail;
7473
7474 prevchar = WORDCHAR_P (d - 1);
7475 thischar = WORDCHAR_P (d);
7476 if (prevchar != thischar)
7477 goto fail;
7478 break;
7479 }
7480 #endif
7481
7482 case wordbeg:
7483 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7484 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7485 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7486 break;
7487 goto fail;
7488
7489 case wordend:
7490 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7491 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7492 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7493 break;
7494 goto fail;
7495
7496 #ifdef emacs
7497 case before_dot:
7498 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7499 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7500 goto fail;
7501 break;
7502
7503 case at_dot:
7504 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7505 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7506 goto fail;
7507 break;
7508
7509 case after_dot:
7510 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7511 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7512 goto fail;
7513 break;
7514
7515 case syntaxspec:
7516 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7517 mcnt = *p++;
7518 goto matchsyntax;
7519
7520 case wordchar:
7521 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7522 mcnt = (int) Sword;
7523 matchsyntax:
7524 PREFETCH ();
7525 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7526 d++;
7527 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7528 goto fail;
7529 SET_REGS_MATCHED ();
7530 break;
7531
7532 case notsyntaxspec:
7533 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7534 mcnt = *p++;
7535 goto matchnotsyntax;
7536
7537 case notwordchar:
7538 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7539 mcnt = (int) Sword;
7540 matchnotsyntax:
7541 PREFETCH ();
7542 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7543 d++;
7544 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7545 goto fail;
7546 SET_REGS_MATCHED ();
7547 break;
7548
7549 #else /* not emacs */
7550 case wordchar:
7551 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7552 PREFETCH ();
7553 if (!WORDCHAR_P (d))
7554 goto fail;
7555 SET_REGS_MATCHED ();
7556 d++;
7557 break;
7558
7559 case notwordchar:
7560 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7561 PREFETCH ();
7562 if (WORDCHAR_P (d))
7563 goto fail;
7564 SET_REGS_MATCHED ();
7565 d++;
7566 break;
7567 #endif /* not emacs */
7568
7569 default:
7570 abort ();
7571 }
7572 continue; /* Successfully executed one pattern command; keep going. */
7573
7574
7575 /* We goto here if a matching operation fails. */
7576 fail:
7577 if (!FAIL_STACK_EMPTY ())
7578 { /* A restart point is known. Restore to that state. */
7579 DEBUG_PRINT1 ("\nFAIL:\n");
7580 POP_FAILURE_POINT (d, p,
7581 lowest_active_reg, highest_active_reg,
7582 regstart, regend, reg_info);
7583
7584 /* If this failure point is a dummy, try the next one. */
7585 if (!p)
7586 goto fail;
7587
7588 /* If we failed to the end of the pattern, don't examine *p. */
7589 assert (p <= pend);
7590 if (p < pend)
7591 {
7592 boolean is_a_jump_n = false;
7593
7594 /* If failed to a backwards jump that's part of a repetition
7595 loop, need to pop this failure point and use the next one. */
7596 switch ((re_opcode_t) *p)
7597 {
7598 case jump_n:
7599 is_a_jump_n = true;
7600 case maybe_pop_jump:
7601 case pop_failure_jump:
7602 case jump:
7603 p1 = p + 1;
7604 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7605 p1 += mcnt;
7606
7607 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7608 || (!is_a_jump_n
7609 && (re_opcode_t) *p1 == on_failure_jump))
7610 goto fail;
7611 break;
7612 default:
7613 /* do nothing */ ;
7614 }
7615 }
7616
7617 if (d >= string1 && d <= end1)
7618 dend = end_match_1;
7619 }
7620 else
7621 break; /* Matching at this starting point really fails. */
7622 } /* for (;;) */
7623
7624 if (best_regs_set)
7625 goto restore_best_regs;
7626
7627 FREE_VARIABLES ();
7628
7629 return -1; /* Failure to match. */
7630 } /* re_match_2 */
7631 \f
7632 /* Subroutine definitions for re_match_2. */
7633
7634
7635 /* We are passed P pointing to a register number after a start_memory.
7636
7637 Return true if the pattern up to the corresponding stop_memory can
7638 match the empty string, and false otherwise.
7639
7640 If we find the matching stop_memory, sets P to point to one past its number.
7641 Otherwise, sets P to an undefined byte less than or equal to END.
7642
7643 We don't handle duplicates properly (yet). */
7644
7645 static boolean
7646 PREFIX(group_match_null_string_p) (p, end, reg_info)
7647 UCHAR_T **p, *end;
7648 PREFIX(register_info_type) *reg_info;
7649 {
7650 int mcnt;
7651 /* Point to after the args to the start_memory. */
7652 UCHAR_T *p1 = *p + 2;
7653
7654 while (p1 < end)
7655 {
7656 /* Skip over opcodes that can match nothing, and return true or
7657 false, as appropriate, when we get to one that can't, or to the
7658 matching stop_memory. */
7659
7660 switch ((re_opcode_t) *p1)
7661 {
7662 /* Could be either a loop or a series of alternatives. */
7663 case on_failure_jump:
7664 p1++;
7665 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7666
7667 /* If the next operation is not a jump backwards in the
7668 pattern. */
7669
7670 if (mcnt >= 0)
7671 {
7672 /* Go through the on_failure_jumps of the alternatives,
7673 seeing if any of the alternatives cannot match nothing.
7674 The last alternative starts with only a jump,
7675 whereas the rest start with on_failure_jump and end
7676 with a jump, e.g., here is the pattern for `a|b|c':
7677
7678 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7679 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7680 /exactn/1/c
7681
7682 So, we have to first go through the first (n-1)
7683 alternatives and then deal with the last one separately. */
7684
7685
7686 /* Deal with the first (n-1) alternatives, which start
7687 with an on_failure_jump (see above) that jumps to right
7688 past a jump_past_alt. */
7689
7690 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7691 jump_past_alt)
7692 {
7693 /* `mcnt' holds how many bytes long the alternative
7694 is, including the ending `jump_past_alt' and
7695 its number. */
7696
7697 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7698 (1 + OFFSET_ADDRESS_SIZE),
7699 reg_info))
7700 return false;
7701
7702 /* Move to right after this alternative, including the
7703 jump_past_alt. */
7704 p1 += mcnt;
7705
7706 /* Break if it's the beginning of an n-th alternative
7707 that doesn't begin with an on_failure_jump. */
7708 if ((re_opcode_t) *p1 != on_failure_jump)
7709 break;
7710
7711 /* Still have to check that it's not an n-th
7712 alternative that starts with an on_failure_jump. */
7713 p1++;
7714 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7715 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7716 jump_past_alt)
7717 {
7718 /* Get to the beginning of the n-th alternative. */
7719 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7720 break;
7721 }
7722 }
7723
7724 /* Deal with the last alternative: go back and get number
7725 of the `jump_past_alt' just before it. `mcnt' contains
7726 the length of the alternative. */
7727 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7728
7729 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7730 return false;
7731
7732 p1 += mcnt; /* Get past the n-th alternative. */
7733 } /* if mcnt > 0 */
7734 break;
7735
7736
7737 case stop_memory:
7738 assert (p1[1] == **p);
7739 *p = p1 + 2;
7740 return true;
7741
7742
7743 default:
7744 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7745 return false;
7746 }
7747 } /* while p1 < end */
7748
7749 return false;
7750 } /* group_match_null_string_p */
7751
7752
7753 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7754 It expects P to be the first byte of a single alternative and END one
7755 byte past the last. The alternative can contain groups. */
7756
7757 static boolean
7758 PREFIX(alt_match_null_string_p) (p, end, reg_info)
7759 UCHAR_T *p, *end;
7760 PREFIX(register_info_type) *reg_info;
7761 {
7762 int mcnt;
7763 UCHAR_T *p1 = p;
7764
7765 while (p1 < end)
7766 {
7767 /* Skip over opcodes that can match nothing, and break when we get
7768 to one that can't. */
7769
7770 switch ((re_opcode_t) *p1)
7771 {
7772 /* It's a loop. */
7773 case on_failure_jump:
7774 p1++;
7775 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7776 p1 += mcnt;
7777 break;
7778
7779 default:
7780 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7781 return false;
7782 }
7783 } /* while p1 < end */
7784
7785 return true;
7786 } /* alt_match_null_string_p */
7787
7788
7789 /* Deals with the ops common to group_match_null_string_p and
7790 alt_match_null_string_p.
7791
7792 Sets P to one after the op and its arguments, if any. */
7793
7794 static boolean
7795 PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7796 UCHAR_T **p, *end;
7797 PREFIX(register_info_type) *reg_info;
7798 {
7799 int mcnt;
7800 boolean ret;
7801 int reg_no;
7802 UCHAR_T *p1 = *p;
7803
7804 switch ((re_opcode_t) *p1++)
7805 {
7806 case no_op:
7807 case begline:
7808 case endline:
7809 case begbuf:
7810 case endbuf:
7811 case wordbeg:
7812 case wordend:
7813 case wordbound:
7814 case notwordbound:
7815 #ifdef emacs
7816 case before_dot:
7817 case at_dot:
7818 case after_dot:
7819 #endif
7820 break;
7821
7822 case start_memory:
7823 reg_no = *p1;
7824 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7825 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7826
7827 /* Have to set this here in case we're checking a group which
7828 contains a group and a back reference to it. */
7829
7830 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7831 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7832
7833 if (!ret)
7834 return false;
7835 break;
7836
7837 /* If this is an optimized succeed_n for zero times, make the jump. */
7838 case jump:
7839 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7840 if (mcnt >= 0)
7841 p1 += mcnt;
7842 else
7843 return false;
7844 break;
7845
7846 case succeed_n:
7847 /* Get to the number of times to succeed. */
7848 p1 += OFFSET_ADDRESS_SIZE;
7849 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7850
7851 if (mcnt == 0)
7852 {
7853 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7854 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7855 p1 += mcnt;
7856 }
7857 else
7858 return false;
7859 break;
7860
7861 case duplicate:
7862 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7863 return false;
7864 break;
7865
7866 case set_number_at:
7867 p1 += 2 * OFFSET_ADDRESS_SIZE;
7868
7869 default:
7870 /* All other opcodes mean we cannot match the empty string. */
7871 return false;
7872 }
7873
7874 *p = p1;
7875 return true;
7876 } /* common_op_match_null_string_p */
7877
7878
7879 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7880 bytes; nonzero otherwise. */
7881
7882 static int
7883 PREFIX(bcmp_translate) (s1, s2, len, translate)
7884 const CHAR_T *s1, *s2;
7885 register int len;
7886 RE_TRANSLATE_TYPE translate;
7887 {
7888 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7889 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7890 while (len)
7891 {
7892 #ifdef WCHAR
7893 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7894 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7895 return 1;
7896 #else /* BYTE */
7897 if (translate[*p1++] != translate[*p2++]) return 1;
7898 #endif /* WCHAR */
7899 len--;
7900 }
7901 return 0;
7902 }
7903 \f
7904
7905 #else /* not INSIDE_RECURSION */
7906
7907 /* Entry points for GNU code. */
7908
7909 /* re_compile_pattern is the GNU regular expression compiler: it
7910 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7911 Returns 0 if the pattern was valid, otherwise an error string.
7912
7913 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7914 are set in BUFP on entry.
7915
7916 We call regex_compile to do the actual compilation. */
7917
7918 const char *
7919 re_compile_pattern (pattern, length, bufp)
7920 const char *pattern;
7921 size_t length;
7922 struct re_pattern_buffer *bufp;
7923 {
7924 reg_errcode_t ret;
7925
7926 /* GNU code is written to assume at least RE_NREGS registers will be set
7927 (and at least one extra will be -1). */
7928 bufp->regs_allocated = REGS_UNALLOCATED;
7929
7930 /* And GNU code determines whether or not to get register information
7931 by passing null for the REGS argument to re_match, etc., not by
7932 setting no_sub. */
7933 bufp->no_sub = 0;
7934
7935 /* Match anchors at newline. */
7936 bufp->newline_anchor = 1;
7937
7938 # ifdef MBS_SUPPORT
7939 if (MB_CUR_MAX != 1)
7940 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7941 else
7942 # endif
7943 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7944
7945 if (!ret)
7946 return NULL;
7947 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7948 }
7949 #ifdef _LIBC
7950 weak_alias (__re_compile_pattern, re_compile_pattern)
7951 #endif
7952 \f
7953 /* Entry points compatible with 4.2 BSD regex library. We don't define
7954 them unless specifically requested. */
7955
7956 #if defined _REGEX_RE_COMP || defined _LIBC
7957
7958 /* BSD has one and only one pattern buffer. */
7959 static struct re_pattern_buffer re_comp_buf;
7960
7961 char *
7962 #ifdef _LIBC
7963 /* Make these definitions weak in libc, so POSIX programs can redefine
7964 these names if they don't use our functions, and still use
7965 regcomp/regexec below without link errors. */
7966 weak_function
7967 #endif
7968 re_comp (s)
7969 const char *s;
7970 {
7971 reg_errcode_t ret;
7972
7973 if (!s)
7974 {
7975 if (!re_comp_buf.buffer)
7976 return gettext ("No previous regular expression");
7977 return 0;
7978 }
7979
7980 if (!re_comp_buf.buffer)
7981 {
7982 re_comp_buf.buffer = (unsigned char *) malloc (200);
7983 if (re_comp_buf.buffer == NULL)
7984 return (char *) gettext (re_error_msgid
7985 + re_error_msgid_idx[(int) REG_ESPACE]);
7986 re_comp_buf.allocated = 200;
7987
7988 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7989 if (re_comp_buf.fastmap == NULL)
7990 return (char *) gettext (re_error_msgid
7991 + re_error_msgid_idx[(int) REG_ESPACE]);
7992 }
7993
7994 /* Since `re_exec' always passes NULL for the `regs' argument, we
7995 don't need to initialize the pattern buffer fields which affect it. */
7996
7997 /* Match anchors at newlines. */
7998 re_comp_buf.newline_anchor = 1;
7999
8000 # ifdef MBS_SUPPORT
8001 if (MB_CUR_MAX != 1)
8002 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8003 else
8004 # endif
8005 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8006
8007 if (!ret)
8008 return NULL;
8009
8010 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8011 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8012 }
8013
8014
8015 int
8016 #ifdef _LIBC
8017 weak_function
8018 #endif
8019 re_exec (s)
8020 const char *s;
8021 {
8022 const int len = strlen (s);
8023 return
8024 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8025 }
8026
8027 #endif /* _REGEX_RE_COMP */
8028 \f
8029 /* POSIX.2 functions. Don't define these for Emacs. */
8030
8031 #ifndef emacs
8032
8033 /* regcomp takes a regular expression as a string and compiles it.
8034
8035 PREG is a regex_t *. We do not expect any fields to be initialized,
8036 since POSIX says we shouldn't. Thus, we set
8037
8038 `buffer' to the compiled pattern;
8039 `used' to the length of the compiled pattern;
8040 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8041 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8042 RE_SYNTAX_POSIX_BASIC;
8043 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8044 `fastmap' to an allocated space for the fastmap;
8045 `fastmap_accurate' to zero;
8046 `re_nsub' to the number of subexpressions in PATTERN.
8047
8048 PATTERN is the address of the pattern string.
8049
8050 CFLAGS is a series of bits which affect compilation.
8051
8052 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8053 use POSIX basic syntax.
8054
8055 If REG_NEWLINE is set, then . and [^...] don't match newline.
8056 Also, regexec will try a match beginning after every newline.
8057
8058 If REG_ICASE is set, then we considers upper- and lowercase
8059 versions of letters to be equivalent when matching.
8060
8061 If REG_NOSUB is set, then when PREG is passed to regexec, that
8062 routine will report only success or failure, and nothing about the
8063 registers.
8064
8065 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8066 the return codes and their meanings.) */
8067
8068 int
8069 regcomp (preg, pattern, cflags)
8070 regex_t *preg;
8071 const char *pattern;
8072 int cflags;
8073 {
8074 reg_errcode_t ret;
8075 reg_syntax_t syntax
8076 = (cflags & REG_EXTENDED) ?
8077 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8078
8079 /* regex_compile will allocate the space for the compiled pattern. */
8080 preg->buffer = 0;
8081 preg->allocated = 0;
8082 preg->used = 0;
8083
8084 /* Try to allocate space for the fastmap. */
8085 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8086
8087 if (cflags & REG_ICASE)
8088 {
8089 unsigned i;
8090
8091 preg->translate
8092 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8093 * sizeof (*(RE_TRANSLATE_TYPE)0));
8094 if (preg->translate == NULL)
8095 return (int) REG_ESPACE;
8096
8097 /* Map uppercase characters to corresponding lowercase ones. */
8098 for (i = 0; i < CHAR_SET_SIZE; i++)
8099 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8100 }
8101 else
8102 preg->translate = NULL;
8103
8104 /* If REG_NEWLINE is set, newlines are treated differently. */
8105 if (cflags & REG_NEWLINE)
8106 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8107 syntax &= ~RE_DOT_NEWLINE;
8108 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8109 /* It also changes the matching behavior. */
8110 preg->newline_anchor = 1;
8111 }
8112 else
8113 preg->newline_anchor = 0;
8114
8115 preg->no_sub = !!(cflags & REG_NOSUB);
8116
8117 /* POSIX says a null character in the pattern terminates it, so we
8118 can use strlen here in compiling the pattern. */
8119 # ifdef MBS_SUPPORT
8120 if (MB_CUR_MAX != 1)
8121 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8122 else
8123 # endif
8124 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8125
8126 /* POSIX doesn't distinguish between an unmatched open-group and an
8127 unmatched close-group: both are REG_EPAREN. */
8128 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8129
8130 if (ret == REG_NOERROR && preg->fastmap)
8131 {
8132 /* Compute the fastmap now, since regexec cannot modify the pattern
8133 buffer. */
8134 if (re_compile_fastmap (preg) == -2)
8135 {
8136 /* Some error occurred while computing the fastmap, just forget
8137 about it. */
8138 free (preg->fastmap);
8139 preg->fastmap = NULL;
8140 }
8141 }
8142
8143 return (int) ret;
8144 }
8145 #ifdef _LIBC
8146 weak_alias (__regcomp, regcomp)
8147 #endif
8148
8149
8150 /* regexec searches for a given pattern, specified by PREG, in the
8151 string STRING.
8152
8153 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8154 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8155 least NMATCH elements, and we set them to the offsets of the
8156 corresponding matched substrings.
8157
8158 EFLAGS specifies `execution flags' which affect matching: if
8159 REG_NOTBOL is set, then ^ does not match at the beginning of the
8160 string; if REG_NOTEOL is set, then $ does not match at the end.
8161
8162 We return 0 if we find a match and REG_NOMATCH if not. */
8163
8164 int
8165 regexec (preg, string, nmatch, pmatch, eflags)
8166 const regex_t *preg;
8167 const char *string;
8168 size_t nmatch;
8169 regmatch_t pmatch[];
8170 int eflags;
8171 {
8172 int ret;
8173 struct re_registers regs;
8174 regex_t private_preg;
8175 int len = strlen (string);
8176 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8177
8178 private_preg = *preg;
8179
8180 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8181 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8182
8183 /* The user has told us exactly how many registers to return
8184 information about, via `nmatch'. We have to pass that on to the
8185 matching routines. */
8186 private_preg.regs_allocated = REGS_FIXED;
8187
8188 if (want_reg_info)
8189 {
8190 regs.num_regs = nmatch;
8191 regs.start = TALLOC (nmatch * 2, regoff_t);
8192 if (regs.start == NULL)
8193 return (int) REG_NOMATCH;
8194 regs.end = regs.start + nmatch;
8195 }
8196
8197 /* Perform the searching operation. */
8198 ret = re_search (&private_preg, string, len,
8199 /* start: */ 0, /* range: */ len,
8200 want_reg_info ? &regs : (struct re_registers *) 0);
8201
8202 /* Copy the register information to the POSIX structure. */
8203 if (want_reg_info)
8204 {
8205 if (ret >= 0)
8206 {
8207 unsigned r;
8208
8209 for (r = 0; r < nmatch; r++)
8210 {
8211 pmatch[r].rm_so = regs.start[r];
8212 pmatch[r].rm_eo = regs.end[r];
8213 }
8214 }
8215
8216 /* If we needed the temporary register info, free the space now. */
8217 free (regs.start);
8218 }
8219
8220 /* We want zero return to mean success, unlike `re_search'. */
8221 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8222 }
8223 #ifdef _LIBC
8224 weak_alias (__regexec, regexec)
8225 #endif
8226
8227
8228 /* Returns a message corresponding to an error code, ERRCODE, returned
8229 from either regcomp or regexec. We don't use PREG here. */
8230
8231 size_t
8232 regerror (errcode, preg, errbuf, errbuf_size)
8233 int errcode;
8234 const regex_t *preg;
8235 char *errbuf;
8236 size_t errbuf_size;
8237 {
8238 const char *msg;
8239 size_t msg_size;
8240
8241 if (errcode < 0
8242 || errcode >= (int) (sizeof (re_error_msgid_idx)
8243 / sizeof (re_error_msgid_idx[0])))
8244 /* Only error codes returned by the rest of the code should be passed
8245 to this routine. If we are given anything else, or if other regex
8246 code generates an invalid error code, then the program has a bug.
8247 Dump core so we can fix it. */
8248 abort ();
8249
8250 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8251
8252 msg_size = strlen (msg) + 1; /* Includes the null. */
8253
8254 if (errbuf_size != 0)
8255 {
8256 if (msg_size > errbuf_size)
8257 {
8258 #if defined HAVE_MEMPCPY || defined _LIBC
8259 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8260 #else
8261 memcpy (errbuf, msg, errbuf_size - 1);
8262 errbuf[errbuf_size - 1] = 0;
8263 #endif
8264 }
8265 else
8266 memcpy (errbuf, msg, msg_size);
8267 }
8268
8269 return msg_size;
8270 }
8271 #ifdef _LIBC
8272 weak_alias (__regerror, regerror)
8273 #endif
8274
8275
8276 /* Free dynamically allocated space used by PREG. */
8277
8278 void
8279 regfree (preg)
8280 regex_t *preg;
8281 {
8282 if (preg->buffer != NULL)
8283 free (preg->buffer);
8284 preg->buffer = NULL;
8285
8286 preg->allocated = 0;
8287 preg->used = 0;
8288
8289 if (preg->fastmap != NULL)
8290 free (preg->fastmap);
8291 preg->fastmap = NULL;
8292 preg->fastmap_accurate = 0;
8293
8294 if (preg->translate != NULL)
8295 free (preg->translate);
8296 preg->translate = NULL;
8297 }
8298 #ifdef _LIBC
8299 weak_alias (__regfree, regfree)
8300 #endif
8301
8302 #endif /* not emacs */
8303
8304 #endif /* not INSIDE_RECURSION */
8305
8306 \f
8307 #undef STORE_NUMBER
8308 #undef STORE_NUMBER_AND_INCR
8309 #undef EXTRACT_NUMBER
8310 #undef EXTRACT_NUMBER_AND_INCR
8311
8312 #undef DEBUG_PRINT_COMPILED_PATTERN
8313 #undef DEBUG_PRINT_DOUBLE_STRING
8314
8315 #undef INIT_FAIL_STACK
8316 #undef RESET_FAIL_STACK
8317 #undef DOUBLE_FAIL_STACK
8318 #undef PUSH_PATTERN_OP
8319 #undef PUSH_FAILURE_POINTER
8320 #undef PUSH_FAILURE_INT
8321 #undef PUSH_FAILURE_ELT
8322 #undef POP_FAILURE_POINTER
8323 #undef POP_FAILURE_INT
8324 #undef POP_FAILURE_ELT
8325 #undef DEBUG_PUSH
8326 #undef DEBUG_POP
8327 #undef PUSH_FAILURE_POINT
8328 #undef POP_FAILURE_POINT
8329
8330 #undef REG_UNSET_VALUE
8331 #undef REG_UNSET
8332
8333 #undef PATFETCH
8334 #undef PATFETCH_RAW
8335 #undef PATUNFETCH
8336 #undef TRANSLATE
8337
8338 #undef INIT_BUF_SIZE
8339 #undef GET_BUFFER_SPACE
8340 #undef BUF_PUSH
8341 #undef BUF_PUSH_2
8342 #undef BUF_PUSH_3
8343 #undef STORE_JUMP
8344 #undef STORE_JUMP2
8345 #undef INSERT_JUMP
8346 #undef INSERT_JUMP2
8347 #undef EXTEND_BUFFER
8348 #undef GET_UNSIGNED_NUMBER
8349 #undef FREE_STACK_RETURN
8350
8351 # undef POINTER_TO_OFFSET
8352 # undef MATCHING_IN_FRST_STRING
8353 # undef PREFETCH
8354 # undef AT_STRINGS_BEG
8355 # undef AT_STRINGS_END
8356 # undef WORDCHAR_P
8357 # undef FREE_VAR
8358 # undef FREE_VARIABLES
8359 # undef NO_HIGHEST_ACTIVE_REG
8360 # undef NO_LOWEST_ACTIVE_REG
8361
8362 # undef CHAR_T
8363 # undef UCHAR_T
8364 # undef COMPILED_BUFFER_VAR
8365 # undef OFFSET_ADDRESS_SIZE
8366 # undef CHAR_CLASS_SIZE
8367 # undef PREFIX
8368 # undef ARG_PREFIX
8369 # undef PUT_CHAR
8370 # undef BYTE
8371 # undef WCHAR
8372
8373 # define DEFINED_ONCE