]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/hashtable.h
b00319a668b4d0c7853e2f3efd1c95eb310e83ad
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / hashtable.h
1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43
44 template<typename _Tp, typename _Hash>
45 using __cache_default
46 = __not_<__and_<// Do not cache for fast hasher.
47 __is_fast_hash<_Hash>,
48 // Mandatory to have erase not throwing.
49 __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50
51 /**
52 * Primary class template _Hashtable.
53 *
54 * @ingroup hashtable-detail
55 *
56 * @tparam _Value CopyConstructible type.
57 *
58 * @tparam _Key CopyConstructible type.
59 *
60 * @tparam _Alloc An allocator type
61 * ([lib.allocator.requirements]) whose _Alloc::value_type is
62 * _Value. As a conforming extension, we allow for
63 * _Alloc::value_type != _Value.
64 *
65 * @tparam _ExtractKey Function object that takes an object of type
66 * _Value and returns a value of type _Key.
67 *
68 * @tparam _Equal Function object that takes two objects of type k
69 * and returns a bool-like value that is true if the two objects
70 * are considered equal.
71 *
72 * @tparam _H1 The hash function. A unary function object with
73 * argument type _Key and result type size_t. Return values should
74 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75 *
76 * @tparam _H2 The range-hashing function (in the terminology of
77 * Tavori and Dreizin). A binary function object whose argument
78 * types and result type are all size_t. Given arguments r and N,
79 * the return value is in the range [0, N).
80 *
81 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
82 * binary function whose argument types are _Key and size_t and
83 * whose result type is size_t. Given arguments k and N, the
84 * return value is in the range [0, N). Default: hash(k, N) =
85 * h2(h1(k), N). If _Hash is anything other than the default, _H1
86 * and _H2 are ignored.
87 *
88 * @tparam _RehashPolicy Policy class with three members, all of
89 * which govern the bucket count. _M_next_bkt(n) returns a bucket
90 * count no smaller than n. _M_bkt_for_elements(n) returns a
91 * bucket count appropriate for an element count of n.
92 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93 * current bucket count is n_bkt and the current element count is
94 * n_elt, we need to increase the bucket count. If so, returns
95 * make_pair(true, n), where n is the new bucket count. If not,
96 * returns make_pair(false, <anything>)
97 *
98 * @tparam _Traits Compile-time class with three boolean
99 * std::integral_constant members: __cache_hash_code, __constant_iterators,
100 * __unique_keys.
101 *
102 * Each _Hashtable data structure has:
103 *
104 * - _Bucket[] _M_buckets
105 * - _Hash_node_base _M_before_begin
106 * - size_type _M_bucket_count
107 * - size_type _M_element_count
108 *
109 * with _Bucket being _Hash_node* and _Hash_node containing:
110 *
111 * - _Hash_node* _M_next
112 * - Tp _M_value
113 * - size_t _M_hash_code if cache_hash_code is true
114 *
115 * In terms of Standard containers the hashtable is like the aggregation of:
116 *
117 * - std::forward_list<_Node> containing the elements
118 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119 *
120 * The non-empty buckets contain the node before the first node in the
121 * bucket. This design makes it possible to implement something like a
122 * std::forward_list::insert_after on container insertion and
123 * std::forward_list::erase_after on container erase
124 * calls. _M_before_begin is equivalent to
125 * std::forward_list::before_begin. Empty buckets contain
126 * nullptr. Note that one of the non-empty buckets contains
127 * &_M_before_begin which is not a dereferenceable node so the
128 * node pointer in a bucket shall never be dereferenced, only its
129 * next node can be.
130 *
131 * Walking through a bucket's nodes requires a check on the hash code to
132 * see if each node is still in the bucket. Such a design assumes a
133 * quite efficient hash functor and is one of the reasons it is
134 * highly advisable to set __cache_hash_code to true.
135 *
136 * The container iterators are simply built from nodes. This way
137 * incrementing the iterator is perfectly efficient independent of
138 * how many empty buckets there are in the container.
139 *
140 * On insert we compute the element's hash code and use it to find the
141 * bucket index. If the element must be inserted in an empty bucket
142 * we add it at the beginning of the singly linked list and make the
143 * bucket point to _M_before_begin. The bucket that used to point to
144 * _M_before_begin, if any, is updated to point to its new before
145 * begin node.
146 *
147 * On erase, the simple iterator design requires using the hash
148 * functor to get the index of the bucket to update. For this
149 * reason, when __cache_hash_code is set to false the hash functor must
150 * not throw and this is enforced by a static assertion.
151 *
152 * Functionality is implemented by decomposition into base classes,
153 * where the derived _Hashtable class is used in _Map_base,
154 * _Insert, _Rehash_base, and _Equality base classes to access the
155 * "this" pointer. _Hashtable_base is used in the base classes as a
156 * non-recursive, fully-completed-type so that detailed nested type
157 * information, such as iterator type and node type, can be
158 * used. This is similar to the "Curiously Recurring Template
159 * Pattern" (CRTP) technique, but uses a reconstructed, not
160 * explicitly passed, template pattern.
161 *
162 * Base class templates are:
163 * - __detail::_Hashtable_base
164 * - __detail::_Map_base
165 * - __detail::_Insert
166 * - __detail::_Rehash_base
167 * - __detail::_Equality
168 */
169 template<typename _Key, typename _Value, typename _Alloc,
170 typename _ExtractKey, typename _Equal,
171 typename _H1, typename _H2, typename _Hash,
172 typename _RehashPolicy, typename _Traits>
173 class _Hashtable
174 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 _H1, _H2, _Hash, _Traits>,
176 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184 private __detail::_Hashtable_alloc<
185 __alloc_rebind<_Alloc,
186 __detail::_Hash_node<_Value,
187 _Traits::__hash_cached::value>>>
188 {
189 static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 "unordered container must have a non-const, non-volatile value_type");
191 #if __cplusplus > 201703L || defined __STRICT_ANSI__
192 static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 "unordered container must have the same value_type as its allocator");
194 #endif
195
196 using __traits_type = _Traits;
197 using __hash_cached = typename __traits_type::__hash_cached;
198 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
199 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
200
201 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
202
203 using __value_alloc_traits =
204 typename __hashtable_alloc::__value_alloc_traits;
205 using __node_alloc_traits =
206 typename __hashtable_alloc::__node_alloc_traits;
207 using __node_base = typename __hashtable_alloc::__node_base;
208 using __bucket_type = typename __hashtable_alloc::__bucket_type;
209
210 public:
211 typedef _Key key_type;
212 typedef _Value value_type;
213 typedef _Alloc allocator_type;
214 typedef _Equal key_equal;
215
216 // mapped_type, if present, comes from _Map_base.
217 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
218 typedef typename __value_alloc_traits::pointer pointer;
219 typedef typename __value_alloc_traits::const_pointer const_pointer;
220 typedef value_type& reference;
221 typedef const value_type& const_reference;
222
223 private:
224 using __rehash_type = _RehashPolicy;
225 using __rehash_state = typename __rehash_type::_State;
226
227 using __constant_iterators = typename __traits_type::__constant_iterators;
228 using __unique_keys = typename __traits_type::__unique_keys;
229
230 using __key_extract = typename std::conditional<
231 __constant_iterators::value,
232 __detail::_Identity,
233 __detail::_Select1st>::type;
234
235 using __hashtable_base = __detail::
236 _Hashtable_base<_Key, _Value, _ExtractKey,
237 _Equal, _H1, _H2, _Hash, _Traits>;
238
239 using __hash_code_base = typename __hashtable_base::__hash_code_base;
240 using __hash_code = typename __hashtable_base::__hash_code;
241 using __ireturn_type = typename __hashtable_base::__ireturn_type;
242
243 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
244 _Equal, _H1, _H2, _Hash,
245 _RehashPolicy, _Traits>;
246
247 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
248 _ExtractKey, _Equal,
249 _H1, _H2, _Hash,
250 _RehashPolicy, _Traits>;
251
252 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
253 _Equal, _H1, _H2, _Hash,
254 _RehashPolicy, _Traits>;
255
256 using __reuse_or_alloc_node_gen_t =
257 __detail::_ReuseOrAllocNode<__node_alloc_type>;
258 using __alloc_node_gen_t =
259 __detail::_AllocNode<__node_alloc_type>;
260
261 // Simple RAII type for managing a node containing an element
262 struct _Scoped_node
263 {
264 // Take ownership of a node with a constructed element.
265 _Scoped_node(__node_type* __n, __hashtable_alloc* __h)
266 : _M_h(__h), _M_node(__n) { }
267
268 // Allocate a node and construct an element within it.
269 template<typename... _Args>
270 _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
271 : _M_h(__h),
272 _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
273 { }
274
275 // Destroy element and deallocate node.
276 ~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
277
278 _Scoped_node(const _Scoped_node&) = delete;
279 _Scoped_node& operator=(const _Scoped_node&) = delete;
280
281 __hashtable_alloc* _M_h;
282 __node_type* _M_node;
283 };
284
285 template<typename _Ht>
286 static constexpr
287 typename conditional<std::is_lvalue_reference<_Ht>::value,
288 const value_type&, value_type&&>::type
289 __fwd_value_for(value_type& __val) noexcept
290 { return std::move(__val); }
291
292 // Metaprogramming for picking apart hash caching.
293 template<typename _Cond>
294 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
295
296 template<typename _Cond>
297 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
298
299 // Compile-time diagnostics.
300
301 // _Hash_code_base has everything protected, so use this derived type to
302 // access it.
303 struct __hash_code_base_access : __hash_code_base
304 { using __hash_code_base::_M_bucket_index; };
305
306 // Getting a bucket index from a node shall not throw because it is used
307 // in methods (erase, swap...) that shall not throw.
308 static_assert(noexcept(declval<const __hash_code_base_access&>()
309 ._M_bucket_index((const __node_type*)nullptr,
310 (std::size_t)0)),
311 "Cache the hash code or qualify your functors involved"
312 " in hash code and bucket index computation with noexcept");
313
314 // When hash codes are cached local iterator inherits from H2 functor
315 // which must then be default constructible.
316 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
317 "Functor used to map hash code to bucket index"
318 " must be default constructible");
319
320 template<typename _Keya, typename _Valuea, typename _Alloca,
321 typename _ExtractKeya, typename _Equala,
322 typename _H1a, typename _H2a, typename _Hasha,
323 typename _RehashPolicya, typename _Traitsa,
324 bool _Unique_keysa>
325 friend struct __detail::_Map_base;
326
327 template<typename _Keya, typename _Valuea, typename _Alloca,
328 typename _ExtractKeya, typename _Equala,
329 typename _H1a, typename _H2a, typename _Hasha,
330 typename _RehashPolicya, typename _Traitsa>
331 friend struct __detail::_Insert_base;
332
333 template<typename _Keya, typename _Valuea, typename _Alloca,
334 typename _ExtractKeya, typename _Equala,
335 typename _H1a, typename _H2a, typename _Hasha,
336 typename _RehashPolicya, typename _Traitsa,
337 bool _Constant_iteratorsa>
338 friend struct __detail::_Insert;
339
340 template<typename _Keya, typename _Valuea, typename _Alloca,
341 typename _ExtractKeya, typename _Equala,
342 typename _H1a, typename _H2a, typename _Hasha,
343 typename _RehashPolicya, typename _Traitsa,
344 bool _Unique_keysa>
345 friend struct __detail::_Equality;
346
347 public:
348 using size_type = typename __hashtable_base::size_type;
349 using difference_type = typename __hashtable_base::difference_type;
350
351 using iterator = typename __hashtable_base::iterator;
352 using const_iterator = typename __hashtable_base::const_iterator;
353
354 using local_iterator = typename __hashtable_base::local_iterator;
355 using const_local_iterator = typename __hashtable_base::
356 const_local_iterator;
357
358 #if __cplusplus > 201402L
359 using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
360 using insert_return_type = _Node_insert_return<iterator, node_type>;
361 #endif
362
363 private:
364 __bucket_type* _M_buckets = &_M_single_bucket;
365 size_type _M_bucket_count = 1;
366 __node_base _M_before_begin;
367 size_type _M_element_count = 0;
368 _RehashPolicy _M_rehash_policy;
369
370 // A single bucket used when only need for 1 bucket. Especially
371 // interesting in move semantic to leave hashtable with only 1 bucket
372 // which is not allocated so that we can have those operations noexcept
373 // qualified.
374 // Note that we can't leave hashtable with 0 bucket without adding
375 // numerous checks in the code to avoid 0 modulus.
376 __bucket_type _M_single_bucket = nullptr;
377
378 bool
379 _M_uses_single_bucket(__bucket_type* __bkts) const
380 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
381
382 bool
383 _M_uses_single_bucket() const
384 { return _M_uses_single_bucket(_M_buckets); }
385
386 __hashtable_alloc&
387 _M_base_alloc() { return *this; }
388
389 __bucket_type*
390 _M_allocate_buckets(size_type __bkt_count)
391 {
392 if (__builtin_expect(__bkt_count == 1, false))
393 {
394 _M_single_bucket = nullptr;
395 return &_M_single_bucket;
396 }
397
398 return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
399 }
400
401 void
402 _M_deallocate_buckets(__bucket_type* __bkts, size_type __bkt_count)
403 {
404 if (_M_uses_single_bucket(__bkts))
405 return;
406
407 __hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
408 }
409
410 void
411 _M_deallocate_buckets()
412 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
413
414 // Gets bucket begin, deals with the fact that non-empty buckets contain
415 // their before begin node.
416 __node_type*
417 _M_bucket_begin(size_type __bkt) const;
418
419 __node_type*
420 _M_begin() const
421 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
422
423 // Assign *this using another _Hashtable instance. Whether elements
424 // are copied or moved depends on the _Ht reference.
425 template<typename _Ht>
426 void
427 _M_assign_elements(_Ht&&);
428
429 template<typename _Ht, typename _NodeGenerator>
430 void
431 _M_assign(_Ht&&, const _NodeGenerator&);
432
433 void
434 _M_move_assign(_Hashtable&&, true_type);
435
436 void
437 _M_move_assign(_Hashtable&&, false_type);
438
439 void
440 _M_reset() noexcept;
441
442 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
443 const _Equal& __eq, const _ExtractKey& __exk,
444 const allocator_type& __a)
445 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
446 __hashtable_alloc(__node_alloc_type(__a))
447 { }
448
449 public:
450 // Constructor, destructor, assignment, swap
451 _Hashtable() = default;
452 _Hashtable(size_type __bkt_count_hint,
453 const _H1&, const _H2&, const _Hash&,
454 const _Equal&, const _ExtractKey&,
455 const allocator_type&);
456
457 template<typename _InputIterator>
458 _Hashtable(_InputIterator __first, _InputIterator __last,
459 size_type __bkt_count_hint,
460 const _H1&, const _H2&, const _Hash&,
461 const _Equal&, const _ExtractKey&,
462 const allocator_type&);
463
464 _Hashtable(const _Hashtable&);
465
466 _Hashtable(_Hashtable&&) noexcept;
467
468 _Hashtable(const _Hashtable&, const allocator_type&);
469
470 _Hashtable(_Hashtable&&, const allocator_type&);
471
472 // Use delegating constructors.
473 explicit
474 _Hashtable(const allocator_type& __a)
475 : __hashtable_alloc(__node_alloc_type(__a))
476 { }
477
478 explicit
479 _Hashtable(size_type __bkt_count_hint,
480 const _H1& __hf = _H1(),
481 const key_equal& __eql = key_equal(),
482 const allocator_type& __a = allocator_type())
483 : _Hashtable(__bkt_count_hint, __hf, _H2(), _Hash(), __eql,
484 __key_extract(), __a)
485 { }
486
487 template<typename _InputIterator>
488 _Hashtable(_InputIterator __f, _InputIterator __l,
489 size_type __bkt_count_hint = 0,
490 const _H1& __hf = _H1(),
491 const key_equal& __eql = key_equal(),
492 const allocator_type& __a = allocator_type())
493 : _Hashtable(__f, __l, __bkt_count_hint, __hf, _H2(), _Hash(), __eql,
494 __key_extract(), __a)
495 { }
496
497 _Hashtable(initializer_list<value_type> __l,
498 size_type __bkt_count_hint = 0,
499 const _H1& __hf = _H1(),
500 const key_equal& __eql = key_equal(),
501 const allocator_type& __a = allocator_type())
502 : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
503 __hf, _H2(), _Hash(), __eql,
504 __key_extract(), __a)
505 { }
506
507 _Hashtable&
508 operator=(const _Hashtable& __ht);
509
510 _Hashtable&
511 operator=(_Hashtable&& __ht)
512 noexcept(__node_alloc_traits::_S_nothrow_move()
513 && is_nothrow_move_assignable<_H1>::value
514 && is_nothrow_move_assignable<_Equal>::value)
515 {
516 constexpr bool __move_storage =
517 __node_alloc_traits::_S_propagate_on_move_assign()
518 || __node_alloc_traits::_S_always_equal();
519 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
520 return *this;
521 }
522
523 _Hashtable&
524 operator=(initializer_list<value_type> __l)
525 {
526 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
527 _M_before_begin._M_nxt = nullptr;
528 clear();
529 this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
530 return *this;
531 }
532
533 ~_Hashtable() noexcept;
534
535 void
536 swap(_Hashtable&)
537 noexcept(__and_<__is_nothrow_swappable<_H1>,
538 __is_nothrow_swappable<_Equal>>::value);
539
540 // Basic container operations
541 iterator
542 begin() noexcept
543 { return iterator(_M_begin()); }
544
545 const_iterator
546 begin() const noexcept
547 { return const_iterator(_M_begin()); }
548
549 iterator
550 end() noexcept
551 { return iterator(nullptr); }
552
553 const_iterator
554 end() const noexcept
555 { return const_iterator(nullptr); }
556
557 const_iterator
558 cbegin() const noexcept
559 { return const_iterator(_M_begin()); }
560
561 const_iterator
562 cend() const noexcept
563 { return const_iterator(nullptr); }
564
565 size_type
566 size() const noexcept
567 { return _M_element_count; }
568
569 _GLIBCXX_NODISCARD bool
570 empty() const noexcept
571 { return size() == 0; }
572
573 allocator_type
574 get_allocator() const noexcept
575 { return allocator_type(this->_M_node_allocator()); }
576
577 size_type
578 max_size() const noexcept
579 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
580
581 // Observers
582 key_equal
583 key_eq() const
584 { return this->_M_eq(); }
585
586 // hash_function, if present, comes from _Hash_code_base.
587
588 // Bucket operations
589 size_type
590 bucket_count() const noexcept
591 { return _M_bucket_count; }
592
593 size_type
594 max_bucket_count() const noexcept
595 { return max_size(); }
596
597 size_type
598 bucket_size(size_type __bkt) const
599 { return std::distance(begin(__bkt), end(__bkt)); }
600
601 size_type
602 bucket(const key_type& __k) const
603 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
604
605 local_iterator
606 begin(size_type __bkt)
607 {
608 return local_iterator(*this, _M_bucket_begin(__bkt),
609 __bkt, _M_bucket_count);
610 }
611
612 local_iterator
613 end(size_type __bkt)
614 { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
615
616 const_local_iterator
617 begin(size_type __bkt) const
618 {
619 return const_local_iterator(*this, _M_bucket_begin(__bkt),
620 __bkt, _M_bucket_count);
621 }
622
623 const_local_iterator
624 end(size_type __bkt) const
625 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
626
627 // DR 691.
628 const_local_iterator
629 cbegin(size_type __bkt) const
630 {
631 return const_local_iterator(*this, _M_bucket_begin(__bkt),
632 __bkt, _M_bucket_count);
633 }
634
635 const_local_iterator
636 cend(size_type __bkt) const
637 { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
638
639 float
640 load_factor() const noexcept
641 {
642 return static_cast<float>(size()) / static_cast<float>(bucket_count());
643 }
644
645 // max_load_factor, if present, comes from _Rehash_base.
646
647 // Generalization of max_load_factor. Extension, not found in
648 // TR1. Only useful if _RehashPolicy is something other than
649 // the default.
650 const _RehashPolicy&
651 __rehash_policy() const
652 { return _M_rehash_policy; }
653
654 void
655 __rehash_policy(const _RehashPolicy& __pol)
656 { _M_rehash_policy = __pol; }
657
658 // Lookup.
659 iterator
660 find(const key_type& __k);
661
662 const_iterator
663 find(const key_type& __k) const;
664
665 size_type
666 count(const key_type& __k) const;
667
668 std::pair<iterator, iterator>
669 equal_range(const key_type& __k);
670
671 std::pair<const_iterator, const_iterator>
672 equal_range(const key_type& __k) const;
673
674 protected:
675 // Bucket index computation helpers.
676 size_type
677 _M_bucket_index(__node_type* __n) const noexcept
678 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
679
680 size_type
681 _M_bucket_index(const key_type& __k, __hash_code __c) const
682 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
683
684 // Find and insert helper functions and types
685 // Find the node before the one matching the criteria.
686 __node_base*
687 _M_find_before_node(size_type, const key_type&, __hash_code) const;
688
689 __node_type*
690 _M_find_node(size_type __bkt, const key_type& __key,
691 __hash_code __c) const
692 {
693 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
694 if (__before_n)
695 return static_cast<__node_type*>(__before_n->_M_nxt);
696 return nullptr;
697 }
698
699 // Insert a node at the beginning of a bucket.
700 void
701 _M_insert_bucket_begin(size_type, __node_type*);
702
703 // Remove the bucket first node
704 void
705 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
706 size_type __next_bkt);
707
708 // Get the node before __n in the bucket __bkt
709 __node_base*
710 _M_get_previous_node(size_type __bkt, __node_base* __n);
711
712 // Insert node __n with key __k and hash code __code, in bucket __bkt
713 // if no rehash (assumes no element with same key already present).
714 // Takes ownership of __n if insertion succeeds, throws otherwise.
715 iterator
716 _M_insert_unique_node(const key_type& __k, size_type __bkt,
717 __hash_code __code, __node_type* __n,
718 size_type __n_elt = 1);
719
720 // Insert node __n with key __k and hash code __code.
721 // Takes ownership of __n if insertion succeeds, throws otherwise.
722 iterator
723 _M_insert_multi_node(__node_type* __hint, const key_type& __k,
724 __hash_code __code, __node_type* __n);
725
726 template<typename... _Args>
727 std::pair<iterator, bool>
728 _M_emplace(true_type, _Args&&... __args);
729
730 template<typename... _Args>
731 iterator
732 _M_emplace(false_type __uk, _Args&&... __args)
733 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
734
735 // Emplace with hint, useless when keys are unique.
736 template<typename... _Args>
737 iterator
738 _M_emplace(const_iterator, true_type __uk, _Args&&... __args)
739 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
740
741 template<typename... _Args>
742 iterator
743 _M_emplace(const_iterator, false_type, _Args&&... __args);
744
745 template<typename _Arg, typename _NodeGenerator>
746 std::pair<iterator, bool>
747 _M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
748
749 template<typename _Arg, typename _NodeGenerator>
750 iterator
751 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
752 false_type __uk)
753 {
754 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
755 __uk);
756 }
757
758 // Insert with hint, not used when keys are unique.
759 template<typename _Arg, typename _NodeGenerator>
760 iterator
761 _M_insert(const_iterator, _Arg&& __arg,
762 const _NodeGenerator& __node_gen, true_type __uk)
763 {
764 return
765 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
766 }
767
768 // Insert with hint when keys are not unique.
769 template<typename _Arg, typename _NodeGenerator>
770 iterator
771 _M_insert(const_iterator, _Arg&&,
772 const _NodeGenerator&, false_type);
773
774 size_type
775 _M_erase(true_type, const key_type&);
776
777 size_type
778 _M_erase(false_type, const key_type&);
779
780 iterator
781 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
782
783 public:
784 // Emplace
785 template<typename... _Args>
786 __ireturn_type
787 emplace(_Args&&... __args)
788 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
789
790 template<typename... _Args>
791 iterator
792 emplace_hint(const_iterator __hint, _Args&&... __args)
793 {
794 return _M_emplace(__hint, __unique_keys(),
795 std::forward<_Args>(__args)...);
796 }
797
798 // Insert member functions via inheritance.
799
800 // Erase
801 iterator
802 erase(const_iterator);
803
804 // LWG 2059.
805 iterator
806 erase(iterator __it)
807 { return erase(const_iterator(__it)); }
808
809 size_type
810 erase(const key_type& __k)
811 { return _M_erase(__unique_keys(), __k); }
812
813 iterator
814 erase(const_iterator, const_iterator);
815
816 void
817 clear() noexcept;
818
819 // Set number of buckets keeping it appropriate for container's number
820 // of elements.
821 void rehash(size_type __bkt_count);
822
823 // DR 1189.
824 // reserve, if present, comes from _Rehash_base.
825
826 #if __cplusplus > 201402L
827 /// Re-insert an extracted node into a container with unique keys.
828 insert_return_type
829 _M_reinsert_node(node_type&& __nh)
830 {
831 insert_return_type __ret;
832 if (__nh.empty())
833 __ret.position = end();
834 else
835 {
836 __glibcxx_assert(get_allocator() == __nh.get_allocator());
837
838 const key_type& __k = __nh._M_key();
839 __hash_code __code = this->_M_hash_code(__k);
840 size_type __bkt = _M_bucket_index(__k, __code);
841 if (__node_type* __n = _M_find_node(__bkt, __k, __code))
842 {
843 __ret.node = std::move(__nh);
844 __ret.position = iterator(__n);
845 __ret.inserted = false;
846 }
847 else
848 {
849 __ret.position
850 = _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr);
851 __nh._M_ptr = nullptr;
852 __ret.inserted = true;
853 }
854 }
855 return __ret;
856 }
857
858 /// Re-insert an extracted node into a container with equivalent keys.
859 iterator
860 _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
861 {
862 if (__nh.empty())
863 return end();
864
865 __glibcxx_assert(get_allocator() == __nh.get_allocator());
866
867 const key_type& __k = __nh._M_key();
868 auto __code = this->_M_hash_code(__k);
869 auto __ret
870 = _M_insert_multi_node(__hint._M_cur, __k, __code, __nh._M_ptr);
871 __nh._M_ptr = nullptr;
872 return __ret;
873 }
874
875 private:
876 node_type
877 _M_extract_node(size_t __bkt, __node_base* __prev_n)
878 {
879 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
880 if (__prev_n == _M_buckets[__bkt])
881 _M_remove_bucket_begin(__bkt, __n->_M_next(),
882 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
883 else if (__n->_M_nxt)
884 {
885 size_type __next_bkt = _M_bucket_index(__n->_M_next());
886 if (__next_bkt != __bkt)
887 _M_buckets[__next_bkt] = __prev_n;
888 }
889
890 __prev_n->_M_nxt = __n->_M_nxt;
891 __n->_M_nxt = nullptr;
892 --_M_element_count;
893 return { __n, this->_M_node_allocator() };
894 }
895
896 public:
897 // Extract a node.
898 node_type
899 extract(const_iterator __pos)
900 {
901 size_t __bkt = _M_bucket_index(__pos._M_cur);
902 return _M_extract_node(__bkt,
903 _M_get_previous_node(__bkt, __pos._M_cur));
904 }
905
906 /// Extract a node.
907 node_type
908 extract(const _Key& __k)
909 {
910 node_type __nh;
911 __hash_code __code = this->_M_hash_code(__k);
912 std::size_t __bkt = _M_bucket_index(__k, __code);
913 if (__node_base* __prev_node = _M_find_before_node(__bkt, __k, __code))
914 __nh = _M_extract_node(__bkt, __prev_node);
915 return __nh;
916 }
917
918 /// Merge from a compatible container into one with unique keys.
919 template<typename _Compatible_Hashtable>
920 void
921 _M_merge_unique(_Compatible_Hashtable& __src) noexcept
922 {
923 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
924 node_type>, "Node types are compatible");
925 __glibcxx_assert(get_allocator() == __src.get_allocator());
926
927 auto __n_elt = __src.size();
928 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
929 {
930 auto __pos = __i++;
931 const key_type& __k = this->_M_extract()(*__pos);
932 __hash_code __code = this->_M_hash_code(__k);
933 size_type __bkt = _M_bucket_index(__k, __code);
934 if (_M_find_node(__bkt, __k, __code) == nullptr)
935 {
936 auto __nh = __src.extract(__pos);
937 _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr,
938 __n_elt);
939 __nh._M_ptr = nullptr;
940 __n_elt = 1;
941 }
942 else if (__n_elt != 1)
943 --__n_elt;
944 }
945 }
946
947 /// Merge from a compatible container into one with equivalent keys.
948 template<typename _Compatible_Hashtable>
949 void
950 _M_merge_multi(_Compatible_Hashtable& __src) noexcept
951 {
952 static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
953 node_type>, "Node types are compatible");
954 __glibcxx_assert(get_allocator() == __src.get_allocator());
955
956 this->reserve(size() + __src.size());
957 for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
958 _M_reinsert_node_multi(cend(), __src.extract(__i++));
959 }
960 #endif // C++17
961
962 private:
963 // Helper rehash method used when keys are unique.
964 void _M_rehash_aux(size_type __bkt_count, true_type);
965
966 // Helper rehash method used when keys can be non-unique.
967 void _M_rehash_aux(size_type __bkt_count, false_type);
968
969 // Unconditionally change size of bucket array to n, restore
970 // hash policy state to __state on exception.
971 void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
972 };
973
974
975 // Definitions of class template _Hashtable's out-of-line member functions.
976 template<typename _Key, typename _Value,
977 typename _Alloc, typename _ExtractKey, typename _Equal,
978 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
979 typename _Traits>
980 auto
981 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
982 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
983 _M_bucket_begin(size_type __bkt) const
984 -> __node_type*
985 {
986 __node_base* __n = _M_buckets[__bkt];
987 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
988 }
989
990 template<typename _Key, typename _Value,
991 typename _Alloc, typename _ExtractKey, typename _Equal,
992 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
993 typename _Traits>
994 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
995 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
996 _Hashtable(size_type __bkt_count_hint,
997 const _H1& __h1, const _H2& __h2, const _Hash& __h,
998 const _Equal& __eq, const _ExtractKey& __exk,
999 const allocator_type& __a)
1000 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1001 {
1002 auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1003 if (__bkt_count > _M_bucket_count)
1004 {
1005 _M_buckets = _M_allocate_buckets(__bkt_count);
1006 _M_bucket_count = __bkt_count;
1007 }
1008 }
1009
1010 template<typename _Key, typename _Value,
1011 typename _Alloc, typename _ExtractKey, typename _Equal,
1012 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1013 typename _Traits>
1014 template<typename _InputIterator>
1015 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1016 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1017 _Hashtable(_InputIterator __f, _InputIterator __l,
1018 size_type __bkt_count_hint,
1019 const _H1& __h1, const _H2& __h2, const _Hash& __h,
1020 const _Equal& __eq, const _ExtractKey& __exk,
1021 const allocator_type& __a)
1022 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1023 {
1024 auto __nb_elems = __detail::__distance_fw(__f, __l);
1025 auto __bkt_count =
1026 _M_rehash_policy._M_next_bkt(
1027 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1028 __bkt_count_hint));
1029
1030 if (__bkt_count > _M_bucket_count)
1031 {
1032 _M_buckets = _M_allocate_buckets(__bkt_count);
1033 _M_bucket_count = __bkt_count;
1034 }
1035
1036 for (; __f != __l; ++__f)
1037 this->insert(*__f);
1038 }
1039
1040 template<typename _Key, typename _Value,
1041 typename _Alloc, typename _ExtractKey, typename _Equal,
1042 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1043 typename _Traits>
1044 auto
1045 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1046 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1047 operator=(const _Hashtable& __ht)
1048 -> _Hashtable&
1049 {
1050 if (&__ht == this)
1051 return *this;
1052
1053 if (__node_alloc_traits::_S_propagate_on_copy_assign())
1054 {
1055 auto& __this_alloc = this->_M_node_allocator();
1056 auto& __that_alloc = __ht._M_node_allocator();
1057 if (!__node_alloc_traits::_S_always_equal()
1058 && __this_alloc != __that_alloc)
1059 {
1060 // Replacement allocator cannot free existing storage.
1061 this->_M_deallocate_nodes(_M_begin());
1062 _M_before_begin._M_nxt = nullptr;
1063 _M_deallocate_buckets();
1064 _M_buckets = nullptr;
1065 std::__alloc_on_copy(__this_alloc, __that_alloc);
1066 __hashtable_base::operator=(__ht);
1067 _M_bucket_count = __ht._M_bucket_count;
1068 _M_element_count = __ht._M_element_count;
1069 _M_rehash_policy = __ht._M_rehash_policy;
1070 __alloc_node_gen_t __alloc_node_gen(*this);
1071 __try
1072 {
1073 _M_assign(__ht, __alloc_node_gen);
1074 }
1075 __catch(...)
1076 {
1077 // _M_assign took care of deallocating all memory. Now we
1078 // must make sure this instance remains in a usable state.
1079 _M_reset();
1080 __throw_exception_again;
1081 }
1082 return *this;
1083 }
1084 std::__alloc_on_copy(__this_alloc, __that_alloc);
1085 }
1086
1087 // Reuse allocated buckets and nodes.
1088 _M_assign_elements(__ht);
1089 return *this;
1090 }
1091
1092 template<typename _Key, typename _Value,
1093 typename _Alloc, typename _ExtractKey, typename _Equal,
1094 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1095 typename _Traits>
1096 template<typename _Ht>
1097 void
1098 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1099 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1100 _M_assign_elements(_Ht&& __ht)
1101 {
1102 __bucket_type* __former_buckets = nullptr;
1103 std::size_t __former_bucket_count = _M_bucket_count;
1104 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1105
1106 if (_M_bucket_count != __ht._M_bucket_count)
1107 {
1108 __former_buckets = _M_buckets;
1109 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1110 _M_bucket_count = __ht._M_bucket_count;
1111 }
1112 else
1113 __builtin_memset(_M_buckets, 0,
1114 _M_bucket_count * sizeof(__bucket_type));
1115
1116 __try
1117 {
1118 __hashtable_base::operator=(std::forward<_Ht>(__ht));
1119 _M_element_count = __ht._M_element_count;
1120 _M_rehash_policy = __ht._M_rehash_policy;
1121 __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1122 _M_before_begin._M_nxt = nullptr;
1123 _M_assign(std::forward<_Ht>(__ht), __roan);
1124 if (__former_buckets)
1125 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1126 }
1127 __catch(...)
1128 {
1129 if (__former_buckets)
1130 {
1131 // Restore previous buckets.
1132 _M_deallocate_buckets();
1133 _M_rehash_policy._M_reset(__former_state);
1134 _M_buckets = __former_buckets;
1135 _M_bucket_count = __former_bucket_count;
1136 }
1137 __builtin_memset(_M_buckets, 0,
1138 _M_bucket_count * sizeof(__bucket_type));
1139 __throw_exception_again;
1140 }
1141 }
1142
1143 template<typename _Key, typename _Value,
1144 typename _Alloc, typename _ExtractKey, typename _Equal,
1145 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1146 typename _Traits>
1147 template<typename _Ht, typename _NodeGenerator>
1148 void
1149 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1150 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1151 _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1152 {
1153 __bucket_type* __buckets = nullptr;
1154 if (!_M_buckets)
1155 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1156
1157 __try
1158 {
1159 if (!__ht._M_before_begin._M_nxt)
1160 return;
1161
1162 // First deal with the special first node pointed to by
1163 // _M_before_begin.
1164 __node_type* __ht_n = __ht._M_begin();
1165 __node_type* __this_n
1166 = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1167 this->_M_copy_code(__this_n, __ht_n);
1168 _M_before_begin._M_nxt = __this_n;
1169 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1170
1171 // Then deal with other nodes.
1172 __node_base* __prev_n = __this_n;
1173 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1174 {
1175 __this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1176 __prev_n->_M_nxt = __this_n;
1177 this->_M_copy_code(__this_n, __ht_n);
1178 size_type __bkt = _M_bucket_index(__this_n);
1179 if (!_M_buckets[__bkt])
1180 _M_buckets[__bkt] = __prev_n;
1181 __prev_n = __this_n;
1182 }
1183 }
1184 __catch(...)
1185 {
1186 clear();
1187 if (__buckets)
1188 _M_deallocate_buckets();
1189 __throw_exception_again;
1190 }
1191 }
1192
1193 template<typename _Key, typename _Value,
1194 typename _Alloc, typename _ExtractKey, typename _Equal,
1195 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1196 typename _Traits>
1197 void
1198 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1199 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1200 _M_reset() noexcept
1201 {
1202 _M_rehash_policy._M_reset();
1203 _M_bucket_count = 1;
1204 _M_single_bucket = nullptr;
1205 _M_buckets = &_M_single_bucket;
1206 _M_before_begin._M_nxt = nullptr;
1207 _M_element_count = 0;
1208 }
1209
1210 template<typename _Key, typename _Value,
1211 typename _Alloc, typename _ExtractKey, typename _Equal,
1212 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1213 typename _Traits>
1214 void
1215 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1216 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1217 _M_move_assign(_Hashtable&& __ht, true_type)
1218 {
1219 this->_M_deallocate_nodes(_M_begin());
1220 _M_deallocate_buckets();
1221 __hashtable_base::operator=(std::move(__ht));
1222 _M_rehash_policy = __ht._M_rehash_policy;
1223 if (!__ht._M_uses_single_bucket())
1224 _M_buckets = __ht._M_buckets;
1225 else
1226 {
1227 _M_buckets = &_M_single_bucket;
1228 _M_single_bucket = __ht._M_single_bucket;
1229 }
1230 _M_bucket_count = __ht._M_bucket_count;
1231 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1232 _M_element_count = __ht._M_element_count;
1233 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1234
1235 // Fix buckets containing the _M_before_begin pointers that can't be
1236 // moved.
1237 if (_M_begin())
1238 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1239 __ht._M_reset();
1240 }
1241
1242 template<typename _Key, typename _Value,
1243 typename _Alloc, typename _ExtractKey, typename _Equal,
1244 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1245 typename _Traits>
1246 void
1247 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1248 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1249 _M_move_assign(_Hashtable&& __ht, false_type)
1250 {
1251 if (__ht._M_node_allocator() == this->_M_node_allocator())
1252 _M_move_assign(std::move(__ht), true_type());
1253 else
1254 {
1255 // Can't move memory, move elements then.
1256 _M_assign_elements(std::move(__ht));
1257 __ht.clear();
1258 }
1259 }
1260
1261 template<typename _Key, typename _Value,
1262 typename _Alloc, typename _ExtractKey, typename _Equal,
1263 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1264 typename _Traits>
1265 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1266 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1267 _Hashtable(const _Hashtable& __ht)
1268 : __hashtable_base(__ht),
1269 __map_base(__ht),
1270 __rehash_base(__ht),
1271 __hashtable_alloc(
1272 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1273 _M_buckets(nullptr),
1274 _M_bucket_count(__ht._M_bucket_count),
1275 _M_element_count(__ht._M_element_count),
1276 _M_rehash_policy(__ht._M_rehash_policy)
1277 {
1278 __alloc_node_gen_t __alloc_node_gen(*this);
1279 _M_assign(__ht, __alloc_node_gen);
1280 }
1281
1282 template<typename _Key, typename _Value,
1283 typename _Alloc, typename _ExtractKey, typename _Equal,
1284 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1285 typename _Traits>
1286 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1287 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1288 _Hashtable(_Hashtable&& __ht) noexcept
1289 : __hashtable_base(__ht),
1290 __map_base(__ht),
1291 __rehash_base(__ht),
1292 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1293 _M_buckets(__ht._M_buckets),
1294 _M_bucket_count(__ht._M_bucket_count),
1295 _M_before_begin(__ht._M_before_begin._M_nxt),
1296 _M_element_count(__ht._M_element_count),
1297 _M_rehash_policy(__ht._M_rehash_policy)
1298 {
1299 // Update, if necessary, buckets if __ht is using its single bucket.
1300 if (__ht._M_uses_single_bucket())
1301 {
1302 _M_buckets = &_M_single_bucket;
1303 _M_single_bucket = __ht._M_single_bucket;
1304 }
1305
1306 // Update, if necessary, bucket pointing to before begin that hasn't
1307 // moved.
1308 if (_M_begin())
1309 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1310
1311 __ht._M_reset();
1312 }
1313
1314 template<typename _Key, typename _Value,
1315 typename _Alloc, typename _ExtractKey, typename _Equal,
1316 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1317 typename _Traits>
1318 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1319 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1320 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1321 : __hashtable_base(__ht),
1322 __map_base(__ht),
1323 __rehash_base(__ht),
1324 __hashtable_alloc(__node_alloc_type(__a)),
1325 _M_buckets(),
1326 _M_bucket_count(__ht._M_bucket_count),
1327 _M_element_count(__ht._M_element_count),
1328 _M_rehash_policy(__ht._M_rehash_policy)
1329 {
1330 __alloc_node_gen_t __alloc_node_gen(*this);
1331 _M_assign(__ht, __alloc_node_gen);
1332 }
1333
1334 template<typename _Key, typename _Value,
1335 typename _Alloc, typename _ExtractKey, typename _Equal,
1336 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1337 typename _Traits>
1338 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1339 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1340 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1341 : __hashtable_base(__ht),
1342 __map_base(__ht),
1343 __rehash_base(__ht),
1344 __hashtable_alloc(__node_alloc_type(__a)),
1345 _M_buckets(nullptr),
1346 _M_bucket_count(__ht._M_bucket_count),
1347 _M_element_count(__ht._M_element_count),
1348 _M_rehash_policy(__ht._M_rehash_policy)
1349 {
1350 if (__ht._M_node_allocator() == this->_M_node_allocator())
1351 {
1352 if (__ht._M_uses_single_bucket())
1353 {
1354 _M_buckets = &_M_single_bucket;
1355 _M_single_bucket = __ht._M_single_bucket;
1356 }
1357 else
1358 _M_buckets = __ht._M_buckets;
1359
1360 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1361 // Update, if necessary, bucket pointing to before begin that hasn't
1362 // moved.
1363 if (_M_begin())
1364 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1365 __ht._M_reset();
1366 }
1367 else
1368 {
1369 __alloc_node_gen_t __alloc_gen(*this);
1370
1371 using _Fwd_Ht = typename
1372 conditional<__move_if_noexcept_cond<value_type>::value,
1373 const _Hashtable&, _Hashtable&&>::type;
1374 _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1375 __ht.clear();
1376 }
1377 }
1378
1379 template<typename _Key, typename _Value,
1380 typename _Alloc, typename _ExtractKey, typename _Equal,
1381 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1382 typename _Traits>
1383 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1384 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1385 ~_Hashtable() noexcept
1386 {
1387 clear();
1388 _M_deallocate_buckets();
1389 }
1390
1391 template<typename _Key, typename _Value,
1392 typename _Alloc, typename _ExtractKey, typename _Equal,
1393 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394 typename _Traits>
1395 void
1396 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1397 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1398 swap(_Hashtable& __x)
1399 noexcept(__and_<__is_nothrow_swappable<_H1>,
1400 __is_nothrow_swappable<_Equal>>::value)
1401 {
1402 // The only base class with member variables is hash_code_base.
1403 // We define _Hash_code_base::_M_swap because different
1404 // specializations have different members.
1405 this->_M_swap(__x);
1406
1407 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1408 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1409
1410 // Deal properly with potentially moved instances.
1411 if (this->_M_uses_single_bucket())
1412 {
1413 if (!__x._M_uses_single_bucket())
1414 {
1415 _M_buckets = __x._M_buckets;
1416 __x._M_buckets = &__x._M_single_bucket;
1417 }
1418 }
1419 else if (__x._M_uses_single_bucket())
1420 {
1421 __x._M_buckets = _M_buckets;
1422 _M_buckets = &_M_single_bucket;
1423 }
1424 else
1425 std::swap(_M_buckets, __x._M_buckets);
1426
1427 std::swap(_M_bucket_count, __x._M_bucket_count);
1428 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1429 std::swap(_M_element_count, __x._M_element_count);
1430 std::swap(_M_single_bucket, __x._M_single_bucket);
1431
1432 // Fix buckets containing the _M_before_begin pointers that can't be
1433 // swapped.
1434 if (_M_begin())
1435 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1436
1437 if (__x._M_begin())
1438 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1439 = &__x._M_before_begin;
1440 }
1441
1442 template<typename _Key, typename _Value,
1443 typename _Alloc, typename _ExtractKey, typename _Equal,
1444 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1445 typename _Traits>
1446 auto
1447 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1448 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1449 find(const key_type& __k)
1450 -> iterator
1451 {
1452 __hash_code __code = this->_M_hash_code(__k);
1453 std::size_t __bkt = _M_bucket_index(__k, __code);
1454 __node_type* __p = _M_find_node(__bkt, __k, __code);
1455 return __p ? iterator(__p) : end();
1456 }
1457
1458 template<typename _Key, typename _Value,
1459 typename _Alloc, typename _ExtractKey, typename _Equal,
1460 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1461 typename _Traits>
1462 auto
1463 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1464 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1465 find(const key_type& __k) const
1466 -> const_iterator
1467 {
1468 __hash_code __code = this->_M_hash_code(__k);
1469 std::size_t __bkt = _M_bucket_index(__k, __code);
1470 __node_type* __p = _M_find_node(__bkt, __k, __code);
1471 return __p ? const_iterator(__p) : end();
1472 }
1473
1474 template<typename _Key, typename _Value,
1475 typename _Alloc, typename _ExtractKey, typename _Equal,
1476 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477 typename _Traits>
1478 auto
1479 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481 count(const key_type& __k) const
1482 -> size_type
1483 {
1484 __hash_code __code = this->_M_hash_code(__k);
1485 std::size_t __bkt = _M_bucket_index(__k, __code);
1486 __node_type* __p = _M_bucket_begin(__bkt);
1487 if (!__p)
1488 return 0;
1489
1490 std::size_t __result = 0;
1491 for (;; __p = __p->_M_next())
1492 {
1493 if (this->_M_equals(__k, __code, __p))
1494 ++__result;
1495 else if (__result)
1496 // All equivalent values are next to each other, if we
1497 // found a non-equivalent value after an equivalent one it
1498 // means that we won't find any new equivalent value.
1499 break;
1500 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1501 break;
1502 }
1503 return __result;
1504 }
1505
1506 template<typename _Key, typename _Value,
1507 typename _Alloc, typename _ExtractKey, typename _Equal,
1508 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1509 typename _Traits>
1510 auto
1511 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1512 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1513 equal_range(const key_type& __k)
1514 -> pair<iterator, iterator>
1515 {
1516 __hash_code __code = this->_M_hash_code(__k);
1517 std::size_t __bkt = _M_bucket_index(__k, __code);
1518 __node_type* __p = _M_find_node(__bkt, __k, __code);
1519
1520 if (__p)
1521 {
1522 __node_type* __p1 = __p->_M_next();
1523 while (__p1 && _M_bucket_index(__p1) == __bkt
1524 && this->_M_equals(__k, __code, __p1))
1525 __p1 = __p1->_M_next();
1526
1527 return std::make_pair(iterator(__p), iterator(__p1));
1528 }
1529 else
1530 return std::make_pair(end(), end());
1531 }
1532
1533 template<typename _Key, typename _Value,
1534 typename _Alloc, typename _ExtractKey, typename _Equal,
1535 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1536 typename _Traits>
1537 auto
1538 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1539 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1540 equal_range(const key_type& __k) const
1541 -> pair<const_iterator, const_iterator>
1542 {
1543 __hash_code __code = this->_M_hash_code(__k);
1544 std::size_t __bkt = _M_bucket_index(__k, __code);
1545 __node_type* __p = _M_find_node(__bkt, __k, __code);
1546
1547 if (__p)
1548 {
1549 __node_type* __p1 = __p->_M_next();
1550 while (__p1 && _M_bucket_index(__p1) == __bkt
1551 && this->_M_equals(__k, __code, __p1))
1552 __p1 = __p1->_M_next();
1553
1554 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1555 }
1556 else
1557 return std::make_pair(end(), end());
1558 }
1559
1560 // Find the node whose key compares equal to k in the bucket bkt.
1561 // Return nullptr if no node is found.
1562 template<typename _Key, typename _Value,
1563 typename _Alloc, typename _ExtractKey, typename _Equal,
1564 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1565 typename _Traits>
1566 auto
1567 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1568 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1569 _M_find_before_node(size_type __bkt, const key_type& __k,
1570 __hash_code __code) const
1571 -> __node_base*
1572 {
1573 __node_base* __prev_p = _M_buckets[__bkt];
1574 if (!__prev_p)
1575 return nullptr;
1576
1577 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1578 __p = __p->_M_next())
1579 {
1580 if (this->_M_equals(__k, __code, __p))
1581 return __prev_p;
1582
1583 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1584 break;
1585 __prev_p = __p;
1586 }
1587 return nullptr;
1588 }
1589
1590 template<typename _Key, typename _Value,
1591 typename _Alloc, typename _ExtractKey, typename _Equal,
1592 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1593 typename _Traits>
1594 void
1595 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1596 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1597 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1598 {
1599 if (_M_buckets[__bkt])
1600 {
1601 // Bucket is not empty, we just need to insert the new node
1602 // after the bucket before begin.
1603 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1604 _M_buckets[__bkt]->_M_nxt = __node;
1605 }
1606 else
1607 {
1608 // The bucket is empty, the new node is inserted at the
1609 // beginning of the singly-linked list and the bucket will
1610 // contain _M_before_begin pointer.
1611 __node->_M_nxt = _M_before_begin._M_nxt;
1612 _M_before_begin._M_nxt = __node;
1613 if (__node->_M_nxt)
1614 // We must update former begin bucket that is pointing to
1615 // _M_before_begin.
1616 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1617 _M_buckets[__bkt] = &_M_before_begin;
1618 }
1619 }
1620
1621 template<typename _Key, typename _Value,
1622 typename _Alloc, typename _ExtractKey, typename _Equal,
1623 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1624 typename _Traits>
1625 void
1626 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1627 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1628 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1629 size_type __next_bkt)
1630 {
1631 if (!__next || __next_bkt != __bkt)
1632 {
1633 // Bucket is now empty
1634 // First update next bucket if any
1635 if (__next)
1636 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1637
1638 // Second update before begin node if necessary
1639 if (&_M_before_begin == _M_buckets[__bkt])
1640 _M_before_begin._M_nxt = __next;
1641 _M_buckets[__bkt] = nullptr;
1642 }
1643 }
1644
1645 template<typename _Key, typename _Value,
1646 typename _Alloc, typename _ExtractKey, typename _Equal,
1647 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1648 typename _Traits>
1649 auto
1650 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1651 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1652 _M_get_previous_node(size_type __bkt, __node_base* __n)
1653 -> __node_base*
1654 {
1655 __node_base* __prev_n = _M_buckets[__bkt];
1656 while (__prev_n->_M_nxt != __n)
1657 __prev_n = __prev_n->_M_nxt;
1658 return __prev_n;
1659 }
1660
1661 template<typename _Key, typename _Value,
1662 typename _Alloc, typename _ExtractKey, typename _Equal,
1663 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1664 typename _Traits>
1665 template<typename... _Args>
1666 auto
1667 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1668 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1669 _M_emplace(true_type, _Args&&... __args)
1670 -> pair<iterator, bool>
1671 {
1672 // First build the node to get access to the hash code
1673 _Scoped_node __node { this, std::forward<_Args>(__args)... };
1674 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1675 __hash_code __code = this->_M_hash_code(__k);
1676 size_type __bkt = _M_bucket_index(__k, __code);
1677 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1678 // There is already an equivalent node, no insertion
1679 return std::make_pair(iterator(__p), false);
1680
1681 // Insert the node
1682 auto __pos = _M_insert_unique_node(__k, __bkt, __code, __node._M_node);
1683 __node._M_node = nullptr;
1684 return { __pos, true };
1685 }
1686
1687 template<typename _Key, typename _Value,
1688 typename _Alloc, typename _ExtractKey, typename _Equal,
1689 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1690 typename _Traits>
1691 template<typename... _Args>
1692 auto
1693 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1694 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1695 _M_emplace(const_iterator __hint, false_type, _Args&&... __args)
1696 -> iterator
1697 {
1698 // First build the node to get its hash code.
1699 _Scoped_node __node { this, std::forward<_Args>(__args)... };
1700 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1701
1702 __hash_code __code = this->_M_hash_code(__k);
1703 auto __pos
1704 = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1705 __node._M_node = nullptr;
1706 return __pos;
1707 }
1708
1709 template<typename _Key, typename _Value,
1710 typename _Alloc, typename _ExtractKey, typename _Equal,
1711 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1712 typename _Traits>
1713 auto
1714 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1715 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1716 _M_insert_unique_node(const key_type& __k, size_type __bkt,
1717 __hash_code __code, __node_type* __node,
1718 size_type __n_elt)
1719 -> iterator
1720 {
1721 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1722 std::pair<bool, std::size_t> __do_rehash
1723 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1724 __n_elt);
1725
1726 if (__do_rehash.first)
1727 {
1728 _M_rehash(__do_rehash.second, __saved_state);
1729 __bkt = _M_bucket_index(__k, __code);
1730 }
1731
1732 this->_M_store_code(__node, __code);
1733
1734 // Always insert at the beginning of the bucket.
1735 _M_insert_bucket_begin(__bkt, __node);
1736 ++_M_element_count;
1737 return iterator(__node);
1738 }
1739
1740 template<typename _Key, typename _Value,
1741 typename _Alloc, typename _ExtractKey, typename _Equal,
1742 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1743 typename _Traits>
1744 auto
1745 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1746 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1747 _M_insert_multi_node(__node_type* __hint, const key_type& __k,
1748 __hash_code __code, __node_type* __node)
1749 -> iterator
1750 {
1751 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1752 std::pair<bool, std::size_t> __do_rehash
1753 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1754
1755 if (__do_rehash.first)
1756 _M_rehash(__do_rehash.second, __saved_state);
1757
1758 this->_M_store_code(__node, __code);
1759 size_type __bkt = _M_bucket_index(__k, __code);
1760
1761 // Find the node before an equivalent one or use hint if it exists and
1762 // if it is equivalent.
1763 __node_base* __prev
1764 = __builtin_expect(__hint != nullptr, false)
1765 && this->_M_equals(__k, __code, __hint)
1766 ? __hint
1767 : _M_find_before_node(__bkt, __k, __code);
1768 if (__prev)
1769 {
1770 // Insert after the node before the equivalent one.
1771 __node->_M_nxt = __prev->_M_nxt;
1772 __prev->_M_nxt = __node;
1773 if (__builtin_expect(__prev == __hint, false))
1774 // hint might be the last bucket node, in this case we need to
1775 // update next bucket.
1776 if (__node->_M_nxt
1777 && !this->_M_equals(__k, __code, __node->_M_next()))
1778 {
1779 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1780 if (__next_bkt != __bkt)
1781 _M_buckets[__next_bkt] = __node;
1782 }
1783 }
1784 else
1785 // The inserted node has no equivalent in the hashtable. We must
1786 // insert the new node at the beginning of the bucket to preserve
1787 // equivalent elements' relative positions.
1788 _M_insert_bucket_begin(__bkt, __node);
1789 ++_M_element_count;
1790 return iterator(__node);
1791 }
1792
1793 // Insert v if no element with its key is already present.
1794 template<typename _Key, typename _Value,
1795 typename _Alloc, typename _ExtractKey, typename _Equal,
1796 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1797 typename _Traits>
1798 template<typename _Arg, typename _NodeGenerator>
1799 auto
1800 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1801 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1802 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1803 size_type __n_elt)
1804 -> pair<iterator, bool>
1805 {
1806 const key_type& __k = this->_M_extract()(__v);
1807 __hash_code __code = this->_M_hash_code(__k);
1808 size_type __bkt = _M_bucket_index(__k, __code);
1809
1810 if (__node_type* __node = _M_find_node(__bkt, __k, __code))
1811 return { iterator(__node), false };
1812
1813 _Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1814 auto __pos
1815 = _M_insert_unique_node(__k, __bkt, __code, __node._M_node, __n_elt);
1816 __node._M_node = nullptr;
1817 return { __pos, true };
1818 }
1819
1820 // Insert v unconditionally.
1821 template<typename _Key, typename _Value,
1822 typename _Alloc, typename _ExtractKey, typename _Equal,
1823 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1824 typename _Traits>
1825 template<typename _Arg, typename _NodeGenerator>
1826 auto
1827 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1828 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1829 _M_insert(const_iterator __hint, _Arg&& __v,
1830 const _NodeGenerator& __node_gen, false_type)
1831 -> iterator
1832 {
1833 // First compute the hash code so that we don't do anything if it
1834 // throws.
1835 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1836
1837 // Second allocate new node so that we don't rehash if it throws.
1838 _Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1839 const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1840 auto __pos
1841 = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1842 __node._M_node = nullptr;
1843 return __pos;
1844 }
1845
1846 template<typename _Key, typename _Value,
1847 typename _Alloc, typename _ExtractKey, typename _Equal,
1848 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1849 typename _Traits>
1850 auto
1851 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1852 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1853 erase(const_iterator __it)
1854 -> iterator
1855 {
1856 __node_type* __n = __it._M_cur;
1857 std::size_t __bkt = _M_bucket_index(__n);
1858
1859 // Look for previous node to unlink it from the erased one, this
1860 // is why we need buckets to contain the before begin to make
1861 // this search fast.
1862 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1863 return _M_erase(__bkt, __prev_n, __n);
1864 }
1865
1866 template<typename _Key, typename _Value,
1867 typename _Alloc, typename _ExtractKey, typename _Equal,
1868 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1869 typename _Traits>
1870 auto
1871 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1872 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1873 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1874 -> iterator
1875 {
1876 if (__prev_n == _M_buckets[__bkt])
1877 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1878 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1879 else if (__n->_M_nxt)
1880 {
1881 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1882 if (__next_bkt != __bkt)
1883 _M_buckets[__next_bkt] = __prev_n;
1884 }
1885
1886 __prev_n->_M_nxt = __n->_M_nxt;
1887 iterator __result(__n->_M_next());
1888 this->_M_deallocate_node(__n);
1889 --_M_element_count;
1890
1891 return __result;
1892 }
1893
1894 template<typename _Key, typename _Value,
1895 typename _Alloc, typename _ExtractKey, typename _Equal,
1896 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1897 typename _Traits>
1898 auto
1899 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1900 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1901 _M_erase(true_type, const key_type& __k)
1902 -> size_type
1903 {
1904 __hash_code __code = this->_M_hash_code(__k);
1905 std::size_t __bkt = _M_bucket_index(__k, __code);
1906
1907 // Look for the node before the first matching node.
1908 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1909 if (!__prev_n)
1910 return 0;
1911
1912 // We found a matching node, erase it.
1913 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1914 _M_erase(__bkt, __prev_n, __n);
1915 return 1;
1916 }
1917
1918 template<typename _Key, typename _Value,
1919 typename _Alloc, typename _ExtractKey, typename _Equal,
1920 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1921 typename _Traits>
1922 auto
1923 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1924 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1925 _M_erase(false_type, const key_type& __k)
1926 -> size_type
1927 {
1928 __hash_code __code = this->_M_hash_code(__k);
1929 std::size_t __bkt = _M_bucket_index(__k, __code);
1930
1931 // Look for the node before the first matching node.
1932 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1933 if (!__prev_n)
1934 return 0;
1935
1936 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1937 // 526. Is it undefined if a function in the standard changes
1938 // in parameters?
1939 // We use one loop to find all matching nodes and another to deallocate
1940 // them so that the key stays valid during the first loop. It might be
1941 // invalidated indirectly when destroying nodes.
1942 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1943 __node_type* __n_last = __n;
1944 std::size_t __n_last_bkt = __bkt;
1945 do
1946 {
1947 __n_last = __n_last->_M_next();
1948 if (!__n_last)
1949 break;
1950 __n_last_bkt = _M_bucket_index(__n_last);
1951 }
1952 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1953
1954 // Deallocate nodes.
1955 size_type __result = 0;
1956 do
1957 {
1958 __node_type* __p = __n->_M_next();
1959 this->_M_deallocate_node(__n);
1960 __n = __p;
1961 ++__result;
1962 --_M_element_count;
1963 }
1964 while (__n != __n_last);
1965
1966 if (__prev_n == _M_buckets[__bkt])
1967 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1968 else if (__n_last && __n_last_bkt != __bkt)
1969 _M_buckets[__n_last_bkt] = __prev_n;
1970 __prev_n->_M_nxt = __n_last;
1971 return __result;
1972 }
1973
1974 template<typename _Key, typename _Value,
1975 typename _Alloc, typename _ExtractKey, typename _Equal,
1976 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1977 typename _Traits>
1978 auto
1979 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1980 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1981 erase(const_iterator __first, const_iterator __last)
1982 -> iterator
1983 {
1984 __node_type* __n = __first._M_cur;
1985 __node_type* __last_n = __last._M_cur;
1986 if (__n == __last_n)
1987 return iterator(__n);
1988
1989 std::size_t __bkt = _M_bucket_index(__n);
1990
1991 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1992 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1993 std::size_t __n_bkt = __bkt;
1994 for (;;)
1995 {
1996 do
1997 {
1998 __node_type* __tmp = __n;
1999 __n = __n->_M_next();
2000 this->_M_deallocate_node(__tmp);
2001 --_M_element_count;
2002 if (!__n)
2003 break;
2004 __n_bkt = _M_bucket_index(__n);
2005 }
2006 while (__n != __last_n && __n_bkt == __bkt);
2007 if (__is_bucket_begin)
2008 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2009 if (__n == __last_n)
2010 break;
2011 __is_bucket_begin = true;
2012 __bkt = __n_bkt;
2013 }
2014
2015 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2016 _M_buckets[__n_bkt] = __prev_n;
2017 __prev_n->_M_nxt = __n;
2018 return iterator(__n);
2019 }
2020
2021 template<typename _Key, typename _Value,
2022 typename _Alloc, typename _ExtractKey, typename _Equal,
2023 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2024 typename _Traits>
2025 void
2026 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2027 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2028 clear() noexcept
2029 {
2030 this->_M_deallocate_nodes(_M_begin());
2031 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2032 _M_element_count = 0;
2033 _M_before_begin._M_nxt = nullptr;
2034 }
2035
2036 template<typename _Key, typename _Value,
2037 typename _Alloc, typename _ExtractKey, typename _Equal,
2038 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2039 typename _Traits>
2040 void
2041 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2042 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2043 rehash(size_type __bkt_count)
2044 {
2045 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2046 __bkt_count
2047 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2048 __bkt_count);
2049 __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2050
2051 if (__bkt_count != _M_bucket_count)
2052 _M_rehash(__bkt_count, __saved_state);
2053 else
2054 // No rehash, restore previous state to keep it consistent with
2055 // container state.
2056 _M_rehash_policy._M_reset(__saved_state);
2057 }
2058
2059 template<typename _Key, typename _Value,
2060 typename _Alloc, typename _ExtractKey, typename _Equal,
2061 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2062 typename _Traits>
2063 void
2064 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2065 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2066 _M_rehash(size_type __bkt_count, const __rehash_state& __state)
2067 {
2068 __try
2069 {
2070 _M_rehash_aux(__bkt_count, __unique_keys());
2071 }
2072 __catch(...)
2073 {
2074 // A failure here means that buckets allocation failed. We only
2075 // have to restore hash policy previous state.
2076 _M_rehash_policy._M_reset(__state);
2077 __throw_exception_again;
2078 }
2079 }
2080
2081 // Rehash when there is no equivalent elements.
2082 template<typename _Key, typename _Value,
2083 typename _Alloc, typename _ExtractKey, typename _Equal,
2084 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2085 typename _Traits>
2086 void
2087 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2088 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2089 _M_rehash_aux(size_type __bkt_count, true_type)
2090 {
2091 __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2092 __node_type* __p = _M_begin();
2093 _M_before_begin._M_nxt = nullptr;
2094 std::size_t __bbegin_bkt = 0;
2095 while (__p)
2096 {
2097 __node_type* __next = __p->_M_next();
2098 std::size_t __bkt
2099 = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2100 if (!__new_buckets[__bkt])
2101 {
2102 __p->_M_nxt = _M_before_begin._M_nxt;
2103 _M_before_begin._M_nxt = __p;
2104 __new_buckets[__bkt] = &_M_before_begin;
2105 if (__p->_M_nxt)
2106 __new_buckets[__bbegin_bkt] = __p;
2107 __bbegin_bkt = __bkt;
2108 }
2109 else
2110 {
2111 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2112 __new_buckets[__bkt]->_M_nxt = __p;
2113 }
2114 __p = __next;
2115 }
2116
2117 _M_deallocate_buckets();
2118 _M_bucket_count = __bkt_count;
2119 _M_buckets = __new_buckets;
2120 }
2121
2122 // Rehash when there can be equivalent elements, preserve their relative
2123 // order.
2124 template<typename _Key, typename _Value,
2125 typename _Alloc, typename _ExtractKey, typename _Equal,
2126 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2127 typename _Traits>
2128 void
2129 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2130 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2131 _M_rehash_aux(size_type __bkt_count, false_type)
2132 {
2133 __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2134
2135 __node_type* __p = _M_begin();
2136 _M_before_begin._M_nxt = nullptr;
2137 std::size_t __bbegin_bkt = 0;
2138 std::size_t __prev_bkt = 0;
2139 __node_type* __prev_p = nullptr;
2140 bool __check_bucket = false;
2141
2142 while (__p)
2143 {
2144 __node_type* __next = __p->_M_next();
2145 std::size_t __bkt
2146 = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2147
2148 if (__prev_p && __prev_bkt == __bkt)
2149 {
2150 // Previous insert was already in this bucket, we insert after
2151 // the previously inserted one to preserve equivalent elements
2152 // relative order.
2153 __p->_M_nxt = __prev_p->_M_nxt;
2154 __prev_p->_M_nxt = __p;
2155
2156 // Inserting after a node in a bucket require to check that we
2157 // haven't change the bucket last node, in this case next
2158 // bucket containing its before begin node must be updated. We
2159 // schedule a check as soon as we move out of the sequence of
2160 // equivalent nodes to limit the number of checks.
2161 __check_bucket = true;
2162 }
2163 else
2164 {
2165 if (__check_bucket)
2166 {
2167 // Check if we shall update the next bucket because of
2168 // insertions into __prev_bkt bucket.
2169 if (__prev_p->_M_nxt)
2170 {
2171 std::size_t __next_bkt
2172 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2173 __bkt_count);
2174 if (__next_bkt != __prev_bkt)
2175 __new_buckets[__next_bkt] = __prev_p;
2176 }
2177 __check_bucket = false;
2178 }
2179
2180 if (!__new_buckets[__bkt])
2181 {
2182 __p->_M_nxt = _M_before_begin._M_nxt;
2183 _M_before_begin._M_nxt = __p;
2184 __new_buckets[__bkt] = &_M_before_begin;
2185 if (__p->_M_nxt)
2186 __new_buckets[__bbegin_bkt] = __p;
2187 __bbegin_bkt = __bkt;
2188 }
2189 else
2190 {
2191 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2192 __new_buckets[__bkt]->_M_nxt = __p;
2193 }
2194 }
2195 __prev_p = __p;
2196 __prev_bkt = __bkt;
2197 __p = __next;
2198 }
2199
2200 if (__check_bucket && __prev_p->_M_nxt)
2201 {
2202 std::size_t __next_bkt
2203 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2204 __bkt_count);
2205 if (__next_bkt != __prev_bkt)
2206 __new_buckets[__next_bkt] = __prev_p;
2207 }
2208
2209 _M_deallocate_buckets();
2210 _M_bucket_count = __bkt_count;
2211 _M_buckets = __new_buckets;
2212 }
2213
2214 #if __cplusplus > 201402L
2215 template<typename, typename, typename> class _Hash_merge_helper { };
2216 #endif // C++17
2217
2218 #if __cpp_deduction_guides >= 201606
2219 // Used to constrain deduction guides
2220 template<typename _Hash>
2221 using _RequireNotAllocatorOrIntegral
2222 = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2223 #endif
2224
2225 _GLIBCXX_END_NAMESPACE_VERSION
2226 } // namespace std
2227
2228 #endif // _HASHTABLE_H