]> git.ipfire.org Git - thirdparty/git.git/blob - builtin/pack-objects.c
config: don't include config.h by default
[thirdparty/git.git] / builtin / pack-objects.c
1 #include "builtin.h"
2 #include "cache.h"
3 #include "config.h"
4 #include "attr.h"
5 #include "object.h"
6 #include "blob.h"
7 #include "commit.h"
8 #include "tag.h"
9 #include "tree.h"
10 #include "delta.h"
11 #include "pack.h"
12 #include "pack-revindex.h"
13 #include "csum-file.h"
14 #include "tree-walk.h"
15 #include "diff.h"
16 #include "revision.h"
17 #include "list-objects.h"
18 #include "pack-objects.h"
19 #include "progress.h"
20 #include "refs.h"
21 #include "streaming.h"
22 #include "thread-utils.h"
23 #include "pack-bitmap.h"
24 #include "reachable.h"
25 #include "sha1-array.h"
26 #include "argv-array.h"
27 #include "mru.h"
28
29 static const char *pack_usage[] = {
30 N_("git pack-objects --stdout [<options>...] [< <ref-list> | < <object-list>]"),
31 N_("git pack-objects [<options>...] <base-name> [< <ref-list> | < <object-list>]"),
32 NULL
33 };
34
35 /*
36 * Objects we are going to pack are collected in the `to_pack` structure.
37 * It contains an array (dynamically expanded) of the object data, and a map
38 * that can resolve SHA1s to their position in the array.
39 */
40 static struct packing_data to_pack;
41
42 static struct pack_idx_entry **written_list;
43 static uint32_t nr_result, nr_written;
44
45 static int non_empty;
46 static int reuse_delta = 1, reuse_object = 1;
47 static int keep_unreachable, unpack_unreachable, include_tag;
48 static unsigned long unpack_unreachable_expiration;
49 static int pack_loose_unreachable;
50 static int local;
51 static int have_non_local_packs;
52 static int incremental;
53 static int ignore_packed_keep;
54 static int allow_ofs_delta;
55 static struct pack_idx_option pack_idx_opts;
56 static const char *base_name;
57 static int progress = 1;
58 static int window = 10;
59 static unsigned long pack_size_limit;
60 static int depth = 50;
61 static int delta_search_threads;
62 static int pack_to_stdout;
63 static int num_preferred_base;
64 static struct progress *progress_state;
65
66 static struct packed_git *reuse_packfile;
67 static uint32_t reuse_packfile_objects;
68 static off_t reuse_packfile_offset;
69
70 static int use_bitmap_index_default = 1;
71 static int use_bitmap_index = -1;
72 static int write_bitmap_index;
73 static uint16_t write_bitmap_options;
74
75 static unsigned long delta_cache_size = 0;
76 static unsigned long max_delta_cache_size = 256 * 1024 * 1024;
77 static unsigned long cache_max_small_delta_size = 1000;
78
79 static unsigned long window_memory_limit = 0;
80
81 /*
82 * stats
83 */
84 static uint32_t written, written_delta;
85 static uint32_t reused, reused_delta;
86
87 /*
88 * Indexed commits
89 */
90 static struct commit **indexed_commits;
91 static unsigned int indexed_commits_nr;
92 static unsigned int indexed_commits_alloc;
93
94 static void index_commit_for_bitmap(struct commit *commit)
95 {
96 if (indexed_commits_nr >= indexed_commits_alloc) {
97 indexed_commits_alloc = (indexed_commits_alloc + 32) * 2;
98 REALLOC_ARRAY(indexed_commits, indexed_commits_alloc);
99 }
100
101 indexed_commits[indexed_commits_nr++] = commit;
102 }
103
104 static void *get_delta(struct object_entry *entry)
105 {
106 unsigned long size, base_size, delta_size;
107 void *buf, *base_buf, *delta_buf;
108 enum object_type type;
109
110 buf = read_sha1_file(entry->idx.sha1, &type, &size);
111 if (!buf)
112 die("unable to read %s", sha1_to_hex(entry->idx.sha1));
113 base_buf = read_sha1_file(entry->delta->idx.sha1, &type, &base_size);
114 if (!base_buf)
115 die("unable to read %s", sha1_to_hex(entry->delta->idx.sha1));
116 delta_buf = diff_delta(base_buf, base_size,
117 buf, size, &delta_size, 0);
118 if (!delta_buf || delta_size != entry->delta_size)
119 die("delta size changed");
120 free(buf);
121 free(base_buf);
122 return delta_buf;
123 }
124
125 static unsigned long do_compress(void **pptr, unsigned long size)
126 {
127 git_zstream stream;
128 void *in, *out;
129 unsigned long maxsize;
130
131 git_deflate_init(&stream, pack_compression_level);
132 maxsize = git_deflate_bound(&stream, size);
133
134 in = *pptr;
135 out = xmalloc(maxsize);
136 *pptr = out;
137
138 stream.next_in = in;
139 stream.avail_in = size;
140 stream.next_out = out;
141 stream.avail_out = maxsize;
142 while (git_deflate(&stream, Z_FINISH) == Z_OK)
143 ; /* nothing */
144 git_deflate_end(&stream);
145
146 free(in);
147 return stream.total_out;
148 }
149
150 static unsigned long write_large_blob_data(struct git_istream *st, struct sha1file *f,
151 const unsigned char *sha1)
152 {
153 git_zstream stream;
154 unsigned char ibuf[1024 * 16];
155 unsigned char obuf[1024 * 16];
156 unsigned long olen = 0;
157
158 git_deflate_init(&stream, pack_compression_level);
159
160 for (;;) {
161 ssize_t readlen;
162 int zret = Z_OK;
163 readlen = read_istream(st, ibuf, sizeof(ibuf));
164 if (readlen == -1)
165 die(_("unable to read %s"), sha1_to_hex(sha1));
166
167 stream.next_in = ibuf;
168 stream.avail_in = readlen;
169 while ((stream.avail_in || readlen == 0) &&
170 (zret == Z_OK || zret == Z_BUF_ERROR)) {
171 stream.next_out = obuf;
172 stream.avail_out = sizeof(obuf);
173 zret = git_deflate(&stream, readlen ? 0 : Z_FINISH);
174 sha1write(f, obuf, stream.next_out - obuf);
175 olen += stream.next_out - obuf;
176 }
177 if (stream.avail_in)
178 die(_("deflate error (%d)"), zret);
179 if (readlen == 0) {
180 if (zret != Z_STREAM_END)
181 die(_("deflate error (%d)"), zret);
182 break;
183 }
184 }
185 git_deflate_end(&stream);
186 return olen;
187 }
188
189 /*
190 * we are going to reuse the existing object data as is. make
191 * sure it is not corrupt.
192 */
193 static int check_pack_inflate(struct packed_git *p,
194 struct pack_window **w_curs,
195 off_t offset,
196 off_t len,
197 unsigned long expect)
198 {
199 git_zstream stream;
200 unsigned char fakebuf[4096], *in;
201 int st;
202
203 memset(&stream, 0, sizeof(stream));
204 git_inflate_init(&stream);
205 do {
206 in = use_pack(p, w_curs, offset, &stream.avail_in);
207 stream.next_in = in;
208 stream.next_out = fakebuf;
209 stream.avail_out = sizeof(fakebuf);
210 st = git_inflate(&stream, Z_FINISH);
211 offset += stream.next_in - in;
212 } while (st == Z_OK || st == Z_BUF_ERROR);
213 git_inflate_end(&stream);
214 return (st == Z_STREAM_END &&
215 stream.total_out == expect &&
216 stream.total_in == len) ? 0 : -1;
217 }
218
219 static void copy_pack_data(struct sha1file *f,
220 struct packed_git *p,
221 struct pack_window **w_curs,
222 off_t offset,
223 off_t len)
224 {
225 unsigned char *in;
226 unsigned long avail;
227
228 while (len) {
229 in = use_pack(p, w_curs, offset, &avail);
230 if (avail > len)
231 avail = (unsigned long)len;
232 sha1write(f, in, avail);
233 offset += avail;
234 len -= avail;
235 }
236 }
237
238 /* Return 0 if we will bust the pack-size limit */
239 static unsigned long write_no_reuse_object(struct sha1file *f, struct object_entry *entry,
240 unsigned long limit, int usable_delta)
241 {
242 unsigned long size, datalen;
243 unsigned char header[MAX_PACK_OBJECT_HEADER],
244 dheader[MAX_PACK_OBJECT_HEADER];
245 unsigned hdrlen;
246 enum object_type type;
247 void *buf;
248 struct git_istream *st = NULL;
249
250 if (!usable_delta) {
251 if (entry->type == OBJ_BLOB &&
252 entry->size > big_file_threshold &&
253 (st = open_istream(entry->idx.sha1, &type, &size, NULL)) != NULL)
254 buf = NULL;
255 else {
256 buf = read_sha1_file(entry->idx.sha1, &type, &size);
257 if (!buf)
258 die(_("unable to read %s"), sha1_to_hex(entry->idx.sha1));
259 }
260 /*
261 * make sure no cached delta data remains from a
262 * previous attempt before a pack split occurred.
263 */
264 free(entry->delta_data);
265 entry->delta_data = NULL;
266 entry->z_delta_size = 0;
267 } else if (entry->delta_data) {
268 size = entry->delta_size;
269 buf = entry->delta_data;
270 entry->delta_data = NULL;
271 type = (allow_ofs_delta && entry->delta->idx.offset) ?
272 OBJ_OFS_DELTA : OBJ_REF_DELTA;
273 } else {
274 buf = get_delta(entry);
275 size = entry->delta_size;
276 type = (allow_ofs_delta && entry->delta->idx.offset) ?
277 OBJ_OFS_DELTA : OBJ_REF_DELTA;
278 }
279
280 if (st) /* large blob case, just assume we don't compress well */
281 datalen = size;
282 else if (entry->z_delta_size)
283 datalen = entry->z_delta_size;
284 else
285 datalen = do_compress(&buf, size);
286
287 /*
288 * The object header is a byte of 'type' followed by zero or
289 * more bytes of length.
290 */
291 hdrlen = encode_in_pack_object_header(header, sizeof(header),
292 type, size);
293
294 if (type == OBJ_OFS_DELTA) {
295 /*
296 * Deltas with relative base contain an additional
297 * encoding of the relative offset for the delta
298 * base from this object's position in the pack.
299 */
300 off_t ofs = entry->idx.offset - entry->delta->idx.offset;
301 unsigned pos = sizeof(dheader) - 1;
302 dheader[pos] = ofs & 127;
303 while (ofs >>= 7)
304 dheader[--pos] = 128 | (--ofs & 127);
305 if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) {
306 if (st)
307 close_istream(st);
308 free(buf);
309 return 0;
310 }
311 sha1write(f, header, hdrlen);
312 sha1write(f, dheader + pos, sizeof(dheader) - pos);
313 hdrlen += sizeof(dheader) - pos;
314 } else if (type == OBJ_REF_DELTA) {
315 /*
316 * Deltas with a base reference contain
317 * an additional 20 bytes for the base sha1.
318 */
319 if (limit && hdrlen + 20 + datalen + 20 >= limit) {
320 if (st)
321 close_istream(st);
322 free(buf);
323 return 0;
324 }
325 sha1write(f, header, hdrlen);
326 sha1write(f, entry->delta->idx.sha1, 20);
327 hdrlen += 20;
328 } else {
329 if (limit && hdrlen + datalen + 20 >= limit) {
330 if (st)
331 close_istream(st);
332 free(buf);
333 return 0;
334 }
335 sha1write(f, header, hdrlen);
336 }
337 if (st) {
338 datalen = write_large_blob_data(st, f, entry->idx.sha1);
339 close_istream(st);
340 } else {
341 sha1write(f, buf, datalen);
342 free(buf);
343 }
344
345 return hdrlen + datalen;
346 }
347
348 /* Return 0 if we will bust the pack-size limit */
349 static off_t write_reuse_object(struct sha1file *f, struct object_entry *entry,
350 unsigned long limit, int usable_delta)
351 {
352 struct packed_git *p = entry->in_pack;
353 struct pack_window *w_curs = NULL;
354 struct revindex_entry *revidx;
355 off_t offset;
356 enum object_type type = entry->type;
357 off_t datalen;
358 unsigned char header[MAX_PACK_OBJECT_HEADER],
359 dheader[MAX_PACK_OBJECT_HEADER];
360 unsigned hdrlen;
361
362 if (entry->delta)
363 type = (allow_ofs_delta && entry->delta->idx.offset) ?
364 OBJ_OFS_DELTA : OBJ_REF_DELTA;
365 hdrlen = encode_in_pack_object_header(header, sizeof(header),
366 type, entry->size);
367
368 offset = entry->in_pack_offset;
369 revidx = find_pack_revindex(p, offset);
370 datalen = revidx[1].offset - offset;
371 if (!pack_to_stdout && p->index_version > 1 &&
372 check_pack_crc(p, &w_curs, offset, datalen, revidx->nr)) {
373 error("bad packed object CRC for %s", sha1_to_hex(entry->idx.sha1));
374 unuse_pack(&w_curs);
375 return write_no_reuse_object(f, entry, limit, usable_delta);
376 }
377
378 offset += entry->in_pack_header_size;
379 datalen -= entry->in_pack_header_size;
380
381 if (!pack_to_stdout && p->index_version == 1 &&
382 check_pack_inflate(p, &w_curs, offset, datalen, entry->size)) {
383 error("corrupt packed object for %s", sha1_to_hex(entry->idx.sha1));
384 unuse_pack(&w_curs);
385 return write_no_reuse_object(f, entry, limit, usable_delta);
386 }
387
388 if (type == OBJ_OFS_DELTA) {
389 off_t ofs = entry->idx.offset - entry->delta->idx.offset;
390 unsigned pos = sizeof(dheader) - 1;
391 dheader[pos] = ofs & 127;
392 while (ofs >>= 7)
393 dheader[--pos] = 128 | (--ofs & 127);
394 if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) {
395 unuse_pack(&w_curs);
396 return 0;
397 }
398 sha1write(f, header, hdrlen);
399 sha1write(f, dheader + pos, sizeof(dheader) - pos);
400 hdrlen += sizeof(dheader) - pos;
401 reused_delta++;
402 } else if (type == OBJ_REF_DELTA) {
403 if (limit && hdrlen + 20 + datalen + 20 >= limit) {
404 unuse_pack(&w_curs);
405 return 0;
406 }
407 sha1write(f, header, hdrlen);
408 sha1write(f, entry->delta->idx.sha1, 20);
409 hdrlen += 20;
410 reused_delta++;
411 } else {
412 if (limit && hdrlen + datalen + 20 >= limit) {
413 unuse_pack(&w_curs);
414 return 0;
415 }
416 sha1write(f, header, hdrlen);
417 }
418 copy_pack_data(f, p, &w_curs, offset, datalen);
419 unuse_pack(&w_curs);
420 reused++;
421 return hdrlen + datalen;
422 }
423
424 /* Return 0 if we will bust the pack-size limit */
425 static off_t write_object(struct sha1file *f,
426 struct object_entry *entry,
427 off_t write_offset)
428 {
429 unsigned long limit;
430 off_t len;
431 int usable_delta, to_reuse;
432
433 if (!pack_to_stdout)
434 crc32_begin(f);
435
436 /* apply size limit if limited packsize and not first object */
437 if (!pack_size_limit || !nr_written)
438 limit = 0;
439 else if (pack_size_limit <= write_offset)
440 /*
441 * the earlier object did not fit the limit; avoid
442 * mistaking this with unlimited (i.e. limit = 0).
443 */
444 limit = 1;
445 else
446 limit = pack_size_limit - write_offset;
447
448 if (!entry->delta)
449 usable_delta = 0; /* no delta */
450 else if (!pack_size_limit)
451 usable_delta = 1; /* unlimited packfile */
452 else if (entry->delta->idx.offset == (off_t)-1)
453 usable_delta = 0; /* base was written to another pack */
454 else if (entry->delta->idx.offset)
455 usable_delta = 1; /* base already exists in this pack */
456 else
457 usable_delta = 0; /* base could end up in another pack */
458
459 if (!reuse_object)
460 to_reuse = 0; /* explicit */
461 else if (!entry->in_pack)
462 to_reuse = 0; /* can't reuse what we don't have */
463 else if (entry->type == OBJ_REF_DELTA || entry->type == OBJ_OFS_DELTA)
464 /* check_object() decided it for us ... */
465 to_reuse = usable_delta;
466 /* ... but pack split may override that */
467 else if (entry->type != entry->in_pack_type)
468 to_reuse = 0; /* pack has delta which is unusable */
469 else if (entry->delta)
470 to_reuse = 0; /* we want to pack afresh */
471 else
472 to_reuse = 1; /* we have it in-pack undeltified,
473 * and we do not need to deltify it.
474 */
475
476 if (!to_reuse)
477 len = write_no_reuse_object(f, entry, limit, usable_delta);
478 else
479 len = write_reuse_object(f, entry, limit, usable_delta);
480 if (!len)
481 return 0;
482
483 if (usable_delta)
484 written_delta++;
485 written++;
486 if (!pack_to_stdout)
487 entry->idx.crc32 = crc32_end(f);
488 return len;
489 }
490
491 enum write_one_status {
492 WRITE_ONE_SKIP = -1, /* already written */
493 WRITE_ONE_BREAK = 0, /* writing this will bust the limit; not written */
494 WRITE_ONE_WRITTEN = 1, /* normal */
495 WRITE_ONE_RECURSIVE = 2 /* already scheduled to be written */
496 };
497
498 static enum write_one_status write_one(struct sha1file *f,
499 struct object_entry *e,
500 off_t *offset)
501 {
502 off_t size;
503 int recursing;
504
505 /*
506 * we set offset to 1 (which is an impossible value) to mark
507 * the fact that this object is involved in "write its base
508 * first before writing a deltified object" recursion.
509 */
510 recursing = (e->idx.offset == 1);
511 if (recursing) {
512 warning("recursive delta detected for object %s",
513 sha1_to_hex(e->idx.sha1));
514 return WRITE_ONE_RECURSIVE;
515 } else if (e->idx.offset || e->preferred_base) {
516 /* offset is non zero if object is written already. */
517 return WRITE_ONE_SKIP;
518 }
519
520 /* if we are deltified, write out base object first. */
521 if (e->delta) {
522 e->idx.offset = 1; /* now recurse */
523 switch (write_one(f, e->delta, offset)) {
524 case WRITE_ONE_RECURSIVE:
525 /* we cannot depend on this one */
526 e->delta = NULL;
527 break;
528 default:
529 break;
530 case WRITE_ONE_BREAK:
531 e->idx.offset = recursing;
532 return WRITE_ONE_BREAK;
533 }
534 }
535
536 e->idx.offset = *offset;
537 size = write_object(f, e, *offset);
538 if (!size) {
539 e->idx.offset = recursing;
540 return WRITE_ONE_BREAK;
541 }
542 written_list[nr_written++] = &e->idx;
543
544 /* make sure off_t is sufficiently large not to wrap */
545 if (signed_add_overflows(*offset, size))
546 die("pack too large for current definition of off_t");
547 *offset += size;
548 return WRITE_ONE_WRITTEN;
549 }
550
551 static int mark_tagged(const char *path, const struct object_id *oid, int flag,
552 void *cb_data)
553 {
554 unsigned char peeled[20];
555 struct object_entry *entry = packlist_find(&to_pack, oid->hash, NULL);
556
557 if (entry)
558 entry->tagged = 1;
559 if (!peel_ref(path, peeled)) {
560 entry = packlist_find(&to_pack, peeled, NULL);
561 if (entry)
562 entry->tagged = 1;
563 }
564 return 0;
565 }
566
567 static inline void add_to_write_order(struct object_entry **wo,
568 unsigned int *endp,
569 struct object_entry *e)
570 {
571 if (e->filled)
572 return;
573 wo[(*endp)++] = e;
574 e->filled = 1;
575 }
576
577 static void add_descendants_to_write_order(struct object_entry **wo,
578 unsigned int *endp,
579 struct object_entry *e)
580 {
581 int add_to_order = 1;
582 while (e) {
583 if (add_to_order) {
584 struct object_entry *s;
585 /* add this node... */
586 add_to_write_order(wo, endp, e);
587 /* all its siblings... */
588 for (s = e->delta_sibling; s; s = s->delta_sibling) {
589 add_to_write_order(wo, endp, s);
590 }
591 }
592 /* drop down a level to add left subtree nodes if possible */
593 if (e->delta_child) {
594 add_to_order = 1;
595 e = e->delta_child;
596 } else {
597 add_to_order = 0;
598 /* our sibling might have some children, it is next */
599 if (e->delta_sibling) {
600 e = e->delta_sibling;
601 continue;
602 }
603 /* go back to our parent node */
604 e = e->delta;
605 while (e && !e->delta_sibling) {
606 /* we're on the right side of a subtree, keep
607 * going up until we can go right again */
608 e = e->delta;
609 }
610 if (!e) {
611 /* done- we hit our original root node */
612 return;
613 }
614 /* pass it off to sibling at this level */
615 e = e->delta_sibling;
616 }
617 };
618 }
619
620 static void add_family_to_write_order(struct object_entry **wo,
621 unsigned int *endp,
622 struct object_entry *e)
623 {
624 struct object_entry *root;
625
626 for (root = e; root->delta; root = root->delta)
627 ; /* nothing */
628 add_descendants_to_write_order(wo, endp, root);
629 }
630
631 static struct object_entry **compute_write_order(void)
632 {
633 unsigned int i, wo_end, last_untagged;
634
635 struct object_entry **wo;
636 struct object_entry *objects = to_pack.objects;
637
638 for (i = 0; i < to_pack.nr_objects; i++) {
639 objects[i].tagged = 0;
640 objects[i].filled = 0;
641 objects[i].delta_child = NULL;
642 objects[i].delta_sibling = NULL;
643 }
644
645 /*
646 * Fully connect delta_child/delta_sibling network.
647 * Make sure delta_sibling is sorted in the original
648 * recency order.
649 */
650 for (i = to_pack.nr_objects; i > 0;) {
651 struct object_entry *e = &objects[--i];
652 if (!e->delta)
653 continue;
654 /* Mark me as the first child */
655 e->delta_sibling = e->delta->delta_child;
656 e->delta->delta_child = e;
657 }
658
659 /*
660 * Mark objects that are at the tip of tags.
661 */
662 for_each_tag_ref(mark_tagged, NULL);
663
664 /*
665 * Give the objects in the original recency order until
666 * we see a tagged tip.
667 */
668 ALLOC_ARRAY(wo, to_pack.nr_objects);
669 for (i = wo_end = 0; i < to_pack.nr_objects; i++) {
670 if (objects[i].tagged)
671 break;
672 add_to_write_order(wo, &wo_end, &objects[i]);
673 }
674 last_untagged = i;
675
676 /*
677 * Then fill all the tagged tips.
678 */
679 for (; i < to_pack.nr_objects; i++) {
680 if (objects[i].tagged)
681 add_to_write_order(wo, &wo_end, &objects[i]);
682 }
683
684 /*
685 * And then all remaining commits and tags.
686 */
687 for (i = last_untagged; i < to_pack.nr_objects; i++) {
688 if (objects[i].type != OBJ_COMMIT &&
689 objects[i].type != OBJ_TAG)
690 continue;
691 add_to_write_order(wo, &wo_end, &objects[i]);
692 }
693
694 /*
695 * And then all the trees.
696 */
697 for (i = last_untagged; i < to_pack.nr_objects; i++) {
698 if (objects[i].type != OBJ_TREE)
699 continue;
700 add_to_write_order(wo, &wo_end, &objects[i]);
701 }
702
703 /*
704 * Finally all the rest in really tight order
705 */
706 for (i = last_untagged; i < to_pack.nr_objects; i++) {
707 if (!objects[i].filled)
708 add_family_to_write_order(wo, &wo_end, &objects[i]);
709 }
710
711 if (wo_end != to_pack.nr_objects)
712 die("ordered %u objects, expected %"PRIu32, wo_end, to_pack.nr_objects);
713
714 return wo;
715 }
716
717 static off_t write_reused_pack(struct sha1file *f)
718 {
719 unsigned char buffer[8192];
720 off_t to_write, total;
721 int fd;
722
723 if (!is_pack_valid(reuse_packfile))
724 die("packfile is invalid: %s", reuse_packfile->pack_name);
725
726 fd = git_open(reuse_packfile->pack_name);
727 if (fd < 0)
728 die_errno("unable to open packfile for reuse: %s",
729 reuse_packfile->pack_name);
730
731 if (lseek(fd, sizeof(struct pack_header), SEEK_SET) == -1)
732 die_errno("unable to seek in reused packfile");
733
734 if (reuse_packfile_offset < 0)
735 reuse_packfile_offset = reuse_packfile->pack_size - 20;
736
737 total = to_write = reuse_packfile_offset - sizeof(struct pack_header);
738
739 while (to_write) {
740 int read_pack = xread(fd, buffer, sizeof(buffer));
741
742 if (read_pack <= 0)
743 die_errno("unable to read from reused packfile");
744
745 if (read_pack > to_write)
746 read_pack = to_write;
747
748 sha1write(f, buffer, read_pack);
749 to_write -= read_pack;
750
751 /*
752 * We don't know the actual number of objects written,
753 * only how many bytes written, how many bytes total, and
754 * how many objects total. So we can fake it by pretending all
755 * objects we are writing are the same size. This gives us a
756 * smooth progress meter, and at the end it matches the true
757 * answer.
758 */
759 written = reuse_packfile_objects *
760 (((double)(total - to_write)) / total);
761 display_progress(progress_state, written);
762 }
763
764 close(fd);
765 written = reuse_packfile_objects;
766 display_progress(progress_state, written);
767 return reuse_packfile_offset - sizeof(struct pack_header);
768 }
769
770 static const char no_split_warning[] = N_(
771 "disabling bitmap writing, packs are split due to pack.packSizeLimit"
772 );
773
774 static void write_pack_file(void)
775 {
776 uint32_t i = 0, j;
777 struct sha1file *f;
778 off_t offset;
779 uint32_t nr_remaining = nr_result;
780 time_t last_mtime = 0;
781 struct object_entry **write_order;
782
783 if (progress > pack_to_stdout)
784 progress_state = start_progress(_("Writing objects"), nr_result);
785 ALLOC_ARRAY(written_list, to_pack.nr_objects);
786 write_order = compute_write_order();
787
788 do {
789 unsigned char sha1[20];
790 char *pack_tmp_name = NULL;
791
792 if (pack_to_stdout)
793 f = sha1fd_throughput(1, "<stdout>", progress_state);
794 else
795 f = create_tmp_packfile(&pack_tmp_name);
796
797 offset = write_pack_header(f, nr_remaining);
798
799 if (reuse_packfile) {
800 off_t packfile_size;
801 assert(pack_to_stdout);
802
803 packfile_size = write_reused_pack(f);
804 offset += packfile_size;
805 }
806
807 nr_written = 0;
808 for (; i < to_pack.nr_objects; i++) {
809 struct object_entry *e = write_order[i];
810 if (write_one(f, e, &offset) == WRITE_ONE_BREAK)
811 break;
812 display_progress(progress_state, written);
813 }
814
815 /*
816 * Did we write the wrong # entries in the header?
817 * If so, rewrite it like in fast-import
818 */
819 if (pack_to_stdout) {
820 sha1close(f, sha1, CSUM_CLOSE);
821 } else if (nr_written == nr_remaining) {
822 sha1close(f, sha1, CSUM_FSYNC);
823 } else {
824 int fd = sha1close(f, sha1, 0);
825 fixup_pack_header_footer(fd, sha1, pack_tmp_name,
826 nr_written, sha1, offset);
827 close(fd);
828 if (write_bitmap_index) {
829 warning(_(no_split_warning));
830 write_bitmap_index = 0;
831 }
832 }
833
834 if (!pack_to_stdout) {
835 struct stat st;
836 struct strbuf tmpname = STRBUF_INIT;
837
838 /*
839 * Packs are runtime accessed in their mtime
840 * order since newer packs are more likely to contain
841 * younger objects. So if we are creating multiple
842 * packs then we should modify the mtime of later ones
843 * to preserve this property.
844 */
845 if (stat(pack_tmp_name, &st) < 0) {
846 warning_errno("failed to stat %s", pack_tmp_name);
847 } else if (!last_mtime) {
848 last_mtime = st.st_mtime;
849 } else {
850 struct utimbuf utb;
851 utb.actime = st.st_atime;
852 utb.modtime = --last_mtime;
853 if (utime(pack_tmp_name, &utb) < 0)
854 warning_errno("failed utime() on %s", pack_tmp_name);
855 }
856
857 strbuf_addf(&tmpname, "%s-", base_name);
858
859 if (write_bitmap_index) {
860 bitmap_writer_set_checksum(sha1);
861 bitmap_writer_build_type_index(written_list, nr_written);
862 }
863
864 finish_tmp_packfile(&tmpname, pack_tmp_name,
865 written_list, nr_written,
866 &pack_idx_opts, sha1);
867
868 if (write_bitmap_index) {
869 strbuf_addf(&tmpname, "%s.bitmap", sha1_to_hex(sha1));
870
871 stop_progress(&progress_state);
872
873 bitmap_writer_show_progress(progress);
874 bitmap_writer_reuse_bitmaps(&to_pack);
875 bitmap_writer_select_commits(indexed_commits, indexed_commits_nr, -1);
876 bitmap_writer_build(&to_pack);
877 bitmap_writer_finish(written_list, nr_written,
878 tmpname.buf, write_bitmap_options);
879 write_bitmap_index = 0;
880 }
881
882 strbuf_release(&tmpname);
883 free(pack_tmp_name);
884 puts(sha1_to_hex(sha1));
885 }
886
887 /* mark written objects as written to previous pack */
888 for (j = 0; j < nr_written; j++) {
889 written_list[j]->offset = (off_t)-1;
890 }
891 nr_remaining -= nr_written;
892 } while (nr_remaining && i < to_pack.nr_objects);
893
894 free(written_list);
895 free(write_order);
896 stop_progress(&progress_state);
897 if (written != nr_result)
898 die("wrote %"PRIu32" objects while expecting %"PRIu32,
899 written, nr_result);
900 }
901
902 static int no_try_delta(const char *path)
903 {
904 static struct attr_check *check;
905
906 if (!check)
907 check = attr_check_initl("delta", NULL);
908 if (git_check_attr(path, check))
909 return 0;
910 if (ATTR_FALSE(check->items[0].value))
911 return 1;
912 return 0;
913 }
914
915 /*
916 * When adding an object, check whether we have already added it
917 * to our packing list. If so, we can skip. However, if we are
918 * being asked to excludei t, but the previous mention was to include
919 * it, make sure to adjust its flags and tweak our numbers accordingly.
920 *
921 * As an optimization, we pass out the index position where we would have
922 * found the item, since that saves us from having to look it up again a
923 * few lines later when we want to add the new entry.
924 */
925 static int have_duplicate_entry(const unsigned char *sha1,
926 int exclude,
927 uint32_t *index_pos)
928 {
929 struct object_entry *entry;
930
931 entry = packlist_find(&to_pack, sha1, index_pos);
932 if (!entry)
933 return 0;
934
935 if (exclude) {
936 if (!entry->preferred_base)
937 nr_result--;
938 entry->preferred_base = 1;
939 }
940
941 return 1;
942 }
943
944 static int want_found_object(int exclude, struct packed_git *p)
945 {
946 if (exclude)
947 return 1;
948 if (incremental)
949 return 0;
950
951 /*
952 * When asked to do --local (do not include an object that appears in a
953 * pack we borrow from elsewhere) or --honor-pack-keep (do not include
954 * an object that appears in a pack marked with .keep), finding a pack
955 * that matches the criteria is sufficient for us to decide to omit it.
956 * However, even if this pack does not satisfy the criteria, we need to
957 * make sure no copy of this object appears in _any_ pack that makes us
958 * to omit the object, so we need to check all the packs.
959 *
960 * We can however first check whether these options can possible matter;
961 * if they do not matter we know we want the object in generated pack.
962 * Otherwise, we signal "-1" at the end to tell the caller that we do
963 * not know either way, and it needs to check more packs.
964 */
965 if (!ignore_packed_keep &&
966 (!local || !have_non_local_packs))
967 return 1;
968
969 if (local && !p->pack_local)
970 return 0;
971 if (ignore_packed_keep && p->pack_local && p->pack_keep)
972 return 0;
973
974 /* we don't know yet; keep looking for more packs */
975 return -1;
976 }
977
978 /*
979 * Check whether we want the object in the pack (e.g., we do not want
980 * objects found in non-local stores if the "--local" option was used).
981 *
982 * If the caller already knows an existing pack it wants to take the object
983 * from, that is passed in *found_pack and *found_offset; otherwise this
984 * function finds if there is any pack that has the object and returns the pack
985 * and its offset in these variables.
986 */
987 static int want_object_in_pack(const unsigned char *sha1,
988 int exclude,
989 struct packed_git **found_pack,
990 off_t *found_offset)
991 {
992 struct mru_entry *entry;
993 int want;
994
995 if (!exclude && local && has_loose_object_nonlocal(sha1))
996 return 0;
997
998 /*
999 * If we already know the pack object lives in, start checks from that
1000 * pack - in the usual case when neither --local was given nor .keep files
1001 * are present we will determine the answer right now.
1002 */
1003 if (*found_pack) {
1004 want = want_found_object(exclude, *found_pack);
1005 if (want != -1)
1006 return want;
1007 }
1008
1009 for (entry = packed_git_mru->head; entry; entry = entry->next) {
1010 struct packed_git *p = entry->item;
1011 off_t offset;
1012
1013 if (p == *found_pack)
1014 offset = *found_offset;
1015 else
1016 offset = find_pack_entry_one(sha1, p);
1017
1018 if (offset) {
1019 if (!*found_pack) {
1020 if (!is_pack_valid(p))
1021 continue;
1022 *found_offset = offset;
1023 *found_pack = p;
1024 }
1025 want = want_found_object(exclude, p);
1026 if (!exclude && want > 0)
1027 mru_mark(packed_git_mru, entry);
1028 if (want != -1)
1029 return want;
1030 }
1031 }
1032
1033 return 1;
1034 }
1035
1036 static void create_object_entry(const unsigned char *sha1,
1037 enum object_type type,
1038 uint32_t hash,
1039 int exclude,
1040 int no_try_delta,
1041 uint32_t index_pos,
1042 struct packed_git *found_pack,
1043 off_t found_offset)
1044 {
1045 struct object_entry *entry;
1046
1047 entry = packlist_alloc(&to_pack, sha1, index_pos);
1048 entry->hash = hash;
1049 if (type)
1050 entry->type = type;
1051 if (exclude)
1052 entry->preferred_base = 1;
1053 else
1054 nr_result++;
1055 if (found_pack) {
1056 entry->in_pack = found_pack;
1057 entry->in_pack_offset = found_offset;
1058 }
1059
1060 entry->no_try_delta = no_try_delta;
1061 }
1062
1063 static const char no_closure_warning[] = N_(
1064 "disabling bitmap writing, as some objects are not being packed"
1065 );
1066
1067 static int add_object_entry(const unsigned char *sha1, enum object_type type,
1068 const char *name, int exclude)
1069 {
1070 struct packed_git *found_pack = NULL;
1071 off_t found_offset = 0;
1072 uint32_t index_pos;
1073
1074 if (have_duplicate_entry(sha1, exclude, &index_pos))
1075 return 0;
1076
1077 if (!want_object_in_pack(sha1, exclude, &found_pack, &found_offset)) {
1078 /* The pack is missing an object, so it will not have closure */
1079 if (write_bitmap_index) {
1080 warning(_(no_closure_warning));
1081 write_bitmap_index = 0;
1082 }
1083 return 0;
1084 }
1085
1086 create_object_entry(sha1, type, pack_name_hash(name),
1087 exclude, name && no_try_delta(name),
1088 index_pos, found_pack, found_offset);
1089
1090 display_progress(progress_state, nr_result);
1091 return 1;
1092 }
1093
1094 static int add_object_entry_from_bitmap(const unsigned char *sha1,
1095 enum object_type type,
1096 int flags, uint32_t name_hash,
1097 struct packed_git *pack, off_t offset)
1098 {
1099 uint32_t index_pos;
1100
1101 if (have_duplicate_entry(sha1, 0, &index_pos))
1102 return 0;
1103
1104 if (!want_object_in_pack(sha1, 0, &pack, &offset))
1105 return 0;
1106
1107 create_object_entry(sha1, type, name_hash, 0, 0, index_pos, pack, offset);
1108
1109 display_progress(progress_state, nr_result);
1110 return 1;
1111 }
1112
1113 struct pbase_tree_cache {
1114 unsigned char sha1[20];
1115 int ref;
1116 int temporary;
1117 void *tree_data;
1118 unsigned long tree_size;
1119 };
1120
1121 static struct pbase_tree_cache *(pbase_tree_cache[256]);
1122 static int pbase_tree_cache_ix(const unsigned char *sha1)
1123 {
1124 return sha1[0] % ARRAY_SIZE(pbase_tree_cache);
1125 }
1126 static int pbase_tree_cache_ix_incr(int ix)
1127 {
1128 return (ix+1) % ARRAY_SIZE(pbase_tree_cache);
1129 }
1130
1131 static struct pbase_tree {
1132 struct pbase_tree *next;
1133 /* This is a phony "cache" entry; we are not
1134 * going to evict it or find it through _get()
1135 * mechanism -- this is for the toplevel node that
1136 * would almost always change with any commit.
1137 */
1138 struct pbase_tree_cache pcache;
1139 } *pbase_tree;
1140
1141 static struct pbase_tree_cache *pbase_tree_get(const unsigned char *sha1)
1142 {
1143 struct pbase_tree_cache *ent, *nent;
1144 void *data;
1145 unsigned long size;
1146 enum object_type type;
1147 int neigh;
1148 int my_ix = pbase_tree_cache_ix(sha1);
1149 int available_ix = -1;
1150
1151 /* pbase-tree-cache acts as a limited hashtable.
1152 * your object will be found at your index or within a few
1153 * slots after that slot if it is cached.
1154 */
1155 for (neigh = 0; neigh < 8; neigh++) {
1156 ent = pbase_tree_cache[my_ix];
1157 if (ent && !hashcmp(ent->sha1, sha1)) {
1158 ent->ref++;
1159 return ent;
1160 }
1161 else if (((available_ix < 0) && (!ent || !ent->ref)) ||
1162 ((0 <= available_ix) &&
1163 (!ent && pbase_tree_cache[available_ix])))
1164 available_ix = my_ix;
1165 if (!ent)
1166 break;
1167 my_ix = pbase_tree_cache_ix_incr(my_ix);
1168 }
1169
1170 /* Did not find one. Either we got a bogus request or
1171 * we need to read and perhaps cache.
1172 */
1173 data = read_sha1_file(sha1, &type, &size);
1174 if (!data)
1175 return NULL;
1176 if (type != OBJ_TREE) {
1177 free(data);
1178 return NULL;
1179 }
1180
1181 /* We need to either cache or return a throwaway copy */
1182
1183 if (available_ix < 0)
1184 ent = NULL;
1185 else {
1186 ent = pbase_tree_cache[available_ix];
1187 my_ix = available_ix;
1188 }
1189
1190 if (!ent) {
1191 nent = xmalloc(sizeof(*nent));
1192 nent->temporary = (available_ix < 0);
1193 }
1194 else {
1195 /* evict and reuse */
1196 free(ent->tree_data);
1197 nent = ent;
1198 }
1199 hashcpy(nent->sha1, sha1);
1200 nent->tree_data = data;
1201 nent->tree_size = size;
1202 nent->ref = 1;
1203 if (!nent->temporary)
1204 pbase_tree_cache[my_ix] = nent;
1205 return nent;
1206 }
1207
1208 static void pbase_tree_put(struct pbase_tree_cache *cache)
1209 {
1210 if (!cache->temporary) {
1211 cache->ref--;
1212 return;
1213 }
1214 free(cache->tree_data);
1215 free(cache);
1216 }
1217
1218 static int name_cmp_len(const char *name)
1219 {
1220 int i;
1221 for (i = 0; name[i] && name[i] != '\n' && name[i] != '/'; i++)
1222 ;
1223 return i;
1224 }
1225
1226 static void add_pbase_object(struct tree_desc *tree,
1227 const char *name,
1228 int cmplen,
1229 const char *fullname)
1230 {
1231 struct name_entry entry;
1232 int cmp;
1233
1234 while (tree_entry(tree,&entry)) {
1235 if (S_ISGITLINK(entry.mode))
1236 continue;
1237 cmp = tree_entry_len(&entry) != cmplen ? 1 :
1238 memcmp(name, entry.path, cmplen);
1239 if (cmp > 0)
1240 continue;
1241 if (cmp < 0)
1242 return;
1243 if (name[cmplen] != '/') {
1244 add_object_entry(entry.oid->hash,
1245 object_type(entry.mode),
1246 fullname, 1);
1247 return;
1248 }
1249 if (S_ISDIR(entry.mode)) {
1250 struct tree_desc sub;
1251 struct pbase_tree_cache *tree;
1252 const char *down = name+cmplen+1;
1253 int downlen = name_cmp_len(down);
1254
1255 tree = pbase_tree_get(entry.oid->hash);
1256 if (!tree)
1257 return;
1258 init_tree_desc(&sub, tree->tree_data, tree->tree_size);
1259
1260 add_pbase_object(&sub, down, downlen, fullname);
1261 pbase_tree_put(tree);
1262 }
1263 }
1264 }
1265
1266 static unsigned *done_pbase_paths;
1267 static int done_pbase_paths_num;
1268 static int done_pbase_paths_alloc;
1269 static int done_pbase_path_pos(unsigned hash)
1270 {
1271 int lo = 0;
1272 int hi = done_pbase_paths_num;
1273 while (lo < hi) {
1274 int mi = (hi + lo) / 2;
1275 if (done_pbase_paths[mi] == hash)
1276 return mi;
1277 if (done_pbase_paths[mi] < hash)
1278 hi = mi;
1279 else
1280 lo = mi + 1;
1281 }
1282 return -lo-1;
1283 }
1284
1285 static int check_pbase_path(unsigned hash)
1286 {
1287 int pos = (!done_pbase_paths) ? -1 : done_pbase_path_pos(hash);
1288 if (0 <= pos)
1289 return 1;
1290 pos = -pos - 1;
1291 ALLOC_GROW(done_pbase_paths,
1292 done_pbase_paths_num + 1,
1293 done_pbase_paths_alloc);
1294 done_pbase_paths_num++;
1295 if (pos < done_pbase_paths_num)
1296 memmove(done_pbase_paths + pos + 1,
1297 done_pbase_paths + pos,
1298 (done_pbase_paths_num - pos - 1) * sizeof(unsigned));
1299 done_pbase_paths[pos] = hash;
1300 return 0;
1301 }
1302
1303 static void add_preferred_base_object(const char *name)
1304 {
1305 struct pbase_tree *it;
1306 int cmplen;
1307 unsigned hash = pack_name_hash(name);
1308
1309 if (!num_preferred_base || check_pbase_path(hash))
1310 return;
1311
1312 cmplen = name_cmp_len(name);
1313 for (it = pbase_tree; it; it = it->next) {
1314 if (cmplen == 0) {
1315 add_object_entry(it->pcache.sha1, OBJ_TREE, NULL, 1);
1316 }
1317 else {
1318 struct tree_desc tree;
1319 init_tree_desc(&tree, it->pcache.tree_data, it->pcache.tree_size);
1320 add_pbase_object(&tree, name, cmplen, name);
1321 }
1322 }
1323 }
1324
1325 static void add_preferred_base(unsigned char *sha1)
1326 {
1327 struct pbase_tree *it;
1328 void *data;
1329 unsigned long size;
1330 unsigned char tree_sha1[20];
1331
1332 if (window <= num_preferred_base++)
1333 return;
1334
1335 data = read_object_with_reference(sha1, tree_type, &size, tree_sha1);
1336 if (!data)
1337 return;
1338
1339 for (it = pbase_tree; it; it = it->next) {
1340 if (!hashcmp(it->pcache.sha1, tree_sha1)) {
1341 free(data);
1342 return;
1343 }
1344 }
1345
1346 it = xcalloc(1, sizeof(*it));
1347 it->next = pbase_tree;
1348 pbase_tree = it;
1349
1350 hashcpy(it->pcache.sha1, tree_sha1);
1351 it->pcache.tree_data = data;
1352 it->pcache.tree_size = size;
1353 }
1354
1355 static void cleanup_preferred_base(void)
1356 {
1357 struct pbase_tree *it;
1358 unsigned i;
1359
1360 it = pbase_tree;
1361 pbase_tree = NULL;
1362 while (it) {
1363 struct pbase_tree *this = it;
1364 it = this->next;
1365 free(this->pcache.tree_data);
1366 free(this);
1367 }
1368
1369 for (i = 0; i < ARRAY_SIZE(pbase_tree_cache); i++) {
1370 if (!pbase_tree_cache[i])
1371 continue;
1372 free(pbase_tree_cache[i]->tree_data);
1373 free(pbase_tree_cache[i]);
1374 pbase_tree_cache[i] = NULL;
1375 }
1376
1377 free(done_pbase_paths);
1378 done_pbase_paths = NULL;
1379 done_pbase_paths_num = done_pbase_paths_alloc = 0;
1380 }
1381
1382 static void check_object(struct object_entry *entry)
1383 {
1384 if (entry->in_pack) {
1385 struct packed_git *p = entry->in_pack;
1386 struct pack_window *w_curs = NULL;
1387 const unsigned char *base_ref = NULL;
1388 struct object_entry *base_entry;
1389 unsigned long used, used_0;
1390 unsigned long avail;
1391 off_t ofs;
1392 unsigned char *buf, c;
1393
1394 buf = use_pack(p, &w_curs, entry->in_pack_offset, &avail);
1395
1396 /*
1397 * We want in_pack_type even if we do not reuse delta
1398 * since non-delta representations could still be reused.
1399 */
1400 used = unpack_object_header_buffer(buf, avail,
1401 &entry->in_pack_type,
1402 &entry->size);
1403 if (used == 0)
1404 goto give_up;
1405
1406 /*
1407 * Determine if this is a delta and if so whether we can
1408 * reuse it or not. Otherwise let's find out as cheaply as
1409 * possible what the actual type and size for this object is.
1410 */
1411 switch (entry->in_pack_type) {
1412 default:
1413 /* Not a delta hence we've already got all we need. */
1414 entry->type = entry->in_pack_type;
1415 entry->in_pack_header_size = used;
1416 if (entry->type < OBJ_COMMIT || entry->type > OBJ_BLOB)
1417 goto give_up;
1418 unuse_pack(&w_curs);
1419 return;
1420 case OBJ_REF_DELTA:
1421 if (reuse_delta && !entry->preferred_base)
1422 base_ref = use_pack(p, &w_curs,
1423 entry->in_pack_offset + used, NULL);
1424 entry->in_pack_header_size = used + 20;
1425 break;
1426 case OBJ_OFS_DELTA:
1427 buf = use_pack(p, &w_curs,
1428 entry->in_pack_offset + used, NULL);
1429 used_0 = 0;
1430 c = buf[used_0++];
1431 ofs = c & 127;
1432 while (c & 128) {
1433 ofs += 1;
1434 if (!ofs || MSB(ofs, 7)) {
1435 error("delta base offset overflow in pack for %s",
1436 sha1_to_hex(entry->idx.sha1));
1437 goto give_up;
1438 }
1439 c = buf[used_0++];
1440 ofs = (ofs << 7) + (c & 127);
1441 }
1442 ofs = entry->in_pack_offset - ofs;
1443 if (ofs <= 0 || ofs >= entry->in_pack_offset) {
1444 error("delta base offset out of bound for %s",
1445 sha1_to_hex(entry->idx.sha1));
1446 goto give_up;
1447 }
1448 if (reuse_delta && !entry->preferred_base) {
1449 struct revindex_entry *revidx;
1450 revidx = find_pack_revindex(p, ofs);
1451 if (!revidx)
1452 goto give_up;
1453 base_ref = nth_packed_object_sha1(p, revidx->nr);
1454 }
1455 entry->in_pack_header_size = used + used_0;
1456 break;
1457 }
1458
1459 if (base_ref && (base_entry = packlist_find(&to_pack, base_ref, NULL))) {
1460 /*
1461 * If base_ref was set above that means we wish to
1462 * reuse delta data, and we even found that base
1463 * in the list of objects we want to pack. Goodie!
1464 *
1465 * Depth value does not matter - find_deltas() will
1466 * never consider reused delta as the base object to
1467 * deltify other objects against, in order to avoid
1468 * circular deltas.
1469 */
1470 entry->type = entry->in_pack_type;
1471 entry->delta = base_entry;
1472 entry->delta_size = entry->size;
1473 entry->delta_sibling = base_entry->delta_child;
1474 base_entry->delta_child = entry;
1475 unuse_pack(&w_curs);
1476 return;
1477 }
1478
1479 if (entry->type) {
1480 /*
1481 * This must be a delta and we already know what the
1482 * final object type is. Let's extract the actual
1483 * object size from the delta header.
1484 */
1485 entry->size = get_size_from_delta(p, &w_curs,
1486 entry->in_pack_offset + entry->in_pack_header_size);
1487 if (entry->size == 0)
1488 goto give_up;
1489 unuse_pack(&w_curs);
1490 return;
1491 }
1492
1493 /*
1494 * No choice but to fall back to the recursive delta walk
1495 * with sha1_object_info() to find about the object type
1496 * at this point...
1497 */
1498 give_up:
1499 unuse_pack(&w_curs);
1500 }
1501
1502 entry->type = sha1_object_info(entry->idx.sha1, &entry->size);
1503 /*
1504 * The error condition is checked in prepare_pack(). This is
1505 * to permit a missing preferred base object to be ignored
1506 * as a preferred base. Doing so can result in a larger
1507 * pack file, but the transfer will still take place.
1508 */
1509 }
1510
1511 static int pack_offset_sort(const void *_a, const void *_b)
1512 {
1513 const struct object_entry *a = *(struct object_entry **)_a;
1514 const struct object_entry *b = *(struct object_entry **)_b;
1515
1516 /* avoid filesystem trashing with loose objects */
1517 if (!a->in_pack && !b->in_pack)
1518 return hashcmp(a->idx.sha1, b->idx.sha1);
1519
1520 if (a->in_pack < b->in_pack)
1521 return -1;
1522 if (a->in_pack > b->in_pack)
1523 return 1;
1524 return a->in_pack_offset < b->in_pack_offset ? -1 :
1525 (a->in_pack_offset > b->in_pack_offset);
1526 }
1527
1528 /*
1529 * Drop an on-disk delta we were planning to reuse. Naively, this would
1530 * just involve blanking out the "delta" field, but we have to deal
1531 * with some extra book-keeping:
1532 *
1533 * 1. Removing ourselves from the delta_sibling linked list.
1534 *
1535 * 2. Updating our size/type to the non-delta representation. These were
1536 * either not recorded initially (size) or overwritten with the delta type
1537 * (type) when check_object() decided to reuse the delta.
1538 *
1539 * 3. Resetting our delta depth, as we are now a base object.
1540 */
1541 static void drop_reused_delta(struct object_entry *entry)
1542 {
1543 struct object_entry **p = &entry->delta->delta_child;
1544 struct object_info oi = OBJECT_INFO_INIT;
1545
1546 while (*p) {
1547 if (*p == entry)
1548 *p = (*p)->delta_sibling;
1549 else
1550 p = &(*p)->delta_sibling;
1551 }
1552 entry->delta = NULL;
1553 entry->depth = 0;
1554
1555 oi.sizep = &entry->size;
1556 oi.typep = &entry->type;
1557 if (packed_object_info(entry->in_pack, entry->in_pack_offset, &oi) < 0) {
1558 /*
1559 * We failed to get the info from this pack for some reason;
1560 * fall back to sha1_object_info, which may find another copy.
1561 * And if that fails, the error will be recorded in entry->type
1562 * and dealt with in prepare_pack().
1563 */
1564 entry->type = sha1_object_info(entry->idx.sha1, &entry->size);
1565 }
1566 }
1567
1568 /*
1569 * Follow the chain of deltas from this entry onward, throwing away any links
1570 * that cause us to hit a cycle (as determined by the DFS state flags in
1571 * the entries).
1572 *
1573 * We also detect too-long reused chains that would violate our --depth
1574 * limit.
1575 */
1576 static void break_delta_chains(struct object_entry *entry)
1577 {
1578 /*
1579 * The actual depth of each object we will write is stored as an int,
1580 * as it cannot exceed our int "depth" limit. But before we break
1581 * changes based no that limit, we may potentially go as deep as the
1582 * number of objects, which is elsewhere bounded to a uint32_t.
1583 */
1584 uint32_t total_depth;
1585 struct object_entry *cur, *next;
1586
1587 for (cur = entry, total_depth = 0;
1588 cur;
1589 cur = cur->delta, total_depth++) {
1590 if (cur->dfs_state == DFS_DONE) {
1591 /*
1592 * We've already seen this object and know it isn't
1593 * part of a cycle. We do need to append its depth
1594 * to our count.
1595 */
1596 total_depth += cur->depth;
1597 break;
1598 }
1599
1600 /*
1601 * We break cycles before looping, so an ACTIVE state (or any
1602 * other cruft which made its way into the state variable)
1603 * is a bug.
1604 */
1605 if (cur->dfs_state != DFS_NONE)
1606 die("BUG: confusing delta dfs state in first pass: %d",
1607 cur->dfs_state);
1608
1609 /*
1610 * Now we know this is the first time we've seen the object. If
1611 * it's not a delta, we're done traversing, but we'll mark it
1612 * done to save time on future traversals.
1613 */
1614 if (!cur->delta) {
1615 cur->dfs_state = DFS_DONE;
1616 break;
1617 }
1618
1619 /*
1620 * Mark ourselves as active and see if the next step causes
1621 * us to cycle to another active object. It's important to do
1622 * this _before_ we loop, because it impacts where we make the
1623 * cut, and thus how our total_depth counter works.
1624 * E.g., We may see a partial loop like:
1625 *
1626 * A -> B -> C -> D -> B
1627 *
1628 * Cutting B->C breaks the cycle. But now the depth of A is
1629 * only 1, and our total_depth counter is at 3. The size of the
1630 * error is always one less than the size of the cycle we
1631 * broke. Commits C and D were "lost" from A's chain.
1632 *
1633 * If we instead cut D->B, then the depth of A is correct at 3.
1634 * We keep all commits in the chain that we examined.
1635 */
1636 cur->dfs_state = DFS_ACTIVE;
1637 if (cur->delta->dfs_state == DFS_ACTIVE) {
1638 drop_reused_delta(cur);
1639 cur->dfs_state = DFS_DONE;
1640 break;
1641 }
1642 }
1643
1644 /*
1645 * And now that we've gone all the way to the bottom of the chain, we
1646 * need to clear the active flags and set the depth fields as
1647 * appropriate. Unlike the loop above, which can quit when it drops a
1648 * delta, we need to keep going to look for more depth cuts. So we need
1649 * an extra "next" pointer to keep going after we reset cur->delta.
1650 */
1651 for (cur = entry; cur; cur = next) {
1652 next = cur->delta;
1653
1654 /*
1655 * We should have a chain of zero or more ACTIVE states down to
1656 * a final DONE. We can quit after the DONE, because either it
1657 * has no bases, or we've already handled them in a previous
1658 * call.
1659 */
1660 if (cur->dfs_state == DFS_DONE)
1661 break;
1662 else if (cur->dfs_state != DFS_ACTIVE)
1663 die("BUG: confusing delta dfs state in second pass: %d",
1664 cur->dfs_state);
1665
1666 /*
1667 * If the total_depth is more than depth, then we need to snip
1668 * the chain into two or more smaller chains that don't exceed
1669 * the maximum depth. Most of the resulting chains will contain
1670 * (depth + 1) entries (i.e., depth deltas plus one base), and
1671 * the last chain (i.e., the one containing entry) will contain
1672 * whatever entries are left over, namely
1673 * (total_depth % (depth + 1)) of them.
1674 *
1675 * Since we are iterating towards decreasing depth, we need to
1676 * decrement total_depth as we go, and we need to write to the
1677 * entry what its final depth will be after all of the
1678 * snipping. Since we're snipping into chains of length (depth
1679 * + 1) entries, the final depth of an entry will be its
1680 * original depth modulo (depth + 1). Any time we encounter an
1681 * entry whose final depth is supposed to be zero, we snip it
1682 * from its delta base, thereby making it so.
1683 */
1684 cur->depth = (total_depth--) % (depth + 1);
1685 if (!cur->depth)
1686 drop_reused_delta(cur);
1687
1688 cur->dfs_state = DFS_DONE;
1689 }
1690 }
1691
1692 static void get_object_details(void)
1693 {
1694 uint32_t i;
1695 struct object_entry **sorted_by_offset;
1696
1697 sorted_by_offset = xcalloc(to_pack.nr_objects, sizeof(struct object_entry *));
1698 for (i = 0; i < to_pack.nr_objects; i++)
1699 sorted_by_offset[i] = to_pack.objects + i;
1700 QSORT(sorted_by_offset, to_pack.nr_objects, pack_offset_sort);
1701
1702 for (i = 0; i < to_pack.nr_objects; i++) {
1703 struct object_entry *entry = sorted_by_offset[i];
1704 check_object(entry);
1705 if (big_file_threshold < entry->size)
1706 entry->no_try_delta = 1;
1707 }
1708
1709 /*
1710 * This must happen in a second pass, since we rely on the delta
1711 * information for the whole list being completed.
1712 */
1713 for (i = 0; i < to_pack.nr_objects; i++)
1714 break_delta_chains(&to_pack.objects[i]);
1715
1716 free(sorted_by_offset);
1717 }
1718
1719 /*
1720 * We search for deltas in a list sorted by type, by filename hash, and then
1721 * by size, so that we see progressively smaller and smaller files.
1722 * That's because we prefer deltas to be from the bigger file
1723 * to the smaller -- deletes are potentially cheaper, but perhaps
1724 * more importantly, the bigger file is likely the more recent
1725 * one. The deepest deltas are therefore the oldest objects which are
1726 * less susceptible to be accessed often.
1727 */
1728 static int type_size_sort(const void *_a, const void *_b)
1729 {
1730 const struct object_entry *a = *(struct object_entry **)_a;
1731 const struct object_entry *b = *(struct object_entry **)_b;
1732
1733 if (a->type > b->type)
1734 return -1;
1735 if (a->type < b->type)
1736 return 1;
1737 if (a->hash > b->hash)
1738 return -1;
1739 if (a->hash < b->hash)
1740 return 1;
1741 if (a->preferred_base > b->preferred_base)
1742 return -1;
1743 if (a->preferred_base < b->preferred_base)
1744 return 1;
1745 if (a->size > b->size)
1746 return -1;
1747 if (a->size < b->size)
1748 return 1;
1749 return a < b ? -1 : (a > b); /* newest first */
1750 }
1751
1752 struct unpacked {
1753 struct object_entry *entry;
1754 void *data;
1755 struct delta_index *index;
1756 unsigned depth;
1757 };
1758
1759 static int delta_cacheable(unsigned long src_size, unsigned long trg_size,
1760 unsigned long delta_size)
1761 {
1762 if (max_delta_cache_size && delta_cache_size + delta_size > max_delta_cache_size)
1763 return 0;
1764
1765 if (delta_size < cache_max_small_delta_size)
1766 return 1;
1767
1768 /* cache delta, if objects are large enough compared to delta size */
1769 if ((src_size >> 20) + (trg_size >> 21) > (delta_size >> 10))
1770 return 1;
1771
1772 return 0;
1773 }
1774
1775 #ifndef NO_PTHREADS
1776
1777 static pthread_mutex_t read_mutex;
1778 #define read_lock() pthread_mutex_lock(&read_mutex)
1779 #define read_unlock() pthread_mutex_unlock(&read_mutex)
1780
1781 static pthread_mutex_t cache_mutex;
1782 #define cache_lock() pthread_mutex_lock(&cache_mutex)
1783 #define cache_unlock() pthread_mutex_unlock(&cache_mutex)
1784
1785 static pthread_mutex_t progress_mutex;
1786 #define progress_lock() pthread_mutex_lock(&progress_mutex)
1787 #define progress_unlock() pthread_mutex_unlock(&progress_mutex)
1788
1789 #else
1790
1791 #define read_lock() (void)0
1792 #define read_unlock() (void)0
1793 #define cache_lock() (void)0
1794 #define cache_unlock() (void)0
1795 #define progress_lock() (void)0
1796 #define progress_unlock() (void)0
1797
1798 #endif
1799
1800 static int try_delta(struct unpacked *trg, struct unpacked *src,
1801 unsigned max_depth, unsigned long *mem_usage)
1802 {
1803 struct object_entry *trg_entry = trg->entry;
1804 struct object_entry *src_entry = src->entry;
1805 unsigned long trg_size, src_size, delta_size, sizediff, max_size, sz;
1806 unsigned ref_depth;
1807 enum object_type type;
1808 void *delta_buf;
1809
1810 /* Don't bother doing diffs between different types */
1811 if (trg_entry->type != src_entry->type)
1812 return -1;
1813
1814 /*
1815 * We do not bother to try a delta that we discarded on an
1816 * earlier try, but only when reusing delta data. Note that
1817 * src_entry that is marked as the preferred_base should always
1818 * be considered, as even if we produce a suboptimal delta against
1819 * it, we will still save the transfer cost, as we already know
1820 * the other side has it and we won't send src_entry at all.
1821 */
1822 if (reuse_delta && trg_entry->in_pack &&
1823 trg_entry->in_pack == src_entry->in_pack &&
1824 !src_entry->preferred_base &&
1825 trg_entry->in_pack_type != OBJ_REF_DELTA &&
1826 trg_entry->in_pack_type != OBJ_OFS_DELTA)
1827 return 0;
1828
1829 /* Let's not bust the allowed depth. */
1830 if (src->depth >= max_depth)
1831 return 0;
1832
1833 /* Now some size filtering heuristics. */
1834 trg_size = trg_entry->size;
1835 if (!trg_entry->delta) {
1836 max_size = trg_size/2 - 20;
1837 ref_depth = 1;
1838 } else {
1839 max_size = trg_entry->delta_size;
1840 ref_depth = trg->depth;
1841 }
1842 max_size = (uint64_t)max_size * (max_depth - src->depth) /
1843 (max_depth - ref_depth + 1);
1844 if (max_size == 0)
1845 return 0;
1846 src_size = src_entry->size;
1847 sizediff = src_size < trg_size ? trg_size - src_size : 0;
1848 if (sizediff >= max_size)
1849 return 0;
1850 if (trg_size < src_size / 32)
1851 return 0;
1852
1853 /* Load data if not already done */
1854 if (!trg->data) {
1855 read_lock();
1856 trg->data = read_sha1_file(trg_entry->idx.sha1, &type, &sz);
1857 read_unlock();
1858 if (!trg->data)
1859 die("object %s cannot be read",
1860 sha1_to_hex(trg_entry->idx.sha1));
1861 if (sz != trg_size)
1862 die("object %s inconsistent object length (%lu vs %lu)",
1863 sha1_to_hex(trg_entry->idx.sha1), sz, trg_size);
1864 *mem_usage += sz;
1865 }
1866 if (!src->data) {
1867 read_lock();
1868 src->data = read_sha1_file(src_entry->idx.sha1, &type, &sz);
1869 read_unlock();
1870 if (!src->data) {
1871 if (src_entry->preferred_base) {
1872 static int warned = 0;
1873 if (!warned++)
1874 warning("object %s cannot be read",
1875 sha1_to_hex(src_entry->idx.sha1));
1876 /*
1877 * Those objects are not included in the
1878 * resulting pack. Be resilient and ignore
1879 * them if they can't be read, in case the
1880 * pack could be created nevertheless.
1881 */
1882 return 0;
1883 }
1884 die("object %s cannot be read",
1885 sha1_to_hex(src_entry->idx.sha1));
1886 }
1887 if (sz != src_size)
1888 die("object %s inconsistent object length (%lu vs %lu)",
1889 sha1_to_hex(src_entry->idx.sha1), sz, src_size);
1890 *mem_usage += sz;
1891 }
1892 if (!src->index) {
1893 src->index = create_delta_index(src->data, src_size);
1894 if (!src->index) {
1895 static int warned = 0;
1896 if (!warned++)
1897 warning("suboptimal pack - out of memory");
1898 return 0;
1899 }
1900 *mem_usage += sizeof_delta_index(src->index);
1901 }
1902
1903 delta_buf = create_delta(src->index, trg->data, trg_size, &delta_size, max_size);
1904 if (!delta_buf)
1905 return 0;
1906
1907 if (trg_entry->delta) {
1908 /* Prefer only shallower same-sized deltas. */
1909 if (delta_size == trg_entry->delta_size &&
1910 src->depth + 1 >= trg->depth) {
1911 free(delta_buf);
1912 return 0;
1913 }
1914 }
1915
1916 /*
1917 * Handle memory allocation outside of the cache
1918 * accounting lock. Compiler will optimize the strangeness
1919 * away when NO_PTHREADS is defined.
1920 */
1921 free(trg_entry->delta_data);
1922 cache_lock();
1923 if (trg_entry->delta_data) {
1924 delta_cache_size -= trg_entry->delta_size;
1925 trg_entry->delta_data = NULL;
1926 }
1927 if (delta_cacheable(src_size, trg_size, delta_size)) {
1928 delta_cache_size += delta_size;
1929 cache_unlock();
1930 trg_entry->delta_data = xrealloc(delta_buf, delta_size);
1931 } else {
1932 cache_unlock();
1933 free(delta_buf);
1934 }
1935
1936 trg_entry->delta = src_entry;
1937 trg_entry->delta_size = delta_size;
1938 trg->depth = src->depth + 1;
1939
1940 return 1;
1941 }
1942
1943 static unsigned int check_delta_limit(struct object_entry *me, unsigned int n)
1944 {
1945 struct object_entry *child = me->delta_child;
1946 unsigned int m = n;
1947 while (child) {
1948 unsigned int c = check_delta_limit(child, n + 1);
1949 if (m < c)
1950 m = c;
1951 child = child->delta_sibling;
1952 }
1953 return m;
1954 }
1955
1956 static unsigned long free_unpacked(struct unpacked *n)
1957 {
1958 unsigned long freed_mem = sizeof_delta_index(n->index);
1959 free_delta_index(n->index);
1960 n->index = NULL;
1961 if (n->data) {
1962 freed_mem += n->entry->size;
1963 free(n->data);
1964 n->data = NULL;
1965 }
1966 n->entry = NULL;
1967 n->depth = 0;
1968 return freed_mem;
1969 }
1970
1971 static void find_deltas(struct object_entry **list, unsigned *list_size,
1972 int window, int depth, unsigned *processed)
1973 {
1974 uint32_t i, idx = 0, count = 0;
1975 struct unpacked *array;
1976 unsigned long mem_usage = 0;
1977
1978 array = xcalloc(window, sizeof(struct unpacked));
1979
1980 for (;;) {
1981 struct object_entry *entry;
1982 struct unpacked *n = array + idx;
1983 int j, max_depth, best_base = -1;
1984
1985 progress_lock();
1986 if (!*list_size) {
1987 progress_unlock();
1988 break;
1989 }
1990 entry = *list++;
1991 (*list_size)--;
1992 if (!entry->preferred_base) {
1993 (*processed)++;
1994 display_progress(progress_state, *processed);
1995 }
1996 progress_unlock();
1997
1998 mem_usage -= free_unpacked(n);
1999 n->entry = entry;
2000
2001 while (window_memory_limit &&
2002 mem_usage > window_memory_limit &&
2003 count > 1) {
2004 uint32_t tail = (idx + window - count) % window;
2005 mem_usage -= free_unpacked(array + tail);
2006 count--;
2007 }
2008
2009 /* We do not compute delta to *create* objects we are not
2010 * going to pack.
2011 */
2012 if (entry->preferred_base)
2013 goto next;
2014
2015 /*
2016 * If the current object is at pack edge, take the depth the
2017 * objects that depend on the current object into account
2018 * otherwise they would become too deep.
2019 */
2020 max_depth = depth;
2021 if (entry->delta_child) {
2022 max_depth -= check_delta_limit(entry, 0);
2023 if (max_depth <= 0)
2024 goto next;
2025 }
2026
2027 j = window;
2028 while (--j > 0) {
2029 int ret;
2030 uint32_t other_idx = idx + j;
2031 struct unpacked *m;
2032 if (other_idx >= window)
2033 other_idx -= window;
2034 m = array + other_idx;
2035 if (!m->entry)
2036 break;
2037 ret = try_delta(n, m, max_depth, &mem_usage);
2038 if (ret < 0)
2039 break;
2040 else if (ret > 0)
2041 best_base = other_idx;
2042 }
2043
2044 /*
2045 * If we decided to cache the delta data, then it is best
2046 * to compress it right away. First because we have to do
2047 * it anyway, and doing it here while we're threaded will
2048 * save a lot of time in the non threaded write phase,
2049 * as well as allow for caching more deltas within
2050 * the same cache size limit.
2051 * ...
2052 * But only if not writing to stdout, since in that case
2053 * the network is most likely throttling writes anyway,
2054 * and therefore it is best to go to the write phase ASAP
2055 * instead, as we can afford spending more time compressing
2056 * between writes at that moment.
2057 */
2058 if (entry->delta_data && !pack_to_stdout) {
2059 entry->z_delta_size = do_compress(&entry->delta_data,
2060 entry->delta_size);
2061 cache_lock();
2062 delta_cache_size -= entry->delta_size;
2063 delta_cache_size += entry->z_delta_size;
2064 cache_unlock();
2065 }
2066
2067 /* if we made n a delta, and if n is already at max
2068 * depth, leaving it in the window is pointless. we
2069 * should evict it first.
2070 */
2071 if (entry->delta && max_depth <= n->depth)
2072 continue;
2073
2074 /*
2075 * Move the best delta base up in the window, after the
2076 * currently deltified object, to keep it longer. It will
2077 * be the first base object to be attempted next.
2078 */
2079 if (entry->delta) {
2080 struct unpacked swap = array[best_base];
2081 int dist = (window + idx - best_base) % window;
2082 int dst = best_base;
2083 while (dist--) {
2084 int src = (dst + 1) % window;
2085 array[dst] = array[src];
2086 dst = src;
2087 }
2088 array[dst] = swap;
2089 }
2090
2091 next:
2092 idx++;
2093 if (count + 1 < window)
2094 count++;
2095 if (idx >= window)
2096 idx = 0;
2097 }
2098
2099 for (i = 0; i < window; ++i) {
2100 free_delta_index(array[i].index);
2101 free(array[i].data);
2102 }
2103 free(array);
2104 }
2105
2106 #ifndef NO_PTHREADS
2107
2108 static void try_to_free_from_threads(size_t size)
2109 {
2110 read_lock();
2111 release_pack_memory(size);
2112 read_unlock();
2113 }
2114
2115 static try_to_free_t old_try_to_free_routine;
2116
2117 /*
2118 * The main thread waits on the condition that (at least) one of the workers
2119 * has stopped working (which is indicated in the .working member of
2120 * struct thread_params).
2121 * When a work thread has completed its work, it sets .working to 0 and
2122 * signals the main thread and waits on the condition that .data_ready
2123 * becomes 1.
2124 */
2125
2126 struct thread_params {
2127 pthread_t thread;
2128 struct object_entry **list;
2129 unsigned list_size;
2130 unsigned remaining;
2131 int window;
2132 int depth;
2133 int working;
2134 int data_ready;
2135 pthread_mutex_t mutex;
2136 pthread_cond_t cond;
2137 unsigned *processed;
2138 };
2139
2140 static pthread_cond_t progress_cond;
2141
2142 /*
2143 * Mutex and conditional variable can't be statically-initialized on Windows.
2144 */
2145 static void init_threaded_search(void)
2146 {
2147 init_recursive_mutex(&read_mutex);
2148 pthread_mutex_init(&cache_mutex, NULL);
2149 pthread_mutex_init(&progress_mutex, NULL);
2150 pthread_cond_init(&progress_cond, NULL);
2151 old_try_to_free_routine = set_try_to_free_routine(try_to_free_from_threads);
2152 }
2153
2154 static void cleanup_threaded_search(void)
2155 {
2156 set_try_to_free_routine(old_try_to_free_routine);
2157 pthread_cond_destroy(&progress_cond);
2158 pthread_mutex_destroy(&read_mutex);
2159 pthread_mutex_destroy(&cache_mutex);
2160 pthread_mutex_destroy(&progress_mutex);
2161 }
2162
2163 static void *threaded_find_deltas(void *arg)
2164 {
2165 struct thread_params *me = arg;
2166
2167 while (me->remaining) {
2168 find_deltas(me->list, &me->remaining,
2169 me->window, me->depth, me->processed);
2170
2171 progress_lock();
2172 me->working = 0;
2173 pthread_cond_signal(&progress_cond);
2174 progress_unlock();
2175
2176 /*
2177 * We must not set ->data_ready before we wait on the
2178 * condition because the main thread may have set it to 1
2179 * before we get here. In order to be sure that new
2180 * work is available if we see 1 in ->data_ready, it
2181 * was initialized to 0 before this thread was spawned
2182 * and we reset it to 0 right away.
2183 */
2184 pthread_mutex_lock(&me->mutex);
2185 while (!me->data_ready)
2186 pthread_cond_wait(&me->cond, &me->mutex);
2187 me->data_ready = 0;
2188 pthread_mutex_unlock(&me->mutex);
2189 }
2190 /* leave ->working 1 so that this doesn't get more work assigned */
2191 return NULL;
2192 }
2193
2194 static void ll_find_deltas(struct object_entry **list, unsigned list_size,
2195 int window, int depth, unsigned *processed)
2196 {
2197 struct thread_params *p;
2198 int i, ret, active_threads = 0;
2199
2200 init_threaded_search();
2201
2202 if (delta_search_threads <= 1) {
2203 find_deltas(list, &list_size, window, depth, processed);
2204 cleanup_threaded_search();
2205 return;
2206 }
2207 if (progress > pack_to_stdout)
2208 fprintf(stderr, "Delta compression using up to %d threads.\n",
2209 delta_search_threads);
2210 p = xcalloc(delta_search_threads, sizeof(*p));
2211
2212 /* Partition the work amongst work threads. */
2213 for (i = 0; i < delta_search_threads; i++) {
2214 unsigned sub_size = list_size / (delta_search_threads - i);
2215
2216 /* don't use too small segments or no deltas will be found */
2217 if (sub_size < 2*window && i+1 < delta_search_threads)
2218 sub_size = 0;
2219
2220 p[i].window = window;
2221 p[i].depth = depth;
2222 p[i].processed = processed;
2223 p[i].working = 1;
2224 p[i].data_ready = 0;
2225
2226 /* try to split chunks on "path" boundaries */
2227 while (sub_size && sub_size < list_size &&
2228 list[sub_size]->hash &&
2229 list[sub_size]->hash == list[sub_size-1]->hash)
2230 sub_size++;
2231
2232 p[i].list = list;
2233 p[i].list_size = sub_size;
2234 p[i].remaining = sub_size;
2235
2236 list += sub_size;
2237 list_size -= sub_size;
2238 }
2239
2240 /* Start work threads. */
2241 for (i = 0; i < delta_search_threads; i++) {
2242 if (!p[i].list_size)
2243 continue;
2244 pthread_mutex_init(&p[i].mutex, NULL);
2245 pthread_cond_init(&p[i].cond, NULL);
2246 ret = pthread_create(&p[i].thread, NULL,
2247 threaded_find_deltas, &p[i]);
2248 if (ret)
2249 die("unable to create thread: %s", strerror(ret));
2250 active_threads++;
2251 }
2252
2253 /*
2254 * Now let's wait for work completion. Each time a thread is done
2255 * with its work, we steal half of the remaining work from the
2256 * thread with the largest number of unprocessed objects and give
2257 * it to that newly idle thread. This ensure good load balancing
2258 * until the remaining object list segments are simply too short
2259 * to be worth splitting anymore.
2260 */
2261 while (active_threads) {
2262 struct thread_params *target = NULL;
2263 struct thread_params *victim = NULL;
2264 unsigned sub_size = 0;
2265
2266 progress_lock();
2267 for (;;) {
2268 for (i = 0; !target && i < delta_search_threads; i++)
2269 if (!p[i].working)
2270 target = &p[i];
2271 if (target)
2272 break;
2273 pthread_cond_wait(&progress_cond, &progress_mutex);
2274 }
2275
2276 for (i = 0; i < delta_search_threads; i++)
2277 if (p[i].remaining > 2*window &&
2278 (!victim || victim->remaining < p[i].remaining))
2279 victim = &p[i];
2280 if (victim) {
2281 sub_size = victim->remaining / 2;
2282 list = victim->list + victim->list_size - sub_size;
2283 while (sub_size && list[0]->hash &&
2284 list[0]->hash == list[-1]->hash) {
2285 list++;
2286 sub_size--;
2287 }
2288 if (!sub_size) {
2289 /*
2290 * It is possible for some "paths" to have
2291 * so many objects that no hash boundary
2292 * might be found. Let's just steal the
2293 * exact half in that case.
2294 */
2295 sub_size = victim->remaining / 2;
2296 list -= sub_size;
2297 }
2298 target->list = list;
2299 victim->list_size -= sub_size;
2300 victim->remaining -= sub_size;
2301 }
2302 target->list_size = sub_size;
2303 target->remaining = sub_size;
2304 target->working = 1;
2305 progress_unlock();
2306
2307 pthread_mutex_lock(&target->mutex);
2308 target->data_ready = 1;
2309 pthread_cond_signal(&target->cond);
2310 pthread_mutex_unlock(&target->mutex);
2311
2312 if (!sub_size) {
2313 pthread_join(target->thread, NULL);
2314 pthread_cond_destroy(&target->cond);
2315 pthread_mutex_destroy(&target->mutex);
2316 active_threads--;
2317 }
2318 }
2319 cleanup_threaded_search();
2320 free(p);
2321 }
2322
2323 #else
2324 #define ll_find_deltas(l, s, w, d, p) find_deltas(l, &s, w, d, p)
2325 #endif
2326
2327 static void add_tag_chain(const struct object_id *oid)
2328 {
2329 struct tag *tag;
2330
2331 /*
2332 * We catch duplicates already in add_object_entry(), but we'd
2333 * prefer to do this extra check to avoid having to parse the
2334 * tag at all if we already know that it's being packed (e.g., if
2335 * it was included via bitmaps, we would not have parsed it
2336 * previously).
2337 */
2338 if (packlist_find(&to_pack, oid->hash, NULL))
2339 return;
2340
2341 tag = lookup_tag(oid->hash);
2342 while (1) {
2343 if (!tag || parse_tag(tag) || !tag->tagged)
2344 die("unable to pack objects reachable from tag %s",
2345 oid_to_hex(oid));
2346
2347 add_object_entry(tag->object.oid.hash, OBJ_TAG, NULL, 0);
2348
2349 if (tag->tagged->type != OBJ_TAG)
2350 return;
2351
2352 tag = (struct tag *)tag->tagged;
2353 }
2354 }
2355
2356 static int add_ref_tag(const char *path, const struct object_id *oid, int flag, void *cb_data)
2357 {
2358 struct object_id peeled;
2359
2360 if (starts_with(path, "refs/tags/") && /* is a tag? */
2361 !peel_ref(path, peeled.hash) && /* peelable? */
2362 packlist_find(&to_pack, peeled.hash, NULL)) /* object packed? */
2363 add_tag_chain(oid);
2364 return 0;
2365 }
2366
2367 static void prepare_pack(int window, int depth)
2368 {
2369 struct object_entry **delta_list;
2370 uint32_t i, nr_deltas;
2371 unsigned n;
2372
2373 get_object_details();
2374
2375 /*
2376 * If we're locally repacking then we need to be doubly careful
2377 * from now on in order to make sure no stealth corruption gets
2378 * propagated to the new pack. Clients receiving streamed packs
2379 * should validate everything they get anyway so no need to incur
2380 * the additional cost here in that case.
2381 */
2382 if (!pack_to_stdout)
2383 do_check_packed_object_crc = 1;
2384
2385 if (!to_pack.nr_objects || !window || !depth)
2386 return;
2387
2388 ALLOC_ARRAY(delta_list, to_pack.nr_objects);
2389 nr_deltas = n = 0;
2390
2391 for (i = 0; i < to_pack.nr_objects; i++) {
2392 struct object_entry *entry = to_pack.objects + i;
2393
2394 if (entry->delta)
2395 /* This happens if we decided to reuse existing
2396 * delta from a pack. "reuse_delta &&" is implied.
2397 */
2398 continue;
2399
2400 if (entry->size < 50)
2401 continue;
2402
2403 if (entry->no_try_delta)
2404 continue;
2405
2406 if (!entry->preferred_base) {
2407 nr_deltas++;
2408 if (entry->type < 0)
2409 die("unable to get type of object %s",
2410 sha1_to_hex(entry->idx.sha1));
2411 } else {
2412 if (entry->type < 0) {
2413 /*
2414 * This object is not found, but we
2415 * don't have to include it anyway.
2416 */
2417 continue;
2418 }
2419 }
2420
2421 delta_list[n++] = entry;
2422 }
2423
2424 if (nr_deltas && n > 1) {
2425 unsigned nr_done = 0;
2426 if (progress)
2427 progress_state = start_progress(_("Compressing objects"),
2428 nr_deltas);
2429 QSORT(delta_list, n, type_size_sort);
2430 ll_find_deltas(delta_list, n, window+1, depth, &nr_done);
2431 stop_progress(&progress_state);
2432 if (nr_done != nr_deltas)
2433 die("inconsistency with delta count");
2434 }
2435 free(delta_list);
2436 }
2437
2438 static int git_pack_config(const char *k, const char *v, void *cb)
2439 {
2440 if (!strcmp(k, "pack.window")) {
2441 window = git_config_int(k, v);
2442 return 0;
2443 }
2444 if (!strcmp(k, "pack.windowmemory")) {
2445 window_memory_limit = git_config_ulong(k, v);
2446 return 0;
2447 }
2448 if (!strcmp(k, "pack.depth")) {
2449 depth = git_config_int(k, v);
2450 return 0;
2451 }
2452 if (!strcmp(k, "pack.deltacachesize")) {
2453 max_delta_cache_size = git_config_int(k, v);
2454 return 0;
2455 }
2456 if (!strcmp(k, "pack.deltacachelimit")) {
2457 cache_max_small_delta_size = git_config_int(k, v);
2458 return 0;
2459 }
2460 if (!strcmp(k, "pack.writebitmaphashcache")) {
2461 if (git_config_bool(k, v))
2462 write_bitmap_options |= BITMAP_OPT_HASH_CACHE;
2463 else
2464 write_bitmap_options &= ~BITMAP_OPT_HASH_CACHE;
2465 }
2466 if (!strcmp(k, "pack.usebitmaps")) {
2467 use_bitmap_index_default = git_config_bool(k, v);
2468 return 0;
2469 }
2470 if (!strcmp(k, "pack.threads")) {
2471 delta_search_threads = git_config_int(k, v);
2472 if (delta_search_threads < 0)
2473 die("invalid number of threads specified (%d)",
2474 delta_search_threads);
2475 #ifdef NO_PTHREADS
2476 if (delta_search_threads != 1)
2477 warning("no threads support, ignoring %s", k);
2478 #endif
2479 return 0;
2480 }
2481 if (!strcmp(k, "pack.indexversion")) {
2482 pack_idx_opts.version = git_config_int(k, v);
2483 if (pack_idx_opts.version > 2)
2484 die("bad pack.indexversion=%"PRIu32,
2485 pack_idx_opts.version);
2486 return 0;
2487 }
2488 return git_default_config(k, v, cb);
2489 }
2490
2491 static void read_object_list_from_stdin(void)
2492 {
2493 char line[40 + 1 + PATH_MAX + 2];
2494 unsigned char sha1[20];
2495
2496 for (;;) {
2497 if (!fgets(line, sizeof(line), stdin)) {
2498 if (feof(stdin))
2499 break;
2500 if (!ferror(stdin))
2501 die("fgets returned NULL, not EOF, not error!");
2502 if (errno != EINTR)
2503 die_errno("fgets");
2504 clearerr(stdin);
2505 continue;
2506 }
2507 if (line[0] == '-') {
2508 if (get_sha1_hex(line+1, sha1))
2509 die("expected edge sha1, got garbage:\n %s",
2510 line);
2511 add_preferred_base(sha1);
2512 continue;
2513 }
2514 if (get_sha1_hex(line, sha1))
2515 die("expected sha1, got garbage:\n %s", line);
2516
2517 add_preferred_base_object(line+41);
2518 add_object_entry(sha1, 0, line+41, 0);
2519 }
2520 }
2521
2522 #define OBJECT_ADDED (1u<<20)
2523
2524 static void show_commit(struct commit *commit, void *data)
2525 {
2526 add_object_entry(commit->object.oid.hash, OBJ_COMMIT, NULL, 0);
2527 commit->object.flags |= OBJECT_ADDED;
2528
2529 if (write_bitmap_index)
2530 index_commit_for_bitmap(commit);
2531 }
2532
2533 static void show_object(struct object *obj, const char *name, void *data)
2534 {
2535 add_preferred_base_object(name);
2536 add_object_entry(obj->oid.hash, obj->type, name, 0);
2537 obj->flags |= OBJECT_ADDED;
2538 }
2539
2540 static void show_edge(struct commit *commit)
2541 {
2542 add_preferred_base(commit->object.oid.hash);
2543 }
2544
2545 struct in_pack_object {
2546 off_t offset;
2547 struct object *object;
2548 };
2549
2550 struct in_pack {
2551 int alloc;
2552 int nr;
2553 struct in_pack_object *array;
2554 };
2555
2556 static void mark_in_pack_object(struct object *object, struct packed_git *p, struct in_pack *in_pack)
2557 {
2558 in_pack->array[in_pack->nr].offset = find_pack_entry_one(object->oid.hash, p);
2559 in_pack->array[in_pack->nr].object = object;
2560 in_pack->nr++;
2561 }
2562
2563 /*
2564 * Compare the objects in the offset order, in order to emulate the
2565 * "git rev-list --objects" output that produced the pack originally.
2566 */
2567 static int ofscmp(const void *a_, const void *b_)
2568 {
2569 struct in_pack_object *a = (struct in_pack_object *)a_;
2570 struct in_pack_object *b = (struct in_pack_object *)b_;
2571
2572 if (a->offset < b->offset)
2573 return -1;
2574 else if (a->offset > b->offset)
2575 return 1;
2576 else
2577 return oidcmp(&a->object->oid, &b->object->oid);
2578 }
2579
2580 static void add_objects_in_unpacked_packs(struct rev_info *revs)
2581 {
2582 struct packed_git *p;
2583 struct in_pack in_pack;
2584 uint32_t i;
2585
2586 memset(&in_pack, 0, sizeof(in_pack));
2587
2588 for (p = packed_git; p; p = p->next) {
2589 const unsigned char *sha1;
2590 struct object *o;
2591
2592 if (!p->pack_local || p->pack_keep)
2593 continue;
2594 if (open_pack_index(p))
2595 die("cannot open pack index");
2596
2597 ALLOC_GROW(in_pack.array,
2598 in_pack.nr + p->num_objects,
2599 in_pack.alloc);
2600
2601 for (i = 0; i < p->num_objects; i++) {
2602 sha1 = nth_packed_object_sha1(p, i);
2603 o = lookup_unknown_object(sha1);
2604 if (!(o->flags & OBJECT_ADDED))
2605 mark_in_pack_object(o, p, &in_pack);
2606 o->flags |= OBJECT_ADDED;
2607 }
2608 }
2609
2610 if (in_pack.nr) {
2611 QSORT(in_pack.array, in_pack.nr, ofscmp);
2612 for (i = 0; i < in_pack.nr; i++) {
2613 struct object *o = in_pack.array[i].object;
2614 add_object_entry(o->oid.hash, o->type, "", 0);
2615 }
2616 }
2617 free(in_pack.array);
2618 }
2619
2620 static int add_loose_object(const struct object_id *oid, const char *path,
2621 void *data)
2622 {
2623 enum object_type type = sha1_object_info(oid->hash, NULL);
2624
2625 if (type < 0) {
2626 warning("loose object at %s could not be examined", path);
2627 return 0;
2628 }
2629
2630 add_object_entry(oid->hash, type, "", 0);
2631 return 0;
2632 }
2633
2634 /*
2635 * We actually don't even have to worry about reachability here.
2636 * add_object_entry will weed out duplicates, so we just add every
2637 * loose object we find.
2638 */
2639 static void add_unreachable_loose_objects(void)
2640 {
2641 for_each_loose_file_in_objdir(get_object_directory(),
2642 add_loose_object,
2643 NULL, NULL, NULL);
2644 }
2645
2646 static int has_sha1_pack_kept_or_nonlocal(const unsigned char *sha1)
2647 {
2648 static struct packed_git *last_found = (void *)1;
2649 struct packed_git *p;
2650
2651 p = (last_found != (void *)1) ? last_found : packed_git;
2652
2653 while (p) {
2654 if ((!p->pack_local || p->pack_keep) &&
2655 find_pack_entry_one(sha1, p)) {
2656 last_found = p;
2657 return 1;
2658 }
2659 if (p == last_found)
2660 p = packed_git;
2661 else
2662 p = p->next;
2663 if (p == last_found)
2664 p = p->next;
2665 }
2666 return 0;
2667 }
2668
2669 /*
2670 * Store a list of sha1s that are should not be discarded
2671 * because they are either written too recently, or are
2672 * reachable from another object that was.
2673 *
2674 * This is filled by get_object_list.
2675 */
2676 static struct oid_array recent_objects;
2677
2678 static int loosened_object_can_be_discarded(const struct object_id *oid,
2679 unsigned long mtime)
2680 {
2681 if (!unpack_unreachable_expiration)
2682 return 0;
2683 if (mtime > unpack_unreachable_expiration)
2684 return 0;
2685 if (oid_array_lookup(&recent_objects, oid) >= 0)
2686 return 0;
2687 return 1;
2688 }
2689
2690 static void loosen_unused_packed_objects(struct rev_info *revs)
2691 {
2692 struct packed_git *p;
2693 uint32_t i;
2694 struct object_id oid;
2695
2696 for (p = packed_git; p; p = p->next) {
2697 if (!p->pack_local || p->pack_keep)
2698 continue;
2699
2700 if (open_pack_index(p))
2701 die("cannot open pack index");
2702
2703 for (i = 0; i < p->num_objects; i++) {
2704 nth_packed_object_oid(&oid, p, i);
2705 if (!packlist_find(&to_pack, oid.hash, NULL) &&
2706 !has_sha1_pack_kept_or_nonlocal(oid.hash) &&
2707 !loosened_object_can_be_discarded(&oid, p->mtime))
2708 if (force_object_loose(oid.hash, p->mtime))
2709 die("unable to force loose object");
2710 }
2711 }
2712 }
2713
2714 /*
2715 * This tracks any options which pack-reuse code expects to be on, or which a
2716 * reader of the pack might not understand, and which would therefore prevent
2717 * blind reuse of what we have on disk.
2718 */
2719 static int pack_options_allow_reuse(void)
2720 {
2721 return pack_to_stdout && allow_ofs_delta;
2722 }
2723
2724 static int get_object_list_from_bitmap(struct rev_info *revs)
2725 {
2726 if (prepare_bitmap_walk(revs) < 0)
2727 return -1;
2728
2729 if (pack_options_allow_reuse() &&
2730 !reuse_partial_packfile_from_bitmap(
2731 &reuse_packfile,
2732 &reuse_packfile_objects,
2733 &reuse_packfile_offset)) {
2734 assert(reuse_packfile_objects);
2735 nr_result += reuse_packfile_objects;
2736 display_progress(progress_state, nr_result);
2737 }
2738
2739 traverse_bitmap_commit_list(&add_object_entry_from_bitmap);
2740 return 0;
2741 }
2742
2743 static void record_recent_object(struct object *obj,
2744 const char *name,
2745 void *data)
2746 {
2747 oid_array_append(&recent_objects, &obj->oid);
2748 }
2749
2750 static void record_recent_commit(struct commit *commit, void *data)
2751 {
2752 oid_array_append(&recent_objects, &commit->object.oid);
2753 }
2754
2755 static void get_object_list(int ac, const char **av)
2756 {
2757 struct rev_info revs;
2758 char line[1000];
2759 int flags = 0;
2760
2761 init_revisions(&revs, NULL);
2762 save_commit_buffer = 0;
2763 setup_revisions(ac, av, &revs, NULL);
2764
2765 /* make sure shallows are read */
2766 is_repository_shallow();
2767
2768 while (fgets(line, sizeof(line), stdin) != NULL) {
2769 int len = strlen(line);
2770 if (len && line[len - 1] == '\n')
2771 line[--len] = 0;
2772 if (!len)
2773 break;
2774 if (*line == '-') {
2775 if (!strcmp(line, "--not")) {
2776 flags ^= UNINTERESTING;
2777 write_bitmap_index = 0;
2778 continue;
2779 }
2780 if (starts_with(line, "--shallow ")) {
2781 unsigned char sha1[20];
2782 if (get_sha1_hex(line + 10, sha1))
2783 die("not an SHA-1 '%s'", line + 10);
2784 register_shallow(sha1);
2785 use_bitmap_index = 0;
2786 continue;
2787 }
2788 die("not a rev '%s'", line);
2789 }
2790 if (handle_revision_arg(line, &revs, flags, REVARG_CANNOT_BE_FILENAME))
2791 die("bad revision '%s'", line);
2792 }
2793
2794 if (use_bitmap_index && !get_object_list_from_bitmap(&revs))
2795 return;
2796
2797 if (prepare_revision_walk(&revs))
2798 die("revision walk setup failed");
2799 mark_edges_uninteresting(&revs, show_edge);
2800 traverse_commit_list(&revs, show_commit, show_object, NULL);
2801
2802 if (unpack_unreachable_expiration) {
2803 revs.ignore_missing_links = 1;
2804 if (add_unseen_recent_objects_to_traversal(&revs,
2805 unpack_unreachable_expiration))
2806 die("unable to add recent objects");
2807 if (prepare_revision_walk(&revs))
2808 die("revision walk setup failed");
2809 traverse_commit_list(&revs, record_recent_commit,
2810 record_recent_object, NULL);
2811 }
2812
2813 if (keep_unreachable)
2814 add_objects_in_unpacked_packs(&revs);
2815 if (pack_loose_unreachable)
2816 add_unreachable_loose_objects();
2817 if (unpack_unreachable)
2818 loosen_unused_packed_objects(&revs);
2819
2820 oid_array_clear(&recent_objects);
2821 }
2822
2823 static int option_parse_index_version(const struct option *opt,
2824 const char *arg, int unset)
2825 {
2826 char *c;
2827 const char *val = arg;
2828 pack_idx_opts.version = strtoul(val, &c, 10);
2829 if (pack_idx_opts.version > 2)
2830 die(_("unsupported index version %s"), val);
2831 if (*c == ',' && c[1])
2832 pack_idx_opts.off32_limit = strtoul(c+1, &c, 0);
2833 if (*c || pack_idx_opts.off32_limit & 0x80000000)
2834 die(_("bad index version '%s'"), val);
2835 return 0;
2836 }
2837
2838 static int option_parse_unpack_unreachable(const struct option *opt,
2839 const char *arg, int unset)
2840 {
2841 if (unset) {
2842 unpack_unreachable = 0;
2843 unpack_unreachable_expiration = 0;
2844 }
2845 else {
2846 unpack_unreachable = 1;
2847 if (arg)
2848 unpack_unreachable_expiration = approxidate(arg);
2849 }
2850 return 0;
2851 }
2852
2853 int cmd_pack_objects(int argc, const char **argv, const char *prefix)
2854 {
2855 int use_internal_rev_list = 0;
2856 int thin = 0;
2857 int shallow = 0;
2858 int all_progress_implied = 0;
2859 struct argv_array rp = ARGV_ARRAY_INIT;
2860 int rev_list_unpacked = 0, rev_list_all = 0, rev_list_reflog = 0;
2861 int rev_list_index = 0;
2862 struct option pack_objects_options[] = {
2863 OPT_SET_INT('q', "quiet", &progress,
2864 N_("do not show progress meter"), 0),
2865 OPT_SET_INT(0, "progress", &progress,
2866 N_("show progress meter"), 1),
2867 OPT_SET_INT(0, "all-progress", &progress,
2868 N_("show progress meter during object writing phase"), 2),
2869 OPT_BOOL(0, "all-progress-implied",
2870 &all_progress_implied,
2871 N_("similar to --all-progress when progress meter is shown")),
2872 { OPTION_CALLBACK, 0, "index-version", NULL, N_("version[,offset]"),
2873 N_("write the pack index file in the specified idx format version"),
2874 0, option_parse_index_version },
2875 OPT_MAGNITUDE(0, "max-pack-size", &pack_size_limit,
2876 N_("maximum size of each output pack file")),
2877 OPT_BOOL(0, "local", &local,
2878 N_("ignore borrowed objects from alternate object store")),
2879 OPT_BOOL(0, "incremental", &incremental,
2880 N_("ignore packed objects")),
2881 OPT_INTEGER(0, "window", &window,
2882 N_("limit pack window by objects")),
2883 OPT_MAGNITUDE(0, "window-memory", &window_memory_limit,
2884 N_("limit pack window by memory in addition to object limit")),
2885 OPT_INTEGER(0, "depth", &depth,
2886 N_("maximum length of delta chain allowed in the resulting pack")),
2887 OPT_BOOL(0, "reuse-delta", &reuse_delta,
2888 N_("reuse existing deltas")),
2889 OPT_BOOL(0, "reuse-object", &reuse_object,
2890 N_("reuse existing objects")),
2891 OPT_BOOL(0, "delta-base-offset", &allow_ofs_delta,
2892 N_("use OFS_DELTA objects")),
2893 OPT_INTEGER(0, "threads", &delta_search_threads,
2894 N_("use threads when searching for best delta matches")),
2895 OPT_BOOL(0, "non-empty", &non_empty,
2896 N_("do not create an empty pack output")),
2897 OPT_BOOL(0, "revs", &use_internal_rev_list,
2898 N_("read revision arguments from standard input")),
2899 { OPTION_SET_INT, 0, "unpacked", &rev_list_unpacked, NULL,
2900 N_("limit the objects to those that are not yet packed"),
2901 PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 },
2902 { OPTION_SET_INT, 0, "all", &rev_list_all, NULL,
2903 N_("include objects reachable from any reference"),
2904 PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 },
2905 { OPTION_SET_INT, 0, "reflog", &rev_list_reflog, NULL,
2906 N_("include objects referred by reflog entries"),
2907 PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 },
2908 { OPTION_SET_INT, 0, "indexed-objects", &rev_list_index, NULL,
2909 N_("include objects referred to by the index"),
2910 PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 },
2911 OPT_BOOL(0, "stdout", &pack_to_stdout,
2912 N_("output pack to stdout")),
2913 OPT_BOOL(0, "include-tag", &include_tag,
2914 N_("include tag objects that refer to objects to be packed")),
2915 OPT_BOOL(0, "keep-unreachable", &keep_unreachable,
2916 N_("keep unreachable objects")),
2917 OPT_BOOL(0, "pack-loose-unreachable", &pack_loose_unreachable,
2918 N_("pack loose unreachable objects")),
2919 { OPTION_CALLBACK, 0, "unpack-unreachable", NULL, N_("time"),
2920 N_("unpack unreachable objects newer than <time>"),
2921 PARSE_OPT_OPTARG, option_parse_unpack_unreachable },
2922 OPT_BOOL(0, "thin", &thin,
2923 N_("create thin packs")),
2924 OPT_BOOL(0, "shallow", &shallow,
2925 N_("create packs suitable for shallow fetches")),
2926 OPT_BOOL(0, "honor-pack-keep", &ignore_packed_keep,
2927 N_("ignore packs that have companion .keep file")),
2928 OPT_INTEGER(0, "compression", &pack_compression_level,
2929 N_("pack compression level")),
2930 OPT_SET_INT(0, "keep-true-parents", &grafts_replace_parents,
2931 N_("do not hide commits by grafts"), 0),
2932 OPT_BOOL(0, "use-bitmap-index", &use_bitmap_index,
2933 N_("use a bitmap index if available to speed up counting objects")),
2934 OPT_BOOL(0, "write-bitmap-index", &write_bitmap_index,
2935 N_("write a bitmap index together with the pack index")),
2936 OPT_END(),
2937 };
2938
2939 check_replace_refs = 0;
2940
2941 reset_pack_idx_option(&pack_idx_opts);
2942 git_config(git_pack_config, NULL);
2943
2944 progress = isatty(2);
2945 argc = parse_options(argc, argv, prefix, pack_objects_options,
2946 pack_usage, 0);
2947
2948 if (argc) {
2949 base_name = argv[0];
2950 argc--;
2951 }
2952 if (pack_to_stdout != !base_name || argc)
2953 usage_with_options(pack_usage, pack_objects_options);
2954
2955 argv_array_push(&rp, "pack-objects");
2956 if (thin) {
2957 use_internal_rev_list = 1;
2958 argv_array_push(&rp, shallow
2959 ? "--objects-edge-aggressive"
2960 : "--objects-edge");
2961 } else
2962 argv_array_push(&rp, "--objects");
2963
2964 if (rev_list_all) {
2965 use_internal_rev_list = 1;
2966 argv_array_push(&rp, "--all");
2967 }
2968 if (rev_list_reflog) {
2969 use_internal_rev_list = 1;
2970 argv_array_push(&rp, "--reflog");
2971 }
2972 if (rev_list_index) {
2973 use_internal_rev_list = 1;
2974 argv_array_push(&rp, "--indexed-objects");
2975 }
2976 if (rev_list_unpacked) {
2977 use_internal_rev_list = 1;
2978 argv_array_push(&rp, "--unpacked");
2979 }
2980
2981 if (!reuse_object)
2982 reuse_delta = 0;
2983 if (pack_compression_level == -1)
2984 pack_compression_level = Z_DEFAULT_COMPRESSION;
2985 else if (pack_compression_level < 0 || pack_compression_level > Z_BEST_COMPRESSION)
2986 die("bad pack compression level %d", pack_compression_level);
2987
2988 if (!delta_search_threads) /* --threads=0 means autodetect */
2989 delta_search_threads = online_cpus();
2990
2991 #ifdef NO_PTHREADS
2992 if (delta_search_threads != 1)
2993 warning("no threads support, ignoring --threads");
2994 #endif
2995 if (!pack_to_stdout && !pack_size_limit)
2996 pack_size_limit = pack_size_limit_cfg;
2997 if (pack_to_stdout && pack_size_limit)
2998 die("--max-pack-size cannot be used to build a pack for transfer.");
2999 if (pack_size_limit && pack_size_limit < 1024*1024) {
3000 warning("minimum pack size limit is 1 MiB");
3001 pack_size_limit = 1024*1024;
3002 }
3003
3004 if (!pack_to_stdout && thin)
3005 die("--thin cannot be used to build an indexable pack.");
3006
3007 if (keep_unreachable && unpack_unreachable)
3008 die("--keep-unreachable and --unpack-unreachable are incompatible.");
3009 if (!rev_list_all || !rev_list_reflog || !rev_list_index)
3010 unpack_unreachable_expiration = 0;
3011
3012 /*
3013 * "soft" reasons not to use bitmaps - for on-disk repack by default we want
3014 *
3015 * - to produce good pack (with bitmap index not-yet-packed objects are
3016 * packed in suboptimal order).
3017 *
3018 * - to use more robust pack-generation codepath (avoiding possible
3019 * bugs in bitmap code and possible bitmap index corruption).
3020 */
3021 if (!pack_to_stdout)
3022 use_bitmap_index_default = 0;
3023
3024 if (use_bitmap_index < 0)
3025 use_bitmap_index = use_bitmap_index_default;
3026
3027 /* "hard" reasons not to use bitmaps; these just won't work at all */
3028 if (!use_internal_rev_list || (!pack_to_stdout && write_bitmap_index) || is_repository_shallow())
3029 use_bitmap_index = 0;
3030
3031 if (pack_to_stdout || !rev_list_all)
3032 write_bitmap_index = 0;
3033
3034 if (progress && all_progress_implied)
3035 progress = 2;
3036
3037 prepare_packed_git();
3038 if (ignore_packed_keep) {
3039 struct packed_git *p;
3040 for (p = packed_git; p; p = p->next)
3041 if (p->pack_local && p->pack_keep)
3042 break;
3043 if (!p) /* no keep-able packs found */
3044 ignore_packed_keep = 0;
3045 }
3046 if (local) {
3047 /*
3048 * unlike ignore_packed_keep above, we do not want to
3049 * unset "local" based on looking at packs, as it
3050 * also covers non-local objects
3051 */
3052 struct packed_git *p;
3053 for (p = packed_git; p; p = p->next) {
3054 if (!p->pack_local) {
3055 have_non_local_packs = 1;
3056 break;
3057 }
3058 }
3059 }
3060
3061 if (progress)
3062 progress_state = start_progress(_("Counting objects"), 0);
3063 if (!use_internal_rev_list)
3064 read_object_list_from_stdin();
3065 else {
3066 get_object_list(rp.argc, rp.argv);
3067 argv_array_clear(&rp);
3068 }
3069 cleanup_preferred_base();
3070 if (include_tag && nr_result)
3071 for_each_ref(add_ref_tag, NULL);
3072 stop_progress(&progress_state);
3073
3074 if (non_empty && !nr_result)
3075 return 0;
3076 if (nr_result)
3077 prepare_pack(window, depth);
3078 write_pack_file();
3079 if (progress)
3080 fprintf(stderr, "Total %"PRIu32" (delta %"PRIu32"),"
3081 " reused %"PRIu32" (delta %"PRIu32")\n",
3082 written, written_delta, reused, reused_delta);
3083 return 0;
3084 }