]> git.ipfire.org Git - thirdparty/git.git/blob - compat/regex/regex.c
fast-export: ensure that a renamed file is printed after all references
[thirdparty/git.git] / compat / regex / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #define _GNU_SOURCE
28
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
31
32 /* We used to test for `BSTRING' here, but only GCC and Emacs define
33 `BSTRING', as far as I know, and neither of them use this code. */
34 #include <string.h>
35 #ifndef bcmp
36 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
37 #endif
38 #ifndef bcopy
39 #define bcopy(s, d, n) memcpy ((d), (s), (n))
40 #endif
41 #ifndef bzero
42 #define bzero(s, n) memset ((s), 0, (n))
43 #endif
44
45 #include <stdlib.h>
46
47
48 /* Define the syntax stuff for \<, \>, etc. */
49
50 /* This must be nonzero for the wordchar and notwordchar pattern
51 commands in re_match_2. */
52 #ifndef Sword
53 #define Sword 1
54 #endif
55
56 #ifdef SYNTAX_TABLE
57
58 extern char *re_syntax_table;
59
60 #else /* not SYNTAX_TABLE */
61
62 /* How many characters in the character set. */
63 #define CHAR_SET_SIZE 256
64
65 static char re_syntax_table[CHAR_SET_SIZE];
66
67 static void
68 init_syntax_once ()
69 {
70 register int c;
71 static int done = 0;
72
73 if (done)
74 return;
75
76 bzero (re_syntax_table, sizeof re_syntax_table);
77
78 for (c = 'a'; c <= 'z'; c++)
79 re_syntax_table[c] = Sword;
80
81 for (c = 'A'; c <= 'Z'; c++)
82 re_syntax_table[c] = Sword;
83
84 for (c = '0'; c <= '9'; c++)
85 re_syntax_table[c] = Sword;
86
87 re_syntax_table['_'] = Sword;
88
89 done = 1;
90 }
91
92 #endif /* not SYNTAX_TABLE */
93
94 #define SYNTAX(c) re_syntax_table[c]
95
96 \f
97 /* Get the interface, including the syntax bits. */
98 #include "regex.h"
99
100 /* isalpha etc. are used for the character classes. */
101 #include <ctype.h>
102
103 #ifndef isascii
104 #define isascii(c) 1
105 #endif
106
107 #ifdef isblank
108 #define ISBLANK(c) (isascii (c) && isblank (c))
109 #else
110 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
111 #endif
112 #ifdef isgraph
113 #define ISGRAPH(c) (isascii (c) && isgraph (c))
114 #else
115 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
116 #endif
117
118 #define ISPRINT(c) (isascii (c) && isprint (c))
119 #define ISDIGIT(c) (isascii (c) && isdigit (c))
120 #define ISALNUM(c) (isascii (c) && isalnum (c))
121 #define ISALPHA(c) (isascii (c) && isalpha (c))
122 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
123 #define ISLOWER(c) (isascii (c) && islower (c))
124 #define ISPUNCT(c) (isascii (c) && ispunct (c))
125 #define ISSPACE(c) (isascii (c) && isspace (c))
126 #define ISUPPER(c) (isascii (c) && isupper (c))
127 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
128
129 #ifndef NULL
130 #define NULL 0
131 #endif
132
133 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
134 since ours (we hope) works properly with all combinations of
135 machines, compilers, `char' and `unsigned char' argument types.
136 (Per Bothner suggested the basic approach.) */
137 #undef SIGN_EXTEND_CHAR
138 #if __STDC__
139 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
140 #else /* not __STDC__ */
141 /* As in Harbison and Steele. */
142 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
143 #endif
144 \f
145 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
146 use `alloca' instead of `malloc'. This is because using malloc in
147 re_search* or re_match* could cause memory leaks when C-g is used in
148 Emacs; also, malloc is slower and causes storage fragmentation. On
149 the other hand, malloc is more portable, and easier to debug.
150
151 Because we sometimes use alloca, some routines have to be macros,
152 not functions -- `alloca'-allocated space disappears at the end of the
153 function it is called in. */
154
155 #ifdef REGEX_MALLOC
156
157 #define REGEX_ALLOCATE malloc
158 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
159
160 #else /* not REGEX_MALLOC */
161
162 /* Emacs already defines alloca, sometimes. */
163 #ifndef alloca
164
165 /* Make alloca work the best possible way. */
166 #ifdef __GNUC__
167 #define alloca __builtin_alloca
168 #else /* not __GNUC__ */
169 #if HAVE_ALLOCA_H
170 #include <alloca.h>
171 #else /* not __GNUC__ or HAVE_ALLOCA_H */
172 #ifndef _AIX /* Already did AIX, up at the top. */
173 char *alloca ();
174 #endif /* not _AIX */
175 #endif /* not HAVE_ALLOCA_H */
176 #endif /* not __GNUC__ */
177
178 #endif /* not alloca */
179
180 #define REGEX_ALLOCATE alloca
181
182 /* Assumes a `char *destination' variable. */
183 #define REGEX_REALLOCATE(source, osize, nsize) \
184 (destination = (char *) alloca (nsize), \
185 bcopy (source, destination, osize), \
186 destination)
187
188 #endif /* not REGEX_MALLOC */
189
190
191 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
192 `string1' or just past its end. This works if PTR is NULL, which is
193 a good thing. */
194 #define FIRST_STRING_P(ptr) \
195 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
196
197 /* (Re)Allocate N items of type T using malloc, or fail. */
198 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
199 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
200 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
201
202 #define BYTEWIDTH 8 /* In bits. */
203
204 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
205
206 #define MAX(a, b) ((a) > (b) ? (a) : (b))
207 #define MIN(a, b) ((a) < (b) ? (a) : (b))
208
209 typedef char boolean;
210 #define false 0
211 #define true 1
212 \f
213 /* These are the command codes that appear in compiled regular
214 expressions. Some opcodes are followed by argument bytes. A
215 command code can specify any interpretation whatsoever for its
216 arguments. Zero bytes may appear in the compiled regular expression.
217
218 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
219 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
220 `exactn' we use here must also be 1. */
221
222 typedef enum
223 {
224 no_op = 0,
225
226 /* Followed by one byte giving n, then by n literal bytes. */
227 exactn = 1,
228
229 /* Matches any (more or less) character. */
230 anychar,
231
232 /* Matches any one char belonging to specified set. First
233 following byte is number of bitmap bytes. Then come bytes
234 for a bitmap saying which chars are in. Bits in each byte
235 are ordered low-bit-first. A character is in the set if its
236 bit is 1. A character too large to have a bit in the map is
237 automatically not in the set. */
238 charset,
239
240 /* Same parameters as charset, but match any character that is
241 not one of those specified. */
242 charset_not,
243
244 /* Start remembering the text that is matched, for storing in a
245 register. Followed by one byte with the register number, in
246 the range 0 to one less than the pattern buffer's re_nsub
247 field. Then followed by one byte with the number of groups
248 inner to this one. (This last has to be part of the
249 start_memory only because we need it in the on_failure_jump
250 of re_match_2.) */
251 start_memory,
252
253 /* Stop remembering the text that is matched and store it in a
254 memory register. Followed by one byte with the register
255 number, in the range 0 to one less than `re_nsub' in the
256 pattern buffer, and one byte with the number of inner groups,
257 just like `start_memory'. (We need the number of inner
258 groups here because we don't have any easy way of finding the
259 corresponding start_memory when we're at a stop_memory.) */
260 stop_memory,
261
262 /* Match a duplicate of something remembered. Followed by one
263 byte containing the register number. */
264 duplicate,
265
266 /* Fail unless at beginning of line. */
267 begline,
268
269 /* Fail unless at end of line. */
270 endline,
271
272 /* Succeeds if at beginning of buffer (if emacs) or at beginning
273 of string to be matched (if not). */
274 begbuf,
275
276 /* Analogously, for end of buffer/string. */
277 endbuf,
278
279 /* Followed by two byte relative address to which to jump. */
280 jump,
281
282 /* Same as jump, but marks the end of an alternative. */
283 jump_past_alt,
284
285 /* Followed by two-byte relative address of place to resume at
286 in case of failure. */
287 on_failure_jump,
288
289 /* Like on_failure_jump, but pushes a placeholder instead of the
290 current string position when executed. */
291 on_failure_keep_string_jump,
292
293 /* Throw away latest failure point and then jump to following
294 two-byte relative address. */
295 pop_failure_jump,
296
297 /* Change to pop_failure_jump if know won't have to backtrack to
298 match; otherwise change to jump. This is used to jump
299 back to the beginning of a repeat. If what follows this jump
300 clearly won't match what the repeat does, such that we can be
301 sure that there is no use backtracking out of repetitions
302 already matched, then we change it to a pop_failure_jump.
303 Followed by two-byte address. */
304 maybe_pop_jump,
305
306 /* Jump to following two-byte address, and push a dummy failure
307 point. This failure point will be thrown away if an attempt
308 is made to use it for a failure. A `+' construct makes this
309 before the first repeat. Also used as an intermediary kind
310 of jump when compiling an alternative. */
311 dummy_failure_jump,
312
313 /* Push a dummy failure point and continue. Used at the end of
314 alternatives. */
315 push_dummy_failure,
316
317 /* Followed by two-byte relative address and two-byte number n.
318 After matching N times, jump to the address upon failure. */
319 succeed_n,
320
321 /* Followed by two-byte relative address, and two-byte number n.
322 Jump to the address N times, then fail. */
323 jump_n,
324
325 /* Set the following two-byte relative address to the
326 subsequent two-byte number. The address *includes* the two
327 bytes of number. */
328 set_number_at,
329
330 wordchar, /* Matches any word-constituent character. */
331 notwordchar, /* Matches any char that is not a word-constituent. */
332
333 wordbeg, /* Succeeds if at word beginning. */
334 wordend, /* Succeeds if at word end. */
335
336 wordbound, /* Succeeds if at a word boundary. */
337 notwordbound /* Succeeds if not at a word boundary. */
338
339 #ifdef emacs
340 ,before_dot, /* Succeeds if before point. */
341 at_dot, /* Succeeds if at point. */
342 after_dot, /* Succeeds if after point. */
343
344 /* Matches any character whose syntax is specified. Followed by
345 a byte which contains a syntax code, e.g., Sword. */
346 syntaxspec,
347
348 /* Matches any character whose syntax is not that specified. */
349 notsyntaxspec
350 #endif /* emacs */
351 } re_opcode_t;
352 \f
353 /* Common operations on the compiled pattern. */
354
355 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
356
357 #define STORE_NUMBER(destination, number) \
358 do { \
359 (destination)[0] = (number) & 0377; \
360 (destination)[1] = (number) >> 8; \
361 } while (0)
362
363 /* Same as STORE_NUMBER, except increment DESTINATION to
364 the byte after where the number is stored. Therefore, DESTINATION
365 must be an lvalue. */
366
367 #define STORE_NUMBER_AND_INCR(destination, number) \
368 do { \
369 STORE_NUMBER (destination, number); \
370 (destination) += 2; \
371 } while (0)
372
373 /* Put into DESTINATION a number stored in two contiguous bytes starting
374 at SOURCE. */
375
376 #define EXTRACT_NUMBER(destination, source) \
377 do { \
378 (destination) = *(source) & 0377; \
379 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
380 } while (0)
381
382 #ifdef DEBUG
383 static void
384 extract_number (dest, source)
385 int *dest;
386 unsigned char *source;
387 {
388 int temp = SIGN_EXTEND_CHAR (*(source + 1));
389 *dest = *source & 0377;
390 *dest += temp << 8;
391 }
392
393 #ifndef EXTRACT_MACROS /* To debug the macros. */
394 #undef EXTRACT_NUMBER
395 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
396 #endif /* not EXTRACT_MACROS */
397
398 #endif /* DEBUG */
399
400 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
401 SOURCE must be an lvalue. */
402
403 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
404 do { \
405 EXTRACT_NUMBER (destination, source); \
406 (source) += 2; \
407 } while (0)
408
409 #ifdef DEBUG
410 static void
411 extract_number_and_incr (destination, source)
412 int *destination;
413 unsigned char **source;
414 {
415 extract_number (destination, *source);
416 *source += 2;
417 }
418
419 #ifndef EXTRACT_MACROS
420 #undef EXTRACT_NUMBER_AND_INCR
421 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
422 extract_number_and_incr (&dest, &src)
423 #endif /* not EXTRACT_MACROS */
424
425 #endif /* DEBUG */
426 \f
427 /* If DEBUG is defined, Regex prints many voluminous messages about what
428 it is doing (if the variable `debug' is nonzero). If linked with the
429 main program in `iregex.c', you can enter patterns and strings
430 interactively. And if linked with the main program in `main.c' and
431 the other test files, you can run the already-written tests. */
432
433 #ifdef DEBUG
434
435 /* We use standard I/O for debugging. */
436 #include <stdio.h>
437
438 /* It is useful to test things that ``must'' be true when debugging. */
439 #include <assert.h>
440
441 static int debug = 0;
442
443 #define DEBUG_STATEMENT(e) e
444 #define DEBUG_PRINT1(x) if (debug) printf (x)
445 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
446 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
447 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
448 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
449 if (debug) print_partial_compiled_pattern (s, e)
450 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
451 if (debug) print_double_string (w, s1, sz1, s2, sz2)
452
453
454 extern void printchar ();
455
456 /* Print the fastmap in human-readable form. */
457
458 void
459 print_fastmap (fastmap)
460 char *fastmap;
461 {
462 unsigned was_a_range = 0;
463 unsigned i = 0;
464
465 while (i < (1 << BYTEWIDTH))
466 {
467 if (fastmap[i++])
468 {
469 was_a_range = 0;
470 printchar (i - 1);
471 while (i < (1 << BYTEWIDTH) && fastmap[i])
472 {
473 was_a_range = 1;
474 i++;
475 }
476 if (was_a_range)
477 {
478 printf ("-");
479 printchar (i - 1);
480 }
481 }
482 }
483 putchar ('\n');
484 }
485
486
487 /* Print a compiled pattern string in human-readable form, starting at
488 the START pointer into it and ending just before the pointer END. */
489
490 void
491 print_partial_compiled_pattern (start, end)
492 unsigned char *start;
493 unsigned char *end;
494 {
495 int mcnt, mcnt2;
496 unsigned char *p = start;
497 unsigned char *pend = end;
498
499 if (start == NULL)
500 {
501 printf ("(null)\n");
502 return;
503 }
504
505 /* Loop over pattern commands. */
506 while (p < pend)
507 {
508 switch ((re_opcode_t) *p++)
509 {
510 case no_op:
511 printf ("/no_op");
512 break;
513
514 case exactn:
515 mcnt = *p++;
516 printf ("/exactn/%d", mcnt);
517 do
518 {
519 putchar ('/');
520 printchar (*p++);
521 }
522 while (--mcnt);
523 break;
524
525 case start_memory:
526 mcnt = *p++;
527 printf ("/start_memory/%d/%d", mcnt, *p++);
528 break;
529
530 case stop_memory:
531 mcnt = *p++;
532 printf ("/stop_memory/%d/%d", mcnt, *p++);
533 break;
534
535 case duplicate:
536 printf ("/duplicate/%d", *p++);
537 break;
538
539 case anychar:
540 printf ("/anychar");
541 break;
542
543 case charset:
544 case charset_not:
545 {
546 register int c;
547
548 printf ("/charset%s",
549 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
550
551 assert (p + *p < pend);
552
553 for (c = 0; c < *p; c++)
554 {
555 unsigned bit;
556 unsigned char map_byte = p[1 + c];
557
558 putchar ('/');
559
560 for (bit = 0; bit < BYTEWIDTH; bit++)
561 if (map_byte & (1 << bit))
562 printchar (c * BYTEWIDTH + bit);
563 }
564 p += 1 + *p;
565 break;
566 }
567
568 case begline:
569 printf ("/begline");
570 break;
571
572 case endline:
573 printf ("/endline");
574 break;
575
576 case on_failure_jump:
577 extract_number_and_incr (&mcnt, &p);
578 printf ("/on_failure_jump/0/%d", mcnt);
579 break;
580
581 case on_failure_keep_string_jump:
582 extract_number_and_incr (&mcnt, &p);
583 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
584 break;
585
586 case dummy_failure_jump:
587 extract_number_and_incr (&mcnt, &p);
588 printf ("/dummy_failure_jump/0/%d", mcnt);
589 break;
590
591 case push_dummy_failure:
592 printf ("/push_dummy_failure");
593 break;
594
595 case maybe_pop_jump:
596 extract_number_and_incr (&mcnt, &p);
597 printf ("/maybe_pop_jump/0/%d", mcnt);
598 break;
599
600 case pop_failure_jump:
601 extract_number_and_incr (&mcnt, &p);
602 printf ("/pop_failure_jump/0/%d", mcnt);
603 break;
604
605 case jump_past_alt:
606 extract_number_and_incr (&mcnt, &p);
607 printf ("/jump_past_alt/0/%d", mcnt);
608 break;
609
610 case jump:
611 extract_number_and_incr (&mcnt, &p);
612 printf ("/jump/0/%d", mcnt);
613 break;
614
615 case succeed_n:
616 extract_number_and_incr (&mcnt, &p);
617 extract_number_and_incr (&mcnt2, &p);
618 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
619 break;
620
621 case jump_n:
622 extract_number_and_incr (&mcnt, &p);
623 extract_number_and_incr (&mcnt2, &p);
624 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
625 break;
626
627 case set_number_at:
628 extract_number_and_incr (&mcnt, &p);
629 extract_number_and_incr (&mcnt2, &p);
630 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
631 break;
632
633 case wordbound:
634 printf ("/wordbound");
635 break;
636
637 case notwordbound:
638 printf ("/notwordbound");
639 break;
640
641 case wordbeg:
642 printf ("/wordbeg");
643 break;
644
645 case wordend:
646 printf ("/wordend");
647
648 #ifdef emacs
649 case before_dot:
650 printf ("/before_dot");
651 break;
652
653 case at_dot:
654 printf ("/at_dot");
655 break;
656
657 case after_dot:
658 printf ("/after_dot");
659 break;
660
661 case syntaxspec:
662 printf ("/syntaxspec");
663 mcnt = *p++;
664 printf ("/%d", mcnt);
665 break;
666
667 case notsyntaxspec:
668 printf ("/notsyntaxspec");
669 mcnt = *p++;
670 printf ("/%d", mcnt);
671 break;
672 #endif /* emacs */
673
674 case wordchar:
675 printf ("/wordchar");
676 break;
677
678 case notwordchar:
679 printf ("/notwordchar");
680 break;
681
682 case begbuf:
683 printf ("/begbuf");
684 break;
685
686 case endbuf:
687 printf ("/endbuf");
688 break;
689
690 default:
691 printf ("?%d", *(p-1));
692 }
693 }
694 printf ("/\n");
695 }
696
697
698 void
699 print_compiled_pattern (bufp)
700 struct re_pattern_buffer *bufp;
701 {
702 unsigned char *buffer = bufp->buffer;
703
704 print_partial_compiled_pattern (buffer, buffer + bufp->used);
705 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
706
707 if (bufp->fastmap_accurate && bufp->fastmap)
708 {
709 printf ("fastmap: ");
710 print_fastmap (bufp->fastmap);
711 }
712
713 printf ("re_nsub: %d\t", bufp->re_nsub);
714 printf ("regs_alloc: %d\t", bufp->regs_allocated);
715 printf ("can_be_null: %d\t", bufp->can_be_null);
716 printf ("newline_anchor: %d\n", bufp->newline_anchor);
717 printf ("no_sub: %d\t", bufp->no_sub);
718 printf ("not_bol: %d\t", bufp->not_bol);
719 printf ("not_eol: %d\t", bufp->not_eol);
720 printf ("syntax: %d\n", bufp->syntax);
721 /* Perhaps we should print the translate table? */
722 }
723
724
725 void
726 print_double_string (where, string1, size1, string2, size2)
727 const char *where;
728 const char *string1;
729 const char *string2;
730 int size1;
731 int size2;
732 {
733 unsigned this_char;
734
735 if (where == NULL)
736 printf ("(null)");
737 else
738 {
739 if (FIRST_STRING_P (where))
740 {
741 for (this_char = where - string1; this_char < size1; this_char++)
742 printchar (string1[this_char]);
743
744 where = string2;
745 }
746
747 for (this_char = where - string2; this_char < size2; this_char++)
748 printchar (string2[this_char]);
749 }
750 }
751
752 #else /* not DEBUG */
753
754 #undef assert
755 #define assert(e)
756
757 #define DEBUG_STATEMENT(e)
758 #define DEBUG_PRINT1(x)
759 #define DEBUG_PRINT2(x1, x2)
760 #define DEBUG_PRINT3(x1, x2, x3)
761 #define DEBUG_PRINT4(x1, x2, x3, x4)
762 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
763 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
764
765 #endif /* not DEBUG */
766 \f
767 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
768 also be assigned to arbitrarily: each pattern buffer stores its own
769 syntax, so it can be changed between regex compilations. */
770 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
771
772
773 /* Specify the precise syntax of regexps for compilation. This provides
774 for compatibility for various utilities which historically have
775 different, incompatible syntaxes.
776
777 The argument SYNTAX is a bit mask comprised of the various bits
778 defined in regex.h. We return the old syntax. */
779
780 reg_syntax_t
781 re_set_syntax (syntax)
782 reg_syntax_t syntax;
783 {
784 reg_syntax_t ret = re_syntax_options;
785
786 re_syntax_options = syntax;
787 return ret;
788 }
789 \f
790 /* This table gives an error message for each of the error codes listed
791 in regex.h. Obviously the order here has to be same as there. */
792
793 static const char *re_error_msg[] =
794 { NULL, /* REG_NOERROR */
795 "No match", /* REG_NOMATCH */
796 "Invalid regular expression", /* REG_BADPAT */
797 "Invalid collation character", /* REG_ECOLLATE */
798 "Invalid character class name", /* REG_ECTYPE */
799 "Trailing backslash", /* REG_EESCAPE */
800 "Invalid back reference", /* REG_ESUBREG */
801 "Unmatched [ or [^", /* REG_EBRACK */
802 "Unmatched ( or \\(", /* REG_EPAREN */
803 "Unmatched \\{", /* REG_EBRACE */
804 "Invalid content of \\{\\}", /* REG_BADBR */
805 "Invalid range end", /* REG_ERANGE */
806 "Memory exhausted", /* REG_ESPACE */
807 "Invalid preceding regular expression", /* REG_BADRPT */
808 "Premature end of regular expression", /* REG_EEND */
809 "Regular expression too big", /* REG_ESIZE */
810 "Unmatched ) or \\)", /* REG_ERPAREN */
811 };
812 \f
813 /* Subroutine declarations and macros for regex_compile. */
814
815 static void store_op1 (), store_op2 ();
816 static void insert_op1 (), insert_op2 ();
817 static boolean at_begline_loc_p (), at_endline_loc_p ();
818 static boolean group_in_compile_stack ();
819 static reg_errcode_t compile_range ();
820
821 /* Fetch the next character in the uncompiled pattern---translating it
822 if necessary. Also cast from a signed character in the constant
823 string passed to us by the user to an unsigned char that we can use
824 as an array index (in, e.g., `translate'). */
825 #define PATFETCH(c) \
826 do {if (p == pend) return REG_EEND; \
827 c = (unsigned char) *p++; \
828 if (translate) c = translate[c]; \
829 } while (0)
830
831 /* Fetch the next character in the uncompiled pattern, with no
832 translation. */
833 #define PATFETCH_RAW(c) \
834 do {if (p == pend) return REG_EEND; \
835 c = (unsigned char) *p++; \
836 } while (0)
837
838 /* Go backwards one character in the pattern. */
839 #define PATUNFETCH p--
840
841
842 /* If `translate' is non-null, return translate[D], else just D. We
843 cast the subscript to translate because some data is declared as
844 `char *', to avoid warnings when a string constant is passed. But
845 when we use a character as a subscript we must make it unsigned. */
846 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
847
848
849 /* Macros for outputting the compiled pattern into `buffer'. */
850
851 /* If the buffer isn't allocated when it comes in, use this. */
852 #define INIT_BUF_SIZE 32
853
854 /* Make sure we have at least N more bytes of space in buffer. */
855 #define GET_BUFFER_SPACE(n) \
856 while (b - bufp->buffer + (n) > bufp->allocated) \
857 EXTEND_BUFFER ()
858
859 /* Make sure we have one more byte of buffer space and then add C to it. */
860 #define BUF_PUSH(c) \
861 do { \
862 GET_BUFFER_SPACE (1); \
863 *b++ = (unsigned char) (c); \
864 } while (0)
865
866
867 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
868 #define BUF_PUSH_2(c1, c2) \
869 do { \
870 GET_BUFFER_SPACE (2); \
871 *b++ = (unsigned char) (c1); \
872 *b++ = (unsigned char) (c2); \
873 } while (0)
874
875
876 /* As with BUF_PUSH_2, except for three bytes. */
877 #define BUF_PUSH_3(c1, c2, c3) \
878 do { \
879 GET_BUFFER_SPACE (3); \
880 *b++ = (unsigned char) (c1); \
881 *b++ = (unsigned char) (c2); \
882 *b++ = (unsigned char) (c3); \
883 } while (0)
884
885
886 /* Store a jump with opcode OP at LOC to location TO. We store a
887 relative address offset by the three bytes the jump itself occupies. */
888 #define STORE_JUMP(op, loc, to) \
889 store_op1 (op, loc, (to) - (loc) - 3)
890
891 /* Likewise, for a two-argument jump. */
892 #define STORE_JUMP2(op, loc, to, arg) \
893 store_op2 (op, loc, (to) - (loc) - 3, arg)
894
895 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
896 #define INSERT_JUMP(op, loc, to) \
897 insert_op1 (op, loc, (to) - (loc) - 3, b)
898
899 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
900 #define INSERT_JUMP2(op, loc, to, arg) \
901 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
902
903
904 /* This is not an arbitrary limit: the arguments which represent offsets
905 into the pattern are two bytes long. So if 2^16 bytes turns out to
906 be too small, many things would have to change. */
907 #define MAX_BUF_SIZE (1L << 16)
908
909
910 /* Extend the buffer by twice its current size via realloc and
911 reset the pointers that pointed into the old block to point to the
912 correct places in the new one. If extending the buffer results in it
913 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
914 #define EXTEND_BUFFER() \
915 do { \
916 unsigned char *old_buffer = bufp->buffer; \
917 if (bufp->allocated == MAX_BUF_SIZE) \
918 return REG_ESIZE; \
919 bufp->allocated <<= 1; \
920 if (bufp->allocated > MAX_BUF_SIZE) \
921 bufp->allocated = MAX_BUF_SIZE; \
922 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
923 if (bufp->buffer == NULL) \
924 return REG_ESPACE; \
925 /* If the buffer moved, move all the pointers into it. */ \
926 if (old_buffer != bufp->buffer) \
927 { \
928 b = (b - old_buffer) + bufp->buffer; \
929 begalt = (begalt - old_buffer) + bufp->buffer; \
930 if (fixup_alt_jump) \
931 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
932 if (laststart) \
933 laststart = (laststart - old_buffer) + bufp->buffer; \
934 if (pending_exact) \
935 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
936 } \
937 } while (0)
938
939
940 /* Since we have one byte reserved for the register number argument to
941 {start,stop}_memory, the maximum number of groups we can report
942 things about is what fits in that byte. */
943 #define MAX_REGNUM 255
944
945 /* But patterns can have more than `MAX_REGNUM' registers. We just
946 ignore the excess. */
947 typedef unsigned regnum_t;
948
949
950 /* Macros for the compile stack. */
951
952 /* Since offsets can go either forwards or backwards, this type needs to
953 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
954 typedef int pattern_offset_t;
955
956 typedef struct
957 {
958 pattern_offset_t begalt_offset;
959 pattern_offset_t fixup_alt_jump;
960 pattern_offset_t inner_group_offset;
961 pattern_offset_t laststart_offset;
962 regnum_t regnum;
963 } compile_stack_elt_t;
964
965
966 typedef struct
967 {
968 compile_stack_elt_t *stack;
969 unsigned size;
970 unsigned avail; /* Offset of next open position. */
971 } compile_stack_type;
972
973
974 #define INIT_COMPILE_STACK_SIZE 32
975
976 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
977 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
978
979 /* The next available element. */
980 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
981
982
983 /* Set the bit for character C in a list. */
984 #define SET_LIST_BIT(c) \
985 (b[((unsigned char) (c)) / BYTEWIDTH] \
986 |= 1 << (((unsigned char) c) % BYTEWIDTH))
987
988
989 /* Get the next unsigned number in the uncompiled pattern. */
990 #define GET_UNSIGNED_NUMBER(num) \
991 { if (p != pend) \
992 { \
993 PATFETCH (c); \
994 while (ISDIGIT (c)) \
995 { \
996 if (num < 0) \
997 num = 0; \
998 num = num * 10 + c - '0'; \
999 if (p == pend) \
1000 break; \
1001 PATFETCH (c); \
1002 } \
1003 } \
1004 }
1005
1006 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1007
1008 #define IS_CHAR_CLASS(string) \
1009 (STREQ (string, "alpha") || STREQ (string, "upper") \
1010 || STREQ (string, "lower") || STREQ (string, "digit") \
1011 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1012 || STREQ (string, "space") || STREQ (string, "print") \
1013 || STREQ (string, "punct") || STREQ (string, "graph") \
1014 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1015 \f
1016 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1017 Returns one of error codes defined in `regex.h', or zero for success.
1018
1019 Assumes the `allocated' (and perhaps `buffer') and `translate'
1020 fields are set in BUFP on entry.
1021
1022 If it succeeds, results are put in BUFP (if it returns an error, the
1023 contents of BUFP are undefined):
1024 `buffer' is the compiled pattern;
1025 `syntax' is set to SYNTAX;
1026 `used' is set to the length of the compiled pattern;
1027 `fastmap_accurate' is zero;
1028 `re_nsub' is the number of subexpressions in PATTERN;
1029 `not_bol' and `not_eol' are zero;
1030
1031 The `fastmap' and `newline_anchor' fields are neither
1032 examined nor set. */
1033
1034 static reg_errcode_t
1035 regex_compile (pattern, size, syntax, bufp)
1036 const char *pattern;
1037 int size;
1038 reg_syntax_t syntax;
1039 struct re_pattern_buffer *bufp;
1040 {
1041 /* We fetch characters from PATTERN here. Even though PATTERN is
1042 `char *' (i.e., signed), we declare these variables as unsigned, so
1043 they can be reliably used as array indices. */
1044 register unsigned char c, c1;
1045
1046 /* A random temporary spot in PATTERN. */
1047 const char *p1;
1048
1049 /* Points to the end of the buffer, where we should append. */
1050 register unsigned char *b;
1051
1052 /* Keeps track of unclosed groups. */
1053 compile_stack_type compile_stack;
1054
1055 /* Points to the current (ending) position in the pattern. */
1056 const char *p = pattern;
1057 const char *pend = pattern + size;
1058
1059 /* How to translate the characters in the pattern. */
1060 char *translate = bufp->translate;
1061
1062 /* Address of the count-byte of the most recently inserted `exactn'
1063 command. This makes it possible to tell if a new exact-match
1064 character can be added to that command or if the character requires
1065 a new `exactn' command. */
1066 unsigned char *pending_exact = 0;
1067
1068 /* Address of start of the most recently finished expression.
1069 This tells, e.g., postfix * where to find the start of its
1070 operand. Reset at the beginning of groups and alternatives. */
1071 unsigned char *laststart = 0;
1072
1073 /* Address of beginning of regexp, or inside of last group. */
1074 unsigned char *begalt;
1075
1076 /* Place in the uncompiled pattern (i.e., the {) to
1077 which to go back if the interval is invalid. */
1078 const char *beg_interval;
1079
1080 /* Address of the place where a forward jump should go to the end of
1081 the containing expression. Each alternative of an `or' -- except the
1082 last -- ends with a forward jump of this sort. */
1083 unsigned char *fixup_alt_jump = 0;
1084
1085 /* Counts open-groups as they are encountered. Remembered for the
1086 matching close-group on the compile stack, so the same register
1087 number is put in the stop_memory as the start_memory. */
1088 regnum_t regnum = 0;
1089
1090 #ifdef DEBUG
1091 DEBUG_PRINT1 ("\nCompiling pattern: ");
1092 if (debug)
1093 {
1094 unsigned debug_count;
1095
1096 for (debug_count = 0; debug_count < size; debug_count++)
1097 printchar (pattern[debug_count]);
1098 putchar ('\n');
1099 }
1100 #endif /* DEBUG */
1101
1102 /* Initialize the compile stack. */
1103 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1104 if (compile_stack.stack == NULL)
1105 return REG_ESPACE;
1106
1107 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1108 compile_stack.avail = 0;
1109
1110 /* Initialize the pattern buffer. */
1111 bufp->syntax = syntax;
1112 bufp->fastmap_accurate = 0;
1113 bufp->not_bol = bufp->not_eol = 0;
1114
1115 /* Set `used' to zero, so that if we return an error, the pattern
1116 printer (for debugging) will think there's no pattern. We reset it
1117 at the end. */
1118 bufp->used = 0;
1119
1120 /* Always count groups, whether or not bufp->no_sub is set. */
1121 bufp->re_nsub = 0;
1122
1123 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1124 /* Initialize the syntax table. */
1125 init_syntax_once ();
1126 #endif
1127
1128 if (bufp->allocated == 0)
1129 {
1130 if (bufp->buffer)
1131 { /* If zero allocated, but buffer is non-null, try to realloc
1132 enough space. This loses if buffer's address is bogus, but
1133 that is the user's responsibility. */
1134 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1135 }
1136 else
1137 { /* Caller did not allocate a buffer. Do it for them. */
1138 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1139 }
1140 if (!bufp->buffer) return REG_ESPACE;
1141
1142 bufp->allocated = INIT_BUF_SIZE;
1143 }
1144
1145 begalt = b = bufp->buffer;
1146
1147 /* Loop through the uncompiled pattern until we're at the end. */
1148 while (p != pend)
1149 {
1150 PATFETCH (c);
1151
1152 switch (c)
1153 {
1154 case '^':
1155 {
1156 if ( /* If at start of pattern, it's an operator. */
1157 p == pattern + 1
1158 /* If context independent, it's an operator. */
1159 || syntax & RE_CONTEXT_INDEP_ANCHORS
1160 /* Otherwise, depends on what's come before. */
1161 || at_begline_loc_p (pattern, p, syntax))
1162 BUF_PUSH (begline);
1163 else
1164 goto normal_char;
1165 }
1166 break;
1167
1168
1169 case '$':
1170 {
1171 if ( /* If at end of pattern, it's an operator. */
1172 p == pend
1173 /* If context independent, it's an operator. */
1174 || syntax & RE_CONTEXT_INDEP_ANCHORS
1175 /* Otherwise, depends on what's next. */
1176 || at_endline_loc_p (p, pend, syntax))
1177 BUF_PUSH (endline);
1178 else
1179 goto normal_char;
1180 }
1181 break;
1182
1183
1184 case '+':
1185 case '?':
1186 if ((syntax & RE_BK_PLUS_QM)
1187 || (syntax & RE_LIMITED_OPS))
1188 goto normal_char;
1189 handle_plus:
1190 case '*':
1191 /* If there is no previous pattern... */
1192 if (!laststart)
1193 {
1194 if (syntax & RE_CONTEXT_INVALID_OPS)
1195 return REG_BADRPT;
1196 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1197 goto normal_char;
1198 }
1199
1200 {
1201 /* Are we optimizing this jump? */
1202 boolean keep_string_p = false;
1203
1204 /* 1 means zero (many) matches is allowed. */
1205 char zero_times_ok = 0, many_times_ok = 0;
1206
1207 /* If there is a sequence of repetition chars, collapse it
1208 down to just one (the right one). We can't combine
1209 interval operators with these because of, e.g., `a{2}*',
1210 which should only match an even number of `a's. */
1211
1212 for (;;)
1213 {
1214 zero_times_ok |= c != '+';
1215 many_times_ok |= c != '?';
1216
1217 if (p == pend)
1218 break;
1219
1220 PATFETCH (c);
1221
1222 if (c == '*'
1223 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1224 ;
1225
1226 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1227 {
1228 if (p == pend) return REG_EESCAPE;
1229
1230 PATFETCH (c1);
1231 if (!(c1 == '+' || c1 == '?'))
1232 {
1233 PATUNFETCH;
1234 PATUNFETCH;
1235 break;
1236 }
1237
1238 c = c1;
1239 }
1240 else
1241 {
1242 PATUNFETCH;
1243 break;
1244 }
1245
1246 /* If we get here, we found another repeat character. */
1247 }
1248
1249 /* Star, etc. applied to an empty pattern is equivalent
1250 to an empty pattern. */
1251 if (!laststart)
1252 break;
1253
1254 /* Now we know whether or not zero matches is allowed
1255 and also whether or not two or more matches is allowed. */
1256 if (many_times_ok)
1257 { /* More than one repetition is allowed, so put in at the
1258 end a backward relative jump from `b' to before the next
1259 jump we're going to put in below (which jumps from
1260 laststart to after this jump).
1261
1262 But if we are at the `*' in the exact sequence `.*\n',
1263 insert an unconditional jump backwards to the .,
1264 instead of the beginning of the loop. This way we only
1265 push a failure point once, instead of every time
1266 through the loop. */
1267 assert (p - 1 > pattern);
1268
1269 /* Allocate the space for the jump. */
1270 GET_BUFFER_SPACE (3);
1271
1272 /* We know we are not at the first character of the pattern,
1273 because laststart was nonzero. And we've already
1274 incremented `p', by the way, to be the character after
1275 the `*'. Do we have to do something analogous here
1276 for null bytes, because of RE_DOT_NOT_NULL? */
1277 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1278 && zero_times_ok
1279 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1280 && !(syntax & RE_DOT_NEWLINE))
1281 { /* We have .*\n. */
1282 STORE_JUMP (jump, b, laststart);
1283 keep_string_p = true;
1284 }
1285 else
1286 /* Anything else. */
1287 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1288
1289 /* We've added more stuff to the buffer. */
1290 b += 3;
1291 }
1292
1293 /* On failure, jump from laststart to b + 3, which will be the
1294 end of the buffer after this jump is inserted. */
1295 GET_BUFFER_SPACE (3);
1296 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1297 : on_failure_jump,
1298 laststart, b + 3);
1299 pending_exact = 0;
1300 b += 3;
1301
1302 if (!zero_times_ok)
1303 {
1304 /* At least one repetition is required, so insert a
1305 `dummy_failure_jump' before the initial
1306 `on_failure_jump' instruction of the loop. This
1307 effects a skip over that instruction the first time
1308 we hit that loop. */
1309 GET_BUFFER_SPACE (3);
1310 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1311 b += 3;
1312 }
1313 }
1314 break;
1315
1316
1317 case '.':
1318 laststart = b;
1319 BUF_PUSH (anychar);
1320 break;
1321
1322
1323 case '[':
1324 {
1325 boolean had_char_class = false;
1326
1327 if (p == pend) return REG_EBRACK;
1328
1329 /* Ensure that we have enough space to push a charset: the
1330 opcode, the length count, and the bitset; 34 bytes in all. */
1331 GET_BUFFER_SPACE (34);
1332
1333 laststart = b;
1334
1335 /* We test `*p == '^' twice, instead of using an if
1336 statement, so we only need one BUF_PUSH. */
1337 BUF_PUSH (*p == '^' ? charset_not : charset);
1338 if (*p == '^')
1339 p++;
1340
1341 /* Remember the first position in the bracket expression. */
1342 p1 = p;
1343
1344 /* Push the number of bytes in the bitmap. */
1345 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1346
1347 /* Clear the whole map. */
1348 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1349
1350 /* charset_not matches newline according to a syntax bit. */
1351 if ((re_opcode_t) b[-2] == charset_not
1352 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1353 SET_LIST_BIT ('\n');
1354
1355 /* Read in characters and ranges, setting map bits. */
1356 for (;;)
1357 {
1358 if (p == pend) return REG_EBRACK;
1359
1360 PATFETCH (c);
1361
1362 /* \ might escape characters inside [...] and [^...]. */
1363 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1364 {
1365 if (p == pend) return REG_EESCAPE;
1366
1367 PATFETCH (c1);
1368 SET_LIST_BIT (c1);
1369 continue;
1370 }
1371
1372 /* Could be the end of the bracket expression. If it's
1373 not (i.e., when the bracket expression is `[]' so
1374 far), the ']' character bit gets set way below. */
1375 if (c == ']' && p != p1 + 1)
1376 break;
1377
1378 /* Look ahead to see if it's a range when the last thing
1379 was a character class. */
1380 if (had_char_class && c == '-' && *p != ']')
1381 return REG_ERANGE;
1382
1383 /* Look ahead to see if it's a range when the last thing
1384 was a character: if this is a hyphen not at the
1385 beginning or the end of a list, then it's the range
1386 operator. */
1387 if (c == '-'
1388 && !(p - 2 >= pattern && p[-2] == '[')
1389 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1390 && *p != ']')
1391 {
1392 reg_errcode_t ret
1393 = compile_range (&p, pend, translate, syntax, b);
1394 if (ret != REG_NOERROR) return ret;
1395 }
1396
1397 else if (p[0] == '-' && p[1] != ']')
1398 { /* This handles ranges made up of characters only. */
1399 reg_errcode_t ret;
1400
1401 /* Move past the `-'. */
1402 PATFETCH (c1);
1403
1404 ret = compile_range (&p, pend, translate, syntax, b);
1405 if (ret != REG_NOERROR) return ret;
1406 }
1407
1408 /* See if we're at the beginning of a possible character
1409 class. */
1410
1411 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1412 { /* Leave room for the null. */
1413 char str[CHAR_CLASS_MAX_LENGTH + 1];
1414
1415 PATFETCH (c);
1416 c1 = 0;
1417
1418 /* If pattern is `[[:'. */
1419 if (p == pend) return REG_EBRACK;
1420
1421 for (;;)
1422 {
1423 PATFETCH (c);
1424 if (c == ':' || c == ']' || p == pend
1425 || c1 == CHAR_CLASS_MAX_LENGTH)
1426 break;
1427 str[c1++] = c;
1428 }
1429 str[c1] = '\0';
1430
1431 /* If isn't a word bracketed by `[:' and:`]':
1432 undo the ending character, the letters, and leave
1433 the leading `:' and `[' (but set bits for them). */
1434 if (c == ':' && *p == ']')
1435 {
1436 int ch;
1437 boolean is_alnum = STREQ (str, "alnum");
1438 boolean is_alpha = STREQ (str, "alpha");
1439 boolean is_blank = STREQ (str, "blank");
1440 boolean is_cntrl = STREQ (str, "cntrl");
1441 boolean is_digit = STREQ (str, "digit");
1442 boolean is_graph = STREQ (str, "graph");
1443 boolean is_lower = STREQ (str, "lower");
1444 boolean is_print = STREQ (str, "print");
1445 boolean is_punct = STREQ (str, "punct");
1446 boolean is_space = STREQ (str, "space");
1447 boolean is_upper = STREQ (str, "upper");
1448 boolean is_xdigit = STREQ (str, "xdigit");
1449
1450 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1451
1452 /* Throw away the ] at the end of the character
1453 class. */
1454 PATFETCH (c);
1455
1456 if (p == pend) return REG_EBRACK;
1457
1458 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1459 {
1460 if ( (is_alnum && ISALNUM (ch))
1461 || (is_alpha && ISALPHA (ch))
1462 || (is_blank && ISBLANK (ch))
1463 || (is_cntrl && ISCNTRL (ch))
1464 || (is_digit && ISDIGIT (ch))
1465 || (is_graph && ISGRAPH (ch))
1466 || (is_lower && ISLOWER (ch))
1467 || (is_print && ISPRINT (ch))
1468 || (is_punct && ISPUNCT (ch))
1469 || (is_space && ISSPACE (ch))
1470 || (is_upper && ISUPPER (ch))
1471 || (is_xdigit && ISXDIGIT (ch)))
1472 SET_LIST_BIT (ch);
1473 }
1474 had_char_class = true;
1475 }
1476 else
1477 {
1478 c1++;
1479 while (c1--)
1480 PATUNFETCH;
1481 SET_LIST_BIT ('[');
1482 SET_LIST_BIT (':');
1483 had_char_class = false;
1484 }
1485 }
1486 else
1487 {
1488 had_char_class = false;
1489 SET_LIST_BIT (c);
1490 }
1491 }
1492
1493 /* Discard any (non)matching list bytes that are all 0 at the
1494 end of the map. Decrease the map-length byte too. */
1495 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1496 b[-1]--;
1497 b += b[-1];
1498 }
1499 break;
1500
1501
1502 case '(':
1503 if (syntax & RE_NO_BK_PARENS)
1504 goto handle_open;
1505 else
1506 goto normal_char;
1507
1508
1509 case ')':
1510 if (syntax & RE_NO_BK_PARENS)
1511 goto handle_close;
1512 else
1513 goto normal_char;
1514
1515
1516 case '\n':
1517 if (syntax & RE_NEWLINE_ALT)
1518 goto handle_alt;
1519 else
1520 goto normal_char;
1521
1522
1523 case '|':
1524 if (syntax & RE_NO_BK_VBAR)
1525 goto handle_alt;
1526 else
1527 goto normal_char;
1528
1529
1530 case '{':
1531 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1532 goto handle_interval;
1533 else
1534 goto normal_char;
1535
1536
1537 case '\\':
1538 if (p == pend) return REG_EESCAPE;
1539
1540 /* Do not translate the character after the \, so that we can
1541 distinguish, e.g., \B from \b, even if we normally would
1542 translate, e.g., B to b. */
1543 PATFETCH_RAW (c);
1544
1545 switch (c)
1546 {
1547 case '(':
1548 if (syntax & RE_NO_BK_PARENS)
1549 goto normal_backslash;
1550
1551 handle_open:
1552 bufp->re_nsub++;
1553 regnum++;
1554
1555 if (COMPILE_STACK_FULL)
1556 {
1557 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1558 compile_stack_elt_t);
1559 if (compile_stack.stack == NULL) return REG_ESPACE;
1560
1561 compile_stack.size <<= 1;
1562 }
1563
1564 /* These are the values to restore when we hit end of this
1565 group. They are all relative offsets, so that if the
1566 whole pattern moves because of realloc, they will still
1567 be valid. */
1568 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1569 COMPILE_STACK_TOP.fixup_alt_jump
1570 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1571 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1572 COMPILE_STACK_TOP.regnum = regnum;
1573
1574 /* We will eventually replace the 0 with the number of
1575 groups inner to this one. But do not push a
1576 start_memory for groups beyond the last one we can
1577 represent in the compiled pattern. */
1578 if (regnum <= MAX_REGNUM)
1579 {
1580 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1581 BUF_PUSH_3 (start_memory, regnum, 0);
1582 }
1583
1584 compile_stack.avail++;
1585
1586 fixup_alt_jump = 0;
1587 laststart = 0;
1588 begalt = b;
1589 /* If we've reached MAX_REGNUM groups, then this open
1590 won't actually generate any code, so we'll have to
1591 clear pending_exact explicitly. */
1592 pending_exact = 0;
1593 break;
1594
1595
1596 case ')':
1597 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1598
1599 if (COMPILE_STACK_EMPTY)
1600 {
1601 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1602 goto normal_backslash;
1603 else
1604 return REG_ERPAREN;
1605 }
1606
1607 handle_close:
1608 if (fixup_alt_jump)
1609 { /* Push a dummy failure point at the end of the
1610 alternative for a possible future
1611 `pop_failure_jump' to pop. See comments at
1612 `push_dummy_failure' in `re_match_2'. */
1613 BUF_PUSH (push_dummy_failure);
1614
1615 /* We allocated space for this jump when we assigned
1616 to `fixup_alt_jump', in the `handle_alt' case below. */
1617 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1618 }
1619
1620 /* See similar code for backslashed left paren above. */
1621 if (COMPILE_STACK_EMPTY)
1622 {
1623 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1624 goto normal_char;
1625 else
1626 return REG_ERPAREN;
1627 }
1628
1629 /* Since we just checked for an empty stack above, this
1630 ``can't happen''. */
1631 assert (compile_stack.avail != 0);
1632 {
1633 /* We don't just want to restore into `regnum', because
1634 later groups should continue to be numbered higher,
1635 as in `(ab)c(de)' -- the second group is #2. */
1636 regnum_t this_group_regnum;
1637
1638 compile_stack.avail--;
1639 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1640 fixup_alt_jump
1641 = COMPILE_STACK_TOP.fixup_alt_jump
1642 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1643 : 0;
1644 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1645 this_group_regnum = COMPILE_STACK_TOP.regnum;
1646 /* If we've reached MAX_REGNUM groups, then this open
1647 won't actually generate any code, so we'll have to
1648 clear pending_exact explicitly. */
1649 pending_exact = 0;
1650
1651 /* We're at the end of the group, so now we know how many
1652 groups were inside this one. */
1653 if (this_group_regnum <= MAX_REGNUM)
1654 {
1655 unsigned char *inner_group_loc
1656 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1657
1658 *inner_group_loc = regnum - this_group_regnum;
1659 BUF_PUSH_3 (stop_memory, this_group_regnum,
1660 regnum - this_group_regnum);
1661 }
1662 }
1663 break;
1664
1665
1666 case '|': /* `\|'. */
1667 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1668 goto normal_backslash;
1669 handle_alt:
1670 if (syntax & RE_LIMITED_OPS)
1671 goto normal_char;
1672
1673 /* Insert before the previous alternative a jump which
1674 jumps to this alternative if the former fails. */
1675 GET_BUFFER_SPACE (3);
1676 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1677 pending_exact = 0;
1678 b += 3;
1679
1680 /* The alternative before this one has a jump after it
1681 which gets executed if it gets matched. Adjust that
1682 jump so it will jump to this alternative's analogous
1683 jump (put in below, which in turn will jump to the next
1684 (if any) alternative's such jump, etc.). The last such
1685 jump jumps to the correct final destination. A picture:
1686 _____ _____
1687 | | | |
1688 | v | v
1689 a | b | c
1690
1691 If we are at `b', then fixup_alt_jump right now points to a
1692 three-byte space after `a'. We'll put in the jump, set
1693 fixup_alt_jump to right after `b', and leave behind three
1694 bytes which we'll fill in when we get to after `c'. */
1695
1696 if (fixup_alt_jump)
1697 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1698
1699 /* Mark and leave space for a jump after this alternative,
1700 to be filled in later either by next alternative or
1701 when know we're at the end of a series of alternatives. */
1702 fixup_alt_jump = b;
1703 GET_BUFFER_SPACE (3);
1704 b += 3;
1705
1706 laststart = 0;
1707 begalt = b;
1708 break;
1709
1710
1711 case '{':
1712 /* If \{ is a literal. */
1713 if (!(syntax & RE_INTERVALS)
1714 /* If we're at `\{' and it's not the open-interval
1715 operator. */
1716 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1717 || (p - 2 == pattern && p == pend))
1718 goto normal_backslash;
1719
1720 handle_interval:
1721 {
1722 /* If got here, then the syntax allows intervals. */
1723
1724 /* At least (most) this many matches must be made. */
1725 int lower_bound = -1, upper_bound = -1;
1726
1727 beg_interval = p - 1;
1728
1729 if (p == pend)
1730 {
1731 if (syntax & RE_NO_BK_BRACES)
1732 goto unfetch_interval;
1733 else
1734 return REG_EBRACE;
1735 }
1736
1737 GET_UNSIGNED_NUMBER (lower_bound);
1738
1739 if (c == ',')
1740 {
1741 GET_UNSIGNED_NUMBER (upper_bound);
1742 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1743 }
1744 else
1745 /* Interval such as `{1}' => match exactly once. */
1746 upper_bound = lower_bound;
1747
1748 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1749 || lower_bound > upper_bound)
1750 {
1751 if (syntax & RE_NO_BK_BRACES)
1752 goto unfetch_interval;
1753 else
1754 return REG_BADBR;
1755 }
1756
1757 if (!(syntax & RE_NO_BK_BRACES))
1758 {
1759 if (c != '\\') return REG_EBRACE;
1760
1761 PATFETCH (c);
1762 }
1763
1764 if (c != '}')
1765 {
1766 if (syntax & RE_NO_BK_BRACES)
1767 goto unfetch_interval;
1768 else
1769 return REG_BADBR;
1770 }
1771
1772 /* We just parsed a valid interval. */
1773
1774 /* If it's invalid to have no preceding re. */
1775 if (!laststart)
1776 {
1777 if (syntax & RE_CONTEXT_INVALID_OPS)
1778 return REG_BADRPT;
1779 else if (syntax & RE_CONTEXT_INDEP_OPS)
1780 laststart = b;
1781 else
1782 goto unfetch_interval;
1783 }
1784
1785 /* If the upper bound is zero, don't want to succeed at
1786 all; jump from `laststart' to `b + 3', which will be
1787 the end of the buffer after we insert the jump. */
1788 if (upper_bound == 0)
1789 {
1790 GET_BUFFER_SPACE (3);
1791 INSERT_JUMP (jump, laststart, b + 3);
1792 b += 3;
1793 }
1794
1795 /* Otherwise, we have a nontrivial interval. When
1796 we're all done, the pattern will look like:
1797 set_number_at <jump count> <upper bound>
1798 set_number_at <succeed_n count> <lower bound>
1799 succeed_n <after jump addr> <succeed_n count>
1800 <body of loop>
1801 jump_n <succeed_n addr> <jump count>
1802 (The upper bound and `jump_n' are omitted if
1803 `upper_bound' is 1, though.) */
1804 else
1805 { /* If the upper bound is > 1, we need to insert
1806 more at the end of the loop. */
1807 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1808
1809 GET_BUFFER_SPACE (nbytes);
1810
1811 /* Initialize lower bound of the `succeed_n', even
1812 though it will be set during matching by its
1813 attendant `set_number_at' (inserted next),
1814 because `re_compile_fastmap' needs to know.
1815 Jump to the `jump_n' we might insert below. */
1816 INSERT_JUMP2 (succeed_n, laststart,
1817 b + 5 + (upper_bound > 1) * 5,
1818 lower_bound);
1819 b += 5;
1820
1821 /* Code to initialize the lower bound. Insert
1822 before the `succeed_n'. The `5' is the last two
1823 bytes of this `set_number_at', plus 3 bytes of
1824 the following `succeed_n'. */
1825 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1826 b += 5;
1827
1828 if (upper_bound > 1)
1829 { /* More than one repetition is allowed, so
1830 append a backward jump to the `succeed_n'
1831 that starts this interval.
1832
1833 When we've reached this during matching,
1834 we'll have matched the interval once, so
1835 jump back only `upper_bound - 1' times. */
1836 STORE_JUMP2 (jump_n, b, laststart + 5,
1837 upper_bound - 1);
1838 b += 5;
1839
1840 /* The location we want to set is the second
1841 parameter of the `jump_n'; that is `b-2' as
1842 an absolute address. `laststart' will be
1843 the `set_number_at' we're about to insert;
1844 `laststart+3' the number to set, the source
1845 for the relative address. But we are
1846 inserting into the middle of the pattern --
1847 so everything is getting moved up by 5.
1848 Conclusion: (b - 2) - (laststart + 3) + 5,
1849 i.e., b - laststart.
1850
1851 We insert this at the beginning of the loop
1852 so that if we fail during matching, we'll
1853 reinitialize the bounds. */
1854 insert_op2 (set_number_at, laststart, b - laststart,
1855 upper_bound - 1, b);
1856 b += 5;
1857 }
1858 }
1859 pending_exact = 0;
1860 beg_interval = NULL;
1861 }
1862 break;
1863
1864 unfetch_interval:
1865 /* If an invalid interval, match the characters as literals. */
1866 assert (beg_interval);
1867 p = beg_interval;
1868 beg_interval = NULL;
1869
1870 /* normal_char and normal_backslash need `c'. */
1871 PATFETCH (c);
1872
1873 if (!(syntax & RE_NO_BK_BRACES))
1874 {
1875 if (p > pattern && p[-1] == '\\')
1876 goto normal_backslash;
1877 }
1878 goto normal_char;
1879
1880 #ifdef emacs
1881 /* There is no way to specify the before_dot and after_dot
1882 operators. rms says this is ok. --karl */
1883 case '=':
1884 BUF_PUSH (at_dot);
1885 break;
1886
1887 case 's':
1888 laststart = b;
1889 PATFETCH (c);
1890 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1891 break;
1892
1893 case 'S':
1894 laststart = b;
1895 PATFETCH (c);
1896 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1897 break;
1898 #endif /* emacs */
1899
1900
1901 case 'w':
1902 laststart = b;
1903 BUF_PUSH (wordchar);
1904 break;
1905
1906
1907 case 'W':
1908 laststart = b;
1909 BUF_PUSH (notwordchar);
1910 break;
1911
1912
1913 case '<':
1914 BUF_PUSH (wordbeg);
1915 break;
1916
1917 case '>':
1918 BUF_PUSH (wordend);
1919 break;
1920
1921 case 'b':
1922 BUF_PUSH (wordbound);
1923 break;
1924
1925 case 'B':
1926 BUF_PUSH (notwordbound);
1927 break;
1928
1929 case '`':
1930 BUF_PUSH (begbuf);
1931 break;
1932
1933 case '\'':
1934 BUF_PUSH (endbuf);
1935 break;
1936
1937 case '1': case '2': case '3': case '4': case '5':
1938 case '6': case '7': case '8': case '9':
1939 if (syntax & RE_NO_BK_REFS)
1940 goto normal_char;
1941
1942 c1 = c - '0';
1943
1944 if (c1 > regnum)
1945 return REG_ESUBREG;
1946
1947 /* Can't back reference to a subexpression if inside of it. */
1948 if (group_in_compile_stack (compile_stack, c1))
1949 goto normal_char;
1950
1951 laststart = b;
1952 BUF_PUSH_2 (duplicate, c1);
1953 break;
1954
1955
1956 case '+':
1957 case '?':
1958 if (syntax & RE_BK_PLUS_QM)
1959 goto handle_plus;
1960 else
1961 goto normal_backslash;
1962
1963 default:
1964 normal_backslash:
1965 /* You might think it would be useful for \ to mean
1966 not to translate; but if we don't translate it
1967 it will never match anything. */
1968 c = TRANSLATE (c);
1969 goto normal_char;
1970 }
1971 break;
1972
1973
1974 default:
1975 /* Expects the character in `c'. */
1976 normal_char:
1977 /* If no exactn currently being built. */
1978 if (!pending_exact
1979
1980 /* If last exactn not at current position. */
1981 || pending_exact + *pending_exact + 1 != b
1982
1983 /* We have only one byte following the exactn for the count. */
1984 || *pending_exact == (1 << BYTEWIDTH) - 1
1985
1986 /* If followed by a repetition operator. */
1987 || *p == '*' || *p == '^'
1988 || ((syntax & RE_BK_PLUS_QM)
1989 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
1990 : (*p == '+' || *p == '?'))
1991 || ((syntax & RE_INTERVALS)
1992 && ((syntax & RE_NO_BK_BRACES)
1993 ? *p == '{'
1994 : (p[0] == '\\' && p[1] == '{'))))
1995 {
1996 /* Start building a new exactn. */
1997
1998 laststart = b;
1999
2000 BUF_PUSH_2 (exactn, 0);
2001 pending_exact = b - 1;
2002 }
2003
2004 BUF_PUSH (c);
2005 (*pending_exact)++;
2006 break;
2007 } /* switch (c) */
2008 } /* while p != pend */
2009
2010
2011 /* Through the pattern now. */
2012
2013 if (fixup_alt_jump)
2014 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2015
2016 if (!COMPILE_STACK_EMPTY)
2017 return REG_EPAREN;
2018
2019 free (compile_stack.stack);
2020
2021 /* We have succeeded; set the length of the buffer. */
2022 bufp->used = b - bufp->buffer;
2023
2024 #ifdef DEBUG
2025 if (debug)
2026 {
2027 DEBUG_PRINT1 ("\nCompiled pattern: ");
2028 print_compiled_pattern (bufp);
2029 }
2030 #endif /* DEBUG */
2031
2032 return REG_NOERROR;
2033 } /* regex_compile */
2034 \f
2035 /* Subroutines for `regex_compile'. */
2036
2037 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2038
2039 static void
2040 store_op1 (op, loc, arg)
2041 re_opcode_t op;
2042 unsigned char *loc;
2043 int arg;
2044 {
2045 *loc = (unsigned char) op;
2046 STORE_NUMBER (loc + 1, arg);
2047 }
2048
2049
2050 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2051
2052 static void
2053 store_op2 (op, loc, arg1, arg2)
2054 re_opcode_t op;
2055 unsigned char *loc;
2056 int arg1, arg2;
2057 {
2058 *loc = (unsigned char) op;
2059 STORE_NUMBER (loc + 1, arg1);
2060 STORE_NUMBER (loc + 3, arg2);
2061 }
2062
2063
2064 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2065 for OP followed by two-byte integer parameter ARG. */
2066
2067 static void
2068 insert_op1 (op, loc, arg, end)
2069 re_opcode_t op;
2070 unsigned char *loc;
2071 int arg;
2072 unsigned char *end;
2073 {
2074 register unsigned char *pfrom = end;
2075 register unsigned char *pto = end + 3;
2076
2077 while (pfrom != loc)
2078 *--pto = *--pfrom;
2079
2080 store_op1 (op, loc, arg);
2081 }
2082
2083
2084 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2085
2086 static void
2087 insert_op2 (op, loc, arg1, arg2, end)
2088 re_opcode_t op;
2089 unsigned char *loc;
2090 int arg1, arg2;
2091 unsigned char *end;
2092 {
2093 register unsigned char *pfrom = end;
2094 register unsigned char *pto = end + 5;
2095
2096 while (pfrom != loc)
2097 *--pto = *--pfrom;
2098
2099 store_op2 (op, loc, arg1, arg2);
2100 }
2101
2102
2103 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2104 after an alternative or a begin-subexpression. We assume there is at
2105 least one character before the ^. */
2106
2107 static boolean
2108 at_begline_loc_p (pattern, p, syntax)
2109 const char *pattern, *p;
2110 reg_syntax_t syntax;
2111 {
2112 const char *prev = p - 2;
2113 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2114
2115 return
2116 /* After a subexpression? */
2117 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2118 /* After an alternative? */
2119 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2120 }
2121
2122
2123 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2124 at least one character after the $, i.e., `P < PEND'. */
2125
2126 static boolean
2127 at_endline_loc_p (p, pend, syntax)
2128 const char *p, *pend;
2129 int syntax;
2130 {
2131 const char *next = p;
2132 boolean next_backslash = *next == '\\';
2133 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2134
2135 return
2136 /* Before a subexpression? */
2137 (syntax & RE_NO_BK_PARENS ? *next == ')'
2138 : next_backslash && next_next && *next_next == ')')
2139 /* Before an alternative? */
2140 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2141 : next_backslash && next_next && *next_next == '|');
2142 }
2143
2144
2145 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2146 false if it's not. */
2147
2148 static boolean
2149 group_in_compile_stack (compile_stack, regnum)
2150 compile_stack_type compile_stack;
2151 regnum_t regnum;
2152 {
2153 int this_element;
2154
2155 for (this_element = compile_stack.avail - 1;
2156 this_element >= 0;
2157 this_element--)
2158 if (compile_stack.stack[this_element].regnum == regnum)
2159 return true;
2160
2161 return false;
2162 }
2163
2164
2165 /* Read the ending character of a range (in a bracket expression) from the
2166 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2167 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2168 Then we set the translation of all bits between the starting and
2169 ending characters (inclusive) in the compiled pattern B.
2170
2171 Return an error code.
2172
2173 We use these short variable names so we can use the same macros as
2174 `regex_compile' itself. */
2175
2176 static reg_errcode_t
2177 compile_range (p_ptr, pend, translate, syntax, b)
2178 const char **p_ptr, *pend;
2179 char *translate;
2180 reg_syntax_t syntax;
2181 unsigned char *b;
2182 {
2183 unsigned this_char;
2184
2185 const char *p = *p_ptr;
2186 int range_start, range_end;
2187
2188 if (p == pend)
2189 return REG_ERANGE;
2190
2191 /* Even though the pattern is a signed `char *', we need to fetch
2192 with unsigned char *'s; if the high bit of the pattern character
2193 is set, the range endpoints will be negative if we fetch using a
2194 signed char *.
2195
2196 We also want to fetch the endpoints without translating them; the
2197 appropriate translation is done in the bit-setting loop below. */
2198 range_start = ((unsigned char *) p)[-2];
2199 range_end = ((unsigned char *) p)[0];
2200
2201 /* Have to increment the pointer into the pattern string, so the
2202 caller isn't still at the ending character. */
2203 (*p_ptr)++;
2204
2205 /* If the start is after the end, the range is empty. */
2206 if (range_start > range_end)
2207 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2208
2209 /* Here we see why `this_char' has to be larger than an `unsigned
2210 char' -- the range is inclusive, so if `range_end' == 0xff
2211 (assuming 8-bit characters), we would otherwise go into an infinite
2212 loop, since all characters <= 0xff. */
2213 for (this_char = range_start; this_char <= range_end; this_char++)
2214 {
2215 SET_LIST_BIT (TRANSLATE (this_char));
2216 }
2217
2218 return REG_NOERROR;
2219 }
2220 \f
2221 /* Failure stack declarations and macros; both re_compile_fastmap and
2222 re_match_2 use a failure stack. These have to be macros because of
2223 REGEX_ALLOCATE. */
2224
2225
2226 /* Number of failure points for which to initially allocate space
2227 when matching. If this number is exceeded, we allocate more
2228 space, so it is not a hard limit. */
2229 #ifndef INIT_FAILURE_ALLOC
2230 #define INIT_FAILURE_ALLOC 5
2231 #endif
2232
2233 /* Roughly the maximum number of failure points on the stack. Would be
2234 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2235 This is a variable only so users of regex can assign to it; we never
2236 change it ourselves. */
2237 int re_max_failures = 2000;
2238
2239 typedef const unsigned char *fail_stack_elt_t;
2240
2241 typedef struct
2242 {
2243 fail_stack_elt_t *stack;
2244 unsigned size;
2245 unsigned avail; /* Offset of next open position. */
2246 } fail_stack_type;
2247
2248 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2249 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2250 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2251 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2252
2253
2254 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2255
2256 #define INIT_FAIL_STACK() \
2257 do { \
2258 fail_stack.stack = (fail_stack_elt_t *) \
2259 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2260 \
2261 if (fail_stack.stack == NULL) \
2262 return -2; \
2263 \
2264 fail_stack.size = INIT_FAILURE_ALLOC; \
2265 fail_stack.avail = 0; \
2266 } while (0)
2267
2268
2269 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2270
2271 Return 1 if succeeds, and 0 if either ran out of memory
2272 allocating space for it or it was already too large.
2273
2274 REGEX_REALLOCATE requires `destination' be declared. */
2275
2276 #define DOUBLE_FAIL_STACK(fail_stack) \
2277 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2278 ? 0 \
2279 : ((fail_stack).stack = (fail_stack_elt_t *) \
2280 REGEX_REALLOCATE ((fail_stack).stack, \
2281 (fail_stack).size * sizeof (fail_stack_elt_t), \
2282 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2283 \
2284 (fail_stack).stack == NULL \
2285 ? 0 \
2286 : ((fail_stack).size <<= 1, \
2287 1)))
2288
2289
2290 /* Push PATTERN_OP on FAIL_STACK.
2291
2292 Return 1 if was able to do so and 0 if ran out of memory allocating
2293 space to do so. */
2294 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2295 ((FAIL_STACK_FULL () \
2296 && !DOUBLE_FAIL_STACK (fail_stack)) \
2297 ? 0 \
2298 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2299 1))
2300
2301 /* This pushes an item onto the failure stack. Must be a four-byte
2302 value. Assumes the variable `fail_stack'. Probably should only
2303 be called from within `PUSH_FAILURE_POINT'. */
2304 #define PUSH_FAILURE_ITEM(item) \
2305 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2306
2307 /* The complement operation. Assumes `fail_stack' is nonempty. */
2308 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2309
2310 /* Used to omit pushing failure point id's when we're not debugging. */
2311 #ifdef DEBUG
2312 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2313 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2314 #else
2315 #define DEBUG_PUSH(item)
2316 #define DEBUG_POP(item_addr)
2317 #endif
2318
2319
2320 /* Push the information about the state we will need
2321 if we ever fail back to it.
2322
2323 Requires variables fail_stack, regstart, regend, reg_info, and
2324 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2325 declared.
2326
2327 Does `return FAILURE_CODE' if runs out of memory. */
2328
2329 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2330 do { \
2331 char *destination; \
2332 /* Must be int, so when we don't save any registers, the arithmetic \
2333 of 0 + -1 isn't done as unsigned. */ \
2334 int this_reg; \
2335 \
2336 DEBUG_STATEMENT (failure_id++); \
2337 DEBUG_STATEMENT (nfailure_points_pushed++); \
2338 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2339 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2340 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2341 \
2342 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2343 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2344 \
2345 /* Ensure we have enough space allocated for what we will push. */ \
2346 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2347 { \
2348 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2349 return failure_code; \
2350 \
2351 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2352 (fail_stack).size); \
2353 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2354 } \
2355 \
2356 /* Push the info, starting with the registers. */ \
2357 DEBUG_PRINT1 ("\n"); \
2358 \
2359 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2360 this_reg++) \
2361 { \
2362 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2363 DEBUG_STATEMENT (num_regs_pushed++); \
2364 \
2365 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2366 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2367 \
2368 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2369 PUSH_FAILURE_ITEM (regend[this_reg]); \
2370 \
2371 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2372 DEBUG_PRINT2 (" match_null=%d", \
2373 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2374 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2375 DEBUG_PRINT2 (" matched_something=%d", \
2376 MATCHED_SOMETHING (reg_info[this_reg])); \
2377 DEBUG_PRINT2 (" ever_matched=%d", \
2378 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2379 DEBUG_PRINT1 ("\n"); \
2380 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2381 } \
2382 \
2383 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2384 PUSH_FAILURE_ITEM (lowest_active_reg); \
2385 \
2386 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2387 PUSH_FAILURE_ITEM (highest_active_reg); \
2388 \
2389 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2390 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2391 PUSH_FAILURE_ITEM (pattern_place); \
2392 \
2393 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2394 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2395 size2); \
2396 DEBUG_PRINT1 ("'\n"); \
2397 PUSH_FAILURE_ITEM (string_place); \
2398 \
2399 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2400 DEBUG_PUSH (failure_id); \
2401 } while (0)
2402
2403 /* This is the number of items that are pushed and popped on the stack
2404 for each register. */
2405 #define NUM_REG_ITEMS 3
2406
2407 /* Individual items aside from the registers. */
2408 #ifdef DEBUG
2409 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2410 #else
2411 #define NUM_NONREG_ITEMS 4
2412 #endif
2413
2414 /* We push at most this many items on the stack. */
2415 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2416
2417 /* We actually push this many items. */
2418 #define NUM_FAILURE_ITEMS \
2419 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2420 + NUM_NONREG_ITEMS)
2421
2422 /* How many items can still be added to the stack without overflowing it. */
2423 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2424
2425
2426 /* Pops what PUSH_FAIL_STACK pushes.
2427
2428 We restore into the parameters, all of which should be lvalues:
2429 STR -- the saved data position.
2430 PAT -- the saved pattern position.
2431 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2432 REGSTART, REGEND -- arrays of string positions.
2433 REG_INFO -- array of information about each subexpression.
2434
2435 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2436 `pend', `string1', `size1', `string2', and `size2'. */
2437
2438 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2439 { \
2440 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2441 int this_reg; \
2442 const unsigned char *string_temp; \
2443 \
2444 assert (!FAIL_STACK_EMPTY ()); \
2445 \
2446 /* Remove failure points and point to how many regs pushed. */ \
2447 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2448 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2449 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2450 \
2451 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2452 \
2453 DEBUG_POP (&failure_id); \
2454 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2455 \
2456 /* If the saved string location is NULL, it came from an \
2457 on_failure_keep_string_jump opcode, and we want to throw away the \
2458 saved NULL, thus retaining our current position in the string. */ \
2459 string_temp = POP_FAILURE_ITEM (); \
2460 if (string_temp != NULL) \
2461 str = (const char *) string_temp; \
2462 \
2463 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2464 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2465 DEBUG_PRINT1 ("'\n"); \
2466 \
2467 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2468 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2469 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2470 \
2471 /* Restore register info. */ \
2472 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2473 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2474 \
2475 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2476 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2477 \
2478 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2479 { \
2480 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2481 \
2482 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2483 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2484 \
2485 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2486 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2487 \
2488 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2489 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2490 } \
2491 \
2492 DEBUG_STATEMENT (nfailure_points_popped++); \
2493 } /* POP_FAILURE_POINT */
2494 \f
2495 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2496 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2497 characters can start a string that matches the pattern. This fastmap
2498 is used by re_search to skip quickly over impossible starting points.
2499
2500 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2501 area as BUFP->fastmap.
2502
2503 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2504 the pattern buffer.
2505
2506 Returns 0 if we succeed, -2 if an internal error. */
2507
2508 int
2509 re_compile_fastmap (bufp)
2510 struct re_pattern_buffer *bufp;
2511 {
2512 int j, k;
2513 fail_stack_type fail_stack;
2514 #ifndef REGEX_MALLOC
2515 char *destination;
2516 #endif
2517 /* We don't push any register information onto the failure stack. */
2518 unsigned num_regs = 0;
2519
2520 register char *fastmap = bufp->fastmap;
2521 unsigned char *pattern = bufp->buffer;
2522 unsigned long size = bufp->used;
2523 const unsigned char *p = pattern;
2524 register unsigned char *pend = pattern + size;
2525
2526 /* Assume that each path through the pattern can be null until
2527 proven otherwise. We set this false at the bottom of switch
2528 statement, to which we get only if a particular path doesn't
2529 match the empty string. */
2530 boolean path_can_be_null = true;
2531
2532 /* We aren't doing a `succeed_n' to begin with. */
2533 boolean succeed_n_p = false;
2534
2535 assert (fastmap != NULL && p != NULL);
2536
2537 INIT_FAIL_STACK ();
2538 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2539 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2540 bufp->can_be_null = 0;
2541
2542 while (p != pend || !FAIL_STACK_EMPTY ())
2543 {
2544 if (p == pend)
2545 {
2546 bufp->can_be_null |= path_can_be_null;
2547
2548 /* Reset for next path. */
2549 path_can_be_null = true;
2550
2551 p = fail_stack.stack[--fail_stack.avail];
2552 }
2553
2554 /* We should never be about to go beyond the end of the pattern. */
2555 assert (p < pend);
2556
2557 #ifdef SWITCH_ENUM_BUG
2558 switch ((int) ((re_opcode_t) *p++))
2559 #else
2560 switch ((re_opcode_t) *p++)
2561 #endif
2562 {
2563
2564 /* I guess the idea here is to simply not bother with a fastmap
2565 if a backreference is used, since it's too hard to figure out
2566 the fastmap for the corresponding group. Setting
2567 `can_be_null' stops `re_search_2' from using the fastmap, so
2568 that is all we do. */
2569 case duplicate:
2570 bufp->can_be_null = 1;
2571 return 0;
2572
2573
2574 /* Following are the cases which match a character. These end
2575 with `break'. */
2576
2577 case exactn:
2578 fastmap[p[1]] = 1;
2579 break;
2580
2581
2582 case charset:
2583 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2584 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2585 fastmap[j] = 1;
2586 break;
2587
2588
2589 case charset_not:
2590 /* Chars beyond end of map must be allowed. */
2591 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2592 fastmap[j] = 1;
2593
2594 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2595 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2596 fastmap[j] = 1;
2597 break;
2598
2599
2600 case wordchar:
2601 for (j = 0; j < (1 << BYTEWIDTH); j++)
2602 if (SYNTAX (j) == Sword)
2603 fastmap[j] = 1;
2604 break;
2605
2606
2607 case notwordchar:
2608 for (j = 0; j < (1 << BYTEWIDTH); j++)
2609 if (SYNTAX (j) != Sword)
2610 fastmap[j] = 1;
2611 break;
2612
2613
2614 case anychar:
2615 /* `.' matches anything ... */
2616 for (j = 0; j < (1 << BYTEWIDTH); j++)
2617 fastmap[j] = 1;
2618
2619 /* ... except perhaps newline. */
2620 if (!(bufp->syntax & RE_DOT_NEWLINE))
2621 fastmap['\n'] = 0;
2622
2623 /* Return if we have already set `can_be_null'; if we have,
2624 then the fastmap is irrelevant. Something's wrong here. */
2625 else if (bufp->can_be_null)
2626 return 0;
2627
2628 /* Otherwise, have to check alternative paths. */
2629 break;
2630
2631
2632 #ifdef emacs
2633 case syntaxspec:
2634 k = *p++;
2635 for (j = 0; j < (1 << BYTEWIDTH); j++)
2636 if (SYNTAX (j) == (enum syntaxcode) k)
2637 fastmap[j] = 1;
2638 break;
2639
2640
2641 case notsyntaxspec:
2642 k = *p++;
2643 for (j = 0; j < (1 << BYTEWIDTH); j++)
2644 if (SYNTAX (j) != (enum syntaxcode) k)
2645 fastmap[j] = 1;
2646 break;
2647
2648
2649 /* All cases after this match the empty string. These end with
2650 `continue'. */
2651
2652
2653 case before_dot:
2654 case at_dot:
2655 case after_dot:
2656 continue;
2657 #endif /* not emacs */
2658
2659
2660 case no_op:
2661 case begline:
2662 case endline:
2663 case begbuf:
2664 case endbuf:
2665 case wordbound:
2666 case notwordbound:
2667 case wordbeg:
2668 case wordend:
2669 case push_dummy_failure:
2670 continue;
2671
2672
2673 case jump_n:
2674 case pop_failure_jump:
2675 case maybe_pop_jump:
2676 case jump:
2677 case jump_past_alt:
2678 case dummy_failure_jump:
2679 EXTRACT_NUMBER_AND_INCR (j, p);
2680 p += j;
2681 if (j > 0)
2682 continue;
2683
2684 /* Jump backward implies we just went through the body of a
2685 loop and matched nothing. Opcode jumped to should be
2686 `on_failure_jump' or `succeed_n'. Just treat it like an
2687 ordinary jump. For a * loop, it has pushed its failure
2688 point already; if so, discard that as redundant. */
2689 if ((re_opcode_t) *p != on_failure_jump
2690 && (re_opcode_t) *p != succeed_n)
2691 continue;
2692
2693 p++;
2694 EXTRACT_NUMBER_AND_INCR (j, p);
2695 p += j;
2696
2697 /* If what's on the stack is where we are now, pop it. */
2698 if (!FAIL_STACK_EMPTY ()
2699 && fail_stack.stack[fail_stack.avail - 1] == p)
2700 fail_stack.avail--;
2701
2702 continue;
2703
2704
2705 case on_failure_jump:
2706 case on_failure_keep_string_jump:
2707 handle_on_failure_jump:
2708 EXTRACT_NUMBER_AND_INCR (j, p);
2709
2710 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2711 end of the pattern. We don't want to push such a point,
2712 since when we restore it above, entering the switch will
2713 increment `p' past the end of the pattern. We don't need
2714 to push such a point since we obviously won't find any more
2715 fastmap entries beyond `pend'. Such a pattern can match
2716 the null string, though. */
2717 if (p + j < pend)
2718 {
2719 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2720 return -2;
2721 }
2722 else
2723 bufp->can_be_null = 1;
2724
2725 if (succeed_n_p)
2726 {
2727 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2728 succeed_n_p = false;
2729 }
2730
2731 continue;
2732
2733
2734 case succeed_n:
2735 /* Get to the number of times to succeed. */
2736 p += 2;
2737
2738 /* Increment p past the n for when k != 0. */
2739 EXTRACT_NUMBER_AND_INCR (k, p);
2740 if (k == 0)
2741 {
2742 p -= 4;
2743 succeed_n_p = true; /* Spaghetti code alert. */
2744 goto handle_on_failure_jump;
2745 }
2746 continue;
2747
2748
2749 case set_number_at:
2750 p += 4;
2751 continue;
2752
2753
2754 case start_memory:
2755 case stop_memory:
2756 p += 2;
2757 continue;
2758
2759
2760 default:
2761 abort (); /* We have listed all the cases. */
2762 } /* switch *p++ */
2763
2764 /* Getting here means we have found the possible starting
2765 characters for one path of the pattern -- and that the empty
2766 string does not match. We need not follow this path further.
2767 Instead, look at the next alternative (remembered on the
2768 stack), or quit if no more. The test at the top of the loop
2769 does these things. */
2770 path_can_be_null = false;
2771 p = pend;
2772 } /* while p */
2773
2774 /* Set `can_be_null' for the last path (also the first path, if the
2775 pattern is empty). */
2776 bufp->can_be_null |= path_can_be_null;
2777 return 0;
2778 } /* re_compile_fastmap */
2779 \f
2780 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2781 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2782 this memory for recording register information. STARTS and ENDS
2783 must be allocated using the malloc library routine, and must each
2784 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2785
2786 If NUM_REGS == 0, then subsequent matches should allocate their own
2787 register data.
2788
2789 Unless this function is called, the first search or match using
2790 PATTERN_BUFFER will allocate its own register data, without
2791 freeing the old data. */
2792
2793 void
2794 re_set_registers (bufp, regs, num_regs, starts, ends)
2795 struct re_pattern_buffer *bufp;
2796 struct re_registers *regs;
2797 unsigned num_regs;
2798 regoff_t *starts, *ends;
2799 {
2800 if (num_regs)
2801 {
2802 bufp->regs_allocated = REGS_REALLOCATE;
2803 regs->num_regs = num_regs;
2804 regs->start = starts;
2805 regs->end = ends;
2806 }
2807 else
2808 {
2809 bufp->regs_allocated = REGS_UNALLOCATED;
2810 regs->num_regs = 0;
2811 regs->start = regs->end = (regoff_t *) 0;
2812 }
2813 }
2814 \f
2815 /* Searching routines. */
2816
2817 /* Like re_search_2, below, but only one string is specified, and
2818 doesn't let you say where to stop matching. */
2819
2820 int
2821 re_search (bufp, string, size, startpos, range, regs)
2822 struct re_pattern_buffer *bufp;
2823 const char *string;
2824 int size, startpos, range;
2825 struct re_registers *regs;
2826 {
2827 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2828 regs, size);
2829 }
2830
2831
2832 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2833 virtual concatenation of STRING1 and STRING2, starting first at index
2834 STARTPOS, then at STARTPOS + 1, and so on.
2835
2836 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2837
2838 RANGE is how far to scan while trying to match. RANGE = 0 means try
2839 only at STARTPOS; in general, the last start tried is STARTPOS +
2840 RANGE.
2841
2842 In REGS, return the indices of the virtual concatenation of STRING1
2843 and STRING2 that matched the entire BUFP->buffer and its contained
2844 subexpressions.
2845
2846 Do not consider matching one past the index STOP in the virtual
2847 concatenation of STRING1 and STRING2.
2848
2849 We return either the position in the strings at which the match was
2850 found, -1 if no match, or -2 if error (such as failure
2851 stack overflow). */
2852
2853 int
2854 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2855 struct re_pattern_buffer *bufp;
2856 const char *string1, *string2;
2857 int size1, size2;
2858 int startpos;
2859 int range;
2860 struct re_registers *regs;
2861 int stop;
2862 {
2863 int val;
2864 register char *fastmap = bufp->fastmap;
2865 register char *translate = bufp->translate;
2866 int total_size = size1 + size2;
2867 int endpos = startpos + range;
2868
2869 /* Check for out-of-range STARTPOS. */
2870 if (startpos < 0 || startpos > total_size)
2871 return -1;
2872
2873 /* Fix up RANGE if it might eventually take us outside
2874 the virtual concatenation of STRING1 and STRING2. */
2875 if (endpos < -1)
2876 range = -1 - startpos;
2877 else if (endpos > total_size)
2878 range = total_size - startpos;
2879
2880 /* If the search isn't to be a backwards one, don't waste time in a
2881 search for a pattern that must be anchored. */
2882 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2883 {
2884 if (startpos > 0)
2885 return -1;
2886 else
2887 range = 1;
2888 }
2889
2890 /* Update the fastmap now if not correct already. */
2891 if (fastmap && !bufp->fastmap_accurate)
2892 if (re_compile_fastmap (bufp) == -2)
2893 return -2;
2894
2895 /* Loop through the string, looking for a place to start matching. */
2896 for (;;)
2897 {
2898 /* If a fastmap is supplied, skip quickly over characters that
2899 cannot be the start of a match. If the pattern can match the
2900 null string, however, we don't need to skip characters; we want
2901 the first null string. */
2902 if (fastmap && startpos < total_size && !bufp->can_be_null)
2903 {
2904 if (range > 0) /* Searching forwards. */
2905 {
2906 register const char *d;
2907 register int lim = 0;
2908 int irange = range;
2909
2910 if (startpos < size1 && startpos + range >= size1)
2911 lim = range - (size1 - startpos);
2912
2913 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2914
2915 /* Written out as an if-else to avoid testing `translate'
2916 inside the loop. */
2917 if (translate)
2918 while (range > lim
2919 && !fastmap[(unsigned char)
2920 translate[(unsigned char) *d++]])
2921 range--;
2922 else
2923 while (range > lim && !fastmap[(unsigned char) *d++])
2924 range--;
2925
2926 startpos += irange - range;
2927 }
2928 else /* Searching backwards. */
2929 {
2930 register char c = (size1 == 0 || startpos >= size1
2931 ? string2[startpos - size1]
2932 : string1[startpos]);
2933
2934 if (!fastmap[(unsigned char) TRANSLATE (c)])
2935 goto advance;
2936 }
2937 }
2938
2939 /* If can't match the null string, and that's all we have left, fail. */
2940 if (range >= 0 && startpos == total_size && fastmap
2941 && !bufp->can_be_null)
2942 return -1;
2943
2944 val = re_match_2 (bufp, string1, size1, string2, size2,
2945 startpos, regs, stop);
2946 if (val >= 0)
2947 return startpos;
2948
2949 if (val == -2)
2950 return -2;
2951
2952 advance:
2953 if (!range)
2954 break;
2955 else if (range > 0)
2956 {
2957 range--;
2958 startpos++;
2959 }
2960 else
2961 {
2962 range++;
2963 startpos--;
2964 }
2965 }
2966 return -1;
2967 } /* re_search_2 */
2968 \f
2969 /* Declarations and macros for re_match_2. */
2970
2971 static int bcmp_translate ();
2972 static boolean alt_match_null_string_p (),
2973 common_op_match_null_string_p (),
2974 group_match_null_string_p ();
2975
2976 /* Structure for per-register (a.k.a. per-group) information.
2977 This must not be longer than one word, because we push this value
2978 onto the failure stack. Other register information, such as the
2979 starting and ending positions (which are addresses), and the list of
2980 inner groups (which is a bits list) are maintained in separate
2981 variables.
2982
2983 We are making a (strictly speaking) nonportable assumption here: that
2984 the compiler will pack our bit fields into something that fits into
2985 the type of `word', i.e., is something that fits into one item on the
2986 failure stack. */
2987 typedef union
2988 {
2989 fail_stack_elt_t word;
2990 struct
2991 {
2992 /* This field is one if this group can match the empty string,
2993 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
2994 #define MATCH_NULL_UNSET_VALUE 3
2995 unsigned match_null_string_p : 2;
2996 unsigned is_active : 1;
2997 unsigned matched_something : 1;
2998 unsigned ever_matched_something : 1;
2999 } bits;
3000 } register_info_type;
3001
3002 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3003 #define IS_ACTIVE(R) ((R).bits.is_active)
3004 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3005 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3006
3007
3008 /* Call this when have matched a real character; it sets `matched' flags
3009 for the subexpressions which we are currently inside. Also records
3010 that those subexprs have matched. */
3011 #define SET_REGS_MATCHED() \
3012 do \
3013 { \
3014 unsigned r; \
3015 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3016 { \
3017 MATCHED_SOMETHING (reg_info[r]) \
3018 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3019 = 1; \
3020 } \
3021 } \
3022 while (0)
3023
3024
3025 /* This converts PTR, a pointer into one of the search strings `string1'
3026 and `string2' into an offset from the beginning of that string. */
3027 #define POINTER_TO_OFFSET(ptr) \
3028 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3029
3030 /* Registers are set to a sentinel when they haven't yet matched. */
3031 #define REG_UNSET_VALUE ((char *) -1)
3032 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3033
3034
3035 /* Macros for dealing with the split strings in re_match_2. */
3036
3037 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3038
3039 /* Call before fetching a character with *d. This switches over to
3040 string2 if necessary. */
3041 #define PREFETCH() \
3042 while (d == dend) \
3043 { \
3044 /* End of string2 => fail. */ \
3045 if (dend == end_match_2) \
3046 goto fail; \
3047 /* End of string1 => advance to string2. */ \
3048 d = string2; \
3049 dend = end_match_2; \
3050 }
3051
3052
3053 /* Test if at very beginning or at very end of the virtual concatenation
3054 of `string1' and `string2'. If only one string, it's `string2'. */
3055 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3056 #define AT_STRINGS_END(d) ((d) == end2)
3057
3058
3059 /* Test if D points to a character which is word-constituent. We have
3060 two special cases to check for: if past the end of string1, look at
3061 the first character in string2; and if before the beginning of
3062 string2, look at the last character in string1. */
3063 #define WORDCHAR_P(d) \
3064 (SYNTAX ((d) == end1 ? *string2 \
3065 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3066 == Sword)
3067
3068 /* Test if the character before D and the one at D differ with respect
3069 to being word-constituent. */
3070 #define AT_WORD_BOUNDARY(d) \
3071 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3072 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3073
3074
3075 /* Free everything we malloc. */
3076 #ifdef REGEX_MALLOC
3077 #define FREE_VAR(var) if (var) free (var); var = NULL
3078 #define FREE_VARIABLES() \
3079 do { \
3080 FREE_VAR (fail_stack.stack); \
3081 FREE_VAR (regstart); \
3082 FREE_VAR (regend); \
3083 FREE_VAR (old_regstart); \
3084 FREE_VAR (old_regend); \
3085 FREE_VAR (best_regstart); \
3086 FREE_VAR (best_regend); \
3087 FREE_VAR (reg_info); \
3088 FREE_VAR (reg_dummy); \
3089 FREE_VAR (reg_info_dummy); \
3090 } while (0)
3091 #else /* not REGEX_MALLOC */
3092 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3093 #define FREE_VARIABLES() alloca (0)
3094 #endif /* not REGEX_MALLOC */
3095
3096
3097 /* These values must meet several constraints. They must not be valid
3098 register values; since we have a limit of 255 registers (because
3099 we use only one byte in the pattern for the register number), we can
3100 use numbers larger than 255. They must differ by 1, because of
3101 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3102 be larger than the value for the highest register, so we do not try
3103 to actually save any registers when none are active. */
3104 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3105 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3106 \f
3107 /* Matching routines. */
3108
3109 #ifndef emacs /* Emacs never uses this. */
3110 /* re_match is like re_match_2 except it takes only a single string. */
3111
3112 int
3113 re_match (bufp, string, size, pos, regs)
3114 struct re_pattern_buffer *bufp;
3115 const char *string;
3116 int size, pos;
3117 struct re_registers *regs;
3118 {
3119 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3120 }
3121 #endif /* not emacs */
3122
3123
3124 /* re_match_2 matches the compiled pattern in BUFP against the
3125 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3126 and SIZE2, respectively). We start matching at POS, and stop
3127 matching at STOP.
3128
3129 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3130 store offsets for the substring each group matched in REGS. See the
3131 documentation for exactly how many groups we fill.
3132
3133 We return -1 if no match, -2 if an internal error (such as the
3134 failure stack overflowing). Otherwise, we return the length of the
3135 matched substring. */
3136
3137 int
3138 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3139 struct re_pattern_buffer *bufp;
3140 const char *string1, *string2;
3141 int size1, size2;
3142 int pos;
3143 struct re_registers *regs;
3144 int stop;
3145 {
3146 /* General temporaries. */
3147 int mcnt;
3148 unsigned char *p1;
3149
3150 /* Just past the end of the corresponding string. */
3151 const char *end1, *end2;
3152
3153 /* Pointers into string1 and string2, just past the last characters in
3154 each to consider matching. */
3155 const char *end_match_1, *end_match_2;
3156
3157 /* Where we are in the data, and the end of the current string. */
3158 const char *d, *dend;
3159
3160 /* Where we are in the pattern, and the end of the pattern. */
3161 unsigned char *p = bufp->buffer;
3162 register unsigned char *pend = p + bufp->used;
3163
3164 /* We use this to map every character in the string. */
3165 char *translate = bufp->translate;
3166
3167 /* Failure point stack. Each place that can handle a failure further
3168 down the line pushes a failure point on this stack. It consists of
3169 restart, regend, and reg_info for all registers corresponding to
3170 the subexpressions we're currently inside, plus the number of such
3171 registers, and, finally, two char *'s. The first char * is where
3172 to resume scanning the pattern; the second one is where to resume
3173 scanning the strings. If the latter is zero, the failure point is
3174 a ``dummy''; if a failure happens and the failure point is a dummy,
3175 it gets discarded and the next next one is tried. */
3176 fail_stack_type fail_stack;
3177 #ifdef DEBUG
3178 static unsigned failure_id = 0;
3179 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3180 #endif
3181
3182 /* We fill all the registers internally, independent of what we
3183 return, for use in backreferences. The number here includes
3184 an element for register zero. */
3185 unsigned num_regs = bufp->re_nsub + 1;
3186
3187 /* The currently active registers. */
3188 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3189 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3190
3191 /* Information on the contents of registers. These are pointers into
3192 the input strings; they record just what was matched (on this
3193 attempt) by a subexpression part of the pattern, that is, the
3194 regnum-th regstart pointer points to where in the pattern we began
3195 matching and the regnum-th regend points to right after where we
3196 stopped matching the regnum-th subexpression. (The zeroth register
3197 keeps track of what the whole pattern matches.) */
3198 const char **regstart = NULL, **regend = NULL;
3199
3200 /* If a group that's operated upon by a repetition operator fails to
3201 match anything, then the register for its start will need to be
3202 restored because it will have been set to wherever in the string we
3203 are when we last see its open-group operator. Similarly for a
3204 register's end. */
3205 const char **old_regstart = NULL, **old_regend = NULL;
3206
3207 /* The is_active field of reg_info helps us keep track of which (possibly
3208 nested) subexpressions we are currently in. The matched_something
3209 field of reg_info[reg_num] helps us tell whether or not we have
3210 matched any of the pattern so far this time through the reg_num-th
3211 subexpression. These two fields get reset each time through any
3212 loop their register is in. */
3213 register_info_type *reg_info = NULL;
3214
3215 /* The following record the register info as found in the above
3216 variables when we find a match better than any we've seen before.
3217 This happens as we backtrack through the failure points, which in
3218 turn happens only if we have not yet matched the entire string. */
3219 unsigned best_regs_set = false;
3220 const char **best_regstart = NULL, **best_regend = NULL;
3221
3222 /* Logically, this is `best_regend[0]'. But we don't want to have to
3223 allocate space for that if we're not allocating space for anything
3224 else (see below). Also, we never need info about register 0 for
3225 any of the other register vectors, and it seems rather a kludge to
3226 treat `best_regend' differently than the rest. So we keep track of
3227 the end of the best match so far in a separate variable. We
3228 initialize this to NULL so that when we backtrack the first time
3229 and need to test it, it's not garbage. */
3230 const char *match_end = NULL;
3231
3232 /* Used when we pop values we don't care about. */
3233 const char **reg_dummy = NULL;
3234 register_info_type *reg_info_dummy = NULL;
3235
3236 #ifdef DEBUG
3237 /* Counts the total number of registers pushed. */
3238 unsigned num_regs_pushed = 0;
3239 #endif
3240
3241 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3242
3243 INIT_FAIL_STACK ();
3244
3245 /* Do not bother to initialize all the register variables if there are
3246 no groups in the pattern, as it takes a fair amount of time. If
3247 there are groups, we include space for register 0 (the whole
3248 pattern), even though we never use it, since it simplifies the
3249 array indexing. We should fix this. */
3250 if (bufp->re_nsub)
3251 {
3252 regstart = REGEX_TALLOC (num_regs, const char *);
3253 regend = REGEX_TALLOC (num_regs, const char *);
3254 old_regstart = REGEX_TALLOC (num_regs, const char *);
3255 old_regend = REGEX_TALLOC (num_regs, const char *);
3256 best_regstart = REGEX_TALLOC (num_regs, const char *);
3257 best_regend = REGEX_TALLOC (num_regs, const char *);
3258 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3259 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3260 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3261
3262 if (!(regstart && regend && old_regstart && old_regend && reg_info
3263 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3264 {
3265 FREE_VARIABLES ();
3266 return -2;
3267 }
3268 }
3269 #ifdef REGEX_MALLOC
3270 else
3271 {
3272 /* We must initialize all our variables to NULL, so that
3273 `FREE_VARIABLES' doesn't try to free them. */
3274 regstart = regend = old_regstart = old_regend = best_regstart
3275 = best_regend = reg_dummy = NULL;
3276 reg_info = reg_info_dummy = (register_info_type *) NULL;
3277 }
3278 #endif /* REGEX_MALLOC */
3279
3280 /* The starting position is bogus. */
3281 if (pos < 0 || pos > size1 + size2)
3282 {
3283 FREE_VARIABLES ();
3284 return -1;
3285 }
3286
3287 /* Initialize subexpression text positions to -1 to mark ones that no
3288 start_memory/stop_memory has been seen for. Also initialize the
3289 register information struct. */
3290 for (mcnt = 1; mcnt < num_regs; mcnt++)
3291 {
3292 regstart[mcnt] = regend[mcnt]
3293 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3294
3295 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3296 IS_ACTIVE (reg_info[mcnt]) = 0;
3297 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3298 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3299 }
3300
3301 /* We move `string1' into `string2' if the latter's empty -- but not if
3302 `string1' is null. */
3303 if (size2 == 0 && string1 != NULL)
3304 {
3305 string2 = string1;
3306 size2 = size1;
3307 string1 = 0;
3308 size1 = 0;
3309 }
3310 end1 = string1 + size1;
3311 end2 = string2 + size2;
3312
3313 /* Compute where to stop matching, within the two strings. */
3314 if (stop <= size1)
3315 {
3316 end_match_1 = string1 + stop;
3317 end_match_2 = string2;
3318 }
3319 else
3320 {
3321 end_match_1 = end1;
3322 end_match_2 = string2 + stop - size1;
3323 }
3324
3325 /* `p' scans through the pattern as `d' scans through the data.
3326 `dend' is the end of the input string that `d' points within. `d'
3327 is advanced into the following input string whenever necessary, but
3328 this happens before fetching; therefore, at the beginning of the
3329 loop, `d' can be pointing at the end of a string, but it cannot
3330 equal `string2'. */
3331 if (size1 > 0 && pos <= size1)
3332 {
3333 d = string1 + pos;
3334 dend = end_match_1;
3335 }
3336 else
3337 {
3338 d = string2 + pos - size1;
3339 dend = end_match_2;
3340 }
3341
3342 DEBUG_PRINT1 ("The compiled pattern is: ");
3343 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3344 DEBUG_PRINT1 ("The string to match is: `");
3345 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3346 DEBUG_PRINT1 ("'\n");
3347
3348 /* This loops over pattern commands. It exits by returning from the
3349 function if the match is complete, or it drops through if the match
3350 fails at this starting point in the input data. */
3351 for (;;)
3352 {
3353 DEBUG_PRINT2 ("\n0x%x: ", p);
3354
3355 if (p == pend)
3356 { /* End of pattern means we might have succeeded. */
3357 DEBUG_PRINT1 ("end of pattern ... ");
3358
3359 /* If we haven't matched the entire string, and we want the
3360 longest match, try backtracking. */
3361 if (d != end_match_2)
3362 {
3363 DEBUG_PRINT1 ("backtracking.\n");
3364
3365 if (!FAIL_STACK_EMPTY ())
3366 { /* More failure points to try. */
3367 boolean same_str_p = (FIRST_STRING_P (match_end)
3368 == MATCHING_IN_FIRST_STRING);
3369
3370 /* If exceeds best match so far, save it. */
3371 if (!best_regs_set
3372 || (same_str_p && d > match_end)
3373 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3374 {
3375 best_regs_set = true;
3376 match_end = d;
3377
3378 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3379
3380 for (mcnt = 1; mcnt < num_regs; mcnt++)
3381 {
3382 best_regstart[mcnt] = regstart[mcnt];
3383 best_regend[mcnt] = regend[mcnt];
3384 }
3385 }
3386 goto fail;
3387 }
3388
3389 /* If no failure points, don't restore garbage. */
3390 else if (best_regs_set)
3391 {
3392 restore_best_regs:
3393 /* Restore best match. It may happen that `dend ==
3394 end_match_1' while the restored d is in string2.
3395 For example, the pattern `x.*y.*z' against the
3396 strings `x-' and `y-z-', if the two strings are
3397 not consecutive in memory. */
3398 DEBUG_PRINT1 ("Restoring best registers.\n");
3399
3400 d = match_end;
3401 dend = ((d >= string1 && d <= end1)
3402 ? end_match_1 : end_match_2);
3403
3404 for (mcnt = 1; mcnt < num_regs; mcnt++)
3405 {
3406 regstart[mcnt] = best_regstart[mcnt];
3407 regend[mcnt] = best_regend[mcnt];
3408 }
3409 }
3410 } /* d != end_match_2 */
3411
3412 DEBUG_PRINT1 ("Accepting match.\n");
3413
3414 /* If caller wants register contents data back, do it. */
3415 if (regs && !bufp->no_sub)
3416 {
3417 /* Have the register data arrays been allocated? */
3418 if (bufp->regs_allocated == REGS_UNALLOCATED)
3419 { /* No. So allocate them with malloc. We need one
3420 extra element beyond `num_regs' for the `-1' marker
3421 GNU code uses. */
3422 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3423 regs->start = TALLOC (regs->num_regs, regoff_t);
3424 regs->end = TALLOC (regs->num_regs, regoff_t);
3425 if (regs->start == NULL || regs->end == NULL)
3426 return -2;
3427 bufp->regs_allocated = REGS_REALLOCATE;
3428 }
3429 else if (bufp->regs_allocated == REGS_REALLOCATE)
3430 { /* Yes. If we need more elements than were already
3431 allocated, reallocate them. If we need fewer, just
3432 leave it alone. */
3433 if (regs->num_regs < num_regs + 1)
3434 {
3435 regs->num_regs = num_regs + 1;
3436 RETALLOC (regs->start, regs->num_regs, regoff_t);
3437 RETALLOC (regs->end, regs->num_regs, regoff_t);
3438 if (regs->start == NULL || regs->end == NULL)
3439 return -2;
3440 }
3441 }
3442 else
3443 assert (bufp->regs_allocated == REGS_FIXED);
3444
3445 /* Convert the pointer data in `regstart' and `regend' to
3446 indices. Register zero has to be set differently,
3447 since we haven't kept track of any info for it. */
3448 if (regs->num_regs > 0)
3449 {
3450 regs->start[0] = pos;
3451 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3452 : d - string2 + size1);
3453 }
3454
3455 /* Go through the first `min (num_regs, regs->num_regs)'
3456 registers, since that is all we initialized. */
3457 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3458 {
3459 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3460 regs->start[mcnt] = regs->end[mcnt] = -1;
3461 else
3462 {
3463 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3464 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3465 }
3466 }
3467
3468 /* If the regs structure we return has more elements than
3469 were in the pattern, set the extra elements to -1. If
3470 we (re)allocated the registers, this is the case,
3471 because we always allocate enough to have at least one
3472 -1 at the end. */
3473 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3474 regs->start[mcnt] = regs->end[mcnt] = -1;
3475 } /* regs && !bufp->no_sub */
3476
3477 FREE_VARIABLES ();
3478 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3479 nfailure_points_pushed, nfailure_points_popped,
3480 nfailure_points_pushed - nfailure_points_popped);
3481 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3482
3483 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3484 ? string1
3485 : string2 - size1);
3486
3487 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3488
3489 return mcnt;
3490 }
3491
3492 /* Otherwise match next pattern command. */
3493 #ifdef SWITCH_ENUM_BUG
3494 switch ((int) ((re_opcode_t) *p++))
3495 #else
3496 switch ((re_opcode_t) *p++)
3497 #endif
3498 {
3499 /* Ignore these. Used to ignore the n of succeed_n's which
3500 currently have n == 0. */
3501 case no_op:
3502 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3503 break;
3504
3505
3506 /* Match the next n pattern characters exactly. The following
3507 byte in the pattern defines n, and the n bytes after that
3508 are the characters to match. */
3509 case exactn:
3510 mcnt = *p++;
3511 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3512
3513 /* This is written out as an if-else so we don't waste time
3514 testing `translate' inside the loop. */
3515 if (translate)
3516 {
3517 do
3518 {
3519 PREFETCH ();
3520 if (translate[(unsigned char) *d++] != (char) *p++)
3521 goto fail;
3522 }
3523 while (--mcnt);
3524 }
3525 else
3526 {
3527 do
3528 {
3529 PREFETCH ();
3530 if (*d++ != (char) *p++) goto fail;
3531 }
3532 while (--mcnt);
3533 }
3534 SET_REGS_MATCHED ();
3535 break;
3536
3537
3538 /* Match any character except possibly a newline or a null. */
3539 case anychar:
3540 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3541
3542 PREFETCH ();
3543
3544 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3545 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3546 goto fail;
3547
3548 SET_REGS_MATCHED ();
3549 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3550 d++;
3551 break;
3552
3553
3554 case charset:
3555 case charset_not:
3556 {
3557 register unsigned char c;
3558 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3559
3560 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3561
3562 PREFETCH ();
3563 c = TRANSLATE (*d); /* The character to match. */
3564
3565 /* Cast to `unsigned' instead of `unsigned char' in case the
3566 bit list is a full 32 bytes long. */
3567 if (c < (unsigned) (*p * BYTEWIDTH)
3568 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3569 not = !not;
3570
3571 p += 1 + *p;
3572
3573 if (!not) goto fail;
3574
3575 SET_REGS_MATCHED ();
3576 d++;
3577 break;
3578 }
3579
3580
3581 /* The beginning of a group is represented by start_memory.
3582 The arguments are the register number in the next byte, and the
3583 number of groups inner to this one in the next. The text
3584 matched within the group is recorded (in the internal
3585 registers data structure) under the register number. */
3586 case start_memory:
3587 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3588
3589 /* Find out if this group can match the empty string. */
3590 p1 = p; /* To send to group_match_null_string_p. */
3591
3592 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3593 REG_MATCH_NULL_STRING_P (reg_info[*p])
3594 = group_match_null_string_p (&p1, pend, reg_info);
3595
3596 /* Save the position in the string where we were the last time
3597 we were at this open-group operator in case the group is
3598 operated upon by a repetition operator, e.g., with `(a*)*b'
3599 against `ab'; then we want to ignore where we are now in
3600 the string in case this attempt to match fails. */
3601 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3602 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3603 : regstart[*p];
3604 DEBUG_PRINT2 (" old_regstart: %d\n",
3605 POINTER_TO_OFFSET (old_regstart[*p]));
3606
3607 regstart[*p] = d;
3608 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3609
3610 IS_ACTIVE (reg_info[*p]) = 1;
3611 MATCHED_SOMETHING (reg_info[*p]) = 0;
3612
3613 /* This is the new highest active register. */
3614 highest_active_reg = *p;
3615
3616 /* If nothing was active before, this is the new lowest active
3617 register. */
3618 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3619 lowest_active_reg = *p;
3620
3621 /* Move past the register number and inner group count. */
3622 p += 2;
3623 break;
3624
3625
3626 /* The stop_memory opcode represents the end of a group. Its
3627 arguments are the same as start_memory's: the register
3628 number, and the number of inner groups. */
3629 case stop_memory:
3630 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3631
3632 /* We need to save the string position the last time we were at
3633 this close-group operator in case the group is operated
3634 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3635 against `aba'; then we want to ignore where we are now in
3636 the string in case this attempt to match fails. */
3637 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3638 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3639 : regend[*p];
3640 DEBUG_PRINT2 (" old_regend: %d\n",
3641 POINTER_TO_OFFSET (old_regend[*p]));
3642
3643 regend[*p] = d;
3644 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3645
3646 /* This register isn't active anymore. */
3647 IS_ACTIVE (reg_info[*p]) = 0;
3648
3649 /* If this was the only register active, nothing is active
3650 anymore. */
3651 if (lowest_active_reg == highest_active_reg)
3652 {
3653 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3654 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3655 }
3656 else
3657 { /* We must scan for the new highest active register, since
3658 it isn't necessarily one less than now: consider
3659 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3660 new highest active register is 1. */
3661 unsigned char r = *p - 1;
3662 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3663 r--;
3664
3665 /* If we end up at register zero, that means that we saved
3666 the registers as the result of an `on_failure_jump', not
3667 a `start_memory', and we jumped to past the innermost
3668 `stop_memory'. For example, in ((.)*) we save
3669 registers 1 and 2 as a result of the *, but when we pop
3670 back to the second ), we are at the stop_memory 1.
3671 Thus, nothing is active. */
3672 if (r == 0)
3673 {
3674 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3675 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3676 }
3677 else
3678 highest_active_reg = r;
3679 }
3680
3681 /* If just failed to match something this time around with a
3682 group that's operated on by a repetition operator, try to
3683 force exit from the ``loop'', and restore the register
3684 information for this group that we had before trying this
3685 last match. */
3686 if ((!MATCHED_SOMETHING (reg_info[*p])
3687 || (re_opcode_t) p[-3] == start_memory)
3688 && (p + 2) < pend)
3689 {
3690 boolean is_a_jump_n = false;
3691
3692 p1 = p + 2;
3693 mcnt = 0;
3694 switch ((re_opcode_t) *p1++)
3695 {
3696 case jump_n:
3697 is_a_jump_n = true;
3698 case pop_failure_jump:
3699 case maybe_pop_jump:
3700 case jump:
3701 case dummy_failure_jump:
3702 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3703 if (is_a_jump_n)
3704 p1 += 2;
3705 break;
3706
3707 default:
3708 /* do nothing */ ;
3709 }
3710 p1 += mcnt;
3711
3712 /* If the next operation is a jump backwards in the pattern
3713 to an on_failure_jump right before the start_memory
3714 corresponding to this stop_memory, exit from the loop
3715 by forcing a failure after pushing on the stack the
3716 on_failure_jump's jump in the pattern, and d. */
3717 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3718 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3719 {
3720 /* If this group ever matched anything, then restore
3721 what its registers were before trying this last
3722 failed match, e.g., with `(a*)*b' against `ab' for
3723 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3724 against `aba' for regend[3].
3725
3726 Also restore the registers for inner groups for,
3727 e.g., `((a*)(b*))*' against `aba' (register 3 would
3728 otherwise get trashed). */
3729
3730 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3731 {
3732 unsigned r;
3733
3734 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3735
3736 /* Restore this and inner groups' (if any) registers. */
3737 for (r = *p; r < *p + *(p + 1); r++)
3738 {
3739 regstart[r] = old_regstart[r];
3740
3741 /* xx why this test? */
3742 if ((int) old_regend[r] >= (int) regstart[r])
3743 regend[r] = old_regend[r];
3744 }
3745 }
3746 p1++;
3747 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3748 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3749
3750 goto fail;
3751 }
3752 }
3753
3754 /* Move past the register number and the inner group count. */
3755 p += 2;
3756 break;
3757
3758
3759 /* \<digit> has been turned into a `duplicate' command which is
3760 followed by the numeric value of <digit> as the register number. */
3761 case duplicate:
3762 {
3763 register const char *d2, *dend2;
3764 int regno = *p++; /* Get which register to match against. */
3765 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3766
3767 /* Can't back reference a group which we've never matched. */
3768 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3769 goto fail;
3770
3771 /* Where in input to try to start matching. */
3772 d2 = regstart[regno];
3773
3774 /* Where to stop matching; if both the place to start and
3775 the place to stop matching are in the same string, then
3776 set to the place to stop, otherwise, for now have to use
3777 the end of the first string. */
3778
3779 dend2 = ((FIRST_STRING_P (regstart[regno])
3780 == FIRST_STRING_P (regend[regno]))
3781 ? regend[regno] : end_match_1);
3782 for (;;)
3783 {
3784 /* If necessary, advance to next segment in register
3785 contents. */
3786 while (d2 == dend2)
3787 {
3788 if (dend2 == end_match_2) break;
3789 if (dend2 == regend[regno]) break;
3790
3791 /* End of string1 => advance to string2. */
3792 d2 = string2;
3793 dend2 = regend[regno];
3794 }
3795 /* At end of register contents => success */
3796 if (d2 == dend2) break;
3797
3798 /* If necessary, advance to next segment in data. */
3799 PREFETCH ();
3800
3801 /* How many characters left in this segment to match. */
3802 mcnt = dend - d;
3803
3804 /* Want how many consecutive characters we can match in
3805 one shot, so, if necessary, adjust the count. */
3806 if (mcnt > dend2 - d2)
3807 mcnt = dend2 - d2;
3808
3809 /* Compare that many; failure if mismatch, else move
3810 past them. */
3811 if (translate
3812 ? bcmp_translate (d, d2, mcnt, translate)
3813 : bcmp (d, d2, mcnt))
3814 goto fail;
3815 d += mcnt, d2 += mcnt;
3816 }
3817 }
3818 break;
3819
3820
3821 /* begline matches the empty string at the beginning of the string
3822 (unless `not_bol' is set in `bufp'), and, if
3823 `newline_anchor' is set, after newlines. */
3824 case begline:
3825 DEBUG_PRINT1 ("EXECUTING begline.\n");
3826
3827 if (AT_STRINGS_BEG (d))
3828 {
3829 if (!bufp->not_bol) break;
3830 }
3831 else if (d[-1] == '\n' && bufp->newline_anchor)
3832 {
3833 break;
3834 }
3835 /* In all other cases, we fail. */
3836 goto fail;
3837
3838
3839 /* endline is the dual of begline. */
3840 case endline:
3841 DEBUG_PRINT1 ("EXECUTING endline.\n");
3842
3843 if (AT_STRINGS_END (d))
3844 {
3845 if (!bufp->not_eol) break;
3846 }
3847
3848 /* We have to ``prefetch'' the next character. */
3849 else if ((d == end1 ? *string2 : *d) == '\n'
3850 && bufp->newline_anchor)
3851 {
3852 break;
3853 }
3854 goto fail;
3855
3856
3857 /* Match at the very beginning of the data. */
3858 case begbuf:
3859 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3860 if (AT_STRINGS_BEG (d))
3861 break;
3862 goto fail;
3863
3864
3865 /* Match at the very end of the data. */
3866 case endbuf:
3867 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3868 if (AT_STRINGS_END (d))
3869 break;
3870 goto fail;
3871
3872
3873 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3874 pushes NULL as the value for the string on the stack. Then
3875 `pop_failure_point' will keep the current value for the
3876 string, instead of restoring it. To see why, consider
3877 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3878 then the . fails against the \n. But the next thing we want
3879 to do is match the \n against the \n; if we restored the
3880 string value, we would be back at the foo.
3881
3882 Because this is used only in specific cases, we don't need to
3883 check all the things that `on_failure_jump' does, to make
3884 sure the right things get saved on the stack. Hence we don't
3885 share its code. The only reason to push anything on the
3886 stack at all is that otherwise we would have to change
3887 `anychar's code to do something besides goto fail in this
3888 case; that seems worse than this. */
3889 case on_failure_keep_string_jump:
3890 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3891
3892 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3893 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3894
3895 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3896 break;
3897
3898
3899 /* Uses of on_failure_jump:
3900
3901 Each alternative starts with an on_failure_jump that points
3902 to the beginning of the next alternative. Each alternative
3903 except the last ends with a jump that in effect jumps past
3904 the rest of the alternatives. (They really jump to the
3905 ending jump of the following alternative, because tensioning
3906 these jumps is a hassle.)
3907
3908 Repeats start with an on_failure_jump that points past both
3909 the repetition text and either the following jump or
3910 pop_failure_jump back to this on_failure_jump. */
3911 case on_failure_jump:
3912 on_failure:
3913 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3914
3915 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3916 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3917
3918 /* If this on_failure_jump comes right before a group (i.e.,
3919 the original * applied to a group), save the information
3920 for that group and all inner ones, so that if we fail back
3921 to this point, the group's information will be correct.
3922 For example, in \(a*\)*\1, we need the preceding group,
3923 and in \(\(a*\)b*\)\2, we need the inner group. */
3924
3925 /* We can't use `p' to check ahead because we push
3926 a failure point to `p + mcnt' after we do this. */
3927 p1 = p;
3928
3929 /* We need to skip no_op's before we look for the
3930 start_memory in case this on_failure_jump is happening as
3931 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3932 against aba. */
3933 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3934 p1++;
3935
3936 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3937 {
3938 /* We have a new highest active register now. This will
3939 get reset at the start_memory we are about to get to,
3940 but we will have saved all the registers relevant to
3941 this repetition op, as described above. */
3942 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3943 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3944 lowest_active_reg = *(p1 + 1);
3945 }
3946
3947 DEBUG_PRINT1 (":\n");
3948 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3949 break;
3950
3951
3952 /* A smart repeat ends with `maybe_pop_jump'.
3953 We change it to either `pop_failure_jump' or `jump'. */
3954 case maybe_pop_jump:
3955 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3956 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3957 {
3958 register unsigned char *p2 = p;
3959
3960 /* Compare the beginning of the repeat with what in the
3961 pattern follows its end. If we can establish that there
3962 is nothing that they would both match, i.e., that we
3963 would have to backtrack because of (as in, e.g., `a*a')
3964 then we can change to pop_failure_jump, because we'll
3965 never have to backtrack.
3966
3967 This is not true in the case of alternatives: in
3968 `(a|ab)*' we do need to backtrack to the `ab' alternative
3969 (e.g., if the string was `ab'). But instead of trying to
3970 detect that here, the alternative has put on a dummy
3971 failure point which is what we will end up popping. */
3972
3973 /* Skip over open/close-group commands. */
3974 while (p2 + 2 < pend
3975 && ((re_opcode_t) *p2 == stop_memory
3976 || (re_opcode_t) *p2 == start_memory))
3977 p2 += 3; /* Skip over args, too. */
3978
3979 /* If we're at the end of the pattern, we can change. */
3980 if (p2 == pend)
3981 {
3982 /* Consider what happens when matching ":\(.*\)"
3983 against ":/". I don't really understand this code
3984 yet. */
3985 p[-3] = (unsigned char) pop_failure_jump;
3986 DEBUG_PRINT1
3987 (" End of pattern: change to `pop_failure_jump'.\n");
3988 }
3989
3990 else if ((re_opcode_t) *p2 == exactn
3991 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
3992 {
3993 register unsigned char c
3994 = *p2 == (unsigned char) endline ? '\n' : p2[2];
3995 p1 = p + mcnt;
3996
3997 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
3998 to the `maybe_finalize_jump' of this case. Examine what
3999 follows. */
4000 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4001 {
4002 p[-3] = (unsigned char) pop_failure_jump;
4003 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4004 c, p1[5]);
4005 }
4006
4007 else if ((re_opcode_t) p1[3] == charset
4008 || (re_opcode_t) p1[3] == charset_not)
4009 {
4010 int not = (re_opcode_t) p1[3] == charset_not;
4011
4012 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4013 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4014 not = !not;
4015
4016 /* `not' is equal to 1 if c would match, which means
4017 that we can't change to pop_failure_jump. */
4018 if (!not)
4019 {
4020 p[-3] = (unsigned char) pop_failure_jump;
4021 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4022 }
4023 }
4024 }
4025 }
4026 p -= 2; /* Point at relative address again. */
4027 if ((re_opcode_t) p[-1] != pop_failure_jump)
4028 {
4029 p[-1] = (unsigned char) jump;
4030 DEBUG_PRINT1 (" Match => jump.\n");
4031 goto unconditional_jump;
4032 }
4033 /* Note fall through. */
4034
4035
4036 /* The end of a simple repeat has a pop_failure_jump back to
4037 its matching on_failure_jump, where the latter will push a
4038 failure point. The pop_failure_jump takes off failure
4039 points put on by this pop_failure_jump's matching
4040 on_failure_jump; we got through the pattern to here from the
4041 matching on_failure_jump, so didn't fail. */
4042 case pop_failure_jump:
4043 {
4044 /* We need to pass separate storage for the lowest and
4045 highest registers, even though we don't care about the
4046 actual values. Otherwise, we will restore only one
4047 register from the stack, since lowest will == highest in
4048 `pop_failure_point'. */
4049 unsigned dummy_low_reg, dummy_high_reg;
4050 unsigned char *pdummy;
4051 const char *sdummy;
4052
4053 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4054 POP_FAILURE_POINT (sdummy, pdummy,
4055 dummy_low_reg, dummy_high_reg,
4056 reg_dummy, reg_dummy, reg_info_dummy);
4057 }
4058 /* Note fall through. */
4059
4060
4061 /* Unconditionally jump (without popping any failure points). */
4062 case jump:
4063 unconditional_jump:
4064 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4065 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4066 p += mcnt; /* Do the jump. */
4067 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4068 break;
4069
4070
4071 /* We need this opcode so we can detect where alternatives end
4072 in `group_match_null_string_p' et al. */
4073 case jump_past_alt:
4074 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4075 goto unconditional_jump;
4076
4077
4078 /* Normally, the on_failure_jump pushes a failure point, which
4079 then gets popped at pop_failure_jump. We will end up at
4080 pop_failure_jump, also, and with a pattern of, say, `a+', we
4081 are skipping over the on_failure_jump, so we have to push
4082 something meaningless for pop_failure_jump to pop. */
4083 case dummy_failure_jump:
4084 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4085 /* It doesn't matter what we push for the string here. What
4086 the code at `fail' tests is the value for the pattern. */
4087 PUSH_FAILURE_POINT (0, 0, -2);
4088 goto unconditional_jump;
4089
4090
4091 /* At the end of an alternative, we need to push a dummy failure
4092 point in case we are followed by a `pop_failure_jump', because
4093 we don't want the failure point for the alternative to be
4094 popped. For example, matching `(a|ab)*' against `aab'
4095 requires that we match the `ab' alternative. */
4096 case push_dummy_failure:
4097 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4098 /* See comments just above at `dummy_failure_jump' about the
4099 two zeroes. */
4100 PUSH_FAILURE_POINT (0, 0, -2);
4101 break;
4102
4103 /* Have to succeed matching what follows at least n times.
4104 After that, handle like `on_failure_jump'. */
4105 case succeed_n:
4106 EXTRACT_NUMBER (mcnt, p + 2);
4107 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4108
4109 assert (mcnt >= 0);
4110 /* Originally, this is how many times we HAVE to succeed. */
4111 if (mcnt > 0)
4112 {
4113 mcnt--;
4114 p += 2;
4115 STORE_NUMBER_AND_INCR (p, mcnt);
4116 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4117 }
4118 else if (mcnt == 0)
4119 {
4120 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4121 p[2] = (unsigned char) no_op;
4122 p[3] = (unsigned char) no_op;
4123 goto on_failure;
4124 }
4125 break;
4126
4127 case jump_n:
4128 EXTRACT_NUMBER (mcnt, p + 2);
4129 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4130
4131 /* Originally, this is how many times we CAN jump. */
4132 if (mcnt)
4133 {
4134 mcnt--;
4135 STORE_NUMBER (p + 2, mcnt);
4136 goto unconditional_jump;
4137 }
4138 /* If don't have to jump any more, skip over the rest of command. */
4139 else
4140 p += 4;
4141 break;
4142
4143 case set_number_at:
4144 {
4145 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4146
4147 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4148 p1 = p + mcnt;
4149 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4150 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4151 STORE_NUMBER (p1, mcnt);
4152 break;
4153 }
4154
4155 case wordbound:
4156 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4157 if (AT_WORD_BOUNDARY (d))
4158 break;
4159 goto fail;
4160
4161 case notwordbound:
4162 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4163 if (AT_WORD_BOUNDARY (d))
4164 goto fail;
4165 break;
4166
4167 case wordbeg:
4168 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4169 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4170 break;
4171 goto fail;
4172
4173 case wordend:
4174 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4175 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4176 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4177 break;
4178 goto fail;
4179
4180 #ifdef emacs
4181 #ifdef emacs19
4182 case before_dot:
4183 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4184 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4185 goto fail;
4186 break;
4187
4188 case at_dot:
4189 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4190 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4191 goto fail;
4192 break;
4193
4194 case after_dot:
4195 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4196 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4197 goto fail;
4198 break;
4199 #else /* not emacs19 */
4200 case at_dot:
4201 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4202 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4203 goto fail;
4204 break;
4205 #endif /* not emacs19 */
4206
4207 case syntaxspec:
4208 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4209 mcnt = *p++;
4210 goto matchsyntax;
4211
4212 case wordchar:
4213 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4214 mcnt = (int) Sword;
4215 matchsyntax:
4216 PREFETCH ();
4217 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4218 goto fail;
4219 SET_REGS_MATCHED ();
4220 break;
4221
4222 case notsyntaxspec:
4223 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4224 mcnt = *p++;
4225 goto matchnotsyntax;
4226
4227 case notwordchar:
4228 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4229 mcnt = (int) Sword;
4230 matchnotsyntax:
4231 PREFETCH ();
4232 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4233 goto fail;
4234 SET_REGS_MATCHED ();
4235 break;
4236
4237 #else /* not emacs */
4238 case wordchar:
4239 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4240 PREFETCH ();
4241 if (!WORDCHAR_P (d))
4242 goto fail;
4243 SET_REGS_MATCHED ();
4244 d++;
4245 break;
4246
4247 case notwordchar:
4248 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4249 PREFETCH ();
4250 if (WORDCHAR_P (d))
4251 goto fail;
4252 SET_REGS_MATCHED ();
4253 d++;
4254 break;
4255 #endif /* not emacs */
4256
4257 default:
4258 abort ();
4259 }
4260 continue; /* Successfully executed one pattern command; keep going. */
4261
4262
4263 /* We goto here if a matching operation fails. */
4264 fail:
4265 if (!FAIL_STACK_EMPTY ())
4266 { /* A restart point is known. Restore to that state. */
4267 DEBUG_PRINT1 ("\nFAIL:\n");
4268 POP_FAILURE_POINT (d, p,
4269 lowest_active_reg, highest_active_reg,
4270 regstart, regend, reg_info);
4271
4272 /* If this failure point is a dummy, try the next one. */
4273 if (!p)
4274 goto fail;
4275
4276 /* If we failed to the end of the pattern, don't examine *p. */
4277 assert (p <= pend);
4278 if (p < pend)
4279 {
4280 boolean is_a_jump_n = false;
4281
4282 /* If failed to a backwards jump that's part of a repetition
4283 loop, need to pop this failure point and use the next one. */
4284 switch ((re_opcode_t) *p)
4285 {
4286 case jump_n:
4287 is_a_jump_n = true;
4288 case maybe_pop_jump:
4289 case pop_failure_jump:
4290 case jump:
4291 p1 = p + 1;
4292 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4293 p1 += mcnt;
4294
4295 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4296 || (!is_a_jump_n
4297 && (re_opcode_t) *p1 == on_failure_jump))
4298 goto fail;
4299 break;
4300 default:
4301 /* do nothing */ ;
4302 }
4303 }
4304
4305 if (d >= string1 && d <= end1)
4306 dend = end_match_1;
4307 }
4308 else
4309 break; /* Matching at this starting point really fails. */
4310 } /* for (;;) */
4311
4312 if (best_regs_set)
4313 goto restore_best_regs;
4314
4315 FREE_VARIABLES ();
4316
4317 return -1; /* Failure to match. */
4318 } /* re_match_2 */
4319 \f
4320 /* Subroutine definitions for re_match_2. */
4321
4322
4323 /* We are passed P pointing to a register number after a start_memory.
4324
4325 Return true if the pattern up to the corresponding stop_memory can
4326 match the empty string, and false otherwise.
4327
4328 If we find the matching stop_memory, sets P to point to one past its number.
4329 Otherwise, sets P to an undefined byte less than or equal to END.
4330
4331 We don't handle duplicates properly (yet). */
4332
4333 static boolean
4334 group_match_null_string_p (p, end, reg_info)
4335 unsigned char **p, *end;
4336 register_info_type *reg_info;
4337 {
4338 int mcnt;
4339 /* Point to after the args to the start_memory. */
4340 unsigned char *p1 = *p + 2;
4341
4342 while (p1 < end)
4343 {
4344 /* Skip over opcodes that can match nothing, and return true or
4345 false, as appropriate, when we get to one that can't, or to the
4346 matching stop_memory. */
4347
4348 switch ((re_opcode_t) *p1)
4349 {
4350 /* Could be either a loop or a series of alternatives. */
4351 case on_failure_jump:
4352 p1++;
4353 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4354
4355 /* If the next operation is not a jump backwards in the
4356 pattern. */
4357
4358 if (mcnt >= 0)
4359 {
4360 /* Go through the on_failure_jumps of the alternatives,
4361 seeing if any of the alternatives cannot match nothing.
4362 The last alternative starts with only a jump,
4363 whereas the rest start with on_failure_jump and end
4364 with a jump, e.g., here is the pattern for `a|b|c':
4365
4366 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4367 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4368 /exactn/1/c
4369
4370 So, we have to first go through the first (n-1)
4371 alternatives and then deal with the last one separately. */
4372
4373
4374 /* Deal with the first (n-1) alternatives, which start
4375 with an on_failure_jump (see above) that jumps to right
4376 past a jump_past_alt. */
4377
4378 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4379 {
4380 /* `mcnt' holds how many bytes long the alternative
4381 is, including the ending `jump_past_alt' and
4382 its number. */
4383
4384 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4385 reg_info))
4386 return false;
4387
4388 /* Move to right after this alternative, including the
4389 jump_past_alt. */
4390 p1 += mcnt;
4391
4392 /* Break if it's the beginning of an n-th alternative
4393 that doesn't begin with an on_failure_jump. */
4394 if ((re_opcode_t) *p1 != on_failure_jump)
4395 break;
4396
4397 /* Still have to check that it's not an n-th
4398 alternative that starts with an on_failure_jump. */
4399 p1++;
4400 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4401 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4402 {
4403 /* Get to the beginning of the n-th alternative. */
4404 p1 -= 3;
4405 break;
4406 }
4407 }
4408
4409 /* Deal with the last alternative: go back and get number
4410 of the `jump_past_alt' just before it. `mcnt' contains
4411 the length of the alternative. */
4412 EXTRACT_NUMBER (mcnt, p1 - 2);
4413
4414 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4415 return false;
4416
4417 p1 += mcnt; /* Get past the n-th alternative. */
4418 } /* if mcnt > 0 */
4419 break;
4420
4421
4422 case stop_memory:
4423 assert (p1[1] == **p);
4424 *p = p1 + 2;
4425 return true;
4426
4427
4428 default:
4429 if (!common_op_match_null_string_p (&p1, end, reg_info))
4430 return false;
4431 }
4432 } /* while p1 < end */
4433
4434 return false;
4435 } /* group_match_null_string_p */
4436
4437
4438 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4439 It expects P to be the first byte of a single alternative and END one
4440 byte past the last. The alternative can contain groups. */
4441
4442 static boolean
4443 alt_match_null_string_p (p, end, reg_info)
4444 unsigned char *p, *end;
4445 register_info_type *reg_info;
4446 {
4447 int mcnt;
4448 unsigned char *p1 = p;
4449
4450 while (p1 < end)
4451 {
4452 /* Skip over opcodes that can match nothing, and break when we get
4453 to one that can't. */
4454
4455 switch ((re_opcode_t) *p1)
4456 {
4457 /* It's a loop. */
4458 case on_failure_jump:
4459 p1++;
4460 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4461 p1 += mcnt;
4462 break;
4463
4464 default:
4465 if (!common_op_match_null_string_p (&p1, end, reg_info))
4466 return false;
4467 }
4468 } /* while p1 < end */
4469
4470 return true;
4471 } /* alt_match_null_string_p */
4472
4473
4474 /* Deals with the ops common to group_match_null_string_p and
4475 alt_match_null_string_p.
4476
4477 Sets P to one after the op and its arguments, if any. */
4478
4479 static boolean
4480 common_op_match_null_string_p (p, end, reg_info)
4481 unsigned char **p, *end;
4482 register_info_type *reg_info;
4483 {
4484 int mcnt;
4485 boolean ret;
4486 int reg_no;
4487 unsigned char *p1 = *p;
4488
4489 switch ((re_opcode_t) *p1++)
4490 {
4491 case no_op:
4492 case begline:
4493 case endline:
4494 case begbuf:
4495 case endbuf:
4496 case wordbeg:
4497 case wordend:
4498 case wordbound:
4499 case notwordbound:
4500 #ifdef emacs
4501 case before_dot:
4502 case at_dot:
4503 case after_dot:
4504 #endif
4505 break;
4506
4507 case start_memory:
4508 reg_no = *p1;
4509 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4510 ret = group_match_null_string_p (&p1, end, reg_info);
4511
4512 /* Have to set this here in case we're checking a group which
4513 contains a group and a back reference to it. */
4514
4515 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4516 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4517
4518 if (!ret)
4519 return false;
4520 break;
4521
4522 /* If this is an optimized succeed_n for zero times, make the jump. */
4523 case jump:
4524 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4525 if (mcnt >= 0)
4526 p1 += mcnt;
4527 else
4528 return false;
4529 break;
4530
4531 case succeed_n:
4532 /* Get to the number of times to succeed. */
4533 p1 += 2;
4534 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4535
4536 if (mcnt == 0)
4537 {
4538 p1 -= 4;
4539 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4540 p1 += mcnt;
4541 }
4542 else
4543 return false;
4544 break;
4545
4546 case duplicate:
4547 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4548 return false;
4549 break;
4550
4551 case set_number_at:
4552 p1 += 4;
4553
4554 default:
4555 /* All other opcodes mean we cannot match the empty string. */
4556 return false;
4557 }
4558
4559 *p = p1;
4560 return true;
4561 } /* common_op_match_null_string_p */
4562
4563
4564 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4565 bytes; nonzero otherwise. */
4566
4567 static int
4568 bcmp_translate(
4569 unsigned char *s1,
4570 unsigned char *s2,
4571 int len,
4572 char *translate
4573 )
4574 {
4575 register unsigned char *p1 = s1, *p2 = s2;
4576 while (len)
4577 {
4578 if (translate[*p1++] != translate[*p2++]) return 1;
4579 len--;
4580 }
4581 return 0;
4582 }
4583 \f
4584 /* Entry points for GNU code. */
4585
4586 /* re_compile_pattern is the GNU regular expression compiler: it
4587 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4588 Returns 0 if the pattern was valid, otherwise an error string.
4589
4590 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4591 are set in BUFP on entry.
4592
4593 We call regex_compile to do the actual compilation. */
4594
4595 const char *
4596 re_compile_pattern (pattern, length, bufp)
4597 const char *pattern;
4598 int length;
4599 struct re_pattern_buffer *bufp;
4600 {
4601 reg_errcode_t ret;
4602
4603 /* GNU code is written to assume at least RE_NREGS registers will be set
4604 (and at least one extra will be -1). */
4605 bufp->regs_allocated = REGS_UNALLOCATED;
4606
4607 /* And GNU code determines whether or not to get register information
4608 by passing null for the REGS argument to re_match, etc., not by
4609 setting no_sub. */
4610 bufp->no_sub = 0;
4611
4612 /* Match anchors at newline. */
4613 bufp->newline_anchor = 1;
4614
4615 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4616
4617 return re_error_msg[(int) ret];
4618 }
4619 \f
4620 /* Entry points compatible with 4.2 BSD regex library. We don't define
4621 them if this is an Emacs or POSIX compilation. */
4622
4623 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4624
4625 /* BSD has one and only one pattern buffer. */
4626 static struct re_pattern_buffer re_comp_buf;
4627
4628 char *
4629 re_comp (s)
4630 const char *s;
4631 {
4632 reg_errcode_t ret;
4633
4634 if (!s)
4635 {
4636 if (!re_comp_buf.buffer)
4637 return "No previous regular expression";
4638 return 0;
4639 }
4640
4641 if (!re_comp_buf.buffer)
4642 {
4643 re_comp_buf.buffer = (unsigned char *) malloc (200);
4644 if (re_comp_buf.buffer == NULL)
4645 return "Memory exhausted";
4646 re_comp_buf.allocated = 200;
4647
4648 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4649 if (re_comp_buf.fastmap == NULL)
4650 return "Memory exhausted";
4651 }
4652
4653 /* Since `re_exec' always passes NULL for the `regs' argument, we
4654 don't need to initialize the pattern buffer fields which affect it. */
4655
4656 /* Match anchors at newlines. */
4657 re_comp_buf.newline_anchor = 1;
4658
4659 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4660
4661 /* Yes, we're discarding `const' here. */
4662 return (char *) re_error_msg[(int) ret];
4663 }
4664
4665
4666 int
4667 re_exec (s)
4668 const char *s;
4669 {
4670 const int len = strlen (s);
4671 return
4672 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4673 }
4674 #endif /* not emacs and not _POSIX_SOURCE */
4675 \f
4676 /* POSIX.2 functions. Don't define these for Emacs. */
4677
4678 #ifndef emacs
4679
4680 /* regcomp takes a regular expression as a string and compiles it.
4681
4682 PREG is a regex_t *. We do not expect any fields to be initialized,
4683 since POSIX says we shouldn't. Thus, we set
4684
4685 `buffer' to the compiled pattern;
4686 `used' to the length of the compiled pattern;
4687 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4688 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4689 RE_SYNTAX_POSIX_BASIC;
4690 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4691 `fastmap' and `fastmap_accurate' to zero;
4692 `re_nsub' to the number of subexpressions in PATTERN.
4693
4694 PATTERN is the address of the pattern string.
4695
4696 CFLAGS is a series of bits which affect compilation.
4697
4698 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4699 use POSIX basic syntax.
4700
4701 If REG_NEWLINE is set, then . and [^...] don't match newline.
4702 Also, regexec will try a match beginning after every newline.
4703
4704 If REG_ICASE is set, then we considers upper- and lowercase
4705 versions of letters to be equivalent when matching.
4706
4707 If REG_NOSUB is set, then when PREG is passed to regexec, that
4708 routine will report only success or failure, and nothing about the
4709 registers.
4710
4711 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4712 the return codes and their meanings.) */
4713
4714 int
4715 regcomp (preg, pattern, cflags)
4716 regex_t *preg;
4717 const char *pattern;
4718 int cflags;
4719 {
4720 reg_errcode_t ret;
4721 unsigned syntax
4722 = (cflags & REG_EXTENDED) ?
4723 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4724
4725 /* regex_compile will allocate the space for the compiled pattern. */
4726 preg->buffer = 0;
4727 preg->allocated = 0;
4728
4729 /* Don't bother to use a fastmap when searching. This simplifies the
4730 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4731 characters after newlines into the fastmap. This way, we just try
4732 every character. */
4733 preg->fastmap = 0;
4734
4735 if (cflags & REG_ICASE)
4736 {
4737 unsigned i;
4738
4739 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4740 if (preg->translate == NULL)
4741 return (int) REG_ESPACE;
4742
4743 /* Map uppercase characters to corresponding lowercase ones. */
4744 for (i = 0; i < CHAR_SET_SIZE; i++)
4745 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4746 }
4747 else
4748 preg->translate = NULL;
4749
4750 /* If REG_NEWLINE is set, newlines are treated differently. */
4751 if (cflags & REG_NEWLINE)
4752 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4753 syntax &= ~RE_DOT_NEWLINE;
4754 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4755 /* It also changes the matching behavior. */
4756 preg->newline_anchor = 1;
4757 }
4758 else
4759 preg->newline_anchor = 0;
4760
4761 preg->no_sub = !!(cflags & REG_NOSUB);
4762
4763 /* POSIX says a null character in the pattern terminates it, so we
4764 can use strlen here in compiling the pattern. */
4765 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4766
4767 /* POSIX doesn't distinguish between an unmatched open-group and an
4768 unmatched close-group: both are REG_EPAREN. */
4769 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4770
4771 return (int) ret;
4772 }
4773
4774
4775 /* regexec searches for a given pattern, specified by PREG, in the
4776 string STRING.
4777
4778 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4779 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4780 least NMATCH elements, and we set them to the offsets of the
4781 corresponding matched substrings.
4782
4783 EFLAGS specifies `execution flags' which affect matching: if
4784 REG_NOTBOL is set, then ^ does not match at the beginning of the
4785 string; if REG_NOTEOL is set, then $ does not match at the end.
4786
4787 We return 0 if we find a match and REG_NOMATCH if not. */
4788
4789 int
4790 regexec (preg, string, nmatch, pmatch, eflags)
4791 const regex_t *preg;
4792 const char *string;
4793 size_t nmatch;
4794 regmatch_t pmatch[];
4795 int eflags;
4796 {
4797 int ret;
4798 struct re_registers regs;
4799 regex_t private_preg;
4800 int len = strlen (string);
4801 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4802
4803 private_preg = *preg;
4804
4805 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4806 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4807
4808 /* The user has told us exactly how many registers to return
4809 information about, via `nmatch'. We have to pass that on to the
4810 matching routines. */
4811 private_preg.regs_allocated = REGS_FIXED;
4812
4813 if (want_reg_info)
4814 {
4815 regs.num_regs = nmatch;
4816 regs.start = TALLOC (nmatch, regoff_t);
4817 regs.end = TALLOC (nmatch, regoff_t);
4818 if (regs.start == NULL || regs.end == NULL)
4819 return (int) REG_NOMATCH;
4820 }
4821
4822 /* Perform the searching operation. */
4823 ret = re_search (&private_preg, string, len,
4824 /* start: */ 0, /* range: */ len,
4825 want_reg_info ? &regs : (struct re_registers *) 0);
4826
4827 /* Copy the register information to the POSIX structure. */
4828 if (want_reg_info)
4829 {
4830 if (ret >= 0)
4831 {
4832 unsigned r;
4833
4834 for (r = 0; r < nmatch; r++)
4835 {
4836 pmatch[r].rm_so = regs.start[r];
4837 pmatch[r].rm_eo = regs.end[r];
4838 }
4839 }
4840
4841 /* If we needed the temporary register info, free the space now. */
4842 free (regs.start);
4843 free (regs.end);
4844 }
4845
4846 /* We want zero return to mean success, unlike `re_search'. */
4847 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4848 }
4849
4850
4851 /* Returns a message corresponding to an error code, ERRCODE, returned
4852 from either regcomp or regexec. We don't use PREG here. */
4853
4854 size_t
4855 regerror(int errcode, const regex_t *preg,
4856 char *errbuf, size_t errbuf_size)
4857 {
4858 const char *msg;
4859 size_t msg_size;
4860
4861 if (errcode < 0
4862 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4863 /* Only error codes returned by the rest of the code should be passed
4864 to this routine. If we are given anything else, or if other regex
4865 code generates an invalid error code, then the program has a bug.
4866 Dump core so we can fix it. */
4867 abort ();
4868
4869 msg = re_error_msg[errcode];
4870
4871 /* POSIX doesn't require that we do anything in this case, but why
4872 not be nice. */
4873 if (! msg)
4874 msg = "Success";
4875
4876 msg_size = strlen (msg) + 1; /* Includes the null. */
4877
4878 if (errbuf_size != 0)
4879 {
4880 if (msg_size > errbuf_size)
4881 {
4882 strncpy (errbuf, msg, errbuf_size - 1);
4883 errbuf[errbuf_size - 1] = 0;
4884 }
4885 else
4886 strcpy (errbuf, msg);
4887 }
4888
4889 return msg_size;
4890 }
4891
4892
4893 /* Free dynamically allocated space used by PREG. */
4894
4895 void
4896 regfree (preg)
4897 regex_t *preg;
4898 {
4899 if (preg->buffer != NULL)
4900 free (preg->buffer);
4901 preg->buffer = NULL;
4902
4903 preg->allocated = 0;
4904 preg->used = 0;
4905
4906 if (preg->fastmap != NULL)
4907 free (preg->fastmap);
4908 preg->fastmap = NULL;
4909 preg->fastmap_accurate = 0;
4910
4911 if (preg->translate != NULL)
4912 free (preg->translate);
4913 preg->translate = NULL;
4914 }
4915
4916 #endif /* not emacs */
4917 \f
4918 /*
4919 Local variables:
4920 make-backup-files: t
4921 version-control: t
4922 trim-versions-without-asking: nil
4923 End:
4924 */