]> git.ipfire.org Git - thirdparty/git.git/blob - hashmap.h
hashmap: hashmap_{put,remove} return hashmap_entry *
[thirdparty/git.git] / hashmap.h
1 #ifndef HASHMAP_H
2 #define HASHMAP_H
3
4 #include "hash.h"
5
6 /*
7 * Generic implementation of hash-based key-value mappings.
8 *
9 * An example that maps long to a string:
10 * For the sake of the example this allows to lookup exact values, too
11 * (i.e. it is operated as a set, the value is part of the key)
12 * -------------------------------------
13 *
14 * struct hashmap map;
15 * struct long2string {
16 * struct hashmap_entry ent; // must be the first member!
17 * long key;
18 * char value[FLEX_ARRAY]; // be careful with allocating on stack!
19 * };
20 *
21 * #define COMPARE_VALUE 1
22 *
23 * static int long2string_cmp(const void *hashmap_cmp_fn_data,
24 * const struct hashmap_entry *eptr,
25 * const struct hashmap_entry *entry_or_key,
26 * const void *keydata)
27 * {
28 * const char *string = keydata;
29 * unsigned flags = *(unsigned *)hashmap_cmp_fn_data;
30 * const struct long2string *e1, *e2;
31 *
32 * e1 = container_of(eptr, const struct long2string, ent);
33 * e2 = container_of(entry_or_key, const struct long2string, ent);
34 *
35 * if (flags & COMPARE_VALUE)
36 * return e1->key != e2->key ||
37 * strcmp(e1->value, string ? string : e2->value);
38 * else
39 * return e1->key != e2->key;
40 * }
41 *
42 * int main(int argc, char **argv)
43 * {
44 * long key;
45 * char value[255], action[32];
46 * unsigned flags = 0;
47 *
48 * hashmap_init(&map, long2string_cmp, &flags, 0);
49 *
50 * while (scanf("%s %ld %s", action, &key, value)) {
51 *
52 * if (!strcmp("add", action)) {
53 * struct long2string *e;
54 * FLEX_ALLOC_STR(e, value, value);
55 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
56 * e->key = key;
57 * hashmap_add(&map, &e->ent);
58 * }
59 *
60 * if (!strcmp("print_all_by_key", action)) {
61 * struct long2string k, *e;
62 * hashmap_entry_init(&k->ent, memhash(&key, sizeof(long)));
63 * k.key = key;
64 *
65 * flags &= ~COMPARE_VALUE;
66 * e = hashmap_get_entry(&map, &k, NULL, struct long2string, ent);
67 * if (e) {
68 * printf("first: %ld %s\n", e->key, e->value);
69 * while ((e = hashmap_get_next_entry(&map, e,
70 * struct long2string, ent))) {
71 * printf("found more: %ld %s\n", e->key, e->value);
72 * }
73 * }
74 * }
75 *
76 * if (!strcmp("has_exact_match", action)) {
77 * struct long2string *e;
78 * FLEX_ALLOC_STR(e, value, value);
79 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
80 * e->key = key;
81 *
82 * flags |= COMPARE_VALUE;
83 * printf("%sfound\n",
84 * hashmap_get(&map, &e->ent, NULL) ? "" : "not ");
85 * free(e);
86 * }
87 *
88 * if (!strcmp("has_exact_match_no_heap_alloc", action)) {
89 * struct long2string k;
90 * hashmap_entry_init(&k->ent, memhash(&key, sizeof(long)));
91 * k.key = key;
92 *
93 * flags |= COMPARE_VALUE;
94 * printf("%sfound\n",
95 * hashmap_get(&map, &k->ent, value) ? "" : "not ");
96 * }
97 *
98 * if (!strcmp("end", action)) {
99 * hashmap_free(&map, 1);
100 * break;
101 * }
102 * }
103 *
104 * return 0;
105 * }
106 */
107
108 /*
109 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
110 * http://www.isthe.com/chongo/tech/comp/fnv).
111 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and
112 * `memihash` operate on arbitrary-length memory.
113 * `strihash` and `memihash` are case insensitive versions.
114 * `memihash_cont` is a variant of `memihash` that allows a computation to be
115 * continued with another chunk of data.
116 */
117 unsigned int strhash(const char *buf);
118 unsigned int strihash(const char *buf);
119 unsigned int memhash(const void *buf, size_t len);
120 unsigned int memihash(const void *buf, size_t len);
121 unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
122
123 /*
124 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
125 * for use in hash tables. Cryptographic hashes are supposed to have
126 * uniform distribution, so in contrast to `memhash()`, this just copies
127 * the first `sizeof(int)` bytes without shuffling any bits. Note that
128 * the results will be different on big-endian and little-endian
129 * platforms, so they should not be stored or transferred over the net.
130 */
131 static inline unsigned int oidhash(const struct object_id *oid)
132 {
133 /*
134 * Equivalent to 'return *(unsigned int *)oid->hash;', but safe on
135 * platforms that don't support unaligned reads.
136 */
137 unsigned int hash;
138 memcpy(&hash, oid->hash, sizeof(hash));
139 return hash;
140 }
141
142 /*
143 * struct hashmap_entry is an opaque structure representing an entry in the
144 * hash table, which must be used as first member of user data structures.
145 * Ideally it should be followed by an int-sized member to prevent unused
146 * memory on 64-bit systems due to alignment.
147 */
148 struct hashmap_entry {
149 /*
150 * next points to the next entry in case of collisions (i.e. if
151 * multiple entries map to the same bucket)
152 */
153 struct hashmap_entry *next;
154
155 /* entry's hash code */
156 unsigned int hash;
157 };
158
159 /*
160 * User-supplied function to test two hashmap entries for equality. Shall
161 * return 0 if the entries are equal.
162 *
163 * This function is always called with non-NULL `entry` and `entry_or_key`
164 * parameters that have the same hash code.
165 *
166 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get
167 * and hashmap_remove are always passed as second `entry_or_key` and third
168 * argument `keydata`, respectively. Otherwise, `keydata` is NULL.
169 *
170 * When it is too expensive to allocate a user entry (either because it is
171 * large or varialbe sized, such that it is not on the stack), then the
172 * relevant data to check for equality should be passed via `keydata`.
173 * In this case `key` can be a stripped down version of the user key data
174 * or even just a hashmap_entry having the correct hash.
175 *
176 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function.
177 */
178 typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data,
179 const struct hashmap_entry *entry,
180 const struct hashmap_entry *entry_or_key,
181 const void *keydata);
182
183 /*
184 * struct hashmap is the hash table structure. Members can be used as follows,
185 * but should not be modified directly.
186 */
187 struct hashmap {
188 struct hashmap_entry **table;
189
190 /* Stores the comparison function specified in `hashmap_init()`. */
191 hashmap_cmp_fn cmpfn;
192 const void *cmpfn_data;
193
194 /* total number of entries (0 means the hashmap is empty) */
195 unsigned int private_size; /* use hashmap_get_size() */
196
197 /*
198 * tablesize is the allocated size of the hash table. A non-0 value
199 * indicates that the hashmap is initialized. It may also be useful
200 * for statistical purposes (i.e. `size / tablesize` is the current
201 * load factor).
202 */
203 unsigned int tablesize;
204
205 unsigned int grow_at;
206 unsigned int shrink_at;
207
208 unsigned int do_count_items : 1;
209 };
210
211 /* hashmap functions */
212
213 /*
214 * Initializes a hashmap structure.
215 *
216 * `map` is the hashmap to initialize.
217 *
218 * The `equals_function` can be specified to compare two entries for equality.
219 * If NULL, entries are considered equal if their hash codes are equal.
220 *
221 * The `equals_function_data` parameter can be used to provide additional data
222 * (a callback cookie) that will be passed to `equals_function` each time it
223 * is called. This allows a single `equals_function` to implement multiple
224 * comparison functions.
225 *
226 * If the total number of entries is known in advance, the `initial_size`
227 * parameter may be used to preallocate a sufficiently large table and thus
228 * prevent expensive resizing. If 0, the table is dynamically resized.
229 */
230 void hashmap_init(struct hashmap *map,
231 hashmap_cmp_fn equals_function,
232 const void *equals_function_data,
233 size_t initial_size);
234
235 /*
236 * Frees a hashmap structure and allocated memory.
237 *
238 * If `free_entries` is true, each hashmap_entry in the map is freed as well
239 * using stdlibs free().
240 */
241 void hashmap_free(struct hashmap *map, int free_entries);
242
243 /* hashmap_entry functions */
244
245 /*
246 * Initializes a hashmap_entry structure.
247 *
248 * `entry` points to the entry to initialize.
249 * `hash` is the hash code of the entry.
250 *
251 * The hashmap_entry structure does not hold references to external resources,
252 * and it is safe to just discard it once you are done with it (i.e. if
253 * your structure was allocated with xmalloc(), you can just free(3) it,
254 * and if it is on stack, you can just let it go out of scope).
255 */
256 static inline void hashmap_entry_init(struct hashmap_entry *e,
257 unsigned int hash)
258 {
259 e->hash = hash;
260 e->next = NULL;
261 }
262
263 /*
264 * Return the number of items in the map.
265 */
266 static inline unsigned int hashmap_get_size(struct hashmap *map)
267 {
268 if (map->do_count_items)
269 return map->private_size;
270
271 BUG("hashmap_get_size: size not set");
272 return 0;
273 }
274
275 /*
276 * Returns the hashmap entry for the specified key, or NULL if not found.
277 *
278 * `map` is the hashmap structure.
279 *
280 * `key` is a user data structure that starts with hashmap_entry that has at
281 * least been initialized with the proper hash code (via `hashmap_entry_init`).
282 *
283 * `keydata` is a data structure that holds just enough information to check
284 * for equality to a given entry.
285 *
286 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large,
287 * it is undesirable to create a full-fledged entry structure on the heap and
288 * copy all the key data into the structure.
289 *
290 * In this case, the `keydata` parameter can be used to pass
291 * variable-sized key data directly to the comparison function, and the `key`
292 * parameter can be a stripped-down, fixed size entry structure allocated on the
293 * stack.
294 *
295 * If an entry with matching hash code is found, `key` and `keydata` are passed
296 * to `hashmap_cmp_fn` to decide whether the entry matches the key.
297 */
298 struct hashmap_entry *hashmap_get(const struct hashmap *map,
299 const struct hashmap_entry *key,
300 const void *keydata);
301
302 /*
303 * Returns the hashmap entry for the specified hash code and key data,
304 * or NULL if not found.
305 *
306 * `map` is the hashmap structure.
307 * `hash` is the hash code of the entry to look up.
308 *
309 * If an entry with matching hash code is found, `keydata` is passed to
310 * `hashmap_cmp_fn` to decide whether the entry matches the key. The
311 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry
312 * structure that should not be used in the comparison.
313 */
314 static inline struct hashmap_entry *hashmap_get_from_hash(
315 const struct hashmap *map,
316 unsigned int hash,
317 const void *keydata)
318 {
319 struct hashmap_entry key;
320 hashmap_entry_init(&key, hash);
321 return hashmap_get(map, &key, keydata);
322 }
323
324 /*
325 * Returns the next equal hashmap entry, or NULL if not found. This can be
326 * used to iterate over duplicate entries (see `hashmap_add`).
327 *
328 * `map` is the hashmap structure.
329 * `entry` is the hashmap_entry to start the search from, obtained via a previous
330 * call to `hashmap_get` or `hashmap_get_next`.
331 */
332 struct hashmap_entry *hashmap_get_next(const struct hashmap *map,
333 const struct hashmap_entry *entry);
334
335 /*
336 * Adds a hashmap entry. This allows to add duplicate entries (i.e.
337 * separate values with the same key according to hashmap_cmp_fn).
338 *
339 * `map` is the hashmap structure.
340 * `entry` is the entry to add.
341 */
342 void hashmap_add(struct hashmap *map, struct hashmap_entry *entry);
343
344 /*
345 * Adds or replaces a hashmap entry. If the hashmap contains duplicate
346 * entries equal to the specified entry, only one of them will be replaced.
347 *
348 * `map` is the hashmap structure.
349 * `entry` is the entry to add or replace.
350 * Returns the replaced entry, or NULL if not found (i.e. the entry was added).
351 */
352 struct hashmap_entry *hashmap_put(struct hashmap *map,
353 struct hashmap_entry *entry);
354
355 #define hashmap_put_entry(map, keyvar, type, member) \
356 container_of_or_null(hashmap_put(map, &(keyvar)->member), type, member)
357
358 /*
359 * Removes a hashmap entry matching the specified key. If the hashmap contains
360 * duplicate entries equal to the specified key, only one of them will be
361 * removed. Returns the removed entry, or NULL if not found.
362 *
363 * Argument explanation is the same as in `hashmap_get`.
364 */
365 struct hashmap_entry *hashmap_remove(struct hashmap *map,
366 const struct hashmap_entry *key,
367 const void *keydata);
368
369 #define hashmap_remove_entry(map, keyvar, keydata, type, member) \
370 container_of_or_null(hashmap_remove(map, &(keyvar)->member, keydata), \
371 type, member)
372
373 /*
374 * Returns the `bucket` an entry is stored in.
375 * Useful for multithreaded read access.
376 */
377 int hashmap_bucket(const struct hashmap *map, unsigned int hash);
378
379 /*
380 * Used to iterate over all entries of a hashmap. Note that it is
381 * not safe to add or remove entries to the hashmap while
382 * iterating.
383 */
384 struct hashmap_iter {
385 struct hashmap *map;
386 struct hashmap_entry *next;
387 unsigned int tablepos;
388 };
389
390 /* Initializes a `hashmap_iter` structure. */
391 void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
392
393 /* Returns the next hashmap_entry, or NULL if there are no more entries. */
394 struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter);
395
396 /* Initializes the iterator and returns the first entry, if any. */
397 static inline struct hashmap_entry *hashmap_iter_first(struct hashmap *map,
398 struct hashmap_iter *iter)
399 {
400 hashmap_iter_init(map, iter);
401 return hashmap_iter_next(iter);
402 }
403
404 #define hashmap_iter_next_entry(iter, type, member) \
405 container_of_or_null(hashmap_iter_next(iter), type, member)
406
407 #define hashmap_iter_first_entry(map, iter, type, member) \
408 container_of_or_null(hashmap_iter_first(map, iter), type, member)
409
410 #define hashmap_for_each_entry(map, iter, var, type, member) \
411 for (var = hashmap_iter_first_entry(map, iter, type, member); \
412 var; \
413 var = hashmap_iter_next_entry(iter, type, member))
414
415 /*
416 * returns a @pointer of @type matching @keyvar, or NULL if nothing found.
417 * @keyvar is a pointer of @type
418 * @member is the name of the "struct hashmap_entry" field in @type
419 */
420 #define hashmap_get_entry(map, keyvar, keydata, type, member) \
421 container_of_or_null(hashmap_get(map, &(keyvar)->member, keydata), \
422 type, member)
423
424 #define hashmap_get_entry_from_hash(map, hash, keydata, type, member) \
425 container_of_or_null(hashmap_get_from_hash(map, hash, keydata), \
426 type, member)
427 /*
428 * returns the next equal @type pointer to @var, or NULL if not found.
429 * @var is a pointer of @type
430 * @member is the name of the "struct hashmap_entry" field in @type
431 */
432 #define hashmap_get_next_entry(map, var, type, member) \
433 container_of_or_null(hashmap_get_next(map, &(var)->member), \
434 type, member)
435
436 /*
437 * iterate @map starting from @var, where @var is a pointer of @type
438 * and @member is the name of the "struct hashmap_entry" field in @type
439 */
440 #define hashmap_for_each_entry_from(map, var, type, member) \
441 for (; \
442 var; \
443 var = hashmap_get_next_entry(map, var, type, member))
444
445 /*
446 * Disable item counting and automatic rehashing when adding/removing items.
447 *
448 * Normally, the hashmap keeps track of the number of items in the map
449 * and uses it to dynamically resize it. This (both the counting and
450 * the resizing) can cause problems when the map is being used by
451 * threaded callers (because the hashmap code does not know about the
452 * locking strategy used by the threaded callers and therefore, does
453 * not know how to protect the "private_size" counter).
454 */
455 static inline void hashmap_disable_item_counting(struct hashmap *map)
456 {
457 map->do_count_items = 0;
458 }
459
460 /*
461 * Re-enable item couting when adding/removing items.
462 * If counting is currently disabled, it will force count them.
463 * It WILL NOT automatically rehash them.
464 */
465 static inline void hashmap_enable_item_counting(struct hashmap *map)
466 {
467 unsigned int n = 0;
468 struct hashmap_iter iter;
469
470 if (map->do_count_items)
471 return;
472
473 hashmap_iter_init(map, &iter);
474 while (hashmap_iter_next(&iter))
475 n++;
476
477 map->do_count_items = 1;
478 map->private_size = n;
479 }
480
481 /* String interning */
482
483 /*
484 * Returns the unique, interned version of the specified string or data,
485 * similar to the `String.intern` API in Java and .NET, respectively.
486 * Interned strings remain valid for the entire lifetime of the process.
487 *
488 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
489 * strings / data must not be modified or freed.
490 *
491 * Interned strings are best used for short strings with high probability of
492 * duplicates.
493 *
494 * Uses a hashmap to store the pool of interned strings.
495 */
496 const void *memintern(const void *data, size_t len);
497 static inline const char *strintern(const char *string)
498 {
499 return memintern(string, strlen(string));
500 }
501
502 #endif