]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
trace2/tr2_tls.h: remove unnecessary include
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "git-compat-util.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "cache-tree.h"
23 #include "commit.h"
24 #include "commit-reach.h"
25 #include "diff.h"
26 #include "diffcore.h"
27 #include "dir.h"
28 #include "environment.h"
29 #include "gettext.h"
30 #include "hex.h"
31 #include "entry.h"
32 #include "merge-ll.h"
33 #include "match-trees.h"
34 #include "mem-pool.h"
35 #include "object-name.h"
36 #include "object-store-ll.h"
37 #include "oid-array.h"
38 #include "path.h"
39 #include "promisor-remote.h"
40 #include "read-cache-ll.h"
41 #include "revision.h"
42 #include "sparse-index.h"
43 #include "strmap.h"
44 #include "submodule.h"
45 #include "trace2.h"
46 #include "tree.h"
47 #include "unpack-trees.h"
48 #include "xdiff-interface.h"
49
50 /*
51 * We have many arrays of size 3. Whenever we have such an array, the
52 * indices refer to one of the sides of the three-way merge. This is so
53 * pervasive that the constants 0, 1, and 2 are used in many places in the
54 * code (especially in arithmetic operations to find the other side's index
55 * or to compute a relevant mask), but sometimes these enum names are used
56 * to aid code clarity.
57 *
58 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
59 * referred to there is one of these three sides.
60 */
61 enum merge_side {
62 MERGE_BASE = 0,
63 MERGE_SIDE1 = 1,
64 MERGE_SIDE2 = 2
65 };
66
67 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
68
69 struct traversal_callback_data {
70 unsigned long mask;
71 unsigned long dirmask;
72 struct name_entry names[3];
73 };
74
75 struct deferred_traversal_data {
76 /*
77 * possible_trivial_merges: directories to be explored only when needed
78 *
79 * possible_trivial_merges is a map of directory names to
80 * dir_rename_mask. When we detect that a directory is unchanged on
81 * one side, we can sometimes resolve the directory without recursing
82 * into it. Renames are the only things that can prevent such an
83 * optimization. However, for rename sources:
84 * - If no parent directory needed directory rename detection, then
85 * no path under such a directory can be a relevant_source.
86 * and for rename destinations:
87 * - If no cached rename has a target path under the directory AND
88 * - If there are no unpaired relevant_sources elsewhere in the
89 * repository
90 * then we don't need any path under this directory for a rename
91 * destination. The only way to know the last item above is to defer
92 * handling such directories until the end of collect_merge_info(),
93 * in handle_deferred_entries().
94 *
95 * For each we store dir_rename_mask, since that's the only bit of
96 * information we need, other than the path, to resume the recursive
97 * traversal.
98 */
99 struct strintmap possible_trivial_merges;
100
101 /*
102 * trivial_merges_okay: if trivial directory merges are okay
103 *
104 * See possible_trivial_merges above. The "no unpaired
105 * relevant_sources elsewhere in the repository" is a single boolean
106 * per merge side, which we store here. Note that while 0 means no,
107 * 1 only means "maybe" rather than "yes"; we optimistically set it
108 * to 1 initially and only clear when we determine it is unsafe to
109 * do trivial directory merges.
110 */
111 unsigned trivial_merges_okay;
112
113 /*
114 * target_dirs: ancestor directories of rename targets
115 *
116 * target_dirs contains all directory names that are an ancestor of
117 * any rename destination.
118 */
119 struct strset target_dirs;
120 };
121
122 struct rename_info {
123 /*
124 * All variables that are arrays of size 3 correspond to data tracked
125 * for the sides in enum merge_side. Index 0 is almost always unused
126 * because we often only need to track information for MERGE_SIDE1 and
127 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
128 * are determined relative to what changed since the MERGE_BASE).
129 */
130
131 /*
132 * pairs: pairing of filenames from diffcore_rename()
133 */
134 struct diff_queue_struct pairs[3];
135
136 /*
137 * dirs_removed: directories removed on a given side of history.
138 *
139 * The keys of dirs_removed[side] are the directories that were removed
140 * on the given side of history. The value of the strintmap for each
141 * directory is a value from enum dir_rename_relevance.
142 */
143 struct strintmap dirs_removed[3];
144
145 /*
146 * dir_rename_count: tracking where parts of a directory were renamed to
147 *
148 * When files in a directory are renamed, they may not all go to the
149 * same location. Each strmap here tracks:
150 * old_dir => {new_dir => int}
151 * That is, dir_rename_count[side] is a strmap to a strintmap.
152 */
153 struct strmap dir_rename_count[3];
154
155 /*
156 * dir_renames: computed directory renames
157 *
158 * This is a map of old_dir => new_dir and is derived in part from
159 * dir_rename_count.
160 */
161 struct strmap dir_renames[3];
162
163 /*
164 * relevant_sources: deleted paths wanted in rename detection, and why
165 *
166 * relevant_sources is a set of deleted paths on each side of
167 * history for which we need rename detection. If a path is deleted
168 * on one side of history, we need to detect if it is part of a
169 * rename if either
170 * * the file is modified/deleted on the other side of history
171 * * we need to detect renames for an ancestor directory
172 * If neither of those are true, we can skip rename detection for
173 * that path. The reason is stored as a value from enum
174 * file_rename_relevance, as the reason can inform the algorithm in
175 * diffcore_rename_extended().
176 */
177 struct strintmap relevant_sources[3];
178
179 struct deferred_traversal_data deferred[3];
180
181 /*
182 * dir_rename_mask:
183 * 0: optimization removing unmodified potential rename source okay
184 * 2 or 4: optimization okay, but must check for files added to dir
185 * 7: optimization forbidden; need rename source in case of dir rename
186 */
187 unsigned dir_rename_mask:3;
188
189 /*
190 * callback_data_*: supporting data structures for alternate traversal
191 *
192 * We sometimes need to be able to traverse through all the files
193 * in a given tree before all immediate subdirectories within that
194 * tree. Since traverse_trees() doesn't do that naturally, we have
195 * a traverse_trees_wrapper() that stores any immediate
196 * subdirectories while traversing files, then traverses the
197 * immediate subdirectories later. These callback_data* variables
198 * store the information for the subdirectories so that we can do
199 * that traversal order.
200 */
201 struct traversal_callback_data *callback_data;
202 int callback_data_nr, callback_data_alloc;
203 char *callback_data_traverse_path;
204
205 /*
206 * merge_trees: trees passed to the merge algorithm for the merge
207 *
208 * merge_trees records the trees passed to the merge algorithm. But,
209 * this data also is stored in merge_result->priv. If a sequence of
210 * merges are being done (such as when cherry-picking or rebasing),
211 * the next merge can look at this and re-use information from
212 * previous merges under certain circumstances.
213 *
214 * See also all the cached_* variables.
215 */
216 struct tree *merge_trees[3];
217
218 /*
219 * cached_pairs_valid_side: which side's cached info can be reused
220 *
221 * See the description for merge_trees. For repeated merges, at most
222 * only one side's cached information can be used. Valid values:
223 * MERGE_SIDE2: cached data from side2 can be reused
224 * MERGE_SIDE1: cached data from side1 can be reused
225 * 0: no cached data can be reused
226 * -1: See redo_after_renames; both sides can be reused.
227 */
228 int cached_pairs_valid_side;
229
230 /*
231 * cached_pairs: Caching of renames and deletions.
232 *
233 * These are mappings recording renames and deletions of individual
234 * files (not directories). They are thus a map from an old
235 * filename to either NULL (for deletions) or a new filename (for
236 * renames).
237 */
238 struct strmap cached_pairs[3];
239
240 /*
241 * cached_target_names: just the destinations from cached_pairs
242 *
243 * We sometimes want a fast lookup to determine if a given filename
244 * is one of the destinations in cached_pairs. cached_target_names
245 * is thus duplicative information, but it provides a fast lookup.
246 */
247 struct strset cached_target_names[3];
248
249 /*
250 * cached_irrelevant: Caching of rename_sources that aren't relevant.
251 *
252 * If we try to detect a rename for a source path and succeed, it's
253 * part of a rename. If we try to detect a rename for a source path
254 * and fail, then it's a delete. If we do not try to detect a rename
255 * for a path, then we don't know if it's a rename or a delete. If
256 * merge-ort doesn't think the path is relevant, then we just won't
257 * cache anything for that path. But there's a slight problem in
258 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
259 * commit 9bd342137e ("diffcore-rename: determine which
260 * relevant_sources are no longer relevant", 2021-03-13),
261 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
262 * avoid excessive calls to diffcore_rename_extended() we still need
263 * to cache such paths, though we cannot record them as either
264 * renames or deletes. So we cache them here as a "turned out to be
265 * irrelevant *for this commit*" as they are often also irrelevant
266 * for subsequent commits, though we will have to do some extra
267 * checking to see whether such paths become relevant for rename
268 * detection when cherry-picking/rebasing subsequent commits.
269 */
270 struct strset cached_irrelevant[3];
271
272 /*
273 * redo_after_renames: optimization flag for "restarting" the merge
274 *
275 * Sometimes it pays to detect renames, cache them, and then
276 * restart the merge operation from the beginning. The reason for
277 * this is that when we know where all the renames are, we know
278 * whether a certain directory has any paths under it affected --
279 * and if a directory is not affected then it permits us to do
280 * trivial tree merging in more cases. Doing trivial tree merging
281 * prevents the need to run process_entry() on every path
282 * underneath trees that can be trivially merged, and
283 * process_entry() is more expensive than collect_merge_info() --
284 * plus, the second collect_merge_info() will be much faster since
285 * it doesn't have to recurse into the relevant trees.
286 *
287 * Values for this flag:
288 * 0 = don't bother, not worth it (or conditions not yet checked)
289 * 1 = conditions for optimization met, optimization worthwhile
290 * 2 = we already did it (don't restart merge yet again)
291 */
292 unsigned redo_after_renames;
293
294 /*
295 * needed_limit: value needed for inexact rename detection to run
296 *
297 * If the current rename limit wasn't high enough for inexact
298 * rename detection to run, this records the limit needed. Otherwise,
299 * this value remains 0.
300 */
301 int needed_limit;
302 };
303
304 struct merge_options_internal {
305 /*
306 * paths: primary data structure in all of merge ort.
307 *
308 * The keys of paths:
309 * * are full relative paths from the toplevel of the repository
310 * (e.g. "drivers/firmware/raspberrypi.c").
311 * * store all relevant paths in the repo, both directories and
312 * files (e.g. drivers, drivers/firmware would also be included)
313 * * these keys serve to intern all the path strings, which allows
314 * us to do pointer comparison on directory names instead of
315 * strcmp; we just have to be careful to use the interned strings.
316 *
317 * The values of paths:
318 * * either a pointer to a merged_info, or a conflict_info struct
319 * * merged_info contains all relevant information for a
320 * non-conflicted entry.
321 * * conflict_info contains a merged_info, plus any additional
322 * information about a conflict such as the higher orders stages
323 * involved and the names of the paths those came from (handy
324 * once renames get involved).
325 * * a path may start "conflicted" (i.e. point to a conflict_info)
326 * and then a later step (e.g. three-way content merge) determines
327 * it can be cleanly merged, at which point it'll be marked clean
328 * and the algorithm will ignore any data outside the contained
329 * merged_info for that entry
330 * * If an entry remains conflicted, the merged_info portion of a
331 * conflict_info will later be filled with whatever version of
332 * the file should be placed in the working directory (e.g. an
333 * as-merged-as-possible variation that contains conflict markers).
334 */
335 struct strmap paths;
336
337 /*
338 * conflicted: a subset of keys->values from "paths"
339 *
340 * conflicted is basically an optimization between process_entries()
341 * and record_conflicted_index_entries(); the latter could loop over
342 * ALL the entries in paths AGAIN and look for the ones that are
343 * still conflicted, but since process_entries() has to loop over
344 * all of them, it saves the ones it couldn't resolve in this strmap
345 * so that record_conflicted_index_entries() can iterate just the
346 * relevant entries.
347 */
348 struct strmap conflicted;
349
350 /*
351 * pool: memory pool for fast allocation/deallocation
352 *
353 * We allocate room for lots of filenames and auxiliary data
354 * structures in merge_options_internal, and it tends to all be
355 * freed together too. Using a memory pool for these provides a
356 * nice speedup.
357 */
358 struct mem_pool pool;
359
360 /*
361 * conflicts: logical conflicts and messages stored by _primary_ path
362 *
363 * This is a map of pathnames (a subset of the keys in "paths" above)
364 * to struct string_list, with each item's `util` containing a
365 * `struct logical_conflict_info`. Note, though, that for each path,
366 * it only stores the logical conflicts for which that path is the
367 * primary path; the path might be part of additional conflicts.
368 */
369 struct strmap conflicts;
370
371 /*
372 * renames: various data relating to rename detection
373 */
374 struct rename_info renames;
375
376 /*
377 * attr_index: hacky minimal index used for renormalization
378 *
379 * renormalization code _requires_ an index, though it only needs to
380 * find a .gitattributes file within the index. So, when
381 * renormalization is important, we create a special index with just
382 * that one file.
383 */
384 struct index_state attr_index;
385
386 /*
387 * current_dir_name, toplevel_dir: temporary vars
388 *
389 * These are used in collect_merge_info_callback(), and will set the
390 * various merged_info.directory_name for the various paths we get;
391 * see documentation for that variable and the requirements placed on
392 * that field.
393 */
394 const char *current_dir_name;
395 const char *toplevel_dir;
396
397 /* call_depth: recursion level counter for merging merge bases */
398 int call_depth;
399
400 /* field that holds submodule conflict information */
401 struct string_list conflicted_submodules;
402 };
403
404 struct conflicted_submodule_item {
405 char *abbrev;
406 int flag;
407 };
408
409 static void conflicted_submodule_item_free(void *util, const char *str UNUSED)
410 {
411 struct conflicted_submodule_item *item = util;
412
413 free(item->abbrev);
414 free(item);
415 }
416
417 struct version_info {
418 struct object_id oid;
419 unsigned short mode;
420 };
421
422 struct merged_info {
423 /* if is_null, ignore result. otherwise result has oid & mode */
424 struct version_info result;
425 unsigned is_null:1;
426
427 /*
428 * clean: whether the path in question is cleanly merged.
429 *
430 * see conflict_info.merged for more details.
431 */
432 unsigned clean:1;
433
434 /*
435 * basename_offset: offset of basename of path.
436 *
437 * perf optimization to avoid recomputing offset of final '/'
438 * character in pathname (0 if no '/' in pathname).
439 */
440 size_t basename_offset;
441
442 /*
443 * directory_name: containing directory name.
444 *
445 * Note that we assume directory_name is constructed such that
446 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
447 * i.e. string equality is equivalent to pointer equality. For this
448 * to hold, we have to be careful setting directory_name.
449 */
450 const char *directory_name;
451 };
452
453 struct conflict_info {
454 /*
455 * merged: the version of the path that will be written to working tree
456 *
457 * WARNING: It is critical to check merged.clean and ensure it is 0
458 * before reading any conflict_info fields outside of merged.
459 * Allocated merge_info structs will always have clean set to 1.
460 * Allocated conflict_info structs will have merged.clean set to 0
461 * initially. The merged.clean field is how we know if it is safe
462 * to access other parts of conflict_info besides merged; if a
463 * conflict_info's merged.clean is changed to 1, the rest of the
464 * algorithm is not allowed to look at anything outside of the
465 * merged member anymore.
466 */
467 struct merged_info merged;
468
469 /* oids & modes from each of the three trees for this path */
470 struct version_info stages[3];
471
472 /* pathnames for each stage; may differ due to rename detection */
473 const char *pathnames[3];
474
475 /* Whether this path is/was involved in a directory/file conflict */
476 unsigned df_conflict:1;
477
478 /*
479 * Whether this path is/was involved in a non-content conflict other
480 * than a directory/file conflict (e.g. rename/rename, rename/delete,
481 * file location based on possible directory rename).
482 */
483 unsigned path_conflict:1;
484
485 /*
486 * For filemask and dirmask, the ith bit corresponds to whether the
487 * ith entry is a file (filemask) or a directory (dirmask). Thus,
488 * filemask & dirmask is always zero, and filemask | dirmask is at
489 * most 7 but can be less when a path does not appear as either a
490 * file or a directory on at least one side of history.
491 *
492 * Note that these masks are related to enum merge_side, as the ith
493 * entry corresponds to side i.
494 *
495 * These values come from a traverse_trees() call; more info may be
496 * found looking at tree-walk.h's struct traverse_info,
497 * particularly the documentation above the "fn" member (note that
498 * filemask = mask & ~dirmask from that documentation).
499 */
500 unsigned filemask:3;
501 unsigned dirmask:3;
502
503 /*
504 * Optimization to track which stages match, to avoid the need to
505 * recompute it in multiple steps. Either 0 or at least 2 bits are
506 * set; if at least 2 bits are set, their corresponding stages match.
507 */
508 unsigned match_mask:3;
509 };
510
511 enum conflict_and_info_types {
512 /* "Simple" conflicts and informational messages */
513 INFO_AUTO_MERGING = 0,
514 CONFLICT_CONTENTS, /* text file that failed to merge */
515 CONFLICT_BINARY,
516 CONFLICT_FILE_DIRECTORY,
517 CONFLICT_DISTINCT_MODES,
518 CONFLICT_MODIFY_DELETE,
519
520 /* Regular rename */
521 CONFLICT_RENAME_RENAME, /* same file renamed differently */
522 CONFLICT_RENAME_COLLIDES, /* rename/add or two files renamed to 1 */
523 CONFLICT_RENAME_DELETE,
524
525 /* Basic directory rename */
526 CONFLICT_DIR_RENAME_SUGGESTED,
527 INFO_DIR_RENAME_APPLIED,
528
529 /* Special directory rename cases */
530 INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME,
531 CONFLICT_DIR_RENAME_FILE_IN_WAY,
532 CONFLICT_DIR_RENAME_COLLISION,
533 CONFLICT_DIR_RENAME_SPLIT,
534
535 /* Basic submodule */
536 INFO_SUBMODULE_FAST_FORWARDING,
537 CONFLICT_SUBMODULE_FAILED_TO_MERGE,
538
539 /* Special submodule cases broken out from FAILED_TO_MERGE */
540 CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION,
541 CONFLICT_SUBMODULE_NOT_INITIALIZED,
542 CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE,
543 CONFLICT_SUBMODULE_MAY_HAVE_REWINDS,
544 CONFLICT_SUBMODULE_NULL_MERGE_BASE,
545
546 /* Keep this entry _last_ in the list */
547 NB_CONFLICT_TYPES,
548 };
549
550 /*
551 * Short description of conflict type, relied upon by external tools.
552 *
553 * We can add more entries, but DO NOT change any of these strings. Also,
554 * Order MUST match conflict_info_and_types.
555 */
556 static const char *type_short_descriptions[] = {
557 /*** "Simple" conflicts and informational messages ***/
558 [INFO_AUTO_MERGING] = "Auto-merging",
559 [CONFLICT_CONTENTS] = "CONFLICT (contents)",
560 [CONFLICT_BINARY] = "CONFLICT (binary)",
561 [CONFLICT_FILE_DIRECTORY] = "CONFLICT (file/directory)",
562 [CONFLICT_DISTINCT_MODES] = "CONFLICT (distinct modes)",
563 [CONFLICT_MODIFY_DELETE] = "CONFLICT (modify/delete)",
564
565 /*** Regular rename ***/
566 [CONFLICT_RENAME_RENAME] = "CONFLICT (rename/rename)",
567 [CONFLICT_RENAME_COLLIDES] = "CONFLICT (rename involved in collision)",
568 [CONFLICT_RENAME_DELETE] = "CONFLICT (rename/delete)",
569
570 /*** Basic directory rename ***/
571 [CONFLICT_DIR_RENAME_SUGGESTED] =
572 "CONFLICT (directory rename suggested)",
573 [INFO_DIR_RENAME_APPLIED] = "Path updated due to directory rename",
574
575 /*** Special directory rename cases ***/
576 [INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME] =
577 "Directory rename skipped since directory was renamed on both sides",
578 [CONFLICT_DIR_RENAME_FILE_IN_WAY] =
579 "CONFLICT (file in way of directory rename)",
580 [CONFLICT_DIR_RENAME_COLLISION] = "CONFLICT(directory rename collision)",
581 [CONFLICT_DIR_RENAME_SPLIT] = "CONFLICT(directory rename unclear split)",
582
583 /*** Basic submodule ***/
584 [INFO_SUBMODULE_FAST_FORWARDING] = "Fast forwarding submodule",
585 [CONFLICT_SUBMODULE_FAILED_TO_MERGE] = "CONFLICT (submodule)",
586
587 /*** Special submodule cases broken out from FAILED_TO_MERGE ***/
588 [CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION] =
589 "CONFLICT (submodule with possible resolution)",
590 [CONFLICT_SUBMODULE_NOT_INITIALIZED] =
591 "CONFLICT (submodule not initialized)",
592 [CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE] =
593 "CONFLICT (submodule history not available)",
594 [CONFLICT_SUBMODULE_MAY_HAVE_REWINDS] =
595 "CONFLICT (submodule may have rewinds)",
596 [CONFLICT_SUBMODULE_NULL_MERGE_BASE] =
597 "CONFLICT (submodule lacks merge base)"
598 };
599
600 struct logical_conflict_info {
601 enum conflict_and_info_types type;
602 struct strvec paths;
603 };
604
605 /*** Function Grouping: various utility functions ***/
606
607 /*
608 * For the next three macros, see warning for conflict_info.merged.
609 *
610 * In each of the below, mi is a struct merged_info*, and ci was defined
611 * as a struct conflict_info* (but we need to verify ci isn't actually
612 * pointed at a struct merged_info*).
613 *
614 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
615 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
616 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
617 */
618 #define INITIALIZE_CI(ci, mi) do { \
619 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
620 } while (0)
621 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
622 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
623 (ci) = (struct conflict_info *)(mi); \
624 assert((ci) && !(mi)->clean); \
625 } while (0)
626
627 static void free_strmap_strings(struct strmap *map)
628 {
629 struct hashmap_iter iter;
630 struct strmap_entry *entry;
631
632 strmap_for_each_entry(map, &iter, entry) {
633 free((char*)entry->key);
634 }
635 }
636
637 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
638 int reinitialize)
639 {
640 struct rename_info *renames = &opti->renames;
641 int i;
642 void (*strmap_clear_func)(struct strmap *, int) =
643 reinitialize ? strmap_partial_clear : strmap_clear;
644 void (*strintmap_clear_func)(struct strintmap *) =
645 reinitialize ? strintmap_partial_clear : strintmap_clear;
646 void (*strset_clear_func)(struct strset *) =
647 reinitialize ? strset_partial_clear : strset_clear;
648
649 strmap_clear_func(&opti->paths, 0);
650
651 /*
652 * All keys and values in opti->conflicted are a subset of those in
653 * opti->paths. We don't want to deallocate anything twice, so we
654 * don't free the keys and we pass 0 for free_values.
655 */
656 strmap_clear_func(&opti->conflicted, 0);
657
658 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
659 discard_index(&opti->attr_index);
660
661 /* Free memory used by various renames maps */
662 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
663 strintmap_clear_func(&renames->dirs_removed[i]);
664 strmap_clear_func(&renames->dir_renames[i], 0);
665 strintmap_clear_func(&renames->relevant_sources[i]);
666 if (!reinitialize)
667 assert(renames->cached_pairs_valid_side == 0);
668 if (i != renames->cached_pairs_valid_side &&
669 -1 != renames->cached_pairs_valid_side) {
670 strset_clear_func(&renames->cached_target_names[i]);
671 strmap_clear_func(&renames->cached_pairs[i], 1);
672 strset_clear_func(&renames->cached_irrelevant[i]);
673 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
674 if (!reinitialize)
675 strmap_clear(&renames->dir_rename_count[i], 1);
676 }
677 }
678 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
679 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
680 strset_clear_func(&renames->deferred[i].target_dirs);
681 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
682 }
683 renames->cached_pairs_valid_side = 0;
684 renames->dir_rename_mask = 0;
685
686 if (!reinitialize) {
687 struct hashmap_iter iter;
688 struct strmap_entry *e;
689
690 /* Release and free each strbuf found in output */
691 strmap_for_each_entry(&opti->conflicts, &iter, e) {
692 struct string_list *list = e->value;
693 for (int i = 0; i < list->nr; i++) {
694 struct logical_conflict_info *info =
695 list->items[i].util;
696 strvec_clear(&info->paths);
697 }
698 /*
699 * While strictly speaking we don't need to
700 * free(conflicts) here because we could pass
701 * free_values=1 when calling strmap_clear() on
702 * opti->conflicts, that would require strmap_clear
703 * to do another strmap_for_each_entry() loop, so we
704 * just free it while we're iterating anyway.
705 */
706 string_list_clear(list, 1);
707 free(list);
708 }
709 strmap_clear(&opti->conflicts, 0);
710 }
711
712 mem_pool_discard(&opti->pool, 0);
713
714 string_list_clear_func(&opti->conflicted_submodules,
715 conflicted_submodule_item_free);
716
717 /* Clean out callback_data as well. */
718 FREE_AND_NULL(renames->callback_data);
719 renames->callback_data_nr = renames->callback_data_alloc = 0;
720 }
721
722 static void format_commit(struct strbuf *sb,
723 int indent,
724 struct repository *repo,
725 struct commit *commit)
726 {
727 struct merge_remote_desc *desc;
728 struct pretty_print_context ctx = {0};
729 ctx.abbrev = DEFAULT_ABBREV;
730
731 strbuf_addchars(sb, ' ', indent);
732 desc = merge_remote_util(commit);
733 if (desc) {
734 strbuf_addf(sb, "virtual %s\n", desc->name);
735 return;
736 }
737
738 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
739 strbuf_addch(sb, '\n');
740 }
741
742 __attribute__((format (printf, 8, 9)))
743 static void path_msg(struct merge_options *opt,
744 enum conflict_and_info_types type,
745 int omittable_hint, /* skippable under --remerge-diff */
746 const char *primary_path,
747 const char *other_path_1, /* may be NULL */
748 const char *other_path_2, /* may be NULL */
749 struct string_list *other_paths, /* may be NULL */
750 const char *fmt, ...)
751 {
752 va_list ap;
753 struct string_list *path_conflicts;
754 struct logical_conflict_info *info;
755 struct strbuf buf = STRBUF_INIT;
756 struct strbuf *dest;
757 struct strbuf tmp = STRBUF_INIT;
758
759 /* Sanity checks */
760 assert(omittable_hint ==
761 !starts_with(type_short_descriptions[type], "CONFLICT") ||
762 type == CONFLICT_DIR_RENAME_SUGGESTED);
763 if (opt->record_conflict_msgs_as_headers && omittable_hint)
764 return; /* Do not record mere hints in headers */
765 if (opt->priv->call_depth && opt->verbosity < 5)
766 return; /* Ignore messages from inner merges */
767
768 /* Ensure path_conflicts (ptr to array of logical_conflict) allocated */
769 path_conflicts = strmap_get(&opt->priv->conflicts, primary_path);
770 if (!path_conflicts) {
771 path_conflicts = xmalloc(sizeof(*path_conflicts));
772 string_list_init_dup(path_conflicts);
773 strmap_put(&opt->priv->conflicts, primary_path, path_conflicts);
774 }
775
776 /* Add a logical_conflict at the end to store info from this call */
777 info = xcalloc(1, sizeof(*info));
778 info->type = type;
779 strvec_init(&info->paths);
780
781 /* Handle the list of paths */
782 strvec_push(&info->paths, primary_path);
783 if (other_path_1)
784 strvec_push(&info->paths, other_path_1);
785 if (other_path_2)
786 strvec_push(&info->paths, other_path_2);
787 if (other_paths)
788 for (int i = 0; i < other_paths->nr; i++)
789 strvec_push(&info->paths, other_paths->items[i].string);
790
791 /* Handle message and its format, in normal case */
792 dest = (opt->record_conflict_msgs_as_headers ? &tmp : &buf);
793
794 va_start(ap, fmt);
795 if (opt->priv->call_depth) {
796 strbuf_addchars(dest, ' ', 2);
797 strbuf_addstr(dest, "From inner merge:");
798 strbuf_addchars(dest, ' ', opt->priv->call_depth * 2);
799 }
800 strbuf_vaddf(dest, fmt, ap);
801 va_end(ap);
802
803 /* Handle specialized formatting of message under --remerge-diff */
804 if (opt->record_conflict_msgs_as_headers) {
805 int i_sb = 0, i_tmp = 0;
806
807 /* Start with the specified prefix */
808 if (opt->msg_header_prefix)
809 strbuf_addf(&buf, "%s ", opt->msg_header_prefix);
810
811 /* Copy tmp to sb, adding spaces after newlines */
812 strbuf_grow(&buf, buf.len + 2*tmp.len); /* more than sufficient */
813 for (; i_tmp < tmp.len; i_tmp++, i_sb++) {
814 /* Copy next character from tmp to sb */
815 buf.buf[buf.len + i_sb] = tmp.buf[i_tmp];
816
817 /* If we copied a newline, add a space */
818 if (tmp.buf[i_tmp] == '\n')
819 buf.buf[++i_sb] = ' ';
820 }
821 /* Update length and ensure it's NUL-terminated */
822 buf.len += i_sb;
823 buf.buf[buf.len] = '\0';
824
825 strbuf_release(&tmp);
826 }
827 string_list_append_nodup(path_conflicts, strbuf_detach(&buf, NULL))
828 ->util = info;
829 }
830
831 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
832 const char *path)
833 {
834 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
835 struct diff_filespec *spec;
836
837 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
838 spec->path = (char*)path; /* spec won't modify it */
839
840 spec->count = 1;
841 spec->is_binary = -1;
842 return spec;
843 }
844
845 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
846 struct diff_queue_struct *queue,
847 struct diff_filespec *one,
848 struct diff_filespec *two)
849 {
850 /* Same code as diff_queue(), except allocate from pool */
851 struct diff_filepair *dp;
852
853 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
854 dp->one = one;
855 dp->two = two;
856 if (queue)
857 diff_q(queue, dp);
858 return dp;
859 }
860
861 /* add a string to a strbuf, but converting "/" to "_" */
862 static void add_flattened_path(struct strbuf *out, const char *s)
863 {
864 size_t i = out->len;
865 strbuf_addstr(out, s);
866 for (; i < out->len; i++)
867 if (out->buf[i] == '/')
868 out->buf[i] = '_';
869 }
870
871 static char *unique_path(struct merge_options *opt,
872 const char *path,
873 const char *branch)
874 {
875 char *ret = NULL;
876 struct strbuf newpath = STRBUF_INIT;
877 int suffix = 0;
878 size_t base_len;
879 struct strmap *existing_paths = &opt->priv->paths;
880
881 strbuf_addf(&newpath, "%s~", path);
882 add_flattened_path(&newpath, branch);
883
884 base_len = newpath.len;
885 while (strmap_contains(existing_paths, newpath.buf)) {
886 strbuf_setlen(&newpath, base_len);
887 strbuf_addf(&newpath, "_%d", suffix++);
888 }
889
890 /* Track the new path in our memory pool */
891 ret = mem_pool_alloc(&opt->priv->pool, newpath.len + 1);
892 memcpy(ret, newpath.buf, newpath.len + 1);
893 strbuf_release(&newpath);
894 return ret;
895 }
896
897 /*** Function Grouping: functions related to collect_merge_info() ***/
898
899 static int traverse_trees_wrapper_callback(int n,
900 unsigned long mask,
901 unsigned long dirmask,
902 struct name_entry *names,
903 struct traverse_info *info)
904 {
905 struct merge_options *opt = info->data;
906 struct rename_info *renames = &opt->priv->renames;
907 unsigned filemask = mask & ~dirmask;
908
909 assert(n==3);
910
911 if (!renames->callback_data_traverse_path)
912 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
913
914 if (filemask && filemask == renames->dir_rename_mask)
915 renames->dir_rename_mask = 0x07;
916
917 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
918 renames->callback_data_alloc);
919 renames->callback_data[renames->callback_data_nr].mask = mask;
920 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
921 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
922 names, 3);
923 renames->callback_data_nr++;
924
925 return mask;
926 }
927
928 /*
929 * Much like traverse_trees(), BUT:
930 * - read all the tree entries FIRST, saving them
931 * - note that the above step provides an opportunity to compute necessary
932 * additional details before the "real" traversal
933 * - loop through the saved entries and call the original callback on them
934 */
935 static int traverse_trees_wrapper(struct index_state *istate,
936 int n,
937 struct tree_desc *t,
938 struct traverse_info *info)
939 {
940 int ret, i, old_offset;
941 traverse_callback_t old_fn;
942 char *old_callback_data_traverse_path;
943 struct merge_options *opt = info->data;
944 struct rename_info *renames = &opt->priv->renames;
945
946 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
947
948 old_callback_data_traverse_path = renames->callback_data_traverse_path;
949 old_fn = info->fn;
950 old_offset = renames->callback_data_nr;
951
952 renames->callback_data_traverse_path = NULL;
953 info->fn = traverse_trees_wrapper_callback;
954 ret = traverse_trees(istate, n, t, info);
955 if (ret < 0)
956 return ret;
957
958 info->traverse_path = renames->callback_data_traverse_path;
959 info->fn = old_fn;
960 for (i = old_offset; i < renames->callback_data_nr; ++i) {
961 info->fn(n,
962 renames->callback_data[i].mask,
963 renames->callback_data[i].dirmask,
964 renames->callback_data[i].names,
965 info);
966 }
967
968 renames->callback_data_nr = old_offset;
969 free(renames->callback_data_traverse_path);
970 renames->callback_data_traverse_path = old_callback_data_traverse_path;
971 info->traverse_path = NULL;
972 return 0;
973 }
974
975 static void setup_path_info(struct merge_options *opt,
976 struct string_list_item *result,
977 const char *current_dir_name,
978 int current_dir_name_len,
979 char *fullpath, /* we'll take over ownership */
980 struct name_entry *names,
981 struct name_entry *merged_version,
982 unsigned is_null, /* boolean */
983 unsigned df_conflict, /* boolean */
984 unsigned filemask,
985 unsigned dirmask,
986 int resolved /* boolean */)
987 {
988 /* result->util is void*, so mi is a convenience typed variable */
989 struct merged_info *mi;
990
991 assert(!is_null || resolved);
992 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
993 assert(resolved == (merged_version != NULL));
994
995 mi = mem_pool_calloc(&opt->priv->pool, 1,
996 resolved ? sizeof(struct merged_info) :
997 sizeof(struct conflict_info));
998 mi->directory_name = current_dir_name;
999 mi->basename_offset = current_dir_name_len;
1000 mi->clean = !!resolved;
1001 if (resolved) {
1002 mi->result.mode = merged_version->mode;
1003 oidcpy(&mi->result.oid, &merged_version->oid);
1004 mi->is_null = !!is_null;
1005 } else {
1006 int i;
1007 struct conflict_info *ci;
1008
1009 ASSIGN_AND_VERIFY_CI(ci, mi);
1010 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1011 ci->pathnames[i] = fullpath;
1012 ci->stages[i].mode = names[i].mode;
1013 oidcpy(&ci->stages[i].oid, &names[i].oid);
1014 }
1015 ci->filemask = filemask;
1016 ci->dirmask = dirmask;
1017 ci->df_conflict = !!df_conflict;
1018 if (dirmask)
1019 /*
1020 * Assume is_null for now, but if we have entries
1021 * under the directory then when it is complete in
1022 * write_completed_directory() it'll update this.
1023 * Also, for D/F conflicts, we have to handle the
1024 * directory first, then clear this bit and process
1025 * the file to see how it is handled -- that occurs
1026 * near the top of process_entry().
1027 */
1028 mi->is_null = 1;
1029 }
1030 strmap_put(&opt->priv->paths, fullpath, mi);
1031 result->string = fullpath;
1032 result->util = mi;
1033 }
1034
1035 static void add_pair(struct merge_options *opt,
1036 struct name_entry *names,
1037 const char *pathname,
1038 unsigned side,
1039 unsigned is_add /* if false, is_delete */,
1040 unsigned match_mask,
1041 unsigned dir_rename_mask)
1042 {
1043 struct diff_filespec *one, *two;
1044 struct rename_info *renames = &opt->priv->renames;
1045 int names_idx = is_add ? side : 0;
1046
1047 if (is_add) {
1048 assert(match_mask == 0 || match_mask == 6);
1049 if (strset_contains(&renames->cached_target_names[side],
1050 pathname))
1051 return;
1052 } else {
1053 unsigned content_relevant = (match_mask == 0);
1054 unsigned location_relevant = (dir_rename_mask == 0x07);
1055
1056 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
1057
1058 /*
1059 * If pathname is found in cached_irrelevant[side] due to
1060 * previous pick but for this commit content is relevant,
1061 * then we need to remove it from cached_irrelevant.
1062 */
1063 if (content_relevant)
1064 /* strset_remove is no-op if strset doesn't have key */
1065 strset_remove(&renames->cached_irrelevant[side],
1066 pathname);
1067
1068 /*
1069 * We do not need to re-detect renames for paths that we already
1070 * know the pairing, i.e. for cached_pairs (or
1071 * cached_irrelevant). However, handle_deferred_entries() needs
1072 * to loop over the union of keys from relevant_sources[side] and
1073 * cached_pairs[side], so for simplicity we set relevant_sources
1074 * for all the cached_pairs too and then strip them back out in
1075 * prune_cached_from_relevant() at the beginning of
1076 * detect_regular_renames().
1077 */
1078 if (content_relevant || location_relevant) {
1079 /* content_relevant trumps location_relevant */
1080 strintmap_set(&renames->relevant_sources[side], pathname,
1081 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
1082 }
1083
1084 /*
1085 * Avoid creating pair if we've already cached rename results.
1086 * Note that we do this after setting relevant_sources[side]
1087 * as noted in the comment above.
1088 */
1089 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
1090 strset_contains(&renames->cached_irrelevant[side], pathname))
1091 return;
1092 }
1093
1094 one = pool_alloc_filespec(&opt->priv->pool, pathname);
1095 two = pool_alloc_filespec(&opt->priv->pool, pathname);
1096 fill_filespec(is_add ? two : one,
1097 &names[names_idx].oid, 1, names[names_idx].mode);
1098 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
1099 }
1100
1101 static void collect_rename_info(struct merge_options *opt,
1102 struct name_entry *names,
1103 const char *dirname,
1104 const char *fullname,
1105 unsigned filemask,
1106 unsigned dirmask,
1107 unsigned match_mask)
1108 {
1109 struct rename_info *renames = &opt->priv->renames;
1110 unsigned side;
1111
1112 /*
1113 * Update dir_rename_mask (determines ignore-rename-source validity)
1114 *
1115 * dir_rename_mask helps us keep track of when directory rename
1116 * detection may be relevant. Basically, whenver a directory is
1117 * removed on one side of history, and a file is added to that
1118 * directory on the other side of history, directory rename
1119 * detection is relevant (meaning we have to detect renames for all
1120 * files within that directory to deduce where the directory
1121 * moved). Also, whenever a directory needs directory rename
1122 * detection, due to the "majority rules" choice for where to move
1123 * it (see t6423 testcase 1f), we also need to detect renames for
1124 * all files within subdirectories of that directory as well.
1125 *
1126 * Here we haven't looked at files within the directory yet, we are
1127 * just looking at the directory itself. So, if we aren't yet in
1128 * a case where a parent directory needed directory rename detection
1129 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
1130 * on one side of history, record the mask of the other side of
1131 * history in dir_rename_mask.
1132 */
1133 if (renames->dir_rename_mask != 0x07 &&
1134 (dirmask == 3 || dirmask == 5)) {
1135 /* simple sanity check */
1136 assert(renames->dir_rename_mask == 0 ||
1137 renames->dir_rename_mask == (dirmask & ~1));
1138 /* update dir_rename_mask; have it record mask of new side */
1139 renames->dir_rename_mask = (dirmask & ~1);
1140 }
1141
1142 /* Update dirs_removed, as needed */
1143 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
1144 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
1145 unsigned sides = (0x07 - dirmask)/2;
1146 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
1147 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
1148 /*
1149 * Record relevance of this directory. However, note that
1150 * when collect_merge_info_callback() recurses into this
1151 * directory and calls collect_rename_info() on paths
1152 * within that directory, if we find a path that was added
1153 * to this directory on the other side of history, we will
1154 * upgrade this value to RELEVANT_FOR_SELF; see below.
1155 */
1156 if (sides & 1)
1157 strintmap_set(&renames->dirs_removed[1], fullname,
1158 relevance);
1159 if (sides & 2)
1160 strintmap_set(&renames->dirs_removed[2], fullname,
1161 relevance);
1162 }
1163
1164 /*
1165 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
1166 * When we run across a file added to a directory. In such a case,
1167 * find the directory of the file and upgrade its relevance.
1168 */
1169 if (renames->dir_rename_mask == 0x07 &&
1170 (filemask == 2 || filemask == 4)) {
1171 /*
1172 * Need directory rename for parent directory on other side
1173 * of history from added file. Thus
1174 * side = (~filemask & 0x06) >> 1
1175 * or
1176 * side = 3 - (filemask/2).
1177 */
1178 unsigned side = 3 - (filemask >> 1);
1179 strintmap_set(&renames->dirs_removed[side], dirname,
1180 RELEVANT_FOR_SELF);
1181 }
1182
1183 if (filemask == 0 || filemask == 7)
1184 return;
1185
1186 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1187 unsigned side_mask = (1 << side);
1188
1189 /* Check for deletion on side */
1190 if ((filemask & 1) && !(filemask & side_mask))
1191 add_pair(opt, names, fullname, side, 0 /* delete */,
1192 match_mask & filemask,
1193 renames->dir_rename_mask);
1194
1195 /* Check for addition on side */
1196 if (!(filemask & 1) && (filemask & side_mask))
1197 add_pair(opt, names, fullname, side, 1 /* add */,
1198 match_mask & filemask,
1199 renames->dir_rename_mask);
1200 }
1201 }
1202
1203 static int collect_merge_info_callback(int n,
1204 unsigned long mask,
1205 unsigned long dirmask,
1206 struct name_entry *names,
1207 struct traverse_info *info)
1208 {
1209 /*
1210 * n is 3. Always.
1211 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1212 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1213 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1214 */
1215 struct merge_options *opt = info->data;
1216 struct merge_options_internal *opti = opt->priv;
1217 struct rename_info *renames = &opt->priv->renames;
1218 struct string_list_item pi; /* Path Info */
1219 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1220 struct name_entry *p;
1221 size_t len;
1222 char *fullpath;
1223 const char *dirname = opti->current_dir_name;
1224 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1225 unsigned filemask = mask & ~dirmask;
1226 unsigned match_mask = 0; /* will be updated below */
1227 unsigned mbase_null = !(mask & 1);
1228 unsigned side1_null = !(mask & 2);
1229 unsigned side2_null = !(mask & 4);
1230 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1231 names[0].mode == names[1].mode &&
1232 oideq(&names[0].oid, &names[1].oid));
1233 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1234 names[0].mode == names[2].mode &&
1235 oideq(&names[0].oid, &names[2].oid));
1236 unsigned sides_match = (!side1_null && !side2_null &&
1237 names[1].mode == names[2].mode &&
1238 oideq(&names[1].oid, &names[2].oid));
1239
1240 /*
1241 * Note: When a path is a file on one side of history and a directory
1242 * in another, we have a directory/file conflict. In such cases, if
1243 * the conflict doesn't resolve from renames and deletions, then we
1244 * always leave directories where they are and move files out of the
1245 * way. Thus, while struct conflict_info has a df_conflict field to
1246 * track such conflicts, we ignore that field for any directories at
1247 * a path and only pay attention to it for files at the given path.
1248 * The fact that we leave directories were they are also means that
1249 * we do not need to worry about getting additional df_conflict
1250 * information propagated from parent directories down to children
1251 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1252 * sets a newinfo.df_conflicts field specifically to propagate it).
1253 */
1254 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1255
1256 /* n = 3 is a fundamental assumption. */
1257 if (n != 3)
1258 BUG("Called collect_merge_info_callback wrong");
1259
1260 /*
1261 * A bunch of sanity checks verifying that traverse_trees() calls
1262 * us the way I expect. Could just remove these at some point,
1263 * though maybe they are helpful to future code readers.
1264 */
1265 assert(mbase_null == is_null_oid(&names[0].oid));
1266 assert(side1_null == is_null_oid(&names[1].oid));
1267 assert(side2_null == is_null_oid(&names[2].oid));
1268 assert(!mbase_null || !side1_null || !side2_null);
1269 assert(mask > 0 && mask < 8);
1270
1271 /* Determine match_mask */
1272 if (side1_matches_mbase)
1273 match_mask = (side2_matches_mbase ? 7 : 3);
1274 else if (side2_matches_mbase)
1275 match_mask = 5;
1276 else if (sides_match)
1277 match_mask = 6;
1278
1279 /*
1280 * Get the name of the relevant filepath, which we'll pass to
1281 * setup_path_info() for tracking.
1282 */
1283 p = names;
1284 while (!p->mode)
1285 p++;
1286 len = traverse_path_len(info, p->pathlen);
1287
1288 /* +1 in both of the following lines to include the NUL byte */
1289 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1290 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1291
1292 /*
1293 * If mbase, side1, and side2 all match, we can resolve early. Even
1294 * if these are trees, there will be no renames or anything
1295 * underneath.
1296 */
1297 if (side1_matches_mbase && side2_matches_mbase) {
1298 /* mbase, side1, & side2 all match; use mbase as resolution */
1299 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1300 names, names+0, mbase_null, 0 /* df_conflict */,
1301 filemask, dirmask, 1 /* resolved */);
1302 return mask;
1303 }
1304
1305 /*
1306 * If the sides match, and all three paths are present and are
1307 * files, then we can take either as the resolution. We can't do
1308 * this with trees, because there may be rename sources from the
1309 * merge_base.
1310 */
1311 if (sides_match && filemask == 0x07) {
1312 /* use side1 (== side2) version as resolution */
1313 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1314 names, names+1, side1_null, 0,
1315 filemask, dirmask, 1);
1316 return mask;
1317 }
1318
1319 /*
1320 * If side1 matches mbase and all three paths are present and are
1321 * files, then we can use side2 as the resolution. We cannot
1322 * necessarily do so this for trees, because there may be rename
1323 * destinations within side2.
1324 */
1325 if (side1_matches_mbase && filemask == 0x07) {
1326 /* use side2 version as resolution */
1327 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1328 names, names+2, side2_null, 0,
1329 filemask, dirmask, 1);
1330 return mask;
1331 }
1332
1333 /* Similar to above but swapping sides 1 and 2 */
1334 if (side2_matches_mbase && filemask == 0x07) {
1335 /* use side1 version as resolution */
1336 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1337 names, names+1, side1_null, 0,
1338 filemask, dirmask, 1);
1339 return mask;
1340 }
1341
1342 /*
1343 * Sometimes we can tell that a source path need not be included in
1344 * rename detection -- namely, whenever either
1345 * side1_matches_mbase && side2_null
1346 * or
1347 * side2_matches_mbase && side1_null
1348 * However, we call collect_rename_info() even in those cases,
1349 * because exact renames are cheap and would let us remove both a
1350 * source and destination path. We'll cull the unneeded sources
1351 * later.
1352 */
1353 collect_rename_info(opt, names, dirname, fullpath,
1354 filemask, dirmask, match_mask);
1355
1356 /*
1357 * None of the special cases above matched, so we have a
1358 * provisional conflict. (Rename detection might allow us to
1359 * unconflict some more cases, but that comes later so all we can
1360 * do now is record the different non-null file hashes.)
1361 */
1362 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1363 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1364
1365 ci = pi.util;
1366 VERIFY_CI(ci);
1367 ci->match_mask = match_mask;
1368
1369 /* If dirmask, recurse into subdirectories */
1370 if (dirmask) {
1371 struct traverse_info newinfo;
1372 struct tree_desc t[3];
1373 void *buf[3] = {NULL, NULL, NULL};
1374 const char *original_dir_name;
1375 int i, ret, side;
1376
1377 /*
1378 * Check for whether we can avoid recursing due to one side
1379 * matching the merge base. The side that does NOT match is
1380 * the one that might have a rename destination we need.
1381 */
1382 assert(!side1_matches_mbase || !side2_matches_mbase);
1383 side = side1_matches_mbase ? MERGE_SIDE2 :
1384 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1385 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1386 /*
1387 * Also defer recursing into new directories; set up a
1388 * few variables to let us do so.
1389 */
1390 ci->match_mask = (7 - dirmask);
1391 side = dirmask / 2;
1392 }
1393 if (renames->dir_rename_mask != 0x07 &&
1394 side != MERGE_BASE &&
1395 renames->deferred[side].trivial_merges_okay &&
1396 !strset_contains(&renames->deferred[side].target_dirs,
1397 pi.string)) {
1398 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1399 pi.string, renames->dir_rename_mask);
1400 renames->dir_rename_mask = prev_dir_rename_mask;
1401 return mask;
1402 }
1403
1404 /* We need to recurse */
1405 ci->match_mask &= filemask;
1406 newinfo = *info;
1407 newinfo.prev = info;
1408 newinfo.name = p->path;
1409 newinfo.namelen = p->pathlen;
1410 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1411 /*
1412 * If this directory we are about to recurse into cared about
1413 * its parent directory (the current directory) having a D/F
1414 * conflict, then we'd propagate the masks in this way:
1415 * newinfo.df_conflicts |= (mask & ~dirmask);
1416 * But we don't worry about propagating D/F conflicts. (See
1417 * comment near setting of local df_conflict variable near
1418 * the beginning of this function).
1419 */
1420
1421 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1422 if (i == 1 && side1_matches_mbase)
1423 t[1] = t[0];
1424 else if (i == 2 && side2_matches_mbase)
1425 t[2] = t[0];
1426 else if (i == 2 && sides_match)
1427 t[2] = t[1];
1428 else {
1429 const struct object_id *oid = NULL;
1430 if (dirmask & 1)
1431 oid = &names[i].oid;
1432 buf[i] = fill_tree_descriptor(opt->repo,
1433 t + i, oid);
1434 }
1435 dirmask >>= 1;
1436 }
1437
1438 original_dir_name = opti->current_dir_name;
1439 opti->current_dir_name = pi.string;
1440 if (renames->dir_rename_mask == 0 ||
1441 renames->dir_rename_mask == 0x07)
1442 ret = traverse_trees(NULL, 3, t, &newinfo);
1443 else
1444 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1445 opti->current_dir_name = original_dir_name;
1446 renames->dir_rename_mask = prev_dir_rename_mask;
1447
1448 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1449 free(buf[i]);
1450
1451 if (ret < 0)
1452 return -1;
1453 }
1454
1455 return mask;
1456 }
1457
1458 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1459 {
1460 VERIFY_CI(ci);
1461 assert((side == 1 && ci->match_mask == 5) ||
1462 (side == 2 && ci->match_mask == 3));
1463 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1464 ci->merged.result.mode = ci->stages[side].mode;
1465 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1466 ci->match_mask = 0;
1467 ci->merged.clean = 1; /* (ci->filemask == 0); */
1468 }
1469
1470 static int handle_deferred_entries(struct merge_options *opt,
1471 struct traverse_info *info)
1472 {
1473 struct rename_info *renames = &opt->priv->renames;
1474 struct hashmap_iter iter;
1475 struct strmap_entry *entry;
1476 int side, ret = 0;
1477 int path_count_before, path_count_after = 0;
1478
1479 path_count_before = strmap_get_size(&opt->priv->paths);
1480 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1481 unsigned optimization_okay = 1;
1482 struct strintmap copy;
1483
1484 /* Loop over the set of paths we need to know rename info for */
1485 strset_for_each_entry(&renames->relevant_sources[side],
1486 &iter, entry) {
1487 char *rename_target, *dir, *dir_marker;
1488 struct strmap_entry *e;
1489
1490 /*
1491 * If we don't know delete/rename info for this path,
1492 * then we need to recurse into all trees to get all
1493 * adds to make sure we have it.
1494 */
1495 if (strset_contains(&renames->cached_irrelevant[side],
1496 entry->key))
1497 continue;
1498 e = strmap_get_entry(&renames->cached_pairs[side],
1499 entry->key);
1500 if (!e) {
1501 optimization_okay = 0;
1502 break;
1503 }
1504
1505 /* If this is a delete, we have enough info already */
1506 rename_target = e->value;
1507 if (!rename_target)
1508 continue;
1509
1510 /* If we already walked the rename target, we're good */
1511 if (strmap_contains(&opt->priv->paths, rename_target))
1512 continue;
1513
1514 /*
1515 * Otherwise, we need to get a list of directories that
1516 * will need to be recursed into to get this
1517 * rename_target.
1518 */
1519 dir = xstrdup(rename_target);
1520 while ((dir_marker = strrchr(dir, '/'))) {
1521 *dir_marker = '\0';
1522 if (strset_contains(&renames->deferred[side].target_dirs,
1523 dir))
1524 break;
1525 strset_add(&renames->deferred[side].target_dirs,
1526 dir);
1527 }
1528 free(dir);
1529 }
1530 renames->deferred[side].trivial_merges_okay = optimization_okay;
1531 /*
1532 * We need to recurse into any directories in
1533 * possible_trivial_merges[side] found in target_dirs[side].
1534 * But when we recurse, we may need to queue up some of the
1535 * subdirectories for possible_trivial_merges[side]. Since
1536 * we can't safely iterate through a hashmap while also adding
1537 * entries, move the entries into 'copy', iterate over 'copy',
1538 * and then we'll also iterate anything added into
1539 * possible_trivial_merges[side] once this loop is done.
1540 */
1541 copy = renames->deferred[side].possible_trivial_merges;
1542 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1543 0,
1544 &opt->priv->pool,
1545 0);
1546 strintmap_for_each_entry(&copy, &iter, entry) {
1547 const char *path = entry->key;
1548 unsigned dir_rename_mask = (intptr_t)entry->value;
1549 struct conflict_info *ci;
1550 unsigned dirmask;
1551 struct tree_desc t[3];
1552 void *buf[3] = {NULL,};
1553 int i;
1554
1555 ci = strmap_get(&opt->priv->paths, path);
1556 VERIFY_CI(ci);
1557 dirmask = ci->dirmask;
1558
1559 if (optimization_okay &&
1560 !strset_contains(&renames->deferred[side].target_dirs,
1561 path)) {
1562 resolve_trivial_directory_merge(ci, side);
1563 continue;
1564 }
1565
1566 info->name = path;
1567 info->namelen = strlen(path);
1568 info->pathlen = info->namelen + 1;
1569
1570 for (i = 0; i < 3; i++, dirmask >>= 1) {
1571 if (i == 1 && ci->match_mask == 3)
1572 t[1] = t[0];
1573 else if (i == 2 && ci->match_mask == 5)
1574 t[2] = t[0];
1575 else if (i == 2 && ci->match_mask == 6)
1576 t[2] = t[1];
1577 else {
1578 const struct object_id *oid = NULL;
1579 if (dirmask & 1)
1580 oid = &ci->stages[i].oid;
1581 buf[i] = fill_tree_descriptor(opt->repo,
1582 t+i, oid);
1583 }
1584 }
1585
1586 ci->match_mask &= ci->filemask;
1587 opt->priv->current_dir_name = path;
1588 renames->dir_rename_mask = dir_rename_mask;
1589 if (renames->dir_rename_mask == 0 ||
1590 renames->dir_rename_mask == 0x07)
1591 ret = traverse_trees(NULL, 3, t, info);
1592 else
1593 ret = traverse_trees_wrapper(NULL, 3, t, info);
1594
1595 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1596 free(buf[i]);
1597
1598 if (ret < 0)
1599 return ret;
1600 }
1601 strintmap_clear(&copy);
1602 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1603 &iter, entry) {
1604 const char *path = entry->key;
1605 struct conflict_info *ci;
1606
1607 ci = strmap_get(&opt->priv->paths, path);
1608 VERIFY_CI(ci);
1609
1610 assert(renames->deferred[side].trivial_merges_okay &&
1611 !strset_contains(&renames->deferred[side].target_dirs,
1612 path));
1613 resolve_trivial_directory_merge(ci, side);
1614 }
1615 if (!optimization_okay || path_count_after)
1616 path_count_after = strmap_get_size(&opt->priv->paths);
1617 }
1618 if (path_count_after) {
1619 /*
1620 * The choice of wanted_factor here does not affect
1621 * correctness, only performance. When the
1622 * path_count_after / path_count_before
1623 * ratio is high, redoing after renames is a big
1624 * performance boost. I suspect that redoing is a wash
1625 * somewhere near a value of 2, and below that redoing will
1626 * slow things down. I applied a fudge factor and picked
1627 * 3; see the commit message when this was introduced for
1628 * back of the envelope calculations for this ratio.
1629 */
1630 const int wanted_factor = 3;
1631
1632 /* We should only redo collect_merge_info one time */
1633 assert(renames->redo_after_renames == 0);
1634
1635 if (path_count_after / path_count_before >= wanted_factor) {
1636 renames->redo_after_renames = 1;
1637 renames->cached_pairs_valid_side = -1;
1638 }
1639 } else if (renames->redo_after_renames == 2)
1640 renames->redo_after_renames = 0;
1641 return ret;
1642 }
1643
1644 static int collect_merge_info(struct merge_options *opt,
1645 struct tree *merge_base,
1646 struct tree *side1,
1647 struct tree *side2)
1648 {
1649 int ret;
1650 struct tree_desc t[3];
1651 struct traverse_info info;
1652
1653 opt->priv->toplevel_dir = "";
1654 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1655 setup_traverse_info(&info, opt->priv->toplevel_dir);
1656 info.fn = collect_merge_info_callback;
1657 info.data = opt;
1658 info.show_all_errors = 1;
1659
1660 parse_tree(merge_base);
1661 parse_tree(side1);
1662 parse_tree(side2);
1663 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1664 init_tree_desc(t + 1, side1->buffer, side1->size);
1665 init_tree_desc(t + 2, side2->buffer, side2->size);
1666
1667 trace2_region_enter("merge", "traverse_trees", opt->repo);
1668 ret = traverse_trees(NULL, 3, t, &info);
1669 if (ret == 0)
1670 ret = handle_deferred_entries(opt, &info);
1671 trace2_region_leave("merge", "traverse_trees", opt->repo);
1672
1673 return ret;
1674 }
1675
1676 /*** Function Grouping: functions related to threeway content merges ***/
1677
1678 static int find_first_merges(struct repository *repo,
1679 const char *path,
1680 struct commit *a,
1681 struct commit *b,
1682 struct object_array *result)
1683 {
1684 int i, j;
1685 struct object_array merges = OBJECT_ARRAY_INIT;
1686 struct commit *commit;
1687 int contains_another;
1688
1689 char merged_revision[GIT_MAX_HEXSZ + 2];
1690 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1691 "--all", merged_revision, NULL };
1692 struct rev_info revs;
1693 struct setup_revision_opt rev_opts;
1694
1695 memset(result, 0, sizeof(struct object_array));
1696 memset(&rev_opts, 0, sizeof(rev_opts));
1697
1698 /* get all revisions that merge commit a */
1699 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1700 oid_to_hex(&a->object.oid));
1701 repo_init_revisions(repo, &revs, NULL);
1702 /* FIXME: can't handle linked worktrees in submodules yet */
1703 revs.single_worktree = path != NULL;
1704 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1705
1706 /* save all revisions from the above list that contain b */
1707 if (prepare_revision_walk(&revs))
1708 die("revision walk setup failed");
1709 while ((commit = get_revision(&revs)) != NULL) {
1710 struct object *o = &(commit->object);
1711 if (repo_in_merge_bases(repo, b, commit))
1712 add_object_array(o, NULL, &merges);
1713 }
1714 reset_revision_walk();
1715
1716 /* Now we've got all merges that contain a and b. Prune all
1717 * merges that contain another found merge and save them in
1718 * result.
1719 */
1720 for (i = 0; i < merges.nr; i++) {
1721 struct commit *m1 = (struct commit *) merges.objects[i].item;
1722
1723 contains_another = 0;
1724 for (j = 0; j < merges.nr; j++) {
1725 struct commit *m2 = (struct commit *) merges.objects[j].item;
1726 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1727 contains_another = 1;
1728 break;
1729 }
1730 }
1731
1732 if (!contains_another)
1733 add_object_array(merges.objects[i].item, NULL, result);
1734 }
1735
1736 object_array_clear(&merges);
1737 release_revisions(&revs);
1738 return result->nr;
1739 }
1740
1741 static int merge_submodule(struct merge_options *opt,
1742 const char *path,
1743 const struct object_id *o,
1744 const struct object_id *a,
1745 const struct object_id *b,
1746 struct object_id *result)
1747 {
1748 struct repository subrepo;
1749 struct strbuf sb = STRBUF_INIT;
1750 int ret = 0;
1751 struct commit *commit_o, *commit_a, *commit_b;
1752 int parent_count;
1753 struct object_array merges;
1754
1755 int i;
1756 int search = !opt->priv->call_depth;
1757 int sub_not_initialized = 1;
1758 int sub_flag = CONFLICT_SUBMODULE_FAILED_TO_MERGE;
1759
1760 /* store fallback answer in result in case we fail */
1761 oidcpy(result, opt->priv->call_depth ? o : a);
1762
1763 /* we can not handle deletion conflicts */
1764 if (is_null_oid(a) || is_null_oid(b))
1765 BUG("submodule deleted on one side; this should be handled outside of merge_submodule()");
1766
1767 if ((sub_not_initialized = repo_submodule_init(&subrepo,
1768 opt->repo, path, null_oid()))) {
1769 path_msg(opt, CONFLICT_SUBMODULE_NOT_INITIALIZED, 0,
1770 path, NULL, NULL, NULL,
1771 _("Failed to merge submodule %s (not checked out)"),
1772 path);
1773 sub_flag = CONFLICT_SUBMODULE_NOT_INITIALIZED;
1774 goto cleanup;
1775 }
1776
1777 if (is_null_oid(o)) {
1778 path_msg(opt, CONFLICT_SUBMODULE_NULL_MERGE_BASE, 0,
1779 path, NULL, NULL, NULL,
1780 _("Failed to merge submodule %s (no merge base)"),
1781 path);
1782 goto cleanup;
1783 }
1784
1785 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1786 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1787 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1788 path_msg(opt, CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE, 0,
1789 path, NULL, NULL, NULL,
1790 _("Failed to merge submodule %s (commits not present)"),
1791 path);
1792 sub_flag = CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE;
1793 goto cleanup;
1794 }
1795
1796 /* check whether both changes are forward */
1797 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1798 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1799 path_msg(opt, CONFLICT_SUBMODULE_MAY_HAVE_REWINDS, 0,
1800 path, NULL, NULL, NULL,
1801 _("Failed to merge submodule %s "
1802 "(commits don't follow merge-base)"),
1803 path);
1804 goto cleanup;
1805 }
1806
1807 /* Case #1: a is contained in b or vice versa */
1808 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1809 oidcpy(result, b);
1810 path_msg(opt, INFO_SUBMODULE_FAST_FORWARDING, 1,
1811 path, NULL, NULL, NULL,
1812 _("Note: Fast-forwarding submodule %s to %s"),
1813 path, oid_to_hex(b));
1814 ret = 1;
1815 goto cleanup;
1816 }
1817 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1818 oidcpy(result, a);
1819 path_msg(opt, INFO_SUBMODULE_FAST_FORWARDING, 1,
1820 path, NULL, NULL, NULL,
1821 _("Note: Fast-forwarding submodule %s to %s"),
1822 path, oid_to_hex(a));
1823 ret = 1;
1824 goto cleanup;
1825 }
1826
1827 /*
1828 * Case #2: There are one or more merges that contain a and b in
1829 * the submodule. If there is only one, then present it as a
1830 * suggestion to the user, but leave it marked unmerged so the
1831 * user needs to confirm the resolution.
1832 */
1833
1834 /* Skip the search if makes no sense to the calling context. */
1835 if (!search)
1836 goto cleanup;
1837
1838 /* find commit which merges them */
1839 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1840 &merges);
1841 switch (parent_count) {
1842 case 0:
1843 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE, 0,
1844 path, NULL, NULL, NULL,
1845 _("Failed to merge submodule %s"), path);
1846 break;
1847
1848 case 1:
1849 format_commit(&sb, 4, &subrepo,
1850 (struct commit *)merges.objects[0].item);
1851 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION, 0,
1852 path, NULL, NULL, NULL,
1853 _("Failed to merge submodule %s, but a possible merge "
1854 "resolution exists: %s"),
1855 path, sb.buf);
1856 strbuf_release(&sb);
1857 break;
1858 default:
1859 for (i = 0; i < merges.nr; i++)
1860 format_commit(&sb, 4, &subrepo,
1861 (struct commit *)merges.objects[i].item);
1862 path_msg(opt, CONFLICT_SUBMODULE_FAILED_TO_MERGE_BUT_POSSIBLE_RESOLUTION, 0,
1863 path, NULL, NULL, NULL,
1864 _("Failed to merge submodule %s, but multiple "
1865 "possible merges exist:\n%s"), path, sb.buf);
1866 strbuf_release(&sb);
1867 }
1868
1869 object_array_clear(&merges);
1870 cleanup:
1871 if (!opt->priv->call_depth && !ret) {
1872 struct string_list *csub = &opt->priv->conflicted_submodules;
1873 struct conflicted_submodule_item *util;
1874 const char *abbrev;
1875
1876 util = xmalloc(sizeof(*util));
1877 util->flag = sub_flag;
1878 util->abbrev = NULL;
1879 if (!sub_not_initialized) {
1880 abbrev = repo_find_unique_abbrev(&subrepo, b, DEFAULT_ABBREV);
1881 util->abbrev = xstrdup(abbrev);
1882 }
1883 string_list_append(csub, path)->util = util;
1884 }
1885
1886 if (!sub_not_initialized)
1887 repo_clear(&subrepo);
1888 return ret;
1889 }
1890
1891 static void initialize_attr_index(struct merge_options *opt)
1892 {
1893 /*
1894 * The renormalize_buffer() functions require attributes, and
1895 * annoyingly those can only be read from the working tree or from
1896 * an index_state. merge-ort doesn't have an index_state, so we
1897 * generate a fake one containing only attribute information.
1898 */
1899 struct merged_info *mi;
1900 struct index_state *attr_index = &opt->priv->attr_index;
1901 struct cache_entry *ce;
1902
1903 attr_index->repo = opt->repo;
1904 attr_index->initialized = 1;
1905
1906 if (!opt->renormalize)
1907 return;
1908
1909 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1910 if (!mi)
1911 return;
1912
1913 if (mi->clean) {
1914 int len = strlen(GITATTRIBUTES_FILE);
1915 ce = make_empty_cache_entry(attr_index, len);
1916 ce->ce_mode = create_ce_mode(mi->result.mode);
1917 ce->ce_flags = create_ce_flags(0);
1918 ce->ce_namelen = len;
1919 oidcpy(&ce->oid, &mi->result.oid);
1920 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1921 add_index_entry(attr_index, ce,
1922 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1923 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1924 } else {
1925 int stage, len;
1926 struct conflict_info *ci;
1927
1928 ASSIGN_AND_VERIFY_CI(ci, mi);
1929 for (stage = 0; stage < 3; stage++) {
1930 unsigned stage_mask = (1 << stage);
1931
1932 if (!(ci->filemask & stage_mask))
1933 continue;
1934 len = strlen(GITATTRIBUTES_FILE);
1935 ce = make_empty_cache_entry(attr_index, len);
1936 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1937 ce->ce_flags = create_ce_flags(stage);
1938 ce->ce_namelen = len;
1939 oidcpy(&ce->oid, &ci->stages[stage].oid);
1940 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1941 add_index_entry(attr_index, ce,
1942 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1943 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1944 &ce->oid);
1945 }
1946 }
1947 }
1948
1949 static int merge_3way(struct merge_options *opt,
1950 const char *path,
1951 const struct object_id *o,
1952 const struct object_id *a,
1953 const struct object_id *b,
1954 const char *pathnames[3],
1955 const int extra_marker_size,
1956 mmbuffer_t *result_buf)
1957 {
1958 mmfile_t orig, src1, src2;
1959 struct ll_merge_options ll_opts = {0};
1960 char *base, *name1, *name2;
1961 enum ll_merge_result merge_status;
1962
1963 if (!opt->priv->attr_index.initialized)
1964 initialize_attr_index(opt);
1965
1966 ll_opts.renormalize = opt->renormalize;
1967 ll_opts.extra_marker_size = extra_marker_size;
1968 ll_opts.xdl_opts = opt->xdl_opts;
1969
1970 if (opt->priv->call_depth) {
1971 ll_opts.virtual_ancestor = 1;
1972 ll_opts.variant = 0;
1973 } else {
1974 switch (opt->recursive_variant) {
1975 case MERGE_VARIANT_OURS:
1976 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1977 break;
1978 case MERGE_VARIANT_THEIRS:
1979 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1980 break;
1981 default:
1982 ll_opts.variant = 0;
1983 break;
1984 }
1985 }
1986
1987 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1988 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1989 base = mkpathdup("%s", opt->ancestor);
1990 name1 = mkpathdup("%s", opt->branch1);
1991 name2 = mkpathdup("%s", opt->branch2);
1992 } else {
1993 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1994 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1995 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1996 }
1997
1998 read_mmblob(&orig, o);
1999 read_mmblob(&src1, a);
2000 read_mmblob(&src2, b);
2001
2002 merge_status = ll_merge(result_buf, path, &orig, base,
2003 &src1, name1, &src2, name2,
2004 &opt->priv->attr_index, &ll_opts);
2005 if (merge_status == LL_MERGE_BINARY_CONFLICT)
2006 path_msg(opt, CONFLICT_BINARY, 0,
2007 path, NULL, NULL, NULL,
2008 "warning: Cannot merge binary files: %s (%s vs. %s)",
2009 path, name1, name2);
2010
2011 free(base);
2012 free(name1);
2013 free(name2);
2014 free(orig.ptr);
2015 free(src1.ptr);
2016 free(src2.ptr);
2017 return merge_status;
2018 }
2019
2020 static int handle_content_merge(struct merge_options *opt,
2021 const char *path,
2022 const struct version_info *o,
2023 const struct version_info *a,
2024 const struct version_info *b,
2025 const char *pathnames[3],
2026 const int extra_marker_size,
2027 struct version_info *result)
2028 {
2029 /*
2030 * path is the target location where we want to put the file, and
2031 * is used to determine any normalization rules in ll_merge.
2032 *
2033 * The normal case is that path and all entries in pathnames are
2034 * identical, though renames can affect which path we got one of
2035 * the three blobs to merge on various sides of history.
2036 *
2037 * extra_marker_size is the amount to extend conflict markers in
2038 * ll_merge; this is needed if we have content merges of content
2039 * merges, which happens for example with rename/rename(2to1) and
2040 * rename/add conflicts.
2041 */
2042 unsigned clean = 1;
2043
2044 /*
2045 * handle_content_merge() needs both files to be of the same type, i.e.
2046 * both files OR both submodules OR both symlinks. Conflicting types
2047 * needs to be handled elsewhere.
2048 */
2049 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
2050
2051 /* Merge modes */
2052 if (a->mode == b->mode || a->mode == o->mode)
2053 result->mode = b->mode;
2054 else {
2055 /* must be the 100644/100755 case */
2056 assert(S_ISREG(a->mode));
2057 result->mode = a->mode;
2058 clean = (b->mode == o->mode);
2059 /*
2060 * FIXME: If opt->priv->call_depth && !clean, then we really
2061 * should not make result->mode match either a->mode or
2062 * b->mode; that causes t6036 "check conflicting mode for
2063 * regular file" to fail. It would be best to use some other
2064 * mode, but we'll confuse all kinds of stuff if we use one
2065 * where S_ISREG(result->mode) isn't true, and if we use
2066 * something like 0100666, then tree-walk.c's calls to
2067 * canon_mode() will just normalize that to 100644 for us and
2068 * thus not solve anything.
2069 *
2070 * Figure out if there's some kind of way we can work around
2071 * this...
2072 */
2073 }
2074
2075 /*
2076 * Trivial oid merge.
2077 *
2078 * Note: While one might assume that the next four lines would
2079 * be unnecessary due to the fact that match_mask is often
2080 * setup and already handled, renames don't always take care
2081 * of that.
2082 */
2083 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
2084 oidcpy(&result->oid, &b->oid);
2085 else if (oideq(&b->oid, &o->oid))
2086 oidcpy(&result->oid, &a->oid);
2087
2088 /* Remaining rules depend on file vs. submodule vs. symlink. */
2089 else if (S_ISREG(a->mode)) {
2090 mmbuffer_t result_buf;
2091 int ret = 0, merge_status;
2092 int two_way;
2093
2094 /*
2095 * If 'o' is different type, treat it as null so we do a
2096 * two-way merge.
2097 */
2098 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
2099
2100 merge_status = merge_3way(opt, path,
2101 two_way ? null_oid() : &o->oid,
2102 &a->oid, &b->oid,
2103 pathnames, extra_marker_size,
2104 &result_buf);
2105
2106 if ((merge_status < 0) || !result_buf.ptr)
2107 ret = error(_("failed to execute internal merge"));
2108
2109 if (!ret &&
2110 write_object_file(result_buf.ptr, result_buf.size,
2111 OBJ_BLOB, &result->oid))
2112 ret = error(_("unable to add %s to database"), path);
2113
2114 free(result_buf.ptr);
2115 if (ret)
2116 return -1;
2117 clean &= (merge_status == 0);
2118 path_msg(opt, INFO_AUTO_MERGING, 1, path, NULL, NULL, NULL,
2119 _("Auto-merging %s"), path);
2120 } else if (S_ISGITLINK(a->mode)) {
2121 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
2122 clean = merge_submodule(opt, pathnames[0],
2123 two_way ? null_oid() : &o->oid,
2124 &a->oid, &b->oid, &result->oid);
2125 if (opt->priv->call_depth && two_way && !clean) {
2126 result->mode = o->mode;
2127 oidcpy(&result->oid, &o->oid);
2128 }
2129 } else if (S_ISLNK(a->mode)) {
2130 if (opt->priv->call_depth) {
2131 clean = 0;
2132 result->mode = o->mode;
2133 oidcpy(&result->oid, &o->oid);
2134 } else {
2135 switch (opt->recursive_variant) {
2136 case MERGE_VARIANT_NORMAL:
2137 clean = 0;
2138 oidcpy(&result->oid, &a->oid);
2139 break;
2140 case MERGE_VARIANT_OURS:
2141 oidcpy(&result->oid, &a->oid);
2142 break;
2143 case MERGE_VARIANT_THEIRS:
2144 oidcpy(&result->oid, &b->oid);
2145 break;
2146 }
2147 }
2148 } else
2149 BUG("unsupported object type in the tree: %06o for %s",
2150 a->mode, path);
2151
2152 return clean;
2153 }
2154
2155 /*** Function Grouping: functions related to detect_and_process_renames(), ***
2156 *** which are split into directory and regular rename detection sections. ***/
2157
2158 /*** Function Grouping: functions related to directory rename detection ***/
2159
2160 struct collision_info {
2161 struct string_list source_files;
2162 unsigned reported_already:1;
2163 };
2164
2165 /*
2166 * Return a new string that replaces the beginning portion (which matches
2167 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
2168 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
2169 * NOTE:
2170 * Caller must ensure that old_path starts with rename_info->key + '/'.
2171 */
2172 static char *apply_dir_rename(struct strmap_entry *rename_info,
2173 const char *old_path)
2174 {
2175 struct strbuf new_path = STRBUF_INIT;
2176 const char *old_dir = rename_info->key;
2177 const char *new_dir = rename_info->value;
2178 int oldlen, newlen, new_dir_len;
2179
2180 oldlen = strlen(old_dir);
2181 if (*new_dir == '\0')
2182 /*
2183 * If someone renamed/merged a subdirectory into the root
2184 * directory (e.g. 'some/subdir' -> ''), then we want to
2185 * avoid returning
2186 * '' + '/filename'
2187 * as the rename; we need to make old_path + oldlen advance
2188 * past the '/' character.
2189 */
2190 oldlen++;
2191 new_dir_len = strlen(new_dir);
2192 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
2193 strbuf_grow(&new_path, newlen);
2194 strbuf_add(&new_path, new_dir, new_dir_len);
2195 strbuf_addstr(&new_path, &old_path[oldlen]);
2196
2197 return strbuf_detach(&new_path, NULL);
2198 }
2199
2200 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
2201 {
2202 struct merged_info *mi = strmap_get(paths, path);
2203 struct conflict_info *ci;
2204 if (!mi)
2205 return 0;
2206 INITIALIZE_CI(ci, mi);
2207 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2208 }
2209
2210 /*
2211 * See if there is a directory rename for path, and if there are any file
2212 * level conflicts on the given side for the renamed location. If there is
2213 * a rename and there are no conflicts, return the new name. Otherwise,
2214 * return NULL.
2215 */
2216 static char *handle_path_level_conflicts(struct merge_options *opt,
2217 const char *path,
2218 unsigned side_index,
2219 struct strmap_entry *rename_info,
2220 struct strmap *collisions)
2221 {
2222 char *new_path = NULL;
2223 struct collision_info *c_info;
2224 int clean = 1;
2225 struct strbuf collision_paths = STRBUF_INIT;
2226
2227 /*
2228 * entry has the mapping of old directory name to new directory name
2229 * that we want to apply to path.
2230 */
2231 new_path = apply_dir_rename(rename_info, path);
2232 if (!new_path)
2233 BUG("Failed to apply directory rename!");
2234
2235 /*
2236 * The caller needs to have ensured that it has pre-populated
2237 * collisions with all paths that map to new_path. Do a quick check
2238 * to ensure that's the case.
2239 */
2240 c_info = strmap_get(collisions, new_path);
2241 if (!c_info)
2242 BUG("c_info is NULL");
2243
2244 /*
2245 * Check for one-sided add/add/.../add conflicts, i.e.
2246 * where implicit renames from the other side doing
2247 * directory rename(s) can affect this side of history
2248 * to put multiple paths into the same location. Warn
2249 * and bail on directory renames for such paths.
2250 */
2251 if (c_info->reported_already) {
2252 clean = 0;
2253 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2254 c_info->reported_already = 1;
2255 strbuf_add_separated_string_list(&collision_paths, ", ",
2256 &c_info->source_files);
2257 path_msg(opt, CONFLICT_DIR_RENAME_FILE_IN_WAY, 0,
2258 new_path, NULL, NULL, &c_info->source_files,
2259 _("CONFLICT (implicit dir rename): Existing "
2260 "file/dir at %s in the way of implicit "
2261 "directory rename(s) putting the following "
2262 "path(s) there: %s."),
2263 new_path, collision_paths.buf);
2264 clean = 0;
2265 } else if (c_info->source_files.nr > 1) {
2266 c_info->reported_already = 1;
2267 strbuf_add_separated_string_list(&collision_paths, ", ",
2268 &c_info->source_files);
2269 path_msg(opt, CONFLICT_DIR_RENAME_COLLISION, 0,
2270 new_path, NULL, NULL, &c_info->source_files,
2271 _("CONFLICT (implicit dir rename): Cannot map "
2272 "more than one path to %s; implicit directory "
2273 "renames tried to put these paths there: %s"),
2274 new_path, collision_paths.buf);
2275 clean = 0;
2276 }
2277
2278 /* Free memory we no longer need */
2279 strbuf_release(&collision_paths);
2280 if (!clean && new_path) {
2281 free(new_path);
2282 return NULL;
2283 }
2284
2285 return new_path;
2286 }
2287
2288 static void get_provisional_directory_renames(struct merge_options *opt,
2289 unsigned side,
2290 int *clean)
2291 {
2292 struct hashmap_iter iter;
2293 struct strmap_entry *entry;
2294 struct rename_info *renames = &opt->priv->renames;
2295
2296 /*
2297 * Collapse
2298 * dir_rename_count: old_directory -> {new_directory -> count}
2299 * down to
2300 * dir_renames: old_directory -> best_new_directory
2301 * where best_new_directory is the one with the unique highest count.
2302 */
2303 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2304 const char *source_dir = entry->key;
2305 struct strintmap *counts = entry->value;
2306 struct hashmap_iter count_iter;
2307 struct strmap_entry *count_entry;
2308 int max = 0;
2309 int bad_max = 0;
2310 const char *best = NULL;
2311
2312 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2313 const char *target_dir = count_entry->key;
2314 intptr_t count = (intptr_t)count_entry->value;
2315
2316 if (count == max)
2317 bad_max = max;
2318 else if (count > max) {
2319 max = count;
2320 best = target_dir;
2321 }
2322 }
2323
2324 if (max == 0)
2325 continue;
2326
2327 if (bad_max == max) {
2328 path_msg(opt, CONFLICT_DIR_RENAME_SPLIT, 0,
2329 source_dir, NULL, NULL, NULL,
2330 _("CONFLICT (directory rename split): "
2331 "Unclear where to rename %s to; it was "
2332 "renamed to multiple other directories, "
2333 "with no destination getting a majority of "
2334 "the files."),
2335 source_dir);
2336 *clean = 0;
2337 } else {
2338 strmap_put(&renames->dir_renames[side],
2339 source_dir, (void*)best);
2340 }
2341 }
2342 }
2343
2344 static void handle_directory_level_conflicts(struct merge_options *opt)
2345 {
2346 struct hashmap_iter iter;
2347 struct strmap_entry *entry;
2348 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2349 struct rename_info *renames = &opt->priv->renames;
2350 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2351 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2352 int i;
2353
2354 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2355 if (strmap_contains(side2_dir_renames, entry->key))
2356 string_list_append(&duplicated, entry->key);
2357 }
2358
2359 for (i = 0; i < duplicated.nr; i++) {
2360 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2361 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2362 }
2363 string_list_clear(&duplicated, 0);
2364 }
2365
2366 static struct strmap_entry *check_dir_renamed(const char *path,
2367 struct strmap *dir_renames)
2368 {
2369 char *temp = xstrdup(path);
2370 char *end;
2371 struct strmap_entry *e = NULL;
2372
2373 while ((end = strrchr(temp, '/'))) {
2374 *end = '\0';
2375 e = strmap_get_entry(dir_renames, temp);
2376 if (e)
2377 break;
2378 }
2379 free(temp);
2380 return e;
2381 }
2382
2383 static void compute_collisions(struct strmap *collisions,
2384 struct strmap *dir_renames,
2385 struct diff_queue_struct *pairs)
2386 {
2387 int i;
2388
2389 strmap_init_with_options(collisions, NULL, 0);
2390 if (strmap_empty(dir_renames))
2391 return;
2392
2393 /*
2394 * Multiple files can be mapped to the same path due to directory
2395 * renames done by the other side of history. Since that other
2396 * side of history could have merged multiple directories into one,
2397 * if our side of history added the same file basename to each of
2398 * those directories, then all N of them would get implicitly
2399 * renamed by the directory rename detection into the same path,
2400 * and we'd get an add/add/.../add conflict, and all those adds
2401 * from *this* side of history. This is not representable in the
2402 * index, and users aren't going to easily be able to make sense of
2403 * it. So we need to provide a good warning about what's
2404 * happening, and fall back to no-directory-rename detection
2405 * behavior for those paths.
2406 *
2407 * See testcases 9e and all of section 5 from t6043 for examples.
2408 */
2409 for (i = 0; i < pairs->nr; ++i) {
2410 struct strmap_entry *rename_info;
2411 struct collision_info *collision_info;
2412 char *new_path;
2413 struct diff_filepair *pair = pairs->queue[i];
2414
2415 if (pair->status != 'A' && pair->status != 'R')
2416 continue;
2417 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2418 if (!rename_info)
2419 continue;
2420
2421 new_path = apply_dir_rename(rename_info, pair->two->path);
2422 assert(new_path);
2423 collision_info = strmap_get(collisions, new_path);
2424 if (collision_info) {
2425 free(new_path);
2426 } else {
2427 CALLOC_ARRAY(collision_info, 1);
2428 string_list_init_nodup(&collision_info->source_files);
2429 strmap_put(collisions, new_path, collision_info);
2430 }
2431 string_list_insert(&collision_info->source_files,
2432 pair->two->path);
2433 }
2434 }
2435
2436 static void free_collisions(struct strmap *collisions)
2437 {
2438 struct hashmap_iter iter;
2439 struct strmap_entry *entry;
2440
2441 /* Free each value in the collisions map */
2442 strmap_for_each_entry(collisions, &iter, entry) {
2443 struct collision_info *info = entry->value;
2444 string_list_clear(&info->source_files, 0);
2445 }
2446 /*
2447 * In compute_collisions(), we set collisions.strdup_strings to 0
2448 * so that we wouldn't have to make another copy of the new_path
2449 * allocated by apply_dir_rename(). But now that we've used them
2450 * and have no other references to these strings, it is time to
2451 * deallocate them.
2452 */
2453 free_strmap_strings(collisions);
2454 strmap_clear(collisions, 1);
2455 }
2456
2457 static char *check_for_directory_rename(struct merge_options *opt,
2458 const char *path,
2459 unsigned side_index,
2460 struct strmap *dir_renames,
2461 struct strmap *dir_rename_exclusions,
2462 struct strmap *collisions,
2463 int *clean_merge)
2464 {
2465 char *new_path;
2466 struct strmap_entry *rename_info;
2467 struct strmap_entry *otherinfo;
2468 const char *new_dir;
2469 int other_side = 3 - side_index;
2470
2471 /*
2472 * Cases where we don't have or don't want a directory rename for
2473 * this path.
2474 */
2475 if (strmap_empty(dir_renames))
2476 return NULL;
2477 if (strmap_get(&collisions[other_side], path))
2478 return NULL;
2479 rename_info = check_dir_renamed(path, dir_renames);
2480 if (!rename_info)
2481 return NULL;
2482
2483 /*
2484 * This next part is a little weird. We do not want to do an
2485 * implicit rename into a directory we renamed on our side, because
2486 * that will result in a spurious rename/rename(1to2) conflict. An
2487 * example:
2488 * Base commit: dumbdir/afile, otherdir/bfile
2489 * Side 1: smrtdir/afile, otherdir/bfile
2490 * Side 2: dumbdir/afile, dumbdir/bfile
2491 * Here, while working on Side 1, we could notice that otherdir was
2492 * renamed/merged to dumbdir, and change the diff_filepair for
2493 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2494 * 2 will notice the rename from dumbdir to smrtdir, and do the
2495 * transitive rename to move it from dumbdir/bfile to
2496 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2497 * smrtdir, a rename/rename(1to2) conflict. We really just want
2498 * the file to end up in smrtdir. And the way to achieve that is
2499 * to not let Side1 do the rename to dumbdir, since we know that is
2500 * the source of one of our directory renames.
2501 *
2502 * That's why otherinfo and dir_rename_exclusions is here.
2503 *
2504 * As it turns out, this also prevents N-way transient rename
2505 * confusion; See testcases 9c and 9d of t6043.
2506 */
2507 new_dir = rename_info->value; /* old_dir = rename_info->key; */
2508 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2509 if (otherinfo) {
2510 path_msg(opt, INFO_DIR_RENAME_SKIPPED_DUE_TO_RERENAME, 1,
2511 rename_info->key, path, new_dir, NULL,
2512 _("WARNING: Avoiding applying %s -> %s rename "
2513 "to %s, because %s itself was renamed."),
2514 rename_info->key, new_dir, path, new_dir);
2515 return NULL;
2516 }
2517
2518 new_path = handle_path_level_conflicts(opt, path, side_index,
2519 rename_info,
2520 &collisions[side_index]);
2521 *clean_merge &= (new_path != NULL);
2522
2523 return new_path;
2524 }
2525
2526 static void apply_directory_rename_modifications(struct merge_options *opt,
2527 struct diff_filepair *pair,
2528 char *new_path)
2529 {
2530 /*
2531 * The basic idea is to get the conflict_info from opt->priv->paths
2532 * at old path, and insert it into new_path; basically just this:
2533 * ci = strmap_get(&opt->priv->paths, old_path);
2534 * strmap_remove(&opt->priv->paths, old_path, 0);
2535 * strmap_put(&opt->priv->paths, new_path, ci);
2536 * However, there are some factors complicating this:
2537 * - opt->priv->paths may already have an entry at new_path
2538 * - Each ci tracks its containing directory, so we need to
2539 * update that
2540 * - If another ci has the same containing directory, then
2541 * the two char*'s MUST point to the same location. See the
2542 * comment in struct merged_info. strcmp equality is not
2543 * enough; we need pointer equality.
2544 * - opt->priv->paths must hold the parent directories of any
2545 * entries that are added. So, if this directory rename
2546 * causes entirely new directories, we must recursively add
2547 * parent directories.
2548 * - For each parent directory added to opt->priv->paths, we
2549 * also need to get its parent directory stored in its
2550 * conflict_info->merged.directory_name with all the same
2551 * requirements about pointer equality.
2552 */
2553 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2554 struct conflict_info *ci, *new_ci;
2555 struct strmap_entry *entry;
2556 const char *branch_with_new_path, *branch_with_dir_rename;
2557 const char *old_path = pair->two->path;
2558 const char *parent_name;
2559 const char *cur_path;
2560 int i, len;
2561
2562 entry = strmap_get_entry(&opt->priv->paths, old_path);
2563 old_path = entry->key;
2564 ci = entry->value;
2565 VERIFY_CI(ci);
2566
2567 /* Find parent directories missing from opt->priv->paths */
2568 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2569 free((char*)new_path);
2570 new_path = (char *)cur_path;
2571
2572 while (1) {
2573 /* Find the parent directory of cur_path */
2574 char *last_slash = strrchr(cur_path, '/');
2575 if (last_slash) {
2576 parent_name = mem_pool_strndup(&opt->priv->pool,
2577 cur_path,
2578 last_slash - cur_path);
2579 } else {
2580 parent_name = opt->priv->toplevel_dir;
2581 break;
2582 }
2583
2584 /* Look it up in opt->priv->paths */
2585 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2586 if (entry) {
2587 parent_name = entry->key; /* reuse known pointer */
2588 break;
2589 }
2590
2591 /* Record this is one of the directories we need to insert */
2592 string_list_append(&dirs_to_insert, parent_name);
2593 cur_path = parent_name;
2594 }
2595
2596 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2597 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2598 struct conflict_info *dir_ci;
2599 char *cur_dir = dirs_to_insert.items[i].string;
2600
2601 CALLOC_ARRAY(dir_ci, 1);
2602
2603 dir_ci->merged.directory_name = parent_name;
2604 len = strlen(parent_name);
2605 /* len+1 because of trailing '/' character */
2606 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2607 dir_ci->dirmask = ci->filemask;
2608 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2609
2610 parent_name = cur_dir;
2611 }
2612
2613 assert(ci->filemask == 2 || ci->filemask == 4);
2614 assert(ci->dirmask == 0 || ci->dirmask == 1);
2615 if (ci->dirmask == 0)
2616 strmap_remove(&opt->priv->paths, old_path, 0);
2617 else {
2618 /*
2619 * This file exists on one side, but we still had a directory
2620 * at the old location that we can't remove until after
2621 * processing all paths below it. So, make a copy of ci in
2622 * new_ci and only put the file information into it.
2623 */
2624 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
2625 memcpy(new_ci, ci, sizeof(*ci));
2626 assert(!new_ci->match_mask);
2627 new_ci->dirmask = 0;
2628 new_ci->stages[1].mode = 0;
2629 oidcpy(&new_ci->stages[1].oid, null_oid());
2630
2631 /*
2632 * Now that we have the file information in new_ci, make sure
2633 * ci only has the directory information.
2634 */
2635 ci->filemask = 0;
2636 ci->merged.clean = 1;
2637 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
2638 if (ci->dirmask & (1 << i))
2639 continue;
2640 /* zero out any entries related to files */
2641 ci->stages[i].mode = 0;
2642 oidcpy(&ci->stages[i].oid, null_oid());
2643 }
2644
2645 // Now we want to focus on new_ci, so reassign ci to it
2646 ci = new_ci;
2647 }
2648
2649 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2650 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2651
2652 /* Now, finally update ci and stick it into opt->priv->paths */
2653 ci->merged.directory_name = parent_name;
2654 len = strlen(parent_name);
2655 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2656 new_ci = strmap_get(&opt->priv->paths, new_path);
2657 if (!new_ci) {
2658 /* Place ci back into opt->priv->paths, but at new_path */
2659 strmap_put(&opt->priv->paths, new_path, ci);
2660 } else {
2661 int index;
2662
2663 /* A few sanity checks */
2664 VERIFY_CI(new_ci);
2665 assert(ci->filemask == 2 || ci->filemask == 4);
2666 assert((new_ci->filemask & ci->filemask) == 0);
2667 assert(!new_ci->merged.clean);
2668
2669 /* Copy stuff from ci into new_ci */
2670 new_ci->filemask |= ci->filemask;
2671 if (new_ci->dirmask)
2672 new_ci->df_conflict = 1;
2673 index = (ci->filemask >> 1);
2674 new_ci->pathnames[index] = ci->pathnames[index];
2675 new_ci->stages[index].mode = ci->stages[index].mode;
2676 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2677
2678 ci = new_ci;
2679 }
2680
2681 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2682 /* Notify user of updated path */
2683 if (pair->status == 'A')
2684 path_msg(opt, INFO_DIR_RENAME_APPLIED, 1,
2685 new_path, old_path, NULL, NULL,
2686 _("Path updated: %s added in %s inside a "
2687 "directory that was renamed in %s; moving "
2688 "it to %s."),
2689 old_path, branch_with_new_path,
2690 branch_with_dir_rename, new_path);
2691 else
2692 path_msg(opt, INFO_DIR_RENAME_APPLIED, 1,
2693 new_path, old_path, NULL, NULL,
2694 _("Path updated: %s renamed to %s in %s, "
2695 "inside a directory that was renamed in %s; "
2696 "moving it to %s."),
2697 pair->one->path, old_path, branch_with_new_path,
2698 branch_with_dir_rename, new_path);
2699 } else {
2700 /*
2701 * opt->detect_directory_renames has the value
2702 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2703 */
2704 ci->path_conflict = 1;
2705 if (pair->status == 'A')
2706 path_msg(opt, CONFLICT_DIR_RENAME_SUGGESTED, 1,
2707 new_path, old_path, NULL, NULL,
2708 _("CONFLICT (file location): %s added in %s "
2709 "inside a directory that was renamed in %s, "
2710 "suggesting it should perhaps be moved to "
2711 "%s."),
2712 old_path, branch_with_new_path,
2713 branch_with_dir_rename, new_path);
2714 else
2715 path_msg(opt, CONFLICT_DIR_RENAME_SUGGESTED, 1,
2716 new_path, old_path, NULL, NULL,
2717 _("CONFLICT (file location): %s renamed to %s "
2718 "in %s, inside a directory that was renamed "
2719 "in %s, suggesting it should perhaps be "
2720 "moved to %s."),
2721 pair->one->path, old_path, branch_with_new_path,
2722 branch_with_dir_rename, new_path);
2723 }
2724
2725 /*
2726 * Finally, record the new location.
2727 */
2728 pair->two->path = new_path;
2729 }
2730
2731 /*** Function Grouping: functions related to regular rename detection ***/
2732
2733 static int process_renames(struct merge_options *opt,
2734 struct diff_queue_struct *renames)
2735 {
2736 int clean_merge = 1, i;
2737
2738 for (i = 0; i < renames->nr; ++i) {
2739 const char *oldpath = NULL, *newpath;
2740 struct diff_filepair *pair = renames->queue[i];
2741 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2742 struct strmap_entry *old_ent, *new_ent;
2743 unsigned int old_sidemask;
2744 int target_index, other_source_index;
2745 int source_deleted, collision, type_changed;
2746 const char *rename_branch = NULL, *delete_branch = NULL;
2747
2748 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2749 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2750 if (old_ent) {
2751 oldpath = old_ent->key;
2752 oldinfo = old_ent->value;
2753 }
2754 newpath = pair->two->path;
2755 if (new_ent) {
2756 newpath = new_ent->key;
2757 newinfo = new_ent->value;
2758 }
2759
2760 /*
2761 * If pair->one->path isn't in opt->priv->paths, that means
2762 * that either directory rename detection removed that
2763 * path, or a parent directory of oldpath was resolved and
2764 * we don't even need the rename; in either case, we can
2765 * skip it. If oldinfo->merged.clean, then the other side
2766 * of history had no changes to oldpath and we don't need
2767 * the rename and can skip it.
2768 */
2769 if (!oldinfo || oldinfo->merged.clean)
2770 continue;
2771
2772 /*
2773 * diff_filepairs have copies of pathnames, thus we have to
2774 * use standard 'strcmp()' (negated) instead of '=='.
2775 */
2776 if (i + 1 < renames->nr &&
2777 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2778 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2779 const char *pathnames[3];
2780 struct version_info merged;
2781 struct conflict_info *base, *side1, *side2;
2782 unsigned was_binary_blob = 0;
2783
2784 pathnames[0] = oldpath;
2785 pathnames[1] = newpath;
2786 pathnames[2] = renames->queue[i+1]->two->path;
2787
2788 base = strmap_get(&opt->priv->paths, pathnames[0]);
2789 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2790 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2791
2792 VERIFY_CI(base);
2793 VERIFY_CI(side1);
2794 VERIFY_CI(side2);
2795
2796 if (!strcmp(pathnames[1], pathnames[2])) {
2797 struct rename_info *ri = &opt->priv->renames;
2798 int j;
2799
2800 /* Both sides renamed the same way */
2801 assert(side1 == side2);
2802 memcpy(&side1->stages[0], &base->stages[0],
2803 sizeof(merged));
2804 side1->filemask |= (1 << MERGE_BASE);
2805 /* Mark base as resolved by removal */
2806 base->merged.is_null = 1;
2807 base->merged.clean = 1;
2808
2809 /*
2810 * Disable remembering renames optimization;
2811 * rename/rename(1to1) is incredibly rare, and
2812 * just disabling the optimization is easier
2813 * than purging cached_pairs,
2814 * cached_target_names, and dir_rename_counts.
2815 */
2816 for (j = 0; j < 3; j++)
2817 ri->merge_trees[j] = NULL;
2818
2819 /* We handled both renames, i.e. i+1 handled */
2820 i++;
2821 /* Move to next rename */
2822 continue;
2823 }
2824
2825 /* This is a rename/rename(1to2) */
2826 clean_merge = handle_content_merge(opt,
2827 pair->one->path,
2828 &base->stages[0],
2829 &side1->stages[1],
2830 &side2->stages[2],
2831 pathnames,
2832 1 + 2 * opt->priv->call_depth,
2833 &merged);
2834 if (clean_merge < 0)
2835 return -1;
2836 if (!clean_merge &&
2837 merged.mode == side1->stages[1].mode &&
2838 oideq(&merged.oid, &side1->stages[1].oid))
2839 was_binary_blob = 1;
2840 memcpy(&side1->stages[1], &merged, sizeof(merged));
2841 if (was_binary_blob) {
2842 /*
2843 * Getting here means we were attempting to
2844 * merge a binary blob.
2845 *
2846 * Since we can't merge binaries,
2847 * handle_content_merge() just takes one
2848 * side. But we don't want to copy the
2849 * contents of one side to both paths. We
2850 * used the contents of side1 above for
2851 * side1->stages, let's use the contents of
2852 * side2 for side2->stages below.
2853 */
2854 oidcpy(&merged.oid, &side2->stages[2].oid);
2855 merged.mode = side2->stages[2].mode;
2856 }
2857 memcpy(&side2->stages[2], &merged, sizeof(merged));
2858
2859 side1->path_conflict = 1;
2860 side2->path_conflict = 1;
2861 /*
2862 * TODO: For renames we normally remove the path at the
2863 * old name. It would thus seem consistent to do the
2864 * same for rename/rename(1to2) cases, but we haven't
2865 * done so traditionally and a number of the regression
2866 * tests now encode an expectation that the file is
2867 * left there at stage 1. If we ever decide to change
2868 * this, add the following two lines here:
2869 * base->merged.is_null = 1;
2870 * base->merged.clean = 1;
2871 * and remove the setting of base->path_conflict to 1.
2872 */
2873 base->path_conflict = 1;
2874 path_msg(opt, CONFLICT_RENAME_RENAME, 0,
2875 pathnames[0], pathnames[1], pathnames[2], NULL,
2876 _("CONFLICT (rename/rename): %s renamed to "
2877 "%s in %s and to %s in %s."),
2878 pathnames[0],
2879 pathnames[1], opt->branch1,
2880 pathnames[2], opt->branch2);
2881
2882 i++; /* We handled both renames, i.e. i+1 handled */
2883 continue;
2884 }
2885
2886 VERIFY_CI(oldinfo);
2887 VERIFY_CI(newinfo);
2888 target_index = pair->score; /* from collect_renames() */
2889 assert(target_index == 1 || target_index == 2);
2890 other_source_index = 3 - target_index;
2891 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2892 source_deleted = (oldinfo->filemask == 1);
2893 collision = ((newinfo->filemask & old_sidemask) != 0);
2894 type_changed = !source_deleted &&
2895 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2896 S_ISREG(newinfo->stages[target_index].mode));
2897 if (type_changed && collision) {
2898 /*
2899 * special handling so later blocks can handle this...
2900 *
2901 * if type_changed && collision are both true, then this
2902 * was really a double rename, but one side wasn't
2903 * detected due to lack of break detection. I.e.
2904 * something like
2905 * orig: has normal file 'foo'
2906 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2907 * side2: renames 'foo' to 'bar'
2908 * In this case, the foo->bar rename on side1 won't be
2909 * detected because the new symlink named 'foo' is
2910 * there and we don't do break detection. But we detect
2911 * this here because we don't want to merge the content
2912 * of the foo symlink with the foo->bar file, so we
2913 * have some logic to handle this special case. The
2914 * easiest way to do that is make 'bar' on side1 not
2915 * be considered a colliding file but the other part
2916 * of a normal rename. If the file is very different,
2917 * well we're going to get content merge conflicts
2918 * anyway so it doesn't hurt. And if the colliding
2919 * file also has a different type, that'll be handled
2920 * by the content merge logic in process_entry() too.
2921 *
2922 * See also t6430, 'rename vs. rename/symlink'
2923 */
2924 collision = 0;
2925 }
2926 if (source_deleted) {
2927 if (target_index == 1) {
2928 rename_branch = opt->branch1;
2929 delete_branch = opt->branch2;
2930 } else {
2931 rename_branch = opt->branch2;
2932 delete_branch = opt->branch1;
2933 }
2934 }
2935
2936 assert(source_deleted || oldinfo->filemask & old_sidemask);
2937
2938 /* Need to check for special types of rename conflicts... */
2939 if (collision && !source_deleted) {
2940 /* collision: rename/add or rename/rename(2to1) */
2941 const char *pathnames[3];
2942 struct version_info merged;
2943
2944 struct conflict_info *base, *side1, *side2;
2945 int clean;
2946
2947 pathnames[0] = oldpath;
2948 pathnames[other_source_index] = oldpath;
2949 pathnames[target_index] = newpath;
2950
2951 base = strmap_get(&opt->priv->paths, pathnames[0]);
2952 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2953 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2954
2955 VERIFY_CI(base);
2956 VERIFY_CI(side1);
2957 VERIFY_CI(side2);
2958
2959 clean = handle_content_merge(opt, pair->one->path,
2960 &base->stages[0],
2961 &side1->stages[1],
2962 &side2->stages[2],
2963 pathnames,
2964 1 + 2 * opt->priv->call_depth,
2965 &merged);
2966 if (clean < 0)
2967 return -1;
2968
2969 memcpy(&newinfo->stages[target_index], &merged,
2970 sizeof(merged));
2971 if (!clean) {
2972 path_msg(opt, CONFLICT_RENAME_COLLIDES, 0,
2973 newpath, oldpath, NULL, NULL,
2974 _("CONFLICT (rename involved in "
2975 "collision): rename of %s -> %s has "
2976 "content conflicts AND collides "
2977 "with another path; this may result "
2978 "in nested conflict markers."),
2979 oldpath, newpath);
2980 }
2981 } else if (collision && source_deleted) {
2982 /*
2983 * rename/add/delete or rename/rename(2to1)/delete:
2984 * since oldpath was deleted on the side that didn't
2985 * do the rename, there's not much of a content merge
2986 * we can do for the rename. oldinfo->merged.is_null
2987 * was already set, so we just leave things as-is so
2988 * they look like an add/add conflict.
2989 */
2990
2991 newinfo->path_conflict = 1;
2992 path_msg(opt, CONFLICT_RENAME_DELETE, 0,
2993 newpath, oldpath, NULL, NULL,
2994 _("CONFLICT (rename/delete): %s renamed "
2995 "to %s in %s, but deleted in %s."),
2996 oldpath, newpath, rename_branch, delete_branch);
2997 } else {
2998 /*
2999 * a few different cases...start by copying the
3000 * existing stage(s) from oldinfo over the newinfo
3001 * and update the pathname(s).
3002 */
3003 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
3004 sizeof(newinfo->stages[0]));
3005 newinfo->filemask |= (1 << MERGE_BASE);
3006 newinfo->pathnames[0] = oldpath;
3007 if (type_changed) {
3008 /* rename vs. typechange */
3009 /* Mark the original as resolved by removal */
3010 memcpy(&oldinfo->stages[0].oid, null_oid(),
3011 sizeof(oldinfo->stages[0].oid));
3012 oldinfo->stages[0].mode = 0;
3013 oldinfo->filemask &= 0x06;
3014 } else if (source_deleted) {
3015 /* rename/delete */
3016 newinfo->path_conflict = 1;
3017 path_msg(opt, CONFLICT_RENAME_DELETE, 0,
3018 newpath, oldpath, NULL, NULL,
3019 _("CONFLICT (rename/delete): %s renamed"
3020 " to %s in %s, but deleted in %s."),
3021 oldpath, newpath,
3022 rename_branch, delete_branch);
3023 } else {
3024 /* normal rename */
3025 memcpy(&newinfo->stages[other_source_index],
3026 &oldinfo->stages[other_source_index],
3027 sizeof(newinfo->stages[0]));
3028 newinfo->filemask |= (1 << other_source_index);
3029 newinfo->pathnames[other_source_index] = oldpath;
3030 }
3031 }
3032
3033 if (!type_changed) {
3034 /* Mark the original as resolved by removal */
3035 oldinfo->merged.is_null = 1;
3036 oldinfo->merged.clean = 1;
3037 }
3038
3039 }
3040
3041 return clean_merge;
3042 }
3043
3044 static inline int possible_side_renames(struct rename_info *renames,
3045 unsigned side_index)
3046 {
3047 return renames->pairs[side_index].nr > 0 &&
3048 !strintmap_empty(&renames->relevant_sources[side_index]);
3049 }
3050
3051 static inline int possible_renames(struct rename_info *renames)
3052 {
3053 return possible_side_renames(renames, 1) ||
3054 possible_side_renames(renames, 2) ||
3055 !strmap_empty(&renames->cached_pairs[1]) ||
3056 !strmap_empty(&renames->cached_pairs[2]);
3057 }
3058
3059 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
3060 {
3061 /*
3062 * A simplified version of diff_resolve_rename_copy(); would probably
3063 * just use that function but it's static...
3064 */
3065 int i;
3066 struct diff_filepair *p;
3067
3068 for (i = 0; i < q->nr; ++i) {
3069 p = q->queue[i];
3070 p->status = 0; /* undecided */
3071 if (!DIFF_FILE_VALID(p->one))
3072 p->status = DIFF_STATUS_ADDED;
3073 else if (!DIFF_FILE_VALID(p->two))
3074 p->status = DIFF_STATUS_DELETED;
3075 else if (DIFF_PAIR_RENAME(p))
3076 p->status = DIFF_STATUS_RENAMED;
3077 }
3078 }
3079
3080 static void prune_cached_from_relevant(struct rename_info *renames,
3081 unsigned side)
3082 {
3083 /* Reason for this function described in add_pair() */
3084 struct hashmap_iter iter;
3085 struct strmap_entry *entry;
3086
3087 /* Remove from relevant_sources all entries in cached_pairs[side] */
3088 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
3089 strintmap_remove(&renames->relevant_sources[side],
3090 entry->key);
3091 }
3092 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
3093 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
3094 strintmap_remove(&renames->relevant_sources[side],
3095 entry->key);
3096 }
3097 }
3098
3099 static void use_cached_pairs(struct merge_options *opt,
3100 struct strmap *cached_pairs,
3101 struct diff_queue_struct *pairs)
3102 {
3103 struct hashmap_iter iter;
3104 struct strmap_entry *entry;
3105
3106 /*
3107 * Add to side_pairs all entries from renames->cached_pairs[side_index].
3108 * (Info in cached_irrelevant[side_index] is not relevant here.)
3109 */
3110 strmap_for_each_entry(cached_pairs, &iter, entry) {
3111 struct diff_filespec *one, *two;
3112 const char *old_name = entry->key;
3113 const char *new_name = entry->value;
3114 if (!new_name)
3115 new_name = old_name;
3116
3117 /*
3118 * cached_pairs has *copies* of old_name and new_name,
3119 * because it has to persist across merges. Since
3120 * pool_alloc_filespec() will just re-use the existing
3121 * filenames, which will also get re-used by
3122 * opt->priv->paths if they become renames, and then
3123 * get freed at the end of the merge, that would leave
3124 * the copy in cached_pairs dangling. Avoid this by
3125 * making a copy here.
3126 */
3127 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
3128 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
3129
3130 /* We don't care about oid/mode, only filenames and status */
3131 one = pool_alloc_filespec(&opt->priv->pool, old_name);
3132 two = pool_alloc_filespec(&opt->priv->pool, new_name);
3133 pool_diff_queue(&opt->priv->pool, pairs, one, two);
3134 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
3135 }
3136 }
3137
3138 static void cache_new_pair(struct rename_info *renames,
3139 int side,
3140 char *old_path,
3141 char *new_path,
3142 int free_old_value)
3143 {
3144 char *old_value;
3145 new_path = xstrdup(new_path);
3146 old_value = strmap_put(&renames->cached_pairs[side],
3147 old_path, new_path);
3148 strset_add(&renames->cached_target_names[side], new_path);
3149 if (free_old_value)
3150 free(old_value);
3151 else
3152 assert(!old_value);
3153 }
3154
3155 static void possibly_cache_new_pair(struct rename_info *renames,
3156 struct diff_filepair *p,
3157 unsigned side,
3158 char *new_path)
3159 {
3160 int dir_renamed_side = 0;
3161
3162 if (new_path) {
3163 /*
3164 * Directory renames happen on the other side of history from
3165 * the side that adds new files to the old directory.
3166 */
3167 dir_renamed_side = 3 - side;
3168 } else {
3169 int val = strintmap_get(&renames->relevant_sources[side],
3170 p->one->path);
3171 if (val == RELEVANT_NO_MORE) {
3172 assert(p->status == 'D');
3173 strset_add(&renames->cached_irrelevant[side],
3174 p->one->path);
3175 }
3176 if (val <= 0)
3177 return;
3178 }
3179
3180 if (p->status == 'D') {
3181 /*
3182 * If we already had this delete, we'll just set it's value
3183 * to NULL again, so no harm.
3184 */
3185 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
3186 } else if (p->status == 'R') {
3187 if (!new_path)
3188 new_path = p->two->path;
3189 else
3190 cache_new_pair(renames, dir_renamed_side,
3191 p->two->path, new_path, 0);
3192 cache_new_pair(renames, side, p->one->path, new_path, 1);
3193 } else if (p->status == 'A' && new_path) {
3194 cache_new_pair(renames, dir_renamed_side,
3195 p->two->path, new_path, 0);
3196 }
3197 }
3198
3199 static int compare_pairs(const void *a_, const void *b_)
3200 {
3201 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
3202 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
3203
3204 return strcmp(a->one->path, b->one->path);
3205 }
3206
3207 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
3208 static int detect_regular_renames(struct merge_options *opt,
3209 unsigned side_index)
3210 {
3211 struct diff_options diff_opts;
3212 struct rename_info *renames = &opt->priv->renames;
3213
3214 prune_cached_from_relevant(renames, side_index);
3215 if (!possible_side_renames(renames, side_index)) {
3216 /*
3217 * No rename detection needed for this side, but we still need
3218 * to make sure 'adds' are marked correctly in case the other
3219 * side had directory renames.
3220 */
3221 resolve_diffpair_statuses(&renames->pairs[side_index]);
3222 return 0;
3223 }
3224
3225 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
3226 repo_diff_setup(opt->repo, &diff_opts);
3227 diff_opts.flags.recursive = 1;
3228 diff_opts.flags.rename_empty = 0;
3229 diff_opts.detect_rename = DIFF_DETECT_RENAME;
3230 diff_opts.rename_limit = opt->rename_limit;
3231 if (opt->rename_limit <= 0)
3232 diff_opts.rename_limit = 7000;
3233 diff_opts.rename_score = opt->rename_score;
3234 diff_opts.show_rename_progress = opt->show_rename_progress;
3235 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3236 diff_setup_done(&diff_opts);
3237
3238 diff_queued_diff = renames->pairs[side_index];
3239 trace2_region_enter("diff", "diffcore_rename", opt->repo);
3240 diffcore_rename_extended(&diff_opts,
3241 &opt->priv->pool,
3242 &renames->relevant_sources[side_index],
3243 &renames->dirs_removed[side_index],
3244 &renames->dir_rename_count[side_index],
3245 &renames->cached_pairs[side_index]);
3246 trace2_region_leave("diff", "diffcore_rename", opt->repo);
3247 resolve_diffpair_statuses(&diff_queued_diff);
3248
3249 if (diff_opts.needed_rename_limit > 0)
3250 renames->redo_after_renames = 0;
3251 if (diff_opts.needed_rename_limit > renames->needed_limit)
3252 renames->needed_limit = diff_opts.needed_rename_limit;
3253
3254 renames->pairs[side_index] = diff_queued_diff;
3255
3256 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3257 diff_queued_diff.nr = 0;
3258 diff_queued_diff.queue = NULL;
3259 diff_flush(&diff_opts);
3260
3261 return 1;
3262 }
3263
3264 /*
3265 * Get information of all renames which occurred in 'side_pairs', making use
3266 * of any implicit directory renames in side_dir_renames (also making use of
3267 * implicit directory renames rename_exclusions as needed by
3268 * check_for_directory_rename()). Add all (updated) renames into result.
3269 */
3270 static int collect_renames(struct merge_options *opt,
3271 struct diff_queue_struct *result,
3272 unsigned side_index,
3273 struct strmap *collisions,
3274 struct strmap *dir_renames_for_side,
3275 struct strmap *rename_exclusions)
3276 {
3277 int i, clean = 1;
3278 struct diff_queue_struct *side_pairs;
3279 struct rename_info *renames = &opt->priv->renames;
3280
3281 side_pairs = &renames->pairs[side_index];
3282
3283 for (i = 0; i < side_pairs->nr; ++i) {
3284 struct diff_filepair *p = side_pairs->queue[i];
3285 char *new_path; /* non-NULL only with directory renames */
3286
3287 if (p->status != 'A' && p->status != 'R') {
3288 possibly_cache_new_pair(renames, p, side_index, NULL);
3289 pool_diff_free_filepair(&opt->priv->pool, p);
3290 continue;
3291 }
3292
3293 new_path = check_for_directory_rename(opt, p->two->path,
3294 side_index,
3295 dir_renames_for_side,
3296 rename_exclusions,
3297 collisions,
3298 &clean);
3299
3300 possibly_cache_new_pair(renames, p, side_index, new_path);
3301 if (p->status != 'R' && !new_path) {
3302 pool_diff_free_filepair(&opt->priv->pool, p);
3303 continue;
3304 }
3305
3306 if (new_path)
3307 apply_directory_rename_modifications(opt, p, new_path);
3308
3309 /*
3310 * p->score comes back from diffcore_rename_extended() with
3311 * the similarity of the renamed file. The similarity is
3312 * was used to determine that the two files were related
3313 * and are a rename, which we have already used, but beyond
3314 * that we have no use for the similarity. So p->score is
3315 * now irrelevant. However, process_renames() will need to
3316 * know which side of the merge this rename was associated
3317 * with, so overwrite p->score with that value.
3318 */
3319 p->score = side_index;
3320 result->queue[result->nr++] = p;
3321 }
3322
3323 return clean;
3324 }
3325
3326 static int detect_and_process_renames(struct merge_options *opt)
3327 {
3328 struct diff_queue_struct combined = { 0 };
3329 struct rename_info *renames = &opt->priv->renames;
3330 struct strmap collisions[3];
3331 int need_dir_renames, s, i, clean = 1;
3332 unsigned detection_run = 0;
3333
3334 if (!possible_renames(renames))
3335 goto cleanup;
3336
3337 trace2_region_enter("merge", "regular renames", opt->repo);
3338 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3339 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3340 if (renames->needed_limit) {
3341 renames->cached_pairs_valid_side = 0;
3342 renames->redo_after_renames = 0;
3343 }
3344 if (renames->redo_after_renames && detection_run) {
3345 int i, side;
3346 struct diff_filepair *p;
3347
3348 /* Cache the renames, we found */
3349 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3350 for (i = 0; i < renames->pairs[side].nr; ++i) {
3351 p = renames->pairs[side].queue[i];
3352 possibly_cache_new_pair(renames, p, side, NULL);
3353 }
3354 }
3355
3356 /* Restart the merge with the cached renames */
3357 renames->redo_after_renames = 2;
3358 trace2_region_leave("merge", "regular renames", opt->repo);
3359 goto cleanup;
3360 }
3361 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3362 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3363 trace2_region_leave("merge", "regular renames", opt->repo);
3364
3365 trace2_region_enter("merge", "directory renames", opt->repo);
3366 need_dir_renames =
3367 !opt->priv->call_depth &&
3368 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3369 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3370
3371 if (need_dir_renames) {
3372 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3373 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3374 handle_directory_level_conflicts(opt);
3375 }
3376
3377 ALLOC_GROW(combined.queue,
3378 renames->pairs[1].nr + renames->pairs[2].nr,
3379 combined.alloc);
3380 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
3381 int other_side = 3 - i;
3382 compute_collisions(&collisions[i],
3383 &renames->dir_renames[other_side],
3384 &renames->pairs[i]);
3385 }
3386 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3387 collisions,
3388 &renames->dir_renames[2],
3389 &renames->dir_renames[1]);
3390 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3391 collisions,
3392 &renames->dir_renames[1],
3393 &renames->dir_renames[2]);
3394 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++)
3395 free_collisions(&collisions[i]);
3396 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3397 trace2_region_leave("merge", "directory renames", opt->repo);
3398
3399 trace2_region_enter("merge", "process renames", opt->repo);
3400 clean &= process_renames(opt, &combined);
3401 trace2_region_leave("merge", "process renames", opt->repo);
3402
3403 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3404
3405 cleanup:
3406 /*
3407 * Free now unneeded filepairs, which would have been handled
3408 * in collect_renames() normally but we skipped that code.
3409 */
3410 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3411 struct diff_queue_struct *side_pairs;
3412 int i;
3413
3414 side_pairs = &renames->pairs[s];
3415 for (i = 0; i < side_pairs->nr; ++i) {
3416 struct diff_filepair *p = side_pairs->queue[i];
3417 pool_diff_free_filepair(&opt->priv->pool, p);
3418 }
3419 }
3420
3421 simple_cleanup:
3422 /* Free memory for renames->pairs[] and combined */
3423 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3424 free(renames->pairs[s].queue);
3425 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3426 }
3427 for (i = 0; i < combined.nr; i++)
3428 pool_diff_free_filepair(&opt->priv->pool, combined.queue[i]);
3429 free(combined.queue);
3430
3431 return clean;
3432 }
3433
3434 /*** Function Grouping: functions related to process_entries() ***/
3435
3436 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3437 {
3438 unsigned char c1, c2;
3439
3440 /*
3441 * Here we only care that entries for directories appear adjacent
3442 * to and before files underneath the directory. We can achieve
3443 * that by pretending to add a trailing slash to every file and
3444 * then sorting. In other words, we do not want the natural
3445 * sorting of
3446 * foo
3447 * foo.txt
3448 * foo/bar
3449 * Instead, we want "foo" to sort as though it were "foo/", so that
3450 * we instead get
3451 * foo.txt
3452 * foo
3453 * foo/bar
3454 * To achieve this, we basically implement our own strcmp, except that
3455 * if we get to the end of either string instead of comparing NUL to
3456 * another character, we compare '/' to it.
3457 *
3458 * If this unusual "sort as though '/' were appended" perplexes
3459 * you, perhaps it will help to note that this is not the final
3460 * sort. write_tree() will sort again without the trailing slash
3461 * magic, but just on paths immediately under a given tree.
3462 *
3463 * The reason to not use df_name_compare directly was that it was
3464 * just too expensive (we don't have the string lengths handy), so
3465 * it was reimplemented.
3466 */
3467
3468 /*
3469 * NOTE: This function will never be called with two equal strings,
3470 * because it is used to sort the keys of a strmap, and strmaps have
3471 * unique keys by construction. That simplifies our c1==c2 handling
3472 * below.
3473 */
3474
3475 while (*one && (*one == *two)) {
3476 one++;
3477 two++;
3478 }
3479
3480 c1 = *one ? *one : '/';
3481 c2 = *two ? *two : '/';
3482
3483 if (c1 == c2) {
3484 /* Getting here means one is a leading directory of the other */
3485 return (*one) ? 1 : -1;
3486 } else
3487 return c1 - c2;
3488 }
3489
3490 static int read_oid_strbuf(const struct object_id *oid,
3491 struct strbuf *dst)
3492 {
3493 void *buf;
3494 enum object_type type;
3495 unsigned long size;
3496 buf = repo_read_object_file(the_repository, oid, &type, &size);
3497 if (!buf)
3498 return error(_("cannot read object %s"), oid_to_hex(oid));
3499 if (type != OBJ_BLOB) {
3500 free(buf);
3501 return error(_("object %s is not a blob"), oid_to_hex(oid));
3502 }
3503 strbuf_attach(dst, buf, size, size + 1);
3504 return 0;
3505 }
3506
3507 static int blob_unchanged(struct merge_options *opt,
3508 const struct version_info *base,
3509 const struct version_info *side,
3510 const char *path)
3511 {
3512 struct strbuf basebuf = STRBUF_INIT;
3513 struct strbuf sidebuf = STRBUF_INIT;
3514 int ret = 0; /* assume changed for safety */
3515 struct index_state *idx = &opt->priv->attr_index;
3516
3517 if (!idx->initialized)
3518 initialize_attr_index(opt);
3519
3520 if (base->mode != side->mode)
3521 return 0;
3522 if (oideq(&base->oid, &side->oid))
3523 return 1;
3524
3525 if (read_oid_strbuf(&base->oid, &basebuf) ||
3526 read_oid_strbuf(&side->oid, &sidebuf))
3527 goto error_return;
3528 /*
3529 * Note: binary | is used so that both renormalizations are
3530 * performed. Comparison can be skipped if both files are
3531 * unchanged since their sha1s have already been compared.
3532 */
3533 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3534 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3535 ret = (basebuf.len == sidebuf.len &&
3536 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3537
3538 error_return:
3539 strbuf_release(&basebuf);
3540 strbuf_release(&sidebuf);
3541 return ret;
3542 }
3543
3544 struct directory_versions {
3545 /*
3546 * versions: list of (basename -> version_info)
3547 *
3548 * The basenames are in reverse lexicographic order of full pathnames,
3549 * as processed in process_entries(). This puts all entries within
3550 * a directory together, and covers the directory itself after
3551 * everything within it, allowing us to write subtrees before needing
3552 * to record information for the tree itself.
3553 */
3554 struct string_list versions;
3555
3556 /*
3557 * offsets: list of (full relative path directories -> integer offsets)
3558 *
3559 * Since versions contains basenames from files in multiple different
3560 * directories, we need to know which entries in versions correspond
3561 * to which directories. Values of e.g.
3562 * "" 0
3563 * src 2
3564 * src/moduleA 5
3565 * Would mean that entries 0-1 of versions are files in the toplevel
3566 * directory, entries 2-4 are files under src/, and the remaining
3567 * entries starting at index 5 are files under src/moduleA/.
3568 */
3569 struct string_list offsets;
3570
3571 /*
3572 * last_directory: directory that previously processed file found in
3573 *
3574 * last_directory starts NULL, but records the directory in which the
3575 * previous file was found within. As soon as
3576 * directory(current_file) != last_directory
3577 * then we need to start updating accounting in versions & offsets.
3578 * Note that last_directory is always the last path in "offsets" (or
3579 * NULL if "offsets" is empty) so this exists just for quick access.
3580 */
3581 const char *last_directory;
3582
3583 /* last_directory_len: cached computation of strlen(last_directory) */
3584 unsigned last_directory_len;
3585 };
3586
3587 static int tree_entry_order(const void *a_, const void *b_)
3588 {
3589 const struct string_list_item *a = a_;
3590 const struct string_list_item *b = b_;
3591
3592 const struct merged_info *ami = a->util;
3593 const struct merged_info *bmi = b->util;
3594 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3595 b->string, strlen(b->string), bmi->result.mode);
3596 }
3597
3598 static int write_tree(struct object_id *result_oid,
3599 struct string_list *versions,
3600 unsigned int offset,
3601 size_t hash_size)
3602 {
3603 size_t maxlen = 0, extra;
3604 unsigned int nr;
3605 struct strbuf buf = STRBUF_INIT;
3606 int i, ret = 0;
3607
3608 assert(offset <= versions->nr);
3609 nr = versions->nr - offset;
3610 if (versions->nr)
3611 /* No need for STABLE_QSORT -- filenames must be unique */
3612 QSORT(versions->items + offset, nr, tree_entry_order);
3613
3614 /* Pre-allocate some space in buf */
3615 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3616 for (i = 0; i < nr; i++) {
3617 maxlen += strlen(versions->items[offset+i].string) + extra;
3618 }
3619 strbuf_grow(&buf, maxlen);
3620
3621 /* Write each entry out to buf */
3622 for (i = 0; i < nr; i++) {
3623 struct merged_info *mi = versions->items[offset+i].util;
3624 struct version_info *ri = &mi->result;
3625 strbuf_addf(&buf, "%o %s%c",
3626 ri->mode,
3627 versions->items[offset+i].string, '\0');
3628 strbuf_add(&buf, ri->oid.hash, hash_size);
3629 }
3630
3631 /* Write this object file out, and record in result_oid */
3632 if (write_object_file(buf.buf, buf.len, OBJ_TREE, result_oid))
3633 ret = -1;
3634 strbuf_release(&buf);
3635 return ret;
3636 }
3637
3638 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3639 const char *path,
3640 struct merged_info *mi)
3641 {
3642 const char *basename;
3643
3644 if (mi->is_null)
3645 /* nothing to record */
3646 return;
3647
3648 basename = path + mi->basename_offset;
3649 assert(strchr(basename, '/') == NULL);
3650 string_list_append(&dir_metadata->versions,
3651 basename)->util = &mi->result;
3652 }
3653
3654 static int write_completed_directory(struct merge_options *opt,
3655 const char *new_directory_name,
3656 struct directory_versions *info)
3657 {
3658 const char *prev_dir;
3659 struct merged_info *dir_info = NULL;
3660 unsigned int offset, ret = 0;
3661
3662 /*
3663 * Some explanation of info->versions and info->offsets...
3664 *
3665 * process_entries() iterates over all relevant files AND
3666 * directories in reverse lexicographic order, and calls this
3667 * function. Thus, an example of the paths that process_entries()
3668 * could operate on (along with the directories for those paths
3669 * being shown) is:
3670 *
3671 * xtract.c ""
3672 * tokens.txt ""
3673 * src/moduleB/umm.c src/moduleB
3674 * src/moduleB/stuff.h src/moduleB
3675 * src/moduleB/baz.c src/moduleB
3676 * src/moduleB src
3677 * src/moduleA/foo.c src/moduleA
3678 * src/moduleA/bar.c src/moduleA
3679 * src/moduleA src
3680 * src ""
3681 * Makefile ""
3682 *
3683 * info->versions:
3684 *
3685 * always contains the unprocessed entries and their
3686 * version_info information. For example, after the first five
3687 * entries above, info->versions would be:
3688 *
3689 * xtract.c <xtract.c's version_info>
3690 * token.txt <token.txt's version_info>
3691 * umm.c <src/moduleB/umm.c's version_info>
3692 * stuff.h <src/moduleB/stuff.h's version_info>
3693 * baz.c <src/moduleB/baz.c's version_info>
3694 *
3695 * Once a subdirectory is completed we remove the entries in
3696 * that subdirectory from info->versions, writing it as a tree
3697 * (write_tree()). Thus, as soon as we get to src/moduleB,
3698 * info->versions would be updated to
3699 *
3700 * xtract.c <xtract.c's version_info>
3701 * token.txt <token.txt's version_info>
3702 * moduleB <src/moduleB's version_info>
3703 *
3704 * info->offsets:
3705 *
3706 * helps us track which entries in info->versions correspond to
3707 * which directories. When we are N directories deep (e.g. 4
3708 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3709 * directories (+1 because of toplevel dir). Corresponding to
3710 * the info->versions example above, after processing five entries
3711 * info->offsets will be:
3712 *
3713 * "" 0
3714 * src/moduleB 2
3715 *
3716 * which is used to know that xtract.c & token.txt are from the
3717 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3718 * src/moduleB directory. Again, following the example above,
3719 * once we need to process src/moduleB, then info->offsets is
3720 * updated to
3721 *
3722 * "" 0
3723 * src 2
3724 *
3725 * which says that moduleB (and only moduleB so far) is in the
3726 * src directory.
3727 *
3728 * One unique thing to note about info->offsets here is that
3729 * "src" was not added to info->offsets until there was a path
3730 * (a file OR directory) immediately below src/ that got
3731 * processed.
3732 *
3733 * Since process_entry() just appends new entries to info->versions,
3734 * write_completed_directory() only needs to do work if the next path
3735 * is in a directory that is different than the last directory found
3736 * in info->offsets.
3737 */
3738
3739 /*
3740 * If we are working with the same directory as the last entry, there
3741 * is no work to do. (See comments above the directory_name member of
3742 * struct merged_info for why we can use pointer comparison instead of
3743 * strcmp here.)
3744 */
3745 if (new_directory_name == info->last_directory)
3746 return 0;
3747
3748 /*
3749 * If we are just starting (last_directory is NULL), or last_directory
3750 * is a prefix of the current directory, then we can just update
3751 * info->offsets to record the offset where we started this directory
3752 * and update last_directory to have quick access to it.
3753 */
3754 if (info->last_directory == NULL ||
3755 !strncmp(new_directory_name, info->last_directory,
3756 info->last_directory_len)) {
3757 uintptr_t offset = info->versions.nr;
3758
3759 info->last_directory = new_directory_name;
3760 info->last_directory_len = strlen(info->last_directory);
3761 /*
3762 * Record the offset into info->versions where we will
3763 * start recording basenames of paths found within
3764 * new_directory_name.
3765 */
3766 string_list_append(&info->offsets,
3767 info->last_directory)->util = (void*)offset;
3768 return 0;
3769 }
3770
3771 /*
3772 * The next entry that will be processed will be within
3773 * new_directory_name. Since at this point we know that
3774 * new_directory_name is within a different directory than
3775 * info->last_directory, we have all entries for info->last_directory
3776 * in info->versions and we need to create a tree object for them.
3777 */
3778 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3779 assert(dir_info);
3780 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3781 if (offset == info->versions.nr) {
3782 /*
3783 * Actually, we don't need to create a tree object in this
3784 * case. Whenever all files within a directory disappear
3785 * during the merge (e.g. unmodified on one side and
3786 * deleted on the other, or files were renamed elsewhere),
3787 * then we get here and the directory itself needs to be
3788 * omitted from its parent tree as well.
3789 */
3790 dir_info->is_null = 1;
3791 } else {
3792 /*
3793 * Write out the tree to the git object directory, and also
3794 * record the mode and oid in dir_info->result.
3795 */
3796 dir_info->is_null = 0;
3797 dir_info->result.mode = S_IFDIR;
3798 if (write_tree(&dir_info->result.oid, &info->versions, offset,
3799 opt->repo->hash_algo->rawsz) < 0)
3800 ret = -1;
3801 }
3802
3803 /*
3804 * We've now used several entries from info->versions and one entry
3805 * from info->offsets, so we get rid of those values.
3806 */
3807 info->offsets.nr--;
3808 info->versions.nr = offset;
3809
3810 /*
3811 * Now we've taken care of the completed directory, but we need to
3812 * prepare things since future entries will be in
3813 * new_directory_name. (In particular, process_entry() will be
3814 * appending new entries to info->versions.) So, we need to make
3815 * sure new_directory_name is the last entry in info->offsets.
3816 */
3817 prev_dir = info->offsets.nr == 0 ? NULL :
3818 info->offsets.items[info->offsets.nr-1].string;
3819 if (new_directory_name != prev_dir) {
3820 uintptr_t c = info->versions.nr;
3821 string_list_append(&info->offsets,
3822 new_directory_name)->util = (void*)c;
3823 }
3824
3825 /* And, of course, we need to update last_directory to match. */
3826 info->last_directory = new_directory_name;
3827 info->last_directory_len = strlen(info->last_directory);
3828
3829 return ret;
3830 }
3831
3832 /* Per entry merge function */
3833 static int process_entry(struct merge_options *opt,
3834 const char *path,
3835 struct conflict_info *ci,
3836 struct directory_versions *dir_metadata)
3837 {
3838 int df_file_index = 0;
3839
3840 VERIFY_CI(ci);
3841 assert(ci->filemask >= 0 && ci->filemask <= 7);
3842 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3843 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3844 ci->match_mask == 5 || ci->match_mask == 6);
3845
3846 if (ci->dirmask) {
3847 record_entry_for_tree(dir_metadata, path, &ci->merged);
3848 if (ci->filemask == 0)
3849 /* nothing else to handle */
3850 return 0;
3851 assert(ci->df_conflict);
3852 }
3853
3854 if (ci->df_conflict && ci->merged.result.mode == 0) {
3855 int i;
3856
3857 /*
3858 * directory no longer in the way, but we do have a file we
3859 * need to place here so we need to clean away the "directory
3860 * merges to nothing" result.
3861 */
3862 ci->df_conflict = 0;
3863 assert(ci->filemask != 0);
3864 ci->merged.clean = 0;
3865 ci->merged.is_null = 0;
3866 /* and we want to zero out any directory-related entries */
3867 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3868 ci->dirmask = 0;
3869 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3870 if (ci->filemask & (1 << i))
3871 continue;
3872 ci->stages[i].mode = 0;
3873 oidcpy(&ci->stages[i].oid, null_oid());
3874 }
3875 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3876 /*
3877 * This started out as a D/F conflict, and the entries in
3878 * the competing directory were not removed by the merge as
3879 * evidenced by write_completed_directory() writing a value
3880 * to ci->merged.result.mode.
3881 */
3882 struct conflict_info *new_ci;
3883 const char *branch;
3884 const char *old_path = path;
3885 int i;
3886
3887 assert(ci->merged.result.mode == S_IFDIR);
3888
3889 /*
3890 * If filemask is 1, we can just ignore the file as having
3891 * been deleted on both sides. We do not want to overwrite
3892 * ci->merged.result, since it stores the tree for all the
3893 * files under it.
3894 */
3895 if (ci->filemask == 1) {
3896 ci->filemask = 0;
3897 return 0;
3898 }
3899
3900 /*
3901 * This file still exists on at least one side, and we want
3902 * the directory to remain here, so we need to move this
3903 * path to some new location.
3904 */
3905 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3906
3907 /* We don't really want new_ci->merged.result copied, but it'll
3908 * be overwritten below so it doesn't matter. We also don't
3909 * want any directory mode/oid values copied, but we'll zero
3910 * those out immediately. We do want the rest of ci copied.
3911 */
3912 memcpy(new_ci, ci, sizeof(*ci));
3913 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3914 new_ci->dirmask = 0;
3915 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3916 if (new_ci->filemask & (1 << i))
3917 continue;
3918 /* zero out any entries related to directories */
3919 new_ci->stages[i].mode = 0;
3920 oidcpy(&new_ci->stages[i].oid, null_oid());
3921 }
3922
3923 /*
3924 * Find out which side this file came from; note that we
3925 * cannot just use ci->filemask, because renames could cause
3926 * the filemask to go back to 7. So we use dirmask, then
3927 * pick the opposite side's index.
3928 */
3929 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3930 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3931 path = unique_path(opt, path, branch);
3932 strmap_put(&opt->priv->paths, path, new_ci);
3933
3934 path_msg(opt, CONFLICT_FILE_DIRECTORY, 0,
3935 path, old_path, NULL, NULL,
3936 _("CONFLICT (file/directory): directory in the way "
3937 "of %s from %s; moving it to %s instead."),
3938 old_path, branch, path);
3939
3940 /*
3941 * Zero out the filemask for the old ci. At this point, ci
3942 * was just an entry for a directory, so we don't need to
3943 * do anything more with it.
3944 */
3945 ci->filemask = 0;
3946
3947 /*
3948 * Now note that we're working on the new entry (path was
3949 * updated above.
3950 */
3951 ci = new_ci;
3952 }
3953
3954 /*
3955 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3956 * which the code goes through even for the df_conflict cases
3957 * above.
3958 */
3959 if (ci->match_mask) {
3960 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3961 if (ci->match_mask == 6) {
3962 /* stages[1] == stages[2] */
3963 ci->merged.result.mode = ci->stages[1].mode;
3964 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3965 } else {
3966 /* determine the mask of the side that didn't match */
3967 unsigned int othermask = 7 & ~ci->match_mask;
3968 int side = (othermask == 4) ? 2 : 1;
3969
3970 ci->merged.result.mode = ci->stages[side].mode;
3971 ci->merged.is_null = !ci->merged.result.mode;
3972 if (ci->merged.is_null)
3973 ci->merged.clean = 1;
3974 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3975
3976 assert(othermask == 2 || othermask == 4);
3977 assert(ci->merged.is_null ==
3978 (ci->filemask == ci->match_mask));
3979 }
3980 } else if (ci->filemask >= 6 &&
3981 (S_IFMT & ci->stages[1].mode) !=
3982 (S_IFMT & ci->stages[2].mode)) {
3983 /* Two different items from (file/submodule/symlink) */
3984 if (opt->priv->call_depth) {
3985 /* Just use the version from the merge base */
3986 ci->merged.clean = 0;
3987 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3988 ci->merged.result.mode = ci->stages[0].mode;
3989 ci->merged.is_null = (ci->merged.result.mode == 0);
3990 } else {
3991 /* Handle by renaming one or both to separate paths. */
3992 unsigned o_mode = ci->stages[0].mode;
3993 unsigned a_mode = ci->stages[1].mode;
3994 unsigned b_mode = ci->stages[2].mode;
3995 struct conflict_info *new_ci;
3996 const char *a_path = NULL, *b_path = NULL;
3997 int rename_a = 0, rename_b = 0;
3998
3999 new_ci = mem_pool_alloc(&opt->priv->pool,
4000 sizeof(*new_ci));
4001
4002 if (S_ISREG(a_mode))
4003 rename_a = 1;
4004 else if (S_ISREG(b_mode))
4005 rename_b = 1;
4006 else {
4007 rename_a = 1;
4008 rename_b = 1;
4009 }
4010
4011 if (rename_a)
4012 a_path = unique_path(opt, path, opt->branch1);
4013 if (rename_b)
4014 b_path = unique_path(opt, path, opt->branch2);
4015
4016 if (rename_a && rename_b) {
4017 path_msg(opt, CONFLICT_DISTINCT_MODES, 0,
4018 path, a_path, b_path, NULL,
4019 _("CONFLICT (distinct types): %s had "
4020 "different types on each side; "
4021 "renamed both of them so each can "
4022 "be recorded somewhere."),
4023 path);
4024 } else {
4025 path_msg(opt, CONFLICT_DISTINCT_MODES, 0,
4026 path, rename_a ? a_path : b_path,
4027 NULL, NULL,
4028 _("CONFLICT (distinct types): %s had "
4029 "different types on each side; "
4030 "renamed one of them so each can be "
4031 "recorded somewhere."),
4032 path);
4033 }
4034
4035 ci->merged.clean = 0;
4036 memcpy(new_ci, ci, sizeof(*new_ci));
4037
4038 /* Put b into new_ci, removing a from stages */
4039 new_ci->merged.result.mode = ci->stages[2].mode;
4040 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
4041 new_ci->stages[1].mode = 0;
4042 oidcpy(&new_ci->stages[1].oid, null_oid());
4043 new_ci->filemask = 5;
4044 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
4045 new_ci->stages[0].mode = 0;
4046 oidcpy(&new_ci->stages[0].oid, null_oid());
4047 new_ci->filemask = 4;
4048 }
4049
4050 /* Leave only a in ci, fixing stages. */
4051 ci->merged.result.mode = ci->stages[1].mode;
4052 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
4053 ci->stages[2].mode = 0;
4054 oidcpy(&ci->stages[2].oid, null_oid());
4055 ci->filemask = 3;
4056 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
4057 ci->stages[0].mode = 0;
4058 oidcpy(&ci->stages[0].oid, null_oid());
4059 ci->filemask = 2;
4060 }
4061
4062 /* Insert entries into opt->priv_paths */
4063 assert(rename_a || rename_b);
4064 if (rename_a)
4065 strmap_put(&opt->priv->paths, a_path, ci);
4066
4067 if (!rename_b)
4068 b_path = path;
4069 strmap_put(&opt->priv->paths, b_path, new_ci);
4070
4071 if (rename_a && rename_b)
4072 strmap_remove(&opt->priv->paths, path, 0);
4073
4074 /*
4075 * Do special handling for b_path since process_entry()
4076 * won't be called on it specially.
4077 */
4078 strmap_put(&opt->priv->conflicted, b_path, new_ci);
4079 record_entry_for_tree(dir_metadata, b_path,
4080 &new_ci->merged);
4081
4082 /*
4083 * Remaining code for processing this entry should
4084 * think in terms of processing a_path.
4085 */
4086 if (a_path)
4087 path = a_path;
4088 }
4089 } else if (ci->filemask >= 6) {
4090 /* Need a two-way or three-way content merge */
4091 struct version_info merged_file;
4092 int clean_merge;
4093 struct version_info *o = &ci->stages[0];
4094 struct version_info *a = &ci->stages[1];
4095 struct version_info *b = &ci->stages[2];
4096
4097 clean_merge = handle_content_merge(opt, path, o, a, b,
4098 ci->pathnames,
4099 opt->priv->call_depth * 2,
4100 &merged_file);
4101 if (clean_merge < 0)
4102 return -1;
4103 ci->merged.clean = clean_merge &&
4104 !ci->df_conflict && !ci->path_conflict;
4105 ci->merged.result.mode = merged_file.mode;
4106 ci->merged.is_null = (merged_file.mode == 0);
4107 oidcpy(&ci->merged.result.oid, &merged_file.oid);
4108 if (clean_merge && ci->df_conflict) {
4109 assert(df_file_index == 1 || df_file_index == 2);
4110 ci->filemask = 1 << df_file_index;
4111 ci->stages[df_file_index].mode = merged_file.mode;
4112 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
4113 }
4114 if (!clean_merge) {
4115 const char *reason = _("content");
4116 if (ci->filemask == 6)
4117 reason = _("add/add");
4118 if (S_ISGITLINK(merged_file.mode))
4119 reason = _("submodule");
4120 path_msg(opt, CONFLICT_CONTENTS, 0,
4121 path, NULL, NULL, NULL,
4122 _("CONFLICT (%s): Merge conflict in %s"),
4123 reason, path);
4124 }
4125 } else if (ci->filemask == 3 || ci->filemask == 5) {
4126 /* Modify/delete */
4127 const char *modify_branch, *delete_branch;
4128 int side = (ci->filemask == 5) ? 2 : 1;
4129 int index = opt->priv->call_depth ? 0 : side;
4130
4131 ci->merged.result.mode = ci->stages[index].mode;
4132 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
4133 ci->merged.clean = 0;
4134
4135 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
4136 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
4137
4138 if (opt->renormalize &&
4139 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
4140 path)) {
4141 if (!ci->path_conflict) {
4142 /*
4143 * Blob unchanged after renormalization, so
4144 * there's no modify/delete conflict after all;
4145 * we can just remove the file.
4146 */
4147 ci->merged.is_null = 1;
4148 ci->merged.clean = 1;
4149 /*
4150 * file goes away => even if there was a
4151 * directory/file conflict there isn't one now.
4152 */
4153 ci->df_conflict = 0;
4154 } else {
4155 /* rename/delete, so conflict remains */
4156 }
4157 } else if (ci->path_conflict &&
4158 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
4159 /*
4160 * This came from a rename/delete; no action to take,
4161 * but avoid printing "modify/delete" conflict notice
4162 * since the contents were not modified.
4163 */
4164 } else {
4165 path_msg(opt, CONFLICT_MODIFY_DELETE, 0,
4166 path, NULL, NULL, NULL,
4167 _("CONFLICT (modify/delete): %s deleted in %s "
4168 "and modified in %s. Version %s of %s left "
4169 "in tree."),
4170 path, delete_branch, modify_branch,
4171 modify_branch, path);
4172 }
4173 } else if (ci->filemask == 2 || ci->filemask == 4) {
4174 /* Added on one side */
4175 int side = (ci->filemask == 4) ? 2 : 1;
4176 ci->merged.result.mode = ci->stages[side].mode;
4177 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
4178 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
4179 } else if (ci->filemask == 1) {
4180 /* Deleted on both sides */
4181 ci->merged.is_null = 1;
4182 ci->merged.result.mode = 0;
4183 oidcpy(&ci->merged.result.oid, null_oid());
4184 assert(!ci->df_conflict);
4185 ci->merged.clean = !ci->path_conflict;
4186 }
4187
4188 /*
4189 * If still conflicted, record it separately. This allows us to later
4190 * iterate over just conflicted entries when updating the index instead
4191 * of iterating over all entries.
4192 */
4193 if (!ci->merged.clean)
4194 strmap_put(&opt->priv->conflicted, path, ci);
4195
4196 /* Record metadata for ci->merged in dir_metadata */
4197 record_entry_for_tree(dir_metadata, path, &ci->merged);
4198 return 0;
4199 }
4200
4201 static void prefetch_for_content_merges(struct merge_options *opt,
4202 struct string_list *plist)
4203 {
4204 struct string_list_item *e;
4205 struct oid_array to_fetch = OID_ARRAY_INIT;
4206
4207 if (opt->repo != the_repository || !repo_has_promisor_remote(the_repository))
4208 return;
4209
4210 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
4211 /* char *path = e->string; */
4212 struct conflict_info *ci = e->util;
4213 int i;
4214
4215 /* Ignore clean entries */
4216 if (ci->merged.clean)
4217 continue;
4218
4219 /* Ignore entries that don't need a content merge */
4220 if (ci->match_mask || ci->filemask < 6 ||
4221 !S_ISREG(ci->stages[1].mode) ||
4222 !S_ISREG(ci->stages[2].mode) ||
4223 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
4224 continue;
4225
4226 /* Also don't need content merge if base matches either side */
4227 if (ci->filemask == 7 &&
4228 S_ISREG(ci->stages[0].mode) &&
4229 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
4230 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
4231 continue;
4232
4233 for (i = 0; i < 3; i++) {
4234 unsigned side_mask = (1 << i);
4235 struct version_info *vi = &ci->stages[i];
4236
4237 if ((ci->filemask & side_mask) &&
4238 S_ISREG(vi->mode) &&
4239 oid_object_info_extended(opt->repo, &vi->oid, NULL,
4240 OBJECT_INFO_FOR_PREFETCH))
4241 oid_array_append(&to_fetch, &vi->oid);
4242 }
4243 }
4244
4245 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
4246 oid_array_clear(&to_fetch);
4247 }
4248
4249 static int process_entries(struct merge_options *opt,
4250 struct object_id *result_oid)
4251 {
4252 struct hashmap_iter iter;
4253 struct strmap_entry *e;
4254 struct string_list plist = STRING_LIST_INIT_NODUP;
4255 struct string_list_item *entry;
4256 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
4257 STRING_LIST_INIT_NODUP,
4258 NULL, 0 };
4259 int ret = 0;
4260
4261 trace2_region_enter("merge", "process_entries setup", opt->repo);
4262 if (strmap_empty(&opt->priv->paths)) {
4263 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
4264 return 0;
4265 }
4266
4267 /* Hack to pre-allocate plist to the desired size */
4268 trace2_region_enter("merge", "plist grow", opt->repo);
4269 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
4270 trace2_region_leave("merge", "plist grow", opt->repo);
4271
4272 /* Put every entry from paths into plist, then sort */
4273 trace2_region_enter("merge", "plist copy", opt->repo);
4274 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
4275 string_list_append(&plist, e->key)->util = e->value;
4276 }
4277 trace2_region_leave("merge", "plist copy", opt->repo);
4278
4279 trace2_region_enter("merge", "plist special sort", opt->repo);
4280 plist.cmp = sort_dirs_next_to_their_children;
4281 string_list_sort(&plist);
4282 trace2_region_leave("merge", "plist special sort", opt->repo);
4283
4284 trace2_region_leave("merge", "process_entries setup", opt->repo);
4285
4286 /*
4287 * Iterate over the items in reverse order, so we can handle paths
4288 * below a directory before needing to handle the directory itself.
4289 *
4290 * This allows us to write subtrees before we need to write trees,
4291 * and it also enables sane handling of directory/file conflicts
4292 * (because it allows us to know whether the directory is still in
4293 * the way when it is time to process the file at the same path).
4294 */
4295 trace2_region_enter("merge", "processing", opt->repo);
4296 prefetch_for_content_merges(opt, &plist);
4297 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
4298 char *path = entry->string;
4299 /*
4300 * NOTE: mi may actually be a pointer to a conflict_info, but
4301 * we have to check mi->clean first to see if it's safe to
4302 * reassign to such a pointer type.
4303 */
4304 struct merged_info *mi = entry->util;
4305
4306 if (write_completed_directory(opt, mi->directory_name,
4307 &dir_metadata) < 0) {
4308 ret = -1;
4309 goto cleanup;
4310 }
4311 if (mi->clean)
4312 record_entry_for_tree(&dir_metadata, path, mi);
4313 else {
4314 struct conflict_info *ci = (struct conflict_info *)mi;
4315 if (process_entry(opt, path, ci, &dir_metadata) < 0) {
4316 ret = -1;
4317 goto cleanup;
4318 };
4319 }
4320 }
4321 trace2_region_leave("merge", "processing", opt->repo);
4322
4323 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4324 if (dir_metadata.offsets.nr != 1 ||
4325 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4326 printf("dir_metadata.offsets.nr = %"PRIuMAX" (should be 1)\n",
4327 (uintmax_t)dir_metadata.offsets.nr);
4328 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4329 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4330 fflush(stdout);
4331 BUG("dir_metadata accounting completely off; shouldn't happen");
4332 }
4333 if (write_tree(result_oid, &dir_metadata.versions, 0,
4334 opt->repo->hash_algo->rawsz) < 0)
4335 ret = -1;
4336 cleanup:
4337 string_list_clear(&plist, 0);
4338 string_list_clear(&dir_metadata.versions, 0);
4339 string_list_clear(&dir_metadata.offsets, 0);
4340 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4341
4342 return ret;
4343 }
4344
4345 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4346
4347 static int checkout(struct merge_options *opt,
4348 struct tree *prev,
4349 struct tree *next)
4350 {
4351 /* Switch the index/working copy from old to new */
4352 int ret;
4353 struct tree_desc trees[2];
4354 struct unpack_trees_options unpack_opts;
4355
4356 memset(&unpack_opts, 0, sizeof(unpack_opts));
4357 unpack_opts.head_idx = -1;
4358 unpack_opts.src_index = opt->repo->index;
4359 unpack_opts.dst_index = opt->repo->index;
4360
4361 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4362
4363 /*
4364 * NOTE: if this were just "git checkout" code, we would probably
4365 * read or refresh the cache and check for a conflicted index, but
4366 * builtin/merge.c or sequencer.c really needs to read the index
4367 * and check for conflicted entries before starting merging for a
4368 * good user experience (no sense waiting for merges/rebases before
4369 * erroring out), so there's no reason to duplicate that work here.
4370 */
4371
4372 /* 2-way merge to the new branch */
4373 unpack_opts.update = 1;
4374 unpack_opts.merge = 1;
4375 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4376 unpack_opts.verbose_update = (opt->verbosity > 2);
4377 unpack_opts.fn = twoway_merge;
4378 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4379 parse_tree(prev);
4380 init_tree_desc(&trees[0], prev->buffer, prev->size);
4381 parse_tree(next);
4382 init_tree_desc(&trees[1], next->buffer, next->size);
4383
4384 ret = unpack_trees(2, trees, &unpack_opts);
4385 clear_unpack_trees_porcelain(&unpack_opts);
4386 return ret;
4387 }
4388
4389 static int record_conflicted_index_entries(struct merge_options *opt)
4390 {
4391 struct hashmap_iter iter;
4392 struct strmap_entry *e;
4393 struct index_state *index = opt->repo->index;
4394 struct checkout state = CHECKOUT_INIT;
4395 int errs = 0;
4396 int original_cache_nr;
4397
4398 if (strmap_empty(&opt->priv->conflicted))
4399 return 0;
4400
4401 /*
4402 * We are in a conflicted state. These conflicts might be inside
4403 * sparse-directory entries, so check if any entries are outside
4404 * of the sparse-checkout cone preemptively.
4405 *
4406 * We set original_cache_nr below, but that might change if
4407 * index_name_pos() calls ask for paths within sparse directories.
4408 */
4409 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4410 if (!path_in_sparse_checkout(e->key, index)) {
4411 ensure_full_index(index);
4412 break;
4413 }
4414 }
4415
4416 /* If any entries have skip_worktree set, we'll have to check 'em out */
4417 state.force = 1;
4418 state.quiet = 1;
4419 state.refresh_cache = 1;
4420 state.istate = index;
4421 original_cache_nr = index->cache_nr;
4422
4423 /* Append every entry from conflicted into index, then sort */
4424 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4425 const char *path = e->key;
4426 struct conflict_info *ci = e->value;
4427 int pos;
4428 struct cache_entry *ce;
4429 int i;
4430
4431 VERIFY_CI(ci);
4432
4433 /*
4434 * The index will already have a stage=0 entry for this path,
4435 * because we created an as-merged-as-possible version of the
4436 * file and checkout() moved the working copy and index over
4437 * to that version.
4438 *
4439 * However, previous iterations through this loop will have
4440 * added unstaged entries to the end of the cache which
4441 * ignore the standard alphabetical ordering of cache
4442 * entries and break invariants needed for index_name_pos()
4443 * to work. However, we know the entry we want is before
4444 * those appended cache entries, so do a temporary swap on
4445 * cache_nr to only look through entries of interest.
4446 */
4447 SWAP(index->cache_nr, original_cache_nr);
4448 pos = index_name_pos(index, path, strlen(path));
4449 SWAP(index->cache_nr, original_cache_nr);
4450 if (pos < 0) {
4451 if (ci->filemask != 1)
4452 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4453 cache_tree_invalidate_path(index, path);
4454 } else {
4455 ce = index->cache[pos];
4456
4457 /*
4458 * Clean paths with CE_SKIP_WORKTREE set will not be
4459 * written to the working tree by the unpack_trees()
4460 * call in checkout(). Our conflicted entries would
4461 * have appeared clean to that code since we ignored
4462 * the higher order stages. Thus, we need override
4463 * the CE_SKIP_WORKTREE bit and manually write those
4464 * files to the working disk here.
4465 */
4466 if (ce_skip_worktree(ce))
4467 errs |= checkout_entry(ce, &state, NULL, NULL);
4468
4469 /*
4470 * Mark this cache entry for removal and instead add
4471 * new stage>0 entries corresponding to the
4472 * conflicts. If there are many conflicted entries, we
4473 * want to avoid memmove'ing O(NM) entries by
4474 * inserting the new entries one at a time. So,
4475 * instead, we just add the new cache entries to the
4476 * end (ignoring normal index requirements on sort
4477 * order) and sort the index once we're all done.
4478 */
4479 ce->ce_flags |= CE_REMOVE;
4480 }
4481
4482 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4483 struct version_info *vi;
4484 if (!(ci->filemask & (1ul << i)))
4485 continue;
4486 vi = &ci->stages[i];
4487 ce = make_cache_entry(index, vi->mode, &vi->oid,
4488 path, i+1, 0);
4489 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4490 }
4491 }
4492
4493 /*
4494 * Remove the unused cache entries (and invalidate the relevant
4495 * cache-trees), then sort the index entries to get the conflicted
4496 * entries we added to the end into their right locations.
4497 */
4498 remove_marked_cache_entries(index, 1);
4499 /*
4500 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4501 * on filename and secondarily on stage, and (name, stage #) are a
4502 * unique tuple.
4503 */
4504 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4505
4506 return errs;
4507 }
4508
4509 static void print_submodule_conflict_suggestion(struct string_list *csub) {
4510 struct string_list_item *item;
4511 struct strbuf msg = STRBUF_INIT;
4512 struct strbuf tmp = STRBUF_INIT;
4513 struct strbuf subs = STRBUF_INIT;
4514
4515 if (!csub->nr)
4516 return;
4517
4518 strbuf_add_separated_string_list(&subs, " ", csub);
4519 for_each_string_list_item(item, csub) {
4520 struct conflicted_submodule_item *util = item->util;
4521
4522 /*
4523 * NEEDSWORK: The steps to resolve these errors deserve a more
4524 * detailed explanation than what is currently printed below.
4525 */
4526 if (util->flag == CONFLICT_SUBMODULE_NOT_INITIALIZED ||
4527 util->flag == CONFLICT_SUBMODULE_HISTORY_NOT_AVAILABLE)
4528 continue;
4529
4530 /*
4531 * TRANSLATORS: This is a line of advice to resolve a merge
4532 * conflict in a submodule. The first argument is the submodule
4533 * name, and the second argument is the abbreviated id of the
4534 * commit that needs to be merged. For example:
4535 * - go to submodule (mysubmodule), and either merge commit abc1234"
4536 */
4537 strbuf_addf(&tmp, _(" - go to submodule (%s), and either merge commit %s\n"
4538 " or update to an existing commit which has merged those changes\n"),
4539 item->string, util->abbrev);
4540 }
4541
4542 /*
4543 * TRANSLATORS: This is a detailed message for resolving submodule
4544 * conflicts. The first argument is string containing one step per
4545 * submodule. The second is a space-separated list of submodule names.
4546 */
4547 strbuf_addf(&msg,
4548 _("Recursive merging with submodules currently only supports trivial cases.\n"
4549 "Please manually handle the merging of each conflicted submodule.\n"
4550 "This can be accomplished with the following steps:\n"
4551 "%s"
4552 " - come back to superproject and run:\n\n"
4553 " git add %s\n\n"
4554 " to record the above merge or update\n"
4555 " - resolve any other conflicts in the superproject\n"
4556 " - commit the resulting index in the superproject\n"),
4557 tmp.buf, subs.buf);
4558
4559 printf("%s", msg.buf);
4560
4561 strbuf_release(&subs);
4562 strbuf_release(&tmp);
4563 strbuf_release(&msg);
4564 }
4565
4566 void merge_display_update_messages(struct merge_options *opt,
4567 int detailed,
4568 struct merge_result *result)
4569 {
4570 struct merge_options_internal *opti = result->priv;
4571 struct hashmap_iter iter;
4572 struct strmap_entry *e;
4573 struct string_list olist = STRING_LIST_INIT_NODUP;
4574
4575 if (opt->record_conflict_msgs_as_headers)
4576 BUG("Either display conflict messages or record them as headers, not both");
4577
4578 trace2_region_enter("merge", "display messages", opt->repo);
4579
4580 /* Hack to pre-allocate olist to the desired size */
4581 ALLOC_GROW(olist.items, strmap_get_size(&opti->conflicts),
4582 olist.alloc);
4583
4584 /* Put every entry from output into olist, then sort */
4585 strmap_for_each_entry(&opti->conflicts, &iter, e) {
4586 string_list_append(&olist, e->key)->util = e->value;
4587 }
4588 string_list_sort(&olist);
4589
4590 /* Iterate over the items, printing them */
4591 for (int path_nr = 0; path_nr < olist.nr; ++path_nr) {
4592 struct string_list *conflicts = olist.items[path_nr].util;
4593 for (int i = 0; i < conflicts->nr; i++) {
4594 struct logical_conflict_info *info =
4595 conflicts->items[i].util;
4596
4597 if (detailed) {
4598 printf("%lu", (unsigned long)info->paths.nr);
4599 putchar('\0');
4600 for (int n = 0; n < info->paths.nr; n++) {
4601 fputs(info->paths.v[n], stdout);
4602 putchar('\0');
4603 }
4604 fputs(type_short_descriptions[info->type],
4605 stdout);
4606 putchar('\0');
4607 }
4608 puts(conflicts->items[i].string);
4609 if (detailed)
4610 putchar('\0');
4611 }
4612 }
4613 string_list_clear(&olist, 0);
4614
4615 print_submodule_conflict_suggestion(&opti->conflicted_submodules);
4616
4617 /* Also include needed rename limit adjustment now */
4618 diff_warn_rename_limit("merge.renamelimit",
4619 opti->renames.needed_limit, 0);
4620
4621 trace2_region_leave("merge", "display messages", opt->repo);
4622 }
4623
4624 void merge_get_conflicted_files(struct merge_result *result,
4625 struct string_list *conflicted_files)
4626 {
4627 struct hashmap_iter iter;
4628 struct strmap_entry *e;
4629 struct merge_options_internal *opti = result->priv;
4630
4631 strmap_for_each_entry(&opti->conflicted, &iter, e) {
4632 const char *path = e->key;
4633 struct conflict_info *ci = e->value;
4634 int i;
4635
4636 VERIFY_CI(ci);
4637
4638 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4639 struct stage_info *si;
4640
4641 if (!(ci->filemask & (1ul << i)))
4642 continue;
4643
4644 si = xmalloc(sizeof(*si));
4645 si->stage = i+1;
4646 si->mode = ci->stages[i].mode;
4647 oidcpy(&si->oid, &ci->stages[i].oid);
4648 string_list_append(conflicted_files, path)->util = si;
4649 }
4650 }
4651 /* string_list_sort() uses a stable sort, so we're good */
4652 string_list_sort(conflicted_files);
4653 }
4654
4655 void merge_switch_to_result(struct merge_options *opt,
4656 struct tree *head,
4657 struct merge_result *result,
4658 int update_worktree_and_index,
4659 int display_update_msgs)
4660 {
4661 assert(opt->priv == NULL);
4662 if (result->clean >= 0 && update_worktree_and_index) {
4663 const char *filename;
4664 FILE *fp;
4665
4666 trace2_region_enter("merge", "checkout", opt->repo);
4667 if (checkout(opt, head, result->tree)) {
4668 /* failure to function */
4669 result->clean = -1;
4670 merge_finalize(opt, result);
4671 trace2_region_leave("merge", "checkout", opt->repo);
4672 return;
4673 }
4674 trace2_region_leave("merge", "checkout", opt->repo);
4675
4676 trace2_region_enter("merge", "record_conflicted", opt->repo);
4677 opt->priv = result->priv;
4678 if (record_conflicted_index_entries(opt)) {
4679 /* failure to function */
4680 opt->priv = NULL;
4681 result->clean = -1;
4682 merge_finalize(opt, result);
4683 trace2_region_leave("merge", "record_conflicted",
4684 opt->repo);
4685 return;
4686 }
4687 opt->priv = NULL;
4688 trace2_region_leave("merge", "record_conflicted", opt->repo);
4689
4690 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4691 filename = git_path_auto_merge(opt->repo);
4692 fp = xfopen(filename, "w");
4693 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4694 fclose(fp);
4695 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4696 }
4697 if (display_update_msgs)
4698 merge_display_update_messages(opt, /* detailed */ 0, result);
4699
4700 merge_finalize(opt, result);
4701 }
4702
4703 void merge_finalize(struct merge_options *opt,
4704 struct merge_result *result)
4705 {
4706 if (opt->renormalize)
4707 git_attr_set_direction(GIT_ATTR_CHECKIN);
4708 assert(opt->priv == NULL);
4709
4710 if (result->priv) {
4711 clear_or_reinit_internal_opts(result->priv, 0);
4712 FREE_AND_NULL(result->priv);
4713 }
4714 }
4715
4716 /*** Function Grouping: helper functions for merge_incore_*() ***/
4717
4718 static struct tree *shift_tree_object(struct repository *repo,
4719 struct tree *one, struct tree *two,
4720 const char *subtree_shift)
4721 {
4722 struct object_id shifted;
4723
4724 if (!*subtree_shift) {
4725 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4726 } else {
4727 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4728 subtree_shift);
4729 }
4730 if (oideq(&two->object.oid, &shifted))
4731 return two;
4732 return lookup_tree(repo, &shifted);
4733 }
4734
4735 static inline void set_commit_tree(struct commit *c, struct tree *t)
4736 {
4737 c->maybe_tree = t;
4738 }
4739
4740 static struct commit *make_virtual_commit(struct repository *repo,
4741 struct tree *tree,
4742 const char *comment)
4743 {
4744 struct commit *commit = alloc_commit_node(repo);
4745
4746 set_merge_remote_desc(commit, comment, (struct object *)commit);
4747 set_commit_tree(commit, tree);
4748 commit->object.parsed = 1;
4749 return commit;
4750 }
4751
4752 static void merge_start(struct merge_options *opt, struct merge_result *result)
4753 {
4754 struct rename_info *renames;
4755 int i;
4756 struct mem_pool *pool = NULL;
4757
4758 /* Sanity checks on opt */
4759 trace2_region_enter("merge", "sanity checks", opt->repo);
4760 assert(opt->repo);
4761
4762 assert(opt->branch1 && opt->branch2);
4763
4764 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4765 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4766 assert(opt->rename_limit >= -1);
4767 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4768 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4769
4770 assert(opt->xdl_opts >= 0);
4771 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4772 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4773
4774 if (opt->msg_header_prefix)
4775 assert(opt->record_conflict_msgs_as_headers);
4776
4777 /*
4778 * detect_renames, verbosity, buffer_output, and obuf are ignored
4779 * fields that were used by "recursive" rather than "ort" -- but
4780 * sanity check them anyway.
4781 */
4782 assert(opt->detect_renames >= -1 &&
4783 opt->detect_renames <= DIFF_DETECT_COPY);
4784 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4785 assert(opt->buffer_output <= 2);
4786 assert(opt->obuf.len == 0);
4787
4788 assert(opt->priv == NULL);
4789 if (result->_properly_initialized != 0 &&
4790 result->_properly_initialized != RESULT_INITIALIZED)
4791 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4792 assert(!!result->priv == !!result->_properly_initialized);
4793 if (result->priv) {
4794 opt->priv = result->priv;
4795 result->priv = NULL;
4796 /*
4797 * opt->priv non-NULL means we had results from a previous
4798 * run; do a few sanity checks that user didn't mess with
4799 * it in an obvious fashion.
4800 */
4801 assert(opt->priv->call_depth == 0);
4802 assert(!opt->priv->toplevel_dir ||
4803 0 == strlen(opt->priv->toplevel_dir));
4804 }
4805 trace2_region_leave("merge", "sanity checks", opt->repo);
4806
4807 /* Default to histogram diff. Actually, just hardcode it...for now. */
4808 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4809
4810 /* Handle attr direction stuff for renormalization */
4811 if (opt->renormalize)
4812 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4813
4814 /* Initialization of opt->priv, our internal merge data */
4815 trace2_region_enter("merge", "allocate/init", opt->repo);
4816 if (opt->priv) {
4817 clear_or_reinit_internal_opts(opt->priv, 1);
4818 string_list_init_nodup(&opt->priv->conflicted_submodules);
4819 trace2_region_leave("merge", "allocate/init", opt->repo);
4820 return;
4821 }
4822 opt->priv = xcalloc(1, sizeof(*opt->priv));
4823
4824 /* Initialization of various renames fields */
4825 renames = &opt->priv->renames;
4826 mem_pool_init(&opt->priv->pool, 0);
4827 pool = &opt->priv->pool;
4828 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4829 strintmap_init_with_options(&renames->dirs_removed[i],
4830 NOT_RELEVANT, pool, 0);
4831 strmap_init_with_options(&renames->dir_rename_count[i],
4832 NULL, 1);
4833 strmap_init_with_options(&renames->dir_renames[i],
4834 NULL, 0);
4835 /*
4836 * relevant_sources uses -1 for the default, because we need
4837 * to be able to distinguish not-in-strintmap from valid
4838 * relevant_source values from enum file_rename_relevance.
4839 * In particular, possibly_cache_new_pair() expects a negative
4840 * value for not-found entries.
4841 */
4842 strintmap_init_with_options(&renames->relevant_sources[i],
4843 -1 /* explicitly invalid */,
4844 pool, 0);
4845 strmap_init_with_options(&renames->cached_pairs[i],
4846 NULL, 1);
4847 strset_init_with_options(&renames->cached_irrelevant[i],
4848 NULL, 1);
4849 strset_init_with_options(&renames->cached_target_names[i],
4850 NULL, 0);
4851 }
4852 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4853 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4854 0, pool, 0);
4855 strset_init_with_options(&renames->deferred[i].target_dirs,
4856 pool, 1);
4857 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4858 }
4859
4860 /*
4861 * Although we initialize opt->priv->paths with strdup_strings=0,
4862 * that's just to avoid making yet another copy of an allocated
4863 * string. Putting the entry into paths means we are taking
4864 * ownership, so we will later free it.
4865 *
4866 * In contrast, conflicted just has a subset of keys from paths, so
4867 * we don't want to free those (it'd be a duplicate free).
4868 */
4869 strmap_init_with_options(&opt->priv->paths, pool, 0);
4870 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4871
4872 /*
4873 * keys & string_lists in conflicts will sometimes need to outlive
4874 * "paths", so it will have a copy of relevant keys. It's probably
4875 * a small subset of the overall paths that have special output.
4876 */
4877 strmap_init(&opt->priv->conflicts);
4878
4879 trace2_region_leave("merge", "allocate/init", opt->repo);
4880 }
4881
4882 static void merge_check_renames_reusable(struct merge_result *result,
4883 struct tree *merge_base,
4884 struct tree *side1,
4885 struct tree *side2)
4886 {
4887 struct rename_info *renames;
4888 struct tree **merge_trees;
4889 struct merge_options_internal *opti = result->priv;
4890
4891 if (!opti)
4892 return;
4893
4894 renames = &opti->renames;
4895 merge_trees = renames->merge_trees;
4896
4897 /*
4898 * Handle case where previous merge operation did not want cache to
4899 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4900 */
4901 if (!merge_trees[0]) {
4902 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4903 renames->cached_pairs_valid_side = 0; /* neither side valid */
4904 return;
4905 }
4906
4907 /*
4908 * Handle other cases; note that merge_trees[0..2] will only
4909 * be NULL if opti is, or if all three were manually set to
4910 * NULL by e.g. rename/rename(1to1) handling.
4911 */
4912 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4913
4914 /* Check if we meet a condition for re-using cached_pairs */
4915 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4916 oideq(&side1->object.oid, &result->tree->object.oid))
4917 renames->cached_pairs_valid_side = MERGE_SIDE1;
4918 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4919 oideq(&side2->object.oid, &result->tree->object.oid))
4920 renames->cached_pairs_valid_side = MERGE_SIDE2;
4921 else
4922 renames->cached_pairs_valid_side = 0; /* neither side valid */
4923 }
4924
4925 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4926
4927 /*
4928 * Originally from merge_trees_internal(); heavily adapted, though.
4929 */
4930 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4931 struct tree *merge_base,
4932 struct tree *side1,
4933 struct tree *side2,
4934 struct merge_result *result)
4935 {
4936 struct object_id working_tree_oid;
4937
4938 if (opt->subtree_shift) {
4939 side2 = shift_tree_object(opt->repo, side1, side2,
4940 opt->subtree_shift);
4941 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4942 opt->subtree_shift);
4943 }
4944
4945 redo:
4946 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4947 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4948 /*
4949 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4950 * base, and 2-3) the trees for the two trees we're merging.
4951 */
4952 error(_("collecting merge info failed for trees %s, %s, %s"),
4953 oid_to_hex(&merge_base->object.oid),
4954 oid_to_hex(&side1->object.oid),
4955 oid_to_hex(&side2->object.oid));
4956 result->clean = -1;
4957 return;
4958 }
4959 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4960
4961 trace2_region_enter("merge", "renames", opt->repo);
4962 result->clean = detect_and_process_renames(opt);
4963 trace2_region_leave("merge", "renames", opt->repo);
4964 if (opt->priv->renames.redo_after_renames == 2) {
4965 trace2_region_enter("merge", "reset_maps", opt->repo);
4966 clear_or_reinit_internal_opts(opt->priv, 1);
4967 trace2_region_leave("merge", "reset_maps", opt->repo);
4968 goto redo;
4969 }
4970
4971 trace2_region_enter("merge", "process_entries", opt->repo);
4972 if (process_entries(opt, &working_tree_oid) < 0)
4973 result->clean = -1;
4974 trace2_region_leave("merge", "process_entries", opt->repo);
4975
4976 /* Set return values */
4977 result->path_messages = &opt->priv->conflicts;
4978
4979 if (result->clean >= 0) {
4980 result->tree = parse_tree_indirect(&working_tree_oid);
4981 /* existence of conflicted entries implies unclean */
4982 result->clean &= strmap_empty(&opt->priv->conflicted);
4983 }
4984 if (!opt->priv->call_depth) {
4985 result->priv = opt->priv;
4986 result->_properly_initialized = RESULT_INITIALIZED;
4987 opt->priv = NULL;
4988 }
4989 }
4990
4991 /*
4992 * Originally from merge_recursive_internal(); somewhat adapted, though.
4993 */
4994 static void merge_ort_internal(struct merge_options *opt,
4995 struct commit_list *merge_bases,
4996 struct commit *h1,
4997 struct commit *h2,
4998 struct merge_result *result)
4999 {
5000 struct commit *next;
5001 struct commit *merged_merge_bases;
5002 const char *ancestor_name;
5003 struct strbuf merge_base_abbrev = STRBUF_INIT;
5004
5005 if (!merge_bases) {
5006 merge_bases = repo_get_merge_bases(the_repository, h1, h2);
5007 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
5008 merge_bases = reverse_commit_list(merge_bases);
5009 }
5010
5011 merged_merge_bases = pop_commit(&merge_bases);
5012 if (!merged_merge_bases) {
5013 /* if there is no common ancestor, use an empty tree */
5014 struct tree *tree;
5015
5016 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
5017 merged_merge_bases = make_virtual_commit(opt->repo, tree,
5018 "ancestor");
5019 ancestor_name = "empty tree";
5020 } else if (merge_bases) {
5021 ancestor_name = "merged common ancestors";
5022 } else {
5023 strbuf_add_unique_abbrev(&merge_base_abbrev,
5024 &merged_merge_bases->object.oid,
5025 DEFAULT_ABBREV);
5026 ancestor_name = merge_base_abbrev.buf;
5027 }
5028
5029 for (next = pop_commit(&merge_bases); next;
5030 next = pop_commit(&merge_bases)) {
5031 const char *saved_b1, *saved_b2;
5032 struct commit *prev = merged_merge_bases;
5033
5034 opt->priv->call_depth++;
5035 /*
5036 * When the merge fails, the result contains files
5037 * with conflict markers. The cleanness flag is
5038 * ignored (unless indicating an error), it was never
5039 * actually used, as result of merge_trees has always
5040 * overwritten it: the committed "conflicts" were
5041 * already resolved.
5042 */
5043 saved_b1 = opt->branch1;
5044 saved_b2 = opt->branch2;
5045 opt->branch1 = "Temporary merge branch 1";
5046 opt->branch2 = "Temporary merge branch 2";
5047 merge_ort_internal(opt, NULL, prev, next, result);
5048 if (result->clean < 0)
5049 return;
5050 opt->branch1 = saved_b1;
5051 opt->branch2 = saved_b2;
5052 opt->priv->call_depth--;
5053
5054 merged_merge_bases = make_virtual_commit(opt->repo,
5055 result->tree,
5056 "merged tree");
5057 commit_list_insert(prev, &merged_merge_bases->parents);
5058 commit_list_insert(next, &merged_merge_bases->parents->next);
5059
5060 clear_or_reinit_internal_opts(opt->priv, 1);
5061 }
5062
5063 opt->ancestor = ancestor_name;
5064 merge_ort_nonrecursive_internal(opt,
5065 repo_get_commit_tree(opt->repo,
5066 merged_merge_bases),
5067 repo_get_commit_tree(opt->repo, h1),
5068 repo_get_commit_tree(opt->repo, h2),
5069 result);
5070 strbuf_release(&merge_base_abbrev);
5071 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
5072 }
5073
5074 void merge_incore_nonrecursive(struct merge_options *opt,
5075 struct tree *merge_base,
5076 struct tree *side1,
5077 struct tree *side2,
5078 struct merge_result *result)
5079 {
5080 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
5081
5082 trace2_region_enter("merge", "merge_start", opt->repo);
5083 assert(opt->ancestor != NULL);
5084 merge_check_renames_reusable(result, merge_base, side1, side2);
5085 merge_start(opt, result);
5086 /*
5087 * Record the trees used in this merge, so if there's a next merge in
5088 * a cherry-pick or rebase sequence it might be able to take advantage
5089 * of the cached_pairs in that next merge.
5090 */
5091 opt->priv->renames.merge_trees[0] = merge_base;
5092 opt->priv->renames.merge_trees[1] = side1;
5093 opt->priv->renames.merge_trees[2] = side2;
5094 trace2_region_leave("merge", "merge_start", opt->repo);
5095
5096 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
5097 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
5098 }
5099
5100 void merge_incore_recursive(struct merge_options *opt,
5101 struct commit_list *merge_bases,
5102 struct commit *side1,
5103 struct commit *side2,
5104 struct merge_result *result)
5105 {
5106 trace2_region_enter("merge", "incore_recursive", opt->repo);
5107
5108 /* We set the ancestor label based on the merge_bases */
5109 assert(opt->ancestor == NULL);
5110
5111 trace2_region_enter("merge", "merge_start", opt->repo);
5112 merge_start(opt, result);
5113 trace2_region_leave("merge", "merge_start", opt->repo);
5114
5115 merge_ort_internal(opt, merge_bases, side1, side2, result);
5116 trace2_region_leave("merge", "incore_recursive", opt->repo);
5117 }