]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
t3905: remove nested git in command substitution
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "blob.h"
22 #include "cache-tree.h"
23 #include "commit.h"
24 #include "commit-reach.h"
25 #include "diff.h"
26 #include "diffcore.h"
27 #include "dir.h"
28 #include "ll-merge.h"
29 #include "object-store.h"
30 #include "revision.h"
31 #include "strmap.h"
32 #include "submodule.h"
33 #include "tree.h"
34 #include "unpack-trees.h"
35 #include "xdiff-interface.h"
36
37 /*
38 * We have many arrays of size 3. Whenever we have such an array, the
39 * indices refer to one of the sides of the three-way merge. This is so
40 * pervasive that the constants 0, 1, and 2 are used in many places in the
41 * code (especially in arithmetic operations to find the other side's index
42 * or to compute a relevant mask), but sometimes these enum names are used
43 * to aid code clarity.
44 *
45 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
46 * referred to there is one of these three sides.
47 */
48 enum merge_side {
49 MERGE_BASE = 0,
50 MERGE_SIDE1 = 1,
51 MERGE_SIDE2 = 2
52 };
53
54 struct rename_info {
55 /*
56 * pairs: pairing of filenames from diffcore_rename()
57 *
58 * Index 1 and 2 correspond to sides 1 & 2 as used in
59 * conflict_info.stages. Index 0 unused.
60 */
61 struct diff_queue_struct pairs[3];
62
63 /*
64 * needed_limit: value needed for inexact rename detection to run
65 *
66 * If the current rename limit wasn't high enough for inexact
67 * rename detection to run, this records the limit needed. Otherwise,
68 * this value remains 0.
69 */
70 int needed_limit;
71 };
72
73 struct merge_options_internal {
74 /*
75 * paths: primary data structure in all of merge ort.
76 *
77 * The keys of paths:
78 * * are full relative paths from the toplevel of the repository
79 * (e.g. "drivers/firmware/raspberrypi.c").
80 * * store all relevant paths in the repo, both directories and
81 * files (e.g. drivers, drivers/firmware would also be included)
82 * * these keys serve to intern all the path strings, which allows
83 * us to do pointer comparison on directory names instead of
84 * strcmp; we just have to be careful to use the interned strings.
85 * (Technically paths_to_free may track some strings that were
86 * removed from froms paths.)
87 *
88 * The values of paths:
89 * * either a pointer to a merged_info, or a conflict_info struct
90 * * merged_info contains all relevant information for a
91 * non-conflicted entry.
92 * * conflict_info contains a merged_info, plus any additional
93 * information about a conflict such as the higher orders stages
94 * involved and the names of the paths those came from (handy
95 * once renames get involved).
96 * * a path may start "conflicted" (i.e. point to a conflict_info)
97 * and then a later step (e.g. three-way content merge) determines
98 * it can be cleanly merged, at which point it'll be marked clean
99 * and the algorithm will ignore any data outside the contained
100 * merged_info for that entry
101 * * If an entry remains conflicted, the merged_info portion of a
102 * conflict_info will later be filled with whatever version of
103 * the file should be placed in the working directory (e.g. an
104 * as-merged-as-possible variation that contains conflict markers).
105 */
106 struct strmap paths;
107
108 /*
109 * conflicted: a subset of keys->values from "paths"
110 *
111 * conflicted is basically an optimization between process_entries()
112 * and record_conflicted_index_entries(); the latter could loop over
113 * ALL the entries in paths AGAIN and look for the ones that are
114 * still conflicted, but since process_entries() has to loop over
115 * all of them, it saves the ones it couldn't resolve in this strmap
116 * so that record_conflicted_index_entries() can iterate just the
117 * relevant entries.
118 */
119 struct strmap conflicted;
120
121 /*
122 * paths_to_free: additional list of strings to free
123 *
124 * If keys are removed from "paths", they are added to paths_to_free
125 * to ensure they are later freed. We avoid free'ing immediately since
126 * other places (e.g. conflict_info.pathnames[]) may still be
127 * referencing these paths.
128 */
129 struct string_list paths_to_free;
130
131 /*
132 * output: special messages and conflict notices for various paths
133 *
134 * This is a map of pathnames (a subset of the keys in "paths" above)
135 * to strbufs. It gathers various warning/conflict/notice messages
136 * for later processing.
137 */
138 struct strmap output;
139
140 /*
141 * renames: various data relating to rename detection
142 */
143 struct rename_info renames;
144
145 /*
146 * current_dir_name: temporary var used in collect_merge_info_callback()
147 *
148 * Used to set merged_info.directory_name; see documentation for that
149 * variable and the requirements placed on that field.
150 */
151 const char *current_dir_name;
152
153 /* call_depth: recursion level counter for merging merge bases */
154 int call_depth;
155 };
156
157 struct version_info {
158 struct object_id oid;
159 unsigned short mode;
160 };
161
162 struct merged_info {
163 /* if is_null, ignore result. otherwise result has oid & mode */
164 struct version_info result;
165 unsigned is_null:1;
166
167 /*
168 * clean: whether the path in question is cleanly merged.
169 *
170 * see conflict_info.merged for more details.
171 */
172 unsigned clean:1;
173
174 /*
175 * basename_offset: offset of basename of path.
176 *
177 * perf optimization to avoid recomputing offset of final '/'
178 * character in pathname (0 if no '/' in pathname).
179 */
180 size_t basename_offset;
181
182 /*
183 * directory_name: containing directory name.
184 *
185 * Note that we assume directory_name is constructed such that
186 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
187 * i.e. string equality is equivalent to pointer equality. For this
188 * to hold, we have to be careful setting directory_name.
189 */
190 const char *directory_name;
191 };
192
193 struct conflict_info {
194 /*
195 * merged: the version of the path that will be written to working tree
196 *
197 * WARNING: It is critical to check merged.clean and ensure it is 0
198 * before reading any conflict_info fields outside of merged.
199 * Allocated merge_info structs will always have clean set to 1.
200 * Allocated conflict_info structs will have merged.clean set to 0
201 * initially. The merged.clean field is how we know if it is safe
202 * to access other parts of conflict_info besides merged; if a
203 * conflict_info's merged.clean is changed to 1, the rest of the
204 * algorithm is not allowed to look at anything outside of the
205 * merged member anymore.
206 */
207 struct merged_info merged;
208
209 /* oids & modes from each of the three trees for this path */
210 struct version_info stages[3];
211
212 /* pathnames for each stage; may differ due to rename detection */
213 const char *pathnames[3];
214
215 /* Whether this path is/was involved in a directory/file conflict */
216 unsigned df_conflict:1;
217
218 /*
219 * Whether this path is/was involved in a non-content conflict other
220 * than a directory/file conflict (e.g. rename/rename, rename/delete,
221 * file location based on possible directory rename).
222 */
223 unsigned path_conflict:1;
224
225 /*
226 * For filemask and dirmask, the ith bit corresponds to whether the
227 * ith entry is a file (filemask) or a directory (dirmask). Thus,
228 * filemask & dirmask is always zero, and filemask | dirmask is at
229 * most 7 but can be less when a path does not appear as either a
230 * file or a directory on at least one side of history.
231 *
232 * Note that these masks are related to enum merge_side, as the ith
233 * entry corresponds to side i.
234 *
235 * These values come from a traverse_trees() call; more info may be
236 * found looking at tree-walk.h's struct traverse_info,
237 * particularly the documentation above the "fn" member (note that
238 * filemask = mask & ~dirmask from that documentation).
239 */
240 unsigned filemask:3;
241 unsigned dirmask:3;
242
243 /*
244 * Optimization to track which stages match, to avoid the need to
245 * recompute it in multiple steps. Either 0 or at least 2 bits are
246 * set; if at least 2 bits are set, their corresponding stages match.
247 */
248 unsigned match_mask:3;
249 };
250
251 /*** Function Grouping: various utility functions ***/
252
253 /*
254 * For the next three macros, see warning for conflict_info.merged.
255 *
256 * In each of the below, mi is a struct merged_info*, and ci was defined
257 * as a struct conflict_info* (but we need to verify ci isn't actually
258 * pointed at a struct merged_info*).
259 *
260 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
261 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
262 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
263 */
264 #define INITIALIZE_CI(ci, mi) do { \
265 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
266 } while (0)
267 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
268 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
269 (ci) = (struct conflict_info *)(mi); \
270 assert((ci) && !(mi)->clean); \
271 } while (0)
272
273 static void free_strmap_strings(struct strmap *map)
274 {
275 struct hashmap_iter iter;
276 struct strmap_entry *entry;
277
278 strmap_for_each_entry(map, &iter, entry) {
279 free((char*)entry->key);
280 }
281 }
282
283 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
284 int reinitialize)
285 {
286 void (*strmap_func)(struct strmap *, int) =
287 reinitialize ? strmap_partial_clear : strmap_clear;
288
289 /*
290 * We marked opti->paths with strdup_strings = 0, so that we
291 * wouldn't have to make another copy of the fullpath created by
292 * make_traverse_path from setup_path_info(). But, now that we've
293 * used it and have no other references to these strings, it is time
294 * to deallocate them.
295 */
296 free_strmap_strings(&opti->paths);
297 strmap_func(&opti->paths, 1);
298
299 /*
300 * All keys and values in opti->conflicted are a subset of those in
301 * opti->paths. We don't want to deallocate anything twice, so we
302 * don't free the keys and we pass 0 for free_values.
303 */
304 strmap_func(&opti->conflicted, 0);
305
306 /*
307 * opti->paths_to_free is similar to opti->paths; we created it with
308 * strdup_strings = 0 to avoid making _another_ copy of the fullpath
309 * but now that we've used it and have no other references to these
310 * strings, it is time to deallocate them. We do so by temporarily
311 * setting strdup_strings to 1.
312 */
313 opti->paths_to_free.strdup_strings = 1;
314 string_list_clear(&opti->paths_to_free, 0);
315 opti->paths_to_free.strdup_strings = 0;
316
317 if (!reinitialize) {
318 struct hashmap_iter iter;
319 struct strmap_entry *e;
320
321 /* Release and free each strbuf found in output */
322 strmap_for_each_entry(&opti->output, &iter, e) {
323 struct strbuf *sb = e->value;
324 strbuf_release(sb);
325 /*
326 * While strictly speaking we don't need to free(sb)
327 * here because we could pass free_values=1 when
328 * calling strmap_clear() on opti->output, that would
329 * require strmap_clear to do another
330 * strmap_for_each_entry() loop, so we just free it
331 * while we're iterating anyway.
332 */
333 free(sb);
334 }
335 strmap_clear(&opti->output, 0);
336 }
337 }
338
339 static int err(struct merge_options *opt, const char *err, ...)
340 {
341 va_list params;
342 struct strbuf sb = STRBUF_INIT;
343
344 strbuf_addstr(&sb, "error: ");
345 va_start(params, err);
346 strbuf_vaddf(&sb, err, params);
347 va_end(params);
348
349 error("%s", sb.buf);
350 strbuf_release(&sb);
351
352 return -1;
353 }
354
355 static void format_commit(struct strbuf *sb,
356 int indent,
357 struct commit *commit)
358 {
359 struct merge_remote_desc *desc;
360 struct pretty_print_context ctx = {0};
361 ctx.abbrev = DEFAULT_ABBREV;
362
363 strbuf_addchars(sb, ' ', indent);
364 desc = merge_remote_util(commit);
365 if (desc) {
366 strbuf_addf(sb, "virtual %s\n", desc->name);
367 return;
368 }
369
370 format_commit_message(commit, "%h %s", sb, &ctx);
371 strbuf_addch(sb, '\n');
372 }
373
374 __attribute__((format (printf, 4, 5)))
375 static void path_msg(struct merge_options *opt,
376 const char *path,
377 int omittable_hint, /* skippable under --remerge-diff */
378 const char *fmt, ...)
379 {
380 va_list ap;
381 struct strbuf *sb = strmap_get(&opt->priv->output, path);
382 if (!sb) {
383 sb = xmalloc(sizeof(*sb));
384 strbuf_init(sb, 0);
385 strmap_put(&opt->priv->output, path, sb);
386 }
387
388 va_start(ap, fmt);
389 strbuf_vaddf(sb, fmt, ap);
390 va_end(ap);
391
392 strbuf_addch(sb, '\n');
393 }
394
395 /* add a string to a strbuf, but converting "/" to "_" */
396 static void add_flattened_path(struct strbuf *out, const char *s)
397 {
398 size_t i = out->len;
399 strbuf_addstr(out, s);
400 for (; i < out->len; i++)
401 if (out->buf[i] == '/')
402 out->buf[i] = '_';
403 }
404
405 static char *unique_path(struct strmap *existing_paths,
406 const char *path,
407 const char *branch)
408 {
409 struct strbuf newpath = STRBUF_INIT;
410 int suffix = 0;
411 size_t base_len;
412
413 strbuf_addf(&newpath, "%s~", path);
414 add_flattened_path(&newpath, branch);
415
416 base_len = newpath.len;
417 while (strmap_contains(existing_paths, newpath.buf)) {
418 strbuf_setlen(&newpath, base_len);
419 strbuf_addf(&newpath, "_%d", suffix++);
420 }
421
422 return strbuf_detach(&newpath, NULL);
423 }
424
425 /*** Function Grouping: functions related to collect_merge_info() ***/
426
427 static void setup_path_info(struct merge_options *opt,
428 struct string_list_item *result,
429 const char *current_dir_name,
430 int current_dir_name_len,
431 char *fullpath, /* we'll take over ownership */
432 struct name_entry *names,
433 struct name_entry *merged_version,
434 unsigned is_null, /* boolean */
435 unsigned df_conflict, /* boolean */
436 unsigned filemask,
437 unsigned dirmask,
438 int resolved /* boolean */)
439 {
440 /* result->util is void*, so mi is a convenience typed variable */
441 struct merged_info *mi;
442
443 assert(!is_null || resolved);
444 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
445 assert(resolved == (merged_version != NULL));
446
447 mi = xcalloc(1, resolved ? sizeof(struct merged_info) :
448 sizeof(struct conflict_info));
449 mi->directory_name = current_dir_name;
450 mi->basename_offset = current_dir_name_len;
451 mi->clean = !!resolved;
452 if (resolved) {
453 mi->result.mode = merged_version->mode;
454 oidcpy(&mi->result.oid, &merged_version->oid);
455 mi->is_null = !!is_null;
456 } else {
457 int i;
458 struct conflict_info *ci;
459
460 ASSIGN_AND_VERIFY_CI(ci, mi);
461 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
462 ci->pathnames[i] = fullpath;
463 ci->stages[i].mode = names[i].mode;
464 oidcpy(&ci->stages[i].oid, &names[i].oid);
465 }
466 ci->filemask = filemask;
467 ci->dirmask = dirmask;
468 ci->df_conflict = !!df_conflict;
469 if (dirmask)
470 /*
471 * Assume is_null for now, but if we have entries
472 * under the directory then when it is complete in
473 * write_completed_directory() it'll update this.
474 * Also, for D/F conflicts, we have to handle the
475 * directory first, then clear this bit and process
476 * the file to see how it is handled -- that occurs
477 * near the top of process_entry().
478 */
479 mi->is_null = 1;
480 }
481 strmap_put(&opt->priv->paths, fullpath, mi);
482 result->string = fullpath;
483 result->util = mi;
484 }
485
486 static int collect_merge_info_callback(int n,
487 unsigned long mask,
488 unsigned long dirmask,
489 struct name_entry *names,
490 struct traverse_info *info)
491 {
492 /*
493 * n is 3. Always.
494 * common ancestor (mbase) has mask 1, and stored in index 0 of names
495 * head of side 1 (side1) has mask 2, and stored in index 1 of names
496 * head of side 2 (side2) has mask 4, and stored in index 2 of names
497 */
498 struct merge_options *opt = info->data;
499 struct merge_options_internal *opti = opt->priv;
500 struct string_list_item pi; /* Path Info */
501 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
502 struct name_entry *p;
503 size_t len;
504 char *fullpath;
505 const char *dirname = opti->current_dir_name;
506 unsigned filemask = mask & ~dirmask;
507 unsigned match_mask = 0; /* will be updated below */
508 unsigned mbase_null = !(mask & 1);
509 unsigned side1_null = !(mask & 2);
510 unsigned side2_null = !(mask & 4);
511 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
512 names[0].mode == names[1].mode &&
513 oideq(&names[0].oid, &names[1].oid));
514 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
515 names[0].mode == names[2].mode &&
516 oideq(&names[0].oid, &names[2].oid));
517 unsigned sides_match = (!side1_null && !side2_null &&
518 names[1].mode == names[2].mode &&
519 oideq(&names[1].oid, &names[2].oid));
520
521 /*
522 * Note: When a path is a file on one side of history and a directory
523 * in another, we have a directory/file conflict. In such cases, if
524 * the conflict doesn't resolve from renames and deletions, then we
525 * always leave directories where they are and move files out of the
526 * way. Thus, while struct conflict_info has a df_conflict field to
527 * track such conflicts, we ignore that field for any directories at
528 * a path and only pay attention to it for files at the given path.
529 * The fact that we leave directories were they are also means that
530 * we do not need to worry about getting additional df_conflict
531 * information propagated from parent directories down to children
532 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
533 * sets a newinfo.df_conflicts field specifically to propagate it).
534 */
535 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
536
537 /* n = 3 is a fundamental assumption. */
538 if (n != 3)
539 BUG("Called collect_merge_info_callback wrong");
540
541 /*
542 * A bunch of sanity checks verifying that traverse_trees() calls
543 * us the way I expect. Could just remove these at some point,
544 * though maybe they are helpful to future code readers.
545 */
546 assert(mbase_null == is_null_oid(&names[0].oid));
547 assert(side1_null == is_null_oid(&names[1].oid));
548 assert(side2_null == is_null_oid(&names[2].oid));
549 assert(!mbase_null || !side1_null || !side2_null);
550 assert(mask > 0 && mask < 8);
551
552 /* Determine match_mask */
553 if (side1_matches_mbase)
554 match_mask = (side2_matches_mbase ? 7 : 3);
555 else if (side2_matches_mbase)
556 match_mask = 5;
557 else if (sides_match)
558 match_mask = 6;
559
560 /*
561 * Get the name of the relevant filepath, which we'll pass to
562 * setup_path_info() for tracking.
563 */
564 p = names;
565 while (!p->mode)
566 p++;
567 len = traverse_path_len(info, p->pathlen);
568
569 /* +1 in both of the following lines to include the NUL byte */
570 fullpath = xmalloc(len + 1);
571 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
572
573 /*
574 * If mbase, side1, and side2 all match, we can resolve early. Even
575 * if these are trees, there will be no renames or anything
576 * underneath.
577 */
578 if (side1_matches_mbase && side2_matches_mbase) {
579 /* mbase, side1, & side2 all match; use mbase as resolution */
580 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
581 names, names+0, mbase_null, 0,
582 filemask, dirmask, 1);
583 return mask;
584 }
585
586 /*
587 * Record information about the path so we can resolve later in
588 * process_entries.
589 */
590 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
591 names, NULL, 0, df_conflict, filemask, dirmask, 0);
592
593 ci = pi.util;
594 VERIFY_CI(ci);
595 ci->match_mask = match_mask;
596
597 /* If dirmask, recurse into subdirectories */
598 if (dirmask) {
599 struct traverse_info newinfo;
600 struct tree_desc t[3];
601 void *buf[3] = {NULL, NULL, NULL};
602 const char *original_dir_name;
603 int i, ret;
604
605 ci->match_mask &= filemask;
606 newinfo = *info;
607 newinfo.prev = info;
608 newinfo.name = p->path;
609 newinfo.namelen = p->pathlen;
610 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
611 /*
612 * If this directory we are about to recurse into cared about
613 * its parent directory (the current directory) having a D/F
614 * conflict, then we'd propagate the masks in this way:
615 * newinfo.df_conflicts |= (mask & ~dirmask);
616 * But we don't worry about propagating D/F conflicts. (See
617 * comment near setting of local df_conflict variable near
618 * the beginning of this function).
619 */
620
621 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
622 if (i == 1 && side1_matches_mbase)
623 t[1] = t[0];
624 else if (i == 2 && side2_matches_mbase)
625 t[2] = t[0];
626 else if (i == 2 && sides_match)
627 t[2] = t[1];
628 else {
629 const struct object_id *oid = NULL;
630 if (dirmask & 1)
631 oid = &names[i].oid;
632 buf[i] = fill_tree_descriptor(opt->repo,
633 t + i, oid);
634 }
635 dirmask >>= 1;
636 }
637
638 original_dir_name = opti->current_dir_name;
639 opti->current_dir_name = pi.string;
640 ret = traverse_trees(NULL, 3, t, &newinfo);
641 opti->current_dir_name = original_dir_name;
642
643 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
644 free(buf[i]);
645
646 if (ret < 0)
647 return -1;
648 }
649
650 return mask;
651 }
652
653 static int collect_merge_info(struct merge_options *opt,
654 struct tree *merge_base,
655 struct tree *side1,
656 struct tree *side2)
657 {
658 int ret;
659 struct tree_desc t[3];
660 struct traverse_info info;
661 const char *toplevel_dir_placeholder = "";
662
663 opt->priv->current_dir_name = toplevel_dir_placeholder;
664 setup_traverse_info(&info, toplevel_dir_placeholder);
665 info.fn = collect_merge_info_callback;
666 info.data = opt;
667 info.show_all_errors = 1;
668
669 parse_tree(merge_base);
670 parse_tree(side1);
671 parse_tree(side2);
672 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
673 init_tree_desc(t + 1, side1->buffer, side1->size);
674 init_tree_desc(t + 2, side2->buffer, side2->size);
675
676 ret = traverse_trees(NULL, 3, t, &info);
677
678 return ret;
679 }
680
681 /*** Function Grouping: functions related to threeway content merges ***/
682
683 static int find_first_merges(struct repository *repo,
684 const char *path,
685 struct commit *a,
686 struct commit *b,
687 struct object_array *result)
688 {
689 int i, j;
690 struct object_array merges = OBJECT_ARRAY_INIT;
691 struct commit *commit;
692 int contains_another;
693
694 char merged_revision[GIT_MAX_HEXSZ + 2];
695 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
696 "--all", merged_revision, NULL };
697 struct rev_info revs;
698 struct setup_revision_opt rev_opts;
699
700 memset(result, 0, sizeof(struct object_array));
701 memset(&rev_opts, 0, sizeof(rev_opts));
702
703 /* get all revisions that merge commit a */
704 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
705 oid_to_hex(&a->object.oid));
706 repo_init_revisions(repo, &revs, NULL);
707 rev_opts.submodule = path;
708 /* FIXME: can't handle linked worktrees in submodules yet */
709 revs.single_worktree = path != NULL;
710 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
711
712 /* save all revisions from the above list that contain b */
713 if (prepare_revision_walk(&revs))
714 die("revision walk setup failed");
715 while ((commit = get_revision(&revs)) != NULL) {
716 struct object *o = &(commit->object);
717 if (in_merge_bases(b, commit))
718 add_object_array(o, NULL, &merges);
719 }
720 reset_revision_walk();
721
722 /* Now we've got all merges that contain a and b. Prune all
723 * merges that contain another found merge and save them in
724 * result.
725 */
726 for (i = 0; i < merges.nr; i++) {
727 struct commit *m1 = (struct commit *) merges.objects[i].item;
728
729 contains_another = 0;
730 for (j = 0; j < merges.nr; j++) {
731 struct commit *m2 = (struct commit *) merges.objects[j].item;
732 if (i != j && in_merge_bases(m2, m1)) {
733 contains_another = 1;
734 break;
735 }
736 }
737
738 if (!contains_another)
739 add_object_array(merges.objects[i].item, NULL, result);
740 }
741
742 object_array_clear(&merges);
743 return result->nr;
744 }
745
746 static int merge_submodule(struct merge_options *opt,
747 const char *path,
748 const struct object_id *o,
749 const struct object_id *a,
750 const struct object_id *b,
751 struct object_id *result)
752 {
753 struct commit *commit_o, *commit_a, *commit_b;
754 int parent_count;
755 struct object_array merges;
756 struct strbuf sb = STRBUF_INIT;
757
758 int i;
759 int search = !opt->priv->call_depth;
760
761 /* store fallback answer in result in case we fail */
762 oidcpy(result, opt->priv->call_depth ? o : a);
763
764 /* we can not handle deletion conflicts */
765 if (is_null_oid(o))
766 return 0;
767 if (is_null_oid(a))
768 return 0;
769 if (is_null_oid(b))
770 return 0;
771
772 if (add_submodule_odb(path)) {
773 path_msg(opt, path, 0,
774 _("Failed to merge submodule %s (not checked out)"),
775 path);
776 return 0;
777 }
778
779 if (!(commit_o = lookup_commit_reference(opt->repo, o)) ||
780 !(commit_a = lookup_commit_reference(opt->repo, a)) ||
781 !(commit_b = lookup_commit_reference(opt->repo, b))) {
782 path_msg(opt, path, 0,
783 _("Failed to merge submodule %s (commits not present)"),
784 path);
785 return 0;
786 }
787
788 /* check whether both changes are forward */
789 if (!in_merge_bases(commit_o, commit_a) ||
790 !in_merge_bases(commit_o, commit_b)) {
791 path_msg(opt, path, 0,
792 _("Failed to merge submodule %s "
793 "(commits don't follow merge-base)"),
794 path);
795 return 0;
796 }
797
798 /* Case #1: a is contained in b or vice versa */
799 if (in_merge_bases(commit_a, commit_b)) {
800 oidcpy(result, b);
801 path_msg(opt, path, 1,
802 _("Note: Fast-forwarding submodule %s to %s"),
803 path, oid_to_hex(b));
804 return 1;
805 }
806 if (in_merge_bases(commit_b, commit_a)) {
807 oidcpy(result, a);
808 path_msg(opt, path, 1,
809 _("Note: Fast-forwarding submodule %s to %s"),
810 path, oid_to_hex(a));
811 return 1;
812 }
813
814 /*
815 * Case #2: There are one or more merges that contain a and b in
816 * the submodule. If there is only one, then present it as a
817 * suggestion to the user, but leave it marked unmerged so the
818 * user needs to confirm the resolution.
819 */
820
821 /* Skip the search if makes no sense to the calling context. */
822 if (!search)
823 return 0;
824
825 /* find commit which merges them */
826 parent_count = find_first_merges(opt->repo, path, commit_a, commit_b,
827 &merges);
828 switch (parent_count) {
829 case 0:
830 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
831 break;
832
833 case 1:
834 format_commit(&sb, 4,
835 (struct commit *)merges.objects[0].item);
836 path_msg(opt, path, 0,
837 _("Failed to merge submodule %s, but a possible merge "
838 "resolution exists:\n%s\n"),
839 path, sb.buf);
840 path_msg(opt, path, 1,
841 _("If this is correct simply add it to the index "
842 "for example\n"
843 "by using:\n\n"
844 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
845 "which will accept this suggestion.\n"),
846 oid_to_hex(&merges.objects[0].item->oid), path);
847 strbuf_release(&sb);
848 break;
849 default:
850 for (i = 0; i < merges.nr; i++)
851 format_commit(&sb, 4,
852 (struct commit *)merges.objects[i].item);
853 path_msg(opt, path, 0,
854 _("Failed to merge submodule %s, but multiple "
855 "possible merges exist:\n%s"), path, sb.buf);
856 strbuf_release(&sb);
857 }
858
859 object_array_clear(&merges);
860 return 0;
861 }
862
863 static int merge_3way(struct merge_options *opt,
864 const char *path,
865 const struct object_id *o,
866 const struct object_id *a,
867 const struct object_id *b,
868 const char *pathnames[3],
869 const int extra_marker_size,
870 mmbuffer_t *result_buf)
871 {
872 mmfile_t orig, src1, src2;
873 struct ll_merge_options ll_opts = {0};
874 char *base, *name1, *name2;
875 int merge_status;
876
877 ll_opts.renormalize = opt->renormalize;
878 ll_opts.extra_marker_size = extra_marker_size;
879 ll_opts.xdl_opts = opt->xdl_opts;
880
881 if (opt->priv->call_depth) {
882 ll_opts.virtual_ancestor = 1;
883 ll_opts.variant = 0;
884 } else {
885 switch (opt->recursive_variant) {
886 case MERGE_VARIANT_OURS:
887 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
888 break;
889 case MERGE_VARIANT_THEIRS:
890 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
891 break;
892 default:
893 ll_opts.variant = 0;
894 break;
895 }
896 }
897
898 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
899 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
900 base = mkpathdup("%s", opt->ancestor);
901 name1 = mkpathdup("%s", opt->branch1);
902 name2 = mkpathdup("%s", opt->branch2);
903 } else {
904 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
905 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
906 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
907 }
908
909 read_mmblob(&orig, o);
910 read_mmblob(&src1, a);
911 read_mmblob(&src2, b);
912
913 merge_status = ll_merge(result_buf, path, &orig, base,
914 &src1, name1, &src2, name2,
915 opt->repo->index, &ll_opts);
916
917 free(base);
918 free(name1);
919 free(name2);
920 free(orig.ptr);
921 free(src1.ptr);
922 free(src2.ptr);
923 return merge_status;
924 }
925
926 static int handle_content_merge(struct merge_options *opt,
927 const char *path,
928 const struct version_info *o,
929 const struct version_info *a,
930 const struct version_info *b,
931 const char *pathnames[3],
932 const int extra_marker_size,
933 struct version_info *result)
934 {
935 /*
936 * path is the target location where we want to put the file, and
937 * is used to determine any normalization rules in ll_merge.
938 *
939 * The normal case is that path and all entries in pathnames are
940 * identical, though renames can affect which path we got one of
941 * the three blobs to merge on various sides of history.
942 *
943 * extra_marker_size is the amount to extend conflict markers in
944 * ll_merge; this is neeed if we have content merges of content
945 * merges, which happens for example with rename/rename(2to1) and
946 * rename/add conflicts.
947 */
948 unsigned clean = 1;
949
950 /*
951 * handle_content_merge() needs both files to be of the same type, i.e.
952 * both files OR both submodules OR both symlinks. Conflicting types
953 * needs to be handled elsewhere.
954 */
955 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
956
957 /* Merge modes */
958 if (a->mode == b->mode || a->mode == o->mode)
959 result->mode = b->mode;
960 else {
961 /* must be the 100644/100755 case */
962 assert(S_ISREG(a->mode));
963 result->mode = a->mode;
964 clean = (b->mode == o->mode);
965 /*
966 * FIXME: If opt->priv->call_depth && !clean, then we really
967 * should not make result->mode match either a->mode or
968 * b->mode; that causes t6036 "check conflicting mode for
969 * regular file" to fail. It would be best to use some other
970 * mode, but we'll confuse all kinds of stuff if we use one
971 * where S_ISREG(result->mode) isn't true, and if we use
972 * something like 0100666, then tree-walk.c's calls to
973 * canon_mode() will just normalize that to 100644 for us and
974 * thus not solve anything.
975 *
976 * Figure out if there's some kind of way we can work around
977 * this...
978 */
979 }
980
981 /*
982 * Trivial oid merge.
983 *
984 * Note: While one might assume that the next four lines would
985 * be unnecessary due to the fact that match_mask is often
986 * setup and already handled, renames don't always take care
987 * of that.
988 */
989 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
990 oidcpy(&result->oid, &b->oid);
991 else if (oideq(&b->oid, &o->oid))
992 oidcpy(&result->oid, &a->oid);
993
994 /* Remaining rules depend on file vs. submodule vs. symlink. */
995 else if (S_ISREG(a->mode)) {
996 mmbuffer_t result_buf;
997 int ret = 0, merge_status;
998 int two_way;
999
1000 /*
1001 * If 'o' is different type, treat it as null so we do a
1002 * two-way merge.
1003 */
1004 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1005
1006 merge_status = merge_3way(opt, path,
1007 two_way ? &null_oid : &o->oid,
1008 &a->oid, &b->oid,
1009 pathnames, extra_marker_size,
1010 &result_buf);
1011
1012 if ((merge_status < 0) || !result_buf.ptr)
1013 ret = err(opt, _("Failed to execute internal merge"));
1014
1015 if (!ret &&
1016 write_object_file(result_buf.ptr, result_buf.size,
1017 blob_type, &result->oid))
1018 ret = err(opt, _("Unable to add %s to database"),
1019 path);
1020
1021 free(result_buf.ptr);
1022 if (ret)
1023 return -1;
1024 clean &= (merge_status == 0);
1025 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1026 } else if (S_ISGITLINK(a->mode)) {
1027 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1028 clean = merge_submodule(opt, pathnames[0],
1029 two_way ? &null_oid : &o->oid,
1030 &a->oid, &b->oid, &result->oid);
1031 if (opt->priv->call_depth && two_way && !clean) {
1032 result->mode = o->mode;
1033 oidcpy(&result->oid, &o->oid);
1034 }
1035 } else if (S_ISLNK(a->mode)) {
1036 if (opt->priv->call_depth) {
1037 clean = 0;
1038 result->mode = o->mode;
1039 oidcpy(&result->oid, &o->oid);
1040 } else {
1041 switch (opt->recursive_variant) {
1042 case MERGE_VARIANT_NORMAL:
1043 clean = 0;
1044 oidcpy(&result->oid, &a->oid);
1045 break;
1046 case MERGE_VARIANT_OURS:
1047 oidcpy(&result->oid, &a->oid);
1048 break;
1049 case MERGE_VARIANT_THEIRS:
1050 oidcpy(&result->oid, &b->oid);
1051 break;
1052 }
1053 }
1054 } else
1055 BUG("unsupported object type in the tree: %06o for %s",
1056 a->mode, path);
1057
1058 return clean;
1059 }
1060
1061 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1062 *** which are split into directory and regular rename detection sections. ***/
1063
1064 /*** Function Grouping: functions related to directory rename detection ***/
1065
1066 /*** Function Grouping: functions related to regular rename detection ***/
1067
1068 static int process_renames(struct merge_options *opt,
1069 struct diff_queue_struct *renames)
1070 {
1071 int clean_merge = 1, i;
1072
1073 for (i = 0; i < renames->nr; ++i) {
1074 const char *oldpath = NULL, *newpath;
1075 struct diff_filepair *pair = renames->queue[i];
1076 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
1077 struct strmap_entry *old_ent, *new_ent;
1078 unsigned int old_sidemask;
1079 int target_index, other_source_index;
1080 int source_deleted, collision, type_changed;
1081 const char *rename_branch = NULL, *delete_branch = NULL;
1082
1083 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
1084 oldpath = old_ent->key;
1085 oldinfo = old_ent->value;
1086
1087 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
1088 newpath = new_ent->key;
1089 newinfo = new_ent->value;
1090
1091 /*
1092 * diff_filepairs have copies of pathnames, thus we have to
1093 * use standard 'strcmp()' (negated) instead of '=='.
1094 */
1095 if (i + 1 < renames->nr &&
1096 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
1097 /* Handle rename/rename(1to2) or rename/rename(1to1) */
1098 const char *pathnames[3];
1099 struct version_info merged;
1100 struct conflict_info *base, *side1, *side2;
1101 unsigned was_binary_blob = 0;
1102
1103 pathnames[0] = oldpath;
1104 pathnames[1] = newpath;
1105 pathnames[2] = renames->queue[i+1]->two->path;
1106
1107 base = strmap_get(&opt->priv->paths, pathnames[0]);
1108 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
1109 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
1110
1111 VERIFY_CI(base);
1112 VERIFY_CI(side1);
1113 VERIFY_CI(side2);
1114
1115 if (!strcmp(pathnames[1], pathnames[2])) {
1116 /* Both sides renamed the same way */
1117 assert(side1 == side2);
1118 memcpy(&side1->stages[0], &base->stages[0],
1119 sizeof(merged));
1120 side1->filemask |= (1 << MERGE_BASE);
1121 /* Mark base as resolved by removal */
1122 base->merged.is_null = 1;
1123 base->merged.clean = 1;
1124
1125 /* We handled both renames, i.e. i+1 handled */
1126 i++;
1127 /* Move to next rename */
1128 continue;
1129 }
1130
1131 /* This is a rename/rename(1to2) */
1132 clean_merge = handle_content_merge(opt,
1133 pair->one->path,
1134 &base->stages[0],
1135 &side1->stages[1],
1136 &side2->stages[2],
1137 pathnames,
1138 1 + 2 * opt->priv->call_depth,
1139 &merged);
1140 if (!clean_merge &&
1141 merged.mode == side1->stages[1].mode &&
1142 oideq(&merged.oid, &side1->stages[1].oid))
1143 was_binary_blob = 1;
1144 memcpy(&side1->stages[1], &merged, sizeof(merged));
1145 if (was_binary_blob) {
1146 /*
1147 * Getting here means we were attempting to
1148 * merge a binary blob.
1149 *
1150 * Since we can't merge binaries,
1151 * handle_content_merge() just takes one
1152 * side. But we don't want to copy the
1153 * contents of one side to both paths. We
1154 * used the contents of side1 above for
1155 * side1->stages, let's use the contents of
1156 * side2 for side2->stages below.
1157 */
1158 oidcpy(&merged.oid, &side2->stages[2].oid);
1159 merged.mode = side2->stages[2].mode;
1160 }
1161 memcpy(&side2->stages[2], &merged, sizeof(merged));
1162
1163 side1->path_conflict = 1;
1164 side2->path_conflict = 1;
1165 /*
1166 * TODO: For renames we normally remove the path at the
1167 * old name. It would thus seem consistent to do the
1168 * same for rename/rename(1to2) cases, but we haven't
1169 * done so traditionally and a number of the regression
1170 * tests now encode an expectation that the file is
1171 * left there at stage 1. If we ever decide to change
1172 * this, add the following two lines here:
1173 * base->merged.is_null = 1;
1174 * base->merged.clean = 1;
1175 * and remove the setting of base->path_conflict to 1.
1176 */
1177 base->path_conflict = 1;
1178 path_msg(opt, oldpath, 0,
1179 _("CONFLICT (rename/rename): %s renamed to "
1180 "%s in %s and to %s in %s."),
1181 pathnames[0],
1182 pathnames[1], opt->branch1,
1183 pathnames[2], opt->branch2);
1184
1185 i++; /* We handled both renames, i.e. i+1 handled */
1186 continue;
1187 }
1188
1189 VERIFY_CI(oldinfo);
1190 VERIFY_CI(newinfo);
1191 target_index = pair->score; /* from collect_renames() */
1192 assert(target_index == 1 || target_index == 2);
1193 other_source_index = 3 - target_index;
1194 old_sidemask = (1 << other_source_index); /* 2 or 4 */
1195 source_deleted = (oldinfo->filemask == 1);
1196 collision = ((newinfo->filemask & old_sidemask) != 0);
1197 type_changed = !source_deleted &&
1198 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
1199 S_ISREG(newinfo->stages[target_index].mode));
1200 if (type_changed && collision) {
1201 /*
1202 * special handling so later blocks can handle this...
1203 *
1204 * if type_changed && collision are both true, then this
1205 * was really a double rename, but one side wasn't
1206 * detected due to lack of break detection. I.e.
1207 * something like
1208 * orig: has normal file 'foo'
1209 * side1: renames 'foo' to 'bar', adds 'foo' symlink
1210 * side2: renames 'foo' to 'bar'
1211 * In this case, the foo->bar rename on side1 won't be
1212 * detected because the new symlink named 'foo' is
1213 * there and we don't do break detection. But we detect
1214 * this here because we don't want to merge the content
1215 * of the foo symlink with the foo->bar file, so we
1216 * have some logic to handle this special case. The
1217 * easiest way to do that is make 'bar' on side1 not
1218 * be considered a colliding file but the other part
1219 * of a normal rename. If the file is very different,
1220 * well we're going to get content merge conflicts
1221 * anyway so it doesn't hurt. And if the colliding
1222 * file also has a different type, that'll be handled
1223 * by the content merge logic in process_entry() too.
1224 *
1225 * See also t6430, 'rename vs. rename/symlink'
1226 */
1227 collision = 0;
1228 }
1229 if (source_deleted) {
1230 if (target_index == 1) {
1231 rename_branch = opt->branch1;
1232 delete_branch = opt->branch2;
1233 } else {
1234 rename_branch = opt->branch2;
1235 delete_branch = opt->branch1;
1236 }
1237 }
1238
1239 assert(source_deleted || oldinfo->filemask & old_sidemask);
1240
1241 /* Need to check for special types of rename conflicts... */
1242 if (collision && !source_deleted) {
1243 /* collision: rename/add or rename/rename(2to1) */
1244 const char *pathnames[3];
1245 struct version_info merged;
1246
1247 struct conflict_info *base, *side1, *side2;
1248 unsigned clean;
1249
1250 pathnames[0] = oldpath;
1251 pathnames[other_source_index] = oldpath;
1252 pathnames[target_index] = newpath;
1253
1254 base = strmap_get(&opt->priv->paths, pathnames[0]);
1255 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
1256 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
1257
1258 VERIFY_CI(base);
1259 VERIFY_CI(side1);
1260 VERIFY_CI(side2);
1261
1262 clean = handle_content_merge(opt, pair->one->path,
1263 &base->stages[0],
1264 &side1->stages[1],
1265 &side2->stages[2],
1266 pathnames,
1267 1 + 2 * opt->priv->call_depth,
1268 &merged);
1269
1270 memcpy(&newinfo->stages[target_index], &merged,
1271 sizeof(merged));
1272 if (!clean) {
1273 path_msg(opt, newpath, 0,
1274 _("CONFLICT (rename involved in "
1275 "collision): rename of %s -> %s has "
1276 "content conflicts AND collides "
1277 "with another path; this may result "
1278 "in nested conflict markers."),
1279 oldpath, newpath);
1280 }
1281 } else if (collision && source_deleted) {
1282 /*
1283 * rename/add/delete or rename/rename(2to1)/delete:
1284 * since oldpath was deleted on the side that didn't
1285 * do the rename, there's not much of a content merge
1286 * we can do for the rename. oldinfo->merged.is_null
1287 * was already set, so we just leave things as-is so
1288 * they look like an add/add conflict.
1289 */
1290
1291 newinfo->path_conflict = 1;
1292 path_msg(opt, newpath, 0,
1293 _("CONFLICT (rename/delete): %s renamed "
1294 "to %s in %s, but deleted in %s."),
1295 oldpath, newpath, rename_branch, delete_branch);
1296 } else {
1297 /*
1298 * a few different cases...start by copying the
1299 * existing stage(s) from oldinfo over the newinfo
1300 * and update the pathname(s).
1301 */
1302 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
1303 sizeof(newinfo->stages[0]));
1304 newinfo->filemask |= (1 << MERGE_BASE);
1305 newinfo->pathnames[0] = oldpath;
1306 if (type_changed) {
1307 /* rename vs. typechange */
1308 /* Mark the original as resolved by removal */
1309 memcpy(&oldinfo->stages[0].oid, &null_oid,
1310 sizeof(oldinfo->stages[0].oid));
1311 oldinfo->stages[0].mode = 0;
1312 oldinfo->filemask &= 0x06;
1313 } else if (source_deleted) {
1314 /* rename/delete */
1315 newinfo->path_conflict = 1;
1316 path_msg(opt, newpath, 0,
1317 _("CONFLICT (rename/delete): %s renamed"
1318 " to %s in %s, but deleted in %s."),
1319 oldpath, newpath,
1320 rename_branch, delete_branch);
1321 } else {
1322 /* normal rename */
1323 memcpy(&newinfo->stages[other_source_index],
1324 &oldinfo->stages[other_source_index],
1325 sizeof(newinfo->stages[0]));
1326 newinfo->filemask |= (1 << other_source_index);
1327 newinfo->pathnames[other_source_index] = oldpath;
1328 }
1329 }
1330
1331 if (!type_changed) {
1332 /* Mark the original as resolved by removal */
1333 oldinfo->merged.is_null = 1;
1334 oldinfo->merged.clean = 1;
1335 }
1336
1337 }
1338
1339 return clean_merge;
1340 }
1341
1342 static int compare_pairs(const void *a_, const void *b_)
1343 {
1344 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
1345 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
1346
1347 return strcmp(a->one->path, b->one->path);
1348 }
1349
1350 /* Call diffcore_rename() to compute which files have changed on given side */
1351 static void detect_regular_renames(struct merge_options *opt,
1352 struct tree *merge_base,
1353 struct tree *side,
1354 unsigned side_index)
1355 {
1356 struct diff_options diff_opts;
1357 struct rename_info *renames = &opt->priv->renames;
1358
1359 repo_diff_setup(opt->repo, &diff_opts);
1360 diff_opts.flags.recursive = 1;
1361 diff_opts.flags.rename_empty = 0;
1362 diff_opts.detect_rename = DIFF_DETECT_RENAME;
1363 diff_opts.rename_limit = opt->rename_limit;
1364 if (opt->rename_limit <= 0)
1365 diff_opts.rename_limit = 1000;
1366 diff_opts.rename_score = opt->rename_score;
1367 diff_opts.show_rename_progress = opt->show_rename_progress;
1368 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1369 diff_setup_done(&diff_opts);
1370 diff_tree_oid(&merge_base->object.oid, &side->object.oid, "",
1371 &diff_opts);
1372 diffcore_std(&diff_opts);
1373
1374 if (diff_opts.needed_rename_limit > renames->needed_limit)
1375 renames->needed_limit = diff_opts.needed_rename_limit;
1376
1377 renames->pairs[side_index] = diff_queued_diff;
1378
1379 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1380 diff_queued_diff.nr = 0;
1381 diff_queued_diff.queue = NULL;
1382 diff_flush(&diff_opts);
1383 }
1384
1385 /*
1386 * Get information of all renames which occurred in 'side_pairs', discarding
1387 * non-renames.
1388 */
1389 static int collect_renames(struct merge_options *opt,
1390 struct diff_queue_struct *result,
1391 unsigned side_index)
1392 {
1393 int i, clean = 1;
1394 struct diff_queue_struct *side_pairs;
1395 struct rename_info *renames = &opt->priv->renames;
1396
1397 side_pairs = &renames->pairs[side_index];
1398
1399 for (i = 0; i < side_pairs->nr; ++i) {
1400 struct diff_filepair *p = side_pairs->queue[i];
1401
1402 if (p->status != 'R') {
1403 diff_free_filepair(p);
1404 continue;
1405 }
1406
1407 /*
1408 * p->score comes back from diffcore_rename_extended() with
1409 * the similarity of the renamed file. The similarity is
1410 * was used to determine that the two files were related
1411 * and are a rename, which we have already used, but beyond
1412 * that we have no use for the similarity. So p->score is
1413 * now irrelevant. However, process_renames() will need to
1414 * know which side of the merge this rename was associated
1415 * with, so overwrite p->score with that value.
1416 */
1417 p->score = side_index;
1418 result->queue[result->nr++] = p;
1419 }
1420
1421 return clean;
1422 }
1423
1424 static int detect_and_process_renames(struct merge_options *opt,
1425 struct tree *merge_base,
1426 struct tree *side1,
1427 struct tree *side2)
1428 {
1429 struct diff_queue_struct combined;
1430 struct rename_info *renames = &opt->priv->renames;
1431 int s, clean = 1;
1432
1433 memset(&combined, 0, sizeof(combined));
1434
1435 detect_regular_renames(opt, merge_base, side1, MERGE_SIDE1);
1436 detect_regular_renames(opt, merge_base, side2, MERGE_SIDE2);
1437
1438 ALLOC_GROW(combined.queue,
1439 renames->pairs[1].nr + renames->pairs[2].nr,
1440 combined.alloc);
1441 clean &= collect_renames(opt, &combined, MERGE_SIDE1);
1442 clean &= collect_renames(opt, &combined, MERGE_SIDE2);
1443 QSORT(combined.queue, combined.nr, compare_pairs);
1444
1445 clean &= process_renames(opt, &combined);
1446
1447 /* Free memory for renames->pairs[] and combined */
1448 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
1449 free(renames->pairs[s].queue);
1450 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
1451 }
1452 if (combined.nr) {
1453 int i;
1454 for (i = 0; i < combined.nr; i++)
1455 diff_free_filepair(combined.queue[i]);
1456 free(combined.queue);
1457 }
1458
1459 return clean;
1460 }
1461
1462 /*** Function Grouping: functions related to process_entries() ***/
1463
1464 static int string_list_df_name_compare(const char *one, const char *two)
1465 {
1466 int onelen = strlen(one);
1467 int twolen = strlen(two);
1468 /*
1469 * Here we only care that entries for D/F conflicts are
1470 * adjacent, in particular with the file of the D/F conflict
1471 * appearing before files below the corresponding directory.
1472 * The order of the rest of the list is irrelevant for us.
1473 *
1474 * To achieve this, we sort with df_name_compare and provide
1475 * the mode S_IFDIR so that D/F conflicts will sort correctly.
1476 * We use the mode S_IFDIR for everything else for simplicity,
1477 * since in other cases any changes in their order due to
1478 * sorting cause no problems for us.
1479 */
1480 int cmp = df_name_compare(one, onelen, S_IFDIR,
1481 two, twolen, S_IFDIR);
1482 /*
1483 * Now that 'foo' and 'foo/bar' compare equal, we have to make sure
1484 * that 'foo' comes before 'foo/bar'.
1485 */
1486 if (cmp)
1487 return cmp;
1488 return onelen - twolen;
1489 }
1490
1491 struct directory_versions {
1492 /*
1493 * versions: list of (basename -> version_info)
1494 *
1495 * The basenames are in reverse lexicographic order of full pathnames,
1496 * as processed in process_entries(). This puts all entries within
1497 * a directory together, and covers the directory itself after
1498 * everything within it, allowing us to write subtrees before needing
1499 * to record information for the tree itself.
1500 */
1501 struct string_list versions;
1502
1503 /*
1504 * offsets: list of (full relative path directories -> integer offsets)
1505 *
1506 * Since versions contains basenames from files in multiple different
1507 * directories, we need to know which entries in versions correspond
1508 * to which directories. Values of e.g.
1509 * "" 0
1510 * src 2
1511 * src/moduleA 5
1512 * Would mean that entries 0-1 of versions are files in the toplevel
1513 * directory, entries 2-4 are files under src/, and the remaining
1514 * entries starting at index 5 are files under src/moduleA/.
1515 */
1516 struct string_list offsets;
1517
1518 /*
1519 * last_directory: directory that previously processed file found in
1520 *
1521 * last_directory starts NULL, but records the directory in which the
1522 * previous file was found within. As soon as
1523 * directory(current_file) != last_directory
1524 * then we need to start updating accounting in versions & offsets.
1525 * Note that last_directory is always the last path in "offsets" (or
1526 * NULL if "offsets" is empty) so this exists just for quick access.
1527 */
1528 const char *last_directory;
1529
1530 /* last_directory_len: cached computation of strlen(last_directory) */
1531 unsigned last_directory_len;
1532 };
1533
1534 static int tree_entry_order(const void *a_, const void *b_)
1535 {
1536 const struct string_list_item *a = a_;
1537 const struct string_list_item *b = b_;
1538
1539 const struct merged_info *ami = a->util;
1540 const struct merged_info *bmi = b->util;
1541 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
1542 b->string, strlen(b->string), bmi->result.mode);
1543 }
1544
1545 static void write_tree(struct object_id *result_oid,
1546 struct string_list *versions,
1547 unsigned int offset,
1548 size_t hash_size)
1549 {
1550 size_t maxlen = 0, extra;
1551 unsigned int nr = versions->nr - offset;
1552 struct strbuf buf = STRBUF_INIT;
1553 struct string_list relevant_entries = STRING_LIST_INIT_NODUP;
1554 int i;
1555
1556 /*
1557 * We want to sort the last (versions->nr-offset) entries in versions.
1558 * Do so by abusing the string_list API a bit: make another string_list
1559 * that contains just those entries and then sort them.
1560 *
1561 * We won't use relevant_entries again and will let it just pop off the
1562 * stack, so there won't be allocation worries or anything.
1563 */
1564 relevant_entries.items = versions->items + offset;
1565 relevant_entries.nr = versions->nr - offset;
1566 QSORT(relevant_entries.items, relevant_entries.nr, tree_entry_order);
1567
1568 /* Pre-allocate some space in buf */
1569 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
1570 for (i = 0; i < nr; i++) {
1571 maxlen += strlen(versions->items[offset+i].string) + extra;
1572 }
1573 strbuf_grow(&buf, maxlen);
1574
1575 /* Write each entry out to buf */
1576 for (i = 0; i < nr; i++) {
1577 struct merged_info *mi = versions->items[offset+i].util;
1578 struct version_info *ri = &mi->result;
1579 strbuf_addf(&buf, "%o %s%c",
1580 ri->mode,
1581 versions->items[offset+i].string, '\0');
1582 strbuf_add(&buf, ri->oid.hash, hash_size);
1583 }
1584
1585 /* Write this object file out, and record in result_oid */
1586 write_object_file(buf.buf, buf.len, tree_type, result_oid);
1587 strbuf_release(&buf);
1588 }
1589
1590 static void record_entry_for_tree(struct directory_versions *dir_metadata,
1591 const char *path,
1592 struct merged_info *mi)
1593 {
1594 const char *basename;
1595
1596 if (mi->is_null)
1597 /* nothing to record */
1598 return;
1599
1600 basename = path + mi->basename_offset;
1601 assert(strchr(basename, '/') == NULL);
1602 string_list_append(&dir_metadata->versions,
1603 basename)->util = &mi->result;
1604 }
1605
1606 static void write_completed_directory(struct merge_options *opt,
1607 const char *new_directory_name,
1608 struct directory_versions *info)
1609 {
1610 const char *prev_dir;
1611 struct merged_info *dir_info = NULL;
1612 unsigned int offset;
1613
1614 /*
1615 * Some explanation of info->versions and info->offsets...
1616 *
1617 * process_entries() iterates over all relevant files AND
1618 * directories in reverse lexicographic order, and calls this
1619 * function. Thus, an example of the paths that process_entries()
1620 * could operate on (along with the directories for those paths
1621 * being shown) is:
1622 *
1623 * xtract.c ""
1624 * tokens.txt ""
1625 * src/moduleB/umm.c src/moduleB
1626 * src/moduleB/stuff.h src/moduleB
1627 * src/moduleB/baz.c src/moduleB
1628 * src/moduleB src
1629 * src/moduleA/foo.c src/moduleA
1630 * src/moduleA/bar.c src/moduleA
1631 * src/moduleA src
1632 * src ""
1633 * Makefile ""
1634 *
1635 * info->versions:
1636 *
1637 * always contains the unprocessed entries and their
1638 * version_info information. For example, after the first five
1639 * entries above, info->versions would be:
1640 *
1641 * xtract.c <xtract.c's version_info>
1642 * token.txt <token.txt's version_info>
1643 * umm.c <src/moduleB/umm.c's version_info>
1644 * stuff.h <src/moduleB/stuff.h's version_info>
1645 * baz.c <src/moduleB/baz.c's version_info>
1646 *
1647 * Once a subdirectory is completed we remove the entries in
1648 * that subdirectory from info->versions, writing it as a tree
1649 * (write_tree()). Thus, as soon as we get to src/moduleB,
1650 * info->versions would be updated to
1651 *
1652 * xtract.c <xtract.c's version_info>
1653 * token.txt <token.txt's version_info>
1654 * moduleB <src/moduleB's version_info>
1655 *
1656 * info->offsets:
1657 *
1658 * helps us track which entries in info->versions correspond to
1659 * which directories. When we are N directories deep (e.g. 4
1660 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
1661 * directories (+1 because of toplevel dir). Corresponding to
1662 * the info->versions example above, after processing five entries
1663 * info->offsets will be:
1664 *
1665 * "" 0
1666 * src/moduleB 2
1667 *
1668 * which is used to know that xtract.c & token.txt are from the
1669 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
1670 * src/moduleB directory. Again, following the example above,
1671 * once we need to process src/moduleB, then info->offsets is
1672 * updated to
1673 *
1674 * "" 0
1675 * src 2
1676 *
1677 * which says that moduleB (and only moduleB so far) is in the
1678 * src directory.
1679 *
1680 * One unique thing to note about info->offsets here is that
1681 * "src" was not added to info->offsets until there was a path
1682 * (a file OR directory) immediately below src/ that got
1683 * processed.
1684 *
1685 * Since process_entry() just appends new entries to info->versions,
1686 * write_completed_directory() only needs to do work if the next path
1687 * is in a directory that is different than the last directory found
1688 * in info->offsets.
1689 */
1690
1691 /*
1692 * If we are working with the same directory as the last entry, there
1693 * is no work to do. (See comments above the directory_name member of
1694 * struct merged_info for why we can use pointer comparison instead of
1695 * strcmp here.)
1696 */
1697 if (new_directory_name == info->last_directory)
1698 return;
1699
1700 /*
1701 * If we are just starting (last_directory is NULL), or last_directory
1702 * is a prefix of the current directory, then we can just update
1703 * info->offsets to record the offset where we started this directory
1704 * and update last_directory to have quick access to it.
1705 */
1706 if (info->last_directory == NULL ||
1707 !strncmp(new_directory_name, info->last_directory,
1708 info->last_directory_len)) {
1709 uintptr_t offset = info->versions.nr;
1710
1711 info->last_directory = new_directory_name;
1712 info->last_directory_len = strlen(info->last_directory);
1713 /*
1714 * Record the offset into info->versions where we will
1715 * start recording basenames of paths found within
1716 * new_directory_name.
1717 */
1718 string_list_append(&info->offsets,
1719 info->last_directory)->util = (void*)offset;
1720 return;
1721 }
1722
1723 /*
1724 * The next entry that will be processed will be within
1725 * new_directory_name. Since at this point we know that
1726 * new_directory_name is within a different directory than
1727 * info->last_directory, we have all entries for info->last_directory
1728 * in info->versions and we need to create a tree object for them.
1729 */
1730 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
1731 assert(dir_info);
1732 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
1733 if (offset == info->versions.nr) {
1734 /*
1735 * Actually, we don't need to create a tree object in this
1736 * case. Whenever all files within a directory disappear
1737 * during the merge (e.g. unmodified on one side and
1738 * deleted on the other, or files were renamed elsewhere),
1739 * then we get here and the directory itself needs to be
1740 * omitted from its parent tree as well.
1741 */
1742 dir_info->is_null = 1;
1743 } else {
1744 /*
1745 * Write out the tree to the git object directory, and also
1746 * record the mode and oid in dir_info->result.
1747 */
1748 dir_info->is_null = 0;
1749 dir_info->result.mode = S_IFDIR;
1750 write_tree(&dir_info->result.oid, &info->versions, offset,
1751 opt->repo->hash_algo->rawsz);
1752 }
1753
1754 /*
1755 * We've now used several entries from info->versions and one entry
1756 * from info->offsets, so we get rid of those values.
1757 */
1758 info->offsets.nr--;
1759 info->versions.nr = offset;
1760
1761 /*
1762 * Now we've taken care of the completed directory, but we need to
1763 * prepare things since future entries will be in
1764 * new_directory_name. (In particular, process_entry() will be
1765 * appending new entries to info->versions.) So, we need to make
1766 * sure new_directory_name is the last entry in info->offsets.
1767 */
1768 prev_dir = info->offsets.nr == 0 ? NULL :
1769 info->offsets.items[info->offsets.nr-1].string;
1770 if (new_directory_name != prev_dir) {
1771 uintptr_t c = info->versions.nr;
1772 string_list_append(&info->offsets,
1773 new_directory_name)->util = (void*)c;
1774 }
1775
1776 /* And, of course, we need to update last_directory to match. */
1777 info->last_directory = new_directory_name;
1778 info->last_directory_len = strlen(info->last_directory);
1779 }
1780
1781 /* Per entry merge function */
1782 static void process_entry(struct merge_options *opt,
1783 const char *path,
1784 struct conflict_info *ci,
1785 struct directory_versions *dir_metadata)
1786 {
1787 int df_file_index = 0;
1788
1789 VERIFY_CI(ci);
1790 assert(ci->filemask >= 0 && ci->filemask <= 7);
1791 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
1792 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
1793 ci->match_mask == 5 || ci->match_mask == 6);
1794
1795 if (ci->dirmask) {
1796 record_entry_for_tree(dir_metadata, path, &ci->merged);
1797 if (ci->filemask == 0)
1798 /* nothing else to handle */
1799 return;
1800 assert(ci->df_conflict);
1801 }
1802
1803 if (ci->df_conflict && ci->merged.result.mode == 0) {
1804 int i;
1805
1806 /*
1807 * directory no longer in the way, but we do have a file we
1808 * need to place here so we need to clean away the "directory
1809 * merges to nothing" result.
1810 */
1811 ci->df_conflict = 0;
1812 assert(ci->filemask != 0);
1813 ci->merged.clean = 0;
1814 ci->merged.is_null = 0;
1815 /* and we want to zero out any directory-related entries */
1816 ci->match_mask = (ci->match_mask & ~ci->dirmask);
1817 ci->dirmask = 0;
1818 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1819 if (ci->filemask & (1 << i))
1820 continue;
1821 ci->stages[i].mode = 0;
1822 oidcpy(&ci->stages[i].oid, &null_oid);
1823 }
1824 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
1825 /*
1826 * This started out as a D/F conflict, and the entries in
1827 * the competing directory were not removed by the merge as
1828 * evidenced by write_completed_directory() writing a value
1829 * to ci->merged.result.mode.
1830 */
1831 struct conflict_info *new_ci;
1832 const char *branch;
1833 const char *old_path = path;
1834 int i;
1835
1836 assert(ci->merged.result.mode == S_IFDIR);
1837
1838 /*
1839 * If filemask is 1, we can just ignore the file as having
1840 * been deleted on both sides. We do not want to overwrite
1841 * ci->merged.result, since it stores the tree for all the
1842 * files under it.
1843 */
1844 if (ci->filemask == 1) {
1845 ci->filemask = 0;
1846 return;
1847 }
1848
1849 /*
1850 * This file still exists on at least one side, and we want
1851 * the directory to remain here, so we need to move this
1852 * path to some new location.
1853 */
1854 new_ci = xcalloc(1, sizeof(*new_ci));
1855 /* We don't really want new_ci->merged.result copied, but it'll
1856 * be overwritten below so it doesn't matter. We also don't
1857 * want any directory mode/oid values copied, but we'll zero
1858 * those out immediately. We do want the rest of ci copied.
1859 */
1860 memcpy(new_ci, ci, sizeof(*ci));
1861 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
1862 new_ci->dirmask = 0;
1863 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1864 if (new_ci->filemask & (1 << i))
1865 continue;
1866 /* zero out any entries related to directories */
1867 new_ci->stages[i].mode = 0;
1868 oidcpy(&new_ci->stages[i].oid, &null_oid);
1869 }
1870
1871 /*
1872 * Find out which side this file came from; note that we
1873 * cannot just use ci->filemask, because renames could cause
1874 * the filemask to go back to 7. So we use dirmask, then
1875 * pick the opposite side's index.
1876 */
1877 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
1878 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
1879 path = unique_path(&opt->priv->paths, path, branch);
1880 strmap_put(&opt->priv->paths, path, new_ci);
1881
1882 path_msg(opt, path, 0,
1883 _("CONFLICT (file/directory): directory in the way "
1884 "of %s from %s; moving it to %s instead."),
1885 old_path, branch, path);
1886
1887 /*
1888 * Zero out the filemask for the old ci. At this point, ci
1889 * was just an entry for a directory, so we don't need to
1890 * do anything more with it.
1891 */
1892 ci->filemask = 0;
1893
1894 /*
1895 * Now note that we're working on the new entry (path was
1896 * updated above.
1897 */
1898 ci = new_ci;
1899 }
1900
1901 /*
1902 * NOTE: Below there is a long switch-like if-elseif-elseif... block
1903 * which the code goes through even for the df_conflict cases
1904 * above.
1905 */
1906 if (ci->match_mask) {
1907 ci->merged.clean = 1;
1908 if (ci->match_mask == 6) {
1909 /* stages[1] == stages[2] */
1910 ci->merged.result.mode = ci->stages[1].mode;
1911 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
1912 } else {
1913 /* determine the mask of the side that didn't match */
1914 unsigned int othermask = 7 & ~ci->match_mask;
1915 int side = (othermask == 4) ? 2 : 1;
1916
1917 ci->merged.result.mode = ci->stages[side].mode;
1918 ci->merged.is_null = !ci->merged.result.mode;
1919 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1920
1921 assert(othermask == 2 || othermask == 4);
1922 assert(ci->merged.is_null ==
1923 (ci->filemask == ci->match_mask));
1924 }
1925 } else if (ci->filemask >= 6 &&
1926 (S_IFMT & ci->stages[1].mode) !=
1927 (S_IFMT & ci->stages[2].mode)) {
1928 /* Two different items from (file/submodule/symlink) */
1929 if (opt->priv->call_depth) {
1930 /* Just use the version from the merge base */
1931 ci->merged.clean = 0;
1932 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
1933 ci->merged.result.mode = ci->stages[0].mode;
1934 ci->merged.is_null = (ci->merged.result.mode == 0);
1935 } else {
1936 /* Handle by renaming one or both to separate paths. */
1937 unsigned o_mode = ci->stages[0].mode;
1938 unsigned a_mode = ci->stages[1].mode;
1939 unsigned b_mode = ci->stages[2].mode;
1940 struct conflict_info *new_ci;
1941 const char *a_path = NULL, *b_path = NULL;
1942 int rename_a = 0, rename_b = 0;
1943
1944 new_ci = xmalloc(sizeof(*new_ci));
1945
1946 if (S_ISREG(a_mode))
1947 rename_a = 1;
1948 else if (S_ISREG(b_mode))
1949 rename_b = 1;
1950 else {
1951 rename_a = 1;
1952 rename_b = 1;
1953 }
1954
1955 path_msg(opt, path, 0,
1956 _("CONFLICT (distinct types): %s had different "
1957 "types on each side; renamed %s of them so "
1958 "each can be recorded somewhere."),
1959 path,
1960 (rename_a && rename_b) ? _("both") : _("one"));
1961
1962 ci->merged.clean = 0;
1963 memcpy(new_ci, ci, sizeof(*new_ci));
1964
1965 /* Put b into new_ci, removing a from stages */
1966 new_ci->merged.result.mode = ci->stages[2].mode;
1967 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
1968 new_ci->stages[1].mode = 0;
1969 oidcpy(&new_ci->stages[1].oid, &null_oid);
1970 new_ci->filemask = 5;
1971 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
1972 new_ci->stages[0].mode = 0;
1973 oidcpy(&new_ci->stages[0].oid, &null_oid);
1974 new_ci->filemask = 4;
1975 }
1976
1977 /* Leave only a in ci, fixing stages. */
1978 ci->merged.result.mode = ci->stages[1].mode;
1979 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
1980 ci->stages[2].mode = 0;
1981 oidcpy(&ci->stages[2].oid, &null_oid);
1982 ci->filemask = 3;
1983 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
1984 ci->stages[0].mode = 0;
1985 oidcpy(&ci->stages[0].oid, &null_oid);
1986 ci->filemask = 2;
1987 }
1988
1989 /* Insert entries into opt->priv_paths */
1990 assert(rename_a || rename_b);
1991 if (rename_a) {
1992 a_path = unique_path(&opt->priv->paths,
1993 path, opt->branch1);
1994 strmap_put(&opt->priv->paths, a_path, ci);
1995 }
1996
1997 if (rename_b)
1998 b_path = unique_path(&opt->priv->paths,
1999 path, opt->branch2);
2000 else
2001 b_path = path;
2002 strmap_put(&opt->priv->paths, b_path, new_ci);
2003
2004 if (rename_a && rename_b) {
2005 strmap_remove(&opt->priv->paths, path, 0);
2006 /*
2007 * We removed path from opt->priv->paths. path
2008 * will also eventually need to be freed, but
2009 * it may still be used by e.g. ci->pathnames.
2010 * So, store it in another string-list for now.
2011 */
2012 string_list_append(&opt->priv->paths_to_free,
2013 path);
2014 }
2015
2016 /*
2017 * Do special handling for b_path since process_entry()
2018 * won't be called on it specially.
2019 */
2020 strmap_put(&opt->priv->conflicted, b_path, new_ci);
2021 record_entry_for_tree(dir_metadata, b_path,
2022 &new_ci->merged);
2023
2024 /*
2025 * Remaining code for processing this entry should
2026 * think in terms of processing a_path.
2027 */
2028 if (a_path)
2029 path = a_path;
2030 }
2031 } else if (ci->filemask >= 6) {
2032 /* Need a two-way or three-way content merge */
2033 struct version_info merged_file;
2034 unsigned clean_merge;
2035 struct version_info *o = &ci->stages[0];
2036 struct version_info *a = &ci->stages[1];
2037 struct version_info *b = &ci->stages[2];
2038
2039 clean_merge = handle_content_merge(opt, path, o, a, b,
2040 ci->pathnames,
2041 opt->priv->call_depth * 2,
2042 &merged_file);
2043 ci->merged.clean = clean_merge &&
2044 !ci->df_conflict && !ci->path_conflict;
2045 ci->merged.result.mode = merged_file.mode;
2046 ci->merged.is_null = (merged_file.mode == 0);
2047 oidcpy(&ci->merged.result.oid, &merged_file.oid);
2048 if (clean_merge && ci->df_conflict) {
2049 assert(df_file_index == 1 || df_file_index == 2);
2050 ci->filemask = 1 << df_file_index;
2051 ci->stages[df_file_index].mode = merged_file.mode;
2052 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
2053 }
2054 if (!clean_merge) {
2055 const char *reason = _("content");
2056 if (ci->filemask == 6)
2057 reason = _("add/add");
2058 if (S_ISGITLINK(merged_file.mode))
2059 reason = _("submodule");
2060 path_msg(opt, path, 0,
2061 _("CONFLICT (%s): Merge conflict in %s"),
2062 reason, path);
2063 }
2064 } else if (ci->filemask == 3 || ci->filemask == 5) {
2065 /* Modify/delete */
2066 const char *modify_branch, *delete_branch;
2067 int side = (ci->filemask == 5) ? 2 : 1;
2068 int index = opt->priv->call_depth ? 0 : side;
2069
2070 ci->merged.result.mode = ci->stages[index].mode;
2071 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
2072 ci->merged.clean = 0;
2073
2074 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
2075 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
2076
2077 if (ci->path_conflict &&
2078 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
2079 /*
2080 * This came from a rename/delete; no action to take,
2081 * but avoid printing "modify/delete" conflict notice
2082 * since the contents were not modified.
2083 */
2084 } else {
2085 path_msg(opt, path, 0,
2086 _("CONFLICT (modify/delete): %s deleted in %s "
2087 "and modified in %s. Version %s of %s left "
2088 "in tree."),
2089 path, delete_branch, modify_branch,
2090 modify_branch, path);
2091 }
2092 } else if (ci->filemask == 2 || ci->filemask == 4) {
2093 /* Added on one side */
2094 int side = (ci->filemask == 4) ? 2 : 1;
2095 ci->merged.result.mode = ci->stages[side].mode;
2096 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
2097 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
2098 } else if (ci->filemask == 1) {
2099 /* Deleted on both sides */
2100 ci->merged.is_null = 1;
2101 ci->merged.result.mode = 0;
2102 oidcpy(&ci->merged.result.oid, &null_oid);
2103 ci->merged.clean = !ci->path_conflict;
2104 }
2105
2106 /*
2107 * If still conflicted, record it separately. This allows us to later
2108 * iterate over just conflicted entries when updating the index instead
2109 * of iterating over all entries.
2110 */
2111 if (!ci->merged.clean)
2112 strmap_put(&opt->priv->conflicted, path, ci);
2113 record_entry_for_tree(dir_metadata, path, &ci->merged);
2114 }
2115
2116 static void process_entries(struct merge_options *opt,
2117 struct object_id *result_oid)
2118 {
2119 struct hashmap_iter iter;
2120 struct strmap_entry *e;
2121 struct string_list plist = STRING_LIST_INIT_NODUP;
2122 struct string_list_item *entry;
2123 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
2124 STRING_LIST_INIT_NODUP,
2125 NULL, 0 };
2126
2127 if (strmap_empty(&opt->priv->paths)) {
2128 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
2129 return;
2130 }
2131
2132 /* Hack to pre-allocate plist to the desired size */
2133 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
2134
2135 /* Put every entry from paths into plist, then sort */
2136 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
2137 string_list_append(&plist, e->key)->util = e->value;
2138 }
2139 plist.cmp = string_list_df_name_compare;
2140 string_list_sort(&plist);
2141
2142 /*
2143 * Iterate over the items in reverse order, so we can handle paths
2144 * below a directory before needing to handle the directory itself.
2145 *
2146 * This allows us to write subtrees before we need to write trees,
2147 * and it also enables sane handling of directory/file conflicts
2148 * (because it allows us to know whether the directory is still in
2149 * the way when it is time to process the file at the same path).
2150 */
2151 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
2152 char *path = entry->string;
2153 /*
2154 * NOTE: mi may actually be a pointer to a conflict_info, but
2155 * we have to check mi->clean first to see if it's safe to
2156 * reassign to such a pointer type.
2157 */
2158 struct merged_info *mi = entry->util;
2159
2160 write_completed_directory(opt, mi->directory_name,
2161 &dir_metadata);
2162 if (mi->clean)
2163 record_entry_for_tree(&dir_metadata, path, mi);
2164 else {
2165 struct conflict_info *ci = (struct conflict_info *)mi;
2166 process_entry(opt, path, ci, &dir_metadata);
2167 }
2168 }
2169
2170 if (dir_metadata.offsets.nr != 1 ||
2171 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
2172 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
2173 dir_metadata.offsets.nr);
2174 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
2175 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
2176 fflush(stdout);
2177 BUG("dir_metadata accounting completely off; shouldn't happen");
2178 }
2179 write_tree(result_oid, &dir_metadata.versions, 0,
2180 opt->repo->hash_algo->rawsz);
2181 string_list_clear(&plist, 0);
2182 string_list_clear(&dir_metadata.versions, 0);
2183 string_list_clear(&dir_metadata.offsets, 0);
2184 }
2185
2186 /*** Function Grouping: functions related to merge_switch_to_result() ***/
2187
2188 static int checkout(struct merge_options *opt,
2189 struct tree *prev,
2190 struct tree *next)
2191 {
2192 /* Switch the index/working copy from old to new */
2193 int ret;
2194 struct tree_desc trees[2];
2195 struct unpack_trees_options unpack_opts;
2196
2197 memset(&unpack_opts, 0, sizeof(unpack_opts));
2198 unpack_opts.head_idx = -1;
2199 unpack_opts.src_index = opt->repo->index;
2200 unpack_opts.dst_index = opt->repo->index;
2201
2202 setup_unpack_trees_porcelain(&unpack_opts, "merge");
2203
2204 /*
2205 * NOTE: if this were just "git checkout" code, we would probably
2206 * read or refresh the cache and check for a conflicted index, but
2207 * builtin/merge.c or sequencer.c really needs to read the index
2208 * and check for conflicted entries before starting merging for a
2209 * good user experience (no sense waiting for merges/rebases before
2210 * erroring out), so there's no reason to duplicate that work here.
2211 */
2212
2213 /* 2-way merge to the new branch */
2214 unpack_opts.update = 1;
2215 unpack_opts.merge = 1;
2216 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
2217 unpack_opts.verbose_update = (opt->verbosity > 2);
2218 unpack_opts.fn = twoway_merge;
2219 if (1/* FIXME: opts->overwrite_ignore*/) {
2220 unpack_opts.dir = xcalloc(1, sizeof(*unpack_opts.dir));
2221 unpack_opts.dir->flags |= DIR_SHOW_IGNORED;
2222 setup_standard_excludes(unpack_opts.dir);
2223 }
2224 parse_tree(prev);
2225 init_tree_desc(&trees[0], prev->buffer, prev->size);
2226 parse_tree(next);
2227 init_tree_desc(&trees[1], next->buffer, next->size);
2228
2229 ret = unpack_trees(2, trees, &unpack_opts);
2230 clear_unpack_trees_porcelain(&unpack_opts);
2231 dir_clear(unpack_opts.dir);
2232 FREE_AND_NULL(unpack_opts.dir);
2233 return ret;
2234 }
2235
2236 static int record_conflicted_index_entries(struct merge_options *opt,
2237 struct index_state *index,
2238 struct strmap *paths,
2239 struct strmap *conflicted)
2240 {
2241 struct hashmap_iter iter;
2242 struct strmap_entry *e;
2243 int errs = 0;
2244 int original_cache_nr;
2245
2246 if (strmap_empty(conflicted))
2247 return 0;
2248
2249 original_cache_nr = index->cache_nr;
2250
2251 /* Put every entry from paths into plist, then sort */
2252 strmap_for_each_entry(conflicted, &iter, e) {
2253 const char *path = e->key;
2254 struct conflict_info *ci = e->value;
2255 int pos;
2256 struct cache_entry *ce;
2257 int i;
2258
2259 VERIFY_CI(ci);
2260
2261 /*
2262 * The index will already have a stage=0 entry for this path,
2263 * because we created an as-merged-as-possible version of the
2264 * file and checkout() moved the working copy and index over
2265 * to that version.
2266 *
2267 * However, previous iterations through this loop will have
2268 * added unstaged entries to the end of the cache which
2269 * ignore the standard alphabetical ordering of cache
2270 * entries and break invariants needed for index_name_pos()
2271 * to work. However, we know the entry we want is before
2272 * those appended cache entries, so do a temporary swap on
2273 * cache_nr to only look through entries of interest.
2274 */
2275 SWAP(index->cache_nr, original_cache_nr);
2276 pos = index_name_pos(index, path, strlen(path));
2277 SWAP(index->cache_nr, original_cache_nr);
2278 if (pos < 0) {
2279 if (ci->filemask != 1)
2280 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
2281 cache_tree_invalidate_path(index, path);
2282 } else {
2283 ce = index->cache[pos];
2284
2285 /*
2286 * Clean paths with CE_SKIP_WORKTREE set will not be
2287 * written to the working tree by the unpack_trees()
2288 * call in checkout(). Our conflicted entries would
2289 * have appeared clean to that code since we ignored
2290 * the higher order stages. Thus, we need override
2291 * the CE_SKIP_WORKTREE bit and manually write those
2292 * files to the working disk here.
2293 *
2294 * TODO: Implement this CE_SKIP_WORKTREE fixup.
2295 */
2296
2297 /*
2298 * Mark this cache entry for removal and instead add
2299 * new stage>0 entries corresponding to the
2300 * conflicts. If there are many conflicted entries, we
2301 * want to avoid memmove'ing O(NM) entries by
2302 * inserting the new entries one at a time. So,
2303 * instead, we just add the new cache entries to the
2304 * end (ignoring normal index requirements on sort
2305 * order) and sort the index once we're all done.
2306 */
2307 ce->ce_flags |= CE_REMOVE;
2308 }
2309
2310 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
2311 struct version_info *vi;
2312 if (!(ci->filemask & (1ul << i)))
2313 continue;
2314 vi = &ci->stages[i];
2315 ce = make_cache_entry(index, vi->mode, &vi->oid,
2316 path, i+1, 0);
2317 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
2318 }
2319 }
2320
2321 /*
2322 * Remove the unused cache entries (and invalidate the relevant
2323 * cache-trees), then sort the index entries to get the conflicted
2324 * entries we added to the end into their right locations.
2325 */
2326 remove_marked_cache_entries(index, 1);
2327 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
2328
2329 return errs;
2330 }
2331
2332 void merge_switch_to_result(struct merge_options *opt,
2333 struct tree *head,
2334 struct merge_result *result,
2335 int update_worktree_and_index,
2336 int display_update_msgs)
2337 {
2338 assert(opt->priv == NULL);
2339 if (result->clean >= 0 && update_worktree_and_index) {
2340 struct merge_options_internal *opti = result->priv;
2341
2342 if (checkout(opt, head, result->tree)) {
2343 /* failure to function */
2344 result->clean = -1;
2345 return;
2346 }
2347
2348 if (record_conflicted_index_entries(opt, opt->repo->index,
2349 &opti->paths,
2350 &opti->conflicted)) {
2351 /* failure to function */
2352 result->clean = -1;
2353 return;
2354 }
2355 }
2356
2357 if (display_update_msgs) {
2358 struct merge_options_internal *opti = result->priv;
2359 struct hashmap_iter iter;
2360 struct strmap_entry *e;
2361 struct string_list olist = STRING_LIST_INIT_NODUP;
2362 int i;
2363
2364 /* Hack to pre-allocate olist to the desired size */
2365 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
2366 olist.alloc);
2367
2368 /* Put every entry from output into olist, then sort */
2369 strmap_for_each_entry(&opti->output, &iter, e) {
2370 string_list_append(&olist, e->key)->util = e->value;
2371 }
2372 string_list_sort(&olist);
2373
2374 /* Iterate over the items, printing them */
2375 for (i = 0; i < olist.nr; ++i) {
2376 struct strbuf *sb = olist.items[i].util;
2377
2378 printf("%s", sb->buf);
2379 }
2380 string_list_clear(&olist, 0);
2381
2382 /* Also include needed rename limit adjustment now */
2383 diff_warn_rename_limit("merge.renamelimit",
2384 opti->renames.needed_limit, 0);
2385 }
2386
2387 merge_finalize(opt, result);
2388 }
2389
2390 void merge_finalize(struct merge_options *opt,
2391 struct merge_result *result)
2392 {
2393 struct merge_options_internal *opti = result->priv;
2394
2395 assert(opt->priv == NULL);
2396
2397 clear_or_reinit_internal_opts(opti, 0);
2398 FREE_AND_NULL(opti);
2399 }
2400
2401 /*** Function Grouping: helper functions for merge_incore_*() ***/
2402
2403 static inline void set_commit_tree(struct commit *c, struct tree *t)
2404 {
2405 c->maybe_tree = t;
2406 }
2407
2408 static struct commit *make_virtual_commit(struct repository *repo,
2409 struct tree *tree,
2410 const char *comment)
2411 {
2412 struct commit *commit = alloc_commit_node(repo);
2413
2414 set_merge_remote_desc(commit, comment, (struct object *)commit);
2415 set_commit_tree(commit, tree);
2416 commit->object.parsed = 1;
2417 return commit;
2418 }
2419
2420 static void merge_start(struct merge_options *opt, struct merge_result *result)
2421 {
2422 /* Sanity checks on opt */
2423 assert(opt->repo);
2424
2425 assert(opt->branch1 && opt->branch2);
2426
2427 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
2428 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
2429 assert(opt->rename_limit >= -1);
2430 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
2431 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
2432
2433 assert(opt->xdl_opts >= 0);
2434 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
2435 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
2436
2437 /*
2438 * detect_renames, verbosity, buffer_output, and obuf are ignored
2439 * fields that were used by "recursive" rather than "ort" -- but
2440 * sanity check them anyway.
2441 */
2442 assert(opt->detect_renames >= -1 &&
2443 opt->detect_renames <= DIFF_DETECT_COPY);
2444 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
2445 assert(opt->buffer_output <= 2);
2446 assert(opt->obuf.len == 0);
2447
2448 assert(opt->priv == NULL);
2449
2450 /* Default to histogram diff. Actually, just hardcode it...for now. */
2451 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
2452
2453 /* Initialization of opt->priv, our internal merge data */
2454 opt->priv = xcalloc(1, sizeof(*opt->priv));
2455
2456 /*
2457 * Although we initialize opt->priv->paths with strdup_strings=0,
2458 * that's just to avoid making yet another copy of an allocated
2459 * string. Putting the entry into paths means we are taking
2460 * ownership, so we will later free it. paths_to_free is similar.
2461 *
2462 * In contrast, conflicted just has a subset of keys from paths, so
2463 * we don't want to free those (it'd be a duplicate free).
2464 */
2465 strmap_init_with_options(&opt->priv->paths, NULL, 0);
2466 strmap_init_with_options(&opt->priv->conflicted, NULL, 0);
2467 string_list_init(&opt->priv->paths_to_free, 0);
2468
2469 /*
2470 * keys & strbufs in output will sometimes need to outlive "paths",
2471 * so it will have a copy of relevant keys. It's probably a small
2472 * subset of the overall paths that have special output.
2473 */
2474 strmap_init(&opt->priv->output);
2475 }
2476
2477 /*** Function Grouping: merge_incore_*() and their internal variants ***/
2478
2479 /*
2480 * Originally from merge_trees_internal(); heavily adapted, though.
2481 */
2482 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
2483 struct tree *merge_base,
2484 struct tree *side1,
2485 struct tree *side2,
2486 struct merge_result *result)
2487 {
2488 struct object_id working_tree_oid;
2489
2490 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
2491 /*
2492 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
2493 * base, and 2-3) the trees for the two trees we're merging.
2494 */
2495 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
2496 oid_to_hex(&merge_base->object.oid),
2497 oid_to_hex(&side1->object.oid),
2498 oid_to_hex(&side2->object.oid));
2499 result->clean = -1;
2500 return;
2501 }
2502
2503 result->clean = detect_and_process_renames(opt, merge_base,
2504 side1, side2);
2505 process_entries(opt, &working_tree_oid);
2506
2507 /* Set return values */
2508 result->tree = parse_tree_indirect(&working_tree_oid);
2509 /* existence of conflicted entries implies unclean */
2510 result->clean &= strmap_empty(&opt->priv->conflicted);
2511 if (!opt->priv->call_depth) {
2512 result->priv = opt->priv;
2513 opt->priv = NULL;
2514 }
2515 }
2516
2517 /*
2518 * Originally from merge_recursive_internal(); somewhat adapted, though.
2519 */
2520 static void merge_ort_internal(struct merge_options *opt,
2521 struct commit_list *merge_bases,
2522 struct commit *h1,
2523 struct commit *h2,
2524 struct merge_result *result)
2525 {
2526 struct commit_list *iter;
2527 struct commit *merged_merge_bases;
2528 const char *ancestor_name;
2529 struct strbuf merge_base_abbrev = STRBUF_INIT;
2530
2531 if (!merge_bases) {
2532 merge_bases = get_merge_bases(h1, h2);
2533 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
2534 merge_bases = reverse_commit_list(merge_bases);
2535 }
2536
2537 merged_merge_bases = pop_commit(&merge_bases);
2538 if (merged_merge_bases == NULL) {
2539 /* if there is no common ancestor, use an empty tree */
2540 struct tree *tree;
2541
2542 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
2543 merged_merge_bases = make_virtual_commit(opt->repo, tree,
2544 "ancestor");
2545 ancestor_name = "empty tree";
2546 } else if (merge_bases) {
2547 ancestor_name = "merged common ancestors";
2548 } else {
2549 strbuf_add_unique_abbrev(&merge_base_abbrev,
2550 &merged_merge_bases->object.oid,
2551 DEFAULT_ABBREV);
2552 ancestor_name = merge_base_abbrev.buf;
2553 }
2554
2555 for (iter = merge_bases; iter; iter = iter->next) {
2556 const char *saved_b1, *saved_b2;
2557 struct commit *prev = merged_merge_bases;
2558
2559 opt->priv->call_depth++;
2560 /*
2561 * When the merge fails, the result contains files
2562 * with conflict markers. The cleanness flag is
2563 * ignored (unless indicating an error), it was never
2564 * actually used, as result of merge_trees has always
2565 * overwritten it: the committed "conflicts" were
2566 * already resolved.
2567 */
2568 saved_b1 = opt->branch1;
2569 saved_b2 = opt->branch2;
2570 opt->branch1 = "Temporary merge branch 1";
2571 opt->branch2 = "Temporary merge branch 2";
2572 merge_ort_internal(opt, NULL, prev, iter->item, result);
2573 if (result->clean < 0)
2574 return;
2575 opt->branch1 = saved_b1;
2576 opt->branch2 = saved_b2;
2577 opt->priv->call_depth--;
2578
2579 merged_merge_bases = make_virtual_commit(opt->repo,
2580 result->tree,
2581 "merged tree");
2582 commit_list_insert(prev, &merged_merge_bases->parents);
2583 commit_list_insert(iter->item,
2584 &merged_merge_bases->parents->next);
2585
2586 clear_or_reinit_internal_opts(opt->priv, 1);
2587 }
2588
2589 opt->ancestor = ancestor_name;
2590 merge_ort_nonrecursive_internal(opt,
2591 repo_get_commit_tree(opt->repo,
2592 merged_merge_bases),
2593 repo_get_commit_tree(opt->repo, h1),
2594 repo_get_commit_tree(opt->repo, h2),
2595 result);
2596 strbuf_release(&merge_base_abbrev);
2597 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
2598 }
2599
2600 void merge_incore_nonrecursive(struct merge_options *opt,
2601 struct tree *merge_base,
2602 struct tree *side1,
2603 struct tree *side2,
2604 struct merge_result *result)
2605 {
2606 assert(opt->ancestor != NULL);
2607 merge_start(opt, result);
2608 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
2609 }
2610
2611 void merge_incore_recursive(struct merge_options *opt,
2612 struct commit_list *merge_bases,
2613 struct commit *side1,
2614 struct commit *side2,
2615 struct merge_result *result)
2616 {
2617 /* We set the ancestor label based on the merge_bases */
2618 assert(opt->ancestor == NULL);
2619
2620 merge_start(opt, result);
2621 merge_ort_internal(opt, merge_bases, side1, side2, result);
2622 }