]> git.ipfire.org Git - thirdparty/git.git/blob - notes.c
Merge branch 'jb/reflog-expire-delete-dry-run-options' into maint-2.43
[thirdparty/git.git] / notes.c
1 #include "git-compat-util.h"
2 #include "config.h"
3 #include "environment.h"
4 #include "hex.h"
5 #include "notes.h"
6 #include "object-name.h"
7 #include "object-store-ll.h"
8 #include "blob.h"
9 #include "tree.h"
10 #include "utf8.h"
11 #include "strbuf.h"
12 #include "tree-walk.h"
13 #include "string-list.h"
14 #include "refs.h"
15
16 /*
17 * Use a non-balancing simple 16-tree structure with struct int_node as
18 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
19 * 16-array of pointers to its children.
20 * The bottom 2 bits of each pointer is used to identify the pointer type
21 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
22 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
23 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
24 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
25 *
26 * The root node is a statically allocated struct int_node.
27 */
28 struct int_node {
29 void *a[16];
30 };
31
32 /*
33 * Leaf nodes come in two variants, note entries and subtree entries,
34 * distinguished by the LSb of the leaf node pointer (see above).
35 * As a note entry, the key is the SHA1 of the referenced object, and the
36 * value is the SHA1 of the note object.
37 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
38 * referenced object, using the last byte of the key to store the length of
39 * the prefix. The value is the SHA1 of the tree object containing the notes
40 * subtree.
41 */
42 struct leaf_node {
43 struct object_id key_oid;
44 struct object_id val_oid;
45 };
46
47 /*
48 * A notes tree may contain entries that are not notes, and that do not follow
49 * the naming conventions of notes. There are typically none/few of these, but
50 * we still need to keep track of them. Keep a simple linked list sorted alpha-
51 * betically on the non-note path. The list is populated when parsing tree
52 * objects in load_subtree(), and the non-notes are correctly written back into
53 * the tree objects produced by write_notes_tree().
54 */
55 struct non_note {
56 struct non_note *next; /* grounded (last->next == NULL) */
57 char *path;
58 unsigned int mode;
59 struct object_id oid;
60 };
61
62 #define PTR_TYPE_NULL 0
63 #define PTR_TYPE_INTERNAL 1
64 #define PTR_TYPE_NOTE 2
65 #define PTR_TYPE_SUBTREE 3
66
67 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
68 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
69 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
70
71 #define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
72
73 #define KEY_INDEX (the_hash_algo->rawsz - 1)
74 #define FANOUT_PATH_SEPARATORS (the_hash_algo->rawsz - 1)
75 #define FANOUT_PATH_SEPARATORS_MAX ((GIT_MAX_HEXSZ / 2) - 1)
76 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
77 (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
78
79 struct notes_tree default_notes_tree;
80
81 static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
82 static struct notes_tree **display_notes_trees;
83
84 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
85 struct int_node *node, unsigned int n);
86
87 /*
88 * Search the tree until the appropriate location for the given key is found:
89 * 1. Start at the root node, with n = 0
90 * 2. If a[0] at the current level is a matching subtree entry, unpack that
91 * subtree entry and remove it; restart search at the current level.
92 * 3. Use the nth nibble of the key as an index into a:
93 * - If a[n] is an int_node, recurse from #2 into that node and increment n
94 * - If a matching subtree entry, unpack that subtree entry (and remove it);
95 * restart search at the current level.
96 * - Otherwise, we have found one of the following:
97 * - a subtree entry which does not match the key
98 * - a note entry which may or may not match the key
99 * - an unused leaf node (NULL)
100 * In any case, set *tree and *n, and return pointer to the tree location.
101 */
102 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
103 unsigned char *n, const unsigned char *key_sha1)
104 {
105 struct leaf_node *l;
106 unsigned char i;
107 void *p = (*tree)->a[0];
108
109 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
110 l = (struct leaf_node *) CLR_PTR_TYPE(p);
111 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
112 /* unpack tree and resume search */
113 (*tree)->a[0] = NULL;
114 load_subtree(t, l, *tree, *n);
115 free(l);
116 return note_tree_search(t, tree, n, key_sha1);
117 }
118 }
119
120 i = GET_NIBBLE(*n, key_sha1);
121 p = (*tree)->a[i];
122 switch (GET_PTR_TYPE(p)) {
123 case PTR_TYPE_INTERNAL:
124 *tree = CLR_PTR_TYPE(p);
125 (*n)++;
126 return note_tree_search(t, tree, n, key_sha1);
127 case PTR_TYPE_SUBTREE:
128 l = (struct leaf_node *) CLR_PTR_TYPE(p);
129 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
130 /* unpack tree and resume search */
131 (*tree)->a[i] = NULL;
132 load_subtree(t, l, *tree, *n);
133 free(l);
134 return note_tree_search(t, tree, n, key_sha1);
135 }
136 /* fall through */
137 default:
138 return &((*tree)->a[i]);
139 }
140 }
141
142 /*
143 * To find a leaf_node:
144 * Search to the tree location appropriate for the given key:
145 * If a note entry with matching key, return the note entry, else return NULL.
146 */
147 static struct leaf_node *note_tree_find(struct notes_tree *t,
148 struct int_node *tree, unsigned char n,
149 const unsigned char *key_sha1)
150 {
151 void **p = note_tree_search(t, &tree, &n, key_sha1);
152 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
153 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
154 if (hasheq(key_sha1, l->key_oid.hash))
155 return l;
156 }
157 return NULL;
158 }
159
160 /*
161 * How to consolidate an int_node:
162 * If there are > 1 non-NULL entries, give up and return non-zero.
163 * Otherwise replace the int_node at the given index in the given parent node
164 * with the only NOTE entry (or a NULL entry if no entries) from the given
165 * tree, and return 0.
166 */
167 static int note_tree_consolidate(struct int_node *tree,
168 struct int_node *parent, unsigned char index)
169 {
170 unsigned int i;
171 void *p = NULL;
172
173 assert(tree && parent);
174 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
175
176 for (i = 0; i < 16; i++) {
177 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
178 if (p) /* more than one entry */
179 return -2;
180 p = tree->a[i];
181 }
182 }
183
184 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
185 return -2;
186 /* replace tree with p in parent[index] */
187 parent->a[index] = p;
188 free(tree);
189 return 0;
190 }
191
192 /*
193 * To remove a leaf_node:
194 * Search to the tree location appropriate for the given leaf_node's key:
195 * - If location does not hold a matching entry, abort and do nothing.
196 * - Copy the matching entry's value into the given entry.
197 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
198 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
199 */
200 static void note_tree_remove(struct notes_tree *t,
201 struct int_node *tree, unsigned char n,
202 struct leaf_node *entry)
203 {
204 struct leaf_node *l;
205 struct int_node *parent_stack[GIT_MAX_RAWSZ];
206 unsigned char i, j;
207 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
208
209 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
210 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
211 return; /* type mismatch, nothing to remove */
212 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
213 if (!oideq(&l->key_oid, &entry->key_oid))
214 return; /* key mismatch, nothing to remove */
215
216 /* we have found a matching entry */
217 oidcpy(&entry->val_oid, &l->val_oid);
218 free(l);
219 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
220
221 /* consolidate this tree level, and parent levels, if possible */
222 if (!n)
223 return; /* cannot consolidate top level */
224 /* first, build stack of ancestors between root and current node */
225 parent_stack[0] = t->root;
226 for (i = 0; i < n; i++) {
227 j = GET_NIBBLE(i, entry->key_oid.hash);
228 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
229 }
230 assert(i == n && parent_stack[i] == tree);
231 /* next, unwind stack until note_tree_consolidate() is done */
232 while (i > 0 &&
233 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
234 GET_NIBBLE(i - 1, entry->key_oid.hash)))
235 i--;
236 }
237
238 /*
239 * To insert a leaf_node:
240 * Search to the tree location appropriate for the given leaf_node's key:
241 * - If location is unused (NULL), store the tweaked pointer directly there
242 * - If location holds a note entry that matches the note-to-be-inserted, then
243 * combine the two notes (by calling the given combine_notes function).
244 * - If location holds a note entry that matches the subtree-to-be-inserted,
245 * then unpack the subtree-to-be-inserted into the location.
246 * - If location holds a matching subtree entry, unpack the subtree at that
247 * location, and restart the insert operation from that level.
248 * - Else, create a new int_node, holding both the node-at-location and the
249 * node-to-be-inserted, and store the new int_node into the location.
250 */
251 static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
252 unsigned char n, struct leaf_node *entry, unsigned char type,
253 combine_notes_fn combine_notes)
254 {
255 struct int_node *new_node;
256 struct leaf_node *l;
257 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
258 int ret = 0;
259
260 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
261 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
262 switch (GET_PTR_TYPE(*p)) {
263 case PTR_TYPE_NULL:
264 assert(!*p);
265 if (is_null_oid(&entry->val_oid))
266 free(entry);
267 else
268 *p = SET_PTR_TYPE(entry, type);
269 return 0;
270 case PTR_TYPE_NOTE:
271 switch (type) {
272 case PTR_TYPE_NOTE:
273 if (oideq(&l->key_oid, &entry->key_oid)) {
274 /* skip concatenation if l == entry */
275 if (oideq(&l->val_oid, &entry->val_oid)) {
276 free(entry);
277 return 0;
278 }
279
280 ret = combine_notes(&l->val_oid,
281 &entry->val_oid);
282 if (!ret && is_null_oid(&l->val_oid))
283 note_tree_remove(t, tree, n, entry);
284 free(entry);
285 return ret;
286 }
287 break;
288 case PTR_TYPE_SUBTREE:
289 if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
290 entry->key_oid.hash)) {
291 /* unpack 'entry' */
292 load_subtree(t, entry, tree, n);
293 free(entry);
294 return 0;
295 }
296 break;
297 }
298 break;
299 case PTR_TYPE_SUBTREE:
300 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
301 /* unpack 'l' and restart insert */
302 *p = NULL;
303 load_subtree(t, l, tree, n);
304 free(l);
305 return note_tree_insert(t, tree, n, entry, type,
306 combine_notes);
307 }
308 break;
309 }
310
311 /* non-matching leaf_node */
312 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
313 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
314 if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
315 free(entry);
316 return 0;
317 }
318 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
319 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
320 combine_notes);
321 if (ret)
322 return ret;
323 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
324 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
325 }
326
327 /* Free the entire notes data contained in the given tree */
328 static void note_tree_free(struct int_node *tree)
329 {
330 unsigned int i;
331 for (i = 0; i < 16; i++) {
332 void *p = tree->a[i];
333 switch (GET_PTR_TYPE(p)) {
334 case PTR_TYPE_INTERNAL:
335 note_tree_free(CLR_PTR_TYPE(p));
336 /* fall through */
337 case PTR_TYPE_NOTE:
338 case PTR_TYPE_SUBTREE:
339 free(CLR_PTR_TYPE(p));
340 }
341 }
342 }
343
344 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
345 {
346 return strcmp(a->path, b->path);
347 }
348
349 /* note: takes ownership of path string */
350 static void add_non_note(struct notes_tree *t, char *path,
351 unsigned int mode, const unsigned char *sha1)
352 {
353 struct non_note *p = t->prev_non_note, *n;
354 n = (struct non_note *) xmalloc(sizeof(struct non_note));
355 n->next = NULL;
356 n->path = path;
357 n->mode = mode;
358 oidread(&n->oid, sha1);
359 t->prev_non_note = n;
360
361 if (!t->first_non_note) {
362 t->first_non_note = n;
363 return;
364 }
365
366 if (non_note_cmp(p, n) < 0)
367 ; /* do nothing */
368 else if (non_note_cmp(t->first_non_note, n) <= 0)
369 p = t->first_non_note;
370 else {
371 /* n sorts before t->first_non_note */
372 n->next = t->first_non_note;
373 t->first_non_note = n;
374 return;
375 }
376
377 /* n sorts equal or after p */
378 while (p->next && non_note_cmp(p->next, n) <= 0)
379 p = p->next;
380
381 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
382 assert(strcmp(p->path, n->path) == 0);
383 p->mode = n->mode;
384 oidcpy(&p->oid, &n->oid);
385 free(n);
386 t->prev_non_note = p;
387 return;
388 }
389
390 /* n sorts between p and p->next */
391 n->next = p->next;
392 p->next = n;
393 }
394
395 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
396 struct int_node *node, unsigned int n)
397 {
398 struct object_id object_oid;
399 size_t prefix_len;
400 void *buf;
401 struct tree_desc desc;
402 struct name_entry entry;
403 const unsigned hashsz = the_hash_algo->rawsz;
404
405 buf = fill_tree_descriptor(the_repository, &desc, &subtree->val_oid);
406 if (!buf)
407 die("Could not read %s for notes-index",
408 oid_to_hex(&subtree->val_oid));
409
410 prefix_len = subtree->key_oid.hash[KEY_INDEX];
411 if (prefix_len >= hashsz)
412 BUG("prefix_len (%"PRIuMAX") is out of range", (uintmax_t)prefix_len);
413 if (prefix_len * 2 < n)
414 BUG("prefix_len (%"PRIuMAX") is too small", (uintmax_t)prefix_len);
415 memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
416 while (tree_entry(&desc, &entry)) {
417 unsigned char type;
418 struct leaf_node *l;
419 size_t path_len = strlen(entry.path);
420
421 if (path_len == 2 * (hashsz - prefix_len)) {
422 /* This is potentially the remainder of the SHA-1 */
423
424 if (!S_ISREG(entry.mode))
425 /* notes must be blobs */
426 goto handle_non_note;
427
428 if (hex_to_bytes(object_oid.hash + prefix_len, entry.path,
429 hashsz - prefix_len))
430 goto handle_non_note; /* entry.path is not a SHA1 */
431
432 type = PTR_TYPE_NOTE;
433 } else if (path_len == 2) {
434 /* This is potentially an internal node */
435 size_t len = prefix_len;
436
437 if (!S_ISDIR(entry.mode))
438 /* internal nodes must be trees */
439 goto handle_non_note;
440
441 if (hex_to_bytes(object_oid.hash + len++, entry.path, 1))
442 goto handle_non_note; /* entry.path is not a SHA1 */
443
444 /*
445 * Pad the rest of the SHA-1 with zeros,
446 * except for the last byte, where we write
447 * the length:
448 */
449 memset(object_oid.hash + len, 0, hashsz - len - 1);
450 object_oid.hash[KEY_INDEX] = (unsigned char)len;
451
452 type = PTR_TYPE_SUBTREE;
453 } else {
454 /* This can't be part of a note */
455 goto handle_non_note;
456 }
457
458 CALLOC_ARRAY(l, 1);
459 oidcpy(&l->key_oid, &object_oid);
460 oidcpy(&l->val_oid, &entry.oid);
461 oid_set_algo(&l->key_oid, the_hash_algo);
462 oid_set_algo(&l->val_oid, the_hash_algo);
463 if (note_tree_insert(t, node, n, l, type,
464 combine_notes_concatenate))
465 die("Failed to load %s %s into notes tree "
466 "from %s",
467 type == PTR_TYPE_NOTE ? "note" : "subtree",
468 oid_to_hex(&object_oid), t->ref);
469
470 continue;
471
472 handle_non_note:
473 /*
474 * Determine full path for this non-note entry. The
475 * filename is already found in entry.path, but the
476 * directory part of the path must be deduced from the
477 * subtree containing this entry based on our
478 * knowledge that the overall notes tree follows a
479 * strict byte-based progressive fanout structure
480 * (i.e. using 2/38, 2/2/36, etc. fanouts).
481 */
482 {
483 struct strbuf non_note_path = STRBUF_INIT;
484 const char *q = oid_to_hex(&subtree->key_oid);
485 size_t i;
486 for (i = 0; i < prefix_len; i++) {
487 strbuf_addch(&non_note_path, *q++);
488 strbuf_addch(&non_note_path, *q++);
489 strbuf_addch(&non_note_path, '/');
490 }
491 strbuf_addstr(&non_note_path, entry.path);
492 oid_set_algo(&entry.oid, the_hash_algo);
493 add_non_note(t, strbuf_detach(&non_note_path, NULL),
494 entry.mode, entry.oid.hash);
495 }
496 }
497 free(buf);
498 }
499
500 /*
501 * Determine optimal on-disk fanout for this part of the notes tree
502 *
503 * Given a (sub)tree and the level in the internal tree structure, determine
504 * whether or not the given existing fanout should be expanded for this
505 * (sub)tree.
506 *
507 * Values of the 'fanout' variable:
508 * - 0: No fanout (all notes are stored directly in the root notes tree)
509 * - 1: 2/38 fanout
510 * - 2: 2/2/36 fanout
511 * - 3: 2/2/2/34 fanout
512 * etc.
513 */
514 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
515 unsigned char fanout)
516 {
517 /*
518 * The following is a simple heuristic that works well in practice:
519 * For each even-numbered 16-tree level (remember that each on-disk
520 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
521 * entries at that tree level. If all of them are either int_nodes or
522 * subtree entries, then there are likely plenty of notes below this
523 * level, so we return an incremented fanout.
524 */
525 unsigned int i;
526 if ((n % 2) || (n > 2 * fanout))
527 return fanout;
528 for (i = 0; i < 16; i++) {
529 switch (GET_PTR_TYPE(tree->a[i])) {
530 case PTR_TYPE_SUBTREE:
531 case PTR_TYPE_INTERNAL:
532 continue;
533 default:
534 return fanout;
535 }
536 }
537 return fanout + 1;
538 }
539
540 /* hex oid + '/' between each pair of hex digits + NUL */
541 #define FANOUT_PATH_MAX GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS_MAX + 1
542
543 static void construct_path_with_fanout(const unsigned char *hash,
544 unsigned char fanout, char *path)
545 {
546 unsigned int i = 0, j = 0;
547 const char *hex_hash = hash_to_hex(hash);
548 assert(fanout < the_hash_algo->rawsz);
549 while (fanout) {
550 path[i++] = hex_hash[j++];
551 path[i++] = hex_hash[j++];
552 path[i++] = '/';
553 fanout--;
554 }
555 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_hash + j);
556 }
557
558 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
559 unsigned char n, unsigned char fanout, int flags,
560 each_note_fn fn, void *cb_data)
561 {
562 unsigned int i;
563 void *p;
564 int ret = 0;
565 struct leaf_node *l;
566 static char path[FANOUT_PATH_MAX];
567
568 fanout = determine_fanout(tree, n, fanout);
569 for (i = 0; i < 16; i++) {
570 redo:
571 p = tree->a[i];
572 switch (GET_PTR_TYPE(p)) {
573 case PTR_TYPE_INTERNAL:
574 /* recurse into int_node */
575 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
576 fanout, flags, fn, cb_data);
577 break;
578 case PTR_TYPE_SUBTREE:
579 l = (struct leaf_node *) CLR_PTR_TYPE(p);
580 /*
581 * Subtree entries in the note tree represent parts of
582 * the note tree that have not yet been explored. There
583 * is a direct relationship between subtree entries at
584 * level 'n' in the tree, and the 'fanout' variable:
585 * Subtree entries at level 'n < 2 * fanout' should be
586 * preserved, since they correspond exactly to a fanout
587 * directory in the on-disk structure. However, subtree
588 * entries at level 'n >= 2 * fanout' should NOT be
589 * preserved, but rather consolidated into the above
590 * notes tree level. We achieve this by unconditionally
591 * unpacking subtree entries that exist below the
592 * threshold level at 'n = 2 * fanout'.
593 */
594 if (n < 2 * fanout &&
595 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
596 /* invoke callback with subtree */
597 unsigned int path_len =
598 l->key_oid.hash[KEY_INDEX] * 2 + fanout;
599 assert(path_len < FANOUT_PATH_MAX - 1);
600 construct_path_with_fanout(l->key_oid.hash,
601 fanout,
602 path);
603 /* Create trailing slash, if needed */
604 if (path[path_len - 1] != '/')
605 path[path_len++] = '/';
606 path[path_len] = '\0';
607 ret = fn(&l->key_oid, &l->val_oid,
608 path,
609 cb_data);
610 }
611 if (n >= 2 * fanout ||
612 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
613 /* unpack subtree and resume traversal */
614 tree->a[i] = NULL;
615 load_subtree(t, l, tree, n);
616 free(l);
617 goto redo;
618 }
619 break;
620 case PTR_TYPE_NOTE:
621 l = (struct leaf_node *) CLR_PTR_TYPE(p);
622 construct_path_with_fanout(l->key_oid.hash, fanout,
623 path);
624 ret = fn(&l->key_oid, &l->val_oid, path,
625 cb_data);
626 break;
627 }
628 if (ret)
629 return ret;
630 }
631 return 0;
632 }
633
634 struct tree_write_stack {
635 struct tree_write_stack *next;
636 struct strbuf buf;
637 char path[2]; /* path to subtree in next, if any */
638 };
639
640 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
641 const char *full_path)
642 {
643 return full_path[0] == tws->path[0] &&
644 full_path[1] == tws->path[1] &&
645 full_path[2] == '/';
646 }
647
648 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
649 const char *path, unsigned int path_len, const
650 unsigned char *hash)
651 {
652 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
653 strbuf_add(buf, hash, the_hash_algo->rawsz);
654 }
655
656 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
657 const char *path)
658 {
659 struct tree_write_stack *n;
660 assert(!tws->next);
661 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
662 n = (struct tree_write_stack *)
663 xmalloc(sizeof(struct tree_write_stack));
664 n->next = NULL;
665 strbuf_init(&n->buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries per tree */
666 n->path[0] = n->path[1] = '\0';
667 tws->next = n;
668 tws->path[0] = path[0];
669 tws->path[1] = path[1];
670 }
671
672 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
673 {
674 int ret;
675 struct tree_write_stack *n = tws->next;
676 struct object_id s;
677 if (n) {
678 ret = tree_write_stack_finish_subtree(n);
679 if (ret)
680 return ret;
681 ret = write_object_file(n->buf.buf, n->buf.len, OBJ_TREE, &s);
682 if (ret)
683 return ret;
684 strbuf_release(&n->buf);
685 free(n);
686 tws->next = NULL;
687 write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
688 tws->path[0] = tws->path[1] = '\0';
689 }
690 return 0;
691 }
692
693 static int write_each_note_helper(struct tree_write_stack *tws,
694 const char *path, unsigned int mode,
695 const struct object_id *oid)
696 {
697 size_t path_len = strlen(path);
698 unsigned int n = 0;
699 int ret;
700
701 /* Determine common part of tree write stack */
702 while (tws && 3 * n < path_len &&
703 matches_tree_write_stack(tws, path + 3 * n)) {
704 n++;
705 tws = tws->next;
706 }
707
708 /* tws point to last matching tree_write_stack entry */
709 ret = tree_write_stack_finish_subtree(tws);
710 if (ret)
711 return ret;
712
713 /* Start subtrees needed to satisfy path */
714 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
715 tree_write_stack_init_subtree(tws, path + 3 * n);
716 n++;
717 tws = tws->next;
718 }
719
720 /* There should be no more directory components in the given path */
721 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
722
723 /* Finally add given entry to the current tree object */
724 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
725 oid->hash);
726
727 return 0;
728 }
729
730 struct write_each_note_data {
731 struct tree_write_stack *root;
732 struct non_note **nn_list;
733 struct non_note *nn_prev;
734 };
735
736 static int write_each_non_note_until(const char *note_path,
737 struct write_each_note_data *d)
738 {
739 struct non_note *p = d->nn_prev;
740 struct non_note *n = p ? p->next : *d->nn_list;
741 int cmp = 0, ret;
742 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
743 if (note_path && cmp == 0)
744 ; /* do nothing, prefer note to non-note */
745 else {
746 ret = write_each_note_helper(d->root, n->path, n->mode,
747 &n->oid);
748 if (ret)
749 return ret;
750 }
751 p = n;
752 n = n->next;
753 }
754 d->nn_prev = p;
755 return 0;
756 }
757
758 static int write_each_note(const struct object_id *object_oid UNUSED,
759 const struct object_id *note_oid, char *note_path,
760 void *cb_data)
761 {
762 struct write_each_note_data *d =
763 (struct write_each_note_data *) cb_data;
764 size_t note_path_len = strlen(note_path);
765 unsigned int mode = 0100644;
766
767 if (note_path[note_path_len - 1] == '/') {
768 /* subtree entry */
769 note_path_len--;
770 note_path[note_path_len] = '\0';
771 mode = 040000;
772 }
773 assert(note_path_len <= GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS);
774
775 /* Weave non-note entries into note entries */
776 return write_each_non_note_until(note_path, d) ||
777 write_each_note_helper(d->root, note_path, mode, note_oid);
778 }
779
780 struct note_delete_list {
781 struct note_delete_list *next;
782 const unsigned char *sha1;
783 };
784
785 static int prune_notes_helper(const struct object_id *object_oid,
786 const struct object_id *note_oid UNUSED,
787 char *note_path UNUSED,
788 void *cb_data)
789 {
790 struct note_delete_list **l = (struct note_delete_list **) cb_data;
791 struct note_delete_list *n;
792
793 if (repo_has_object_file(the_repository, object_oid))
794 return 0; /* nothing to do for this note */
795
796 /* failed to find object => prune this note */
797 n = (struct note_delete_list *) xmalloc(sizeof(*n));
798 n->next = *l;
799 n->sha1 = object_oid->hash;
800 *l = n;
801 return 0;
802 }
803
804 int combine_notes_concatenate(struct object_id *cur_oid,
805 const struct object_id *new_oid)
806 {
807 char *cur_msg = NULL, *new_msg = NULL, *buf;
808 unsigned long cur_len, new_len, buf_len;
809 enum object_type cur_type, new_type;
810 int ret;
811
812 /* read in both note blob objects */
813 if (!is_null_oid(new_oid))
814 new_msg = repo_read_object_file(the_repository, new_oid,
815 &new_type, &new_len);
816 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
817 free(new_msg);
818 return 0;
819 }
820 if (!is_null_oid(cur_oid))
821 cur_msg = repo_read_object_file(the_repository, cur_oid,
822 &cur_type, &cur_len);
823 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
824 free(cur_msg);
825 free(new_msg);
826 oidcpy(cur_oid, new_oid);
827 return 0;
828 }
829
830 /* we will separate the notes by two newlines anyway */
831 if (cur_msg[cur_len - 1] == '\n')
832 cur_len--;
833
834 /* concatenate cur_msg and new_msg into buf */
835 buf_len = cur_len + 2 + new_len;
836 buf = (char *) xmalloc(buf_len);
837 memcpy(buf, cur_msg, cur_len);
838 buf[cur_len] = '\n';
839 buf[cur_len + 1] = '\n';
840 memcpy(buf + cur_len + 2, new_msg, new_len);
841 free(cur_msg);
842 free(new_msg);
843
844 /* create a new blob object from buf */
845 ret = write_object_file(buf, buf_len, OBJ_BLOB, cur_oid);
846 free(buf);
847 return ret;
848 }
849
850 int combine_notes_overwrite(struct object_id *cur_oid,
851 const struct object_id *new_oid)
852 {
853 oidcpy(cur_oid, new_oid);
854 return 0;
855 }
856
857 int combine_notes_ignore(struct object_id *cur_oid UNUSED,
858 const struct object_id *new_oid UNUSED)
859 {
860 return 0;
861 }
862
863 /*
864 * Add the lines from the named object to list, with trailing
865 * newlines removed.
866 */
867 static int string_list_add_note_lines(struct string_list *list,
868 const struct object_id *oid)
869 {
870 char *data;
871 unsigned long len;
872 enum object_type t;
873
874 if (is_null_oid(oid))
875 return 0;
876
877 /* read_sha1_file NUL-terminates */
878 data = repo_read_object_file(the_repository, oid, &t, &len);
879 if (t != OBJ_BLOB || !data || !len) {
880 free(data);
881 return t != OBJ_BLOB || !data;
882 }
883
884 /*
885 * If the last line of the file is EOL-terminated, this will
886 * add an empty string to the list. But it will be removed
887 * later, along with any empty strings that came from empty
888 * lines within the file.
889 */
890 string_list_split(list, data, '\n', -1);
891 free(data);
892 return 0;
893 }
894
895 static int string_list_join_lines_helper(struct string_list_item *item,
896 void *cb_data)
897 {
898 struct strbuf *buf = cb_data;
899 strbuf_addstr(buf, item->string);
900 strbuf_addch(buf, '\n');
901 return 0;
902 }
903
904 int combine_notes_cat_sort_uniq(struct object_id *cur_oid,
905 const struct object_id *new_oid)
906 {
907 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
908 struct strbuf buf = STRBUF_INIT;
909 int ret = 1;
910
911 /* read both note blob objects into unique_lines */
912 if (string_list_add_note_lines(&sort_uniq_list, cur_oid))
913 goto out;
914 if (string_list_add_note_lines(&sort_uniq_list, new_oid))
915 goto out;
916 string_list_remove_empty_items(&sort_uniq_list, 0);
917 string_list_sort(&sort_uniq_list);
918 string_list_remove_duplicates(&sort_uniq_list, 0);
919
920 /* create a new blob object from sort_uniq_list */
921 if (for_each_string_list(&sort_uniq_list,
922 string_list_join_lines_helper, &buf))
923 goto out;
924
925 ret = write_object_file(buf.buf, buf.len, OBJ_BLOB, cur_oid);
926
927 out:
928 strbuf_release(&buf);
929 string_list_clear(&sort_uniq_list, 0);
930 return ret;
931 }
932
933 static int string_list_add_one_ref(const char *refname,
934 const struct object_id *oid UNUSED,
935 int flag UNUSED, void *cb)
936 {
937 struct string_list *refs = cb;
938 if (!unsorted_string_list_has_string(refs, refname))
939 string_list_append(refs, refname);
940 return 0;
941 }
942
943 /*
944 * The list argument must have strdup_strings set on it.
945 */
946 void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
947 {
948 assert(list->strdup_strings);
949 if (has_glob_specials(glob)) {
950 for_each_glob_ref(string_list_add_one_ref, glob, list);
951 } else {
952 struct object_id oid;
953 if (repo_get_oid(the_repository, glob, &oid))
954 warning("notes ref %s is invalid", glob);
955 if (!unsorted_string_list_has_string(list, glob))
956 string_list_append(list, glob);
957 }
958 }
959
960 void string_list_add_refs_from_colon_sep(struct string_list *list,
961 const char *globs)
962 {
963 struct string_list split = STRING_LIST_INIT_NODUP;
964 char *globs_copy = xstrdup(globs);
965 int i;
966
967 string_list_split_in_place(&split, globs_copy, ":", -1);
968 string_list_remove_empty_items(&split, 0);
969
970 for (i = 0; i < split.nr; i++)
971 string_list_add_refs_by_glob(list, split.items[i].string);
972
973 string_list_clear(&split, 0);
974 free(globs_copy);
975 }
976
977 static int notes_display_config(const char *k, const char *v,
978 const struct config_context *ctx UNUSED,
979 void *cb)
980 {
981 int *load_refs = cb;
982
983 if (*load_refs && !strcmp(k, "notes.displayref")) {
984 if (!v)
985 return config_error_nonbool(k);
986 string_list_add_refs_by_glob(&display_notes_refs, v);
987 }
988
989 return 0;
990 }
991
992 const char *default_notes_ref(void)
993 {
994 const char *notes_ref = NULL;
995 if (!notes_ref)
996 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
997 if (!notes_ref)
998 notes_ref = notes_ref_name; /* value of core.notesRef config */
999 if (!notes_ref)
1000 notes_ref = GIT_NOTES_DEFAULT_REF;
1001 return notes_ref;
1002 }
1003
1004 void init_notes(struct notes_tree *t, const char *notes_ref,
1005 combine_notes_fn combine_notes, int flags)
1006 {
1007 struct object_id oid, object_oid;
1008 unsigned short mode;
1009 struct leaf_node root_tree;
1010
1011 if (!t)
1012 t = &default_notes_tree;
1013 assert(!t->initialized);
1014
1015 if (!notes_ref)
1016 notes_ref = default_notes_ref();
1017 update_ref_namespace(NAMESPACE_NOTES, xstrdup(notes_ref));
1018
1019 if (!combine_notes)
1020 combine_notes = combine_notes_concatenate;
1021
1022 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1023 t->first_non_note = NULL;
1024 t->prev_non_note = NULL;
1025 t->ref = xstrdup(notes_ref);
1026 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1027 t->combine_notes = combine_notes;
1028 t->initialized = 1;
1029 t->dirty = 0;
1030
1031 if (flags & NOTES_INIT_EMPTY ||
1032 repo_get_oid_treeish(the_repository, notes_ref, &object_oid))
1033 return;
1034 if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, &object_oid))
1035 die("Cannot use notes ref %s", notes_ref);
1036 if (get_tree_entry(the_repository, &object_oid, "", &oid, &mode))
1037 die("Failed to read notes tree referenced by %s (%s)",
1038 notes_ref, oid_to_hex(&object_oid));
1039
1040 oidclr(&root_tree.key_oid);
1041 oidcpy(&root_tree.val_oid, &oid);
1042 load_subtree(t, &root_tree, t->root, 0);
1043 }
1044
1045 struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1046 {
1047 struct string_list_item *item;
1048 int counter = 0;
1049 struct notes_tree **trees;
1050 ALLOC_ARRAY(trees, refs->nr + 1);
1051 for_each_string_list_item(item, refs) {
1052 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1053 init_notes(t, item->string, combine_notes_ignore, flags);
1054 trees[counter++] = t;
1055 }
1056 trees[counter] = NULL;
1057 return trees;
1058 }
1059
1060 void init_display_notes(struct display_notes_opt *opt)
1061 {
1062 memset(opt, 0, sizeof(*opt));
1063 opt->use_default_notes = -1;
1064 }
1065
1066 void enable_default_display_notes(struct display_notes_opt *opt, int *show_notes)
1067 {
1068 opt->use_default_notes = 1;
1069 *show_notes = 1;
1070 }
1071
1072 void enable_ref_display_notes(struct display_notes_opt *opt, int *show_notes,
1073 const char *ref) {
1074 struct strbuf buf = STRBUF_INIT;
1075 strbuf_addstr(&buf, ref);
1076 expand_notes_ref(&buf);
1077 string_list_append(&opt->extra_notes_refs,
1078 strbuf_detach(&buf, NULL));
1079 *show_notes = 1;
1080 }
1081
1082 void disable_display_notes(struct display_notes_opt *opt, int *show_notes)
1083 {
1084 opt->use_default_notes = -1;
1085 /* we have been strdup'ing ourselves, so trick
1086 * string_list into free()ing strings */
1087 opt->extra_notes_refs.strdup_strings = 1;
1088 string_list_clear(&opt->extra_notes_refs, 0);
1089 opt->extra_notes_refs.strdup_strings = 0;
1090 *show_notes = 0;
1091 }
1092
1093 void load_display_notes(struct display_notes_opt *opt)
1094 {
1095 char *display_ref_env;
1096 int load_config_refs = 0;
1097 display_notes_refs.strdup_strings = 1;
1098
1099 assert(!display_notes_trees);
1100
1101 if (!opt || opt->use_default_notes > 0 ||
1102 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1103 string_list_append(&display_notes_refs, default_notes_ref());
1104 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1105 if (display_ref_env) {
1106 string_list_add_refs_from_colon_sep(&display_notes_refs,
1107 display_ref_env);
1108 load_config_refs = 0;
1109 } else
1110 load_config_refs = 1;
1111 }
1112
1113 git_config(notes_display_config, &load_config_refs);
1114
1115 if (opt) {
1116 struct string_list_item *item;
1117 for_each_string_list_item(item, &opt->extra_notes_refs)
1118 string_list_add_refs_by_glob(&display_notes_refs,
1119 item->string);
1120 }
1121
1122 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1123 string_list_clear(&display_notes_refs, 0);
1124 }
1125
1126 int add_note(struct notes_tree *t, const struct object_id *object_oid,
1127 const struct object_id *note_oid, combine_notes_fn combine_notes)
1128 {
1129 struct leaf_node *l;
1130
1131 if (!t)
1132 t = &default_notes_tree;
1133 assert(t->initialized);
1134 t->dirty = 1;
1135 if (!combine_notes)
1136 combine_notes = t->combine_notes;
1137 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1138 oidcpy(&l->key_oid, object_oid);
1139 oidcpy(&l->val_oid, note_oid);
1140 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1141 }
1142
1143 int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1144 {
1145 struct leaf_node l;
1146
1147 if (!t)
1148 t = &default_notes_tree;
1149 assert(t->initialized);
1150 oidread(&l.key_oid, object_sha1);
1151 oidclr(&l.val_oid);
1152 note_tree_remove(t, t->root, 0, &l);
1153 if (is_null_oid(&l.val_oid)) /* no note was removed */
1154 return 1;
1155 t->dirty = 1;
1156 return 0;
1157 }
1158
1159 const struct object_id *get_note(struct notes_tree *t,
1160 const struct object_id *oid)
1161 {
1162 struct leaf_node *found;
1163
1164 if (!t)
1165 t = &default_notes_tree;
1166 assert(t->initialized);
1167 found = note_tree_find(t, t->root, 0, oid->hash);
1168 return found ? &found->val_oid : NULL;
1169 }
1170
1171 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1172 void *cb_data)
1173 {
1174 if (!t)
1175 t = &default_notes_tree;
1176 assert(t->initialized);
1177 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1178 }
1179
1180 int write_notes_tree(struct notes_tree *t, struct object_id *result)
1181 {
1182 struct tree_write_stack root;
1183 struct write_each_note_data cb_data;
1184 int ret;
1185 int flags;
1186
1187 if (!t)
1188 t = &default_notes_tree;
1189 assert(t->initialized);
1190
1191 /* Prepare for traversal of current notes tree */
1192 root.next = NULL; /* last forward entry in list is grounded */
1193 strbuf_init(&root.buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries */
1194 root.path[0] = root.path[1] = '\0';
1195 cb_data.root = &root;
1196 cb_data.nn_list = &(t->first_non_note);
1197 cb_data.nn_prev = NULL;
1198
1199 /* Write tree objects representing current notes tree */
1200 flags = FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1201 FOR_EACH_NOTE_YIELD_SUBTREES;
1202 ret = for_each_note(t, flags, write_each_note, &cb_data) ||
1203 write_each_non_note_until(NULL, &cb_data) ||
1204 tree_write_stack_finish_subtree(&root) ||
1205 write_object_file(root.buf.buf, root.buf.len, OBJ_TREE, result);
1206 strbuf_release(&root.buf);
1207 return ret;
1208 }
1209
1210 void prune_notes(struct notes_tree *t, int flags)
1211 {
1212 struct note_delete_list *l = NULL;
1213
1214 if (!t)
1215 t = &default_notes_tree;
1216 assert(t->initialized);
1217
1218 for_each_note(t, 0, prune_notes_helper, &l);
1219
1220 while (l) {
1221 if (flags & NOTES_PRUNE_VERBOSE)
1222 printf("%s\n", hash_to_hex(l->sha1));
1223 if (!(flags & NOTES_PRUNE_DRYRUN))
1224 remove_note(t, l->sha1);
1225 l = l->next;
1226 }
1227 }
1228
1229 void free_notes(struct notes_tree *t)
1230 {
1231 if (!t)
1232 t = &default_notes_tree;
1233 if (t->root)
1234 note_tree_free(t->root);
1235 free(t->root);
1236 while (t->first_non_note) {
1237 t->prev_non_note = t->first_non_note->next;
1238 free(t->first_non_note->path);
1239 free(t->first_non_note);
1240 t->first_non_note = t->prev_non_note;
1241 }
1242 free(t->ref);
1243 memset(t, 0, sizeof(struct notes_tree));
1244 }
1245
1246 /*
1247 * Fill the given strbuf with the notes associated with the given object.
1248 *
1249 * If the given notes_tree structure is not initialized, it will be auto-
1250 * initialized to the default value (see documentation for init_notes() above).
1251 * If the given notes_tree is NULL, the internal/default notes_tree will be
1252 * used instead.
1253 *
1254 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1255 * for human consumption.
1256 */
1257 static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1258 struct strbuf *sb, const char *output_encoding, int raw)
1259 {
1260 static const char utf8[] = "utf-8";
1261 const struct object_id *oid;
1262 char *msg, *msg_p;
1263 unsigned long linelen, msglen;
1264 enum object_type type;
1265
1266 if (!t)
1267 t = &default_notes_tree;
1268 if (!t->initialized)
1269 init_notes(t, NULL, NULL, 0);
1270
1271 oid = get_note(t, object_oid);
1272 if (!oid)
1273 return;
1274
1275 if (!(msg = repo_read_object_file(the_repository, oid, &type, &msglen)) || type != OBJ_BLOB) {
1276 free(msg);
1277 return;
1278 }
1279
1280 if (output_encoding && *output_encoding &&
1281 !is_encoding_utf8(output_encoding)) {
1282 char *reencoded = reencode_string(msg, output_encoding, utf8);
1283 if (reencoded) {
1284 free(msg);
1285 msg = reencoded;
1286 msglen = strlen(msg);
1287 }
1288 }
1289
1290 /* we will end the annotation by a newline anyway */
1291 if (msglen && msg[msglen - 1] == '\n')
1292 msglen--;
1293
1294 if (!raw) {
1295 const char *ref = t->ref;
1296 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1297 strbuf_addstr(sb, "\nNotes:\n");
1298 } else {
1299 skip_prefix(ref, "refs/", &ref);
1300 skip_prefix(ref, "notes/", &ref);
1301 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1302 }
1303 }
1304
1305 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1306 linelen = strchrnul(msg_p, '\n') - msg_p;
1307
1308 if (!raw)
1309 strbuf_addstr(sb, " ");
1310 strbuf_add(sb, msg_p, linelen);
1311 strbuf_addch(sb, '\n');
1312 }
1313
1314 free(msg);
1315 }
1316
1317 void format_display_notes(const struct object_id *object_oid,
1318 struct strbuf *sb, const char *output_encoding, int raw)
1319 {
1320 int i;
1321 assert(display_notes_trees);
1322 for (i = 0; display_notes_trees[i]; i++)
1323 format_note(display_notes_trees[i], object_oid, sb,
1324 output_encoding, raw);
1325 }
1326
1327 int copy_note(struct notes_tree *t,
1328 const struct object_id *from_obj, const struct object_id *to_obj,
1329 int force, combine_notes_fn combine_notes)
1330 {
1331 const struct object_id *note = get_note(t, from_obj);
1332 const struct object_id *existing_note = get_note(t, to_obj);
1333
1334 if (!force && existing_note)
1335 return 1;
1336
1337 if (note)
1338 return add_note(t, to_obj, note, combine_notes);
1339 else if (existing_note)
1340 return add_note(t, to_obj, null_oid(), combine_notes);
1341
1342 return 0;
1343 }
1344
1345 void expand_notes_ref(struct strbuf *sb)
1346 {
1347 if (starts_with(sb->buf, "refs/notes/"))
1348 return; /* we're happy */
1349 else if (starts_with(sb->buf, "notes/"))
1350 strbuf_insertstr(sb, 0, "refs/");
1351 else
1352 strbuf_insertstr(sb, 0, "refs/notes/");
1353 }
1354
1355 void expand_loose_notes_ref(struct strbuf *sb)
1356 {
1357 struct object_id object;
1358
1359 if (repo_get_oid(the_repository, sb->buf, &object)) {
1360 /* fallback to expand_notes_ref */
1361 expand_notes_ref(sb);
1362 }
1363 }